
WebSphere Application Server Liberty Core
8.5.5
Version 8 Release 5

IBM

ii WebSphere Application Server Liberty Core 8.5.5

Contents

Chapter 1. WebSphere Application
Server Liberty Core: Overview 1
Architecture 1

Java EE 7 programming model support 4
Java EE 6 programming model support 8
Supported Java EE 6 and 7 feature combinations 11
Java EE 7 behavior changes 12
Enterprise OSGi programming model support . . 13
Liberty externals support 14

Server configuration 16
Microsoft Active Directory LDAP Filters
(activedLdapFilterProperties) 17
Administrator Role (administrator-role) 17
API Discovery (apiDiscovery) 18
Application (application) 18
Application Manager (applicationManager) . . . 31
Application Monitoring (applicationMonitor) . . 32
Authentication Cache (authCache) 33
Authentication Data (authData). 33
Authentication Filter (authFilter) 33
Authentication (authentication) 36
Feature Authorization Role Mapping
(authorization-roles) 36
Basic User Registry (basicRegistry) 37
BELL (bell) 38
OSGi Applications Bundle Repository
(bundleRepository) 40
Contexts And Dependency Injection (CDI) V1.2
(cdi12) 41
CDI Container (cdiContainer) 41
Channel Framework (channelfw) 42
Classloading (classloading) 42
Certificate Authority Signed Certificate
(collectiveCertificate) 43
Collective Member (collectiveMember) 43
Configuration Management (config) 44
Connection Manager (connectionManager) . . . 47
Constrained Delegation (constrainedDelegation) 49
Thread Context Propagation (contextService) . . 49
Cross-Origin Resource Sharing (cors) 53
Custom LDAP Filters
(customLdapFilterProperties) 54
Data Source (dataSource) 54
Distributed Map (distributedMap) 104
IBM Lotus Domino LDAP Filters
(domino50LdapFilterProperties) 108
Novell eDirectory LDAP Filters
(edirectoryLdapFilterProperties) 108
EJB Application (ejbApplication) 108
EJB Container (ejbContainer) 115
Enterprise Application (enterpriseApplication) 129
Event Logging (eventLogging). 142
Executor Management (executor) 143
Feature Manager (featureManager) 146
User Registry Federation (federatedRepository) 146

Fileset (fileset) 156
Host Authentication Information (hostAuthInfo) 157
Host Singleton (hostSingleton). 159
HTTP Access Logging (httpAccessLogging) . . 159
HTTP Dispatcher (httpDispatcher) 160
HTTP Transport Encoding (httpEncoding) . . . 160
HTTP Endpoint (httpEndpoint) 163
HTTP Options (httpOptions) 167
HTTP Proxy Redirect (httpProxyRedirect) . . . 169
HTTP Session (httpSession). 169
HTTP Session Database (httpSessionDatabase) 175
HTTP Whiteboard (httpWhiteboard). 181
IBM Tivoli Directory Server LDAP Filters
(idsLdapFilterProperties) 182
Include (include) 182
Sun Java System Directory Server LDAP Filters
(iplanetLdapFilterProperties) 183
JAAS Login Context Entry
(jaasLoginContextEntry) 184
JAAS Login Module (jaasLoginModule) . . . 184
Java 2 Security (javaPermission) 187
JDBC Driver (jdbcDriver) 188
JNDI Entry (jndiEntry) 190
JNDI Object Factory (jndiObjectFactory) . . . 190
JNDI Reference Entry (jndiReferenceEntry) . . 192
JNDI URL Entry (jndiURLEntry) 195
JPA Container (jpa) 195
JSP Engine (jspEngine) 196
Keystore (keyStore) 197
LDAP User Registry (ldapRegistry) 199
Shared Library (library) 211
Logging (logging) 214
Logstash Collector (logstashCollector) 216
LTPA Token (ltpa) 217
Mail Session Object (mailSession). 217
Managed Executor (managedExecutorService) 218
Managed Scheduled Executor
(managedScheduledExecutorService) 222
Managed Thread Factory
(managedThreadFactory) 227
Default Mime Types (mimeTypes) 232
Monitor (monitor) 232
Netscape Directory Server LDAP Filters
(netscapeLdapFilterProperties). 233
OAuth Role Map (oauth-roles) 233
OAuth Provider Definition (oauthProvider) . . 236
OpenId Authentication (openId) 294
OpenID Connect Client (openidConnectClient) 298
OpenID Connect Server Provider
(openidConnectProvider) 304
OSGi Application (osgiApplication) 368
OSGi Applications (osgiApplications) 370
OSGi Library (osgiLibrary) 370
Web Server Plugin (pluginConfiguration) . . . 372
Quick Start Security (quickStartSecurity) . . . 380
Remote File Access (remoteFileAccess) 380

iii

Request Timing (requestTiming) 381
SAML Web SSO 2.0 Authentication
(samlWebSso20) 381
IBM SecureWay Directory Server LDAP Filters
(securewayLdapFilterProperties) 392
Spnego Authentication (spnego) 392
SSL Repertoire (ssl) 396
SSL Default Repertoire (sslDefault) 398
SSL Options (sslOptions) 398
TCP Options (tcpOptions) 398
Timed Operation (timedOperation) 400
Transaction Manager (transaction) 401
Trust Association Interceptor (trustAssociation) 454
User Information (userInfo) 456
Variable Declaration (variable). 457
Virtual Host (virtualHost) 457
Web Container Application Security
(webAppSecurity) 462
Web Application (webApplication) 466
Web Container (webContainer) 473
WAS WebSocket Outbound (wsocOutbound) 478
z/OS Logging (zosLogging) 481

Feature management 482
Liberty features. 483

Liberty Kernel 572
Liberty Repository. 573
Shared libraries. 576
Product extension 577
Security 581

Quick overview of security 584
Authentication 585
Authorization 606
Security on the Liberty application client
container 608
Java 2 Security 609
Security public APIs 611
Configuration differences between the
traditional and Liberty: security 615
The limits to protection through password
encryption 616

Java Persistence API (JPA) 617
Java Persistence API (JPA) feature overview . . 618
Java Persistence API 2.1 behavior changes . . . 619

Binary logging 621
BinaryLog command options 625
Configuring binary logging in Liberty 629

Multimedia 630
Video: Configure session cache management
with Liberty and WebSphere eXtreme Scale . . 631
Video: DevOps with WebSphere Liberty Server 637
Video: Enabling IHS for Liberty Dynamic
Routing 642
Video: Getting started with the Server
Configuration Tool for WebSphere Liberty . . . 646
Video: Google OpenID Connect for applications
on WebSphere Liberty 647
Video: Installing Liberty from a ZIP file . . . 652
Video: Java EE 7 in Liberty 654
Video: OpenID Connect on Liberty 660
Video: Setting up Admin Center 666

Video: Thoughts on Liberty: Interview with
Alasdair Nottingham 668
Video: Touring Admin Center 669
Video: Using the IBM WebSphere Liberty
Repository to enhance Liberty environments . . 670
Video: Why Liberty? Performance that scales 672
Video: Why Liberty? Fast application
development 675
Video: Why Liberty? Rapid deployment and
powerful administration 676

Notices 678
Privacy Policy Considerations 681

Chapter 2. Migrating applications to
Liberty 683
Migrating data access applications to Liberty . . . 683

Configuration differences between the
traditional and Liberty: dataSource and
jdbcDriver elements 683
Configuration differences between the
traditional and Liberty: connectionManager
element 684
Migrating a DB2 data source to Liberty. . . . 685
Migrating a Derby embedded data source to
Liberty 687

Chapter 3. Installing Liberty 689
Installing and uninstalling Liberty using
Installation Manager 690

Installing and uninstalling Liberty on
distributed operating systems 691
Installing and uninstalling Liberty on IBM i
operating systems 788

Installing and uninstalling Liberty using
downloaded files and archives 833

Installing Liberty developer tools and
(optionally) Liberty 835
Installing Liberty by extracting a Java archive
file 836
Installing Liberty by extracting a ZIP archive file 842
Upgrading Liberty installations 847
Applying an interim fix to a Liberty archive
installation 849
Configuring the Liberty server to start as a job
in the QWAS85 subsystem on IBM i 850
Uninstalling Liberty application-serving
environment from IBM i operating systems . . 851

Installing Liberty Repository assets 852
Installing assets using the installUtility
command 853
Installing assets using the featureManager
command 864
Installing assets using Installation Manager . . 872
Installing assets by using developer tools . . . 873

Verifying the integrity of Liberty installation . . . 875
productInfo command 875

Docker support in Liberty 877
Accessing a remote Liberty server in a Docker
container by using developer tools 877
Liberty and Chef 878

iv WebSphere Application Server Liberty Core 8.5.5

Installing the OpenShift Cartridge for Liberty . . 878
Installing the IBM WebSphere Application Server
Liberty Buildpack into a Cloud Foundry
Environment 880

Chapter 4. Setting up Liberty. 883
Creating a Liberty server manually 883
Creating a Liberty server by using developer tools 884
Creating a remote Liberty server by using
developer tools 887
Creating a workbench Liberty server in a Docker
container by using developer tools 890
Directory locations and properties 894
Specifying Liberty bootstrap properties 897
Setting the default host name of a Liberty server 899
Default port numbers 899
Using virtual hosts 900

Isolating two applications from each other . . 900
Isolating applications based on the requested
host or port 901
Restricting access based on originating endpoint 902
Virtual hosts. 902

Preparing and running an application client . . . 904
Creating a Liberty application client manually 906
Creating a Liberty application client with
multiple client modules 907

Setting up the server-management environment for
Liberty by using collectives. 907

Collective architecture 908
Collective security 911
Configuring a Liberty collective 912
Overriding Liberty server host information . . 919
Registering host computers with a Liberty
collective 921
Setting the JAVA_HOME variable for Liberty
collective members 923
Setting up RXA for Liberty collective operations 925

Setting up a Liberty server to use Bluemix services 927
bluemixUtility command 927
Configuring Liberty for Bluemix Cloudant
services 931
Configuring Liberty for Bluemix Watson
services 932

Platform-as-a-service environment considerations
for setting up Liberty. 934

Chapter 5. Administering Liberty . . . 937
XML escape characters 937
Administering Liberty by using developer tools 938

Editing the Liberty configuration by using
developer tools 938
Specifying the Liberty configuration with
dropins files by using developer tools 939
Starting and stopping a server by using
developer tools 940
Switching a Liberty Docker server between run
and debug mode by using developer tools . . 940
Defining a utility project as a shared library . . 941
Exploring the runtime environment by using
developer tools 943

Displaying the server configuration in a merged
view 944
Viewing the schema documentation for the
server configuration 945
Generating a Liberty server dump using
developer tools 945
Packaging a Liberty server by using developer
tools 945
Adding a data source by using developer tools 946

Administering Liberty manually 946
Customizing the Liberty environment 947
Administering Liberty from the command line 949
Adding and removing Liberty features 968
Using include elements, variables, and Ref tags
in configuration files 969
Controlling dynamic updates 975
Configuring class loaders and libraries for Java
EE applications 976
Configuring libraries for OSGi applications . . 981
Configuring JPA for Liberty 982
Configuring a web server plug-in for Liberty 985
Configuring session persistence for Liberty . . 990
Configuring and deploying a basic JCA
ResourceAdapter 991
Configuring ManagedExecutorService instances 1012
Configuring thread context service instances 1015
Configuring managed scheduled executors 1017
Configuring managed thread factories. . . . 1019
Connecting to Liberty by using JMX 1021
Establishing a JMX MBean Liberty server
connection 1033
File transfer 1034
Transferring files in a Liberty collective . . . 1035
Configuring binary logging in Liberty 1041
Administering the transaction service on
Liberty 1043
Administering data access resources on Liberty 1046
Administering web applications on Liberty 1058
Administering Contexts and Dependency
Injection applications on Liberty. 1071
Administering JavaMail on Liberty 1074

Administering Liberty using Admin Center . . . 1074
Setting up Admin Center 1075
Logging in to Admin Center 1078
Customizing the Toolbox 1079
Editing server configuration files in Admin
Center 1081
Exploring and managing resources with Admin
Center 1083

Configuration updates 1090
Liberty and Chef 1091
Including configuration information from external
xml files in the server.xml file 1091
Configuration element merging rules 1092

Chapter 6. Extending Liberty 1095
Developing a Liberty feature for Liberty 1095

Developing a Liberty feature manually . . . 1095
Creating a Liberty feature by using developer
tools 1106

Contents v

Developing an OSGi bundle with simple
activation 1111
Composing advanced features by using OSGi
Declarative Services 1116
Advanced Configuration 1121
Providing an application endpoint 1130
Liberty SPI utilities 1131
Including protected features 1137
Locating OSGi applications 1138
Developing with the JNDI default namespace
in a Liberty feature 1139
Developing a custom TAI as a Liberty feature 1141
Dynamic content management 1141

Packaging and installing Liberty features 1143
Provide product information for your feature
extension 1143

Embedding Liberty in your applications 1144
Creating Liberty servers from custom
configurations 1146

Chapter 7. Securing Liberty and its
applications 1147
Getting started with security in Liberty 1147

Quick overview of security 1149
Setting up BasicRegistry and role mapping on
Liberty 1150

Securing communications in Liberty 1151
Enabling SSL communication in Liberty . . . 1152
Creating SSL certificates for your Liberty using
the Utilities menu 1161
Creating SSL certificates from the command
line 1161
Configuring your web application and server
for client certificate authentication 1164
Setting up Liberty to run in SP800-131a . . . 1165
Configuring an httpEndpoint to use an SSL
configuration other than the default 1167

Authenticating users in Liberty 1168
Configuring a user registry for Liberty . . . 1168
Configuring the authentication cache in Liberty 1183
Configuring a JAAS custom login module for
Liberty 1184
Configuring a Java Authentication SPI for
Containers (JASPIC) User Feature 1187
Configuring LTPA in Liberty 1188
OpenID 1189
OpenID Connect 1190
Configuring an OpenID Relying Party in
Liberty 1193
Configuring SPNEGO authentication in Liberty 1195
Customizing SSO configuration using LTPA
cookies in Liberty 1203
Configuring RunAs authentication in Liberty 1203
Configuring TAI in Liberty 1205
Configuring a custom form login page . . . 1207
Configuring SAML Web Browser SSO in
Liberty 1209
Using OpenID Connect. 1212
Authentication Filters 1252

Authorizing access to resources in Liberty . . . 1254

Configuring authorization for applications in
Liberty 1254
Configuring security authorization for Liberty
servers on IBM i 1255
OAuth 1256

Configuring Common Secure Interoperability
version 2 (CSIv2) in Liberty 1276

Configuring inbound CSIv2 in Liberty . . . 1277
Configuring outbound CSIv2 in Liberty . . . 1282

Configuring security for the Liberty application
client container and its applications 1287

Enabling SSL communication for the Liberty
application client container 1287
Configuring a JAAS programmatic login on the
Liberty application client container 1289
Configuring a JAAS custom login module for
the Liberty application client container . . . 1291
Configuring Common Secure Interoperability
version 2 (CSIv2) in the Liberty application
client container 1292

Configuring Java Servlet 3.1 support for security 1294
Configuring secure JMX connection to Liberty 1296
Configuring web security related properties in
Liberty 1297

Customizing SSO configuration using LTPA
cookies in Liberty 1297
Configuring your web application and server
for client certificate authentication 1298
Configuring the Liberty server to track logged
out LTPA tokens 1299

Configuring authentication aliases for Liberty 1300
Configuring JAAS for database authentication 1300
Developing extensions to the Liberty security
infrastructure 1301

Developing a custom TAI for Liberty 1301
Developing JAAS custom login modules for a
system login configuration 1305
Developing a custom JASPIC authentication
provider for Liberty 1309
Developing a Java Authorization Contract for
Containers (JACC) Authorization Provider . . 1312
Developing a customPasswordEncryption
Provider. 1314
Customizing an application login to perform
an identity assertion by using JAAS 1316
Developing a custom user registry in Liberty 1317
Developing JAAS custom login modules for
database authentication 1318
Developing a programmatic login for obtaining
authentication data 1319
Developing a custom thread identity service 1320

Security considerations 1321
Securing Liberty by using HTTP Strict Transport
Security (HSTS) 1321

Chapter 8. Developing applications
in the Liberty environment 1323
Developing OSGi applications in Liberty 1323

Enable OSGi Applications with Java EE 7
technologies 1323

vi WebSphere Application Server Liberty Core 8.5.5

|
||

Enabling integration of OSGi application
services 1324
Custom blueprint namespace handlers . . . 1325

Developing WebSocket applications in Liberty 1326
WebSocket 1327

Chapter 9. Deploying applications in
Liberty 1329
Adding and running an application on Liberty by
using developer tools 1331

Publishing your application by using
developer tools 1332
Restart requirements for a modified application
on Liberty 1333

Customizing automatic feature detection 1334
Packaging a Liberty server from the command
line 1334
Using JNDI binding for constants from the server
configuration files 1336
Using JNDI binding for dynamic values from the
server configuration files 1337
Deploying OSGi applications to Liberty 1338

Sharing common OSGi bundles for Liberty 1339
Deploying data access applications to Liberty 1339

Deploying an existing JDBC application to
Liberty 1339
Enabling JDBC Tracing for Liberty 1342

Deploying a web application to Liberty 1344
Deploying SIP applications to Liberty 1346
Deploying a JPA application to Liberty 1347

Enhancement of JPA entities 1348
Deploying web services applications to Liberty 1348

Deploying JAX-RS 2.0 applications to Liberty 1348
Deploying Java batch applications for Liberty 1368

Java batch and managed batch overview . . . 1368
Configuring Liberty for the batch REST API 1368
Java batch persistence configuration 1369
Securing the Liberty batch environment . . . 1371
Java batch shutdown and recovery 1373
Batch REST API 1373
Enabling multiple server support by using the
Liberty embedded messaging provider . . . 1387
Enabling multiple server support by using the
WebSphere MQ messaging provider 1389
Enabling multiple server partitions support by
using the WebSphere MQ messaging provider . 1393
Enabling multiple server partitions support by
using the Liberty embedded messaging
provider. 1399
Enabling batch job events publishing 1403
batchManager command-line client utility . . 1406
Viewing Java batch job logs 1408

Shared libraries 1410
Loose applications 1412
Discovering REST API documentation on a
Liberty server 1416

Subscribe to Liberty REST API updates . . . 1418
REST endpoints for pushing APIs into IBM
API Connect 1419

Chapter 10. Monitoring the Liberty
server runtime environment 1423
JVM monitoring 1423
Web application monitoring 1424
ThreadPool monitoring. 1425
SIP application monitoring 1426
Sessions monitoring 1441
ConnectionPool monitoring 1442
Multiple components monitoring 1443
HTTP access logging 1444

HTTP access log settings 1444
HTTP access log format 1444

Chapter 11. Tuning Liberty 1445
Tuning Liberty for secure applications. 1447
Tuning federated LDAP repositories in Liberty 1449

Chapter 12. Troubleshooting tips 1451
Security bulletins for the Liberty profile 1457
Logstash collector 1457

Using the Logstash collector 1460
Logging and Trace 1461
Viewing trace and message log files by using
developer tools 1465
Timed operations and JDBC calls 1466
Event Logging 1467
Slow and hung request detection 1469
Binary logging 1471

BinaryLog command options 1475
Configuring binary logging in Liberty 1479

Runtime environment known issues and
restrictions 1480
Developer Tools known issues and restrictions 1488
Messages 1490
Troubleshooting OSGi applications by using
developer tools 1494
Troubleshooting Session Initiation Protocol (SIP)
on Liberty 1495

Troubleshooting the SIP container session
repository on Liberty 1495
Tracing a Session Initiation Protocol (SIP)
container on Liberty. 1498
Session Initiation Protocol (SIP) binary log and
trace extensions on Liberty 1499

Chapter 13. Reference 1501
Programming Interfaces (APIs and SPIs) 1501
Messages 1501

Index 1503

Contents vii

viii WebSphere Application Server Liberty Core 8.5.5

Chapter 1. WebSphere Application Server Liberty Core:
Overview

WebSphere® Application Server Liberty Core is a lightweight Liberty-based edition. With WebSphere
Application Server Liberty Core, you can rapidly build and deliver web applications that do not require
the full Java™ EE stack.

WebSphere Application Server Liberty Core is based on the developer-friendly WebSphere Application
Server Liberty. By using WebSphere Application Server Liberty Core you can create applications
corresponding to the Java EE6 Web Profile specification. You can quickly develop and deploy Web
Profile-centric applications so that your business can respond quickly to enterprise and market needs. The
capabilities that WebSphere Application Server Liberty Core provides are a subset of the capabilities that
are provided in the WebSphere Application Server and WebSphere Application Server, Network
Deployment editions.

WebSphere Application Server Liberty Core offers you the following benefits:
v An extremely lightweight edition, which contains the subset of Liberty that corresponds to the Java EE

Web Profile specification.
v Excellent development and production runtime environments for web applications.
v A smaller footprint for faster download and startup, giving more development time and faster time to

deployment.
v Ease of packaging applications for deployment, including configuration.
v The ability to run applications that are written for WebSphere Application Server Liberty Core on

WebSphere Application Server traditional and Liberty.
v The ability to extend the Liberty capabilities by adding custom features that use a product extension

System Programming Interface (SPI).

The WebSphere Application Server Liberty Core edition focuses on Web Profile capabilities such as
servlet, JSP, JSF, and EJB-Lite. WebSphere Application Server Liberty Core has a different programming
model from other WebSphere Application Server editions. For example, WebSphere Application Server
Liberty Core does not include Java Message Service (JMS) or Web Services, making the Liberty Core
edition lightweight and focused on the capabilities that are needed to deliver Web Profile applications.

You can use WebSphere Application Server Liberty Core to deploy to both development and production
environments. The developer environment is provided by WebSphere Application Server Developer Tools
for Eclipse (WDT). You can access a WebSphere Application Server Liberty Core management option
through the WebSphere Application Server, Network Deployment job manager or Liberty-based collective
controller.

Note: A WebSphere Application Server Liberty Core server can be a member of a collective, but a
WebSphere Application Server, Network Deployment license is required for the collective controller.

Architecture
Liberty is a highly composable and dynamic runtime environment. OSGi services are used to manage
component lifecycles, and the injection of dependencies and configuration. The server process comprises
a single JVM, the Liberty kernel, and any number of optional features. The feature code and most of the
kernel code runs as OSGi bundles within an OSGi framework. Features provide the programming models
and services that are required by applications.

1

The kernel launcher bootstraps the system and starts the OSGi framework. The configuration is parsed,
and then the configured features are loaded by the feature manager. The kernel extensively uses OSGi
services to provide a highly dynamic runtime environment. The OSGi Configuration Admin service
manages system configuration, and an OSGi Declarative Services component manages the lifecycle of
system services. The file monitor service detects application and configuration file changes, and the
logging service writes messages and debug information to the local file system.

Features are specified in the system configuration files that are the server.xml file and any other included
files. The server configuration files populate the OSGi Configuration Admin service, which injects the
feature configuration into the feature manager service. The feature manager maps each feature name to a

OSGi

framework

(runtime)

Java 6+

Kernel

monitor-1.0

jsp-2.2jsf-2.0

appSecurity-1.0

servlet-3.0

Features

Container

Applications

Figure 1. Liberty architecture

server.xml

webapp.war trace.log

Service

Feature Manager

OSGi Configuration
Admin

File Monitor

OSGi Declarative
Services

Logging service

Feature bundle

Figure 2. Liberty kernel

2 WebSphere Application Server Liberty Core 8.5.5

list of bundles that provide the feature. The bundles are installed into the OSGi framework and started.
The feature manager responds to configuration changes by dynamically adding and removing features
while the server is running.

Runtime services provide configuration default settings so that the configuration you need to specify is
kept to a minimum. You specify the features you need, along with any additions or overrides to the
system default settings, in a server.xml file. You might choose to structure your configuration into a
number of separate files that are linked to the parent server.xml file by using an “include” syntax. At
server startup, or when the user configuration files are changed, the kernel configuration management
parses your configuration and applies it over the system default settings. The set of configuration
properties that belongs to each service is injected into the service each time the configuration is updated.

useful-api-3.2.jar

useful-core-3_.

useful-extras-3.2_.

*
*

/lib/features/useful-3.2.mf

<featureManager>
<feature>useful-3.2</feature>

</featureManager>

server.xml

installs and starts
bundles in OSGi

framework

reads bundle
list

reads
config

injects config

Feature Manager

OSGi Configuration
Admin

Feature bundle

Figure 3. Feature management

Chapter 1. WebSphere Application Server Liberty Core: Overview 3

The OSGi Declarative Services component is used so that function can be decomposed into discrete
services, which are activated only when needed. This behavior helps the runtime environment to be “late
and lazy”, keeping the footprint small and the startup fast. Declared services are added to the OSGi
service registry, and dependencies between services can be resolved without loading implementation
classes. Service activation can be delayed until a service is used: when the service reference is resolved.
Configuration for each service is injected as the service is activated, and is reinjected if the configuration
is later modified.

Java EE 7 programming model support
Liberty complies with Java Platform, Enterprise Edition (Java EE) 7. The Java EE 7 table and links show
the extent to which each of the major server profiles supports the full WebSphere Application Server
programming model.

Java EE 7 technologies

Table 1. Java EE 7 support by profile.

A list of Java EE technologies, subdivided into sections for web services, web applications, enterprise applications,
management and security, and Java EE-related specifications in Java SE. For each technology there is a
specification reference, any related Liberty feature, and an indication of whether the technology is supported by the
full profile, the Liberty profile, and Liberty Core.

Technology
Specification
reference Liberty feature Full profile Liberty profile Liberty Core

Java Platform,
Enterprise Edition
7 (Java EE 7)

JSR 342 javaee-7.0
javaeeClient-7.0

8.5.5.6

⌂

Java Platform,
Enterprise Edition
7 Web Profile

JSR 342 webProfile-7.0 8.5.5.6

⌂ 8.5.5.6 ⌂

Web services
technologies

<include location="more.xml"/>
<include location="evenmore.xml"/>

extra.xml

more.xml

evenmore.xml

<include location="extra.xml"/>

server.xml

Config defaults
Config metadata

injects merged
config into bundles

reads default
config from bundles

merges user
config over

defaults

optional
includes

Kernel bundle

OSGi Configuration
Admin

Config defaults
Config metadata

Feature bundle

Figure 4. Configuration management

4 WebSphere Application Server Liberty Core 8.5.5

https://jcp.org/en/jsr/detail?id=342
https://jcp.org/en/jsr/detail?id=342

Table 1. Java EE 7 support by profile (continued).

A list of Java EE technologies, subdivided into sections for web services, web applications, enterprise applications,
management and security, and Java EE-related specifications in Java SE. For each technology there is a
specification reference, any related Liberty feature, and an indication of whether the technology is supported by the
full profile, the Liberty profile, and Liberty Core.

Technology
Specification
reference Liberty feature Full profile Liberty profile Liberty Core

Java API for
RESTful Web
Services (JAX-RS)
2.0

JSR 339 jaxrs-2.0 8.5.5.6

⌂ 8.5.5.6 ⌂

Implementing
Enterprise Web
Services 1.4

JSR 109 ⌂ 8.5.5.4 ⌂

Java API for
XML-Based Web
Services (JAX-WS)
2.2

JSR 224 jaxws-2.2 ⌂ ⌂

Web Services
Interoperability
Organization (WS-I)
Basic Profile

WS-I Basic Profile
1.2

WS-I Basic Profile
2.0

jaxws-2.2 ⌂ ⌂

Java Architecture
for XML Binding
(JAXB) 2.2

JSR 222 jaxb-2.2 ⌂ ⌂

Web Services
Metadata for the
Java Platform

JSR 181 ⌂ ⌂

Java API for
XML-based RPC
(JAX-RPC) 1.1
(Optional)

JSR 101 ⌂

Java API for WSDL
(JWSDL)

JSR 110 ⌂ ⌂

SOAP with
Attachments API
for Java (SAAJ)
1.3(SOAP with
Attachments API
for Java (SAAJ) is
also referred to as
Java APIs for XML
Messaging.)

JSR 67 ⌂ ⌂ ⌂

Java API for XML
Registries (JAXR)
1.0 (Optional)

JSR 93 ⌂

Web application
technologies

Java API for JSON
Processing
(JSON-P) 1.0

JSR 353 jsonp-1.0 8.5.5.4

⌂ 8.5.5.4 ⌂

Java Servlet 3.1 JSR 340 servlet-3.1 8.5.5.4

⌂ 8.5.5.4 ⌂

JavaServer Faces
(JSF) 2.2

JSR 344 jsf-2.2 8.5.5.6

⌂ 8.5.5.6 ⌂

JavaServer Pages
2.3

JSR 245 jsp-2.3 8.5.5.5

⌂ 8.5.5.5 ⌂

Chapter 1. WebSphere Application Server Liberty Core: Overview 5

https://jcp.org/en/jsr/detail?id=339
https://www.jcp.org/en/jsr/detail?id=109
https://jcp.org/en/jsr/detail?id=224
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
https://jcp.org/en/jsr/detail?id=222
https://jcp.org/en/jsr/detail?id=181
https://jcp.org/en/jsr/detail?id=101
https://jcp.org/en/jsr/detail?id=110
http://download.oracle.com/otndocs/jcp/jaxm-1.3-mrel-spec-oth-JSpec/?cm_mc_uid=16371333566814558277847&cm_mc_sid_50200000=1460412163
https://jcp.org/en/jsr/detail?id=93
https://jcp.org/en/jsr/detail?id=353
https://jcp.org/en/jsr/detail?id=340
https://jcp.org/en/jsr/detail?id=344
https://jcp.org/en/jsr/detail?id=245

Table 1. Java EE 7 support by profile (continued).

A list of Java EE technologies, subdivided into sections for web services, web applications, enterprise applications,
management and security, and Java EE-related specifications in Java SE. For each technology there is a
specification reference, any related Liberty feature, and an indication of whether the technology is supported by the
full profile, the Liberty profile, and Liberty Core.

Technology
Specification
reference Liberty feature Full profile Liberty profile Liberty Core

Expression
Language (JSP/EL)
3.0

JSR 341 el-3.0 8.5.5.5

⌂ 8.5.5.5 ⌂

Standard Tag
Library for
JavaServer Pages
(JSTL) 1.2

JSR 52 ⌂ ⌂ ⌂

Debugging Support
for Other
Languages 1.0

JSR 45 ⌂ ⌂ ⌂

WebSocket 1.1 JSR 356 websocket-1.1 8.5.5.5

⌂ 8.5.5.5 ⌂

WebSocket 1.0 JSR 356 websocket-1.0 8.5.5.4

⌂ 8.5.5.4 ⌂

Enterprise
application
technologies

EE Concurrency
Utilities 1.0

JSR 236 concurrent-1.0 8.5.5.4

⌂ 8.5.5.4 ⌂

Contexts and
Dependency
Injection for Java
(Web Beans) 1.2

JSR 346 cdi-1.2 8.5.5.6

⌂ 8.5.5.6 ⌂

Contexts and
Dependency
Injection for Java
(Web Beans) 1.1

JSR 346 cdi-1.2(Java EE 7
defines CDI 1.1. The
CDI maintenance
release CDI 1.2. The
cdi-1.2 feature
supports both CDI
1.1 and CDI 1.2.)

8.5.5.6

⌂ 8.5.5.6 ⌂

Dependency
Injection for Java
1.0

JSR 330 ⌂ ⌂ ⌂

Bean Validation 1.1 JSR 349 beanValidation-1.1 8.5.5.6

⌂ 8.5.5.6 ⌂

Enterprise
JavaBeans (EJB) 3.2
full

JSR 345 ejb-3.2(The ejb-3.2
feature includes the
following EJB
sub-features:
ejbLite-3.2,
ejbHome-3.2,
ejbPersistentTimer-
3.2, ejbRemote-3.2,
and mdb-3.2.)

8.5.5.6

⌂

Enterprise
JavaBeans (EJB) 3.2
Lite

JSR 345 ejbLite-3.2 8.5.5.6

⌂ 8.5.5.6 ⌂

Interceptors 1.2 JSR 318 8.5.5.6

⌂ 8.5.5.6 ⌂

Java EE Connector
Architecture (JCA)
1.7

JSR 322 jca-1.7 8.5.5.6

⌂

6 WebSphere Application Server Liberty Core 8.5.5

https://jcp.org/en/jsr/detail?id=341
https://jcp.org/en/jsr/detail?id=52
https://jcp.org/en/jsr/detail?id=45
https://jcp.org/en/jsr/detail?id=356
https://jcp.org/en/jsr/detail?id=356
https://jcp.org/en/jsr/detail?id=236
https://jcp.org/en/jsr/detail?id=346
https://jcp.org/en/jsr/detail?id=346
https://jcp.org/en/jsr/detail?id=330
https://jcp.org/en/jsr/detail?id=349
https://jcp.org/en/jsr/detail?id=345
https://jcp.org/en/jsr/detail?id=345
https://jcp.org/en/jsr/detail?id=318
https://jcp.org/en/jsr/detail?id=322

Table 1. Java EE 7 support by profile (continued).

A list of Java EE technologies, subdivided into sections for web services, web applications, enterprise applications,
management and security, and Java EE-related specifications in Java SE. For each technology there is a
specification reference, any related Liberty feature, and an indication of whether the technology is supported by the
full profile, the Liberty profile, and Liberty Core.

Technology
Specification
reference Liberty feature Full profile Liberty profile Liberty Core

Java Persistence 2.1 JSR 338 jpa-2.1 8.5.5.6

⌂ 8.5.5.6 ⌂

Common
Annotations for the
Java Platform
1.2(Common
Annotations 1.2
added the
javax.annotation.Priority
single annotation
type, which
Contexts and
Dependency
Injection 1.2 uses.
For information
about CDI 1.2, see
“Contexts and
Dependency
Injection 1.2” on
page 516.)

JSR 250 8.5.5.6

⌂ 8.5.5.6 ⌂

Java Message
Service (JMS) API
2.0

JSR 343 jms-2.0 8.5.5.6

⌂

Java Transaction
API (JTA) 1.2

JSR 907 8.5.5.6

⌂ 8.5.5.6 ⌂

JavaMail 1.5 JSR 919 javaMail-1.5 8.5.5.6

⌂ 8.5.5.6 ⌂

Batch Applications
for Java Platform
1.0

JSR 352 batch-1.0 8.5.5.6

⌂

Management and
security
technologies

Java Authentication
Service Provider
Interface for
Containers
(JASPIC) 1.1

JSR 196 jaspic-1.1 8.5.5.6

⌂ 8.5.5.9 ⌂

Java Authorization
Contract for
Containers (JACC)
1.5

JSR 115 jacc-1.5 8.5.5.6

⌂ 8.5.5.9 ⌂

Java EE Application
Deployment 1.2
(Optional)

JSR 88 ⌂

Chapter 1. WebSphere Application Server Liberty Core: Overview 7

https://jcp.org/en/jsr/detail?id=338
https://jcp.org/en/jsr/detail?id=250
https://jcp.org/en/jsr/detail?id=343
https://jcp.org/en/jsr/detail?id=907
https://jcp.org/en/jsr/detail?id=919
https://jcp.org/en/jsr/detail?id=352
https://jcp.org/en/jsr/detail?id=196
https://jcp.org/en/jsr/detail?id=115
https://jcp.org/en/jsr/detail?id=88

Table 1. Java EE 7 support by profile (continued).

A list of Java EE technologies, subdivided into sections for web services, web applications, enterprise applications,
management and security, and Java EE-related specifications in Java SE. For each technology there is a
specification reference, any related Liberty feature, and an indication of whether the technology is supported by the
full profile, the Liberty profile, and Liberty Core.

Technology
Specification
reference Liberty feature Full profile Liberty profile Liberty Core

J2EE Management
1.1(To invoke
Management EJB
APIs, the server
configuration must
have both the
j2eeManagement-1.1
and ejbRemote-3.2
features in a feature
manager. After both
features are in the
server
configuration, you
can invoke
Management EJB
API through JNDI
name lookup. The
Management EJB
binding name
(JNDI lookup
name) is
ejb/mejb/MEJB.)

JSR 77 j2eeManagement-1.1 ⌂ 8.5.5.6 ⌂

Java EE-related
specifications in
Java SE

Java API for XML
Processing (JAXP)
1.4

JSR 206 ⌂ ⌂ ⌂

Java Database
Connectivity
(JDBC) 4.1

JSR 221 jdbc-4.1 8.5.5.5

⌂ 8.5.5.5 ⌂

Java Management
Extensions (JMX)
2.0

JSR 255 ⌂ ⌂ ⌂

JavaBeans
Activation
Framework (JAF)
1.1

JSR 925 ⌂ ⌂ ⌂

Streaming API for
XML (StAX) 1.0

JSR 173 ⌂ ⌂ ⌂

Programming model extensions

For a list of WebSphere programming model extensions, see "WebSphere extensions" in the WebSphere
Application Server: Overview and quick start topic.

Java EE 6 programming model support
The Java EE 6 table and links show the extent to which each of the major server profiles supports the full
WebSphere Application Server programming model.

8 WebSphere Application Server Liberty Core 8.5.5

https://jcp.org/en/jsr/detail?id=77
https://jcp.org/en/jsr/detail?id=206
https://jcp.org/en/jsr/detail?id=221
https://jcp.org/en/jsr/detail?id=255
https://jcp.org/en/jsr/detail?id=925
https://jcp.org/en/jsr/detail?id=173

Java EE 6 technologies

Table 2. Java EE 6 support by profile.

A list of Java EE technologies, subdivided into sections for web services, web applications, enterprise applications,
management and security, and Java EE-related specifications in Java SE. For each technology there is a
specification reference, any related Liberty feature, and an indication of whether the technology is supported by the
full profile, by the Liberty profile, and by Liberty Core. The Liberty Core edition contains a subset of the Liberty
features that are available in the other product editions.

Technology
Specification
reference Liberty feature Full profile Liberty profile Liberty Core

Java Platform,
Enterprise Edition 6
(Java EE 6)

JSR 316 ⌂

Java Platform,
Enterprise Edition 6
Web Profile

JSR 316 webProfile-6.0 ⌂ ⌂ ⌂

Web services
technologies

Java API for
RESTful Web
Services (JAX-RS)
1.1

JSR 311 jaxrs-1.1 ⌂ ⌂ ⌂

Implementing
Enterprise Web
Services 1.4

JSR 109 ⌂ ⌂

Java API for
XML-Based Web
Services (JAX-WS)
2.2

JSR 224 jaxws-2.2 ⌂ ⌂

Web Services
Interoperability
Organization (WS-I)
Basic Profile

WS-I Basic Profile
1.2

WS-I Basic Profile
2.0

jaxws-2.2 ⌂ ⌂

Java Architecture
for XML Binding
(JAXB) 2.2

JSR 222 jaxb-2.2 ⌂ ⌂

Web Services
Metadata for the
Java Platform

JSR 181 ⌂ ⌂

Java API for
XML-based RPC
(JAX-RPC) 1.1

JSR 101 ⌂

Java API for WSDL
(JWSDL)

JSR 110 ⌂ ⌂

SOAP with
Attachments API for
Java (SAAJ)
1.3(SOAP with
Attachments API for
Java (SAAJ) is also
referred to as Java
APIs for XML
Messaging.)

JSR 67 ⌂ ⌂

Java API for XML
Registries (JAXR)
1.0

JSR 93 ⌂

Chapter 1. WebSphere Application Server Liberty Core: Overview 9

https://jcp.org/en/jsr/detail?id=316
https://jcp.org/en/jsr/detail?id=316
https://jcp.org/en/jsr/detail?id=311
https://jcp.org/en/jsr/detail?id=109
https://jcp.org/en/jsr/detail?id=224
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
http://ws-i.org/deliverables/workinggroup.aspx?wg=basicprofile
https://jcp.org/en/jsr/detail?id=222
https://jcp.org/en/jsr/detail?id=181
https://jcp.org/en/jsr/detail?id=101
https://jcp.org/en/jsr/detail?id=110
http://download.oracle.com/otndocs/jcp/jaxm-1.3-mrel-spec-oth-JSpec/?cm_mc_uid=16371333566814558277847&cm_mc_sid_50200000=1460412163
https://jcp.org/en/jsr/detail?id=93

Table 2. Java EE 6 support by profile (continued).

A list of Java EE technologies, subdivided into sections for web services, web applications, enterprise applications,
management and security, and Java EE-related specifications in Java SE. For each technology there is a
specification reference, any related Liberty feature, and an indication of whether the technology is supported by the
full profile, by the Liberty profile, and by Liberty Core. The Liberty Core edition contains a subset of the Liberty
features that are available in the other product editions.

Technology
Specification
reference Liberty feature Full profile Liberty profile Liberty Core

Web application
technologies

Java Servlet 3.0 JSR 315 servlet-3.0 ⌂ ⌂ ⌂

JavaServer Faces
(JSF) 2.0

JSR 314 jsf-2.0 ⌂ ⌂ ⌂

JavaServer Pages
2.2/Expression
Language (JSP/EL)
2.2

JSR 245 jsp-2.2 ⌂ ⌂ ⌂

Standard Tag
Library for
JavaServer Pages
(JSTL) 1.2

JSR 52 ⌂ ⌂ ⌂

Debugging Support
for Other
Languages 1.0

JSR 45 ⌂ ⌂ ⌂

Enterprise
application
technologies

Contexts and
Dependency
Injection for Java
(Web Beans 1.0)

JSR 299 cdi-1.0 ⌂ ⌂ ⌂

Dependency
Injection for Java 1.0

JSR 330 ⌂ ⌂ ⌂

Bean Validation 1.0 JSR 303 beanValidation-1.0 ⌂ ⌂ ⌂

Enterprise
JavaBeans (EJB) 3.1
(includes
Interceptors 1.1)

JSR 318 ejbLite-3.1 ⌂ ⌂(The Liberty
supports only the
EJB Lite subset and
Message Driven
Beans. See the
“Enterprise
JavaBeans (EJB) Lite
subset” section of
“Liberty features”
on page 483.)

⌂(Liberty supports
only the EJB Lite
subset and Message
Driven Beans. See
the “Enterprise
JavaBeans (EJB) Lite
subset” section of
“Liberty features”
on page 483.)

Java EE Connector
Architecture 1.6

JSR 322 jca-1.6 ⌂
⌂

Java Persistence 2.0 JSR 317 ⌂ ⌂ ⌂

Common
Annotations for the
Java Platform 1.1

JSR 250 ⌂ ⌂ ⌂

Java Message
Service (JMS) API
1.1

JSR 914 jms-1.1 ⌂ ⌂

Java Transaction
API (JTA) 1.1

JSR 907 ⌂ ⌂ ⌂

10 WebSphere Application Server Liberty Core 8.5.5

https://jcp.org/en/jsr/detail?id=315
https://jcp.org/en/jsr/detail?id=314
https://jcp.org/en/jsr/detail?id=245
https://jcp.org/en/jsr/detail?id=52
https://jcp.org/en/jsr/detail?id=45
https://jcp.org/en/jsr/detail?id=299
https://jcp.org/en/jsr/detail?id=330
https://jcp.org/en/jsr/detail?id=303
https://jcp.org/en/jsr/detail?id=318
https://jcp.org/en/jsr/detail?id=322
https://jcp.org/en/jsr/detail?id=317
https://jcp.org/en/jsr/detail?id=250
https://jcp.org/en/jsr/detail?id=914
https://jcp.org/en/jsr/detail?id=907

Table 2. Java EE 6 support by profile (continued).

A list of Java EE technologies, subdivided into sections for web services, web applications, enterprise applications,
management and security, and Java EE-related specifications in Java SE. For each technology there is a
specification reference, any related Liberty feature, and an indication of whether the technology is supported by the
full profile, by the Liberty profile, and by Liberty Core. The Liberty Core edition contains a subset of the Liberty
features that are available in the other product editions.

Technology
Specification
reference Liberty feature Full profile Liberty profile Liberty Core

JavaMail 1.4 JSR 919 ⌂

Management and
security
technologies

Java Authentication
Service Provider
Interface for
Containers (JASPIC)

JSR 196 ⌂

Java Authorization
Contract for
Containers (JACC)
1.3

JSR 115 ⌂

Java EE Application
Deployment 1.2

JSR 88 ⌂

J2EE Management
1.1

JSR 77 ⌂

Java EE-related
specifications in
Java SE

Java API for XML
Processing (JAXP)
1.4

JSR 206 ⌂ ⌂ ⌂

Java Database
Connectivity (JDBC)
4.0

JSR 221 jdbc-4.0 ⌂ ⌂ ⌂

Java Management
Extensions (JMX)
2.0

JSR 255 ⌂ ⌂ ⌂

JavaBeans
Activation
Framework (JAF)
1.1

JSR 925 ⌂ ⌂ ⌂

Streaming API for
XML (StAX) 1.0

JSR 173 ⌂ ⌂ ⌂

Programming model extensions

For a list of WebSphere programming model extensions, see "WebSphere extensions" in the WebSphere
Application Server: Overview and quick start topic.

Supported Java EE 6 and 7 feature combinations
8.5.5.6

Some combinations of Java EE 7 and Java EE 6 Liberty features in a server configuration are compatible.
However, many combinations are not compatible and cause an error when the server starts.

Chapter 1. WebSphere Application Server Liberty Core: Overview 11

https://jcp.org/en/jsr/detail?id=919
https://jcp.org/en/jsr/detail?id=196
https://jcp.org/en/jsr/detail?id=115
https://jcp.org/en/jsr/detail?id=88
https://jcp.org/en/jsr/detail?id=77
https://jcp.org/en/jsr/detail?id=206
https://jcp.org/en/jsr/detail?id=221
https://jcp.org/en/jsr/detail?id=255
https://jcp.org/en/jsr/detail?id=925
https://jcp.org/en/jsr/detail?id=173

The error message resembles:
CWWKF0033E: The singleton features com.ibm.websphere.appserver.javaeeCompatible-6.0 and com.ibm.websphere.appserver.javaeeCompatible-7.0 cannot be loaded at the same time. The configured features servlet-3.0 and ejbLite-3.2 include one or more features that cause the conflict. Your configuration is not supported.

The following table marks compatible feature combinations with a checkmark (⌂). Ensure that your server
configuration does not contain incompatible features.

Table 3. Supported combinations of Java EE 7 and Java EE 6 Liberty features. Java EE 7 features are listed
vertically. Java EE 6 features are listed horizontally. A checkmark (⌂) indicates that the combination of Java EE 7 and
6 features is supported and a server configuration can contain both features. An empty cell (no ⌂) indicates that the
combination of Java EE 7 and 6 features is not supported.

Java EE 6 features

beanValida-
tion-1.0 cdi-1.0

ejbLite-
3.1 jaxb-2.2 jaxrs-1.1 jaxws-2.2 jca-1.6 jdbc-4.0 jms-1.1 jpa-2.0 jsf-2.0 jsp-2.2

managed-
Beans-
1.0 mdb-3.1

servlet-
3.0

Java EE 7 features

batch-1.0 ⌂ ⌂ ⌂ ⌂ ⌂

beanValidation-1.1 ⌂ ⌂ ⌂ ⌂ ⌂

cdi-1.2 ⌂ ⌂ ⌂ ⌂ ⌂

concurrent-1.0 ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂

el-3.0 ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂

ejb-3.2 ⌂ ⌂ ⌂ ⌂

ejbLite-3.2 ⌂ ⌂ ⌂ ⌂ ⌂

javaMail-1.5 ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂

jacc-1.5 ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂

jaspic1.1 ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂

jaxrs-2.0 ⌂ ⌂ ⌂ ⌂ ⌂

jca-1.7 ⌂ ⌂ ⌂ ⌂ ⌂

jdbc-4.1 ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂

jms-2.0 ⌂ ⌂ ⌂ ⌂ ⌂

jpa-2.1 ⌂ ⌂ ⌂

jsf-2.2 ⌂ ⌂ ⌂ ⌂ ⌂

jsonp-1.0 ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂

jsp-2.3 ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂

mdb-3.2 ⌂ ⌂ ⌂ ⌂ ⌂

servlet-3.1 ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂

websocket-1.0 ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂

websocket-1.1 ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂ ⌂

The table shows that the servlet-3.0 feature of Java EE 6 is incompatible with the websocket-1.1 feature
of Java EE 7. Thus, a server configuration with the following features causes an error:
<featureManager>

<feature>servlet-3.0</feature>
<feature>websocket-1.1</feature>

</featureManager>

To resolve the error, use servlet-3.1 instead of servlet-3.0 in the server configuration. The servlet-3.1
feature is compatible with the websocket-1.1 feature.

For more information on compatibility, or toleration, of features, see Tolerating features.

Java EE 7 behavior changes
If you previously incorporated Java Platform, Enterprise Edition (Java EE) 6 features in your Liberty
environment, you might encounter behavior changes when you move to a Java EE 7 feature.

You can choose between the Java EE 6 and Java EE 7 feature implementations for each server instance,
with consideration for behavior changes. If the required behavior is contained in the Java EE 7 feature
only, you must use the Java EE 7 feature. If an existing application would be adversely impacted by
behavior changes in the Java EE 7 feature, using the Java EE 6 feature preserves the existing behavior for
that application. You must ensure that the Java EE implementation that you choose is compatible with
other Java EE features in your server; for more information, see “Supported Java EE 6 and 7 feature
combinations” on page 11.

12 WebSphere Application Server Liberty Core 8.5.5

Table 4. Features that have Java EE 6 and 7 implementations

Technology Java EE 6 feature Java EE 7 feature Behavior changes

Bean Validation beanValidation-1.0 beanValidation-1.1 No behavior changes.

Contexts and Dependency
Injection for Java (CDI)

cdi-1.0 cdi-1.2 See “Contexts and Dependency
Injection 1.2 behavior changes” on
page 1072.

Enterprise JavaBeans (EJB) ejbLite-3.1 ejbLite-3.2 No behavior changes.

Expression Language (EL) Included as part of
jsp-2.2

el-3.0 See “Expression Language 3.0
feature functions” on page 1068.

Java API for RESTful Web
Services (JAX-RS)

jaxrs-1.1 jaxrs-2.0 See “JAX-RS 2.0 behavior changes”
on page 1357.

Java Database Connectivity
(JDBC)

jdbc-4.0 jdbc-4.1 No behavior changes.

Java Persistence API (JPA) jpa-2.0 jpa-2.1 See “Java Persistence API 2.1
behavior changes” on page 619.

Java Servlet servlet-3.0 servlet-3.1 See “Servlet 3.1 behavior changes”
on page 1060.

Java Transaction API (JTA) transaction-1.1
(protected feature)

transaction-1.2
(protected feature)

No behavior changes.

JavaServer Faces (JSF) jsf-2.0 jsf-2.2 See “Configuring Liberty for
JavaServer Faces 2.2” on page
1068.

JavaServer Pages (JSP) jsp-2.2 jsp-2.3 No behavior changes.

Enterprise OSGi programming model support
The Enterprise OSGi table and links show the extent to which each of the major server profiles supports
the full WebSphere Application Server programming model.

Enterprise OSGi technologies

Table 5. Enterprise OSGi support by profile.

A list of enterprise OSGi technologies, subdivided into sections for blueprint, web, and other enterprise technologies.
For each technology there is a specification reference, and an indication of whether the technology is supported by
the full profile, by the Liberty profile, and by Liberty Core.

Technology Specification reference Full profile Liberty profile Liberty Core

Blueprint-related technologies

Blueprint Container R4.2 Enterprise Chapter
121

⌂ ⌂ ⌂

Blueprint Transactions ⌂ ⌂ ⌂

Blueprint Managed JPA ⌂ ⌂ ⌂

Blueprint Security ⌂

Blueprint Resource
References

⌂

Custom Blueprint
Namespaces

8.5.5.4

⌂ 8.5.5.4 ⌂

Web-related technologies

Web Application
Bundles

R4.2 Enterprise Chapter
128

⌂ ⌂ ⌂

Chapter 1. WebSphere Application Server Liberty Core: Overview 13

Table 5. Enterprise OSGi support by profile (continued).

A list of enterprise OSGi technologies, subdivided into sections for blueprint, web, and other enterprise technologies.
For each technology there is a specification reference, and an indication of whether the technology is supported by
the full profile, by the Liberty profile, and by Liberty Core.

Technology Specification reference Full profile Liberty profile Liberty Core

8.5.5.7 WebSocket
Applications

8.5.5.7

⌂

JNDI R4.2 Enterprise Chapter
126

⌂ ⌂ ⌂

JSP ⌂ ⌂ ⌂

JSTL ⌂ ⌂ ⌂

JSF ⌂ ⌂ ⌂

JAX-RS ⌂ ⌂ ⌂

Other enterprise technologies

EJB Bundles ⌂(EJB levels earlier than
3.0 are not supported.)

Remote Services R4.2 Compendium
Chapter 13

⌂

SCA Configuration Type
Specification

R4.2 Enterprise Chapter
129

⌂

Remote Bundle
Repositories

⌂ ⌂ ⌂

SIP ⌂(SIP annotations are
not supported.)

Local OSGi application
integration

8.5.5.5

⌂ 8.5.5.5 ⌂

Note: 8.5.5.7 WebSockets is currently only supported on Liberty.

Liberty externals support
External functions and resources of Liberty can be used directly, and can be relied on to be in the next
release. Internal or incidental aspects of Liberty might change when you apply service, or upgrade to a
future release.

What can I use directly in Liberty and rely on being in the next release?

The following resources can be used directly and will continue to be available in the next release:
v The application programming interfaces (APIs) and system programming interfaces (SPIs) defined by

the content of the JAR files in the ${wlp.install.dir}/dev directories.
– The application class loader has visibility to the API that is provided by the features in your server

configuration. Product extension features have visibility to all API and SPI that is provided by the
features in your server configuration.

– Compile your code against the JAR files in the ${wlp.install.dir}/dev directories. The JAR files in
the ${wlp.install.dir}/dev directories are provided only for compilation of applications and
features, they are not supported for runtime use. Do not use these JAR files in applications, libraries,
or tests.

v The server configuration, including features with public or protected visibility. Public features and
configuration elements can be specified in the server.xml file and included files; protected features can
be included in your own features.

v Commands, scripts and archives in the ${wlp.install.dir}/bin directory and subdirectories.
v Client utilities in the ${wlp.install.dir}/clients directory and subdirectories.

14 WebSphere Application Server Liberty Core 8.5.5

What should I avoid dependencies on?

Do not build dependencies on incidental aspects of the product, or you might be impacted when you
apply service or upgrade to future releases. Examples of product internals that you should avoid relying
on include, but are not restricted to, the following scenarios:
v The names of product binary jars, for example those in the ${wlp.install.dir}/dev directory. Compile

your code against these JAR files by using the tools or the javac -extdirs option.

8.5.5.4

If you are using Apache Ant to compile your code, use wildcards to avoid dependencies on

the specific JAR version; for example:
<fileset dir="${wlp.install.dir}/dev/api/spec" includes="com.ibm.ws.javaee.servlet.3.0_*.jar"/>

Alternatively, you can use the featureManager classpath command to generate a classpath for a
specific set of features.See “Overriding classes from the Java SDK” on page 1482.

v Direct use of the product binaries in the ${wlp.install.dir}/lib directory. The only JAR files that can
be directly invoked are in the ${wlp.install.dir}/bin/tools directory.

v Messages that are output by the server at run time. The text and inserts of messages are subject to
change in service and version upgrades. As far as practically possible, the product will be consistent in
the message IDs that are output at particular points of operation, but this cannot be guaranteed
because underlying implementations might change.

v The layout of the product installation, other than the ${wlp.install.dir}/bin and
${wlp.install.dir}/dev directories.

v Examples and template files in the ${wlp.install.dir}/templates directory. These files might be
modified when you apply services to your installation.

v Private or third party Java packages that are not explicitly exposed as APIs. These are not visible to the
application class loader at run time.

v Do not use the console.log file for the automated processing of server output. Instead, use the
messages.log file for accessing and processing the messages, which provides more detailed information,
in a format that is easier to process.

What might be modified by applying service or an upgrade?

The contents of the following directories and their subdirectories might be modified when service or
upgrade is applied. Do not make your own modifications to files in these locations, or they might be
overwritten by product maintenance or upgrade:
v ${wlp.install.dir}/bin

v ${wlp.install.dir}/clients

v ${wlp.install.dir}/dev

v ${wlp.install.dir}/java

v ${wlp.install.dir}/lib

v ${wlp.install.dir}/templates

No modifications are made to the contents of the following directories. These are your files, and applying
service or upgrade will not modify them:
v ${wlp.install.dir}/etc (where you might have added a server.env or jvm.options file).
v ${wlp.install.dir}/usr (the default location for user configuration and applications).
v Any non-default directory that you designate through the WLP_USER_DIR environment variable.

IBM i

There is an exception to the policy that no modifications are made to the contents of

${wlp.install.dir}/etc. The file ${wlp.install.dir}/etc/default.env is created when you install
Liberty on IBM® iSeries Platforms using the Installation Manager. This file is also created or replaced by

Chapter 1. WebSphere Application Server Liberty Core: Overview 15

the iAdmin POSTINSTALL command during archive and Job Manager installations. The iAdmin command is
in the ${wlp.install.dir}/lib/native/os400/bin directory. See “iAdmin command” on page 953.

Third-party APIs might change over time without consideration to backward compatibility. These are Java
packages that are considered part of the implementation of features developed in open source
communities and delivered as part of Liberty. Third-party APIs are not visible to applications by default;
Java EE applications with a classloader configuration that explicitly allows third-party access will have
visibility to those packages on the application class loader, and OSGi applications must explicitly import
the packages. Consider the impact of incompatible changes before deciding to use third-party APIs.

Server configuration
Liberty is configured by exception. The runtime environment operates from a set of built-in configuration
default settings, and you only need to specify configuration that overrides those default settings. You do
this by editing either the server.xml file or another XML file that is included in server.xml at run time.

The configuration has the following characteristics:
v Described in XML files.
v Human-readable, and editable in a text editor.
v Small, easy to back up, and easy to copy to another system.
v Shareable across an application development team.
v Composable, so that features can easily add their own configuration to the system.
v Extensibly-typed, so you don't have to modify the current configuration to work with later versions of

the runtime environment.
v Dynamically responsive to updates.
v Forgiving, so that missing values are assumed and unrecognized properties are ignored.

Features are the units of functionality by which you control the pieces of the runtime environment that
are loaded into a particular server. They are the primary mechanism that makes the server composable.
The list of features that you specify in the server configuration provides a functional server. See “Liberty
features” on page 483.

When you first install and start the server, a feature manager and a default server configuration are
available:
v By default, a server contains the jsp-2.2 feature, to support servlet and JSP applications. You can use

the feature manager to add the features that you need.
v Server configuration is by exception. When you specify the features that you need, the default

configuration of those features provides a rich environment that is designed to cover most common
requirements, therefore you only need to specify changes from the default configuration.

For a full list of the elements that you can configure to complement or modify the configuration provided
by Liberty features, see **** MISSING FILE ****.

You can also use a bootstrap.properties file to specify properties that are needed before the main
configuration is processed, and to define variables that are used in the main configuration.

For a complete list of configuration files, see Directory locations and properties.

Service author perspective: Runtime management of configuration

The Liberty configuration service parses the primary server.xml file and any files it includes.

16 WebSphere Application Server Liberty Core 8.5.5

8.5.5.5

The Liberty configuration service also parses the configuration files in the configDropins

directory.

The Liberty configuration service parses the files, merges the contents over the default configuration
values provided by the installed bundles, then feeds the resulting property sets into the OSGi
Configuration Admin Service (CA). CA injects each set of properties into the service that owns the set, if
it is registered with CA.

The ordering of these steps is flexible. Services can register with CA before or after the initial property
sets are established. Properties can be updated in CA after the initial injection, at which time the updated
properties are injected into the owning service. It is therefore important that the services can receive, and
respond appropriately to, updates to their configuration at any time that the service is active. Specifically,
if a service delays its activation until its configuration is available, it must still be able to activate.

To enable a service to receive configuration data, there are a number of steps involved. See “Enabling a
service to receive configuration data” on page 1118.

Microsoft Active Directory LDAP Filters (activedLdapFilterProperties)
Specifies the list of default Microsoft Active Directory LDAP filters.

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(objectcategory=group))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string memberOf:member An LDAP filter that
identifies user to group
memberships.

id string A unique configuration ID.

userFilter string (&(sAMAccountName=
%v)(objectcategory=user))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string user:sAMAccountName An LDAP filter that maps
the name of a user to an
LDAP entry.

Administrator Role (administrator-role)
A collection of users and/or groups assigned the server administrator role.
v group
v user

group
Group assigned a role.

false

string

user
User assigned a role.

false

string

Chapter 1. WebSphere Application Server Liberty Core: Overview 17

API Discovery (apiDiscovery)
Configuration for the API Discovery feature to document your REST APIs.
v webModuleDoc

Attribute name Data type Default value Description

apiName string The name of the aggregated
API.

id string A unique configuration ID.

maxSubscriptions int

Minimum: 0

Maximum: 100

20 Specifies the maximum
number of concurrent REST
API clients that are
listening for updates.

webModuleDoc
Configuration for each web module that provides API documentation to be exposed.

false

Attribute name Data type Default value Description

contextRoot string The context root of the web
module for which you are
providing documentation.

docURL string The URL of the
documentation of this web
module. The URL can be
relative to the context root
by starting with a forward
slash (/) or absolute by
starting with http or https.

enabled boolean true A boolean that controls the
processing of
documentation for this web
module.

id string A unique configuration ID.

Application (application)
Defines the properties of an application.
v application-bnd

– security-role
- group
- run-as
- special-subject
- user

v classloader
– commonLibrary

- file
- fileset
- folder

– privateLibrary

18 WebSphere Application Server Liberty Core 8.5.5

- file
- fileset
- folder

v resourceAdapter
– contextService

- baseContext
v baseContext
v classloaderContext
v jeeMetadataContext
v securityContext
v syncToOSThreadContext
v zosWLMContext

- classloaderContext
- jeeMetadataContext
- securityContext
- syncToOSThreadContext
- zosWLMContext

– customize

Attribute name Data type Default value Description

autoStart boolean true Indicates whether or not
the server automatically
starts the application.

context-root string Context root of an
application.

id string A unique configuration ID.

location A file, directory or url. Location of an application
expressed as an absolute
path or a path relative to
the server-level apps
directory.

name string Name of an application.

suppressUncoveredHttpMethodWarningboolean false Option to suppress
uncovered HTTP method
warning message during
application deployment.

type string Type of application archive.

application-bnd
Binds general deployment information included in the application to specific resources.

false

Attribute name Data type Default value Description

version string Version of the application
bindings specification.

application-bnd > security-role
A unique configuration ID.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 19

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Name of a security role.

application-bnd > security-role > group
A unique configuration ID.

false

Attribute name Data type Default value Description

access-id string Group access ID

id string A unique configuration ID.

name string Name of a group
possessing a security role.

application-bnd > security-role > run-as
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

password Reversably encoded
password (string)

Password of a user
required to access a bean
from another bean. The
value can be stored in clear
text or encoded form. To
encode the password, use
the securityUtility tool with
the encode option.

userid string ID of a user required to
access a bean from another
bean.

application-bnd > security-role > special-subject
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

type v EVERYONE

v
ALL_AUTHENTICATED_USERS

One of the following
special subject types:
ALL_AUTHENTICATED_USERS,
EVERYONE.

EVERYONE
Everyone

ALL_AUTHENTICATED_USERS
All authenticated
users

application-bnd > security-role > user
A unique configuration ID.

20 WebSphere Application Server Liberty Core 8.5.5

false

Attribute name Data type Default value Description

access-id string A user access ID in the
general form
user:realmName/
userUniqueId. A value will
be generated if one is not
specified.

id string A unique configuration ID.

name string Name of a user possessing
a security role.

classloader
Defines the settings for an application classloader.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this class loader will be
able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

classProviderRef List of references to top
level resourceAdapter
elements (comma-separated
string).

List of class provider
references. When searching
for classes or resources, this
class loader will delegate to
the specified class
providers after searching its
own class path.

commonLibraryRef List of references to top
level library elements
(comma-separated string).

List of library references.
Library class instances are
shared with other
classloaders.

delegation v parentFirst

v parentLast

parentFirst Controls whether parent
classloader is used before
or after this classloader. If
parent first is selected then
delegate to immediate
parent before searching the
classpath. If parent last is
selected then search the
classpath before delegating
to the immediate parent.

parentFirst
Parent first

parentLast
Parent last

Chapter 1. WebSphere Application Server Liberty Core: Overview 21

Attribute name Data type Default value Description

privateLibraryRef List of references to top
level library elements
(comma-separated string).

List of library references.
Library class instances are
unique to this classloader,
independent of class
instances from other
classloaders.

classloader > commonLibrary
List of library references. Library class instances are shared with other classloaders.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

id string A unique configuration ID.

name string Name of shared library for
administrators

classloader > commonLibrary > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

classloader > commonLibrary > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

22 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

classloader > commonLibrary > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

classloader > privateLibrary
List of library references. Library class instances are unique to this classloader, independent of
class instances from other classloaders.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 23

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

id string A unique configuration ID.

name string Name of shared library for
administrators

classloader > privateLibrary > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

classloader > privateLibrary > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

24 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

classloader > privateLibrary > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

resourceAdapter
Specifies configuration for a resource adapter that is embedded in an application.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 25

Attribute name Data type Default value Description

alias string ${id} Overrides the default
identifier for the resource
adapter. The identifier is
used in the name of the
resource adapter's
configuration properties
element, which in turn is
used in determining the
name of configuration
properties elements for any
resources provided by the
resource adapter. The
resource adapter's
configuration properties
element name has the
format,
properties.<APP_NAME>.<ALIAS>,
where <APP_NAME> is
the name of the application
and <ALIAS> is the
configured alias. If
unspecified, the alias
defaults to the module
name of the resource
adapter.

autoStart boolean Configures whether a
resource adapter starts
automatically upon
deployment of the resource
adapter or lazily upon
injection or lookup of a
resource.

contextServiceRef A reference to top level
contextService element
(string).

Configures how context is
captured and propagated to
threads.

id string Identifies the name of the
embedded resource adapter
module to which this
configuration applies.

resourceAdapter > contextService
Configures how context is captured and propagated to threads.

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

jndiName string JNDI name

26 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

resourceAdapter > contextService > baseContext
Specifies a base context service from which to inherit context that is not already defined on
this context service.

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

id string A unique configuration ID.

jndiName string JNDI name

Chapter 1. WebSphere Application Server Liberty Core: Overview 27

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

resourceAdapter > contextService > baseContext > baseContext
Specifies a base context service from which to inherit context that is not already defined
on this context service.

false

com.ibm.ws.context.service-factory

resourceAdapter > contextService > baseContext > classloaderContext
Classloader context propagation configuration.

false

resourceAdapter > contextService > baseContext > jeeMetadataContext
Makes the namespace of the application component that submits a contextual task
available to the task.

false

resourceAdapter > contextService > baseContext > securityContext
When specified, the security context of the work initiator is propagated to the unit of
work.

false

28 WebSphere Application Server Liberty Core 8.5.5

resourceAdapter > contextService > baseContext > syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized
with the Operating System identity.

false

resourceAdapter > contextService > baseContext > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

resourceAdapter > contextService > classloaderContext
Classloader context propagation configuration.

false

resourceAdapter > contextService > jeeMetadataContext
Makes the namespace of the application component that submits a contextual task available
to the task.

false

resourceAdapter > contextService > securityContext
When specified, the security context of the work initiator is propagated to the unit of work.

false

resourceAdapter > contextService > syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized with
the Operating System identity.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 29

resourceAdapter > contextService > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

resourceAdapter > customize
Customizes the configuration properties element for the activation specification, administered
object, or connection factory with the specified interface and/or implementation class.

false

Attribute name Data type Default value Description

implementation string Fully qualified
implementation class name
for which the configuration
properties element should
be customized.

interface string Fully qualified interface
class name for which the
configuration properties
element should be
customized.

30 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

suffix string Overrides the default suffix
for the configuration
properties element. For
example,
"CustomConnectionFactory"
in
properties.rarModule1.CustomConnectionFactory.
The suffix is useful to
disambiguate when
multiple types of
connection factories,
administered objects, or
endpoint activations are
provided by a resource
adapter. If a configuration
properties element
customization omits the
suffix or leaves it blank, no
suffix is used.

Application Manager (applicationManager)
Properties that control the behavior of the application manager

Attribute name Data type Default value Description

autoExpand boolean false Enables automatic
extraction of WAR files and
EAR files

startTimeout A period of time with
second precision

30s Specifies how long the
server waits for an
application to start before it
considers it slow. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

stopTimeout A period of time with
second precision

30s Specifies how long the
server waits for an
application to stop before it
considers it slow. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 31

Application Monitoring (applicationMonitor)
Defines how the server responds to application additions, updates, and deletions.

Attribute name Data type Default value Description

dropins Path to a directory dropins Location of the application
drop-in directory expressed
as an absolute path or a
path relative to the server
directory.

dropinsEnabled boolean true Monitor the drop-in
directory for application
additions, updates, and
deletions.

pollingRate A period of time with
millisecond precision

500ms Rate at which the server
checks for application
additions, updates, and
deletions. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), seconds
(s), or milliseconds (ms).
For example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

updateTrigger v mbean

v polled

v disabled

polled Application update method
or trigger.

mbean Server will only
update
applications when
prompted by an
MBean called by
an external
program such as
an integrated
development
environment or a
management
application.

polled Server will scan
for application
changes at the
polling interval
and update any
applications that
have detectable
changes.

disabled
Disables all update
monitoring.
Application
changes will not
be applied while
the server is
running.

32 WebSphere Application Server Liberty Core 8.5.5

Authentication Cache (authCache)
Controls the operation of the authentication cache.

Attribute name Data type Default value Description

allowBasicAuthLookup boolean true Allow lookup by user ID
and hashed password.

initialSize int

Minimum: 1

50 Initial number of entries
supported by the
authentication cache.

maxSize int

Minimum: 1

25000 Maximum number of
entries supported by the
authentication cache.

timeout A period of time with
millisecond precision

600s Amount of time after which
an entry in the cache will
be removed. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

Authentication Data (authData)
Authentication alias for a connection to an Enterprise Information System (EIS) or database.

Attribute name Data type Default value Description

id string A unique configuration ID.

password Reversably encoded
password (string)

Password of the user to use
when connecting to the EIS.
The value can be stored in
clear text or encoded form.
It is recommended that you
encode the password. To do
so, use the securityUtility
tool with the encode
option.

user string Name of the user to use
when connecting to the EIS.

Authentication Filter (authFilter)
Specifies a selection rule that represents conditions that are matched against the HTTP request headers to
determine whether or not the HTTP request is selected for the authentication.
v host
v remoteAddress
v requestUrl
v userAgent

Chapter 1. WebSphere Application Server Liberty Core: Overview 33

v webApp

Attribute name Data type Default value Description

id string A unique configuration ID.

host
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

name string Specifies the name.

remoteAddress
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

ip string Specifies the IP address.

matchType v lessThan

v equals

v greaterThan

v contains

v notContain

contains Specifies the match type.

lessThan
Less than

equals Equals

greaterThan
Greater than

contains
Contains

notContain
Not contain

requestUrl
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

34 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

urlPattern string Specifies the URL pattern.

userAgent
A unique configuration ID.

false

Attribute name Data type Default value Description

agent string Specifies the user agent

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

webApp
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

name string Specifies the name.

Chapter 1. WebSphere Application Server Liberty Core: Overview 35

Authentication (authentication)
Controls the built-in authentication service configuration.

Attribute name Data type Default value Description

allowHashtableLoginWithIdOnlyboolean false Allow an application to
login with just an identity
in the hashtable properties.
Use this option only when
you have applications that
require this and have other
means to validate the
identity.

cacheEnabled boolean true Enables the authentication
cache.

Feature Authorization Role Mapping (authorization-roles)
A collection of role names and mappings of the roles to users, groups, or special subjects
v security-role

– group
– special-subject
– user

Attribute name Data type Default value Description

id string A unique configuration ID.

security-role
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Role name.

security-role > group
A unique configuration ID.

false

Attribute name Data type Default value Description

access-id string A group access ID in the
general form
group:realmName/
groupUniqueId. A value
will be generated if one is
not specified.

id string A unique configuration ID.

name string Name of a group that has
the security role.

security-role > special-subject
A unique configuration ID.

36 WebSphere Application Server Liberty Core 8.5.5

false

Attribute name Data type Default value Description

id string A unique configuration ID.

type v EVERYONE

v
ALL_AUTHENTICATED_USERS

One of the following
special subject types:
ALL_AUTHENTICATED_USERS,
EVERYONE.

EVERYONE
All users for every
request, even if the
request was not
authenticated.

ALL_AUTHENTICATED_USERS
All authenticated
users.

security-role > user
A unique configuration ID.

false

Attribute name Data type Default value Description

access-id string A user access ID in the
general form
user:realmName/
userUniqueId. A value will
be generated if one is not
specified.

id string A unique configuration ID.

name string Name of a user who has
the security role.

Basic User Registry (basicRegistry)
A simple XML-based user registry.
v group

– member
v user

Attribute name Data type Default value Description

id string A unique configuration ID.

ignoreCaseForAuthentication boolean false Allow case-insensitive user
name authentication.

realm string BasicRegistry The realm name represents
the user registry.

group
A group in a Basic User Registry.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 37

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Name of a group in a Basic
User Registry.

group > member
A member of a Basic User Registry group.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Name of a user in a Basic
User Registry group.

user
A user in a Basic User Registry.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Name of a user in a Basic
User Registry.

password One way hashable, or
reversably encoded
password (string)

Password of a user in a
Basic User Registry. The
value can be stored in clear
text or encoded form. It is
recommended that you
encode the password. To do
so, use the securityUtility
tool with the encode
option.

BELL (bell)
This feature enables the configuration of Basic Extensions using Liberty Libraries (BELL). A BELL enables
the server runtime to be extended using shared libraries.
v library

– file
– fileset
– folder

v service

Attribute name Data type Default value Description

id string A unique configuration ID.

libraryRef A reference to top level
library element (string).

The library to use for the
BELL.

library
The library to use for the BELL.

false

38 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

name string Name of shared library for
administrators

library > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

library > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

Chapter 1. WebSphere Application Server Liberty Core: Overview 39

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

library > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

service
The name of the service that the system will look up in the /META-INF/services folder. If not
specified, the system discovers all services located in the META-INF/services folder.

false

string

OSGi Applications Bundle Repository (bundleRepository)
An internal bundle repository, in which you can store the bundles for your OSGi applications.
v fileset

Attribute name Data type Default value Description

filesetRef List of references to top
level fileset elements
(comma-separated string).

Space separated list of
fileset references

id string A unique configuration ID.

location A file, directory or url. Location of the remote
repository expressed as an
absolute URL or one
relative to the server home
directory.

40 WebSphere Application Server Liberty Core 8.5.5

fileset
Space separated list of fileset references

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

Contexts And Dependency Injection (CDI) V1.2 (cdi12)
Defines the behavior of the Contexts and Dependency Injection (CDI) v1.2.

Attribute name Data type Default value Description

enableImplicitBeanArchives boolean true The implicit bean archives
are scanned for any bean
discoveries.

CDI Container (cdiContainer)
Defines behavior for the Contexts and Dependency Injection (CDI) container.

Chapter 1. WebSphere Application Server Liberty Core: Overview 41

Channel Framework (channelfw)
Defines channel and chain management settings.

Attribute name Data type Default value Description

chainQuiesceTimeout A period of time with
millisecond precision

30s Default amount of time to
wait while quiescing
chains. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), seconds
(s), or milliseconds (ms).
For example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

chainStartRetryAttempts int

Minimum: 0

60 Number of retry attempts
to make per chain.

chainStartRetryInterval A period of time with
millisecond precision

5s Time interval between start
retries. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), seconds
(s), or milliseconds (ms).
For example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

warningWaitTime A period of time with
millisecond precision

10s Amount of time to wait
before notifying of a
missing factory
configuration. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

Classloading (classloading)
Global classloading

Attribute name Data type Default value Description

useJarUrls boolean false Whether to use jar: or
wsjar: URLs for referencing
files in archives

42 WebSphere Application Server Liberty Core 8.5.5

Certificate Authority Signed Certificate (collectiveCertificate)
Certificate authority signed certificate for collective.

Attribute name Data type Default value Description

rdn string DC=com.ibm.ws.collective Configure expected RDN
attribute for incoming
collective certificate.

Collective Member (collectiveMember)
The collective member configuration requires at least one collective controller address (identified by
controllerHost and controllerPort). The collective controller can have multiple available addresses. Add
one or more failoverController elements to identify the additional controllers. When multiple controllers
are available, the member connects to one of the controllers. If the connection to the controller ends
unexpectedly, the member connects to another controller in the remaining set of controllers.
v failoverController

Attribute name Data type Default value Description

controllerHost string The host name for the
collective controller
instance.

controllerPort int The port for the JMX/REST
connector, typically the
HTTPS port.

controllerReadTimeout A period of time with
millisecond precision

300s The read timeout for
member connection to the
collective controller. A
longer read timeout may be
necessary in large or
geographically dispersed
topologies. Minimum value
is 2 minutes. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 43

Attribute name Data type Default value Description

heartBeatInterval A period of time with
millisecond precision

60s Periodic time interval at
which the collective
member will contact the
collective controller to
indicate liveness. Minimum
value is 1 second. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

failoverController
An additional collective controller address which is available for the collective member to use.

false

Attribute name Data type Default value Description

host string The host name for the
collective controller
instance.

id string A unique configuration ID.

port int The port for the JMX/REST
connector, typically the
HTTPS port.

Configuration Management (config)
Defines how the server processes configuration information.

Attribute name Data type Default value Description

monitorInterval A period of time with
millisecond precision

500ms Rate at which the server
checks for configuration
updates. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), seconds
(s), or milliseconds (ms).
For example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

44 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Action to take after a
incurring a configuration
error.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

Chapter 1. WebSphere Application Server Liberty Core: Overview 45

Attribute name Data type Default value Description

updateTrigger v mbean

v polled

v disabled

polled Configuration update
method or trigger.

mbean Server will only
update the
configuration
when prompted by
the
FileNotificationMbean.
The
FileNotificationMbean
is typically called
by an external
program such as
an integrated
development
environment or a
management
application.

polled Server will scan
for changes at the
polling interval on
all the
configuration files
and update the
runtime
configuration with
the changes
detected.

disabled
Disables all update
monitoring.
Configuration
changes will not
be applied while
the server is
running.

46 WebSphere Application Server Liberty Core 8.5.5

Connection Manager (connectionManager)
Connection Manager configuration

Attribute name Data type Default value Description

agedTimeout A period of time with
second precision

-1 Amount of time before a
physical connection can be
discarded by pool
maintenance. A value of -1
disables this timeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

connectionTimeout A period of time with
second precision

30s Amount of time after which
a connection request times
out. A value of -1 disables
this timeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

id string A unique configuration ID.

maxConnectionsPerThread int

Minimum: 0

Limits the number of open
connections on each thread.

maxIdleTime A period of time with
second precision

30m Amount of time after which
an unused or idle
connection can be
discarded during pool
maintenance, if doing so
does not reduce the pool
below the minimum size. A
value of -1 disables this
timeout. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 47

Attribute name Data type Default value Description

maxPoolSize int

Minimum: 0

50 Maximum number of
physical connections for a
pool. A value of 0 means
unlimited.

minPoolSize int

Minimum: 0

Minimum number of
physical connections to
maintain in the pool. The
pool is not pre-populated.
Aged timeout can override
the minimum.

numConnectionsPerThreadLocalint

Minimum: 0

Caches the specified
number of connections for
each thread.

purgePolicy v ValidateAllConnections

v FailingConnectionOnly

v EntirePool

EntirePool Specifies which connections
to destroy when a stale
connection is detected in a
pool.

ValidateAllConnections
When a stale
connection is
detected,
connections are
tested and those
found to be bad
are closed.

FailingConnectionOnly
When a stale
connection is
detected, only the
connection which
was found to be
bad is closed.

EntirePool
When a stale
connection is
detected, all
connections in the
pool are marked
stale, and when no
longer in use, are
closed.

reapTime A period of time with
second precision

3m Amount of time between
runs of the pool
maintenance thread. A
value of -1 disables pool
maintenance. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

48 WebSphere Application Server Liberty Core 8.5.5

Constrained Delegation (constrainedDelegation)
Controls the operation of constrained delegation.

Attribute name Data type Default value Description

id string A unique configuration ID.

s4U2selfEnabled boolean false Indicate by true or false
whether s4U2self is
enabled.

Thread Context Propagation (contextService)
Configures how context is propagated to threads
v baseContext

– baseContext
– classloaderContext
– jeeMetadataContext
– securityContext
– syncToOSThreadContext
– zosWLMContext

v classloaderContext
v jeeMetadataContext
v securityContext
v syncToOSThreadContext
v zosWLMContext

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

id string A unique configuration ID.

jndiName string JNDI name

Chapter 1. WebSphere Application Server Liberty Core: Overview 49

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

baseContext
Specifies a base context service from which to inherit context that is not already defined on this
context service.

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

id string A unique configuration ID.

jndiName string JNDI name

50 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

baseContext > baseContext
Specifies a base context service from which to inherit context that is not already defined on this
context service.

false

com.ibm.ws.context.service-factory

baseContext > classloaderContext
Classloader context propagation configuration.

false

baseContext > jeeMetadataContext
Makes the namespace of the application component that submits a contextual task available to
the task.

false

baseContext > securityContext
When specified, the security context of the work initiator is propagated to the unit of work.

false

baseContext > syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized with the
Operating System identity.

Chapter 1. WebSphere Application Server Liberty Core: Overview 51

false

baseContext > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

classloaderContext
Classloader context propagation configuration.

false

jeeMetadataContext
Makes the namespace of the application component that submits a contextual task available to the
task.

false

securityContext
When specified, the security context of the work initiator is propagated to the unit of work.

false

syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized with the
Operating System identity.

false

zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

52 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

Cross-Origin Resource Sharing (cors)
Refers to a cross-domain security procedure for JavaScript-based clients.

Attribute name Data type Default value Description

allowCredentials boolean A boolean that indicates if
the user credentials can be
included in the request.

allowedHeaders string A comma-separated list of
HTTP headers allowed to
be used by the origin
domain when making
requests to the configured
domain.

allowedMethods string A comma-separated list of
HTTP methods allowed to
be used by the origin
domain when making
requests to the configured
domain.

allowedOrigins string null A comma-separated list of
origins allowed to access
the configured domain.

Chapter 1. WebSphere Application Server Liberty Core: Overview 53

Attribute name Data type Default value Description

domain string The domain name
represents the URL being
setup with these CORS
settings.

exposeHeaders string A comma-separated list of
HTTP headers that are safe
to expose to the calling
API.

id string A unique configuration ID.

maxAge long A long that indicates how
many seconds a response to
a preflight request can be
cached in the browser.

Custom LDAP Filters (customLdapFilterProperties)
Specifies the list of default Custom LDAP filters.

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs)))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string ibm-allGroups:member;ibm-
allGroups:uniqueMember;groupOfNames:member;groupOfUniqueNames:uniqueMember

An LDAP filter that
identifies user to group
memberships.

id string A unique configuration ID.

userFilter string (&(uid=
%v)(objectclass=ePerson))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string *:uid An LDAP filter that maps
the name of a user to an
LDAP entry.

Data Source (dataSource)
Defines a data source configuration.
v connectionManager
v containerAuthData
v jaasLoginContextEntry
v jdbcDriver

– library
- file
- fileset
- folder

v properties
v properties.datadirect.sqlserver
v properties.db2.i.native

54 WebSphere Application Server Liberty Core 8.5.5

v properties.db2.i.toolbox
v properties.db2.jcc
v properties.derby.client
v properties.derby.embedded
v properties.informix
v properties.informix.jcc
v properties.microsoft.sqlserver
v properties.oracle
v properties.sybase
v recoveryAuthData

Attribute name Data type Default value Description

beginTranForResultSetScrollingAPIsboolean true Attempt transaction
enlistment when result set
scrolling interfaces are
used.

beginTranForVendorAPIs boolean true Attempt transaction
enlistment when vendor
interfaces are used.

commitOrRollbackOnCleanupv commit

v rollback

Determines how to clean
up connections that might
be in a database unit of
work (AutoCommit=false)
when the connection is
closed or returned to the
pool.

commit
Clean up the
connection by
committing.

rollback
Clean up the
connection by
rolling back.

connectionManagerRef A reference to top level
connectionManager element
(string).

Connection manager for a
data source.

connectionSharing v MatchOriginalRequest

v MatchCurrentState

MatchOriginalRequest Specifies how connections
are matched for sharing.

MatchOriginalRequest
When sharing
connections, match
based on the
original connection
request.

MatchCurrentState
When sharing
connections, match
based on the
current state of the
connection.

Chapter 1. WebSphere Application Server Liberty Core: Overview 55

Attribute name Data type Default value Description

containerAuthDataRef A reference to top level
authData element (string).

Default authentication data
for container managed
authentication that applies
when bindings do not
specify an
authentication-alias for a
resource reference with
res-auth=CONTAINER.

enableConnectionCasting boolean false Indicates that connections
obtained from the data
source should be castable to
interface classes that the
JDBC vendor connection
implementation
implements. Enabling this
option incurs additional
overhead on each
getConnection operation. If
vendor JDBC interfaces are
needed less frequently, it
might be more efficient to
leave this option disabled
and use
Connection.unwrap(interface)
only where it is needed.

id string A unique configuration ID.

56 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

isolationLevel v
TRANSACTION_REPEATABLE_READ

v
TRANSACTION_READ_COMMITTED

v
TRANSACTION_SERIALIZABLE

v
TRANSACTION_READ_UNCOMMITTED

v
TRANSACTION_SNAPSHOT

Default transaction isolation
level.

TRANSACTION_REPEATABLE_READ
Dirty reads and
non-repeatable
reads are
prevented;
phantom reads can
occur.

TRANSACTION_READ_COMMITTED
Dirty reads are
prevented;
non-repeatable
reads and
phantom reads can
occur.

TRANSACTION_SERIALIZABLE
Dirty reads,
non-repeatable
reads and
phantom reads are
prevented.

TRANSACTION_READ_UNCOMMITTED
Dirty reads,
non-repeatable
reads and
phantom reads can
occur.

TRANSACTION_SNAPSHOT
Snapshot isolation
for Microsoft SQL
Server JDBC
Driver and
DataDirect
Connect for JDBC
driver.

jaasLoginContextEntryRef A reference to top level
jaasLoginContextEntry
element (string).

JAAS login context entry
for authentication.

jdbcDriverRef A reference to top level
jdbcDriver element (string).

JDBC driver for a data
source.

jndiName string JNDI name for a data
source.

Chapter 1. WebSphere Application Server Liberty Core: Overview 57

Attribute name Data type Default value Description

queryTimeout A period of time with
second precision

Default query timeout for
SQL statements. In a JTA
transaction,
syncQueryTimeoutWithTransactionTimeout
can override this default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

recoveryAuthDataRef A reference to top level
authData element (string).

Authentication data for
transaction recovery.

statementCacheSize int

Minimum: 0

10 Maximum number of
cached statements per
connection.

supplementalJDBCTrace boolean Supplements the JDBC
driver trace that is logged
when JDBC driver trace is
enabled in
bootstrap.properties. JDBC
driver trace specifications
include:
com.ibm.ws.database.logwriter,
com.ibm.ws.db2.logwriter,
com.ibm.ws.derby.logwriter,
com.ibm.ws.informix.logwriter,
com.ibm.ws.oracle.logwriter,
com.ibm.ws.sqlserver.logwriter,
com.ibm.ws.sybase.logwriter.

syncQueryTimeoutWithTransactionTimeoutboolean false Use the time remaining (if
any) in a JTA transaction as
the default query timeout
for SQL statements.

transactional boolean true Enable participation in
transactions that are
managed by the application
server.

type v javax.sql.DataSource

v javax.sql.XADataSource

v
javax.sql.ConnectionPoolDataSource

Type of data source.

javax.sql.DataSource
javax.sql.DataSource

javax.sql.XADataSource
javax.sql.XADataSource

javax.sql.ConnectionPoolDataSource
javax.sql.ConnectionPoolDataSource

connectionManager
Connection manager for a data source.

false

58 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

agedTimeout A period of time with
second precision

-1 Amount of time before a
physical connection can be
discarded by pool
maintenance. A value of -1
disables this timeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

connectionTimeout A period of time with
second precision

30s Amount of time after which
a connection request times
out. A value of -1 disables
this timeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maxConnectionsPerThread int

Minimum: 0

Limits the number of open
connections on each thread.

maxIdleTime A period of time with
second precision

30m Amount of time after which
an unused or idle
connection can be
discarded during pool
maintenance, if doing so
does not reduce the pool
below the minimum size. A
value of -1 disables this
timeout. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

maxPoolSize int

Minimum: 0

50 Maximum number of
physical connections for a
pool. A value of 0 means
unlimited.

Chapter 1. WebSphere Application Server Liberty Core: Overview 59

Attribute name Data type Default value Description

minPoolSize int

Minimum: 0

Minimum number of
physical connections to
maintain in the pool. The
pool is not pre-populated.
Aged timeout can override
the minimum.

numConnectionsPerThreadLocalint

Minimum: 0

Caches the specified
number of connections for
each thread.

purgePolicy v ValidateAllConnections

v FailingConnectionOnly

v EntirePool

EntirePool Specifies which connections
to destroy when a stale
connection is detected in a
pool.

ValidateAllConnections
When a stale
connection is
detected,
connections are
tested and those
found to be bad
are closed.

FailingConnectionOnly
When a stale
connection is
detected, only the
connection which
was found to be
bad is closed.

EntirePool
When a stale
connection is
detected, all
connections in the
pool are marked
stale, and when no
longer in use, are
closed.

reapTime A period of time with
second precision

3m Amount of time between
runs of the pool
maintenance thread. A
value of -1 disables pool
maintenance. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

containerAuthData
Default authentication data for container managed authentication that applies when bindings do not
specify an authentication-alias for a resource reference with res-auth=CONTAINER.

60 WebSphere Application Server Liberty Core 8.5.5

false

Attribute name Data type Default value Description

password Reversably encoded
password (string)

Password of the user to use
when connecting to the EIS.
The value can be stored in
clear text or encoded form.
It is recommended that you
encode the password. To do
so, use the securityUtility
tool with the encode
option.

user string Name of the user to use
when connecting to the EIS.

jaasLoginContextEntry
JAAS login context entry for authentication.

false

Attribute name Data type Default value Description

loginModuleRef List of references to top
level jaasLoginModule
elements (comma-separated
string).

hashtable,userNameAndPassword,certificate,tokenA reference to the ID of a
JAAS login module.

name string Name of a JAAS
configuration entry.

jdbcDriver
JDBC driver for a data source.

false

Attribute name Data type Default value Description

javax.sql.ConnectionPoolDataSourcestring JDBC driver
implementation of
javax.sql.ConnectionPoolDataSource.

javax.sql.DataSource string JDBC driver
implementation of
javax.sql.DataSource.

javax.sql.XADataSource string JDBC driver
implementation of
javax.sql.XADataSource.

libraryRef A reference to top level
library element (string).

Identifies JDBC driver JARs
and native files.

jdbcDriver > library
Identifies JDBC driver JARs and native files.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 61

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

name string Name of shared library for
administrators

jdbcDriver > library > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

jdbcDriver > library > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

62 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

jdbcDriver > library > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

properties
List of JDBC vendor properties for the data source. For example, databaseName="dbname"
serverName="localhost" portNumber="50000".

false

Attribute name Data type Default value Description

URL string URL for connecting to the
database.

databaseName string JDBC driver property:
databaseName.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

serverName string Server where the database
is running.

Chapter 1. WebSphere Application Server Liberty Core: Overview 63

Attribute name Data type Default value Description

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

properties.datadirect.sqlserver
Data source properties for the DataDirect Connect for JDBC driver for Microsoft SQL Server.

false

Attribute name Data type Default value Description

JDBCBehavior v 1

v 0

0 JDBC driver property:
JDBCBehavior. Values are: 0
(JDBC 4.0) or 1 (JDBC 3.0).

1 JDBC 3.0

0 JDBC 4.0

XATransactionGroup string JDBC driver property:
XATransactionGroup.

XMLDescribeType v longvarbinary

v longvarchar

JDBC driver property:
XMLDescribeType.

longvarbinary
longvarbinary

longvarchar
longvarchar

accountingInfo string JDBC driver property:
accountingInfo.

alternateServers string JDBC driver property:
alternateServers.

alwaysReportTriggerResults boolean JDBC driver property:
alwaysReportTriggerResults.

applicationName string JDBC driver property:
applicationName.

authenticationMethod v ntlm

v userIdPassword

v kerberos

v auto

JDBC driver property:
authenticationMethod.

ntlm ntlm

userIdPassword
userIdPassword

kerberos
kerberos

auto auto

bulkLoadBatchSize long JDBC driver property:
bulkLoadBatchSize.

bulkLoadOptions long JDBC driver property:
bulkLoadOptions.

clientHostName string JDBC driver property:
clientHostName.

clientUser string JDBC driver property:
clientUser.

64 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

codePageOverride string JDBC driver property:
codePageOverride.

connectionRetryCount int JDBC driver property:
connectionRetryCount.

connectionRetryDelay A period of time with
second precision

JDBC driver property:
connectionRetryDelay.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

convertNull int JDBC driver property:
convertNull.

databaseName string JDBC driver property:
databaseName.

dateTimeInputParameterTypev dateTime

v dateTimeOffset

v auto

JDBC driver property:
dateTimeInputParameterType.

dateTime
dateTime

dateTimeOffset
dateTimeOffset

auto auto

dateTimeOutputParameterTypev dateTime

v dateTimeOffset

v auto

JDBC driver property:
dateTimeOutputParameterType.

dateTime
dateTime

dateTimeOffset
dateTimeOffset

auto auto

describeInputParameters v describeIfString

v noDescribe

v describeIfDateTime

v describeAll

JDBC driver property:
describeInputParameters.

describeIfString
describeIfString

noDescribe
noDescribe

describeIfDateTime
describeIfDateTime

describeAll
describeAll

Chapter 1. WebSphere Application Server Liberty Core: Overview 65

Attribute name Data type Default value Description

describeOutputParameters v describeIfString

v noDescribe

v describeIfDateTime

v describeAll

JDBC driver property:
describeOutputParameters.

describeIfString
describeIfString

noDescribe
noDescribe

describeIfDateTime
describeIfDateTime

describeAll
describeAll

enableBulkLoad boolean JDBC driver property:
enableBulkLoad.

enableCancelTimeout boolean JDBC driver property:
enableCancelTimeout.

encryptionMethod v loginSSL

v requestSSL

v SSL

v noEncryption

JDBC driver property:
encryptionMethod.

loginSSL
loginSSL

requestSSL
requestSSL

SSL SSL

noEncryption
noEncryption

failoverGranularity v disableIntegrityCheck

v atomicWithRepositioning

v nonAtomic

v atomic

JDBC driver property:
failoverGranularity.

disableIntegrityCheck
disableIntegrityCheck

atomicWithRepositioning
atomicWithRepositioning

nonAtomic
nonAtomic

atomic atomic

failoverMode v connect

v select

v extended

JDBC driver property:
failoverMode.

connect
connect

select select

extended
extended

failoverPreconnect boolean JDBC driver property:
failoverPreconnect.

hostNameInCertificate string JDBC driver property:
hostNameInCertificate.

initializationString string JDBC driver property:
initializationString.

insensitiveResultSetBufferSizeint JDBC driver property:
insensitiveResultSetBufferSize.

66 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

javaDoubleToString boolean JDBC driver property:
javaDoubleToString.

loadBalancing boolean JDBC driver property:
loadBalancing.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

longDataCacheSize int

Minimum: -1

JDBC driver property:
longDataCacheSize.

netAddress string JDBC driver property:
netAddress.

packetSize int

Minimum: -1

Maximum: 128

JDBC driver property:
packetSize.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

queryTimeout A period of time with
second precision

JDBC driver property:
queryTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

resultsetMetaDataOptions int JDBC driver property:
resultsetMetaDataOptions.

selectMethod v direct

v cursor

JDBC driver property:
selectMethod.

direct direct

cursor cursor

serverName string localhost Server where the database
is running.

snapshotSerializable boolean JDBC driver property:
snapshotSerializable.

Chapter 1. WebSphere Application Server Liberty Core: Overview 67

Attribute name Data type Default value Description

spyAttributes string JDBC driver property:
spyAttributes.

stringInputParameterType v varchar

v nvarchar

varchar JDBC driver property:
stringInputParameterType.

varchar varchar

nvarchar
nvarchar

stringOutputParameterType v varchar

v nvarchar

varchar JDBC driver property:
stringOutputParameterType.

varchar varchar

nvarchar
nvarchar

suppressConnectionWarningsboolean JDBC driver property:
suppressConnectionWarnings.

transactionMode v explicit

v implicit

JDBC driver property:
transactionMode.

explicit explicit

implicit
implicit

truncateFractionalSeconds boolean JDBC driver property:
truncateFractionalSeconds.

trustStore string JDBC driver property:
trustStore.

trustStorePassword Reversably encoded
password (string)

JDBC driver property:
trustStorePassword.

useServerSideUpdatableCursorsboolean JDBC driver property:
useServerSideUpdatableCursors.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

validateServerCertificate boolean JDBC driver property:
validateServerCertificate.

properties.db2.i.native
Data source properties for the IBM DB2 for i Native JDBC driver.

false

Attribute name Data type Default value Description

access v read only

v all

v read call

all JDBC driver property:
access.

read only
read only

all all

read call
read call

68 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

autoCommit boolean true JDBC driver property:
autoCommit.

batchStyle v 2.1

v 2.0

2.0 JDBC driver property:
batchStyle.

2.1 2.1

2.0 2.0

behaviorOverride int JDBC driver property:
behaviorOverride.

blockSize v 512

v 128

v 0

v 32

v 64

v 16

v 8

v 256

32 JDBC driver property:
blockSize.

512 512

128 128

0 0

32 32

64 64

16 16

8 8

256 256

cursorHold boolean false JDBC driver property:
cursorHold.

cursorSensitivity v asensitive

v sensitive

asensitive JDBC driver property:
cursorSensitivity. Values
are: 0
(TYPE_SCROLL_SENSITIVE_STATIC),
1
(TYPE_SCROLL_SENSITIVE_DYNAMIC),
2
(TYPE_SCROLL_ASENSITIVE).

asensitive
asensitive

sensitive
sensitive

dataTruncation string true JDBC driver property:
dataTruncation.

databaseName string *LOCAL JDBC driver property:
databaseName.

Chapter 1. WebSphere Application Server Liberty Core: Overview 69

Attribute name Data type Default value Description

dateFormat v dmy

v iso

v eur

v ymd

v julian

v jis

v usa

v mdy

JDBC driver property:
dateFormat.

dmy dmy

iso iso

eur eur

ymd ymd

julian julian

jis jis

usa usa

mdy mdy

dateSeparator v \,

v b

v .

v /

v -

JDBC driver property:
dateSeparator.

\, The comma
character (,).

b The character b

. The period
character (.).

/ The forward slash
character (/).

- The dash character
(-).

decimalSeparator v \,

v .

JDBC driver property:
decimalSeparator.

\, The comma
character (,).

. The period
character (.).

directMap boolean true JDBC driver property:
directMap.

doEscapeProcessing boolean true JDBC driver property:
doEscapeProcessing.

fullErrors boolean JDBC driver property:
fullErrors.

libraries string JDBC driver property:
libraries.

lobThreshold int

Maximum: 500000

0 JDBC driver property:
lobThreshold.

70 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

lockTimeout A period of time with
second precision

0 JDBC driver property:
lockTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maximumPrecision v 31

v 63

31 JDBC driver property:
maximumPrecision.

31 31

63 63

maximumScale int

Minimum: 0

Maximum: 63

31 JDBC driver property:
maximumScale.

minimumDivideScale int

Minimum: 0

Maximum: 9

0 JDBC driver property:
minimumDivideScale.

networkProtocol int JDBC driver property:
networkProtocol.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

prefetch boolean true JDBC driver property:
prefetch.

queryOptimizeGoal v 2

v 1

2 JDBC driver property:
queryOptimizeGoal. Values
are: 1 (*FIRSTIO) or 2
(*ALLIO).

2 *ALLIO

1 *FIRSTIO

Chapter 1. WebSphere Application Server Liberty Core: Overview 71

Attribute name Data type Default value Description

reuseObjects boolean true JDBC driver property:
reuseObjects.

serverName string Server where the database
is running.

serverTraceCategories int 0 JDBC driver property:
serverTraceCategories.

systemNaming boolean false JDBC driver property:
systemNaming.

timeFormat v iso

v eur

v jis

v usa

v hms

JDBC driver property:
timeFormat.

iso iso

eur eur

jis jis

usa usa

hms hms

timeSeparator v \,

v b

v :

v .

JDBC driver property:
timeSeparator.

\, The comma
character (,).

b The character b

: The colon
character (:).

. The period
character (.).

trace boolean JDBC driver property: trace.

transactionTimeout A period of time with
second precision

0 JDBC driver property:
transactionTimeout. Specify
a positive integer followed
by a unit of time, which
can be hours (h), minutes
(m), or seconds (s). For
example, specify 30 seconds
as 30s. You can include
multiple values in a single
entry. For example, 1m30s
is equivalent to 90 seconds.

translateBinary boolean false JDBC driver property:
translateBinary.

translateHex v binary

v character

character JDBC driver property:
translateHex.

binary binary

character
character

useBlockInsert boolean false JDBC driver property:
useBlockInsert.

72 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

properties.db2.i.toolbox
Data source properties for the IBM DB2 for i Toolbox JDBC driver.

false

Attribute name Data type Default value Description

access v read only

v all

v read call

all JDBC driver property:
access.

read only
read only

all all

read call
read call

behaviorOverride int JDBC driver property:
behaviorOverride.

bidiImplicitReordering boolean true JDBC driver property:
bidiImplicitReordering.

bidiNumericOrdering boolean false JDBC driver property:
bidiNumericOrdering.

bidiStringType int JDBC driver property:
bidiStringType.

bigDecimal boolean true JDBC driver property:
bigDecimal.

blockCriteria v 2

v 1

v 0

2 JDBC driver property:
blockCriteria. Values are: 0
(no record blocking), 1
(block if FOR FETCH
ONLY is specified), 2 (block
if FOR UPDATE is
specified).

2 2

1 1

0 0

Chapter 1. WebSphere Application Server Liberty Core: Overview 73

Attribute name Data type Default value Description

blockSize v 512

v 128

v 0

v 32

v 64

v 16

v 8

v 256

32 JDBC driver property:
blockSize.

512 512

128 128

0 0

32 32

64 64

16 16

8 8

256 256

cursorHold boolean false JDBC driver property:
cursorHold.

cursorSensitivity v asensitive

v sensitive

v insensitive

asensitive JDBC driver property:
cursorSensitivity. Values
are: 0
(TYPE_SCROLL_SENSITIVE_STATIC),
1
(TYPE_SCROLL_SENSITIVE_DYNAMIC),
2
(TYPE_SCROLL_ASENSITIVE).

asensitive
asensitive

sensitive
sensitive

insensitive
insensitive

dataCompression boolean true JDBC driver property:
dataCompression.

dataTruncation boolean true JDBC driver property:
dataTruncation.

databaseName string JDBC driver property:
databaseName.

dateFormat v dmy

v iso

v eur

v ymd

v julian

v jis

v usa

v mdy

JDBC driver property:
dateFormat.

dmy dmy

iso iso

eur eur

ymd ymd

julian julian

jis jis

usa usa

mdy mdy

74 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

dateSeparator v
v \,

v .

v /

v -

JDBC driver property:
dateSeparator.

The space
character ().

\, The comma
character (,).

. The period
character (.).

/ The forward slash
character (/).

- The dash character
(-).

decimalSeparator v \,

v .

JDBC driver property:
decimalSeparator.

\, The comma
character (,).

. The period
character (.).

driver v toolbox

v native

toolbox JDBC driver property:
driver.

toolbox
toolbox

native native

errors v full

v basic

basic JDBC driver property:
errors.

full full

basic basic

extendedDynamic boolean false JDBC driver property:
extendedDynamic.

extendedMetaData boolean false JDBC driver property:
extendedMetaData.

fullOpen boolean false JDBC driver property:
fullOpen.

holdInputLocators boolean true JDBC driver property:
holdInputLocators.

holdStatements boolean false JDBC driver property:
holdStatements.

isolationLevelSwitchingSupportboolean false JDBC driver property:
isolationLevelSwitchingSupport.

keepAlive boolean JDBC driver property:
keepAlive.

lazyClose boolean false JDBC driver property:
lazyClose.

libraries string JDBC driver property:
libraries.

Chapter 1. WebSphere Application Server Liberty Core: Overview 75

Attribute name Data type Default value Description

lobThreshold int

Minimum: 0

Maximum: 16777216

0 JDBC driver property:
lobThreshold.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maximumPrecision v 31

v 63

31 JDBC driver property:
maximumPrecision.

31 31

63 64

maximumScale int

Minimum: 0

Maximum: 63

31 JDBC driver property:
maximumScale.

metaDataSource int

Minimum: 0

Maximum: 1

1 JDBC driver property:
metaDataSource.

minimumDivideScale int

Minimum: 0

Maximum: 9

0 JDBC driver property:
minimumDivideScale.

naming v system

v sql

sql JDBC driver property:
naming.

system system

sql sql

package string JDBC driver property:
package.

packageAdd boolean true JDBC driver property:
packageAdd.

packageCCSID v 13488

v 1200

13488 JDBC driver property:
packageCCSID. Values are:
1200 (UCS-2) or 13488
(UTF-16).

13488 13488 (UTF-16)

1200 1200 (UCS-2)

packageCache boolean false JDBC driver property:
packageCache.

76 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

packageCriteria v default

v select

default JDBC driver property:
packageCriteria.

default default

select select

packageError v exception

v none

v warning

warning JDBC driver property:
packageError.

exception
exception

none none

warning
warning

packageLibrary string QGPL JDBC driver property:
packageLibrary.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

prefetch boolean true JDBC driver property:
prefetch.

prompt boolean false JDBC driver property:
prompt.

proxyServer string JDBC driver property:
proxyServer.

qaqqiniLibrary string JDBC driver property:
qaqqiniLibrary.

queryOptimizeGoal int

Minimum: 0

Maximum: 2

0 JDBC driver property:
queryOptimizeGoal. Values
are: 1 (*FIRSTIO) or 2
(*ALLIO).

receiveBufferSize int

Minimum: 1

JDBC driver property:
receiveBufferSize.

remarks v system

v sql

system JDBC driver property:
remarks.

system system

sql sql

rollbackCursorHold boolean false JDBC driver property:
rollbackCursorHold.

savePasswordWhenSerializedboolean false JDBC driver property:
savePasswordWhenSerialized.

secondaryUrl string JDBC driver property:
secondaryUrl.

secure boolean false JDBC driver property:
secure.

sendBufferSize int

Minimum: 1

JDBC driver property:
sendBufferSize.

Chapter 1. WebSphere Application Server Liberty Core: Overview 77

Attribute name Data type Default value Description

serverName string Server where the database
is running.

serverTraceCategories int 0 JDBC driver property:
serverTraceCategories.

soLinger A period of time with
second precision

JDBC driver property:
soLinger. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

soTimeout A period of time with
millisecond precision

JDBC driver property:
soTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

sort v hex

v table

v language

hex JDBC driver property: sort.

hex hex

table table

language
language

sortLanguage string JDBC driver property:
sortLanguage.

sortTable string JDBC driver property:
sortTable.

sortWeight v unqiue

v shared

JDBC driver property:
sortWeight.

unqiue unique

shared shared

tcpNoDelay boolean JDBC driver property:
tcpNoDelay.

threadUsed boolean true JDBC driver property:
threadUsed.

78 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

timeFormat v iso

v eur

v jis

v usa

v hms

JDBC driver property:
timeFormat.

iso iso

eur eur

jis jis

usa usa

hms hms

timeSeparator v
v \,

v :

v .

JDBC driver property:
timeSeparator.

The space
character ().

\, The comma
character (,).

: The colon
character (:).

. The period
character (.).

toolboxTrace v diagnostic

v information

v conversion

v error

v thread

v proxy

v none

v datastream

v pcml

v all

v jdbc

v warning

JDBC driver property:
toolboxTrace.

diagnostic
diagnostic

information
information

conversion
conversion

error error

thread thread

proxy proxy

none none

datastream
datastream

pcml pcml

all all

jdbc jdbc

warning
warning

trace boolean JDBC driver property: trace.

translateBinary boolean false JDBC driver property:
translateBinary.

translateBoolean boolean true JDBC driver property:
translateBoolean.

Chapter 1. WebSphere Application Server Liberty Core: Overview 79

Attribute name Data type Default value Description

translateHex v binary

v character

character JDBC driver property:
translateHex.

binary binary

character
character

trueAutoCommit boolean false JDBC driver property:
trueAutoCommit.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

xaLooselyCoupledSupport int

Minimum: 0

Maximum: 1

0 JDBC driver property:
xaLooselyCoupledSupport.

properties.db2.jcc
Data source properties for the IBM Data Server Driver for JDBC and SQLJ for DB2.

false

Attribute name Data type Default value Description

activateDatabase int JDBC driver property:
activateDatabase.

alternateGroupDatabaseNamestring JDBC driver property:
alternateGroupDatabaseName.

alternateGroupPortNumber string JDBC driver property:
alternateGroupPortNumber.

alternateGroupServerName string JDBC driver property:
alternateGroupServerName.

blockingReadConnectionTimeoutA period of time with
second precision

JDBC driver property:
blockingReadConnectionTimeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

clientAccountingInformation string JDBC driver property:
clientAccountingInformation.

clientApplicationInformation string JDBC driver property:
clientApplicationInformation.

clientRerouteAlternatePortNumberstring JDBC driver property:
clientRerouteAlternatePortNumber.

clientRerouteAlternateServerNamestring JDBC driver property:
clientRerouteAlternateServerName.

80 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

clientUser string JDBC driver property:
clientUser.

clientWorkstation string JDBC driver property:
clientWorkstation.

connectionCloseWithInFlightTransactionv 2

v 1

JDBC driver property:
connectionCloseWithInFlightTransaction.

2 CONNECTION_CLOSE_WITH_ROLLBACK

1 CONNECTION_CLOSE_WITH_EXCEPTION

currentAlternateGroupEntry int JDBC driver property:
currentAlternateGroupEntry.

currentFunctionPath string JDBC driver property:
currentFunctionPath.

currentLocaleLcCtype string JDBC driver property:
currentLocaleLcCtype.

currentLockTimeout A period of time with
second precision

JDBC driver property:
currentLockTimeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

currentPackagePath string JDBC driver property:
currentPackagePath.

currentPackageSet string JDBC driver property:
currentPackageSet.

currentSQLID string JDBC driver property:
currentSQLID.

currentSchema string JDBC driver property:
currentSchema.

cursorSensitivity v 2

v 1

v 0

JDBC driver property:
cursorSensitivity. Values
are: 0
(TYPE_SCROLL_SENSITIVE_STATIC),
1
(TYPE_SCROLL_SENSITIVE_DYNAMIC),
2
(TYPE_SCROLL_ASENSITIVE).

2 TYPE_SCROLL_ASENSITIVE

1 TYPE_SCROLL_SENSITIVE_DYNAMIC

0 TYPE_SCROLL_SENSITIVE_STATIC

databaseName string JDBC driver property:
databaseName.

deferPrepares boolean true JDBC driver property:
deferPrepares.

Chapter 1. WebSphere Application Server Liberty Core: Overview 81

Attribute name Data type Default value Description

driverType v 2

v 4

4 JDBC driver property:
driverType.

2 Type 2 JDBC
driver.

4 Type 4 JDBC
driver.

enableAlternateGroupSeamlessACRboolean JDBC driver property:
enableAlternateGroupSeamlessACR.

enableClientAffinitiesList v 2

v 1

JDBC driver property:
enableClientAffinitiesList.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

enableExtendedDescribe v 2

v 1

JDBC driver property:
enableExtendedDescribe.

2 NO

1 YES

enableExtendedIndicators v 2

v 1

JDBC driver property:
enableExtendedIndicators.

2 NO

1 YES

enableNamedParameterMarkersv 2

v 1

JDBC driver property:
enableNamedParameterMarkers.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

enableSeamlessFailover v 2

v 1

JDBC driver property:
enableSeamlessFailover.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

enableSysplexWLB boolean JDBC driver property:
enableSysplexWLB.

fetchSize int JDBC driver property:
fetchSize.

fullyMaterializeInputStreams boolean JDBC driver property:
fullyMaterializeInputStreams.

fullyMaterializeInputStreamsOnBatchExecutionv 2

v 1

JDBC driver property:
fullyMaterializeInputStreamsOnBatchExecution.

2 NO

1 YES

fullyMaterializeLobData boolean JDBC driver property:
fullyMaterializeLobData.

82 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

implicitRollbackOption v 2

v 1

v 0

JDBC driver property:
implicitRollbackOption.

2 IMPLICIT_ROLLBACK_OPTION_CLOSE_CONNECTION

1 IMPLICIT_ROLLBACK_OPTION_NOT_CLOSE_CONNECTION

0 IMPLICIT_ROLLBACK_OPTION_NOT_SET

interruptProcessingMode v 2

v 1

v 0

JDBC driver property:
interruptProcessingMode.

2 INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET

1 INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL

0 INTERRUPT_PROCESSING_MODE_DISABLED

keepAliveTimeOut A period of time with
second precision

JDBC driver property:
keepAliveTimeOut. Specify
a positive integer followed
by a unit of time, which
can be hours (h), minutes
(m), or seconds (s). For
example, specify 30 seconds
as 30s. You can include
multiple values in a single
entry. For example, 1m30s
is equivalent to 90 seconds.

keepDynamic int JDBC driver property:
keepDynamic.

kerberosServerPrincipal string JDBC driver property:
kerberosServerPrincipal.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maxConnCachedParamBufferSizeint JDBC driver property:
maxConnCachedParamBufferSize.

maxRetriesForClientReroute int JDBC driver property:
maxRetriesForClientReroute.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 50000 Port on which to obtain
database connections.

profileName string JDBC driver property:
profileName.

Chapter 1. WebSphere Application Server Liberty Core: Overview 83

Attribute name Data type Default value Description

queryCloseImplicit v 2

v 1

JDBC driver property:
queryCloseImplicit. Values
are: 1
(QUERY_CLOSE_IMPLICIT_YES)
or 2
(QUERY_CLOSE_IMPLICIT_NO).

2 QUERY_CLOSE_IMPLICIT_NO

1 QUERY_CLOSE_IMPLICIT_YES

queryDataSize int

Minimum: 4096

Maximum: 65535

JDBC driver property:
queryDataSize.

queryTimeoutInterruptProcessingModev 2

v 1

JDBC driver property:
queryTimeoutInterruptProcessingMode.

2 INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET

1 INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL

readOnly boolean JDBC driver property:
readOnly.

recordTemporalHistory v 2

v 1

JDBC driver property:
recordTemporalHistory.

2 NO

1 YES

resultSetHoldability v 2

v 1

JDBC driver property:
resultSetHoldability. Values
are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

resultSetHoldabilityForCatalogQueriesv 2

v 1

JDBC driver property:
resultSetHoldabilityForCatalogQueries.
Values are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

retrieveMessagesFromServerOnGetMessageboolean true JDBC driver property:
retrieveMessagesFromServerOnGetMessage.

84 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

retryIntervalForClientRerouteA period of time with
second precision

JDBC driver property:
retryIntervalForClientReroute.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

securityMechanism v 3

v 7

v 4

v 18

v 15

v 9

v 16

v 13

v 11

v 12

JDBC driver property:
securityMechanism. Values
are: 3
(CLEAR_TEXT_PASSWORD_SECURITY),
4
(USER_ONLY_SECURITY),
7
(ENCRYPTED_PASSWORD_SECURITY),
9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY),
11
(KERBEROS_SECURITY),
12
(ENCRYPTED_USER_AND_DATA_SECURITY),
13
(ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY),
15 (PLUGIN_SECURITY),
16
(ENCRYPTED_USER_ONLY_SECURITY),
18
(TLS_CLIENT_CERTIFICATE_SECURITY).

3 CLEAR_TEXT_PASSWORD_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

18 TLS_CLIENT_CERTIFICATE_SECURITY

15 PLUGIN_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

16 ENCRYPTED_USER_ONLY_SECURITY

13 ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

11 KERBEROS_SECURITY

12 ENCRYPTED_USER_AND_DATA_SECURITY

sendDataAsIs boolean JDBC driver property:
sendDataAsIs.

serverName string localhost Server where the database
is running.

sessionTimeZone string JDBC driver property:
sessionTimeZone.

sqljCloseStmtsWithOpenResultSetboolean JDBC driver property:
sqljCloseStmtsWithOpenResultSet.

Chapter 1. WebSphere Application Server Liberty Core: Overview 85

Attribute name Data type Default value Description

sqljEnableClassLoaderSpecificProfilesboolean JDBC driver property:
sqljEnableClassLoaderSpecificProfiles.

sslConnection boolean JDBC driver property:
sslConnection.

streamBufferSize int JDBC driver property:
streamBufferSize.

stripTrailingZerosForDecimalNumbersv 2

v 1

JDBC driver property:
stripTrailingZerosForDecimalNumbers.

2 NO

1 YES

sysSchema string JDBC driver property:
sysSchema.

timerLevelForQueryTimeOut v 2

v 1

v -1

JDBC driver property:
timerLevelForQueryTimeOut.

2 QUERYTIMEOUT_CONNECTION_LEVEL

1 QUERYTIMEOUT_STATEMENT_LEVEL

-1 QUERYTIMEOUT_DISABLED

traceDirectory string JDBC driver property:
traceDirectory.

traceFile string JDBC driver property:
traceFile.

traceFileAppend boolean JDBC driver property:
traceFileAppend.

traceFileCount int JDBC driver property:
traceFileCount.

traceFileSize int JDBC driver property:
traceFileSize.

traceLevel int 0 Bitwise combination of the
following constant values:
TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1,
TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4,
TRACE_DRIVER_CONFIGURATION=16,
TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64,
TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256,
TRACE_DIAGNOSTICS=512,
TRACE_SQLJ=1024,
TRACE_META_CALLS=8192,
TRACE_DATASOURCE_CALLS=16384,
TRACE_LARGE_OBJECT_CALLS=32768,
TRACE_SYSTEM_MONITOR=131072,
TRACE_TRACEPOINTS=262144,
TRACE_ALL=-1.

traceOption v 1

v 0

JDBC driver property:
traceOption

1 1

0 0

86 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

translateForBitData v 2

v 1

JDBC driver property:
translateForBitData.

2 SERVER_ENCODING_REPRESENTATION

1 HEX_REPRESENTATION

updateCountForBatch v 2

v 1

JDBC driver property:
updateCountForBatch.

2 TOTAL_UPDATE_COUNT

1 NO_UPDATE_COUNT

useCachedCursor boolean JDBC driver property:
useCachedCursor.

useIdentityValLocalForAutoGeneratedKeysboolean JDBC driver property:
useIdentityValLocalForAutoGeneratedKeys.

useJDBC41DefinitionForGetColumnsv 2

v 1

JDBC driver property:
useJDBC41DefinitionForGetColumns.

2 NO

1 YES

useJDBC4ColumnNameAndLabelSemanticsv 2

v 1

JDBC driver property:
useJDBC4ColumnNameAndLabelSemantics.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

useTransactionRedirect boolean JDBC driver property:
useTransactionRedirect.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

xaNetworkOptimization boolean JDBC driver property:
xaNetworkOptimization.

properties.derby.client
Data source properties for Derby Network Client JDBC driver.

false

Attribute name Data type Default value Description

connectionAttributes string JDBC driver property:
connectionAttributes.

Chapter 1. WebSphere Application Server Liberty Core: Overview 87

Attribute name Data type Default value Description

createDatabase v false

v create

JDBC driver property:
createDatabase.

false Do not
automatically
create the
database.

create When the first
connection is
established,
automatically
create the database
if it doesn't exist.

databaseName string JDBC driver property:
databaseName.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1527 Port on which to obtain
database connections.

retrieveMessageText boolean true JDBC driver property:
retrieveMessageText.

securityMechanism v 3

v 7

v 4

v 9

v 8

3 JDBC driver property:
securityMechanism. Values
are: 3
(CLEAR_TEXT_PASSWORD_SECURITY),
4
(USER_ONLY_SECURITY),
7
(ENCRYPTED_PASSWORD_SECURITY),
8
(STRONG_PASSWORD_SUBSTITUTE_SECURITY),
9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY).

3 CLEAR_TEXT_PASSWORD_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

8 STRONG_PASSWORD_SUBSTITUTE_SECURITY

88 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

serverName string localhost Server where the database
is running.

shutdownDatabase v false

v shutdown

JDBC driver property:
shutdownDatabase.

false Do not shut down
the database.

shutdown
Shut down the
database when a
connection is
attempted.

ssl v basic

v off

v peerAuthentication

JDBC driver property: ssl.

basic basic

off off

peerAuthentication
peerAuthentication

traceDirectory string JDBC driver property:
traceDirectory.

traceFile string JDBC driver property:
traceFile.

traceFileAppend boolean JDBC driver property:
traceFileAppend.

traceLevel int Bitwise combination of the
following constant values:
TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1,
TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4,
TRACE_DRIVER_CONFIGURATION=16,
TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64,
TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256,
TRACE_DIAGNOSTICS=512,
TRACE_XA_CALLS=2048,
TRACE_ALL=-1.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

properties.derby.embedded
Data source properties for Derby Embedded JDBC driver.

false

Attribute name Data type Default value Description

connectionAttributes string JDBC driver property:
connectionAttributes.

Chapter 1. WebSphere Application Server Liberty Core: Overview 89

Attribute name Data type Default value Description

createDatabase v false

v create

JDBC driver property:
createDatabase.

false Do not
automatically
create the
database.

create When the first
connection is
established,
automatically
create the database
if it doesn't exist.

databaseName string JDBC driver property:
databaseName.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

shutdownDatabase v false

v shutdown

JDBC driver property:
shutdownDatabase.

false Do not shut down
the database.

shutdown
Shut down the
database when a
connection is
attempted.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

properties.informix
Data source properties for the Informix JDBC driver.

false

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

90 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

ifxCLIENT_LOCALE string JDBC driver property:
ifxCLIENT_LOCALE.

ifxCPMAgeLimit A period of time with
second precision

JDBC driver property:
ifxCPMAgeLimit. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

ifxCPMInitPoolSize int JDBC driver property:
ifxCPMInitPoolSize.

ifxCPMMaxConnections int JDBC driver property:
ifxCPMMaxConnections.

ifxCPMMaxPoolSize int JDBC driver property:
ifxCPMMaxPoolSize.

ifxCPMMinAgeLimit A period of time with
second precision

JDBC driver property:
ifxCPMMinAgeLimit.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

ifxCPMMinPoolSize int JDBC driver property:
ifxCPMMinPoolSize.

ifxCPMServiceInterval A period of time with
millisecond precision

JDBC driver property:
ifxCPMServiceInterval.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

ifxDBANSIWARN boolean JDBC driver property:
ifxDBANSIWARN.

ifxDBCENTURY string JDBC driver property:
ifxDBCENTURY.

ifxDBDATE string JDBC driver property:
ifxDBDATE.

ifxDBSPACETEMP string JDBC driver property:
ifxDBSPACETEMP.

Chapter 1. WebSphere Application Server Liberty Core: Overview 91

Attribute name Data type Default value Description

ifxDBTEMP string JDBC driver property:
ifxDBTEMP.

ifxDBTIME string JDBC driver property:
ifxDBTIME.

ifxDBUPSPACE string JDBC driver property:
ifxDBUPSPACE.

ifxDB_LOCALE string JDBC driver property:
ifxDB_LOCALE.

ifxDELIMIDENT boolean JDBC driver property:
ifxDELIMIDENT.

ifxENABLE_TYPE_CACHE boolean JDBC driver property:
ifxENABLE_TYPE_CACHE.

ifxFET_BUF_SIZE int JDBC driver property:
ifxFET_BUF_SIZE.

ifxGL_DATE string JDBC driver property:
ifxGL_DATE.

ifxGL_DATETIME string JDBC driver property:
ifxGL_DATETIME.

ifxIFXHOST string localhost JDBC driver property:
ifxIFXHOST.

ifxIFX_AUTOFREE boolean JDBC driver property:
ifxIFX_AUTOFREE.

ifxIFX_DIRECTIVES string JDBC driver property:
ifxIFX_DIRECTIVES.

ifxIFX_LOCK_MODE_WAIT A period of time with
second precision

2s JDBC driver property:
ifxIFX_LOCK_MODE_WAIT.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

ifxIFX_SOC_TIMEOUT A period of time with
millisecond precision

JDBC driver property:
ifxIFX_SOC_TIMEOUT.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

ifxIFX_USEPUT boolean JDBC driver property:
ifxIFX_USEPUT.

92 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

ifxIFX_USE_STRENC boolean JDBC driver property:
ifxIFX_USE_STRENC.

ifxIFX_XASPEC string y JDBC driver property:
ifxIFX_XASPEC.

ifxINFORMIXCONRETRY int JDBC driver property:
ifxINFORMIXCONRETRY.

ifxINFORMIXCONTIME A period of time with
second precision

JDBC driver property:
ifxINFORMIXCONTIME.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

ifxINFORMIXOPCACHE string JDBC driver property:
ifxINFORMIXOPCACHE.

ifxINFORMIXSTACKSIZE int JDBC driver property:
ifxINFORMIXSTACKSIZE.

ifxJDBCTEMP string JDBC driver property:
ifxJDBCTEMP.

ifxLDAP_IFXBASE string JDBC driver property:
ifxLDAP_IFXBASE.

ifxLDAP_PASSWD string JDBC driver property:
ifxLDAP_PASSWD.

ifxLDAP_URL string JDBC driver property:
ifxLDAP_URL.

ifxLDAP_USER string JDBC driver property:
ifxLDAP_USER.

ifxLOBCACHE int JDBC driver property:
ifxLOBCACHE.

ifxNEWCODESET string JDBC driver property:
ifxNEWCODESET.

ifxNEWLOCALE string JDBC driver property:
ifxNEWLOCALE.

ifxNODEFDAC string JDBC driver property:
ifxNODEFDAC.

ifxOPTCOMPIND string JDBC driver property:
ifxOPTCOMPIND.

ifxOPTOFC string JDBC driver property:
ifxOPTOFC.

ifxOPT_GOAL string JDBC driver property:
ifxOPT_GOAL.

ifxPATH string JDBC driver property:
ifxPATH.

ifxPDQPRIORITY string JDBC driver property:
ifxPDQPRIORITY.

Chapter 1. WebSphere Application Server Liberty Core: Overview 93

Attribute name Data type Default value Description

ifxPLCONFIG string JDBC driver property:
ifxPLCONFIG.

ifxPLOAD_LO_PATH string JDBC driver property:
ifxPLOAD_LO_PATH.

ifxPROTOCOLTRACE int JDBC driver property:
ifxPROTOCOLTRACE.

ifxPROTOCOLTRACEFILE string JDBC driver property:
ifxPROTOCOLTRACEFILE.

ifxPROXY string JDBC driver property:
ifxPROXY.

ifxPSORT_DBTEMP string JDBC driver property:
ifxPSORT_DBTEMP.

ifxPSORT_NPROCS boolean JDBC driver property:
ifxPSORT_NPROCS.

ifxSECURITY string JDBC driver property:
ifxSECURITY.

ifxSQLH_FILE string JDBC driver property:
ifxSQLH_FILE.

ifxSQLH_LOC string JDBC driver property:
ifxSQLH_LOC.

ifxSQLH_TYPE string JDBC driver property:
ifxSQLH_TYPE.

ifxSSLCONNECTION string JDBC driver property:
ifxSSLCONNECTION.

ifxSTMT_CACHE string JDBC driver property:
ifxSTMT_CACHE.

ifxTRACE int JDBC driver property:
ifxTRACE.

ifxTRACEFILE string JDBC driver property:
ifxTRACEFILE.

ifxTRUSTED_CONTEXT string JDBC driver property:
ifxTRUSTED_CONTEXT.

ifxUSEV5SERVER boolean JDBC driver property:
ifxUSEV5SERVER.

ifxUSE_DTENV boolean JDBC driver property:
ifxUSE_DTENV.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

94 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1526 Port on which to obtain
database connections.

roleName string JDBC driver property:
roleName.

serverName string Server where the database
is running.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

properties.informix.jcc
Data source properties for the IBM Data Server Driver for JDBC and SQLJ for Informix.

false

Attribute name Data type Default value Description

DBANSIWARN boolean JDBC driver property:
DBANSIWARN.

DBDATE string JDBC driver property:
DBDATE.

DBPATH string JDBC driver property:
DBPATH.

DBSPACETEMP string JDBC driver property:
DBSPACETEMP.

DBTEMP string JDBC driver property:
DBTEMP.

DBUPSPACE string JDBC driver property:
DBUPSPACE.

DELIMIDENT boolean JDBC driver property:
DELIMIDENT.

IFX_DIRECTIVES v ON

v OFF

JDBC driver property:
IFX_DIRECTIVES.

ON ON

OFF OFF

IFX_EXTDIRECTIVES v ON

v OFF

JDBC driver property:
IFX_EXTDIRECTIVES.

ON ON

OFF OFF

IFX_UPDDESC string JDBC driver property:
IFX_UPDDESC.

Chapter 1. WebSphere Application Server Liberty Core: Overview 95

Attribute name Data type Default value Description

IFX_XASTDCOMPLIANCE_XAENDv 1

v 0

JDBC driver property:
IFX_XASTDCOMPLIANCE_XAEND.

1 1

0 0

INFORMIXOPCACHE string JDBC driver property:
INFORMIXOPCACHE.

INFORMIXSTACKSIZE string JDBC driver property:
INFORMIXSTACKSIZE.

NODEFDAC v yes

v no

JDBC driver property:
NODEFDAC.

yes yes

no no

OPTCOMPIND v 2

v 1

v 0

JDBC driver property:
OPTCOMPIND.

2 2

1 1

0 0

OPTOFC v 1

v 0

JDBC driver property:
OPTOFC.

1 1

0 0

PDQPRIORITY v HIGH

v LOW

v OFF

JDBC driver property:
PDQPRIORITY.

HIGH HIGH

LOW LOW

OFF OFF

PSORT_DBTEMP string JDBC driver property:
PSORT_DBTEMP.

PSORT_NPROCS string

Maximum: 10

JDBC driver property:
PSORT_NPROCS.

STMT_CACHE v 1

v 0

JDBC driver property:
STMT_CACHE.

1 1

0 0

currentLockTimeout A period of time with
second precision

2s JDBC driver property:
currentLockTimeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

96 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

deferPrepares boolean JDBC driver property:
deferPrepares.

driverType int 4 JDBC driver property:
driverType.

enableNamedParameterMarkersint JDBC driver property:
enableNamedParameterMarkers.
Values are: 1 (YES) or 2
(NO).

enableSeamlessFailover int JDBC driver property:
enableSeamlessFailover.
Values are: 1 (YES) or 2
(NO).

enableSysplexWLB boolean JDBC driver property:
enableSysplexWLB.

fetchSize int JDBC driver property:
fetchSize.

fullyMaterializeLobData boolean JDBC driver property:
fullyMaterializeLobData.

keepDynamic int JDBC driver property:
keepDynamic.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1526 Port on which to obtain
database connections.

progressiveStreaming v 2

v 1

JDBC driver property:
progressiveStreaming.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

queryDataSize int

Minimum: 4096

Maximum: 10485760

JDBC driver property:
queryDataSize.

Chapter 1. WebSphere Application Server Liberty Core: Overview 97

Attribute name Data type Default value Description

resultSetHoldability v 2

v 1

JDBC driver property:
resultSetHoldability. Values
are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

resultSetHoldabilityForCatalogQueriesv 2

v 1

JDBC driver property:
resultSetHoldabilityForCatalogQueries.
Values are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

retrieveMessagesFromServerOnGetMessageboolean true JDBC driver property:
retrieveMessagesFromServerOnGetMessage.

securityMechanism v 3

v 7

v 4

v 9

JDBC driver property:
securityMechanism. Values
are: 3
(CLEAR_TEXT_PASSWORD_SECURITY),
4
(USER_ONLY_SECURITY),
7
(ENCRYPTED_PASSWORD_SECURITY),
9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY).

3 CLEAR_TEXT_PASSWORD_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

serverName string localhost Server where the database
is running.

traceDirectory string JDBC driver property:
traceDirectory.

traceFile string JDBC driver property:
traceFile.

traceFileAppend boolean JDBC driver property:
traceFileAppend.

98 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

traceLevel int Bitwise combination of the
following constant values:
TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1,
TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4,
TRACE_DRIVER_CONFIGURATION=16,
TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64,
TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256,
TRACE_DIAGNOSTICS=512,
TRACE_SQLJ=1024,
TRACE_META_CALLS=8192,
TRACE_DATASOURCE_CALLS=16384,
TRACE_LARGE_OBJECT_CALLS=32768,
TRACE_SYSTEM_MONITOR=131072,
TRACE_TRACEPOINTS=262144,
TRACE_ALL=-1.

useJDBC4ColumnNameAndLabelSemanticsint JDBC driver property:
useJDBC4ColumnNameAndLabelSemantics.
Values are: 1 (YES) or 2
(NO).

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

properties.microsoft.sqlserver
Data source properties for Microsoft SQL Server JDBC Driver.

false

Attribute name Data type Default value Description

URL string URL for connecting to the
database. Example:
jdbc:sqlserver://
localhost:1433;databaseName=myDB.

applicationIntent v ReadOnly

v ReadWrite

JDBC driver property:
applicationIntent.

ReadOnly
ReadOnly

ReadWrite
ReadWrite

applicationName string JDBC driver property:
applicationName.

authenticationScheme v NativeAuthentication

v JavaKerberos

JDBC driver property:
authenticationScheme.

NativeAuthentication
NativeAuthentication

JavaKerberos
JavaKerberos

Chapter 1. WebSphere Application Server Liberty Core: Overview 99

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

encrypt boolean JDBC driver property:
encrypt.

failoverPartner string JDBC driver property:
failoverPartner.

hostNameInCertificate string JDBC driver property:
hostNameInCertificate.

instanceName string JDBC driver property:
instanceName.

integratedSecurity boolean JDBC driver property:
integratedSecurity.

lastUpdateCount boolean JDBC driver property:
lastUpdateCount.

lockTimeout A period of time with
millisecond precision

JDBC driver property:
lockTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

multiSubnetFailover boolean JDBC driver property:
multiSubnetFailover.

packetSize int

Minimum: 512

Maximum: 32767

JDBC driver property:
packetSize.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

100 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

responseBuffering v full

v adaptive

JDBC driver property:
responseBuffering.

full full

adaptive
adaptive

selectMethod v direct

v cursor

JDBC driver property:
selectMethod.

direct direct

cursor cursor

sendStringParametersAsUnicodeboolean false JDBC driver property:
sendStringParametersAsUnicode.

sendTimeAsDatetime boolean JDBC driver property:
sendTimeAsDatetime.

serverName string localhost Server where the database
is running.

trustServerCertificate boolean JDBC driver property:
trustServerCertificate.

trustStore string JDBC driver property:
trustStore.

trustStorePassword Reversably encoded
password (string)

JDBC driver property:
trustStorePassword.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

workstationID string JDBC driver property:
workstationID.

xopenStates boolean JDBC driver property:
xopenStates.

properties.oracle
Data source properties for Oracle JDBC driver.

false

Attribute name Data type Default value Description

ONSConfiguration string JDBC driver property:
ONSConfiguration.

TNSEntryName string JDBC driver property:
TNSEntryName.

URL string URL for connecting to the
database. Examples:
jdbc:oracle:thin:@//
localhost:1521/sample or
jdbc:oracle:oci:@//
localhost:1521/sample.

connectionProperties string JDBC driver property:
connectionProperties.

Chapter 1. WebSphere Application Server Liberty Core: Overview 101

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

driverType v oci

v thin

thin JDBC driver property:
driverType.

oci oci

thin thin

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

networkProtocol string JDBC driver property:
networkProtocol.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1521 Port on which to obtain
database connections.

serverName string localhost Server where the database
is running.

serviceName string JDBC driver property:
serviceName.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

properties.sybase
Data source properties for Sybase JDBC driver.

false

Attribute name Data type Default value Description

SERVER_INITIATED_TRANSACTIONSv false

v true

false JDBC driver property:
SERVER_INITIATED_TRANSACTIONS.

false false

true true

connectionProperties string SELECT_OPENS_CURSOR=trueJDBC driver property:
connectionProperties.

databaseName string JDBC driver property:
databaseName.

102 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

networkProtocol v SSL

v socket

JDBC driver property:
networkProtocol.

SSL SSL

socket socket

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 5000 Port on which to obtain
database connections.

resourceManagerName string JDBC driver property:
resourceManagerName.

serverName string localhost Server where the database
is running.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

version int JDBC driver property:
version.

recoveryAuthData
Authentication data for transaction recovery.

false

Attribute name Data type Default value Description

password Reversably encoded
password (string)

Password of the user to use
when connecting to the EIS.
The value can be stored in
clear text or encoded form.
It is recommended that you
encode the password. To do
so, use the securityUtility
tool with the encode
option.

user string Name of the user to use
when connecting to the EIS.

Chapter 1. WebSphere Application Server Liberty Core: Overview 103

Distributed Map (distributedMap)
Distributed map configuration for a local cache.
v cacheGroup

– member
- adapterBeanName

v diskCache
v library

– file
– fileset
– folder

Attribute name Data type Default value Description

cacheProviderName string default Specifies the name of an
alternate cache provider.

highThreshold int

Minimum: -1

Maximum: 100

-1 Specifies when the memory
cache eviction policy starts.
The threshold is expressed
in terms of the percentage
of the memory cache size in
megabytes (MB).

id string A unique configuration ID.

jndiName string ${id} JNDI name for a cache
instance.

libraryRef A reference to top level
library element (string).

Specifies a reference to a
shared library.

lowThreshold int

Minimum: -1

Maximum: 100

-1 Specifies when the memory
cache eviction policy ends.
The threshold is expressed
in terms of the percentage
of the memory cache size in
megabytes (MB).

memorySizeInEntries int

Minimum: 0

2000 Specifies a positive integer
that defines the maximum
number of entries that the
cache can hold. Values are
usually in the thousands.
The minimum value is 100,
with no set maximum
value. The default value is
2000.

memorySizeInMB int

Minimum: -1

-1 Specifies a value for the
maximum memory cache
size in megabytes (MB).

cacheGroup
Specifies sets of external caches that are controlled by WebSphere(R) Application Server on servers
such as IBM(R) WebSphere(R) Edge Server and IBM(R) HTTP Server.

false

104 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

name string Specifies a unique name for
the external cache group.
The external cache group
name must match the
ExternalCache property that
is defined in the servlet or
Java(TM) Server Pages (JSP)
cachespec.xml file.

cacheGroup > member
Members of an external cache group that are controlled by WebSphere Application Server.

false

Attribute name Data type Default value Description

host string Fully qualified host name

port int

Minimum: 0

Port.

cacheGroup > member > adapterBeanName
Specifies the name of a class, which is located on the WebSphere Application Server class
path, of the adapter between WebSphere Application Server and this external cache.

false

string

diskCache
Enable disk offload to specify that when the cache is full, cache entries are removed from the cache
and saved to disk. The location is a fully-qualified directory location that is used by the disk offload
function. The Flush to Disk on Stop option specifies that when the server stops, the contents of the
memory cache are moved to disk.

false

Attribute name Data type Default value Description

evictionPolicy v RANDOM

v SIZE

RANDOM Specifies the eviction
algorithm and thresholds
that the disk cache uses to
evict entries. When the disk
size reaches a high
threshold limit, the disk
cache garbage collector
wakes up and evicts
randomly-selected
(Random) or the largest
(Size) entries on the disk
until the disk size reaches a
low threshold limit.

RANDOM
Random

SIZE Size

Chapter 1. WebSphere Application Server Liberty Core: Overview 105

Attribute name Data type Default value Description

flushToDiskOnStopEnabled boolean false Set this value to true to
have objects that are cached
in memory saved to disk
when the server stops. This
value is ignored if Enable
disk offload is set to false.

highThreshold int

Minimum: 0

Maximum: 100

80 Specifies when the eviction
policy starts.

location Path to a directory Specifies a directory to use
for disk offload.

lowThreshold int

Minimum: 0

Maximum: 100

70 Specifies when the eviction
policy ends.

sizeInEntries int

Minimum: 0

100000 Specifies a value for the
maximum disk cache size,
in number of entries.

sizeInGB int

Minimum: 3

3 Specifies a value for the
maximum disk cache size,
in gigabytes (GB).

library
Specifies a reference to a shared library.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

name string Name of shared library for
administrators

library > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

106 WebSphere Application Server Liberty Core 8.5.5

library > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

library > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

Chapter 1. WebSphere Application Server Liberty Core: Overview 107

IBM Lotus Domino LDAP Filters (domino50LdapFilterProperties)
Specifies the list of default IBM Lotus Domino LDAP filters.

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(objectclass=dominoGroup))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string dominoGroup:member An LDAP filter that
identifies user to group
memberships.

id string A unique configuration ID.

userFilter string (&(uid=
%v)(objectclass=Person))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string person:uid An LDAP filter that maps
the name of a user to an
LDAP entry.

Novell eDirectory LDAP Filters (edirectoryLdapFilterProperties)
Specifies the list of Novell eDirectory LDAP filters.

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(objectclass=groupOfNames))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string groupOfNames:member An LDAP filter that
identifies user to group
memberships.

id string A unique configuration ID.

userFilter string (&(cn=
%v)(objectclass=Person))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string person:cn An LDAP filter that maps
the name of a user to an
LDAP entry.

EJB Application (ejbApplication)
Defines the properties of an EJB application.
v application-bnd

– security-role
- group
- run-as
- special-subject

108 WebSphere Application Server Liberty Core 8.5.5

- user
v classloader

– commonLibrary
- file
- fileset
- folder

– privateLibrary
- file
- fileset
- folder

Attribute name Data type Default value Description

autoStart boolean true Indicates whether or not
the server automatically
starts the application.

context-root string Context root of an
application.

id string A unique configuration ID.

location A file, directory or url. Location of an application
expressed as an absolute
path or a path relative to
the server-level apps
directory.

name string Name of an application.

suppressUncoveredHttpMethodWarningboolean false Option to suppress
uncovered HTTP method
warning message during
application deployment.

application-bnd
Binds general deployment information included in the application to specific resources.

false

Attribute name Data type Default value Description

version string Version of the application
bindings specification.

application-bnd > security-role
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Name of a security role.

application-bnd > security-role > group
A unique configuration ID.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 109

Attribute name Data type Default value Description

access-id string Group access ID

id string A unique configuration ID.

name string Name of a group
possessing a security role.

application-bnd > security-role > run-as
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

password Reversably encoded
password (string)

Password of a user
required to access a bean
from another bean. The
value can be stored in clear
text or encoded form. To
encode the password, use
the securityUtility tool with
the encode option.

userid string ID of a user required to
access a bean from another
bean.

application-bnd > security-role > special-subject
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

type v EVERYONE

v
ALL_AUTHENTICATED_USERS

One of the following
special subject types:
ALL_AUTHENTICATED_USERS,
EVERYONE.

EVERYONE
Everyone

ALL_AUTHENTICATED_USERS
All authenticated
users

application-bnd > security-role > user
A unique configuration ID.

false

Attribute name Data type Default value Description

access-id string A user access ID in the
general form
user:realmName/
userUniqueId. A value will
be generated if one is not
specified.

110 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Name of a user possessing
a security role.

classloader
Defines the settings for an application classloader.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this class loader will be
able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

classProviderRef List of references to top
level resourceAdapter
elements (comma-separated
string).

List of class provider
references. When searching
for classes or resources, this
class loader will delegate to
the specified class
providers after searching its
own class path.

commonLibraryRef List of references to top
level library elements
(comma-separated string).

List of library references.
Library class instances are
shared with other
classloaders.

delegation v parentFirst

v parentLast

parentFirst Controls whether parent
classloader is used before
or after this classloader. If
parent first is selected then
delegate to immediate
parent before searching the
classpath. If parent last is
selected then search the
classpath before delegating
to the immediate parent.

parentFirst
Parent first

parentLast
Parent last

privateLibraryRef List of references to top
level library elements
(comma-separated string).

List of library references.
Library class instances are
unique to this classloader,
independent of class
instances from other
classloaders.

classloader > commonLibrary
List of library references. Library class instances are shared with other classloaders.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 111

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

id string A unique configuration ID.

name string Name of shared library for
administrators

classloader > commonLibrary > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

classloader > commonLibrary > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

112 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

classloader > commonLibrary > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

classloader > privateLibrary
List of library references. Library class instances are unique to this classloader, independent of
class instances from other classloaders.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

id string A unique configuration ID.

name string Name of shared library for
administrators

Chapter 1. WebSphere Application Server Liberty Core: Overview 113

classloader > privateLibrary > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

classloader > privateLibrary > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

classloader > privateLibrary > folder
Id of referenced folder

false

114 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

EJB Container (ejbContainer)
Defines the behavior of the EJB container.
v asynchronous

– contextService
- baseContext
v baseContext
v classloaderContext
v jeeMetadataContext
v securityContext
v syncToOSThreadContext
v zosWLMContext

- classloaderContext
- jeeMetadataContext
- securityContext
- syncToOSThreadContext
- zosWLMContext

v timerService
– persistentExecutor

- contextService
v baseContext

– baseContext
– classloaderContext
– jeeMetadataContext
– securityContext
– syncToOSThreadContext
– zosWLMContext

v classloaderContext
v jeeMetadataContext
v securityContext
v syncToOSThreadContext
v zosWLMContext

Chapter 1. WebSphere Application Server Liberty Core: Overview 115

Attribute name Data type Default value Description

cacheCleanupInterval A period of time with
second precision

3s The interval between
passivating unused stateful
session bean instances
when the size is exceeded.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

cacheSize int

Minimum: 1

2053 The number of stateful
session bean instances that
should be cached in
memory.

poolCleanupInterval A period of time with
second precision

30s The interval between
removing unused bean
instances. This setting only
applies to stateless session
and message-driven beans.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

startEJBsAtAppStart boolean Specifies when EJB types
will be initialized. If this
property is set to true, EJB
types will be initialized at
the time applications are
first started. If this property
is set to false, EJB types
will be initialized at the
time the EJB type is first
used by an application. If
this property is not set, the
behavior is determined on
a bean-by-bean basis from
the start-at-app-start
attribute in the
ibm-ejb-jar-ext.xml file. This
setting does not apply to
either message-driven or
startup singleton beans.
Message-driven and startup
singleton beans will always
be initialized at the time
applications are started.

116 WebSphere Application Server Liberty Core 8.5.5

asynchronous
Defines the behavior of EJB asynchronous methods.

false

Attribute name Data type Default value Description

contextServiceRef A reference to top level
contextService element
(string).

The context service used to
manage context
propagation to
asynchronous EJB method
threads.

maxUnclaimedRemoteResultsint

Minimum: 1

1000 The maximum number of
unclaimed results that the
server retains from all
remote asynchronous
method calls that return a
Future object. If the
maximum is exceeded, the
server purges the result of
the method call that
completed the longest ago
to prevent memory leakage.

unclaimedRemoteResultTimeoutA period of time with
second precision

24h The amount of time that
the server retains the result
for each remote
asynchronous method call
that returns a Future object.
If an application does not
claim the result within the
specified period of time,
the server purges the result
of that method call to
prevent memory leakage.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

asynchronous > contextService
The context service used to manage context propagation to asynchronous EJB method threads.

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

jndiName string JNDI name

Chapter 1. WebSphere Application Server Liberty Core: Overview 117

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

asynchronous > contextService > baseContext
Specifies a base context service from which to inherit context that is not already defined on
this context service.

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

id string A unique configuration ID.

jndiName string JNDI name

118 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

asynchronous > contextService > baseContext > baseContext
Specifies a base context service from which to inherit context that is not already defined
on this context service.

false

com.ibm.ws.context.service-factory

asynchronous > contextService > baseContext > classloaderContext
Classloader context propagation configuration.

false

asynchronous > contextService > baseContext > jeeMetadataContext
Makes the namespace of the application component that submits a contextual task
available to the task.

false

asynchronous > contextService > baseContext > securityContext
When specified, the security context of the work initiator is propagated to the unit of
work.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 119

asynchronous > contextService > baseContext > syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized
with the Operating System identity.

false

asynchronous > contextService > baseContext > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

asynchronous > contextService > classloaderContext
Classloader context propagation configuration.

false

asynchronous > contextService > jeeMetadataContext
Makes the namespace of the application component that submits a contextual task available
to the task.

false

asynchronous > contextService > securityContext
When specified, the security context of the work initiator is propagated to the unit of work.

false

asynchronous > contextService > syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized with
the Operating System identity.

false

120 WebSphere Application Server Liberty Core 8.5.5

asynchronous > contextService > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

timerService
Defines the behavior of the EJB timer service.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 121

Attribute name Data type Default value Description

lateTimerThreshold A period of time with
minute precision

5m Number of minutes after
the scheduled expiration of
a timer that the start of the
timer will be considered
late. When a timer does
start late, a warning
message will be logged
indicating that the timer
has started later than
scheduled. The default
threshold is 5 minutes and
a value of 0 minutes turns
off the warning message
feature. Specify a positive
integer followed by a unit
of time, which can be hours
(h) or minutes (m). For
example, specify 30
minutes as 30m. You can
include multiple values in a
single entry. For example,
1h30m is equivalent to 90
minutes.

nonPersistentMaxRetries int

Minimum: -1

-1 When a non-persistent
timer expires, the timeout
callback method is called.
This setting controls how
many times the EJB
container attempts to retry
the timer. If the transaction
for this callback method
fails or is rolled back, the
EJB container must retry
the timer at least once. The
default value is -1, which
means the EJB container
retries infinitely until the
timer is successful. If the
value is set to 0, the EJB
container does not retry the
timer, however, this results
in behavior that is not
compliant with the EJB
specification.

122 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

nonPersistentRetryInterval A period of time with
second precision

300s When a non-persistent
timer expires, the timeout
callback method is called. If
the transaction for this
callback method fails or is
rolled back, the container
must retry the timer. The
first retry attempt occurs
immediately, and
subsequent retry attempts
are delayed by the number
of seconds specified. If the
value is set to 0, then all
retries occur immediately. If
you do not specify a value,
the default interval is 300
seconds. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

persistentExecutorRef A reference to top level
persistentExecutor element
(string).

Schedules and runs EJB
persistent timer tasks.

timerService > persistentExecutor
Schedules and runs EJB persistent timer tasks.

false

Attribute name Data type Default value Description

contextServiceRef A reference to top level
contextService element
(string).

DefaultContextService Configures how context is
captured and propagated to
threads.

enableTaskExecution boolean true Determines whether or not
this instance may run tasks.

Chapter 1. WebSphere Application Server Liberty Core: Overview 123

Attribute name Data type Default value Description

initialPollDelay A period of time with
millisecond precision

0 Duration of time to wait
before this instance might
poll the persistent store for
tasks to run. A value of -1
delays polling until it is
started programmatically.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

pollInterval A period of time with
millisecond precision

-1 Interval between polling for
tasks to run. A value of -1
disables all polling after the
initial poll. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

pollSize int

Minimum: 1

The maximum number of
task entries to find when
polling the persistent store
for tasks to run. If
unspecified, there is no
limit.

retryInterval A period of time with
millisecond precision

1m The amount of time that
must pass between the
second and subsequent
consecutive retries of a
failed task. The first retry
occurs immediately,
regardless of the value of
this attribute. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

124 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

retryLimit short

Minimum: -1

Maximum: 10000

10 Limit of consecutive retries
for a task that has failed or
rolled back, after which the
task is considered
permanently failed and
does not attempt further
retries. A value of -1 allows
for unlimited retries.

taskStoreRef A reference to top level
databaseStore element
(string).

defaultDatabaseStore Persistent store for
scheduled tasks.

timerService > persistentExecutor > contextService
Configures how context is captured and propagated to threads.

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

jndiName string JNDI name

Chapter 1. WebSphere Application Server Liberty Core: Overview 125

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

timerService > persistentExecutor > contextService > baseContext
Specifies a base context service from which to inherit context that is not already defined
on this context service.

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

id string A unique configuration ID.

jndiName string JNDI name

126 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

timerService > persistentExecutor > contextService > baseContext > baseContext
Specifies a base context service from which to inherit context that is not already
defined on this context service.

false

com.ibm.ws.context.service-factory

timerService > persistentExecutor > contextService > baseContext >
classloaderContext

Classloader context propagation configuration.

false

timerService > persistentExecutor > contextService > baseContext >
jeeMetadataContext

Makes the namespace of the application component that submits a contextual task
available to the task.

false

timerService > persistentExecutor > contextService > baseContext >
securityContext

When specified, the security context of the work initiator is propagated to the unit of
work.

Chapter 1. WebSphere Application Server Liberty Core: Overview 127

false

timerService > persistentExecutor > contextService > baseContext >
syncToOSThreadContext

When specified, the identity of the runAs Subject for the unit of work is synchronized
with the Operating System identity.

false

timerService > persistentExecutor > contextService > baseContext > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread
context.

false

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

timerService > persistentExecutor > contextService > classloaderContext
Classloader context propagation configuration.

false

timerService > persistentExecutor > contextService > jeeMetadataContext
Makes the namespace of the application component that submits a contextual task
available to the task.

false

timerService > persistentExecutor > contextService > securityContext
When specified, the security context of the work initiator is propagated to the unit of
work.

false

128 WebSphere Application Server Liberty Core 8.5.5

timerService > persistentExecutor > contextService > syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized
with the Operating System identity.

false

timerService > persistentExecutor > contextService > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

Enterprise Application (enterpriseApplication)
Defines the properties of an enterprise application.
v application-bnd

– security-role
- group
- run-as
- special-subject
- user

v classloader
– commonLibrary

- file
- fileset
- folder

– privateLibrary

Chapter 1. WebSphere Application Server Liberty Core: Overview 129

- file
- fileset
- folder

v resourceAdapter
– contextService

- baseContext
v baseContext
v classloaderContext
v jeeMetadataContext
v securityContext
v syncToOSThreadContext
v zosWLMContext

- classloaderContext
- jeeMetadataContext
- securityContext
- syncToOSThreadContext
- zosWLMContext

– customize

Attribute name Data type Default value Description

autoStart boolean true Indicates whether or not
the server automatically
starts the application.

defaultClientModule string Default client module of an
enterprise application.

id string A unique configuration ID.

location A file, directory or url. Location of an application
expressed as an absolute
path or a path relative to
the server-level apps
directory.

name string Name of an application.

suppressUncoveredHttpMethodWarningboolean false Option to suppress
uncovered HTTP method
warning message during
application deployment.

application-bnd
Binds general deployment information included in the application to specific resources.

false

Attribute name Data type Default value Description

version string Version of the application
bindings specification.

application-bnd > security-role
A unique configuration ID.

false

130 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Name of a security role.

application-bnd > security-role > group
A unique configuration ID.

false

Attribute name Data type Default value Description

access-id string Group access ID

id string A unique configuration ID.

name string Name of a group
possessing a security role.

application-bnd > security-role > run-as
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

password Reversably encoded
password (string)

Password of a user
required to access a bean
from another bean. The
value can be stored in clear
text or encoded form. To
encode the password, use
the securityUtility tool with
the encode option.

userid string ID of a user required to
access a bean from another
bean.

application-bnd > security-role > special-subject
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

type v EVERYONE

v
ALL_AUTHENTICATED_USERS

One of the following
special subject types:
ALL_AUTHENTICATED_USERS,
EVERYONE.

EVERYONE
Everyone

ALL_AUTHENTICATED_USERS
All authenticated
users

application-bnd > security-role > user
A unique configuration ID.

Chapter 1. WebSphere Application Server Liberty Core: Overview 131

false

Attribute name Data type Default value Description

access-id string A user access ID in the
general form
user:realmName/
userUniqueId. A value will
be generated if one is not
specified.

id string A unique configuration ID.

name string Name of a user possessing
a security role.

classloader
Defines the settings for an application classloader.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this class loader will be
able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

classProviderRef List of references to top
level resourceAdapter
elements (comma-separated
string).

List of class provider
references. When searching
for classes or resources, this
class loader will delegate to
the specified class
providers after searching its
own class path.

commonLibraryRef List of references to top
level library elements
(comma-separated string).

List of library references.
Library class instances are
shared with other
classloaders.

delegation v parentFirst

v parentLast

parentFirst Controls whether parent
classloader is used before
or after this classloader. If
parent first is selected then
delegate to immediate
parent before searching the
classpath. If parent last is
selected then search the
classpath before delegating
to the immediate parent.

parentFirst
Parent first

parentLast
Parent last

132 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

privateLibraryRef List of references to top
level library elements
(comma-separated string).

List of library references.
Library class instances are
unique to this classloader,
independent of class
instances from other
classloaders.

classloader > commonLibrary
List of library references. Library class instances are shared with other classloaders.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

id string A unique configuration ID.

name string Name of shared library for
administrators

classloader > commonLibrary > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

classloader > commonLibrary > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

Chapter 1. WebSphere Application Server Liberty Core: Overview 133

Attribute name Data type Default value Description

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

classloader > commonLibrary > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

classloader > privateLibrary
List of library references. Library class instances are unique to this classloader, independent of
class instances from other classloaders.

false

134 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

id string A unique configuration ID.

name string Name of shared library for
administrators

classloader > privateLibrary > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

classloader > privateLibrary > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

Chapter 1. WebSphere Application Server Liberty Core: Overview 135

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

classloader > privateLibrary > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

resourceAdapter
Specifies configuration for a resource adapter that is embedded in an application.

false

136 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

alias string ${id} Overrides the default
identifier for the resource
adapter. The identifier is
used in the name of the
resource adapter's
configuration properties
element, which in turn is
used in determining the
name of configuration
properties elements for any
resources provided by the
resource adapter. The
resource adapter's
configuration properties
element name has the
format,
properties.<APP_NAME>.<ALIAS>,
where <APP_NAME> is
the name of the application
and <ALIAS> is the
configured alias. If
unspecified, the alias
defaults to the module
name of the resource
adapter.

autoStart boolean Configures whether a
resource adapter starts
automatically upon
deployment of the resource
adapter or lazily upon
injection or lookup of a
resource.

contextServiceRef A reference to top level
contextService element
(string).

Configures how context is
captured and propagated to
threads.

id string Identifies the name of the
embedded resource adapter
module to which this
configuration applies.

resourceAdapter > contextService
Configures how context is captured and propagated to threads.

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

jndiName string JNDI name

Chapter 1. WebSphere Application Server Liberty Core: Overview 137

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

resourceAdapter > contextService > baseContext
Specifies a base context service from which to inherit context that is not already defined on
this context service.

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

id string A unique configuration ID.

jndiName string JNDI name

138 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

resourceAdapter > contextService > baseContext > baseContext
Specifies a base context service from which to inherit context that is not already defined
on this context service.

false

com.ibm.ws.context.service-factory

resourceAdapter > contextService > baseContext > classloaderContext
Classloader context propagation configuration.

false

resourceAdapter > contextService > baseContext > jeeMetadataContext
Makes the namespace of the application component that submits a contextual task
available to the task.

false

resourceAdapter > contextService > baseContext > securityContext
When specified, the security context of the work initiator is propagated to the unit of
work.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 139

resourceAdapter > contextService > baseContext > syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized
with the Operating System identity.

false

resourceAdapter > contextService > baseContext > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

resourceAdapter > contextService > classloaderContext
Classloader context propagation configuration.

false

resourceAdapter > contextService > jeeMetadataContext
Makes the namespace of the application component that submits a contextual task available
to the task.

false

resourceAdapter > contextService > securityContext
When specified, the security context of the work initiator is propagated to the unit of work.

false

resourceAdapter > contextService > syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized with
the Operating System identity.

false

140 WebSphere Application Server Liberty Core 8.5.5

resourceAdapter > contextService > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

resourceAdapter > customize
Customizes the configuration properties element for the activation specification, administered
object, or connection factory with the specified interface and/or implementation class.

false

Attribute name Data type Default value Description

implementation string Fully qualified
implementation class name
for which the configuration
properties element should
be customized.

interface string Fully qualified interface
class name for which the
configuration properties
element should be
customized.

Chapter 1. WebSphere Application Server Liberty Core: Overview 141

Attribute name Data type Default value Description

suffix string Overrides the default suffix
for the configuration
properties element. For
example,
"CustomConnectionFactory"
in
properties.rarModule1.CustomConnectionFactory.
The suffix is useful to
disambiguate when
multiple types of
connection factories,
administered objects, or
endpoint activations are
provided by a resource
adapter. If a configuration
properties element
customization omits the
suffix or leaves it blank, no
suffix is used.

Event Logging (eventLogging)
Logs a record of events, such as the JDBC requests and servlet requests, and their durations.

Attribute name Data type Default value Description

eventTypes string all A list of comma-separated
event types that needs to be
logged. Use all, to log all
event types.

includeContextInfo boolean true Indicates if the context
information details are
included in the log output.

logMode v entry

v entryExit

v exit

exit Controls whether the event
logging occurs at the entry
to events, at the exit from
events, or both.

entry log at entry

entryExit
log at entry and
exit

exit log at exit

minDuration A period of time with
millisecond precision

1s Exit entries will be logged
for events longer than
minDuration. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

142 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

sampleRate int

Minimum: 1

1 To sample one out of every
n requests, set sampleRate
to n. To sample all requests,
set sampleRate to 1.

Executor Management (executor)
Defines settings for the Liberty kernel default executor. Note that there is always one and exactly one
default executor, for use by the Liberty runtime only and not directly accessible by applications.
Applications that need to configure and utilize executors should instead use Managed Executors.

Attribute name Data type Default value Description

coreThreads int -1 Steady-state or core number
of threads to associate with
the executor. The number
of threads associated with
the executor will quickly
grow to this number. If this
value is less than 0, a
default value is used. This
default value is calculated
based on the number of
hardware threads on the
system.

keepAlive A period of time with
millisecond precision

60s Amount of time to keep an
idle thread in the pool
before allowing it to
terminate. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 143

Attribute name Data type Default value Description

maxThreads int -1 Maximum number of
threads that can be
associated with the
executor. If greater than 0,
this value must be greater
than or equal to the value
of coreThreads. If the value
of maxThreads is less than
or equal to 0, the maximum
number of threads is
unbounded. Note that the
actual number of threads
associated with the
executor is determined
dynamically by the Liberty
kernel, so leaving the
maximum threads
unbounded does not imply
that the runtime will
actively create large
amounts of threads; it
simply lets the Liberty
kernel decide how many
threads to associate with
the executor without
having a defined upper
boundary.

name string Default Executor The name of the Liberty
kernel default executor.

rejectedWorkPolicy v CALLER_RUNS

v ABORT

ABORT Policy to employ when the
executor is unable to stage
work for execution.

CALLER_RUNS
Execute the work
immediately on
the caller's thread.

ABORT
Raise an exception.

144 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

stealPolicy v STRICT

v NEVER

v LOCAL

LOCAL The work-stealing policy to
employ. The options for
this policy determine how
work is queued, and how
threads obtain queued
work.

STRICT
All threads that
generate work
own a local work
pile. Threads that
are associated with
the executor take
work from other
threads when the
local work pile is
exhausted.

NEVER
A global work
queue is used to
feed work to
threads that are
associated with the
executor. No
stealing will occur.

LOCAL
A global work
queue is used for
work that is
generated by
threads that are
not associated with
the executor. Work
generated by
threads associated
with the executor
is placed on a local
work pile. This
work pile is
owned by the
generating thread,
unless another
thread steals it.
Threads that are
associated with the
executor take work
associated with
other threads if the
local work pile is
empty and there is
no work on the
global work
queue.

Chapter 1. WebSphere Application Server Liberty Core: Overview 145

Feature Manager (featureManager)
Defines how the server loads features.
v feature

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Action to take after a
failure to load a feature.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

feature
Specifies a feature to be used when the server runs.

false

string

User Registry Federation (federatedRepository)
Configuration for the user registry federation.
v extendedProperty
v primaryRealm

– defaultParents
– groupDisplayNameMapping
– groupSecurityNameMapping
– participatingBaseEntry
– uniqueGroupIdMapping
– uniqueUserIdMapping
– userDisplayNameMapping
– userSecurityNameMapping

v realm
– defaultParents
– groupDisplayNameMapping
– groupSecurityNameMapping
– participatingBaseEntry

146 WebSphere Application Server Liberty Core 8.5.5

– uniqueGroupIdMapping
– uniqueUserIdMapping
– userDisplayNameMapping
– userSecurityNameMapping

v supportedEntityType
– defaultParent
– name

Attribute name Data type Default value Description

id string A unique configuration ID.

maxSearchResults int 4500 Maximum number of
entries that can be returned
in a search.

pageCacheSize int 1000 Defines the number of
pagination requests that
can be stored in the cache.
The paging cache size
needs to be configured
based on the number of
pagination requests
executed on the system and
the hardware system
resources available.

pageCacheTimeout A period of time with
millisecond precision

30000ms Defines the maximum time
that an entry, which added
to the page cache, is
available. When the
specified time has elapsed,
the entry from the page
cache is cleared. This needs
to be configured based on
the interval between
pagination search requests
executed on the system and
the hardware system
resources available. Specify
a positive integer followed
by a unit of time, which
can be hours (h), minutes
(m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 147

Attribute name Data type Default value Description

searchTimeout A period of time with
millisecond precision

10m Maximum amount of time,
in milliseconds, to process a
search. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), seconds
(s), or milliseconds (ms).
For example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

extendedProperty
The extended properties for Person and Group.

false

Attribute name Data type Default value Description

dataType v Double

v Long

v Date

v String

v BigDecimal

v BigInteger

v Boolean

v Integer

Defines the data type of the
property extended for
Person and Group. The
basic Java data types are
supported.

Double
Double

Long Long

Date Date

String String

BigDecimal
BigDecimal

BigInteger
BigInteger

Boolean
Boolean

Integer Integer

defaultValue string Defines the default value
for the property during
write operation, if no
default value is set.

entityType v PersonAccount

v Group

The name of the entity
being mapped. The name
of the entity can be
PersonAccount or Group.

PersonAccount
Person

Group Group

id string A unique configuration ID.

148 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

multiValued boolean false Defines if the property
extended for Person and
Group supports multiple
values.

name string Defines the name of the
property extended for
Person and Group.

primaryRealm
Primary realm configuration.

false

Attribute name Data type Default value Description

allowOpIfRepoDown boolean false Specifies whether operation
is allowed if a repository is
down. The default value is
false.

delimiter string / Delimiter used to qualify
the realm under which the
operation should be
executed. For example,
userid=test1/myrealm
where / is the delimiter
and myrealm is the realm
name.

name string Name of the realm.

primaryRealm > defaultParents
The default parent mapping for the realm.

false

Attribute name Data type Default value Description

name string The name of the entity
being mapped. The name
of the entity can be
PersonAccount or Group.

parentUniqueName string The distinguished name
under Base distinguished
name (DN) in the
repository under which all
entities of the configured
type will be created.

primaryRealm > groupDisplayNameMapping
The input and output property mappings for group display name in an user registry operation.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 149

Attribute name Data type Default value Description

inputProperty string cn The property that maps to
the user registry attribute
for input. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

outputProperty string cn The property that maps to
the user registry attribute
for output. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

primaryRealm > groupSecurityNameMapping
The input and output property mappings for group security name in an user registry operation.

false

Attribute name Data type Default value Description

inputProperty string cn The property that maps to
the user registry attribute
for input. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

outputProperty string cn The property that maps to
the user registry attribute
for output. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

primaryRealm > participatingBaseEntry
The Base Entry that is part of this realm.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Name of the base entry.

primaryRealm > uniqueGroupIdMapping
The input and output property mappings for unique group id in an user registry operation.

false

150 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

inputProperty string cn The property that maps to
the user registry attribute
for input. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

outputProperty string uniqueName The property that maps to
the user registry attribute
for output. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

primaryRealm > uniqueUserIdMapping
The input and output property mappings for unique user id used in an user registry operation.

false

Attribute name Data type Default value Description

inputProperty string uniqueName The property that maps to
the user registry attribute
for input. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

outputProperty string uniqueName The property that maps to
the user registry attribute
for output. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

primaryRealm > userDisplayNameMapping
The input and output property mappings for user display name in an user registry operation.

false

Attribute name Data type Default value Description

inputProperty string principalName The property that maps to
the user registry attribute
for input. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

Chapter 1. WebSphere Application Server Liberty Core: Overview 151

Attribute name Data type Default value Description

outputProperty string principalName The property that maps to
the user registry attribute
for output. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

primaryRealm > userSecurityNameMapping
The input and output property mappings for user security name in an user registry operation.

false

Attribute name Data type Default value Description

inputProperty string principalName The property that maps to
the user registry attribute
for input. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

outputProperty string uniqueName The property that maps to
the user registry attribute
for output. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

realm
Reference to the realm.

false

Attribute name Data type Default value Description

allowOpIfRepoDown boolean false Specifies whether operation
is allowed if a repository is
down. The default value is
false.

delimiter string / Delimiter used to qualify
the realm under which the
operation should be
executed. For example,
userid=test1/myrealm
where / is the delimiter
and myrealm is the realm
name.

id string A unique configuration ID.

name string Name of the realm.

realm > defaultParents
The default parent mapping for the realm.

152 WebSphere Application Server Liberty Core 8.5.5

false

Attribute name Data type Default value Description

name string The name of the entity
being mapped. The name
of the entity can be
PersonAccount or Group.

parentUniqueName string The distinguished name
under Base distinguished
name (DN) in the
repository under which all
entities of the configured
type will be created.

realm > groupDisplayNameMapping
The input and output property mappings for group display name in an user registry operation.

false

Attribute name Data type Default value Description

inputProperty string cn The property that maps to
the user registry attribute
for input. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

outputProperty string cn The property that maps to
the user registry attribute
for output. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

realm > groupSecurityNameMapping
The input and output property mappings for group security name in an user registry operation.

false

Attribute name Data type Default value Description

inputProperty string cn The property that maps to
the user registry attribute
for input. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

Chapter 1. WebSphere Application Server Liberty Core: Overview 153

Attribute name Data type Default value Description

outputProperty string cn The property that maps to
the user registry attribute
for output. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

realm > participatingBaseEntry
The Base Entry that is part of this realm.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Name of the base entry.

realm > uniqueGroupIdMapping
The input and output property mappings for unique group id in an user registry operation.

false

Attribute name Data type Default value Description

inputProperty string cn The property that maps to
the user registry attribute
for input. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

outputProperty string uniqueName The property that maps to
the user registry attribute
for output. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

realm > uniqueUserIdMapping
The input and output property mappings for unique user id used in an user registry operation.

false

Attribute name Data type Default value Description

inputProperty string uniqueName The property that maps to
the user registry attribute
for input. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

154 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

outputProperty string uniqueName The property that maps to
the user registry attribute
for output. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

realm > userDisplayNameMapping
The input and output property mappings for user display name in an user registry operation.

false

Attribute name Data type Default value Description

inputProperty string principalName The property that maps to
the user registry attribute
for input. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

outputProperty string principalName The property that maps to
the user registry attribute
for output. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

realm > userSecurityNameMapping
The input and output property mappings for user security name in an user registry operation.

false

Attribute name Data type Default value Description

inputProperty string principalName The property that maps to
the user registry attribute
for input. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

outputProperty string uniqueName The property that maps to
the user registry attribute
for output. The valid values
are: uniqueId, uniqueName,
externalId, externalName
and the attributes of
PersonAccount and Group
entity types.

Chapter 1. WebSphere Application Server Liberty Core: Overview 155

supportedEntityType
The default parent for an entity type mapping.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

supportedEntityType > defaultParent
The distinguished name under Base distinguished name (DN) in the repository under which all
entities of the configured type will be created.

false

string

supportedEntityType > name
The name of the entity being mapped. The name of the entity can be PersonAccount or Group.

false

string

Fileset (fileset)
Specifies a set of files starting from a base directory and matching a set of patterns.

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

156 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

Host Authentication Information (hostAuthInfo)
Connection details to allow for the collective controller to authenticate to the server's host.

Attribute name Data type Default value Description

rpcHost string localhost The fully qualified host
name or IP address. A '*'
wildcard will result in host
name detection; this is not
recommended for
multi-homed systems and
may result in unexpected
behaviour. The host name
must be unique within the
network and must be the
host name on which the
remote connection protocol
is listening (SSH, or OS
specific RPC). This value
will inherit from the
defaultHostName variable
if not set. The host name
set here will directly control
where the server's
information is stored within
the collective controller
repository.

rpcPort int 22 The port on which the
remote connection protocol
is listening (SSH, or OS
specific RPC). See product
documentation for
supported RPC
mechanisms.

rpcUser string The operating system user
ID to use to connect to the
host.

Chapter 1. WebSphere Application Server Liberty Core: Overview 157

Attribute name Data type Default value Description

rpcUserHome string The home directory of the
user login ID. Only
required to be set if sudo is
to be used and SSH
generation is to be done
automatically.

rpcUserPassword Reversably encoded
password (string)

The password for the
operating system user. If
this property is not set,
key-based authentication
will be used. Use of
key-based authentication is
recommended for hosts
which support SSH. If this
property is set and
sshPrivateKeyPath is also
set, the key will take
precedence.

sshPrivateKeyPassword Reversably encoded
password (string)

The password for the SSH
private key.

sshPrivateKeyPath string The path to the SSH private
key file. If the key pair
does not exist, a key pair
will be generated
automatically. The private
key is required for
key-based authentication.

sshPublicKeyPath string The path to the SSH public
key file. If the key pair
does not exist, a key pair
will be generated
automatically. The public
key will be placed into the
configured userId's
authorized_keys file if it is
not present. Setting the
path to the public key is
not required.

sudoUser string The sudo user ID. This
property should not be set
when useSudo=false.

sudoUserPassword Reversably encoded
password (string)

The password for the sudo
user. This property should
not be set when
useSudo=false.

useHostCredentials boolean If this property is set to
true, then the product uses
the RPC credentials of the
host to invoke commands
and ignores other
parameters in the 'Host
Authentication Information'
element.

158 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

useSudo boolean If this property is set to
true, then sudo will be
used to invoke commands.
The user to sudo as can be
controlled by setting
sudoUser attribute. If
sudoUser is not set, then
the user to sudo as will be
the configured default sudo
user for the host. If this
property is not set, and
either sudoUser or
sudoUserPassword are set,
then useSudo is assumed to
be true. If this property is
set to false, and either
sudoUser or
sudoUserPassword are set,
then a warning will be
printed and the sudo
options will be ignored.

Host Singleton (hostSingleton)
Host singleton elector configuration

Attribute name Data type Default value Description

id string A unique configuration ID.

name string * The name of the singleton.
A '*' wildcard is the default
value and indicates this
configuration applies to all
singletons in this server.

port int 0 The port to use for host
singleton leader elections. A
value of 0 is the default
and means that no election
will occur. In this case, the
singleton in each member
will be its own leader.

HTTP Access Logging (httpAccessLogging)
HTTP access logs contain a record of all inbound HTTP client requests.

Attribute name Data type Default value Description

enabled boolean true Enable access logging.

filePath Path to a file ${server.output.dir}/logs/
http_access.log

Directory path and name of
the access log file. Standard
variable substitutions, such
as ${server.output.dir}, can
be used when specifying
the directory path.

id string A unique configuration ID.

Chapter 1. WebSphere Application Server Liberty Core: Overview 159

Attribute name Data type Default value Description

logFormat string %h %u %{t}W "%r" %s %b Specifies the log format that
is used when logging client
access information.

maxFileSize int

Minimum: 0

20 Maximum size of a log file,
in megabytes, before being
rolled over; a value of 0
means no limit.

maxFiles int

Minimum: 0

2 Maximum number of log
files that will be kept,
before the oldest file is
removed; a value of 0
means no limit.

HTTP Dispatcher (httpDispatcher)
HTTP Dispatcher configuration.
v trustedHeaderOrigin

Attribute name Data type Default value Description

appOrContextRootMissingMessagestring Message to return to the
client when the application
in the requested URI can
not be found.

enableWelcomePage boolean true Enables the default Liberty
profile welcome page when
no application is bound to
a context root of "/". The
default value is true.

trustedHeaderOrigin
Private headers are used by the web server plug-in to provide information about the original request.
These headers take precedence over the http Host header, and are used to select a virtual host to
service a request. The default value is '*', which will trust incoming private headers from any source.
Specify 'none' to disable private headers and rely only on the http Host header, or specify a list of IP
addresses to restrict private header processing to specific trusted sources.

false

string

HTTP Transport Encoding (httpEncoding)
HTTP transport encoding settings

Attribute name Data type Default value Description

converter.Big5 string Cp950 Big5 Chinese converter

converter.EUC-JP string Cp33722C EUC Japanese converter
(EUC-JP)

converter.EUC-KR string Cp970 EUC Korean converter
(EUC-KR)

converter.EUC-TW string Cp964 EUC Chinese (Taiwan)
converter (EUC-TW)

converter.EUC_KR string Cp970 EUC Korean converter
(EUC_KR)

160 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

converter.GB2312 string EUC_CN GB2312 Chinese converter

converter.ISO-2022-KR string ISO2022KR ISO-2022 Korean converter
(ISO-2022-KR)

converter.Shift_JIS string Cp943C Shift_JIS Japanese converter

encoding.ar string ISO-8859-6 Arabic language encoding
(ar)

encoding.be string ISO-8859-5 Belarusian language
encoding (be)

encoding.bg string ISO-8859-5 Bulgarian language
encoding (bg)

encoding.bn string UTF-8 Bengali language encoding
(bn)

encoding.ca string ISO-8859-1 Catalan language encoding
(ca)

encoding.cs string ISO-8859-2 Czech language encoding
(cs)

encoding.da string ISO-8859-1 Danish language encoding
(da)

encoding.de string ISO-8859-1 German language encoding
(de)

encoding.el string ISO-8859-7 Greek language encoding
(el)

encoding.en string ISO-8859-1 English language encoding
(en)

encoding.es string ISO-8859-1 Spanish language encoding
(es)

encoding.et string ISO-8859-4 Estonian language encoding
(et)

encoding.eu string ISO-8859-1 Basque language encoding
(eu)

encoding.fa string ISO-8859-6 Persian language encoding
(fa)

encoding.fi string ISO-8859-1 Finnish language encoding
(fi)

encoding.fo string ISO-8859-2 Faroese language encoding
(fo)

encoding.fr string ISO-8859-1 French language encoding
(fr)

encoding.he string ISO-8859-8 Hebrew language encoding
(he)

encoding.hi string UTF-8 Hindi language encoding
(hi)

encoding.hr string ISO-8859-2 Croatian language encoding
(hr)

encoding.hu string ISO-8859-2 Hungarian language
encoding (hu)

encoding.hy string UTF-8 Armenian language
encoding (hy)

Chapter 1. WebSphere Application Server Liberty Core: Overview 161

Attribute name Data type Default value Description

encoding.is string ISO-8859-1 Icelandic language
encoding (is)

encoding.it string ISO-8859-1 Italian language encoding
(it)

encoding.iw string ISO-8859-8 Hebrew language encoding
(iw)

encoding.ja string Shift_JIS Japanese language
encoding (ja)

encoding.ji string ISO-8859-8 Yiddish language encoding
(ji)

encoding.ka string UTF-8 Georgian language
encoding (ka)

encoding.ko string EUC-KR Korean language encoding
(ko)

encoding.lt string ISO-8859-2 Lithuanian language
encoding (lt)

encoding.lv string ISO-8859-4 Latvian language encoding
(lv)

encoding.mk string ISO-8859-5 Macedonian language
encoding (mk)

encoding.mr string UTF-8 Marathi language encoding
(mr)

encoding.ms string ISO-8859-6 Malay language encoding
(ms)

encoding.mt string ISO-8859-3 Maltese language encoding
(mt)

encoding.nl string ISO-8859-1 Dutch language encoding
(nl)

encoding.no string ISO-8859-1 Norwegian language
encoding (no)

encoding.pl string ISO-8859-2 Polish language encoding
(pl)

encoding.pt string ISO-8859-1 Portuguese language
encoding (pt)

encoding.ro string ISO-8859-2 Romanian language
encoding (ro)

encoding.ru string ISO-8859-5 Russian language encoding
(ru)

encoding.sa string UTF-8 Sanskrit language encoding
(sa)

encoding.sh string ISO-8859-2 Serbo-Croatian language
encoding (sh)

encoding.sk string ISO-8859-2 Slovak language encoding
(sk)

encoding.sl string ISO-8859-2 Slovenian language
encoding (sl)

encoding.sq string ISO-8859-2 Albanian language
encoding (sq)

162 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

encoding.sr string ISO-8859-5 Serbian language encoding
(sr)

encoding.sv string ISO-8859-1 Swedish language encoding
(sv)

encoding.ta string UTF-8 Tamil language encoding
(ta)

encoding.th string windows-874 Thai language encoding
(th)

encoding.tr string ISO-8859-9 Turkish language encoding
(tr)

encoding.uk string ISO-8859-5 Ukrainian language
encoding (uk)

encoding.vi string windows-1258 Vietnamese language
encoding (vi)

encoding.yi string ISO-8859-8 Yiddish language encoding
(yi)

encoding.zh string GB2312 Chinese language encoding
(zh)

encoding.zh_TW string Big5 Chinese language encoding
(zh_TW)

HTTP Endpoint (httpEndpoint)
Configuration properties for an HTTP endpoint.
v accessLogging
v httpOptions
v sslOptions
v tcpOptions

Attribute name Data type Default value Description

accessLoggingRef A reference to top level
httpAccessLogging element
(string).

HTTP access logging
configuration for the
endpoint.

enabled boolean true Toggle the availability of an
endpoint. When true, this
endpoint will be activated
by the dispatcher to handle
HTTP requests.

host string localhost IP address, domain name
server (DNS) host name
with domain name suffix,
or just the DNS host name,
used by a client to request
a resource. Use '*' for all
available network
interfaces.

httpOptionsRef A reference to top level
httpOptions element
(string).

defaultHttpOptions HTTP protocol options for
the endpoint.

Chapter 1. WebSphere Application Server Liberty Core: Overview 163

Attribute name Data type Default value Description

httpPort int

Minimum: -1

Maximum: 65535

The port used for client
HTTP requests. Use -1 to
disable this port.

httpsPort int

Minimum: -1

Maximum: 65535

The port used for client
HTTP requests secured
with SSL (https). Use -1 to
disable this port.

id string A unique configuration ID.

onError v IGNORE

v FAIL

v WARN

WARN Action to take after a
failure to start an endpoint.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

sslOptionsRef A reference to top level
sslOptions element (string).

SSL protocol options for the
endpoint.

tcpOptionsRef A reference to top level
tcpOptions element (string).

defaultTCPOptions TCP protocol options for
the endpoint.

accessLogging
HTTP access logging configuration for the endpoint.

false

Attribute name Data type Default value Description

enabled boolean true Enable access logging.

filePath Path to a file ${server.output.dir}/logs/
http_access.log

Directory path and name of
the access log file. Standard
variable substitutions, such
as ${server.output.dir}, can
be used when specifying
the directory path.

logFormat string %h %u %{t}W "%r" %s %b Specifies the log format that
is used when logging client
access information.

164 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

maxFileSize int

Minimum: 0

20 Maximum size of a log file,
in megabytes, before being
rolled over; a value of 0
means no limit.

maxFiles int

Minimum: 0

2 Maximum number of log
files that will be kept,
before the oldest file is
removed; a value of 0
means no limit.

httpOptions
HTTP protocol options for the endpoint.

false

Attribute name Data type Default value Description

keepAliveEnabled boolean true Enables persistent
connections (HTTP
keepalive). If true,
connections are kept alive
for reuse by multiple
sequential requests and
responses. If false,
connections are closed after
the response is sent.

maxKeepAliveRequests int

Minimum: -1

100 Maximum number of
persistent requests that are
allowed on a single HTTP
connection if persistent
connections are enabled. A
value of -1 means
unlimited.

persistTimeout A period of time with
second precision

30s Amount of time that a
socket will be allowed to
remain idle between
requests. This setting only
applies if persistent
connections are enabled.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 165

Attribute name Data type Default value Description

readTimeout A period of time with
second precision

60s Amount of time to wait for
a read request to complete
on a socket after the first
read occurs. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

removeServerHeader boolean false Removes server
implementation information
from HTTP headers and
also disables the default
Liberty profile welcome
page.

writeTimeout A period of time with
second precision

60s Amount of time to wait on
a socket for each portion of
the response data to be
transmitted. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

sslOptions
SSL protocol options for the endpoint.

false

Attribute name Data type Default value Description

sessionTimeout A period of time with
second precision

1d Amount of time to wait for
a read or write request to
complete on a socket. This
value is overridden by
protocol-specific timeouts.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

166 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

sslRef A reference to top level ssl
element (string).

The default SSL
configuration repertoire.
The default value is
defaultSSLSettings.

suppressHandshakeErrors boolean false Disable logging of SSL
handshake errors. SSL
handshake errors can occur
during normal operation,
however these messages
can be useful when SSL is
behaving unexpectedly.

tcpOptions
TCP protocol options for the endpoint.

false

Attribute name Data type Default value Description

inactivityTimeout A period of time with
millisecond precision

60s Amount of time to wait for
a read or write request to
complete on a socket. This
value is overridden by
protocol-specific timeouts.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

soReuseAddr boolean true Enables immediate rebind
to a port with no active
listener.

HTTP Options (httpOptions)
HTTP protocol configuration.

Attribute name Data type Default value Description

id string A unique configuration ID.

keepAliveEnabled boolean true Enables persistent
connections (HTTP
keepalive). If true,
connections are kept alive
for reuse by multiple
sequential requests and
responses. If false,
connections are closed after
the response is sent.

Chapter 1. WebSphere Application Server Liberty Core: Overview 167

Attribute name Data type Default value Description

maxKeepAliveRequests int

Minimum: -1

100 Maximum number of
persistent requests that are
allowed on a single HTTP
connection if persistent
connections are enabled. A
value of -1 means
unlimited.

persistTimeout A period of time with
second precision

30s Amount of time that a
socket will be allowed to
remain idle between
requests. This setting only
applies if persistent
connections are enabled.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

readTimeout A period of time with
second precision

60s Amount of time to wait for
a read request to complete
on a socket after the first
read occurs. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

removeServerHeader boolean false Removes server
implementation information
from HTTP headers and
also disables the default
Liberty profile welcome
page.

writeTimeout A period of time with
second precision

60s Amount of time to wait on
a socket for each portion of
the response data to be
transmitted. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

168 WebSphere Application Server Liberty Core 8.5.5

HTTP Proxy Redirect (httpProxyRedirect)
Configures port redirection. HTTP Proxy Redirect is used when redirecting HTTP requests from a
non-secure port (for example, 80) to an SSL-enabled secured port (for example, 443).

Attribute name Data type Default value Description

enabled boolean true This attribute determines
whether or not the server
should redirect ports that
are specified in this
configuration element. The
default is true.

host string * The host name used for this
proxy redirect. The server
redirects HTTP requests
only if the incoming
request specifies a host
name that matches this
value. The default is * (all
hosts).

httpPort int

Minimum: 1

Maximum: 65535

The (non-secure) port to
redirect from. Incoming
HTTP requests on this port
are redirected to the
specified HTTPS port.

httpsPort int

Minimum: 1

Maximum: 65535

The (secure) port to redirect
to. Incoming HTTP requests
that use the HTTP port are
redirected to this port.

id string A unique configuration ID.

HTTP Session (httpSession)
Configuration for HTTP session management.

Attribute name Data type Default value Description

allowOverflow boolean true Allows the number of
sessions in memory to
exceed the value of the
Max in-memory session
count property.

alwaysEncodeUrl boolean false The Servlet 2.5 specification
specifies to not encode the
URL on a
response.encodeURL call if
it is not necessary. To
support backward
compatibility when URL
encoding is enabled, set
this property to true to call
the encodeURL method.
The URL is always
encoded, even if the
browser supports cookies.

Chapter 1. WebSphere Application Server Liberty Core: Overview 169

Attribute name Data type Default value Description

cloneId string The clone identifier of the
cluster member. Within a
cluster, this identifier must
be unique to maintain
session affinity. When set,
this name overwrites the
default name generated by
the server.

cloneSeparator string : The single character used to
separate the session
identifier from the clone
identifier in session cookies.
The default value should
usually be used. On some
Wireless Application
Protocol (WAP) devices, a
colon (:) is not allowed, so
a plus sign (+) should be
used instead. Different
values should rarely be
used. You should
understand the clone
character requirements of
other products running on
your system before using
this property to change the
clone separator character.
The fact that any character
can be specified as the
value for this property does
not imply that the character
you specify will function
correctly. This fact also does
not imply that IBM is
responsible for fixing any
problem that might arise
from using an alternative
character.

cookieDomain string Domain field of a session
tracking cookie.

cookieHttpOnly boolean true Specifies that session
cookies include the
HttpOnly field. Browsers
that support the HttpOnly
field do not enable cookies
to be accessed by
client-side scripts. Using
the HttpOnly field will help
prevent cross-site scripting
attacks.

170 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

cookieMaxAge A period of time with
second precision

-1 Maximum amount of time
that a cookie can reside on
the client browser. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

cookieName string JSESSIONID A unique name for a
session management
cookie.

cookiePath string / A cookie is sent to the URL
designated in the path.

cookieSecure boolean false Specifies that the session
cookies include the secure
field.

cookiesEnabled boolean true Specifies that session
tracking uses cookies to
carry session identifiers.

debugCrossover boolean false Enable this option to
perform additional checks
to verify that only the
session associated with the
request is accessed or
referenced, and log
messages if any
discrepancies are detected.
Disable this option to skip
the additional checks.

Chapter 1. WebSphere Application Server Liberty Core: Overview 171

Attribute name Data type Default value Description

forceInvalidationMultiple int 3 If your requests normally
are not bound by a
response time limit, specify
0 to indicate that the
session manager should
wait indefinitely until a
request is complete before
attempting to invalidate the
session. Otherwise, set this
property to a positive
integer to delay the
invalidation of active
sessions. Active timed out
sessions will not be
invalidated by the first
invalidation interval pass,
but will be invalidated by
the interval pass based on
this value. For example, a
value of 2 would invalidate
an active session on the
second invalidation interval
pass after the session
timeout has expired.

idLength int 23 Length of the session
identifier.

idReuse boolean false In a multi-JVM
environment that is not
configured for session
persistence, setting this
property to "true" enables
the session manager to use
the same session
information for all of a
user's requests even if the
web applications that are
handling these requests are
governed by different
JVMs. The default value for
this property is false. Set
this property to true if you
want to enable the session
manager to use the session
identifier sent from a
browser to preserve session
data across web
applications that are
running in an environment
that is not configured for
session persistence.

172 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

invalidateOnUnauthorizedSessionRequestExceptionboolean false Set this property to true if,
in response to an
unauthorized request, you
want the session manager
to invalidate a session
instead of issuing an
UnauthorizedSessionRequestException.
When a session is
invalidated, the requester
can create a new session,
but does not have access to
any of the previously saved
session data. This allows a
single user to continue
processing requests to other
applications after a logout
while still protecting
session data.

invalidationTimeout A period of time with
second precision

30m Amount of time a session
can go unused before it is
no longer valid. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maxInMemorySessionCount int 1000 Maximum number of
sessions to maintain in
memory for each web
module.

noAdditionalInfo boolean false Forces removal of
information that is not
needed in session
identifiers.

protocolSwitchRewritingEnabledboolean false Adds the session identifier
to a URL when the URL
requires a switch from
HTTP to HTTPS or from
HTTPS to HTTP.

Chapter 1. WebSphere Application Server Liberty Core: Overview 173

Attribute name Data type Default value Description

reaperPollInterval A period of time with
second precision

-1 The wake-up interval, in
seconds, for the process
that removes invalid
sessions. The minimum
value is 30 seconds. If a
value less than the
minimum is entered, an
appropriate value is
automatically determined
and used. This value
overrides the default
installation value, which is
between 30 and 360
seconds, based off the
session timeout value.
Because the default session
timeout is 30 minutes, the
reaper interval is usually
between 2 and 3 minutes.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

rewriteId string jsessionid Use this property to change
the key used with URL
rewriting.

securityIntegrationEnabled boolean true Enables security
integration, which causes
the session management
facility to associate the
identity of users with their
HTTP sessions.

securityUserIgnoreCase boolean false Indicates that the session
security identity and the
client security identity
should be considered a
match even if their cases
are different. For example,
when this property is set to
true, the session security
identity USER1 matches the
client security identities
User1 and user1.

sslTrackingEnabled boolean false Specifies that session
tracking uses Secure
Sockets Layer (SSL)
information as a session
identifier.

174 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

urlRewritingEnabled boolean false Specifies that the session
management facility uses
rewritten URLs to carry the
session identifiers.

useContextRootAsCookiePathboolean false Specifies that the cookie
path equals the context root
of the web module instead
of /

HTTP Session Database (httpSessionDatabase)
Controls how HTTP sessions are persisted to a database.

Attribute name Data type Default value Description

dataSourceRef string The identifier of the data
source the session manager
should use to persist HTTP
session data.

Chapter 1. WebSphere Application Server Liberty Core: Overview 175

Attribute name Data type Default value Description

db2RowSize v 32KB

v 4KB

v 8KB

v 16KB

4KB Table space page size
configured for the sessions
table, if using a DB2
database. Increasing this
value can improve database
performance in some
environments.

32KB Use a table space
page size of 32 KB.
You must
additionally create
a DB2 buffer pool
and table space,
and specify 32KB
as the page size
for both. You must
also specify the
name of the table
space you created.

4KB Use the default
table space page
size of 4 KB. You
do not need to
create a DB2 buffer
pool or table
space, and you do
not need to specify
a table space
name.

8KB Use a table space
page size of 8 KB.
You must
additionally create
a DB2 buffer pool
and table space,
and specify 8KB as
the page size for
both. You must
also specify the
name of the table
space you created.

16KB Use a table space
page size of 16 KB.
You must
additionally create
a DB2 buffer pool
and table space,
and specify 16KB
as the page size
for both. You must
also specify the
name of the table
space you created.

176 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

noAffinitySwitchBack boolean false Set this property to "true"
to maintain affinity to the
new member even after
original one comes back up.
When a cluster member
fails, its requests routed to
a different cluster member,
and sessions are activated
in that other member. Thus,
session affinity is
maintained to the new
member, and when failed
cluster member comes back
up, the requests for
sessions that were created
in the original cluster
member are routed back to
it. Allowed values are true
or false, with the default
being false. Set this
property to true when you
have distributed sessions
configured with time-based
write. Note that this
property has no affect on
the behavior when
distributed sessions are not
enabled.

onlyCheckInCacheDuringPreInvokeboolean false A value of true indicates
that the last access time of
a session should only be
updated if a request gets
the session. A value of false
indicates that the last access
time of a session should be
updated upon every
request. Changing this
value can improve
performance in some
environments.

Chapter 1. WebSphere Application Server Liberty Core: Overview 177

Attribute name Data type Default value Description

optimizeCacheIdIncrements boolean true If the user's browser
session is moving back and
forth across multiple web
applications, you might see
extra persistent store
activity as the in-memory
sessions for a web module
are refreshed from the
persistent store. As a result,
the cache identifiers are
continually increasing and
the in-memory session
attributes are overwritten
by those of the persistent
copy. Set this property to
true if you want to prevent
the cache identifiers from
continually increasing. A
value of true indicates that
the session manager should
assess whether the
in-memory session for a
web module is older than
the copy in persistent store.
If the configuration is a
cluster, ensure that the
system times of each cluster
member are as identical as
possible.

scheduleInvalidation boolean false Enable this option to
reduce the number of
database updates required
to keep the HTTP sessions
alive. Specify the two hours
of a day when there is the
least activity in the
application server. When
this option is disabled, the
invalidator process runs
every few minutes to
remove invalidated HTTP
sessions.

scheduleInvalidationFirstHourint 0 Indicates the first hour
during which the
invalidated sessions are
cleared from the persistent
store. Specify this value as
an integer between 0 and
23. This value is valid only
when schedule invalidation
is enabled.

178 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

scheduleInvalidationSecondHourint 0 Indicates the second hour
during which the
invalidated sessions are
cleared from the persistent
store. Specify this value as
an integer between 0 and
23. This value is valid only
when schedule invalidation
is enabled.

skipIndexCreation boolean false Set this property to "true"
to disable index creation on
server startup. This custom
property should only be
used if you want to
manually create your own
database indices for session
persistence. However, it is
recommended that you let
session manager create
database indices. Before
enabling this property,
make sure that the correct
index does exist on your
session database.

tableName string sessions The database table name.

tableSpaceName string Table space to be used for
the sessions table. This
value is only required
when the DB2 Row Size is
greater than 4KB.

useInvalidatedId boolean true Set this property to "true"
to reuse the incoming
identifier if the session with
that identifier was recently
invalidated. This is a
performance optimization
because it prevents
checking the persistent
store.

useMultiRowSchema boolean false When enabled, each session
data attribute is placed in a
separate row in the
database, allowing larger
amounts of data to be
stored for each session.
This configuration can yield
better performance when
session attributes are very
large and few changes are
required to the session
attributes. When disabled,
all session data attributes
are placed in the same row
for each session.

Chapter 1. WebSphere Application Server Liberty Core: Overview 179

Attribute name Data type Default value Description

useOracleBlob boolean false Set this property to "true"
to create the database table
using the Binary Large
Object (BLOB) data type for
the medium column. This
value increases
performance of persistent
sessions when Oracle
databases are used. Due to
an Oracle restriction, BLOB
support requires use of the
Oracle Call Interface (OCI)
database driver for more
than 4000 bytes of data.
You must also ensure that a
new sessions table is
created before the server is
restarted by dropping your
old sessions table or by
changing the datasource
definition to reference a
database that does not
contain a sessions table.

usingCustomSchemaName boolean false Set this property to "true" if
you are using DB2 for
session persistence and the
currentSchema property is
set in the data source.

writeContents v
ALL_SESSION_ATTRIBUTES

v
ONLY_UPDATED_ATTRIBUTES

ONLY_UPDATED_ATTRIBUTESSpecifies how much session
data should be written to
the persistent store. By
default, only updated
attributes are written, but
all attributes can be written
instead (regardless of
whether or not they
changed).

ALL_SESSION_ATTRIBUTES
All attributes are
written to the
persistent store.

ONLY_UPDATED_ATTRIBUTES
Only updated
attributes are
written to the
persistent store.

180 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

writeFrequency v TIME_BASED_WRITE

v
END_OF_SERVLET_SERVICE

v MANUAL_UPDATE

END_OF_SERVLET_SERVICESpecifies when session data
is written to the persistent
store. By default, session
data is written to the
persistent store after the
servlet completes execution.
Changing this value can
improve performance in
some environments.

TIME_BASED_WRITE
Session data is
written to the
persistent store
based on the
specified write
interval value.

END_OF_SERVLET_SERVICE
Session data is
written to the
persistent store
after the servlet
completes
execution.

MANUAL_UPDATE
A programmatic
sync on the
IBMSession object
is required to write
the session data to
the persistent
store.

writeInterval A period of time with
second precision

2m Number of seconds that
should pass before writing
session data to the
persistent store. The default
is 120 seconds. This value
is only used when a time
based write frequency is
enabled. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

HTTP Whiteboard (httpWhiteboard)
The HTTP Whiteboard provides a runtime environment for hosting servlets and resources provided by
OSGi services.

Chapter 1. WebSphere Application Server Liberty Core: Overview 181

Attribute name Data type Default value Description

contextPath string /osgi/http The context path to use for
the HTTP Whiteboard
runtime environment.

IBM Tivoli Directory Server LDAP Filters (idsLdapFilterProperties)
Specifies the list of default IBM Tivoli Directory Server LDAP filters.

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs)))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string ibm-allGroups:member;ibm-
allGroups:uniqueMember;groupOfNames:member;groupOfUniqueNames:uniqueMember

An LDAP filter that
identifies user to group
memberships.

id string A unique configuration ID.

userFilter string (&(uid=
%v)(objectclass=ePerson))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string *:uid An LDAP filter that maps
the name of a user to an
LDAP entry.

Include (include)
Specify a configuration resource to include in the server's configuration.

Attribute name Data type Default value Description

location A file, directory or url. Specifies the resource
location. This can be a file
path or a URI for a remote
resource.

182 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

onConflict v IGNORE

v REPLACE

v MERGE

MERGE Specifies the behavior that
is used to merge elements
when conflicts are found.

IGNORE
Conflicting
elements in the
included file will
be ignored.

REPLACE
When elements
conflict, the
element from the
included file will
replace the
conflicting
element.

MERGE
Conflicting
elements will be
merged together.

optional boolean false Allow the included
resource to be skipped if it
cannot be found.

Sun Java System Directory Server LDAP Filters
(iplanetLdapFilterProperties)
Specifies the list of default Sun Java System Directory Server LDAP filters.

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(objectclass=ldapsubentry))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string nsRole:nsRole An LDAP filter that
identifies user to group
memberships.

id string A unique configuration ID.

userFilter string (&(uid=
%v)(objectclass=inetOrgPerson))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string inetOrgPerson:uid An LDAP filter that maps
the name of a user to an
LDAP entry.

Chapter 1. WebSphere Application Server Liberty Core: Overview 183

JAAS Login Context Entry (jaasLoginContextEntry)
The JAAS login context entry configuration.

Attribute name Data type Default value Description

id string A unique configuration ID.

loginModuleRef List of references to top
level jaasLoginModule
elements (comma-separated
string).

hashtable,userNameAndPassword,certificate,tokenA reference to the ID of a
JAAS login module.

name string Name of a JAAS
configuration entry.

JAAS Login Module (jaasLoginModule)
A login module in the JAAS configuration.
v library

– file
– fileset
– folder

v options

Attribute name Data type Default value Description

className string Fully-qualified package
name of the JAAS login
module class.

184 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

controlFlag v SUFFICIENT

v REQUISITE

v REQUIRED

v OPTIONAL

REQUIRED The login module's control
flag. Valid values are
REQUIRED, REQUISITE,
SUFFICIENT, and
OPTIONAL.

SUFFICIENT
This LoginModule
is SUFFICIENT as
per the JAAS
specification. The
LoginModule is
not required to
succeed. If
authentication is
successful, no
other
LoginModules will
be called and
control is returned
to the caller.

REQUISITE
This LoginModule
is REQUISITE as
per the JAAS
specification. The
LoginModule is
required to
succeed. If
authentication
fails, no other
LoginModules will
be called and
control is returned
to the caller.

REQUIRED
This LoginModule
is REQUIRED as
per the JAAS
specification. The
LoginModule is
required to
succeed.

OPTIONAL
This LoginModule
is OPTIONAL as
per the JAAS
specification. The
LoginModule is
not required to
succeed.

id string A unique configuration ID.

libraryRef A reference to top level
library element (string).

A reference to the ID of the
shared library
configuration.

Chapter 1. WebSphere Application Server Liberty Core: Overview 185

library
A reference to the ID of the shared library configuration.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

name string Name of shared library for
administrators

library > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

library > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

186 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

library > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

options
A collection of JAAS Login module options

false

Java 2 Security (javaPermission)
Configuration of permissions for Java 2 Security.

Attribute name Data type Default value Description

actions string The actions that the
permission grant allows on
the target name. For
example, read in the case of
a java.io.FilePermission.

className string The name of the class
implementing the
permission being granted.
For example,
java.io.FilePermission.

codebase string The codebase that is being
granted the permission.

id string A unique configuration ID.

Chapter 1. WebSphere Application Server Liberty Core: Overview 187

Attribute name Data type Default value Description

name string The target for which the
permission applies to. For
example, ALL FILES in the
case of a
java.io.FilePermission.

principalName string The principal to whom the
permission is being
granted.

principalType string The class name that would
be matched for the given
Principal Name.

restriction boolean false Declares whether the
permission is being
restricted versus granted. If
restriction is set to "true"
then this permission is
denied as opposed to being
granted.

JDBC Driver (jdbcDriver)
Identifies a JDBC driver.
v library

– file
– fileset
– folder

Attribute name Data type Default value Description

id string A unique configuration ID.

javax.sql.ConnectionPoolDataSourcestring JDBC driver
implementation of
javax.sql.ConnectionPoolDataSource.

javax.sql.DataSource string JDBC driver
implementation of
javax.sql.DataSource.

javax.sql.XADataSource string JDBC driver
implementation of
javax.sql.XADataSource.

libraryRef A reference to top level
library element (string).

Identifies JDBC driver JARs
and native files.

library
Identifies JDBC driver JARs and native files.

false

188 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

name string Name of shared library for
administrators

library > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

library > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

Chapter 1. WebSphere Application Server Liberty Core: Overview 189

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

library > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

JNDI Entry (jndiEntry)
A single entry in the JNDI default namespace.

Attribute name Data type Default value Description

decode boolean false True if value needs to be
decoded on lookup.

id string A unique configuration ID.

jndiName string The JNDI name to use for
this entry.

value string The JNDI value to associate
with the name.

JNDI Object Factory (jndiObjectFactory)
ObjectFactory to be used by a JNDI Reference entry.
v library

– file
– fileset
– folder

190 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

className string ObjectFactory
implementation class name.

id string A unique configuration ID.

libraryRef A reference to top level
library element (string).

Library containing the
factory implementation
class.

objectClassName string java.lang.Object Type of object returned
from the factory.

library
Library containing the factory implementation class.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

name string Name of shared library for
administrators

library > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

library > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

Chapter 1. WebSphere Application Server Liberty Core: Overview 191

Attribute name Data type Default value Description

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

library > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

JNDI Reference Entry (jndiReferenceEntry)
Reference entry in the JNDI default namespace.
v factory

– library
- file
- fileset
- folder

v properties

192 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

decode boolean false True if value needs to be
decoded on lookup.

factoryRef A reference to top level
jndiObjectFactory element
(string).

Object factory for the
reference entry.

id string A unique configuration ID.

jndiName string JNDI name for the
reference entry.

factory
Object factory for the reference entry.

false

Attribute name Data type Default value Description

className string ObjectFactory
implementation class name.

libraryRef A reference to top level
library element (string).

Library containing the
factory implementation
class.

objectClassName string java.lang.Object Type of object returned
from the factory.

factory > library
Library containing the factory implementation class.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

name string Name of shared library for
administrators

factory > library > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

Chapter 1. WebSphere Application Server Liberty Core: Overview 193

factory > library > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

factory > library > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

properties
The properties for the reference entry.

194 WebSphere Application Server Liberty Core 8.5.5

false

JNDI URL Entry (jndiURLEntry)
A single entry in the JNDI default namespace that is used for binding java.net.URL entries.

Attribute name Data type Default value Description

id string A unique configuration ID.

jndiName string The JNDI name to use for
this entry.

value string The JNDI URL value to
associate with the name.

JPA Container (jpa)
Configuration properties for the Java Persistence API container.
v excludedApplication

Attribute name Data type Default value Description

defaultJtaDataSourceJndiNamestring Default Java™ Transaction
API (JTA) data source JNDI
name to be used by
applications running in this
server. By default, data
sources are JTA. Only data
sources that are
transactional are allowed in
this field.

defaultNonJtaDataSourceJndiNamestring Default non-transactional
data source JNDI name to
be used by applications
running in this server. Only
data sources that have been
marked as
non-transactional are
allowed in this field.

defaultPersistenceProvider string Default persistence
provider class name. If this
property is not specified,
the default provider is
dependent on which JPA
feature is enabled.

entityManagerPoolCapacity int -1 EntityManager pool
capacity per
PersistenceContext
reference. The minimum is
0 and the maximum is 500.

Chapter 1. WebSphere Application Server Liberty Core: Overview 195

Attribute name Data type Default value Description

ignoreDataSourceErrors boolean If true, errors that occur
while attempting to lookup
a data source specified by
the <jta-data-source> or
<non-jta-data-source>
elements in the
persistence.xml file are
reported and ignored,
which allows the
persistence provider to
determine a default data
source. If false, the errors
are propagated to the
persistence provider so that
the errors can be diagnosed
more easily, but
misconfigured applications
might not work. By default,
this property is true if JPA
2.0 is enabled and false
otherwise.

excludedApplication
An application to be excluded from JPA processing.

false

string

JSP Engine (jspEngine)
JSP 2.2 configuration

Attribute name Data type Default value Description

disableJspRuntimeCompilationboolean false Disable compilation of JSPs
at runtime.

disableResourceInjection boolean false Disable injection of
resources into JSPs.

extendedDocumentRoot string Directory that the JSP
engine will search for
additional JSP files to serve.

jdkSourceLevel v 17

v 18

v 15

v 16

v 13

v 14

15 Default Java source level
for JSPs compiled by the
JSP engine.

17 17

18 18

15 15

16 16

13 13

14 14

keepGenerated boolean false Keep Java source files
generated for JSPs.

196 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

prepareJSPs int When this attribute is
present, all JSPs larger than
the value (in kilobytes) are
compiled at application
server startup. Set this to 0
to compile all JSPs.

recompileJspOnRestart boolean false Recompile JSPs after an
application is restarted.
JSPs are recompiled on first
access.

scratchdir string When this attribute is set,
the JSPs are compiled to the
specified directory instead
of the server workarea
directory.

useImplicitTagLibs boolean true Allow JSPs to use jsx and
tsx tag libs.

useInMemory boolean false Generate Java source and
classes in memory (without
writing to disk).

Keystore (keyStore)
A repository of security certificates used for SSL encryption.
v keyEntry

Attribute name Data type Default value Description

fileBased boolean true Specify true if the keystore
is file based and false if the
keystore is a SAF keyring
or hardware keystore type.

id string A unique configuration ID.

location A file, directory or url. ${server.output.dir}/
resources/security/key.jks

An absolute or relative path
to the keystore file. If a
relative path is provided,
the server will attempt to
locate the file in the
${server.config.dir}/
resources/security
directory. Use the keystore
file for a file-based
keystore, the keyring name
for SAF keyrings, or the
device configuration file for
hardware cryptography
devices. In the SSL minimal
configuration, the location
of the file is assumed to be
${server.config.dir}/
resources/security/key.jks.

Chapter 1. WebSphere Application Server Liberty Core: Overview 197

Attribute name Data type Default value Description

password Reversably encoded
password (string)

The password used to load
the keystore file. The value
can be stored in clear text
or encoded form. Use the
securityUtility tool to
encode the password.

pollingRate A period of time with
millisecond precision

500ms Rate at which the server
checks for updates to a
keystore file. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

readOnly boolean false Specify true if the keystore
is to be used by the server
for reading and false if
write operations will be
performed by the server on
the keystore.

type string jks A keystore type supported
by the target SDK.

198 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

updateTrigger v mbean

v polled

v disabled

mbean Keystore file update
method or trigger.

mbean Server will only
update the
keystore when
prompted by the
FileNotificationMbean.
The
FileNotificationMbean
is typically called
by an external
program such as
an integrated
development
environment or a
management
application.

polled Server will scan
for keystore file
changes at the
polling interval
and update if the
keystore file has
detectable changes.

disabled
Disables all update
monitoring.
Changes to the
keystore file will
not be applied
while the server is
running.

keyEntry
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

keyPassword Reversably encoded
password (string)

Password of the private key
entry in the keystore.

name string Name of the private key
entry in the keystore.

LDAP User Registry (ldapRegistry)
Configuration properties for the LDAP user registry.
v activedFilters
v attributeConfiguration

– attribute
– externalIdAttribute

v contextPool

Chapter 1. WebSphere Application Server Liberty Core: Overview 199

v customFilters
v domino50Filters
v edirectoryFilters
v failoverServers

– server
v idsFilters
v iplanetFilters
v ldapCache

– attributesCache
– searchResultsCache

v ldapEntityType
– objectClass
– searchBase

v netscapeFilters
v securewayFilters

Attribute name Data type Default value Description

activedFiltersRef A reference to top level
activedLdapFilterProperties
element (string).

Specifies the list of default
Microsoft Active Directory
LDAP filters.

baseDN string Base distinguished name
(DN) of the directory
service, which indicates the
starting point for LDAP
searches in the directory
service.

bindDN string Distinguished name (DN)
for the application server,
which is used to bind to
the directory service.

bindPassword Reversably encoded
password (string)

Password for the bind DN.
The value can be stored in
clear text or encoded form.
It is recommended that you
encode the password. To do
so, use the securityUtility
tool with the encode
option.

certificateFilter string Specifies the filter certificate
mapping property for the
LDAP filter. The filter is
used to map attributes in
the client certificate to
entries in the LDAP
registry. For example, the
filter can be specified as:
uid=${SubjectCN}.

200 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

certificateMapMode v EXACT_DN

v CERTIFICATE_FILTER

Specifies whether to map
x.509 certificates into an
LDAP directory by
EXACT_DN or
CERTIFICATE_FILTER.
Specify
CERTIFICATE_FILTER to
use the specified certificate
filter for the mapping.

EXACT_DN
exactDN

CERTIFICATE_FILTER
certFilter

connectTimeout A period of time with
millisecond precision

1m Maximum time for
establishing a connection to
the LDAP server. An error
message will be logged if
the specified time expires.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

customFiltersRef A reference to top level
customLdapFilterProperties
element (string).

Specifies the list of default
Custom LDAP filters.

domino50FiltersRef A reference to top level
domino50LdapFilterProperties
element (string).

Specifies the list of default
IBM Lotus Domino LDAP
filters.

edirectoryFiltersRef A reference to top level
edirectoryLdapFilterProperties
element (string).

Specifies the list of Novell
eDirectory LDAP filters.

host string Address of the LDAP
server in the form of an IP
address or a domain name
service (DNS) name.

id string A unique configuration ID.

idsFiltersRef A reference to top level
idsLdapFilterProperties
element (string).

Specifies the list of default
IBM Tivoli Directory Server
LDAP filters.

ignoreCase boolean true Perform a case-insensitive
authentication check.

iplanetFiltersRef A reference to top level
iplanetLdapFilterProperties
element (string).

Specifies the list of default
Sun Java System Directory
Server LDAP filters.

Chapter 1. WebSphere Application Server Liberty Core: Overview 201

Attribute name Data type Default value Description

ldapType v Sun Java System
Directory Server

v Netscape Directory
Server

v Microsoft Active
Directory

v IBM Tivoli Directory
Server

v IBM Lotus Domino

v Custom

v IBM SecureWay
Directory Server

v Novell eDirectory

Type of LDAP server to
which a connection will be
established.

Sun Java System Directory
Server iplanet

Netscape Directory Server
netscape

Microsoft Active Directory
actived

IBM Tivoli Directory
Server ibm_dir_server

IBM Lotus Domino
domino50

Custom
custom

IBM SecureWay Directory
Server secureway

Novell eDirectory
edirectory

netscapeFiltersRef A reference to top level
netscapeLdapFilterProperties
element (string).

Specifies the list of default
Netscape Directory Server
LDAP filters.

port int Port number of the LDAP
server.

realm string LdapRegistry The realm name that
represents the user registry.

recursiveSearch boolean false Performs a nested group
search. Select this option
only if the LDAP server
does not support recursive
server-side searches.

returnToPrimaryServer boolean true A boolean value that
indicates if the search
should be done against the
Primary Server.

reuseConnection boolean true Requests the application
server to reuse the LDAP
server connection.

202 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

searchTimeout A period of time with
millisecond precision

1m Maximum time for an
LDAP server to respond
before a request is canceled.
This is equivalent to a read
timeout once the
connection is established.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

securewayFiltersRef A reference to top level
securewayLdapFilterProperties
element (string).

Specifies the list of default
IBM SecureWay Directory
Server LDAP filters.

sslEnabled boolean false Indicates whether an SSL
connection should be made
to the LDAP server.

sslRef A reference to top level ssl
element (string).

ID of the SSL configuration
to be used to connect to the
SSL-enabled LDAP server.

activedFilters
Specifies the list of default Microsoft Active Directory LDAP filters.

false

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(objectcategory=group))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string memberOf:member An LDAP filter that
identifies user to group
memberships.

userFilter string (&(sAMAccountName=
%v)(objectcategory=user))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string user:sAMAccountName An LDAP filter that maps
the name of a user to an
LDAP entry.

attributeConfiguration
The configuration that maps the LDAP attributes with the user registry schema (for example; Person,
PersonAccount or Group) field names.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 203

attributeConfiguration > attribute
Define the user registry schema field names to be mapped to the LDAP attribute.

false

Attribute name Data type Default value Description

defaultValue string The default value of the
attribute.

entityType string The entity type of the
attribute.

id string A unique configuration ID.

name string The name of the LDAP
attribute.

propertyName string The user registry schema
field name that needs to be
mapped with the LDAP
attribute.

syntax string The attribute syntax.

attributeConfiguration > externalIdAttribute
Define the name of the LDAP attribute and its properties that needs to be mapped to the user
registry externalId attribute.

false

Attribute name Data type Default value Description

autoGenerate boolean false When enabled, the
externalId attribute value is
generated automatically by
the user registry instead of
using the value that is
stored in LDAP. By default
it is disabled.

entityType string The entity type of the
attribute.

id string A unique configuration ID.

name string The name of the LDAP
attribute to be used for the
user registry externalId
attribute.

syntax string The attribute syntax.

contextPool
Properties of the context pool.

false

Attribute name Data type Default value Description

enabled boolean true A boolean value that
determines if the context
pool is enabled. Disabling it
can cause performance
degradation.

204 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

initialSize int 1 An integer value that
determines the initial size
of the context pool. Set this
based on the load on the
repository.

maxSize int 0 An integer value that
defines the maximum
context pool size. Set this
based on the maximum
load on the repository.

preferredSize int 3 The preferred size of the
context pool. Set this based
on the load on the
repository.

timeout A period of time with
millisecond precision

0s The duration after which
the context pool times out.
An integer that represents
the time that an idle
context instance can remain
in the pool without being
closed and removed from
the pool. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), seconds
(s), or milliseconds (ms).
For example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

waitTime A period of time with
millisecond precision

3s The duration after which
the context pool times out.
The time interval that the
request waits until the
context pool checks again if
an idle context instance is
available in the pool when
the number of context
instances reaches the
maximum pool size.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

customFilters
Specifies the list of default Custom LDAP filters.

Chapter 1. WebSphere Application Server Liberty Core: Overview 205

false

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs)))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string ibm-allGroups:member;ibm-
allGroups:uniqueMember;groupOfNames:member;groupOfUniqueNames:uniqueMember

An LDAP filter that
identifies user to group
memberships.

userFilter string (&(uid=
%v)(objectclass=ePerson))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string *:uid An LDAP filter that maps
the name of a user to an
LDAP entry.

domino50Filters
Specifies the list of default IBM Lotus Domino LDAP filters.

false

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(objectclass=dominoGroup))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string dominoGroup:member An LDAP filter that
identifies user to group
memberships.

userFilter string (&(uid=
%v)(objectclass=Person))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string person:uid An LDAP filter that maps
the name of a user to an
LDAP entry.

edirectoryFilters
Specifies the list of Novell eDirectory LDAP filters.

false

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(objectclass=groupOfNames))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

206 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

groupMemberIdMap string groupOfNames:member An LDAP filter that
identifies user to group
memberships.

userFilter string (&(cn=
%v)(objectclass=Person))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string person:cn An LDAP filter that maps
the name of a user to an
LDAP entry.

failoverServers
List of LDAP failover servers.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Configuration properties
for LDAP failover servers.
Specify it as a backup
server for the primary
LDAP servers. For example,
<failoverServers
name="failoverLdapServers"><server
host="myfullyqualifiedhostname1"
port="389"/><server
host="myfullyqualifiedhostname2"
port="389"/></
failoverServers>.

failoverServers > server
Configuration properties for LDAP failover server.

false

Attribute name Data type Default value Description

host string LDAP server host name,
which can be either an IP
address or a domain name
service (DNS) name.

id string A unique configuration ID.

port int LDAP failover server port.

idsFilters
Specifies the list of default IBM Tivoli Directory Server LDAP filters.

false

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs)))

An LDAP filter clause for
searching the user registry
for groups.

Chapter 1. WebSphere Application Server Liberty Core: Overview 207

Attribute name Data type Default value Description

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string ibm-allGroups:member;ibm-
allGroups:uniqueMember;groupOfNames:member;groupOfUniqueNames:uniqueMember

An LDAP filter that
identifies user to group
memberships.

userFilter string (&(uid=
%v)(objectclass=ePerson))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string *:uid An LDAP filter that maps
the name of a user to an
LDAP entry.

iplanetFilters
Specifies the list of default Sun Java System Directory Server LDAP filters.

false

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(objectclass=ldapsubentry))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string nsRole:nsRole An LDAP filter that
identifies user to group
memberships.

userFilter string (&(uid=
%v)(objectclass=inetOrgPerson))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string inetOrgPerson:uid An LDAP filter that maps
the name of a user to an
LDAP entry.

ldapCache
Configure the attributes of the cache.

false

ldapCache > attributesCache
The attribute cache properties configuration.

false

Attribute name Data type Default value Description

enabled boolean true A Boolean value to indicate
that the property is
enabled.

208 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

serverTTLAttribute string The time after which a
cache entry expires. The
subsequent call for this
entry will be fetched
directly from the server and
then placed again in the
cache.

size int 2000 Defines the number of
entities that can be stored
in the cache. You can
increase the size of the
cache based on the number
of entities that are required
to be stored in the cache.

sizeLimit int 2000 The size limit for the cache.

timeout A period of time with
millisecond precision

1200ms Defines the maximum time
that the contents of the
LDAP attribute cache are
available. When the
specified time has elapsed,
the LDAP attribute cache is
cleared. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), seconds
(s), or milliseconds (ms).
For example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

ldapCache > searchResultsCache
The configuration for the search results cache.

false

Attribute name Data type Default value Description

enabled boolean true A Boolean value to indicate
that the property is
enabled.

resultsSizeLimit int 2000 The maximum number of
results that can be returned
in the search.

size int 2000 The size of the cache. The
number of search results
that are stored in the cache.
This needs to be configured
based on the number of
search queries executed on
the system and the
hardware system resources
available.

Chapter 1. WebSphere Application Server Liberty Core: Overview 209

Attribute name Data type Default value Description

timeout A period of time with
millisecond precision

1200ms Defines the maximum time
that the contents of the
search results cache are
available. When the
specified time has elapsed,
the search results cache is
cleared. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), seconds
(s), or milliseconds (ms).
For example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

ldapEntityType
Configure the LDAP object class, search filters, search bases and LDAP relative distinguished name
(RDN) for Person, Group and Organizational Unit. For example, the Group entity type can have a
search filter such as (&(ObjectCategory=Groupofnames)(ObjectClass=Groupofnames)) and the object
class as Groupofnames with search base ou=iGroups,o=ibm,c=us.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name string The name of the LDAP
entity type.

searchFilter string A custom LDAP search
expression used while
searching for entity types.
For example,
searchFilter="(|(ObjectCategory=User)(ObjectClass=User))".

ldapEntityType > objectClass
The object class defined for the given LDAP entity type in the LDAP server. For example, the
object class for the group LDAP entity type can be Groupofnames.

false

string

ldapEntityType > searchBase
Specify the sub tree of the LDAP server for the search call for the given entity type which will
override the base DN in search operations. For example, if the base DN is o=ibm,c=us and the
search base for the PersonAccount entity type is defined to be ou=iUsers,o=ibm,c=us, then all
search calls for PersonAccout will be made under subtree ou=iUsers,o=ibm,c=us. Multiple search
bases can be configured for the same entity type.

false

string

netscapeFilters
Specifies the list of default Netscape Directory Server LDAP filters.

false

210 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string groupOfNames:member;groupOfUniqueNames:uniqueMemberAn LDAP filter that
identifies user to group
memberships.

userFilter string (&(uid=
%v)(objectclass=inetOrgPerson))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string inetOrgPerson:uid An LDAP filter that maps
the name of a user to an
LDAP entry.

securewayFilters
Specifies the list of default IBM SecureWay Directory Server LDAP filters.

false

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string groupOfNames:member;groupOfUniqueNames:uniqueMemberAn LDAP filter that
identifies user to group
memberships.

userFilter string (&(uid=
%v)(objectclass=ePerson))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string *:uid An LDAP filter that maps
the name of a user to an
LDAP entry.

Shared Library (library)
Shared Library
v file
v fileset
v folder

Chapter 1. WebSphere Application Server Liberty Core: Overview 211

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

id string A unique configuration ID.

name string Name of shared library for
administrators

file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

212 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

Chapter 1. WebSphere Application Server Liberty Core: Overview 213

Logging (logging)
Controls the capture and output of log and trace messages.

Attribute name Data type Default value Description

consoleLogLevel v ERROR

v WARNING

v AUDIT

v OFF

v INFO

AUDIT The logging level used to
filter messages written to
system streams. The default
value is audit.

ERROR
Error messages
will be written to
the system error
stream.

WARNING
Warning messages
will be written to
the system output
stream. Error
messages will be
written to the
system error
stream.

AUDIT
Audit and
warning messages
will be written to
the system output
stream. Error
messages will be
written to the
system error
stream.

OFF No server output
will be written to
system streams.
Only JVM output
will be written to
system streams.

INFO Info, audit, and
warning messages
will be written to
the system output
stream. Error
messages will be
written to the
system error
stream.

214 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

copySystemStreams boolean true If true, write System.out to
the system output stream
and System.err to the
system error stream. If
false, System.out and
System.err will write to
configured logs like
messages.log or trace.log,
but not to the system
streams. The default value
is true.

hideMessage string The list of messages,
separated by a comma, that
are configured to be hidden
from the console.log and
message.log files. If the
messages are configured to
be hidden, then they are
redirected to the trace.log
file.

logDirectory Path to a directory ${server.output.dir}/logs Location of the directory
for log files. The default
value is
${server.output.dir}/logs.

maxFileSize int

Minimum: 0

20 Maximum size of a log file,
in megabytes, before being
rolled over; a value of 0
means no limit.

maxFiles int

Minimum: 0

2 Maximum number of log
files that will be kept,
before the oldest file is
removed; a value of 0
means no limit.

messageFileName string messages.log Name of the file to which
message output will be
written relative to the
configured log directory.
The default value is
messages.log.

suppressSensitiveTrace boolean false The server trace can expose
sensitive data when tracing
untyped data, such as bytes
received over a network
connection. If true, prevent
potentially sensitive
information from being
exposed in log and trace
files. The default value is
false.

traceFileName string trace.log Name of the file to which
trace output will be written
relative to the configured
log directory. The default
value is trace.log.

Chapter 1. WebSphere Application Server Liberty Core: Overview 215

Attribute name Data type Default value Description

traceFormat v ENHANCED

v BASIC

v ADVANCED

ENHANCED This format is used for the
trace log.

ENHANCED
Use the enhanced
basic trace format.

BASIC Use the basic trace
format.

ADVANCED
Use the advanced
trace format.

traceSpecification string *=info A trace specification that
conforms to the trace
specification grammar and
specifies the initial state for
various trace components.
An empty value is allowed
and treated as 'disable all
trace'. Any component that
is not specified is initialized
to a default state of *=info.

Logstash Collector (logstashCollector)
Logstash collector gathers data from various sources and forwards the data to a logstash server using
Lumberjack protocol.
v source

Attribute name Data type Default value Description

hostName string Host name of the logstash
server.

port int

Minimum: 1

Maximum: 65535

Port number of the logstash
server.

sslRef A reference to top level ssl
element (string).

Specifies an ID of the SSL
repertoire that is used to
connect to the logstash
server.

source
Specifies a source to be used by the logstash collector.

false

string

216 WebSphere Application Server Liberty Core 8.5.5

LTPA Token (ltpa)
Lightweight Third Party Authentication (LTPA) token configuration.

Attribute name Data type Default value Description

expiration A period of time with
minute precision

120m Amount of time after which
a token expires in minutes.
Specify a positive integer
followed by a unit of time,
which can be hours (h) or
minutes (m). For example,
specify 30 minutes as 30m.
You can include multiple
values in a single entry. For
example, 1h30m is
equivalent to 90 minutes.

keysFileName Path to a file ${server.output.dir}/
resources/security/
ltpa.keys

Path of the file containing
the token keys.

keysPassword Reversably encoded
password (string)

{xor}CDo9Hgw= Password for the token
keys. The value can be
stored in clear text or
encoded form. It is
recommended to encode
the password, use the
securityUtility tool with the
encode option.

monitorInterval A period of time with
millisecond precision

0ms Rate at which the server
checks for updates to the
LTPA token keys file.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

Mail Session Object (mailSession)
Configuration for a Mail Session Instance.
v property

Attribute name Data type Default value Description

description string Description of the Mail
Session

from string The E-Mail address used to
send mail with the Mail
Session instance.

host string The host of the Mail
Session

id string A unique configuration ID.

Chapter 1. WebSphere Application Server Liberty Core: Overview 217

Attribute name Data type Default value Description

jndiName string Name of the Mail Session
reference that is used for
JNDI look-up

mailSessionID string The ID of the specific Mail
Session Instance

password Reversably encoded
password (string)

The User's password,
usually needed in order to
connect to the host.

storeProtocol string imap The Store Protocol used by
the Mail Session instance.
The default store protocol is
IMAP

transportProtocol string smtp The Transport Protocol
used by the Mail Session
instance. The default
transport protocol is SMTP

user string The User's e-mail address
used on the Host.

property
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name string The name of the extra
property

value string The value of the property
that matches the name

Managed Executor (managedExecutorService)
Managed executor service
v contextService

– baseContext
- baseContext
- classloaderContext
- jeeMetadataContext
- securityContext
- syncToOSThreadContext
- zosWLMContext

– classloaderContext
– jeeMetadataContext
– securityContext
– syncToOSThreadContext
– zosWLMContext

218 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

contextServiceRef A reference to top level
contextService element
(string).

DefaultContextService Configures how context is
propagated to threads

id string A unique configuration ID.

jndiName string JNDI name

contextService
Configures how context is propagated to threads

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

jndiName string JNDI name

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

contextService > baseContext
Specifies a base context service from which to inherit context that is not already defined on this
context service.

Chapter 1. WebSphere Application Server Liberty Core: Overview 219

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

id string A unique configuration ID.

jndiName string JNDI name

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

contextService > baseContext > baseContext
Specifies a base context service from which to inherit context that is not already defined on
this context service.

false

com.ibm.ws.context.service-factory

contextService > baseContext > classloaderContext
Classloader context propagation configuration.

false

220 WebSphere Application Server Liberty Core 8.5.5

contextService > baseContext > jeeMetadataContext
Makes the namespace of the application component that submits a contextual task available
to the task.

false

contextService > baseContext > securityContext
When specified, the security context of the work initiator is propagated to the unit of work.

false

contextService > baseContext > syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized with
the Operating System identity.

false

contextService > baseContext > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

contextService > classloaderContext
Classloader context propagation configuration.

false

contextService > jeeMetadataContext
Makes the namespace of the application component that submits a contextual task available to
the task.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 221

contextService > securityContext
When specified, the security context of the work initiator is propagated to the unit of work.

false

contextService > syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized with the
Operating System identity.

false

contextService > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

Managed Scheduled Executor (managedScheduledExecutorService)
Managed scheduled executor service
v contextService

– baseContext
- baseContext
- classloaderContext
- jeeMetadataContext
- securityContext
- syncToOSThreadContext
- zosWLMContext

222 WebSphere Application Server Liberty Core 8.5.5

– classloaderContext
– jeeMetadataContext
– securityContext
– syncToOSThreadContext
– zosWLMContext

Attribute name Data type Default value Description

contextServiceRef A reference to top level
contextService element
(string).

DefaultContextService Configures how context is
propagated to threads

id string A unique configuration ID.

jndiName string JNDI name

contextService
Configures how context is propagated to threads

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

jndiName string JNDI name

Chapter 1. WebSphere Application Server Liberty Core: Overview 223

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

contextService > baseContext
Specifies a base context service from which to inherit context that is not already defined on this
context service.

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

id string A unique configuration ID.

jndiName string JNDI name

224 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

contextService > baseContext > baseContext
Specifies a base context service from which to inherit context that is not already defined on
this context service.

false

com.ibm.ws.context.service-factory

contextService > baseContext > classloaderContext
Classloader context propagation configuration.

false

contextService > baseContext > jeeMetadataContext
Makes the namespace of the application component that submits a contextual task available
to the task.

false

contextService > baseContext > securityContext
When specified, the security context of the work initiator is propagated to the unit of work.

false

contextService > baseContext > syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized with
the Operating System identity.

Chapter 1. WebSphere Application Server Liberty Core: Overview 225

false

contextService > baseContext > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

contextService > classloaderContext
Classloader context propagation configuration.

false

contextService > jeeMetadataContext
Makes the namespace of the application component that submits a contextual task available to
the task.

false

contextService > securityContext
When specified, the security context of the work initiator is propagated to the unit of work.

false

contextService > syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized with the
Operating System identity.

false

contextService > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

226 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

Managed Thread Factory (managedThreadFactory)
Managed thread factory
v contextService

– baseContext
- baseContext
- classloaderContext
- jeeMetadataContext
- securityContext
- syncToOSThreadContext
- zosWLMContext

– classloaderContext
– jeeMetadataContext
– securityContext
– syncToOSThreadContext
– zosWLMContext

Attribute name Data type Default value Description

contextServiceRef A reference to top level
contextService element
(string).

DefaultContextService Configures how context is
propagated to threads

Chapter 1. WebSphere Application Server Liberty Core: Overview 227

Attribute name Data type Default value Description

createDaemonThreads boolean false Configures whether or not
threads created by the
managed thread factory
should be daemon threads.

defaultPriority int

Minimum: 1

Maximum: 10

Default priority for threads
created by the managed
thread factory. If
unspecified, the priority of
the creating thread is used.
Priority cannot exceed the
maximum priority for the
managed thread factory, in
which case the maximum
priority is used instead.

id string A unique configuration ID.

jndiName string JNDI name

maxPriority int

Minimum: 1

Maximum: 10

Maximum priority for
threads created by the
managed thread factory.

contextService
Configures how context is propagated to threads

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

jndiName string JNDI name

228 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

contextService > baseContext
Specifies a base context service from which to inherit context that is not already defined on this
context service.

false

Attribute name Data type Default value Description

baseContextRef A reference to top level
contextService element
(string).

Specifies a base context
service from which to
inherit context that is not
already defined on this
context service.

id string A unique configuration ID.

jndiName string JNDI name

Chapter 1. WebSphere Application Server Liberty Core: Overview 229

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Determines the action to
take in response to
configuration errors. For
example, if securityContext
is configured for this
contextService, but the
security feature is not
enabled, then onError
determines whether to fail,
raise a warning, or ignore
the parts of the
configuration which are
incorrect.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

contextService > baseContext > baseContext
Specifies a base context service from which to inherit context that is not already defined on
this context service.

false

com.ibm.ws.context.service-factory

contextService > baseContext > classloaderContext
Classloader context propagation configuration.

false

contextService > baseContext > jeeMetadataContext
Makes the namespace of the application component that submits a contextual task available
to the task.

false

contextService > baseContext > securityContext
When specified, the security context of the work initiator is propagated to the unit of work.

false

contextService > baseContext > syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized with
the Operating System identity.

230 WebSphere Application Server Liberty Core 8.5.5

false

contextService > baseContext > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

contextService > classloaderContext
Classloader context propagation configuration.

false

contextService > jeeMetadataContext
Makes the namespace of the application component that submits a contextual task available to
the task.

false

contextService > securityContext
When specified, the security context of the work initiator is propagated to the unit of work.

false

contextService > syncToOSThreadContext
When specified, the identity of the runAs Subject for the unit of work is synchronized with the
Operating System identity.

false

contextService > zosWLMContext
Indicates that the z/OS WLM Context should be managed as part of the thread context.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 231

Attribute name Data type Default value Description

daemonTransactionClass string ASYNCDMN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is created for
Daemon work.

defaultTransactionClass string ASYNCBN The Transaction Class name
provided to WLM to
classify work when a new
WLM context is being
created for non-Daemon
work.

wlm v Propagate

v PropagateOrNew

v New

Propagate Indicates how the WLM
context should be handled
for non-Daemon work.

Propagate
Use the same
WLM Context (if
one exists).

PropagateOrNew
Use the same
WLM context or
create a new one if
no current context
exists.

New Always create a
new WLM context.

Default Mime Types (mimeTypes)
Definition of mime types shared by all http virtual hosts
v type

type
Definition of mime type as id=value. Use the extension as the id, and the associated type as the
value.

false

string

Monitor (monitor)
Configuration for Monitoring Feature which includes enabled traditional PMI ,FineGrained and any
future configurations updates.

Attribute name Data type Default value Description

enableTraditionalPMI boolean false Property to enable or
disable Traditional PMI
way of reporting.

filter string Allows user to
enable/disable monitors
based on group name such
as
WebContainer,JVM,ThreadPool,Session,ConnectionPool
and so on.

232 WebSphere Application Server Liberty Core 8.5.5

Netscape Directory Server LDAP Filters (netscapeLdapFilterProperties)
Specifies the list of default Netscape Directory Server LDAP filters.

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string groupOfNames:member;groupOfUniqueNames:uniqueMemberAn LDAP filter that
identifies user to group
memberships.

id string A unique configuration ID.

userFilter string (&(uid=
%v)(objectclass=inetOrgPerson))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string inetOrgPerson:uid An LDAP filter that maps
the name of a user to an
LDAP entry.

OAuth Role Map (oauth-roles)
OAuth web application security role map.
v authenticated

– group
– special-subject
– user

v clientManager
– group
– special-subject
– user

Attribute name Data type Default value Description

id string A unique configuration ID.

authenticated
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

authenticated > group
A unique configuration ID.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 233

Attribute name Data type Default value Description

access-id string A group access ID in the
general form
group:realmName/
groupUniqueId. A value
will be generated if one is
not specified.

id string A unique configuration ID.

name string Name of a group that has
the security role.

authenticated > special-subject
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

type v EVERYONE

v
ALL_AUTHENTICATED_USERS

One of the following
special subject types:
ALL_AUTHENTICATED_USERS,
EVERYONE.

EVERYONE
All users for every
request, even if the
request was not
authenticated.

ALL_AUTHENTICATED_USERS
All authenticated
users.

authenticated > user
A unique configuration ID.

false

Attribute name Data type Default value Description

access-id string A user access ID in the
general form
user:realmName/
userUniqueId. A value will
be generated if one is not
specified.

id string A unique configuration ID.

name string Name of a user who has
the security role.

clientManager
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

234 WebSphere Application Server Liberty Core 8.5.5

clientManager > group
A unique configuration ID.

false

Attribute name Data type Default value Description

access-id string A group access ID in the
general form
group:realmName/
groupUniqueId. A value
will be generated if one is
not specified.

id string A unique configuration ID.

name string Name of a group that has
the security role.

clientManager > special-subject
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

type v EVERYONE

v
ALL_AUTHENTICATED_USERS

One of the following
special subject types:
ALL_AUTHENTICATED_USERS,
EVERYONE.

EVERYONE
All users for every
request, even if the
request was not
authenticated.

ALL_AUTHENTICATED_USERS
All authenticated
users.

clientManager > user
A unique configuration ID.

false

Attribute name Data type Default value Description

access-id string A user access ID in the
general form
user:realmName/
userUniqueId. A value will
be generated if one is not
specified.

id string A unique configuration ID.

name string Name of a user who has
the security role.

Chapter 1. WebSphere Application Server Liberty Core: Overview 235

OAuth Provider Definition (oauthProvider)
OAuth provider definition.
v autoAuthorizeClient
v databaseStore

– dataSource
- connectionManager
- containerAuthData
- jaasLoginContextEntry
- jdbcDriver
v library

– file
– fileset
– folder

- properties
- properties.datadirect.sqlserver
- properties.db2.i.native
- properties.db2.i.toolbox
- properties.db2.jcc
- properties.derby.client
- properties.derby.embedded
- properties.informix
- properties.informix.jcc
- properties.microsoft.sqlserver
- properties.oracle
- properties.sybase
- recoveryAuthData

v grantType
v jwtGrantType
v library

– file
– fileset
– folder

v localStore
– client

- functionalUserGroupIds
- grantTypes
- postLogoutRedirectUris
- redirect
- responseTypes

v mediatorClassname

236 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

accessTokenLength long 40 Length of the generated
OAuth access token. The
equivalent provider
parameter in the full
application server profile is
oauth20.access.token.length.

accessTokenLifetime A period of time with
second precision

7200 Time that access token is
valid (seconds). The
equivalent provider
parameter in the full
application server profile is
oauth20.token.lifetime.seconds.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

allowPublicClients boolean false A value of false disables the
access of public clients as
detailed in the OAuth
specification. The
equivalent provider
parameter in the full
application server profile is
oauth20.allow.public.clients.

authorizationCodeLength long 30 Length of the generated
authorization code. The
equivalent provider
parameter in the full
application server profile is
oauth20.code.length.

authorizationCodeLifetime A period of time with
second precision

60 Authorization code lifetime
(seconds). The equivalent
provider parameter in the
full application server
profile is
oauth20.code.lifetime.seconds.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 237

Attribute name Data type Default value Description

authorizationErrorTemplate string URL of a custom
authorization error page
template. The equivalent
provider parameter in the
full application server
profile is
oauth20.authorization.error.template.

authorizationFormTemplate string template.html URL of a custom
authorization page
template. The equivalent
provider parameter in the
full application server
profile is
oauth20.authorization.form.template.

authorizationGrantLifetime A period of time with
second precision

604800 Authorization grant lifetime
(seconds). The equivalent
provider parameter in the
full application server
profile is
oauth20.max.authorization.grant.lifetime.seconds.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

autoAuthorize boolean false To use auto authorization,
append the autoAuthorize
parameter to requests with
a value of true. The
equivalent provider
parameter in the full
application server profile is
oauth20.autoauthorize.param.

autoAuthorizeParam string autoauthz To use auto authorization,
append the autoAuthorize
parameter to requests with
a value of true. The
equivalent provider
parameter in the full
application server profile is
oauth20.autoauthorize.param.

certAuthentication boolean false Enable the authentication of
client certificate in the https
request.

characterEncoding string Set request character
encoding to this value. The
equivalent provider
parameter in the full
application server profile is
characterEncoding.

238 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

clientTokenCacheSize long Maximum number of
entries in the client token
cache.

clientURISubstitutions string Optional value to replace
client URI strings for
dynamic hostnames. The
equivalent provider
parameter in the full
application server profile is
oauth20.client.uri.substitutions.

consentCacheEntryLifetime A period of time with
second precision

1800 Time that an entry in the
consent cache is valid
(seconds). Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

consentCacheSize long

Minimum: 0

1000 Maximum number of
entries allowed in the
consent cache.

coverageMapSessionMaxAge A period of time with
second precision

600 The max-age value
(seconds) for the
cache-control header of the
coverage map service.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

customLoginURL string login.jsp URL of a custom login
page. The equivalent
provider parameter in the
full application server
profile is
oauth20.authorization.loginURL.

filter string URI filter selects requests to
be authorized by this
provider. The equivalent
provider parameter in the
full application server
profile is Filter.

httpsRequired boolean true SSL communication
between the OAuth client
and provider is required.

id string A unique configuration ID.

Chapter 1. WebSphere Application Server Liberty Core: Overview 239

Attribute name Data type Default value Description

includeTokenInSubject boolean true If the value is true, add the
com.ibm.wsspi.security.oauth20.token.WSOAuth20Token
as a private credential. The
equivalent provider
parameter in the full
application server profile is
includeToken.

issueRefreshToken boolean true A value of false disables
generation and the use of
refresh tokens. The
equivalent provider
parameter in the full
application server profile is
oauth20.issue.refresh.token.

libraryRef A reference to top level
library element (string).

Reference to shared library
containing the mediator
plugin class.

oauthOnly boolean true If the value is true, then
requests matching the filter
must have an access token
or they will be failed. If
false, then matching
requests will be checked for
other authentication data if
no access token is present.
The equivalent provider
parameter in the full
application server profile is
oauthOnly.

refreshTokenLength long 50 Length of generated refresh
token. The equivalent
provider parameter in the
full application server
profile is
oauth20.refresh.token.length.

skipResourceOwnerValidationboolean false If the value is true, skip
validation of resource
owner.

userClientTokenLimit long Token limit for each user
and client combination.

autoAuthorizeClient
Name of a client that is allowed to use auto authorization. The equivalent provider parameter in the
full application server profile is oauth20.autoauthorize.clients.

false

string

databaseStore
Clients are defined and tokens are cached in the database.

false

240 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

cleanupExpiredTokenInterval A period of time with
second precision

3600 Expired token cleanup
interval (seconds). The
equivalent provider
parameter in the full
application server profile is
oauthjdbc.CleanupInterval.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

dataSourceRef A reference to top level
dataSource element (string).

Reference to the data
source for the store.

password Reversably encoded
password (string)

Password used to access
the database.

schema string OAuthDBSchema Schema

user string User

databaseStore > dataSource
Reference to the data source for the store.

false

Attribute name Data type Default value Description

beginTranForResultSetScrollingAPIsboolean true Attempt transaction
enlistment when result set
scrolling interfaces are
used.

beginTranForVendorAPIs boolean true Attempt transaction
enlistment when vendor
interfaces are used.

commitOrRollbackOnCleanupv commit

v rollback

Determines how to clean
up connections that might
be in a database unit of
work (AutoCommit=false)
when the connection is
closed or returned to the
pool.

commit
Clean up the
connection by
committing.

rollback
Clean up the
connection by
rolling back.

connectionManagerRef A reference to top level
connectionManager element
(string).

Connection manager for a
data source.

Chapter 1. WebSphere Application Server Liberty Core: Overview 241

Attribute name Data type Default value Description

connectionSharing v MatchOriginalRequest

v MatchCurrentState

MatchOriginalRequest Specifies how connections
are matched for sharing.

MatchOriginalRequest
When sharing
connections, match
based on the
original connection
request.

MatchCurrentState
When sharing
connections, match
based on the
current state of the
connection.

containerAuthDataRef A reference to top level
authData element (string).

Default authentication data
for container managed
authentication that applies
when bindings do not
specify an
authentication-alias for a
resource reference with
res-auth=CONTAINER.

enableConnectionCasting boolean false Indicates that connections
obtained from the data
source should be castable to
interface classes that the
JDBC vendor connection
implementation
implements. Enabling this
option incurs additional
overhead on each
getConnection operation. If
vendor JDBC interfaces are
needed less frequently, it
might be more efficient to
leave this option disabled
and use
Connection.unwrap(interface)
only where it is needed.

242 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

isolationLevel v
TRANSACTION_REPEATABLE_READ

v
TRANSACTION_READ_COMMITTED

v
TRANSACTION_SERIALIZABLE

v
TRANSACTION_READ_UNCOMMITTED

v
TRANSACTION_SNAPSHOT

Default transaction isolation
level.

TRANSACTION_REPEATABLE_READ
Dirty reads and
non-repeatable
reads are
prevented;
phantom reads can
occur.

TRANSACTION_READ_COMMITTED
Dirty reads are
prevented;
non-repeatable
reads and
phantom reads can
occur.

TRANSACTION_SERIALIZABLE
Dirty reads,
non-repeatable
reads and
phantom reads are
prevented.

TRANSACTION_READ_UNCOMMITTED
Dirty reads,
non-repeatable
reads and
phantom reads can
occur.

TRANSACTION_SNAPSHOT
Snapshot isolation
for Microsoft SQL
Server JDBC
Driver and
DataDirect
Connect for JDBC
driver.

jaasLoginContextEntryRef A reference to top level
jaasLoginContextEntry
element (string).

JAAS login context entry
for authentication.

jdbcDriverRef A reference to top level
jdbcDriver element (string).

JDBC driver for a data
source.

jndiName string JNDI name for a data
source.

Chapter 1. WebSphere Application Server Liberty Core: Overview 243

Attribute name Data type Default value Description

queryTimeout A period of time with
second precision

Default query timeout for
SQL statements. In a JTA
transaction,
syncQueryTimeoutWithTransactionTimeout
can override this default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

recoveryAuthDataRef A reference to top level
authData element (string).

Authentication data for
transaction recovery.

statementCacheSize int

Minimum: 0

10 Maximum number of
cached statements per
connection.

supplementalJDBCTrace boolean Supplements the JDBC
driver trace that is logged
when JDBC driver trace is
enabled in
bootstrap.properties. JDBC
driver trace specifications
include:
com.ibm.ws.database.logwriter,
com.ibm.ws.db2.logwriter,
com.ibm.ws.derby.logwriter,
com.ibm.ws.informix.logwriter,
com.ibm.ws.oracle.logwriter,
com.ibm.ws.sqlserver.logwriter,
com.ibm.ws.sybase.logwriter.

syncQueryTimeoutWithTransactionTimeoutboolean false Use the time remaining (if
any) in a JTA transaction as
the default query timeout
for SQL statements.

transactional boolean true Enable participation in
transactions that are
managed by the application
server.

type v javax.sql.DataSource

v javax.sql.XADataSource

v
javax.sql.ConnectionPoolDataSource

Type of data source.

javax.sql.DataSource
javax.sql.DataSource

javax.sql.XADataSource
javax.sql.XADataSource

javax.sql.ConnectionPoolDataSource
javax.sql.ConnectionPoolDataSource

databaseStore > dataSource > connectionManager
Connection manager for a data source.

false

244 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

agedTimeout A period of time with
second precision

-1 Amount of time before a
physical connection can be
discarded by pool
maintenance. A value of -1
disables this timeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

connectionTimeout A period of time with
second precision

30s Amount of time after which
a connection request times
out. A value of -1 disables
this timeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maxConnectionsPerThread int

Minimum: 0

Limits the number of open
connections on each thread.

maxIdleTime A period of time with
second precision

30m Amount of time after which
an unused or idle
connection can be
discarded during pool
maintenance, if doing so
does not reduce the pool
below the minimum size. A
value of -1 disables this
timeout. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

maxPoolSize int

Minimum: 0

50 Maximum number of
physical connections for a
pool. A value of 0 means
unlimited.

Chapter 1. WebSphere Application Server Liberty Core: Overview 245

Attribute name Data type Default value Description

minPoolSize int

Minimum: 0

Minimum number of
physical connections to
maintain in the pool. The
pool is not pre-populated.
Aged timeout can override
the minimum.

numConnectionsPerThreadLocalint

Minimum: 0

Caches the specified
number of connections for
each thread.

purgePolicy v ValidateAllConnections

v FailingConnectionOnly

v EntirePool

EntirePool Specifies which connections
to destroy when a stale
connection is detected in a
pool.

ValidateAllConnections
When a stale
connection is
detected,
connections are
tested and those
found to be bad
are closed.

FailingConnectionOnly
When a stale
connection is
detected, only the
connection which
was found to be
bad is closed.

EntirePool
When a stale
connection is
detected, all
connections in the
pool are marked
stale, and when no
longer in use, are
closed.

reapTime A period of time with
second precision

3m Amount of time between
runs of the pool
maintenance thread. A
value of -1 disables pool
maintenance. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

databaseStore > dataSource > containerAuthData
Default authentication data for container managed authentication that applies when bindings
do not specify an authentication-alias for a resource reference with res-auth=CONTAINER.

246 WebSphere Application Server Liberty Core 8.5.5

false

Attribute name Data type Default value Description

password Reversably encoded
password (string)

Password of the user to use
when connecting to the EIS.
The value can be stored in
clear text or encoded form.
It is recommended that you
encode the password. To do
so, use the securityUtility
tool with the encode
option.

user string Name of the user to use
when connecting to the EIS.

databaseStore > dataSource > jaasLoginContextEntry
JAAS login context entry for authentication.

false

Attribute name Data type Default value Description

loginModuleRef List of references to top
level jaasLoginModule
elements (comma-separated
string).

hashtable,userNameAndPassword,certificate,tokenA reference to the ID of a
JAAS login module.

name string Name of a JAAS
configuration entry.

databaseStore > dataSource > jdbcDriver
JDBC driver for a data source.

false

Attribute name Data type Default value Description

javax.sql.ConnectionPoolDataSourcestring JDBC driver
implementation of
javax.sql.ConnectionPoolDataSource.

javax.sql.DataSource string JDBC driver
implementation of
javax.sql.DataSource.

javax.sql.XADataSource string JDBC driver
implementation of
javax.sql.XADataSource.

libraryRef A reference to top level
library element (string).

Identifies JDBC driver JARs
and native files.

databaseStore > dataSource > jdbcDriver > library
Identifies JDBC driver JARs and native files.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 247

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

name string Name of shared library for
administrators

databaseStore > dataSource > jdbcDriver > library > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

databaseStore > dataSource > jdbcDriver > library > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

248 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

databaseStore > dataSource > jdbcDriver > library > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

databaseStore > dataSource > properties
List of JDBC vendor properties for the data source. For example, databaseName="dbname"
serverName="localhost" portNumber="50000".

false

Attribute name Data type Default value Description

URL string URL for connecting to the
database.

databaseName string JDBC driver property:
databaseName.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

serverName string Server where the database
is running.

Chapter 1. WebSphere Application Server Liberty Core: Overview 249

Attribute name Data type Default value Description

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

databaseStore > dataSource > properties.datadirect.sqlserver
Data source properties for the DataDirect Connect for JDBC driver for Microsoft SQL Server.

false

Attribute name Data type Default value Description

JDBCBehavior v 1

v 0

0 JDBC driver property:
JDBCBehavior. Values are: 0
(JDBC 4.0) or 1 (JDBC 3.0).

1 JDBC 3.0

0 JDBC 4.0

XATransactionGroup string JDBC driver property:
XATransactionGroup.

XMLDescribeType v longvarbinary

v longvarchar

JDBC driver property:
XMLDescribeType.

longvarbinary
longvarbinary

longvarchar
longvarchar

accountingInfo string JDBC driver property:
accountingInfo.

alternateServers string JDBC driver property:
alternateServers.

alwaysReportTriggerResults boolean JDBC driver property:
alwaysReportTriggerResults.

applicationName string JDBC driver property:
applicationName.

authenticationMethod v ntlm

v userIdPassword

v kerberos

v auto

JDBC driver property:
authenticationMethod.

ntlm ntlm

userIdPassword
userIdPassword

kerberos
kerberos

auto auto

bulkLoadBatchSize long JDBC driver property:
bulkLoadBatchSize.

bulkLoadOptions long JDBC driver property:
bulkLoadOptions.

clientHostName string JDBC driver property:
clientHostName.

clientUser string JDBC driver property:
clientUser.

250 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

codePageOverride string JDBC driver property:
codePageOverride.

connectionRetryCount int JDBC driver property:
connectionRetryCount.

connectionRetryDelay A period of time with
second precision

JDBC driver property:
connectionRetryDelay.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

convertNull int JDBC driver property:
convertNull.

databaseName string JDBC driver property:
databaseName.

dateTimeInputParameterTypev dateTime

v dateTimeOffset

v auto

JDBC driver property:
dateTimeInputParameterType.

dateTime
dateTime

dateTimeOffset
dateTimeOffset

auto auto

dateTimeOutputParameterTypev dateTime

v dateTimeOffset

v auto

JDBC driver property:
dateTimeOutputParameterType.

dateTime
dateTime

dateTimeOffset
dateTimeOffset

auto auto

describeInputParameters v describeIfString

v noDescribe

v describeIfDateTime

v describeAll

JDBC driver property:
describeInputParameters.

describeIfString
describeIfString

noDescribe
noDescribe

describeIfDateTime
describeIfDateTime

describeAll
describeAll

Chapter 1. WebSphere Application Server Liberty Core: Overview 251

Attribute name Data type Default value Description

describeOutputParameters v describeIfString

v noDescribe

v describeIfDateTime

v describeAll

JDBC driver property:
describeOutputParameters.

describeIfString
describeIfString

noDescribe
noDescribe

describeIfDateTime
describeIfDateTime

describeAll
describeAll

enableBulkLoad boolean JDBC driver property:
enableBulkLoad.

enableCancelTimeout boolean JDBC driver property:
enableCancelTimeout.

encryptionMethod v loginSSL

v requestSSL

v SSL

v noEncryption

JDBC driver property:
encryptionMethod.

loginSSL
loginSSL

requestSSL
requestSSL

SSL SSL

noEncryption
noEncryption

failoverGranularity v disableIntegrityCheck

v atomicWithRepositioning

v nonAtomic

v atomic

JDBC driver property:
failoverGranularity.

disableIntegrityCheck
disableIntegrityCheck

atomicWithRepositioning
atomicWithRepositioning

nonAtomic
nonAtomic

atomic atomic

failoverMode v connect

v select

v extended

JDBC driver property:
failoverMode.

connect
connect

select select

extended
extended

failoverPreconnect boolean JDBC driver property:
failoverPreconnect.

hostNameInCertificate string JDBC driver property:
hostNameInCertificate.

initializationString string JDBC driver property:
initializationString.

insensitiveResultSetBufferSizeint JDBC driver property:
insensitiveResultSetBufferSize.

252 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

javaDoubleToString boolean JDBC driver property:
javaDoubleToString.

loadBalancing boolean JDBC driver property:
loadBalancing.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

longDataCacheSize int

Minimum: -1

JDBC driver property:
longDataCacheSize.

netAddress string JDBC driver property:
netAddress.

packetSize int

Minimum: -1

Maximum: 128

JDBC driver property:
packetSize.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

queryTimeout A period of time with
second precision

JDBC driver property:
queryTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

resultsetMetaDataOptions int JDBC driver property:
resultsetMetaDataOptions.

selectMethod v direct

v cursor

JDBC driver property:
selectMethod.

direct direct

cursor cursor

serverName string localhost Server where the database
is running.

snapshotSerializable boolean JDBC driver property:
snapshotSerializable.

Chapter 1. WebSphere Application Server Liberty Core: Overview 253

Attribute name Data type Default value Description

spyAttributes string JDBC driver property:
spyAttributes.

stringInputParameterType v varchar

v nvarchar

varchar JDBC driver property:
stringInputParameterType.

varchar varchar

nvarchar
nvarchar

stringOutputParameterType v varchar

v nvarchar

varchar JDBC driver property:
stringOutputParameterType.

varchar varchar

nvarchar
nvarchar

suppressConnectionWarningsboolean JDBC driver property:
suppressConnectionWarnings.

transactionMode v explicit

v implicit

JDBC driver property:
transactionMode.

explicit explicit

implicit
implicit

truncateFractionalSeconds boolean JDBC driver property:
truncateFractionalSeconds.

trustStore string JDBC driver property:
trustStore.

trustStorePassword Reversably encoded
password (string)

JDBC driver property:
trustStorePassword.

useServerSideUpdatableCursorsboolean JDBC driver property:
useServerSideUpdatableCursors.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

validateServerCertificate boolean JDBC driver property:
validateServerCertificate.

databaseStore > dataSource > properties.db2.i.native
Data source properties for the IBM DB2 for i Native JDBC driver.

false

Attribute name Data type Default value Description

access v read only

v all

v read call

all JDBC driver property:
access.

read only
read only

all all

read call
read call

254 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

autoCommit boolean true JDBC driver property:
autoCommit.

batchStyle v 2.1

v 2.0

2.0 JDBC driver property:
batchStyle.

2.1 2.1

2.0 2.0

behaviorOverride int JDBC driver property:
behaviorOverride.

blockSize v 512

v 128

v 0

v 32

v 64

v 16

v 8

v 256

32 JDBC driver property:
blockSize.

512 512

128 128

0 0

32 32

64 64

16 16

8 8

256 256

cursorHold boolean false JDBC driver property:
cursorHold.

cursorSensitivity v asensitive

v sensitive

asensitive JDBC driver property:
cursorSensitivity. Values
are: 0
(TYPE_SCROLL_SENSITIVE_STATIC),
1
(TYPE_SCROLL_SENSITIVE_DYNAMIC),
2
(TYPE_SCROLL_ASENSITIVE).

asensitive
asensitive

sensitive
sensitive

dataTruncation string true JDBC driver property:
dataTruncation.

databaseName string *LOCAL JDBC driver property:
databaseName.

Chapter 1. WebSphere Application Server Liberty Core: Overview 255

Attribute name Data type Default value Description

dateFormat v dmy

v iso

v eur

v ymd

v julian

v jis

v usa

v mdy

JDBC driver property:
dateFormat.

dmy dmy

iso iso

eur eur

ymd ymd

julian julian

jis jis

usa usa

mdy mdy

dateSeparator v \,

v b

v .

v /

v -

JDBC driver property:
dateSeparator.

\, The comma
character (,).

b The character b

. The period
character (.).

/ The forward slash
character (/).

- The dash character
(-).

decimalSeparator v \,

v .

JDBC driver property:
decimalSeparator.

\, The comma
character (,).

. The period
character (.).

directMap boolean true JDBC driver property:
directMap.

doEscapeProcessing boolean true JDBC driver property:
doEscapeProcessing.

fullErrors boolean JDBC driver property:
fullErrors.

libraries string JDBC driver property:
libraries.

lobThreshold int

Maximum: 500000

0 JDBC driver property:
lobThreshold.

256 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

lockTimeout A period of time with
second precision

0 JDBC driver property:
lockTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maximumPrecision v 31

v 63

31 JDBC driver property:
maximumPrecision.

31 31

63 63

maximumScale int

Minimum: 0

Maximum: 63

31 JDBC driver property:
maximumScale.

minimumDivideScale int

Minimum: 0

Maximum: 9

0 JDBC driver property:
minimumDivideScale.

networkProtocol int JDBC driver property:
networkProtocol.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

prefetch boolean true JDBC driver property:
prefetch.

queryOptimizeGoal v 2

v 1

2 JDBC driver property:
queryOptimizeGoal. Values
are: 1 (*FIRSTIO) or 2
(*ALLIO).

2 *ALLIO

1 *FIRSTIO

Chapter 1. WebSphere Application Server Liberty Core: Overview 257

Attribute name Data type Default value Description

reuseObjects boolean true JDBC driver property:
reuseObjects.

serverName string Server where the database
is running.

serverTraceCategories int 0 JDBC driver property:
serverTraceCategories.

systemNaming boolean false JDBC driver property:
systemNaming.

timeFormat v iso

v eur

v jis

v usa

v hms

JDBC driver property:
timeFormat.

iso iso

eur eur

jis jis

usa usa

hms hms

timeSeparator v \,

v b

v :

v .

JDBC driver property:
timeSeparator.

\, The comma
character (,).

b The character b

: The colon
character (:).

. The period
character (.).

trace boolean JDBC driver property: trace.

transactionTimeout A period of time with
second precision

0 JDBC driver property:
transactionTimeout. Specify
a positive integer followed
by a unit of time, which
can be hours (h), minutes
(m), or seconds (s). For
example, specify 30 seconds
as 30s. You can include
multiple values in a single
entry. For example, 1m30s
is equivalent to 90 seconds.

translateBinary boolean false JDBC driver property:
translateBinary.

translateHex v binary

v character

character JDBC driver property:
translateHex.

binary binary

character
character

useBlockInsert boolean false JDBC driver property:
useBlockInsert.

258 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

databaseStore > dataSource > properties.db2.i.toolbox
Data source properties for the IBM DB2 for i Toolbox JDBC driver.

false

Attribute name Data type Default value Description

access v read only

v all

v read call

all JDBC driver property:
access.

read only
read only

all all

read call
read call

behaviorOverride int JDBC driver property:
behaviorOverride.

bidiImplicitReordering boolean true JDBC driver property:
bidiImplicitReordering.

bidiNumericOrdering boolean false JDBC driver property:
bidiNumericOrdering.

bidiStringType int JDBC driver property:
bidiStringType.

bigDecimal boolean true JDBC driver property:
bigDecimal.

blockCriteria v 2

v 1

v 0

2 JDBC driver property:
blockCriteria. Values are: 0
(no record blocking), 1
(block if FOR FETCH
ONLY is specified), 2 (block
if FOR UPDATE is
specified).

2 2

1 1

0 0

Chapter 1. WebSphere Application Server Liberty Core: Overview 259

Attribute name Data type Default value Description

blockSize v 512

v 128

v 0

v 32

v 64

v 16

v 8

v 256

32 JDBC driver property:
blockSize.

512 512

128 128

0 0

32 32

64 64

16 16

8 8

256 256

cursorHold boolean false JDBC driver property:
cursorHold.

cursorSensitivity v asensitive

v sensitive

v insensitive

asensitive JDBC driver property:
cursorSensitivity. Values
are: 0
(TYPE_SCROLL_SENSITIVE_STATIC),
1
(TYPE_SCROLL_SENSITIVE_DYNAMIC),
2
(TYPE_SCROLL_ASENSITIVE).

asensitive
asensitive

sensitive
sensitive

insensitive
insensitive

dataCompression boolean true JDBC driver property:
dataCompression.

dataTruncation boolean true JDBC driver property:
dataTruncation.

databaseName string JDBC driver property:
databaseName.

dateFormat v dmy

v iso

v eur

v ymd

v julian

v jis

v usa

v mdy

JDBC driver property:
dateFormat.

dmy dmy

iso iso

eur eur

ymd ymd

julian julian

jis jis

usa usa

mdy mdy

260 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

dateSeparator v
v \,

v .

v /

v -

JDBC driver property:
dateSeparator.

The space
character ().

\, The comma
character (,).

. The period
character (.).

/ The forward slash
character (/).

- The dash character
(-).

decimalSeparator v \,

v .

JDBC driver property:
decimalSeparator.

\, The comma
character (,).

. The period
character (.).

driver v toolbox

v native

toolbox JDBC driver property:
driver.

toolbox
toolbox

native native

errors v full

v basic

basic JDBC driver property:
errors.

full full

basic basic

extendedDynamic boolean false JDBC driver property:
extendedDynamic.

extendedMetaData boolean false JDBC driver property:
extendedMetaData.

fullOpen boolean false JDBC driver property:
fullOpen.

holdInputLocators boolean true JDBC driver property:
holdInputLocators.

holdStatements boolean false JDBC driver property:
holdStatements.

isolationLevelSwitchingSupportboolean false JDBC driver property:
isolationLevelSwitchingSupport.

keepAlive boolean JDBC driver property:
keepAlive.

lazyClose boolean false JDBC driver property:
lazyClose.

libraries string JDBC driver property:
libraries.

Chapter 1. WebSphere Application Server Liberty Core: Overview 261

Attribute name Data type Default value Description

lobThreshold int

Minimum: 0

Maximum: 16777216

0 JDBC driver property:
lobThreshold.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maximumPrecision v 31

v 63

31 JDBC driver property:
maximumPrecision.

31 31

63 64

maximumScale int

Minimum: 0

Maximum: 63

31 JDBC driver property:
maximumScale.

metaDataSource int

Minimum: 0

Maximum: 1

1 JDBC driver property:
metaDataSource.

minimumDivideScale int

Minimum: 0

Maximum: 9

0 JDBC driver property:
minimumDivideScale.

naming v system

v sql

sql JDBC driver property:
naming.

system system

sql sql

package string JDBC driver property:
package.

packageAdd boolean true JDBC driver property:
packageAdd.

packageCCSID v 13488

v 1200

13488 JDBC driver property:
packageCCSID. Values are:
1200 (UCS-2) or 13488
(UTF-16).

13488 13488 (UTF-16)

1200 1200 (UCS-2)

packageCache boolean false JDBC driver property:
packageCache.

262 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

packageCriteria v default

v select

default JDBC driver property:
packageCriteria.

default default

select select

packageError v exception

v none

v warning

warning JDBC driver property:
packageError.

exception
exception

none none

warning
warning

packageLibrary string QGPL JDBC driver property:
packageLibrary.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

prefetch boolean true JDBC driver property:
prefetch.

prompt boolean false JDBC driver property:
prompt.

proxyServer string JDBC driver property:
proxyServer.

qaqqiniLibrary string JDBC driver property:
qaqqiniLibrary.

queryOptimizeGoal int

Minimum: 0

Maximum: 2

0 JDBC driver property:
queryOptimizeGoal. Values
are: 1 (*FIRSTIO) or 2
(*ALLIO).

receiveBufferSize int

Minimum: 1

JDBC driver property:
receiveBufferSize.

remarks v system

v sql

system JDBC driver property:
remarks.

system system

sql sql

rollbackCursorHold boolean false JDBC driver property:
rollbackCursorHold.

savePasswordWhenSerializedboolean false JDBC driver property:
savePasswordWhenSerialized.

secondaryUrl string JDBC driver property:
secondaryUrl.

secure boolean false JDBC driver property:
secure.

sendBufferSize int

Minimum: 1

JDBC driver property:
sendBufferSize.

Chapter 1. WebSphere Application Server Liberty Core: Overview 263

Attribute name Data type Default value Description

serverName string Server where the database
is running.

serverTraceCategories int 0 JDBC driver property:
serverTraceCategories.

soLinger A period of time with
second precision

JDBC driver property:
soLinger. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

soTimeout A period of time with
millisecond precision

JDBC driver property:
soTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

sort v hex

v table

v language

hex JDBC driver property: sort.

hex hex

table table

language
language

sortLanguage string JDBC driver property:
sortLanguage.

sortTable string JDBC driver property:
sortTable.

sortWeight v unqiue

v shared

JDBC driver property:
sortWeight.

unqiue unique

shared shared

tcpNoDelay boolean JDBC driver property:
tcpNoDelay.

threadUsed boolean true JDBC driver property:
threadUsed.

264 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

timeFormat v iso

v eur

v jis

v usa

v hms

JDBC driver property:
timeFormat.

iso iso

eur eur

jis jis

usa usa

hms hms

timeSeparator v
v \,

v :

v .

JDBC driver property:
timeSeparator.

The space
character ().

\, The comma
character (,).

: The colon
character (:).

. The period
character (.).

toolboxTrace v diagnostic

v information

v conversion

v error

v thread

v proxy

v none

v datastream

v pcml

v all

v jdbc

v warning

JDBC driver property:
toolboxTrace.

diagnostic
diagnostic

information
information

conversion
conversion

error error

thread thread

proxy proxy

none none

datastream
datastream

pcml pcml

all all

jdbc jdbc

warning
warning

trace boolean JDBC driver property: trace.

translateBinary boolean false JDBC driver property:
translateBinary.

translateBoolean boolean true JDBC driver property:
translateBoolean.

Chapter 1. WebSphere Application Server Liberty Core: Overview 265

Attribute name Data type Default value Description

translateHex v binary

v character

character JDBC driver property:
translateHex.

binary binary

character
character

trueAutoCommit boolean false JDBC driver property:
trueAutoCommit.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

xaLooselyCoupledSupport int

Minimum: 0

Maximum: 1

0 JDBC driver property:
xaLooselyCoupledSupport.

databaseStore > dataSource > properties.db2.jcc
Data source properties for the IBM Data Server Driver for JDBC and SQLJ for DB2.

false

Attribute name Data type Default value Description

activateDatabase int JDBC driver property:
activateDatabase.

alternateGroupDatabaseNamestring JDBC driver property:
alternateGroupDatabaseName.

alternateGroupPortNumber string JDBC driver property:
alternateGroupPortNumber.

alternateGroupServerName string JDBC driver property:
alternateGroupServerName.

blockingReadConnectionTimeoutA period of time with
second precision

JDBC driver property:
blockingReadConnectionTimeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

clientAccountingInformation string JDBC driver property:
clientAccountingInformation.

clientApplicationInformation string JDBC driver property:
clientApplicationInformation.

clientRerouteAlternatePortNumberstring JDBC driver property:
clientRerouteAlternatePortNumber.

clientRerouteAlternateServerNamestring JDBC driver property:
clientRerouteAlternateServerName.

266 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

clientUser string JDBC driver property:
clientUser.

clientWorkstation string JDBC driver property:
clientWorkstation.

connectionCloseWithInFlightTransactionv 2

v 1

JDBC driver property:
connectionCloseWithInFlightTransaction.

2 CONNECTION_CLOSE_WITH_ROLLBACK

1 CONNECTION_CLOSE_WITH_EXCEPTION

currentAlternateGroupEntry int JDBC driver property:
currentAlternateGroupEntry.

currentFunctionPath string JDBC driver property:
currentFunctionPath.

currentLocaleLcCtype string JDBC driver property:
currentLocaleLcCtype.

currentLockTimeout A period of time with
second precision

JDBC driver property:
currentLockTimeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

currentPackagePath string JDBC driver property:
currentPackagePath.

currentPackageSet string JDBC driver property:
currentPackageSet.

currentSQLID string JDBC driver property:
currentSQLID.

currentSchema string JDBC driver property:
currentSchema.

cursorSensitivity v 2

v 1

v 0

JDBC driver property:
cursorSensitivity. Values
are: 0
(TYPE_SCROLL_SENSITIVE_STATIC),
1
(TYPE_SCROLL_SENSITIVE_DYNAMIC),
2
(TYPE_SCROLL_ASENSITIVE).

2 TYPE_SCROLL_ASENSITIVE

1 TYPE_SCROLL_SENSITIVE_DYNAMIC

0 TYPE_SCROLL_SENSITIVE_STATIC

databaseName string JDBC driver property:
databaseName.

deferPrepares boolean true JDBC driver property:
deferPrepares.

Chapter 1. WebSphere Application Server Liberty Core: Overview 267

Attribute name Data type Default value Description

driverType v 2

v 4

4 JDBC driver property:
driverType.

2 Type 2 JDBC
driver.

4 Type 4 JDBC
driver.

enableAlternateGroupSeamlessACRboolean JDBC driver property:
enableAlternateGroupSeamlessACR.

enableClientAffinitiesList v 2

v 1

JDBC driver property:
enableClientAffinitiesList.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

enableExtendedDescribe v 2

v 1

JDBC driver property:
enableExtendedDescribe.

2 NO

1 YES

enableExtendedIndicators v 2

v 1

JDBC driver property:
enableExtendedIndicators.

2 NO

1 YES

enableNamedParameterMarkersv 2

v 1

JDBC driver property:
enableNamedParameterMarkers.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

enableSeamlessFailover v 2

v 1

JDBC driver property:
enableSeamlessFailover.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

enableSysplexWLB boolean JDBC driver property:
enableSysplexWLB.

fetchSize int JDBC driver property:
fetchSize.

fullyMaterializeInputStreams boolean JDBC driver property:
fullyMaterializeInputStreams.

fullyMaterializeInputStreamsOnBatchExecutionv 2

v 1

JDBC driver property:
fullyMaterializeInputStreamsOnBatchExecution.

2 NO

1 YES

fullyMaterializeLobData boolean JDBC driver property:
fullyMaterializeLobData.

268 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

implicitRollbackOption v 2

v 1

v 0

JDBC driver property:
implicitRollbackOption.

2 IMPLICIT_ROLLBACK_OPTION_CLOSE_CONNECTION

1 IMPLICIT_ROLLBACK_OPTION_NOT_CLOSE_CONNECTION

0 IMPLICIT_ROLLBACK_OPTION_NOT_SET

interruptProcessingMode v 2

v 1

v 0

JDBC driver property:
interruptProcessingMode.

2 INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET

1 INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL

0 INTERRUPT_PROCESSING_MODE_DISABLED

keepAliveTimeOut A period of time with
second precision

JDBC driver property:
keepAliveTimeOut. Specify
a positive integer followed
by a unit of time, which
can be hours (h), minutes
(m), or seconds (s). For
example, specify 30 seconds
as 30s. You can include
multiple values in a single
entry. For example, 1m30s
is equivalent to 90 seconds.

keepDynamic int JDBC driver property:
keepDynamic.

kerberosServerPrincipal string JDBC driver property:
kerberosServerPrincipal.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maxConnCachedParamBufferSizeint JDBC driver property:
maxConnCachedParamBufferSize.

maxRetriesForClientReroute int JDBC driver property:
maxRetriesForClientReroute.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 50000 Port on which to obtain
database connections.

profileName string JDBC driver property:
profileName.

Chapter 1. WebSphere Application Server Liberty Core: Overview 269

Attribute name Data type Default value Description

queryCloseImplicit v 2

v 1

JDBC driver property:
queryCloseImplicit. Values
are: 1
(QUERY_CLOSE_IMPLICIT_YES)
or 2
(QUERY_CLOSE_IMPLICIT_NO).

2 QUERY_CLOSE_IMPLICIT_NO

1 QUERY_CLOSE_IMPLICIT_YES

queryDataSize int

Minimum: 4096

Maximum: 65535

JDBC driver property:
queryDataSize.

queryTimeoutInterruptProcessingModev 2

v 1

JDBC driver property:
queryTimeoutInterruptProcessingMode.

2 INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET

1 INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL

readOnly boolean JDBC driver property:
readOnly.

recordTemporalHistory v 2

v 1

JDBC driver property:
recordTemporalHistory.

2 NO

1 YES

resultSetHoldability v 2

v 1

JDBC driver property:
resultSetHoldability. Values
are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

resultSetHoldabilityForCatalogQueriesv 2

v 1

JDBC driver property:
resultSetHoldabilityForCatalogQueries.
Values are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

retrieveMessagesFromServerOnGetMessageboolean true JDBC driver property:
retrieveMessagesFromServerOnGetMessage.

270 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

retryIntervalForClientRerouteA period of time with
second precision

JDBC driver property:
retryIntervalForClientReroute.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

securityMechanism v 3

v 7

v 4

v 18

v 15

v 9

v 16

v 13

v 11

v 12

JDBC driver property:
securityMechanism. Values
are: 3
(CLEAR_TEXT_PASSWORD_SECURITY),
4
(USER_ONLY_SECURITY),
7
(ENCRYPTED_PASSWORD_SECURITY),
9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY),
11
(KERBEROS_SECURITY),
12
(ENCRYPTED_USER_AND_DATA_SECURITY),
13
(ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY),
15 (PLUGIN_SECURITY),
16
(ENCRYPTED_USER_ONLY_SECURITY),
18
(TLS_CLIENT_CERTIFICATE_SECURITY).

3 CLEAR_TEXT_PASSWORD_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

18 TLS_CLIENT_CERTIFICATE_SECURITY

15 PLUGIN_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

16 ENCRYPTED_USER_ONLY_SECURITY

13 ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

11 KERBEROS_SECURITY

12 ENCRYPTED_USER_AND_DATA_SECURITY

sendDataAsIs boolean JDBC driver property:
sendDataAsIs.

serverName string localhost Server where the database
is running.

sessionTimeZone string JDBC driver property:
sessionTimeZone.

sqljCloseStmtsWithOpenResultSetboolean JDBC driver property:
sqljCloseStmtsWithOpenResultSet.

Chapter 1. WebSphere Application Server Liberty Core: Overview 271

Attribute name Data type Default value Description

sqljEnableClassLoaderSpecificProfilesboolean JDBC driver property:
sqljEnableClassLoaderSpecificProfiles.

sslConnection boolean JDBC driver property:
sslConnection.

streamBufferSize int JDBC driver property:
streamBufferSize.

stripTrailingZerosForDecimalNumbersv 2

v 1

JDBC driver property:
stripTrailingZerosForDecimalNumbers.

2 NO

1 YES

sysSchema string JDBC driver property:
sysSchema.

timerLevelForQueryTimeOut v 2

v 1

v -1

JDBC driver property:
timerLevelForQueryTimeOut.

2 QUERYTIMEOUT_CONNECTION_LEVEL

1 QUERYTIMEOUT_STATEMENT_LEVEL

-1 QUERYTIMEOUT_DISABLED

traceDirectory string JDBC driver property:
traceDirectory.

traceFile string JDBC driver property:
traceFile.

traceFileAppend boolean JDBC driver property:
traceFileAppend.

traceFileCount int JDBC driver property:
traceFileCount.

traceFileSize int JDBC driver property:
traceFileSize.

traceLevel int 0 Bitwise combination of the
following constant values:
TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1,
TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4,
TRACE_DRIVER_CONFIGURATION=16,
TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64,
TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256,
TRACE_DIAGNOSTICS=512,
TRACE_SQLJ=1024,
TRACE_META_CALLS=8192,
TRACE_DATASOURCE_CALLS=16384,
TRACE_LARGE_OBJECT_CALLS=32768,
TRACE_SYSTEM_MONITOR=131072,
TRACE_TRACEPOINTS=262144,
TRACE_ALL=-1.

traceOption v 1

v 0

JDBC driver property:
traceOption

1 1

0 0

272 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

translateForBitData v 2

v 1

JDBC driver property:
translateForBitData.

2 SERVER_ENCODING_REPRESENTATION

1 HEX_REPRESENTATION

updateCountForBatch v 2

v 1

JDBC driver property:
updateCountForBatch.

2 TOTAL_UPDATE_COUNT

1 NO_UPDATE_COUNT

useCachedCursor boolean JDBC driver property:
useCachedCursor.

useIdentityValLocalForAutoGeneratedKeysboolean JDBC driver property:
useIdentityValLocalForAutoGeneratedKeys.

useJDBC41DefinitionForGetColumnsv 2

v 1

JDBC driver property:
useJDBC41DefinitionForGetColumns.

2 NO

1 YES

useJDBC4ColumnNameAndLabelSemanticsv 2

v 1

JDBC driver property:
useJDBC4ColumnNameAndLabelSemantics.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

useTransactionRedirect boolean JDBC driver property:
useTransactionRedirect.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

xaNetworkOptimization boolean JDBC driver property:
xaNetworkOptimization.

databaseStore > dataSource > properties.derby.client
Data source properties for Derby Network Client JDBC driver.

false

Attribute name Data type Default value Description

connectionAttributes string JDBC driver property:
connectionAttributes.

Chapter 1. WebSphere Application Server Liberty Core: Overview 273

Attribute name Data type Default value Description

createDatabase v false

v create

JDBC driver property:
createDatabase.

false Do not
automatically
create the
database.

create When the first
connection is
established,
automatically
create the database
if it doesn't exist.

databaseName string JDBC driver property:
databaseName.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1527 Port on which to obtain
database connections.

retrieveMessageText boolean true JDBC driver property:
retrieveMessageText.

securityMechanism v 3

v 7

v 4

v 9

v 8

3 JDBC driver property:
securityMechanism. Values
are: 3
(CLEAR_TEXT_PASSWORD_SECURITY),
4
(USER_ONLY_SECURITY),
7
(ENCRYPTED_PASSWORD_SECURITY),
8
(STRONG_PASSWORD_SUBSTITUTE_SECURITY),
9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY).

3 CLEAR_TEXT_PASSWORD_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

8 STRONG_PASSWORD_SUBSTITUTE_SECURITY

274 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

serverName string localhost Server where the database
is running.

shutdownDatabase v false

v shutdown

JDBC driver property:
shutdownDatabase.

false Do not shut down
the database.

shutdown
Shut down the
database when a
connection is
attempted.

ssl v basic

v off

v peerAuthentication

JDBC driver property: ssl.

basic basic

off off

peerAuthentication
peerAuthentication

traceDirectory string JDBC driver property:
traceDirectory.

traceFile string JDBC driver property:
traceFile.

traceFileAppend boolean JDBC driver property:
traceFileAppend.

traceLevel int Bitwise combination of the
following constant values:
TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1,
TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4,
TRACE_DRIVER_CONFIGURATION=16,
TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64,
TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256,
TRACE_DIAGNOSTICS=512,
TRACE_XA_CALLS=2048,
TRACE_ALL=-1.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

databaseStore > dataSource > properties.derby.embedded
Data source properties for Derby Embedded JDBC driver.

false

Attribute name Data type Default value Description

connectionAttributes string JDBC driver property:
connectionAttributes.

Chapter 1. WebSphere Application Server Liberty Core: Overview 275

Attribute name Data type Default value Description

createDatabase v false

v create

JDBC driver property:
createDatabase.

false Do not
automatically
create the
database.

create When the first
connection is
established,
automatically
create the database
if it doesn't exist.

databaseName string JDBC driver property:
databaseName.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

shutdownDatabase v false

v shutdown

JDBC driver property:
shutdownDatabase.

false Do not shut down
the database.

shutdown
Shut down the
database when a
connection is
attempted.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

databaseStore > dataSource > properties.informix
Data source properties for the Informix JDBC driver.

false

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

276 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

ifxCLIENT_LOCALE string JDBC driver property:
ifxCLIENT_LOCALE.

ifxCPMAgeLimit A period of time with
second precision

JDBC driver property:
ifxCPMAgeLimit. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

ifxCPMInitPoolSize int JDBC driver property:
ifxCPMInitPoolSize.

ifxCPMMaxConnections int JDBC driver property:
ifxCPMMaxConnections.

ifxCPMMaxPoolSize int JDBC driver property:
ifxCPMMaxPoolSize.

ifxCPMMinAgeLimit A period of time with
second precision

JDBC driver property:
ifxCPMMinAgeLimit.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

ifxCPMMinPoolSize int JDBC driver property:
ifxCPMMinPoolSize.

ifxCPMServiceInterval A period of time with
millisecond precision

JDBC driver property:
ifxCPMServiceInterval.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

ifxDBANSIWARN boolean JDBC driver property:
ifxDBANSIWARN.

ifxDBCENTURY string JDBC driver property:
ifxDBCENTURY.

ifxDBDATE string JDBC driver property:
ifxDBDATE.

ifxDBSPACETEMP string JDBC driver property:
ifxDBSPACETEMP.

Chapter 1. WebSphere Application Server Liberty Core: Overview 277

Attribute name Data type Default value Description

ifxDBTEMP string JDBC driver property:
ifxDBTEMP.

ifxDBTIME string JDBC driver property:
ifxDBTIME.

ifxDBUPSPACE string JDBC driver property:
ifxDBUPSPACE.

ifxDB_LOCALE string JDBC driver property:
ifxDB_LOCALE.

ifxDELIMIDENT boolean JDBC driver property:
ifxDELIMIDENT.

ifxENABLE_TYPE_CACHE boolean JDBC driver property:
ifxENABLE_TYPE_CACHE.

ifxFET_BUF_SIZE int JDBC driver property:
ifxFET_BUF_SIZE.

ifxGL_DATE string JDBC driver property:
ifxGL_DATE.

ifxGL_DATETIME string JDBC driver property:
ifxGL_DATETIME.

ifxIFXHOST string localhost JDBC driver property:
ifxIFXHOST.

ifxIFX_AUTOFREE boolean JDBC driver property:
ifxIFX_AUTOFREE.

ifxIFX_DIRECTIVES string JDBC driver property:
ifxIFX_DIRECTIVES.

ifxIFX_LOCK_MODE_WAIT A period of time with
second precision

2s JDBC driver property:
ifxIFX_LOCK_MODE_WAIT.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

ifxIFX_SOC_TIMEOUT A period of time with
millisecond precision

JDBC driver property:
ifxIFX_SOC_TIMEOUT.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

ifxIFX_USEPUT boolean JDBC driver property:
ifxIFX_USEPUT.

278 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

ifxIFX_USE_STRENC boolean JDBC driver property:
ifxIFX_USE_STRENC.

ifxIFX_XASPEC string y JDBC driver property:
ifxIFX_XASPEC.

ifxINFORMIXCONRETRY int JDBC driver property:
ifxINFORMIXCONRETRY.

ifxINFORMIXCONTIME A period of time with
second precision

JDBC driver property:
ifxINFORMIXCONTIME.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

ifxINFORMIXOPCACHE string JDBC driver property:
ifxINFORMIXOPCACHE.

ifxINFORMIXSTACKSIZE int JDBC driver property:
ifxINFORMIXSTACKSIZE.

ifxJDBCTEMP string JDBC driver property:
ifxJDBCTEMP.

ifxLDAP_IFXBASE string JDBC driver property:
ifxLDAP_IFXBASE.

ifxLDAP_PASSWD string JDBC driver property:
ifxLDAP_PASSWD.

ifxLDAP_URL string JDBC driver property:
ifxLDAP_URL.

ifxLDAP_USER string JDBC driver property:
ifxLDAP_USER.

ifxLOBCACHE int JDBC driver property:
ifxLOBCACHE.

ifxNEWCODESET string JDBC driver property:
ifxNEWCODESET.

ifxNEWLOCALE string JDBC driver property:
ifxNEWLOCALE.

ifxNODEFDAC string JDBC driver property:
ifxNODEFDAC.

ifxOPTCOMPIND string JDBC driver property:
ifxOPTCOMPIND.

ifxOPTOFC string JDBC driver property:
ifxOPTOFC.

ifxOPT_GOAL string JDBC driver property:
ifxOPT_GOAL.

ifxPATH string JDBC driver property:
ifxPATH.

ifxPDQPRIORITY string JDBC driver property:
ifxPDQPRIORITY.

Chapter 1. WebSphere Application Server Liberty Core: Overview 279

Attribute name Data type Default value Description

ifxPLCONFIG string JDBC driver property:
ifxPLCONFIG.

ifxPLOAD_LO_PATH string JDBC driver property:
ifxPLOAD_LO_PATH.

ifxPROTOCOLTRACE int JDBC driver property:
ifxPROTOCOLTRACE.

ifxPROTOCOLTRACEFILE string JDBC driver property:
ifxPROTOCOLTRACEFILE.

ifxPROXY string JDBC driver property:
ifxPROXY.

ifxPSORT_DBTEMP string JDBC driver property:
ifxPSORT_DBTEMP.

ifxPSORT_NPROCS boolean JDBC driver property:
ifxPSORT_NPROCS.

ifxSECURITY string JDBC driver property:
ifxSECURITY.

ifxSQLH_FILE string JDBC driver property:
ifxSQLH_FILE.

ifxSQLH_LOC string JDBC driver property:
ifxSQLH_LOC.

ifxSQLH_TYPE string JDBC driver property:
ifxSQLH_TYPE.

ifxSSLCONNECTION string JDBC driver property:
ifxSSLCONNECTION.

ifxSTMT_CACHE string JDBC driver property:
ifxSTMT_CACHE.

ifxTRACE int JDBC driver property:
ifxTRACE.

ifxTRACEFILE string JDBC driver property:
ifxTRACEFILE.

ifxTRUSTED_CONTEXT string JDBC driver property:
ifxTRUSTED_CONTEXT.

ifxUSEV5SERVER boolean JDBC driver property:
ifxUSEV5SERVER.

ifxUSE_DTENV boolean JDBC driver property:
ifxUSE_DTENV.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

280 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1526 Port on which to obtain
database connections.

roleName string JDBC driver property:
roleName.

serverName string Server where the database
is running.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

databaseStore > dataSource > properties.informix.jcc
Data source properties for the IBM Data Server Driver for JDBC and SQLJ for Informix.

false

Attribute name Data type Default value Description

DBANSIWARN boolean JDBC driver property:
DBANSIWARN.

DBDATE string JDBC driver property:
DBDATE.

DBPATH string JDBC driver property:
DBPATH.

DBSPACETEMP string JDBC driver property:
DBSPACETEMP.

DBTEMP string JDBC driver property:
DBTEMP.

DBUPSPACE string JDBC driver property:
DBUPSPACE.

DELIMIDENT boolean JDBC driver property:
DELIMIDENT.

IFX_DIRECTIVES v ON

v OFF

JDBC driver property:
IFX_DIRECTIVES.

ON ON

OFF OFF

IFX_EXTDIRECTIVES v ON

v OFF

JDBC driver property:
IFX_EXTDIRECTIVES.

ON ON

OFF OFF

IFX_UPDDESC string JDBC driver property:
IFX_UPDDESC.

Chapter 1. WebSphere Application Server Liberty Core: Overview 281

Attribute name Data type Default value Description

IFX_XASTDCOMPLIANCE_XAENDv 1

v 0

JDBC driver property:
IFX_XASTDCOMPLIANCE_XAEND.

1 1

0 0

INFORMIXOPCACHE string JDBC driver property:
INFORMIXOPCACHE.

INFORMIXSTACKSIZE string JDBC driver property:
INFORMIXSTACKSIZE.

NODEFDAC v yes

v no

JDBC driver property:
NODEFDAC.

yes yes

no no

OPTCOMPIND v 2

v 1

v 0

JDBC driver property:
OPTCOMPIND.

2 2

1 1

0 0

OPTOFC v 1

v 0

JDBC driver property:
OPTOFC.

1 1

0 0

PDQPRIORITY v HIGH

v LOW

v OFF

JDBC driver property:
PDQPRIORITY.

HIGH HIGH

LOW LOW

OFF OFF

PSORT_DBTEMP string JDBC driver property:
PSORT_DBTEMP.

PSORT_NPROCS string

Maximum: 10

JDBC driver property:
PSORT_NPROCS.

STMT_CACHE v 1

v 0

JDBC driver property:
STMT_CACHE.

1 1

0 0

currentLockTimeout A period of time with
second precision

2s JDBC driver property:
currentLockTimeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

282 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

deferPrepares boolean JDBC driver property:
deferPrepares.

driverType int 4 JDBC driver property:
driverType.

enableNamedParameterMarkersint JDBC driver property:
enableNamedParameterMarkers.
Values are: 1 (YES) or 2
(NO).

enableSeamlessFailover int JDBC driver property:
enableSeamlessFailover.
Values are: 1 (YES) or 2
(NO).

enableSysplexWLB boolean JDBC driver property:
enableSysplexWLB.

fetchSize int JDBC driver property:
fetchSize.

fullyMaterializeLobData boolean JDBC driver property:
fullyMaterializeLobData.

keepDynamic int JDBC driver property:
keepDynamic.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1526 Port on which to obtain
database connections.

progressiveStreaming v 2

v 1

JDBC driver property:
progressiveStreaming.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

queryDataSize int

Minimum: 4096

Maximum: 10485760

JDBC driver property:
queryDataSize.

Chapter 1. WebSphere Application Server Liberty Core: Overview 283

Attribute name Data type Default value Description

resultSetHoldability v 2

v 1

JDBC driver property:
resultSetHoldability. Values
are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

resultSetHoldabilityForCatalogQueriesv 2

v 1

JDBC driver property:
resultSetHoldabilityForCatalogQueries.
Values are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

retrieveMessagesFromServerOnGetMessageboolean true JDBC driver property:
retrieveMessagesFromServerOnGetMessage.

securityMechanism v 3

v 7

v 4

v 9

JDBC driver property:
securityMechanism. Values
are: 3
(CLEAR_TEXT_PASSWORD_SECURITY),
4
(USER_ONLY_SECURITY),
7
(ENCRYPTED_PASSWORD_SECURITY),
9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY).

3 CLEAR_TEXT_PASSWORD_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

serverName string localhost Server where the database
is running.

traceDirectory string JDBC driver property:
traceDirectory.

traceFile string JDBC driver property:
traceFile.

traceFileAppend boolean JDBC driver property:
traceFileAppend.

284 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

traceLevel int Bitwise combination of the
following constant values:
TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1,
TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4,
TRACE_DRIVER_CONFIGURATION=16,
TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64,
TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256,
TRACE_DIAGNOSTICS=512,
TRACE_SQLJ=1024,
TRACE_META_CALLS=8192,
TRACE_DATASOURCE_CALLS=16384,
TRACE_LARGE_OBJECT_CALLS=32768,
TRACE_SYSTEM_MONITOR=131072,
TRACE_TRACEPOINTS=262144,
TRACE_ALL=-1.

useJDBC4ColumnNameAndLabelSemanticsint JDBC driver property:
useJDBC4ColumnNameAndLabelSemantics.
Values are: 1 (YES) or 2
(NO).

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

databaseStore > dataSource > properties.microsoft.sqlserver
Data source properties for Microsoft SQL Server JDBC Driver.

false

Attribute name Data type Default value Description

URL string URL for connecting to the
database. Example:
jdbc:sqlserver://
localhost:1433;databaseName=myDB.

applicationIntent v ReadOnly

v ReadWrite

JDBC driver property:
applicationIntent.

ReadOnly
ReadOnly

ReadWrite
ReadWrite

applicationName string JDBC driver property:
applicationName.

authenticationScheme v NativeAuthentication

v JavaKerberos

JDBC driver property:
authenticationScheme.

NativeAuthentication
NativeAuthentication

JavaKerberos
JavaKerberos

Chapter 1. WebSphere Application Server Liberty Core: Overview 285

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

encrypt boolean JDBC driver property:
encrypt.

failoverPartner string JDBC driver property:
failoverPartner.

hostNameInCertificate string JDBC driver property:
hostNameInCertificate.

instanceName string JDBC driver property:
instanceName.

integratedSecurity boolean JDBC driver property:
integratedSecurity.

lastUpdateCount boolean JDBC driver property:
lastUpdateCount.

lockTimeout A period of time with
millisecond precision

JDBC driver property:
lockTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

multiSubnetFailover boolean JDBC driver property:
multiSubnetFailover.

packetSize int

Minimum: 512

Maximum: 32767

JDBC driver property:
packetSize.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

286 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

responseBuffering v full

v adaptive

JDBC driver property:
responseBuffering.

full full

adaptive
adaptive

selectMethod v direct

v cursor

JDBC driver property:
selectMethod.

direct direct

cursor cursor

sendStringParametersAsUnicodeboolean false JDBC driver property:
sendStringParametersAsUnicode.

sendTimeAsDatetime boolean JDBC driver property:
sendTimeAsDatetime.

serverName string localhost Server where the database
is running.

trustServerCertificate boolean JDBC driver property:
trustServerCertificate.

trustStore string JDBC driver property:
trustStore.

trustStorePassword Reversably encoded
password (string)

JDBC driver property:
trustStorePassword.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

workstationID string JDBC driver property:
workstationID.

xopenStates boolean JDBC driver property:
xopenStates.

databaseStore > dataSource > properties.oracle
Data source properties for Oracle JDBC driver.

false

Attribute name Data type Default value Description

ONSConfiguration string JDBC driver property:
ONSConfiguration.

TNSEntryName string JDBC driver property:
TNSEntryName.

URL string URL for connecting to the
database. Examples:
jdbc:oracle:thin:@//
localhost:1521/sample or
jdbc:oracle:oci:@//
localhost:1521/sample.

connectionProperties string JDBC driver property:
connectionProperties.

Chapter 1. WebSphere Application Server Liberty Core: Overview 287

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

driverType v oci

v thin

thin JDBC driver property:
driverType.

oci oci

thin thin

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

networkProtocol string JDBC driver property:
networkProtocol.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1521 Port on which to obtain
database connections.

serverName string localhost Server where the database
is running.

serviceName string JDBC driver property:
serviceName.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

databaseStore > dataSource > properties.sybase
Data source properties for Sybase JDBC driver.

false

Attribute name Data type Default value Description

SERVER_INITIATED_TRANSACTIONSv false

v true

false JDBC driver property:
SERVER_INITIATED_TRANSACTIONS.

false false

true true

connectionProperties string SELECT_OPENS_CURSOR=trueJDBC driver property:
connectionProperties.

databaseName string JDBC driver property:
databaseName.

288 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

networkProtocol v SSL

v socket

JDBC driver property:
networkProtocol.

SSL SSL

socket socket

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 5000 Port on which to obtain
database connections.

resourceManagerName string JDBC driver property:
resourceManagerName.

serverName string localhost Server where the database
is running.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

version int JDBC driver property:
version.

databaseStore > dataSource > recoveryAuthData
Authentication data for transaction recovery.

false

Attribute name Data type Default value Description

password Reversably encoded
password (string)

Password of the user to use
when connecting to the EIS.
The value can be stored in
clear text or encoded form.
It is recommended that you
encode the password. To do
so, use the securityUtility
tool with the encode
option.

user string Name of the user to use
when connecting to the EIS.

Chapter 1. WebSphere Application Server Liberty Core: Overview 289

grantType
An access token grant type (as detailed in the OAuth specification) that is allowed for the provider.
The equivalent provider parameter in the full application server profile is
oauth20.grant.types.allowed.

false

string

jwtGrantType
The grant_type for JWT Token handler

false

Attribute name Data type Default value Description

clockSkew A period of time with
second precision

300s The time difference allowed
between OpenID Connect
Client and OpenID Connect
Provider systems when
they are not synchronized.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

iatRequired boolean false The iat claim in a jwt token
is required.

maxJtiCacheSize long

Minimum: 1

10000 The maximum size of
cache, which keeps jti data
of jwt token, to prevent the
jti from being reused.

tokenMaxLifetime A period of time with
second precision

7200s The time indicates the
maximum lifetime of an
alive jwt token since its
issued-at-time. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

library
Reference to shared library containing the mediator plugin class.

false

290 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

name string Name of shared library for
administrators

library > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

library > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

Chapter 1. WebSphere Application Server Liberty Core: Overview 291

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

library > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

localStore
Clients are defined in server.xml and tokens are cached in the server.

false

Attribute name Data type Default value Description

tokenStoreSize long 2000 Token store size

localStore > client
A unique configuration ID.

false

Attribute name Data type Default value Description

applicationType v native

v web

web The type of application best
describing the client.

native native

web web

displayname string Display name of the client.

enabled boolean true Client is enabled if true,
disabled if false.

292 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

functionalUserId string A user identifier to be
associated with access
tokens obtained by this
client using the client
credentials grant type.
When this client parameter
is specified, the value is
returned in the
functional_user_id response
parameter from the
introspect endpoint.

id string A unique configuration ID.

introspectTokens boolean false Boolean value specifying
whether the client is
allowed to access the
introspection endpoint to
introspect tokens issued by
the authorization server.

name string Name of the client
(sometimes referred to as
the Id).

preAuthorizedScope string Space separated list of
scope values that the client
can use when requesting
access tokens that are
deemed to have been
pre-approved by the
resource owner and
therefore does not require
the resource owner's
consent.

scope string Specify by spaces the list of
scopes of the client.

secret Reversably encoded
password (string)

Secret key of the client.

sessionManaged boolean false Boolean indicating whether
the client participates in
OpenID session
management.

subjectType v public Subject type requested for
response to this client.

public public

tokenEndpointAuthMethod v client_secret_post

v none

v client_secret_basic

client_secret_basic The requested
authentication method for
the token endpoint of the
client.

client_secret_post
client_secret_post

none none

client_secret_basic
client_secret_basic

Chapter 1. WebSphere Application Server Liberty Core: Overview 293

localStore > client > functionalUserGroupIds
A list of group ids to be to be associated with access tokens obtained by this client using the
client credentials grant type. When this client parameter is specified, the value is returned in
the functional_user_groupIds response parameter from the introspect endpoint.

false

string

localStore > client > grantTypes
Grant types the client may use.

false

localStore > client > postLogoutRedirectUris
Array of URLs supplied by the RP to which it may request that the end-user's user agent be
redirected using the post_logout_redirect_uri parameter after a logout has been performed.

false

string

localStore > client > redirect
Array of redirect URIs for use in redirect-based flows such as the authorization code and
implicit grant types of the client. The first redirect URI is used as a default, when none is
specified in a request.

false

string

localStore > client > responseTypes
Response types the client may use.

false

mediatorClassname
Mediator plugin class name. The equivalent provider parameter in the full application server profile
is oauth20.mediator.classnames.

false

string

OpenId Authentication (openId)
A variety of custom properties are available for OpenId authentication.
v authFilter

– host
– remoteAddress
– requestUrl
– userAgent
– webApp

v userInfo

Attribute name Data type Default value Description

authFilterRef A reference to top level
authFilter element (string).

Specifies the authentication
filter reference.

294 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

authenticationMode v checkid_immediate

v checkid_setup

checkid_setup Specifies the OpenID
provider authentication
mode either
checkid_immediate or
checkid_setup.
checkid_setup is the default
authentication mode.

checkid_immediate
The
checkid_immediate
disables the
browser interact
with the user.

checkid_setup
The checkid_setup
enables the openID
provider to
interact with the
user, to request
authentication or
self-registration
before returning a
result to the
openId relying
party.

hashAlgorithm v SHA256

v SHA1

SHA256 Specifies the hash
algorithm that is used to
sign and encrypt the
OpenID provider response
parameters.

SHA256
Secure hash
algorithm SHA256

SHA1 Secure hash
algorithm SHA1

hostNameVerificationEnabledboolean true Specifies whether enable
host name verification or
not.

httpsRequired boolean true Require SSL communication
between the OpenID
relying party and provider
service.

mapIdentityToRegistryUser boolean false Specifies whether to map
identity to registry user.
The user registry is not
used to create the user
subject.

providerIdentifier string Specifies a default OpenID
provider URL where users
get the Open IDs.

realmIdentifier string Specifies the attribute for
the OpenID provider name.

Chapter 1. WebSphere Application Server Liberty Core: Overview 295

Attribute name Data type Default value Description

sslRef A reference to top level ssl
element (string).

Specifies an ID of the SSL
configuration is used to
connect to the OpenID
provider.

useClientIdentity boolean false Specifies whether to use the
client OpenID identity to
create a user subject. If set
to true, only the OpenID
client identity is used. If set
to false and the first
element of userInfoRef is
found, we use it to create a
user subject. Otherwise, we
use the OpenID identity to
create a user subject.

userInfoRef List of references to top
level userInfo elements
(comma-separated string).

email Specifies a list of userInfo
references separated by
commas for the OpenID
provider to include in the
response.

authFilter
Specifies the authentication filter reference.

false

authFilter > host
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

name string Specifies the name.

authFilter > remoteAddress
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

ip string Specifies the IP address.

296 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

matchType v lessThan

v equals

v greaterThan

v contains

v notContain

contains Specifies the match type.

lessThan
Less than

equals Equals

greaterThan
Greater than

contains
Contains

notContain
Not contain

authFilter > requestUrl
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

urlPattern string Specifies the URL pattern.

authFilter > userAgent
A unique configuration ID.

false

Attribute name Data type Default value Description

agent string Specifies the user agent

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

authFilter > webApp
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

Chapter 1. WebSphere Application Server Liberty Core: Overview 297

Attribute name Data type Default value Description

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

name string Specifies the name.

userInfo
Specifies a list of userInfo references separated by commas for the OpenID provider to include in the
response.

false

Attribute name Data type Default value Description

alias string email Specifies an alias name.

count int

Minimum: 1

1 Specifies how much
userInfo is included in the
response of the openID
provider.

id string A unique configuration ID.

required boolean true Specifies whether user
information is required or
not.

uriType string http://axschema.org/
contact/email

Specifies a URI type.

OpenID Connect Client (openidConnectClient)
OpenID Connect client.
v audiences
v authFilter

– host
– remoteAddress
– requestUrl
– userAgent
– webApp

Attribute name Data type Default value Description

authFilterRef A reference to top level
authFilter element (string).

Specifies the authentication
filter reference.

authnSessionDisabled boolean true An authentication session
cookie will not be created
for inbound propagation.
The client is expected to
send a valid OAuth token
for every request.

authorizationEndpointUrl string Specifies an Authorization
end point URL.

298 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

clientId string Identity of the client.

clientSecret Reversably encoded
password (string)

Secret key of the client.

createSession boolean true Specifies whether to create
an HttpSession if the
current HttpSession does
not exist.

disableIssChecking boolean false Do not check for the issuer
while validating the json
response for inbound token
propagation.

disableLtpaCookie boolean false Do not create an LTPA
Token during processing of
the OAuth token. Create a
cookie of the specific
Service Provider instead.

grantType v implicit

v authorization_code

authorization_code Specifies the grant type to
use for this client.

implicit
Implicit grant type

authorization_code
Authorization code
grant type

groupIdentifier string groupIds Specifies a JSON attribute
in the ID token that is used
as the name of the group
that the authenticated
principal is a member of.

headerName string The name of the header
which carries the inbound
token in the request.

hostNameVerificationEnabledboolean false Specifies whether to enable
host name verification.

httpsRequired boolean true Require SSL communication
between the OpenID
relying party and provider
service.

id string A unique configuration ID.

inboundPropagation v supported

v none

v required

none Controls the operation of
the token inbound
propagation of the OpenID
relying party.

supported
Support inbound
token propagation

none Do not support
inbound token
propagation

required
Require inbound
token propagation

Chapter 1. WebSphere Application Server Liberty Core: Overview 299

Attribute name Data type Default value Description

includeIdTokenInSubject boolean true Specifies whether to
include ID token in the
client subject.

initialStateCacheCapacity int

Minimum: 0

3000 Specifies the beginning
capacity of state cache. The
capacity grows bigger
when needed by itself.

isClientSideRedirectSupportedboolean true Specifies whether the client
supports redirect at client
side.

issuerIdentifier string An Issuer Identifier is a
case-sensitive URL using
the HTTPS scheme that
contains scheme, host and
optionally port number and
path components.

jwkEndpointUrl string Specifies a JWK end point
URL.

mapIdentityToRegistryUser boolean false Specifies whether to map
the identity to a registry
user. If this is set to false,
then the user registry is not
used to create the user
subject.

nonceEnabled boolean false Enable the nonce parameter
in the authorization code
flow.

reAuthnCushion A period of time with
millisecond precision

0s The time period to
authenticate a user again
when its tokens are about
to expire. The expiration
time of an ID token is
specified by its exp claim.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

reAuthnOnAccessTokenExpireboolean true Authenticate a user again
when its authenticating
access token expires and
disableLtpaCookie is set to
true.

realmIdentifier string realmName Specifies a JSON attribute
in the ID token that is used
as the realm name.

300 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

realmName string Specifies a realm name to
be used to create the user
subject when the
mapIdentityToRegistryUser
is set to false.

redirectToRPHostAndPort string Specifies a redirect OpenID
relying party host and port
number.

scope tokenType openid profile OpenID Connect scope (as
detailed in the OpenID
Connect specification) that
is allowed for the provider.

signatureAlgorithm v HS256

v none

v RS256

HS256 Specifies the signature
algorithm that will be used
to verify the signature of
the ID token.

HS256 Use the HS256
signature
algorithm to sign
and verify tokens

none Tokens are not
required to be
signed

RS256 Use the RS256
signature
algorithm to sign
and verify tokens

sslRef A reference to top level ssl
element (string).

Specifies an ID of the SSL
configuration that is used
to connect to the OpenID
Connect provider.

tokenEndpointAuthMethod v post

v basic

post The method to use for
sending credentials to the
token endpoint of the
OpenID Connect provider
in order to authenticate the
client.

post post

basic basic

tokenEndpointUrl string Specifies a token end point
URL.

trustAliasName string Key alias name to locate
public key for signature
validation with asymmetric
algorithm.

trustStoreRef A reference to top level
keyStore element (string).

A keystore containing the
public key necessary for
verifying the signature of
the ID token.

Chapter 1. WebSphere Application Server Liberty Core: Overview 301

Attribute name Data type Default value Description

uniqueUserIdentifier string uniqueSecurityName Specifies a JSON attribute
in the ID token that is used
as the unique user name as
it applies to the
WSCredential in the
subject.

userIdentifier string Specifies a JSON attribute
in the ID token that is used
as the user principal name
in the subject. If no value is
specified, the JSON
attribute "sub" is used.

userIdentityToCreateSubject string sub Specifies a user identity in
the ID token used to create
the user subject.

validationEndpointUrl string The endpoint URL for
validating the token
inbound propagation. The
type of endpoint is decided
by the validationMethod.

validationMethod v introspect

v userinfo

introspect The method of validation
on the token inbound
propagation.

introspect
Validate inbound
tokens using token
introspection

userinfo
Validate inbound
tokens using the
userinfo end point

audiences
The trusted audience list that is verified against the aud claim in the JSON web token.

false

string

authFilter
Specifies the authentication filter reference.

false

authFilter > host
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

302 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

name string Specifies the name.

authFilter > remoteAddress
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

ip string Specifies the IP address.

matchType v lessThan

v equals

v greaterThan

v contains

v notContain

contains Specifies the match type.

lessThan
Less than

equals Equals

greaterThan
Greater than

contains
Contains

notContain
Not contain

authFilter > requestUrl
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

urlPattern string Specifies the URL pattern.

authFilter > userAgent
A unique configuration ID.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 303

Attribute name Data type Default value Description

agent string Specifies the user agent

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

authFilter > webApp
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

name string Specifies the name.

OpenID Connect Server Provider (openidConnectProvider)
OpenID Connect server provider
v claimToUserRegistryMap

– property
v customClaims
v discovery

– claimsSupported
– grantTypesSupported
– idTokenSigningAlgValuesSupported
– responseModesSupported
– responseTypesSupported
– scopesSupported
– tokenEndpointAuthMethodsSupported

v oauthProvider
– autoAuthorizeClient
– databaseStore

- dataSource
v connectionManager
v containerAuthData
v jaasLoginContextEntry
v jdbcDriver

304 WebSphere Application Server Liberty Core 8.5.5

– library
- file
- fileset
- folder

v properties
v properties.datadirect.sqlserver
v properties.db2.i.native
v properties.db2.i.toolbox
v properties.db2.jcc
v properties.derby.client
v properties.derby.embedded
v properties.informix
v properties.informix.jcc
v properties.microsoft.sqlserver
v properties.oracle
v properties.sybase
v recoveryAuthData

– grantType
– jwtGrantType
– library

- file
- fileset
- folder

– localStore
- client
v functionalUserGroupIds
v grantTypes
v postLogoutRedirectUris
v redirect
v responseTypes

– mediatorClassname
v scopeToClaimMap

– property

Attribute name Data type Default value Description

allowDefaultSsoCookieName boolean false When this property is set to
true, the default SSO cookie
name, ltpaToken2, is used if
a custom SSO cookie name
is not configured. If a
custom cookie name is
configured for SSO, that
cookie name is used. If a
custom cookie name is not
configured and this
property is set to false, an
auto-generated SSO cookie
name will be used.

Chapter 1. WebSphere Application Server Liberty Core: Overview 305

Attribute name Data type Default value Description

id string A unique configuration ID.

idTokenLifetime A period of time with
second precision

2h Time that ID token is valid
(seconds). Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

issuerIdentifier string Specify an issuer identifier
for the issuer of the
response.

jwkEnabled boolean false Enables or disables JWK.

jwkRotationTime A period of time with
minute precision

720m Amount of time after which
a new JWK will be
generated. Specify a
positive integer followed by
a unit of time, which can be
hours (h) or minutes (m).
For example, specify 30
minutes as 30m. You can
include multiple values in a
single entry. For example,
1h30m is equivalent to 90
minutes.

jwkSigningKeySize v 4096

v 1024

v 2048

2048 Size measured in bits of the
signing key.

4096 4096 bits

1024 1024 bits

2048 2048 bits

keyAliasName string Key alias name to locate
the private key for signing
with an asymmetric
algorithm.

keyStoreRef A reference to top level
keyStore element (string).

opKeyStore A keystore containing the
private key necessary for
signing with an asymmetric
algorithm.

oauthProviderRef A reference to top level
oauthProvider element
(string).

A reference to the ID of an
OAuth provider.

sessionManaged boolean false Indicate by true or false
whether session
management is supported.
Default is false.

306 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

signatureAlgorithm v HS256

v none

v RS256

HS256 Specify the signature
algorithm that will be used
to sign the ID token.

HS256 HMAC using
SHA-256 hash

none No signature

RS256 RSASSA-PKCS-
v1_5 using
SHA-256 hash

trustStoreRef A reference to top level
keyStore element (string).

A keystore containing the
public key necessary for
verifying a signature of the
JWT token.

claimToUserRegistryMap
Specify the user registry key for the claim.

false

Attribute name Data type Default value Description

address string postalAddress Specify the user registry
key that will be retrieved
for the address claim.

email string mail Specify the user registry
key that will be retrieved
for the email claim.

given_name string givenName Specify the user registry
key that will be retrieved
for the given_name claim.

name string displayName Specify the user registry
key that will be retrieved
for the name claim.

phone_number string telephoneNumber Specify the user registry
key that will be retrieved
for the phone_number
claim.

picture string photoURL Specify the user registry
key that will be retrieved
for the picture claim.

claimToUserRegistryMap > property
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Specify the name of the
property

value string Specify the value of the
property

Chapter 1. WebSphere Application Server Liberty Core: Overview 307

customClaims
The extra claims to be put in the payloads of the ID Token, in addition to the default realmName,
uniqueSecurityName and groupIds claims.

false

string

discovery
Discovery is based on OpenID Connect and Jazz Authorization Server Profile.

false

Attribute name Data type Default value Description

claimsParameterSupported boolean false Indicate by true or false
whether claims parameter
is supported.

requestParameterSupported boolean false Indicate by true or false
whether request parameter
is supported.

requestUriParameterSupportedboolean false Indicate by true or false
whether request URI
parameter is supported.

requireRequestUriRegistrationboolean false Indicate by true or false
whether require request
URI registration is
supported.

discovery > claimsSupported
Specify by comma the list of claims that will be supported.

false

string

discovery > grantTypesSupported
Specify by comma the list of the grant types that will be used.

false

discovery > idTokenSigningAlgValuesSupported
Specify the signature algorithm that will be used to sign the ID token.

false

discovery > responseModesSupported
Specify by comma the list of the response modes that will be used.

false

discovery > responseTypesSupported
Specify by comma the list of the response types that will be supported by the OP.

false

discovery > scopesSupported
Specify by comma the list of scopes that will be supported.

false

string

discovery > tokenEndpointAuthMethodsSupported
Specify by comma the list of the token endpoint authentication methods that will be used.

308 WebSphere Application Server Liberty Core 8.5.5

false

oauthProvider
A reference to the ID of an OAuth provider.

false

Attribute name Data type Default value Description

accessTokenLength long 40 Length of the generated
OAuth access token. The
equivalent provider
parameter in the full
application server profile is
oauth20.access.token.length.

accessTokenLifetime A period of time with
second precision

7200 Time that access token is
valid (seconds). The
equivalent provider
parameter in the full
application server profile is
oauth20.token.lifetime.seconds.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

allowPublicClients boolean false A value of false disables the
access of public clients as
detailed in the OAuth
specification. The
equivalent provider
parameter in the full
application server profile is
oauth20.allow.public.clients.

authorizationCodeLength long 30 Length of the generated
authorization code. The
equivalent provider
parameter in the full
application server profile is
oauth20.code.length.

Chapter 1. WebSphere Application Server Liberty Core: Overview 309

Attribute name Data type Default value Description

authorizationCodeLifetime A period of time with
second precision

60 Authorization code lifetime
(seconds). The equivalent
provider parameter in the
full application server
profile is
oauth20.code.lifetime.seconds.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

authorizationErrorTemplate string URL of a custom
authorization error page
template. The equivalent
provider parameter in the
full application server
profile is
oauth20.authorization.error.template.

authorizationFormTemplate string template.html URL of a custom
authorization page
template. The equivalent
provider parameter in the
full application server
profile is
oauth20.authorization.form.template.

authorizationGrantLifetime A period of time with
second precision

604800 Authorization grant lifetime
(seconds). The equivalent
provider parameter in the
full application server
profile is
oauth20.max.authorization.grant.lifetime.seconds.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

autoAuthorize boolean false To use auto authorization,
append the autoAuthorize
parameter to requests with
a value of true. The
equivalent provider
parameter in the full
application server profile is
oauth20.autoauthorize.param.

310 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

autoAuthorizeParam string autoauthz To use auto authorization,
append the autoAuthorize
parameter to requests with
a value of true. The
equivalent provider
parameter in the full
application server profile is
oauth20.autoauthorize.param.

certAuthentication boolean false Enable the authentication of
client certificate in the https
request.

characterEncoding string Set request character
encoding to this value. The
equivalent provider
parameter in the full
application server profile is
characterEncoding.

clientTokenCacheSize long Maximum number of
entries in the client token
cache.

clientURISubstitutions string Optional value to replace
client URI strings for
dynamic hostnames. The
equivalent provider
parameter in the full
application server profile is
oauth20.client.uri.substitutions.

consentCacheEntryLifetime A period of time with
second precision

1800 Time that an entry in the
consent cache is valid
(seconds). Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

consentCacheSize long

Minimum: 0

1000 Maximum number of
entries allowed in the
consent cache.

coverageMapSessionMaxAge A period of time with
second precision

600 The max-age value
(seconds) for the
cache-control header of the
coverage map service.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 311

Attribute name Data type Default value Description

customLoginURL string login.jsp URL of a custom login
page. The equivalent
provider parameter in the
full application server
profile is
oauth20.authorization.loginURL.

filter string URI filter selects requests to
be authorized by this
provider. The equivalent
provider parameter in the
full application server
profile is Filter.

httpsRequired boolean true SSL communication
between the OAuth client
and provider is required.

includeTokenInSubject boolean true If the value is true, add the
com.ibm.wsspi.security.oauth20.token.WSOAuth20Token
as a private credential. The
equivalent provider
parameter in the full
application server profile is
includeToken.

issueRefreshToken boolean true A value of false disables
generation and the use of
refresh tokens. The
equivalent provider
parameter in the full
application server profile is
oauth20.issue.refresh.token.

libraryRef A reference to top level
library element (string).

Reference to shared library
containing the mediator
plugin class.

oauthOnly boolean true If the value is true, then
requests matching the filter
must have an access token
or they will be failed. If
false, then matching
requests will be checked for
other authentication data if
no access token is present.
The equivalent provider
parameter in the full
application server profile is
oauthOnly.

refreshTokenLength long 50 Length of generated refresh
token. The equivalent
provider parameter in the
full application server
profile is
oauth20.refresh.token.length.

skipResourceOwnerValidationboolean false If the value is true, skip
validation of resource
owner.

userClientTokenLimit long Token limit for each user
and client combination.

312 WebSphere Application Server Liberty Core 8.5.5

oauthProvider > autoAuthorizeClient
Name of a client that is allowed to use auto authorization. The equivalent provider parameter in
the full application server profile is oauth20.autoauthorize.clients.

false

string

oauthProvider > databaseStore
Clients are defined and tokens are cached in the database.

false

Attribute name Data type Default value Description

cleanupExpiredTokenInterval A period of time with
second precision

3600 Expired token cleanup
interval (seconds). The
equivalent provider
parameter in the full
application server profile is
oauthjdbc.CleanupInterval.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

dataSourceRef A reference to top level
dataSource element (string).

Reference to the data
source for the store.

password Reversably encoded
password (string)

Password used to access
the database.

schema string OAuthDBSchema Schema

user string User

oauthProvider > databaseStore > dataSource
Reference to the data source for the store.

false

Attribute name Data type Default value Description

beginTranForResultSetScrollingAPIsboolean true Attempt transaction
enlistment when result set
scrolling interfaces are
used.

beginTranForVendorAPIs boolean true Attempt transaction
enlistment when vendor
interfaces are used.

Chapter 1. WebSphere Application Server Liberty Core: Overview 313

Attribute name Data type Default value Description

commitOrRollbackOnCleanupv commit

v rollback

Determines how to clean
up connections that might
be in a database unit of
work (AutoCommit=false)
when the connection is
closed or returned to the
pool.

commit
Clean up the
connection by
committing.

rollback
Clean up the
connection by
rolling back.

connectionManagerRef A reference to top level
connectionManager element
(string).

Connection manager for a
data source.

connectionSharing v MatchOriginalRequest

v MatchCurrentState

MatchOriginalRequest Specifies how connections
are matched for sharing.

MatchOriginalRequest
When sharing
connections, match
based on the
original connection
request.

MatchCurrentState
When sharing
connections, match
based on the
current state of the
connection.

containerAuthDataRef A reference to top level
authData element (string).

Default authentication data
for container managed
authentication that applies
when bindings do not
specify an
authentication-alias for a
resource reference with
res-auth=CONTAINER.

314 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

enableConnectionCasting boolean false Indicates that connections
obtained from the data
source should be castable to
interface classes that the
JDBC vendor connection
implementation
implements. Enabling this
option incurs additional
overhead on each
getConnection operation. If
vendor JDBC interfaces are
needed less frequently, it
might be more efficient to
leave this option disabled
and use
Connection.unwrap(interface)
only where it is needed.

isolationLevel v
TRANSACTION_REPEATABLE_READ

v
TRANSACTION_READ_COMMITTED

v
TRANSACTION_SERIALIZABLE

v
TRANSACTION_READ_UNCOMMITTED

v
TRANSACTION_SNAPSHOT

Default transaction isolation
level.

TRANSACTION_REPEATABLE_READ
Dirty reads and
non-repeatable
reads are
prevented;
phantom reads can
occur.

TRANSACTION_READ_COMMITTED
Dirty reads are
prevented;
non-repeatable
reads and
phantom reads can
occur.

TRANSACTION_SERIALIZABLE
Dirty reads,
non-repeatable
reads and
phantom reads are
prevented.

TRANSACTION_READ_UNCOMMITTED
Dirty reads,
non-repeatable
reads and
phantom reads can
occur.

TRANSACTION_SNAPSHOT
Snapshot isolation
for Microsoft SQL
Server JDBC
Driver and
DataDirect
Connect for JDBC
driver.

Chapter 1. WebSphere Application Server Liberty Core: Overview 315

Attribute name Data type Default value Description

jaasLoginContextEntryRef A reference to top level
jaasLoginContextEntry
element (string).

JAAS login context entry
for authentication.

jdbcDriverRef A reference to top level
jdbcDriver element (string).

JDBC driver for a data
source.

jndiName string JNDI name for a data
source.

queryTimeout A period of time with
second precision

Default query timeout for
SQL statements. In a JTA
transaction,
syncQueryTimeoutWithTransactionTimeout
can override this default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

recoveryAuthDataRef A reference to top level
authData element (string).

Authentication data for
transaction recovery.

statementCacheSize int

Minimum: 0

10 Maximum number of
cached statements per
connection.

supplementalJDBCTrace boolean Supplements the JDBC
driver trace that is logged
when JDBC driver trace is
enabled in
bootstrap.properties. JDBC
driver trace specifications
include:
com.ibm.ws.database.logwriter,
com.ibm.ws.db2.logwriter,
com.ibm.ws.derby.logwriter,
com.ibm.ws.informix.logwriter,
com.ibm.ws.oracle.logwriter,
com.ibm.ws.sqlserver.logwriter,
com.ibm.ws.sybase.logwriter.

syncQueryTimeoutWithTransactionTimeoutboolean false Use the time remaining (if
any) in a JTA transaction as
the default query timeout
for SQL statements.

transactional boolean true Enable participation in
transactions that are
managed by the application
server.

316 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

type v javax.sql.DataSource

v javax.sql.XADataSource

v
javax.sql.ConnectionPoolDataSource

Type of data source.

javax.sql.DataSource
javax.sql.DataSource

javax.sql.XADataSource
javax.sql.XADataSource

javax.sql.ConnectionPoolDataSource
javax.sql.ConnectionPoolDataSource

oauthProvider > databaseStore > dataSource > connectionManager
Connection manager for a data source.

false

Attribute name Data type Default value Description

agedTimeout A period of time with
second precision

-1 Amount of time before a
physical connection can be
discarded by pool
maintenance. A value of -1
disables this timeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

connectionTimeout A period of time with
second precision

30s Amount of time after which
a connection request times
out. A value of -1 disables
this timeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maxConnectionsPerThread int

Minimum: 0

Limits the number of open
connections on each thread.

Chapter 1. WebSphere Application Server Liberty Core: Overview 317

Attribute name Data type Default value Description

maxIdleTime A period of time with
second precision

30m Amount of time after which
an unused or idle
connection can be
discarded during pool
maintenance, if doing so
does not reduce the pool
below the minimum size. A
value of -1 disables this
timeout. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

maxPoolSize int

Minimum: 0

50 Maximum number of
physical connections for a
pool. A value of 0 means
unlimited.

minPoolSize int

Minimum: 0

Minimum number of
physical connections to
maintain in the pool. The
pool is not pre-populated.
Aged timeout can override
the minimum.

numConnectionsPerThreadLocalint

Minimum: 0

Caches the specified
number of connections for
each thread.

318 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

purgePolicy v ValidateAllConnections

v FailingConnectionOnly

v EntirePool

EntirePool Specifies which connections
to destroy when a stale
connection is detected in a
pool.

ValidateAllConnections
When a stale
connection is
detected,
connections are
tested and those
found to be bad
are closed.

FailingConnectionOnly
When a stale
connection is
detected, only the
connection which
was found to be
bad is closed.

EntirePool
When a stale
connection is
detected, all
connections in the
pool are marked
stale, and when no
longer in use, are
closed.

reapTime A period of time with
second precision

3m Amount of time between
runs of the pool
maintenance thread. A
value of -1 disables pool
maintenance. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

oauthProvider > databaseStore > dataSource > containerAuthData
Default authentication data for container managed authentication that applies when
bindings do not specify an authentication-alias for a resource reference with
res-auth=CONTAINER.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 319

Attribute name Data type Default value Description

password Reversably encoded
password (string)

Password of the user to use
when connecting to the EIS.
The value can be stored in
clear text or encoded form.
It is recommended that you
encode the password. To do
so, use the securityUtility
tool with the encode
option.

user string Name of the user to use
when connecting to the EIS.

oauthProvider > databaseStore > dataSource > jaasLoginContextEntry
JAAS login context entry for authentication.

false

Attribute name Data type Default value Description

loginModuleRef List of references to top
level jaasLoginModule
elements (comma-separated
string).

hashtable,userNameAndPassword,certificate,tokenA reference to the ID of a
JAAS login module.

name string Name of a JAAS
configuration entry.

oauthProvider > databaseStore > dataSource > jdbcDriver
JDBC driver for a data source.

false

Attribute name Data type Default value Description

javax.sql.ConnectionPoolDataSourcestring JDBC driver
implementation of
javax.sql.ConnectionPoolDataSource.

javax.sql.DataSource string JDBC driver
implementation of
javax.sql.DataSource.

javax.sql.XADataSource string JDBC driver
implementation of
javax.sql.XADataSource.

libraryRef A reference to top level
library element (string).

Identifies JDBC driver JARs
and native files.

oauthProvider > databaseStore > dataSource > jdbcDriver > library
Identifies JDBC driver JARs and native files.

false

320 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

name string Name of shared library for
administrators

oauthProvider > databaseStore > dataSource > jdbcDriver > library > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

oauthProvider > databaseStore > dataSource > jdbcDriver > library > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

Chapter 1. WebSphere Application Server Liberty Core: Overview 321

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

oauthProvider > databaseStore > dataSource > jdbcDriver > library > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

oauthProvider > databaseStore > dataSource > properties
List of JDBC vendor properties for the data source. For example,
databaseName="dbname" serverName="localhost" portNumber="50000".

false

Attribute name Data type Default value Description

URL string URL for connecting to the
database.

databaseName string JDBC driver property:
databaseName.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

serverName string Server where the database
is running.

322 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

oauthProvider > databaseStore > dataSource > properties.datadirect.sqlserver
Data source properties for the DataDirect Connect for JDBC driver for Microsoft SQL
Server.

false

Attribute name Data type Default value Description

JDBCBehavior v 1

v 0

0 JDBC driver property:
JDBCBehavior. Values are: 0
(JDBC 4.0) or 1 (JDBC 3.0).

1 JDBC 3.0

0 JDBC 4.0

XATransactionGroup string JDBC driver property:
XATransactionGroup.

XMLDescribeType v longvarbinary

v longvarchar

JDBC driver property:
XMLDescribeType.

longvarbinary
longvarbinary

longvarchar
longvarchar

accountingInfo string JDBC driver property:
accountingInfo.

alternateServers string JDBC driver property:
alternateServers.

alwaysReportTriggerResults boolean JDBC driver property:
alwaysReportTriggerResults.

applicationName string JDBC driver property:
applicationName.

authenticationMethod v ntlm

v userIdPassword

v kerberos

v auto

JDBC driver property:
authenticationMethod.

ntlm ntlm

userIdPassword
userIdPassword

kerberos
kerberos

auto auto

bulkLoadBatchSize long JDBC driver property:
bulkLoadBatchSize.

bulkLoadOptions long JDBC driver property:
bulkLoadOptions.

clientHostName string JDBC driver property:
clientHostName.

Chapter 1. WebSphere Application Server Liberty Core: Overview 323

Attribute name Data type Default value Description

clientUser string JDBC driver property:
clientUser.

codePageOverride string JDBC driver property:
codePageOverride.

connectionRetryCount int JDBC driver property:
connectionRetryCount.

connectionRetryDelay A period of time with
second precision

JDBC driver property:
connectionRetryDelay.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

convertNull int JDBC driver property:
convertNull.

databaseName string JDBC driver property:
databaseName.

dateTimeInputParameterTypev dateTime

v dateTimeOffset

v auto

JDBC driver property:
dateTimeInputParameterType.

dateTime
dateTime

dateTimeOffset
dateTimeOffset

auto auto

dateTimeOutputParameterTypev dateTime

v dateTimeOffset

v auto

JDBC driver property:
dateTimeOutputParameterType.

dateTime
dateTime

dateTimeOffset
dateTimeOffset

auto auto

describeInputParameters v describeIfString

v noDescribe

v describeIfDateTime

v describeAll

JDBC driver property:
describeInputParameters.

describeIfString
describeIfString

noDescribe
noDescribe

describeIfDateTime
describeIfDateTime

describeAll
describeAll

324 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

describeOutputParameters v describeIfString

v noDescribe

v describeIfDateTime

v describeAll

JDBC driver property:
describeOutputParameters.

describeIfString
describeIfString

noDescribe
noDescribe

describeIfDateTime
describeIfDateTime

describeAll
describeAll

enableBulkLoad boolean JDBC driver property:
enableBulkLoad.

enableCancelTimeout boolean JDBC driver property:
enableCancelTimeout.

encryptionMethod v loginSSL

v requestSSL

v SSL

v noEncryption

JDBC driver property:
encryptionMethod.

loginSSL
loginSSL

requestSSL
requestSSL

SSL SSL

noEncryption
noEncryption

failoverGranularity v disableIntegrityCheck

v atomicWithRepositioning

v nonAtomic

v atomic

JDBC driver property:
failoverGranularity.

disableIntegrityCheck
disableIntegrityCheck

atomicWithRepositioning
atomicWithRepositioning

nonAtomic
nonAtomic

atomic atomic

failoverMode v connect

v select

v extended

JDBC driver property:
failoverMode.

connect
connect

select select

extended
extended

failoverPreconnect boolean JDBC driver property:
failoverPreconnect.

hostNameInCertificate string JDBC driver property:
hostNameInCertificate.

initializationString string JDBC driver property:
initializationString.

insensitiveResultSetBufferSizeint JDBC driver property:
insensitiveResultSetBufferSize.

Chapter 1. WebSphere Application Server Liberty Core: Overview 325

Attribute name Data type Default value Description

javaDoubleToString boolean JDBC driver property:
javaDoubleToString.

loadBalancing boolean JDBC driver property:
loadBalancing.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

longDataCacheSize int

Minimum: -1

JDBC driver property:
longDataCacheSize.

netAddress string JDBC driver property:
netAddress.

packetSize int

Minimum: -1

Maximum: 128

JDBC driver property:
packetSize.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

queryTimeout A period of time with
second precision

JDBC driver property:
queryTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

resultsetMetaDataOptions int JDBC driver property:
resultsetMetaDataOptions.

selectMethod v direct

v cursor

JDBC driver property:
selectMethod.

direct direct

cursor cursor

serverName string localhost Server where the database
is running.

snapshotSerializable boolean JDBC driver property:
snapshotSerializable.

326 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

spyAttributes string JDBC driver property:
spyAttributes.

stringInputParameterType v varchar

v nvarchar

varchar JDBC driver property:
stringInputParameterType.

varchar varchar

nvarchar
nvarchar

stringOutputParameterType v varchar

v nvarchar

varchar JDBC driver property:
stringOutputParameterType.

varchar varchar

nvarchar
nvarchar

suppressConnectionWarningsboolean JDBC driver property:
suppressConnectionWarnings.

transactionMode v explicit

v implicit

JDBC driver property:
transactionMode.

explicit explicit

implicit
implicit

truncateFractionalSeconds boolean JDBC driver property:
truncateFractionalSeconds.

trustStore string JDBC driver property:
trustStore.

trustStorePassword Reversably encoded
password (string)

JDBC driver property:
trustStorePassword.

useServerSideUpdatableCursorsboolean JDBC driver property:
useServerSideUpdatableCursors.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

validateServerCertificate boolean JDBC driver property:
validateServerCertificate.

oauthProvider > databaseStore > dataSource > properties.db2.i.native
Data source properties for the IBM DB2 for i Native JDBC driver.

false

Attribute name Data type Default value Description

access v read only

v all

v read call

all JDBC driver property:
access.

read only
read only

all all

read call
read call

Chapter 1. WebSphere Application Server Liberty Core: Overview 327

Attribute name Data type Default value Description

autoCommit boolean true JDBC driver property:
autoCommit.

batchStyle v 2.1

v 2.0

2.0 JDBC driver property:
batchStyle.

2.1 2.1

2.0 2.0

behaviorOverride int JDBC driver property:
behaviorOverride.

blockSize v 512

v 128

v 0

v 32

v 64

v 16

v 8

v 256

32 JDBC driver property:
blockSize.

512 512

128 128

0 0

32 32

64 64

16 16

8 8

256 256

cursorHold boolean false JDBC driver property:
cursorHold.

cursorSensitivity v asensitive

v sensitive

asensitive JDBC driver property:
cursorSensitivity. Values
are: 0
(TYPE_SCROLL_SENSITIVE_STATIC),
1
(TYPE_SCROLL_SENSITIVE_DYNAMIC),
2
(TYPE_SCROLL_ASENSITIVE).

asensitive
asensitive

sensitive
sensitive

dataTruncation string true JDBC driver property:
dataTruncation.

databaseName string *LOCAL JDBC driver property:
databaseName.

328 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

dateFormat v dmy

v iso

v eur

v ymd

v julian

v jis

v usa

v mdy

JDBC driver property:
dateFormat.

dmy dmy

iso iso

eur eur

ymd ymd

julian julian

jis jis

usa usa

mdy mdy

dateSeparator v \,

v b

v .

v /

v -

JDBC driver property:
dateSeparator.

\, The comma
character (,).

b The character b

. The period
character (.).

/ The forward slash
character (/).

- The dash character
(-).

decimalSeparator v \,

v .

JDBC driver property:
decimalSeparator.

\, The comma
character (,).

. The period
character (.).

directMap boolean true JDBC driver property:
directMap.

doEscapeProcessing boolean true JDBC driver property:
doEscapeProcessing.

fullErrors boolean JDBC driver property:
fullErrors.

libraries string JDBC driver property:
libraries.

lobThreshold int

Maximum: 500000

0 JDBC driver property:
lobThreshold.

Chapter 1. WebSphere Application Server Liberty Core: Overview 329

Attribute name Data type Default value Description

lockTimeout A period of time with
second precision

0 JDBC driver property:
lockTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maximumPrecision v 31

v 63

31 JDBC driver property:
maximumPrecision.

31 31

63 63

maximumScale int

Minimum: 0

Maximum: 63

31 JDBC driver property:
maximumScale.

minimumDivideScale int

Minimum: 0

Maximum: 9

0 JDBC driver property:
minimumDivideScale.

networkProtocol int JDBC driver property:
networkProtocol.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

prefetch boolean true JDBC driver property:
prefetch.

queryOptimizeGoal v 2

v 1

2 JDBC driver property:
queryOptimizeGoal. Values
are: 1 (*FIRSTIO) or 2
(*ALLIO).

2 *ALLIO

1 *FIRSTIO

330 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

reuseObjects boolean true JDBC driver property:
reuseObjects.

serverName string Server where the database
is running.

serverTraceCategories int 0 JDBC driver property:
serverTraceCategories.

systemNaming boolean false JDBC driver property:
systemNaming.

timeFormat v iso

v eur

v jis

v usa

v hms

JDBC driver property:
timeFormat.

iso iso

eur eur

jis jis

usa usa

hms hms

timeSeparator v \,

v b

v :

v .

JDBC driver property:
timeSeparator.

\, The comma
character (,).

b The character b

: The colon
character (:).

. The period
character (.).

trace boolean JDBC driver property: trace.

transactionTimeout A period of time with
second precision

0 JDBC driver property:
transactionTimeout. Specify
a positive integer followed
by a unit of time, which
can be hours (h), minutes
(m), or seconds (s). For
example, specify 30 seconds
as 30s. You can include
multiple values in a single
entry. For example, 1m30s
is equivalent to 90 seconds.

translateBinary boolean false JDBC driver property:
translateBinary.

translateHex v binary

v character

character JDBC driver property:
translateHex.

binary binary

character
character

useBlockInsert boolean false JDBC driver property:
useBlockInsert.

Chapter 1. WebSphere Application Server Liberty Core: Overview 331

Attribute name Data type Default value Description

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

oauthProvider > databaseStore > dataSource > properties.db2.i.toolbox
Data source properties for the IBM DB2 for i Toolbox JDBC driver.

false

Attribute name Data type Default value Description

access v read only

v all

v read call

all JDBC driver property:
access.

read only
read only

all all

read call
read call

behaviorOverride int JDBC driver property:
behaviorOverride.

bidiImplicitReordering boolean true JDBC driver property:
bidiImplicitReordering.

bidiNumericOrdering boolean false JDBC driver property:
bidiNumericOrdering.

bidiStringType int JDBC driver property:
bidiStringType.

bigDecimal boolean true JDBC driver property:
bigDecimal.

blockCriteria v 2

v 1

v 0

2 JDBC driver property:
blockCriteria. Values are: 0
(no record blocking), 1
(block if FOR FETCH
ONLY is specified), 2 (block
if FOR UPDATE is
specified).

2 2

1 1

0 0

332 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

blockSize v 512

v 128

v 0

v 32

v 64

v 16

v 8

v 256

32 JDBC driver property:
blockSize.

512 512

128 128

0 0

32 32

64 64

16 16

8 8

256 256

cursorHold boolean false JDBC driver property:
cursorHold.

cursorSensitivity v asensitive

v sensitive

v insensitive

asensitive JDBC driver property:
cursorSensitivity. Values
are: 0
(TYPE_SCROLL_SENSITIVE_STATIC),
1
(TYPE_SCROLL_SENSITIVE_DYNAMIC),
2
(TYPE_SCROLL_ASENSITIVE).

asensitive
asensitive

sensitive
sensitive

insensitive
insensitive

dataCompression boolean true JDBC driver property:
dataCompression.

dataTruncation boolean true JDBC driver property:
dataTruncation.

databaseName string JDBC driver property:
databaseName.

dateFormat v dmy

v iso

v eur

v ymd

v julian

v jis

v usa

v mdy

JDBC driver property:
dateFormat.

dmy dmy

iso iso

eur eur

ymd ymd

julian julian

jis jis

usa usa

mdy mdy

Chapter 1. WebSphere Application Server Liberty Core: Overview 333

Attribute name Data type Default value Description

dateSeparator v
v \,

v .

v /

v -

JDBC driver property:
dateSeparator.

The space
character ().

\, The comma
character (,).

. The period
character (.).

/ The forward slash
character (/).

- The dash character
(-).

decimalSeparator v \,

v .

JDBC driver property:
decimalSeparator.

\, The comma
character (,).

. The period
character (.).

driver v toolbox

v native

toolbox JDBC driver property:
driver.

toolbox
toolbox

native native

errors v full

v basic

basic JDBC driver property:
errors.

full full

basic basic

extendedDynamic boolean false JDBC driver property:
extendedDynamic.

extendedMetaData boolean false JDBC driver property:
extendedMetaData.

fullOpen boolean false JDBC driver property:
fullOpen.

holdInputLocators boolean true JDBC driver property:
holdInputLocators.

holdStatements boolean false JDBC driver property:
holdStatements.

isolationLevelSwitchingSupportboolean false JDBC driver property:
isolationLevelSwitchingSupport.

keepAlive boolean JDBC driver property:
keepAlive.

lazyClose boolean false JDBC driver property:
lazyClose.

libraries string JDBC driver property:
libraries.

334 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

lobThreshold int

Minimum: 0

Maximum: 16777216

0 JDBC driver property:
lobThreshold.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maximumPrecision v 31

v 63

31 JDBC driver property:
maximumPrecision.

31 31

63 64

maximumScale int

Minimum: 0

Maximum: 63

31 JDBC driver property:
maximumScale.

metaDataSource int

Minimum: 0

Maximum: 1

1 JDBC driver property:
metaDataSource.

minimumDivideScale int

Minimum: 0

Maximum: 9

0 JDBC driver property:
minimumDivideScale.

naming v system

v sql

sql JDBC driver property:
naming.

system system

sql sql

package string JDBC driver property:
package.

packageAdd boolean true JDBC driver property:
packageAdd.

packageCCSID v 13488

v 1200

13488 JDBC driver property:
packageCCSID. Values are:
1200 (UCS-2) or 13488
(UTF-16).

13488 13488 (UTF-16)

1200 1200 (UCS-2)

packageCache boolean false JDBC driver property:
packageCache.

Chapter 1. WebSphere Application Server Liberty Core: Overview 335

Attribute name Data type Default value Description

packageCriteria v default

v select

default JDBC driver property:
packageCriteria.

default default

select select

packageError v exception

v none

v warning

warning JDBC driver property:
packageError.

exception
exception

none none

warning
warning

packageLibrary string QGPL JDBC driver property:
packageLibrary.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

prefetch boolean true JDBC driver property:
prefetch.

prompt boolean false JDBC driver property:
prompt.

proxyServer string JDBC driver property:
proxyServer.

qaqqiniLibrary string JDBC driver property:
qaqqiniLibrary.

queryOptimizeGoal int

Minimum: 0

Maximum: 2

0 JDBC driver property:
queryOptimizeGoal. Values
are: 1 (*FIRSTIO) or 2
(*ALLIO).

receiveBufferSize int

Minimum: 1

JDBC driver property:
receiveBufferSize.

remarks v system

v sql

system JDBC driver property:
remarks.

system system

sql sql

rollbackCursorHold boolean false JDBC driver property:
rollbackCursorHold.

savePasswordWhenSerializedboolean false JDBC driver property:
savePasswordWhenSerialized.

secondaryUrl string JDBC driver property:
secondaryUrl.

secure boolean false JDBC driver property:
secure.

sendBufferSize int

Minimum: 1

JDBC driver property:
sendBufferSize.

336 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

serverName string Server where the database
is running.

serverTraceCategories int 0 JDBC driver property:
serverTraceCategories.

soLinger A period of time with
second precision

JDBC driver property:
soLinger. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

soTimeout A period of time with
millisecond precision

JDBC driver property:
soTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

sort v hex

v table

v language

hex JDBC driver property: sort.

hex hex

table table

language
language

sortLanguage string JDBC driver property:
sortLanguage.

sortTable string JDBC driver property:
sortTable.

sortWeight v unqiue

v shared

JDBC driver property:
sortWeight.

unqiue unique

shared shared

tcpNoDelay boolean JDBC driver property:
tcpNoDelay.

threadUsed boolean true JDBC driver property:
threadUsed.

Chapter 1. WebSphere Application Server Liberty Core: Overview 337

Attribute name Data type Default value Description

timeFormat v iso

v eur

v jis

v usa

v hms

JDBC driver property:
timeFormat.

iso iso

eur eur

jis jis

usa usa

hms hms

timeSeparator v
v \,

v :

v .

JDBC driver property:
timeSeparator.

The space
character ().

\, The comma
character (,).

: The colon
character (:).

. The period
character (.).

toolboxTrace v diagnostic

v information

v conversion

v error

v thread

v proxy

v none

v datastream

v pcml

v all

v jdbc

v warning

JDBC driver property:
toolboxTrace.

diagnostic
diagnostic

information
information

conversion
conversion

error error

thread thread

proxy proxy

none none

datastream
datastream

pcml pcml

all all

jdbc jdbc

warning
warning

trace boolean JDBC driver property: trace.

translateBinary boolean false JDBC driver property:
translateBinary.

translateBoolean boolean true JDBC driver property:
translateBoolean.

338 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

translateHex v binary

v character

character JDBC driver property:
translateHex.

binary binary

character
character

trueAutoCommit boolean false JDBC driver property:
trueAutoCommit.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

xaLooselyCoupledSupport int

Minimum: 0

Maximum: 1

0 JDBC driver property:
xaLooselyCoupledSupport.

oauthProvider > databaseStore > dataSource > properties.db2.jcc
Data source properties for the IBM Data Server Driver for JDBC and SQLJ for DB2.

false

Attribute name Data type Default value Description

activateDatabase int JDBC driver property:
activateDatabase.

alternateGroupDatabaseNamestring JDBC driver property:
alternateGroupDatabaseName.

alternateGroupPortNumber string JDBC driver property:
alternateGroupPortNumber.

alternateGroupServerName string JDBC driver property:
alternateGroupServerName.

blockingReadConnectionTimeoutA period of time with
second precision

JDBC driver property:
blockingReadConnectionTimeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

clientAccountingInformation string JDBC driver property:
clientAccountingInformation.

clientApplicationInformation string JDBC driver property:
clientApplicationInformation.

clientRerouteAlternatePortNumberstring JDBC driver property:
clientRerouteAlternatePortNumber.

clientRerouteAlternateServerNamestring JDBC driver property:
clientRerouteAlternateServerName.

Chapter 1. WebSphere Application Server Liberty Core: Overview 339

Attribute name Data type Default value Description

clientUser string JDBC driver property:
clientUser.

clientWorkstation string JDBC driver property:
clientWorkstation.

connectionCloseWithInFlightTransactionv 2

v 1

JDBC driver property:
connectionCloseWithInFlightTransaction.

2 CONNECTION_CLOSE_WITH_ROLLBACK

1 CONNECTION_CLOSE_WITH_EXCEPTION

currentAlternateGroupEntry int JDBC driver property:
currentAlternateGroupEntry.

currentFunctionPath string JDBC driver property:
currentFunctionPath.

currentLocaleLcCtype string JDBC driver property:
currentLocaleLcCtype.

currentLockTimeout A period of time with
second precision

JDBC driver property:
currentLockTimeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

currentPackagePath string JDBC driver property:
currentPackagePath.

currentPackageSet string JDBC driver property:
currentPackageSet.

currentSQLID string JDBC driver property:
currentSQLID.

currentSchema string JDBC driver property:
currentSchema.

cursorSensitivity v 2

v 1

v 0

JDBC driver property:
cursorSensitivity. Values
are: 0
(TYPE_SCROLL_SENSITIVE_STATIC),
1
(TYPE_SCROLL_SENSITIVE_DYNAMIC),
2
(TYPE_SCROLL_ASENSITIVE).

2 TYPE_SCROLL_ASENSITIVE

1 TYPE_SCROLL_SENSITIVE_DYNAMIC

0 TYPE_SCROLL_SENSITIVE_STATIC

databaseName string JDBC driver property:
databaseName.

deferPrepares boolean true JDBC driver property:
deferPrepares.

340 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

driverType v 2

v 4

4 JDBC driver property:
driverType.

2 Type 2 JDBC
driver.

4 Type 4 JDBC
driver.

enableAlternateGroupSeamlessACRboolean JDBC driver property:
enableAlternateGroupSeamlessACR.

enableClientAffinitiesList v 2

v 1

JDBC driver property:
enableClientAffinitiesList.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

enableExtendedDescribe v 2

v 1

JDBC driver property:
enableExtendedDescribe.

2 NO

1 YES

enableExtendedIndicators v 2

v 1

JDBC driver property:
enableExtendedIndicators.

2 NO

1 YES

enableNamedParameterMarkersv 2

v 1

JDBC driver property:
enableNamedParameterMarkers.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

enableSeamlessFailover v 2

v 1

JDBC driver property:
enableSeamlessFailover.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

enableSysplexWLB boolean JDBC driver property:
enableSysplexWLB.

fetchSize int JDBC driver property:
fetchSize.

fullyMaterializeInputStreams boolean JDBC driver property:
fullyMaterializeInputStreams.

fullyMaterializeInputStreamsOnBatchExecutionv 2

v 1

JDBC driver property:
fullyMaterializeInputStreamsOnBatchExecution.

2 NO

1 YES

fullyMaterializeLobData boolean JDBC driver property:
fullyMaterializeLobData.

Chapter 1. WebSphere Application Server Liberty Core: Overview 341

Attribute name Data type Default value Description

implicitRollbackOption v 2

v 1

v 0

JDBC driver property:
implicitRollbackOption.

2 IMPLICIT_ROLLBACK_OPTION_CLOSE_CONNECTION

1 IMPLICIT_ROLLBACK_OPTION_NOT_CLOSE_CONNECTION

0 IMPLICIT_ROLLBACK_OPTION_NOT_SET

interruptProcessingMode v 2

v 1

v 0

JDBC driver property:
interruptProcessingMode.

2 INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET

1 INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL

0 INTERRUPT_PROCESSING_MODE_DISABLED

keepAliveTimeOut A period of time with
second precision

JDBC driver property:
keepAliveTimeOut. Specify
a positive integer followed
by a unit of time, which
can be hours (h), minutes
(m), or seconds (s). For
example, specify 30 seconds
as 30s. You can include
multiple values in a single
entry. For example, 1m30s
is equivalent to 90 seconds.

keepDynamic int JDBC driver property:
keepDynamic.

kerberosServerPrincipal string JDBC driver property:
kerberosServerPrincipal.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maxConnCachedParamBufferSizeint JDBC driver property:
maxConnCachedParamBufferSize.

maxRetriesForClientReroute int JDBC driver property:
maxRetriesForClientReroute.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 50000 Port on which to obtain
database connections.

profileName string JDBC driver property:
profileName.

342 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

queryCloseImplicit v 2

v 1

JDBC driver property:
queryCloseImplicit. Values
are: 1
(QUERY_CLOSE_IMPLICIT_YES)
or 2
(QUERY_CLOSE_IMPLICIT_NO).

2 QUERY_CLOSE_IMPLICIT_NO

1 QUERY_CLOSE_IMPLICIT_YES

queryDataSize int

Minimum: 4096

Maximum: 65535

JDBC driver property:
queryDataSize.

queryTimeoutInterruptProcessingModev 2

v 1

JDBC driver property:
queryTimeoutInterruptProcessingMode.

2 INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET

1 INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL

readOnly boolean JDBC driver property:
readOnly.

recordTemporalHistory v 2

v 1

JDBC driver property:
recordTemporalHistory.

2 NO

1 YES

resultSetHoldability v 2

v 1

JDBC driver property:
resultSetHoldability. Values
are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

resultSetHoldabilityForCatalogQueriesv 2

v 1

JDBC driver property:
resultSetHoldabilityForCatalogQueries.
Values are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

retrieveMessagesFromServerOnGetMessageboolean true JDBC driver property:
retrieveMessagesFromServerOnGetMessage.

Chapter 1. WebSphere Application Server Liberty Core: Overview 343

Attribute name Data type Default value Description

retryIntervalForClientRerouteA period of time with
second precision

JDBC driver property:
retryIntervalForClientReroute.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

securityMechanism v 3

v 7

v 4

v 18

v 15

v 9

v 16

v 13

v 11

v 12

JDBC driver property:
securityMechanism. Values
are: 3
(CLEAR_TEXT_PASSWORD_SECURITY),
4
(USER_ONLY_SECURITY),
7
(ENCRYPTED_PASSWORD_SECURITY),
9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY),
11
(KERBEROS_SECURITY),
12
(ENCRYPTED_USER_AND_DATA_SECURITY),
13
(ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY),
15 (PLUGIN_SECURITY),
16
(ENCRYPTED_USER_ONLY_SECURITY),
18
(TLS_CLIENT_CERTIFICATE_SECURITY).

3 CLEAR_TEXT_PASSWORD_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

18 TLS_CLIENT_CERTIFICATE_SECURITY

15 PLUGIN_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

16 ENCRYPTED_USER_ONLY_SECURITY

13 ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

11 KERBEROS_SECURITY

12 ENCRYPTED_USER_AND_DATA_SECURITY

sendDataAsIs boolean JDBC driver property:
sendDataAsIs.

serverName string localhost Server where the database
is running.

sessionTimeZone string JDBC driver property:
sessionTimeZone.

sqljCloseStmtsWithOpenResultSetboolean JDBC driver property:
sqljCloseStmtsWithOpenResultSet.

344 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

sqljEnableClassLoaderSpecificProfilesboolean JDBC driver property:
sqljEnableClassLoaderSpecificProfiles.

sslConnection boolean JDBC driver property:
sslConnection.

streamBufferSize int JDBC driver property:
streamBufferSize.

stripTrailingZerosForDecimalNumbersv 2

v 1

JDBC driver property:
stripTrailingZerosForDecimalNumbers.

2 NO

1 YES

sysSchema string JDBC driver property:
sysSchema.

timerLevelForQueryTimeOut v 2

v 1

v -1

JDBC driver property:
timerLevelForQueryTimeOut.

2 QUERYTIMEOUT_CONNECTION_LEVEL

1 QUERYTIMEOUT_STATEMENT_LEVEL

-1 QUERYTIMEOUT_DISABLED

traceDirectory string JDBC driver property:
traceDirectory.

traceFile string JDBC driver property:
traceFile.

traceFileAppend boolean JDBC driver property:
traceFileAppend.

traceFileCount int JDBC driver property:
traceFileCount.

traceFileSize int JDBC driver property:
traceFileSize.

traceLevel int 0 Bitwise combination of the
following constant values:
TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1,
TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4,
TRACE_DRIVER_CONFIGURATION=16,
TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64,
TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256,
TRACE_DIAGNOSTICS=512,
TRACE_SQLJ=1024,
TRACE_META_CALLS=8192,
TRACE_DATASOURCE_CALLS=16384,
TRACE_LARGE_OBJECT_CALLS=32768,
TRACE_SYSTEM_MONITOR=131072,
TRACE_TRACEPOINTS=262144,
TRACE_ALL=-1.

traceOption v 1

v 0

JDBC driver property:
traceOption

1 1

0 0

Chapter 1. WebSphere Application Server Liberty Core: Overview 345

Attribute name Data type Default value Description

translateForBitData v 2

v 1

JDBC driver property:
translateForBitData.

2 SERVER_ENCODING_REPRESENTATION

1 HEX_REPRESENTATION

updateCountForBatch v 2

v 1

JDBC driver property:
updateCountForBatch.

2 TOTAL_UPDATE_COUNT

1 NO_UPDATE_COUNT

useCachedCursor boolean JDBC driver property:
useCachedCursor.

useIdentityValLocalForAutoGeneratedKeysboolean JDBC driver property:
useIdentityValLocalForAutoGeneratedKeys.

useJDBC41DefinitionForGetColumnsv 2

v 1

JDBC driver property:
useJDBC41DefinitionForGetColumns.

2 NO

1 YES

useJDBC4ColumnNameAndLabelSemanticsv 2

v 1

JDBC driver property:
useJDBC4ColumnNameAndLabelSemantics.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

useTransactionRedirect boolean JDBC driver property:
useTransactionRedirect.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

xaNetworkOptimization boolean JDBC driver property:
xaNetworkOptimization.

oauthProvider > databaseStore > dataSource > properties.derby.client
Data source properties for Derby Network Client JDBC driver.

false

Attribute name Data type Default value Description

connectionAttributes string JDBC driver property:
connectionAttributes.

346 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

createDatabase v false

v create

JDBC driver property:
createDatabase.

false Do not
automatically
create the
database.

create When the first
connection is
established,
automatically
create the database
if it doesn't exist.

databaseName string JDBC driver property:
databaseName.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1527 Port on which to obtain
database connections.

retrieveMessageText boolean true JDBC driver property:
retrieveMessageText.

securityMechanism v 3

v 7

v 4

v 9

v 8

3 JDBC driver property:
securityMechanism. Values
are: 3
(CLEAR_TEXT_PASSWORD_SECURITY),
4
(USER_ONLY_SECURITY),
7
(ENCRYPTED_PASSWORD_SECURITY),
8
(STRONG_PASSWORD_SUBSTITUTE_SECURITY),
9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY).

3 CLEAR_TEXT_PASSWORD_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

8 STRONG_PASSWORD_SUBSTITUTE_SECURITY

Chapter 1. WebSphere Application Server Liberty Core: Overview 347

Attribute name Data type Default value Description

serverName string localhost Server where the database
is running.

shutdownDatabase v false

v shutdown

JDBC driver property:
shutdownDatabase.

false Do not shut down
the database.

shutdown
Shut down the
database when a
connection is
attempted.

ssl v basic

v off

v peerAuthentication

JDBC driver property: ssl.

basic basic

off off

peerAuthentication
peerAuthentication

traceDirectory string JDBC driver property:
traceDirectory.

traceFile string JDBC driver property:
traceFile.

traceFileAppend boolean JDBC driver property:
traceFileAppend.

traceLevel int Bitwise combination of the
following constant values:
TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1,
TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4,
TRACE_DRIVER_CONFIGURATION=16,
TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64,
TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256,
TRACE_DIAGNOSTICS=512,
TRACE_XA_CALLS=2048,
TRACE_ALL=-1.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

oauthProvider > databaseStore > dataSource > properties.derby.embedded
Data source properties for Derby Embedded JDBC driver.

false

Attribute name Data type Default value Description

connectionAttributes string JDBC driver property:
connectionAttributes.

348 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

createDatabase v false

v create

JDBC driver property:
createDatabase.

false Do not
automatically
create the
database.

create When the first
connection is
established,
automatically
create the database
if it doesn't exist.

databaseName string JDBC driver property:
databaseName.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

shutdownDatabase v false

v shutdown

JDBC driver property:
shutdownDatabase.

false Do not shut down
the database.

shutdown
Shut down the
database when a
connection is
attempted.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

oauthProvider > databaseStore > dataSource > properties.informix
Data source properties for the Informix JDBC driver.

false

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

Chapter 1. WebSphere Application Server Liberty Core: Overview 349

Attribute name Data type Default value Description

ifxCLIENT_LOCALE string JDBC driver property:
ifxCLIENT_LOCALE.

ifxCPMAgeLimit A period of time with
second precision

JDBC driver property:
ifxCPMAgeLimit. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

ifxCPMInitPoolSize int JDBC driver property:
ifxCPMInitPoolSize.

ifxCPMMaxConnections int JDBC driver property:
ifxCPMMaxConnections.

ifxCPMMaxPoolSize int JDBC driver property:
ifxCPMMaxPoolSize.

ifxCPMMinAgeLimit A period of time with
second precision

JDBC driver property:
ifxCPMMinAgeLimit.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

ifxCPMMinPoolSize int JDBC driver property:
ifxCPMMinPoolSize.

ifxCPMServiceInterval A period of time with
millisecond precision

JDBC driver property:
ifxCPMServiceInterval.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

ifxDBANSIWARN boolean JDBC driver property:
ifxDBANSIWARN.

ifxDBCENTURY string JDBC driver property:
ifxDBCENTURY.

ifxDBDATE string JDBC driver property:
ifxDBDATE.

ifxDBSPACETEMP string JDBC driver property:
ifxDBSPACETEMP.

350 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

ifxDBTEMP string JDBC driver property:
ifxDBTEMP.

ifxDBTIME string JDBC driver property:
ifxDBTIME.

ifxDBUPSPACE string JDBC driver property:
ifxDBUPSPACE.

ifxDB_LOCALE string JDBC driver property:
ifxDB_LOCALE.

ifxDELIMIDENT boolean JDBC driver property:
ifxDELIMIDENT.

ifxENABLE_TYPE_CACHE boolean JDBC driver property:
ifxENABLE_TYPE_CACHE.

ifxFET_BUF_SIZE int JDBC driver property:
ifxFET_BUF_SIZE.

ifxGL_DATE string JDBC driver property:
ifxGL_DATE.

ifxGL_DATETIME string JDBC driver property:
ifxGL_DATETIME.

ifxIFXHOST string localhost JDBC driver property:
ifxIFXHOST.

ifxIFX_AUTOFREE boolean JDBC driver property:
ifxIFX_AUTOFREE.

ifxIFX_DIRECTIVES string JDBC driver property:
ifxIFX_DIRECTIVES.

ifxIFX_LOCK_MODE_WAIT A period of time with
second precision

2s JDBC driver property:
ifxIFX_LOCK_MODE_WAIT.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

ifxIFX_SOC_TIMEOUT A period of time with
millisecond precision

JDBC driver property:
ifxIFX_SOC_TIMEOUT.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

ifxIFX_USEPUT boolean JDBC driver property:
ifxIFX_USEPUT.

Chapter 1. WebSphere Application Server Liberty Core: Overview 351

Attribute name Data type Default value Description

ifxIFX_USE_STRENC boolean JDBC driver property:
ifxIFX_USE_STRENC.

ifxIFX_XASPEC string y JDBC driver property:
ifxIFX_XASPEC.

ifxINFORMIXCONRETRY int JDBC driver property:
ifxINFORMIXCONRETRY.

ifxINFORMIXCONTIME A period of time with
second precision

JDBC driver property:
ifxINFORMIXCONTIME.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

ifxINFORMIXOPCACHE string JDBC driver property:
ifxINFORMIXOPCACHE.

ifxINFORMIXSTACKSIZE int JDBC driver property:
ifxINFORMIXSTACKSIZE.

ifxJDBCTEMP string JDBC driver property:
ifxJDBCTEMP.

ifxLDAP_IFXBASE string JDBC driver property:
ifxLDAP_IFXBASE.

ifxLDAP_PASSWD string JDBC driver property:
ifxLDAP_PASSWD.

ifxLDAP_URL string JDBC driver property:
ifxLDAP_URL.

ifxLDAP_USER string JDBC driver property:
ifxLDAP_USER.

ifxLOBCACHE int JDBC driver property:
ifxLOBCACHE.

ifxNEWCODESET string JDBC driver property:
ifxNEWCODESET.

ifxNEWLOCALE string JDBC driver property:
ifxNEWLOCALE.

ifxNODEFDAC string JDBC driver property:
ifxNODEFDAC.

ifxOPTCOMPIND string JDBC driver property:
ifxOPTCOMPIND.

ifxOPTOFC string JDBC driver property:
ifxOPTOFC.

ifxOPT_GOAL string JDBC driver property:
ifxOPT_GOAL.

ifxPATH string JDBC driver property:
ifxPATH.

ifxPDQPRIORITY string JDBC driver property:
ifxPDQPRIORITY.

352 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

ifxPLCONFIG string JDBC driver property:
ifxPLCONFIG.

ifxPLOAD_LO_PATH string JDBC driver property:
ifxPLOAD_LO_PATH.

ifxPROTOCOLTRACE int JDBC driver property:
ifxPROTOCOLTRACE.

ifxPROTOCOLTRACEFILE string JDBC driver property:
ifxPROTOCOLTRACEFILE.

ifxPROXY string JDBC driver property:
ifxPROXY.

ifxPSORT_DBTEMP string JDBC driver property:
ifxPSORT_DBTEMP.

ifxPSORT_NPROCS boolean JDBC driver property:
ifxPSORT_NPROCS.

ifxSECURITY string JDBC driver property:
ifxSECURITY.

ifxSQLH_FILE string JDBC driver property:
ifxSQLH_FILE.

ifxSQLH_LOC string JDBC driver property:
ifxSQLH_LOC.

ifxSQLH_TYPE string JDBC driver property:
ifxSQLH_TYPE.

ifxSSLCONNECTION string JDBC driver property:
ifxSSLCONNECTION.

ifxSTMT_CACHE string JDBC driver property:
ifxSTMT_CACHE.

ifxTRACE int JDBC driver property:
ifxTRACE.

ifxTRACEFILE string JDBC driver property:
ifxTRACEFILE.

ifxTRUSTED_CONTEXT string JDBC driver property:
ifxTRUSTED_CONTEXT.

ifxUSEV5SERVER boolean JDBC driver property:
ifxUSEV5SERVER.

ifxUSE_DTENV boolean JDBC driver property:
ifxUSE_DTENV.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 353

Attribute name Data type Default value Description

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1526 Port on which to obtain
database connections.

roleName string JDBC driver property:
roleName.

serverName string Server where the database
is running.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

oauthProvider > databaseStore > dataSource > properties.informix.jcc
Data source properties for the IBM Data Server Driver for JDBC and SQLJ for Informix.

false

Attribute name Data type Default value Description

DBANSIWARN boolean JDBC driver property:
DBANSIWARN.

DBDATE string JDBC driver property:
DBDATE.

DBPATH string JDBC driver property:
DBPATH.

DBSPACETEMP string JDBC driver property:
DBSPACETEMP.

DBTEMP string JDBC driver property:
DBTEMP.

DBUPSPACE string JDBC driver property:
DBUPSPACE.

DELIMIDENT boolean JDBC driver property:
DELIMIDENT.

IFX_DIRECTIVES v ON

v OFF

JDBC driver property:
IFX_DIRECTIVES.

ON ON

OFF OFF

IFX_EXTDIRECTIVES v ON

v OFF

JDBC driver property:
IFX_EXTDIRECTIVES.

ON ON

OFF OFF

IFX_UPDDESC string JDBC driver property:
IFX_UPDDESC.

354 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

IFX_XASTDCOMPLIANCE_XAENDv 1

v 0

JDBC driver property:
IFX_XASTDCOMPLIANCE_XAEND.

1 1

0 0

INFORMIXOPCACHE string JDBC driver property:
INFORMIXOPCACHE.

INFORMIXSTACKSIZE string JDBC driver property:
INFORMIXSTACKSIZE.

NODEFDAC v yes

v no

JDBC driver property:
NODEFDAC.

yes yes

no no

OPTCOMPIND v 2

v 1

v 0

JDBC driver property:
OPTCOMPIND.

2 2

1 1

0 0

OPTOFC v 1

v 0

JDBC driver property:
OPTOFC.

1 1

0 0

PDQPRIORITY v HIGH

v LOW

v OFF

JDBC driver property:
PDQPRIORITY.

HIGH HIGH

LOW LOW

OFF OFF

PSORT_DBTEMP string JDBC driver property:
PSORT_DBTEMP.

PSORT_NPROCS string

Maximum: 10

JDBC driver property:
PSORT_NPROCS.

STMT_CACHE v 1

v 0

JDBC driver property:
STMT_CACHE.

1 1

0 0

currentLockTimeout A period of time with
second precision

2s JDBC driver property:
currentLockTimeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 355

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

deferPrepares boolean JDBC driver property:
deferPrepares.

driverType int 4 JDBC driver property:
driverType.

enableNamedParameterMarkersint JDBC driver property:
enableNamedParameterMarkers.
Values are: 1 (YES) or 2
(NO).

enableSeamlessFailover int JDBC driver property:
enableSeamlessFailover.
Values are: 1 (YES) or 2
(NO).

enableSysplexWLB boolean JDBC driver property:
enableSysplexWLB.

fetchSize int JDBC driver property:
fetchSize.

fullyMaterializeLobData boolean JDBC driver property:
fullyMaterializeLobData.

keepDynamic int JDBC driver property:
keepDynamic.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1526 Port on which to obtain
database connections.

progressiveStreaming v 2

v 1

JDBC driver property:
progressiveStreaming.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

queryDataSize int

Minimum: 4096

Maximum: 10485760

JDBC driver property:
queryDataSize.

356 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

resultSetHoldability v 2

v 1

JDBC driver property:
resultSetHoldability. Values
are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

resultSetHoldabilityForCatalogQueriesv 2

v 1

JDBC driver property:
resultSetHoldabilityForCatalogQueries.
Values are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

retrieveMessagesFromServerOnGetMessageboolean true JDBC driver property:
retrieveMessagesFromServerOnGetMessage.

securityMechanism v 3

v 7

v 4

v 9

JDBC driver property:
securityMechanism. Values
are: 3
(CLEAR_TEXT_PASSWORD_SECURITY),
4
(USER_ONLY_SECURITY),
7
(ENCRYPTED_PASSWORD_SECURITY),
9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY).

3 CLEAR_TEXT_PASSWORD_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

serverName string localhost Server where the database
is running.

traceDirectory string JDBC driver property:
traceDirectory.

traceFile string JDBC driver property:
traceFile.

traceFileAppend boolean JDBC driver property:
traceFileAppend.

Chapter 1. WebSphere Application Server Liberty Core: Overview 357

Attribute name Data type Default value Description

traceLevel int Bitwise combination of the
following constant values:
TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1,
TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4,
TRACE_DRIVER_CONFIGURATION=16,
TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64,
TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256,
TRACE_DIAGNOSTICS=512,
TRACE_SQLJ=1024,
TRACE_META_CALLS=8192,
TRACE_DATASOURCE_CALLS=16384,
TRACE_LARGE_OBJECT_CALLS=32768,
TRACE_SYSTEM_MONITOR=131072,
TRACE_TRACEPOINTS=262144,
TRACE_ALL=-1.

useJDBC4ColumnNameAndLabelSemanticsint JDBC driver property:
useJDBC4ColumnNameAndLabelSemantics.
Values are: 1 (YES) or 2
(NO).

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

oauthProvider > databaseStore > dataSource > properties.microsoft.sqlserver
Data source properties for Microsoft SQL Server JDBC Driver.

false

Attribute name Data type Default value Description

URL string URL for connecting to the
database. Example:
jdbc:sqlserver://
localhost:1433;databaseName=myDB.

applicationIntent v ReadOnly

v ReadWrite

JDBC driver property:
applicationIntent.

ReadOnly
ReadOnly

ReadWrite
ReadWrite

applicationName string JDBC driver property:
applicationName.

authenticationScheme v NativeAuthentication

v JavaKerberos

JDBC driver property:
authenticationScheme.

NativeAuthentication
NativeAuthentication

JavaKerberos
JavaKerberos

358 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

encrypt boolean JDBC driver property:
encrypt.

failoverPartner string JDBC driver property:
failoverPartner.

hostNameInCertificate string JDBC driver property:
hostNameInCertificate.

instanceName string JDBC driver property:
instanceName.

integratedSecurity boolean JDBC driver property:
integratedSecurity.

lastUpdateCount boolean JDBC driver property:
lastUpdateCount.

lockTimeout A period of time with
millisecond precision

JDBC driver property:
lockTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

multiSubnetFailover boolean JDBC driver property:
multiSubnetFailover.

packetSize int

Minimum: 512

Maximum: 32767

JDBC driver property:
packetSize.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

Chapter 1. WebSphere Application Server Liberty Core: Overview 359

Attribute name Data type Default value Description

responseBuffering v full

v adaptive

JDBC driver property:
responseBuffering.

full full

adaptive
adaptive

selectMethod v direct

v cursor

JDBC driver property:
selectMethod.

direct direct

cursor cursor

sendStringParametersAsUnicodeboolean false JDBC driver property:
sendStringParametersAsUnicode.

sendTimeAsDatetime boolean JDBC driver property:
sendTimeAsDatetime.

serverName string localhost Server where the database
is running.

trustServerCertificate boolean JDBC driver property:
trustServerCertificate.

trustStore string JDBC driver property:
trustStore.

trustStorePassword Reversably encoded
password (string)

JDBC driver property:
trustStorePassword.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

workstationID string JDBC driver property:
workstationID.

xopenStates boolean JDBC driver property:
xopenStates.

oauthProvider > databaseStore > dataSource > properties.oracle
Data source properties for Oracle JDBC driver.

false

Attribute name Data type Default value Description

ONSConfiguration string JDBC driver property:
ONSConfiguration.

TNSEntryName string JDBC driver property:
TNSEntryName.

URL string URL for connecting to the
database. Examples:
jdbc:oracle:thin:@//
localhost:1521/sample or
jdbc:oracle:oci:@//
localhost:1521/sample.

connectionProperties string JDBC driver property:
connectionProperties.

360 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

driverType v oci

v thin

thin JDBC driver property:
driverType.

oci oci

thin thin

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

networkProtocol string JDBC driver property:
networkProtocol.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1521 Port on which to obtain
database connections.

serverName string localhost Server where the database
is running.

serviceName string JDBC driver property:
serviceName.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

oauthProvider > databaseStore > dataSource > properties.sybase
Data source properties for Sybase JDBC driver.

false

Attribute name Data type Default value Description

SERVER_INITIATED_TRANSACTIONSv false

v true

false JDBC driver property:
SERVER_INITIATED_TRANSACTIONS.

false false

true true

connectionProperties string SELECT_OPENS_CURSOR=trueJDBC driver property:
connectionProperties.

databaseName string JDBC driver property:
databaseName.

Chapter 1. WebSphere Application Server Liberty Core: Overview 361

Attribute name Data type Default value Description

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

networkProtocol v SSL

v socket

JDBC driver property:
networkProtocol.

SSL SSL

socket socket

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 5000 Port on which to obtain
database connections.

resourceManagerName string JDBC driver property:
resourceManagerName.

serverName string localhost Server where the database
is running.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

version int JDBC driver property:
version.

oauthProvider > databaseStore > dataSource > recoveryAuthData
Authentication data for transaction recovery.

false

Attribute name Data type Default value Description

password Reversably encoded
password (string)

Password of the user to use
when connecting to the EIS.
The value can be stored in
clear text or encoded form.
It is recommended that you
encode the password. To do
so, use the securityUtility
tool with the encode
option.

user string Name of the user to use
when connecting to the EIS.

362 WebSphere Application Server Liberty Core 8.5.5

oauthProvider > grantType
An access token grant type (as detailed in the OAuth specification) that is allowed for the
provider. The equivalent provider parameter in the full application server profile is
oauth20.grant.types.allowed.

false

string

oauthProvider > jwtGrantType
The grant_type for JWT Token handler

false

Attribute name Data type Default value Description

clockSkew A period of time with
second precision

300s The time difference allowed
between OpenID Connect
Client and OpenID Connect
Provider systems when
they are not synchronized.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

iatRequired boolean false The iat claim in a jwt token
is required.

maxJtiCacheSize long

Minimum: 1

10000 The maximum size of
cache, which keeps jti data
of jwt token, to prevent the
jti from being reused.

tokenMaxLifetime A period of time with
second precision

7200s The time indicates the
maximum lifetime of an
alive jwt token since its
issued-at-time. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

oauthProvider > library
Reference to shared library containing the mediator plugin class.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 363

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

name string Name of shared library for
administrators

oauthProvider > library > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

oauthProvider > library > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

364 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

oauthProvider > library > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

oauthProvider > localStore
Clients are defined in server.xml and tokens are cached in the server.

false

Attribute name Data type Default value Description

tokenStoreSize long 2000 Token store size

oauthProvider > localStore > client
A unique configuration ID.

false

Attribute name Data type Default value Description

applicationType v native

v web

web The type of application best
describing the client.

native native

web web

displayname string Display name of the client.

enabled boolean true Client is enabled if true,
disabled if false.

Chapter 1. WebSphere Application Server Liberty Core: Overview 365

Attribute name Data type Default value Description

functionalUserId string A user identifier to be
associated with access
tokens obtained by this
client using the client
credentials grant type.
When this client parameter
is specified, the value is
returned in the
functional_user_id response
parameter from the
introspect endpoint.

id string A unique configuration ID.

introspectTokens boolean false Boolean value specifying
whether the client is
allowed to access the
introspection endpoint to
introspect tokens issued by
the authorization server.

name string Name of the client
(sometimes referred to as
the Id).

preAuthorizedScope string Space separated list of
scope values that the client
can use when requesting
access tokens that are
deemed to have been
pre-approved by the
resource owner and
therefore does not require
the resource owner's
consent.

scope string Specify by spaces the list of
scopes of the client.

secret Reversably encoded
password (string)

Secret key of the client.

sessionManaged boolean false Boolean indicating whether
the client participates in
OpenID session
management.

subjectType v public Subject type requested for
response to this client.

public public

tokenEndpointAuthMethod v client_secret_post

v none

v client_secret_basic

client_secret_basic The requested
authentication method for
the token endpoint of the
client.

client_secret_post
client_secret_post

none none

client_secret_basic
client_secret_basic

366 WebSphere Application Server Liberty Core 8.5.5

oauthProvider > localStore > client > functionalUserGroupIds
A list of group ids to be to be associated with access tokens obtained by this client using
the client credentials grant type. When this client parameter is specified, the value is
returned in the functional_user_groupIds response parameter from the introspect
endpoint.

false

string

oauthProvider > localStore > client > grantTypes
Grant types the client may use.

false

oauthProvider > localStore > client > postLogoutRedirectUris
Array of URLs supplied by the RP to which it may request that the end-user's user agent
be redirected using the post_logout_redirect_uri parameter after a logout has been
performed.

false

string

oauthProvider > localStore > client > redirect
Array of redirect URIs for use in redirect-based flows such as the authorization code and
implicit grant types of the client. The first redirect URI is used as a default, when none is
specified in a request.

false

string

oauthProvider > localStore > client > responseTypes
Response types the client may use.

false

oauthProvider > mediatorClassname
Mediator plugin class name. The equivalent provider parameter in the full application server
profile is oauth20.mediator.classnames.

false

string

scopeToClaimMap
Specify the claims for the scope.

false

Attribute name Data type Default value Description

address string address Specify a comma-separated
list of claims associated
with the address scope.

email string email, email_verified Specify a comma-separated
list of claims associated
with the email scope.

phone string phone_number,
phone_number_verified

Specify a comma-separated
list of claims associated
with the phone scope.

Chapter 1. WebSphere Application Server Liberty Core: Overview 367

Attribute name Data type Default value Description

profile string name, family_name,
given_name, middle_name,
nickname,
preferred_username,
profile, picture, website,
gender, birthdate, zoneinfo,
locale, updated_at

Specify a comma-separated
list of claims associated
with the profile scope.

scopeToClaimMap > property
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Specify the name of the
property

value string Specify the value of the
property

OSGi Application (osgiApplication)
Defines the properties of an osgi application.
v application-bnd

– security-role
- group
- run-as
- special-subject
- user

Attribute name Data type Default value Description

autoStart boolean true Indicates whether or not
the server automatically
starts the application.

id string A unique configuration ID.

location A file, directory or url. Location of an application
expressed as an absolute
path or a path relative to
the server-level apps
directory.

name string Name of an application.

suppressUncoveredHttpMethodWarningboolean false Option to suppress
uncovered HTTP method
warning message during
application deployment.

application-bnd
Binds general deployment information included in the application to specific resources.

false

368 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

version string Version of the application
bindings specification.

application-bnd > security-role
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Name of a security role.

application-bnd > security-role > group
A unique configuration ID.

false

Attribute name Data type Default value Description

access-id string Group access ID

id string A unique configuration ID.

name string Name of a group
possessing a security role.

application-bnd > security-role > run-as
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

password Reversably encoded
password (string)

Password of a user
required to access a bean
from another bean. The
value can be stored in clear
text or encoded form. To
encode the password, use
the securityUtility tool with
the encode option.

userid string ID of a user required to
access a bean from another
bean.

application-bnd > security-role > special-subject
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

Chapter 1. WebSphere Application Server Liberty Core: Overview 369

Attribute name Data type Default value Description

type v EVERYONE

v
ALL_AUTHENTICATED_USERS

One of the following
special subject types:
ALL_AUTHENTICATED_USERS,
EVERYONE.

EVERYONE
Everyone

ALL_AUTHENTICATED_USERS
All authenticated
users

application-bnd > security-role > user
A unique configuration ID.

false

Attribute name Data type Default value Description

access-id string A user access ID in the
general form
user:realmName/
userUniqueId. A value will
be generated if one is not
specified.

id string A unique configuration ID.

name string Name of a user possessing
a security role.

OSGi Applications (osgiApplications)
Settings for all OSGi applications

Attribute name Data type Default value Description

enable.debug boolean false When this option is set to
true, OSGi applications that
fail to start remain installed
to allow the application to
be debugged.

OSGi Library (osgiLibrary)
Enables OSGi applications to use packages provided by a shared library.
v library

– file
– fileset
– folder

v package

Attribute name Data type Default value Description

id string A unique configuration ID.

libraryRef A reference to top level
library element (string).

The shared library reference
to use for the OSGi library.

370 WebSphere Application Server Liberty Core 8.5.5

library
The shared library reference to use for the OSGi library.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

name string Name of shared library for
administrators

library > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

library > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

Chapter 1. WebSphere Application Server Liberty Core: Overview 371

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

library > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

package
A package export specification for a package that the system makes available for use by OSGi
applications.

false

string

Web Server Plugin (pluginConfiguration)
Properties used when generating the web server plugin configuration file
v httpEndpoint

– accessLogging
– httpOptions
– sslOptions
– tcpOptions

372 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

connectTimeout A period of time with
second precision

5s Identifies the maximum
amount of time that the
application server should
maintain a connection with
the web server. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

extendedHandshake boolean false If true, the web server
plugin uses an extended
handshake to determine if
the application server is
running.

httpEndpointRef A reference to top level
httpEndpoint element
(string).

defaultHttpEndpoint Specify the identifier of the
http endpoint to include in
the generated
plugin-cfg.xml file. The
endpoint defines the server
in the cluster. The default
value is
'defaultHttpEndpoint'.

ipv6Preferred boolean false Used when resolving an
application server host
name of {null} or {0}, to
prefer the type of address
when possible

logDirLocation Path to a directory Deprecated: Identifies the
directory where the
http_plugin.log file is
located. See Log file name.

logFileName Path to a file ${pluginInstallRoot}/logs/
${webserverName}/
http_plugin.log

A fully qualified path to to
the web server plug-in log
file. Directory component
must already exist. For
Apache-based web servers,
a path that begins with a
pipe character is interpreted
as an external piped logger.
If specified, the path
overrides logDirLocation.

pluginInstallRoot string /opt/IBM/WebSphere/
Plugins

Web server plugin
installation location in file
system of web server host

Chapter 1. WebSphere Application Server Liberty Core: Overview 373

Attribute name Data type Default value Description

serverIOTimeout A period of time with
second precision

900s Identifies the maximum
amount of time that the
web server plugin waits to
send a request or receive a
response from the
application server. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

serverIOTimeoutRetry int

Minimum: -1

Maximum: 65535

-1 Limits the number of
request retries after a read
or write timeout. The
default value, {-1}, applies
no additional limits, so
retries are limited by the
number of available servers
in the cluster. A {0} value
indicates there should be
no retries. This value is
scoped to the server cluster
and does not apply to
connection failures or
timeouts due to the HTTP
plug-in Connection
timeout, or to web socket
timeouts.

sslCertlabel string Specifies the label of the
certificate within the
keyring that the plug-in is
to use when the web
container requests a client
certificate from the plug-in.

sslKeyringLocation string ${pluginInstallRoot}/
config/${webserverName}/
plugin-key.kdb

The fully qualified path to
the SSL keyring file on the
web server host

sslStashfileLocation string ${pluginInstallRoot}/
config/${webserverName}/
plugin-key.sth

The fully qualified path to
the SSL stashfile on the
web server host

374 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

waitForContinue boolean false If false (the default value),
the web server plugin
sends the "Expect:
100-continue" header with
HTTP requests that have a
message body. When set to
true, the web server plugin
sends the "Expect:
100-continue" header with
every HTTP request.
Consider setting this value
to true if you have a
firewall between the web
server and the application
server, and are sensitive to
requests retries with no
request body.

webserverName string webserver1 Name of the web server
where this configuration
will be used. Used to
generate the plugin log file
location if that is not
specified explicitly by Log
file name or directory.

webserverPort int

Minimum: -1

Maximum: 65535

80 Web server HTTP port

webserverSecurePort int

Minimum: -1

Maximum: 65535

443 Web server HTTPS port

wsServerIOTimeout A period of time with
second precision

Identifies the maximum
amount of time that the
web server plugin waits to
send a request or receive a
websocket response from
the application server.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 375

Attribute name Data type Default value Description

wsServerIdleTimeout A period of time with
second precision

Identifies the maximum
amount of time that the
web server plugin waits to
terminate an idle websocket
connection. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

httpEndpoint
Specify the identifier of the http endpoint to include in the generated plugin-cfg.xml file. The
endpoint defines the server in the cluster. The default value is 'defaultHttpEndpoint'.

false

Attribute name Data type Default value Description

accessLoggingRef A reference to top level
httpAccessLogging element
(string).

HTTP access logging
configuration for the
endpoint.

enabled boolean true Toggle the availability of an
endpoint. When true, this
endpoint will be activated
by the dispatcher to handle
HTTP requests.

host string localhost IP address, domain name
server (DNS) host name
with domain name suffix,
or just the DNS host name,
used by a client to request
a resource. Use '*' for all
available network
interfaces.

httpOptionsRef A reference to top level
httpOptions element
(string).

defaultHttpOptions HTTP protocol options for
the endpoint.

httpPort int

Minimum: -1

Maximum: 65535

The port used for client
HTTP requests. Use -1 to
disable this port.

httpsPort int

Minimum: -1

Maximum: 65535

The port used for client
HTTP requests secured
with SSL (https). Use -1 to
disable this port.

376 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

onError v IGNORE

v FAIL

v WARN

WARN Action to take after a
failure to start an endpoint.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

sslOptionsRef A reference to top level
sslOptions element (string).

SSL protocol options for the
endpoint.

tcpOptionsRef A reference to top level
tcpOptions element (string).

defaultTCPOptions TCP protocol options for
the endpoint.

httpEndpoint > accessLogging
HTTP access logging configuration for the endpoint.

false

Attribute name Data type Default value Description

enabled boolean true Enable access logging.

filePath Path to a file ${server.output.dir}/logs/
http_access.log

Directory path and name of
the access log file. Standard
variable substitutions, such
as ${server.output.dir}, can
be used when specifying
the directory path.

logFormat string %h %u %{t}W "%r" %s %b Specifies the log format that
is used when logging client
access information.

maxFileSize int

Minimum: 0

20 Maximum size of a log file,
in megabytes, before being
rolled over; a value of 0
means no limit.

maxFiles int

Minimum: 0

2 Maximum number of log
files that will be kept,
before the oldest file is
removed; a value of 0
means no limit.

Chapter 1. WebSphere Application Server Liberty Core: Overview 377

httpEndpoint > httpOptions
HTTP protocol options for the endpoint.

false

Attribute name Data type Default value Description

keepAliveEnabled boolean true Enables persistent
connections (HTTP
keepalive). If true,
connections are kept alive
for reuse by multiple
sequential requests and
responses. If false,
connections are closed after
the response is sent.

maxKeepAliveRequests int

Minimum: -1

100 Maximum number of
persistent requests that are
allowed on a single HTTP
connection if persistent
connections are enabled. A
value of -1 means
unlimited.

persistTimeout A period of time with
second precision

30s Amount of time that a
socket will be allowed to
remain idle between
requests. This setting only
applies if persistent
connections are enabled.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

readTimeout A period of time with
second precision

60s Amount of time to wait for
a read request to complete
on a socket after the first
read occurs. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

removeServerHeader boolean false Removes server
implementation information
from HTTP headers and
also disables the default
Liberty profile welcome
page.

378 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

writeTimeout A period of time with
second precision

60s Amount of time to wait on
a socket for each portion of
the response data to be
transmitted. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

httpEndpoint > sslOptions
SSL protocol options for the endpoint.

false

Attribute name Data type Default value Description

sessionTimeout A period of time with
second precision

1d Amount of time to wait for
a read or write request to
complete on a socket. This
value is overridden by
protocol-specific timeouts.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

sslRef A reference to top level ssl
element (string).

The default SSL
configuration repertoire.
The default value is
defaultSSLSettings.

suppressHandshakeErrors boolean false Disable logging of SSL
handshake errors. SSL
handshake errors can occur
during normal operation,
however these messages
can be useful when SSL is
behaving unexpectedly.

httpEndpoint > tcpOptions
TCP protocol options for the endpoint.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 379

Attribute name Data type Default value Description

inactivityTimeout A period of time with
millisecond precision

60s Amount of time to wait for
a read or write request to
complete on a socket. This
value is overridden by
protocol-specific timeouts.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

soReuseAddr boolean true Enables immediate rebind
to a port with no active
listener.

Quick Start Security (quickStartSecurity)
Simple administrative security configuration.

Attribute name Data type Default value Description

userName string Single user defined as part
of the quick start security
configuration. This user is
granted the Administrator
role.

userPassword Reversably encoded
password (string)

Password for the single
user defined as part of the
quick start security
configuration. It is
recommended that you
encode this password. To
do so, use the
securityUtility tool with the
encode option.

Remote File Access (remoteFileAccess)
This element contains artifacts that control the level of file access exposed for remote connections.
v readDir
v writeDir

readDir
A directory that remote clients are allowed to read from. There can be multiple readDir elements, and
each represents a single directory that may refer to variables or absolute paths. Default is
${wlp.install.dir}, ${wlp.user.dir} and ${server.output.dir}

false

Path to a directory

380 WebSphere Application Server Liberty Core 8.5.5

writeDir
A directory that remote clients are allowed to read from and write to. There can be multiple writeDir
elements, and each represents a single directory that may refer to variables or absolute paths. Default
is an empty set of directories.

false

Path to a directory

Request Timing (requestTiming)
Provides warnings and diagnostic information for the slow or hung requests.

Attribute name Data type Default value Description

hungRequestThreshold A period of time with
millisecond precision

10m Duration of time that a
request can run before
being considered hung.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

includeContextInfo boolean true Indicates if the context
information details are
included in the log output.

sampleRate int

Minimum: 1

1 Rate at which the sampling
should happen for the slow
request tracking. To sample
one out of every n requests,
set sampleRate to n. To
sample all requests, set
sampleRate to 1.

slowRequestThreshold A period of time with
millisecond precision

10s Duration of time that a
request can run before
being considered slow.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

SAML Web SSO 2.0 Authentication (samlWebSso20)
Controls the operation of the Security Assertion Markup Language Web SSO 2.0 Mechanism.
v audiences
v authFilter

Chapter 1. WebSphere Application Server Liberty Core: Overview 381

– host
– remoteAddress
– requestUrl
– userAgent
– webApp

v authnContextClassRef
v headerName
v pkixTrustEngine

– crl
– trustedIssuers
– x509Certificate

Attribute name Data type Default value Description

allowCreate boolean Allow the IdP to create a
new account if the
requesting user does not
have one.

allowCustomCacheKey boolean true Allow generating a custom
cache key to access the
authentication cache and
get the subject.

authFilterRef A reference to top level
authFilter element (string).

Specifies the authentication
filter reference.

382 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

authnContextComparisonTypev minimum

v better

v maximum

v exact

exact When an
authnContextClassRef is
specified, the
authnContextComparisonType
can be set.

minimum
Minimum. The
authentication
context in the
authentication
statement must be
at least as strong
as one of the
authentication
contexts specified.

better Better. The
authentication
context in the
authentication
statement must be
stronger than any
one of the
authentication
contexts specified.

maximum
Maximum. The
authentication
context in the
authentication
statement must be
as strong as
possibe without
exceeding the
strength of at least
one of the
authentication
contexts specified.

exact Exact. The
authentication
context in the
authentication
statement must be
an exact match of
at least one of the
authentication
contexts specified.

Chapter 1. WebSphere Application Server Liberty Core: Overview 383

Attribute name Data type Default value Description

authnRequestTime A period of time with
millisecond precision

10m Specifies the life time
period of an authnReuqest
which is generated and sent
from the service provider to
an IdP for requesting a
SAML Token. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

authnRequestsSigned boolean true Indicates whether the
<samlp:AuthnRequest>
messages sent by this
service provider will be
signed.

clockSkew A period of time with
millisecond precision

5m This is used to specify the
allowed clock skew in
minutes when validating
the SAML token. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

createSession boolean true Specifies whether to create
an HttpSession if the
current HttpSession does
not exist.

customizeNameIDFormat string Specifies the customized
URI reference
corresponding to a name
identifier format that is not
defined in the SAML core
specification.

disableLtpaCookie boolean true Do not create an LTPA
Token during processing of
the SAML Assertion. Create
a cookie of the specific
Service Provider instead.

enabled boolean true The service provider is
enabled if true and disabled
if false.

384 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

errorPageURL string Specifies an error page to
be displayed if the SAML
validation fails. If this
attribute is not specified,
and the received SAML is
invalid, the user will be
redirected back to the
SAML IdP to restart SSO.

forceAuthn boolean false Indicates whether the IdP
should force the user to
re-authenticate.

groupIdentifier string Specifies a SAML attribute
that is used as the name of
the group that the
authenticated principal is a
member of. There is no
default value.

httpsRequired boolean true Enforce using SSL
communication when
accessing a SAML WebSSO
service provider end point
such as acs or metadata.

id string A unique configuration ID.

idpMetadata string ${server.config.dir}/
resources/security/
idpMetadata.xml

Specifies the IdP metadata
file.

inboundPropagation v none

v required

none Controls the operation of
the Security Assertion
Markup Language Web
SSO 2.0 for the inbound
propagation of the Web
Services Mechanisms.

none %inboundPropagation.none

required
%inboundPropagation.required

includeTokenInSubject boolean true Specifies whether to
include a SAML assertion
in the subject.

includeX509InSPMetadata boolean true Specifies whether to
include the x509 certificate
in the Liberty SP metadata.

isPassive boolean false Indicates IdP must not take
control of the end user
interface.

keyAlias string Key alias name to locate
the private key for signing
and decryption. This is
optional if the keystore has
exactly one key entry, or if
it has one key with an alias
of 'samlsp'.

Chapter 1. WebSphere Application Server Liberty Core: Overview 385

Attribute name Data type Default value Description

keyStoreRef A reference to top level
keyStore element (string).

A keystore containing the
private key for the signing
of the AuthnRequest, and
the decryption of
EncryptedAssertion
element. The default is the
server's default.

loginPageURL string Specifies the SAML IdP
login application URL to
which an unauthenticated
request is redirected. This
attribute triggers
IdP-initiated SSO, and it is
only required for
IdP-initiated SSO.

mapToUserRegistry v User

v No

v Group

No Specifies how to map an
identity to a registry user.
The options are No, User,
and Group. The default is
No, and the user registry is
not used to create the user
subject.

User Map a SAML
identity to a user
defined in the
registry

No Do not map a
SAML identity to a
user or group in
the registry

Group Map a SAML
identity to a group
defined in the user
registry

386 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

nameIDFormat v encrypted

v customize

v persistent

v x509SubjectName

v email

v transient

v entity

v unspecified

v kerberos

v
windowsDomainQualifiedName

email Specifies the URI reference
corresponding to a name
identifier format defined in
the SAML core
specification.

encrypted
urn:oasis:names:tc:SAML:2.0:nameid-
format:encrypted

customize
Customized Name
ID Format.

persistent
urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent

x509SubjectName
urn:oasis:names:tc:SAML:1.1:nameid-
format:X509SubjectName

email urn:oasis:names:tc:SAML:1.1:nameid-
format:emailAddress

transient
urn:oasis:names:tc:SAML:2.0:nameid-
format:transient

entity urn:oasis:names:tc:SAML:2.0:nameid-
format:entity

unspecified
urn:oasis:names:tc:SAML:1.1:nameid-
format:unspecified

kerberos
urn:oasis:names:tc:SAML:2.0:nameid-
format:kerberos

windowsDomainQualifiedName
urn:oasis:names:tc:SAML:1.1:nameid-
format:WindowsDomainQualifiedName

reAuthnCushion A period of time with
millisecond precision

0m The time period to
authenticate again when a
SAML Assertion is about to
expire, which is indicated
by either the statement
NotOnOrAfter or the
attribute
SessionNotOnOrAfter of
the SAML Assertion.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 387

Attribute name Data type Default value Description

reAuthnOnAssertionExpire boolean false Authenticate the incoming
HTTP request again when a
SAML Assertion is about to
expire.

realmIdentifier string Specifies a SAML attribute
that is used as the realm
name. If no value is
specified, the Issuer SAML
assertion element value is
used.

realmName string Specifies a realm name
when mapToUserRegistry is
set to No or Group.

sessionNotOnOrAfter A period of time with
millisecond precision

120m Indicates an upper bound
on SAML session durations,
after which the Liberty SP
should ask the user to
re-authenticate to the IdP. If
the SAML token returned
from the IdP does not
contain a
sessionNotOnOrAfter
assertion, the value
specified by this attribute is
used. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), seconds
(s), or milliseconds (ms).
For example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

signatureMethodAlgorithm v SHA256

v SHA128

v SHA1

SHA256 Indicates the required
algorithm by this service
provider.

SHA256
SHA-256 signature
algorithm

SHA128
%signatureMethodAlgorithm.SHA128

SHA1 SHA-1 signature
algorithm

spHostAndPort string Specifies a SAML service
provider host name and
port number.

targetPageUrl string The default landing page
for the IdP-initiated SSO if
the relayState is missing.

388 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

tokenReplayTimeout A period of time with
millisecond precision

30m This property is used to
specify how long the
Liberty SP should prevent
token replay. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

userIdentifier string Specifies a SAML attribute
that is used as the user
principal name in the
subject. If no value is
specified, the NameID
SAML assertion element
value is used.

userUniqueIdentifier string Specifies a SAML attribute
that is used as the unique
user name as it applies to
the WSCredential in the
subject. The default is the
same as the userIdentifier
attribute value.

wantAssertionsSigned boolean true Indicates a requirement for
the <saml:Assertion>
elements received by this
service provider to be
signed.

audiences
The list of audiences which are trusted to verify the audience of the SAML Token. If the value is
"ANY", then all audiences are trusted.

false

string

authFilter
Specifies the authentication filter reference.

false

authFilter > host
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

Chapter 1. WebSphere Application Server Liberty Core: Overview 389

Attribute name Data type Default value Description

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

name string Specifies the name.

authFilter > remoteAddress
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

ip string Specifies the IP address.

matchType v lessThan

v equals

v greaterThan

v contains

v notContain

contains Specifies the match type.

lessThan
Less than

equals Equals

greaterThan
Greater than

contains
Contains

notContain
Not contain

authFilter > requestUrl
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

urlPattern string Specifies the URL pattern.

authFilter > userAgent
A unique configuration ID.

false

390 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

agent string Specifies the user agent

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

authFilter > webApp
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

name string Specifies the name.

authnContextClassRef
A URI reference identifying an authentication context class that describes the authentication context
declaration. The default is null.

false

string

headerName
The header name of the HTTP request which stores the SAML Token.

false

string

pkixTrustEngine
Specifies the PKIX trust information that is used to evaluate the trustworthiness and validity of XML
signatures in a SAML response. Do not specify multiple pkixTrustEngine in a samlWebSso20.

false

Attribute name Data type Default value Description

trustAnchorRef A reference to top level
keyStore element (string).

A keystore containing the
public key necessary for
verifying the signature of
the SAMLResponse and
Assertion.

pkixTrustEngine > crl
A unique configuration ID.

Chapter 1. WebSphere Application Server Liberty Core: Overview 391

false

Attribute name Data type Default value Description

id string A unique configuration ID.

path string Specifies the path to the crl.

pkixTrustEngine > trustedIssuers
Specifies the identities of trusted IdP issuers. If the value is "ALL_ISSUERS", then all IdP
identities are trusted.

false

string

pkixTrustEngine > x509Certificate
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

path string Specifies the path to the
x509 certificate.

IBM SecureWay Directory Server LDAP Filters
(securewayLdapFilterProperties)
Specifies the list of default IBM SecureWay Directory Server LDAP filters.

Attribute name Data type Default value Description

groupFilter string (&(cn=
%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

An LDAP filter clause for
searching the user registry
for groups.

groupIdMap string *:cn An LDAP filter that maps
the name of a group to an
LDAP entry.

groupMemberIdMap string groupOfNames:member;groupOfUniqueNames:uniqueMemberAn LDAP filter that
identifies user to group
memberships.

id string A unique configuration ID.

userFilter string (&(uid=
%v)(objectclass=ePerson))

An LDAP filter clause for
searching the user registry
for users.

userIdMap string *:uid An LDAP filter that maps
the name of a user to an
LDAP entry.

Spnego Authentication (spnego)
Controls the operation of the Simple and Protected GSS-API Negotiation Mechanism.
v authFilter

– host
– remoteAddress
– requestUrl

392 WebSphere Application Server Liberty Core 8.5.5

– userAgent
– webApp

Attribute name Data type Default value Description

authFilterRef A reference to top level
authFilter element (string).

Specifies the authentication
filter reference.

canonicalHostName boolean true Controls whether you want
to use the canonical host
name.

disableFailOverToAppAuthTypeboolean true Specifies that SPNEGO is
used to log in to
WebSphere Application
Server first. However, if the
login fails, then the
application authentication
mechanism is used to log
in to the WebSphere
Application Server.

includeClientGSSCredentialInSubjectboolean true Specifies whether the client
delegation credentials
should be stored in a client
subject.

krb5Config string Specifies the fully qualified
Kerberos configuration path
and name. Standard
variable substitutions, such
as ${server.config.dir}, can
be used when specifying
the directory path.

krb5Keytab string Specifies the fully qualified
Kerberos keytab path and
name. Standard variable
substitutions, such as
${server.config.dir}, can be
used when specifying the
directory path. The
Kerberos keytab file
contains a list of keys that
are analogous to user
passwords. It is important
for hosts to protect their
Kerberos keytab files by
storing them on the local
disk.

ntlmTokenReceivedErrorPageURLstring Specifies the URL of a
resource that contains the
content which SPNEGO
includes in the HTTP
response, which is
displayed by the browser
client application.

servicePrincipalNames string Specifies a list of Kerberos
service principal names
separated by a comma.

Chapter 1. WebSphere Application Server Liberty Core: Overview 393

Attribute name Data type Default value Description

spnegoNotSupportedErrorPageURLstring Specifies the URL of a
resource that contains the
content which SPNEGO
includes in the HTTP
response that is displayed
by the browser client
application if it does not
support SPNEGO
authentication.

trimKerberosRealmNameFromPrincipalboolean true Specifies whether SPNEGO
removes the suffix of the
Kerberos principal user
name, starting from the @
that precedes the Kerberos
realm name. If this attribute
is set to true, the suffix of
the principal user name is
removed. If this attribute is
set to false, the suffix of the
principal name is retained.

authFilter
Specifies the authentication filter reference.

false

authFilter > host
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

name string Specifies the name.

authFilter > remoteAddress
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

ip string Specifies the IP address.

394 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

matchType v lessThan

v equals

v greaterThan

v contains

v notContain

contains Specifies the match type.

lessThan
Less than

equals Equals

greaterThan
Greater than

contains
Contains

notContain
Not contain

authFilter > requestUrl
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

urlPattern string Specifies the URL pattern.

authFilter > userAgent
A unique configuration ID.

false

Attribute name Data type Default value Description

agent string Specifies the user agent

id string A unique configuration ID.

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

authFilter > webApp
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

Chapter 1. WebSphere Application Server Liberty Core: Overview 395

Attribute name Data type Default value Description

matchType v equals

v contains

v notContain

contains Specifies the match type.

equals Equals

contains
Contains

notContain
Not contain

name string Specifies the name.

SSL Repertoire (ssl)
An SSL repertoire with an ID, a defined keystore, and an optional truststore.

Attribute name Data type Default value Description

clientAuthentication boolean false Specifies whether client
authentication is enabled. If
set to true then client
authentication is required
and the client must provide
a certificate for the server
trusts.

clientAuthenticationSupportedboolean false Specifies whether a client
authentication is supported.
If set to true then the client
authentication support
means the server will check
trust from a client if the
client presents a certificate.

clientKeyAlias string Specifies the alias of the
certificate in the keystore
that is used as the key to
send to a server that has
client authentication
enabled. This attribute is
only needed if the keystore
has more than one key
entry.

enabledCiphers string Specifies a custom list of
ciphers. Separate each
cipher in the list with a
space. The supported
cipher will depend on the
underlying JRE used.
Please check the JRE for
valid ciphers.

id string A unique configuration ID.

keyStoreRef A reference to top level
keyStore element (string).

A keystore containing key
entries for the SSL
repertoire. This attribute is
required.

396 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

securityLevel v MEDIUM

v CUSTOM

v HIGH

v LOW

HIGH Specifies the cipher suite
group used by the SSL
handshake. HIGH are 3DES
and 128 bit and higher
ciphers, MEDIUM are DES
and 40 bit ciphers, LOW
are ciphers without
encryption. If the
enabledCiphers attribute is
used the securityLevel list
is ignored.

MEDIUM
%repertoire.MEDIUM

CUSTOM
%repertoire.CUSTOM

HIGH Cipher suites 3DES
and 128 bit and
higher

LOW %repertoire.LOW

serverKeyAlias string Specifies the alias of the
certificate in the keystore
used as the server's key.
This attribute is only
needed if the keystore has
more then one key entry.

sslProtocol string The SSL handshake
protocol. Protocol values
can be found in the
documentation for the
underlying JRE's Java
Secure Socket Extension
(JSSE) provider. When
using the IBM JRE the
default value is SSL_TLS
and when using the Oracle
JRE the default value is
SSL.

trustStoreRef A reference to top level
keyStore element (string).

${keyStoreRef} A keystore containing
trusted certificate entries
used by the SSL repertoire
for signing verification.
This attribute is optional. If
unspecified, the same
keystore is used for both
key and trusted certificate
entries.

Chapter 1. WebSphere Application Server Liberty Core: Overview 397

SSL Default Repertoire (sslDefault)
The default repertoire for SSL services.

Attribute name Data type Default value Description

sslRef A reference to top level ssl
element (string).

defaultSSLConfig The name of the SSL
repertoire that will be used
as the default. The default
SSL repertoire called
defaultSSLConfig is used if
none is specified.

SSL Options (sslOptions)
The SSL protocol configuration for a transport.

Attribute name Data type Default value Description

id string A unique configuration ID.

sessionTimeout A period of time with
second precision

1d Amount of time to wait for
a read or write request to
complete on a socket. This
value is overridden by
protocol-specific timeouts.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

sslRef A reference to top level ssl
element (string).

The default SSL
configuration repertoire.
The default value is
defaultSSLSettings.

suppressHandshakeErrors boolean false Disable logging of SSL
handshake errors. SSL
handshake errors can occur
during normal operation,
however these messages
can be useful when SSL is
behaving unexpectedly.

TCP Options (tcpOptions)
Defines TCP protocol settings.

Attribute name Data type Default value Description

id string A unique configuration ID.

398 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

inactivityTimeout A period of time with
millisecond precision

60s Amount of time to wait for
a read or write request to
complete on a socket. This
value is overridden by
protocol-specific timeouts.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

soReuseAddr boolean true Enables immediate rebind
to a port with no active
listener.

addressExcludeList string A list of addresses that are
not allowed to make
inbound connections on
this channel. IPv4 or IPv6
addresses can be specified.
All values in an IPv4 or
PIv6 address must be
represented by a number,
or an asterisk that is used
as a wildcard character.

addressIncludeList string A list of addresses that are
allowed to make inbound
connections on this
channel. IPv4 or IPv6
addresses can be specified.
All values in an IPv4 or
PIv6 address must be
represented by a number,
or an asterisk that is used
as a wildcard character.

hostNameExcludeList string A list of host names that
are not allowed to make
inbound connections on
this channel. Host names
can start with an asterisk,
which is used as a wildcard
character. However, an
asterisk must not appear
elsewhere in the address.
For example, *.abc.com is
valid, but *.abc.* is invalid.

Chapter 1. WebSphere Application Server Liberty Core: Overview 399

Attribute name Data type Default value Description

hostNameIncludeList string A list of host names that
are allowed to make
inbound connections on
this channel. Host names
can start with an asterisk,
which is used as a wildcard
character. However, an
asterisk must not appear
elsewhere in the address.
For example, *.abc.com is
valid, but *.abc.* is invalid.

maxOpenConnections integer 128000 The maximum number of
open connections per HTTP
Endpoint. The range of
possible values is between
1 and 1280000. This value is
not strictly enforced to the
exact value that is
configured due to the
timing of connections
opening and closing.

For more information, see TCP transport channel settings.

Timed Operation (timedOperation)
Timed operations help WebSphere Application Server administrators see when certain actions in their
application server are operating more slowly than expected.

Attribute name Data type Default value Description

enableReport boolean true Enables periodic generation
of report to the logs
detailing the ten longest
timed operations, grouped
by type, and sorted within
each group by expected
duration

maxNumberTimedOperationsint 10000 A warning is logged when
the total number of timed
operations reaches this
value.

reportFrequency A period of time with hour
precision

Frequency of generating
report to the logs detailing
the ten longest timed
operations, grouped by
type, and sorted within
each group by average of
actual duration. Specify a
positive integer followed by
the unit of time, which can
be hours (h). For example,
specify 12 hours as 12h.

400 WebSphere Application Server Liberty Core 8.5.5

https://knowledgecenters.hursley.ibm.com/tWASvNext-refresh/SSEQTP_8.5.0/com.ibm.websphere.nd.multiplatform.doc/ae/urun_chain_typetcp.html

Transaction Manager (transaction)
Configuration properties for the Transaction Manager service
v dataSource

– connectionManager
– containerAuthData
– jaasLoginContextEntry
– jdbcDriver

- library
v file
v fileset
v folder

– properties
– properties.datadirect.sqlserver
– properties.db2.i.native
– properties.db2.i.toolbox
– properties.db2.jcc
– properties.derby.client
– properties.derby.embedded
– properties.informix
– properties.informix.jcc
– properties.microsoft.sqlserver
– properties.oracle
– properties.sybase
– recoveryAuthData

Attribute name Data type Default value Description

acceptHeuristicHazard boolean true Specifies whether all
applications on this server
accept the possibility of a
heuristic hazard occurring
in a two-phase transaction
that contains a one-phase
resource.

clientInactivityTimeout A period of time with
second precision

60s Maximum duration
between transactional
requests from a remote
client. Any period of client
inactivity that exceeds this
timeout results in the
transaction being rolled
back in this application
server. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 401

Attribute name Data type Default value Description

dataSourceRef A reference to top level
dataSource element (string).

This is an optional
property. By default the
transaction service stores its
recovery logs in a file. As
an alternative it is possible
to store the logs in an
RDBMS. This is achieved
by setting this property
which defines a
non-transactional data
source where the
transaction logs will be
stored.

defaultMaxShutdownDelay A period of time with
second precision

2s Default maximum
shutdown delay. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

enableLoggingForHeuristicReportingboolean false Specifies whether the
application server logs
about-to-commit-one-phase-
resource events from
transactions that involve
both a one-phase commit
resource and two-phase
commit resources.

heuristicRetryInterval A period of time with
second precision

60s Amount of time that the
application server waits
before retrying a
completion signal, such as
commit or rollback, after a
transient exception from a
resource manager or remote
partner. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

heuristicRetryWait int 5 The number of times that
the application server
retries a completion signal,
such as commit or rollback.
Retries occur after a
transient exception from a
resource manager or remote
partner.

402 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

lpsHeuristicCompletion v COMMIT

v MANUAL

v ROLLBACK

ROLLBACK Specifies the direction that
is used to complete a
transaction that has a
heuristic outcome; either
the application server
commits or rolls back the
transaction, or depends on
manual completion by the
administrator. Allowed
values are: COMMIT,
ROLLBACK and MANUAL

COMMIT
Commit

MANUAL
Manual

ROLLBACK
Rollback

propogatedOrBMTTranLifetimeTimeoutA period of time with
second precision

0 Upper limit of the
transaction timeout for
transactions that run in this
server. This value should be
greater than or equal to the
value specified for the total
transaction timeout. Specify
a positive integer followed
by a unit of time, which
can be hours (h), minutes
(m), or seconds (s). For
example, specify 30 seconds
as 30s. You can include
multiple values in a single
entry. For example, 1m30s
is equivalent to 90 seconds.

recoverOnStartup boolean false Specifies whether the server
should begin transaction
recovery at server startup.

recoveryGroup string Name of the recovery
group that this server
belongs too. Members of a
recovery group can recover
the transaction logs of other
servers in the group.

recoveryIdentity string Unique identity of this
server for transaction peer
recovery.

timeoutGracePeriodEnabled boolean false Specifies whether there is a
delay between a transaction
timeout and the abnormal
ending of the servant
region that was running the
transaction.

Chapter 1. WebSphere Application Server Liberty Core: Overview 403

Attribute name Data type Default value Description

totalTranLifetimeTimeout A period of time with
second precision

120s Default maximum time
allowed for transactions
started on this server to
complete. Any such
transactions that do not
complete before this
timeout occurs are rolled
back. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

transactionLogDBTableSuffix string When recovery logs are
stored in an RDBMS table,
this property allows the
table name to be
post-pended with a string
to make it unique for this
Server.

transactionLogDirectory string ${server.output.dir}/
tranlog/

A directory for this server
where the transaction
service stores log files for
recovery.

transactionLogSize int 1024 Specifies the size of
transaction log files in
Kilobytes.

waitForRecovery boolean false Specifies whether the server
should wait for transaction
recovery to complete before
accepting new transactional
work.

dataSource
This is an optional property. By default the transaction service stores its recovery logs in a file. As an
alternative it is possible to store the logs in an RDBMS. This is achieved by setting this property
which defines a non-transactional data source where the transaction logs will be stored.

false

Attribute name Data type Default value Description

beginTranForResultSetScrollingAPIsboolean true Attempt transaction
enlistment when result set
scrolling interfaces are
used.

beginTranForVendorAPIs boolean true Attempt transaction
enlistment when vendor
interfaces are used.

404 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

commitOrRollbackOnCleanupv commit

v rollback

Determines how to clean
up connections that might
be in a database unit of
work (AutoCommit=false)
when the connection is
closed or returned to the
pool.

commit
Clean up the
connection by
committing.

rollback
Clean up the
connection by
rolling back.

connectionManagerRef A reference to top level
connectionManager element
(string).

Connection manager for a
data source.

connectionSharing v MatchOriginalRequest

v MatchCurrentState

MatchOriginalRequest Specifies how connections
are matched for sharing.

MatchOriginalRequest
When sharing
connections, match
based on the
original connection
request.

MatchCurrentState
When sharing
connections, match
based on the
current state of the
connection.

containerAuthDataRef A reference to top level
authData element (string).

Default authentication data
for container managed
authentication that applies
when bindings do not
specify an
authentication-alias for a
resource reference with
res-auth=CONTAINER.

Chapter 1. WebSphere Application Server Liberty Core: Overview 405

Attribute name Data type Default value Description

enableConnectionCasting boolean false Indicates that connections
obtained from the data
source should be castable to
interface classes that the
JDBC vendor connection
implementation
implements. Enabling this
option incurs additional
overhead on each
getConnection operation. If
vendor JDBC interfaces are
needed less frequently, it
might be more efficient to
leave this option disabled
and use
Connection.unwrap(interface)
only where it is needed.

isolationLevel v
TRANSACTION_REPEATABLE_READ

v
TRANSACTION_READ_COMMITTED

v
TRANSACTION_SERIALIZABLE

v
TRANSACTION_READ_UNCOMMITTED

v
TRANSACTION_SNAPSHOT

Default transaction isolation
level.

TRANSACTION_REPEATABLE_READ
Dirty reads and
non-repeatable
reads are
prevented;
phantom reads can
occur.

TRANSACTION_READ_COMMITTED
Dirty reads are
prevented;
non-repeatable
reads and
phantom reads can
occur.

TRANSACTION_SERIALIZABLE
Dirty reads,
non-repeatable
reads and
phantom reads are
prevented.

TRANSACTION_READ_UNCOMMITTED
Dirty reads,
non-repeatable
reads and
phantom reads can
occur.

TRANSACTION_SNAPSHOT
Snapshot isolation
for Microsoft SQL
Server JDBC
Driver and
DataDirect
Connect for JDBC
driver.

406 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

jaasLoginContextEntryRef A reference to top level
jaasLoginContextEntry
element (string).

JAAS login context entry
for authentication.

jdbcDriverRef A reference to top level
jdbcDriver element (string).

JDBC driver for a data
source.

jndiName string JNDI name for a data
source.

queryTimeout A period of time with
second precision

Default query timeout for
SQL statements. In a JTA
transaction,
syncQueryTimeoutWithTransactionTimeout
can override this default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

recoveryAuthDataRef A reference to top level
authData element (string).

Authentication data for
transaction recovery.

statementCacheSize int

Minimum: 0

10 Maximum number of
cached statements per
connection.

supplementalJDBCTrace boolean Supplements the JDBC
driver trace that is logged
when JDBC driver trace is
enabled in
bootstrap.properties. JDBC
driver trace specifications
include:
com.ibm.ws.database.logwriter,
com.ibm.ws.db2.logwriter,
com.ibm.ws.derby.logwriter,
com.ibm.ws.informix.logwriter,
com.ibm.ws.oracle.logwriter,
com.ibm.ws.sqlserver.logwriter,
com.ibm.ws.sybase.logwriter.

syncQueryTimeoutWithTransactionTimeoutboolean false Use the time remaining (if
any) in a JTA transaction as
the default query timeout
for SQL statements.

transactional boolean true Enable participation in
transactions that are
managed by the application
server.

Chapter 1. WebSphere Application Server Liberty Core: Overview 407

Attribute name Data type Default value Description

type v javax.sql.DataSource

v javax.sql.XADataSource

v
javax.sql.ConnectionPoolDataSource

Type of data source.

javax.sql.DataSource
javax.sql.DataSource

javax.sql.XADataSource
javax.sql.XADataSource

javax.sql.ConnectionPoolDataSource
javax.sql.ConnectionPoolDataSource

dataSource > connectionManager
Connection manager for a data source.

false

Attribute name Data type Default value Description

agedTimeout A period of time with
second precision

-1 Amount of time before a
physical connection can be
discarded by pool
maintenance. A value of -1
disables this timeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

connectionTimeout A period of time with
second precision

30s Amount of time after which
a connection request times
out. A value of -1 disables
this timeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maxConnectionsPerThread int

Minimum: 0

Limits the number of open
connections on each thread.

408 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

maxIdleTime A period of time with
second precision

30m Amount of time after which
an unused or idle
connection can be
discarded during pool
maintenance, if doing so
does not reduce the pool
below the minimum size. A
value of -1 disables this
timeout. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

maxPoolSize int

Minimum: 0

50 Maximum number of
physical connections for a
pool. A value of 0 means
unlimited.

minPoolSize int

Minimum: 0

Minimum number of
physical connections to
maintain in the pool. The
pool is not pre-populated.
Aged timeout can override
the minimum.

numConnectionsPerThreadLocalint

Minimum: 0

Caches the specified
number of connections for
each thread.

Chapter 1. WebSphere Application Server Liberty Core: Overview 409

Attribute name Data type Default value Description

purgePolicy v ValidateAllConnections

v FailingConnectionOnly

v EntirePool

EntirePool Specifies which connections
to destroy when a stale
connection is detected in a
pool.

ValidateAllConnections
When a stale
connection is
detected,
connections are
tested and those
found to be bad
are closed.

FailingConnectionOnly
When a stale
connection is
detected, only the
connection which
was found to be
bad is closed.

EntirePool
When a stale
connection is
detected, all
connections in the
pool are marked
stale, and when no
longer in use, are
closed.

reapTime A period of time with
second precision

3m Amount of time between
runs of the pool
maintenance thread. A
value of -1 disables pool
maintenance. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

dataSource > containerAuthData
Default authentication data for container managed authentication that applies when bindings do
not specify an authentication-alias for a resource reference with res-auth=CONTAINER.

false

410 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

password Reversably encoded
password (string)

Password of the user to use
when connecting to the EIS.
The value can be stored in
clear text or encoded form.
It is recommended that you
encode the password. To do
so, use the securityUtility
tool with the encode
option.

user string Name of the user to use
when connecting to the EIS.

dataSource > jaasLoginContextEntry
JAAS login context entry for authentication.

false

Attribute name Data type Default value Description

loginModuleRef List of references to top
level jaasLoginModule
elements (comma-separated
string).

hashtable,userNameAndPassword,certificate,tokenA reference to the ID of a
JAAS login module.

name string Name of a JAAS
configuration entry.

dataSource > jdbcDriver
JDBC driver for a data source.

false

Attribute name Data type Default value Description

javax.sql.ConnectionPoolDataSourcestring JDBC driver
implementation of
javax.sql.ConnectionPoolDataSource.

javax.sql.DataSource string JDBC driver
implementation of
javax.sql.DataSource.

javax.sql.XADataSource string JDBC driver
implementation of
javax.sql.XADataSource.

libraryRef A reference to top level
library element (string).

Identifies JDBC driver JARs
and native files.

dataSource > jdbcDriver > library
Identifies JDBC driver JARs and native files.

false

Chapter 1. WebSphere Application Server Liberty Core: Overview 411

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

name string Name of shared library for
administrators

dataSource > jdbcDriver > library > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

dataSource > jdbcDriver > library > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

412 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

dataSource > jdbcDriver > library > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

dataSource > properties
List of JDBC vendor properties for the data source. For example, databaseName="dbname"
serverName="localhost" portNumber="50000".

false

Attribute name Data type Default value Description

URL string URL for connecting to the
database.

databaseName string JDBC driver property:
databaseName.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

serverName string Server where the database
is running.

Chapter 1. WebSphere Application Server Liberty Core: Overview 413

Attribute name Data type Default value Description

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

dataSource > properties.datadirect.sqlserver
Data source properties for the DataDirect Connect for JDBC driver for Microsoft SQL Server.

false

Attribute name Data type Default value Description

JDBCBehavior v 1

v 0

0 JDBC driver property:
JDBCBehavior. Values are: 0
(JDBC 4.0) or 1 (JDBC 3.0).

1 JDBC 3.0

0 JDBC 4.0

XATransactionGroup string JDBC driver property:
XATransactionGroup.

XMLDescribeType v longvarbinary

v longvarchar

JDBC driver property:
XMLDescribeType.

longvarbinary
longvarbinary

longvarchar
longvarchar

accountingInfo string JDBC driver property:
accountingInfo.

alternateServers string JDBC driver property:
alternateServers.

alwaysReportTriggerResults boolean JDBC driver property:
alwaysReportTriggerResults.

applicationName string JDBC driver property:
applicationName.

authenticationMethod v ntlm

v userIdPassword

v kerberos

v auto

JDBC driver property:
authenticationMethod.

ntlm ntlm

userIdPassword
userIdPassword

kerberos
kerberos

auto auto

bulkLoadBatchSize long JDBC driver property:
bulkLoadBatchSize.

bulkLoadOptions long JDBC driver property:
bulkLoadOptions.

clientHostName string JDBC driver property:
clientHostName.

clientUser string JDBC driver property:
clientUser.

414 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

codePageOverride string JDBC driver property:
codePageOverride.

connectionRetryCount int JDBC driver property:
connectionRetryCount.

connectionRetryDelay A period of time with
second precision

JDBC driver property:
connectionRetryDelay.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

convertNull int JDBC driver property:
convertNull.

databaseName string JDBC driver property:
databaseName.

dateTimeInputParameterTypev dateTime

v dateTimeOffset

v auto

JDBC driver property:
dateTimeInputParameterType.

dateTime
dateTime

dateTimeOffset
dateTimeOffset

auto auto

dateTimeOutputParameterTypev dateTime

v dateTimeOffset

v auto

JDBC driver property:
dateTimeOutputParameterType.

dateTime
dateTime

dateTimeOffset
dateTimeOffset

auto auto

describeInputParameters v describeIfString

v noDescribe

v describeIfDateTime

v describeAll

JDBC driver property:
describeInputParameters.

describeIfString
describeIfString

noDescribe
noDescribe

describeIfDateTime
describeIfDateTime

describeAll
describeAll

Chapter 1. WebSphere Application Server Liberty Core: Overview 415

Attribute name Data type Default value Description

describeOutputParameters v describeIfString

v noDescribe

v describeIfDateTime

v describeAll

JDBC driver property:
describeOutputParameters.

describeIfString
describeIfString

noDescribe
noDescribe

describeIfDateTime
describeIfDateTime

describeAll
describeAll

enableBulkLoad boolean JDBC driver property:
enableBulkLoad.

enableCancelTimeout boolean JDBC driver property:
enableCancelTimeout.

encryptionMethod v loginSSL

v requestSSL

v SSL

v noEncryption

JDBC driver property:
encryptionMethod.

loginSSL
loginSSL

requestSSL
requestSSL

SSL SSL

noEncryption
noEncryption

failoverGranularity v disableIntegrityCheck

v atomicWithRepositioning

v nonAtomic

v atomic

JDBC driver property:
failoverGranularity.

disableIntegrityCheck
disableIntegrityCheck

atomicWithRepositioning
atomicWithRepositioning

nonAtomic
nonAtomic

atomic atomic

failoverMode v connect

v select

v extended

JDBC driver property:
failoverMode.

connect
connect

select select

extended
extended

failoverPreconnect boolean JDBC driver property:
failoverPreconnect.

hostNameInCertificate string JDBC driver property:
hostNameInCertificate.

initializationString string JDBC driver property:
initializationString.

insensitiveResultSetBufferSizeint JDBC driver property:
insensitiveResultSetBufferSize.

416 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

javaDoubleToString boolean JDBC driver property:
javaDoubleToString.

loadBalancing boolean JDBC driver property:
loadBalancing.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

longDataCacheSize int

Minimum: -1

JDBC driver property:
longDataCacheSize.

netAddress string JDBC driver property:
netAddress.

packetSize int

Minimum: -1

Maximum: 128

JDBC driver property:
packetSize.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

queryTimeout A period of time with
second precision

JDBC driver property:
queryTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

resultsetMetaDataOptions int JDBC driver property:
resultsetMetaDataOptions.

selectMethod v direct

v cursor

JDBC driver property:
selectMethod.

direct direct

cursor cursor

serverName string localhost Server where the database
is running.

snapshotSerializable boolean JDBC driver property:
snapshotSerializable.

Chapter 1. WebSphere Application Server Liberty Core: Overview 417

Attribute name Data type Default value Description

spyAttributes string JDBC driver property:
spyAttributes.

stringInputParameterType v varchar

v nvarchar

varchar JDBC driver property:
stringInputParameterType.

varchar varchar

nvarchar
nvarchar

stringOutputParameterType v varchar

v nvarchar

varchar JDBC driver property:
stringOutputParameterType.

varchar varchar

nvarchar
nvarchar

suppressConnectionWarningsboolean JDBC driver property:
suppressConnectionWarnings.

transactionMode v explicit

v implicit

JDBC driver property:
transactionMode.

explicit explicit

implicit
implicit

truncateFractionalSeconds boolean JDBC driver property:
truncateFractionalSeconds.

trustStore string JDBC driver property:
trustStore.

trustStorePassword Reversably encoded
password (string)

JDBC driver property:
trustStorePassword.

useServerSideUpdatableCursorsboolean JDBC driver property:
useServerSideUpdatableCursors.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

validateServerCertificate boolean JDBC driver property:
validateServerCertificate.

dataSource > properties.db2.i.native
Data source properties for the IBM DB2 for i Native JDBC driver.

false

Attribute name Data type Default value Description

access v read only

v all

v read call

all JDBC driver property:
access.

read only
read only

all all

read call
read call

418 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

autoCommit boolean true JDBC driver property:
autoCommit.

batchStyle v 2.1

v 2.0

2.0 JDBC driver property:
batchStyle.

2.1 2.1

2.0 2.0

behaviorOverride int JDBC driver property:
behaviorOverride.

blockSize v 512

v 128

v 0

v 32

v 64

v 16

v 8

v 256

32 JDBC driver property:
blockSize.

512 512

128 128

0 0

32 32

64 64

16 16

8 8

256 256

cursorHold boolean false JDBC driver property:
cursorHold.

cursorSensitivity v asensitive

v sensitive

asensitive JDBC driver property:
cursorSensitivity. Values
are: 0
(TYPE_SCROLL_SENSITIVE_STATIC),
1
(TYPE_SCROLL_SENSITIVE_DYNAMIC),
2
(TYPE_SCROLL_ASENSITIVE).

asensitive
asensitive

sensitive
sensitive

dataTruncation string true JDBC driver property:
dataTruncation.

databaseName string *LOCAL JDBC driver property:
databaseName.

Chapter 1. WebSphere Application Server Liberty Core: Overview 419

Attribute name Data type Default value Description

dateFormat v dmy

v iso

v eur

v ymd

v julian

v jis

v usa

v mdy

JDBC driver property:
dateFormat.

dmy dmy

iso iso

eur eur

ymd ymd

julian julian

jis jis

usa usa

mdy mdy

dateSeparator v \,

v b

v .

v /

v -

JDBC driver property:
dateSeparator.

\, The comma
character (,).

b The character b

. The period
character (.).

/ The forward slash
character (/).

- The dash character
(-).

decimalSeparator v \,

v .

JDBC driver property:
decimalSeparator.

\, The comma
character (,).

. The period
character (.).

directMap boolean true JDBC driver property:
directMap.

doEscapeProcessing boolean true JDBC driver property:
doEscapeProcessing.

fullErrors boolean JDBC driver property:
fullErrors.

libraries string JDBC driver property:
libraries.

lobThreshold int

Maximum: 500000

0 JDBC driver property:
lobThreshold.

420 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

lockTimeout A period of time with
second precision

0 JDBC driver property:
lockTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maximumPrecision v 31

v 63

31 JDBC driver property:
maximumPrecision.

31 31

63 63

maximumScale int

Minimum: 0

Maximum: 63

31 JDBC driver property:
maximumScale.

minimumDivideScale int

Minimum: 0

Maximum: 9

0 JDBC driver property:
minimumDivideScale.

networkProtocol int JDBC driver property:
networkProtocol.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

prefetch boolean true JDBC driver property:
prefetch.

queryOptimizeGoal v 2

v 1

2 JDBC driver property:
queryOptimizeGoal. Values
are: 1 (*FIRSTIO) or 2
(*ALLIO).

2 *ALLIO

1 *FIRSTIO

Chapter 1. WebSphere Application Server Liberty Core: Overview 421

Attribute name Data type Default value Description

reuseObjects boolean true JDBC driver property:
reuseObjects.

serverName string Server where the database
is running.

serverTraceCategories int 0 JDBC driver property:
serverTraceCategories.

systemNaming boolean false JDBC driver property:
systemNaming.

timeFormat v iso

v eur

v jis

v usa

v hms

JDBC driver property:
timeFormat.

iso iso

eur eur

jis jis

usa usa

hms hms

timeSeparator v \,

v b

v :

v .

JDBC driver property:
timeSeparator.

\, The comma
character (,).

b The character b

: The colon
character (:).

. The period
character (.).

trace boolean JDBC driver property: trace.

transactionTimeout A period of time with
second precision

0 JDBC driver property:
transactionTimeout. Specify
a positive integer followed
by a unit of time, which
can be hours (h), minutes
(m), or seconds (s). For
example, specify 30 seconds
as 30s. You can include
multiple values in a single
entry. For example, 1m30s
is equivalent to 90 seconds.

translateBinary boolean false JDBC driver property:
translateBinary.

translateHex v binary

v character

character JDBC driver property:
translateHex.

binary binary

character
character

useBlockInsert boolean false JDBC driver property:
useBlockInsert.

422 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

dataSource > properties.db2.i.toolbox
Data source properties for the IBM DB2 for i Toolbox JDBC driver.

false

Attribute name Data type Default value Description

access v read only

v all

v read call

all JDBC driver property:
access.

read only
read only

all all

read call
read call

behaviorOverride int JDBC driver property:
behaviorOverride.

bidiImplicitReordering boolean true JDBC driver property:
bidiImplicitReordering.

bidiNumericOrdering boolean false JDBC driver property:
bidiNumericOrdering.

bidiStringType int JDBC driver property:
bidiStringType.

bigDecimal boolean true JDBC driver property:
bigDecimal.

blockCriteria v 2

v 1

v 0

2 JDBC driver property:
blockCriteria. Values are: 0
(no record blocking), 1
(block if FOR FETCH
ONLY is specified), 2 (block
if FOR UPDATE is
specified).

2 2

1 1

0 0

Chapter 1. WebSphere Application Server Liberty Core: Overview 423

Attribute name Data type Default value Description

blockSize v 512

v 128

v 0

v 32

v 64

v 16

v 8

v 256

32 JDBC driver property:
blockSize.

512 512

128 128

0 0

32 32

64 64

16 16

8 8

256 256

cursorHold boolean false JDBC driver property:
cursorHold.

cursorSensitivity v asensitive

v sensitive

v insensitive

asensitive JDBC driver property:
cursorSensitivity. Values
are: 0
(TYPE_SCROLL_SENSITIVE_STATIC),
1
(TYPE_SCROLL_SENSITIVE_DYNAMIC),
2
(TYPE_SCROLL_ASENSITIVE).

asensitive
asensitive

sensitive
sensitive

insensitive
insensitive

dataCompression boolean true JDBC driver property:
dataCompression.

dataTruncation boolean true JDBC driver property:
dataTruncation.

databaseName string JDBC driver property:
databaseName.

dateFormat v dmy

v iso

v eur

v ymd

v julian

v jis

v usa

v mdy

JDBC driver property:
dateFormat.

dmy dmy

iso iso

eur eur

ymd ymd

julian julian

jis jis

usa usa

mdy mdy

424 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

dateSeparator v
v \,

v .

v /

v -

JDBC driver property:
dateSeparator.

The space
character ().

\, The comma
character (,).

. The period
character (.).

/ The forward slash
character (/).

- The dash character
(-).

decimalSeparator v \,

v .

JDBC driver property:
decimalSeparator.

\, The comma
character (,).

. The period
character (.).

driver v toolbox

v native

toolbox JDBC driver property:
driver.

toolbox
toolbox

native native

errors v full

v basic

basic JDBC driver property:
errors.

full full

basic basic

extendedDynamic boolean false JDBC driver property:
extendedDynamic.

extendedMetaData boolean false JDBC driver property:
extendedMetaData.

fullOpen boolean false JDBC driver property:
fullOpen.

holdInputLocators boolean true JDBC driver property:
holdInputLocators.

holdStatements boolean false JDBC driver property:
holdStatements.

isolationLevelSwitchingSupportboolean false JDBC driver property:
isolationLevelSwitchingSupport.

keepAlive boolean JDBC driver property:
keepAlive.

lazyClose boolean false JDBC driver property:
lazyClose.

libraries string JDBC driver property:
libraries.

Chapter 1. WebSphere Application Server Liberty Core: Overview 425

Attribute name Data type Default value Description

lobThreshold int

Minimum: 0

Maximum: 16777216

0 JDBC driver property:
lobThreshold.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maximumPrecision v 31

v 63

31 JDBC driver property:
maximumPrecision.

31 31

63 64

maximumScale int

Minimum: 0

Maximum: 63

31 JDBC driver property:
maximumScale.

metaDataSource int

Minimum: 0

Maximum: 1

1 JDBC driver property:
metaDataSource.

minimumDivideScale int

Minimum: 0

Maximum: 9

0 JDBC driver property:
minimumDivideScale.

naming v system

v sql

sql JDBC driver property:
naming.

system system

sql sql

package string JDBC driver property:
package.

packageAdd boolean true JDBC driver property:
packageAdd.

packageCCSID v 13488

v 1200

13488 JDBC driver property:
packageCCSID. Values are:
1200 (UCS-2) or 13488
(UTF-16).

13488 13488 (UTF-16)

1200 1200 (UCS-2)

packageCache boolean false JDBC driver property:
packageCache.

426 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

packageCriteria v default

v select

default JDBC driver property:
packageCriteria.

default default

select select

packageError v exception

v none

v warning

warning JDBC driver property:
packageError.

exception
exception

none none

warning
warning

packageLibrary string QGPL JDBC driver property:
packageLibrary.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

prefetch boolean true JDBC driver property:
prefetch.

prompt boolean false JDBC driver property:
prompt.

proxyServer string JDBC driver property:
proxyServer.

qaqqiniLibrary string JDBC driver property:
qaqqiniLibrary.

queryOptimizeGoal int

Minimum: 0

Maximum: 2

0 JDBC driver property:
queryOptimizeGoal. Values
are: 1 (*FIRSTIO) or 2
(*ALLIO).

receiveBufferSize int

Minimum: 1

JDBC driver property:
receiveBufferSize.

remarks v system

v sql

system JDBC driver property:
remarks.

system system

sql sql

rollbackCursorHold boolean false JDBC driver property:
rollbackCursorHold.

savePasswordWhenSerializedboolean false JDBC driver property:
savePasswordWhenSerialized.

secondaryUrl string JDBC driver property:
secondaryUrl.

secure boolean false JDBC driver property:
secure.

sendBufferSize int

Minimum: 1

JDBC driver property:
sendBufferSize.

Chapter 1. WebSphere Application Server Liberty Core: Overview 427

Attribute name Data type Default value Description

serverName string Server where the database
is running.

serverTraceCategories int 0 JDBC driver property:
serverTraceCategories.

soLinger A period of time with
second precision

JDBC driver property:
soLinger. Specify a positive
integer followed by a unit
of time, which can be hours
(h), minutes (m), or seconds
(s). For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

soTimeout A period of time with
millisecond precision

JDBC driver property:
soTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

sort v hex

v table

v language

hex JDBC driver property: sort.

hex hex

table table

language
language

sortLanguage string JDBC driver property:
sortLanguage.

sortTable string JDBC driver property:
sortTable.

sortWeight v unqiue

v shared

JDBC driver property:
sortWeight.

unqiue unique

shared shared

tcpNoDelay boolean JDBC driver property:
tcpNoDelay.

threadUsed boolean true JDBC driver property:
threadUsed.

428 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

timeFormat v iso

v eur

v jis

v usa

v hms

JDBC driver property:
timeFormat.

iso iso

eur eur

jis jis

usa usa

hms hms

timeSeparator v
v \,

v :

v .

JDBC driver property:
timeSeparator.

The space
character ().

\, The comma
character (,).

: The colon
character (:).

. The period
character (.).

toolboxTrace v diagnostic

v information

v conversion

v error

v thread

v proxy

v none

v datastream

v pcml

v all

v jdbc

v warning

JDBC driver property:
toolboxTrace.

diagnostic
diagnostic

information
information

conversion
conversion

error error

thread thread

proxy proxy

none none

datastream
datastream

pcml pcml

all all

jdbc jdbc

warning
warning

trace boolean JDBC driver property: trace.

translateBinary boolean false JDBC driver property:
translateBinary.

translateBoolean boolean true JDBC driver property:
translateBoolean.

Chapter 1. WebSphere Application Server Liberty Core: Overview 429

Attribute name Data type Default value Description

translateHex v binary

v character

character JDBC driver property:
translateHex.

binary binary

character
character

trueAutoCommit boolean false JDBC driver property:
trueAutoCommit.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

xaLooselyCoupledSupport int

Minimum: 0

Maximum: 1

0 JDBC driver property:
xaLooselyCoupledSupport.

dataSource > properties.db2.jcc
Data source properties for the IBM Data Server Driver for JDBC and SQLJ for DB2.

false

Attribute name Data type Default value Description

activateDatabase int JDBC driver property:
activateDatabase.

alternateGroupDatabaseNamestring JDBC driver property:
alternateGroupDatabaseName.

alternateGroupPortNumber string JDBC driver property:
alternateGroupPortNumber.

alternateGroupServerName string JDBC driver property:
alternateGroupServerName.

blockingReadConnectionTimeoutA period of time with
second precision

JDBC driver property:
blockingReadConnectionTimeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

clientAccountingInformation string JDBC driver property:
clientAccountingInformation.

clientApplicationInformation string JDBC driver property:
clientApplicationInformation.

clientRerouteAlternatePortNumberstring JDBC driver property:
clientRerouteAlternatePortNumber.

clientRerouteAlternateServerNamestring JDBC driver property:
clientRerouteAlternateServerName.

430 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

clientUser string JDBC driver property:
clientUser.

clientWorkstation string JDBC driver property:
clientWorkstation.

connectionCloseWithInFlightTransactionv 2

v 1

JDBC driver property:
connectionCloseWithInFlightTransaction.

2 CONNECTION_CLOSE_WITH_ROLLBACK

1 CONNECTION_CLOSE_WITH_EXCEPTION

currentAlternateGroupEntry int JDBC driver property:
currentAlternateGroupEntry.

currentFunctionPath string JDBC driver property:
currentFunctionPath.

currentLocaleLcCtype string JDBC driver property:
currentLocaleLcCtype.

currentLockTimeout A period of time with
second precision

JDBC driver property:
currentLockTimeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

currentPackagePath string JDBC driver property:
currentPackagePath.

currentPackageSet string JDBC driver property:
currentPackageSet.

currentSQLID string JDBC driver property:
currentSQLID.

currentSchema string JDBC driver property:
currentSchema.

cursorSensitivity v 2

v 1

v 0

JDBC driver property:
cursorSensitivity. Values
are: 0
(TYPE_SCROLL_SENSITIVE_STATIC),
1
(TYPE_SCROLL_SENSITIVE_DYNAMIC),
2
(TYPE_SCROLL_ASENSITIVE).

2 TYPE_SCROLL_ASENSITIVE

1 TYPE_SCROLL_SENSITIVE_DYNAMIC

0 TYPE_SCROLL_SENSITIVE_STATIC

databaseName string JDBC driver property:
databaseName.

deferPrepares boolean true JDBC driver property:
deferPrepares.

Chapter 1. WebSphere Application Server Liberty Core: Overview 431

Attribute name Data type Default value Description

driverType v 2

v 4

4 JDBC driver property:
driverType.

2 Type 2 JDBC
driver.

4 Type 4 JDBC
driver.

enableAlternateGroupSeamlessACRboolean JDBC driver property:
enableAlternateGroupSeamlessACR.

enableClientAffinitiesList v 2

v 1

JDBC driver property:
enableClientAffinitiesList.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

enableExtendedDescribe v 2

v 1

JDBC driver property:
enableExtendedDescribe.

2 NO

1 YES

enableExtendedIndicators v 2

v 1

JDBC driver property:
enableExtendedIndicators.

2 NO

1 YES

enableNamedParameterMarkersv 2

v 1

JDBC driver property:
enableNamedParameterMarkers.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

enableSeamlessFailover v 2

v 1

JDBC driver property:
enableSeamlessFailover.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

enableSysplexWLB boolean JDBC driver property:
enableSysplexWLB.

fetchSize int JDBC driver property:
fetchSize.

fullyMaterializeInputStreams boolean JDBC driver property:
fullyMaterializeInputStreams.

fullyMaterializeInputStreamsOnBatchExecutionv 2

v 1

JDBC driver property:
fullyMaterializeInputStreamsOnBatchExecution.

2 NO

1 YES

fullyMaterializeLobData boolean JDBC driver property:
fullyMaterializeLobData.

432 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

implicitRollbackOption v 2

v 1

v 0

JDBC driver property:
implicitRollbackOption.

2 IMPLICIT_ROLLBACK_OPTION_CLOSE_CONNECTION

1 IMPLICIT_ROLLBACK_OPTION_NOT_CLOSE_CONNECTION

0 IMPLICIT_ROLLBACK_OPTION_NOT_SET

interruptProcessingMode v 2

v 1

v 0

JDBC driver property:
interruptProcessingMode.

2 INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET

1 INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL

0 INTERRUPT_PROCESSING_MODE_DISABLED

keepAliveTimeOut A period of time with
second precision

JDBC driver property:
keepAliveTimeOut. Specify
a positive integer followed
by a unit of time, which
can be hours (h), minutes
(m), or seconds (s). For
example, specify 30 seconds
as 30s. You can include
multiple values in a single
entry. For example, 1m30s
is equivalent to 90 seconds.

keepDynamic int JDBC driver property:
keepDynamic.

kerberosServerPrincipal string JDBC driver property:
kerberosServerPrincipal.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

maxConnCachedParamBufferSizeint JDBC driver property:
maxConnCachedParamBufferSize.

maxRetriesForClientReroute int JDBC driver property:
maxRetriesForClientReroute.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 50000 Port on which to obtain
database connections.

profileName string JDBC driver property:
profileName.

Chapter 1. WebSphere Application Server Liberty Core: Overview 433

Attribute name Data type Default value Description

queryCloseImplicit v 2

v 1

JDBC driver property:
queryCloseImplicit. Values
are: 1
(QUERY_CLOSE_IMPLICIT_YES)
or 2
(QUERY_CLOSE_IMPLICIT_NO).

2 QUERY_CLOSE_IMPLICIT_NO

1 QUERY_CLOSE_IMPLICIT_YES

queryDataSize int

Minimum: 4096

Maximum: 65535

JDBC driver property:
queryDataSize.

queryTimeoutInterruptProcessingModev 2

v 1

JDBC driver property:
queryTimeoutInterruptProcessingMode.

2 INTERRUPT_PROCESSING_MODE_CLOSE_SOCKET

1 INTERRUPT_PROCESSING_MODE_STATEMENT_CANCEL

readOnly boolean JDBC driver property:
readOnly.

recordTemporalHistory v 2

v 1

JDBC driver property:
recordTemporalHistory.

2 NO

1 YES

resultSetHoldability v 2

v 1

JDBC driver property:
resultSetHoldability. Values
are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

resultSetHoldabilityForCatalogQueriesv 2

v 1

JDBC driver property:
resultSetHoldabilityForCatalogQueries.
Values are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

retrieveMessagesFromServerOnGetMessageboolean true JDBC driver property:
retrieveMessagesFromServerOnGetMessage.

434 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

retryIntervalForClientRerouteA period of time with
second precision

JDBC driver property:
retryIntervalForClientReroute.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

securityMechanism v 3

v 7

v 4

v 18

v 15

v 9

v 16

v 13

v 11

v 12

JDBC driver property:
securityMechanism. Values
are: 3
(CLEAR_TEXT_PASSWORD_SECURITY),
4
(USER_ONLY_SECURITY),
7
(ENCRYPTED_PASSWORD_SECURITY),
9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY),
11
(KERBEROS_SECURITY),
12
(ENCRYPTED_USER_AND_DATA_SECURITY),
13
(ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY),
15 (PLUGIN_SECURITY),
16
(ENCRYPTED_USER_ONLY_SECURITY),
18
(TLS_CLIENT_CERTIFICATE_SECURITY).

3 CLEAR_TEXT_PASSWORD_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

18 TLS_CLIENT_CERTIFICATE_SECURITY

15 PLUGIN_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

16 ENCRYPTED_USER_ONLY_SECURITY

13 ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

11 KERBEROS_SECURITY

12 ENCRYPTED_USER_AND_DATA_SECURITY

sendDataAsIs boolean JDBC driver property:
sendDataAsIs.

serverName string localhost Server where the database
is running.

sessionTimeZone string JDBC driver property:
sessionTimeZone.

sqljCloseStmtsWithOpenResultSetboolean JDBC driver property:
sqljCloseStmtsWithOpenResultSet.

Chapter 1. WebSphere Application Server Liberty Core: Overview 435

Attribute name Data type Default value Description

sqljEnableClassLoaderSpecificProfilesboolean JDBC driver property:
sqljEnableClassLoaderSpecificProfiles.

sslConnection boolean JDBC driver property:
sslConnection.

streamBufferSize int JDBC driver property:
streamBufferSize.

stripTrailingZerosForDecimalNumbersv 2

v 1

JDBC driver property:
stripTrailingZerosForDecimalNumbers.

2 NO

1 YES

sysSchema string JDBC driver property:
sysSchema.

timerLevelForQueryTimeOut v 2

v 1

v -1

JDBC driver property:
timerLevelForQueryTimeOut.

2 QUERYTIMEOUT_CONNECTION_LEVEL

1 QUERYTIMEOUT_STATEMENT_LEVEL

-1 QUERYTIMEOUT_DISABLED

traceDirectory string JDBC driver property:
traceDirectory.

traceFile string JDBC driver property:
traceFile.

traceFileAppend boolean JDBC driver property:
traceFileAppend.

traceFileCount int JDBC driver property:
traceFileCount.

traceFileSize int JDBC driver property:
traceFileSize.

traceLevel int 0 Bitwise combination of the
following constant values:
TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1,
TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4,
TRACE_DRIVER_CONFIGURATION=16,
TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64,
TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256,
TRACE_DIAGNOSTICS=512,
TRACE_SQLJ=1024,
TRACE_META_CALLS=8192,
TRACE_DATASOURCE_CALLS=16384,
TRACE_LARGE_OBJECT_CALLS=32768,
TRACE_SYSTEM_MONITOR=131072,
TRACE_TRACEPOINTS=262144,
TRACE_ALL=-1.

traceOption v 1

v 0

JDBC driver property:
traceOption

1 1

0 0

436 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

translateForBitData v 2

v 1

JDBC driver property:
translateForBitData.

2 SERVER_ENCODING_REPRESENTATION

1 HEX_REPRESENTATION

updateCountForBatch v 2

v 1

JDBC driver property:
updateCountForBatch.

2 TOTAL_UPDATE_COUNT

1 NO_UPDATE_COUNT

useCachedCursor boolean JDBC driver property:
useCachedCursor.

useIdentityValLocalForAutoGeneratedKeysboolean JDBC driver property:
useIdentityValLocalForAutoGeneratedKeys.

useJDBC41DefinitionForGetColumnsv 2

v 1

JDBC driver property:
useJDBC41DefinitionForGetColumns.

2 NO

1 YES

useJDBC4ColumnNameAndLabelSemanticsv 2

v 1

JDBC driver property:
useJDBC4ColumnNameAndLabelSemantics.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

useTransactionRedirect boolean JDBC driver property:
useTransactionRedirect.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

xaNetworkOptimization boolean JDBC driver property:
xaNetworkOptimization.

dataSource > properties.derby.client
Data source properties for Derby Network Client JDBC driver.

false

Attribute name Data type Default value Description

connectionAttributes string JDBC driver property:
connectionAttributes.

Chapter 1. WebSphere Application Server Liberty Core: Overview 437

Attribute name Data type Default value Description

createDatabase v false

v create

JDBC driver property:
createDatabase.

false Do not
automatically
create the
database.

create When the first
connection is
established,
automatically
create the database
if it doesn't exist.

databaseName string JDBC driver property:
databaseName.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1527 Port on which to obtain
database connections.

retrieveMessageText boolean true JDBC driver property:
retrieveMessageText.

securityMechanism v 3

v 7

v 4

v 9

v 8

3 JDBC driver property:
securityMechanism. Values
are: 3
(CLEAR_TEXT_PASSWORD_SECURITY),
4
(USER_ONLY_SECURITY),
7
(ENCRYPTED_PASSWORD_SECURITY),
8
(STRONG_PASSWORD_SUBSTITUTE_SECURITY),
9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY).

3 CLEAR_TEXT_PASSWORD_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

8 STRONG_PASSWORD_SUBSTITUTE_SECURITY

438 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

serverName string localhost Server where the database
is running.

shutdownDatabase v false

v shutdown

JDBC driver property:
shutdownDatabase.

false Do not shut down
the database.

shutdown
Shut down the
database when a
connection is
attempted.

ssl v basic

v off

v peerAuthentication

JDBC driver property: ssl.

basic basic

off off

peerAuthentication
peerAuthentication

traceDirectory string JDBC driver property:
traceDirectory.

traceFile string JDBC driver property:
traceFile.

traceFileAppend boolean JDBC driver property:
traceFileAppend.

traceLevel int Bitwise combination of the
following constant values:
TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1,
TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4,
TRACE_DRIVER_CONFIGURATION=16,
TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64,
TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256,
TRACE_DIAGNOSTICS=512,
TRACE_XA_CALLS=2048,
TRACE_ALL=-1.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

dataSource > properties.derby.embedded
Data source properties for Derby Embedded JDBC driver.

false

Attribute name Data type Default value Description

connectionAttributes string JDBC driver property:
connectionAttributes.

Chapter 1. WebSphere Application Server Liberty Core: Overview 439

Attribute name Data type Default value Description

createDatabase v false

v create

JDBC driver property:
createDatabase.

false Do not
automatically
create the
database.

create When the first
connection is
established,
automatically
create the database
if it doesn't exist.

databaseName string JDBC driver property:
databaseName.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

shutdownDatabase v false

v shutdown

JDBC driver property:
shutdownDatabase.

false Do not shut down
the database.

shutdown
Shut down the
database when a
connection is
attempted.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

dataSource > properties.informix
Data source properties for the Informix JDBC driver.

false

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

440 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

ifxCLIENT_LOCALE string JDBC driver property:
ifxCLIENT_LOCALE.

ifxCPMAgeLimit A period of time with
second precision

JDBC driver property:
ifxCPMAgeLimit. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

ifxCPMInitPoolSize int JDBC driver property:
ifxCPMInitPoolSize.

ifxCPMMaxConnections int JDBC driver property:
ifxCPMMaxConnections.

ifxCPMMaxPoolSize int JDBC driver property:
ifxCPMMaxPoolSize.

ifxCPMMinAgeLimit A period of time with
second precision

JDBC driver property:
ifxCPMMinAgeLimit.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

ifxCPMMinPoolSize int JDBC driver property:
ifxCPMMinPoolSize.

ifxCPMServiceInterval A period of time with
millisecond precision

JDBC driver property:
ifxCPMServiceInterval.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

ifxDBANSIWARN boolean JDBC driver property:
ifxDBANSIWARN.

ifxDBCENTURY string JDBC driver property:
ifxDBCENTURY.

ifxDBDATE string JDBC driver property:
ifxDBDATE.

ifxDBSPACETEMP string JDBC driver property:
ifxDBSPACETEMP.

Chapter 1. WebSphere Application Server Liberty Core: Overview 441

Attribute name Data type Default value Description

ifxDBTEMP string JDBC driver property:
ifxDBTEMP.

ifxDBTIME string JDBC driver property:
ifxDBTIME.

ifxDBUPSPACE string JDBC driver property:
ifxDBUPSPACE.

ifxDB_LOCALE string JDBC driver property:
ifxDB_LOCALE.

ifxDELIMIDENT boolean JDBC driver property:
ifxDELIMIDENT.

ifxENABLE_TYPE_CACHE boolean JDBC driver property:
ifxENABLE_TYPE_CACHE.

ifxFET_BUF_SIZE int JDBC driver property:
ifxFET_BUF_SIZE.

ifxGL_DATE string JDBC driver property:
ifxGL_DATE.

ifxGL_DATETIME string JDBC driver property:
ifxGL_DATETIME.

ifxIFXHOST string localhost JDBC driver property:
ifxIFXHOST.

ifxIFX_AUTOFREE boolean JDBC driver property:
ifxIFX_AUTOFREE.

ifxIFX_DIRECTIVES string JDBC driver property:
ifxIFX_DIRECTIVES.

ifxIFX_LOCK_MODE_WAIT A period of time with
second precision

2s JDBC driver property:
ifxIFX_LOCK_MODE_WAIT.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

ifxIFX_SOC_TIMEOUT A period of time with
millisecond precision

JDBC driver property:
ifxIFX_SOC_TIMEOUT.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

ifxIFX_USEPUT boolean JDBC driver property:
ifxIFX_USEPUT.

442 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

ifxIFX_USE_STRENC boolean JDBC driver property:
ifxIFX_USE_STRENC.

ifxIFX_XASPEC string y JDBC driver property:
ifxIFX_XASPEC.

ifxINFORMIXCONRETRY int JDBC driver property:
ifxINFORMIXCONRETRY.

ifxINFORMIXCONTIME A period of time with
second precision

JDBC driver property:
ifxINFORMIXCONTIME.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

ifxINFORMIXOPCACHE string JDBC driver property:
ifxINFORMIXOPCACHE.

ifxINFORMIXSTACKSIZE int JDBC driver property:
ifxINFORMIXSTACKSIZE.

ifxJDBCTEMP string JDBC driver property:
ifxJDBCTEMP.

ifxLDAP_IFXBASE string JDBC driver property:
ifxLDAP_IFXBASE.

ifxLDAP_PASSWD string JDBC driver property:
ifxLDAP_PASSWD.

ifxLDAP_URL string JDBC driver property:
ifxLDAP_URL.

ifxLDAP_USER string JDBC driver property:
ifxLDAP_USER.

ifxLOBCACHE int JDBC driver property:
ifxLOBCACHE.

ifxNEWCODESET string JDBC driver property:
ifxNEWCODESET.

ifxNEWLOCALE string JDBC driver property:
ifxNEWLOCALE.

ifxNODEFDAC string JDBC driver property:
ifxNODEFDAC.

ifxOPTCOMPIND string JDBC driver property:
ifxOPTCOMPIND.

ifxOPTOFC string JDBC driver property:
ifxOPTOFC.

ifxOPT_GOAL string JDBC driver property:
ifxOPT_GOAL.

ifxPATH string JDBC driver property:
ifxPATH.

ifxPDQPRIORITY string JDBC driver property:
ifxPDQPRIORITY.

Chapter 1. WebSphere Application Server Liberty Core: Overview 443

Attribute name Data type Default value Description

ifxPLCONFIG string JDBC driver property:
ifxPLCONFIG.

ifxPLOAD_LO_PATH string JDBC driver property:
ifxPLOAD_LO_PATH.

ifxPROTOCOLTRACE int JDBC driver property:
ifxPROTOCOLTRACE.

ifxPROTOCOLTRACEFILE string JDBC driver property:
ifxPROTOCOLTRACEFILE.

ifxPROXY string JDBC driver property:
ifxPROXY.

ifxPSORT_DBTEMP string JDBC driver property:
ifxPSORT_DBTEMP.

ifxPSORT_NPROCS boolean JDBC driver property:
ifxPSORT_NPROCS.

ifxSECURITY string JDBC driver property:
ifxSECURITY.

ifxSQLH_FILE string JDBC driver property:
ifxSQLH_FILE.

ifxSQLH_LOC string JDBC driver property:
ifxSQLH_LOC.

ifxSQLH_TYPE string JDBC driver property:
ifxSQLH_TYPE.

ifxSSLCONNECTION string JDBC driver property:
ifxSSLCONNECTION.

ifxSTMT_CACHE string JDBC driver property:
ifxSTMT_CACHE.

ifxTRACE int JDBC driver property:
ifxTRACE.

ifxTRACEFILE string JDBC driver property:
ifxTRACEFILE.

ifxTRUSTED_CONTEXT string JDBC driver property:
ifxTRUSTED_CONTEXT.

ifxUSEV5SERVER boolean JDBC driver property:
ifxUSEV5SERVER.

ifxUSE_DTENV boolean JDBC driver property:
ifxUSE_DTENV.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

444 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1526 Port on which to obtain
database connections.

roleName string JDBC driver property:
roleName.

serverName string Server where the database
is running.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

dataSource > properties.informix.jcc
Data source properties for the IBM Data Server Driver for JDBC and SQLJ for Informix.

false

Attribute name Data type Default value Description

DBANSIWARN boolean JDBC driver property:
DBANSIWARN.

DBDATE string JDBC driver property:
DBDATE.

DBPATH string JDBC driver property:
DBPATH.

DBSPACETEMP string JDBC driver property:
DBSPACETEMP.

DBTEMP string JDBC driver property:
DBTEMP.

DBUPSPACE string JDBC driver property:
DBUPSPACE.

DELIMIDENT boolean JDBC driver property:
DELIMIDENT.

IFX_DIRECTIVES v ON

v OFF

JDBC driver property:
IFX_DIRECTIVES.

ON ON

OFF OFF

IFX_EXTDIRECTIVES v ON

v OFF

JDBC driver property:
IFX_EXTDIRECTIVES.

ON ON

OFF OFF

IFX_UPDDESC string JDBC driver property:
IFX_UPDDESC.

Chapter 1. WebSphere Application Server Liberty Core: Overview 445

Attribute name Data type Default value Description

IFX_XASTDCOMPLIANCE_XAENDv 1

v 0

JDBC driver property:
IFX_XASTDCOMPLIANCE_XAEND.

1 1

0 0

INFORMIXOPCACHE string JDBC driver property:
INFORMIXOPCACHE.

INFORMIXSTACKSIZE string JDBC driver property:
INFORMIXSTACKSIZE.

NODEFDAC v yes

v no

JDBC driver property:
NODEFDAC.

yes yes

no no

OPTCOMPIND v 2

v 1

v 0

JDBC driver property:
OPTCOMPIND.

2 2

1 1

0 0

OPTOFC v 1

v 0

JDBC driver property:
OPTOFC.

1 1

0 0

PDQPRIORITY v HIGH

v LOW

v OFF

JDBC driver property:
PDQPRIORITY.

HIGH HIGH

LOW LOW

OFF OFF

PSORT_DBTEMP string JDBC driver property:
PSORT_DBTEMP.

PSORT_NPROCS string

Maximum: 10

JDBC driver property:
PSORT_NPROCS.

STMT_CACHE v 1

v 0

JDBC driver property:
STMT_CACHE.

1 1

0 0

currentLockTimeout A period of time with
second precision

2s JDBC driver property:
currentLockTimeout.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

446 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

deferPrepares boolean JDBC driver property:
deferPrepares.

driverType int 4 JDBC driver property:
driverType.

enableNamedParameterMarkersint JDBC driver property:
enableNamedParameterMarkers.
Values are: 1 (YES) or 2
(NO).

enableSeamlessFailover int JDBC driver property:
enableSeamlessFailover.
Values are: 1 (YES) or 2
(NO).

enableSysplexWLB boolean JDBC driver property:
enableSysplexWLB.

fetchSize int JDBC driver property:
fetchSize.

fullyMaterializeLobData boolean JDBC driver property:
fullyMaterializeLobData.

keepDynamic int JDBC driver property:
keepDynamic.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1526 Port on which to obtain
database connections.

progressiveStreaming v 2

v 1

JDBC driver property:
progressiveStreaming.
Values are: 1 (YES) or 2
(NO).

2 NO

1 YES

queryDataSize int

Minimum: 4096

Maximum: 10485760

JDBC driver property:
queryDataSize.

Chapter 1. WebSphere Application Server Liberty Core: Overview 447

Attribute name Data type Default value Description

resultSetHoldability v 2

v 1

JDBC driver property:
resultSetHoldability. Values
are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

resultSetHoldabilityForCatalogQueriesv 2

v 1

JDBC driver property:
resultSetHoldabilityForCatalogQueries.
Values are: 1
(HOLD_CURSORS_OVER_COMMIT)
or 2
(CLOSE_CURSORS_AT_COMMIT).

2 CLOSE_CURSORS_AT_COMMIT

1 HOLD_CURSORS_OVER_COMMIT

retrieveMessagesFromServerOnGetMessageboolean true JDBC driver property:
retrieveMessagesFromServerOnGetMessage.

securityMechanism v 3

v 7

v 4

v 9

JDBC driver property:
securityMechanism. Values
are: 3
(CLEAR_TEXT_PASSWORD_SECURITY),
4
(USER_ONLY_SECURITY),
7
(ENCRYPTED_PASSWORD_SECURITY),
9
(ENCRYPTED_USER_AND_PASSWORD_SECURITY).

3 CLEAR_TEXT_PASSWORD_SECURITY

7 ENCRYPTED_PASSWORD_SECURITY

4 USER_ONLY_SECURITY

9 ENCRYPTED_USER_AND_PASSWORD_SECURITY

serverName string localhost Server where the database
is running.

traceDirectory string JDBC driver property:
traceDirectory.

traceFile string JDBC driver property:
traceFile.

traceFileAppend boolean JDBC driver property:
traceFileAppend.

448 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

traceLevel int Bitwise combination of the
following constant values:
TRACE_NONE=0,
TRACE_CONNECTION_CALLS=1,
TRACE_STATEMENT_CALLS=2,
TRACE_RESULT_SET_CALLS=4,
TRACE_DRIVER_CONFIGURATION=16,
TRACE_CONNECTS=32,
TRACE_DRDA_FLOWS=64,
TRACE_RESULT_SET_META_DATA=128,
TRACE_PARAMETER_META_DATA=256,
TRACE_DIAGNOSTICS=512,
TRACE_SQLJ=1024,
TRACE_META_CALLS=8192,
TRACE_DATASOURCE_CALLS=16384,
TRACE_LARGE_OBJECT_CALLS=32768,
TRACE_SYSTEM_MONITOR=131072,
TRACE_TRACEPOINTS=262144,
TRACE_ALL=-1.

useJDBC4ColumnNameAndLabelSemanticsint JDBC driver property:
useJDBC4ColumnNameAndLabelSemantics.
Values are: 1 (YES) or 2
(NO).

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

dataSource > properties.microsoft.sqlserver
Data source properties for Microsoft SQL Server JDBC Driver.

false

Attribute name Data type Default value Description

URL string URL for connecting to the
database. Example:
jdbc:sqlserver://
localhost:1433;databaseName=myDB.

applicationIntent v ReadOnly

v ReadWrite

JDBC driver property:
applicationIntent.

ReadOnly
ReadOnly

ReadWrite
ReadWrite

applicationName string JDBC driver property:
applicationName.

authenticationScheme v NativeAuthentication

v JavaKerberos

JDBC driver property:
authenticationScheme.

NativeAuthentication
NativeAuthentication

JavaKerberos
JavaKerberos

Chapter 1. WebSphere Application Server Liberty Core: Overview 449

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

encrypt boolean JDBC driver property:
encrypt.

failoverPartner string JDBC driver property:
failoverPartner.

hostNameInCertificate string JDBC driver property:
hostNameInCertificate.

instanceName string JDBC driver property:
instanceName.

integratedSecurity boolean JDBC driver property:
integratedSecurity.

lastUpdateCount boolean JDBC driver property:
lastUpdateCount.

lockTimeout A period of time with
millisecond precision

JDBC driver property:
lockTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m),
seconds (s), or milliseconds
(ms). For example, specify
500 milliseconds as 500ms.
You can include multiple
values in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

multiSubnetFailover boolean JDBC driver property:
multiSubnetFailover.

packetSize int

Minimum: 512

Maximum: 32767

JDBC driver property:
packetSize.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int Port on which to obtain
database connections.

450 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

responseBuffering v full

v adaptive

JDBC driver property:
responseBuffering.

full full

adaptive
adaptive

selectMethod v direct

v cursor

JDBC driver property:
selectMethod.

direct direct

cursor cursor

sendStringParametersAsUnicodeboolean false JDBC driver property:
sendStringParametersAsUnicode.

sendTimeAsDatetime boolean JDBC driver property:
sendTimeAsDatetime.

serverName string localhost Server where the database
is running.

trustServerCertificate boolean JDBC driver property:
trustServerCertificate.

trustStore string JDBC driver property:
trustStore.

trustStorePassword Reversably encoded
password (string)

JDBC driver property:
trustStorePassword.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

workstationID string JDBC driver property:
workstationID.

xopenStates boolean JDBC driver property:
xopenStates.

dataSource > properties.oracle
Data source properties for Oracle JDBC driver.

false

Attribute name Data type Default value Description

ONSConfiguration string JDBC driver property:
ONSConfiguration.

TNSEntryName string JDBC driver property:
TNSEntryName.

URL string URL for connecting to the
database. Examples:
jdbc:oracle:thin:@//
localhost:1521/sample or
jdbc:oracle:oci:@//
localhost:1521/sample.

connectionProperties string JDBC driver property:
connectionProperties.

Chapter 1. WebSphere Application Server Liberty Core: Overview 451

Attribute name Data type Default value Description

databaseName string JDBC driver property:
databaseName.

driverType v oci

v thin

thin JDBC driver property:
driverType.

oci oci

thin thin

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

networkProtocol string JDBC driver property:
networkProtocol.

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 1521 Port on which to obtain
database connections.

serverName string localhost Server where the database
is running.

serviceName string JDBC driver property:
serviceName.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

dataSource > properties.sybase
Data source properties for Sybase JDBC driver.

false

Attribute name Data type Default value Description

SERVER_INITIATED_TRANSACTIONSv false

v true

false JDBC driver property:
SERVER_INITIATED_TRANSACTIONS.

false false

true true

connectionProperties string SELECT_OPENS_CURSOR=trueJDBC driver property:
connectionProperties.

databaseName string JDBC driver property:
databaseName.

452 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

loginTimeout A period of time with
second precision

JDBC driver property:
loginTimeout. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

networkProtocol v SSL

v socket

JDBC driver property:
networkProtocol.

SSL SSL

socket socket

password Reversably encoded
password (string)

It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

portNumber int 5000 Port on which to obtain
database connections.

resourceManagerName string JDBC driver property:
resourceManagerName.

serverName string localhost Server where the database
is running.

user string It is recommended to use a
container managed
authentication alias instead
of configuring this
property.

version int JDBC driver property:
version.

dataSource > recoveryAuthData
Authentication data for transaction recovery.

false

Attribute name Data type Default value Description

password Reversably encoded
password (string)

Password of the user to use
when connecting to the EIS.
The value can be stored in
clear text or encoded form.
It is recommended that you
encode the password. To do
so, use the securityUtility
tool with the encode
option.

user string Name of the user to use
when connecting to the EIS.

Chapter 1. WebSphere Application Server Liberty Core: Overview 453

Trust Association Interceptor (trustAssociation)
Controls the operation of the trust association interceptor (TAI).
v interceptors

– library
- file
- fileset
- folder

– properties

Attribute name Data type Default value Description

failOverToAppAuthType boolean false Allow an interceptor to fall
back to the application
authentication mechanism.

id string A unique configuration ID.

invokeForUnprotectedURI boolean false Controls whether the TAI is
invoked for an unprotected
URI.

interceptors
A unique configuration ID.

false

Attribute name Data type Default value Description

className string Fully-qualified package
name of the interceptor
class.

enabled boolean true Enables or disables the
interceptor.

id string A unique configuration ID.

invokeAfterSSO boolean true Invoke an interceptor after
single sign-on (SSO).

invokeBeforeSSO boolean false Invoke an interceptor
before single sign-on (SSO).

libraryRef A reference to top level
library element (string).

A reference to the ID of the
shared library
configuration.

interceptors > library
A reference to the ID of the shared library configuration.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

454 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

name string Name of shared library for
administrators

interceptors > library > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

interceptors > library > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

Chapter 1. WebSphere Application Server Liberty Core: Overview 455

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

interceptors > library > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

interceptors > properties
Collection of properties for the interceptor.

false

User Information (userInfo)
Specifies the user information that is included in the response of the openID provider.

Attribute name Data type Default value Description

alias string email Specifies an alias name.

count int

Minimum: 1

1 Specifies how much
userInfo is included in the
response of the openID
provider.

id string A unique configuration ID.

required boolean true Specifies whether user
information is required or
not.

uriType string http://axschema.org/
contact/email

Specifies a URI type.

456 WebSphere Application Server Liberty Core 8.5.5

Variable Declaration (variable)
Declare a new variable by specifying the name and value for the variable.

Attribute name Data type Default value Description

name string The name of the variable.

value string The value to be assigned to
the variable.

Virtual Host (virtualHost)
A virtual host provides a logical grouping for configuring web applications to a particular host name. The
default virtual host (default_host) is suitable for most simple configurations.
v allowFromEndpoint

– accessLogging
– httpOptions
– sslOptions
– tcpOptions

v hostAlias

Attribute name Data type Default value Description

allowFromEndpointRef List of references to top
level httpEndpoint elements
(comma-separated string).

Specify the identifier of one
or more HTTP endpoints to
restrict inbound traffic for
this virtual host to the
specified endpoints.

enabled boolean true Enable this virtual host.

id string A unique configuration ID.

allowFromEndpoint
Specify the identifier of one or more HTTP endpoints to restrict inbound traffic for this virtual host to
the specified endpoints.

false

Attribute name Data type Default value Description

accessLoggingRef A reference to top level
httpAccessLogging element
(string).

HTTP access logging
configuration for the
endpoint.

enabled boolean true Toggle the availability of an
endpoint. When true, this
endpoint will be activated
by the dispatcher to handle
HTTP requests.

host string localhost IP address, domain name
server (DNS) host name
with domain name suffix,
or just the DNS host name,
used by a client to request
a resource. Use '*' for all
available network
interfaces.

Chapter 1. WebSphere Application Server Liberty Core: Overview 457

Attribute name Data type Default value Description

httpOptionsRef A reference to top level
httpOptions element
(string).

defaultHttpOptions HTTP protocol options for
the endpoint.

httpPort int

Minimum: -1

Maximum: 65535

The port used for client
HTTP requests. Use -1 to
disable this port.

httpsPort int

Minimum: -1

Maximum: 65535

The port used for client
HTTP requests secured
with SSL (https). Use -1 to
disable this port.

id string A unique configuration ID.

onError v IGNORE

v FAIL

v WARN

WARN Action to take after a
failure to start an endpoint.

IGNORE
Server will not
issue any warning
and error
messages when it
incurs a
configuration error.

FAIL Server will issue a
warning or error
message on the
first error
occurrence and
then stop the
server.

WARN Server will issue
warning and error
messages when it
incurs a
configuration error.

sslOptionsRef A reference to top level
sslOptions element (string).

SSL protocol options for the
endpoint.

tcpOptionsRef A reference to top level
tcpOptions element (string).

defaultTCPOptions TCP protocol options for
the endpoint.

allowFromEndpoint > accessLogging
HTTP access logging configuration for the endpoint.

false

Attribute name Data type Default value Description

enabled boolean true Enable access logging.

filePath Path to a file ${server.output.dir}/logs/
http_access.log

Directory path and name of
the access log file. Standard
variable substitutions, such
as ${server.output.dir}, can
be used when specifying
the directory path.

458 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

logFormat string %h %u %{t}W "%r" %s %b Specifies the log format that
is used when logging client
access information.

maxFileSize int

Minimum: 0

20 Maximum size of a log file,
in megabytes, before being
rolled over; a value of 0
means no limit.

maxFiles int

Minimum: 0

2 Maximum number of log
files that will be kept,
before the oldest file is
removed; a value of 0
means no limit.

allowFromEndpoint > httpOptions
HTTP protocol options for the endpoint.

false

Attribute name Data type Default value Description

keepAliveEnabled boolean true Enables persistent
connections (HTTP
keepalive). If true,
connections are kept alive
for reuse by multiple
sequential requests and
responses. If false,
connections are closed after
the response is sent.

maxKeepAliveRequests int

Minimum: -1

100 Maximum number of
persistent requests that are
allowed on a single HTTP
connection if persistent
connections are enabled. A
value of -1 means
unlimited.

persistTimeout A period of time with
second precision

30s Amount of time that a
socket will be allowed to
remain idle between
requests. This setting only
applies if persistent
connections are enabled.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 459

Attribute name Data type Default value Description

readTimeout A period of time with
second precision

60s Amount of time to wait for
a read request to complete
on a socket after the first
read occurs. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

removeServerHeader boolean false Removes server
implementation information
from HTTP headers and
also disables the default
Liberty profile welcome
page.

writeTimeout A period of time with
second precision

60s Amount of time to wait on
a socket for each portion of
the response data to be
transmitted. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

allowFromEndpoint > sslOptions
SSL protocol options for the endpoint.

false

Attribute name Data type Default value Description

sessionTimeout A period of time with
second precision

1d Amount of time to wait for
a read or write request to
complete on a socket. This
value is overridden by
protocol-specific timeouts.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

460 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

sslRef A reference to top level ssl
element (string).

The default SSL
configuration repertoire.
The default value is
defaultSSLSettings.

suppressHandshakeErrors boolean false Disable logging of SSL
handshake errors. SSL
handshake errors can occur
during normal operation,
however these messages
can be useful when SSL is
behaving unexpectedly.

allowFromEndpoint > tcpOptions
TCP protocol options for the endpoint.

false

Attribute name Data type Default value Description

inactivityTimeout A period of time with
millisecond precision

60s Amount of time to wait for
a read or write request to
complete on a socket. This
value is overridden by
protocol-specific timeouts.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

soReuseAddr boolean true Enables immediate rebind
to a port with no active
listener.

hostAlias
Associate a host and port with this virtual host, using the host:port syntax. The specified host can be
an IP address, domain name server (DNS) hostname with a domain name suffix, the DNS hostname,
or * for a wildcard match on all hostnames. Note that IPv6 addresses must be enclosed in [].

false

string

Chapter 1. WebSphere Application Server Liberty Core: Overview 461

Web Container Application Security (webAppSecurity)
Configures web container application security.

Attribute name Data type Default value Description

allowAuthenticationFailOverToAuthMethodv FORM

v BASIC

Specifies the authentication
fail over method that will
be used when the certificate
authentication fails. Valid
values are BASIC and
FORM.

FORM %allowAuthenticationFailOverToAuthMethod.FORM

BASIC %allowAuthenticationFailOverToAuthMethod.BASIC

allowFailOverToBasicAuth boolean false Specifies whether to fail
over to basic authentication
when certificate
authentication fails. The
equivalent custom property
in the full application
server profile is
com.ibm.wsspi.security.web.failOverToBasicAuth.

allowLogoutPageRedirectToAnyHostboolean false Warning, security risk:
Setting this property to true
may open your systems to
potential URL redirect
attacks. If set to true, any
host can be specified for
the logout page redirect. If
set to false, and the logout
page points to a different
host, or one not listed in
the logout page redirect
domain list, then a generic
logout page is displayed.
The equivalent custom
property in the full
application server profile is
com.ibm.websphere.security.allowAnyLogoutExitPageHost.

462 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

displayAuthenticationRealm boolean false Warning, security risk: if
this property is set to true,
and the user registry's
realm name contains
sensitive information, it is
displayed to the user. For
example, if an LDAP
configuration is used, the
LDAP server hostname and
port are displayed. This
configuration controls what
the HTTP basic
authentication login
window displays when the
realm name is not defined
in the application web.xml.
If the realm name is
defined in the application
web.xml file, this property
is ignored. If set to true, the
realm name displayed will
be the user registry realm
name for the LTPA
authentication mechanism.
If set to false, the realm
name displayed will be
"Default Realm". The
equivalent custom property
in the full application
server profile is
com.ibm.websphere.security.displayRealm.

httpOnlyCookies boolean true Specifies whether the HTTP
only (HttpOnly) cookies
option is enabled.

includePathInWASReqURL boolean false Setting the Path parameter
can allow the
client/browser to manage
multiple WASReqURL
cookies during multiple
concurrent logins on the
same user agent. The
equivalent custom property
in the full application
server profile is
com.ibm.websphere.security.setContextRootForFormLogin.

loginFormURL string Specifies the global URL of
a form login page including
the root context. The form
login page must be part of
the WAR file. If a form
login application does not
specify the form login page
in the web.xml file, it uses
the global form login URL.

Chapter 1. WebSphere Application Server Liberty Core: Overview 463

Attribute name Data type Default value Description

logoutOnHttpSessionExpire boolean false Specifies whether users will
be logged out after the
HTTP session timer expires.
If set to false, the user
credential will stay active
until the Single Sign-On
token timeout occurs. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.security.web.logoutOnHTTPSessionExpire.

logoutPageRedirectDomainNamesstring A pipe (|) separated list of
domain names that are
allowed for the logout page
redirect (localhost is
implied). The equivalent
custom property in the full
application server profile is
com.ibm.websphere.security.logoutExitPageDomainList.

postParamCookieSize int 16384 Size of the POST parameter
cookie. If the size of the
cookie is larger than the
browser limit, unexpected
behavior may occur. The
value of this property must
be a positive integer and
represents the maximum
size of the cookie in bytes.
The equivalent custom
property in the full
application server profile is
com.ibm.websphere.security.util.postParamMaxCookieSize.

postParamSaveMethod v Cookie

v Session

v None

Cookie Specifies where POST
parameters are stored upon
redirect. Valid values are
cookie (POST parameters
are stored in a cookie),
session (POST parameters
are stored in the HTTP
Session) and none (POST
parameters are not
preserved). The equivalent
custom property in the full
application server profile is
com.ibm.websphere.security.util.postParamSaveMethod.

Cookie Cookie

Session
Session

None None

464 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

preserveFullyQualifiedReferrerUrlboolean false Warning, security risk:
Setting this to true may
open your systems to
potential URL redirect
attacks. This property
specifies whether the fully
qualified referrer URL for
form login redirects is
preserved. If false, the host
for the referrer URL is
removed and the redirect is
to localhost. The equivalent
custom property in the full
application server profile is
com.ibm.websphere.security.util.fullyQualifiedURL

singleSignonEnabled boolean true Specifies whether single
sign-on is enabled.

ssoCookieName string LtpaToken2 Customizes the SSO cookie
name. A custom cookie
name allows you to
logically separate
authentication between SSO
domains and to enable
customized authentication
to a particular environment.
Before setting this value,
consider that setting a
custom cookie name can
cause an authentication
failure. For example, a
connection to a server that
has a custom cookie
property set sends this
custom cookie to the
browser. A subsequent
connection to a server that
uses either the default
cookie name or a different
cookie name, is not able to
authenticate the request via
a validation of the
in-bound cookie. The
equivalent custom property
in the full application
server profile is
com.ibm.websphere.security.customSSOCookieName.

ssoDomainNames string A pipe (|) separated list of
domain names that SSO
Cookies should be
presented. The equivalent
custom property in the full
application server profile is
com.ibm.ws.security.config.SingleSignonConfig

Chapter 1. WebSphere Application Server Liberty Core: Overview 465

Attribute name Data type Default value Description

ssoRequiresSSL boolean false Specifies whether a SSO
cookie is sent over SSL. The
equivalent property in the
full application server
profile is requiresSSL.

ssoUseDomainFromURL boolean false Specifies whether to use the
domain name from the
request URL for the cookie
domain.

trackLoggedOutSSOCookies boolean false Specifies whether to track
LTPA single signon tokens
that are logged out on a
server so that it can not be
reused on the same server.

useAuthenticationDataForUnprotectedResourceboolean true Specifies whether
authentication data can be
used when accessing an
unprotected resource. The
unprotected resource can
access validated
authenticated data that it
previously could not access.
This option enables the
unprotected resource to call
the getRemoteUser,
isUserInRole, and
getUserPrincipal methods
to retrieve an authenticated
identity. The equivalent
custom property in the full
application server profile is
com.ibm.wsspi.security.web.webAuthReq=persisting.

useOnlyCustomCookieName boolean false Specifies whether to use
only the custom cookie
name.

wasReqURLRedirectDomainNamesstring A pipe (|) separated list of
domain names that are
allowed for the
WASReqURL page redirect.
The hostname found on the
form login request is
implied.

webAlwaysLogin boolean false Specifies whether the
login() method will throw
an exception when an
identity has already been
authenticated.

Web Application (webApplication)
Defines the properties of a web application.
v application-bnd

– security-role
- group

466 WebSphere Application Server Liberty Core 8.5.5

- run-as
- special-subject
- user

v classloader
– commonLibrary

- file
- fileset
- folder

– privateLibrary
- file
- fileset
- folder

Attribute name Data type Default value Description

autoStart boolean true Indicates whether or not
the server automatically
starts the application.

contextRoot string Context root of an
application.

id string A unique configuration ID.

location A file, directory or url. Location of an application
expressed as an absolute
path or a path relative to
the server-level apps
directory.

name string Name of an application.

suppressUncoveredHttpMethodWarningboolean false Option to suppress
uncovered HTTP method
warning message during
application deployment.

application-bnd
Binds general deployment information included in the application to specific resources.

false

Attribute name Data type Default value Description

version string Version of the application
bindings specification.

application-bnd > security-role
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name string Name of a security role.

application-bnd > security-role > group
A unique configuration ID.

Chapter 1. WebSphere Application Server Liberty Core: Overview 467

false

Attribute name Data type Default value Description

access-id string Group access ID

id string A unique configuration ID.

name string Name of a group
possessing a security role.

application-bnd > security-role > run-as
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

password Reversably encoded
password (string)

Password of a user
required to access a bean
from another bean. The
value can be stored in clear
text or encoded form. To
encode the password, use
the securityUtility tool with
the encode option.

userid string ID of a user required to
access a bean from another
bean.

application-bnd > security-role > special-subject
A unique configuration ID.

false

Attribute name Data type Default value Description

id string A unique configuration ID.

type v EVERYONE

v
ALL_AUTHENTICATED_USERS

One of the following
special subject types:
ALL_AUTHENTICATED_USERS,
EVERYONE.

EVERYONE
Everyone

ALL_AUTHENTICATED_USERS
All authenticated
users

application-bnd > security-role > user
A unique configuration ID.

false

468 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

access-id string A user access ID in the
general form
user:realmName/
userUniqueId. A value will
be generated if one is not
specified.

id string A unique configuration ID.

name string Name of a user possessing
a security role.

classloader
Defines the settings for an application classloader.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this class loader will be
able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

classProviderRef List of references to top
level resourceAdapter
elements (comma-separated
string).

List of class provider
references. When searching
for classes or resources, this
class loader will delegate to
the specified class
providers after searching its
own class path.

commonLibraryRef List of references to top
level library elements
(comma-separated string).

List of library references.
Library class instances are
shared with other
classloaders.

delegation v parentFirst

v parentLast

parentFirst Controls whether parent
classloader is used before
or after this classloader. If
parent first is selected then
delegate to immediate
parent before searching the
classpath. If parent last is
selected then search the
classpath before delegating
to the immediate parent.

parentFirst
Parent first

parentLast
Parent last

privateLibraryRef List of references to top
level library elements
(comma-separated string).

List of library references.
Library class instances are
unique to this classloader,
independent of class
instances from other
classloaders.

Chapter 1. WebSphere Application Server Liberty Core: Overview 469

classloader > commonLibrary
List of library references. Library class instances are shared with other classloaders.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

id string A unique configuration ID.

name string Name of shared library for
administrators

classloader > commonLibrary > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

classloader > commonLibrary > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

470 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

classloader > commonLibrary > folder
Id of referenced folder

false

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

classloader > privateLibrary
List of library references. Library class instances are unique to this classloader, independent of
class instances from other classloaders.

false

Attribute name Data type Default value Description

apiTypeVisibility string spec,ibm-api,api The types of API package
this library's class loader
will be able to see, as a
comma-separated list of
any combination of the
following: spec, ibm-api,
api, third-party.

description string Description of shared
library for administrators

filesetRef List of references to top
level fileset elements
(comma-separated string).

Id of referenced Fileset

id string A unique configuration ID.

name string Name of shared library for
administrators

Chapter 1. WebSphere Application Server Liberty Core: Overview 471

classloader > privateLibrary > file
Id of referenced File

false

Attribute name Data type Default value Description

id string A unique configuration ID.

name Path to a file Fully qualified filename

classloader > privateLibrary > fileset
Id of referenced Fileset

false

Attribute name Data type Default value Description

caseSensitive boolean true Boolean to indicate whether
or not the search should be
case sensitive (default:
true).

dir Path to a directory ${server.config.dir} The base directory to search
for files.

excludes string The comma or space
separated list of file name
patterns to exclude from
the search results, by
default no files are
excluded.

id string A unique configuration ID.

includes string * The comma or space
separated list of file name
patterns to include in the
search results (default: *).

scanInterval A period of time with
millisecond precision

0 Scanning interval to check
the fileset for changes as a
long with a time unit suffix
h-hour, m-minute, s-second,
ms-millisecond (e.g. 2ms or
5s). Disabled
(scanInterval=0) by default.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

classloader > privateLibrary > folder
Id of referenced folder

false

472 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

dir Path to a directory Directory or folder to be
included in the library
classpath for locating
resource files

id string A unique configuration ID.

Web Container (webContainer)
Configuration for the web container.

Attribute name Data type Default value Description

allowExpressionFactoryPerAppboolean false Toggle to load the
ExpressionFactory that is
set by the application.
Enable this custom
property if you are using a
custom EL implementation
(for example, JUEL) that
needs to set its own
ExpressionFactory.

allowIncludeSendError boolean false Allow RequestDispatch to
send errors on Include
methods. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.allowincludesenderror.

asyncMaxSizeTaskPool int 5000 Maximum size of tasks in
the Async task pool before
automatically purging
canceled tasks. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.webcontainer.asyncmaxsizetaskpool.

asyncPurgeInterval int 30000 Time interval to wait
between each required
purge of the cancelled task
pool. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.asyncpurgeinterval.

asyncTimeoutDefault int 30000 Async servlet timeout value
used when a timeout value
has not been explcitly
specified. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.asynctimeoutdefault.

asyncTimerThreads int 2 Maximum number of
threads to use for async
servlet timeout processing.
The equivalent custom
property in the full
application server profile is
com.ibm.ws.webcontainer.asynctimerthreads.

Chapter 1. WebSphere Application Server Liberty Core: Overview 473

Attribute name Data type Default value Description

channelWriteType string async When set to 'sync',
responses will be written
synchronously; otherwise,
responses will be written
asychronously. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.webcontainer.channelwritetype.

copyAttributesKeySet boolean false Web container will return
an enumeration of a copy
of the list of attributes to
the servlet to avoid a
concurrent access error by
the servlet. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.copyattributeskeyset.

decodeUrlAsUtf8 boolean true Decode URLs using an
encoding setting of UTF-8.

decodeUrlPlusSign boolean false Decode the plus sign when
it is part of the URL. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.webcontainer.decodeurlplussign.

defaultHeadRequestBehavior boolean false Restore the behavior where
the HEAD request is not
subject to the security
constraint defined for the
GET method. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.webcontainer.DefaultHeadRequestBehavior.

defaultTraceRequestBehavior boolean false Restore HTTP TRACE
processing. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.DefaultTraceRequestBehavior.

deferServletLoad boolean true Defer servlet loading and
initialization until the first
request.

deferServletRequestListenerDestroyOnErrorboolean false Toggle if you want to defer
ServletRequestListener
destroy when there is an
error serving the request.
The default value is false.
The equivalent custom
property in the full
application server profile is
com.ibm.ws.webcontainer.deferServletRequestListenerDestroyOnError.

directoryBrowsingEnabled boolean false Enable directory browsing
of an application.

474 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

disableXPoweredBy boolean false Disable setting the
X-Powered-By header. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.webcontainer.disablexpoweredby.

disallowAllFileServing boolean false Disables all file serving by
applications. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.disallowAllFileServing.

disallowServeServletsByClassNameboolean true Disallows the use of
serveServletsByClassnameEnabled
on the application server
level. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.disallowserveservletsbyclassname.

dispatcherRethrowsEr boolean true Web container will re-throw
errors allowing interested
resources to process them.
The equivalent custom
property in the full
application server profile is
com.ibm.ws.webcontainer.dispatcherRethrowser.

doNotServeByClassName string A semi-colon delimited list
of classes to be completely
disallowed from being
served by classname. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.webcontainer.donotservebyclassname.

emptyServletMappings boolean false Toggle if you want to
return an empty collection,
instead of null, when no
servlet mappings are
added. The default value is
false. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.emptyservletmappings.

enableDefaultIsElIgnoredInTagboolean false Always evaluate whether to
ignore EL expressions in
tag files. If parent JSP files
have different isELIgnored
settings, the setting will be
re-evaluated in the tag file.
The equivalent custom
property in the full profile
application server is
com.ibm.ws.jsp.enabledefaultiselignoredintag.

Chapter 1. WebSphere Application Server Liberty Core: Overview 475

Attribute name Data type Default value Description

enableErrorExceptionTypeFirstboolean false Web container is updated
to search and use the
exception-type before the
error-code. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.enableErrorExceptionTypeFirst.

enableJspMappingOverride boolean false Allow the JSP mapping to
be overridden so that the
application can serve the
JSP contents itself. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.webcontainer.enablejspmappingoverride.

enableMultiReadOfPostData boolean false Retain post data for
multiple read accesses. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.webcontainer.enablemultireadofpostdata.

exposeWebInfOnDispatch boolean false If true, a servlet can access
files in the WEB-INF
directory. If false (default),
a servlet cannot access files
the WEB-INF directory.

fileServingEnabled boolean true Enable file serving if this
setting was not explicitly
specified for the
application.

fileWrapperEvents boolean false Web container will generate
SMF and PMI data when
serving the static files. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.webcontainer.fileWrapperEvents.

httpsIndicatorHeader string For SSL offloading, set to
the name of the HTTP
header variable inserted by
the SSL
accelerator/proxy/load
balancer.

ignoreSemiColonOnRedirectToWelcomePageboolean false Toggle to ignore the trailing
semi-colon when
redirecting to the welcome
page. The default value is
false. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.ignoreSemiColonOnRedirectToWelcomePage.

476 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

ignoreSessiononStaticFileRequestboolean false Improves performance by
preventing the web
container from accessing a
session for static file
requests involving filters.
The equivalent custom
property in the full
application server profile is
com.ibm.ws.webcontainer.IgnoreSessiononStaticFileRequest.

invokeFilterInitAtStartup boolean true Web container will call the
filter's init() method at
application startup. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.webcontainer.invokeFilterInitAtStartup.

listeners string A comma separated list of
listener classes.

logServletContainerInitializerClassLoadingErrorsboolean false Log servlet container class
loading errors as warnings
rather than logging them
only when debug is
enabled. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.logservletcontainerinitializerclassloadingerrors.

metaInfResourcesCacheSize int 20 Initial size (number of
entries) of the meta-inf
resource cache. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.webcontainer.metainfresourcescachesize.name.

parseUtf8PostData boolean false Web container will detect
non URL encoded UTF-8
post data and include it in
the parameter values. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.webcontainer.parseutf8postdata.

serveServletsByClassnameEnabledboolean false Enable servlets to be
accessed in a web
application using a class
name if not explicitly
specified.

setContentLengthOnClose boolean true Toggle to set content length
when an application
explicitly closes the
response. The default value
is true; however, set this
value to false if an
application response
contains double-byte
characters.

Chapter 1. WebSphere Application Server Liberty Core: Overview 477

Attribute name Data type Default value Description

skipMetaInfResourcesProcessingboolean false Do not search the meta-inf
directory for application
resources. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.skipmetainfresourcesprocessing.

suppressHtmlRecursiveErrorOutputboolean false Suppresses the exception
information from appearing
in the HTML output when
there is a recursive error
that cannot be handled by
an application's configured
error page. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.suppressHtmlRecursiveErrorOutput.

symbolicLinksCacheSize int 1000 Initial size of the symbolic
link cache. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.SymbolicLinksCacheSize.

tolerateSymbolicLinks boolean false Enables the web container
to support the use of
symbolic links. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.webcontainer.TolerateSymbolicLinks.

useSemiColonAsDelimiterInURIboolean false Toggle to use the
semi-colon as a delimiter in
the request URI. The
default value is false. The
equivalent custom property
in the full application
server profile is
com.ibm.ws.webcontainer.useSemiColonAsDelimiterInURI.

xPoweredBy string Alternative string for the
X-Powered-By header
setting. The equivalent
custom property in the full
application server profile is
com.ibm.ws.webcontainer.xpoweredby.
There is no default value
for this property. If the
property is not set, the
value of the X-Powered-By
header is set to
Servlet/<servlet spec
version>, as defined by the
Servlet specification.

WAS WebSocket Outbound (wsocOutbound)
Configuration properties for WAS WebSocket outgoing connection requests.
v httpOptions

478 WebSphere Application Server Liberty Core 8.5.5

v sslOptions
v tcpOptions

Attribute name Data type Default value Description

httpOptionsRef A reference to top level
httpOptions element
(string).

defaultHttpOptions HTTPprotocol options for
WAS WebSocket outbound

sslOptionsRef A reference to top level
sslOptions element (string).

SSL protocol options for
WAS WebSocket outbound

tcpOptionsRef A reference to top level
tcpOptions element (string).

defaultTCPOptions TCP protocol options for
WAS WebSocket outbound

httpOptions
HTTPprotocol options for WAS WebSocket outbound

false

Attribute name Data type Default value Description

keepAliveEnabled boolean true Enables persistent
connections (HTTP
keepalive). If true,
connections are kept alive
for reuse by multiple
sequential requests and
responses. If false,
connections are closed after
the response is sent.

maxKeepAliveRequests int

Minimum: -1

100 Maximum number of
persistent requests that are
allowed on a single HTTP
connection if persistent
connections are enabled. A
value of -1 means
unlimited.

persistTimeout A period of time with
second precision

30s Amount of time that a
socket will be allowed to
remain idle between
requests. This setting only
applies if persistent
connections are enabled.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

Chapter 1. WebSphere Application Server Liberty Core: Overview 479

Attribute name Data type Default value Description

readTimeout A period of time with
second precision

60s Amount of time to wait for
a read request to complete
on a socket after the first
read occurs. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

removeServerHeader boolean false Removes server
implementation information
from HTTP headers and
also disables the default
Liberty profile welcome
page.

writeTimeout A period of time with
second precision

60s Amount of time to wait on
a socket for each portion of
the response data to be
transmitted. Specify a
positive integer followed by
a unit of time, which can be
hours (h), minutes (m), or
seconds (s). For example,
specify 30 seconds as 30s.
You can include multiple
values in a single entry. For
example, 1m30s is
equivalent to 90 seconds.

sslOptions
SSL protocol options for WAS WebSocket outbound

false

Attribute name Data type Default value Description

sessionTimeout A period of time with
second precision

1d Amount of time to wait for
a read or write request to
complete on a socket. This
value is overridden by
protocol-specific timeouts.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), or seconds (s).
For example, specify 30
seconds as 30s. You can
include multiple values in a
single entry. For example,
1m30s is equivalent to 90
seconds.

480 WebSphere Application Server Liberty Core 8.5.5

Attribute name Data type Default value Description

sslRef A reference to top level ssl
element (string).

The default SSL
configuration repertoire.
The default value is
defaultSSLSettings.

suppressHandshakeErrors boolean false Disable logging of SSL
handshake errors. SSL
handshake errors can occur
during normal operation,
however these messages
can be useful when SSL is
behaving unexpectedly.

tcpOptions
TCP protocol options for WAS WebSocket outbound

false

Attribute name Data type Default value Description

inactivityTimeout A period of time with
millisecond precision

60s Amount of time to wait for
a read or write request to
complete on a socket. This
value is overridden by
protocol-specific timeouts.
Specify a positive integer
followed by a unit of time,
which can be hours (h),
minutes (m), seconds (s), or
milliseconds (ms). For
example, specify 500
milliseconds as 500ms. You
can include multiple values
in a single entry. For
example, 1s500ms is
equivalent to 1.5 seconds.

soReuseAddr boolean true Enables immediate rebind
to a port with no active
listener.

z/OS Logging (zosLogging)
Configuration properties for logging on z/OS.

Attribute name Data type Default value Description

enableLogToMVS boolean false Enable routing of
USS-started server
messages to the MVS
console.

hardCopyMessage string A comma-separated list of
message IDs to be written
to the hardcopy log.

wtoMessage string A comma-separated list of
message IDs to be written
to operator.

Chapter 1. WebSphere Application Server Liberty Core: Overview 481

Feature management
Features are the units of functionality by which you control the pieces of the runtime environment that
are loaded into a particular server.

Use the configuration file server.xml to declare which features you want to load. The set of features is
enclosed within the <featureManager> element, and each feature within the <feature> subelement. For
example:
<server>
<featureManager>
<feature>servlet-3.0</feature>
<feature>localConnector-1.0</feature>

</featureManager>
</server>

You can specify any feature in the server configuration file. Some features include other features within
them. The same feature can be included in one or more other features. At run time, the feature manager
computes the combined list of content that is required to support the requested set of features.

For information about the main available features, see “Liberty features” on page 483. For information
about the restrictions that apply to each feature, see “Runtime environment known issues and
restrictions” on page 1480.

Dynamic changes to feature configuration

When you change the feature configuration, the feature manager recalculates the list of required bundles,
stops and uninstalls those bundles that are no longer required, and installs and starts any additions.
Therefore, all features are designed to cope with other features that are being dynamically added or
removed.

8.5.5.4

Singleton Features

With the delivery of the first set of features for Java EE 7, there are now two versions of the same feature:
v servlet-3.0

v servlet-3.1

Unlike other application servers, you can choose which version of this feature to use in a server
configuration. servlet-3.0 preserves behavior for existing applications, while servlet-3.1 provides new
capabilities for new or modified applications. Although there is a choice of specification versions, no
additional configuration properties are required, or provided, to control individual differences between
the two versions.

The servlet feature is a singleton feature, which means that you can configure only one version for use in
a server: either servlet-3.0 or servlet-3.1. If you have applications that need different versions of the
servlet feature, you must deploy them in different servers. Many other features include the servlet feature
as a dependency. In the WebSphere Liberty product, these features have been updated to work with
either version. This ensures that you can configure a complete “stack” of features when you use
servlet-3.1, but features from other sources might not have been updated to “tolerate” servlet-3.1. To
enable features to “tolerate” servlet-3.1, modify the feature manifest as follows:
Subsystem-Content: com.ibm.websphere.appserver.servlet-3.0; ibm.tolerates:="3.1"; type="osgi.subsystem.feature"

If your server configuration includes multiple versions of a singleton feature, either through direct
configuration in the server.xml file, or through feature dependencies, that configuration is in error and
neither version of that feature is loaded. This error results in a message similar to the following:
[ERROR] CWWKF0033E: The singleton features servlet-3.1 and servlet-3.0 cannot be loaded at the same time. The configured features servlet-3.1 and servlet-3.0 include one or more features that cause the conflict.

482 WebSphere Application Server Liberty Core 8.5.5

To resolve this problem, ensure that the configured features all specify, or tolerate, the same version of
that singleton feature. If you have hard requirements on both feature versions, you must move some of
your applications to a different server. For more information on tolerating singleton features, see
Tolerating singleton features.

Superseded features

The superseded label on a feature indicates that a new feature or a combination of features might
provide an advantage over using the superseded feature. For example, new, finer-grained features might
be used in place of the superseded one in order to reduce the server footprint by excluding content that
might not be necessary. The new feature or features might not completely replace the function of the
superseded feature, so you must consider your scenario before deciding whether to change your
configuration. Superseded features remain completely supported and valid for use in your configuration;
the superseded label just provides an indication that you might be able to improve your configuration.

Very occasionally, a feature that includes other features is superseded by a new version of the feature that
does not include all those features; the features that are not included in the new version are considered to
be separated. If your application needs to use the functions of a separated feature, you must explicitly add
the separated feature to your configuration.

For example, featureA and featureB have the following conditions:
v featureA-1.0 includes featureB-1.0
v featureA-2.0 does not include featureB-1.0 (or any later versions of featureB)

If your application uses featureB functions, either of these configurations will work:
v Include featureA-1.0 in your server.xml file
v Include featureA-2.0 and featureB-1.0 in your server.xml file

Liberty features
Features are the units of functionality by which you control the pieces of the runtime environment that
are loaded into a particular server.

The following table lists the Liberty features that are supported for each WebSphere Application Server
Liberty edition.

Tip: To install all features that apply your Liberty edition, you can install a feature bundle addon.
WebSphere Application Server Network Deployment Liberty has two bundles: The ndMemberBundle addon
contains most features and is for servers that are clustered and auto-scaled in a Liberty collective, and the
ndControllerBundle addon contains a small set of features only for managing Liberty collectives.

Chapter 1. WebSphere Application Server Liberty Core: Overview 483

Table 6. Liberty features supported for each WebSphere Application Server Liberty edition

Liberty feature WebSphere
Application
Server Liberty
Core

WebSphere
Application
Server

and

WebSphere
Application
Server - Express®

WebSphere
Application
Server Network
Deployment
(Distributed
operating systems
and IBM i)

WebSphere
Application
Server for z/OS®

Feature bundle addon libertyCoreBundle baseBundle ndMemberBundle:
All except
controller features

ndControllerBundle:
Only features
marked with 1

zosBundle

Java EE 7 Web Profile

8.5.5.6 beanValidation-1.1 U U U U

8.5.5.6 cdi-1.2 U U U U

8.5.5.6 ejbLite-3.2 U U U U

el-3.0 U U U U

8.5.5.6 jaxrs-2.0 U U U U

8.5.5.6 jaxrsClient-2.0 U U U U

jdbc-4.1 U U U U

jndi-1.0 U U U U

8.5.5.6 jpa-2.1 U U U U

8.5.5.6 jsf-2.2 U U U U

jsonp-1.0 U U U U

jsp-2.3 U U U U

managedBeans-1.0 U U U U

servlet-3.1 U U U U

8.5.5.6 webProfile-7.0 U U U U

websocket-1.0 U U U U

websocket-1.1 U U U U

Java EE 7 Full Platform

8.5.5.6 appClientSupport-1.0 U U U

8.5.5.6 appSecurityClient-1.0 U U U

8.5.5.6 batch-1.0 U U U

concurrent-1.0 U U U U

8.5.5.6 ejb-3.2 U U U

8.5.5.6 ejbHome-3.2 U U U

484 WebSphere Application Server Liberty Core 8.5.5

Table 6. Liberty features supported for each WebSphere Application Server Liberty edition (continued)

Liberty feature WebSphere
Application
Server Liberty
Core

WebSphere
Application
Server

and

WebSphere
Application
Server - Express®

WebSphere
Application
Server Network
Deployment
(Distributed
operating systems
and IBM i)

WebSphere
Application
Server for z/OS®

8.5.5.6 ejbPersistentTimer-3.2 U U U

8.5.5.6 ejbRemote-3.2 U U U

8.5.5.6 j2eeManagement-1.1 U U U

8.5.5.6 jacc-1.5 U U U U

8.5.5.6 jaspic-1.1 U U U U

8.5.5.6 javaee-7.0 U U U

8.5.5.6 javaeeClient-7.0 U U U

8.5.5.6 javaMail-1.5 U U U U

jaxb-2.2 U U U

jaxws-2.2 U U U

8.5.5.6 jca-1.7 U U U

jcaInboundSecurity-1.0 U U U

8.5.5.6 jms-2.0 U U U

8.5.5.6 jmsMdb-3.2 U U U

8.5.5.6 mdb-3.2 U U U

8.5.5.6 wasJmsClient-2.0 U U U

wasJmsSecurity-1.0 U U U

wasJmsServer-1.0 U U U

Extended Programming Models

cloudant-1.0 U U U

couchdb-1.0 U U U

distributedMap-1.0 U U U U

json-1.0 U U U U

mongodb-2.0 U U U

8.5.5.7 rtcomm-1.0 U U U

8.5.5.7 rtcommGateway-1.0 U U U

8.5.5.7 sipServlet-1.1 U U U

Enterprise OSGi

blueprint-1.0 U U U U

Chapter 1. WebSphere Application Server Liberty Core: Overview 485

Table 6. Liberty features supported for each WebSphere Application Server Liberty edition (continued)

Liberty feature WebSphere
Application
Server Liberty
Core

WebSphere
Application
Server

and

WebSphere
Application
Server - Express®

WebSphere
Application
Server Network
Deployment
(Distributed
operating systems
and IBM i)

WebSphere
Application
Server for z/OS®

osgiAppIntegration-1.0 U U U U

8.5.5.9 osgiBundle-1.0 U U U U

osgi.jpa-1.0 U U U U

wab-1.0 U U U U

Operations

8.5.5.8 apiDiscovery-1.0 U U U U

appSecurity-1.0 U U U U

appSecurity-2.0 U U U U

8.5.5.6 batchManagement-1.0 U U U

8.5.5.7 bells-1.0 U U U U

8.5.5.9 bluemixUtility-1.0 U U U U

8.5.5.6 eventLogging-1.0 U U U U

ldapRegistry-3.0 U U U U

localConnector-1.0 U U U U

8.5.5.9 logstashCollector-1.0 U U U U

monitor-1.0 U U U U

oauth-2.0 U U U U

openid-2.0 U U U U

openidConnectClient-1.0 U U U U

openidConnectServer-1.0 U U U U

osgiConsole-1.0 U U U U

8.5.5.9 passwordUtilities-1.0 U U U

8.5.5.6 requestTiming-1.0 U U U U

restConnector-1.0 U U U U

8.5.5.7 samlWeb-2.0 U U U U

serverStatus-1.0 U U U U

sessionDatabase-1.0 U U U U

spnego-1.0 U U U U

ssl-1.0 U U U U

timedOperations-1.0 U U U U

webCache-1.0 U U U U

486 WebSphere Application Server Liberty Core 8.5.5

Table 6. Liberty features supported for each WebSphere Application Server Liberty edition (continued)

Liberty feature WebSphere
Application
Server Liberty
Core

WebSphere
Application
Server

and

WebSphere
Application
Server - Express®

WebSphere
Application
Server Network
Deployment
(Distributed
operating systems
and IBM i)

WebSphere
Application
Server for z/OS®

8.5.5.6 wmqJmsClient-2.0 U U U

wsSecurity-1.1 U U U

8.5.5.9 wsAtomicTransaction-
1.2

U U U

Systems Management

adminCenter-1.0 U U U1 U

clusterMember-1.0 U U

collectiveController-1.0 U1 U

collectiveMember-1.0 U U U U

dynamicRouting-1.0 U1 U

8.5.5.7 healthAnalyzer-1.0 U U

8.5.5.7 healthManager-1.0 U1 U

scalingController-1.0 U1 U

scalingMember-1.0 U U

z/OS

zosConnect-1.0 U

8.5.5.7 zosConnect-1.2 U

zosLocalAdapters-1.0 U

zosSecurity-1.0 U

zosTransaction-1.0 U

zosWlm-1.0 U

Java EE 6 Web Profile

beanValidation-1.0 U U U U

cdi-1.0 U U U U

ejbLite-3.1 U U U U

jdbc-4.0 U U U U

jndi-1.0 U U U U

jpa-2.0 U U U U

jsf-2.0 U U U U

jsp-2.2 U U U U

servlet-3.0 U U U U

Chapter 1. WebSphere Application Server Liberty Core: Overview 487

Table 6. Liberty features supported for each WebSphere Application Server Liberty edition (continued)

Liberty feature WebSphere
Application
Server Liberty
Core

WebSphere
Application
Server

and

WebSphere
Application
Server - Express®

WebSphere
Application
Server Network
Deployment
(Distributed
operating systems
and IBM i)

WebSphere
Application
Server for z/OS®

webProfile-6.0 U U U U

Java EE 6 Technologies

jaxb-2.2 U U U

jaxrs-1.1 U U U U

jaxws-2.2 U U U

jca-1.6 U U U

jcaInboundSecurity-1.0 U U U

jms-1.1 U U U

jmsMdb-3.1 U U U

mdb-3.1 U U U

wasJmsClient-1.1 U U U

wasJmsSecurity-1.0 U U U

wasJmsServer-1.0 U U U

wmqJmsClient-1.1 U U U

Feature descriptions

The following list contains information about the features you can add to your server
configuration. Including a feature in the configuration might cause one or more additional
features to be loaded automatically. For example, if you include the wab-1.0 feature, the
servlet-3.0 and blueprint-1.0 features are loaded automatically. Each feature includes a brief
description, and an example of how the feature is declared within the <featureManager> element
inside the server.xml file. For example:
<server>
<featureManager>
<feature>servlet-3.0</feature>
<feature>localConnector-1.0</feature>

</featureManager>
</server>

Java EE 7 Web Profile

8.5.5.6

Bean validation

<feature>beanValidation-1.1</feature>

The beanvalidation-1.1 feature provides validations for JavaBeans at each layer of an
application. The validation can be applied to all layers of JavaBeans in an application by
using annotations or a validation.xml deployment descriptor.

See “Bean validation feature restrictions” on page 1485.

488 WebSphere Application Server Liberty Core 8.5.5

For beanValidation-1.1 feature configuration information, see “Bean Validation 1.1” on
page 513.

8.5.5.6 CDI
<feature>cdi-1.2</feature>

The cdi-1.2 feature enables support for the Contexts and Dependency Injection 1.2
specification on Liberty.

See “Administering Contexts and Dependency Injection applications on Liberty” on page
1071.

For cdi-1.2 feature configuration information, see “Contexts and Dependency Injection
1.2” on page 516.

Enterprise Java Beans (EJB) Lite
8.5.5.6 <feature>ejbLite-3.2</feature>

The ejbLite-3.2 feature provides support for EJB applications that are written to the EJB
Lite subset of the EJB 3.2 specification.

Note that the EJB 3.2 Lite API Group does not include the embeddable EJB container, and
the product does not provide an EJB 3.2 embeddable container.

Also, the following features are not compatible with the ejbLite-3.2 feature:
v cdi-1.0
v jmsMdb-3.1
v mdb-3.1

For ejbLite-3.2 feature configuration information, see “Enterprise JavaBeans Lite 3.2” on
page 520.

Expression Language 3.0
<feature>el-3.0</feature>

This feature enables support for the Expression Language (EL) 3.0.

See “Configuring Liberty for Expression Language 3.0” on page 1067.

For el-3.0 feature configuration information, see “Expression Language 3.0” on page 521.

8.5.5.6 Java API for RESTful Web Services (JAX-RS)
<feature>jaxrs-2.0</feature>

The jaxrs-2.0 feature provides support for the Java API for RESTful Web Services on
Liberty.

See “Configuring JAX-RS 2.0 client” on page 1351 and “JAX-RS 2.0 integration with EJB
and CDI” on page 1360.

For jaxrs-2.0 feature configuration information, see “Java RESTful Services 2.0” on page
542.

8.5.5.6 Java EE Client API for JAX-RS 2.0
<feature>jaxrsClient-2.0</feature>

The jaxrsClient-2.0 feature provides support for Java Client API for JAX-RS 2.0

See “Configuring JAX-RS 2.0 client” on page 1351 and “JAX-RS 2.0 integration with EJB
and CDI” on page 1360.

For jaxrsClient-2.0 feature configuration information, see “Java RESTful Services Client
2.0” on page 542.

Java Database Connectivity (JDBC)
<feature>jdbc-4.1</feature>

Chapter 1. WebSphere Application Server Liberty Core: Overview 489

You can take an existing application that uses Java Database Connectivity (JDBC) and a
data source, and deploy the application to a server. The jdbc-4.1 feature provides
support for applications that access a database.

See “Configuring relational database connectivity in Liberty” on page 1047.

For jdbc-4.1 feature configuration information, see “Java Database Connectivity 4.1” on
page 528.

Java Naming and Directory Interface (JNDI)
<feature>jndi-1.0</feature>

The jndi-1.0 feature provides support for a single JNDI entry definition in the server
configuration of Liberty.

See “Developing with the JNDI default namespace in a Liberty feature” on page 1139.

For jndi-1.0 feature configuration information, see “Java Naming and Directory
Interface” on page 531.

8.5.5.6 Java Persistence API 2.1
<feature>jpa-2.1</feature>

The jpa-2.1 feature provides support for applications that use application-managed and
container-managed JPA written to the JPA 2.1 specification and is backed by EclipseLink.

See “Java Persistence API (JPA) feature overview” on page 618.

For jpa-2.1 feature configuration information, see “Java Persistence API 2.1” on page 534.

8.5.5.6 JavaServer Faces (JSF)
<feature>jsf-2.2</feature>

This feature enables support for web applications that use the Java Server Faces (JSF) 2.2
framework. This framework simplifies the construction of user interfaces.

See “Configuring Liberty for JavaServer Faces 2.2” on page 1068.

For jsf-2.2 feature configuration information, see “JavaServer Faces 2.2” on page 552.

JavaScript Object Notation Processing
<feature>jsonp-1.0</feature>

The Java API for JSON Processing (JSON-P) feature provides a standardized method for
constructing and manipulating data to be rendered in JavaScript Object Notation (JSON).

For jsonp-1.0 feature configuration information, see “JavaScript Object Notation
Processing” on page 549.

JavaServer Pages (JSP)
<feature>jsp-2.3</feature>

This feature enables support for Java Server Pages (JSPs) that are written to the JSP 2.3
specification. This framework simplifies the construction of user interfaces. Enabling this
feature also enables the Expression Language (EL) version 3.0 feature. el-3.0.

See “Configuring Liberty for JavaServer Pages 2.3” on page 1070.

For jsp-2.3 feature configuration information, see “JavaServer Pages 2.3” on page 554.

Managed Beans
<feature>managedBeans-1.0</feature>

The managedBeans-1.0 feature provides support for the Managed Beans 1.0 specification
(JSR-316). This feature enables use of the javax.annotation.ManagedBean annotation.

For managedBeans-1.0 feature configuration information, see “Java EE Managed Bean 1.0”
on page 528.

490 WebSphere Application Server Liberty Core 8.5.5

Servlet 3.1
<feature>servlet-3.1</feature>

The servlet-3.1 feature enables support for HTTP Servlets that are written to the Java
Servlet 3.1 specification.

See “Configuring Liberty for Servlet 3.1” on page 1059 and “Servlet 3.1 behavior changes”
on page 1060.

For servlet-3.1 feature configuration information, see “Java Servlets 3.1” on page 545.

8.5.5.6 Web Profile 7.0
<feature>webProfile-7.0</feature>

This feature provides a convenient combination of the Liberty features that are required
to support the Java EE 7 Web Profile.

For webProfile-7.0 feature configuration information, see “Java EE Web Profile 7.0” on
page 530.

WebSocket

<feature>websocket-1.0</feature>

<feature>websocket-1.1</feature>

WebSocket is a standard protocol that enables a web browser or client application and a
web server application to communicate by using one full duplex connection.

See Liberty: WebSocket and “Developing WebSocket applications in Liberty” on page
1326.

For websocket-1.0 feature configuration information, see “Java WebSocket 1.0” on page
547.

For websocket-1.1 feature configuration information, see “Java WebSocket 1.1” on page
548.

Java EE 7 Full Platform

8.5.5.6

Application Client Support

<feature>appClientSupport-1.0</feature>

The appClientSupport-1.0 feature enables the server to process Java EE metadata inside
the client module of an application, for example, read the deployment descriptor XML file
and/or annotations and make them available to other modules in the application if
necessary. It also enables the remote application client process to communicate with the
server to do JNDI lookups.

The appClientSupport-1.0 feature is enabled in the server.xml file only.

8.5.5.6 Application Client Container Security
<feature>appSecurityClient-1.0</feature>

To enable security on the client container, add the appSecurityClient-1.0 feature to your
client.xml file.

The appSecurityClient-1.0 feature enables SSL, CSIv2, and JAAS on the client. You must
configure SSL to ensure communications between the client and server are secure and
encrypted.

8.5.5.6 Batch
<feature>batch-1.0</feature>

The batch-1.0 feature enables the use of the JSR-352 programming model.

Chapter 1. WebSphere Application Server Liberty Core: Overview 491

Managed Executors and Thread Factories
<feature>concurrent-1.0</feature>

The concurrent-1.0 feature enables the creation of managed executor services that allow
applications to submit tasks to run concurrently, with thread context that is managed by
the application server. The feature also enables the creation of managed thread factories
to create threads that run with the thread context of the component that looks up the
managed thread factory.

See “Configuring managed scheduled executors” on page 1017.

For concurrent-1.0 feature configuration information, see “Concurrency Utilities for Java
EE 1.0” on page 514.

Enterprise Java Beans (EJB)
8.5.5.6 <feature>ejb-3.2</feature>

The ejb-3.2 feature provides support for EJB applications that are written to the EJB 3.2
specification.

This feature includes the following features:
v 8.5.5.6 <feature>ejbLite-3.2</feature>

This feature gives support for EJB applications that are written to the EJB Lite subset of
the EJB 3.2 specification. For ejbLite-3.2 feature configuration information, see
“Enterprise JavaBeans Lite 3.2” on page 520.

v 8.5.5.6 <feature>ejbHome-3.2</feature>

This feature gives support for the EJB 2.x APIs.
v 8.5.5.6 <feature>ejbPersistentTimer-3.2</feature>

This feature gives support for persistent EJB timers.
v 8.5.5.6 <feature>ejbRemote-3.2</feature>

This feature gives support for remote EJB interfaces.
v 8.5.5.6 <feature>mdb-3.2</feature>

This feature gives support for message-driven beans.
The mdb-3.2 feature supersedes the jmsMdb-3.2 feature.

If full EJB 3.2 support is not required, various combinations of these features can be used
to provide the support that you need.

8.5.5.6 J2EE Management 1.1
<feature>j2eeManagement-1.1</feature>

The j2eeManagement-1.1 feature provides standard interfaces to manageable aspects of
Java EE 7 and enables applications to use the interfaces defined in the JSR 77
specification.

To invoke Management EJB APIs, the server configuration must have both the
j2eeManagement-1.1 and ejbRemote-3.2 features in a feature manager. After both features
are in the server configuration, you can invoke Management EJB API through JNDI name
lookup. The Management EJB binding name (JNDI lookup name) is ejb/mejb/MEJB.

8.5.5.6 Java Authorization Contract for Containers 1.5
<feature>jacc-1.5</feature>

The jacc-1.5 feature enables support for Java Authorization Contract for Containers
(JACC) version 1.5 In order to add the jacc-1.5 feature to your server, you need to add
the third party JACC provider which is not a part of the WebSphere Application Server
Liberty.

8.5.5.6 Java Authentication SPI for Containers 1.1
<feature>jaspic-1.1</feature>

492 WebSphere Application Server Liberty Core 8.5.5

The jaspic-1.1 feature enables support for securing the server runtime environment and
applications using Java Authentication SPI for Containers (JASPIC) providers as defined
in JSR-196.

8.5.5.6 Java EE
<feature>javaee-7.0</feature>

This feature provides a convenient combination of the Liberty features that are required
to support the Java EE 7.0 Full Platform.

8.5.5.6 Java EE Application Client 7.0
<feature>javaeeClient-7.0</feature>

This feature enables support for Java EE Application Client 7.0.

8.5.5.6 JavaMail API

<feature>javaMail-1.5</feature>

The JavaMail API supports communication between external mail servers and Liberty
applications. See “Administering JavaMail on Liberty” on page 1074.

For javaMail-1.5 feature configuration information, see “JavaMail 1.5” on page 548.

Java Architecture for XML Binding (JAXB)
<feature>jaxb-2.2</feature>

The jaxb-2.2 feature provides support for the Java Architecture for XML Binding (JAXB)
on Liberty.

See JAXB.

Java API for XML-Based Web Services (JAX-WS)
<feature>jaxws-2.2</feature>

The jaxws-2.2 feature provides support for the Java API for XML-Based Web Services on
Liberty.
v For web applications that support the JAX-WS programming model, you must enable

the servlet-3.0 and jaxws-2.2 server features in the server.xml file.
v For EJB applications that support the JAX-WS programming model, you must enable

the ejbLite-3.1, servlet-3.0, and jaxws-2.2 server features in the server.xml file.
v For applications that use the global handler services, you must enable the jaxrs-1.1 or

the jaxws-2.2 feature in the server.xml file.

8.5.5.6 Java EE Connector Architecture 1.7
<feature>jca-1.7</feature>

The jca-1.7 feature provides configuration elements to define instances of connection
factories, administered objects, and activation specifications, and to associate these
instances with an installed resource adapter.

Java EE Connector Architecture Inbound Security
<feature>jcaInboundSecurity-1.0</feature>

The jcaInboundSecurity-1.0 feature enables security inflow for resource adapters.

8.5.5.6 Java Message Service 2.0
<feature>jms-2.0</feature>

The jms-2.0 feature enables the configuration of resource adapters to access messaging
systems using the Java Message Service API. This also includes the configuration JMS
connection factories, queues, topics and activation specifications. Any JMS resource
adapter that complies with the JCA 1.6 specification can be used.

Chapter 1. WebSphere Application Server Liberty Core: Overview 493

Embedded Liberty Messaging features
8.5.5.6 <feature>wasJmsClient-2.0</feature>

The wasJmsClient-2.0 feature supersedes the wasJmsClient-1.1 feature. The
wasJmsClient-2.0 feature is compliant with the JMS 2.0 specification and is supported
only on IBM JDK 7 or later.

<feature>wasJmsSecurity-1.0</feature>

The wasJmsSecurity-1.0 feature supports secure connections to the messaging engine.
When the wasJmsSecurity-1.0 feature is enabled, it starts authenticating and authorizing
the users who are trying to connect to the messaging engine. The user is authenticated
against the registry that is defined in the server.xml file. When the user wants to access a
destination such as a topic or a queue, then the user must be granted the required
permissions. The access to the destination is defined in the <messagingSecurity> element
(the child element of the messagingEngine element) in the server.xml file. If the
wasJmsSecurity-1.0 feature is added and the <messagingSecurity> element is not defined
in the server.xml file, then the users cannot connect to the messaging engine or perform
any messaging action (for example, sending or receiving messages from the destinations).

Notes:

v Configuring the user registry is a prerequisite for the wasJmsSecurity-1.0 feature.
Ensure that a user registry is configured before the wasJmsSecurity-1.0 feature is
enabled.

v When you enable the wasJmsSecurity-1.0 feature, you must also configure the
<messagingSecurity> element, which is the child element of the <messagingEngine>
element, in the server.xml file. This configuration enables authorized users to access
messaging destinations.

<feature>wasJmsServer-1.0</feature>
The wasJmsServer-1.0 feature enables the JMS messaging engine run time to be
initialized. The messaging run time is responsible for providing the application
connectivity, managing the state of destinations such as topics or queues, and handling
quality of service, security, and transactions. This feature also provides support for the
inbound connections from the remote messaging applications. The remote messaging
applications can connect to the JMS messaging engine through TCP/IP over SSL or
non-SSL.

To connect using SSL, you must enable the SSL feature.

Extended Programming Models

CouchDB
<feature>couchdb-1.0</feature>

The couchdb-1.0 feature provides support for CouchDB instances and associated database
connections. Access to CouchDB connections is available either by JNDI lookup or
resource injection.

Cache Service
<feature>distributedMap-1.0</feature>

This feature provides a local cache service that can be accessed by using the
DistributedMap API. A default cache is bound in JNDI at services/cache/distributedmap.
You can distribute a cache by adding a network cache provider such as WebSphere
eXtreme Scale.

For distributedMap-1.0 feature configuration information, see “Distributed Map interface
for Dynamic Caching” on page 518.

494 WebSphere Application Server Liberty Core 8.5.5

JavaScript Object Notation (JSON4J) Library
<feature>json-1.0</feature>

The json-1.0 feature provides access to the JSON4J library that provides a set of JSON
handling classes for Java environments. The JSON4J library provides a simple Java model
for constructing and manipulating data to be rendered as JSON data.

See Using JSON content in JAX-RS application requests and responses and JSON4J
Libraries API.

For json-1.0 feature configuration information, see “JavaScript Object Notation for Java”
on page 550.

MongoDB
<feature>mongodb-2.0</feature>

The mongodb-2.0 feature provides support for MongoDB instances and associated
database connections. Access to MongoDB connections is available either by JNDI lookup
or resource injection. The native com.mongodb API performs the database manipulation.

8.5.5.7 Real-Time Communications
<feature>rtcomm-1.0</feature>

The Liberty Real-Time Communications feature enables a highly-scalable call signalling
engine that can be used to connect WebRTC clients into real-time audio/video/data calls.
The feature supports both registration of clients as well as the exchange of signalling
needed to create a WebRTC peer connection between two endpoints.

8.5.5.7 RTComm Gateway
<feature>rtcommGateway-1.0</feature>

The rtcommGateway-1.0 feature adds the capability for connecting Session Initiation
Protocol (SIP) with RTComm WebRTC endpoints for the exchange of audio and video
streams.

8.5.5.7 SIP Servlet
<feature>sipServlet-1.1</feature>

The sipServlet-1.1 feature provides support for SIP Servlet Specification 1.1, also known
as JSR 289. Session Initiation Protocol (SIP) is a control protocol for many interactive
services, including audio, video, and peer-to-peer communication.

Enterprise OSGi

Blueprint
<feature>blueprint-1.0</feature>

The blueprint-1.0 feature enables support for deploying OSGi applications that use the
OSGi blueprint container specification. With the OSGi Applications support in WebSphere
Application Server, you can develop and deploy modular applications that use Java EE
and OSGi technologies.

See “Locating OSGi applications” on page 1138 and OSGi Applications.

For blueprint-1.0 feature configuration information, see “OSGi Blueprint” on page 560.

OSGi application integration
<feature>osgiAppIntegration-1.0</feature>

Use the osgiAppIntegration-1.0 feature to enable the OSGi applications that are available
within the same Java virtual machine to share their services with each other.

For more information about Application-ImportService and Application-ExportService
headers, see Application manifest files.

Chapter 1. WebSphere Application Server Liberty Core: Overview 495

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-mp&topic=json4jjd
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-mp&topic=json4jjd
http://www.ibm.com/support/knowledgecenter/SSHR6W_8.5.5/com.ibm.websphere.wdt.doc/topics/capplicationmf.htm

For osgiAppIntegration-1.0 feature configuration information, see “OSGi Application
Integration” on page 559.

8.5.5.9 OSGi bundle
<feature>osgiBundle-1.0</feature>

This feature enables support for deploying OSGi applications. With the OSGi Applications
support, you can develop and deploy modular applications that use Java EE and OSGi
technologies.

For osgiBundle-1.0 feature configuration information, see osgiBundle-1.0.

OSGi JPA
<feature>osgi.jpa-1.0</feature>

The osgi.jpa-1.0 feature provides JPA support for OSGi applications on Liberty.

See “Deploying OSGi applications to Liberty” on page 1338.

For osgi.jpa-1.0 feature configuration information, see “OSGi Java Persistence API” on
page 563.

Web application bundle (WAB)
<feature>wab-1.0</feature>

This feature enables support for warnings to be logged when certain operations in the
application server are running more slowly than expected. The wab-1.0 feature provides
support for WABs that are inside enterprise bundles.The wab-1.0 feature provides
support for WABs that are inside enterprise bundles.

This feature supports the following resources packaged inside a WAB:
v Static web content and JSPs.
v HTTP servlets written to the Servlet 3.0 specification.
v Blueprint applications.

If you include the wab-1.0 feature, you also include the servlet-3.0 and blueprint-1.0
features.
See “Deploying OSGi applications to Liberty” on page 1338.
For wab-1.0 feature configuration information, see “OSGi Web Application Bundles” on
page 564.

Operations
8.5.5.8

API Discovery
<feature>apiDiscovery-1.0</feature>

The apiDiscovery-1.0 feature enables you to discover your REST API documentation.
Use the feature to find REST APIs that are available on a Liberty server and then use the
Swagger user interface to invoke the found REST endpoints. See “Discovering REST API
documentation on a Liberty server” on page 1416.

Security
<feature>appSecurity-2.0</feature>

This version of the appSecurity feature provides only certain aspects of security, based
explicitly on the presence of other features. Additionally, it does not automatically include
the servlet-3.0 or ldapRegistry-3.0 features, thereby reducing the server footprint. To
secure web applications, you must include the servlet-3.0 feature. To enable EJB
security, you must include the ejbLite-3.1 feature. To support an LDAP user registry,
you must include the ldapRegistry-3.0 feature.

Note:

496 WebSphere Application Server Liberty Core 8.5.5

v The appSecurity-2.0 feature supersedes appSecurity-1.0. The features are the same
except that appSecurity-2.0 does not automatically include servlet-3.0 or
ldapRegistry-3.0. You can choose to use the appSecurity-2.0 version instead in your
server configuration. See “Superseded features” on page 483.
– To enable web security, you must specify the servlet-3.0 feature in the server.xml

file.
– To enable support for LDAP, you must specify the ldapRegistry-3.0 feature in the

server.xml file.

The appSecurity-1.0 and appSecurity-2.0 features provide support for securing the
server runtime environment and applications. The following aspects are supported:
v Basic user registry
v Lightweight Directory Access Protocol (LDAP) user registry
v Basic authorization
v Web application security

– Basic authentication login
– Form-login Form-logout
– Programmatic APIs: getRemoteUser, getUserPrincipal, isUserInRole, authenticate,

logout, and login.
v EJB application security

– All security annotations and all security elements that can be specified in the
ejb-jar.xml file.

– Programmatic APIs: getCallerPrincipal, isCallerInRole, and getCallerIdentity.
The getCallerIdentity API is not supported for Singleton session beans.

– EJB extension settings in the ibm-ejb-jar-ext.xml file for run-as-mode of
CALLER_IDENTITY and SPECIFIED_IDENTITY (SYSTEM_IDENTITY is not
supported).

When you add the appSecurity-1.0 or appSecurity-2.0 feature to your server, you must
also configure a user registry, such as the basic user registry or the LDAP user registry.

See Chapter 7, “Securing Liberty and its applications,” on page 1147 and “appSecurity-2.0
feature restrictions” on page 1483..
For appSecurity-1.0 feature configuration information, see “Application Security 1.0” on
page 510.
For appSecurity-2.0 feature configuration information, see “Application Security 2.0” on
page 510.

8.5.5.6 Managed Batch
<feature>batchManagement-1.0</feature>

The batchManagement-1.0 feature provides a REST interface for remote job submission
and the batchManager command-line client utility.

8.5.5.7 Basic Extensions using Liberty Libraries (BELL)

<feature>bells-1.0</feature>

This feature enables the configuration of Basic Extensions using Liberty Libraries (BELL).
Use this feature to extend some parts of the server runtime using libraries, rather than
using Liberty features. BELL uses the Java Service Loader pattern to provide the
implementation class name.

For bells-1.0 feature configuration information, see “Basic Extensions using Liberty
Libraries” on page 511.

8.5.5.9 Bluemix Utility
<feature>bluemixUtility-1.0</feature>

Chapter 1. WebSphere Application Server Liberty Core: Overview 497

This feature makes it easier to configure access to IBM Bluemix managed services. See
“Setting up a Liberty server to use Bluemix services” on page 927.

For bluemixUtility-1.0 feature configuration information, see bluemixUtility-1.0.

8.5.5.6 Event Logging
<feature>eventLogging-1.0</feature>

The eventLogging-1.0 feature logs a record of events, such as the JDBC requests and
servlet requests, and their durations.

See “Event Logging” on page 1467.

For eventLogging-1.0 feature configuration information, see Event Logging.

ldapRegistry-3.0
<feature>ldapRegistry-3.0</feature>

The ldapRegistry-3.0 feature provides support for LDAP user registry. The version 3.0 of
the ldapRegistry-3.0 feature is compliant with the LDAP Version 3 specifications. The
ldapRegistry-3.0 feature is not automatically enabled by the appSecurity-2.0 feature.
Using this feature, you can federate multiple LDAP repositories. Two or more LDAP
repositories can be configured in the server.xml file, and you can get the consolidated
results from multiple repositories for all LDAP operations.

For ldapRegistry-3.0 feature configuration information, see “LDAP User Registry” on
page 556.

Local JMX Connector
<feature>localConnector-1.0</feature>

The localConnector-1.0 feature provides a local JMX connector that is built into the JVM.
The JMX connector can be used only on the same host machine by someone running
under the same user ID and the same JDK. It enables local access by JMX clients such as
jConsole, or other JMX clients that use the Attach API.

See “Connecting to Liberty by using JMX” on page 1021.

For localConnector-1.0 feature configuration information, see “JMX Local Connector” on
page 522.

8.5.5.9 logstashCollector-1.0
<feature>logstashCollector-1.0</feature>

This feature gathers data from various sources and forwards the data to a Logstash server
using Lumberjack protocol.

For logstashCollector-1.0 feature configuration information, see logstashCollector-1.0.

Monitoring
<feature>monitor-1.0</feature>

The monitor-1.0 feature provides Performance Monitoring Infrastructure (PMI) support
on Liberty.

See Chapter 10, “Monitoring the Liberty server runtime environment,” on page 1423.

For monitor-1.0 feature configuration information, see “Performance Monitoring” on
page 566.

OAuth
<feature>oauth-2.0</feature>

The oauth-2.0 feature provides support for securing access to resources using the OAuth
2.0 protocol.

For oauth-2.0 feature configuration information, see “OAuth” on page 558.

498 WebSphere Application Server Liberty Core 8.5.5

OpenID
<feature>openid-2.0</feature>

This feature enables users to authenticate themselves to multiple entities without the need
to manage multiple accounts or sets of credentials. Liberty supports OpenID 2.0 and
plays a role as a Relying Party in web single-sign-on. Accessing various entities like
websites often requires a unique account that is associated with each entity. OpenID
enables a single set of credentials that are handled by an OpenID Provider to grant access
to any number of entities that support OpenID. See “OpenID” on page 1189.

For openid-2.0 feature configuration information, see “OpenID” on page 564.

OpenID Connect Client
<feature>openidConnectClient-1.0</feature>

This feature enables web applications to integrate OpenID Connect Client 1.0 for
authenticating users instead of, or in addition to, the configured user registry. See
“OpenID Connect” on page 1190.

For openidConnectClient-1.0 feature configuration information, see “OpenID Connect
Client” on page 565.

OpenID Connect Provider
<feature>openidConnectServer-1.0</feature>

This feature enables web applications to integrate OpenID Connect Server 1.0 for
authenticating users instead of, or in addition to, the configured user registry. See
“OpenID Connect” on page 1190.

For openidConnectServer-1.0 feature configuration information, see “OpenID Connect
Provider” on page 566.

OSGi Console
<feature>osgiConsole-1.0</feature>

This feature enables an OSGi console to aid the debugging of the runtime environment. It
can be used to display information about bundles, packages, and services. This
information can be useful when developing your own features for product extensions.

See “Using an OSGi console” on page 967.

For osgiConsole-1.0 feature configuration information, see “OSGi Debug Console” on
page 562.

8.5.5.9 Password Utilities
<feature>passwordUtilities-1.0</feature>

This feature enables support for obtaining AuthData from an application using security
plug-points.

8.5.5.6 Request Timing
<feature>requestTiming-1.0</feature>

The requestTiming-1.0 provides warnings and diagnostic information for the slow or
hung requests.

See “Slow and hung request detection” on page 1469.

For requestTiming-1.0 feature configuration information, see Request Timing.

REST connector 1.0
<feature>restConnector-1.0</feature>

The restConnector-1.0 feature provides a secure JMX connector that can be used locally
or remotely using any JDK. It enables remote access by JMX clients through a REST-based
connector and requires SSL and basic user security configuration.

Chapter 1. WebSphere Application Server Liberty Core: Overview 499

See “Connecting to Liberty by using JMX” on page 1021 and, for details on REST
connectors, see “Configuring secure JMX connection to Liberty” on page 1022.

8.5.5.6

For information about using REST APIs to transfer files, see “File transfer” on

page 1034. For information about using REST APIs to transfer files to and from collective
controllers, collective members, and registered hosts of a collective, see “Transferring files
in a Liberty collective” on page 1035. To use the REST APIs, you add the
restConnector-1.0 feature to the server configuration.

For restConnector-1.0 feature configuration information, see “JMX REST Connector 1.0”
on page 523.

8.5.5.7 SAML Web Browser SSO
<feature>samlWeb-2.0</feature>

The samlWeb-2.0 feature enables web applications to delegate user authentication to a
SAML identity provider instead of a configured user registry.
For samlWeb-2.0 feature configuration information, see “SAML web single sign-on version
2.0” on page 568.

Server status
<feature>serverStatus-1.0</feature>

The serverStatus-1.0 feature enables Liberty servers to automatically publish their status
to WebSphere Application Server deployment managers and job managers that are aware
of the server as a resource in their Job configuration. The known states are Started and
Stopped.

See Submitting jobs to manage Liberty servers and Installing Liberty server resources
using the job manager.

For serverStatus-1.0 feature configuration information, see “Job Manager Integration”
on page 555.

Session Persistence
<feature>sessionDatabase-1.0</feature>

The sessionDatabase-1.0 feature provides session affinity and failover support on
Liberty.

See “Configuring session persistence for Liberty” on page 990.

For sessionDatabase-1.0 feature configuration information, see “Database Session
Persistence” on page 517.

SPNEGO
<feature>spnego-1.0</feature>

This feature enables users to log in to the Microsoft Domain controller once and access
protected applications on Liberty servers without getting prompted again.

For more information on configuring SPNEGO on the Liberty server, see “Configuring
SPNEGO authentication in Liberty” on page 1195.

For spnego-1.0 feature configuration information, see “Simple and Protected GSSAPI
Negotiation Mechanism” on page 569.

Secure Sockets Layer (SSL)
<feature>ssl-1.0</feature>

The ssl-1.0 feature provides support for Secure Sockets Layer (SSL) connections. To use
the secure HTTPS listener, you must enable this feature.Liberty provides a dummy
keystore and a dummy truststore, which are the same as those provided by previous
versions of WebSphere Application Server. The secure HTTPS listener is not started unless
the ssl-1.0 feature is enabled. If the feature is unavailable, the HTTPS listener is stopped.

500 WebSphere Application Server Liberty Core 8.5.5

To specify the SSL certificates, add a pointer in the server.xml file; see “Securing
communications in Liberty” on page 1151. To change the HTTPS port, set the <httpsPort>
attribute of the <httpEndpoint> element in the server.xml file; see “Specifying Liberty
bootstrap properties” on page 897.

For ssl-1.0 feature configuration information, see “Secure Socket Layer” on page 568.

Timed Operations
<feature>timedOperations-1.0</feature>

This feature enables support for warnings to be logged when certain operations in the
application server are running more slowly than expected.

See “Timed operations and JDBC calls” on page 1466.

For timedOperations-1.0 feature configuration information, see “Timed Operations” on
page 571.

Dynamic caching service
<feature>webCache-1.0</feature>

This feature enables local caching for web responses. It includes the Cache Service
(distributedMap) feature and performs automatic caching of web application responses to
improve response times and throughput. To customize the response caching, you can
include a cache-spec.xml file in your applications. You can distribute the cache by adding
a network cache provider such as WebSphere eXtreme Scale.

For webCache-1.0 feature configuration information, see “Web Response Cache” on page
571.

8.5.5.6 WebSphere MQ Messaging feature
<feature>wmqJmsClient-2.0</feature>

The wmqJmsClient-2.0 feature provides applications with access to message queues
hosted on IBM MQ through the JMS 2.0 API.

Web services security
<feature>wsSecurity-1.1</feature>

The wsSecurity-1.1 feature provides support for securing web services at the message
level. To secure web services messages, you must enable this feature and the
appSecurity-2.0 and jaxws-2.2 features. Web services security policies defined in a
WSDL file are ignored and are not enforced unless the wsSecurity-1.1 feature is enabled.

8.5.5.9 Web Services Atomic Transaction
<feature>wsAtomicTransaction-1.2</feature>

The wsAtomicTransaction is an interoperable transaction protocol. It enables you to flow
distributed transactions by using Web service messages, and coordinate in an
interoperable manner between heterogeneous transaction infrastructures.

For wsAtomicTransaction-1.2 configuration information in Liberty, see Web Services
Atomic Transaction in Liberty.

Systems Management

Administrative Center
<feature>adminCenter-1.0</feature>

The adminCenter-1.0 feature is a web-based graphical interface for managing Liberty
servers and applications and other resources from a web browser on a cell phone, tablet,
or computer.

See “Administering Liberty using Admin Center” on page 1074 and “Admin Center
feature restrictions” on page 1484.

Chapter 1. WebSphere Application Server Liberty Core: Overview 501

For adminCenter-1.0 feature configuration information, see “Admin Center” on page 508.

Cluster member
<feature>clusterMember-1.0</feature>

To add a member to a collective, add the clusterMember-1.0 feature and optionally
<clusterMember name="cluster_name"/> to its server configuration. The cluster name is
published to the controller, and this server becomes part of the specified cluster.

Collective controller
<feature>collectiveController-1.0</feature>

The collectiveController-1.0 feature enables controller functionality for a management
collective and includes a management repository MBean that is accessible using the
JMX/REST connector that is provided by the restConnector-1.0 feature. The collective
controller acts as a storage and collaboration mechanism to which collective members can
connect. The collectiveController-1.0 feature includes a ServerCommandMbean that
can be used to remote start or stop servers that are managed by the collective controller.
The collectiveController-1.0 feature and its capabilities are available only in
IBMWebSphere Application Server Liberty Network Deployment. The feature is not
available in IBM WebSphere Application Server Liberty, IBM WebSphere Application
Server Liberty - Express, or IBM WebSphere Application Server Liberty Core.

Collective member
<feature>collectiveMember-1.0</feature>

The collectiveMember-1.0 feature enables a server to be a member of a management
collective, allowing it to be managed by the collective controller.

See “Setting up the server-management environment for Liberty by using collectives” on
page 907.

For collectiveMember-1.0 feature configuration information, see “Collective Member” on
page 514.

Dynamic Routing
<feature>dynamicRouting-1.0</feature>

The Intelligent Management feature of the WebSphere plugin for Apache and IHS
provides On Demand Router (ODR) capabilities for the plugin. This feature enables a
server to run the dynamic routing service. The plugin can then connect to the ODR in
order to dynamically route to all servers in the liberty collective.

8.5.5.7

Health Analyzer
<feature>healthAnalyzer-1.0</feature>

The Health Analyzer feature provides health data collection for the health manager for
the Intelligent Management feature Health Management. The health analyzer feature
provides monitoring services to a member server. It registers as an analytics handler,
collects the necessary stats (PMI, HealthCenter) via the analytics collector and analyses
the conditions.

8.5.5.7

Health Manager
<feature>healthManager-1.0</feature>

The Health Manager feature provides health monitoring and automatic actions based on
health policies for the Intelligent Management feature Health Management. The health

502 WebSphere Application Server Liberty Core 8.5.5

manager feature embodies the core functions of health management. Selecting this feature
will also enable the default condition plugins. This feature requires the presence of the
collectiveController feature.

Scaling Controller
<feature>scalingController-1.0</feature>

The scalingController-1.0 feature makes scaling decisions for Liberty. Multiple servers
can run the Scaling Controller feature for high availability purposes. Only one server is
actively making scaling decisions at any time. If that server is stopped, another server
that is running the Scaling Controller feature can take over making scaling decisions.

Scaling Member
<feature>scalingMember-1.0</feature>

The scalingMember-1.0 feature can be added to the featureManagement element of the
server.xml of servers that are collective members. This will enable auto clustering of the
collective members and will allow the servers to dynamically start/stop based on criteria
specified by the scaling policy. This feature works in conjunction with the scaling
controller feature. The scaling controller feature should be enabled in the collective
controllers that are part of the collective.

z/OS

z/OS Connect
<feature>zosConnect-1.0</feature>

The zosConnect-1.0 feature is service that encapsulates calling z/OS target applications
using REST calls.

8.5.5.7 z/OS Connect 1.2
<feature>zosConnect-1.2</feature>

This feature provides a gateway between mobile, cloud, and web clients and z/OS
back-end systems, such as CICS Transaction Server, IMS, and batch applications. It
provides RESTful APIs and enables you to route HTTP requests to remote REST
endpoints. It also accepts and returns JSON payloads and communicates with back-end
systems by providing a data transformation service that converts JSON payloads to/from
byte arrays consumable by z/OS native-language applications written in Cobol, PL/I,
and C.

z/OS optimized local adapters
<feature>zosLocalAdapters-1.0</feature>

The zosLocalAdapters-1.0 feature enables high-performance calling between
native-language applications on z/OS and business logic in a Liberty server environment.

z/OS security
<feature>zosSecurity-1.0</feature>

The zosSecurity-1.0 feature provides support on the z/OS platform for basic interactions
with the SAF Registry, including authenticating users, and retrieving users, groups, or
groups associated with users, from the SAF Registry.

z/OS transaction management
<feature>zosTransaction-1.0</feature>

Specifying this feature enables the application server to synchronize and appropriately
manage transactional activity between the Resource Recovery Services (RRS), the
transaction manager of the application server, and the resource manager.

z/OS workload management
<feature>zosWlm-1.0</feature>

Chapter 1. WebSphere Application Server Liberty Core: Overview 503

The zosWlm-1.0 feature provides access to z/OS native workload management (WLM)
services.

Java EE 6 Web Profile

Bean validation
<feature>beanValidation-1.0</feature>

The beanvalidation-1.0 feature provides validations for JavaBeans at each layer of an
application. The validation can be applied to all layers of JavaBeans in an application by
using annotations or a validation.xml deployment descriptor.

See “Bean validation feature restrictions” on page 1485.

For beanValidation-1.0 feature configuration information, see “Bean Validation 1.0” on
page 512.

CDI <feature>cdi-1.0</feature>

The cdi-1.0 feature enables support for the Contexts and Dependency Injection 1.0
specification on Liberty.

See “Administering Contexts and Dependency Injection applications on Liberty” on page
1071.

For cdi-1.0 feature configuration information, see “Contexts and Dependency Injection
1.0” on page 515.

Enterprise JavaBeans (EJB) Lite subset
<feature>ejbLite-3.1</feature>

The ejbLite-3.1 feature provides support for EJB applications written to the EJB Lite
subset of the EJB 3.1 specification.

The following functions are supported:
v An EJB module packaged in an EAR file.
v EJBs packaged in a WAR file.
v The @Stateful, @Stateless, @Singleton, and @EJB annotations.
v The javax.annotation.security annotations.
v Injection of JPA EntityManager, EntityManagerFactory, and JDBC DataSource into all

types of session bean types.
v ejb-jar.xml.
v EJB interceptors.
v No-Interface View.
v Bean managed transactions (UserTransaction).

See “ejbLite-3.1 feature restrictions” on page 1485.

For ejbLite-3.1 feature configuration information, see “Enterprise JavaBeans Lite 3.1” on
page 519.

Java Database Connectivity (JDBC)
<feature>jdbc-4.0</feature>

You can take an existing application that uses Java Database Connectivity (JDBC) and a
data source, and deploy the application to a server. The jdbc-4.0 feature provides
support for applications that access a database.

See “Deploying an existing JDBC application to Liberty” on page 1339.

For jdbc-4.0 feature configuration information, see “Java Database Connectivity 4.0” on
page 527.

504 WebSphere Application Server Liberty Core 8.5.5

Java Naming and Directory Interface (JNDI)
<feature>jndi-1.0</feature>

The jndi-1.0 feature provides support for a single JNDI entry definition in the server
configuration of Liberty.

For jndi-1.0 feature configuration information, see “Java Naming and Directory
Interface” on page 531.

Java Persistence API (JPA)
<feature>jpa-2.0</feature>

The jpa-2.0 feature provides support for applications that use application-managed and
container-managed JPA written to the JPA 2.0 specification.The support is built on Apache
OpenJPA with extensions to support the container-managed programming model.

Extended Persistence Context is now available for use with Stateful Session beans.

See “Deploying a JPA application to Liberty” on page 1347.

For jpa-2.0 feature configuration information, see “Java Persistence API 2.0” on page 532.

JavaServer Faces (JSF)
<feature>jsf-2.0</feature>

The jsf-2.0 feature provides support for web applications that use the JSF framework.
This framework simplifies the construction of user interfaces.If you include the jsf-2.0
feature, you also include the jsp-2.2 feature, because the JSF framework is an extension
of the JSP framework.

For jsf-2.0 feature configuration information, see “JavaServer Faces 2.0” on page 551.

JavaServer Pages (JSP)
<feature>jsp-2.2</feature>

If you include the jsf-2.0 feature, you also include the jsp-2.2 feature, because the JSF
framework is an extension of the JSP framework. If you include the jsp-2.2 feature, you
also include the servlet-3.0 feature.

See “jsp-2.2 feature restrictions” on page 1486.

For jsp-2.2 feature configuration information, see “JavaServer Pages 2.2” on page 553.

Servlet 3.0
<feature>servlet-3.0</feature>

The servlet-3.0 feature provides support for HTTP Servlets written to the Java Servlet
3.0 specification.

See Chapter 7, “Securing Liberty and its applications,” on page 1147.

For servlet-3.0 feature configuration information, see “Java Servlets 3.0” on page 543.

Web Profile
<feature>webProfile-6.0</feature>

This feature provides a convenient combination of the Liberty features that are required
to support the Java EE 6.0 Web Profile.

For webProfile-6.0 feature configuration information, see “Java EE Web Profile 6.0” on
page 529.

Java EE 6 Technologies

Java Architecture for XML Binding (JAXB)
<feature>jaxb-2.2</feature>

Chapter 1. WebSphere Application Server Liberty Core: Overview 505

The jaxb-2.2 feature provides support for the Java Architecture for XML Binding (JAXB)
on Liberty.

See JAXB.

Java API for RESTful Web Services (JAX-RS)
<feature>jaxrs-1.1</feature>

The jaxrs-1.1 feature provides support for the Java API for RESTful Web Services on
Liberty.
v For EJB applications that use the jaxrs-1.1 server feature, you must enable the

ejbLite-3.1 feature in the server.xml file.
v For JAX-RS applications that use CDI, you must enable the cdi-1.0 feature in the

server.xml file.
v For applications that use the global handler services, you must enable the jaxrs-1.1 or

the jaxws-2.2 feature in the server.xml file.

For jaxrs-1.1 feature configuration information, see “Java RESTful Services 1.1” on page
539.

Java API for XML-Based Web Services (JAX-WS)
<feature>jaxws-2.2</feature>

The jaxws-2.2 feature provides support for the Java API for XML-Based Web Services on
Liberty.
v For web applications that support the JAX-WS programming model, you must enable

the servlet-3.0 and jaxws-2.2 server features in the server.xml file.
v For EJB applications that support the JAX-WS programming model, you must enable

the ejbLite-3.1, servlet-3.0, and jaxws-2.2 server features in the server.xml file.
v For applications that use the global handler services, you must enable the jaxrs-1.1 or

the jaxws-2.2 feature in the server.xml file.

Java EE Connector Architecture
<feature>jca-1.6</feature>

The jca-1.6 feature provides configuration elements to define instances of connection
factories, administered objects, and activation specifications, and to associate these
instances with an installed resource adapter.

Java EE Connector Architecture Inbound Security
<feature>jcaInboundSecurity-1.0</feature>

The jcaInboundSecurity-1.0 feature enables security inflow for resource adapters.

Java Message Service 1.1
<feature>jms-1.1</feature>

The jms-1.1 feature enables the configuration of resource adapters to access messaging
systems using the Java Message Service API. This also includes the configuration JMS
connection factories, queues, topics, and activation specifications. Any JMS resource
adapter that complies with the JCA 1.6 specification can be used.

Message-Driven beans
<feature>jmsMdb-3.1</feature>

The jmsMdb-3.1 feature provides support for deploying and configuring the JMS
resources that are required for the message-driven beans (MDB) to run within Liberty.
This feature enables MDB to interact with either the embedded Liberty messaging or
WebSphere MQ.

Message-Driven Beans 3.1
<feature>mdb-3.1</feature>

506 WebSphere Application Server Liberty Core 8.5.5

The mdb-3.1 feature enables the use of Message-Driven Enterprise JavaBeans. MDBs allow
asynchronous processing of messages within a Java EE component.

Embedded Liberty Messaging features
<feature>wasJmsClient-1.1</feature>

The wasJmsClient-1.1 feature enables support for JMS resource configurations (such as
the connection factories, activation specifications, and queue and topic resources) and also
provides the client libraries that are required by the messaging applications to connect to
the JMS server on Liberty.

<feature>wasJmsSecurity-1.0</feature>

The wasJmsSecurity-1.0 feature supports secure connections to the messaging engine.
When the wasJmsSecurity-1.0 feature is enabled, it starts authenticating and authorizing
the users who are trying to connect to the messaging engine. The user is authenticated
against the registry that is defined in the server.xml file. When the user wants to access a
destination such as a topic or a queue, then the user must be granted the required
permissions. The access to the destination is defined in the <messagingSecurity> element
(the child element of the messagingEngine element) in the server.xml file. If the
wasJmsSecurity-1.0 feature is added and the <messagingSecurity> element is not defined
in the server.xml file, then the users cannot connect to the messaging engine or perform
any messaging action (for example, sending or receiving messages from the destinations).

Notes:

v Configuring the user registry is a prerequisite for the wasJmsSecurity-1.0 feature.
Ensure that a user registry is configured before the wasJmsSecurity-1.0 feature is
enabled.

v When you enable the wasJmsSecurity-1.0 feature, you must also configure the
<messagingSecurity> element, which is the child element of the <messagingEngine>
element, in the server.xml file. This configuration enables authorized users to access
messaging destinations.

<feature>wasJmsServer-1.0</feature>
The wasJmsServer-1.0 feature enables the JMS messaging engine run time to be
initialized. The messaging run time is responsible for providing the application
connectivity, managing the state of destinations such as topics or queues, and handling
quality of service, security, and transactions. This feature also provides support for the
inbound connections from the remote messaging applications. The remote messaging
applications can connect to the JMS messaging engine through TCP/IP over SSL or
non-SSL.

To connect using SSL, you must enable the SSL feature.

WebSphere MQ Messaging feature
<feature>wmqJmsClient-1.1</feature>

The wmqJmsClient-1.1 feature enables applications to use JMS messaging that connects to
a IBM MQ server.

API Discovery 1.0
Enables discovery and exposure of REST APIs within Liberty.

Enabling this feature

To enable the API Discovery 1.0 feature, add the following element declaration inside the featureManager
element in your server.xml file:
<feature>apiDiscovery-1.0</feature>

Chapter 1. WebSphere Application Server Liberty Core: Overview 507

Developing a feature that depends on this feature

If you are developing a feature that depends on the API Discovery 1.0 feature, include the following item
in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.apiDiscovery-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v distributedMap-1.0 - Distributed Map interface for Dynamic Caching
v json-1.0 - JavaScript Object Notation for Java
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1
v ssl-1.0 - Secure Socket Layer

Third party API packages provided by this feature
v io.swagger.annotations

Feature configuration elements

You can use the following elements in your server.xml file to configure the API Discovery 1.0 feature:
v administrator-role
v apiDiscovery
v authCache
v authentication
v authorization-roles
v basicRegistry
v channelfw
v classloading
v httpAccessLogging
v httpDispatcher
v httpEncoding
v httpEndpoint
v httpOptions
v httpProxyRedirect
v jaasLoginContextEntry
v jaasLoginModule
v library
v ltpa
v mimeTypes
v quickStartSecurity
v tcpOptions
v trustAssociation
v virtualHost

Admin Center
The adminCenter-1.0 feature enables the Liberty Admin Center, a web-based graphical interface for
deploying, monitoring and managing Liberty servers in standalone and collective environments.

508 WebSphere Application Server Liberty Core 8.5.5

Enabling this feature

To enable the Admin Center feature, add the following element declaration inside the featureManager
element in your server.xml file:
<feature>adminCenter-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Admin Center feature, include the following item in
the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.adminCenter-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v distributedMap-1.0 - Distributed Map interface for Dynamic Caching
v json-1.0 - JavaScript Object Notation for Java
v jsp-2.2 - JavaServer Pages 2.2
v jsp-2.3 - JavaServer Pages 2.3
v restConnector-1.0 - JMX REST Connector 1.0
v restConnector-2.0 - JMX REST Connector 2.0
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1
v ssl-1.0 - Secure Socket Layer

Feature configuration elements

You can use the following elements in your server.xml file to configure the Admin Center feature:
v administrator-role
v authCache
v authentication
v authorization-roles
v basicRegistry
v channelfw
v classloading
v httpAccessLogging
v httpDispatcher
v httpEncoding
v httpEndpoint
v httpOptions
v httpProxyRedirect
v jaasLoginContextEntry
v jaasLoginModule
v library
v ltpa
v mimeTypes
v quickStartSecurity
v tcpOptions
v trustAssociation
v virtualHost

Chapter 1. WebSphere Application Server Liberty Core: Overview 509

Application Security 1.0
This feature is superseded by appSecurity-2.0. Support for securing the server runtime environment and
applications. This feature enables servlet-3.0 and web application security, support for LDAP and basic
user registries, and SSL. To support secure EJB applications, you must add the ejbLite-3.1 feature. When
you add this feature to your server, you need to configure a user registry, such as the basic user registry
or the LDAP user registry.

Enabling this feature

To enable the Application Security 1.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>appSecurity-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Application Security 1.0 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.appSecurity-1.0; type="osgi.subsystem.feature"

Features that this feature is superseded by
v ldapRegistry-3.0 - LDAP User Registry
v servlet-3.0 - Java Servlets 3.0
v appSecurity-2.0 - Application Security 2.0

Features that this feature enables
v appSecurity-2.0 - Application Security 2.0
v ldapRegistry-3.0 - LDAP User Registry
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1

Application Security 2.0
This feature enables support for securing the server runtime environment and applications; it includes a
basic user registry. This feature supersedes appSecurity-1.0 and does not include servlet-3.0 or support for
the LDAP user registry. To secure web applications, add the servlet-3.0 feature. To secure EJB
applications, add the ejbLite-3.1 feature. To use LDAP, add the ldapRegistry-3.0 feature. When you add
the appSecurity-2.0 feature to your server, you need to configure a user registry, such as the basic user
registry or the LDAP user registry.

Enabling this feature

To enable the Application Security 2.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>appSecurity-2.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Application Security 2.0 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:

510 WebSphere Application Server Liberty Core 8.5.5

com.ibm.websphere.appserver.appSecurity-2.0; type="osgi.subsystem.feature"

Features that this feature enables
v ssl-1.0 - Secure Socket Layer

Features that enable this feature
v appSecurity-1.0 - Application Security 1.0
v constrainedDelegation-1.0 - Kerberos Constrained Delegation for SPNEGO
v jacc-1.5 - Java Authorization Contract for Containers 1.5
v jaspic-1.1 - Java Authentication SPI for Containers 1.1
v oauth-2.0 - OAuth
v openid-2.0 - OpenID
v samlWeb-2.0 - SAML web single sign-on version 2.0
v spnego-1.0 - Simple and Protected GSSAPI Negotiation Mechanism
v webProfile-6.0 - Java EE Web Profile 6.0
v webProfile-7.0 - Java EE Web Profile 7.0

Feature configuration elements

You can use the following elements in your server.xml file to configure the Application Security 2.0
feature:
v administrator-role
v authCache
v authentication
v basicRegistry
v classloading
v jaasLoginContextEntry
v jaasLoginModule
v library
v ltpa
v quickStartSecurity

Basic Extensions using Liberty Libraries
This feature enables the configuration of Basic Extensions using Liberty Libraries (BELL).

Enabling this feature

To enable the Basic Extensions using Liberty Libraries feature, add the following element declaration
inside the featureManager element in your server.xml file:
<feature>bells-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Chapter 1. WebSphere Application Server Liberty Core: Overview 511

Developing a feature that depends on this feature

If you are developing a feature that depends on the Basic Extensions using Liberty Libraries feature,
include the following item in the Subsystem-Content header in the feature manifest file for your new
feature:
com.ibm.websphere.appserver.bells-1.0; type="osgi.subsystem.feature"

Feature configuration elements

You can use the following elements in your server.xml file to configure the Basic Extensions using
Liberty Libraries feature:
v bell
v classloading
v library

Bean Validation 1.0
The Bean Validation 1.0 specification provides an annotation based model for validating JavaBeans. It can
be used to assert and maintain the integrity of data as it travels through an application.

Enabling this feature

To enable the Bean Validation 1.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>beanValidation-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Bean Validation 1.0 feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.beanValidation-1.0; type="osgi.subsystem.feature"

Features that enable this feature
v jpa-2.0 - Java Persistence API 2.0
v jsf-2.0 - JavaServer Faces 2.0
v osgi.jpa-1.0 - OSGi Java Persistence API
v webProfile-6.0 - Java EE Web Profile 6.0

Standard API packages provided by this feature
v javax.validation
v javax.validation.bootstrap
v javax.validation.constraints
v javax.validation.groups
v javax.validation.metadata
v javax.validation.spi

Feature configuration elements

You can use the following elements in your server.xml file to configure the Bean Validation 1.0 feature:
v classloading
v library

512 WebSphere Application Server Liberty Core 8.5.5

Bean Validation 1.1
The Bean Validation 1.1 specification provides an annotation based model for validating JavaBeans. It can
be used to assert and maintain the integrity of data as it travels through an application.

Enabling this feature

To enable the Bean Validation 1.1 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>beanValidation-1.1</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Bean Validation 1.1 feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.beanValidation-1.1; type="osgi.subsystem.feature"

Features that this feature enables
v el-3.0 - Expression Language 3.0

Features that enable this feature
v jpa-2.0 - Java Persistence API 2.0
v jsf-2.0 - JavaServer Faces 2.0
v osgi.jpa-1.0 - OSGi Java Persistence API
v webProfile-7.0 - Java EE Web Profile 7.0

Standard API packages provided by this feature
v javax.validation
v javax.validation.bootstrap
v javax.validation.constraints
v javax.validation.constraintvalidation
v javax.validation.executable
v javax.validation.groups
v javax.validation.metadata
v javax.validation.spi

Feature configuration elements

You can use the following elements in your server.xml file to configure the Bean Validation 1.1 feature:
v classloading
v library
v transaction

Bluemix Utilities 1.0
The Bluemix Utility feature can be used to quickly and easily configure access to IBM Bluemix managed
services.

Enabling this feature

To enable the Bluemix Utilities 1.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>bluemixUtility-1.0</feature>

Chapter 1. WebSphere Application Server Liberty Core: Overview 513

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Bluemix Utilities 1.0 feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.bluemixUtility-1.0; type="osgi.subsystem.feature"

Collective Member
This feature enables a server to be a member of a management collective.

Enabling this feature

To enable the Collective Member feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>collectiveMember-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Collective Member feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.collectiveMember-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v restConnector-1.0 - JMX REST Connector 1.0
v restConnector-2.0 - JMX REST Connector 2.0
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1

SPI packages provided by this feature
v com.ibm.wsspi.collective.repository
v com.ibm.wsspi.collective.repository.publisher

Feature configuration elements

You can use the following elements in your server.xml file to configure the Collective Member feature:
v collectiveCertificate
v collectiveMember
v hostAuthInfo
v hostSingleton

Concurrency Utilities for Java EE 1.0
This feature enables the creation of managed executors that allow applications to submit tasks to run
concurrently, with thread context that is managed by the application server.It also enables the creation of
managed thread factories to create threads that run with the threadcontext of the component that looks
up the managed thread factory.

514 WebSphere Application Server Liberty Core 8.5.5

Enabling this feature

To enable the Concurrency Utilities for Java EE 1.0 feature, add the following element declaration inside
the featureManager element in your server.xml file:
<feature>concurrent-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Concurrency Utilities for Java EE 1.0 feature, include
the following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.concurrent-1.0; type="osgi.subsystem.feature"

Standard API packages provided by this feature
v javax.enterprise.concurrent

Feature configuration elements

You can use the following elements in your server.xml file to configure the Concurrency Utilities for Java
EE 1.0 feature:
v classloading
v contextService
v managedExecutorService
v managedScheduledExecutorService
v managedThreadFactory

Contexts and Dependency Injection 1.0
The Contexts and Dependency Injection specification makes it easier to integrate Java EE components of
different types. It provides a common mechanism to inject component such as EJBs or Managed Beans
into other components such as JSPs or other EJBs.

Enabling this feature

To enable the Contexts and Dependency Injection 1.0 feature, add the following element declaration
inside the featureManager element in your server.xml file:
<feature>cdi-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Contexts and Dependency Injection 1.0 feature,
include the following item in the Subsystem-Content header in the feature manifest file for your new
feature:
com.ibm.websphere.appserver.cdi-1.0; type="osgi.subsystem.feature"

Chapter 1. WebSphere Application Server Liberty Core: Overview 515

Features that enable this feature
v webProfile-6.0 - Java EE Web Profile 6.0

Standard API packages provided by this feature
v javax.decorator
v javax.enterprise.context
v javax.enterprise.context.spi
v javax.enterprise.event
v javax.enterprise.inject
v javax.enterprise.inject.spi
v javax.enterprise.util
v javax.inject
v javax.interceptor

Feature configuration elements

You can use the following elements in your server.xml file to configure the Contexts and Dependency
Injection 1.0 feature:
v cdiContainer
v classloading
v transaction

Contexts and Dependency Injection 1.2
The Contexts and Dependency Injection specification makes it easier to integrate Java EE components of
different types. It provides a common mechanism to inject component such as EJBs or Managed Beans
into other components such as JSPs or other EJBs.

Enabling this feature

To enable the Contexts and Dependency Injection 1.2 feature, add the following element declaration
inside the featureManager element in your server.xml file:
<feature>cdi-1.2</feature>

Supported Java Versions
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Contexts and Dependency Injection 1.2 feature,
include the following item in the Subsystem-Content header in the feature manifest file for your new
feature:
com.ibm.websphere.appserver.cdi-1.2; type="osgi.subsystem.feature"

Features that enable this feature
v microProfile-1.0 - Micro Profile 1.0
v webProfile-7.0 - Java EE Web Profile 7.0

Standard API packages provided by this feature
v javax.decorator
v javax.enterprise.context

516 WebSphere Application Server Liberty Core 8.5.5

v javax.enterprise.context.spi
v javax.enterprise.event
v javax.enterprise.inject
v javax.enterprise.inject.spi
v javax.enterprise.util
v javax.inject
v javax.interceptor

Third party API packages provided by this feature
v org.jboss.weld.context
v org.jboss.weld.context.api
v org.jboss.weld.context.beanstore
v org.jboss.weld.context.bound
v org.jboss.weld.context.conversation

Feature configuration elements

You can use the following elements in your server.xml file to configure the Contexts and Dependency
Injection 1.2 feature:
v application
v applicationManager
v applicationMonitor
v cdi12
v classloading
v javaPermission
v library
v transaction

Database Session Persistence
This feature enables persistence of HTTP sessions to a datasource using JDBC. Persisting HTTP session
data to a database allows recovery of the data after a server restart or unexpected server failure. Failover
of HTTP sessions can be achieved by configuring multiple servers to persist data to the same location

Enabling this feature

To enable the Database Session Persistence feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>sessionDatabase-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Database Session Persistence feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.sessionDatabase-1.0; type="osgi.subsystem.feature"

Chapter 1. WebSphere Application Server Liberty Core: Overview 517

Features that this feature enables
v jdbc-4.0 - Java Database Connectivity 4.0
v jdbc-4.1 - Java Database Connectivity 4.1
v jndi-1.0 - Java Naming and Directory Interface

Feature configuration elements

You can use the following elements in your server.xml file to configure the Database Session Persistence
feature:
v classloading
v httpSession
v httpSessionDatabase
v transaction

Distributed Map interface for Dynamic Caching
This feature provides a local cache service which can be accessed through the DistributedMap API. A
default cache is bound in JNDI at "services/cache/distributedmap". Caches can be distributed through
addition of a network cache provider such as WebSphere eXtreme Scale.

Enabling this feature

To enable the Distributed Map interface for Dynamic Caching feature, add the following element
declaration inside the featureManager element in your server.xml file:
<feature>distributedMap-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Distributed Map interface for Dynamic Caching
feature, include the following item in the Subsystem-Content header in the feature manifest file for your
new feature:
com.ibm.websphere.appserver.distributedMap-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v jndi-1.0 - Java Naming and Directory Interface

Features that enable this feature
v adminCenter-1.0 - Admin Center
v apiDiscovery-1.0 - API Discovery 1.0
v oauth-2.0 - OAuth
v openidConnectClient-1.0 - OpenID Connect Client
v restConnector-1.0 - JMX REST Connector 1.0
v restConnector-2.0 - JMX REST Connector 2.0
v samlWeb-2.0 - SAML web single sign-on version 2.0
v scim-1.0 - System for Cross-domain Identity Management
v webCache-1.0 - Web Response Cache

518 WebSphere Application Server Liberty Core 8.5.5

IBM API packages provided by this feature
v com.ibm.websphere.cache
v com.ibm.websphere.cache.exception
v com.ibm.websphere.exception
v com.ibm.ws.cache.spi
v com.ibm.wsspi.cache

Feature configuration elements

You can use the following elements in your server.xml file to configure the Distributed Map interface for
Dynamic Caching feature:
v classloading
v distributedMap
v library

Enterprise JavaBeans Lite 3.1
This feature enables support for Enterprise JavaBeans written to the EJB Lite subset of the EJB 3.1
specification.

Enabling this feature

To enable the Enterprise JavaBeans Lite 3.1 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>ejbLite-3.1</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Enterprise JavaBeans Lite 3.1 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.ejbLite-3.1; type="osgi.subsystem.feature"

Features that this feature enables
v jndi-1.0 - Java Naming and Directory Interface

Features that enable this feature
v webProfile-6.0 - Java EE Web Profile 6.0

Feature configuration elements

You can use the following elements in your server.xml file to configure the Enterprise JavaBeans Lite 3.1
feature:
v application
v applicationManager
v applicationMonitor
v classloading
v ejbApplication

Chapter 1. WebSphere Application Server Liberty Core: Overview 519

v ejbContainer
v enterpriseApplication
v javaPermission
v library
v transaction
v webApplication

Enterprise JavaBeans Lite 3.2
This feature enables support for Enterprise JavaBeans written to the EJB Lite subset of the EJB 3.2
specification.

Enabling this feature

To enable the Enterprise JavaBeans Lite 3.2 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>ejbLite-3.2</feature>

Supported Java Versions
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Enterprise JavaBeans Lite 3.2 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.ejbLite-3.2; type="osgi.subsystem.feature"

Features that this feature enables
v jndi-1.0 - Java Naming and Directory Interface

Features that enable this feature
v webProfile-7.0 - Java EE Web Profile 7.0

IBM API packages provided by this feature
v com.ibm.websphere.ejbcontainer.mbean

Feature configuration elements

You can use the following elements in your server.xml file to configure the Enterprise JavaBeans Lite 3.2
feature:
v application
v applicationManager
v applicationMonitor
v classloading
v ejbApplication
v ejbContainer
v enterpriseApplication
v javaPermission
v library
v transaction

520 WebSphere Application Server Liberty Core 8.5.5

v webApplication

Event Logging
Logs a record of events, such as JDBC requests and servlet requests, and their durations.

Enabling this feature

To enable the Event Logging feature, add the following element declaration inside the featureManager
element in your server.xml file:
<feature>eventLogging-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Event Logging feature, include the following item in
the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.eventLogging-1.0; type="osgi.subsystem.feature"

SPI packages provided by this feature
v com.ibm.wsspi.event.logging

Feature configuration elements

You can use the following elements in your server.xml file to configure the Event Logging feature:
v eventLogging

Expression Language 3.0
This feature enables support for the Expression Language (EL) 3.0.

Enabling this feature

To enable the Expression Language 3.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>el-3.0</feature>

Supported Java Versions
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Expression Language 3.0 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.el-3.0; type="osgi.subsystem.feature"

Features that enable this feature
v beanValidation-1.1 - Bean Validation 1.1
v jsp-2.3 - JavaServer Pages 2.3
v webProfile-7.0 - Java EE Web Profile 7.0

Chapter 1. WebSphere Application Server Liberty Core: Overview 521

Standard API packages provided by this feature
v javax.el

Federated User Registry
This feature enables support for federation of multiple user registries.

Enabling this feature

To enable the Federated User Registry feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>federatedRegistry-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Federated User Registry feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.federatedRegistry-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v ssl-1.0 - Secure Socket Layer

Features that enable this feature
v ldapRegistry-3.0 - LDAP User Registry
v scim-1.0 - System for Cross-domain Identity Management

SPI packages provided by this feature
v com.ibm.wsspi.security.wim
v com.ibm.wsspi.security.wim.exception
v com.ibm.wsspi.security.wim.model

Feature configuration elements

You can use the following elements in your server.xml file to configure the Federated User Registry
feature:
v federatedRepository

JMX Local Connector
This feature allows the use of a local JMX connector that is built into the JVM to access JMX resources in
the server. The JMX connector can only be used on the same host machine by a client that has the same
user ID and the same JDK as the server process. It enables local access by JMX clients such as jConsole,
or other JMX clients that use the Attach API.

Enabling this feature

To enable the JMX Local Connector feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>localConnector-1.0</feature>

522 WebSphere Application Server Liberty Core 8.5.5

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the JMX Local Connector feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.localConnector-1.0; type="osgi.subsystem.feature"

JMX REST Connector 1.0
A secure JMX connector that can be used locally or remotely using any JDK. It enables remote access by
JMX clients via a REST-based connector and requires SSL and basic user security configuration. This
feature is superseded by the restConnector-2.0 feature. This feature enables the jaxrs-1.1 feature.

Enabling this feature

To enable the JMX REST Connector 1.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>restConnector-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the JMX REST Connector 1.0 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.restConnector-1.0; type="osgi.subsystem.feature"

Features that this feature is superseded by
v jaxrs-1.1 - Java RESTful Services 1.1
v json-1.0 - JavaScript Object Notation for Java
v restConnector-2.0 - JMX REST Connector 2.0

Features that this feature enables
v distributedMap-1.0 - Distributed Map interface for Dynamic Caching
v json-1.0 - JavaScript Object Notation for Java
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1
v ssl-1.0 - Secure Socket Layer

Features that enable this feature
v adminCenter-1.0 - Admin Center
v collectiveMember-1.0 - Collective Member

IBM API packages provided by this feature
v com.ibm.websphere.filetransfer
v com.ibm.websphere.jmx.connector.rest
v com.ibm.ws.jmx.connector.client.rest

Chapter 1. WebSphere Application Server Liberty Core: Overview 523

SPI packages provided by this feature
v com.ibm.wsspi.collective.plugins
v com.ibm.wsspi.collective.plugins.helpers

Feature configuration elements

You can use the following elements in your server.xml file to configure the JMX REST Connector 1.0
feature:
v administrator-role
v authCache
v authentication
v authorization-roles
v basicRegistry
v channelfw
v classloading
v httpAccessLogging
v httpDispatcher
v httpEncoding
v httpEndpoint
v httpOptions
v httpProxyRedirect
v jaasLoginContextEntry
v jaasLoginModule
v library
v ltpa
v mimeTypes
v quickStartSecurity
v remoteFileAccess
v tcpOptions
v trustAssociation
v virtualHost

JMX REST Connector 2.0
A secure JMX connector that can be used locally or remotely using any JDK. It enables remote access by
JMX clients via a REST-based connector and requires SSL and basic user security configuration. This
feature supersedes the restConnector-1.0 feature and does not include the jaxrs-1.1 feature.

Enabling this feature

To enable the JMX REST Connector 2.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>restConnector-2.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the JMX REST Connector 2.0 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.restConnector-2.0; type="osgi.subsystem.feature"

524 WebSphere Application Server Liberty Core 8.5.5

Features that this feature enables
v distributedMap-1.0 - Distributed Map interface for Dynamic Caching
v json-1.0 - JavaScript Object Notation for Java
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1
v ssl-1.0 - Secure Socket Layer

Features that enable this feature
v adminCenter-1.0 - Admin Center
v collectiveMember-1.0 - Collective Member

IBM API packages provided by this feature
v com.ibm.websphere.filetransfer
v com.ibm.websphere.jmx.connector.rest
v com.ibm.ws.jmx.connector.client.rest

SPI packages provided by this feature
v com.ibm.wsspi.collective.plugins
v com.ibm.wsspi.collective.plugins.helpers

Feature configuration elements

You can use the following elements in your server.xml file to configure the JMX REST Connector 2.0
feature:
v administrator-role
v authCache
v authentication
v authorization-roles
v basicRegistry
v channelfw
v classloading
v httpAccessLogging
v httpDispatcher
v httpEncoding
v httpEndpoint
v httpOptions
v httpProxyRedirect
v jaasLoginContextEntry
v jaasLoginModule
v library
v ltpa
v mimeTypes
v quickStartSecurity
v remoteFileAccess
v tcpOptions
v trustAssociation
v virtualHost

Chapter 1. WebSphere Application Server Liberty Core: Overview 525

Java Authentication SPI for Containers 1.1
This feature enables support for securing the server runtime environment and applications using Java
Authentication SPI for Containers (JASPIC) providers as defined in JSR-196

Enabling this feature

To enable the Java Authentication SPI for Containers 1.1 feature, add the following element declaration
inside the featureManager element in your server.xml file:
<feature>jaspic-1.1</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java Authentication SPI for Containers 1.1 feature,
include the following item in the Subsystem-Content header in the feature manifest file for your new
feature:
com.ibm.websphere.appserver.jaspic-1.1; type="osgi.subsystem.feature"

Features that this feature enables
v appSecurity-2.0 - Application Security 2.0
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1

Standard API packages provided by this feature
v javax.security.auth.message
v javax.security.auth.message.callback
v javax.security.auth.message.config
v javax.security.auth.message.module

SPI packages provided by this feature
v com.ibm.wsspi.security.jaspi

Java Authorization Contract for Containers 1.5
This feature enables support for Java Authorization Contract for Containers (JACC) version 1.5 In order
to add the jacc-1.5 feature to your server, you need to add the third party JACC provider which is not a
part of the WebSphere Application Server Liberty profile.

Enabling this feature

To enable the Java Authorization Contract for Containers 1.5 feature, add the following element
declaration inside the featureManager element in your server.xml file:
<feature>jacc-1.5</feature>

Supported Java Versions
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java Authorization Contract for Containers 1.5
feature, include the following item in the Subsystem-Content header in the feature manifest file for your
new feature:
com.ibm.websphere.appserver.jacc-1.5; type="osgi.subsystem.feature"

526 WebSphere Application Server Liberty Core 8.5.5

Features that this feature enables
v appSecurity-2.0 - Application Security 2.0

Standard API packages provided by this feature
v javax.security.jacc

IBM API packages provided by this feature
v com.ibm.wsspi.security.authorization.jacc

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java Authorization Contract
for Containers 1.5 feature:
v classloading

Java Database Connectivity 4.0
This feature enables the configuration of DataSources to access Databases from applications. Any
database that complies with the JDBC 4.0 specification can be used; customized configuration of many
specific providers is included. High performance connection pooling is also provided.

Enabling this feature

To enable the Java Database Connectivity 4.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>jdbc-4.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java Database Connectivity 4.0 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.jdbc-4.0; type="osgi.subsystem.feature"

Features that this feature enables
v jndi-1.0 - Java Naming and Directory Interface

Features that enable this feature
v jpa-2.0 - Java Persistence API 2.0
v osgi.jpa-1.0 - OSGi Java Persistence API
v sessionDatabase-1.0 - Database Session Persistence
v webProfile-6.0 - Java EE Web Profile 6.0

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java Database Connectivity
4.0 feature:
v authData
v classloading

Chapter 1. WebSphere Application Server Liberty Core: Overview 527

v connectionManager
v dataSource
v jdbcDriver
v library
v transaction

Java Database Connectivity 4.1
This feature enables the configuration of DataSources to access Databases from applications. Any JDBC
driver that complies with the JDBC 4.1, 4.0, 3.0, or 2.x specification can be used; customized configuration
of many specific providers is included. High performance connection pooling is also provided.

Enabling this feature

To enable the Java Database Connectivity 4.1 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>jdbc-4.1</feature>

Supported Java Versions
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java Database Connectivity 4.1 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.jdbc-4.1; type="osgi.subsystem.feature"

Features that enable this feature
v jpa-2.0 - Java Persistence API 2.0
v jpa-2.1 - Java Persistence API 2.1
v osgi.jpa-1.0 - OSGi Java Persistence API
v sessionDatabase-1.0 - Database Session Persistence
v webProfile-6.0 - Java EE Web Profile 6.0
v webProfile-7.0 - Java EE Web Profile 7.0

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java Database Connectivity
4.1 feature:
v authData
v classloading
v connectionManager
v dataSource
v jdbcDriver
v library
v transaction

Java EE Managed Bean 1.0
This feature enables support for the Managed Beans 1.0 specification. Managed Beans provide a common
foundation for different Java EE components types that are managed by a container. Common services
provided to Managed Beans include resource injection, lifecycle management and the use of interceptors.

528 WebSphere Application Server Liberty Core 8.5.5

Enabling this feature

To enable the Java EE Managed Bean 1.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>managedBeans-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java EE Managed Bean 1.0 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.managedBeans-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v jndi-1.0 - Java Naming and Directory Interface

Features that enable this feature
v webProfile-6.0 - Java EE Web Profile 6.0
v webProfile-7.0 - Java EE Web Profile 7.0

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java EE Managed Bean 1.0
feature:
v classloading
v ejbContainer
v library
v transaction

Java EE Web Profile 6.0
This feature provides a convenient combination of the Liberty features that are required to support the
Java EE Web Profile.

Enabling this feature

To enable the Java EE Web Profile 6.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>webProfile-6.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java EE Web Profile 6.0 feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.webProfile-6.0; type="osgi.subsystem.feature"

Features that this feature enables
v appSecurity-2.0 - Application Security 2.0
v beanValidation-1.0 - Bean Validation 1.0

Chapter 1. WebSphere Application Server Liberty Core: Overview 529

v cdi-1.0 - Contexts and Dependency Injection 1.0
v ejbLite-3.1 - Enterprise JavaBeans Lite 3.1
v jdbc-4.0 - Java Database Connectivity 4.0
v jdbc-4.1 - Java Database Connectivity 4.1
v jndi-1.0 - Java Naming and Directory Interface
v jpa-2.0 - Java Persistence API 2.0
v jsf-2.0 - JavaServer Faces 2.0
v jsp-2.2 - JavaServer Pages 2.2
v managedBeans-1.0 - Java EE Managed Bean 1.0
v servlet-3.0 - Java Servlets 3.0

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java EE Web Profile 6.0
feature:
v classloading
v transaction

Java EE Web Profile 7.0
This feature combines the Liberty features that support the Java EE 7.0 Web Profile.

Enabling this feature

To enable the Java EE Web Profile 7.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>webProfile-7.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java EE Web Profile 7.0 feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.webProfile-7.0; type="osgi.subsystem.feature"

Features that this feature enables
v appSecurity-2.0 - Application Security 2.0
v beanValidation-1.1 - Bean Validation 1.1
v cdi-1.2 - Contexts and Dependency Injection 1.2
v ejbLite-3.2 - Enterprise JavaBeans Lite 3.2
v el-3.0 - Expression Language 3.0
v jaxrs-2.0 - Java RESTful Services 2.0
v jdbc-4.1 - Java Database Connectivity 4.1
v jndi-1.0 - Java Naming and Directory Interface
v jpa-2.1 - Java Persistence API 2.1
v jsf-2.2 - JavaServer Faces 2.2
v jsonp-1.0 - JavaScript Object Notation Processing
v jsp-2.3 - JavaServer Pages 2.3
v managedBeans-1.0 - Java EE Managed Bean 1.0
v servlet-3.1 - Java Servlets 3.1
v websocket-1.1 - Java WebSocket 1.1

530 WebSphere Application Server Liberty Core 8.5.5

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java EE Web Profile 7.0
feature:
v classloading
v transaction

Java Naming and Directory Interface
This feature enables the use of Java Naming and Directory Interface (JNDI) to access server configured
resources such as DataSources or JMS Connection Factories. It also allows access to Java primitives
configured in the server as a jndiEntry.

Enabling this feature

To enable the Java Naming and Directory Interface feature, add the following element declaration inside
the featureManager element in your server.xml file:
<feature>jndi-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java Naming and Directory Interface feature, include
the following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.jndi-1.0; type="osgi.subsystem.feature"

Features that enable this feature
v distributedMap-1.0 - Distributed Map interface for Dynamic Caching
v ejbLite-3.1 - Enterprise JavaBeans Lite 3.1
v ejbLite-3.2 - Enterprise JavaBeans Lite 3.2
v jdbc-4.0 - Java Database Connectivity 4.0
v jpa-2.0 - Java Persistence API 2.0
v jpa-2.1 - Java Persistence API 2.1
v managedBeans-1.0 - Java EE Managed Bean 1.0
v osgi.jpa-1.0 - OSGi Java Persistence API
v sessionDatabase-1.0 - Database Session Persistence
v webProfile-6.0 - Java EE Web Profile 6.0
v webProfile-7.0 - Java EE Web Profile 7.0

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java Naming and Directory
Interface feature:
v classloading
v jndiEntry
v jndiObjectFactory
v jndiReferenceEntry

Chapter 1. WebSphere Application Server Liberty Core: Overview 531

v jndiURLEntry
v library

Java Persistence API 2.0
This feature enables support for applications that use application-managed and container-managed JPA
written to the Java Persistence API 2.0 specification. The support is built on top of Apache OpenJPA with
extensions to support the container-managed programming model.

Enabling this feature

To enable the Java Persistence API 2.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>jpa-2.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java Persistence API 2.0 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.jpa-2.0; type="osgi.subsystem.feature"

Features that this feature enables
v beanValidation-1.0 - Bean Validation 1.0
v beanValidation-1.1 - Bean Validation 1.1
v jdbc-4.0 - Java Database Connectivity 4.0
v jdbc-4.1 - Java Database Connectivity 4.1
v jndi-1.0 - Java Naming and Directory Interface
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1

Features that enable this feature
v osgi.jpa-1.0 - OSGi Java Persistence API
v webProfile-6.0 - Java EE Web Profile 6.0

Standard API packages provided by this feature
v javax.persistence
v javax.persistence.criteria
v javax.persistence.metamodel
v javax.persistence.spi

Third party API packages provided by this feature
v org.apache.openjpa.abstractstore
v org.apache.openjpa.ant
v org.apache.openjpa.audit
v org.apache.openjpa.conf
v org.apache.openjpa.datacache
v org.apache.openjpa.ee
v org.apache.openjpa.enhance
v org.apache.openjpa.event
v org.apache.openjpa.instrumentation
v org.apache.openjpa.instrumentation.jmx

532 WebSphere Application Server Liberty Core 8.5.5

v org.apache.openjpa.jdbc.ant
v org.apache.openjpa.jdbc.conf
v org.apache.openjpa.jdbc.identifier
v org.apache.openjpa.jdbc.kernel
v org.apache.openjpa.jdbc.kernel.exps
v org.apache.openjpa.jdbc.meta
v org.apache.openjpa.jdbc.meta.strats
v org.apache.openjpa.jdbc.schema
v org.apache.openjpa.jdbc.sql
v org.apache.openjpa.kernel
v org.apache.openjpa.kernel.exps
v org.apache.openjpa.kernel.jpql
v org.apache.openjpa.lib.ant
v org.apache.openjpa.lib.conf
v org.apache.openjpa.lib.encryption
v org.apache.openjpa.lib.graph
v org.apache.openjpa.lib.identifier
v org.apache.openjpa.lib.instrumentation
v org.apache.openjpa.lib.jdbc
v org.apache.openjpa.lib.log
v org.apache.openjpa.lib.meta
v org.apache.openjpa.lib.rop
v org.apache.openjpa.lib.util
v org.apache.openjpa.lib.util.concurrent
v org.apache.openjpa.lib.util.svn
v org.apache.openjpa.lib.xml
v org.apache.openjpa.meta
v org.apache.openjpa.persistence
v org.apache.openjpa.persistence.criteria
v org.apache.openjpa.persistence.jdbc
v org.apache.openjpa.persistence.meta
v org.apache.openjpa.persistence.osgi
v org.apache.openjpa.persistence.query
v org.apache.openjpa.persistence.util
v org.apache.openjpa.persistence.validation
v org.apache.openjpa.slice
v org.apache.openjpa.slice.jdbc
v org.apache.openjpa.util
v org.apache.openjpa.validation
v org.apache.openjpa.xmlstore

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java Persistence API 2.0
feature:
v classloading

Chapter 1. WebSphere Application Server Liberty Core: Overview 533

v jpa
v library
v transaction

Java Persistence API 2.1
This feature enables support for applications that use application-managed and container-managed JPA
written to the Java Persistence API 2.1 specification. The support is built on top of EclipseLink to support
the container-managed programming model.

Enabling this feature

To enable the Java Persistence API 2.1 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>jpa-2.1</feature>

Supported Java Versions
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java Persistence API 2.1 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.jpa-2.1; type="osgi.subsystem.feature"

Features that this feature enables
v jdbc-4.1 - Java Database Connectivity 4.1
v jndi-1.0 - Java Naming and Directory Interface

Features that enable this feature
v webProfile-7.0 - Java EE Web Profile 7.0

Standard API packages provided by this feature
v javax.persistence
v javax.persistence.criteria
v javax.persistence.metamodel
v javax.persistence.spi

Third party API packages provided by this feature
v org.eclipse.persistence
v org.eclipse.persistence.annotations
v org.eclipse.persistence.config
v org.eclipse.persistence.core.descriptors
v org.eclipse.persistence.core.mappings
v org.eclipse.persistence.core.mappings.converters
v org.eclipse.persistence.core.queries
v org.eclipse.persistence.core.sessions
v org.eclipse.persistence.descriptors
v org.eclipse.persistence.descriptors.copying
v org.eclipse.persistence.descriptors.invalidation

534 WebSphere Application Server Liberty Core 8.5.5

v org.eclipse.persistence.descriptors.partitioning
v org.eclipse.persistence.dynamic
v org.eclipse.persistence.eis
v org.eclipse.persistence.eis.interactions
v org.eclipse.persistence.eis.mappings
v org.eclipse.persistence.exceptions
v org.eclipse.persistence.exceptions.i18n
v org.eclipse.persistence.expressions
v org.eclipse.persistence.expressions.spatial
v org.eclipse.persistence.history
v org.eclipse.persistence.internal.cache
v org.eclipse.persistence.internal.codegen
v org.eclipse.persistence.internal.core.databaseaccess
v org.eclipse.persistence.internal.core.descriptors
v org.eclipse.persistence.internal.core.helper
v org.eclipse.persistence.internal.core.queries
v org.eclipse.persistence.internal.core.sessions
v org.eclipse.persistence.internal.databaseaccess
v org.eclipse.persistence.internal.descriptors.changetracking
v org.eclipse.persistence.internal.dynamic
v org.eclipse.persistence.internal.expressions
v org.eclipse.persistence.internal.helper
v org.eclipse.persistence.internal.helper.linkedlist
v org.eclipse.persistence.internal.history
v org.eclipse.persistence.internal.indirection
v org.eclipse.persistence.internal.jpa
v org.eclipse.persistence.internal.jpa.deployment
v org.eclipse.persistence.internal.jpa.deployment.xml.parser
v org.eclipse.persistence.internal.jpa.jdbc
v org.eclipse.persistence.internal.jpa.jpql
v org.eclipse.persistence.internal.jpa.metadata
v org.eclipse.persistence.internal.jpa.metadata.accessors
v org.eclipse.persistence.internal.jpa.metadata.accessors.classes
v org.eclipse.persistence.internal.jpa.metadata.accessors.mappings
v org.eclipse.persistence.internal.jpa.metadata.accessors.objects
v org.eclipse.persistence.internal.jpa.metadata.additionalcriteria
v org.eclipse.persistence.internal.jpa.metadata.cache
v org.eclipse.persistence.internal.jpa.metadata.changetracking
v org.eclipse.persistence.internal.jpa.metadata.columns
v org.eclipse.persistence.internal.jpa.metadata.converters
v org.eclipse.persistence.internal.jpa.metadata.copypolicy
v org.eclipse.persistence.internal.jpa.metadata.inheritance
v org.eclipse.persistence.internal.jpa.metadata.listeners
v org.eclipse.persistence.internal.jpa.metadata.locking
v org.eclipse.persistence.internal.jpa.metadata.mappings

Chapter 1. WebSphere Application Server Liberty Core: Overview 535

v org.eclipse.persistence.internal.jpa.metadata.multitenant
v org.eclipse.persistence.internal.jpa.metadata.nosql
v org.eclipse.persistence.internal.jpa.metadata.partitioning
v org.eclipse.persistence.internal.jpa.metadata.queries
v org.eclipse.persistence.internal.jpa.metadata.sequencing
v org.eclipse.persistence.internal.jpa.metadata.structures
v org.eclipse.persistence.internal.jpa.metadata.tables
v org.eclipse.persistence.internal.jpa.metadata.transformers
v org.eclipse.persistence.internal.jpa.metadata.xml
v org.eclipse.persistence.internal.jpa.metamodel
v org.eclipse.persistence.internal.jpa.parsing
v org.eclipse.persistence.internal.jpa.parsing.jpql
v org.eclipse.persistence.internal.jpa.parsing.jpql.antlr
v org.eclipse.persistence.internal.jpa.querydef
v org.eclipse.persistence.internal.jpa.transaction
v org.eclipse.persistence.internal.jpa.weaving
v org.eclipse.persistence.internal.libraries.antlr.runtime
v org.eclipse.persistence.internal.libraries.antlr.runtime.debug
v org.eclipse.persistence.internal.libraries.antlr.runtime.misc
v org.eclipse.persistence.internal.libraries.antlr.runtime.tree
v org.eclipse.persistence.internal.libraries.asm
v org.eclipse.persistence.internal.libraries.asm.commons
v org.eclipse.persistence.internal.libraries.asm.signature
v org.eclipse.persistence.internal.libraries.asm.tree
v org.eclipse.persistence.internal.libraries.asm.tree.analysis
v org.eclipse.persistence.internal.libraries.asm.util
v org.eclipse.persistence.internal.libraries.asm.xml
v org.eclipse.persistence.internal.localization
v org.eclipse.persistence.internal.localization.i18n
v org.eclipse.persistence.internal.oxm
v org.eclipse.persistence.internal.oxm.accessor
v org.eclipse.persistence.internal.oxm.conversion
v org.eclipse.persistence.internal.oxm.documentpreservation
v org.eclipse.persistence.internal.oxm.mappings
v org.eclipse.persistence.internal.oxm.record
v org.eclipse.persistence.internal.oxm.record.deferred
v org.eclipse.persistence.internal.oxm.record.json
v org.eclipse.persistence.internal.oxm.record.namespaces
v org.eclipse.persistence.internal.oxm.schema
v org.eclipse.persistence.internal.oxm.schema.model
v org.eclipse.persistence.internal.oxm.unmapped
v org.eclipse.persistence.internal.platform.database
v org.eclipse.persistence.internal.queries
v org.eclipse.persistence.internal.security
v org.eclipse.persistence.internal.sequencing

536 WebSphere Application Server Liberty Core 8.5.5

v org.eclipse.persistence.internal.sessions
v org.eclipse.persistence.internal.sessions.coordination
v org.eclipse.persistence.internal.sessions.coordination.broadcast
v org.eclipse.persistence.internal.sessions.coordination.corba
v org.eclipse.persistence.internal.sessions.coordination.corba.sun
v org.eclipse.persistence.internal.sessions.coordination.jms
v org.eclipse.persistence.internal.sessions.coordination.rmi
v org.eclipse.persistence.internal.sessions.coordination.rmi.iiop
v org.eclipse.persistence.internal.sessions.factories
v org.eclipse.persistence.internal.sessions.factories.model
v org.eclipse.persistence.internal.sessions.factories.model.event
v org.eclipse.persistence.internal.sessions.factories.model.log
v org.eclipse.persistence.internal.sessions.factories.model.login
v org.eclipse.persistence.internal.sessions.factories.model.platform
v org.eclipse.persistence.internal.sessions.factories.model.pool
v org.eclipse.persistence.internal.sessions.factories.model.project
v org.eclipse.persistence.internal.sessions.factories.model.property
v org.eclipse.persistence.internal.sessions.factories.model.rcm
v org.eclipse.persistence.internal.sessions.factories.model.rcm.command
v org.eclipse.persistence.internal.sessions.factories.model.sequencing
v org.eclipse.persistence.internal.sessions.factories.model.session
v org.eclipse.persistence.internal.sessions.factories.model.transport
v org.eclipse.persistence.internal.sessions.factories.model.transport.discovery
v org.eclipse.persistence.internal.sessions.factories.model.transport.naming
v org.eclipse.persistence.internal.sessions.remote
v org.eclipse.persistence.jpa.dynamic
v org.eclipse.persistence.jpa.jpql
v org.eclipse.persistence.jpa.jpql.parser
v org.eclipse.persistence.jpa.jpql.tools
v org.eclipse.persistence.jpa.jpql.tools.model
v org.eclipse.persistence.jpa.jpql.tools.model.query
v org.eclipse.persistence.jpa.jpql.tools.resolver
v org.eclipse.persistence.jpa.jpql.tools.spi
v org.eclipse.persistence.jpa.jpql.tools.utility
v org.eclipse.persistence.jpa.jpql.tools.utility.filter
v org.eclipse.persistence.jpa.jpql.tools.utility.iterable
v org.eclipse.persistence.jpa.jpql.tools.utility.iterator
v org.eclipse.persistence.jpa.jpql.utility
v org.eclipse.persistence.jpa.jpql.utility.filter
v org.eclipse.persistence.jpa.jpql.utility.iterable
v org.eclipse.persistence.jpa.jpql.utility.iterator
v org.eclipse.persistence.jpa.metadata
v org.eclipse.persistence.logging
v org.eclipse.persistence.mappings
v org.eclipse.persistence.mappings.converters

Chapter 1. WebSphere Application Server Liberty Core: Overview 537

v org.eclipse.persistence.mappings.foundation
v org.eclipse.persistence.mappings.querykeys
v org.eclipse.persistence.mappings.structures
v org.eclipse.persistence.mappings.transformers
v org.eclipse.persistence.mappings.xdb
v org.eclipse.persistence.oxm
v org.eclipse.persistence.oxm.annotations
v org.eclipse.persistence.oxm.attachment
v org.eclipse.persistence.oxm.documentpreservation
v org.eclipse.persistence.oxm.mappings
v org.eclipse.persistence.oxm.mappings.converters
v org.eclipse.persistence.oxm.mappings.nullpolicy
v org.eclipse.persistence.oxm.platform
v org.eclipse.persistence.oxm.record
v org.eclipse.persistence.oxm.schema
v org.eclipse.persistence.oxm.sequenced
v org.eclipse.persistence.oxm.unmapped
v org.eclipse.persistence.platform.database
v org.eclipse.persistence.platform.database.converters
v org.eclipse.persistence.platform.database.events
v org.eclipse.persistence.platform.database.jdbc
v org.eclipse.persistence.platform.database.oracle.annotations
v org.eclipse.persistence.platform.database.oracle.jdbc
v org.eclipse.persistence.platform.database.oracle.plsql
v org.eclipse.persistence.platform.database.partitioning
v org.eclipse.persistence.platform.server
v org.eclipse.persistence.platform.xml
v org.eclipse.persistence.platform.xml.jaxp
v org.eclipse.persistence.sequencing
v org.eclipse.persistence.services
v org.eclipse.persistence.services.websphere
v org.eclipse.persistence.sessions.broker
v org.eclipse.persistence.sessions.changesets
v org.eclipse.persistence.sessions.coordination
v org.eclipse.persistence.sessions.coordination.broadcast
v org.eclipse.persistence.sessions.coordination.corba
v org.eclipse.persistence.sessions.coordination.corba.sun
v org.eclipse.persistence.sessions.coordination.jms
v org.eclipse.persistence.sessions.coordination.rmi
v org.eclipse.persistence.sessions.factories
v org.eclipse.persistence.sessions.interceptors
v org.eclipse.persistence.sessions.remote
v org.eclipse.persistence.sessions.remote.corba.sun
v org.eclipse.persistence.sessions.remote.rmi
v org.eclipse.persistence.sessions.remote.rmi.iiop

538 WebSphere Application Server Liberty Core 8.5.5

v org.eclipse.persistence.sessions.serializers
v org.eclipse.persistence.sessions.server
v org.eclipse.persistence.tools
v org.eclipse.persistence.tools.file
v org.eclipse.persistence.tools.profiler
v org.eclipse.persistence.tools.schemaframework
v org.eclipse.persistence.tools.tuning
v org.eclipse.persistence.tools.weaving.jpa
v org.eclipse.persistence.transaction
v org.eclipse.persistence.transaction.was

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java Persistence API 2.1
feature:
v classloading
v jpa
v library
v transaction

Java RESTful Services 1.1
This feature enables support for Java API for RESTful Web Services 1.1. JAX-RS annotations can be used
to define web service clients and endpoints that comply with the REST architectural style. Endpoints are
accessed through a common interface that is based on the HTTP standard methods.

Enabling this feature

To enable the Java RESTful Services 1.1 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>jaxrs-1.1</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java RESTful Services 1.1 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.jaxrs-1.1; type="osgi.subsystem.feature"

Features that this feature enables
v json-1.0 - JavaScript Object Notation for Java
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1

Standard API packages provided by this feature
v javax.ws.rs
v javax.ws.rs.core
v javax.ws.rs.ext

IBM API packages provided by this feature
v com.ibm.websphere.jaxrs.providers.json4j
v com.ibm.websphere.jaxrs.server

Chapter 1. WebSphere Application Server Liberty Core: Overview 539

Third party API packages provided by this feature
v org.apache.wink.client
v org.apache.wink.client.handlers
v org.apache.wink.client.internal
v org.apache.wink.client.internal.handlers
v org.apache.wink.client.internal.log
v org.apache.wink.common
v org.apache.wink.common.annotations
v org.apache.wink.common.categories
v org.apache.wink.common.http
v org.apache.wink.common.internal
v org.apache.wink.common.internal.application
v org.apache.wink.common.internal.contexts
v org.apache.wink.common.internal.http
v org.apache.wink.common.internal.i18n
v org.apache.wink.common.internal.lifecycle
v org.apache.wink.common.internal.log
v org.apache.wink.common.internal.model
v org.apache.wink.common.internal.model.admin
v org.apache.wink.common.internal.properties
v org.apache.wink.common.internal.providers.entity
v org.apache.wink.common.internal.providers.entity.app
v org.apache.wink.common.internal.providers.entity.atom
v org.apache.wink.common.internal.providers.entity.csv
v org.apache.wink.common.internal.providers.entity.json
v org.apache.wink.common.internal.providers.entity.xml
v org.apache.wink.common.internal.providers.error
v org.apache.wink.common.internal.providers.header
v org.apache.wink.common.internal.providers.multipart
v org.apache.wink.common.internal.registry
v org.apache.wink.common.internal.registry.metadata
v org.apache.wink.common.internal.runtime
v org.apache.wink.common.internal.uri
v org.apache.wink.common.internal.uritemplate
v org.apache.wink.common.internal.utils
v org.apache.wink.common.model
v org.apache.wink.common.model.app
v org.apache.wink.common.model.atom
v org.apache.wink.common.model.csv
v org.apache.wink.common.model.multipart
v org.apache.wink.common.model.opensearch
v org.apache.wink.common.model.rss
v org.apache.wink.common.model.synd
v org.apache.wink.common.model.wadl
v org.apache.wink.common.utils

540 WebSphere Application Server Liberty Core 8.5.5

v org.apache.wink.jcdi.server.internal
v org.apache.wink.jcdi.server.internal.extension
v org.apache.wink.jcdi.server.internal.lifecycle
v org.apache.wink.providers.abdera
v org.apache.wink.providers.jackson
v org.apache.wink.providers.json4j
v org.apache.wink.server.handlers
v org.apache.wink.server.internal
v org.apache.wink.server.internal.application
v org.apache.wink.server.internal.contexts
v org.apache.wink.server.internal.handlers
v org.apache.wink.server.internal.handlers.ejb
v org.apache.wink.server.internal.lifecycle
v org.apache.wink.server.internal.lifecycle.metadata
v org.apache.wink.server.internal.log
v org.apache.wink.server.internal.providers.entity.html
v org.apache.wink.server.internal.providers.exception
v org.apache.wink.server.internal.registry
v org.apache.wink.server.internal.resources
v org.apache.wink.server.internal.servlet
v org.apache.wink.server.internal.servlet.contentencode
v org.apache.wink.server.internal.utils
v org.apache.wink.server.utils
v org.codehaus.jackson
v org.codehaus.jackson.annotate
v org.codehaus.jackson.impl
v org.codehaus.jackson.io
v org.codehaus.jackson.jaxrs
v org.codehaus.jackson.map
v org.codehaus.jackson.map.annotate
v org.codehaus.jackson.map.deser
v org.codehaus.jackson.map.exc
v org.codehaus.jackson.map.introspect
v org.codehaus.jackson.map.jsontype
v org.codehaus.jackson.map.jsontype.impl
v org.codehaus.jackson.map.ser
v org.codehaus.jackson.map.type
v org.codehaus.jackson.map.util
v org.codehaus.jackson.node
v org.codehaus.jackson.schema
v org.codehaus.jackson.sym
v org.codehaus.jackson.type
v org.codehaus.jackson.util
v org.codehaus.jackson.xc

Chapter 1. WebSphere Application Server Liberty Core: Overview 541

Java RESTful Services 2.0
This feature enables support for Java API for RESTful Web Services. JAX-RS annotations can be used to
define web service clients and endpoints that comply with the REST architectural style. Endpoints are
accessed through a common interface that is based on the HTTP standard methods.

Enabling this feature

To enable the Java RESTful Services 2.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>jaxrs-2.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java RESTful Services 2.0 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.jaxrs-2.0; type="osgi.subsystem.feature"

Features that this feature enables
v jaxrsClient-2.0 - Java RESTful Services Client 2.0
v json-1.0 - JavaScript Object Notation for Java
v servlet-3.1 - Java Servlets 3.1

Features that enable this feature
v microProfile-1.0 - Micro Profile 1.0
v webProfile-7.0 - Java EE Web Profile 7.0

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java RESTful Services 2.0
feature:
v classloading
v library

Java RESTful Services Client 2.0
This feature enables support for Java Client API for JAX-RS 2.0.

Enabling this feature

To enable the Java RESTful Services Client 2.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>jaxrsClient-2.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java RESTful Services Client 2.0 feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.jaxrsClient-2.0; type="osgi.subsystem.feature"

Features that this feature enables
v json-1.0 - JavaScript Object Notation for Java
v servlet-3.1 - Java Servlets 3.1

542 WebSphere Application Server Liberty Core 8.5.5

Features that enable this feature
v jaxrs-2.0 - Java RESTful Services 2.0

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java RESTful Services Client
2.0 feature:
v classloading
v library

Java Servlets 3.0
This feature enables support for HTTP Servlets written to the Java Servlet 3.0 specification. The servlets
can be packaged in Java EE specified WAR or EAR files. If servlet security is required, an appSecurity
feature should also be configured; in the absence of a security feature any security constraints for the
application will be ignored.

Enabling this feature

To enable the Java Servlets 3.0 feature, add the following element declaration inside the featureManager
element in your server.xml file:
<feature>servlet-3.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java Servlets 3.0 feature, include the following item
in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.servlet-3.0; type="osgi.subsystem.feature"

Features that enable this feature
v adminCenter-1.0 - Admin Center
v apiDiscovery-1.0 - API Discovery 1.0
v appSecurity-1.0 - Application Security 1.0
v collectiveMember-1.0 - Collective Member
v httpWhiteboard-1.0 - OSGi Http Whiteboard
v jaspic-1.1 - Java Authentication SPI for Containers 1.1
v jaxrs-1.1 - Java RESTful Services 1.1
v jpa-2.0 - Java Persistence API 2.0
v jsf-2.0 - JavaServer Faces 2.0
v jsp-2.2 - JavaServer Pages 2.2
v oauth-2.0 - OAuth
v openid-2.0 - OpenID
v openidConnectClient-1.0 - OpenID Connect Client
v openidConnectServer-1.0 - OpenID Connect Provider
v osgi.jpa-1.0 - OSGi Java Persistence API
v restConnector-1.0 - JMX REST Connector 1.0
v restConnector-2.0 - JMX REST Connector 2.0
v samlWeb-2.0 - SAML web single sign-on version 2.0
v scim-1.0 - System for Cross-domain Identity Management
v spnego-1.0 - Simple and Protected GSSAPI Negotiation Mechanism
v wab-1.0 - OSGi Web Application Bundles

Chapter 1. WebSphere Application Server Liberty Core: Overview 543

v webCache-1.0 - Web Response Cache
v webProfile-6.0 - Java EE Web Profile 6.0

Standard API packages provided by this feature
v javax.servlet
v javax.servlet.annotation
v javax.servlet.descriptor
v javax.servlet.http
v javax.servlet.resources

IBM API packages provided by this feature
v com.ibm.websphere.servlet.container
v com.ibm.websphere.servlet.context
v com.ibm.websphere.servlet.error
v com.ibm.websphere.servlet.event
v com.ibm.websphere.servlet.session
v com.ibm.websphere.webcontainer
v com.ibm.wsspi.servlet.session

SPI packages provided by this feature
v com.ibm.websphere.servlet.filter
v com.ibm.websphere.servlet.request
v com.ibm.websphere.servlet.response
v com.ibm.websphere.webcontainer.async
v com.ibm.ws.webcontainer.extension
v com.ibm.ws.webcontainer.spiadapter.collaborator
v com.ibm.wsspi.webcontainer
v com.ibm.wsspi.webcontainer.collaborator
v com.ibm.wsspi.webcontainer.extension
v com.ibm.wsspi.webcontainer.filter
v com.ibm.wsspi.webcontainer.metadata
v com.ibm.wsspi.webcontainer.osgi.extension
v com.ibm.wsspi.webcontainer.servlet
v com.ibm.wsspi.webcontainer.webapp

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java Servlets 3.0 feature:
v application
v applicationManager
v applicationMonitor
v channelfw
v classloading
v cors
v enterpriseApplication
v httpAccessLogging
v httpDispatcher

544 WebSphere Application Server Liberty Core 8.5.5

v httpEncoding
v httpEndpoint
v httpOptions
v httpProxyRedirect
v httpSession
v javaPermission
v library
v mimeTypes
v pluginConfiguration
v tcpOptions
v virtualHost
v webApplication
v webContainer

Java Servlets 3.1
This feature enables support for HTTP Servlets written to the Java Servlet 3.1 specification. You can
package servlets in Java EE specified WAR or EAR files. If servlet security is required, you should also
configure an appSecurity feature. Without a security feature, any security constraints for the application
are ignored.

Enabling this feature

To enable the Java Servlets 3.1 feature, add the following element declaration inside the featureManager
element in your server.xml file:
<feature>servlet-3.1</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java Servlets 3.1 feature, include the following item
in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.servlet-3.1; type="osgi.subsystem.feature"

Features that enable this feature
v adminCenter-1.0 - Admin Center
v apiDiscovery-1.0 - API Discovery 1.0
v appSecurity-1.0 - Application Security 1.0
v collectiveMember-1.0 - Collective Member
v httpWhiteboard-1.0 - OSGi Http Whiteboard
v jaspic-1.1 - Java Authentication SPI for Containers 1.1
v jaxrs-1.1 - Java RESTful Services 1.1
v jaxrs-2.0 - Java RESTful Services 2.0
v jaxrsClient-2.0 - Java RESTful Services Client 2.0
v jpa-2.0 - Java Persistence API 2.0
v jsf-2.0 - JavaServer Faces 2.0
v jsf-2.2 - JavaServer Faces 2.2
v jsp-2.2 - JavaServer Pages 2.2
v jsp-2.3 - JavaServer Pages 2.3
v oauth-2.0 - OAuth
v openid-2.0 - OpenID

Chapter 1. WebSphere Application Server Liberty Core: Overview 545

v openidConnectClient-1.0 - OpenID Connect Client
v openidConnectServer-1.0 - OpenID Connect Provider
v osgi.jpa-1.0 - OSGi Java Persistence API
v restConnector-1.0 - JMX REST Connector 1.0
v restConnector-2.0 - JMX REST Connector 2.0
v samlWeb-2.0 - SAML web single sign-on version 2.0
v scim-1.0 - System for Cross-domain Identity Management
v spnego-1.0 - Simple and Protected GSSAPI Negotiation Mechanism
v wab-1.0 - OSGi Web Application Bundles
v webCache-1.0 - Web Response Cache
v webProfile-7.0 - Java EE Web Profile 7.0
v websocket-1.0 - Java WebSocket 1.0
v websocket-1.1 - Java WebSocket 1.1

Standard API packages provided by this feature
v javax.servlet
v javax.servlet.annotation
v javax.servlet.descriptor
v javax.servlet.http
v javax.servlet.resources

IBM API packages provided by this feature
v com.ibm.websphere.servlet.container
v com.ibm.websphere.servlet.context
v com.ibm.websphere.servlet.error
v com.ibm.websphere.servlet.event
v com.ibm.websphere.servlet.session
v com.ibm.websphere.webcontainer
v com.ibm.wsspi.servlet.session

SPI packages provided by this feature
v com.ibm.websphere.servlet.filter
v com.ibm.websphere.servlet.request
v com.ibm.websphere.servlet.response
v com.ibm.websphere.webcontainer.async
v com.ibm.ws.webcontainer.extension
v com.ibm.ws.webcontainer.spiadapter.collaborator
v com.ibm.wsspi.webcontainer
v com.ibm.wsspi.webcontainer.collaborator
v com.ibm.wsspi.webcontainer.extension
v com.ibm.wsspi.webcontainer.filter
v com.ibm.wsspi.webcontainer.metadata
v com.ibm.wsspi.webcontainer.osgi.extension
v com.ibm.wsspi.webcontainer.servlet
v com.ibm.wsspi.webcontainer.webapp

546 WebSphere Application Server Liberty Core 8.5.5

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java Servlets 3.1 feature:
v application
v applicationManager
v applicationMonitor
v channelfw
v classloading
v cors
v enterpriseApplication
v httpAccessLogging
v httpDispatcher
v httpEncoding
v httpEndpoint
v httpOptions
v httpProxyRedirect
v httpSession
v javaPermission
v library
v mimeTypes
v pluginConfiguration
v tcpOptions
v virtualHost
v webApplication
v webContainer

Java WebSocket 1.0
This feature enables support for WebSocket applications written to the Java API for WebSocket 1.0
specification.

Enabling this feature

To enable the Java WebSocket 1.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>websocket-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java WebSocket 1.0 feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.websocket-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v servlet-3.1 - Java Servlets 3.1

Standard API packages provided by this feature
v javax.websocket
v javax.websocket.server

Chapter 1. WebSphere Application Server Liberty Core: Overview 547

IBM API packages provided by this feature
v com.ibm.websphere.wsoc

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java WebSocket 1.0 feature:
v wsocOutbound

Java WebSocket 1.1
This feature enables support for WebSocket applications written to the Java API for WebSocket 1.1
specification.

Enabling this feature

To enable the Java WebSocket 1.1 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>websocket-1.1</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Java WebSocket 1.1 feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.websocket-1.1; type="osgi.subsystem.feature"

Features that this feature enables
v servlet-3.1 - Java Servlets 3.1

Features that enable this feature
v webProfile-7.0 - Java EE Web Profile 7.0

Standard API packages provided by this feature
v javax.websocket
v javax.websocket.server

IBM API packages provided by this feature
v com.ibm.websphere.wsoc

Feature configuration elements

You can use the following elements in your server.xml file to configure the Java WebSocket 1.1 feature:
v wsocOutbound

JavaMail 1.5
This feature allows applications to utilize the JavaMail 1.5 API.

Enabling this feature

To enable the JavaMail 1.5 feature, add the following element declaration inside the featureManager
element in your server.xml file:
<feature>javaMail-1.5</feature>

548 WebSphere Application Server Liberty Core 8.5.5

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the JavaMail 1.5 feature, include the following item in
the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.javaMail-1.5; type="osgi.subsystem.feature"

Standard API packages provided by this feature
v javax.mail
v javax.mail.event
v javax.mail.internet
v javax.mail.search
v javax.mail.util

Third party API packages provided by this feature
v com.sun.mail
v com.sun.mail.auth
v com.sun.mail.handlers
v com.sun.mail.iap
v com.sun.mail.imap
v com.sun.mail.imap.protocol
v com.sun.mail.pop3
v com.sun.mail.smtp
v com.sun.mail.util
v com.sun.mail.util.logging

Feature configuration elements

You can use the following elements in your server.xml file to configure the JavaMail 1.5 feature:
v mailSession

JavaScript Object Notation Processing
The Java API for JSON Processing (JSON-P) feature provides a standardized method for constructing and
manipulating data to be rendered in JavaScript Object Notation (JSON).

Enabling this feature

To enable the JavaScript Object Notation Processing feature, add the following element declaration inside
the featureManager element in your server.xml file:
<feature>jsonp-1.0</feature>

Supported Java Versions
v JavaSE-1.7
v JavaSE-1.8

Chapter 1. WebSphere Application Server Liberty Core: Overview 549

Developing a feature that depends on this feature

If you are developing a feature that depends on the JavaScript Object Notation Processing feature, include
the following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.jsonp-1.0; type="osgi.subsystem.feature"

Features that enable this feature
v microProfile-1.0 - Micro Profile 1.0
v webProfile-7.0 - Java EE Web Profile 7.0

Standard API packages provided by this feature
v javax.json
v javax.json.spi
v javax.json.stream

JavaScript Object Notation for Java
This feature provides access to the JavaScript Object Notation (JSON4J) library. The JSON4J library
provides a simple Java model for constructing and manipulating data to be rendered as JSON data.

Enabling this feature

To enable the JavaScript Object Notation for Java feature, add the following element declaration inside
the featureManager element in your server.xml file:
<feature>json-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the JavaScript Object Notation for Java feature, include
the following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.json-1.0; type="osgi.subsystem.feature"

Features that enable this feature
v adminCenter-1.0 - Admin Center
v apiDiscovery-1.0 - API Discovery 1.0
v jaxrs-1.1 - Java RESTful Services 1.1
v jaxrs-2.0 - Java RESTful Services 2.0
v jaxrsClient-2.0 - Java RESTful Services Client 2.0
v oauth-2.0 - OAuth
v restConnector-1.0 - JMX REST Connector 1.0
v restConnector-2.0 - JMX REST Connector 2.0
v scim-1.0 - System for Cross-domain Identity Management

IBM API packages provided by this feature
v com.ibm.json.java
v com.ibm.json.xml

550 WebSphere Application Server Liberty Core 8.5.5

JavaServer Faces 2.0
This feature enables support for web applications that use the Java Server Faces (JSF) framework. This
framework simplifies the construction of user interfaces.

Enabling this feature

To enable the JavaServer Faces 2.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>jsf-2.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the JavaServer Faces 2.0 feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.jsf-2.0; type="osgi.subsystem.feature"

Features that this feature enables
v beanValidation-1.0 - Bean Validation 1.0
v beanValidation-1.1 - Bean Validation 1.1
v jsp-2.2 - JavaServer Pages 2.2
v jsp-2.3 - JavaServer Pages 2.3
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1

Features that enable this feature
v webProfile-6.0 - Java EE Web Profile 6.0

Standard API packages provided by this feature
v javax.faces
v javax.faces.application
v javax.faces.bean
v javax.faces.component
v javax.faces.component.behavior
v javax.faces.component.html
v javax.faces.component.visit
v javax.faces.context
v javax.faces.convert
v javax.faces.el
v javax.faces.event
v javax.faces.lifecycle
v javax.faces.model
v javax.faces.render
v javax.faces.validator
v javax.faces.view
v javax.faces.view.facelets
v javax.faces.webapp
v javax.persistence

Chapter 1. WebSphere Application Server Liberty Core: Overview 551

Feature configuration elements

You can use the following elements in your server.xml file to configure the JavaServer Faces 2.0 feature:
v classloading
v transaction

JavaServer Faces 2.2
This feature enables support for web applications that use the Java Server Faces (JSF) 2.2 framework. This
framework simplifies the construction of user interfaces.

Enabling this feature

To enable the JavaServer Faces 2.2 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>jsf-2.2</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the JavaServer Faces 2.2 feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.jsf-2.2; type="osgi.subsystem.feature"

Features that this feature enables
v jsp-2.3 - JavaServer Pages 2.3
v servlet-3.1 - Java Servlets 3.1

Features that enable this feature
v webProfile-7.0 - Java EE Web Profile 7.0

Standard API packages provided by this feature
v javax.faces
v javax.faces.application
v javax.faces.bean
v javax.faces.component
v javax.faces.component.behavior
v javax.faces.component.html
v javax.faces.component.visit
v javax.faces.context
v javax.faces.convert
v javax.faces.el
v javax.faces.event
v javax.faces.flow
v javax.faces.flow.builder
v javax.faces.lifecycle
v javax.faces.model
v javax.faces.render
v javax.faces.validator
v javax.faces.view
v javax.faces.view.facelets

552 WebSphere Application Server Liberty Core 8.5.5

v javax.faces.webapp

JavaServer Pages 2.2
This feature enables support for Java Server Pages (JSPs) that are written to the JSP 2.2 specification. This
framework simplifies the construction of user interfaces.

Enabling this feature

To enable the JavaServer Pages 2.2 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>jsp-2.2</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the JavaServer Pages 2.2 feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.jsp-2.2; type="osgi.subsystem.feature"

Features that this feature enables
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1

Features that enable this feature
v adminCenter-1.0 - Admin Center
v jsf-2.0 - JavaServer Faces 2.0
v oauth-2.0 - OAuth
v openidConnectClient-1.0 - OpenID Connect Client
v openidConnectServer-1.0 - OpenID Connect Provider
v webCache-1.0 - Web Response Cache
v webProfile-6.0 - Java EE Web Profile 6.0

Standard API packages provided by this feature
v javax.el
v javax.servlet.jsp
v javax.servlet.jsp.el
v javax.servlet.jsp.jstl.core
v javax.servlet.jsp.jstl.fmt
v javax.servlet.jsp.jstl.sql
v javax.servlet.jsp.jstl.tlv
v javax.servlet.jsp.resources
v javax.servlet.jsp.tagext

SPI packages provided by this feature
v com.ibm.wsspi.jsp.taglib.config

Feature configuration elements

You can use the following elements in your server.xml file to configure the JavaServer Pages 2.2 feature:
v jspEngine

Chapter 1. WebSphere Application Server Liberty Core: Overview 553

JavaServer Pages 2.3
This feature enables support for Java Server Pages (JSPs) that are written to the JSP 2.3 specification. This
framework simplifies the construction of user interfaces. Enabling this feature also enables the Expression
Language (EL) version 3.0 feature.

Enabling this feature

To enable the JavaServer Pages 2.3 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>jsp-2.3</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the JavaServer Pages 2.3 feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.jsp-2.3; type="osgi.subsystem.feature"

Features that this feature enables
v el-3.0 - Expression Language 3.0
v servlet-3.1 - Java Servlets 3.1

Features that enable this feature
v adminCenter-1.0 - Admin Center
v jsf-2.0 - JavaServer Faces 2.0
v jsf-2.2 - JavaServer Faces 2.2
v oauth-2.0 - OAuth
v openidConnectClient-1.0 - OpenID Connect Client
v openidConnectServer-1.0 - OpenID Connect Provider
v webCache-1.0 - Web Response Cache
v webProfile-7.0 - Java EE Web Profile 7.0

Standard API packages provided by this feature
v javax.el
v javax.servlet.jsp
v javax.servlet.jsp.el
v javax.servlet.jsp.jstl.core
v javax.servlet.jsp.jstl.fmt
v javax.servlet.jsp.jstl.sql
v javax.servlet.jsp.jstl.tlv
v javax.servlet.jsp.tagext

SPI packages provided by this feature
v com.ibm.wsspi.jsp.taglib.config

Feature configuration elements

You can use the following elements in your server.xml file to configure the JavaServer Pages 2.3 feature:
v jspEngine

554 WebSphere Application Server Liberty Core 8.5.5

Job Manager Integration
This feature enables Liberty profile servers to automatically publish their status to the WebSphere
Application Server Job Managers. This feature is required for the Job Manager to discover server
instances that it did not start.

Enabling this feature

To enable the Job Manager Integration feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>serverStatus-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Job Manager Integration feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.serverStatus-1.0; type="osgi.subsystem.feature"

Kerberos Constrained Delegation for SPNEGO
This feature enables support for Kerberos constrained delegation for SPNEGO.

Enabling this feature

To enable the Kerberos Constrained Delegation for SPNEGO feature, add the following element
declaration inside the featureManager element in your server.xml file:
<feature>constrainedDelegation-1.0</feature>

Supported Java Versions
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Kerberos Constrained Delegation for SPNEGO
feature, include the following item in the Subsystem-Content header in the feature manifest file for your
new feature:
com.ibm.websphere.appserver.constrainedDelegation-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v appSecurity-2.0 - Application Security 2.0

IBM API packages provided by this feature
v com.ibm.websphere.security.s4u2proxy

Feature configuration elements

You can use the following elements in your server.xml file to configure the Kerberos Constrained
Delegation for SPNEGO feature:
v constrainedDelegation

Chapter 1. WebSphere Application Server Liberty Core: Overview 555

LDAP User Registry
This feature enables support for using an LDAP server as a user registry. Any server that supports LDAP
Version 3.0 may be used. Multiple LDAP registries can be configured, and then federated to achieve a
single logical registry view.

Enabling this feature

To enable the LDAP User Registry feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>ldapRegistry-3.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the LDAP User Registry feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.ldapRegistry-3.0; type="osgi.subsystem.feature"

Features that this feature enables
v federatedRegistry-1.0 - Federated User Registry

Features that enable this feature
v appSecurity-1.0 - Application Security 1.0
v oauth-2.0 - OAuth

Feature configuration elements

You can use the following elements in your server.xml file to configure the LDAP User Registry feature:
v activedLdapFilterProperties
v administrator-role
v classloading
v customLdapFilterProperties
v domino50LdapFilterProperties
v edirectoryLdapFilterProperties
v idsLdapFilterProperties
v iplanetLdapFilterProperties
v ldapRegistry
v library
v netscapeLdapFilterProperties
v securewayLdapFilterProperties

Logstash Collector 1.0
Logstash collector gathers data from various sources and forwards the data to a Logstash server using
Lumberjack protocol.

556 WebSphere Application Server Liberty Core 8.5.5

Enabling this feature

To enable the Logstash Collector 1.0 feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>logstashCollector-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Logstash Collector 1.0 feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.logstashCollector-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v ssl-1.0 - Secure Socket Layer

Feature configuration elements

You can use the following elements in your server.xml file to configure the Logstash Collector 1.0
feature:
v channelfw
v classloading
v httpAccessLogging
v httpDispatcher
v httpEncoding
v httpEndpoint
v httpOptions
v httpProxyRedirect
v logstashCollector
v mimeTypes
v tcpOptions
v virtualHost

Micro Profile 1.0
This feature combines the Liberty features that support the Micro Profile for enterprise Java.

Enabling this feature

To enable the Micro Profile 1.0 feature, add the following element declaration inside the featureManager
element in your server.xml file:
<feature>microProfile-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Micro Profile 1.0 feature, include the following item
in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.microProfile-1.0; type="osgi.subsystem.feature"

Chapter 1. WebSphere Application Server Liberty Core: Overview 557

Features that this feature enables
v cdi-1.2 - Contexts and Dependency Injection 1.2
v jaxrs-2.0 - Java RESTful Services 2.0
v jsonp-1.0 - JavaScript Object Notation Processing

OAuth
This feature enables web applications to integrate OAuth 2.0 for authenticating and authorizing users.

Enabling this feature

To enable the OAuth feature, add the following element declaration inside the featureManager element in
your server.xml file:
<feature>oauth-2.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the OAuth feature, include the following item in the
Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.oauth-2.0; type="osgi.subsystem.feature"

Features that this feature enables
v appSecurity-2.0 - Application Security 2.0
v distributedMap-1.0 - Distributed Map interface for Dynamic Caching
v json-1.0 - JavaScript Object Notation for Java
v jsp-2.2 - JavaServer Pages 2.2
v jsp-2.3 - JavaServer Pages 2.3
v ldapRegistry-3.0 - LDAP User Registry
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1
v ssl-1.0 - Secure Socket Layer

Features that enable this feature
v openidConnectClient-1.0 - OpenID Connect Client
v openidConnectServer-1.0 - OpenID Connect Provider

IBM API packages provided by this feature
v com.ibm.oauth.core.api.attributes
v com.ibm.oauth.core.api.config
v com.ibm.oauth.core.api.error
v com.ibm.oauth.core.api.error.oauth20
v com.ibm.oauth.core.api.oauth20.mediator
v com.ibm.websphere.security.oauth20
v com.ibm.websphere.security.openidconnect.token
v com.ibm.wsspi.security.oauth20.token

SPI packages provided by this feature
v com.ibm.wsspi.security.oauth20
v com.ibm.wsspi.security.openidconnect

558 WebSphere Application Server Liberty Core 8.5.5

Feature configuration elements

You can use the following elements in your server.xml file to configure the OAuth feature:
v administrator-role
v authCache
v authentication
v authorization-roles
v basicRegistry
v classloading
v jaasLoginContextEntry
v jaasLoginModule
v library
v ltpa
v oauth-roles
v oauthProvider
v quickStartSecurity
v trustAssociation

OSGi Application Integration
This feature adds local application-to-application integration for OSGi Applications.

Enabling this feature

To enable the OSGi Application Integration feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>osgiAppIntegration-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the OSGi Application Integration feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.ws.eba.app.integration-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v blueprint-1.0 - OSGi Blueprint

Feature configuration elements

You can use the following elements in your server.xml file to configure the OSGi Application Integration
feature:
v classloading
v transaction

Chapter 1. WebSphere Application Server Liberty Core: Overview 559

OSGi Blueprint
This feature enables support for deploying OSGi applications that use the OSGi blueprint container
specification. With the OSGi Applications support in WebSphere Application Server, you can develop and
deploy modular applications that use Java EE and OSGi technologies.

Enabling this feature

To enable the OSGi Blueprint feature, add the following element declaration inside the featureManager
element in your server.xml file:
<feature>blueprint-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the OSGi Blueprint feature, include the following item in
the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.blueprint-1.0; type="osgi.subsystem.feature"

Features that enable this feature
v osgi.jpa-1.0 - OSGi Java Persistence API
v osgiAppIntegration-1.0 - OSGi Application Integration
v wab-1.0 - OSGi Web Application Bundles

Standard API packages provided by this feature
v org.apache.aries.blueprint
v org.apache.aries.blueprint.ext
v org.apache.aries.blueprint.ext.evaluator
v org.apache.aries.blueprint.mutable
v org.apache.aries.blueprint.services
v org.apache.aries.blueprint.utils
v org.apache.aries.util
v org.osgi.framework
v org.osgi.framework.hooks.bundle
v org.osgi.framework.hooks.resolver
v org.osgi.framework.hooks.service
v org.osgi.framework.hooks.weaving
v org.osgi.framework.launch
v org.osgi.framework.namespace
v org.osgi.framework.startlevel
v org.osgi.framework.wiring
v org.osgi.resource
v org.osgi.service.blueprint
v org.osgi.service.blueprint.container
v org.osgi.service.blueprint.reflect
v org.osgi.service.component

560 WebSphere Application Server Liberty Core 8.5.5

v org.osgi.service.condpermadmin
v org.osgi.service.jndi
v org.osgi.service.packageadmin
v org.osgi.service.startlevel
v org.osgi.service.url
v org.osgi.util.tracker

Third party API packages provided by this feature
v org.apache.aries.transaction.exception

SPI packages provided by this feature
v org.apache.aries.blueprint
v org.apache.aries.blueprint.ext
v org.apache.aries.blueprint.ext.evaluator
v org.apache.aries.blueprint.mutable
v org.apache.aries.blueprint.services
v org.apache.aries.util
v org.osgi.service.cm
v org.osgi.service.subsystem

Feature configuration elements

You can use the following elements in your server.xml file to configure the OSGi Blueprint feature:
v application
v applicationManager
v applicationMonitor
v bundleRepository
v classloading
v javaPermission
v library
v osgiApplication
v osgiApplications
v osgiLibrary
v transaction

OSGi Bundle
This feature enables support for deploying OSGi applications. With the OSGi Applications support in
WebSphere Application Server, you can develop and deploy modular applications that use Java EE and
OSGi technologies.

Enabling this feature

To enable the OSGi Bundle feature, add the following element declaration inside the featureManager
element in your server.xml file:
<feature>osgiBundle-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7

Chapter 1. WebSphere Application Server Liberty Core: Overview 561

v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the OSGi Bundle feature, include the following item in
the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.osgiBundle-1.0; type="osgi.subsystem.feature"

Feature configuration elements

You can use the following elements in your server.xml file to configure the OSGi Bundle feature:
v application
v applicationManager
v applicationMonitor
v bundleRepository
v classloading
v javaPermission
v library
v osgiApplication
v osgiApplications
v osgiLibrary

OSGi Debug Console
This feature enables an OSGi console to aid debug of the runtime. It can be used to display information
about bundles, packages and services which may be useful when developing your own features for
product extensions.

Enabling this feature

To enable the OSGi Debug Console feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>osgiConsole-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the OSGi Debug Console feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.osgiConsole-1.0; type="osgi.subsystem.feature"

OSGi Http Whiteboard
This feature enables deploying modular Web applications written using Servlet technologies and the
OSGi HTTP Whiteboard specification.

Enabling this feature

To enable the OSGi Http Whiteboard feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>httpWhiteboard-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the OSGi Http Whiteboard feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:

562 WebSphere Application Server Liberty Core 8.5.5

com.ibm.websphere.appserver.httpWhiteboard-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1

Standard API packages provided by this feature
v org.osgi.service.http
v org.osgi.service.http.context
v org.osgi.service.http.whiteboard

Feature configuration elements

You can use the following elements in your server.xml file to configure the OSGi Http Whiteboard
feature:
v channelfw
v classloading
v httpAccessLogging
v httpDispatcher
v httpEncoding
v httpEndpoint
v httpOptions
v httpProxyRedirect
v httpWhiteboard
v mimeTypes
v tcpOptions
v virtualHost

OSGi Java Persistence API
This feature is superseded by the blueprint-1.0 and jpa-2.0 features. When those features are both added
to the server, this feature is added automatically.

Enabling this feature

To enable the OSGi Java Persistence API feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>osgi.jpa-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the OSGi Java Persistence API feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.osgi.jpa-1.0; type="osgi.subsystem.feature"

Features that this feature is superseded by
v blueprint-1.0 - OSGi Blueprint
v jpa-2.0 - Java Persistence API 2.0

Features that this feature enables
v beanValidation-1.0 - Bean Validation 1.0
v beanValidation-1.1 - Bean Validation 1.1

Chapter 1. WebSphere Application Server Liberty Core: Overview 563

v blueprint-1.0 - OSGi Blueprint
v jdbc-4.0 - Java Database Connectivity 4.0
v jdbc-4.1 - Java Database Connectivity 4.1
v jndi-1.0 - Java Naming and Directory Interface
v jpa-2.0 - Java Persistence API 2.0
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1

Feature configuration elements

You can use the following elements in your server.xml file to configure the OSGi Java Persistence API
feature:
v classloading
v transaction

OSGi Web Application Bundles
This feature enables OSGi applications that contain Web Application Bundles (WABs). Web application
bundles are OSGi bundles that are internally structured in the same way as a war file and support the
same web components.

Enabling this feature

To enable the OSGi Web Application Bundles feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>wab-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the OSGi Web Application Bundles feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.wab-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v blueprint-1.0 - OSGi Blueprint
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1

Feature configuration elements

You can use the following elements in your server.xml file to configure the OSGi Web Application
Bundles feature:
v classloading
v transaction

OpenID
This feature enables web applications to integrate OpenID 2.0 for authenticating users instead of, or in
addition to, the configured user registry.

Enabling this feature

To enable the OpenID feature, add the following element declaration inside the featureManager element
in your server.xml file:

564 WebSphere Application Server Liberty Core 8.5.5

<feature>openid-2.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the OpenID feature, include the following item in the
Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.openid-2.0; type="osgi.subsystem.feature"

Features that this feature enables
v appSecurity-2.0 - Application Security 2.0
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1

Feature configuration elements

You can use the following elements in your server.xml file to configure the OpenID feature:
v authFilter
v openId
v userInfo

OpenID Connect Client
This feature enables web applications to integrate OpenID Connect Client 1.0 for authenticating users
instead of, or in addition to, the configured user registry.

Enabling this feature

To enable the OpenID Connect Client feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>openidConnectClient-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the OpenID Connect Client feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.openidConnectClient-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v distributedMap-1.0 - Distributed Map interface for Dynamic Caching
v jsp-2.2 - JavaServer Pages 2.2
v jsp-2.3 - JavaServer Pages 2.3
v oauth-2.0 - OAuth
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1
v ssl-1.0 - Secure Socket Layer

IBM API packages provided by this feature
v com.ibm.websphere.security.openidconnect

Feature configuration elements

You can use the following elements in your server.xml file to configure the OpenID Connect Client
feature:

Chapter 1. WebSphere Application Server Liberty Core: Overview 565

v administrator-role
v authCache
v authFilter
v authentication
v authorization-roles
v basicRegistry
v classloading
v jaasLoginContextEntry
v jaasLoginModule
v library
v ltpa
v openidConnectClient
v quickStartSecurity
v trustAssociation

OpenID Connect Provider
This feature enables web applications to integrate OpenID Connect Server 1.0 for authenticating users
instead of, or in addition to, the configured user registry.

Enabling this feature

To enable the OpenID Connect Provider feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>openidConnectServer-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the OpenID Connect Provider feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.openidConnectServer-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v jsp-2.2 - JavaServer Pages 2.2
v jsp-2.3 - JavaServer Pages 2.3
v oauth-2.0 - OAuth
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1

IBM API packages provided by this feature
v com.ibm.websphere.security.openidconnect

Feature configuration elements

You can use the following elements in your server.xml file to configure the OpenID Connect Provider
feature:
v openidConnectProvider

Performance Monitoring
This feature enables the Performance Monitoring Infrastructure (PMI) for other features the server is
running. Monitoring data is accessible through standard MXBeans; access through the traditional
WebSphere Perf MBean can be enabled.

566 WebSphere Application Server Liberty Core 8.5.5

Enabling this feature

To enable the Performance Monitoring feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>monitor-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Performance Monitoring feature, include the
following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.monitor-1.0; type="osgi.subsystem.feature"

IBM API packages provided by this feature
v com.ibm.websphere.monitor.jmx

Feature configuration elements

You can use the following elements in your server.xml file to configure the Performance Monitoring
feature:
v classloading
v monitor

Request Timing
Provides warnings and diagnostic info for slow or hung requests.

Enabling this feature

To enable the Request Timing feature, add the following element declaration inside the featureManager
element in your server.xml file:
<feature>requestTiming-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Request Timing feature, include the following item in
the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.requestTiming-1.0; type="osgi.subsystem.feature"

Feature configuration elements

You can use the following elements in your server.xml file to configure the Request Timing feature:
v requestTiming

Chapter 1. WebSphere Application Server Liberty Core: Overview 567

SAML web single sign-on version 2.0
This feature enables web applications to use SAML web single sign-on version 2.0 function.

Enabling this feature

To enable the SAML web single sign-on version 2.0 feature, add the following element declaration inside
the featureManager element in your server.xml file:
<feature>samlWeb-2.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the SAML web single sign-on version 2.0 feature, include
the following item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.samlWeb-2.0; type="osgi.subsystem.feature"

Features that this feature enables
v appSecurity-2.0 - Application Security 2.0
v distributedMap-1.0 - Distributed Map interface for Dynamic Caching
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1
v ssl-1.0 - Secure Socket Layer

Feature configuration elements

You can use the following elements in your server.xml file to configure the SAML web single sign-on
version 2.0 feature:
v administrator-role
v authCache
v authFilter
v authentication
v authorization-roles
v basicRegistry
v classloading
v jaasLoginContextEntry
v jaasLoginModule
v library
v ltpa
v quickStartSecurity
v samlWebSso20
v trustAssociation

Secure Socket Layer
This feature enables support for Secure Sockets Layer (SSL) connections. The secure HTTPS listener is not
started unless the ssl-1.0 feature is enabled and a keystore is configured.

Enabling this feature

To enable the Secure Socket Layer feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>ssl-1.0</feature>

568 WebSphere Application Server Liberty Core 8.5.5

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Secure Socket Layer feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.ssl-1.0; type="osgi.subsystem.feature"

Features that enable this feature
v adminCenter-1.0 - Admin Center
v apiDiscovery-1.0 - API Discovery 1.0
v appSecurity-2.0 - Application Security 2.0
v federatedRegistry-1.0 - Federated User Registry
v logstashCollector-1.0 - Logstash Collector 1.0
v oauth-2.0 - OAuth
v openidConnectClient-1.0 - OpenID Connect Client
v restConnector-1.0 - JMX REST Connector 1.0
v restConnector-2.0 - JMX REST Connector 2.0
v samlWeb-2.0 - SAML web single sign-on version 2.0
v scim-1.0 - System for Cross-domain Identity Management

IBM API packages provided by this feature
v com.ibm.websphere.ssl

SPI packages provided by this feature
v com.ibm.wsspi.ssl

Feature configuration elements

You can use the following elements in your server.xml file to configure the Secure Socket Layer feature:
v channelfw
v keyStore
v ssl
v sslDefault
v sslOptions
v tcpOptions

Simple and Protected GSSAPI Negotiation Mechanism
This feature enables web applications to integrate SPNEGO 1.0 for authenticating users instead of, or in
addition to, the configured user registry.

Enabling this feature

To enable the Simple and Protected GSSAPI Negotiation Mechanism feature, add the following element
declaration inside the featureManager element in your server.xml file:
<feature>spnego-1.0</feature>

Chapter 1. WebSphere Application Server Liberty Core: Overview 569

Developing a feature that depends on this feature

If you are developing a feature that depends on the Simple and Protected GSSAPI Negotiation
Mechanism feature, include the following item in the Subsystem-Content header in the feature manifest
file for your new feature:
com.ibm.websphere.appserver.spnego-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v appSecurity-2.0 - Application Security 2.0
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1

Feature configuration elements

You can use the following elements in your server.xml file to configure the Simple and Protected GSSAPI
Negotiation Mechanism feature:
v authFilter
v spnego

System for Cross-domain Identity Management
This feature enables support for invoking User Management API using SCIM REST Services.

Enabling this feature

To enable the System for Cross-domain Identity Management feature, add the following element
declaration inside the featureManager element in your server.xml file:
<feature>scim-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the System for Cross-domain Identity Management
feature, include the following item in the Subsystem-Content header in the feature manifest file for your
new feature:
com.ibm.websphere.appserver.scim-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v distributedMap-1.0 - Distributed Map interface for Dynamic Caching
v federatedRegistry-1.0 - Federated User Registry
v json-1.0 - JavaScript Object Notation for Java
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1
v ssl-1.0 - Secure Socket Layer

Feature configuration elements

You can use the following elements in your server.xml file to configure the System for Cross-domain
Identity Management feature:
v administrator-role
v authCache
v authentication
v authorization-roles
v basicRegistry

570 WebSphere Application Server Liberty Core 8.5.5

v channelfw
v classloading
v httpAccessLogging
v httpDispatcher
v httpEncoding
v httpEndpoint
v httpOptions
v httpProxyRedirect
v jaasLoginContextEntry
v jaasLoginModule
v library
v ltpa
v mimeTypes
v quickStartSecurity
v tcpOptions
v trustAssociation
v virtualHost

Timed Operations
This feature enables support for logging warnings when certain operations in the application server are
running more slowly than expected.

Enabling this feature

To enable the Timed Operations feature, add the following element declaration inside the featureManager
element in your server.xml file:
<feature>timedOperations-1.0</feature>

Supported Java Versions
v JavaSE-1.6
v JavaSE-1.7
v JavaSE-1.8

Developing a feature that depends on this feature

If you are developing a feature that depends on the Timed Operations feature, include the following item
in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.timedOperations-1.0; type="osgi.subsystem.feature"

SPI packages provided by this feature
v com.ibm.wsspi.timedoperations

Feature configuration elements

You can use the following elements in your server.xml file to configure the Timed Operations feature:
v timedOperation

Web Response Cache
This feature enables local caching for web responses. It includes the distributedMap feature and performs
automatic caching of web application responses to improve response times and throughput. Applications

Chapter 1. WebSphere Application Server Liberty Core: Overview 571

can include a cache-spec.xml file to customize the response caching. The cache may be distributed
through addition of a network cache provider such as WebSphere eXtreme Scale.

Enabling this feature

To enable the Web Response Cache feature, add the following element declaration inside the
featureManager element in your server.xml file:
<feature>webCache-1.0</feature>

Developing a feature that depends on this feature

If you are developing a feature that depends on the Web Response Cache feature, include the following
item in the Subsystem-Content header in the feature manifest file for your new feature:
com.ibm.websphere.appserver.webCache-1.0; type="osgi.subsystem.feature"

Features that this feature enables
v distributedMap-1.0 - Distributed Map interface for Dynamic Caching
v jsp-2.2 - JavaServer Pages 2.2
v jsp-2.3 - JavaServer Pages 2.3
v servlet-3.0 - Java Servlets 3.0
v servlet-3.1 - Java Servlets 3.1

IBM API packages provided by this feature
v com.ibm.websphere.command
v com.ibm.websphere.command.web
v com.ibm.websphere.servlet.cache

SPI packages provided by this feature
v com.ibm.wsspi.cache.web

Liberty Kernel
The kernel

IBM API packages provided by this feature
v com.ibm.websphere.config.mbeans
v com.ibm.websphere.logging
v com.ibm.websphere.logging.hpel
v com.ibm.websphere.logging.hpel.reader
v com.ibm.websphere.logging.hpel.reader.filters
v com.ibm.websphere.logging.hpel.writer

SPI packages provided by this feature
v com.ibm.websphere.crypto
v com.ibm.websphere.ras
v com.ibm.websphere.ras
v com.ibm.websphere.ras.annotation
v com.ibm.websphere.ras.annotation
v com.ibm.ws.ffdc
v com.ibm.ws.ffdc

572 WebSphere Application Server Liberty Core 8.5.5

v com.ibm.wsspi.config
v com.ibm.wsspi.kernel.filemonitor
v com.ibm.wsspi.kernel.service.location
v com.ibm.wsspi.kernel.service.utils
v com.ibm.wsspi.logging
v com.ibm.wsspi.logging
v com.ibm.wsspi.security.crypto
v com.ibm.wsspi.threading
v org.eclipse.equinox.log
v org.eclipse.osgi.framework.console
v org.eclipse.osgi.framework.eventmgr
v org.eclipse.osgi.framework.log
v org.eclipse.osgi.service.datalocation
v org.eclipse.osgi.service.debug
v org.eclipse.osgi.service.environment
v org.eclipse.osgi.service.localization
v org.eclipse.osgi.service.resolver
v org.eclipse.osgi.service.runnable
v org.eclipse.osgi.service.security
v org.eclipse.osgi.service.urlconversion
v org.eclipse.osgi.signedcontent
v org.eclipse.osgi.storagemanager
v org.eclipse.osgi.util
v org.osgi.service.cm
v org.osgi.service.component
v org.osgi.service.coordinator
v org.osgi.service.event
v org.osgi.service.log
v org.osgi.service.metatype

Feature configuration elements

You can use the following elements in your server.xml file to configure the Liberty Kernel feature:
v config
v executor
v featureManager
v fileset
v include
v logging
v variable
v zosLogging

Liberty Repository

Chapter 1. WebSphere Application Server Liberty Core: Overview 573

The Liberty Repository provides an online mechanism to deliver Liberty and additional content, enabling
a single point of access for various asset types. The Liberty Repository provides early access to supported
new content, including new product capabilities, when they are delivered, rather than waiting for a new
release.

The Liberty Repository also enables fast and simple integration with open source, more refined access to
runtime capabilities, and quick access to configuration and administration resources for developers and
operations teams.

Important: Product documentation that is marked with the

icon indicates information about assets
that are available only from the Liberty Repository.

Assets

Asset types available from the Liberty Repository are as follows:

Addons
Artifacts that are packaged to add new capabilities over an existing Liberty installation.

Admin Scripts
Sample scripts for common Liberty administrative tasks.

Config Snippets
Samples of Liberty server configurations for specific tasks.

Features
Individual units of server functionality that can be installed into the Liberty runtime
environment.

Open Source Integration
Artifacts that provide simple Liberty integration with commonly used open source projects.

Products
Simple archive installation packages of the Liberty server runtime environment.

Product Samples
Sample server applications that demonstrate the use of Liberty runtime capabilities.

Tools Tools to enable development and test of Liberty-based applications and runtime extensions.

Features

The Liberty Repository enables immediate access to fully supported and production-ready features,
without the need to wait for new product releases. The features that you add inherit the same support as
your existing installation. For a full list of features that are available from the Liberty Repository, see
“Liberty features” on page 483.

8.5.5.6

Offline access to Liberty Repository assets

In addition to accessing assets in the public, online Liberty Repository, you can create the following types
of repositories to enable on-premises or offline access to Liberty Repository assets:

Liberty Asset Repository Service
An open-source service that you can use to create an on-premises repository that is remotely
accessible behind the firewall of an enterprise. To get started with the service, see the
WASdev/tool.lars project on GitHub.

Local directory-based repository
Local directory-based repositories that you create when you download assets by using the

574 WebSphere Application Server Liberty Core 8.5.5

https://github.com/WASdev/tool.lars

installUtility download command. For more information about the command, see
“Downloading assets using the installUtility command” on page 860.

You can populate these repositories with your own customized content or download Liberty Repository
assets by using the installUtility download command. As an alternative to downloading individual
assets, you can download and extract a wlp-featureRepo-<version>.zip file from IBM Fix Central. The
.zip file contains a directory-based repository of all features and addons for the particular fix pack of the
Liberty. After you populate the repositories, you can install assets from them by using IBM Installation
Manager or the installUtility install command.

8.5.5.8

For Version 8.5.5.8 and later, you can use Installation Manager and the installUtility

command to work with repository assets in an archive file. You can access assets directly from the
wlp-featureRepo-<version>.zip file and your own compressed directory-based repositories without
extracting the archives.

Ways to access the Liberty Repository

You can access the Liberty Repository in the following ways:

WASdev.net website
You can access the Liberty Repository from the Downloads page on WASdev.net, an IBM
developerWorks® website for Java application developers. You can browse and download content,
filter by asset type, filter by product edition, and search on asset title, description, or edition.

Click any asset from the results of your search, filters, or both to take you to the asset details
page. The asset details page provides an asset summary, a description of the asset, installation
instructions, and configuration instructions. Links to related assets are also included with
compatibility information.

Developer tools
The Liberty Repository is integrated in developer tools. These tools allow:
v Installation of the server runtime environment from an archive
v Installation of additional content, including features, samples and open source integrations
v Post-installation content
v Runtime and feature dependency awareness, searching and filtering, and configuration snippet

inclusion

Installers
Assets can be installed from the Liberty Repository by using IBM Installation Manager and
command-line utilities.
v IBM Installation Manager: If you have IBM Installation Manager installed, you can download

and install assets from the Liberty Repository when you install IBM WebSphere Application
Server V8.5.5.2 Liberty or later, or upgrade from a previous version of Liberty. In Version
8.5.5.6 or later, you can also install assets from a local directory-based repository or an instance
of the Liberty Asset Repository Service.

v Command-line utilities:
– 8.5.5.6

installUtility: Find, obtain information about, and install assets that are in a

local directory-based repository, an instance of the Liberty Asset Repository Service, or the
public Liberty Repository.

– featureManager: Install a feature from the public Liberty Repository and obtain details of
features that are already installed.

For more information on the different methods available for installing Liberty Repository assets, see
“Installing Liberty Repository assets” on page 852.

Chapter 1. WebSphere Application Server Liberty Core: Overview 575

http://www.ibm.com/support/fixcentral/swg/selectFixes?parent=ibm~WebSphere&product=ibm/WebSphere/WebSphere+Application+Server&release=All&platform=All&function=fixId&fixids=wlp-featureRepo-8.5.5*&includeSupersedes=0
https://www.ibmdw.net/wasdev/downloads/

To access the IBM WebSphere Liberty Repository with limited internet access or through a firewall,
ensure that you have access to the following hosts and ports:
v public.dhe.ibm.com on port 443
v asset-websphere.ibm.com on port 443

Shared libraries
Shared libraries are files used by multiple applications. You can use shared libraries and global libraries
to reduce the number of duplicate library files on your system.

Library elements

Liberty libraries have three elements; <folder>, <file>, and <fileset>. For example:
<library>

<folder dir="..." />
<file name="..." />
<fileset dir="..." includes="*.jar" scanInterval="5s" />

</library>

A specified file must be a container for the resource (for example a JAR file) rather than the resource
itself.

If an element in the list is a file, the contents of that JAR or compressed .zip file are searched. If a folder
is specified then resources are loaded from that directory.

Global libraries

Global libraries can be used by any application. JAR files are placed in a global library directory, and then
are specified in the class loader configuration for each application.

You can place global libraries in two locations:
v ${shared.config.dir}/lib/global

v ${server.config.dir}/lib/global

If there are files present in these locations at the time an application is started, and that application does
not have a <classloader> element configured, the application uses these libraries. If a class loader
configuration is present, these libraries are not used unless the global library is explicitly referenced.

For more information, see “Providing global libraries for all Java EE applications” on page 978.

Resource files

Within Liberty libraries, you can have resource files defined in the library element. For example,
<library>

<folder dir="..." />
<file name="..." />
<fileset dir="..." includes="*.jar" scanInterval="5s" />
<folder dir="${server.config.dir}/mylibs" />
<file name="${server.config.dir}/otherlibs/my.jar" />

</library>

The folder setting in the previous example, allows all files under the mylibs directory to be available on
the classpath. You can use this style of entry to have your .xml and .properties available.

Library elements

Liberty libraries have three child elements, <folder>, <file> and <fileset>. For example,

576 WebSphere Application Server Liberty Core 8.5.5

<library>
<folder dir="..." />
<file name="..." />
<fileset dir="..." includes="*.jar" scanInterval="5s" />

</library>

v <folder>: All resources under each configured folder will be loadable
v <file>: Each configured file should be either a native library or a container for resources (such as a

JAR or a ZIP file). All resources within a container are loadable and any other filetype that is specified
will have no effect.

v <fileset>: Each configured fileset is effectively a collection of files. Each file in the fileset should be a
native library or a container for resources (such as a JAR or a ZIP file). All resources within a container
are loadable and any other filetype that is specified will have no effect.

For example,
<library id="someLibrary">

<!-- Location of XML and .properties files in the file system for easy editing -->
<folder dir="${server.config.dir}/editableConfig" />

<!-- Location of some classes and resources in the file system -->
<folder dir="${server.config.dir}/extraStuff" />

<!-- A zip file containing some resources -->
<file name="${server.config.dir}/lib/someResources.zip" />

<!-- All the jar files in ther servers lib folder -->
<fileset dir="${server.config.dir}/lib" includes="*.jar" scanInterval="5s" />

</library>

<application location ="webStore.war">
<classloader commonLibraryRef="someLibrary" />

</application>

The configuration snippet in the previous example, allows all resources under the editableConfig
directory to be loaded by the webStore application.

Product extension
You can expand the capability of Liberty by writing product extensions.

You can write your own Liberty features and install them onto an existing Liberty server, or you can
package them for delivery to your users.

Liberty provides various System Programming Interfaces (SPIs) that you can use to extend the runtime
environment; you can also use more advanced features such as operating the Liberty server from your
Java applications programmatically.

Product extension

A product extension is a directory on disk that is structured like the Liberty installation directory,
${wlp.install.dir}. It is defined to the Liberty installation through a file in the ${wlp.install.dir}/etc/
extensions directory called extension-name.properties. The contents of the product extension directory
are then used to extend Liberty. Multiple product extensions can be installed together but they must have
unique names; this is enforced through the naming of the properties files. The default product extension
location, ${wlp.user.dir}/extension, does not require a properties file; content under this location is
automatically detected and is known to the runtime as the “usr” product extension.

Product extensions usually contain one or more Liberty features but can have any content that extends
the Liberty environment, for example scripts or resources.

Chapter 1. WebSphere Application Server Liberty Core: Overview 577

Best practice: Install your product extensions into directories that are not affected by updates to the
Liberty environment. For more information, see “What might be modified by applying service or an
upgrade?” on page 15.

The product extension file has the following properties:
com.ibm.websphere.productId=your_product_id
com.ibm.websphere.productInstall=absolute_or_relative_file_path

Note: When a relative file path is used, it must be a peer of the ${wlp.install.dir} value.

For example:
com.ibm.websphere.productId=org.acme.supergui
com.ibm.websphere.productInstall=supergui/wlp-ext

Feature

A Liberty feature consists of a definition file (feature manifest), and a collection of OSGi bundles that
provide classes and services corresponding to a particular capability in the Liberty runtime environment.

Scenarios for using a Liberty feature instead of a regular application

Implementing a function as a Liberty feature instead of as an application might be appropriate in a
number of scenarios. The following list describes some of the benefits of using a feature:
v Features are controlled through feature manager configuration, so they are separate from user

application management.
v Feature code has access to the Liberty SPI, which allows deeper integration with the runtime

environment.

Figure 5.

578 WebSphere Application Server Liberty Core 8.5.5

v Features can receive user-specified configuration from the server.xml file, and expose their
configuration settings in the development tools without the tools having to be changed.

v Features can easily expose classes and services to each other and to user applications.
v Features can be extremely lightweight with no application container dependencies.
v Features can be used to augment a particular programming model. For example, a User Feature can

add support for custom Blueprint namespace handlers or Blueprint annotations to the OSGi
Application programming model.

Note: Features cannot generally be directly portable to other application servers; if portability is
important you should use specification-compliant applications.

Developing a simple feature

See “Developing a Liberty feature manually” on page 1095, “Creating a Liberty feature by using
developer tools” on page 1106, and “Liberty feature manifest files” on page 1097.

Using a feature in the server

To use a user-written feature in the Liberty server, you must install it into a product extension directory.
This might be the predefined “user product extension” location or an extension that is located outside the
Liberty installation directory. Then you can add the feature name into the server configuration.

The user product extension is a predefined directory where the server looks for additional features. The
feature definition .mf file must be copied into the ${wlp.user.dir}/extension/lib/features directory
and the bundle .jar files must be copied into the ${wlp.user.dir}/extension/lib directory.

User-written features are added to the server configuration in the same way as product features. To avoid
name clashes with features from different providers, features that are part of a product extension must be
prefixed with the extension name. For features in the usr/extension/lib directory, the default prefix is
usr:.

For example, if you have installed a feature called simple-1.0 into the ${wlp.user.dir}/extension/lib
directory, you must configure that feature into the server.xml as follows:
<featureManager>

<feature>usr:simple-1.0</feature>
</featureManager>

If you have installed a feature called myFeature into your own location, and defined a product extension
in the ${wlp.install.dir}/etc/extensions/myExt.properties file, you must configure that feature into
the server.xml file as follows:
<featureManager>

<feature>myExt:myFeature</feature>
</featureManager>

When you start the server, the feature is detected by the feature manager and the bundles are installed
into the OSGi framework and started.

See also “Adding and removing Liberty features” on page 968 and “Feature management” on page 482.

Programmatically using a feature from applications

Features can expose classes and services to applications.

To expose Java classes for application use, you must list the class packages in the IBM-API-Package header
in the feature manifest. Listing the class packages in the IBM-API-Package header makes the classes visible

Chapter 1. WebSphere Application Server Liberty Core: Overview 579

to the application class loaders. Visibility of API packages can be controlled through the API visibility
type. See “Specifying API and SPI packages for a Liberty feature project” on page 1107.

To allow services to be used by OSGi applications, you must list them in the IBM-API-Service header in
the feature manifest. A feature provides OSGi services so that you can refer to those services
programmatically from your applications.

Services should generally be registered into the OSGi Service Registry (SR) to allow applications (or other
features) to locate them. OSGi applications and other features can perform a direct lookup from the SR,
or can use capabilities such as Blueprint or OSGi Declarative Services to inject their service dependencies.
Java EE applications are more likely to locate services through JNDI; in Liberty there is a federation of
the SR and JNDI that allows Java EE applications to use JNDI to locate services in the SR. For more
information, see “Working with the OSGi service registry” on page 1112.

Exposing a feature as a web application

To expose a Liberty feature as a web application, you can publish the OSGi bundles in the feature as web
application bundles (WABs). In addition to the OSGi headers that a bundle requires, you can specify the
web application context path by using the Web-ContextPath header.

For example:
Web-ContextPath: myWABapp
Bundle-ClassPath: WEB-INF/classes

Configuration injection and processing

A major benefit of using features is that they can be easily configured by the user in the server.xml file
(and included files). The configuration files are monitored and parsed by the Liberty profile kernel and
the resulting sets of properties can be injected into the relevant component each time they change.

Liberty configuration is managed by the OSGi Configuration Admin (CA) service in the kernel and can
be accessed according to that specification. Sets of configuration properties are identified by a persisted
identity (PID) that is used to associate the element in the server.xml file with the component that
registers to receive the properties.

For example, if you register your feature with the CA service using a PID of com.acme.console, a user can
specify the following configuration in the server.xml file:
<com.acme.console color="blue" size="17"/>

And your feature will receive the properties:
v color="blue"

v size="17"

You can optionally provide metadata that describes your configuration properties by using OSGi
Metatype descriptors. The use of descriptors causes your configuration metadata to be included in the
configuration schema that is generated by Liberty and is used by the Developer Tools, so your
configuration properties are automatically presented to application developers as they configure their
server.

For more details on receiving and describing configuration properties, see “Enabling a service to receive
configuration data” on page 1118.

580 WebSphere Application Server Liberty Core 8.5.5

Declarative Services in the Liberty

Larger or more complex features often benefit from the use of OSGi Declarative Services (DS) to enable
the feature to be composed of multiple services, and to manage the injection of dependencies and
configuration properties. The use of DS allows lazy activation of services, deferring the loading of Java
classes until the service is used, and ordering the activation of services based on dependencies. Most of
the features in the Liberty product are managed by DS.

See also “Composing advanced features by using OSGi Declarative Services” on page 1116.

Security
Liberty security provides protection for web resources in accordance with the Servlet 3.0 specification and
EJB resources in accordance with the ejbLite 3.1 specification. The Liberty security also provides
protection for the JMX connections when you are using the REST connector.

The following diagram shows a typical security process involved when accessing a protected web
resource. To make the security process work, you must configure the appropriate security features and
the configurations that are required for the authentication and authorization.

1. An HTTP client requests a web resource in the WebContainer.
2. The WebContainer delegates the security check to the WebSecurity Collaborator.
3. The WebSecurity Collaborator prompts the user to enter credentials if absent, and uses the

Authentication service to authenticate the user.
4. The Authentication service authenticates, creates, and returns the subject if authenticated successfully.

Otherwise, the Authentication service reports an exception for the authentication failure.
5. The WebSecurity Collaborator uses the Authorization service to perform a user authorization check.
6. The Authorization service returns the authorization result to the WebSecurity Collaborator.
7. The WebSecurity Collaborator returns the result of the security check about whether the user is

authorized.
8. The WebContainer serves or rejects the requested resource.

2

1

7

8

36

45

WebContainer

WebSecurity

Collaborator

Authentication

service

Authorization

service

Browser/HTTP client

Figure 6. Typical security flow for web resources

Chapter 1. WebSphere Application Server Liberty Core: Overview 581

The following sections provides a summary of the primary security components in Liberty:
v “Quick start”
v “Authentication”
v “Authorization”
v “Secure Socket Layer (SSL)”
v “Single Sign-On (SSO)”
v “Web security-related properties” on page 583
v “Security public APIs” on page 583
v “Management security” on page 583
v “Authentication aliases” on page 583
v “Configuration examples and samples” on page 583
v “Security compatibility and differences” on page 583
v “Configuring Lightweight Directory Access Protocol (LDAP)” on page 583
v “Troubleshooting” on page 584

v Distributed operating systems “Tools” on page 584

Quick start

With the quickStartSecurity element, you can configure a single user security environment in Liberty.
See “Quick overview of security” on page 584 for details of how the security workflow is when you use
the quickStartSecurity element, and “Getting started with security in Liberty” on page 1147 for a
sample task.

Authentication

Authentication confirms the identity of a user. The most common form of authentication is user name
and password, such as through either basic authentication or form login for web applications. When a
user is authenticated, the source of a request is represented as a Subject object at the run time. This
process involves performing access control checks when a user accesses a resource, based on the
authorization rules configured for the resource. See “Authentication” on page 585 for more concepts and
“Authenticating users in Liberty” on page 1168 for detailed tasks.

Authorization

Authorization determines whether to grant a user access to resources within the system. The Java EE
model uses subjects, resources, and roles to determine what can and cannot be allowed. This process
involves checking the user credentials such as the user ID and password, certificates, and tokens, and
creating a subject based on the authenticated user. See “Authorization” on page 606 for more concepts
and “Authorizing access to resources in Liberty” on page 1254 for detailed tasks.

Secure Socket Layer (SSL)

SSL provides transport level security. See “Enabling SSL communication in Liberty” on page 1152 for
detailed tasks.

Single Sign-On (SSO)

SSO enables access to applications without the user being prompted to login multiple times. See Concept
of SSO for more details and “Customizing SSO configuration using LTPA cookies in Liberty” on page
1203 for the detailed task.

582 WebSphere Application Server Liberty Core 8.5.5

Web security-related properties

There are many configuration properties that you can configure as part of web security, such as SSO and
client certificate authentication, for your applications. See **** MISSING FILE **** for available attributes
and see “Configuring web security related properties in Liberty” on page 1297 for some examples.

Security public APIs

Liberty contains public APIs that you can use to implement security functions. The security public APIs
in Liberty are a subset of the traditional security public APIs. The main classes are WSSecurityHelper,
WSSubject, and RegistryHelper. These classes contain a subset of the methods that are available in the
WebSphere Application Server traditional versions. There is also a new class WebSecurityHelper. See
“Security public APIs” on page 611.

The Java API documentation for each Liberty API is detailed in the Programming Interfaces (APIs)
section of the documentation, and is also available as a separate .zip file in one of the javadoc
subdirectories of the ${wlp.install.dir}/dev directory.

See “Developing extensions to the Liberty security infrastructure” on page 1301 for some examples.

Management security

Management security means that you can manage Liberty by using a remote JMX client. To secure remote
connections using the REST connector, see “Connecting to Liberty by using JMX” on page 1021. You can
also develop your own JMX client application as described in “Developing a JMX Java client for Liberty”
on page 1024.

Authentication aliases

Authentication data aliases provide the security support for database connectivity. See “Configuring
authentication aliases for Liberty” on page 1300.

Configuration examples and samples

There are several security configuration examples on the WASdev.net website for reference when
configuring security for your applications on Liberty.

Security compatibility and differences

You can learn about the main differences in the security capability between the traditional and Liberty.
See “Configuration differences between the traditional and Liberty: security” on page 615.

Configuring Lightweight Directory Access Protocol (LDAP)

After selecting the LDAP User Registry item to add to the server configuration, the LDAP User Registry
Details panel will display a list for the supported LDAP server types. If you select a supported LDAP
server type, the LDAP filters associated with the selected LDAP server type will not automatically
pre-populated.

Each of the supported LDAP server types has a default set of filters defined. After the LDAP User
Registry item and server type has been added, the associated LDAP filters can be configured by selecting
the LDAP User Registry configuration and adding the required LDAP filter:
v Active Directory LDAP filters
v Custom LDAP filters
v Domino LDAP filters

Chapter 1. WebSphere Application Server Liberty Core: Overview 583

v eDirectory LDAP filters
v IBM Directory Server LDAP filters
v iPlanet LDAP filters
v Netscape LDAP filters
v SecureWay LDAP filters

Selecting any of the LDAP filters will display the default values for the filter types:
v user filter
v group filter
v user ID map
v group ID map
v group member ID map

If the default filters are used, the server.xml file is not updated with any filter information. If any of the
filters are changed, only the changed filter types will be updated in the server.xml.

Note: If you do not specify or select a reference ID using the Browse button, the default filters associated
with selected LDAP server type will be used.

Alternatively, you can add an LDAP filter to the server configuration. An ID must be specified to
associate the reference to this particular filter configuration, in order to associate it with the LDAP User
Registry configuration. If this method of configuring the LDAP filters is used, the reference ID will then
be selected on the LDAP User Registry Details panel (located using the Browse button under the
respective LDAP filter type).

If you are using Eclipse-based developer tools to configure LDAP, verify the configuration saved against
the samples in wlp/templates/config/ldapRegistry.xml.

For more information, see “Configuring LDAP user registries in Liberty” on page 1169.

Troubleshooting

Use the troubleshooting information to solve security-related problems when you use Liberty. See
“Troubleshooting security” on page 1452 and “Troubleshooting LDAP” on page 1454.

Distributed operating systems

Tools

Configure security by using the Eclipse-based developer tools for Liberty. See “Editing the Liberty
configuration by using developer tools” on page 938. Specific information about tools and security
configuration is available in “Configuring TAI on Liberty by using developer tools” on page 1206 and
“Configuring JAAS on Liberty by using developer tools” on page 1186.

Quick overview of security
To understand the basic workflow of security in Liberty, some common security terms are detailed along
with an example.

Security key terms

Authentication
Authentication confirms the identity of a user. The most common form of authentication is user
name and password, such as through basic authentication or form login for web applications.
When a user is authenticated, the source of a request is represented as a Subject object at run
time.

584 WebSphere Application Server Liberty Core 8.5.5

Authorization
Authorization determines whether a user has access to a given role within the system. The Java
EE model uses subjects, roles, and role mappings to determine if access is allowed.

Role A role is defined within the Java EE application. Some roles, such as the Administrator role, are
predefined by the system. Other roles are defined by the application developer. In Java EE,
subjects are usually granted or denied access to a role based on the roles they perform within the
application.

Subject
A subject is both a general term and a Java object: javax.security.auth.Subject. Generally, the
term subject means active entities within the system, such as users on the system, and even the
system process itself.

Security workflow example

The following example demonstrates how the security is applied when a user requests access to a
resource. For example, a user Bob wants to access a servlet myWebApp. See the code samples in “Getting
started with security in Liberty” on page 1147.

To access the servlet myWebApp, the following conditions must be true:
1. Bob must be able to log in to the system because the servlet is protected.
2. Bob must be in the testing role because the servlet is restricted by using an auth-constraint element

in the deployment descriptor.

If Bob cannot log in to the system, or Bob is not in the testing role, then the access to the servlet myWebApp
is denied.

Another user Alice can log in to the system because Alice is a valid user. But Alice is not in the testing
role. An HTTP 403 error (Access Denied/Forbidden) displays when Alice logs in.

Authentication
Authentication in the Liberty security is to confirm the identity of a user.

To access a protected web resource, the user must provide credential data, such as user ID and password.
The authentication process involves collecting this user credential information (based on how the web
application was configured to collect this data) and validating it against the configured registry. When the
credential information is verified, a JAAS subject is created for that user. The subject contains additional
information about the user, such as the groups that the user belongs to, and the tokens created for the
user. The information in this subject is then used during the authorization process to determine whether
the user can access the resource.

The following diagram illustrates a typical authentication process flow for a web resource.

Chapter 1. WebSphere Application Server Liberty Core: Overview 585

The authentication process involves gathering credential data from the user, checking the cache to see
whether the subject exists for that user and in its absence calling the JAAS service to perform the
authentication to create a subject. The JAAS service calls a set of login modules to handle the
authentication. One or more of the login modules creates the subject depending on the credential data.
The login module then calls the registry that is configured to validate the credential information. If the
validation is successful, the authentication process collects and creates relevant information for that user,
including the groups that the user belongs to and the single sign-on (SSO) token used for SSO capability,
and stores them in the subject as relevant credentials. You can also customize the information saved in
the subject by plugging in custom login modules during this process.

When the authentication is successful, the SSO token that is created during the process is sent back to the
browser in a cookie. The default name of the configurable cookie is ltpaToken2. On subsequent calls, the
token information is used to authenticate the user. If this authentication fails, the authentication service
tries to use other authentication data, such as the user ID and password, if they still exist in the request.

Note: To support user IDs and passwords that contain non US-ASCII characters, form login method is
required for web applications. For more information, see autoRequestEncoding and
autoResponseEncoding.

The following sections describe these concepts in detail:
v “User registries” on page 587
v “Authentication cache” on page 587
v “JAAS configuration” on page 587
v “JAAS login modules” on page 588

Authentication
service

AuthCache
service

JAAS
service

Subject

permit/deny

ID/password
SSOToken
certificate

Browser/HTTP client

UserRegistry
service

Credential
service

Token
service

Figure 7. Overview of authentication process

586 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cweb_autoreq.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/cweb_autoreq.html

v “Callback handler” on page 589
v “Credentials and tokens” on page 589
v “LTPA” on page 589

v 8.5.5.5 “SPNEGO” on page 590

v 8.5.5.8 “Kerberos constrained delegation for SPNEGO” on page 591
v “Single sign-on (SSO)” on page 591

v 8.5.5.7 “SAML Web Browser SSO” on page 591
v “Pluggable authentication” on page 592
v “Identity assertion” on page 592
v “RunAs() authentication” on page 593
v “Proxy login module” on page 593
v “Certificate login” on page 594
v “Hash table login module” on page 594

User registries

When validating the authentication data of a user, the login modules call the user registry that is
configured to validate the user information. Liberty supports both a simple configuration-based user
registry and a more robust LDAP-based registry. For more information, see “Configuring a user registry
for Liberty” on page 1168.

Using the LDAP registry, you can also federate multiple repositories and execute the LDAP operations on
two or more registries. The Liberty user can configure the LDAP registry federation feature either directly
in the server.xml file or can configure in the LDAP Registry Federation section in the developer tool.
After the configuration of the federated repositories, you can obtain a consolidated result of the federated
repositories on any operation that you want to perform. For example, if you want to perform a search
operation for all user names that starts with test, you can perform a search across the set of LDAP
registries and get the consolidated search result which can then be sent back to the calling program.

Authentication cache

Because creating a subject is relatively expensive, Liberty provides an authentication cache to store a
subject after the authentication of a user is successful. The default expiration time for the cache is 10
minutes. If the user does not log back in within 10 minutes, the subject is removed and the process of
authentication repeats to create a subject for that user. Changes to the configuration that affect the
creation of the subject, such as adding a login module or changing the LTPA keys, will cause the
authentication cache to be cleared. If the subject is cached and the information in the registry changes, the
cache is updated with the information in the registry. You can configure the cache timeout period, and
the cache size, and you can also disable or enable caching. For more information, see “Configuring the
authentication cache in Liberty” on page 1183.

JAAS configuration

JAAS configuration defines a set of login modules to create the subject. Liberty supports the following
JAAS configurations:

system.WEB_INBOUND
Used when accessing web resources such as servlets and JSPs.

WSLogin
Used by applications when using the programmatic login. It is also used by applications running

Chapter 1. WebSphere Application Server Liberty Core: Overview 587

in an application client container, but unlike the ClientContainerJAAS configuration, it does not
recognize the CallbackHandler handler that is specified in the client application module's
deployment descriptor.

system.DEFAULT
Used for login when no JAAS configuration is specified.

8.5.5.4 system.DESERIALIZE_CONTEXT
Used when a security context is being deserialized. This JAAS configuration handles
authentication to re-create the subjects that were active on the thread at the time the security
context was serialized. You can specify this JAAS configuration and add your own custom JAAS
login modules by editing the JAAS configuration entry in the server.xml file to ensure that the
propagated subjects contain your custom information.

8.5.5.6 ClientContainer
Used by applications running in an application client container. This JAAS login configuration
recognizes the CallbackHandler handler that is specified in the client application module's
deployment descriptor, if one is specified.

The system.WEB_INBOUND and system.DEFAULT configurations have these default login modules in
this order: hashtable, userNameAndPassword, certificate, and token. The WSLogin configuration has the
proxy login module as the default login module, and the proxy delegates all the operations to the real
login module in system.DEFAULT.

No explicit configuration is required unless you want to customize by using the custom login modules.
Depending on the requirement, you can customize specific login configurations. For example, if you want
all the web resource logins to be customized, you must add custom login modules only to the
system.WEB_INBOUND configuration. See “Configuring a JAAS custom login module for Liberty” on page
1184.

JAAS login modules

JAAS configuration uses a set of login modules to create the subject. Liberty provides a set of login
modules in each of the login configurations. Depending on the authentication data, a particular login
module creates the subject. The authentication data is passed to the login modules by using the callback
handler, as specified in the JAAS specification. For example, if the user ID and password callback handler
is being used for authentication, the userNameAndPassword login module handles the authentication. If
a SingleSignonToken credential is presented as the authentication data, only the token login module
handles the authentication.

The following default login modules are supported in Liberty:

userNameAndPassword
Handles the authentication when user name and password are used as the authentication data.

certificate
Handles the authentication when an X509 certificate is used as the authentication data of mutual
SSL.

token Handles the authentication when an SSO token is presented as the authentication data. During
the authentication process, an SSO token is created and sent back to the HTTP client (browser) in
a cookie. On subsequent requests, this cookie is sent back by the browser and the server extracts
the token from the cookie to authenticate the user when the single sign-on is enabled.

hashtable
Used when the authenticated data is sent through a predefined hash table. For more information
about the hash table login, see “Hash table login module” on page 594. This login module is also
used by the security run time when authentication is performed using identity only; for example,
in the case of runAs.

588 WebSphere Application Server Liberty Core 8.5.5

proxy The default login module for WSLogin. See “Proxy login module” on page 593.

The login modules are called in the order that they are configured. The default order is hashtable,
userNameAndPassword, certificate, token. If you must customize the login process by using custom
login modules, you can provide them and configure them in the order you need. Typically, place a
custom login module first in the list of login modules so that it is called first. When a custom login
module is used, you must specify all the login module information in the configuration along with the
custom login module in the required order.

When a login module determines that it can handle the authentication, it first makes sure that the
authentication data that is passed in is valid. For example, for user name and password authentication,
the configured user registry is called to verify the authentication information. For token authentication,
the token must be decrypted and valid for the verification to succeed.

When the authentication data is validated, the login modules create credentials with additional data for
the user including the groups and the SSO token. A custom login module can add additional data to the
subject by creating its own credentials. For the Liberty authorization to work, the subject must contain the
WSCredential, WSPrincipal, and SingleSignonToken credentials. The WSCredential credential contains the
groups information, with additional information that is required by the security runtime environment.

Callback handler

The Liberty supports various callback handlers for providing data to the login modules during the JAAS
authentication process. A custom login module can use the callback handler information to authenticate
itself. For example, if the callback handler needs to access some information in an HttpServletRequest
object, it can do so by using that specific callback handler.

The following callback handlers and factories for programmatic JAAS login are supported in Liberty:
v com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl

v com.ibm.wsspi.security.auth.callback.WSCallbackHandlerFactory

The Java API documentation for each Liberty API is detailed in the Programming Interfaces (APIs)
section of the documentation, and is also available as a separate .zip file in one of the javadoc
subdirectories of the ${wlp.install.dir}/dev directory.

See “Developing JAAS custom login modules for a system login configuration” on page 1305.

Credentials and tokens

As mentioned in the loginModule section, credentials are created as part of the subject creation process.
Liberty creates the WSCredential, SingleSignonToken, and WSPrincipal credentials. The
SingleSignonToken credential contains the token that is sent back to the browser in a cookie for SSO to
work. This token contains the user information and an expiration time. It is signed and encrypted by
using the Lightweight Third Party Authentication (LTPA) keys that are generated during the first server
startup. The default expiration time is 2 hours and is an absolute time, not based on user activities. After
the 2 hours, the token expires and the user must log in again to access the resource.

LTPA

LTPA is intended for distributed and multiple application server environments. In Liberty, LTPA supports
SSO and security in a distributed environment through cryptography. This support enables LTPA to
encrypt, digitally sign, and securely transmit authentication-related data, and later decrypt and verify the
signature.

Application servers can securely communicate using the LTPA protocol. The protocol also provides the
SSO feature, whereby a user is required to authenticate only when connecting to a domain name system

Chapter 1. WebSphere Application Server Liberty Core: Overview 589

(DNS). Then the user can access resources in other Liberty servers in the same domain without getting
prompted. The realm names on each system in the DNS domain are case-sensitive and must match
identically.

The LTPA protocol uses cryptographic keys to encrypt and decrypt user data that passes between the
servers. These keys must be shared between different servers for the resources in one server to access
resources in other servers, assuming that all the servers involved use the same user registry. LTPA
requires that the configured user registry must be a centrally shared repository so that users and groups
are the same, regardless of the server.

When using LTPA, a token is created that contains the user information and an expiration time, and is
signed by the keys. The LTPA token is time sensitive. All participating servers must have their time and
date synchronized. If not, LTPA tokens are prematurely expired and cause authentication or validation
failures. Coordinated Universal Time (UTC) is used by default, and all other servers must have the same
UTC time. See your operating system documentation for information about how to ensure the same UTC
time among servers.

The LTPA token passes to other servers through cookies for web resources when SSO is enabled.

If the receiving servers use the same keys as the originating server, the token can be decrypted to obtain
the user information, which then is validated to make sure that the token is not expired and that the user
information in the token is valid in its registry. On successful validation, the resources in the receiving
servers are accessible after the authorization check.

Each server must have valid credentials. When the credentials expire, the server is required to
communicate to the user registry to authenticate. Extending the time that the LTPA token remains cached
presents a slightly increased security risk to be considered when defining your security policies.

If key sharing is required between different Liberty servers, copy the keys from one server to another. For
security purposes, the keys are encrypted with a randomly-generated key, and a user-defined password is
used to protect the keys. This same password is needed when importing the keys into another server. The
password is used only to protect the keys, and is not used to generate the keys.

When security is enabled, LTPA is configured by default during the Liberty server start time. For more
information about the LTPA support, see “Configuring LTPA in Liberty” on page 1188.

8.5.5.5

SPNEGO

Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) enables users to log in to the Microsoft
Domain controller once and access protected applications on Liberty servers without getting prompted
again.

When SPNEGO web authentication is enabled, and the browser client accesses a protected resource on
the Liberty server, SPNEGO is responsible for authenticating access to the secured resource that is
identified in the HTTP request. The browser client creates a SPNEGO token and sends it to the Liberty
server as part of the HTTP request. The WebSphere Application Server validates and retrieves the user
identity from the SPNEGO token. The identity is used to establish a secure context between the user and
the application server.

For more information about SPNEGO, see 8.5.5.5 SPNEGO. For further information on configuring

SPNEGO on the Liberty server, see 8.5.5.5 Configuring SPNEGO authentication in Liberty.

8.5.5.8

590 WebSphere Application Server Liberty Core 8.5.5

Kerberos constrained delegation for SPNEGO

The Kerberos constrained delegation feature provides two APIs that are used to create out-bound
SPNEGO tokens for back end services that support SPNEGO authentication, such as .NET servers and
other Liberty servers.

The Kerberos v5 extension called S4U (Services for Users) compromises two parts:

S4U2self

Allows a Liberty server to obtain a service ticket to itself on behalf of a user. This can be used
with any form of authentication that is supported by Liberty. S4U2self is the Kerberos Protocol
Transition extension.

S4U2proxy

Allows a Liberty server to obtain service tickets to trusted services on behalf of a user. These
service tickets are obtained by using the user's service ticket to the Liberty service. The services
are constrained by the Kerberos Key Distribution Center (KDC) administrator. S4U2proxy is the
Kerberos Constrained Delegation extension.

Single sign-on (SSO)

SSO enables users to log in in one place (one server for example) and access applications on other servers
without getting prompted again. To make SSO work, the LTPA keys must be exchanged across different
Liberty servers, the user registries must be the same, and the token must not have expired. To exchange
the LTPA keys, you can copy the ltpa.keys file from one server to another and restart the server to use
the new LTPA keys. The registries that are used by all the servers participating in the SSO domain must
be the same.

When a user is authenticated in one Liberty server, the SSO token created for the user during the
authentication process is put in the cookie that is sent to the HTTP client, for example a browser. If there
is another request from that client to access another set of applications on a different server, but in the
same DNS that was configured as part of the SSO configuration in the first server, the cookie is sent
along with the request. The receiving server tries to authenticate the user using the token in the cookie. If
both conditions are met, the receiving server validates the token and creates a subject based on the user
in this server, without prompting the user to log in again. If the token cannot be validated (for example,
it cannot decrypt or verify the token because of LTPA key mismatch), the user is prompted to enter the
credential information again.

Any application that is configured to use the Form-login attribute must have SSO to be configured for
that server. When the user is authenticated for a form-login, the token is sent back to the browser that
will be used for authorizing the user when the resource is accessed.

See “Customizing SSO configuration using LTPA cookies in Liberty” on page 1203.

8.5.5.7

SAML Web Browser SSO

SAML Web Browser SSO enables web applications to delegate user authentication to a SAML identity
provider instead of a configured user registry.

For further information on configuring SAML Web Browser SSO on the Liberty server, see “SAML 2.0
Web Browser Single-Sign-On” on page 603.

Chapter 1. WebSphere Application Server Liberty Core: Overview 591

Pluggable authentication

Use the following ways to customize the authentication process:
v Provide a custom login module. Most of the authentication process is built around JAAS login

modules, so you can plug in custom login modules before, after, or between the login modules
provided by Liberty. See “Configuring a JAAS custom login module for Liberty” on page 1184.

v Implement Trust Association Interceptor (TAI) to handle all web resource-based authentication. See
“Developing a custom TAI for Liberty” on page 1301.

For more details about the JAAS login module and TAI, see Advanced authentication in WebSphere
Application Server.

Identity assertion

Besides authentication that requires a requesting entity to prove its identity, Liberty also supports identity
assertion. This is a relaxed form of authentication that does not require identity proof, but rather accepts
the identity based on a trust relationship with the entity that vouches for the asserted identity.

Use the following ways to assert identities in Liberty
1. Use the hash table login. See “Developing JAAS custom login modules for a system login

configuration” on page 1305.
2. Use IdentityAssertionLoginModule. You can allow an application or system provider to assert an

identity with trust validation. To use IdentityAssertionLoginModule, use the JAAS login framework,
where trust validation is accomplished in one custom login module and credential creation is
accomplished in IdentityAssertionLoginModule. You can use the two login modules to create a JAAS
login configuration that can be used to assert an identity.
The following two custom login modules are required:

User implemented login module (trust validation)
The user implemented login module performs whatever the user requires in trust verification.
When trust is verified, the trust verification status and the login identity must be put into a
map in the share state of the login module, so that the credential creation login module can
use the information. Store this map in the following property:
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state

This property consists of the following properties:
v

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted

This property is set to true if trusted and false if not trusted.
v

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.principal

This property contains the principal of the identity.
v

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates

This property contains the certificate of the identity.

Identity assertion login module (credential creation)
The following module creates the credential:
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule

This module relies on the trust state information in the shared state of the login context.

592 WebSphere Application Server Liberty Core 8.5.5

http://www.ibm.com/developerworks/websphere/techjournal/0508_benantar/0508_benantar.html
http://www.ibm.com/developerworks/websphere/techjournal/0508_benantar/0508_benantar.html

The identity assertion login module looks for the trust information in the shared state
property:
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state

This property contains the trust status and the identity to log in, and must include the
following property:
v

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trusted

This property is set to true when trusted and false when not trusted.
v

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.principal

This property contains the principal of the identity to log in if a principal is used.
v

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certificates

This property contains an array of a certificate chain that contains the identity to log in if a
certificate is used.

A WSLoginFailedException message is returned if the state, trust, or identity information is
missing. The login module then logs in with the identity, and the subject contains the new
identity.

See “Customizing an application login to perform an identity assertion by using JAAS” on page 1316.

RunAs() authentication

When you have successfully authenticated after calling a servlet, the servlet can make subsequent calls,
for example to other servlets. These subsequent calls are normally made under the same security identity
that you originally used to log in to the servlet. This identity is known as the caller identity. Alternatively,
you can choose to delegate to a different identity by using the RunAs specification, so that any
subsequent calls that the servlet makes run under this other identity. To summarize, you have two
options to propagate the security identity:
v Propagate the caller identity, which is the default behavior.
v Delegate to the RunAs identity that you can specify by using the RunAs specification.

After the server authenticates the original user, the server then authenticates the RunAs user. If this
authentication fails, the server falls back to propagate the caller identity.

To use the RunAs specification, you must update the deployment descriptor of your application to
include the run-as element or @RunAs annotation. Set this element to the security role that you want to
delegate to.

See “Configuring RunAs authentication in Liberty” on page 1203.

Proxy login module

The proxy login module class loads the application server login module and delegates all the operations
to the real login module implementation. The real login module implementation is specified as the
delegate option in the option configuration. The proxy login module is required because the application
class loaders do not have visibility of shared library class loaders of the application server product. With
an application programmatic login that uses the Login() method of the LoginContext class with JAAS
login context entry WSLogin, the proxy login module delegates all the work to the JAAS login context
entry system.DEFAULT.

Chapter 1. WebSphere Application Server Liberty Core: Overview 593

Certificate login

With the certificate login feature, you can authenticate web requests such as servlets by using client side
X509 certificates instead of supplying a user ID and password.

Certificate authentication works by associating a user in the user registry with the distinguished name in
the client certificate of a web request. Trust is established by having the client certificate trusted by the
server, for example the signer of the client certificate must be in the trust store of the server. This
mechanism eliminates the need for users to supply a password to establish trust.

See “Securing communications in Liberty” on page 1151.

Hash table login module

Look up the required attributes from the user registry, put the attributes in a hash table, and then add the
hash table to the shared state. If the identity is switched in this login module, you must add the hash
table to the shared state. If the identity is not switched, but the value of the requiresLogin code is true,
you can create the hash table of attributes. You do not have to create a hash table in this situation,
because Liberty handles the login for you. However, you might consider creating a hash table to gather
attributes in special cases. For example, if you are using your own special user registry, then creating a
UserRegistry implementation, using a hash table, and letting the server gather the user attributes for you,
might be a simple solution.

The following rules define in more details about how a hash table login is completed. You must use a
java.util.Hashtable object in either the Subject (public or private credential set) or the shared-state
HashMap. The com.ibm.wsspi.security.token.AttributeNameConstants class defines the keys that
contain the user information. If the Hashtable object is put into the shared state of the login context using
a custom login module that is listed before the hashtable login module, the value of the
java.util.Hashtable object is searched using the following key within the shared-state hashMap:

Property
com.ibm.wsspi.security.cred.propertiesObject

Reference to the property
AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY

Explanation
This key searches for the Hashtable object that contains the required properties in the shared state
of the login context.

Expected result
A java.util.Hashtable object.

If a java.util.Hashtable object is found inside the Subject or within the shared state area, verify that the
following properties are present in the hash table:
v com.ibm.wsspi.security.cred.uniqueId

Reference to the property
AttributeNameConstants.WSCREDENTIAL_UNIQUEID

Returns
java.util.String

Explanation
The value of the property must be a unique representation of the user. For the Liberty default
implementation, this property represents the information that is stored in the application
authorization configuration. The information is in the application deployment descriptor after it
is deployed and the user-to-role mapping is performed. See the expected format examples if
the user to role mapping is performed by looking up a user registry implementation of Liberty.

594 WebSphere Application Server Liberty Core 8.5.5

Expected format examples

Table 7. Format examples for uniqueId. This table gives expected format examples.

User Registry Format (UniqueUserId) value

LDAP ldapRegistryRealm/cn=kevin,o=mycompany,c=use

Basic basicRegistryRealm/kelvin

The com.ibm.wsspi.security.cred.uniqueId property is required.
v com.ibm.wsspi.security.cred.securityName

Reference to the property
AttributeNameConstants. WSCREDENTIAL_ SECURITYNAME

Returns
java.util.String

Explanation
This property searches for securityName of the authentication user. This name is commonly
called the display name or short name. Liberty uses the securityName attribute for the
getRemoteUser, getUserPrincipal, and getCallerPrincipal application programming interfaces
(APIs). To ensure compatibility with the default implementation for the securityName value,
call the public String getUserSecurityName(String uniqueUserId) UserRegistry method.

Expected format examples

Table 8. Format examples for securityName. This table gives expected format examples.

User Registry Format (securityName) value

LDAP kevin

Basic kevin

The com.ibm.wsspi.security.cred.securityname property is required.
v com.ibm.wsspi.security.cred.group

Reference to the property
AttributeNameConstants. WSCREDENTIAL_GROUP

Returns
java.util.ArrayList

Explanation
This key searches for the array list of groups to which the user belongs. The groups are
specified in the realm_name/user_name format. The format of these groups is important because
the groups are used by the Liberty authorization engine for group-to-role mappings in the
deployment descriptor. The format that is provided must match the format expected by the
Liberty default implementation. When you use a third-party authorization provider, you must
use the format that is expected by the third-party provider. To ensure compatibility with the
default implementation for the unique group IDs value, call the public List
getUniqueGroupIds(String uniqueUserId) UserRegistry method.

Expected format examples

Table 9. Format examples for group. This table gives some format examples when configuring inbound identity
mapping.

User Registry Format (group) value

LDAP ldapRegistryRealm/cn=group1,o=Groups,c=US

Basic basicRegistryRealm/group1

Chapter 1. WebSphere Application Server Liberty Core: Overview 595

The com.ibm.wsspi.security.cred.group property is required. A user is not required to be
associated groups.

v com.ibm.wsspi.security.cred.cacheKey

Reference to the property
AttributeNameConstants. WSCREDENTIAL_CACHE_KEY

Returns
java.lang.Object

Explanation
This key property can specify an object that represents the unique properties of the login,
including the user-specific information and the user dynamic attributes that might affect
uniqueness. For example, when the user logs in from location A, which might affect their
access control, the cache key must include location A so that the received Subject is the correct
Subject for the current location.

This com.ibm.wsspi.security.cred.cacheKey property is not required. When this property is
not specified, the cache lookup is the value that is specified for WSCREDENTIAL_UNIQUEID.
When this information is found in the java.util.Hashtable object, Liberty creates a Subject
similar to the Subject that goes through the normal login process, at least for LTPA. The new
Subject contains a WSCredential object and a WSPrincipal object that is fully populated with
the information found in the Hashtable object.

Single sign-on for HTTP requests using SPNEGO web authentication

8.5.5.5

You can securely negotiate and authenticate HTTP requests for protected resources in the WebSphere
Application Server by using the Simple and Protected GSS-API Negotiation Mechanism (SPNEGO) as the
web authentication service for WebSphere Application Server.

The following sections describe SPNEGO web authentication in more detail:
v “What is SPNEGO?”
v “SPNEGO web authentication in a single Kerberos realm” on page 597
v “SPNEGO web authentication in trusted Kerberos realms” on page 598
v “Support information for SPNEGO web authentication with a browser client” on page 600

What is SPNEGO?

SPNEGO is a standard specification that is defined in The Simple and Protected GSS-API Negotiation
Mechanism (IETF RFC 2478).

When Liberty server security is enabled, and SPNEGO web authentication is enabled, SPNEGO is
initialized when processing a first inbound HTTP request. When the authentication filter is not specified,
or the authentication filter is specified and the criteria is met, SPNEGO is responsible for authenticating
access to the protected resource that is identified in the HTTP request.

In addition to WebSphere Application Server security runtime services, some external components are
required to enable the operation of SPNEGO. These external components include:
v Windows Microsoft Windows Servers with Active Directory domain and associated Kerberos Key

Distribution Center (KDC).
v A client application, for example, Microsoft .NET, or web service and J2EE client that supports the

SPNEGO web authentication mechanism, as defined in IETF RFC 2478. Microsoft Internet Explorer and
Mozilla Firefox are browser examples. Any browser that is being used must be configured to use the
SPNEGO web authentication mechanism.

596 WebSphere Application Server Liberty Core 8.5.5

https://www.ietf.org/rfc/rfc2478.txt
https://www.ietf.org/rfc/rfc2478.txt

The authentication of HTTP requests is triggered by the user (the client-side), which generates an
SPNEGO token. WebSphere Application Server receives this token. Specifically, the SPNEGO web
authentication decodes and retrieves the user identity from the SPNEGO token. The identity is then used
to make authorization decisions.

SPNEGO web authentication is a server-side solution in the WebSphere Application Server. Client-side
applications are responsible for generating the SPNEGO token for use by SPNEGO web authentication.
The user identity in the WebSphere Application Server security registry must be identical to the identity
that the SPNEGO web authentication retrieves. An identical match does occur when Microsoft Windows
Active Directory server is the Lightweight Directory Access Protocol (LDAP) server that is used in
WebSphere Application Server. A custom login module is available as a plug-in to support custom
mapping of the identity from the Active Directory to the WebSphere Application Server security registry.

WebSphere Application Server validates the identity against its security registry. If the validation is
successful, the client GSS delegation credential is retrieved and placed in the client subject, and a
Lightweight Third Party Authentication (LTPA) security token is created. It then returns the LTPA cookie
to the user in the HTTP response. Subsequent HTTP requests from this same user to access more
protected resources in the WebSphere Application Server use the LTPA security token that is previously
created to avoid repeated login challenges.

SPNEGO web authentication in a single Kerberos realm

SPNEGO web authentication is supported in a single Kerberos realm (domain). The challenge-response
handshake process is shown in the following figure:

In the previous figure, the following events occur:

Member of MS domain: mydomain.example.com

Client browser

Windows Workstation: myClientMachine.example.com

22

33

Kerberos Realm: MYDOMAIN.EXAMPLE.COM

Windows server: myAdMachine.example.com

MS domain: mydomain.example.com

Microsoft Active Directory

- Kerberos KDC

11

44

55

88

Server

Linux: myLibertyMachine.example.com

SPNEGO

Authentication

Liberty

profile server

66

User registry

Kerberos Realm: MYDOMAIN.EXAMPLE.COM

77

Workstation

Figure 8. SPNEGO web authentication in a single Kerberos realm

Chapter 1. WebSphere Application Server Liberty Core: Overview 597

1. To begin, the user logs on to the Microsoft domain controller MYDOMAIN.EXAMPLE.COM from the
workstation.

2. Next, the user attempts to access the Web application. The user requests a protected Web resource
using a client browser, which sends an HTTP GET request to the Liberty server.

3. SPNEGO authentication in the Liberty server answers the client browser with an HTTP 401 challenge
header that contains the Authenticate: Negotiate status.

4. The client browser recognizes the negotiate header because the client browser is configured to support
integrated Windows authentication. The client parses the requested URL for the host name. The client
uses the host name to form the target Kerberos service principal name (SPN) HTTP/
myLibertyMachine.example.com to request a Kerberos service ticket from the Kerberos ticket-granting
service (TGS) in the Microsoft Kerberos KDC (TGS_REQ). The TGS then issues a Kerberos service ticket
(TGS_REP) to the client. The Kerberos service ticket (SPNEGO token) proves both the user's identity
and permissions to the service (Liberty server).

5. The client browser then responds to the Liberty server Authenticate: Negotiate challenge with the
SPNEGO token that is obtained in the previous step in the request HTTP header.

6. SPNEGO authentication in the Liberty server sees the HTTP header with the SPNEGO token,
validates the SPNEGO token, and gets the identity (principal) of the user.

7. After the Liberty server gets the identity of the user, it validates the user in its user registry and
performs the authorization checks.

8. If access is granted, the Liberty server sends the response with an HTTP 200. The Liberty server also
includes an LTPA cookie in the response. This LTPA cookie is used for subsequent requests.

Note: Other clients (for example, web services, .NET and J2EE) that support SPNEGO do not have to
follow the challenge-response handshake process as shown previously. Those clients can obtain a
ticket-granting ticket (TGT) and a Kerberos service ticket for the target server, create an SPNEGO token,
insert it in the HTTP header, and then follow the normal process for creating an HTTP request.

SPNEGO web authentication in trusted Kerberos realms

SPNEGO web authentication is also supported in trusted Kerberos realms. The challenge-response
handshake process is shown in the following figure:

598 WebSphere Application Server Liberty Core 8.5.5

In the previous figure, the following events occur:
1. The user logs in to the Microsoft domain controller TRUSTEDREALM.ACME.COM.
2. From a client browser, the user makes a request for a protected Web resource that is hosted on a

Liberty server in the original Microsoft domain controller, MYDOMAIN.EXAMPLE.COM.
3. The Liberty server answers the client browser with an HTTP 401 challenge header that contains the

Authenticate: Negotiate status.
4. The client browser is configured to support integrated Windows authentication. The client browser

parses the URL by using the host name of the workstation that hosts the Liberty server application.
The client browser uses the host name as an attribute to request a Kerberos cross-realm ticket
(TGS_REQ) for MYDOMAIN.EXAMPLE.COM from realm TRUSTEDREALM.ACME.COM.

5. The client browser uses the Kerberos cross-realm ticket from step 4 to request a Kerberos service ticket
from realm MYDOMAIN.EXAMPLE.COM. The Kerberos service ticket (SPNEGO token) proves the user's
identity and permissions to the service (Liberty server).

6. The client browser then responds to the Liberty server Authenticate: Negotiate challenge with the
SPNEGO token that is obtained in the previous step in the request HTTP header.

7. The Liberty server receives the request and checks the HTTP header with the SPNEGO token. It then
extracts the Kerberos service ticket, validates the ticket, and gets the identity (principal) of the user.

8. After the Liberty server gets the identity of the user, it validates the user in its user registry and
performs the authorization checks.

9. If access is granted, the Liberty server sends the response with an HTTP 200. The Liberty server also
includes an LTPA cookie in the response. This LTPA cookie is used for subsequent requests.

Note: No modification is required to the Liberty server to support more trusted realms. A trust
relationship between the necessary Active Directory realms is the only requirement for SPNEGO to work
with trusted realms.

Workstation

Kerberos Realm: MYDOMAIN.EXAMPLE.COM

Windows server: myAdMachine.example.com

MS domain: mydomain.example.comMS domain: trustedrealm.acme.com

Member of MS domain: trustedrealm.acme.com

Client browser

Windows Workstation: myTrustedClientMachine.acme.com

Microsoft Active Directory

- Kerberos KDC

11

44

Server

Kerberos Realm: TRUSTEDREALM.ACME.COM

Windows server: trustedMachine.trustedRealm.acme.com

Microsoft Active Directory

- Kerberos KDC

Kerberos realm: MYDOMAIN.EXAMPLE.COM

Linux: myLibertyMachine.example.com

User registry

SPNEGO

Authentication

Liberty profile

server

Server

Trust

Relationship

77

88

55

22

33

66

99

Figure 9. SPNEGO web authentication in a trusted Kerberos realm

Chapter 1. WebSphere Application Server Liberty Core: Overview 599

In the trusted Kerberos realms environment, be aware that the Kerberos trusted realm setup has to be
completed on each of the Kerberos KDCs. See your Kerberos Administrator and User's guide for more
information about how to set up Kerberos trusted realms.

Support information for SPNEGO web authentication with a browser client

The following scenarios are supported:
v Cross-forest trusts
v Domain trust within the same forest
v Kerberos realm trust

The following scenarios are not supported:
v Forest external trusts
v Domain external trusts

For further information on configuring SPNEGO on the Liberty server, see 8.5.5.5 Configuring
SPNEGO authentication in Liberty.

Common Secure Interoperability version 2 (CSIv2)
8.5.5.6

The Common Secure Interoperability version 2 (CSIv2) is an architecture to satisfy the CORBA security
interoperability requirements for authentication, delegation, and privileges. The SAS protocol is used in
the CSIv2 architecture to exchange tokens in the service contexts of GIOP request and reply messages for
the establishment of security contexts. Transport layer security (SSL/TLS) is required by SAS, and it
provides two more layers on top for client authentication and delegation.

The SAS protocol is divided into two layers. The authentication layer is used to perform client
authentication where sufficient authentication might not be accomplished in the transport. The attribute
layer might be used by a client to push or deliver security attributes, like an identity to a target server
where they might be applied in access control decisions. The transport is referred to as another layer in
the CSIv2 documentation for ease of discussion, although it is not part of the SAS protocol message and
the SAS message sits on top of the transport.

600 WebSphere Application Server Liberty Core 8.5.5

CSIv2 identity assertion

The CSIv2 identity assertion support in the attribute layer is used to assert an identity from a client
process to a server process when the request is performed by using RMI/IIOP.

An assertion is a declaration of one entity to another to accept an identity on its behalf. A client can
assert an identity that represents the subject that was effective at the time it started the remote resource.
In addition to the identity token that is representing the user, the client process also sends its own
identity in either the authentication layer or the transport layer. The target server ensures that the client
process is able to assert an identity by performing a trust validation. If the target server trusts the client,
then the server uses the asserted identity to create a server-side subject that represents the user that was
effective at the client process at the time of invocation.

The client can assert a user who is using a Principal Name identity token. The format of the principal
name depends on the user registry that is configured at the client process. The anonymous identity token
type is also supported and the server uses the unauthenticated subject when it receives such token.

For information on configuring the CSIV2 attribute layer with identity assertion, see “Configuring
inbound CSIv2 attribute layer” on page 1277 or “Configuring outbound CSIv2 attribute layer” on page
1282.

CSIv2 authentication layer

The CSIv2 authentication layer is used to carry authentication information from a client process to a
server process when the request is performed by using RMI/IIOP.

The CSIv2 authentication layer can contain a token that is sent by the client that the server can then use
to authenticate the client. Various token types are supported in the authentication layer. For example, the
GSSUP token is used to transmit the client's user name and password, which is validated against the user
registry of the target server. The Lightweight Third Party Authentication (LTPA) token is a token that
represents the client's user without having to transmit a password, but the user must be authenticated at
the client process before the remote method invocation and both the client and server processes must
share LTPA keys.

With either token type, the token is used to authenticate the remote user at the server process and create
a Subject representation of the Subject that was effective at the client side before the client started the
remote object. When identity assertion is also enabled, the authentication layer can contain the security
information that represents the client identity while the identity assertion token represents the actual
remote user at invocation time.

For information on configuring the CSIV2 authentication layer, see “Configuring inbound CSIv2
authentication layer” on page 1279 or “Configuring outbound CSIv2 authentication layer” on page 1284.

CSIv2 transport layer

The Common Secure Interoperability version 2 (CSIv2) transport layer support is used to protect the SAS
protocol request message and support client certificate authentication from a client process to a server
process.

The main function of the transport layer is to provide the security characteristics of the transmission of
the SAS protocol messages from a client to a server process. The messages can be protected by using
encryption, signing, or both. The Liberty SSL support is used as the underlying mechanism that is
providing such characteristics.

A second function of the transport layer is to provide a source of authentication material when the
authentication layer is not used. If identity assertion is enabled and the authentication layer is not

Chapter 1. WebSphere Application Server Liberty Core: Overview 601

enabled, then the client process identity is obtained from the transport's client certificate chain. The target
server process authenticates the client's certificate chain by mapping it to a user in its user registry. The
certificate chain issuer distinguished name is used to determine if the client is trusted to assert an
identity.

If no identity assertion and authentication layer are enabled, the subject that is obtained from mapping
the client certificate chain is used as the caller subject when the actual remote method call is started at the
target server process. This also applies when the target server's authentication layer is supported, but not
required, and the client did not send an authentication token and an identity token.

For information on configuring the CSIV2 attribute layer with identity assertion, see Configuring inbound
CSIv2 transport layer or Configuring outbound CSIv2 transport layer.

Key terms
ORB – Object Request Broker.

It mediates object method invocations among entities, which might or might not be collocated in
the same process.

Security context
Information that is used to prescribe what the security characteristics are for a particular
operation on an object in an ORB. For example, the identity that is to be used during the
invocation of the object operation.

Client security service or CSS
The entity that is initiating a SAS protocol request to establish a security context in the Target
Security Service for an operation on an object in the target's ORB.

Target security service or TSS
The entity that is receiving a SAS protocol request for the establishment of a security context in
relationship to an operation on an object in its ORB. It accepts or denies a request to establish or
use a security context.

Client authentication
A token-based mechanism that is used to authenticate the client. GSSUP (Username Password
GSS) is the minimum requirement, but there might be others, like LTPA.

Identity assertion
Mechanism by which an intermediary entity vouches for another entity and the TSS uses the
asserted identity for the invocation principal. The TSS can decide whether it trusts the proxy that
is asserting the identity or not.

Stateless
The security context is only used during the duration of a single request and it is not reused for
subsequent requests.

Stateful
The security context can be reused by multiple requests after it is established and until it is
invalidated by the TSS or the CSS.

Transport layer security
The security support that is provided by the underlying transport.

Authentication on the Liberty application client container

8.5.5.6

The authentication requirements on the client are the same as on the server, but some of the mechanisms
to authenticate on the client are different than on the server.

Authentication is required on the client when accessing a protected resource on the server. Follow one of
these methods to provide the authentication information:
v Specify a user and password in the client.xml file: The credentials are sent to the server using the

CSIv2 protocol and it is recommended that you encrypt or encode the password. For further details,
see Configuring the outbound CSIv2 authentication layer in the Liberty application client container.

602 WebSphere Application Server Liberty Core 8.5.5

v Client certificate authentication: The client presents the server a certificate, which is authenticated and
mapped to a user in the registry for authorization checks. To configure the server, see Configuring
inbound CSIv2 transport layer. To configure the client, see Configuring the outbound CSIv2 transport
layer in the Liberty application client container.

v Perform a programmatic login: Programmatic login is a type of form login that supports application
presentation login forms for authentication. This approach requires the application developer to collect
the user's credentials and authenticate that user. For further details, see Configuring a JAAS
programmatic login on the Liberty application client container.

As on the server, you can use a custom login module to either make more authentication decisions or
add information to the subject to make finer-grained authorization decisions inside your client
application. For further details, see Configuring a JAAS custom login module for the Liberty application
client container.

SAML 2.0 Web Browser Single-Sign-On

8.5.5.7

SAML Web Browser Single-Sign-On (SSO) enables web applications to delegate user authentication to a
SAML identity provider instead of a configured user registry.

Security Assertion Markup Language (SAML) is an OASIS open standard for representing and
exchanging user identity, authentication, and attribute information. A SAML assertion is an XML
formatted token that is used to transfer user identity and attribute information from the identity provider
of a user to a trusted service provider as part of the completion of a single sign-on request. A SAML
assertion provides a vendor neutral means of transferring information between federation business
partners. Using SAML, an enterprise service provider can contact a separate enterprise identity provider
to authenticate users who are trying to access secure content.

The WebSphere Application Server Liberty supports the SAML web browser single sign-on profile with
HTTP Post bindings, and acts as a SAML service provider. A web user authenticates to a SAML identity
provider, which produces a SAML assertion, and the WebSphere SAML service provider uses the SAML
assertion to establish a security context for the web user.

The SAML web SSO flow includes three actors: the end user, the identity provider (IdP), and the service
provider (SP). The user always authenticates to the IdP, and the SP relies on IdP assertion to identify the
user.

Chapter 1. WebSphere Application Server Liberty Core: Overview 603

Liberty SAML Web Browser SSO Scenarios

The end user visits the SP.

The SP redirects the user to the IdP.

SAML requester

Service provider

Liberty SP

SAML requester

Identity provider

3rd party IdP

1

2

5

4

3The end user authenticates to the IdP.

The IdP sends the SAML response and assertion to the SP.

The SP verifies the SAML response and

authorizes the user request.

User agent

SP validate SAML,

and authorize access

OK, I will initiate a SAML

protocol exchange

1. The end user visits the SP.
2. The SP redirects the user to the IdP.
3. The end user authenticates to the IdP.

authentication

Service Provider (SP)

(Liberty)

Content Site 1

Service Provider (SP)

(Liberty)

Content Site 2

1. User requests a service from SP.

2. SP requests a user identity (SAML) from the IdP via redirect.

3. IdP asks user to login

(There is no sign-in if user has been authenticated).

4. SP obtains SAML

5. SP makes an access control decision on the basis of SAML assertion

Identity Provider (IdP)

Sign-On Site

Idp handles authentication

and creation of SAML

Request protected contents

User

SP accepts a SAML

as an identity assertion

Figure 10. Key Concepts in Web Single-Sign-On

Figure 11. Scenario 1: SP-Initiated solicited Web SSO (End user starting at SP)

604 WebSphere Application Server Liberty Core 8.5.5

4. The IdP sends the SAML response and assertion to the SP.
5. The SP verifies the SAML response and authorizes the user request.

The user agent accesses the SAML IdP.

The IdP authenticates the user, and issues a SAML assertion.

User agent

SAML requester

Service provider

Liberty SP

SAML requester

Identity provider

3rd party IdP

1

2

4

3The IdP redirects the user to the SP with a SAMLResponse.

The SP verifies the SAML response

and authorizes the user's request.
Verify SAML, and authorize access

1. The user agent accesses the SAML IdP.
2. The IdP authenticates the user, and issues a SAML assertion.
3. The IdP redirects the user to the SP with a SAMLResponse
4. The SP verifies the SAML response and authorizes the user's request.

Figure 12. Scenario 2: IdP-Initiated unsolicited Web SSO (End user starting at IdP)

Figure 13. Scenario 3: OpenID Connect provider and SAML service provider

Chapter 1. WebSphere Application Server Liberty Core: Overview 605

The end user visits the OpenID Connect Relying Party (RP).

OpenId Connect client

RP

SAML Identity Provider

IdP

OpenConnect Provider(OP)

SAML SP

1

2

5

8

The OP/SP verifies SAML, and sends authorization code to the RP. 6

The OP (also SAML SP) redirects the end user to the SAML IdP. 3

The RP exchanges code for the id_token and access_token. 7

The end user authenticates to the SAML IdP. 4

The RP redirects the end user to the OpenID Connect Provider (OP).

The RP verifies the id_token, and authorizes the end user.

The IdP redirects the end user to the OP or SP with a SAMLResponse.

User agent

OK, I need initiate an

SAML protocol exchange

OK, I need initiate an OpenID

Connect protocol exchange

1. The end user visits the OpenID Connect Relying Party (RP).
2. The RP redirects the end user to the OpenID Connect Provider (OP).
3. The OP (also SAML SP) redirects the end user to the SAML IdP.
4. The end user authenticates to the SAML IdP.
5. The IdP redirects the end user to the OP or SP with a SAMLResponse.
6. The OP/SP verifies SAML, and sends authorization code to the RP.
7. The RP exchanges code for the id_token and access_token.
8. The RP verifies the id_token, and authorizes the end user.

Authorization
Authorization in Liberty determines whether a user has access to a certain role within the system.

Authorization specifies access rights to resources. It usually follows authentication that confirms an
identity. Whereas authentication answers the question: “Are you who you say you are?”; authorization
answers the question: “Do you have permission to do what you are trying to do?”

The following sections describe these concepts in detail:
v “Authorization for administrative functions”
v “Authorization for applications” on page 607
v “Special subjects” on page 608
v “Access IDs and authorization” on page 608

Authorization for administrative functions

When an entity attempts to access a resource, the authorization service determines whether that entity
has the required rights to access the resource. This concept holds true whether an entity is accessing an

606 WebSphere Application Server Liberty Core 8.5.5

application or performing administrative functions. The main difference between authorizing access to an
application and access to an administrative function lies in how the users are mapped to roles. For
authorization of applications, use the application-bnd element in the server.xml file or the
ibm-application-bnd.xml/xmi file to map the users to roles. For authorization of administrative functions,
use the administrator-role element in the server.xml file to map the users to the administrator role. For
more information about administrative security, see “Connecting to Liberty by using JMX” on page 1021.

Authorization for applications

The following diagram describes how authorization works for applications:

1. An authorization is made when an entity attempts to access a resource in an application that is served
by Liberty. The web container calls the authorization service to determine whether a user has
permission to access a certain resource, given a set of one or more required roles. The required roles
are determined by the auth-constraint elements in the deployment descriptor and @ServletSecurity
annotations.

2. The authorization service determines what objects the required role is mapped to. This step is
accomplished by processing the mappings that are defined in the ibm-application-bnd.xmi file or the
ibm-application-bnd.xml file, and the application-bnd element of the server.xml file. The mappings
from these two sources are merged. If the same role is present in both sources, only the role mapping
in the server.xml file is used. The advantage of using the server.xml file for mapping roles to users
is that your application does not need to be packaged into an EAR file and it is easier to update.
Alternatively, using the ibm-application-bnd.xmi/xml file makes your application portable to other
servers and other traditional servers that do not support the server.xml file.

3. If the required role is mapped to the EVERYONE special subject, then the authorization service returns
immediately to allow anyone access. If the role is mapped to the ALL_AUTHENTICATED_USERS special
subject and the user is authenticated, then the authorization service grants access to the user. If none
of these conditions are met, then the authorization service determines what users and groups are
mapped to the required role. The authorization service grants access to the resource if the user is
mapped to the required role or if the user is part of a group that is mapped to the role.

1

4

2 3

22

web container

Roles

AllRole EVERYONE

Employee ALL_AUTHENTICATED_USERS

Developer Bob, Alice

Manager DevManagerGroup

Mapped objects

ibm-application-
bnd.xml/xmi

server.xml
<application-bnd>

</application-bnd>

Authorization

service

Figure 14. Overview of authorization process

Chapter 1. WebSphere Application Server Liberty Core: Overview 607

4. The authorization service returns a result back to the web container to indicate whether the user is
granted or denied access.

Special subjects

When you map entities to roles, you can map a special subject instead of a specific user or group. A
special subject is an extension to the concept of a subject. A special subject can represent a group of users
that fall under a specific category.

The following two types of special subjects are available:
v EVERYONE: represents any entity on the system, which means that no security is available because

everyone is allowed access and you are not prompted to enter credentials.
v ALL_AUTHENTICATED_USERS: represents any entity that successfully authenticates to the server.

To map a special subject to a user, update either the ibm-application-bnd.xmi/xml file or the server.xml
file, where the application-bnd is under the application element. In this example, the role that is named
AllAuthenticated is mapped to the special subject ALL_AUTHENTICATED_USERS:

<application-bnd>
<security-role name="AllAuthenticated">

<special-subject type="ALL_AUTHENTICATED_USERS" />
</security-role>

</application-bnd>

See “Configuring authorization for applications in Liberty” on page 1254.

Access IDs and authorization

When you authorize a user or group, the server needs a way to uniquely identify that user or group. The
unique ID of the user and group serve this purpose and are used to build the authorization
configuration. These IDs are determined by the user registry implementation: the unique user ID is the
value of getUniqueUserId(), and the unique group ID is the value of getUniqueGroupId(). You can also
choose to explicitly specify an access ID for the user or group in the authorization configuration. These
explicit access IDs are used instead of the values that are returned by the user registry implementation.
To specify an access ID in the ibm-application-bnd.xml/xmi file or the server.xml file, where the
application-bnd is under the application element, use the access-id attribute for the user or group
element.

In this example, an access ID is specified for the user Bob and the group developers:
<application-bnd>

<security-role name="Employee">
<user name="Bob" access-id="user:MyRealm/Bob"/>
<group name="developers" access-id="group:myRealm/developers"/>

</security-role>
</application-bnd>

Note: The access-id attribute is used for the authorization check. If it is not specified, it is determined
from the registry that is configured by using the user or group name. However, you must specify the
access-id attribute as shown in the example when the users or groups do not belong to the active
registry. Such as when you are using a programmatic login.

Security on the Liberty application client container

8.5.5.6

Security on the Liberty application client container includes SSL, JAAS, and CSIv2.

608 WebSphere Application Server Liberty Core 8.5.5

Application clients are client programs that run in their own Java virtual machines. The Liberty
application client container provides system services for these clients, including security. The security
services on the client are a subset of those that are available on the server.

Enabling security on the client

To enable security on the client, add the appSecurityClient-1.0 feature to your client.xml file.
<featureManager>

<feature>javaeeClient-7.0</feature>
<feature>appSecurityClient-1.0</feature>

</featureManager>

The appSecurityClient-1.0 feature enables SSL, CSIv2, and JAAS on the client. You must configure SSL
to ensure communications between the client and server are secure and encrypted. For more information,
see Enabling SSL communication for the Liberty application client container. CSIv2 provides a protocol
for the client to send authentication information to the server. The client in a Liberty application client
container is not able to assert identities or propagate security attributes. To understand more about CSIv2
and how to configure it on the client, see Common Secure Interoperability version 2 (CSIv2), and
Configuring Common Secure Interoperability version 2 (CSIv2) in the Liberty application client container.
The JAAS framework on the client enables a client application to gather credentials from the user that is
using callbacks, and authenticate that user by using login modules. For more information about
authenticating users on the client, see “Authentication on the Liberty application client container” on
page 602.

Java 2 Security
8.5.5.7

Java 2 Security functionality is supported in WebSphere Application Server Liberty. Java 2 Security
provides a policy-based, fine-grained access control mechanism that increases overall system integrity by
checking for permissions before allowing access to certain protected system resources.

Java 2 Security is independent of Java Platform, Enterprise Edition role-based authorization. Java 2
Security guards access to system resources such as file input and output, sockets, and properties; whereas
Java Platform, Enterprise Edition security guards access to web resources such as servlets and JSP files.

Java 2 Security for deployers and administrators

Before you enable Java 2 Security, you need to make sure that all the applications are granted the
required permissions, otherwise, applications might fail to run. By default, applications are granted the
permissions per the Java Platform, Enterprise Edition 7.0 specification. If an application is not prepared
for Java 2 Security or if the application provider does not provide a permissions.xml file as part of the
application, then the application might cause Java 2 Security access control exceptions at run time when
Java 2 Security is enabled. Even if the application is running, it might not run correctly.

Java 2 Security for application developers

Application developers must understand the permissions that are granted in the default WebSphere
policy and the permission requirements of the Java SDK APIs. You need to know whether the APIs that
your application calls require extra permissions or not. For more information about which Java APIs
require permissions, see Permissions in the Java 2 SDK.

Permissions are added to an application by way of the permissions.xml file, and the codebase that is
associated with the listed permissions is based on the location of the file. For a stand-alone .war
application, the permissions.xml file is bundled under the META-INF directory and all specified

Chapter 1. WebSphere Application Server Liberty Core: Overview 609

http://docs.oracle.com/javase/6/docs/technotes/guides/security/permissions.html

permissions apply to all modules included in the .war file. For a .ear application, the permissions.xml is
bundled directly under the META-INF directory for the .ear itself, and the specified permissions apply to
all modules included in the .ear file.

Note: In the case of an .ear application, permissions.xml files that are bundled under the META-INF
directory of any module other than the .ear are ignored.

Enabling Java 2 Security

Java 2 Security functions are part of the kernel extension and are enabled at bootstrap time by updating
the bootstrap.properties file with the websphere.java.security property.

If the websphere.java.security property is specified in the bootstrap.properties file, Java 2 Security is
enforced; otherwise, no permission checking occurs.

Specifying restricted permissions

Liberty provides a mechanism to specify restricted permissions when it runs a web or EJB application
component. A restricted permission ensures no instance of that permission is granted to a bundle or
application. They provide a mechanism to prevent applications from granting themselves more
permissions than what must be allowed, for example, the permission to exit VM.

Restricted permissions are specified in the server.xml and client.xml files. The following example shows
how the PropertyPermission that is used to write the System property os.name is restricted. This syntax
is identical in both the server.xml and client.xml files:
<javaPermission className="java.security.PropertyPermission" name="os.name" actions="write" restriction="true" />

Granting permissions

OSGi bundles can self-regulate the permissions that are granted to the libraries/classes within the bundle
through the permissions.perm file.

Applications can also self-regulate permissions that are granted through the permissions.xml file, or by
specifying the permission grants in the server.xml and client.xml files.

OSGi bundle permissions

The OSGi specification provides a mechanism to specify permissions for a bundle through the
permissions.perm file in the OSGI-INF directory of the bundle. The mechanism allows fine-grained access
control of permissions for the bundle.

The permissions.perm file specifies the maximum permissions that the bundles require.

Important: An empty permissions.perm file is not equivalent to no permissions.perm file. Make sure that
you have a non-empty permissions.perm file if you want restricted permissions.

Declaring permissions in the server.xml and client.xml for applications

Permissions without a specified codebase, which are defined in the server.xml and client.xml files
apply to all applications on that Liberty server.

You can specify the permissions to be granted in the server.xml and client.xml files as given in the
following example. In this example, the PropertyPermission that enables all System properties to be read
is granted:
<javaPermission className="java.util.PropertyPermission" name="*" actions="read" />

610 WebSphere Application Server Liberty Core 8.5.5

You can specify the permissions to be restricted in the server.xml and client.xml files. The following
example shows how the PropertyPermission that is used to write the System property os.name is
restricted. This syntax is identical in both the server.xml and client.xml files:
<javaPermission className="java.security.PropertyPermission" name="os.name" actions="write" restriction="true" />

Notes:

v A restricted permission has restriction set to true.
v If an application attempts to grant itself a permission that is defined as a restricted permission, the

restricted permission takes precedence over the grant and disallows the grant.

Declaring permissions in permissions.xml for applications

The permissions.xml file is a new file that is introduced by the Java EE7 specification. It is packaged
under the META-INF directory for an application.

For applications packaged as a stand-alone .war file, the permissions that are specified at the META-INF
WAR level apply to all modules and libraries that are packaged within the .war file.

For applications that are packages in an .ear file, the declaration of permissions must be at the .ear file
level. This permission set is applied to all modules and libraries that are packaged within the .ear file or
within its contained modules. Any permissions.xml file within such packaged modules is ignored,
regardless of whether a permissions.xml file is supplied for the .ear file itself.

For applications that are packaged in a .rar file, the declaration of permissions must be at the META-INF
RAR level.

No-rethrow option

When Java 2 Security is enabled, the JDK Security Manager throws an java.security.AccessControl
exception by default when a permission violation occurs. If the exception is not handled, it might cause a
runtime failure. To help the developers when they are preparing their applications for Java 2 Security, a
no-rethrow option is available. The no-rethrow option allows the AccessControl exception to be logged in
the console.log and messages.log but does not cause the application to fail. The no-rethrow option is
enabled by specifying websphere.java.security.norethrow=true in the bootstrap.properties file. The
no-rethrow option is not enabled by default, hence you must enable this property by specifying it in the
bootstrap.properties file.

Note: Because this property does not allow the Security Manager to throw the exception, the Security
Manager technically does not enforce Java 2 Security. The no-rethrow property must not be used in a
production environment.

Dynamic updates

Dynamic updates to the permission files such as the permissions.perm, permissions.xml, server.xml, and
client.xml are not supported. Updates to permissions require a Liberty server restart.

Security public APIs
Security public APIs in Liberty provide a way of extending the security infrastructure.

Liberty contains public APIs that you can use to implement security functions. The security public APIs
in Liberty are a subset of the traditional security public APIs. The main classes are WSSecurityHelper,
WSSubject, and RegistryHelper. These classes contain a subset of the methods that are available in the
WebSphere Application Server traditional versions. There is also a new class WebSecurityHelper.

Chapter 1. WebSphere Application Server Liberty Core: Overview 611

The following sections describe those main classes. There are also other classes such as UserRegistry,
WSCredential, and other exception classes.

All the security public APIs supported by Liberty are in the Java API documentation. The Java API
documentation for each Liberty server API is available in a separate .zip file in one of the javadoc
subdirectories of the ${wlp.install.dir}/dev directory.

WSSecurityHelper
This class contains only the methods isServerSecurityEnabled() and
isGlobalSecurityEnabled(). These calls return true if appSecurity-2.0 or zosSecurity-1.0,
among others, is enabled. Otherwise, the methods return false. These methods are carried over
from the traditional WSSecurityHelper class for compatibility.

Note:

v There are no cells in Liberty, so there is no distinction in Liberty between global security and
server security. Therefore, both methods return the same value.

v The method revokeSSOCookies(javax.servlet.http.HttpServletRequest
req,javax.servlet.http.HttpServletResponse res) is not supported in Liberty. Instead, you
can use the Servlet 3.0 logout function.

v The method getLTPACookieFromSSOToken() is renamed to a new public API class:
WebSecurityHelper.

WSSubject
This class provides utility methods for querying and setting the security thread context. All
methods from the traditional WSSubject are supported in Liberty.

Note: Java 2 Security is supported but not enabled by default in Liberty. So by default, the Java 2
security checks in WSSubject are not performed.

RegistryHelper
This class provides access to the UserRegistry object and trusted realm information. In Liberty, it
contains the following subset of the traditional methods:

public static UserRegistry getUserRegistry(String realmName) throws WSSecurityException

public static List<String> getInboundTrustedRealms(String realmName) throws
WSSecurityException

public static boolean isRealmInboundTrusted(String inboundRealm, String localRealm)

Note: This method involves dynamic information that could change as OSGI dynamic services
change. The values that are retrieved can become stale. The UserRegistry references should never
be cached.

WebSecurityHelper
This class contains the renamed getLTPACookieFromSSOToken() method, which was moved from
WSSecurityHelper:

public static Cookie getSSOCookieFromSSOToken() throws Exception

Security public API code examples

The following examples demonstrate how to use security public APIs in Liberty to do a programmatic
login and operate on the Subject.
v Example 1: Create a Subject and use it for authorization
v Example 2: Create a Subject and make it as the current Subject on the thread
v Example 3: Get information of the current Subject on the thread

612 WebSphere Application Server Liberty Core 8.5.5

Example 1: Create a Subject and use it for authorization
This example demonstrates how to use WSSecurityHelper, WSSubject, and UserRegistry to do a
programmatic login to create a Java Subject, then perform an action and use that Subject for any
authorization that is required.

Note: The following code uses WSSecurityHelper to check if security is enabled before doing
further security processing. This check is used extensively because of the modular nature of
Liberty: If security is not enabled, then the security run time is not loaded. WSSecurityHelper is
always loaded, even if security is not enabled.
import java.rmi.RemoteException;
import java.security.PrivilegedAction;

import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

import com.ibm.websphere.security.CustomRegistryException;
import com.ibm.websphere.security.UserRegistry;
import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.WSSecurityHelper;
import com.ibm.websphere.security.auth.WSSubject;
import com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl;
import com.ibm.wsspi.security.registry.RegistryHelper;
public class myServlet {

...
if (WSSecurityHelper.isServerSecurityEnabled()) {
UserRegistry ur = null;
try {
ur = RegistryHelper.getUserRegistry(null);
} catch (WSSecurityException e1) {
// record some diagnostic info
return;
}
String userid = "user1";
String password = "user1password";
try {
if (ur.isValidUser(userid)) {
// create a Subject, authenticating with
// a userid and password
CallbackHandler wscbh = new WSCallbackHandlerImpl(userid, password);
LoginContext ctx;
ctx = new LoginContext("WSLogin", wscbh);
ctx.login();
Subject subject = ctx.getSubject();
// Perform an action using the Subject for
// any required authorization
WSSubject.doAs(subject, action);
}
} catch (CustomRegistryException e) {
// record some diagnostic info
return;
} catch (RemoteException e) {
// record some diagnostic info
return;
} catch (LoginException e) {
// record some diagnostic info
return;
}
}
...
private final PrivilegedAction action = new PrivilegedAction() {
@Override
public Object run() {
// do something useful here

Chapter 1. WebSphere Application Server Liberty Core: Overview 613

return null;
}
};

}

Example 2: Create a Subject and make it the current Subject on the thread
The following example demonstrates how to use WSSecurityHelper and WSSubject to do a
programmatic login to create a Java Subject. Make that Subject the current Subject on the thread,
and then restore the original security thread context.

Note: The following code uses WSSecurityHelper to check if security is enabled before doing
further security processing.
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.WSSecurityHelper;
import com.ibm.websphere.security.auth.WSSubject;
import com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl;
...
if (WSSecurityHelper.isServerSecurityEnabled()) {
CallbackHandler wscbh = new WSCallbackHandlerImpl("user1", "user1password");
LoginContext ctx;
try {
// create a Subject, authenticating with
// a userid and password
ctx = new LoginContext("WSLogin", wscbh);
ctx.login();
Subject mySubject = ctx.getSubject();
Subject oldSubject = null;
try {
// Save a ref to the current Subject on the thread
oldSubject = WSSubject.getRunAsSubject();
// Make mySubject the current Subject on the thread
WSSubject.setRunAsSubject(mySubject);
// Do something useful here. Any authorization
// required will be performed using mySubject
} catch (WSSecurityException e) {
// record some diagnostic info
return;
} finally {
// Put the original Subject back on the thread context
if (oldSubject != null) {
try {
WSSubject.setRunAsSubject(oldSubject);
} catch (WSSecurityException e) {
// record some diagnostic info
}
}
}
} catch (LoginException e) {
// record some diagnostic info
return;
}
}

Example 3: Get information of the current Subject on the thread
The following example demonstrates how to use WSSecurityHelper, WSSubject, and WSCredential
to get information about the current Subject on the thread.

Note: The following code uses WSSecurityHelper to check if security is enabled before doing
further security processing.

614 WebSphere Application Server Liberty Core 8.5.5

import java.util.ArrayList;
import java.util.Iterator;
import java.util.Set;

import javax.security.auth.Subject;
import javax.security.auth.login.CredentialExpiredException;

import com.ibm.websphere.security.WSSecurityException;
import com.ibm.websphere.security.WSSecurityHelper;
import com.ibm.websphere.security.auth.CredentialDestroyedException;
import com.ibm.websphere.security.auth.WSSubject;
import com.ibm.websphere.security.cred.WSCredential;
...
if (WSSecurityHelper.isServerSecurityEnabled()) {
// Get the caller’s subject
Subject callerSubject;
try {
callerSubject = WSSubject.getCallerSubject();
} catch (WSSecurityException e) {
// record some diagnostic info
return;
}
WSCredential wsCred = null;
Set<WSCredential> wsCredentials =
callerSubject.getPublicCredentials(WSCredential.class);
Iterator<WSCredential> wsCredentialsIterator = wsCredentials.iterator();
if (wsCredentialsIterator.hasNext()) {
wsCred = wsCredentialsIterator.next();
try {
// Print out the groups
ArrayList<String> groups = wsCred.getGroupIds();
for (String group : groups) {
System.out.println("Group name: " + group);
}
} catch (CredentialExpiredException e) {
// record some diagnostic info
return;
} catch (CredentialDestroyedException e) {
// record some diagnostic info
return;
}
}
}
}

Configuration differences between the traditional and Liberty: security
The configuration differences in the security capability between Liberty and traditional indicates the items
that you might need to know during applications migration.

Liberty security supports only a subset of security features in the traditional. Unless the support is
explicitly mentioned in Liberty documentation, you must assume that the support is not available yet.

The following security features are not included in Liberty:
v Not all public APIs and SPIs are supported. The Java API documentation for each Liberty API is

detailed in the Programming Interfaces (APIs) section of the documentation, and is also available as a
separate .zip file in one of the javadoc subdirectories of the ${wlp.install.dir}/dev directory.

v Horizontal propagation.
v SecurityAdmin MBean support, therefore methods such as clearing the authentication cache are not

available.
v Java 2 Connector (J2C) principal mapping modules support.
v Multiple security domain support.

Chapter 1. WebSphere Application Server Liberty Core: Overview 615

v 8.5.5.6 CSIv2 security attribute propagation.

v 8.5.5.6 Kerberos authentication.

v 8.5.5.6 SPNEGO on non-IBM JDK.
v Security auditing subsystem that is part of the security infrastructure of the server.

In Liberty, you can configure user-to-role mappings and RunAs users in the application-bnd element of
the server.xml file. For a Run-As entry, the password is optional. In the traditional, you can only
configure the Run-AS entry in the ibm-application-bnd.xml/xmi file. For a Run-As entry, the password is
required. See “Configuring authorization for applications in Liberty” on page 1254.

In Liberty, role names can be referenced by the HttpServletRequest.isUserInRole and
EJBContext.isCallerInRole APIs or by elements in the deployment descriptor without first declaring the
role names using the @DeclareRoles annotation or the <security-role/> element in the deployment
descriptor. However, roles must be declared before being used in WebSphere Application Server
traditional.

The limits to protection through password encryption
Liberty supports Advanced Encryption Standard (AES) encryption for passwords that are stored in the
server.xml file. When you use this option for protecting system passwords in the Liberty configuration,
you need to understand the limits to the protection it provides.

Encrypting a password in the Liberty configuration does not guarantee that the password is secure or
protected; it only means that someone who can see the encrypted password, but does not know the
encryption key, cannot easily recover the password. The application server process requires access to both
the encrypted password and the decryption key, so both these data items need to be stored on the file
system that is accessible to the server runtime environment. The encryption key is also required by
anyone who encrypts a password that is placed in the server configuration. For an attacker that has
access to exactly the same set of files as the Liberty server instance, applying AES encryption to the
password therefore provides no additional security over and above “exclusive or” (XOR) encoding.

Nonetheless, there are still reasons why you might consider encrypting passwords in the Liberty
configuration. The Liberty configuration is designed to be highly composable and sharable. The
administration subsystem of traditional (the administrative console and wsadmin scripting) prevents an
administrator from gaining access to an XOR-encoded password. Liberty is designed to be configured
without an administration subsystem, and so any XOR-encoded password is visible to any administrator.
Given these design features, consider the following scenarios:
v The passwords are not sensitive, so encoding them provides little value.
v The passwords are sensitive, so either the configuration files containing the password are security

sensitive and access needs to be controlled, or the passwords are encrypted and the encoding key is
then protected as security sensitive.

The encryption key used for decrypting can be overridden from the default by setting the
wlp.password.encryption.key property. This property should not be set in the server.xml file that stores
the password, but in a separate configuration file that is included by the server.xml file. This separate
configuration file should contain only a single property declaration, and should be stored outside the
normal configuration directory for the server. This ensures that the file containing the key is not included
when you are running the server dump or package command. The encryption key property can also be
specified as a bootstrap property. If you choose this option, you should put the encryption key in a
separate properties file that is included in the server bootstrap.properties file.

For information about using XOR or AES to protect your passwords see the related links, especially
“securityUtility command” on page 1162.

616 WebSphere Application Server Liberty Core 8.5.5

Java Persistence API (JPA)
8.5.5.6

Data Persistence is a means for an application to persist and retrieve information from a non-volatile
storage system. Persistence is vital to enterprise applications because of the required access to relational
databases. Applications that are developed for this environment must manage persistence themselves or
use third-party solutions to handle database updates and retrievals with persistence. The Java Persistence
API (JPA) provides a mechanism for managing persistence and object-relational mapping and functions
since the EJB 3.0 specifications.

The JPA specification defines the object-relational mapping internally, rather than relying on
vendor-specific mapping implementations. JPA is based on the Java programming model that applies to
Java Enterprise Edition (Java EE) environments, but JPA can function within a Java SE environment for
testing application functions.

JPA represents a simplification of the persistence programming model. The JPA specification explicitly
defines the object-relational mapping, rather than relying on vendor-specific mapping implementations.
JPA standardizes the important task of object-relational mapping by using annotations or XML to map
objects into one or more tables of a database. To further simplify the persistence programming model:
v The EntityManager API can persist, update, retrieve, or remove objects from a database.
v The EntityManager API and object-relational mapping metadata handle most of the database

operations without requiring you to write JDBC or SQL code to maintain persistence.
v JPA provides a query language, extending the independent EJB querying language (also known as

JPQL), that you can use to retrieve objects without writing SQL queries specific to the database that
you are working with.

JPA is designed to operate both inside and outside of a Java Enterprise Edition (Java EE) container. When
you run JPA inside a container, the applications can use the container to manage the persistence context.
If there is no container to manage JPA, the application must handle the persistence context management
itself. Applications that are designed for container-managed persistence do not require as much code
implementation to handle persistence, but these applications cannot be used outside of a container.
Applications that manage their own persistence can function in a container environment or a Java SE
environment.

Java EE containers that support the EJB 3.x programming model must support a JPA implementation, also
called a persistence provider. A JPA persistence provider uses the following elements to enable easier
persistence management in an EJB 3.x environment:

Persistence unit
Defines a complete Object-Relational Model mapping Java classes (entities + supporting
structures) with a relational database. The EntityManagerFactory uses this data to create a
persistence context that can be accessed through the EntityManager.

EntityManagerFactory
Used to create an EntityManager for database interactions. The application server containers
typically supply this function, but the EntityManagerFactory is required if you are using JPA
application-managed persistence. An instance of an EntityManagerFactory represents a
Persistence context.

Persistence context
Defines the set of active instances that the application is manipulating currently. You can create
the persistence context manually or through injection.

EntityManager
The resource manager that maintains the active collection of entity objects that are being used by
the application. The EntityManager handles the database interaction and metadata for

Chapter 1. WebSphere Application Server Liberty Core: Overview 617

object-relational mappings. An instance of an EntityManager represents a Persistence context. An
application in a container can obtain the EntityManager through injection into the application or
by looking it up in the Java component name-space. If the application manages its persistence,
the EntityManager is obtained from the EntityManagerFactory.

Entity objects
A simple Java class that represents a row in a database table in its simplest form. Entities objects
can be concrete classes or abstract classes. They maintain states by using properties or fields.

Java Persistence API (JPA) feature overview

8.5.5.6

There are two JPA features that you can use for your application. jpa-2.0 is built on the Apache OpenJPA
open source project. jpa-2.1 is built on the EclipseLink open source project.
v jpa-2.0
v jpa-2.1
v JPA feature compatibility

jpa-2.0

Java Persistence API (JPA) 2.0 for WebSphere Application Server is built on the Apache OpenJPA 2.2.x
open source project.

Apache OpenJPA is a compliant implementation of the JPA 1.0 and 2.0 specifications. Using OpenJPA as a
base implementation, WebSphere Application Server employs extensions to provide more features and
utilities for WebSphere Application Server customers. Because JPA for WebSphere Application Server is
built from OpenJPA, all OpenJPA function, extensions, and configurations are unaffected by the
WebSphere Application Server extensions. You do not need to make changes to OpenJPA applications to
use these applications in WebSphere Application Server.

JPA for WebSphere Application Server provides more than compatibility with OpenJPA. JPA for
WebSphere Application Server contains a set of tools for application development and deployment. Other
features of JPA for WebSphere Application Server include support for DB2®Optim pureQuery Runtime,
DB2 optimizations, JPA Access Intent, enhanced tracing capabilities, command scripts, and translated
message files. The provider of JPA for this product is
com.ibm.websphere.persistence.PersistenceProviderImpl.

Apache OpenJPA supports the use of properties to configure the persistent environment. You can specify
JPA for WebSphere Application Server properties with either the openjpa or wsjpa prefix. You can mix the
openjpa and wsjpa prefixes as you want for a common set of properties. Exceptions to the rule are the
wsjpa specific configuration properties, which use the wsjpa prefix. When a JPA for WebSphere
Application Server-specific property is used with the openjpa prefix, a warning message is logged
indicating that the offending property is treated as a wsjpa property. The reverse does not hold true for
the openjpa prefix. In that case, the offending property is ignored.

jpa-2.1

Java Persistence API (JPA) 2.1 for WebSphere Application Server is built on the EclipseLink open source
project. EclipseLink is the reference implementation for all version of the JPA specification. The provider
of JPA for this product is org.eclipse.persistence.jpa.PersistenceProvider.

The JPA 2.1 specification added new features that are not available in the JPA 2.0 specification. These
features include:
v Schema generation

618 WebSphere Application Server Liberty Core 8.5.5

v Type conversion methods
v Entity graphs in queries and find operations
v Unsynchronized persistence contexts
v Stored procedure invocation
v Injection into Entity listener classes
v JPQL enhancements
v Criteria API enhancements
v Mapping of native queries

Refer to the JPA 2.1 specification for more details on these features. This product also provides a subset of
the EclipseLink APIs. See the Liberty feature page, Java Persistence API 2.1, for details.

Note: JPA 2.1 is backwards compatible with JPA 2.0.

JPA feature compatibility

jpa-2.0

The jpa-2.0 feature is the JPA 2.0 specification implementation and is backed by Apache
OpenJPA. This feature is a part of the Java Platform, Enterprise Edition (Java EE) 6 family of
technologies, but it is special as it is compatible with other Java EE 7 features. For example, the
servlet-3.1 feature, an Java EE 7 feature, is used with the jpa-2.0 feature. This enables
applications to stay with the existing JPA provider, but also use new Java EE 7 features.

jpa-2.1

The jpa-2.1 feature is the JPA 2.1 specification implementation and is backed by EclipseLink.
This feature is only compatible with other Java EE 7 features. If the jpa-2.1 feature is used with
other Java EE 6 features, the following error is emitted into the message.log file.
CWWKF0033E: The singleton features com.ibm.websphere.appserver.javaeeCompatible-7.0 and com.ibm.websphere.appserver.javaeeCompatible-6.0 cannot be loaded at the same time. The configured features jpa-2.1 and servlet-3.0 include one or more features that cause the conflict. Your configuration is not supported; update server.xml to remove incompatible features.

Java Persistence API 2.1 behavior changes
8.5.5.6

If you already use the jpa-2.0 feature for your applications, you are encouraged to continue using the
jpa-2.0 feature for your existing applications to avoid any migration issues. For new applications, you
are encouraged to use the jpa-2.1 feature, which enables you to take advantage of the new features
available in the JPA 2.1 specification. If you want to change your existing applications to use the jpa-2.1
feature instead of the jpa-2.0 feature, you might need to adjust your application in the migration
process.

Differences between jpa-2.0 and jpa-2.1

There are a few major differences between the jpa-2.0and jpa-2.1 features that you need to be aware of:

PersistenceProvider class name
jpa-2.0

v IBM provider:com.ibm.websphere.persistence.PersistenceProviderImpl
v OpenJPA provider: org.apache.openjpa.persistence.PersistenceProviderImpl

jpa-2.1

v org.eclipse.persistence.jpa.PersistenceProvider

Caching behavior

jpa-2.0: Caching is disabled by default. If your application needs to take advantage of a L2
cache, you must explicitly enable it.

Chapter 1. WebSphere Application Server Liberty Core: Overview 619

https://jcp.org/aboutJava/communityprocess/final/jsr338/index.html

jpa-2.1: By default, the EclipseLink provider has the L2 cache and QueryCache enabled. You
must ensure that this setting is the best option for your applications. If you are running in a
distributed environment, like a cluster, you need to disable the cache, or understand that different
nodes can have different data.

Enhancement / weaving differences

jpa-2.0: OpenJPA requires entities to be enhanced. See the documentation on the enhancement of
JPA entities for more information.

jpa-2.1: EclipseLink works with unenhanced entities. WebSphere Application Server supports
static enhancement.
Some features might be unavailable, such as lazy loading and some performance gains.
v If entities classes are statically enhanced for use with thejpa-2.0 (OpenJPA) provider, the

classes must be recompiled before you use the jpa-2.1 provider.

Data source usage differences

The jpa-2.0 feature sparingly uses the non-jta-datasource, so few non-jta-datasource connections
are required when you are tuning an application.

The jpa-2.1 uses a non-jta-datasource connection when reading data and a transaction is not
active. This means that non-jta-datasource connection pools need to be larger when you use this
feature.
See the OpenJPA -> EclipseLink migration guide page for more differences between the two JPA
providers.

JPA 2.1 features available in OpenJPA

OpenJPA, the JPA 2.0 provider, has features that function similarly to the new JPA 2.1 features. This
means that if you have an existing application that uses the jpa-2.0 feature and want to use some of the
JPA 2.1 new features, you do not have to switch to the jpa-2.1 feature. Instead, you can use the
equivalent of the new feature that is provided by OpenJPA. Some of the key JPA 2.1 features that are
available in OpenJPA are:

Schema Generation

This feature enables you to generate DDL or interact directly with the database to define table
schemas based on JPA entity definition. For more information, refer to section 9.4 of the JPA 2.1
Specification.

OpenJPA equivalent feature: Schema Mapper

Entity Graphs

This feature enables you to specify fetching or processing of a graph of entity objects. For more
information, refer to section 3.7 of the JPA 2.1 Specification.

OpenJPA equivalent feature: FetchPlan and FetchGroup

Stored Procedure Queries

This feature enables you to invoke procedures stored in databases. For more information, refer to
section 3.10.17 of the JPA 2.1 Specification.

OpenJPA equivalent feature: Query invocation

Basic Attribute Type Conversion

This feature enables you to convert between an attribute entity representation and database
representation for basic type attributes. For more information, refer to section 3.8 of the JPA 2.1
Specification.

OpenJPA equivalent feature: Externalizer feature

620 WebSphere Application Server Liberty Core 8.5.5

https://wiki.eclipse.org/EclipseLink/Examples/JPA/Migration/OpenJPA
http://ci.apache.org/projects/openjpa/2.2.x/docbook/manual.html#ref_guide_mapping
http://ci.apache.org/projects/openjpa/2.2.x/docbook/manual.html#ref_guide_fetch
http://ci.apache.org/projects/openjpa/2.2.x/docbook/manual.html#jpa_overview_sqlquery_create
http://ci.apache.org/projects/openjpa/2.2.x/docbook/manual.html#externalizer

@Index and @ForeignKey annotations

Refer to sections 11.1.19 and 11.1.23 of the JPA 2.1 Specification.

OpenJPA equivalent feature: OpenJPA's @Index and @ForeignKey

Unwrap utility methods for EntityManager, Cache

Refer to sections 3.1.1 and 7.10 of the JPA 2.1 Specification.

OpenJPA equivalent features: EntityManagerImpl.unwrap() and OpenJPAPersistence.cast()

Object construction when mapping results from native SQL

Refer to Section 3.10.16.2.2 of the JPA 2.1 Specification.

OpenJPA equivalent feature: ResultShape object

Binary logging
Binary logging is a high performance log and trace facility based on the High Performance Extensible
Logging (HPEL) technology in WebSphere Application Server traditional.

Overview

Note: You must enable the binary logging facility to use it.

Binary logging provides a convenient mechanism for storing and accessing log, trace, System.err, and
System.out information produced by the application server or your applications. It is an alternative to the
default log and trace facility, which provides the JVM logs and diagnostic trace files commonly named
messages.log and trace.log.

Log and trace storage

Binary logging provides a log data repository and a trace data repository. See the following figure to
understand how applications and the application server store log and trace information.

Chapter 1. WebSphere Application Server Liberty Core: Overview 621

http://ci.apache.org/projects/openjpa/2.2.x/docbook/manual.html#ref_guide_mapping_jpa_index
http://openjpa.apache.org/builds/2.0.1/apache-openjpa-2.0.1/docs/javadoc/org/apache/openjpa/persistence/EntityManagerImpl.html
http://ci.apache.org/projects/openjpa/2.2.x/javadoc/org/apache/openjpa/persistence/EntityManagerImpl.html
http://openjpa.apache.org/builds/2.0.1/apache-openjpa-2.0.1/docs/javadoc/org/apache/openjpa/kernel/ResultShape.html

Log data

repository

Trace data

repository

Text log

trace.log

console.log

messages.log

Application code Application code

com.xyz.abc.def

(logger)

Log/Trace

Service

Log/Trace

data handler

Log/Trace

service

Log/Trace

handler

com.xyz.abc.ghi

(logger)

root

(logger)

Tr SPI

com.xyz.abc

(logger)

Legend

default logging framework

HPEL logging framework

com.ibm.ws

(logger)

Service broker

HPEL

Default

WebSphere Application Server

Applications

Log data repository

The log data repository is a storage facility for log records. Log data is typically intended to be
reviewed by administrators. This includes any information applications or the server write to
System.out, System.err, OSGi logging service at level LOG_INFO or higher (including
LOG_INFO, LOG_WARNING, and LOG_ERROR), or java.util.logging at level Detail or higher
(including Detail, Config, Info, Audit, Warning, Severe, Fatal, and any custom levels at level
Detail or higher).

Trace data repository

The trace data repository is a storage facility for trace records. Trace data is typically intended for
use by application programmers or by the WebSphere Application Server support team. This
includes any information applications or the server write to the OSGi logging service at level
LOG_DEBUG or java.util.logging at levels below level Detail (including Fine, Finer, Finest, and
any custom levels below level Detail).

622 WebSphere Application Server Liberty Core 8.5.5

Log and trace performance

Binary logging has been designed and tested to significantly outperform the default log and trace facility.
One result is that the application server can run with trace enabled while causing less impact to
performance than tracing the same components using the default log and trace framework. Another result
is that applications that frequently write to the logs can run faster when using binary logging.

Log and trace events are each stored in only one place

Log events, System.out, and System.err are stored in the log data repository. Trace events are
stored in the trace data repository. Storing each type of event in only one place ensures that
performance is not wasted on redundant data storage.

Note: The console log should be disabled in cases where logging performance is important. Any
content written to the console log will already be stored in the log data repository.

Application server

Trace data
repository

Text
log

(optional)

Log data
repository

System.out,
System.err,

,
trace data
log data

trace data

System.out,
System.err,
log data

Data is not formatted unless it is needed

Formatting data for a user to read uses processor time. Rather than format log event and trace
event data at run time, log and trace data are stored more rapidly in a proprietary binary
representation. This improves the performance of the log and trace facility. By deferring log and
trace formatting until the binaryLog command is run, sections of the log or trace that are never
viewed are never formatted.

Log and trace data are buffered before being written to disk

Writing large blocks of data to a disk is more efficient than writing the same amount of data in
small blocks. The binary logging facility provides the capability to buffer log and trace data
before writing it to disk. By default, log and trace data are stored in an 8 KB buffer before being
written to disk. If the buffer is filled within 10 seconds, the buffer is written to disk. If the buffer
is not filled within that time it is automatically written to disk to ensure that the logs have the
most current information.

Chapter 1. WebSphere Application Server Liberty Core: Overview 623

Administration of log and trace

Binary logging has been designed to be easy to configure and understand. For example, administrators
can easily configure how much disk space to dedicate to logs or trace, or how long to retain log and trace
records, and leave the management of log and trace content up to the server. As another example all log,
trace, System.out, and System.err content can be accessed using one easy-to-use command (binaryLog),
avoiding any possible confusion over which file to access for certain content.

Reading from the log data and trace data repositories

The log data and trace data repositories are stored in a WebSphere Application Server proprietary
format and cannot be read using text file editors such as Notepad or VI. You can copy the log
data and trace data repositories in to a plain text format using the binaryLog command.

Log Data

Repository

Trace Data

Repository

binaryLog

text log

binaryLog command

binaryLog is an easy-to-use command-line tool provided for users to work with the log data and
trace data repositories. binaryLog provides filtering and formatting options that make finding
important content in the log data and trace data repositories easy. For example, a user might filter
any errors or warnings, then filter all log and trace entries that occurred within 10 seconds of a
key error message on the same thread.

Filtering using log and trace record extension content

The binary logging facility provides the capability for developers to add custom extensions to log
and trace records using a log record context API
(com.ibm.websphere.logging.hpel.LogRecordContext). You can use the binaryLog command-line
tool to filter records based on the content of log and trace record extensions.

Development resources

Binary logging has been designed to make working with log and trace content more flexible and effective
than the default logging facility. Log and trace content can be easily filtered to show only the records that
are of interest. You can use the command line (see the description of the binaryLog command), or
developers can create powerful log handling programs using the HPEL API.

624 WebSphere Application Server Liberty Core 8.5.5

com.ibm.websphere.

logging.hpel API

Log Data

Repository

Trace Data

Repository

Reading the log data and trace data

An API has been provided to make it easy for developers to develop tools to consume content
from the binary log and trace repositories. For example, a developer might write a Java program
to search the log and trace content to find any messages with message IDs that match a known
list of important message IDs. This API is in the com.ibm.websphere.logging.hpel package. Refer
to the API documentation for details on the HPEL log reading API.

Log and trace record extensibility

Developers can add custom extensions to log and trace records through a log record context API
(com.ibm.websphere.logging.hpel.LogRecordContext). When binary logging stores log and trace
records, it includes any extensions present in the log record context on the same thread. For
example, a developer might write a servlet filter to add important HTTP request parameters to
the log record context. While that servlet runs, HPEL API adds those extensions to any log and
trace records created on the same thread.

As with other log and trace record fields, developers can access the record extensions using the
HPEL API. This is useful when writing tools to read from log and trace repositories. Developers
can also make use of the log record context API to access extensions in custom log handlers,
filters, and formatters at run time.

BinaryLog command options
Use the binaryLog command to view or copy the contents of a binary logging repository, or list the
available server process instances in the repository. The binaryLog command is equivalent to the
logViewer command in the profile bin directory of the traditional application server.

The binary log and trace facility writes to a repository in a binary format. You can view, query and filter
the repository using the binaryLog command. The binaryLog command provides options for quickly
converting repository contents into a text file in various formats, such as basic and advanced formats. The
command also provides options to make getting the data you need from the logs easier; for example,
allowing you to filter what log records you want by level, logger name, or date and time.

Syntax

The command syntax is as follows:
binaryLog action {serverName | repositoryPath} [options]

The value of options is different based on the value of action.

Parameters

The following actions are available for the binaryLog command:

Chapter 1. WebSphere Application Server Liberty Core: Overview 625

view
Read a repository, optionally filter it, and create a version that users can read.

The command syntax is as follows:
binaryLog view {serverName | repositoryPath} [options]

serverName

Specify the name of a Liberty server with a repository to read from.

repositoryPath

Specify the path to a repository to read from. This is typically the directory that contains both the
logdata and tracedata directories.

Note: If neither a serverName nor a repositoryPath is specified on the command line, the task is
performed against the default server instance, defaultServer, if it exists.

Filter options:

All filters are optional. When multiple filters are used, they are logically ANDed together.
v --minDate=value

Filter based on minimum record creation date. Value must be specified as either a date (for
example --minDate="2/20/13") or a date and time (for example --minDate="2/20/13 16:47:21:445
EST").

v --maxDate=value

Filter based on maximum record creation date. Value must be specified as either a date (for
example --maxDate="2/20/13") or a date and time (for example --maxDate="2/20/13 16:47:21:445
EST").

v --minLevel=value

Filter based on minimum level. Value must be one of FINEST | FINER | FINE | DETAIL | CONFIG |
INFO | AUDIT | WARNING | SEVERE | FATAL.

v --maxLevel=value

Filter based on maximum level. Value must be one of the following: FINEST | FINER | FINE |
DETAIL | CONFIG | INFO | AUDIT | WARNING | SEVERE | FATAL.

v --includeLogger=value[,value]*
Include records with specified logger name. Value may include * or ? as a wildcard.

v --includeMessage=value

Filter based on message name. Value may include * or ? as a wildcard.
v --includeThread=value

Include records with specified thread id. Values must be in hexadecimal (for example,
--includeThread=2a).

v --includeExtension=name=value[,name=value]*
Include records with specified extension name and value. Value may include * or ? as a wildcard.
To include a comma in the value, you must use "\,"

v --includeInstance=value

Include records from the specified server instance. Value must either be "latest" or be a valid
instance ID. Run this command using the listInstances action to see a list of valid instance IDs.

Monitor option:

--monitor
Continuously monitor the repository and output new content as it is generated.
Output options:
v --format={basic | advanced | CBE-1.0.1}

626 WebSphere Application Server Liberty Core 8.5.5

Specify the output format to use. "basic" is the default format.
v --encoding=value

Specify the character encoding to use for output.

copy
Read a repository, optionally filter it, and write the contents to a new repository.

The command syntax is as follows:
binaryLog copy {serverName | repositoryPath} targetPath [options]

serverName
Specify the name of a Liberty server with a repository to read from.

repositoryPath
Specify the path to a repository to read from. This is typically the directory that contains the logdata
and tracedata directories.

targetPath
Specify the path at which to create a new repository. The targetPath must be specified.

Note: Either serverName or repositoryPath must be specified, as well as the targetPath.

Filter options:

All filters are optional. When multiple filters are used, they are logically ANDed together.
v --minDate=value

Filter based on minimum record creation date. Value must be specified as either a date (for
example --minDate="2/20/13") or a date and time (for example --minDate="2/20/13 16:52:32:808
EST").

v --maxDate=value

Filter based on maximum record creation date. Value must be specified as either a date (for
example --maxDate="2/20/13") or a date and time (for example --maxDate="2/20/13 16:52:32:808
EST").

v --minLevel=value

Filter based on minimum level. Value must be one of the following: FINEST | FINER | FINE |
DETAIL | CONFIG | INFO | AUDIT | WARNING | SEVERE | FATAL.

v --maxLevel=value

Filter based on maximum level. Value must be one of the following: FINEST | FINER | FINE |
DETAIL | CONFIG | INFO | AUDIT | WARNING | SEVERE | FATAL.

v --includeLogger=value[,value]*
Include records with specified logger name. Value may include * or ? as a wildcard.

v --excludeLogger=value[,value]*
Exclude records with specified logger name. Value may include * or ? as a wildcard.

v --includeMessage=value

Filter based on message name. Value may include * or ? as a wildcard.
v --includeThread=value

Include records with specified thread id. Values must be in hexadecimal (for example,
--includeThread=2a).

v --includeExtension=name=value[,name=value]*
Include records with specified extension name and value. Value may include * or ? as a wildcard.
To include a comma in the value, you must use "\,"

v --includeInstance=value

Include records from the specified server instance. Value must either be "latest" or be a valid
instance ID. Run this command using the listInstances action to see a list of valid instance IDs.

Chapter 1. WebSphere Application Server Liberty Core: Overview 627

listInstances
List the IDs of server instances in the repository. A server instance is the collection of all log/trace
records written from the time a server is started until it is stopped. Server instance IDs can be used
with the --includeInstance option of the binaryLog view action.

The command syntax is as follows:
binaryLog listInstances {serverName | repositoryPath}

serverName
Specify the name of a Liberty server with a repository to read from.

repositoryPath
Specify the path to a repository to read from. This is typically the directory that contains the logdata
and tracedata directories.

Note: If serverName or repositoryPath are not specified on the command line, the task is performed
against the default server instance, defaultServer, if it exists.

Be aware of binaryLog filtering optimizations. The binaryLog tool is able to filter log and trace data
most efficiently when used with the following filter options:
v --minDate
v --maxDate
v --includeThread
v --minLevel
v --maxLevel

Example usage

See the following examples of binaryLog commands.
v Display all events in the defaultServer repository between July 19th, 2013 and August 2nd, 2013.

binaryLog view --minDate=07/19/13 --maxDate=08/02/13

v Display new events from server myServer, whose specified level is WARNING or higher, using the
advanced format as the server writes them to the log repository.
binaryLog view myServer --monitor --minLevel=WARNING --format=advanced

v Write log messages from a repository at /apps/server1/logs; include only those that were written
to the error stream of a specific repository.
binaryLog view /apps/server1/logs --includeLogger=SystemErr

v View events from the defaultServer repository that occurred before September 14th, 2012 4:28 PM
eastern daylight time.
binaryLog view --maxDate="09/14/12 16:28:00:000 EDT"

v Write events from the defaultServer repository that contain a 'thread' extension with value 'Default
Executor-thread-4'
binaryLog view --includeExtension=thread="Default Executor-thread-4" --format=advanced

v View the list of server instances in the defaultServer repository:
binaryLog listInstances

Using D:\wlp\usr\servers\defaultServer\logs as repository directory.

Instance ID Start Date
1358809441761 1/21/13 18:04:01:761 EST
1358864476191 1/22/13 9:21:16:191 EST
1358869523192 1/22/13 10:45:23:192 EST
1358871281166 1/22/13 11:14:41:166 EST
1358879829000 1/22/13 13:37:09:000 EST
1358892222067 1/22/13 17:03:42:067 EST

v View events from the defaultServer using one of the instance IDs from the previous example:
binaryLog view --includeInstance=1358871281166

628 WebSphere Application Server Liberty Core 8.5.5

v Copy events from the defaultServer, whose specified level is WARNING or higher, from the latest
server instance to a new repository at d:\toSupport directory.
binaryLog copy defaultServer d:\toSupport --minLevel=warning --includeInstance=latest

Configuring binary logging in Liberty
Use this information as a guide for configuring binary logging in your Liberty.

About this task

Binary logging provides faster log and trace handling capabilities and more flexible ways to use log and
trace content than the default Liberty log and trace framework.

A server configuration consists of a bootstrap.properties file, a server.xml file, and any (optional) files
that are included with those files. The bootstrap.properties file specifies properties that need to be
available before the main configuration is processed, and are kept to a minimum. The server.xml file is
the primary configuration file for the server.

The server.xml file and its associated files use a simple xml format that is suitable for most text editors.

Distributed operating systems A richer editing experience is provided by the eclipse server adapter for Liberty
(WAS4D+ adapter), which uses a generated schema to provide drop-down lists of available choices,
auto-completion, and other editing tools. For a description of the eclipse server adapter for Liberty, see
“Editing the Liberty configuration by using developer tools” on page 938.

The bootstrap.properties file specifies whether the server uses binary logging as the log and trace
framework, or the default log and trace framework. A server restart is required to switch between binary
logging and the default log and trace framework.

You can modify the configuration of binary logging through the server configuration or the
bootstrap.properties file.
v Server configuration: To get logging from your own code, which is loaded after server configuration

processing, use the server configuration to configure binary logging.
v bootstrap.properties file: You might need to set logging properties to take effect before the server

configuration files are processed. For example, if you need to analyze problems that occur early in
server start or configuration processing. In this case, you can configure binary logging in the
bootstrap.properties file.

You can set Logging properties in either the bootstrap.properties or the server.xml file. Use attributes
in the server.xml file, or use equivalent properties in the bootstrap.properties file. Any settings in the
bootstrap.properties file are used from the time the server reads the bootstrap.properties file until the
time the server.xml file is processed. If the logging properties in the bootstrap.properties file are not
replaced or reset in the server.xml file, the property values in the bootstrap.properties file continue to
be used.

When binary logging is enabled, the maxFileSize, maxFiles, messageFileName, traceFileName, and
traceFormat logging element attributes are ignored (since binary logging runs without trace.log and
messages.log files). The traceSpecification, consoleLogLevel, and logDirectory attributes continue to
be used to set the trace specification, the level for the console log, and the placement of the log and trace
files.

If you set logging or binary logging attributes in the server.xml file, you can avoid changes in
configuration between startup time and runtime by setting the corresponding properties in the
bootstrap.properties file to the same value. If no logging or binary logging properties are set in the
bootstrap.properties file, the server uses the default logging settings.

Chapter 1. WebSphere Application Server Liberty Core: Overview 629

Procedure
v Enable binary logging for the server by updating the bootstrap.properties file. In the

bootstrap.properties file, add the following text on a line by itself:
websphere.log.provider=binaryLogging-1.0

v Use the following parameters to configure binary logging. All subelements that are listed are
subelements of the logging element in the server.xml file. The following table lists the attributes that
are configurable in the server.xml file and the equivalent properties that can be set in the
bootstrap.properties file:

Table 10. Binary logging attributes that are configurable in server.xml and the equivalent properties that can be set in
bootstrap.properties

Logging
subelement Attribute Equivalent bootstrap.properties property

binaryLog purgeMaxSize

purgeMinTime

fileSwitchTime

bufferingEnabled

outOfSpaceAction

com.ibm.hpel.log.purgeMaxSize

com.ibm.hpel.log.purgeMinTime

com.ibm.hpel.log.fileSwitchTime

com.ibm.hpel.log.bufferingEnabled

com.ibm.hpel.log.outOfSpaceAction

binaryTrace purgeMaxSize

purgeMinTime

fileSwitchTime

bufferingEnabled

outOfSpaceAction

com.ibm.hpel.trace.purgeMaxSize

com.ibm.hpel.trace.purgeMinTime

com.ibm.hpel.trace.fileSwitchTime

com.ibm.hpel.trace.bufferingEnabled

com.ibm.hpel.trace.outOfSpaceAction

The following example shows a bootstrap.properties file that is configured to enable binary logging:
websphere.log.provider=binaryLogging-1.0

The following example shows a server.xml file with the binary logging subelements. The log content is
set to expire after 96 hours and the trace content is set to retain a maximum of 1024MB:
<server description="new server">

<logging>
<binaryLog purgeMinTime="96"/>
<binaryTrace purgeMaxSize="1024"/>

</logging>

</server>

For the full logging configuration reference, see the logging, binaryLog, and binaryTrace elements in
the **** MISSING FILE ****.

Results

After you restart the server, binary logging is enabled and configured.

Multimedia
Watch videos, webcasts, and other media about Liberty.

If you do not find the media you want in this topic, see the following websites for media about Liberty
and IBM WebSphere Application Server products:
v IBM SupportTV YouTube channel
v WebSphere Application Server YouTube playlists

630 WebSphere Application Server Liberty Core 8.5.5

https://www.youtube.com/IBMSupportTV
https://www.youtube.com/results?search_query=websphere+application+server+playlist

v IBM Education Assistant for WebSphere Application Server

Overview
Why Liberty? Performance that scales (V8.5.5.6) [Transcript]

Why Liberty? Fast application development (V8.5.5.6) [Transcript]

Why Liberty? Rapid deployment and powerful administration (V8.5.5.6) [Transcript]

Java EE 7 in Liberty (V8.5.5.6) [Transcript]

Thoughts on Liberty: Interview with Alasdair Nottingham (V8.5.5) [Transcript]

WebSphere Application Server V8.5.5 release overview (V8.5.5)

Installing and getting started
Installing Liberty from a ZIP file (V8.5.5.6) [Transcript]

Enabling IHS for Liberty Dynamic Routing (V8.5.5.4) [Transcript]

Using the Liberty Repository to enhance Liberty environments (V8.5.5.2) [Transcript]

Installing WebSphere eXtreme Scale with Liberty (eXtreme Scale V8.6.0.5) [Transcript]

Setting up and configuring
Configure session cache management with Liberty and WebSphere eXtreme Scale (InterConnect

2015 and eXtreme Scale V8.6.0.6) [Transcript]

Setting up Admin Center (V8.5.5.4) [Transcript]

Administering
Touring Admin Center (V8.5.5.7) [Transcript]

Getting started with the Server Configuration Tool for WebSphere Liberty (V8.5.5.8) [Transcript]

Securing
OpenID Connect on Liberty (InterConnect 2015) [Transcript]

Google OpenID Connect for applications on WebSphere Liberty (InterConnect 2015) [Transcript]

Developing applications
Creating a Hello World Java application (V8.5.5.2) [Transcript]

Introduction to WebSphere Application Server Patterns 1.0 [Transcript]

End-to-end scenarios
v Develop, build, and deploy an application with Liberty server DevOps and some open-source tools.

Demo - DevOps with WebSphere Liberty Server (InterConnect 2015) [Transcript]

Video: Configure session cache management with Liberty and
WebSphere eXtreme Scale

8.5.5.5

The following transcript is for the “Configure session cache management with Liberty and WebSphere
eXtreme Scale” video, which describes how to improve the performance of your applications by off
loading your current application server and data access processes to an in-memory cache using session
cache management with Liberty and WebSphere eXtreme Scale. This transcript is the video storyboard.
Audio describes narration and captions. Onscreen Action describes the content shown in the video.

Chapter 1. WebSphere Application Server Liberty Core: Overview 631

https://mediacenter.ibm.com/category/Support+%26+downloads%3EKnowledge+Center%3EIBM+Education+Assistant/33688741
https://youtu.be/_-vOf3zA8mA
https://youtu.be/BqHUT9aqABw
https://youtu.be/qJq0n2zfQxY
https://youtu.be/O1glOfunOYQ
http://www.youtube.com/watch?v=JmCOpUb7ggo&list=UUFKI_oW2tpKn1pbYoO4EUgQ&feature=c4-overview
https://www.youtube.com/watch?v=4HZU8fDlH24
https://youtu.be/745pU9b24Ds
https://youtu.be/fTdguGLkPf8
https://www.youtube.com/watch?v=ht7CrA4COh8
https://www.youtube.com/watch?v=Zu4Z1GLjMlE
http://www.ibm.com/support/knowledgecenter/SSTVLU_8.6.0/com.ibm.websphere.extremescale.doc/Liberty_install_video_transcript.html
https://youtu.be/ERM6RdJfUXY
http://youtu.be/W8sMeTZmRkE
https://youtu.be/2wgXrNt79Q0
https://youtu.be/_6kyIkPOu1Y
https://www.youtube.com/watch?v=fuajCS5bG4c
https://www.youtube.com/watch?v=Rfxy0FKOfgw
https://www.youtube.com/watch?v=dL4ZTy6OKQ4
https://www.ibm.com/support/knowledgecenter/SSHR6W/com.ibm.websphere.wdt.doc/tutorials/java/topics/video_transcript_wdt_java_hw.htm
https://www.youtube.com/watch?v=E_c35dOefOA
http://www.ibm.com/support/knowledgecenter/SSAJ7T_1.0.0/com.ibm.websphere.waspatt20nd.doc/ae/video_transcript_patternsB_intro.html
https://youtu.be/lhSSpx9QxSw

Configure session cache management with Liberty and WebSphere eXtreme Scale

Table 11. Introduction. Describe the benefits of session management with Liberty and WebSphere eXtreme Scale.

Scene Audio Onscreen Action

1 Caching sessions in your applications is one of
the most beneficial and easy-to-do configurations
to improve performance and availability of your
web applications. If you have an application
server, store your information in sessions, then
can offload your current process to an
in-memory cache to help your applications run
at super fast speeds. This video will help you do
that by demonstrating how to set up session
management quickly and simply with Liberty
and WebSphere eXtreme Scale.

Liberty is a fast, lightweight and simple Java
web application container that application
developers can use to develop, test and deploy
applications easily.

Show the video title, “HTTP Session Failover for
WebSphere Liberty leveraging WebSphere eXtreme
Scale”.

2 WebSphere eXtreme Scale provides distributed
in-memory data storage that is replicated across
different machines.

Show IBM Corporation notices and disclaimers.

3 This video includes an overview of session
caching with eXtreme Scale. It also includes
quick steps to download the Liberty and
WebSphere eXtreme Scale for developers. You
will also learn how to configure WebSphere
eXtreme Scale in Liberty. And finally, a sample
web application is included that demonstrates
HTTP session failover to an in-memory datagrid
that is hosted by WebSphere eXtreme Scale.

List video contents:

Show Quick Demo, Set-Up, and Sample of Liberty with WXS

Overview of Session and Data Caching in WXS

Quick Steps to Download Liberty & WXS

How to Configure WXS in Liberty

Sample Web Application demonstrating HTTP Session Failover to an In-Memory Datagrid

632 WebSphere Application Server Liberty Core 8.5.5

https://youtu.be/ERM6RdJfUXY

Table 11. Introduction (continued). Describe the benefits of session management with Liberty and WebSphere
eXtreme Scale.

Scene Audio Onscreen Action

4 Why is HTTP Session Persistence important?
Without HTTP session persistence, you will lose
the session data if an application instance fails or
becomes unresponsive. For example, in a retail
scenario where a user adds items to a shopping
cart, that user will most likely have to log in
again and rebuild their shopping list if the
application fails and session failover is not
enabled. Usually that experience creates an
unhappy customer.

Developers have 3 options to persist HTTP
session data:

First option: Developers can store sessions
locally in the application server memory space,
but other application server instances will not
share the common user session for web
applications. If the instance fails, the session is
lost and the user experience is less than
desirable.

Second option: Developers can persist sessions in
a relational database that is shared among
instances, but the architecture of relational
databases have inherent scalability concerns and
reading or writing to a disk is slower than on an
in-memory data grid.

The third and best option is what this video
highlights, where Liberty uses a shared
persistence engine to store HTTP session data in
the memory of an elastic, scalable architecture,
which is known as WebSphere eXtreme Scale.
Using Liberty with WebSphere eXtreme Scale
allows two or more independent Liberty
instances to share a common user session for
web applications. When one instance fails, the
remaining instances can continue to serve user
requests as if no failure had occurred.

If maintaining HTTP session high availability is
a priority, then use WebSphere eXtreme Scale.
Even if a runtime instance fails, the customer
session is maintained. The customer is unaware
of the failure or maintenance activity, which
allows a consistent customer experience without
interruption or data loss.

Show information about HTTP session failover:

Hands-On Demo: Session Cache

HTTP Session Failover for Liberty

Customer has an enterprise web application on Liberty, but they want to maintain HTTP high availability, so they use WebSphere eXtreme Scale to store session data.

Chapter 1. WebSphere Application Server Liberty Core: Overview 633

Table 11. Introduction (continued). Describe the benefits of session management with Liberty and WebSphere
eXtreme Scale.

Scene Audio Onscreen Action

5 Using WebSphere eXtreme Scale with Liberty
offers several benefits to developers:

v Distributed data access for high availability

v In-memory access with rapid retrieval

v Scalability built in over traditional methods
like relational databases or
memory-to-memory session replication

v Remote access to eliminate single points of
failure

v The benefit of a quick configuration in a
Liberty environment

Show information about Liberty data caching:

Liberty Data Caching with WXS

Supports distributed caching scenarios for web and mobile applications.

Store key and value objects in memory for fast access.

Provides linear scalability, predictable performance, and fault tolerance of the web application’s data requirements.
Replicates data so that cache components may be restarted without data loss or performance penalty.

Caching is an example of a composable element that can be used to build applications quickly.

Table 12. Demo installing Liberty and WebSphere eXtreme Scale for Developers Liberty. Show commands and
server.xml changes.

Scene Audio Onscreen Action

6 To experience this capability, you can quickly
install Liberty and WebSphere eXtreme Scale for
Developers Liberty on your development
machine:

1. Go to WASdev.net.

2. Download Liberty.

3. Download WebSphere eXtreme Scale for
Developers Liberty.

4. Install the JAR files into the "hands on"
directory, which is the example directory for
this demo.

Show the steps:

1. Go to the WASdev website.

2. Select Want to try the Beta?

3. From Liberty Repository, select WebSphere
eXtreme Scale for Developers Liberty.

4. Install the JAR files in my c:\hands-on> directory.

7 To demonstrate the capabilities of WebSphere
eXtreme Scale as a shared, remote HTTP session
data grid, you will see a sample application
(from the displayed URL) that is deployed
locally in the dropin directory of the Liberty web
instances, which shows you some examples of
placing and retrieving session objects to a data
grid.

Show illustrations of the WebSphere eXtreme Scale
HTTP session sample and the http://ibm.co/1umQ7iy
URL.

8 You will learn how to configure Liberty instances
to act as two Liberty web instances that are
clients to a WebSphere eXtreme Scale data grid.

You will set up a WebSphere eXtreme Scale
server as a HTTP session store running on a
separate Liberty JVM.

And finally, you will configure the two Liberty
web instances to store HTTP session data in the
data grid of a WebSphere eXtreme Scale
container.

Show information about HTTP session failover:

Hands-On Demo: Session Cache

HTTP Session Failover for Liberty

Customer has an enterprise web application on Liberty, but they want to maintain HTTP high availability, so they use WebSphere eXtreme Scale to store session data.

A graphic shows ServerA and ServerB in Liberty
connected to a session cache.

634 WebSphere Application Server Liberty Core 8.5.5

Table 13. Demo configuring Liberty to connect to the data grid. Show server configuration and testing in a browser.

Scene Audio Onscreen Action

9 Now, you will learn to configure Liberty to
connect to the data grid. By installing WebSphere
eXtreme Scale with Liberty, you get access to
features that you can use to manage HTTP
session applications that are installed in Liberty.

For the remote WXS_Session_Server Liberty
instance, the server feature will be set. The
server feature contains the capability for running
an eXtreme Scale server, which means that both
the eXtreme Scale catalog and container are
running. Add the server feature when you want
to run a catalog server in Liberty or when you
want to deploy a data grid application into
Liberty.

The webGrid feature is to host a session
management data grid in the
WXS_Session_Server Liberty instance. A Liberty
server can host a data grid that caches and then
replicates HTTP session data for fault tolerance
of applications.

Use the webApp feature to enable session
management for ServerA and ServerB Liberty
instances. The webApp feature contains the
capability to extend the Liberty application. Add
the webApp feature when you want to replicate
HTTP session data for fault tolerance. Remember
to set the catalogHostPort to the host and port
of the WXS_Session Server Liberty instance.

Show information about configuring a Liberty
server.xml to run WXS:

The server feature contains the capability for running
an eXtreme Scale server, both catalog and container.

<feature>eXtremeScale.server-1.1</feature>
<xsServer isCatalog="true"/>

A Liberty server can host a data grid that caches data
for applications to replicate HTTP session data for fault
tolerance.

<feature>eXtremeScale.webGrid-1.1</feature>
<xsWebGrid objectGridName="session" catalogHostPort="remoteHost:2609" securityEnabled="false"/>

The webApp feature contains the capability to extend
the Liberty web application. Add the webApp feature
when you want to replicate HTTP session data for fault
tolerance.

<feature>eXtremeScale.webApp-1.1</feature>
<httpSession idReuse="true"/>
<xsWebGrid objectGridName="session" catalogHostPort="localhost:2609" securityEnabled="false"/>

10 The Session Sample Application is now launched
on both ServerA and ServerB instances.

Now check that the session attribute in ServerA
named Loc is empty.

Also check that the same attribute for ServerB is
empty as well.

Show a browser open on localhost:9080/
HttpSessionWAR/ and a browser open on
localhost:9081/HttpSessionWAR/. Both browsers
display the WebSphere eXtreme Scale Http Session
Sample with no attribute values set.

In the browser open on localhost:9080/
HttpSessionWAR/, show typing Loc for Attribute in
Getting an attribute and clicking Get Attribute. The
browser displays Welcome back. Session attribute
retrieved. with the Loc attribute set to null. Then show
clicking Main Page to return to the previous page.

Show these same steps repeated in the browser open on
localhost:9081/HttpSessionWAR/.

Chapter 1. WebSphere Application Server Liberty Core: Overview 635

Table 13. Demo configuring Liberty to connect to the data grid (continued). Show server configuration and testing in
a browser.

Scene Audio Onscreen Action

11 Now, specify NC as the value for the Loc session
attribute in the data grid through Server A's
application, and verify that it was set.

Now let's go to the ServerB Session Application
and retrieve the Session attribute Loc from the
data grid.

In the browser open on localhost:9080/
HttpSessionWAR/, show typing Loc for Attribute and NC
for Value in Setting an attribute and clicking Set
Attribute. The browser displays Welcome back.
Session attribute set. with the Loc attribute set to NC.
Then show clicking Main Page to return to the
previous page. Finally, show clicking Get Attribute and
show that the Loc attribute is set to NC, and show
clicking Main Page to return to the previous page.

Show in the browser open on localhost:9081/
HttpSessionWAR/ clicking Get Attribute and show that
the Loc attribute is set to NC. Then show clicking Main
Page to return to the previous page.

12 Now you can test this configuration with a
simulated, unplanned outage on ServerA by
stopping the Liberty instance for ServerA and
verifying that ServerB can still retrieve the Loc
session attribute from the session cache of the
data grid.

Show information about HTTP session failover:

Hands-On Demo: Session Cache

HTTP Session Failover for Liberty

Demonstration of Server failure but Customer Experience is maintained and Session Persist through the entire transaction.

A graphic shows ServerA and ServerB in Liberty.
ServerA is crossed out and ServerB is connected to a
session cache.

13 ServerA is still running. But the Server A Liberty
Instance will be manually stopped using the
command line.

Now let's go to the browser that was hosting
ServerA Session and refresh to show the
unavailable Liberty instance.

Show the browser open on localhost:9080/
HttpSessionWAR/. Also show entering a command to
stop ServerA at a command line at
C:\hands-in\wlp\bin:

server stop ServerA

Show refreshing the browser open on
localhost:9080/HttpSessionWAR/. The message This
webpage is not available displays.

14 Now that Server A is down you can verify that
ServerB can still detect the Session data in the
data grid. To do so, change the Loc session
attribute to the value, MD.

Show the browser open on localhost:9081/
HttpSessionWAR/ clicking Get Attribute and show that
the Loc attribute is set to NC. Then show clicking Main
Page to return to the previous page.

Show typing Loc for Attribute and MD for Value in
Setting an attribute and clicking Set Attribute. The
browser displays Welcome back. Session attribute set.
with the Loc attribute set to MD. Then show clicking
Main Page to return to the previous page. Finally, show
clicking Get Attribute and show that the Loc attribute
is set to MD, and show clicking Main Page to return to
the previous page.

636 WebSphere Application Server Liberty Core 8.5.5

Table 13. Demo configuring Liberty to connect to the data grid (continued). Show server configuration and testing in
a browser.

Scene Audio Onscreen Action

15 Now you can simulate ServerA coming back
online with the ability to retrieve the new
Session value, MD, for attribute Loc, which was
just set through ServerB.

Now, the browser has been refreshed and points
to Server A, where the value for the Loc attribute
from the data grid is retrieved.

Show the browser open on localhost:9081/
HttpSessionWAR/. Also show entering a command to
start ServerA at a command line at
C:\hands-in\wlp\bin:

server start ServerA

Show refreshing the browser open on
localhost:9080/HttpSessionWAR/. The browser displays
the WebSphere eXtreme Scale Http Session Sample with
no attribute values set.

Finally, show clicking Get Attribute for the Loc
attribute to show that it is set to MD, and show clicking
Main Page to return to the previous page.

Table 14. Conclusion. Summarize the video content and point viewers to more information.

Scene Audio Onscreen Action

16 Congratulations. You've just created your first
Liberty cluster with two instances pointing to a
shared in-memory data grid for HTTP session
storage.

Show information about HTTP session failover:

Hands-On Demo: Session Cache

HTTP Session Failover for Liberty

Demonstration of Server Recovery or additional Liberty Instances being added to topology will immediately see and share the Session Cache.

A graphic shows ServerA and ServerB in Liberty with
both servers connected to a session cache.

17 In this video, you learned the benefits of using a
cache for session persistence.

No code changes are need to the application to
leverage the WebSphere eXtreme Scale data grid.

Data for each session persists even with a server
outage.

And WebSphere eXtreme Scale is scalable up to
terabytes of data and can replicate data to
thousands of nodes for fault tolerance and high
availability.

Show information about Liberty session management:

Liberty Session Management with WXS

Special purpose elastic in memory cache for storing HTTP session data.

Stores and persists HTTP session objects to the data grid so that they do not have to be stored in the memory.

No code change to applications using the J2EE standard HTTP session cache.

Data for each HTTP session survives on a server outage for an application.

Requires no developer effort to manage
.
Replicates the session data to avoid a single point of failure.

Provides low latency data access, transactional semantics.

18 Visit these resources to download and install
WebSpphere eXtreme Scale on Liberty and to
access the sample application that was used in
this demo.

Thank you for watching and this concludes the
video for configuring session cache management
with Liberty and WebSphere eXtreme Scale.

Shows resources:

(WASdev) https://developer.ibm.com/wasdev

(How to install WXS with Liberty) http://youtu.be/
Zu4Z1GLjMlE

(Sample Application used in Demo)
http://ibm.co/1umQ7iy

Video: DevOps with WebSphere Liberty Server
8.5.5.5

Chapter 1. WebSphere Application Server Liberty Core: Overview 637

The following transcript is for the “DevOps with WebSphere Liberty Server” video, which demonstrates
how to develop, build and deploy an application with Liberty server DevOps and some open source
tools. This transcript is the video storyboard. Audio describes narration and captions. Onscreen Action
describes the content that is shown in the video.

Demo - DevOps with WebSphere Liberty Server

Table 15. Title page. Show title and then a basic overview of building, updating, testing, and deploying an
application.

Scene Audio Onscreen Action

1 This demo will show you how to provide the
capability for building and deploying your
application with WebSphere Liberty Server and a
set of common open source tools.

Show title Demo - DevOps with WebSphere Liberty Server.

2 You will use Git for source control, use
WebSphere Application Server Developer Tools
to develop your application, and use Maven for
build.

Show image of 1. Develop and Build Application that uses
the following options

v Git

v WebSphere Developer Tools (WDT)

v Maven

3 You will also make changes to your web
application running in Liberty and push changes
from Eclipse IDE to production environment.

Show image of 2. Update Application that uses WDT.

4 You will use Apache Maven together with the
WebSphere Liberty Maven plug-in to run
integration test to verify your changes.

Show image of 3. Test Application with the Liberty
Maven plug-in.

5 You will also use Jenkins for continuous
integration.

Show image of 4. Continuous Integration that uses
Jenkins.

6 You will use Chef to push a new build to the
production environment.

Liberty will be the Java Platform, Enterprise
Edition run time for all the above DevOps
scenarios. We will use an Airline application -
AcmeAir as a sample in this demo. It will
demonstrate a controllable and highly repeatable
DevOps practice.

Show image of 5. Continuous Deploy that uses Chef.

638 WebSphere Application Server Liberty Core 8.5.5

https://youtu.be/lhSSpx9QxSw

Table 16. Demo of Developing and Building an Application

Scene Audio Onscreen Action

7 Now lets start the first scenario: develop and
build your application.

Open Eclipse, which has WDT already
preinstalled.

1. We will set the workspace preference for
use with Maven.

2. Then we will clone a Git repository
containing the AcmeAir application, specify
the Git repository URI.

3. Then we will import the set of Maven based
AcmeAir projects: There are 5 Maven-based
projects in this repository.

4. Now we can run the Maven build to build
the projects and create application artifacts.
Make sure the build is successful when it
finishes.

5. Now we can create a Liberty server to run
our application from Eclipse: So specify the
Liberty install directory.

6. And also name the Liberty server.

7. Then we can open the server.xml to config
the server to run our AcmeAir application.

v First we will specify the <httpEndpoint>
endpoint.

v And we will also add the database
configuration, which refers to a Derby
database for application data.

8. Start the WebSphere Liberty server and the
AcmeAir application.

9. Now login to the application and experience
it.

10. You can select your destination and the city
from which you depart. Check those
available airline tickets and book it.

Show title Step 1 Develop and Build Application.

Demo showing the following steps to develop and
build an application that uses WDT.

Open Eclipse, which has WDT preinstalled.

1. Set the workspace preferences for use with Maven.
Click the Set all Maven values button.

2. We will clone a Git repository containing the
AcmeAir application by specify the Git repository
URI.

3. Import the set of Maven-based AcmeAir projects:
The acmeair repository contains 5 Maven-based
projects.

4. Now run Maven to build the projects and create
the application artifacts. Make sure that the build
is successful when it finishes.

5. Now we can create a WebSphere Liberty server to
run the application from Eclipse: Specify the
Liberty install directory.

6. Name the server AcmeAirDemo and add the
acmeair-webapp application into it.

7. Open the server configuration server.xml file to
configure the Liberty server for service.

v Replace the <httpEndpoint> element and add
further configuration.

v Add the database configuration, which refers to
a Derby database for application data.

8. Start the WebSphere Liberty server and AcmeAir
application.

9. Click the application URL to verify that the
application is active. Initialize the application by
loading the flight data set.

10. Now AcmeAir is ready for use.

v Logins to the application and click the Flights
action and type in New York under Leave From
and Paris under Arrive At.

v Click the Find Flights or Browse Flights button.

v Pick any outbound flight and select it by
clicking it.

v Pick any return flight and select it by clicking it.

v Click the Book Select Flights button.

Chapter 1. WebSphere Application Server Liberty Core: Overview 639

Table 17. Demo updating application

Scene Audio Onscreen Action

8 In scenario 2 we will make a quick change to
our application and show how to do a
continuous delivery with that. To simplify the
scenario we will just make a very small
change to our indexed page. To replace some
highlighted content with “"Welcome to Acme
Air"”. Now after you save these changes, you
can refresh to see that the change is in effect.

Show title Step 2 Update Application

Demo showing the Index page that is being updated in
the application.

Table 18. Demo testing the application

Scene Audio Onscreen Action

9 Next we will use Maven and the Liberty Maven
plug-in for integration tests.

1. The AcmeAir application has a
acmeair-itests project that contains
integration tests.

2. To enable of the integration tests we will
need to edit our pom.xml file. There are a few
changes we need to make here, but the most
important one is that we will enable and
config the Liberty Maven plug-in to start the
Liberty server before our integration tests
and to stop the server after the tests are
done.

3. We will create a run Configuration for
AcmeAir integration tests.

v Click the Run button to run the integration
tests. It will take a few minutes to allow
the tests to complete. So its build
successfully.

v Examine the console output to see the
Liberty Maven plug-in starting the server
before the tests run and to stop it after the
test.

4. You can view the test report and make sure
there is no error in the result.

5. Next we will push the pom.xml change to Git
so that the itests can be run in a Jenkins
build.

Demo testing the application, that uses the following
steps

1. The AcmeAir application has a acmeair-itests
project that contains integration tests.

2. Enable activation of integration tests by editing the
acmeair-itests/pom.xml file.

3. Enable the Build Helper Maven plug-in to find an
available network port.

4. Enable and configure the Liberty Maven plug-in to
start the Liberty server before integration tests are
executed and stop the server after the tests are done.

5. Enable and configure the Maven Failsafe plug-in to
execute the integration tests. The tests exercise the
REST API of the application.

6. Create a run Configuration for AcmeAir integration
tests.

v Click the Run button to run the integration tests.
The tests should complete successfully.

v Examine the console output to see the Liberty
Maven plug-in starting the server before the tests
run.

v Examine the console output to see the Liberty
Maven plug-in stopping the server after the tests.

7. View the test reports under target/failsafe-
reports/ directory.

8. Push the pom.xml change to Git so the itests can be
run in a Jenkins build.

640 WebSphere Application Server Liberty Core 8.5.5

Table 19. Demo showing continuous integration with Jenkins

Scene Audio Onscreen Action

10 1. In the next scenario we will use Jenkins to
create and run a build job for the AcmeAir
application. The job will check out the
application code from Git, compile the
application, execute the tests, and publish
the build artifacts. With the configuration
in Schedule, the job will poll the Git
repository every two minutes and
automatically start a build if any changes
are detected.

v Specify the Liberty install directory.

v We will also add a post-build action
and choose Archive the artifacts.

v After a minute or 2 the build should
automatically start.

2. Once the build completes and is successful,
examine the build job results. The Test
Result should indicate there is no failure.

3. Switch back to Eclipse and commit the
changes made on the Index page.

4. Switch back to Jenkins and you will see
within 2 minutes a new build should
appear under the Build History table.

Show title Step 4 Continuous Integration

Demo showing continuous integration with Jenkins
using the following steps:

1. We will use Jenkins to create and run a build job for
the AcmeAir application. The job will check out the
application code from Git, compile the application,
execute the tests, and publish the build artifacts.
With the configuration in Schedule, the job will poll
the Git repository every two minutes and
automatically start a build if any changes are
detected.

v We will click the Add post-build actions button
and choose Archive the artifacts.

v After a minute or 2 a build should automatically
start.

2. Once the build completes and is successful, examine
the build job results. The acmeair-webapp-1.0-
SNAPSHOT.war file should appear under Build
Artifacts and Test Result should indicate no
failures.

3. Switch back to Eclipse and commit the changes that
are made on the Index page.

4. Switch to Firefox and go to http://server:9080/
jenkins/job/AcmeAir tests/ address. Within 2
minutes a new build should appear under the Build
History table.

v Click the new build and verify that the right
commit message appears under Changes.

Chapter 1. WebSphere Application Server Liberty Core: Overview 641

Table 20. Demo showing continuous deployment with Chef

Scene Audio Onscreen Action

11 1. In the last scenario we will do a
continuous deployment with Chef.

v Open a terminal window.

v Create an empty cookbook

v Edit the metadata file of the cookbook

v Edit the recipe file

v Upload the AcmeAir cookbook to the
Chef server

2. Also register the template node with the
Chef server.

3. You can config the template node
configuration on the Chef server.

4. Then you can populate the Chef node. This
will cause the chef-client command to
run on the template node. The AcmeAir
application should be fully deployed and
running on the template node. To verify
that, switch to Firefox and open the
template application server to check the
results.

5. Then we will create a new Jenkins build
job to invoke chef-client on the template
node to update it, only after all the
integration tests pass.

v On the Jenkins console, edit the AcmeAir
tests job.

v Under Post-build Actions click on Add
post-build action and choose Build
other projects.

v Under Projects to build type in
AcmeAir-Chef.

v Verify that the AcmeAir tests job
triggers the AcmeAir-Chef job by
requesting a AcmeAir tests build.

We just demonstrate DevOps practice with
Liberty and common open source tools. You
can now try the full End to End DevOps
scenarios all together repeatedly. While in this
demo we choose Chef, WDT, Maven, and
Jenkins, these technologies can easily be
interchangeable with other DevOps tools like
uDeploy®, Puppet, etc,, Thanks for watching.

Show title Step 5 Continuous Deploy

Demo showing continuous deployment with Chef that
uses the following steps:

1. Create a cookbook to deploy AcmeAir

v Open a terminal window.

v Create an empty cookbook

v Edit the metadata file of the cookbook

v Edit the default.rb recipe file

v Upload the AcmeAir cookbook to the Chef server

2. Bootstrap the Chef node and register the template
node with the Chef server.

3. Configure the template node configuration on the
Chef server.

4. Populate the Chef node. Execute the knife ssh
name:template sudo chef-client command. This
will cause the chef-client command to run on the
template node. Chef-client will execute a set of
cookbooks on the node. The AcmeAir application
should be fully deployed and running on the
template node. To verify, switch to Firefox and
open the http://template:9081/acmeair/ address.

5. Populate the Chef node automatically with Jenkins.
We will create a new Jenkins build job that will
invoke chef-client on the template node to update
it, only after all the integration tests pass.

v On the Jenkins console, edit the AcmeAir tests
job.

v Under Post-build Actions click Add post-build
action and choose Build other projects.

v Under Projects to build type in AcmeAir-Chef.

v Verify that the AcmeAir tests job triggers the
AcmeAir-Chef job by requesting a new AcmeAir
tests build.

Video: Enabling IHS for Liberty Dynamic Routing
8.5.5.5

The following transcript is for the “Enabling IHS for Liberty Dynamic Routing” video, which
demonstrates how to install IBM HTTP Server (IHS), install the Web Server Plug-in for WebSphere
Application Server, and apply the interim fix for Dynamic Routing. You must enable IHS first before

642 WebSphere Application Server Liberty Core 8.5.5

setting up the Dynamic Routing feature or using auto scaling with Liberty collectives. This transcript is
the video storyboard. Audio describes narration and captions. Onscreen Action describes the content
shown in the video.

Enabling IHS for Liberty Dynamic Routing

Table 21. Demo installing IBM Installation Manager. Show installing IBM Installation Manager.

Scene Audio Onscreen Action

1 This video shows how to install and enable IHS
for Dynamic Routing using the IBM Installation
Manager.

Show title Enabling IHS for Liberty Dynamic Routing.

2 Download and install the latest version of the
IBM Installation Manager. You can use the
Installation Manager to access online product
repositories to install the Web Server Plug-in for
WebSphere Application Server and the needed
interim fix for the Dynamic Routing feature.

Direct user to the IBM Installation Manager and begin
installing the latest version.

3 Once I select the latest version to install I click
Download package from the installation menu. I
then selected the platform I wanted to download
and the appropriate fix for my machine. In this
demo I will be installing the IBM Installation
Manager Kit for Windows 64. You will be
prompted for your IBM user ID and password
before you can proceed with the download.

Show the user how to install the appropriate IBM
Installation Kit from the IBM support site.

4 Select your download options. In this demo I
will download the IBM Installation Manager
using my browser (HTTPS). Click Continue.
Download the provided zip file to your machine.
You can locate this zip file in your downloads
folder. Right click on the zip file in your
downloads folder and click Extract Files... You
must then select the location where you want to
install the contents of the zip file.

Show the user how to download the IBM Installation
Manager using a browser. Show the user how to
download the zip file to their machine and extract the
content to a new designated location.

5 When all of the files have been extracted
successfully, open the folder containing the files
and click install.exe The IBM Installation
Manager will open and begin downloading.
Accept the terms in the license agreements, and
click Next. Verify that the install package is
downloading in the appropriate directory, and
click Next. Click Install. The IBM Installation
Manager will now be installed.

Show the user how to run the install from the
install.exe file. The user must accept the terms and
license agreements to proceed with the install. Once
they click Install the IBM Installation Manager will
begin installing.

6 You will see a confirmation window when the
install has been completed successfully. On this
Window click Restart Installation Manager.
Once the restart is complete, you can begin using
the IBM Installation Manager.

Show the user the confirmation window that confirms
the IBM Installation Manager was successfully
downloaded. Show the user how to restart the IBM
Installation Manager prior to using.

Chapter 1. WebSphere Application Server Liberty Core: Overview 643

https://youtu.be/fTdguGLkPf8
http://www-01.ibm.com/support/docview.wss?uid=swg27025142

Table 22. Demo Set preferences for repository locations. Show how to set preferences for repository locations.

Scene Audio Onscreen Action

7 Start the Installation Manager and click File.
Then click Preferences.. Then click Add
Repository to add the repository URL to the
product. You can access repository URLs for the
product via the Passport Advantage Online.
Follow the same steps to add the repository URL
needed to install the Web Server Plug-in for
Websphere Application Server

Show user how to start the Installation Manager and
add repository URLs. Users can gain access to
repository URLs via the Passport Advantage Online.
For more information on how to download repository
URLS from Passport Advantage, go to the IBM Support
Portal.

IBM Support Portal-
http://www-01.ibm.com/support/
docview.wss?uid=swg27038625

Show the user how to add the following repository
URL for installing the Web Server Plug-in.

Web Server Plug-in for WebSphere Application
Server http://www.ibm.com/software/

repositorymanager/
com.ibm.websphere.PLGILAN.v85

Table 23. Demo installing IBM HTTP Server. Show installing IBM HTTP Server.

Scene Audio Onscreen Action

8 Start the Installation Manager and click Install.
In the Install Packages window select the
appropriate version of IHS. Click Next. Accept
the terms in the license agreements, and click
Next.

Show users how to start the Installation Manger and
locate IHS in the Install Packages window. Show them
how to begin the installation and accept terms in the
license agreements.

9 On the install packages window, specify the
installation directory where you would like to
install IHS. Click Next. On the next window IHS
will already be selected for you. Click Next.

Show the user an example of how to specify the
installation directory. Note the following restrictions:

v Deleting the default target location and leaving an
installation-directory field empty prevents you from
continuing. Do not use symbolic links as the
destination directory.

v Symbolic links are not supported.

v Be careful on using spaces in the name of the
installation directory. Some operating systems allow
spaces in the specification of the installation
directory. Other operating systems do not allow
spaces.

v Do not use a semicolon in the directory name. IBM
HTTP Server cannot install properly if the target
directory includes a semicolon.

10 On the Configuration for IHS panel, specify your
web server configuration. Specify a port number
on which IHS will communicate. The default
port is 80. Choose whether to use a Windows
service to run IHS. Click Next.

Show users how to specify the web server configuration
and specify the port number for IHS.

11 Review the summary information, and click
Install. You will see a confirmation window if
the installation was successful. Click Finish.
Note: You don't have to start IHS until you're
ready to use the Dynamic Routing or Auto
Scaling features.

Show the user an example of summary information and
the final step of installation. If the installation is
successful, a message appears indicating the installation
completed successfully.

644 WebSphere Application Server Liberty Core 8.5.5

Table 24. Demo installing Web Server Plug-in for WebSphere Application Server. Show installing Web Server
Plug-in for WebSphere Application Server using IBM Installation Manager.

Scene Audio Onscreen Action

12 You already added the repository URL needed
to install the Web Server Plug-in. Start the
Installation Manager and click Install. In the
Install Packages window select the appropriate
version of the Web Server Plug-in for
WebSphere Application Server. Click Next.
Accept the terms in the license agreements, and
click Next.

Show users how to start the Installation Manger and
locate IHS in the Install Packages window. Show them
how to begin the installation and accept terms in the
license agreements.

13 On the install packages window, specify the
installation directory where you would like to
install the Web Server Plug-in. Click Next. On
the next window the Web Server Plug-in will
already be selected for you. Click Next.

Show the user an example of how to specify the
installation directory. Note the following restrictions:

v Deleting the default target location and leaving an
installation-directory field empty prevents you from
continuing. Do not use symbolic links as the
destination directory.

v Symbolic links are not supported.

v Be careful on using spaces in the name of the
installation directory. Some operating systems allow
spaces in the specification of the installation directory.
Other operating systems do not allow spaces.

v Do not use a semicolon in the directory name. IBM
HTTP Server cannot install properly if the target
directory includes a semicolon.

14 Review the summary information, and click
Install. You will see a confirmation window if
the installation was successful. Click Finish.

Show the user an example of summary information and
the final step of installation. If the installation is
successful, a message appears indicating the installation
completed successfully.

Table 25. Demo how to update the IBM HTTP Server. Updating the IBM HTTP Server

Scene Audio Onscreen Action

15 Start the Installation Manager. Click Update.
Select the package group to update. Click Next.
Select the version you want to update under
IHS.

Show users how to locate and apply the interim fix for
Dynamic Routing using the Installation Manager and
IHS.

16 Review the summary information, and click
Update. You will see a confirmation window if
the installation was successful. Click Finish.

Show the user an example of summary information and
the final step of installation. Done successfully a
message will appear indicating a successful installation.

Table 26. Conclusion. Show where to find more information about Dynamic Routing and auto scaling.

Scene Audio Onscreen Action

17 For information on configuring clustered
Liberty collectives for use with Dynamic
Routing or Auto Scaling, see WASdev and the
WebSphere Application Server Liberty
documentation on IBM Knowledge Center.

Show information on documentation:

WASdev
https://developer.ibm.com/wasdev/

WebSphere Application Server Liberty documentation
on IBM Knowledge Center

http://www-01.ibm.com/support/
knowledgecenter/

For more information, see .

Chapter 1. WebSphere Application Server Liberty Core: Overview 645

Video: Getting started with the Server Configuration Tool for
WebSphere Liberty

8.5.5.8

The following transcript is for the “Getting started with the Server Configuration Tool for WebSphere
Liberty” video, which demonstrates how to enable and use the Liberty Admin Center Server Config tool.
This transcript is the video storyboard. Audio describes narration and captions. Onscreen Action
describes the content that is shown in the video.

Getting started with the Server Configuration Tool for WebSphere Liberty

Table 27. Title page. Show title and describe the video contents.

Scene Audio Onscreen Action

1 This video demonstrates the new web-based
WebSphere Liberty server configuration tool.
This tool makes it possible to view and edit
server configuration files from a web browser.

Show title “Getting started with the Server
Configuration Tool for WebSphere Liberty”.

Table 28. Demo enabling the Server Config tool. Show how to enable the Server Config tool.

Scene Audio Onscreen Action

2 To enable it, simply add
the adminCenter-1.0
feature, keyStore, and
quickStartSecurity
elements to your
server.xml file.

Optionally, if you are
planning to use the tool
to make changes to the
server configuration, add
the remote file access
element.

Show a server.xml file with elements needed to enable the Server Config tool
and enable editing:

<server>
<featureManager>

<feature>adminCenter-1.0</feature>
</featureManager>

<keyStore password="samplePassword"/>

<quickStartSecurity userName="sampleUser" userPassword="samplePassword"/>

<remoteFileAccess>
<writeDir>$[server.config.dir}</writeDir>

</remoteFileAccess>
</server>

3 After saving these
changes, a URL will
appear in the server
console.

Open this URL with
your favorite web
browser.

Show a console message and selecting the URL to the tool:

Starting server configuration update
Web application available: http://localhost:9080/ibm/adminCener/serverConfig-1.0/
The server is ready to run a smarter planet.

4 Log in with
thequickStartSecurity
credentials.

Show entering sampleUser and samplePassword on the login page of Admin
Center.

Table 29. Demo using the Server Config tool. Show how to view and edit server configuration files with the Server
Config tool.

Scene Audio Onscreen Action

5 The file selection screen shows all of the
configuration files available on the server. If
nested include files are found, these will be
hierarchically shown in the form of a tree.

Show the Configuration Files page of the Server Config
tool.

Show expanding the primary list of files under
server.xml.

646 WebSphere Application Server Liberty Core 8.5.5

https://youtu.be/_6kyIkPOu1Y

Table 29. Demo using the Server Config tool (continued). Show how to view and edit server configuration files with
the Server Config tool.

Scene Audio Onscreen Action

6 To edit a file simply click on its name. This
brings up the main editing screen.

The tree shows all of the configuration elements
in the document. Clicking on a tree node
displays all of its associated values.

Values can by edited by typing on the text fields
or using the selection buttons. If a mistake is
made, automatic validation provides instant
feedback.

Show selecting server.xml to display the contents of
the server.xml file in Design mode.

Show selecting the HTTP Endpoint element to display
its values.

Show selecting a new value, the display of a warning
message, and selecting x to delete the value change.

7 Adding new elements is very easy. Simply click
on the Add child button and select the element
to be added.

Show selecting Add child, an element, and Add.

8 Removing elements is just as easy. Simply click
on the Remove button and provide confirmation.

Show selecting Remove and then Remove to confirm
the removal.

9 The order of the elements can be changed at any
time using drag-and-drop gestures.

Show dragging an element to a different location in the
tree.

10 The source of the document can be accessed by
clicking the Source tab.

Show selecting the Source tab to display the server.xml
source.

11 Syntax highlight, hover information, and content
assist features are available.

Show hovering a cursor over an element value in the
source to display information about the value.

12 After changes are complete, click on the Save
button to persist them on the server.

Show selecting Save.

Table 30. Conclusion. State that the video is now ending.

Scene Audio Onscreen Action

13 This concludes the WebSphere Liberty server
configuration tool video. Thanks for watching!

Show Copyright 2015 IBM Corporation. Voice over
provided by Colleen Anderson. and then Thanks for
watching!

For more information, see “Editing server configuration files in Admin Center” on page 1081.

Video: Google OpenID Connect for applications on WebSphere Liberty
8.5.5.5

The following transcript is for the “Google OpenID Connect for applications on WebSphere Liberty”
video, which demonstrates how to set up an OpenID Connect web single-sign-on on WebSphere
Application Server Liberty with a Google OpenID Connect provider. This transcript is the video
storyboard. Audio describes narration and captions. Onscreen Action describes the content that is shown
in the video.

Google OpenID Connect for applications on WebSphere Liberty

Chapter 1. WebSphere Application Server Liberty Core: Overview 647

https://www.youtube.com/watch?v=Rfxy0FKOfgw

Table 31. Title page. Show title and then a basic Google OpenID Connect scenario.

Scene Audio Onscreen Action

1 This video will show you how to set up OpenID
Connect web single-sign-on on WebSphere
Application Server Liberty with a Google
OpenID connect provider.

Show title OpenID Connect Quick Setup with Google.

2 Here you can see an “OpenID Connect” flow
from an end user to an application on the
Liberty server and the Google OpenID provider.
When a user first attempts to access a Google
OpenID Connect-protected application on a
Liberty server, the user is redirected to the
Google OpenID Provider. By using the Google
account, the user is authenticated to access the
protected web application on the Liberty server.
In this video, we call a Liberty server, the
“Relying party” or RP, and call “Google OpenID
Connect provider” the OP.

Show a basic Google OpenID Connect scenario, that
includes a Relying Party (RP), Google OpenID Connect
provider (OP), and an End-User.

Table 32. Demo registering Liberty in Google

Scene Audio Onscreen Action

3 To set up the Liberty RP with Google OP, first,
we will register the Liberty server as an OpenID
Connect client in the Google OP.

To do so, we will

v Log in to the Google developers console and
create a project

v Then in the project, we will create a “Client
ID” for the Liberty server

v Write down the Client ID and Client Secret for
when we set up Liberty

Let's try these steps now.

Show title Register Liberty in Google.

1. On Google developer's console, create a project
https://console.developers.google.com.

2. In the project, create a Client ID from the Credential
menu.

3. Write down the following information for the
Liberty setup

v Client ID

v Client Secret

For more information, please refer to this page
https://developers.google.com/accounts/docs/
OpenIDConnect.

4 In the Google Developers Console, create a new
Project.

In the Google Developers Console, we show a demo
creating a new project.

v Project name- WebSphereLibertyOpenIDConnect

v Project ID- astute-tome-859

5 In the project that you just created, go to APIs &
auth, then Credentials, and Create new Client
ID. First, you will have to configure a consent
screen.

Show the Google Developers Console screen where the
Create new Client ID is selected.

648 WebSphere Application Server Liberty Core 8.5.5

Table 32. Demo registering Liberty in Google (continued)

Scene Audio Onscreen Action

6 The consent screen is shown to users when they
authenticate with the Google OpenID provider.
Configure your consent screen as needed and
continue creating your Client ID. For the
application type, select Web application. Then,
enter a redirect URI for the Liberty server.
(pointing to https://rp-
example.rtp.raleigh.ibm.com:7778/oidcclient/
redirect/oidcRP on the screen) This redirect URI
comes from the configuration for your Liberty
server, which we will cover later. If you don't
know the redirect URI for your server, you can
leave the default value and update it later.

Show the Google Developers Console screen where the
Web Application is selected.

v Authorized JavaScript Origins is set to
https://www.example.com

v Authorized Redirect URIs is set to
https://www.example.com/oauth2callback

7 After the Client ID is created, you can see the
Client ID and Client Secret. Make note of these
values, because they are needed in the next step,
configuring the Liberty server.

Show the Google Developers Console screen where the
Client ID and Client Secret values can be seen.

Table 33. Demo configuring WebSphere Liberty

Scene Audio Onscreen Action

8 To set up Liberty to work with a Google OP,
you will need to:

v Install Version 8.5.5.5 or later of Liberty

v Install the OpenID Client feature

v Create a Liberty server

v Edit the server.xml configuration file with
Google information

v Install the application that will use the
Google account for authentication

v And finally, import the Google certificate
into the keystore for SSL communication

Show the WebSphere Liberty setup overview.

1. Install WebSphere Liberty 8.5.5.5 or latest beta >
java -jar wlp-developers-runtime-8.5.5.5.jar

2. Install OpenID Client feature (No download
necessary) > bin/featureManager install
openidConnectClient-1.0 --when-file-
exists=ignore

3. Create a Liberty server > server create GoogleRP

4. Edit the server.xml with more configurations
(Sample downloadable)

v Required features

v SSL keystore

v OpenID Client

v Application

5. Install application that will use Google account for
authentication > Copy application ear/war file
under app directory.

6. Import Google certificate into keystore for SSL
communication.

9 First, we will install Version 8.5.5.5 of Liberty.

Then, we will install the OpenID Client
feature, and create a server with the name
GoogleRP.

You can find the server.xml configuration file
under the wlp\usr\servers\GoogleRP\
directory.

Demo with command prompt that is being used to
update server.xml file.

10 Here is the default server.xml file. Now, we
will compare it to a server.xml file that has a
Google configuration.

Show a default server.xml file.

Chapter 1. WebSphere Application Server Liberty Core: Overview 649

Table 33. Demo configuring WebSphere Liberty (continued)

Scene Audio Onscreen Action

11 You can see that the necessary features are
added. In the OpenID Connect Client
configuration, the Client ID and Client Secret
that we obtained from Google are added. You
can obtain the other values by going to Google
OP's discovery endpoint. (https://accounts/
google.com/.well-known/openid-
configuration is shown on the video). Then
we add an SSL configuration and end-point
configuration with the host name, HTTP port,
and HTTPS port.

The configuration file also includes
configuration for applications that rely on
Google to perform authentication.

That's all the configuration we need for
Liberty.

The Liberty RP uses this pattern
https://<hostname>:<sslport>/oidcclient/
redirect/<openidConnecClient id> to
generate its own redirect URL. For example,
the server that we configured has the
following URI, https://rp-
example.rtp.raleigh.ibm.com:7778/
oidcclient/redirect/oidcRP. This is the URI
that we entered earlier in the Google console.

Show a server.xml file that contains the Client ID and
Client Secret that were obtained from Google. Also an
SSL configuration and end-point configuration with the
host name, HTTP port, and HTTPS port. The
server.xml file also includes configuration for
applications that rely on Google to perform
authentication.

12 Next, we will install our application in the app
directory.

We will start and stop the Liberty server to get
the keystore in the server resources and make
sure that the Liberty server keystore has a
Google certificate for SSL communication.
Note: We are not going to show cert steps in
this video and include instruction in reference
page

Then we will start the Liberty server again.

Show title How to import Google certificate here.

Table 34. Demo testing the setup

Scene Audio Onscreen Action

13 Now we will test our configuration to see if it
works.

v In a browser, we will go to the application
URL.

v When prompted, we will enter our Google
account information.

v We will see the application redirecting to
Google to perform authentication.

v After the user is authenticated, the RP will
show an application page to the user.

v Let's try that now.

Demo testing the setup.

1. Start the WebSphere Liberty server > server start
oidcRP

2. In a browser, point to the application login page on
the Liberty Server > http://rp-
example.rtp.raleigh.ibm.com:7777/testpage

3. When prompted, enter the Google user ID and
password > xxx.yyy@gmail.com / mypassword

4. Application relies on Google to perform
authentication

5. User is successfully authenticated

650 WebSphere Application Server Liberty Core 8.5.5

Table 34. Demo testing the setup (continued)

Scene Audio Onscreen Action

14 In the browser, we will type in the URL of the
application that is running on the Liberty server.
Notice that we are prompted by the Google OP
server because the Liberty relying party is
delegating the authentication to the OP. We will
enter the credentials for the Google account.
After accepting the consent screen, we are
successfully logged in to the application on the
RP using the OP account.

Demo with a browser login that shows a successful
login into the application on the RP using the OP
account.

Table 35. Conclusion. Show where to find more information about OpenID Connect that uses Google.

Scene Audio Onscreen Action

15 For more information, visit these online
resources.

Show information on documentation:

WebSphere Liberty download page
https://developer.ibm.com/wasdev/
downloads/liberty-profile-using-non-
eclipse-environments/

OpenID Connect feature installation
Server: https://developer.ibm.com/wasdev/
downloads/#asset/features-
com.ibm.websphere.appserver.openidConnectServer-
1.0

Client: https://developer.ibm.com/wasdev/
downloads/#asset/features-
com.ibm.websphere.appserver.openidConnectClient-
1.0

IBM Knowledge Center - OpenID Connect main page
http://www-01.ibm.com/support/
knowledgecenter/api/content/nl/en-us/
SSAW57_8.5.5/
com.ibm.websphere.wlp.nd.multiplatform.doc/
ae/rwlp_using_oidc.html

All OpenID Connect attributes are discussed here
http://www-01.ibm.com/support/
knowledgecenter/SSEQTP_8.5.5/
com.ibm.websphere.wlp.doc/ae/
twlp_config_oidc_rp.html?cp=SSEQTP_8.5.5
%2F1-3-11-0-4-2-9-2

IBM DeveloperWorks OpenID Connect article
http://www.ibm.com/developerworks/
websphere/library/techarticles/
1502_odonnell/1502_odonnell.html

WebSphere Liberty OpenID Connect setup video on
YouTube

http://youtu.be/fuajCS5bG4c

Google setup "OpenID Connect (OAuth 2.0 for
Login)" https://developers.google.com/accounts/

docs/OpenIDConnect

For more information about OpenID Connect, see 8.5.5.5 Using OpenID Connect.

Chapter 1. WebSphere Application Server Liberty Core: Overview 651

Video: Installing Liberty from a ZIP file
8.5.5.6

The following transcript is for the “Installing Liberty from a ZIP file” video, which describes how you
can quickly install Liberty from a ZIP archive file, start the server and add applications, and upgrade to a
supported installation. This transcript is the video storyboard. Audio describes narration and captions.
Onscreen Action describes the content that is shown in the video.

Installing Liberty from a ZIP file

Table 36. Installing and upgrading Liberty. Show how you can quickly install IBM WebSphere Application Server
Liberty from a ZIP archive file, start the server and add applications, and upgrade to a supported installation.

Scene Audio Onscreen Action

1 Installing WebSphere
Application Server
Liberty can be as easy as
extracting a ZIP file!

Show words, “Installing Liberty from a ZIP file”

2 To start, download one
of the Liberty runtime
ZIP files from IBM Fix
Central or WASdev.net.
You can choose from
several prepackaged
archives according to
your needs, from just the
Liberty kernel, which
has a download size of
less than 15 megabytes,
to the Java Platform,
Enterprise Edition 7 full
platform or Web Profile,
which you can
optionally download
with IBM Java 8.

Show the ZIP files on IBM Fix Central and WASdev.net.

3 After you download a
ZIP file, just extract it to
a local directory to
install Liberty.

Show extracting the wlp-webProfile7-8.5.5.6 ZIP archive file to the
C:\wlp-webProfile7-8.5.5.6 directory.

4 This example shows the
Java EE 7 Web Profile
ZIP, which comes
preconfigured with
Liberty features that
support the Java EE 7
Web Profile specification.

Show running the productInfo featureInfo command on the command line. A
list of installed features is displayed.

5 You can install
additional features and
other content using the
installUtility
command. The find
option displays a list of
installable content.

Show running the installUtility find command on the command line. A list
of installable features, addons, samples, and other content is displayed.

Start the Liberty server
with the server start
command.

Show running the server start command on the command line. The default
server, defaultServer, starts.

652 WebSphere Application Server Liberty Core 8.5.5

https://youtu.be/745pU9b24Ds

Table 36. Installing and upgrading Liberty (continued). Show how you can quickly install IBM WebSphere
Application Server Liberty from a ZIP archive file, start the server and add applications, and upgrade to a supported
installation.

Scene Audio Onscreen Action

You can add an
application at any time
by placing the
application WAR file in
the dropins directory -
no restart required!

The Liberty server
automatically starts the
application when you
add it to the directory.

Standard server output
and errors are captured
in the console.log file;
for example, this
application outputs the
URL of the web
application, which can
then be pasted into the
browser.

Show copying the planningpoker-1.0-SNAPSHOT.war sample application into the
wlp\usr\servers\defaultServer\dropins directory.

Show opening the console.log file in the wlp\usr\servers\defaultServer\logs
directory to copy the URL of the web application and pasting the URL into the
browser. The web application loads successfully.

Installing from the ZIP
files enables no-charge,
unsupported, unlimited
use of Liberty in
development
environments and
unsupported limited use
in small-scale test and
production
environments.

Show running the productInfo version command on the command line. The
product name, version, and edition is displayed. Because the installation is an
unsupported version, the edition is BASE_ILAN.

Chapter 1. WebSphere Application Server Liberty Core: Overview 653

Table 36. Installing and upgrading Liberty (continued). Show how you can quickly install IBM WebSphere
Application Server Liberty from a ZIP archive file, start the server and add applications, and upgrade to a supported
installation.

Scene Audio Onscreen Action

For access to guaranteed
service levels and IBM
support, you can later
upgrade to a supported
edition from your
existing installation.
After you purchase
WebSphere Application
Server, just download
and run the
self-extracting license
JAR file from Passport
Advantage®.

Note that if you are
already a WebSphere
Application Server
customer - for example,
if you are running
Network Deployment
traditional - you do not
need to purchase
anything extra; the
Liberty entitlement is
included.

Show copying the wlp-nd-license.jar file into the C:\wlp-webProfile7-8.5.5.6
directory.

Show running the java -jar wlp-nd-license.jar command on the command
line to run the self-extracting JAR file. The command updates the license.

Show running the productInfo version command, which now displays the ND
edition.

For more information
about installing and
upgrading Liberty, see
the Knowledge Center
documentation or
WASdev.net.

Show words, “For more information about installing and upgrading Liberty,
see:”

v IBM Knowledge Center

v WASdev.net

For more information, see “Installing Liberty by extracting a ZIP archive file” on page 842.

Video: Java EE 7 in Liberty
8.5.5.6

The following transcript is for the “Java EE 7 in Liberty ” video, which describes Liberty support for the
Java Platform, Enterprise Edition (Java EE) 7 specifications and highlights ways to enable your Liberty
servers for Java EE 7. This transcript is the video storyboard. Audio describes narration and captions.
Onscreen Action describes the content that is shown in the video.

Java EE 7 in Liberty

Table 37. Title page and benefits of Java EE 7. Show title and then list the benefits of Java EE 7.

Scene Audio Onscreen Action

1 Liberty now complies with Java Platform,
Enterprise Edition Version 7. This video tells you
about Liberty support for Java EE 7 and shows
how you can quickly configure your servers for
it.

Show title Java EE 7 in Liberty and the Java Compatible
Enterprise Edition logo. Also show Java Platform,
Enterprise Edition Version 7 instead of Java EE 7 for a few
seconds to give the full name for Java EE 7.

654 WebSphere Application Server Liberty Core 8.5.5

https://youtu.be/O1glOfunOYQ

Table 37. Title page and benefits of Java EE 7 (continued). Show title and then list the benefits of Java EE 7.

Scene Audio Onscreen Action

2 With Java EE 7, you have an open framework
that enables you to provide robust business
solutions and leverage your Java programming.

You can deliver HTML5 dynamic scalable
applications for desktops, tablets, and
smartphones.

You can be more productive. The simplified
application architecture reduces the amount of
boilerplate code needed for business logic.

And you can support more enterprise demands.
You can write batch applications in Java that use
a standard API and are portable across multiple
runtimes. You also can break down batch jobs
into manageable chunks for uninterrupted
performance.

Show animation that describes Java EE 7 and illustrates
its main benefits:

v HTML5 dynamic scalable applications

v Increased developer productivity

v Enterprise technologies such as batch processing

Table 38. Grouping of specifications into "Java EE 7 full platform" and "Java EE 7 Web Profile". Show what
specifications are available in the "Java EE 7 full platform" and "Java EE 7 Web Profile" groups.

Scene Audio Onscreen Action

3 Java EE 7 introduces the
full platform. All Java EE
7 specifications (or JSRs)
are in the full platform.

Show image that has the entire Java EE 7. Highlight "Full Platform" and then all
specifications.

Chapter 1. WebSphere Application Server Liberty Core: Overview 655

Table 38. Grouping of specifications into "Java EE 7 full platform" and "Java EE 7 Web Profile" (continued). Show
what specifications are available in the "Java EE 7 full platform" and "Java EE 7 Web Profile" groups.

Scene Audio Onscreen Action

4 Specifications for web
applications are in the
Web Profile, a subset of
the full platform.

Java EE 6 introduced
Web Profile to assist
developers of dynamic
web applications,
providing technologies
such as EJB Lite, Java
Persistence API, and
Java Transaction API.

For Java EE 7, Web
Profile adds support for
HTML5.

Two new technologies,
WebSocket and JSON,
speed up data exchanges
and simplify data
parsing for portable
applications. Updates to
existing technologies,
JAX-RS 2.0, Java Server
Faces 2.2, and Servlet 3.1
enhance your ability to
develop dynamic
HTML5 applications.

A more robust POJO
development model
enables broader use of
annotations, such as in
Interceptors and
CDI.Bean Validation 1.1
offers method-level
validation.

Show image that has the entire Java EE 7. Then show animation that lists the
specifications in Web Profile and highlights the specifications named in the
audio.

Web Profile

Specification Java EE 6 Java EE 7

Bean Validation 1.0 1.1
Common Annotations for the Java Platform 1.1 1.2
Contexts and Dependency Injection (CDI) 1.0 1.2
Debugging Support for Other Languages 1.0 1.0
Dependency Injection for Java 1.0 1.0
Enterprise JavaBeans (EJB) Lite 3.1 3.2
Expression Language (JSP/EL) 2.2 3.0
Interceptors 1.1 1.2
Java API for JSON Processing (JSON-P) n/a 1.0
Java API for RESTful Web Services (JAX-RS) n/a 2.0
Java Database Connectivity (JDBC) 4.0 4.1
Java Naming and Directory Interface (JNDI) 1.0 1.0
Java Servlet 3.0 3.1
JavaServer Faces (JSF) 2.0 2.2
JavaServer Pages (JSP) 2.2 2.3
Java Transaction API (JTA) 1.1 1.2
Java Persistence API (JPA) 2.0 2.1
Managed Beans 1.0 1.0
Standard Tag Library for JavaServer Pages (JSTL) 1.2 1.2
WebSocket n/a 1.0, 1.1

656 WebSphere Application Server Liberty Core 8.5.5

Table 38. Grouping of specifications into "Java EE 7 full platform" and "Java EE 7 Web Profile" (continued). Show
what specifications are available in the "Java EE 7 full platform" and "Java EE 7 Web Profile" groups.

Scene Audio Onscreen Action

5 Also added for Version 7
are specifications for
enterprise, web service,
batch and other
applications, as well as
support for application
security, deployment and
management. These
specifications are in the
full platform.

Java EE 7 has a
simplified architecture
requiring less boilerplate
code for business logic,
such as in JMS 2.0.

For the enterprise, you
can use Batch
Applications to better
utilize computing
resources by shifting
processing times to
when resources are
typically idle.
Concurrency Utilities
supports scalable
applications that
integrate with the Java
EE runtime in a secure,
reliable manner.

The full platform also
has updated support for
Java Connector
Architecture and Java
Message Service.

Show image that has the entire Java EE 7. Then show animation that lists the
specifications in the full platform and highlights the specifications named in the
audio.

Full Platform

Web Profile

Specification Java EE 6 Java EE 7

Bean Validation 1.0 1.1
Common Annotations for the Java Platform 1.1 1.2
Contexts and Dependency Injection (CDI) 1.0 1.2
Debugging Support for Other Languages 1.0 1.0
Dependency Injection for Java 1.0 1.0
Enterprise JavaBeans (EJB) Lite 3.1 3.2
Expression Language (JSP/EL) 2.2 3.0
Interceptors 1.1 1.2
Java API for JSON Processing (JSON-P) n/a 1.0
Java API for RESTful Web Services (JAX-RS) n/a 2.0
Java Database Connectivity (JDBC) 4.0 4.1
Java Naming and Directory Interface (JNDI) 1.0 1.0
Java Servlet 3.0 3.1
JavaServer Faces (JSF) 2.0 2.2
JavaServer Pages (JSP) 2.2 2.3
Java Transaction API (JTA) 1.1 1.2
Java Persistence API (JPA) 2.0 2.1
Managed Beans 1.0 1.0
Standard Tag Library for JavaServer Pages (JSTL) 1.2 1.2
WebSocket n/a 1.0, 1.1

Remaining Full Platform

Batch Applications for Java Platform n/a 1.0
EE Concurrency Utilities n/a 1.0
Enterprise JavaBeans (EJB) full n/a 3.2
Implementing Enterprise Web Services n/a 1.4
J2EE Management n/a 1.1
Java API for RESTful Web Services (JAX-RS) 1.1 n/a
Java API for XML-Based Web Services (JAX-WS) n/a 2.2
Java API for WSDL (JWSDL)
Java API for XML Processing (JAXP) n/a 1.4
Java Architecture for XML Binding (JAXB) n/a 2.2
Java Authentication Service Provider Interface for Containers (JASPIC) n/a 1.1
Java Authorization Contract for Containers (JACC) n/a 1.5
Java EE Connector Architecture (JCA) 1.6 1.7
JavaMail n/a 1.5
Java Message Service (JMS) API 1.1 2.0
Java Management Extensions (JMX) n/a 2.0
JavaBeans Activation Framework (JAF) n/a 1.1
SOAP with Attachments API for Java (SAAJ) n/a 1.3
Streaming API for XML (StAX) n/a 1.0
Web Services Metadata for the Java Platform

Chapter 1. WebSphere Application Server Liberty Core: Overview 657

Table 38. Grouping of specifications into "Java EE 7 full platform" and "Java EE 7 Web Profile" (continued). Show
what specifications are available in the "Java EE 7 full platform" and "Java EE 7 Web Profile" groups.

Scene Audio Onscreen Action

6 In all, Java EE 7 has over
20 new or changed
specifications.

The Liberty product
supports the full
platform specifications,
while the Liberty Core
product supports mainly
the Web Profile
specifications.

Show image of the entire Java EE 7. Highlight the specifications supported by
Liberty and then Liberty Core.

Table 39. Demo installing Liberty with Java EE 7 by extracting a compressed (ZIP) file. Show how to install a Liberty
runtime with Java EE 7 by extracting a ZIP file downloaded from WASdev.

Scene Audio Onscreen Action

7 You can install Liberty with Java EE 7
technologies by downloading a compressed, or
ZIP, file from the WASdev website to a
temporary directory, and then extracting the ZIP
file to an empty directory.

Show how to download a ZIP file with Liberty and
Java EE technologies from the WASdev website to
C:\wlp_temp on a workstation and then extract the ZIP
file to C:\, resulting in installation of Liberty to C:\wlp.

8 It's that simple! Show selecting the C:\wlp installation directory.

Table 40. Demo adding a Liberty runtime with Java EE 7 features in WebSphere Developer Tools for Eclipse. Show
how to install a server with Java EE features in WebSphere Developer Tools.

Scene Audio Onscreen Action

9 In WebSphere Developer
Tools for Eclipse, you can
add a Liberty runtime with
Java EE technologies.

Create a new server and
select to download and
install a Liberty runtime
environment from ibm.com.

The runtime options with
Java EE 7 technologies are for
the full platform, Web Profile
or client.

You can add on individual
features. Technologies that
are in the selected runtime
option are greyed out.

Show images that demo how to add a Liberty server that has Java EE
technologies in WebSphere Developer Tools.

1. Right-click in the Servers view and select New > Server.

2. In the New Server wizard:
a. Select the WebSphere Application Server Liberty server type and

click the Add link.
b. Select Install from an archive or repository and click Next.
c. Specify the location to which to install Liberty, select Download and

install a new runtime environment from ibm.com, select a Liberty
product with Java EE 7 technologies, and click Next.

d. Select any add-ons to install and click Next.
e. Accept the license agreement and click Finish.
f. After installation, click Next.
g. Specify a server name and click Next.
h. Click Finish.

To start the server, right-click the Liberty server in the Servers view and
click Start.

658 WebSphere Application Server Liberty Core 8.5.5

Table 41. Demo adding Java EE 7 features to a Liberty installation from a command line and Installation Manager.
Show how to run an installUtility command to install Java EE features. Briefly show the Installation Manager
option.

Scene Audio Onscreen Action

10 If you already have Liberty installed, you can
add Java EE 7 features to your installation by
running a featureManager or installUtility
command.

Show running an installUtility command to install
features into an existing installation of Liberty at
C:\wlp.

1. From a command line at C:\wlp\bin, show running
a command to install the webProfile-7.0 feature:

installUtility install webProfile-7.0

2. Enter 1 to agree to the terms of the license
agreement.

Command messages list the features installed.

11 You also can use Installation Manager to install
Java EE 7 features.

Show images that demo how to use Installation
Manager to install Liberty with Java EE 7 features.

1. During installation of IBM WebSphere Application
Server Liberty Network Deployment 8.5.5.6, under
Liberty Repositories on the Install Packages page,
select Allow Installation Manager to connect to the
IBM WebSphere Liberty Repository and click Next.

2. Under Asset Selection on the Install Packages page,
click Launch Asset Selection Wizard.

3. In the Asset Selection dialog:
a. Click the Install button to select a Java EE

technology to install.
b. After the Install button changes to the Install

Pending button, click Next.
c. Under License Agreement, select I accept the

terms in the license agreement and click Finish.

4. Under Asset Selection on the Install Packages page,
review the list of assets to install and click Next.

12 Show a summary of the ways to install Java EE 7
technologies for Liberty:
v ZIP file from the WASdev website
v WebSphere Application Server Developer Tools for

Eclipse
v installUtility or featureManager command
v IBM Installation Manager

Table 42. Demo configuration of a Liberty server to add a Java EE 7 feature. Show how to add a Java EE 7 feature
to a server configuration.

Scene Audio Onscreen Action

13 After Java EE 7 features are installed, adding
support for a Java EE 7 specification to a Liberty
server is as simple as adding a feature name to a
server.xml file.

Under the heading Configuration, show a command line
at C:\wlp\bin with the command server run server1
and with messages indicating that server1 is running.
Also show a text editor open on the server.xml file of
server1. Finally, show adding the jaxrs-2.0 feature to a
feature manager and the resulting server1 messages
that confirm the server configuration change.

14 Liberty provides the javaee-7.0, webProfile-7.0,
and javaeeClient-7.0 convenience features to
make it easier to enable your servers to support
a broad range of applications.

Show a list of the Liberty convenience features for Java
EE 7:
v javaee-7.0
v webProfile-7.0
v javaeeClient-7.0

Chapter 1. WebSphere Application Server Liberty Core: Overview 659

Table 42. Demo configuration of a Liberty server to add a Java EE 7 feature (continued). Show how to add a Java
EE 7 feature to a server configuration.

Scene Audio Onscreen Action

15 Use the javaee-7.0 feature to quickly add
support for all specifications. The
webProfile-7.0 feature adds support for web
applications. And the javaeeClient-7.0 feature
allows you to quickly configure an application
client component.

Show sample configuration files for the javaee-7.0,
webProfile-7.0, and javaeeClient-7.0 convenience
features.

Table 43. Some features require configuration or migration. Show where to find instructions about the needed
configuration or migration.

Scene Audio Onscreen Action

16 The IBM Knowledge Center has information
about the features.

Java EE 7 programming model support lists the Java
EE specifications, provides links to the JSRs and
Liberty features, and tells you what products
support the specifications. Note that not all Java
EE specifications have their own Liberty feature.

For some of the features, you'll need to do
configuration beyond adding the feature name to
a server.xml.

If your server uses Java EE 6 features and you
are considering adding Version 7 features, look
at Supported Java EE 6 and 7 feature combinations.
Also, look at Java EE 7 behavior changes to see
whether moving from a Version 6 feature to a
Version 7 feature would benefit your applications
and environment.

For details on features, see Liberty features.

Show topics in Knowledge Center that identify and
cover feature configuration and migration:

v Java EE 7 programming model support

v Supported Java EE 6 and 7 feature combinations

v Java EE 7 behavior changes

v Liberty features

Table 44. Conclusion. Show where to find more information about Java EE 7 in Liberty.

Scene Audio Onscreen Action

17 For how-to articles and videos on using Java EE
7 in your applications as well as information
about configuring servers, see WASdev.net and
the WebSphere Application Server Liberty
documentation on IBM Knowledge Center.

Show where to find information about Java EE 7 in
Liberty:

WASdev
http://developer.ibm.com/wasdev

IBM Knowledge Center
http://www.ibm.com/support/
knowledgecenter/

Video: OpenID Connect on Liberty
8.5.5.5

The following transcript is for the “OpenID Connect on Liberty” video, which demonstrates how to
configure OpenID Connect on Liberty. This transcript is the video storyboard. Audio describes narration
and captions. Onscreen Action describes the content that is shown in the video.

OpenID Connect on Liberty

660 WebSphere Application Server Liberty Core 8.5.5

https://www.youtube.com/watch?v=fuajCS5bG4c

Table 45. Title page. Show title and then a basic OpenID Connect scenario, along with supported OpenID providers
and benefits of using OpenID Connect.

Scene Audio Onscreen Action

1 This video will show you how to set up a simple
OpenID Connect web single-sign-on scenario
using WebSphere Application Server Liberty.

Show title OpenID Connect Quick Setup.

2 Here you can see a basic "OpenID Connect" flow.
When a user first attempts to access an OpenID
Connect-protected web application, or relying
party, the user is redirected to an OpenID
Connect provider. The OpenID Connect provider
authenticates the user and obtains the user's
authorization, then responds with an
authorization code. The application container
then extracts the code from the response, sends
the code back to the OpenID provider for
verification, and receives ID and access tokens.
As a result, the user is authenticated to access
the protected web application. Using the access
token, the application can request user
information, such as an email address, from the
OpenID Connect provider, or it can access any
service that supports OpenID Connect. In this
video, I will refer to the application as the
“Relying Party” or RP and the “OpenID
Provider” as OP.

Let's take a look at the several supported
OpenID providers.

Show a basic OpenID Connect scenario, that includes a
Relying Party (RP), OpenID Provider (OP), and an
End-User.

3 You can configure IBM WebSphere Liberty either
as an OpenID provider or a relying party. You
can use IBM Security Access Manager, also
known as ISAM, as an OP as well. Alternatively,
you can use a number of supported third-party
OpenID providers.

Show some of the supported OpenID providers.

v IBM WebSphere

v IBM Security Access Manager

v Amazon

v Microsoft

v Okta

v Google

Chapter 1. WebSphere Application Server Liberty Core: Overview 661

Table 45. Title page (continued). Show title and then a basic OpenID Connect scenario, along with supported
OpenID providers and benefits of using OpenID Connect.

Scene Audio Onscreen Action

4 OpenID Connect offers a number of benefits as
an identity layer on top of OAUTH 2.0. With
OpenID Connect, users have a single internet
identity that they can use to authenticate across
several servers, services, and applications, and it
reduces the amount of maintenance work in
applications because they no longer need their
own user registry.

For developers, it simplifies the task of
authenticating users without taking on the
responsibility of storing and managing
passwords. OpenID Connect can also extend
security services to cloud-based and mobile
applications written in any language, such as
JavaScript, Ruby, node.js, or Java, and it can
function as a single security manager for
provisioning hundreds of Liberty servers in a
cloud environment. Because OpenID Connect
combines the advantages of identity,
authentication, and OAuth, OpenID Connect is a
significant improvement over OAuth alone.

Show some of the benefits of using OpenID Connect.

v OpenID Connect makes it easier for a user to use a
single internet identity (user account), to authenticate
across several servers, services, and applications.

v Applications no longer need to maintain their own
user registry.

v OpenID Connect extends security services to cloud
and mobile applications, accessible through
languages such as JavaScript, Ruby, node.js, Java

v Provisioning hundreds of Liberty servers in a cloud
offers the ability to have a single security manager

v OpenID Connect is a significant improvement over
OAUTH 2.0

Table 46. Demo configuring the OpenID Provider

Scene Audio Onscreen Action

5 WebSphere Application Server Liberty can be
configured as the OpenID provider, the relying
party, or both. If you want to use Liberty as both
an OP and RP, you must configure them on
different Liberty server instances. We will set up
Liberty servers as OP and RP and take a look at
a simple web single-sign-on scenario between
the Liberty OP and RP.

Show title Setting up Liberty as OpenID Connect provider
and relying party.

6 First, we will set up an OpenID provider.

To do so, we will install WebSphere Liberty 8554
or later, which is required to use the OpenID
Connect features. Install the OpenID Server
feature

Create a Liberty server and add an OP
configuration to the server.xml file, which is
available as a downloadable sample from IBM
developerWorks.

Show OP setup overview.

1. Install WebSphere Liberty 8.5.5.4 or above > java
-jar wlp-developers-runtime-8.5.5.4.jar

2. Install OpenID Server feature (No download
necessary) > bin/featureManager install
openidConnectServer-1.0 --when-file-
exists=ignore

3. Create a Liberty server > server create oidcServer

v Edit server.xml with more configurations (Sample
downloadable)

v Required features

v SSL keystore

v User Registry

v OpenID Server

662 WebSphere Application Server Liberty Core 8.5.5

Table 46. Demo configuring the OpenID Provider (continued)

Scene Audio Onscreen Action

7 First, unpack the Liberty JAR file. This creates
the wlp directory. Go to the bin directory under
wlp, and run the featureManager install
command to install the OpenID Connect Server
feature.

In the same directory, run the server create
command to create a Liberty OP server. We will
name this one oidcServer.

oidcServer is now created with the minimum
configuration in the server.xml file. You can find
the configuration in the wlp/usr/server/
oidcServer directory.

Here you can see the contents of the server.xml
file that we just created. The configuration is
very simple, just one feature and port
information. We will replace it with a server.xml
file that has the OP server configuration. (Screen
splits and right-hand side OP config appears).

(Going through updates in the server.xml file)
In this OP server configuration,

v Required features are added.

v A host name is added.

v Keystore configuration is included for the SSL
feature.

v The OP maintains user accounts, so a user
registry is configured.

The rest is OP configuration that uses OAuth
technology. It includes information about the
relying party that it performs authorization for.

You can download the server.xml file that we
just added from IBM DeveloperWorks. We will
start the OP server. Now that we have set up the
OpenID provider, we can set up the Liberty
relying party.

Demo with a command prompt that is being used to
update server.xml file.

Chapter 1. WebSphere Application Server Liberty Core: Overview 663

Table 47. Demo configuring the Relying Party

Scene Audio Onscreen Action

8 To set up the relying party, just like the OP
configuration, we need to have version 8.5.5.4
or later of the Liberty profile and we will
install the OpenID Client feature.

We will create a separate Liberty server and
edit the server.xml file.

Then we will install the application and
exchange keys with the OpenID provider for
SSL communication.

Show RP setup overview.

1. Install WebSphere Liberty 8.5.5.4 > java -jar
wlp-developers-runtime-8.5.5.4.jar

2. Install OpenID Client feature (No download
necessary) > bin/featureManager install
openidConnectClient-1.0 --when-file-
exists=ignore

3. Create a Liberty server > server create oidcRP

v Edit server.xml with more configurations
(Sample downloadable)

v Required features

v SSL keystore

v OpenID Client

v Application

1. Install application (that uses OpenID Connect) >>
Copy application ear/war file under app directory

v Exchange keys with OP for SSL communication

9 Version 8.5.5.4 of Liberty is already configured
on this machine. We will install the OpenID
Client feature and create a server with the
name oidcRP. Here is the default server.xml
file. Now, we will compare it to a server.xml
file with an RP configuration. These sections -
features, endpoint host name, keystores - are
the same updates that we previously saw with
the OP.

This time, we have an OpenID Client
configuration instead of the OP server
configuration. It specifies the OP URLs to send
authentication requests to.

The RP configuration also includes application
configuration and these applications rely on
the OP to perform authentication.

Note that there is no user registry
configuration on the RP. That is all the
configuration needed for the RP. We will copy
a test application into the app directory of the
RP. Before you start the RP server, make sure
that the RP and OP exchanged the keys in the
keystore for SSL communication. In this demo,
we will use the same keystore and same
password.

Now we will start the RP server to see if we
are set up correctly.

Demo with a command prompt that is being used to
update server.xml file.

664 WebSphere Application Server Liberty Core 8.5.5

Table 48. Demo testing the OP/RP setup

Scene Audio Onscreen Action

10 The OP and RP servers are already started. In a
browser, we will go to the application URL.
When prompted, we will enter account
information from the OP. We will see the RP
relying on the OP to perform authentication.
Once the user is authenticated, the RP will show
an application page to the user. Let's try that
now.

Demo testing the OP/RP setup.

1. Start both OP and RP servers, > server start
oidcServer > server start oidcRP

2. In a browser, point to the application login page on
RP > https://oidc-rp.rtp.raleigh.ibm.com:9443/
testpage

3. When prompted, enter the user ID and password
that is maintained by the OP > user1 / security

4. RP relies on OP for authentication

5. Upon successful authentication, RP serves
application page with user information.

11 In the browser, we will type in the application
URL that is on the RP server. It will prompt for a
user name and password. Notice that we are
being prompted by the OP server because the RP
is delegating the authentication to the OP.

We will enter user1 and security, which are the
credentials for the OP account. Now we are
successfully logged in to the application on the
RP using the OP account.

Demo with a browser login that shows a successful
login into the application on the RP that is using the
OP account.

Table 49. Conclusion. Show where to find more information about OpenID Connect.

Scene Audio Onscreen Action

12 For more information, visit these online
resources.

Show information on documentation:

WebSphere Liberty download page
https://developer.ibm.com/wasdev/
downloads/liberty-profile-using-non-
eclipse-environments/

OpenID Connect feature installation
Server: https://developer.ibm.com/wasdev/
downloads/#asset/features-
com.ibm.websphere.appserver.openidConnectServer-
1.0

Client: https://developer.ibm.com/wasdev/
downloads/#asset/features-
com.ibm.websphere.appserver.openidConnectClient-
1.0

IBM Knowledge Center - OpenID Connect main page
http://www-01.ibm.com/support/
knowledgecenter/api/content/nl/en-us/
SSAW57_8.5.5/
com.ibm.websphere.wlp.nd.multiplatform.doc/
ae/rwlp_using_oidc.html

IBM DeveloperWorks (including OP/RP sample)
http://www.ibm.com/developerworks/
websphere/library/techarticles/
1502_odonnell/1502_odonnell.html

For more information about OpenID Connect, see 8.5.5.5 Using OpenID Connect.

Chapter 1. WebSphere Application Server Liberty Core: Overview 665

Video: Setting up Admin Center

The following transcript is for the “Setting up Admin Center” video, which demonstrates how to
configure a server.xml file to enable Admin Center. This transcript is the video storyboard. Audio
describes narration and captions. Onscreen Action describes the content shown in the video.

Setting up Admin Center

Table 50. Demo setting up Admin Center in Liberty. Show server.xml changes.

Scene Audio Onscreen Action

1 This video shows how to enable Liberty Admin
Center and get to the login page. Enabling
Admin Center is quick and easy.

Show Liberty Admin Center login page in web browser.

2 You need a Liberty Version 8.5.5.2 or later
installation. Make a few changes to the
server.xml file of a server and you can use the
Admin Center.

In Windows Explorer, show wlp/usr Liberty installation
directory with no server defined.

3 I have just installed Liberty. To add a server, I go
to a command prompt at the wlp/bin directory
and run:

server create myServer

This creates a server named myServer.

Show command window open at wlp/bin, run server
create myServer, and then show message

Server myServer created.

4 The server.xml file is in the
usr/servers/myServer directory. I want to make
4 changes to this server.xml file.

In Windows Explorer, select wlp/usr/servers/myServer
directory. Select server.xml.

5 First, I add the adminCenter-1.0 feature to the
feature manager.

In editor open on server.xml, add the adminCenter-1.0
feature to the feature manager:

<featureManager>
<feature>jsp-2.2</feature>
<feature>adminCenter-1.0</feature>

</featureManager>

6 Second, I add a quickStartSecurity element and
specify a user name and password to configure a
secure login. My user name is admin and my
password is adminpwd.

In editor, add user name and password:

<quickStartSecurity userName="admin"
userPassword="adminpwd" />

7 Third, I add a keyStore element to protect
keystore files that have server authentication
credentials. I choose defaultKeyStore for the id
attribute and Liberty for the password attribute.

In editor, add keystore:

<keyStore id="defaultKeyStore"
password="Liberty" />

8 Fourth, I add a host attribute set to asterisk to
the httpEndpoint element. Setting host to
asterisk, or to a defined host name, lets me view
Admin Center on a cell phone, tablet, and
remote computer, and not just on this localhost
computer.

In editor, press enter after id="defaultHttpEndpoint" in
the httpEndpoint element and add host="*" to the new
line:

<httpEndpoint id="defaultHttpEndpoint"
host="*"
httpPort="9080"
httpsPort="9443" />

9 Save the server.xml changes. In editor, save changes.

666 WebSphere Application Server Liberty Core 8.5.5

http://youtu.be/W8sMeTZmRkE

Table 50. Demo setting up Admin Center in Liberty (continued). Show server.xml changes.

Scene Audio Onscreen Action

10 Make these server.xml changes for every Liberty
server and collective controller that you want to
be able to view in Admin Center.

In a multiple-server environment, you only need
to make these changes to the server.xml file of a
collective controller. You do not need to change
the server.xml files of members.

In editor, continue to show server.xml.

Table 51. Displaying Admin Center. Show starting the server, highlighting the adminCenter URL, and pointing a
browser at the URL.

Scene Audio Onscreen Action

11 I am now ready to start myServer and see
Admin Center. Because I want messages
shown in the foreground, I use the run
command. I enter:

server run myServer

To not show the messages, I would enter:

server start myServer

In command window on wlp/bin directory, enter server
run myServer. The command runs and product
messages display in the command window.

12 Liberty writes status messages to the
command window. One message has the URL
for the adminCenter web application.

Highlight http://host_name:9080/adminCenter/ URL in
messages.

13 I put this URL into a web browser, and press
Enter. The URL changes to https and port
9443 because I specified a secure connection in
the server.xml file.

Add URL http://host_name:9080/adminCenter/ to
browser, press Enter, show URL change to
https://host_name:9443/adminCenter/.

14 You might need to add a browser exception to
confirm that the connection is trusted.

Show Firefox dialog and button selections Add
Exception, Get Certificate, and then Confirm Security
Exception.

15 I am now ready to log in to Admin Center. Show Liberty Admin Center login page.

Table 52. Conclusion. Show where to find more information about Admin Center.

Scene Audio Onscreen Action

16 For information on logging into and using
Admin Center, and viewing your personal
Toolbox, see WASdev.net and the WebSphere
Application Server Liberty documentation on
IBM Knowledge Center.

Show Liberty Admin Center login page with login
fields and title covered by information on
documentation:

WASdev
http://developer.ibm.com/wasdev

WebSphere Application Server Liberty documentation
on IBM Knowledge Center

http://www-01.ibm.com/support/
knowledgecenter/

Fade the information on documentation and end by
showing just the Liberty Admin Center login page.

For more information, see “Administering Liberty using Admin Center” on page 1074.

Chapter 1. WebSphere Application Server Liberty Core: Overview 667

Video: Thoughts on Liberty: Interview with Alasdair Nottingham
The following transcript is for the “Thoughts on Liberty: Interview with Alasdair Nottingham ” video.
Alasdair shares his perspectives as a lead developer of WebSphere Application Server Liberty on why
Liberty is exciting for developers. This transcript is the video storyboard. Audio describes narration and
captions. Onscreen Action describes the content that is shown in the video.

Thoughts on Liberty: Interview with Alasdair Nottingham

Table 53. Thoughts on Liberty: Interview with Alasdair Nottingham. As lead developer for WebSphere Application
Server Liberty, Alasdair Nottingham shares his perspectives on Liberty and its value for developers.

Scene Audio Onscreen Action

1 None Show "IBM".

2 None Show "Liberty".

3 None Show the text:

Liberty is a new lightweight, easy to use version
of WebSphere Application Server. We asked IBM
developers to share their thoughts on what it
means for developers ...

4 None Show the question:

What do you find exciting about Liberty?

5 It's this really simple configuration that you can just go
and edit with Notepad. I use Unix on a daily basis and
being able to go in and edit it kinda completely breaks
the expectation that people have of what WebSphere
Application Server is. When we say, "Here is what
Liberty is," the look of shock and disbelief of people
seeing a runtime that starts in seconds, and is dynamic
and flexible and has all the behaviors that Liberty has,
I think is really exciting.

Show the developer, Alasdair Nottingham, talking
on camera. Alasdair Nottingham is a lead
developer for WebSphere Application Server
Liberty.

Show words:

v Simple configuration

v Breaks expectations

v Dynamic

v Flexible

6 None Show the question:

Tell us about a Liberty user experience?

7 We've got jazz.net which is a website hosting a whole
lot of technologies around development. I got
contacted one day by the jazz.net lead and he said, "I
wanted you to that know we just got into production
for our download application on jazz.net." He had not
come and spoken to the development team or raised
any issues. He had just gone ahead and taken an
application that previously had been running
elsewhere and got it up and running on jazz.net. All he
was talking about what how great an experience it
was. He said it was easy to tune and to get it to
behave correctly. He was really excited.

Show the developer, Alasdair Nottingham, talking
on camera.

Show words:

v Great experience

8 None Show the question:

What would you like to say to developers?

668 WebSphere Application Server Liberty Core 8.5.5

https://www.youtube.com/watch?v=JmCOpUb7ggo&list=UUFKI_oW2tpKn1pbYoO4EUgQ&feature=c4-overview

Table 53. Thoughts on Liberty: Interview with Alasdair Nottingham (continued). As lead developer for WebSphere
Application Server Liberty, Alasdair Nottingham shares his perspectives on Liberty and its value for developers.

Scene Audio Onscreen Action

9 Well I think the important thing is to try it out. An
awful lot of people have preconceptions on what
proprietary software is like. Or what IBM software is
like, in particular. I really think we have tried very
hard to learn from the best examples of good usability.

We've especially been focused around trying to make it
good for developers. At the end of the day, I'm a
developer. I work with a bunch of developers and we
want to write something that is really good for
developers to go and use. I think it really enables you
to do a lot of thing that you couldn't do before.

It runs in production just as easily. It's completely
supported in production environments. That's
something that people miss when we say it is a
developer focused runtime. It's not to say we aren't
trying to provide a runtime for production. It's just
saying that by making sure we provide a great
developer-friendly runtime, we get a great
production-ready runtime at the same time.

Show the developer, Alasdair Nottingham, talking
on camera.

Show words:

v Try it out

v Good for developers

v Completely supported in production

10 None Show the text:

To learn more: http://wasdev.net

Video: Touring Admin Center

The following transcript is for the “Touring Admin Center” video, which briefly describes Admin Center
features. This transcript is the video storyboard. The video does not have Audio text. Onscreen Action
describes the images and words shown.

Touring Admin Center

Table 54. Touring Admin Center. Show images of Admin Center and describe its features in on-screen text.

Scene Audio Onscreen Action

1 No narration.
Background music.

Show title, Touring Admin Center.

2 Show words Secure login while showing the login page.

3 Show words from a desktop, tablet and smartphone while showing Admin Center login
page in a web browser on a desktop monitor, then on a tablet, then on a smartphone.

4 Show words Toolbox and then to hold tools and bookmarks of URLs to favorite websites
while showing the Toolbox.

5 Show words customizable by each user while showing Edit Toolbox page, Add
Bookmark, and then Add Bookmark dialog.

6 Show words Server Config tool and then to view and edit server.xml and configuration files
while showing Server Config tool open on a server.xml file.

7 Show words Explore tool and then to browse applications, clusters, servers and hosts while
showing Explore tool Dashboard, then application details page, and then Servers
page.

Chapter 1. WebSphere Application Server Liberty Core: Overview 669

https://youtu.be/2wgXrNt79Q0

Table 54. Touring Admin Center (continued). Show images of Admin Center and describe its features in on-screen
text.

Scene Audio Onscreen Action

8 Show words to manage resources while showing Start action on two selected resources
on Servers page and then search for resources on Search page.

9 Show words to monitor resource metrics while showing charts for a servlet on Monitor
page.

10 Show words and to set and view administrative metadata while showing Tags and
Metadata dialog and then metadata on server details page.

11 Show words Deploy tool and then to install Liberty server packages on hosts in a collective
while showing Deploy tool.

12 Show words Background Tasks and then to check the status of Deploy Installation tasks
and then and to view messages while showing Background Tasks page.

13 Show words An interface that informs and guides while showing message for Add
Bookmark pop-up dialog.

14 Show words and has preference options while showing Preferences page.

Table 55. Conclusion. Show where to get Admin Center.

Scene Audio Onscreen Action

15 No narration.
Background music.

Show words Available from and then WASdev and http://developer.ibm.com/wasdev.

For more information, see “Administering Liberty using Admin Center” on page 1074.

Video: Using the IBM WebSphere Liberty Repository to enhance
Liberty environments

The following transcript is for the “Using the IBM WebSphere Liberty Repository to enhance Liberty
environments” video, which briefly describes the Liberty Repository, its rich set of assets, and how to
obtain the assets. This transcript is the video storyboard. Audio describes narration and captions.
Onscreen Action describes the content shown in the video.

Using the Liberty Repository to enhance Liberty environments

Table 56. Using the IBM WebSphere Liberty Repository to enhance Liberty environments. Show images of
WASdev.net and other methods of obtaining Liberty features, and describe the Liberty Repository in on-screen text.

Scene Audio Onscreen Action

1 Using the IBM WebSphere Liberty Repository to easily
enhance your Liberty environment

Show title, Using the IBM WebSphere Liberty
Repository to easily enhance your Liberty
environment.

2 The rapid evolution and adoption of cloud, mobile, and
social media technologies are driving the demand for
delivering applications faster and more frequently. IBM
WebSphere Application Server is now delivering features for
Liberty on a continual basis via the Liberty Repository. In
this video, you will learn about the Liberty Repository, its
rich set of resources, and how to get started to obtain the
latest Liberty features that are available.

Images representing, cloud, mobile, and
social media appear. The words “develop
applications faster,”“IBM WebSphere
Application Server,” “New Liberty features
on a continual basis,” and “Liberty
Repository” are shown.

670 WebSphere Application Server Liberty Core 8.5.5

https://www.youtube.com/watch?v=ht7CrA4COh8

Table 56. Using the IBM WebSphere Liberty Repository to enhance Liberty environments (continued). Show images
of WASdev.net and other methods of obtaining Liberty features, and describe the Liberty Repository in on-screen
text.

Scene Audio Onscreen Action

3 Building on the highly composable and modular nature of
Liberty, we are making available new features on a
continuous basis that you can use to easily extend or
enhance your Liberty-based applications. The optional,
production-ready features can be quickly and easily added
to an existing WebSphere Liberty V8.5.5 installation. Simply
choose the features that you want and then install the
features to the applicable product service level. The features
that you add inherit the same support of your existing
installation.

Building blocks representing Liberty features
drop down, building a stack of blocks. The
word “Optional, production-ready features”
and “Add to existing Liberty environment”
are shown.

4 Some of the available features include:

v IBM WebSphere Liberty Administrative Center

v IBM WebSphere Liberty Connector Architecture

v IBM WebSphere Liberty Optimized Adapters for z/OS

v IBM WebSphere Liberty z/OS Connect

Show words:

v IBM WebSphere Liberty Administrative Center

v IBM WebSphere Liberty Connector
Architecture

v IBM WebSphere Liberty Optimized Adapters
for z/OS

v IBM WebSphere Liberty z/OS Connect

5 With the Liberty Repository, you can easily obtain these
composable features, as well as enhancements and helpful
development tools, from the Repository, rather than having
to wait for new product releases. The Liberty Repository
enables us to deliver these valuable assets to you faster so
that you can more quickly produce, enhance, and deliver
innovations and engaging applications.

Show the WASdev Downloads page and the
entries for features. Each entry includes an
icon, the type of asset, the name of the asset,
the release date, a description, and a rating.

6 In addition to features, the repository also includes artifacts
such as administration scripts, samples, configuration
snippets as well as artifacts that integrate open source
projects more quickly and effectively. These assets are
specifically designed to encompass end-to-end integration
and provide important business value for the entire
life-cycle of your Liberty application.

Show the WASdev Downloads page and the
entries for other assets on the page. Each
entry includes an icon, the type of asset, the
name of the asset, the release date, a
description, and a rating.

Show a list of all possible asset types and
their associated icons:

v Features

v Product samples

v Addons

v Product runtimes

v Admin scripts

v Config snippets

v Open source integration

v Tools

7 To get started, visit WASdev.net from your computer or
mobile device. From the home page, click Downloads to
browse and discover the variety of assets in the repository.
You can search to find the assets you need. Also, you can
use filtering to scope your search by asset type and edition.
From WASdev.net, you can learn about the available features
and how to install them using product installation tools,
WebSphere Developer Tools or Rational® Application
Developer.

Show the WASdev.net homepage. The cursor
clicks on Downloads and scrolls through the
asset listing. “MongoDB” is searched for, then
the cursor clicks on the Filter menu and
clicks Feature to filter the results to show
only features.

Chapter 1. WebSphere Application Server Liberty Core: Overview 671

Table 56. Using the IBM WebSphere Liberty Repository to enhance Liberty environments (continued). Show images
of WASdev.net and other methods of obtaining Liberty features, and describe the Liberty Repository in on-screen
text.

Scene Audio Onscreen Action

8 The Liberty Repository has been seamlessly integrated with
the Liberty installation methods. You can easily add Liberty
features that are located in the Liberty Repository using
either IBM Installation Manager, when installing Liberty, or
using the command line, if Liberty is already installed. Both
installation methods automatically search for and install any
dependencies that the selected features might require.

Show the Installation Manager GUI window
where additional features can be installed.
Show a command-line window with the
featureManager command, displaying options
you can use with the command.

9 Additionally, the repository has been integrated with
WebSphere Developer Tools and Rational Application
Developer so that you can browse, filter, and search assets
for these assets. After you find the asset that you want,
simply add it to your install cart.

Show the Install Add-ons window in
WebSphere Developer Tools. Click Install and
hover over the Liberty Repository assets that
can be installed.

Table 57. Conclusion. Show where to get started with Liberty Repository

Scene Audio Onscreen Action

10 To learn more about the
Liberty Repository and
the newly added
features and assets, go
to WASdev.net. Ready to
get started?

Show words WASdev and https://www.ibmdw.net/wasdev/.

For more information, see “Liberty Repository” on page 573.

Video: Why Liberty? Performance that scales
8.5.5.6

The following transcript is for the “Why Liberty? Performance that scales” video, which describes how
Liberty delivers optimal performance that easily scales. WebSphere Application Server Liberty is a
lightweight, composable application server that is quick to start, easy to manage, and fast to deploy to,
which enables rapid application development and availability in mobile, cloud, social, analytic, and
enterprise production environments. This transcript is the video storyboard. Audio describes narration
and captions. Onscreen Action describes the content that is shown in the video.

Why Liberty? Performance that scales

Table 58. Why Liberty? Performance that scales. Show title and then describe how the lightweight and composable
nature of Liberty results in a runtime that delivers high performance and scalability.

Scene Audio Onscreen Action

1 Why Liberty? Performance that scales Show title, Why Liberty? Performance that
scales.

2 What if your runtime could help you build killer apps that
scale?

Show words: What if your runtime could
help you build killer applications that scale?

672 WebSphere Application Server Liberty Core 8.5.5

https://youtu.be/_-vOf3zA8mA

Table 58. Why Liberty? Performance that scales (continued). Show title and then describe how the lightweight and
composable nature of Liberty results in a runtime that delivers high performance and scalability.

Scene Audio Onscreen Action

3 WebSphere Application Server Liberty is the runtime for
IBM Watson® as well as the hybrid cloud solution that
serves every Grand Slam Tennis event around the world.

So why do Watson™ and the tennis majors use Liberty?
Because Liberty delivers the scalability and performance
required to support the unique needs of cognitive and
analytic queries. Liberty easily scales to meet the demands
of real-time major sporting events and analysis applications
that can quickly spike to over 100 million web page views at
peak match times.

Liberty is a lightweight, yet powerful, and fast runtime that
was designed and built to meet the needs of developers.
Using Liberty, you can rapidly develop and employ
applications into production environments that perform and
easily scale, which enables you to more quickly transform
your own innovative ideas into reality!

What if your runtime could help you build killer
applications that scale, like Watson or the hybrid cloud
solution for Grand Slam Tennis events? It can!

Show words:

v Australian Open

v French Open

v Wimbledon

v U.S. Open

v Liberty can!

Show graphics of:

v IBM Watson

v Liberty

v Resizing square scaling graphic for
scalability

v Lightning graphic for performance

v Multiple pop-up window graphics that
show a tennis ball and racquet for web page
views

v Scale graphic for lightweight

v Speedometer graphic for 3-second startup

v Developer using Liberty

v Arrow pointing at the developer with the
word You above it

v Thought bubble above developer for
innovative ideas

v Thought bubble transferred to the
developer's computer screen for reality

4 Liberty is extremely lightweight. With a small memory
footprint and fast application startup time, you can be up
and running in a matter of seconds. In fact, Liberty is much
lighter than the competition!

Show words:

v Lightweight

– < 65 MB footprint

– < 3-second start up

– 40% lighter than the leading competitor

Show graphic of scale for lightweight

5 The installation of Liberty is composable.

For a fast startup time, the Liberty installation provides the
essential features. If you need more features to meet your
application needs, you can easily and quickly install them
from the Liberty Repository.

Show words: ComposableShow graphics:

v Show composable nature of Liberty with a
foundation of blocks that is built up with
more features, or blocks, added.

v Show screen capture of Liberty repository
and its assets.

Chapter 1. WebSphere Application Server Liberty Core: Overview 673

Table 58. Why Liberty? Performance that scales (continued). Show title and then describe how the lightweight and
composable nature of Liberty results in a runtime that delivers high performance and scalability.

Scene Audio Onscreen Action

6 Liberty complies with the Java Platform Enterprise Edition
(Java EE) 7 specification, for both the full platform and its
subset, the Java EE 7 Web Profile. This support enables you
to code without restrictions and use the latest Java EE 7
capabilities. You can pick and choose the Java EE 7 standard
features that you want to use, or you can get all of the
features in a convenience feature.

Show words:

v Fully Java EE 7 compliant

– Full platform

– Web Profile

– Code without restrictions

– Use the latest Java EE 7 capabilities

Show graphics:

v Java logo

v Rolling list of key supported Java EE 7
programming models.

v List of Java EE 7 standard features

v List of all Java EE 7 features

7 Liberty can be deployed wherever, whenever and however.
You have the flexibility to run in any environment and you
can rapidly deploy to the cloud. This capability enables you
to achieve even more performance in a short amount of
time.

Show words:

v Whenever

v Wherever

v However

v Rapidly deploy to cloud

– On premises

– Hosted

Show graphics:

v Liberty graphic

v Cloud with IBM Bluemix®

v Growing box for performance

v Shrinking box for time

8 Finally, with the new auto scaling capabilities, you can
rapidly scale the number of instances of the run time.

Show words:

v Scalable

– 5 JVMs to 5,000 in minutes

Show graphic of square graphs quickly
multiplying

9 It's not enough to just build a great application. It needs
powerful performance and scalability behind it. With these
capabilities, Liberty gives you the performance that excels
and scalability to meet user demands with fewer hardware
and license requirements.

Show words:

v Lightweight

v Composable

v Java EE 7

v Cloud ready

Show graphics:

v Resizing square scaling graphic for
scalability

v Lightning graphic for performance

v Graph for application

v Shrinking graphics for hardware and license
requirements

674 WebSphere Application Server Liberty Core 8.5.5

Table 58. Why Liberty? Performance that scales (continued). Show title and then describe how the lightweight and
composable nature of Liberty results in a runtime that delivers high performance and scalability.

Scene Audio Onscreen Action

10 There's no better time than now to get started with Liberty
-- and it's easy! To download Liberty, and access a wide
variety of features, samples, and other tips about developing
and extending your applications, visit WASdev.net.

Show words:

v Getting started is easy

v Download Liberty and get features,
samples, development tips from
WASdev.net

Video: Why Liberty? Fast application development
8.5.5.6

The following transcript is for the “Why Liberty? Fast application development” video, which describes
how Liberty is simple to install and configure. WebSphere Application Server Liberty is a lightweight,
composable application server that is quick to start, easy to manage, and fast to deploy to, which enables
rapid application development and availability in mobile, cloud, social, analytic, and enterprise
production environments. This transcript is the video storyboard. Audio describes narration and captions.
Onscreen Action describes the content that is shown in the video.

Why Liberty? Fast application development

Table 59. Why Liberty? Fast application development. Show title and then describe how Liberty is simple to install
and configure, and how it integrates with WebSphere Developer Tools.

Scene Audio Onscreen Action

1 Why Liberty? Fast application development Show title, Why Liberty? Fast application
development.

2 What if your runtime could help you develop apps faster? Show words: What if your runtime could
help you develop apps faster?

3 Did you know you can gain about 8 weeks of time back per
year by using WebSphere Application Server Liberty to
develop your WebSphere applications?

Liberty is simple to use, yet powerful, and was designed
and built to meet the needs of developers. Using Liberty,
you can rapidly develop and deploy your applications into
production environments, which enables you to more
quickly transform your own innovative ideas into reality!

What if your runtime could give you back weeks each year?
It can!

Show words:

v Gain 8 weeks by using Liberty

v Liberty can!

Show graphics:

v Calendar showing 8 weeks crossed off and
now free

v Code graphic for simple

v Lightning graphic for powerful

v Developer using Liberty

v Arrow pointing at the developer with the
word You above it

v Thought bubble above developer for
innovative ideas

v Thought bubble transferred to the
developer's computer screen for reality

Chapter 1. WebSphere Application Server Liberty Core: Overview 675

https://youtu.be/BqHUT9aqABw

Table 59. Why Liberty? Fast application development (continued). Show title and then describe how Liberty is
simple to install and configure, and how it integrates with WebSphere Developer Tools.

Scene Audio Onscreen Action

4 Liberty is incredibly easy to use.

With a footprint of less than 65 MB and a simple archive
installation, Liberty provides a lightweight architecture to
manage lightning fast, data-rich applications across any
web, mobile, or cloud environment with high performance.
After downloading Liberty, you can install and configure
Liberty, add an application, and have that application
running, all in one minute.

Liberty has a simple configuration that you can easily share
across your development team, store in version control, and
edit in real time.

When you upgrade your version of Liberty, you can
continue to use existing applications and configurations
with no changes. There's no need for migration!

There are also zero restarts. After you save configuration
changes, you do not need to restart Liberty to see the
changes go live.

Show words:

v Liberty is incredibly easy to use

v Lightweight

– < 65 MB footprint

– Archive install

v Simple

– Simple install

– Simple XML-based configuration

– Zero migration

– Zero restarts

Show graphics:

v Cloud with Liberty logo sending thunder
bolts to devices

v For simple install, show install from .zip file

v For simple configuration, show changing the
server.xml file configuration from
WebSphere Developer Tools

5 WebSphere Developer Tools make it easy to write and
deploy applications in Eclipse. Simply drag your application
onto your Liberty server.

With the IBM Eclipse Tools for Bluemix, you can also
quickly and easily deploy to Bluemix.

Show words: WebSphere Developer Tools

Show screen capture of WebSphere Developer
Tools and dragging a Liberty feature to install
it

7 You can build great applications for mobile, cloud, social,
analytic, and enterprise production environments without
wasted time. Just imagine what you can do with extra
weeks gained back each year!

v Show graphic of a happy developer

v Show developer on vacation

8 There's no better time than now to get started with Liberty
-- and it's easy! To download Liberty, and access a wide
variety of features, samples, and other tips about developing
and extending your applications, visit WASdev.net.

Show words:

v Getting started is easy

v Download Liberty and get features,
samples, development tips from
WASdev.net

Video: Why Liberty? Rapid deployment and powerful administration
8.5.5.6

The following transcript is for the “Why Liberty? Rapid deployment and powerful administration” video,
which describes how Liberty provides a run time to deploy rapidly and easily manage your systems.
WebSphere Application Server Liberty is a lightweight, composable application server that is quick to
start, easy to manage, and fast to deploy to, which enables rapid application development and
availability in mobile, cloud, social, analytic, and enterprise production environments. This transcript is
the video storyboard. Audio describes narration and captions. Onscreen Action describes the content that
is shown in the video.

Why Liberty? Rapid deployment and powerful administration

676 WebSphere Application Server Liberty Core 8.5.5

https://youtu.be/qJq0n2zfQxY

Table 60. Why Liberty? Rapid deployment and powerful administration. Show title and then describe how Liberty is
easy to manage and it integrates with open source frameworks.

Scene Audio Onscreen Action

1 Why Liberty? Rapid deployment and powerful
administration

Show title, Why Liberty? Rapid deployment and
powerful administration.

2 What if your runtime could speed up your application
deployment?

Show words: What if your runtime could
speed up your application deployment?

3 Did you know that with WebSphere Application Server
Liberty, you can deploy a large web application over 75%
faster than the leading competitor? Not only does Liberty
provide a single runtime that meets all of your Java EE
needs, it also gives you rapid deployment and powerful
administration capabilities.

Liberty is a lightweight, but powerful and fast runtime that
was designed and built to meet the needs of developers.
Using Liberty, you can rapidly develop and deploy your
applications into production environments, which enables
you to more quickly transform your own innovative ideas
into reality!

What if your runtime could speed up your application
deployment? It can!

Show words:

v Rapid deployment

v Powerful administration

v Liberty can!

Show graphics:

v Liberty logo

v Speedometer graphic for 75% faster

v Java EE logo

v Scale graphic for lightweight

v Speedometer graphic for fast

v Developer using Liberty

v Arrow pointing at the developer with the
word You above it

v Thought bubble above developer for
innovative ideas

v Thought bubble transferred to the
developer's computer screen for reality

4 Liberty is easy to manage. Your servers, applications, and
other resources are right at your fingertips. With Admin
Center, which is accessible from your smartphone, tablet, or
computer, you can manage and monitor servers and
applications, deploy server packages, and view bookmarked
information.

Show words: Liberty is incredibly easy to
manage

Show graphics for:

v Show graphic screen captures of using
Admin Center.

v Show graphic of mentioned devices

Chapter 1. WebSphere Application Server Liberty Core: Overview 677

Table 60. Why Liberty? Rapid deployment and powerful administration (continued). Show title and then describe
how Liberty is easy to manage and it integrates with open source frameworks.

Scene Audio Onscreen Action

5 Liberty integrates seamlessly with open source software. You
can take advantage of Spring, Maven, Arquillian, MongoDB,
and Docker, just to name a few. You don't need to reinvent
the wheel or your existing applications. By leveraging
Liberty's flexibility and integrating Liberty into your current
development environment, you can be more productive and
save valuable time.

Show words:

v Liberty integrates seamlessly with open
source software

v Open Source Integration

v Software:

– Tapestry

– MongoDB

– Cassandra

– And more!

v Frameworks:

– Arquillian

– Docker

– Spring

– Chef

– Puppet

– And more!

Show graphics:

v Wheel and existing applications

v Check marks appearing under the graphics

6 Liberty also supports continuous integration and DevOps.
Liberty's fast start up time, small footprint, and simple
configuration supports the continuous integration of code
into frequent builds and automated testing. With simple
build tools for packing the runtime into a single archive,
Liberty is easy to deploy in production environments.
Additionally, you can use the Liberty Chef cookbooks,
which support the use of the Chef DevOps framework.

Show words:

v Liberty supports continuous integration
and DevOps

v Simple packaging tools

Show graphics:

v Apps and codes on a conveyer belt

v Check marks above the apps and codes

v Screen capture of packaging tools being
used

v Liberty Chef cookbook on Git

7 It's not enough to just build a great application, you need to
be able to deploy rapidly and easily manage your systems.

Show words:

v It's not enough to just build a great
application

v Rapidly deployment

v Powerful administration

8 There's no better time than now to get started with Liberty
-- and it's easy! To download Liberty, and access a wide
variety of features, samples, and other tips about developing
and extending your applications, visit WASdev.net.

Show words:

v Getting started is easy

v Download Liberty and get features,
samples, development tips from
WASdev.net

Notices
This information was developed for products and services offered in the U.S.A.

678 WebSphere Application Server Liberty Core 8.5.5

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information about the products and services currently available
in your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road

Chapter 1. WebSphere Application Server Liberty Core: Overview 679

Poughkeepsie, NY 12601-5400
USA
Attention: Information Requests

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

APACHE INFORMATION. The information center includes all or portions of information which IBM
obtained under the terms and conditions of the Apache License Version 2.0, January 2004. The
information may also consist of voluntary contributions made by many individuals to the Apache
Software Foundation. For more information on the Apache Software Foundation, please see
http://www.apache.org. You may obtain a copy of the Apache License at http://www.apache.org/
licenses/LICENSE-2.0.

680 WebSphere Application Server Liberty Core 8.5.5

Programming interface information

This publication. primarily documents information that is NOT intended to be used as Programming
Interfaces of WebSphere Application Server. This publication also documents intended Programming
Interfaces that allow the customer to write programs to obtain the services of WebSphere Application
Server. This information is identified where it occurs, either by an introductory statement to a chapter or
section or by the following marking: Programming Interface information.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Privacy Policy Considerations
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering's use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect personally identifiable
information.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM's privacy policy at http://www.ibm.com/privacy and IBM's Online Privacy Statement at
http://www.ibm.com/privacy/details/us/en sections entitled "Cookies, Web Beacons and Other
Technologies" and "Software Products and Software-as-a Service".

Chapter 1. WebSphere Application Server Liberty Core: Overview 681

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details/us/en

682 WebSphere Application Server Liberty Core 8.5.5

Chapter 2. Migrating applications to Liberty

You can migrate applications to Liberty.

Procedure

Migrate data access applications to the Liberty profile.

Migrating data access applications to Liberty
For data access applications, you need to change configurations when you migrate a data source from the
WebSphere Application Server traditional to Liberty.

Procedure
v “Configuration differences between the traditional and Liberty: dataSource and jdbcDriver elements.”
v “Configuration differences between the traditional and Liberty: connectionManager element” on page

684.
v “Migrating a DB2 data source to Liberty” on page 685.
v “Migrating a Derby embedded data source to Liberty” on page 687.

Configuration differences between the traditional and Liberty:
dataSource and jdbcDriver elements
There are some differences in configuration between dataSource in Liberty and data sources in the
traditional .
v Data source properties with different names

– ifxIFX_LOCK_MODE_WAIT, which is informixLockModeWait in traditional.
– supplementalJDBCTrace, which is supplementalTrace in traditional.
– transactional, which is nonTransactionalDataSource in traditional.
– isolationLevel, which is webSphereDefaultIsolationLevel in traditional.
– queryTimeout, which is webSphereDefaultQueryTimeout in traditional.
– id, which is name in traditional.

v Data source properties with different values
– beginTranForResultSetScrollingAPIs, which is true by default in Liberty
– beginTranForVendorAPIs, which is true by default in Liberty
– connectionSharing, which is MatchOriginalRequest by default in Liberty
– statementCacheSize, which is is a JDBC provider property in traditional, and a dataSource property

in Liberty, with a default value of 10.
v Data source properties in traditional that have no Liberty equivalent

– category

– supportsDynamicUpdates

v connectionSharing property of data sources
– Liberty allows connectionSharing to be configured to either MatchOriginalRequest or

MatchCurrentState. By default, it is MatchOriginalRequest.
– The traditional allows connectionSharing to be configured in a finer grained manner, where

individual connection properties can be matched based on the original connection request or the
current state of the connection. In the traditional, connectionSharing is a combination of bits

683

representing which connection properties to match based on the current state of the connection. In
the traditional, a value of 0 means to match all properties based on the original connection request;
a value of -1 means to match all properties based on the current state of the connection. The default
value for the traditional is 1, which means that the isolation level is matched based on the current
state of the connection and all other properties are matched based on the original connection
request.

v Time duration properties of data source
Time duration properties can optionally be specified with units in Liberty. For example,
<dataSource id="informix" jndiName="jdbc/informix" queryTimeout="5m" ...>

<properties.informix ifxIFX_LOCK_MODE_WAIT="120s" .../>
</dataSource>

See **** MISSING FILE **** for accepted time units and formats of dataSource element. Omitting the
units in Liberty is equivalent to the default units used in the traditional.

v Configuration for JDBC drivers
– In Liberty, you can take the same approach of configuring different jdbcDriver elements for XA

capable and non-XA capable data source implementation classes. Alternatively, you can use a single
jdbcDriver element for both. Defining multiple jdbcDriver elements does not cause different class
loaders to be used. In Liberty, jdbcDriver elements always use the class loader of the shared library
with which they are configured.

– In the traditional, a JDBC provider is defined to point to the JDBC driver JARs, compressed files,
and native files. You must define separate JDBC providers for XA capable and non-XA capable data
source implementation classes.

For some of the commonly used JDBC drivers, Liberty infers the data source implementation class
names based on the names the driver JARs. Therefore, you can omit the implementation class names.
For example:
<jdbcDriver id="Derby" libraryRef="DerbyLib"/>
<library id="DerbyLib">

<fileset dir="C:/Drivers/derby" includes="derby.jar" />
</library>

Use the optional properties of the default implementation classes to override these classes such as
javax.sql.DataSource, javax.sql.ConnectionPoolDataSource, and javax.sql.XADataSource.
The following example shows how to override the default javax.sql.XADataSource and
javax.sql.ConnectionPoolDataSource implementations that Liberty selects
<jdbcDriver id="Derby" libraryRef="DerbyLib"

javax.sql.XADataSource="org.apache.derby.jdbc.EmbeddedXADataSource"
javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource"/>

<library id="DerbyLib">
<fileset dir="C:/Drivers/derby" includes="derby.jar" />

</library>

See **** MISSING FILE **** for more information about the jdbcDriver element.

Configuration differences between the traditional and Liberty:
connectionManager element
There are some differences in configuration between connectionManager in Liberty and connection pools
in the traditional.
v Properties with different names

– maxConnectionsPerThread, which is maxNumberofMCsAllowableInThread in the traditional.
– maxIdleTime, which is unusedTimeout in the traditional.
– maxPoolSize, which is maxConnections in the traditional.
– minPoolSize, which is minConnections in the traditional.

684 WebSphere Application Server Liberty Core 8.5.5

v Time duration properties
You can optionally specify the time duration properties with units in Liberty. For example,
<connectionManager id="pool1" connectionTimeout="30s" reapTime="3m" maxIdleTime="30m"/>

See **** MISSING FILE **** for accepted time units and formats for the connectionManager element. If
you do not specify time units in Liberty, the same default units are used as in the traditional.

v Differences between immediate timeout values and never (disable) timeout
There are differences in the values that represent immediate timeout and never (disabled) timeout.
– Liberty uses a value of 0 to represent immediate, whereas the traditional often uses -1 for

immediate.
– Liberty uses a value of -1 to represent never (disabled), whereas the traditional often uses 0 for

never (disabled).

Specifically this applies to the following attributes:
– agedTimeout

– connectionTimeout

– maxIdleTime, which is unusedTimeout in the traditional
– reapTime

v Purge policy changes
In Liberty, there are three purge policy values: EntirePool, FailingConnectionOnly, and
ValidateAllConnections.
In the traditional, there are two purge policy values: EntirePool and FailingConnectionOnly, with a
second property, defaultPretestOptimizationOverride, determining the behavior of
FailingConnectionOnly.
Purge policies in Liberty, and their traditional equivalents, are as follows:
– purgePolicy="EntirePool", which is the same for both.
– purgePolicy="FailingConnectionOnly", which is equivalent to

purgePolicy="FailingConnectionOnly" with defaultPretestOptimizationOverride="false" in the
traditional.

– purgePolicy="ValidateAllConnections", which is equivalent to
purgePolicy="FailingConnectionOnly" with defaultPretestOptimizationOverride="true" in the
traditional.

Migrating a DB2 data source to Liberty
You can migrate a DB2 data source to Liberty.

About this task

See the following code examples for the configurations for a DB2 data source in the traditional and
Liberty.

Example

In the traditional:
<resources.jdbc:JDBCProvider xmi:id="JDBCProvider_1321914412932"

providerType="DB2 Using IBM JCC Driver" isolatedClassLoader="false"
implementationClassName="com.ibm.db2.jcc.DB2ConnectionPoolDataSource" xa="false">

<classpath>${DB2_JCC_DRIVER_PATH}/db2jcc4.jar</classpath>
<classpath>${DB2_JCC_DRIVER_PATH}/db2jcc_license_cu.jar</classpath>
<classpath>${DB2_JCC_DRIVER_PATH}/db2jcc_license_cisuz.jar</classpath>
<factories xmi:type="resources.jdbc:DataSource" xmi:id="DataSource_1321914498985"

name="DefaultDB2Datasource" jndiName="jdbc/DefaultDB2Datasource"

Chapter 2. Migrating applications to Liberty 685

providerType="DB2 Using IBM JCC Driver" authMechanismPreference="BASIC_PASSWORD"
authDataAlias="IBM-9NE5C7ONIG4Node01/dbuser2" relationalResourceAdapter="builtin_rra"
statementCacheSize="10"
datasourceHelperClassname="com.ibm.websphere.rsadapter.DB2UniversalDataStoreHelper">

<propertySet xmi:id="J2EEResourcePropertySet_1321914499000">
<resourceProperties xmi:id="J2EEResourceProperty_1321914499000" name="databaseName"

type="java.lang.String" value="TESTDB" required="true" ignore="false"
confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499001" name="driverType"
type="java.lang.Integer" value="4" required="true" ignore="false"
confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499002" name="serverName"
type="java.lang.String" value="localhost" required="false" ignore="false"
confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499003" name="portNumber"
type="java.lang.Integer" value="50000" required="false" ignore="false"
confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499010" name="currentLockTimeout"
type="java.lang.Integer" value="10" required="false" ignore="false"
confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499013" name="currentSchema"
type="java.lang.String" value="DBUSER2" required="false" ignore="false"
confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499015" name="cursorSensitivity"
type="java.lang.Integer" value="0" required="false" ignore="false"
confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499016" name="deferPrepares"
type="java.lang.Boolean" value="true" required="false" ignore="false"
confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499027" name="loginTimeout"
type="java.lang.Integer" value="0" required="false" ignore="false"
confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499032"
name="resultSetHoldability" type="java.lang.Integer" value="1" required="false"
ignore="false" confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499034"
name="retrieveMessagesFromServerOnGetMessage"
type="java.lang.Boolean" value="true" required="false" ignore="false"
confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499041" name="traceLevel"
type="java.lang.Integer" value="-1" required="false" ignore="false"
confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499052"
name="beginTranForResultSetScrollingAPIs" type="java.lang.Boolean" value="false"
required="false" ignore="false" confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499053"
name="beginTranForVendorAPIs" type="java.lang.Boolean" value="false" required="false"
ignore="false" confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499054" name="connectionSharing"
type="java.lang.Integer" value="-1" required="false" ignore="false"
confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499060"
name="nonTransactionalDataSource" type="java.lang.Boolean" value="false"
required="false" ignore="false" confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499063"
name="syncQueryTimeoutWithTransactionTimeout" type="java.lang.Boolean" value="false"
required="false" ignore="false" confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499069"
name="webSphereDefaultIsolationLevel" type="java.lang.Integer" value="2"
required="false" ignore="false" confidential="false" supportsDynamicUpdates="false"/>

<resourceProperties xmi:id="J2EEResourceProperty_1321914499070"
name="webSphereDefaultQueryTimeout" type="java.lang.Integer" value="10"
required="false" ignore="false" confidential="false" supportsDynamicUpdates="false"/>

686 WebSphere Application Server Liberty Core 8.5.5

</propertySet>
<connectionPool xmi:id="ConnectionPool_1321914499012" connectionTimeout="180"

maxConnections="10" minConnections="1" reapTime="180" unusedTimeout="1800"
agedTimeout="7200" purgePolicy="EntirePool" />

<mapping xmi:id="MappingModule_1321914681786" mappingConfigAlias=""
authDataAlias="IBM-9NE5C7ONIG4Node01/dbuser2"/>

</factories>
</resources.jdbc:JDBCProvider>
<systemLoginConfig xmi:id="JAASConfiguration_2">

<authDataEntries xmi:id="auth1" alias="IBM-9NE5C7ONIG4Node01/dbuser2"
userId="dbuser2" password="{xor}LDcfLTo7Oz0=" />

</systemLoginConfig>

In Liberty, the equivalent configuration is:
<variable name="DB2_JCC_DRIVER_PATH" value="C:/Drivers/DB2" />
<library id="db2Lib">

<fileset dir="${DB2_JCC_DRIVER_PATH}" includes="db2jcc4.jar
db2jcc_license_cu.jar db2jcc_license_cisuz.jar" />

</library>
<dataSource id="DefaultDB2Datasource" jndiName="jdbc/DefaultDB2Datasource"

statementCacheSize="10"
beginTranForResultSetScrollingAPIs="false"
beginTranForVendorAPIs="false"
connectionSharing="MatchCurrentState"
transactional="false"
syncQueryTimeoutWithTransactionTimeout="false"
isolationLevel="TRANSACTION_READ_COMMITTED"
queryTimeout="10"
>
<jdbcDriver libraryRef="db2Lib"

javax.sql.ConnectionPoolDataSource="com.ibm.db2.jcc.DB2ConnectionPoolDataSource"/>
<properties.db2.jcc
databaseName="TESTDB"
driverType="4"
serverName="localhost"
portNumber="50000"
currentLockTimeout="10"
currentSchema="DBUSER2"
cursorSensitivity="0"
deferPrepares="true"
loginTimeout="0"
resultSetHoldability="1"
retrieveMessagesFromServerOnGetMessage="true"
traceLevel="-1"
user="dbuser2"
password="{xor}LDcfLTo7Oz0="
/>
<connectionManager connectionTimeout="180" maxPoolSize="10" minPoolSize="1" reapTime="180"

maxIdleTime="1800" agedTimeout="7200" purgePolicy="EntirePool"/>
</dataSource>

Migrating a Derby embedded data source to Liberty
You can migrate a Derby Embedded data source to Liberty.

About this task

See the following code examples for the configurations for a Derby Embedded data source in the
traditional and Liberty.

Chapter 2. Migrating applications to Liberty 687

Example

In the traditional:
<resources.jdbc:JDBCProvider xmi:id="JDBCProvider_1183122153343"

providerType="Derby JDBC Provider"
implementationClassName="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource"
xa="false">

<classpath>${DERBY_JDBC_DRIVER_PATH}/derby.jar</classpath>
<factories xmi:type="resources.jdbc:DataSource" xmi:id="DataSource_1183122153625"

name="DefaultDerbyDatasource" jndiName="jdbc/DefaultDatasource"
providerType="Derby JDBC Provider" authMechanismPreference="BASIC_PASSWORD"
relationalResourceAdapter="builtin_rra" statementCacheSize="10"
datasourceHelperClassname="com.ibm.websphere.rsadapter.DerbyDataStoreHelper">

<propertySet xmi:id="J2EEResourcePropertySet_1183122153625">
<resourceProperties xmi:id="J2EEResourceProperty_1183122153625" name="databaseName"
type="java.lang.String" value="C:/myDerby/DefaultDB" required="true"/>
<resourceProperties xmi:id="J2EEResourceProperty_1183122153626" name="shutdownDatabase"
type="java.lang.String" value="false" required="false"/>
<resourceProperties xmi:id="J2EEResourceProperty_1183122153629" name="connectionAttributes"
type="java.lang.String" value="upgrade=true" required="false"/>
<resourceProperties xmi:id="J2EEResourceProperty_1183122153630" name="createDatabase"
type="java.lang.String" value="create" required="false"/>

</propertySet>
<connectionPool xmi:id="ConnectionPool_1183122153625" connectionTimeout="180"

maxConnections="10" minConnections="1" reapTime="180" unusedTimeout="1800"
agedTimeout="7200" purgePolicy="EntirePool"/>

</factories>
</resources.jdbc:JDBCProvider>

In Liberty, the equivalent configuration is:
<variable name="DERBY_JDBC_DRIVER_PATH" value="C:/Drivers/derby" />
<library id="derbyLib">

<fileset dir="${DERBY_JDBC_DRIVER_PATH}" includes="derby.jar" />
</library>
<dataSource id="DefaultDerbyDatasource" jndiName="jdbc/DefaultDatasource"

statementCacheSize="10">
<jdbcDriver libraryRef="derbyLib"

javax.sql.ConnectionPoolDataSource="org.apache.derby.jdbc.EmbeddedConnectionPoolDataSource"/>
<properties.derby.embedded

databaseName="C:/myDerby/DefaultDB"
shutdownDatabase="false"
connectionAttributes="upgrade=true"
createDatabase="create"

/>
<connectionManager connectionTimeout="180" maxPoolSize="10" minPoolSize="1" reapTime="180"

maxIdleTime="1800" agedTimeout="7200" purgePolicy="EntirePool" />
</dataSource>

688 WebSphere Application Server Liberty Core 8.5.5

Chapter 3. Installing Liberty

There are two methods for installing the WebSphere Application Server Liberty Core. You can use
Installation Manager or use downloaded archive files. With either method, you can also download
additional assets from the Liberty Repository.

About this task

New: Liberty now follows a continuous delivery process with a new fix pack numbering scheme. Fix
pack 16.0.0.2 is the next fix pack after 8.5.5.9. For more information about fix pack 16.0.0.2, see What is
new in Liberty in the new location of the latest Liberty documentation.

When choosing installation methods, consider the packaging strategy of each method.
v For Installation Manager, you can download a single package that contains all requested content.
v For downloaded archive files, content is packaged in multiple archives to reduce download size.

The following table compares the available installation methods for WebSphere Application Server
Liberty Core.

Table 61. Comparison of available installation methods

Installation Manager Archive

Agent-less installation No Yes

Install directly to any fix pack level Yes Yes

Apply fix packs in place Yes No

Apply interim fixes in place Yes Yes

Automated rollback of fix packs and
interim fixes

Yes No

Upgrade product editions Yes 8.5.5.5 Yes

Pluggable Java SDK provided Yes No

Integrated with developer tools No Yes

Add features in place Yes Yes

Liberty Repository integration Yes Yes

z/OS packaging provided Yes No

Minification supported Yes, but the output of the minify
command is a new image that can
only be serviced with archive
procedures.

Yes, the output of the minify
command is a new image.

Procedure
1. Install Liberty using one of the following methods:

a. Install Liberty using the Installation Manager.
b. Install Liberty using downloaded files and archives. You can install Liberty from a self-extracting

Java archive file or a ZIP archive file.
2. Optional: Install assets from the Liberty Repository.

689

|
|
|

https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_newinrelease.html
https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_newinrelease.html

Installing and uninstalling Liberty using Installation Manager
You can install WebSphere Application Server Liberty using IBM Installation Manager.

About this task

Note: 8.5.5.11 Support for using Java SE 6 with WebSphere Liberty ends in September 2017. After the
end of support, the Liberty kernel will be recompiled and can no longer run with Java SE 6. If you
continue to use Java SE 6 on earlier fix packs after the end of support date, you could expose your
environment to security risks.

Java SE 8 is the recommended Java SDK because it provides the latest features and security updates. You
can install it by installing the IBM SDK, Java Technology Edition, Version 8 package to the package group
that contains WebSphere Liberty.

Installation Manager is a general-purpose software installation and update tool that runs on a range of
computer systems.

Note: Although WebSphere Application Server Liberty can be installed and maintained using Installation
Manager Version 1.5.2 and later, this information is optimized for use with Installation Manager Version
1.6.2 and later. To install Version 8.5.5.4 and later of Liberty, you must have IBM Installation Manager
Version 1.6.2 or later.

Note: Starting with Version 1.6.2, Installation Manager supports Mac OS X. Installing and maintaining a
Liberty offering using Installation Manager on Mac OS X is supported for the following offerings:
v IBM WebSphere Application Server Liberty
v IBM WebSphere Application Server Liberty Trial
v IBM WebSphere Application Server Liberty Core
v IBM WebSphere Application Server Liberty Core Trial
v IBM WebSphere Application Server Liberty - Express
v IBM WebSphere Application Server Liberty Network Deployment
v IBM WebSphere Application Server Liberty Network Deployment Trial
v IBM WebSphere Application Server Liberty for Developers
v IBM WebSphere Application Server Liberty for Developers (ILAN)

Installation Manager for Mac OS X is not contained in the product image or on the product media. You
can obtain Installation Manager Version 1.6.2 and later from the IBM Installation Manager download
website. Refer to the System Requirements for IBM Installation Manager website and System
Requirements for WebSphere Application Server Version 8.5.5 website for complete details on Mac OS X
support.

Note: You can install WebSphere Application Server Liberty using the Installation Manager Graphical
User Interface (GUI) or Installation Manager in console mode. Console mode is an interactive text-based
user interface to Installation Manager. Use console mode when you do not have a graphics display device
available or when you want to run the Installation Manager without the graphical user interface. For
example, use console mode for server-side deployments when no graphical user interface is present, or
for running the installation from a remote host.

New: Liberty now follows a continuous delivery process with a new fix pack numbering scheme. Fix
pack 16.0.0.2 is the next fix pack after 8.5.5.9. You can continue to use the same Version 8.5 Installation
Manager repositories and offering IDs to install or update to 16.0.0.2, or you can use the new versionless
repositories and offerings. For more information about fix pack 16.0.0.2, see What is new in Liberty in the
new location of the latest Liberty documentation.

690 WebSphere Application Server Liberty Core 8.5.5

|
|
|
|
|
|

|
|
|
|
|

http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/docview.wss?uid=swg21599089#OSX
http://www.ibm.com/support/docview.wss?uid=swg27038218
http://www.ibm.com/support/docview.wss?uid=swg27038218
https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_newinrelease.html

Choose from the following options for more information on using Installation Manager for your
installation.

Procedure
v To install Liberty using Installation Manager, choose from the following options:

– Distributed operating systems

“Installing and uninstalling Liberty on distributed operating systems”

– IBM i

“Installing and uninstalling Liberty on IBM i operating systems” on page 788

v If you want to use Installation Manager in console mode, see:
Installation Manager Version 1.6 documentation or the Installation Manager Version 1.5 documentation.

Installing and uninstalling Liberty on distributed operating systems
IBM Installation Manager is a common installer for many IBM software products. You can use Installation
Manager to install and manage the product lifecycle of WebSphere Application Server Liberty Core.

Before you begin

Installation Manager is a single installation program that can use remote or local software flat-file
repositories to install, modify, or update WebSphere Application Server products. It determines and
shows available packages - including products, fix packs, interim fixes, and so on - checks prerequisites
and interdependencies, and installs the selected packages. You also use Installation Manager to easily
uninstall the packages that it installed.

Restrictions:

v If you have an earlier Alpha or a Beta version of WebSphere Application Server Liberty Core installed,
uninstall it before installing this version.

v Windows If a non-administrator installs WebSphere Application Server Liberty Core on a Windows
Vista, Windows 7, or Windows Server 2008 operating system into the Program Files or Program Files
(x86) directory with User Account Control (UAC) enabled, WebSphere Application Server Liberty Core
will not function correctly.
UAC is an access-control mechanism that allows non-administrative users to install a software product
into the Program Files or Program Files (x86) directory; but it then prohibits any write access to that
directory after the installation has completed.
To resolve this issue, perform one of the following actions:
– Install the offering into a directory other than Program Files or Program Files (x86).

For example:
C:\IBM\WebSphere\Liberty

– Disable UAC.
v When you install an offering using Installation Manager with local repositories, the installation takes a

significantly longer amount of time if you use a compressed repository file directly without extracting
it.
Before you install an offering using local repositories, extract the compressed repository file to a
location on your local system before using Installation Manager to access it.

Important: Do not transfer the content of a repository in non-binary mode and do not convert any
content on extraction.

Chapter 3. Installing Liberty 691

|

|

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html

Tip: Although almost all of the instructions in this section of the documentation work with earlier
versions of IBM Installation Manager, this information is optimized for users who installed or upgraded
to Installation Manager Version 1.6.2 or later. Version 8.5.5.4 and later of Liberty require Installation
Manager Version 1.6.2 or later.

Tip: Different users can use WebSphere Liberty by using two different methods.
1. Install a new WebSphere Liberty instance for each user. Each WebSphere Liberty install is a new user

profile.
2. Create multiple servers with different users. Each user should be part of a group that has access to the

wlpdirectory and java_home used.

If you use option two, run the command to create the server as the user who will run the server and
create the server in the user's home directory. If you are using Linux, the command is similar to su user1
export WLP_USER_DIR=/home/user1 server create Server1.

Setting WLP_USER_DIR in the user's shell profile makes it easy to ensure that all Liberty commands act on
the correct user directory.

Important: Installation Manager can install any fix-pack level of the offering directly without installing
the intermediate fix packs; in fact, Installation Manager installs the latest level by default. For example,
you can skip fix-pack levels and go from Version 8.5.5.1 directly to Version 8.5.5.5. Keep in mind,
however, that later you can not roll back to any level that was skipped. If you directly install to Version
8.5.5.5, for example, you cannot roll back to Version 8.5.5.4. If you skip from Version 8.5.5.1 to Version
8.5.5.5, you can only roll back to Version 8.5.5.1. You should plan your installations accordingly.

About this task

Prepare your system as described in “Installing Installation Manager and preparing to install Liberty” on
page 694.

Perform one of these procedures to install or uninstall WebSphere Application Server Liberty Core using
Installation Manager.

Procedure
v “Installing Liberty on distributed operating systems using the GUI” on page 697
v “Installing Liberty on distributed operating systems by using the command line” on page 700
v “Installing Liberty on distributed operating systems by using response files” on page 703
v “Uninstalling Liberty from distributed operating systems using the GUI” on page 709
v “Uninstalling Liberty from distributed operating systems using the command line” on page 709
v “Uninstalling Liberty from distributed operating systems by using response files” on page 710

Results

Notes on logging and tracing:

v An easy way to view the logs is to open Installation Manager and go to File > View Log. An
individual log file can be opened by selecting it in the table and then clicking the Open log file icon.

v Logs are located in the logs directory of Installation Manager's application data location. For example:

– Windows

Administrative installation:

C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager

– Windows

Non-administrative installation:

C:\Documents and Settings\user_name\Application Data\IBM\Installation Manager

– AIX

HP-UX

Linux

Solaris

Administrative installation:

692 WebSphere Application Server Liberty Core 8.5.5

|

|
|

|
|

|
|
|

|
|

/var/IBM/InstallationManager

– AIX

HP-UX

Linux

Solaris

Non-administrative installation:

user_home/var/ibm/InstallationManager

v The main log files are time-stamped XML files in the logs directory, and they can be viewed using any
standard web browser.

v The log.properties file in the logs directory specifies the level of logging or tracing that Installation
Manager uses.

Notes on troubleshooting:

v HP-UX When you attempt to launch Installation Manager from a DVD that was mounted using the
CD-ROM file system (CDFS) on an HP-UX operating system, it might fail to launch and point to a log
file that contains an exceptions similar to one of the following:
java.util.zip.ZipException: Exception in opening zip file:

org.osgi.framework.BundleException: Exception in
org.eclipse.update.internal.configurator.ConfigurationActivator.start()
or bundle org.eclipse.update.configurator.

This issue might be caused by Installation Manager reaching the upper limit of number of descriptors
that can be opened on a CDFS-mounted device. This upper limit is determined by the value for the
tunable kernel parameter ncdnode, which specifies the maximum number of CDFS nodes that can be
in memory at any given time. To resolve the problem, change the ncdnode system kernel setting to 250.
If the problem persists, increase the setting.

v HP-UX By default, some HP-UX systems are configured to not use DNS to resolve host names. This
could result in Installation Manager not being able to connect to an external repository.
You can ping the repository, but nslookup does not return anything.
Work with your system administrator to configure your machine to use DNS, or use the IP address of
the repository.

v In some cases, you might need to bypass existing checking mechanisms in Installation Manager.
– On some network file systems, disk space might not be reported correctly at times; and you might

need to bypass disk-space checking and proceed with your installation. To bypass disk-space
checking, add cic.override.disk.space=true to the config.ini file in IM_install_root/eclipse/
configuration and restart Installation Manager.

– To bypass operating-system prerequisite checking, add disableOSPrereqChecking=true to the
config.ini file in IM_install_root/eclipse/configuration and restart Installation Manager.

If you need to use any of these bypass methods, contact IBM Support for assistance in developing a
solution that does not involve bypassing the Installation Manager checking mechanisms.

v For more information on using Installation Manager, read the IBM Installation Manager Information
Center.
Read the release notes to learn more about the latest version of Installation Manager. To access the
release notes, complete the following task:

– Windows

Click Start > Programs > IBM Installation Manager > Release Notes.

– AIX

HP-UX

Linux

Solaris

Go to the documentation subdirectory in the directory

where Installation Manager is installed, and open the readme.html file.
v If a fatal error occurs when you try to install the offering, take the following steps:

– Make a backup copy of your current installation directory in case IBM support needs to review it
later.

– Use Installation Manager to uninstall everything that you have installed under the installation
location (package group). You might run into errors, but they can be safely ignored.

– Delete everything that remains in the installation directory.
– Use Installation Manager to reinstall the offering to the same location or to a new one.

Chapter 3. Installing Liberty 693

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

v If you are installing WebSphere Application Server Liberty Version 8.5.5.1 in console
mode, you might receive warning messages similar to the following example:

No "conClass" attribute in "commonPanel" element of panel com.ibm.was.liberty.userdata.panel.UserData in com.ibm.was.liberty.userdata.panel.

This problem is caused by an IBM Installation Manager API which is deprecated in Version 1.6.2. These
warning messages can be ignored. No action is required.

Installing Installation Manager and preparing to install Liberty
Install Installation Manager and obtain the necessary product repositories before installing WebSphere
Application Server Liberty Core.

About this task

To install Liberty, you must have Installation Manager Version 1.5.2 or later.

Note: 8.5.5.4 To install Version 8.5.5.4 and later of Liberty, you must have IBM Installation Manager
Version 1.6.2 or later.

Procedure
1. Install Installation Manager.

a. Obtain the necessary installation files.
There are three basic options for obtaining Installation Manager Version 1.5.2 or later.
v Access the physical media.

v Download the files from the Passport Advantage site.

Licensed customers with a Passport Advantage ID and password can download Installation
Manager from the Passport Advantage site.

Tip: See How to download WebSphere Application Server V8.5.5 from Passport Advantage
Online.

v Download the most current version of Installation Manager from the download website.

You can download the most current version of Installation Manager from the IBM Installation
Manager download website.

b. Change to the location containing the Installation Manager installation files, and run one of the
following commands.

Administrative installation:

v Windows install.exe

v AIX HP-UX Linux Solaris ./install

Non-administrative installation:

v Windows userinst.exe

v AIX HP-UX Linux Solaris ./userinst

Group-mode installation:
AIX HP-UX Linux Solaris ./groupinst

Notes® on group mode:

v Group mode allows multiple users to use a single instance of IBM Installation Manager
to manage software packages.
This does not mean that two people can use the single instance of IBM Installation
Manager at the same time.

v Windows Group mode is not available on Windows operating systems.

694 WebSphere Application Server Liberty Core 8.5.5

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-mp&topic=downl_was855_ppadv
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-mp&topic=downl_was855_ppadv
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager

v If you do not install Installation Manager using group mode, you will not be able to use
group mode to manage any of the products that you install later using this Installation
Manager.

v Make sure that you change the installation location from the default location in the
current user's home directory to a location that is accessible by all users in the group.

v Set up your groups, permissions, and environment variables as described in the Group
mode road maps in the IBM Installation Manager documentation before installing in
group mode.

v For more information on using group mode, read the Group mode road maps in the
IBM Installation Manager documentation.

The installer opens an Install Packages window.
c. Make sure that the Installation Manager package is selected, and click Next.
d. Accept the terms in the license agreements, and click Next.

The program creates the directory for your installation.
e. Click Next.
f. Review the summary information, and click Install.
v If the installation is successful, the program displays a message indicating that installation is

successful.
v If the installation is not successful, click View Log File to troubleshoot the problem.

2. Update an Installation Manager installation that is already on your system.

For information on updating Installation Manager to Version 1.5.2 or later, see the IBM Installation
Manager documentation.

3. Obtain the product repositories.

There are three basic options for accessing the product repositories to install the offering.
v Access the physical media, and use local installation.

You can access the product repositories on the media.
v Download the files from the Passport Advantage site, and use local installation.

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.

Tip: See How to download WebSphere Application Server V8.5.5 from Passport Advantage Online
for a list of the IBM WebSphere Application Server Liberty Core installation images downloadable
from the IBM Passport Advantage Online website and other information.

v Access the live repositories, and use web-based installation.

If you have a Passport Advantage ID and password, you can access the product repositories and
install the offering from the web-based repositories. Use Installation Manager to install the offering
from the web-based repository located at

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85

Note: This location does not contain a web page that you can access using a web browser. This is a
remote web-based repository location that you must add to your Installation Manager preferences
before the Installation Manager GUI can access the files in this repository to install the offering.

Tip: This live repository is accessed by using Passport Advantage authentication. After you have
installed Installation Manager, you can set the Passport Advantage preference to connect to the live
repositories. To set Passport Advantage preferences, follow this procedure:
a. Open Installation Manager.
b. Open the Passport Advantage preferences page by selecting File > Preferences > Passport

Advantage.
c. Select Connect to Passport Advantage to connect to the Passport Advantage repository.

Chapter 3. Installing Liberty 695

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-mp&topic=downl_was855_ppadv

The Password Required dialog box opens.
d. Enter a user name and password for Passport Advantage.
e. Optional: Select Save password to save the user name and password credentials.

If you do not save the user name and password credentials, you are prompted for these
credentials each time you access Passport Advantage.

f. Click OK to close the Password Required dialog box.
g. Click OK to close the Preferences window.

For more information on setting your Installation Manager preferences, see the IBM Installation
Manager documentation.
Whenever possible, you should use the remote web-based repositories so that you are accessing the
most up-to-date installation files.

Notes:

v If you do not have a Passport Advantage ID and password, you must install the offering from the
product repositories on the media or local repositories.

v With the Packaging Utility, you can create and manage packages for installation repositories. You
can copy multiple packages into one repository or copy multiple disks for one product into a
repository. You can copy packages from Passport Advantage or a web-based repository into a local
repository for example. For more information on the Packaging Utility, go to the IBM Installation
Manager documentation.

4. 8.5.5.6 Optional: Configure an instance of the Liberty Asset Repository Service or a local
directory-based repository.
As part of installing Liberty, you can choose to install assets from the following repositories:
v The IBM WebSphere Liberty Repository, a public IBM-hosted repository that is accessible through

the internet. For more information, see “Liberty Repository” on page 573.
v The Liberty Asset Repository Service, an open-source service that you can use to create an

on-premises repository that is remotely accessible behind the firewall of an enterprise. For more
information, see the WASdev/tool.lars project on GitHub.

v Local directory-based repositories that are created by using the installUtility download action.
For more information, see “Downloading assets using the installUtility command” on page 860.

Access to the IBM WebSphere Liberty Repository is enabled by default and requires internet access. If
your system does not have internet access or you want to install customized Liberty assets, set up an
instance of the Liberty Asset Repository Service or a local directory-based repository, and then add the
repository in Installation Manager. For more information about the Liberty repositories, see “Installing
assets using Installation Manager” on page 872.

5. Optional: If you will be using the Installation Manager GUI, add repositories to your Installation
Manager preferences.

a. Launch Installation Manager.
b. Click File > Preferences.
c. Select Repositories.
d. Perform the following actions:

1) Click Add Repository.
2) Enter the path to the repository.config file in the location containing the repository files.

For example:

v Windows C:\repositories\offering_name\local-repositories

v AIX HP-UX Linux Solaris /var/repositories/offering_name/local-
repositories

or

696 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
https://github.com/WASdev/tool.lars

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85

3) Click OK.
e. Deselect any locations listed in the Repositories window that you will not be using.
f. Click Apply.
g. Click OK.
h. Click File > Exit to close Installation Manager.

For more information on setting your Installation Manager preferences, see the IBM Installation
Manager documentation.

6. Optional: If you will be using the Installation Manager GUI, set your Installation Manager rollback
preferences.

By default, Installation Manager saves earlier versions of a package to roll back to if you experience
issues later. When Installation Manager rolls back a package to a previous version, the current version
of the files are uninstalled and the earlier versions are reinstalled. If you choose not to save the files
for rollback, you can prevent the files from being saved or delete them after they are saved. To set
your rollback preferences, perform the following actions before installing a package:
a. Launch Installation Manager.
b. Open the Rollback preferences window by selecting File > Preferences > Files for Rollback.
c. Select or clear the Save files for rollback option to save or to stop saving a copy of files that are

required to roll back packages on your computer.
You can remove any files that have already been saved by clicking Delete Saved Files. If you
delete the files and you need to roll back a package later, you must connect to a repository or
insert the media to obtain the required files for the previous version of the package.

d. Click OK to save your rollback preferences.

For more information on setting your Installation Manager preferences, see the IBM Installation
Manager documentation.

What to do next

Use Installation Manager to install the offering.
v “Installing Liberty on distributed operating systems using the GUI”
v “Installing Liberty on distributed operating systems by using the command line” on page 700
v “Installing Liberty on distributed operating systems by using response files” on page 703

Installing Liberty on distributed operating systems using the GUI
You can use the Installation Manager GUI to install WebSphere Application Server Liberty Core.

Before you begin

Prepare your system as described in “Installing Installation Manager and preparing to install Liberty” on
page 694.

About this task

8.5.5.4 To install Version 8.5.5.4 and later of Liberty, you must have IBM Installation Manager Version
1.6.2 or later.

Procedure
1. Start Installation Manager.

Tip: AIX HP-UX Linux Solaris You can start Installation Manager in group mode
with the ./IBMIM command.

Chapter 3. Installing Liberty 697

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

v Group mode allows multiple users to use a single instance of IBM Installation Manager to manage
software packages.

v For more information on using group mode, read the Group mode road maps in the IBM
Installation Manager documentation.

2. Click Install.

Note: If you are prompted to authenticate, use the IBM ID and password that you registered with
on the program website.
Installation Manager searches its defined repositories for available packages.

3. Perform the following actions.
a. Select IBM WebSphere Application Server Liberty Core and the appropriate version.

Note: If you are installing the trial version of this product, select the appropriate trial edition and
the appropriate version.
If you already have the WebSphere Application Server Liberty Core offering installed on your
system in the installation location, a message displays indicating that the product is already
installed. To create another installation of the offering in another location, click Continue.

Tip: If the Search service repositories during installation and updates option is selected on the
Installation Manager Repository preference page and you are connected to the Internet, you can
click Check for Other Versions and Extensions to search for updates in the default update
repositories for the selected packages. In this case, you do not need to add the specific
service-repository URL to the Installation Manager Repository preference page.

b. Select the fixes to install.
Any recommended fixes are selected by default.
If there are recommended fixes, you can select the option to show only recommended fixes and
hide non-recommended fixes.

c. Click Next.

Note: Installation Manager might prompt you to update to the latest level of Installation Manager
when it connects to the repository. Update to the newer version before you continue if you are
prompted to do so. Read the IBM Installation Manager documentation for information about
automatic updates.

4. Accept the terms in the license agreements, and click Next.
5. Specify the installation root directory for the product binaries, which are also referred to as the core

product files or system files.
The panel also displays the shared resources directory and disk-space information.

Note: The first time that you install a package using Installation Manager, you can specify the
shared resources directory. The shared resources directory is where installation artifacts are located
that can be used by one or more package groups. It is also used as a staging area for the product
payload during installation operations. By default, this content is cached so that it can be used for
rollback. Consider setting your rollback preferences to save these files as described in “Installing
Installation Manager and preparing to install Liberty” on page 694. Use your largest drive for this
installation. You cannot change the directory location until after you uninstall all packages.
If you are installing on a 64-bit system, use the bit-selection option to select the bitness of the
installed Java libraries. If you are installing on a 32-bit system, this option is not available. When
installing on a 64-bit system, you must select either the 32-bit or 64-bit option. This choice will
determine the architecture bitness of the installation profile group. All extension offerings to
WebSphere Application Server Liberty Core will be installed under the same profile group and have
the same architecture bitness. For example, WebSphere SDK Java Technology Edition Version 7.0 for

698 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Liberty is an extension offering to WebSphere Application Server Liberty Core and its installation
will use a 32-bit or 64-bit JDK depending on your choice here.

Restrictions:

v Deleting the default target location and leaving an installation-directory field empty prevents you
from continuing.

v Do not use symbolic links as the destination directory.
Symbolic links are not supported.

v Do not use a semicolon in the directory name.
WebSphere Application Server Liberty Core cannot install properly if the target directory includes
a semicolon.

Windows

A semicolon is the character used to construct the class path on Windows systems.

6. Click Next.
7. Select the features that you want to install.

Choose from the following features:
v IBM WebSphere Application Server Liberty Core

– Embeddable EJB container and JPA client
This option installs the embeddable EJB container and JPA client.
The embeddable EJB container is a Java Archive (JAR) file that you can use to run enterprise
beans in a standalone Java Platform, Standard Edition (SE) environment. You can run enterprise
beans using this embeddable container outside the application server. The embeddable EJB
container is a part of the EJB 3.1 specification and is primarily used for unit testing enterprise
beans business logic.
The JPA client can be used with the embeddable EJB container to provide Java Persistence API
capability in a Java SE environment.

Tip: You can run Installation Manager later to modify this installation and add or remove this
feature.

8. Click Next.

9. Optional: Install additional Liberty Repository assets. If you do not want to select
any additional assets, you can skip this step. To install Liberty Repository assets, you must have IBM
Installation Manager Version 1.6.2 or later. To learn more about the Liberty Repository and the assets
it contains, see “Liberty Repository” on page 573.
a. Select whether you want to install assets from the Liberty Repository, and click Next. To install

assets from the IBM WebSphere Liberty Repository, you must have access to the internet.

8.5.5.6

If you choose not to connect to the IBM WebSphere Liberty Repository, you can still

install assets from configured directory-based repositories or an instance of the Liberty Asset
Repository Service. For more information, see “Installing assets using Installation Manager” on
page 872.

b. 8.5.5.4 Click Launch Asset Selection Wizard.
c. You can perform a case-insensitive search for assets by display name or description. If you search

with the Keyword field empty, then the search displays all applicable assets.

8.5.5.5

With Version 8.5.5.5 and later, you can also search for assets by short name.

d. Select each asset that you want to install, then click Next.
e. Accept the license agreement and click Finish.

10. Click Next.
11. Review the summary information, and click Install.

v If the installation is successful, the program displays a message indicating that installation is
successful. The program might also display important post-installation instructions.

Chapter 3. Installing Liberty 699

v If the installation is not successful, click View Log File to troubleshoot the problem.
12. Click Finish.
13. Click File > Exit to close Installation Manager.

Installing Liberty on distributed operating systems by using the command line
You can install WebSphere Application Server Liberty Core by using the Installation Manager command
line.

Before you begin

Important: Before you install WebSphere Application Server Liberty Core, you must read the license
agreement that you can find with the product files. Signify your acceptance of the license agreement by
specifying -acceptLicense in the command as described in this topic.

Prepare the system onto which you want to install WebSphere Application Server Liberty Core as
described in “Installing Installation Manager and preparing to install Liberty” on page 694.

About this task

8.5.5.4 To install Version 8.5.5.4 and later of Liberty, you must have IBM Installation Manager Version
1.6.2 or later.

Procedure
1. Optional: If the repository requires a user name and password, create credential-storage and

master-password files to access this repository.

Tip: When you create a credential-storage file, append /repository.config at the end of the
repository URL location if the imutilsc command is unable to find the URL that is specified.

Note: When you use Installation Manager Version 1.6.2 and later, use the -secureStorageFile and
-masterPasswordFile options to store credentials in a credential-storage file. In versions of Installation
Manager earlier than Version 1.6.2, the -keyring and -password options were used to access
credentials in a keyring file. These options were deprecated in Version 1.6.2. There is no migration
path from keyring files to storage files because of the differences in the file structures. For more
information on using the -secureStorageFile and -masterPasswordFile options to store credentials in
a credential-storage file, see the Installation Manager Version 1.6 documentation. For more information
on using the -keyring and -password options to store credentials in a keyring file, see the Installation
Manager Version 1.5 documentation.

2. Log on to your system.
3. Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.
4. Verify that the offering repository is available.

Windows

imcl.exe listAvailablePackages -repositories source_repository

AIX HP-UX Linux Solaris

./imcl listAvailablePackages -repositories source_repository

You see one or more levels of the offering.
5. Use the imcl command to install the offering.

Windows

imcl.exe install com.ibm.websphere.liberty.v85_offering_version,optional_feature_ID
-repositories source_repository
-installationDirectory installation_directory
-sharedResourcesDirectory shared_directory

700 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html

-preferences preference_key=value
-properties property_key=value
-secureStorageFile storage_file -masterPasswordFile master_password_file
-acceptLicense

AIX HP-UX Linux Solaris

./imcl install com.ibm.websphere.liberty.v85_offering_version,optional_feature_ID
-repositories source_repository
-installationDirectory installation_directory
-sharedResourcesDirectory shared_directory
-preferences preference_key=value
-properties property_key=value
-secureStorageFile storage_file -masterPasswordFile master_password_file
-acceptLicense

Tips:

v The relevant terms and conditions, notices, and other information are provided in the
license-agreement files in the lafiles or offering_name/lafiles subdirectory of the installation
image or repository for this offering.

v The first time that you install a package by using the Installation Manager, you can specify the
shared resources directory. The shared resources directory is where installation artifacts are located
that can be used by one or more package groups. It is also used as a staging area for the product
payload during installation operations. By default, this content is cached so that it can be used for
rollback. Use your largest drive for this installation. You cannot change the directory location until
after you uninstall all packages.

v The offering_version, which optionally can be attached to the offering ID with an underscore, is a
specific version of the offering to install (8.5.5.20110503_0200 for example).
– If offering_version is not specified, the latest version of the offering and all interim fixes for that

version are installed.
– If offering_version is specified, the specified version of the offering and no interim fixes for that

version are installed.
The offering version can be found attached to the end of the offering ID with an underscore when
you run the following command against the repository:
imcl listAvailablePackages -repositories source_repository

v You can also specify none, recommended or all with the -installFixes argument to indicate which
interim fixes you want installed with the offering.
– If the offering version is not specified, the -installFixes option defaults to all.
– If the offering version is specified, the -installFixes option defaults to none.

v You can add a list of features that are separated by commas:
– Embeddable EJB container and JPA client (embeddablecontainer)

This option installs the embeddable EJB container and JPA client.
The embeddable EJB container is a Java Archive (JAR) file that you can use to run enterprise
beans in a standalone Java Platform, Standard Edition (SE) environment. You can run enterprise
beans by using this embeddable container outside the application server. The embeddable EJB
container is a part of the EJB 3.1 specification and is primarily used for unit testing enterprise
beans business logic.
The JPA client can be used with the embeddable EJB container to provide Java Persistence API
capability in a Java SE environment.

Notes:

– If no features are specified, the default feature (embeddablecontainer) is installed.

8.5.5.4

Beginning with Version 8.5.5.4, the extprogmodels feature is no longer available.

Instead, install the extendedPackage-1.0 addon, or install the individual features that you need
from the Liberty Repository. See the following topics for more information:
- Installing Liberty Repository assets

Chapter 3. Installing Liberty 701

- Liberty features
– To ensure that your installation process completes for systems that do not have internet access

specify the -properties user.feature="" parameter on the Installation Manager command line.
If you do not specify this parameter, the installation process attempts to access the internet and
an error occurs.
ERROR: Unable to connect to the IBM WebSphere Liberty repository or local Installation Manager repository.

Verify that firewalls are configured to allow the Installation Manager to access the internet, or
that the local Installation Manager repository can be accessed. If the problem persists, then the
repository server might be unavailable. To continue the installation without additional assets,
specify the user.feature="" and user.addon="" parameters.

– 8.5.5.5

You can receive a NullPointerException when you apply fix pack V8.5.5.5 for

WebSphere Application Server Liberty. The error can occur when you download the WebSphere
Application Server Liberty fix pack compressed files and use them, at the downloaded directory
location, to install or update Liberty. You can work around this Version 8.5.5.5 error condition by
taking the following steps:
- Extract the WebSphere Application Server Liberty fix pack compressed file to a temporary

directory.
- Use the temporary directory as the Installation Manager repositories to install or update

Liberty.
unzip 8.5.5-WS-LIBERTYPROFILE-OS390-FP0000005.zip to /tmp/fp8555
./imcl install
com.ibm.websphere.liberty.v85_8.5.5005.20150305_2214
-installationDirectory /SERVICE/usr/lpp/zWebSphere/Liberty/V8R5
-repositories
/tmp/fp8555
-acceptLicense

v You can specify additional assets to install from the Liberty Repository. For a list
of Liberty Repository assets, see the downloads page on WASdev.net. If you want to install
additional assets, specify the following properties on the command line. You can specify the short
name or symbolic name. Note that the feature short names, such as FeatureA, are separated by
double commas in the following example:
-properties user.feature=FeatureA,,FeatureB,,FeatureC,user.accept.license=true

8.5.5.5 For Version 8.5.5.5 and later, user.accept.license=true is not required.

8.5.5.4

The following example installs the Extended Programming Models on the

user.addon parameter, and the Portlet Container feature on the user.feature parameter.
imcl install com.ibm.websphere.liberty.ND.v85
-properties user.accept.license=true,user.addon=extendedPackage-1.0,user.feature=portlet-2.0
-installationDirectory D:\IBM\Liberty -acceptLicense
-repositories D:\IBM\LibertyRepo
-sharedResourcesDirectory D:\IBM\IMShared
-showProgress

8.5.5.6 You can also install assets from instances of the Liberty Asset Repository Service or
local directory-based repositories. For more information about these asset repositories, see
“Installing assets using Installation Manager” on page 872. Add the repository on the
-repositories parameter. The repositories are accessed in the order that they are specified. By
default, the Liberty Repository is the last of the repositories that are accessed during installation. To
disable access to the Liberty Repository, on the -properties parameter, set the
user.useLibertyRepository option to false. 8.5.5.8

imcl install com.ibm.websphere.liberty.v85
-properties user.useLibertyRepository=false,user.addon=extendedPackage-1.0,user.feature=portlet-2.0
-installationDirectory D:\IBM\Liberty -acceptLicense
-repositories D:\IBM\LibertyProductRepo,https://your_onprem_asset_repo_url,D:\IBM\LocalAssetRepo,D:\IBM\LocalAssetRepo2.zip
-sharedResourcesDirectory D:\IBM\IMShared
-showProgress

702 WebSphere Application Server Liberty Core 8.5.5

https://developer.ibm.com/wasdev/downloads/

To learn more about the Liberty Repository and the assets it contains, see “Liberty Repository” on
page 573.

v Installation Manager can save earlier versions of a package to roll back to if you experience issues
later. When Installation Manager rolls back a package to a previous version, the current versions of
the files are uninstalled and the earlier versions are reinstalled. If you choose not to save the files
for rollback, you can prevent the files from being saved by using the following preference in your
command specification:

-preference com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts=False

For more information on setting your Installation Manager preferences, see IBM Installation
Manager documentation.

Tip: Even if you choose not to preserve files locally for rollback, you can still roll back to any
previously installed level by accessing the appropriate offering repository.

v You can use the cic.selector.arch property key and related value to specify the architecture to
install, 32 bit or 64 bit.
Here is an example of specifying a 32-bit architecture:
-properties cic.selector.arch=x86

If you do not specify anything for this key, you get a correct match for your system. For a 64-bit
system, the installation defaults to a 64-bit installation.
Your choice here applies to all packages that are installed in the package group. For information
about the supported values for the cic.selector.key keys, see the Values for cic.selector.key
table in the Installation Manager documentation.

v The program might write important post-installation instructions to standard output.
For more information on using the imcl command to install the offering, see the IBM Installation
Manager documentation.

Installing Liberty on distributed operating systems by using response files
You can install WebSphere Application Server Liberty Core by using Installation Manager response files.

Before you begin

Prepare each of the systems onto which you want to install the offering as described in “Installing
Installation Manager and preparing to install Liberty” on page 694.

About this task

Using Installation Manager, you can work with response files to install the offering in various ways. You
can record a response file by using the GUI as described in the following procedure, create a new
response file, or copy and modify an existing response file.

8.5.5.4

To install Version 8.5.5.4 and later of Liberty, you must have IBM Installation Manager Version

1.6.2 or later.

Procedure
1. Optional: Record a response file to install the offering.

On one of your systems, perform the following actions to record a response file that can install the
offering.
a. From a command line, change to the eclipse subdirectory in the directory where you installed

Installation Manager.
b. Start Installation Manager from the command line by using the -record option.

For example:

v Windows Administrator or non-administrator:

Chapter 3. Installing Liberty 703

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.commandline.doc/topics/r_tools_imcl.html#r_tools__cic_selector
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

IBMIM.exe -skipInstall "C:\temp\imRegistry"
-record C:\temp\install_response_file.xml

v AIX HP-UX Linux Solaris Administrator:
./IBMIM -skipInstall /var/temp/imRegistry
-record /var/temp/install_response_file.xml

v AIX HP-UX Linux Solaris Non-administrator:
./IBMIM -skipInstall user_home/var/temp/imRegistry
-record user_home/var/temp/install_response_file.xml

Tip: When you record a new response file, you can specify the -skipInstall parameter. Using this
parameter has the following benefits:
v No files are installed, which speeds up the recording.
v If you use a temporary data location with the -skipInstall parameter, Installation Manager

writes the installation registry to the specified data location while recording. When you start
Installation Manager again without the -skipInstall parameter, you then can use your response
file to install against the real installation registry.
Do not use the -skipInstall operation on the agent data location that is used by Installation
Manager. This operation is unsupported. Use a clean writable location, and reuse that location
for future recording sessions.

For more information, read the IBM Installation Manager documentation.
c. Follow the instructions that are described in “Installing Liberty on distributed operating systems

using the GUI” on page 697.
2. Optional: Create a credential-storage file for installation. If you are using an authenticated remote

repository, you can store credentials for URLs that require authentication, such as remote repositories,
in a credential-storage file. For IBM Installation Manager Version 1.6.2 and later, use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage file.
For previous versions of Installation Manager, the -keyring and -password options are used to access
credentials in a keyring file. These options are deprecated in Version 1.6.2. There is no migration path
from keyring files to storage files because of the differences in the file structures.
v For more information on using the -secureStorageFile and -masterPasswordFile options to store

credentials in a credential-storage file, see the Installation Manager Version 1.6 documentation.
v For more information on using the -keyring and -password options to store credentials in a keyring

file, see the Installation Manager Version 1.5 documentation.
3. Use the response files to install the offering.

Go to a command line on each of the systems on which you want to install the offering, change to the
eclipse/tools subdirectory in the directory where you installed Installation Manager, and install the
offering.
For example:

v Windows Administrator or non-administrator:
imcl.exe -acceptLicense
input C:\temp\install_response_file.xml
-log C:\temp\install_log.xml
-secureStorageFile C:\IM\credential.store -masterPasswordFile C:\IM\master_password_file.txt

v AIX HP-UX Linux Solaris Administrator:
./imcl -acceptLicense
input /var/temp/install_response_file.xml
-log /var/temp/install_log.xml
-secureStorageFile /var/IM/credential.store -masterPasswordFile /var/IM/master_password_file.txt

v AIX HP-UX Linux Solaris Non-administrator:
./imcl -acceptLicense
input user_home/var/temp/install_response_file.xml
-log user_home/var/temp/install_log.xml
-secureStorageFile user_home/var/IM/credential.store -masterPasswordFile user_home/var/IM/master_password_file.txt

Notes:

704 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html

v The relevant terms and conditions, notices, and other information are provided in the
license-agreement files in the lafiles or offering_name/lafiles subdirectory of the installation
image or repository for this offering.

v The program might write important post-installation instructions to standard output.
Read the IBM Installation Manager documentation for more information.

Example

Windows The following is an example of a response file for installing the offering.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input clean="true" temporary="true">
<server>
<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85" />
</server>
<install modify=’false’>
<offering id=’com.ibm.websphere.liberty.v85’
profile=’WebSphere Liberty V8.5’
features=’embeddablecontainer’ installFixes=’none’/>

</install>
<profile id=’WebSphere Liberty V8.5’
installLocation=’C:\Program Files\IBM\WebSphere\Liberty’>

</profile>
</agent-input>

Important: AIX Linux Solaris Windows If you are installing on a 64-bit system, you must
include one of the options for an IBM Software Development Kit.
v You can use the cic.selector.arch property key and related value to specify the architecture to install,

32 bit or 64 bit.
Here is an example of specifying a 32-bit architecture:
<profile>
...
<data key=’cic.selector.arch’ value=’x86’/>
...
</ptofile>

If you do not specify anything for this key, you receive a correct match for your system. For a 64-bit
system, the installation defaults to a 64-bit installation.
Your choice here applies to all packages that are installed in the package group. For information about
the supported values for the cic.selector.key keys, see the Values for cic.selector.key table in the
Installation Manager documentation.

To disable remote searches for updates in the response file, set the following preferences to false:
v offering.service.repositories.areUsed

Used for searching remote repositories for updates to installed offerings
v com.ibm.cic.common.core.preferences.searchForUpdates

Used for searching for updates to Installation Manager

For example:
<preference value=’false’ name=’offering.service.repositories.areUsed’/>
<preference value=’false’ name=’com.ibm.cic.common.core.preferences.searchForUpdates’/>

You can find more details on silent preference keys in the IBM Installation Manager documentation.

The following examples show you how to change response file in order to perform alternative actions.
v To install multiple copies of this offering, specify a different installation location and a new package

group for each installation. For example, to install a second copy of the offering into the C:\Program
Files\IBM\WebSphere\Liberty_2 directory and create the WebSphere Liberty V8.5_2 package group,
replace:

<profile id=’WebSphere Liberty V8.5’
installLocation=’C:\Program Files\IBM\WebSphere\Liberty’>

Chapter 3. Installing Liberty 705

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.commandline.doc/topics/r_tools_imcl.html#r_tools__cic_selector
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

with:
<profile id=’WebSphere Liberty V8.5_2’
installLocation=’C:\Program Files\IBM\WebSphere\Liberty_2’>

v To add optional features, add them as an entry in a comma-separated list. For example:
<offering id=’com.ibm.websphere.liberty.v85’
profile=’WebSphere Liberty V8.5’
features=’embeddablecontainer’ installFixes=’none’/>

– Embeddable EJB container and JPA client (embeddablecontainer)
This option installs the embeddable EJB container and JPA client.
The embeddable EJB container is a Java archive (JAR) file that you can use to run enterprise beans
in a standalone Java Platform, Standard Edition (SE) environment. You can run enterprise beans by
using this embeddable container outside the application server. The embeddable EJB container is a
part of the EJB 3.1 specification and is primarily used for unit testing enterprise beans business
logic.
The JPA client can be used with the embeddable EJB container to provide Java Persistence API
capability in a Java SE environment.

If no features are specified, the default feature (embeddablecontainer) is installed.

v You can specify additional assets to install from the Liberty Repository. For a list of
Liberty Repository assets, see the downloads page on WASdev.net.
To install Liberty Repository assets, you must have access to the internet, and you must have IBM
Installation Manager Version 1.6.2 or later. Previous versions of Installation Manager do not have the
option to install Liberty Repository assets. If you use a response file and did not update Installation
Manager to Version 1.6.2 or later, the assets that you specify in the response file are ignored during
installation.
If you want to install additional features, specify two extra data key elements in your response file.
You can use either the symbolic name or the short name.
The following example installs the Portlet Container and Portlet Serving features using the symbolic
name.

<data key=’user.feature’ value=’com.ibm.websphere.appserver.portlet-2.0,,com.ibm.websphere.appserver.portletserving-2.0’/>
<data key=’user.accept.license’ value=’true’/>

The following example installs the Portlet Container and Portlet Serving features using the short name:
<data key=’user.feature’ value=’portlet-2.0,,portletserving-2.0’/>
<data key=’user.accept.license’ value=’true’/>

8.5.5.5 For Version 8.5.5.5 and later, user.accept.license=true is not required.

8.5.5.4

Beginning with Version 8.5.5.4, the extprogmodels feature is no longer available. Instead,

install the extendedPackage-1.0 addon, or install the individual features that you need from the Liberty
Repository. See the following topics for more information:
– Installing Liberty Repository assets
– Liberty features
The following example installs the Extended Programming Models using the user.addon parameter
and the Portlet Container and Portlet Serving features using the user.feature parameter with short
names:

<data key=’user.addon’ value=’extendedPackage-1.0’/>
<data key=’user.feature’ value=’portlet-2.0,,portletserving-2.0’/>
<data key=’user.accept.license’ value=’true’/>

8.5.5.5 For Version 8.5.5.5 and later, user.accept.license=true is not required.

8.5.5.6

You can also install assets from an instance of the Liberty Asset Repository Service or

local directory-based repositories. For more information, see “Installing assets using Installation
Manager” on page 872. Add the repository on repository elements. If Installation Manager does not
recognize the repository, point directly to the repository.config file. When you install assets, the
repositories are accessed in the order that you specify them.

706 WebSphere Application Server Liberty Core 8.5.5

https://developer.ibm.com/wasdev/downloads/

<server>
<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85" />
<repository location="https://your_onprem_asset_repo_url" />
<repository location="D:\IBM\LocalAssetRepo" />

8.5.5.8 <repository location="D:\IBM\LocalAssetRepo2.zip" /> </server>By default, the Liberty
Repository is the last of the repositories that are accessed during installation. To disable access to the
Liberty Repository, set the user.useLibertyRepository parameter to false:

<data key=’user.addon’ value=’extendedPackage-1.0’/>
<data key=’user.feature’ value=’portlet-2.0,,portletserving-2.0’/>
<data key=’user.useLibertyRepository’ value=’false’/>

To learn more about the Liberty Repository and the assets it contains, see “Liberty Repository” on page
573.

v Installation Manager can save earlier versions of a package to roll back to if you experience issues later.
When Installation Manager rolls back a package to a previous version, the current versions of the files
are uninstalled and the earlier versions are reinstalled. If you choose not to save the files for rollback,
you can prevent the files from being saved by changing the following preference in your response file:

<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>

to this:
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’false’/>

For more information on setting your Installation Manager preferences, see the IBM Installation
Manager documentation.

Tip: Even if you choose not to preserve files locally for rollback with this option, you can still roll back
to any previously installed level by accessing the appropriate product repository.

Adding and removing features from Liberty on distributed operating systems
You can use Installation Manager to install and remove WebSphere Application Server Liberty Core
features.

Before you begin

Ensure that your Installation Manager preferences are pointing to the appropriate web-based or local
repositories containing WebSphere Application Server Liberty Core.

About this task

You can use the Installation Manager to install or remove features using one of the following procedures:
v Using the GUI
v Using a silent response file

You can record this response file using the GUI and Installation Manager's record mode, or you can
manually create or modify a response file to suit your needs.

v Using the imcl command-line tool
Go to the IBM Installation Manager Information Center for more information.

Procedure
1. Stop all servers and applications on the WebSphere Application Server Liberty Core installation that

is being modified.
2. Start Installation Manager.
3. Click Modify.
4. Select the package group to modify.
5. Click Next.

Chapter 3. Installing Liberty 707

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Note: If you are prompted to authenticate, use the IBM ID and password that you registered with
on the program website.

6. Expand IBM WebSphere Application Server LibertyCore.
7. Select the appropriate checkbox to install a feature, or clear the appropriate checkbox to remove a

feature if you already have it installed.
v Embeddable EJB container and JPA client

This option installs the embeddable EJB container and JPA client.
The embeddable EJB container is a Java archive (JAR) file that you can use to run enterprise beans
in a standalone Java Platform, Standard Edition (SE) environment. You can run enterprise beans
using this embeddable container outside the application server. The embeddable EJB container is a
part of the EJB 3.1 specification and is primarily used for unit testing enterprise beans business
logic.
The JPA client can be used with the embeddable EJB container to provide Java Persistence API
capability in a Java SE environment.

8. Click Next.
9. Review the summary information, and click Modify.
v If the modification is successful, the program displays a message indicating that installation is

successful.
v If the modification is not successful, click View Log File to troubleshoot the problem.

10. Click Finish.
11. Click File > Exit to close Installation Manager.

Examples

In the following examples, the optional feature offering names are enclosed in parentheses; for example:
Embeddable EJB container and JPA client (embeddablecontainer)

v Windows Example of a response file that adds a feature to an installation:
<?xml version="1.0" encoding="UTF-8"?>
<agent-input clean=’true’ temporary=’true’>
<server>
<repository location=’http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85’/>
</server>
<install modify=’true’>
<offering id=’com.ibm.websphere.liberty.v85’
profile=’WebSphere Liberty V8.5’
features=’embeddablecontainer’/>

</install>
<profile id=’WebSphere Liberty V8.5’
installLocation=’C:\Program Files\IBM\WebSphere\Liberty’>

</profile>
</agent-input>

v Windows Example of the imcl command that is modified to add features to an installation:
imcl.exe modify com.ibm.websphere.liberty.v85
-addFeatures embeddablecontainer
-repositories http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85
-installationDirectory C:\Program Files\IBM\WebSphere\Liberty
-secureStorageFile C:\credential.store -masterPasswordFile C:\master_password_file.txt

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage file. In
versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password options were
used to access credentials in a keyring file. These options were deprecated in Version 1.6.2. There is no
migration path from keyring files to storage files because of the differences in the file structures. For
more information on using the -secureStorageFile and -masterPasswordFile options to store
credentials in a credential-storage file, see the Installation Manager Version 1.6 documentation. For
more information on using the -keyring and -password options to store credentials in a keyring file,
see the Installation Manager Version 1.5 documentation.

v Example of the imcl command that is modified to remove a feature from an installation:

708 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html

imcl.exe modify com.ibm.websphere.liberty.v85
-removeFeatures embeddablecontainer
-repositories http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85
-installationDirectory C:\Program Files\IBM\WebSphere\Liberty
-secureStorageFile C:\credential.store -masterPasswordFile C:\master_password_file.txt

Uninstalling Liberty from distributed operating systems using the GUI
You can use the Installation Manager GUI to uninstall WebSphere Application Server Liberty Core.

Procedure
1. Uninstall WebSphere Application Server Liberty Core.

a. Stop all servers and applications on the WebSphere Application Server Liberty Core installation.
b. Start Installation Manager.
c. Click Uninstall.
d. In the Uninstall Packages window, perform the following actions.

1) Select IBM WebSphere Application Server Liberty Core and the appropriate version.

Note: If you are uninstalling the trial version of this offering, select IBM WebSphere
Application Server Liberty Core Trial and the appropriate version.
When you uninstall the IBM WebSphere Application Server Liberty Core package, you must
uninstall all the packages under the same package group that are extensions to the IBM
WebSphere Application Server Liberty Core package. IBM WebSphere SDK Java Technology
Edition Version 7.0 for Liberty is such an extension.

2) Click Next.
e. Review the summary information.
f. Click Uninstall.
v If the uninstallation is successful, the program displays a message that indicates success.
v If the uninstallation is not successful, click View log to troubleshoot the problem.

g. Click Finish.
h. Click File > Exit to close Installation Manager.

2. Optional: Uninstall IBM Installation Manager.

Important: Before you can uninstall IBM Installation Manager, you must uninstall all of the packages
that were installed by Installation Manager.
Read the IBM Installation Manager Information Center for information about performing this
procedure.

Uninstalling Liberty from distributed operating systems using the command line
You can uninstall WebSphere Application Server Liberty Core using the Installation Manager command
line.

Procedure
1. Log on to your system.
2. Stop all servers and applications on the WebSphere Application Server Liberty Core installation.
3. Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.
4. Use the imcl command to uninstall the offering.

Windows

imcl.exe uninstall com.ibm.websphere.liberty.v85 -installationDirectory installation_directory

AIX HP-UX Linux Solaris

./imcl uninstall com.ibm.websphere.liberty.v85 -installationDirectory installation_directory

Tips:

Chapter 3. Installing Liberty 709

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

v Use the imcl modify command to add or remove features.
v When you uninstall the IBM WebSphere Application Server Liberty Core package, you must

uninstall all the packages under the same package group that are extensions to the IBM WebSphere
Application Server Liberty Core package. IBM WebSphere SDK Java Technology Edition Version 7.0
for Liberty is such an extension.

Go to the IBM Installation Manager Information Center for more information.
5. Optional: Uninstall IBM Installation Manager.

Important: Before you can uninstall IBM Installation Manager, you must uninstall all of the packages
that were installed by Installation Manager.
Read the IBM Installation Manager Information Center for information about using the uninstall script
to perform this procedure.

Uninstalling Liberty from distributed operating systems by using response files
You can uninstall WebSphere Application Server Liberty Core by using Installation Manager response
files.

Before you begin

Optional: Perform or record the installation of Installation Manager and installation of the product to a
temporary installation registry on one of your systems so that you can use this temporary registry to
record the uninstall without using the standard registry where Installation Manager is installed.

About this task

Using Installation Manager, you can work with response files to uninstall the product in various ways.
You can record a response file by using the GUI as described in the following procedure. Or, you can
generate a new response file by hand or by taking an example and modifying it.

Procedure
1. Stop all servers and applications on the WebSphere Application Server Liberty Core installation.
2. Optional: Record a response file to uninstall the product: On one of your systems, perform the

following actions to record a response file that uninstalls the product:
a. From a command line, change to the eclipse subdirectory in the directory where you installed

Installation Manager.
b. Start Installation Manager from the command line by using the -record option.

For example:

v Windows Administrator or non-administrator:
IBMIM.exe -skipInstall "C:\temp\imRegistry"
-record C:\temp\uninstall_response_file.xml

v AIX HP-UX Linux Solaris Administrator:
./IBMIM -skipInstall /var/temp/imRegistry
-record /var/temp/uninstall_response_file.xml

v AIX HP-UX Linux Solaris Non-administrator:
./IBMIM -skipInstall user_home/var/temp/imRegistry
-record user_home/var/temp/uninstall_response_file.xml

Tip: If you choose to use the -skipInstall parameter with a temporary installation registry
created as described in Before you begin, Installation Manager uses the temporary installation
registry while recording the response file. It is important to note that when the -skipInstall
parameter is specified, no product packages are installed or uninstalled. All of the actions that you
perform in Installation Manager update the installation data that is stored in the specified

710 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

temporary registry. After the response file is generated, it can be used to uninstall the product,
removing the product files and updating the standard installation registry.

Do not use the -skipInstall operation on the actual agent data location that is used by
Installation Manager. This operation is unsupported. Use a clean writable location, and reuse that
location for future recording sessions.
For more information, read the IBM Installation Manager Information Center.

c. Click Uninstall.
d. In the Uninstall Packages window, perform the following actions.

1) Select IBM WebSphere Application Server Liberty Core and the appropriate version.

Note: If you are uninstalling the trial version of this offering, select IBM WebSphere
Application Server Liberty Core Trial and the appropriate version.

2) Click Next.
e. Review the summary information.
f. Click Uninstall.
v If the uninstallation is successful, the program displays a message that indicates success.
v If the uninstallation is not successful, click View log to troubleshoot the problem.

g. Click Finish.
h. Click File > Exit to close Installation Manager.

3. Use the response file to uninstall the product: From a command line on each of the systems from
which you want to uninstall the product, change to the eclipse/tools sub-directory in the directory
where you installed Installation Manager and use the response file that you created to uninstall the
product.
For example:

v Windows Administrator or non-administrator:
imcl.exe
input C:\temp\uninstall_response_file.xml
-log C:\temp\uninstall_log.xml

v AIX HP-UX Linux Solaris Administrator:
./imcl
input /var/temp/uninstall_response_file.xml
-log /var/temp/uninstall_log.xml

v AIX HP-UX Linux Solaris Non-administrator:
./imcl
input user_home/var/temp/uninstall_response_file.xml
-log user_home/var/temp/uninstall_log.xml

Go to the IBM Installation Manager Information Center for more information.
4. Optional: List all installed packages to verify the uninstallation.

AIX HP-UX Linux Solaris

./imcl listInstalledPackages

Windows

imcl listInstalledPackages

5. Optional: Uninstall IBM Installation Manager.

Important: Before you can uninstall IBM Installation Manager, you must uninstall all of the packages
that were installed by Installation Manager.
Read the IBM Installation Manager Information Center for information about using the uninstall script
to perform this procedure.

Windows

Chapter 3. Installing Liberty 711

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Example

The following is an example of a response file for uninstalling the product.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input clean=’true’ temporary=’true’>
<uninstall modify=’false’>
<offering id=’com.ibm.websphere.liberty.v85’
profile=’WebSphere Liberty V8.5’/>

</uninstall>
<profile id=’WebSphere Liberty V8.5’
installLocation=’C:\Program Files\IBM\WebSphere\Liberty’>

</profile>
</agent-input>

Tip: When you uninstall the IBM WebSphere Application Server LibertyCore package, you must uninstall
all the packages under the same package group that are extensions to the IBM WebSphere Application
Server LibertyCore package. IBM WebSphere SDK Java Technology Edition Version 7.0 for Liberty is such
an extension. To uninstall the entire package group, remove the id attribute in the <offering ../> stanza
(id=’com.ibm.websphere.liberty.v85’ in the previous example) from the response file. Installation
Manager then uninstalls all of the packages under the package group.

Installing and uninstalling Liberty interim fixes and fix packs on distributed
operating systems
Interim fixes provide corrective service for specific known problems. Fix packs contain bundled service to
bring WebSphere Application Server Liberty Core up to a new level. You can use IBM Installation
Manager to update the offering with the interim fixes and fix packs that are available for your service
level of WebSphere Application Server Liberty Core.

Before you begin

Contact the IBM Software Support Center for information about updates for WebSphere Application
Server Liberty Core. The most current information is available from the IBM Software Support Center
and Fix Central.

IBM Installation Manager is used to apply and remove maintenance.

Important: Installation Manager can install any fix-pack level of the product directly without installing
the intermediate fix packs; in fact, Installation Manager installs the latest level by default. For example,
you can skip fix-pack levels and go from Version 8.5.5.1 directly to Version 8.5.5.5. Keep in mind,
however, that later you can not roll back to any level that was skipped. If you directly install to Version
8.5.5.5, for example, you cannot roll back to Version 8.5.5.4. If you skip from Version 8.5.5.1 to Version
8.5.5.5, you can only roll back to Version 8.5.5.1. You should plan your installations accordingly.

New: Fix pack 16.0.0.2 is the next fix pack after 8.5.5.9. You can continue to use the same Version 8.5
Installation Manager repositories and offering IDs to install or update to 16.0.0.2, or you can use the new
versionless repositories and offerings. For more information about fix pack 16.0.0.2, see What is new in
Liberty in the new location of the latest Liberty documentation.

About this task

Tip: You can use the IBM Packaging Utility to generate a new local or web-based repository that contains
all of the fixes that you want to install and then use Installation Manager to update WebSphere
Application Server Liberty Core with all of the interim fixes as a group. For information on using the
Packaging Utility, see the IBM Installation Manager Information Center.

Procedure
v “Installing Liberty interim fixes on distributed operating systems using the GUI” on page 713
v “Installing Liberty interim fixes on distributed operating systems using the command line” on page 715
v “Uninstalling Liberty interim fixes from distributed operating systems using the GUI” on page 717

712 WebSphere Application Server Liberty Core 8.5.5

|
|
|
|

http://www.ibm.com/support/fixcentral/
https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_newinrelease.html
https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_newinrelease.html
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

v “Uninstalling Liberty interim fixes from distributed operating systems using the command line” on
page 718

v “Installing Liberty fix packs on distributed operating systems using the GUI” on page 718
v “Installing Liberty fix packs on distributed operating systems using the command line” on page 720
v “Installing Liberty fix packs on distributed operating systems using response files” on page 724
v “Uninstalling Liberty fix packs from distributed operating systems using the GUI” on page 729
v “Uninstalling Liberty fix packs from distributed operating systems using the command line” on page

730
v “Uninstalling Liberty fix packs from distributed operating systems by using response files” on page

731

v AIX HP-UX Linux Solaris Optional: After the fix pack is installed or removed, reapply
any ownership and permissions changes that were made after the offering was originally installed.

Installing Liberty interim fixes on distributed operating systems using the GUI:

You can use the IBM Installation Manager graphical user interface (GUI) to update the offering with the
interim fixes that are available for your service level of WebSphere Application Server Liberty Core.

Before you begin

Contact the IBM Software Support Center for information about updates for WebSphere Application
Server Liberty Core. The most current information is available from the IBM Software Support Center
and Fix Central.

Make sure that the web-based or local service repository location is listed and checked or that the Search
service repositories during installation and updates option is selected on the Repositories panel in your
Installation Manager preferences. For more information on using service repositories with Installation
Manager, read the IBM Installation Manager Information Center.

Procedure

1. For a list of fixes that are available for WebSphere Application Server Liberty Core and specific
information about each fix, perform the following actions.
a. Go to Fix Central.
b. Select WebSphere as the product group.
c. Select WebSphere Application Server Liberty Core as the product.
d. Select the installed version.
e. Select your operating system as the platform, and click Continue.
f. Select Browse for fixes, and click Continue.
g. Click More Information under each fix to view information about the fix.
h. Recommendation: Make a list of the names of the fixes that you would like to install.

2. Update WebSphere Application Server Liberty Core with the fixes using one of the following
procedures.
v Access the live service repository that contains the fixes, and use web-based updating.

Use Installation Manager on your local system to update WebSphere Application Server Liberty
Core with the interim fixes from the live web-based service repositories.
– For the live service repositories, use the same URLs as those used for the generally available

product-offering repositories during installation. These URLs are listed in Online product
repositories for WebSphere Application Server offerings.

– These locations do not contain web pages that you can access using a web browser. They are
remote web-based repository locations that you specify for Installation Manager so that it can
maintain the offering.

Chapter 3. Installing Liberty 713

http://www.ibm.com/support/fixcentral/
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www.ibm.com/support/fixcentral/
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_repositories
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_repositories

To install a fix from a service repository, perform the following actions:
a. Log on to your system.
b. Stop all servers and applications on the WebSphere Application Server Liberty Core installation

that is being updated.
c. Start Installation Manager.
d. Click Update.

Note: If you are prompted to authenticate, use the IBM ID and password that you use to access
protected IBM software websites.

e. Select the package group to update with the fix.

Tip: If the Search service repositories during installation and updates option is selected on the
Installation Manager Repository preference page and you are connected to the Internet, you can
click Check for Other Versions and Extensions to search for updates in the default update
repositories for the selected packages. In this case, you do not need to add the specific
service-repository URL to the Installation Manager Repository preference page.

f. Click Next.
g. Select the fixes to install, and click Next.

Any recommended fixes are selected by default.
If there are recommended fixes, you can select the option to show only recommended fixes and
hide non-recommended fixes.

h. Review the summary information, and click Update.
i. Click Finish.
j. Click File > Exit to close Installation Manager.

v Download the files that contain the fixes from Fix Central, and use local updating.
You can download compressed files that contain the fixes from Fix Central. Each compressed fix file
contains an Installation Manager repository for the fix and usually has a .zip extension. After
downloading the fix files, you can use one of the following procedures to update WebSphere
Application Server Liberty Core:
– Use Installation Manager to update WebSphere Application Server Liberty Core with the fixes.
– Use the IBM Packaging Utility to generate a new repository that contains all of the fix files that

you downloaded, then use Installation Manager to update WebSphere Application Server Liberty
Core with all of the fixes as a group. For information on using the Packaging Utility, see the IBM
Installation Manager Information Center.

a. To download the fixes, perform the following actions:
1) Go to Fix Central.
2) Select WebSphere as the product group.
3) Select WebSphere Application Server Liberty Core as the product.
4) Select the installed version.
5) Select your operating system as the platform, and click Continue.
6) Select Browse for fixes, and click Continue.
7) Select the fixes that you want to download, and click Continue.
8) Select your download options, and click Continue.
9) Click I agree to agree to the terms and conditions.

10) Click Download now to download the fixes.
b. To install a fix from a downloaded compressed file, perform the following actions:

1) Log on to your system.

714 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www.ibm.com/support/fixcentral/

2) Stop all servers and applications on the WebSphere Application Server Liberty Core
installation that is being updated.

3) Start Installation Manager.
4) Add the location of the fix file that you downloaded to your Installation Manager

preferences.
5) Click Update.
6) Select the package group to update with the fix, and click Next.
7) Select the fixes to install, and click Next.

Any recommended fixes are selected by default.
If there are recommended fixes, you can select the option to show only recommended fixes
and hide non-recommended fixes.

8) Review the summary information, and click Update.
9) Click Finish.

10) Click File > Exit to close Installation Manager.

Installing Liberty interim fixes on distributed operating systems using the command line:

You can use the IBM Installation Manager command line to update the offering with the interim fixes
that are available for your service level of WebSphere Application Server LibertyCore.

Before you begin

Contact the IBM Software Support Center for information about updates for WebSphere Application
Server Liberty Core. The most current information is available from the IBM Software Support Center
and Fix Central.

IBM Installation Manager is used to apply maintenance to WebSphere Application Server LibertyCore.

Procedure

1. For a list of interim fixes and fix packs that are available for WebSphere Application Server Liberty
Core and specific information about each fix, perform the following actions.
a. Go to Fix Central.
b. Select WebSphere as the product group.
c. Select WebSphere Application Server LibertyCore as the product.
d. Select the version of the offering to be updated.
e. Select your operating system as the platform, and click Continue.
f. Select Browse for fixes, and click Continue.
g. Click More Information under each fix to view information about the fix.
h. Recommendation: Make a list of the names of the fixes that you would like to install.

2. Update WebSphere Application Server LibertyCore with the interim fixes using one of the following
procedures.
v Access the live service repository that contains the interim fixes, and use web-based updating.

Use Installation Manager on your local system to update WebSphere Application Server Liberty
Core with the interim fixes from the live web-based service repositories.
– For the live service repositories, use the same URLs as those used for the generally available

product-offering repositories during installation. These URLs are listed in Online product
repositories for WebSphere Application Server offerings.

– These locations do not contain web pages that you can access using a web browser. They are
remote web-based repository locations that you specify for Installation Manager so that it can
maintain the offering.

Chapter 3. Installing Liberty 715

http://www.ibm.com/support/fixcentral/
http://www.ibm.com/support/fixcentral/
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_repositories
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_repositories

To install an interim fix from a service repository, perform the following actions:
a. Log on to your system.
b. If you do not already have Installation Manager credential-storage and master-password files

containing your IBM software user ID and password, create files that will allow you to access
the repository.

Note: These are the credentials that you use to access protected IBM software websites.
For information on creating credential-storage and master-password files for Installation
Manager, read the IBM Installation Manager Information Center.

Tip: When creating a credential-storage file, append /repository.config at the end of the
repository URL location if the imutilsc command is unable to find the URL that is specified.

c. Stop all servers and applications on the WebSphere Application Server Liberty Core installation
that is being updated.

d. Change to the Installation_Manager_binaries/eclipse/tools directory, where
Installation_Manager_binaries is the installation root directory for the Installation Manager.

e. Install the interim fix.

AIX

HP-UX

Linux

Solaris

./imcl install fix_name
-installationDirectory offering_installation_location
-repositories repository_URL
-secureStorageFile storage_file -masterPasswordFile master_password_file

Windows

imcl.exe install fix_name
-installationDirectory offering_installation_location
-repositories repository_URL
-secureStorageFile storage_file -masterPasswordFile master_password_file

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage
file. In versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password
options were used to access credentials in a keyring file. These options were deprecated in
Version 1.6.2. There is no migration path from keyring files to storage files because of the
differences in the file structures. For more information on using the -secureStorageFile and
-masterPasswordFile options to store credentials in a credential-storage file, see the Installation
Manager Version 1.6 documentation. For more information on using the -keyring and -password
options to store credentials in a keyring file, see the Installation Manager Version 1.5
documentation.

f. Optional: List all installed packages to verify the installation:

AIX

HP-UX

Linux

Solaris

./imcl listInstalledPackages -long

Windows

imcl.exe listInstalledPackages -long

v Download the files that contain the interim fixes from Fix Central, and use local updating.

You can download compressed files that contain the interim fixes from Fix Central. Each
compressed fix file contains an Installation Manager repository for the interim fix and usually has a
.zip extension. After downloading the fix files, you can use one of the following procedures to
update WebSphere Application Server Liberty Core:
– Use Installation Manager to update WebSphere Application Server Liberty Core with the interim

fixes.
– Use the IBM Packaging Utility to generate a new repository that contains all of the fix files that

you downloaded, then use Installation Manager to update WebSphere Application Server

716 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html

LibertyCore with all of the interim fixes as a group. For information on using the Packaging
Utility, see the IBM Installation Manager Information Center.

a. To download the interim fixes, perform the following actions:
1) Go to Fix Central.
2) Select WebSphere as the product group.
3) Select WebSphere Application Server LibertyCore as the product.
4) Select the version of the offering to be updated.
5) Select your operating system as the platform, and click Continue.
6) Select Browse for fixes, and click Continue.
7) Select the interim fixes that you want to download, and click Continue.
8) Select your download options, and click Continue.
9) Click I agree to agree to the terms and conditions.

10) Click Download now to download the interim fixes.
b. To install an interim fix from a downloaded compressed file, perform the following actions:

1) Log on to your system.
2) Stop all servers and applications on the WebSphere Application Server Liberty Core

installation that is being updated.
3) Change to the Installation_Manager_binaries/eclipse/tools directory, where

Installation_Manager_binaries is the installation root directory for the Installation
Manager.

4) Install the interim fix.

AIX

HP-UX

Linux

Solaris

./imcl install fix_name
-installationDirectory offering_installation_location
-repositories compressed_file

Windows

imcl.exe install fix_name
-installationDirectory offering_installation_location
-repositories compressed_file

5) Optional: List all installed packages to verify the installation:

AIX

HP-UX

Linux

Solaris

./imcl listInstalledPackages -long

Windows

imcl.exe listInstalledPackages -long

Uninstalling Liberty interim fixes from distributed operating systems using the GUI:

You can use the IBM Installation Manager graphical user interface (GUI) to remove interim fixes from
WebSphere Application Server Liberty Core.

Procedure

1. Log on to your system.
2. Stop all servers and applications on the WebSphere Application Server Liberty Core installation that is

being updated.
3. Start Installation Manager.
4. Click Uninstall.
5. Select the interim fixes to uninstall.
6. Click Next.

Chapter 3. Installing Liberty 717

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www.ibm.com/support/fixcentral/

7. Review the summary information, and click Uninstall.
v If the uninstallation is successful, the program displays a message indicating that the uninstallation

is successful.
v If the uninstallation is not successful, click View Log File to troubleshoot the problem.

8. Click Finish.
9. Click File > Exit to close Installation Manager.

Uninstalling Liberty interim fixes from distributed operating systems using the command line:

You can use the IBM Installation Manager command-line function to remove interim fixes from
WebSphere Application Server Liberty Core.

Procedure

1. Log on to your system.
2. Stop all servers and applications on the WebSphere Application Server Liberty Core installation that is

being updated.
3. Change to the Installation_Manager_binaries/eclipse/tools directory, where

Installation_Manager_binaries is the installation root directory for the Installation Manager.
4. Uninstall the interim fix:

AIX

HP-UX

Linux

Solaris

./imcl uninstall interim_fix_name
-installationDirectory offering_installation_location

Windows

imcl.exe uninstall interim_fix_name
-installationDirectory offering_installation_location

Installing Liberty fix packs on distributed operating systems using the GUI:

You can update WebSphere Application Server Liberty Core to a later version using the Installation
Manager GUI.

Before you begin

Contact the IBM Software Support Center for information about updates for WebSphere Application
Server Liberty Core. The most current information is available from the IBM Software Support Center
and Fix Central.

8.5.5.4

To install Version 8.5.5.4 and later of Liberty, you must have IBM Installation Manager Version

1.6.2 or later.

Make sure that the web-based or local service repository location is listed and checked or that the Search
service repositories during installation and updates option is selected on the Repositories panel in your
Installation Manager preferences. For more information on using service repositories with Installation
Manager, read the IBM Installation Manager Information Center.

8.5.5.6

If you want to install Liberty assets from local directory-based repositories or an instance

of the Liberty Asset Repository Service, configure the repositories. For more information about the Liberty
asset repositories, see “Installing assets using Installation Manager” on page 872.

Procedure

1. Log on to your system.
2. Stop all servers and applications on the WebSphere Application Server Liberty Core installation.

718 WebSphere Application Server Liberty Core 8.5.5

http://www.ibm.com/support/fixcentral/
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

3. Start Installation Manager.
4. Click Update.

Note: If prompted to authenticate, specify the IBM ID and password that you use to access
protected IBM software websites.

5. Select the package group to update. If you select Update all, Installation Manager searches all of the
added and predefined repositories for recommended updates to all of the package groups that it has
installed.
v Use this feature only if you have full control over which fixes are contained in the targeted

repositories.
– If you create and point to a set of custom repositories that include only the specific

recommended fixes that you want to install, you should be able to use this feature confidently.
– If you enable searching service repositories or install fixes directly from other live web-based

repositories, you might not want to select this option so that you can select only the fixes that
you want to install for each offering on subsequent panels.

v If you select Update all, Installation Manager will install only the recommended updates to all of
the package groups; it will not allow you to select non-recommended fixes for installation. If you
want to install non-recommended fixes, perform the following actions:
a. On this panel, clear the Update all check box and select an offering to update.
b. On the next panel, clear the option to show only recommended fixes and then select the fixes

that you want to install.
v 8.5.5.4 The Update all option might generate a warning message if you complete the following

steps:
a. Install WebSphere Application Server Liberty v8.5.5.3 with the Extended Programming Model.
b. Install WebSphere Application Server Network Deployment Liberty v8.5.5.3 with the Extended

Programming Model.
c. Select Update all. Click Next.
d. You might receive an Update Validation Warning message with multiple messages. Click OK.

Click Next.
e. You might receive the Extended Programming Model Warning message panel.
f. Click Back to the Update Package panel. Click Next.
g. You might again receive an Update Validation Warning message with multiple messages.
h. From the Extended Programming Model Warning message panel, click Next. In the Offering

License panel, find the following error:
An error has occurred. See error log for more details. Bundle "reference:file:/C:/ProgramData/IBM/Installation Manager WS_Beta/bundles/plugins/com.ibm.was.base.license.v85_8.5.5003.20140718_0100.jar" has been uninstalled

To fix this problem, complete the following steps:
a. Click Cancel.
b. Select Update all.
c. Do not click Back. This action causes the error that uninstalls the license.

6. Click Next.
7. Select the version to which you want to update under IBM WebSphere Application Server Liberty

Core.
8. Select any fixes that you want to install. Any recommended fixes are selected by default.

If there are recommended fixes, you can select the option to show only recommended fixes and hide
non-recommended fixes.

9. Click Next.
10. Accept the terms in the license agreements, and click Next.
11. Select the optional features that you want in your updated installation.

Chapter 3. Installing Liberty 719

8.5.5.4 Beginning with Version 8.5.5.4, the Extended Programming Model is available from
the Liberty Repository. This asset provides a rich set of programming models such as Web Services,
JMS (including Message-Driven Beans), and MongoDB 2.0. To install this asset, use the Asset
Selection Wizard as described in the next step.

12. Optional: Install additional Liberty Repository assets. If you do not want to select
any additional assets, you can skip this step. To install Liberty Repository assets, you must have IBM
Installation Manager Version 1.6.2 or later. To learn more about the Liberty Repository and the assets
it contains, see “Liberty Repository” on page 573.
a. Select whether you want to install assets from the Liberty Repository, and click Next. To install

assets from the IBM WebSphere Liberty Repository, you must have access to the internet.

8.5.5.6

If you choose not to connect to the IBM WebSphere Liberty Repository, you can still

install assets from configured directory-based repositories or an instance of the Liberty Asset
Repository Service. For more information, see “Installing assets using Installation Manager” on
page 872.

b. 8.5.5.4 Click Launch Asset Selection Wizard.
c. You can perform a case-insensitive search for assets by display name or description. If you search

with the Keyword field empty, then the search displays all applicable assets.

8.5.5.5

With Version 8.5.5.5 and later, you can also search for assets by short name.

d. Select each asset that you want to install, then click Next.
e. Accept the license agreement and click Finish.

13. Review the summary information, and click Update.
v If the installation is successful, the program displays a message indicating that installation is

successful.
v If the installation is not successful, click View Log File to troubleshoot the problem.

14. Click Finish.
15. Click File > Exit to close Installation Manager.

Installing Liberty fix packs on distributed operating systems using the command line:

You can use the IBM Installation Manager command line to update the product with the fix packs that
are available for WebSphere Application Server Liberty Core.

Before you begin

Contact the IBM Software Support Center for information about updates for WebSphere Application
Server Liberty Core. The most current information is available from the IBM Software Support Center
and Fix Central.

8.5.5.6

If you want to install Liberty assets from local directory-based repositories or an instance

of the Liberty Asset Repository Service, configure the repositories. For more information about the Liberty
asset repositories, see “Installing assets using Installation Manager” on page 872.

Tip: As an alternative to the procedure that is described in this article, Installation Manager allows you
to use the updateAll command in a response file or on the command line to search for and update all
installed packages. Use this command only if you have full control over which fixes are contained in the
targeted repositories. You can create and point to a set of custom repositories that include only the
specific fixes that you want to install. If you enable searching service repositories or install fixes directly
from other live web-based repositories, then you might not want to select this option so that you can
select only the fixes that you want to install using the -installFixes option with the install command
on the command line or the installFixes attribute in a response file.

720 WebSphere Application Server Liberty Core 8.5.5

http://www.ibm.com/support/fixcentral/

About this task

8.5.5.4 To install Version 8.5.5.4 and later of Liberty, you must have IBM Installation Manager Version
1.6.2 or later.

Procedure

1. For a list of interim fixes and fix packs that are available for WebSphere Application Server Liberty
Core and specific information about each fix, perform the following actions.
a. Go to Fix Central.
b. Select WebSphere as the product group.
c. Select WebSphere Application Server as the product.
d. Select the installed version.
e. Select your operating system as the platform, and click Continue.
f. Select Browse for fixes, and click Continue.
g. Click More Information under each fix to view information about the fix.
h. Recommendation: Make a note of the name of the fix pack that you would like to install.

2. Update WebSphere Application Server LibertyCore with the fix pack using one of the following
procedures.
v Access the live service repository that contains the fix pack, and use web-based updating.

Use Installation Manager on your local system to update WebSphere Application Server Liberty
Core with the interim fixes from the live web-based service repositories.
– For the live service repositories, use the same URLs as those used for the generally available

product-offering repositories during installation. These URLs are based on the following pattern:
http://www.ibm.com/software/repositorymanager/offering_ID

where offering_ID is the offering ID that you can find in WebSphere Application Server product
offerings for supported operating systems.

– These locations do not contain web pages that you can access using a web browser. They are
remote web-based repository locations that you specify for Installation Manager so that it can
maintain the product.

To install a fix pack from a service repository, perform the following actions:
a. Log on to your system.
b. Create Installation Manager credential-storage and master-password files that contain your IBM

software user ID and password. These files enable you to access the repository and protected
IBM software websites.
When creating a credential-storage file, append /repository.config at the end of the repository
URL location if the imutilsc command is unable to find the URL that is specified.

Note: For Installation Manager Version 1.6.2 and later, use the -secureStorageFile and
-masterPasswordFile options to store credentials in a credential-storage file. In previous
versions, the -keyring and -password options are used to access credentials in a keyring file.
These options are deprecated in Version 1.6.2. There is no migration path from keyring files to
storage files because of the differences in the file structures.
– For more information on using the -secureStorageFile and -masterPasswordFile options to

store credentials in a credential-storage file, see the Installation Manager Version 1.6
documentation.

– For more information on using the -keyring and -password options to store credentials in a
keyring file, see the Installation Manager Version 1.5 documentation.

c. Stop all servers and applications on the WebSphere Application Server Liberty Core installation
that is being updated.

Chapter 3. Installing Liberty 721

http://www.ibm.com/support/fixcentral/
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.doc/ae/cins_offerings.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.doc/ae/cins_offerings.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html

d. Change to the Installation_Manager_binaries/eclipse/tools directory, where
Installation_Manager_binaries is the installation root directory for the Installation Manager.

e. Install the fix pack.

AIX

HP-UX

Linux

Solaris

./imcl install offering_ID_offering_version,optional_feature_ID
-repositories source_repository
-installationDirectory offering_installation_location
-secureStorageFile storage_file -masterPasswordFile master_password_file
-acceptLicense

Windows

imcl.exe install offering_ID_offering_version,optional_feature_ID
-repositories source_repository
-installationDirectory offering_installation_location
-secureStorageFile storage_file -masterPasswordFile master_password_file
-acceptLicense

where offering_ID is the offering ID that is listed in WebSphere Application Server product
offerings for supported operating systems.

Tips:

– The offering_version, which optionally can be attached to the offering ID with an underscore,
is a specific version of the offering to install (8.5.5.20110503_0200 for example).
- If offering_version is not specified, the latest version of the offering and all interim fixes for

that version are installed.
- If offering_version is specified, the specified version of the offering and no interim fixes for

that version are installed.
The offering version can be found attached to the end of the offering ID with an underscore
when you run the following command against the repository:
imcl listAvailablePackages -repositories source_repository

– You can also specify none, recommended or all with the -installFixes argument to indicate
which interim fixes you want installed with the offering.
- If the offering version is not specified, the -installFixes option defaults to all.
- If the offering version is specified, the -installFixes option defaults to none.

– You can add a list of features that are separated by commas.

–

You can specify additional features to install from the Liberty Repository.
For a list of Liberty Repository assets, see the downloads page on WASdev.net.

Note: To install Liberty Repository assets, you must have access to the internet, and you
must have IBM Installation Manager Version 1.6.2 or later.
If you want to install additional features, specify the following properties in the command
line. Note that the feature short names, such as FeatureA, are separated by double commas:
-properties user.feature=FeatureA,,FeatureB,,FeatureC,user.accept.license=true

For Version 8.5.5.5 and later, user.accept.license=true is not required.

8.5.5.4

Beginning with Version 8.5.5.4, the Extended Programming Models are

available to download from the Liberty Repository as the extendedPackage-1.0 addon. This
addon provides a rich set of programming models such as Web Services, JMS (including
Message-Driven Beans), and MongoDB 2.0. To install the addon, specify the
extendedPackage-1.0 addon on the user.addon option of the -properties parameter:

722 WebSphere Application Server Liberty Core 8.5.5

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_offerings
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_offerings
https://developer.ibm.com/wasdev/downloads/

imcl install com.ibm.websphere.liberty.ND.v85
-properties user.accept.license=true,user.addon=extendedPackage-1.0
-installationDirectory D:\IBM\Liberty -acceptLicense
-repositories D:\IBM\LibertyRepo
-sharedResourcesDirectory D:\IBM\IMShared
-showProgress

8.5.5.6 You can also install assets from instances of the Liberty Asset Repository
Service or local directory-based repositories. For more information about these asset
repositories, see “Installing assets using Installation Manager” on page 872. Add the
repository on the -repositories parameter. The repositories are accessed in the order that
they are specified. By default, the Liberty Repository is the last of the repositories that are
accessed during installation. To disable access to the Liberty Repository, on the -properties
parameter, set the user.useLibertyRepository option to false. 8.5.5.8

imcl install com.ibm.websphere.liberty.v85
-properties user.useLibertyRepository=false,user.addon=extendedPackage-1.0,user.feature=portlet-2.0
-installationDirectory D:\IBM\Liberty -acceptLicense
-repositories D:\IBM\LibertyProductRepo,https://your_onprem_asset_repo_url,D:\IBM\LocalAssetRepo,D:\IBM\LocalAssetRepo2.zip
-sharedResourcesDirectory D:\IBM\IMShared
-showProgress

To learn more about the Liberty Repository and the assets it contains, see “Liberty
Repository” on page 573.

Note: 8.5.5.4 If you do not have the Extended Programming Model installed prior to
updating to Version 8.5.5.4, you might encounter the following error during the update:

java.io.IOException: Too many open files
at java.io.File.createNewFile(File.java:894)

To resolve this problem, increase the number of files using the ulimit command; for example:
ulimit -n 8192

f. List all installed packages to verify the installation:

AIX

HP-UX

Linux

Solaris

./imcl listInstalledPackages -long

Windows

imcl.exe listInstalledPackages -long

v Download the file that contains the fix pack from Fix Central, and use local updating.
You can download a compressed file that contains the fix pack from Fix Central. Each compressed
fix-pack file contains an Installation Manager repository for the fix pack and usually has a .zip
extension. After downloading and extracting the fix-pack file, use Installation Manager to update
WebSphere Application Server Liberty Core with the fix pack.
a. To download the fix pack, perform the following actions:

1) Go to Fix Central.
2) Select WebSphere as the product group.
3) Select WebSphere Application Server as the product.
4) Select the installed version.
5) Select your operating system as the platform, and click Continue.
6) Select Browse for fixes, and click Continue.
7) Select the fix pack that you want to download, and click Continue.
8) Select your download options, and click Continue.
9) Click I agree to agree to the terms and conditions.

10) Click Download now to download the fix pack.
11) Transfer the compressed file in binary format to the system on which it is installed.
12) Extract the compressed repository files to a directory on your system.

b. To install a fix pack from a downloaded file, perform the following actions:
1) Log on to your system.

Chapter 3. Installing Liberty 723

http://www.ibm.com/support/fixcentral/

2) Stop all servers and applications on the WebSphere Application Server Liberty Core
installation that is being updated.

3) Change to the Installation_Manager_binaries/eclipse/tools directory, where
Installation_Manager_binaries is the installation root directory for the Installation
Manager.

4) Install the fix pack.

AIX

HP-UX

Linux

Solaris

./imcl install offering_ID_offering_version,optional_feature_ID
-installationDirectory offering_installation_location
-repositories location_of_expanded_files
-acceptLicense

Windows

imcl.exe install offering_ID_offering_version,optional_feature_ID
-installationDirectory offering_installation_location
-repositories location_of_expanded_files
-acceptLicense

Tips:

– The offering_ID is the offering ID that is listed in WebSphere Application Server product
offerings for supported operating systems.

– The offering_version, which optionally can be attached to the offering ID with an
underscore, is a specific version of the offering to install (8.5.5.20110503_0200 for
example).
- If offering_version is not specified, the latest version of the offering and all interim fixes

for that version are installed.
- If offering_version is specified, the specified version of the offering and no interim fixes

for that version are installed.
The offering version can be found attached to the end of the offering ID with an
underscore when you run the following command against the repository:
imcl listAvailablePackages -repositories source_repository

– You can also specify none, recommended or all with the -installFixes argument to
indicate which interim fixes you want installed with the offering.
- If the offering version is not specified, the -installFixes option defaults to all.
- If the offering version is specified, the -installFixes option defaults to none.

– You can add a list of features that are separated by commas.
5) Optional: List all installed packages to verify the installation:

AIX

HP-UX

Linux

Solaris

./imcl listInstalledPackages -long

Windows

imcl.exe listInstalledPackages -long

Installing Liberty fix packs on distributed operating systems using response files:

You can update WebSphere Application Server Liberty Core to a later version using Installation Manager
response files.

About this task

8.5.5.4 To install Version 8.5.5.4 and later of Liberty, you must have IBM Installation Manager Version
1.6.2 or later.

724 WebSphere Application Server Liberty Core 8.5.5

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_offerings
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_offerings

8.5.5.6

If you want to install Liberty assets from local directory-based repositories or an instance

of the Liberty Asset Repository Service, configure the repositories. For more information about the Liberty
asset repositories, see “Installing assets using Installation Manager” on page 872.

Tip: As an alternative to the procedure that is described in this topic, use the Installation Manager
updateAll command in a response file or on the command line to search for and update all installed
packages. Use this command only if you have full control over which fixes are contained in the targeted
repositories. Create and point to a set of custom repositories that include only the specific fixes that you
want to install. If you enable searching service repositories or if you install fixes directly from other live
web-based repositories, then you might not want to select this option so that you can select only the fixes
that you want to install using the -installFixes option with the install command on the command line
or the installFixes attribute in a response file.

Procedure

1. To obtain a list of interim fixes and fix packs that are available for WebSphere Application Server
Liberty Core installation and specific information about each fix, perform the following actions.
a. Go to Fix Central.
b. Select WebSphere as the product group.
c. Select WebSphere Application Server as the product.
d. Select the installed version.
e. Select your operating system as the platform, and click Continue.
f. Select Browse for fixes, and click Continue.
g. Click More Information under each fix to view information about the fix.
h. Note of the name of the fix pack that you would like to install.

2. Update WebSphere Application Server LibertyCore with the fix pack using one of the following
procedures.
v Access the live service repository that contains the fix pack, and use web-based updating.

Use Installation Manager on your local system to update WebSphere Application Server Liberty
Core with the interim fixes from the live web-based service repositories.
– For the live service repositories, use the same URLs as those used for the generally available

product-offering repositories during installation. These URLs are based on the following pattern:
http://www.ibm.com/software/repositorymanager/offering_ID

where offering_ID is the offering ID that you can find in WebSphere Application Server product
offerings for supported operating systems.

– These locations do not contain web pages that you can access using a web browser. They are
remote web-based repository locations that you specify for Installation Manager so that it can
maintain the product.

Perform the following actions:
a. Log on to your system.
b. Create files that enable you to access the repository. Installation Manager credential-storage and

master-password files contain your IBM software user ID and password and enable you to
access protected IBM software websites. When creating a credential-storage file, append
/repository.config at the end of the repository URL location if the imutilsc command is
unable to find the URL that is specified.

Note: For Installation Manager Version 1.6.2 and later, you should use the -secureStorageFile
and -masterPasswordFile options to store credentials in a credential-storage file. In previous
versions of Installation Manager, the -keyring and -password options are used to access
credentials in a keyring file. These options are deprecated in Version 1.6.2. There is no migration
path from keyring files to storage files because of the differences in the file structures.

Chapter 3. Installing Liberty 725

http://www.ibm.com/support/fixcentral/
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.doc/ae/cins_offerings.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.doc/ae/cins_offerings.html

– For more information on using the -secureStorageFile and -masterPasswordFile options to
store credentials in a credential-storage file, see the Installation Manager Version 1.6
documentation.

– For more information on using the -keyring and -password options to store credentials in a
keyring file, see the Installation Manager Version 1.5 documentation.

c. Stop all servers and applications on the WebSphere Application Server installation that is being
updated.

d. Change to the Installation_Manager_binaries/eclipse/tools directory, where
Installation_Manager_binaries is the installation root directory for the Installation Manager.

e. Install the fix pack using a response file.
For example:

– Windows

Administrator or non-administrator:

imcl.exe -acceptLicense
input C:\temp\update_response_file.xml
-log C:\temp\update_log.xml
-secureStorageFile C:\IM\credential.store -masterPasswordFile C:\IM\master_password_file.txt

– AIX

HP-UX

Linux

Solaris

Administrator:

./imcl -acceptLicense
input /var/temp/update_response_file.xml
-log /var/temp/update_log.xml
-secureStorageFile /var/IM/credential.store -masterPasswordFile /var/IM/master_password_file.txt

– AIX

HP-UX

Linux

Solaris

Non-administrator:

./imcl -acceptLicense
input user_home/var/temp/update_response_file.xml
-log user_home/var/temp/update_log.xml
-secureStorageFile user_home/var/IM/credential.store -masterPasswordFile user_home/var/IM/master_password_file.txt

v Download the file that contains the fix pack from Fix Central, and use local updating.
You can download a compressed file that contains the fix pack from Fix Central. Each compressed
fix-pack file contains an Installation Manager repository for the fix pack and usually has a .zip
extension. After downloading and extracting the fix-pack file, use Installation Manager to update
WebSphere Application Server Liberty with the fix pack.
a. To download the fix pack, perform the following actions:

1) Go to Fix Central.
2) Select WebSphere as the product group.
3) Select WebSphere Application Server as the product.
4) Select the installed version.
5) Select your operating system as the platform, and click Continue.
6) Select Browse for fixes, and click Continue.
7) Select the fix pack that you want to download, and click Continue.
8) Select your download options, and click Continue.
9) Click I agree to agree to the terms and conditions.

10) Click Download now to download the fix pack.
11) Transfer the compressed file in binary format to the system on which it will be installed.
12) Extract the compressed repository files to a directory on your system.

b. Perform the following actions:
1) Log on to your system.
2) If the repository requires a username and password, create a credential-storage file to access

this repository.
For more information on creating a credential-storage file for Installation Manager, read the
IBM Installation Manager Information Center.

726 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html
http://www.ibm.com/support/fixcentral/
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Tip: When creating a credential-storage file, append /repository.config at the end of the
repository URL location if the imutilsc command is unable to find the URL that is specified.

3) Stop all servers and applications on the WebSphere Application Server Liberty Core
installation that is being updated.

4) Change to the Installation_Manager_binaries/eclipse/tools directory, where
Installation_Manager_binaries is the installation root directory for the Installation
Manager.

5) Install the fix pack using a response file.
For example:

– Windows

Administrator or non-administrator:

imcl.exe -acceptLicense
input C:\temp\update_response_file.xml
-log C:\temp\update_log.xml
-secureStorageFile C:\IM\credential.store -masterPasswordFile C:\IM\master_password_file.txt

– AIX

HP-UX

Linux

Solaris

Administrator:

./imcl -acceptLicense
input /var/temp/update_response_file.xml
-log /var/temp/update_log.xml
-secureStorageFile /var/IM/credential.store -masterPasswordFile /var/IM/master_password_file.txt

– AIX

HP-UX

Linux

Solaris

Non-administrator:

./imcl -acceptLicense
input user_home/var/temp/update_response_file.xml
-log user_home/var/temp/update_log.xml
-secureStorageFile user_home/var/IM/credential.store -masterPasswordFile user_home/var/IM/master_password_file.txt

Example

Windows The following is an example of a response file for updating the product to a later version.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input>
<server>
<repository location=’https://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85’/>

</server>
<profile id=’WebSphere Liberty V8.5’
installLocation=’C:\Program Files\IBM\WebSphere\Liberty’>

</profile>
<install modify=’false’>
<offering profile=’WebSphere Liberty V8.5’ id=’com.ibm.websphere.liberty.v85’
version=’8.5.5.20101025_2108’/>

</install>
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’ value=’C:\Program Files\IBM\IMShared’/>
<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’ value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
</agent-input>

Tips:

v The profile ID (<profile . . . id=’profile_ID’> and <offering . . . profile=’profile_ID’
. . . .>) can be found when you run the imcl listInstallationDirectories -verbose command
from the eclipse/tools subdirectory in the directory where you installed Installation Manager. It is the
same as the package group's name.

v The offering ID (<offering . . . id=’offering_ID’>) can be found in WebSphere Application
Server product offerings for supported operating systems.

v The version is a specific version of the offering to install (8.5.5.20101025_2108 for example). This
specification is optional.

Chapter 3. Installing Liberty 727

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_offerings
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_offerings

– If version is not specified, the latest version of the offering and all interim fixes for that version are
installed.

– If version is specified, the specified version of the offering and no interim fixes for that version are
installed.

The offering version can be found attached to the end of the offering ID with an underscore when you
run the following command against the repository:
./imcl listAvailablePackages -repositories source_repository

v You can also specify none, recommended or all with the installFixes argument to indicate which
interim fixes you want installed with the offering.
– If the offering version is not specified, the installFixes option defaults to all.
– If the offering version is specified, the installFixes option defaults to none.

v You can specify additional assets to install from the Liberty Repository. For a list of
Liberty Repository assets, see the downloads page on WASdev.net.
To install Liberty Repository assets, you must have access to the internet, and you must have IBM
Installation Manager Version 1.6.2 or later. Previous versions of Installation Manager do not have the
option to install Liberty Repository assets. If you use a response file and did not update Installation
Manager to Version 1.6.2 or later, the assets that you specify in the response file are ignored during
installation.
If you want to install additional features, specify two extra data key elements in your response file.
You can use either the symbolic name or the short name.
The following example installs the Portlet Container and Portlet Serving features using the symbolic
name.

<data key=’user.feature’ value=’com.ibm.websphere.appserver.portlet-2.0,,com.ibm.websphere.appserver.portletserving-2.0’/>
<data key=’user.accept.license’ value=’true’/>

The following example installs the Portlet Container and Portlet Serving features using the short name:
<data key=’user.feature’ value=’portlet-2.0,,portletserving-2.0’/>
<data key=’user.accept.license’ value=’true’/>

8.5.5.5 For Version 8.5.5.5 and later, user.accept.license=true is not required.

Note: 8.5.5.3 If you are updating to Version 8.5.5.3 and previously installed Liberty Repository
features but do not currently have a connection to the IBM WebSphere Liberty Repository, you cannot
update using a response file. Instead, update the product by running the imcl command and
specifying the user.feature="" parameter.

8.5.5.4

Beginning with Version 8.5.5.4, the extprogmodels feature is no longer available. Instead,

install the extendedPackage-1.0 addon, or install the individual features that you need from the Liberty
Repository. See the following topics for more information:
– Installing Liberty Repository assets
– Liberty features
The following example installs the Extended Programming Models using the user.addon parameter
and the Portlet Container and Portlet Serving features using the user.feature parameter with short
names:

<data key=’user.addon’ value=’extendedPackage-1.0’/>
<data key=’user.feature’ value=’portlet-2.0,,portletserving-2.0’/>
<data key=’user.accept.license’ value=’true’/>

8.5.5.5 For Version 8.5.5.5 and later, user.accept.license=true is not required.

8.5.5.6

You can also install assets from an instance of the Liberty Asset Repository Service or

local directory-based repositories. For more information, see “Installing assets using Installation
Manager” on page 872. Add the repository on repository elements. If Installation Manager does not
recognize the repository, point directly to the repository.config file. When you install assets, the
repositories are accessed in the order that you specify them.

728 WebSphere Application Server Liberty Core 8.5.5

https://developer.ibm.com/wasdev/downloads/

<server>
<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85" />
<repository location="https://your_onprem_asset_repo_url" />
<repository location="D:\IBM\LocalAssetRepo" />

8.5.5.8 <repository location="D:\IBM\LocalAssetRepo2.zip" /> </server>By default, the Liberty
Repository is the last of the repositories that are accessed during installation. To disable access to the
Liberty Repository, set the user.useLibertyRepository parameter to false:

<data key=’user.addon’ value=’extendedPackage-1.0’/>
<data key=’user.feature’ value=’portlet-2.0,,portletserving-2.0’/>
<data key=’user.useLibertyRepository’ value=’false’/>

To learn more about the Liberty Repository and the assets it contains, see “Liberty Repository” on page
573.

v When updating a product, your response file must contain the features that were used in the initial
install of the product; otherwise, your update will not occur as intended. If you do not add these
features to your response file, Installation Manager assumes you are removing them.

Uninstalling Liberty fix packs from distributed operating systems using the GUI:

You can roll back WebSphere Application Server Liberty Core to an earlier version using the Installation
Manager GUI.

Before you begin

During the rollback process, Installation Manager must access files from the earlier version of the
package. By default, these files are stored on your computer when you install a package. If you change
the default setting or delete the saved files, Installation Manager requires access to the repository that
was used to install the earlier version.

Important: Installation Manager can install any fix-pack level of the product directly without installing
the intermediate fix packs; in fact, Installation Manager installs the latest level by default. For example,
you can skip fix-pack levels and go from Version 8.5.5.1 directly to Version 8.5.5.5. Keep in mind,
however, that later you can not roll back to any level that was skipped. If you directly install to Version
8.5.5.5, for example, you cannot roll back to Version 8.5.5.4. If you skip from Version 8.5.5.1 to Version
8.5.5.5, you can only roll back to Version 8.5.5.1.

Procedure

1. Stop all servers on the WebSphere Application Server Liberty Core installation that is being
modified.

2. Start Installation Manager.
3. Click Roll Back.
4. Select the package group to roll back.
5. Click Next.
6. Select the version to which you want to roll back under IBM WebSphere Application Server

Liberty Core.
7. Click Next.
8. Review the summary information, and click Roll Back.
v If the rollback is successful, the program displays a message indicating that the rollback is

successful.
v If the rollback is not successful, click View Log File to troubleshoot the problem.

9. Click Finish.
10. Click File > Exit to close Installation Manager.

Chapter 3. Installing Liberty 729

Uninstalling Liberty fix packs from distributed operating systems using the command line:

You can roll back WebSphere Application Server Liberty Core to an earlier version using the Installation
Manager command line.

Before you begin

Restriction: In order to use this procedure, you must have Installation Manager Version 1.6 or later
installed on your system.

During the rollback process, Installation Manager must access files from the earlier version of the
package. By default, these files are stored on your computer when you install a package. If you change
the default setting or delete the saved files, Installation Manager requires access to the repository that
was used to install the earlier version.

Procedure

1. Optional: If the repository requires a username and password, create a credential-storage file to access
this repository.

Tip: When creating a credential-storage file, append /repository.config at the end of the repository
URL location if the imutilsc command is unable to find the URL that is specified.

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage file.
In versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password options
were used to access credentials in a keyring file. These options were deprecated in Version 1.6.2. There
is no migration path from keyring files to storage files because of the differences in the file structures.
For more information on using the -secureStorageFile and -masterPasswordFile options to store
credentials in a credential-storage file, see the Installation Manager Version 1.6 documentation. For
more information on using the -keyring and -password options to store credentials in a keyring file,
see the Installation Manager Version 1.5 documentation.

2. Log on to your system.
3. Stop all servers and applications on the installation that is being rolled back.
4. Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.
5. Use the imcl command to roll back the product.

AIX

HP-UX

Linux

Solaris

./imcl rollback offering_ID_offering_version
-repositories source_repository
-installationDirectory installation_directory
-preferences preference_key=value
-properties property_key=value
-secureStorageFile storage_file -masterPasswordFile master_password_file
-acceptLicense

Windows

imcl.exe rollback offering_ID_offering_version
-repositories source_repository
-installationDirectory installation_directory
-preferences preference_key=value
-properties property_key=value
-secureStorageFile storage_file -masterPasswordFile master_password_file
-acceptLicense

Tips:

v The offering_ID is the offering ID that is listed in WebSphere Application Server product offerings
for supported operating systems.

730 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_offerings
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_offerings

v The offering_version, which optionally can be attached to the offering ID with an underscore, is a
specific version of the offering to which to roll back (8.5.5.20110503_0200 for example).
– If offering_version is not specified, the installation rolls back to the previously installed version of

the offering and all interim fixes for that version are installed.
– If offering_version is specified, the installation rolls back to the specified earlier version of the

offering and no interim fixes for that version are installed.
v If you previously installed Liberty Repository features and addons but do not have access to a

Liberty repository when you rollback your installation, specify the following properties in the
response file:
-properties user.addon="",user.feature=""

Specifying these properties enables the product to rollback and uninstalls all features and addons.
v 8.5.5.4 If you are rolling back from Version 8.5.5.4 to Version 8.5.5.3 and you have the Extended

Programming Models installed, you might receive errors. To prevent errors, specify a properties
parameter,addon=""; for example:

AIX

HP-UX

Linux

Solaris

./imcl rollback offering_ID_offering_version
-repositories source_repository
-installationDirectory installation_directory
-preferences preference_key=value
-properties user.accept.license=true,user.addon=""
-secureStorageFile storage_file -masterPasswordFile master_password_file
-acceptLicense

Windows

imcl.exe rollback offering_ID_offering_version
-repositories source_repository
-installationDirectory installation_directory
-preferences preference_key=value
-properties user.accept.license=true,user.addon=""
-secureStorageFile storage_file -masterPasswordFile master_password_file
-acceptLicense

For more information on using Installation Manager, read the IBM Installation Manager
documentation.

6. Optional: List all installed packages to verify the roll back.

AIX

HP-UX

Linux

Solaris

./imcl listInstalledPackages -long

Windows

imcl.exe listInstalledPackages -long

Uninstalling Liberty fix packs from distributed operating systems by using response files:

You can rollback WebSphere Application Server Liberty Core to an earlier version by using Installation
Manager response files.

Before you begin

During the rollback process, Installation Manager must access files from the earlier version of the
package. By default, these files are stored on your computer when you install a package. If you change
the default setting or delete the saved files, Installation Manager requires access to the repository that
was used to install the earlier version.

Chapter 3. Installing Liberty 731

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Procedure

1. Optional: If the repository requires a username and password, create a credential-storage file to access
this repository.

Tip: When you create a credential-storage file, append /repository.config at the end of the
repository URL location if the imutilsc command is unable to find the URL that is specified.

Note: When you use Installation Manager Version 1.6.2 and later, use the -secureStorageFile and
-masterPasswordFile options to store credentials in a credential-storage file. In versions of Installation
Manager earlier than Version 1.6.2, the -keyring and -password options were used to access
credentials in a keyring file. These options were deprecated in Version 1.6.2. There is no migration
path from keyring files to storage files because of the differences in the file structures. For more
information on -secureStorageFile and -masterPasswordFile options to store credentials in a
credential-storage file, see Installation Manager Version 1.6 documentation. For more information on
-keyring and -password options to store credentials in a keyring file, see Installation Manager Version
1.5 documentation.

2. Log on to your system.
3. Stop all servers and applications on the WebSphere Application Server Liberty Core installation that is

being rolled back.
4. Use a response file to roll back the product.

Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager,
and roll back the product.
For example:

v Windows Administrator or non-administrator:
imcl.exe
input C:\temp\rollback_response_file.xml
-log C:\temp\rollback_log.xml
-secureStorageFile C:\IM\credential.store -masterPasswordFile C:\IM\master_password_file.txt

v AIX HP-UX Linux Solaris Administrator:
./imcl
input /var/temp/rollback_response_file.xml
-log /var/temp/rollback_log.xml
-secureStorageFile /var/IM/credential.store -masterPasswordFile /var/IM/master_password_file.txt

v AIX HP-UX Linux Solaris Non-administrator:
./imcl
input user_home/var/temp/rollback_response_file.xml
-log user_home/var/temp/rollback_log.xml
-secureStorageFile user_home/var/IM/credential.store -masterPasswordFile user_home/var/IM/master_password_file.txt

Note: The program might write important post-installation instructions to standard output.
For more information on using Installation Manager, read the IBM Installation Manager Information
Center.

5. Optional: List all installed packages to verify the rollback.

AIX

HP-UX

Linux

Solaris

./imcl listInstalledPackages -long

Windows

imcl.exe listInstalledPackages -long

Windows

Example

The following is an example of a response file for rolling back the product to an earlier version.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input>
<server>

732 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

<repository location=’https://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85’/>
</server>
<profile id=’WebSphere Liberty V8.5.5’ installLocation=’C:\Program Files\IBM\WebSphere\Liberty’>
</profile>
<rollback>
<offering profile=’WebSphere Liberty V8.5.5’ id=’com.ibm.websphere.liberty.v85’ version=’8.5.5.20101025_2108’/>

</rollback>
</agent-input>

Tips:

v The profile ID (<profile . . . id=’profile_ID’> and <offering . . . profile=’profile_ID’
. . . .>) can be found when you run the imcl listInstallationDirectories -verbose command
from the eclipse/tools subdirectory in the directory where you installed Installation Manager. It is the
same as the package group’s name.

v The offering ID (<offering . . . id=’offering_ID’>) can be found in WebSphere Application
Server product offerings for supported operating systems.

v The version is a specific version of the offering to which to roll back (8.5.5.20101025_2108 for
example).
This specification is optional.
– If version is not specified, the installation rolls back to the previously installed version of the offering

and all interim fixes for that version are installed.
– If version is specified, the installation rolls back to the specified earlier version of the offering and no

interim fixes for that version are installed.
v If you previously installed Liberty Repository features and addons but do not have access to a Liberty

repository when you rollback your installation, specify the following properties in the response file:
<data key=’user.feature’ value=’’/>
<data key=’user.addon’ value=’’/>

Specifying these properties enables the product to rollback and uninstalls all features and addons.

Upgrading Liberty on distributed operating systems using the GUI
You can use Installation Manager GUI to upgrade WebSphere Application Server Liberty offerings on
distributed operating systems.

Before you begin
v Make sure that your Installation Manager preferences are pointing to web-based or local repositories

that contain the appropriate upgrades for the offering.
v If an interim fix is already installed on the offering that you are trying to upgrade but that specific

interim fix is not applicable to the offering to which you want to upgrade, the upgrade will be blocked
by Installation Manager. An error message will be generated that indicates that the interim fix is not
applicable to the offering. Remove the interim fix before upgrading.

About this task

You can use Installation Manager to upgrade WebSphere Application Server Liberty offerings in the
following paths:
v WebSphere Application Server Liberty Core to WebSphere Application Server Liberty
v WebSphere Application Server Liberty Core to WebSphere Application Server Liberty Network

Deployment
v WebSphere Application Server Liberty - Express to WebSphere Application Server Liberty
v WebSphere Application Server Liberty to WebSphere Application Server Liberty Network Deployment
v WebSphere Application Server Liberty Trial to WebSphere Application Server Liberty
v WebSphere Application Server Liberty Core Trial to WebSphere Application Server Liberty Core
v WebSphere Application Server Liberty Network Deployment Trial to WebSphere Application Server

Liberty Network Deployment

Chapter 3. Installing Liberty 733

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_offerings
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_offerings

v WebSphere Application Server Liberty for Developers to WebSphere Application Server Liberty
v WebSphere Application Server Liberty for Developers to WebSphere Application Server Liberty

Network Deployment

Procedure
1. Stop all servers and applications on the WebSphere Application Server Liberty installation that is

being upgraded.
2. Start Installation Manager.
3. Click Install.

Note: If you are prompted to authenticate, use the IBM ID and password that you registered with
on the program website.
Installation Manager searches its defined repositories for available packages.

4. Select the name of the Liberty offering to which you want to upgrade and the appropriate version,
and click Next.

5. Accept the terms in the license agreements, and click Next.
6. Complete the following actions.

a. Select Use the existing package group.
b. Select the package group of the product that you want to upgrade.

Important: If you select an existing group that cannot be upgraded to the product that you are
currently installing, an error will occur.

c. Click Next.
7. Select any features that you want to include in the upgraded installation and click Next.
8. Review the summary information, and click Install.
v If the upgrade is successful, the program displays a message indicating that installation is

successful.

Note: The program might also display important post-installation instructions as well.
v If the installation is not successful, click View Log File to troubleshoot the problem.

9. Click Finish.
10. Click File > Exit to close Installation Manager.

Example

Here is an example of how to upgrade a WebSphere Application Server Liberty offering on distributed
operating systems using the command line.
v Log on to your system.
v Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.
v List the installed packages.

AIX

HP-UX

Linux

Solaris

./imcl listInstalledPackages -long

Windows

imcl.exe listInstalledPackages -long

v Use the imcl install command to upgrade the installation to a different edition in the same
installation location:

AIX

HP-UX

Linux

Solaris

./imcl install com.ibm.websphere.liberty.v85
-repositories source_repository -installationDirectory /opt/IBM/WebSphere/Liberty -acceptLicense -showProgress

734 WebSphere Application Server Liberty Core 8.5.5

Windows

imcl install com.ibm.websphere.liberty.v85
-repositories source_repository -installationDirectory C:\Program Files\IBM\WebSphere\Liberty -acceptLicense -showProgress

Installing and uninstalling SDK Java Technology Edition Version 7.0 or 7.1 for
Liberty on distributed operating systems
You can install IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using
Installation Manager.

About this task

Perform one of these procedures to install, update, roll back, or uninstall IBM WebSphere SDK Java
Technology Edition Version 7.0 or 7.1 for Liberty using Installation Manager.

You can download and install IBM WebSphere SDK Java Technology Edition Version 7.1.

This version is only available from the web. This version is not available on the physical media. You have
the following installation options:
v Download the installation files from the IBM Fix Central website and use a local installation.
v Access the live repositories and use your IBM Software ID for a web-based installation.

Procedure
v “Installing IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using the GUI”

on page 736
v “Installing IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using response

files” on page 740
v “Installing IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using the

command line” on page 738
v “Installing fix packs on IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty

using the GUI” on page 744
v “Uninstalling fix packs from IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for

Liberty using the GUI” on page 745
v “Uninstalling IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using the

GUI” on page 746
v “Uninstalling IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using

response files” on page 747
v “Uninstalling IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using the

command line” on page 746

Results

Notes on logging and tracing:

v An easy way to view the logs is to open Installation Manager and go to File > View Log. An
individual log file can be opened by selecting it in the table and then clicking the Open log file icon.

v Logs are located in the logs directory of Installation Manager's application data location. For example:

– Windows

Administrative installation:

C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs

– Windows

Non-administrative installation:

C:\Documents and Settings\user_name\Application Data\IBM\Installation Manager\logs

– AIX

HP-UX

Linux

Solaris

Administrative installation:

/var/ibm/InstallationManager/logs

Chapter 3. Installing Liberty 735

– AIX

HP-UX

Linux

Solaris

Non-administrative installation:

user_home/var/ibm/InstallationManager/logs

v The main log files are time-stamped XML files in the logs directory, and they can be viewed using any
standard web browser.

v The log.properties file in the logs directory specifies the level of logging or tracing that Installation
Manager uses.

Notes on troubleshooting:

v HP-UX By default, some HP-UX systems are configured to not use DNS to resolve host names. This
could result in Installation Manager not being able to connect to an external repository.
You can ping the repository, but nslookup does not return anything.
Work with your system administrator to configure your machine to use DNS, or use the IP address of
the repository.

v For more information on using Installation Manager, read the IBM Installation Manager Information
Center.
Read the release notes to learn more about the latest version of Installation Manager. To access the
release notes, complete the following task:

– Windows

Click Start > Programs > IBM Installation Manager > Release Notes.

– AIX

HP-UX

Linux

Solaris

Go to the documentation subdirectory in the directory

where Installation Manager is installed, and open the readme.html file.

Installing IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using the GUI:

You can install IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using the
Installation Manager GUI.

Before you begin

1. Prepare your system as described in “Installing Installation Manager and preparing to install Liberty”
on page 694.

2. Install one the following offerings:
v IBM WebSphere Application Server Liberty
v IBM WebSphere Application Server Liberty Trial
v IBM WebSphere Application Server Liberty Core
v IBM WebSphere Application Server Liberty Core Trial
v IBM WebSphere Application Server Liberty - Express
v IBM WebSphere Application Server Liberty Network Deployment
v IBM WebSphere Application Server Liberty Network Deployment Trial
v IBM WebSphere Application Server Liberty for Developers
v IBM WebSphere Application Server Liberty for Developers (ILAN)

You can download and install IBM WebSphere SDK Java Technology Edition Version 7.1.

This version is only available from the web. You have the following installation options:
v Download the installation files from the IBM Fix Central website and use a local installation.
v Access the live repositories and use your IBM Software ID for a web-based installation.

Procedure

1. Start Installation Manager.

736 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Tip: AIX HP-UX Linux Solaris You can start Installation Manager in group mode with
the ./IBMIM command.
v Group mode allows users to share packages in a common location and manage them with the same

instance of Installation Manager.
v For more information on using group mode, read the Group mode road maps in the IBM

Installation Manager Information Center.
2. Click Install.

Note: If you are prompted to authenticate, use the IBM ID and password that you registered with on
the program website.
Installation Manager searches its defined repositories for available packages.

3. Perform the appropriate actions.
a. Select IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty and the

appropriate version.
If you already have IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty
installed on a WebSphere Application Server Liberty Core installation on your system, a message
displays indicating that IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for
Liberty is already installed. To install IBM WebSphere SDK Java Technology Edition Version 7.0 or
7.1 for Liberty on an installation where it is not yet installed, click Continue.

b. Select the fixes to install.
Any recommended fixes are selected by default.
If there are recommended fixes, you can select the option to show only recommended fixes and
hide non-recommended fixes.

c. Click Next.

Note: If you do not have and have not selected a Version 8.5 installation of one the following
offerings on which to install IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for
Liberty, an error dialog displays.
v IBM WebSphere Application Server Liberty
v IBM WebSphere Application Server Liberty Trial
v IBM WebSphere Application Server Liberty Core
v IBM WebSphere Application Server Liberty Core Trial
v IBM WebSphere Application Server Liberty - Express
v IBM WebSphere Application Server Liberty Network Deployment
v IBM WebSphere Application Server Liberty Network Deployment Trial
v IBM WebSphere Application Server Liberty for Developers
v IBM WebSphere Application Server Liberty for Developers (ILAN)

Click OK, select an appropriate offering on which to install IBM WebSphere SDK Java Technology
Edition Version 7.0 or 7.1 for Liberty, and click Next.

4. Select the appropriate installation on which to install IBM WebSphere SDK Java Technology Edition
Version 7.0 or 7.1 for Liberty, and click Next.

Note: The bit architecture that will be installed, 32 bit or 64 bit, will match the bit selection made
during the installation of the Liberty offering. For GUI installations of Liberty offerings, this selection
is made on the Location panel. For command-line and response-file installations of Liberty offerings,
the default can be overridden using the cic.selector.arch property.

5. Click Next.
6. Review the summary information, and click Install.

Chapter 3. Installing Liberty 737

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

v If the installation is successful, the program displays a message indicating that installation is
successful.

Note: The program might also display important post-installation instructions as well.
v If the installation is not successful, click View Log File to troubleshoot the problem.

7. Click Finish.
8. Click File > Exit to close Installation Manager.

Installing IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using the
command line:

You can install IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using the
Installation Manager command line.

Before you begin

1. Prepare your system as described in “Installing Installation Manager and preparing to install Liberty”
on page 694.

2. Install one the following offerings:
v IBM WebSphere Application Server Liberty
v IBM WebSphere Application Server Liberty Trial
v IBM WebSphere Application Server Liberty Core
v IBM WebSphere Application Server Liberty Core Trial
v IBM WebSphere Application Server Liberty - Express
v IBM WebSphere Application Server Liberty Network Deployment
v IBM WebSphere Application Server Liberty Network Deployment Trial
v IBM WebSphere Application Server Liberty for Developers
v IBM WebSphere Application Server Liberty for Developers (ILAN)

You can download and install IBM WebSphere SDK Java Technology Edition Version 7.1.

This version is only available from the web. You have the following installation options:
v Download the installation files from the IBM Fix Central website and use a local installation.
v Access the live repositories and use your IBM Software ID for a web-based installation.

Procedure

1. Optional: If the repository requires a username and password, create a credential-storage file to access
this repository.

Tip: When creating a credential-storage file, append /repository.config at the end of the repository
URL location if the imutilsc command is unable to find the URL that is specified.

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage file.
In versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password options
were used to access credentials in a keyring file. These options were deprecated in Version 1.6.2. There
is no migration path from keyring files to storage files because of the differences in the file structures.
For more information on using the -secureStorageFile and -masterPasswordFile options to store
credentials in a credential-storage file, see the Installation Manager Version 1.6 documentation. For
more information on using the -keyring and -password options to store credentials in a keyring file,
see the Installation Manager Version 1.5 documentation.

2. Log on to your system.
3. Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.

738 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html

4. Verify that the repository is available.

Windows

imcl.exe listAvailablePackages -repositories path_to_repository

AIX HP-UX Linux Solaris

./imcl listAvailablePackages -repositories path_to_repository

You should see one or more levels of the offering.
5. Use the imcl command to install the offering.

Windows

imcl.exe install com.ibm.websphere.liberty.IBMJAVA.v70_offering_version
-repositories source_repository
-installationDirectory installation_directory
-secureStorageFile storage_file -masterPasswordFile master_password_file

imcl.exe install com.ibm.websphere.liberty.IBMJAVA.v71_offering_version
-repositories source_repository
-installationDirectory installation_directory
-secureStorageFile storage_file -masterPasswordFile master_password_file

AIX HP-UX Linux Solaris

./imcl install com.ibm.websphere.liberty.IBMJAVA.v70_offering_version
-repositories source_repository
-installationDirectory installation_directory
-secureStorageFile storage_file -masterPasswordFile master_password_file

./imcl install com.ibm.websphere.liberty.IBMJAVA.v71_offering_version
-repositories source_repository
-installationDirectory installation_directory
-secureStorageFile storage_file -masterPasswordFile master_password_file

The value of the -installationDirectory parameter should be the location of an existing Liberty
installation. The SDK offering will be installed into the <liberty_home>\java\java_1.7_32 or
<liberty_home>\java\java_1.7_64 folder, depending on whether the installation location was
configured to be 32-bit or 64-bit when the Liberty offering was initially installed.

Note: The bit architecture that will be installed, 32 bit or 64 bit, will match the bit selection made
during the installation of the Liberty offering. For GUI installations of Liberty offerings, this selection
is made on the Location panel. For command-line and response-file installations of Liberty offerings,
the default can be overridden using the cic.selector.arch property.

Tips:

v The offering_version, which optionally can be attached to the offering ID with an underscore, is a
specific version of the offering to install (8.5.0.20110503_0200 for example).
– If offering_version is not specified, the latest version of the offering and all interim fixes for that

version are installed.
– If offering_version is specified, the specified version of the offering and no interim fixes for that

version are installed.
The offering version can be found attached to the end of the offering ID with an underscore when
you run the following command against the repository:
imcl listAvailablePackages -repositories source_repository

v You can also specify none, recommended or all with the -installFixes argument to indicate which
interim fixes you want installed with the offering.
– If the offering version is not specified, the -installFixes option defaults to all.
– If the offering version is specified, the -installFixes option defaults to none.

Chapter 3. Installing Liberty 739

v The relevant terms and conditions, notices, and other information are provided in the
license-agreement files in the lafiles or product_name/lafiles subdirectory of the installation
image or repository for this product.

v The program might write important post-installation instructions to standard output.
For more information on using the imcl command, see the IBM Installation Manager Information
Center.

Installing IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using response
files:

You can install IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using
Installation Manager response files.

Before you begin

1. Prepare your system as described in “Installing Installation Manager and preparing to install Liberty”
on page 694.

2. Install one the following offerings:
v IBM WebSphere Application Server Liberty
v IBM WebSphere Application Server Liberty Trial
v IBM WebSphere Application Server Liberty Core
v IBM WebSphere Application Server Liberty Core Trial
v IBM WebSphere Application Server Liberty - Express
v IBM WebSphere Application Server Liberty Network Deployment
v IBM WebSphere Application Server Liberty Network Deployment Trial
v IBM WebSphere Application Server Liberty for Developers
v IBM WebSphere Application Server Liberty for Developers (ILAN)

About this task

Using Installation Manager, you can work with response files to install IBM WebSphere SDK Java
Technology Edition Version 7.0 or 7.1 for Liberty in a variety of ways. You can record a response file
using the GUI as described in the following procedure, or you can generate a new response file by hand
or by taking an example and modifying it.

You can download and install IBM WebSphere SDK Java Technology Edition Version 7.1.

This version and later versions are only available from the web. You have the following installation
options:
v Download the installation files from the IBM Fix Central website and use a local installation.
v Access the live repositories and use your IBM Software ID for a web-based installation.

Procedure

1. Optional: Record a response file to install IBM WebSphere SDK Java Technology Edition Version
7.0 or 7.1 for Liberty: On one of your systems, perform the following actions to record a response file
that will install IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty.
a. From a command line, change to the eclipse subdirectory in the directory where you installed

Installation Manager.
b. Start Installation Manager from the command line using the -record option.

For example:

v Windows Administrator or non-administrator:
IBMIM.exe -skipInstall "C:\temp\imRegistry"
-record C:\temp\install_response_file.xml

740 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

v AIX HP-UX Linux Solaris Administrator:
./IBMIM -skipInstall /var/temp/imRegistry
-record /var/temp/install_response_file.xml

v AIX HP-UX Linux Solaris Non-administrator:
./IBMIM -skipInstall user_home/var/temp/imRegistry
-record user_home/var/temp/install_response_file.xml

Tip: When you record a new response file, you can specify the -skipInstall parameter. Using this
parameter has the following benefits:
v No files are actually installed, and this speeds up the recording.
v If you use a temporary data location with the -skipInstall parameter, Installation Manager writes

the installation registry to the specified data location while recording. When you start
Installation Manager again without the -skipInstall parameter, you then can use your response
file to install against the real installation registry.
The -skipInstall operation should not be used on the actual agent data location used by
Installation Manager. This is unsupported. Use a clean writable location, and re-use that location
for future recording sessions.

For more information, read the IBM Installation Manager Information Center.
c. Add the appropriate repositories to your Installation Manager preferences.

1) Click File > Preferences.
2) Select Repositories.
3) Perform the following actions for each repository:

a) Click Add Repository.
b) Enter the path to the repository.config file in the remote web-based repository or the

local directory into which you unpacked the repository files.
For example:
v Remote repositories:

https://downloads.mycorp.com:8080/WAS_85_repository

or
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.IBMJAVA.v70

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.IBMJAVA.v71

v Local repositories:

– Windows

C:\repositories\jdk7\local-repositories

– AIX

HP-UX

Linux

Solaris

/var/repositories/jdk7/local-repositories

c) Click OK.
4) Click Apply.
5) Click OK.

d. Click Install.

Note: If you are prompted to authenticate, use the IBM ID and password that you registered with
on the program website.
Installation Manager searches its defined repositories for available packages.

e. Perform the appropriate actions.
1) Select IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty.

If you already have IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for
Liberty installed on a WebSphere Application Server Liberty Core installation on your system

Chapter 3. Installing Liberty 741

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

in the targeted location, a message displays indicating that IBM WebSphere SDK Java
Technology Edition Version 7.0 or 7.1 for Liberty is already installed. To install IBM WebSphere
SDK Java Technology Edition Version 7.0 or 7.1 on a WebSphere Application Server Liberty
Core installation where it is not yet installed, click Continue.

2) Select the fixes to install.
Any recommended fixes are selected by default.
If there are recommended fixes, you can select the option to show only recommended fixes
and hide non-recommended fixes.

3) Click Next.

Note: If you do not have and have not selected an installation of one the following offerings
on which to install IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty,
an error dialog displays.
v IBM WebSphere Application Server Liberty
v IBM WebSphere Application Server Liberty Trial
v IBM WebSphere Application Server Liberty Core
v IBM WebSphere Application Server Liberty Core Trial
v IBM WebSphere Application Server Liberty - Express
v IBM WebSphere Application Server Liberty Network Deployment
v IBM WebSphere Application Server Liberty Network Deployment Trial
v IBM WebSphere Application Server Liberty for Developers
v IBM WebSphere Application Server Liberty for Developers (ILAN)

Click OK, select an appropriate offering on which to install IBM WebSphere SDK Java
Technology Edition Version 7.0 or 7.1 for Liberty, and click Next.

f. Select the appropriate WebSphere Application Server Liberty Core installation on which to install
IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty, and click Next.

Note: The bit architecture that will be installed, 32 bit or 64 bit, will match the bit selection made
during the installation of the Liberty offering. For GUI installations of Liberty offerings, this
selection is made on the Location panel. For command-line and response-file installations of
Liberty offerings, the default can be overridden using the cic.selector.arch property.

g. Click Next.
h. Review the summary information, and click Install.
v If the installation is successful, the program displays a message indicating that installation is

successful.

Note: The program might also display important post-installation instructions as well.
v If the installation is not successful, click View Log File to troubleshoot the problem.

i. Click Finish.
j. Click File > Exit to close Installation Manager.
k. Optional: If you are using an authenticated remote repository, create a credential-storage file for

silent installation.

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage
file. In versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password
options were used to access credentials in a keyring file. These options were deprecated in Version
1.6.2. There is no migration path from keyring files to storage files because of the differences in the
file structures. For more information on using the -secureStorageFile and -masterPasswordFile
options to store credentials in a credential-storage file, see the Installation Manager Version 1.6

742 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html

documentation. For more information on using the -keyring and -password options to store
credentials in a keyring file, see the Installation Manager Version 1.5 documentation.

2. Use the response files to install IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1
for Liberty:

a. Optional: Use the response file to install the credential-storage file: Go to a command line on
each of the systems on which you want to install IBM WebSphere SDK Java Technology Edition
Version 7.0 or 7.1 for Liberty, change to the eclipse/tools subdirectory in the directory where you
installed Installation Manager, and install the credential-storage file.
For example:

v Windows Administrator or non-administrator:
imcl.exe
input C:\temp\credentialstorage_response_file.xml
-log C:\temp\credentialstorage_log.xml

v AIX HP-UX Linux Solaris Administrator:
./imcl
input /var/temp/credentialstorage_response_file.xml
-log /var/temp/credentialstorage_log.xml

v AIX HP-UX Linux Solaris Non-administrator:
./imcl
input user_home/var/temp/credentialstorage_response_file.xml
-log user_home/var/temp/credentialstorage_log.xml

b. Use the response file to install IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1
for Liberty: Go to a command line on each of the systems on which you want to install IBM
WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty, change to the
eclipse/tools subdirectory in the directory where you installed Installation Manager, and install
IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty.
For example:

v Windows Administrator or non-administrator:
imcl.exe
input C:\temp\install_response_file.xml
-log C:\temp\install_log.xml
-secureStorageFile C:\IM\credential.store -masterPasswordFile C:\IM\master_password_file.txt

v AIX HP-UX Linux Solaris Administrator:
./imcl
input /var/temp/install_response_file.xml
-log /var/temp/install_log.xml
-secureStorageFile /var/IM/credential.store -masterPasswordFile /var/IM/master_password_file.txt

v AIX HP-UX Linux Solaris Non-administrator:
./imcl
input user_home/var/temp/install_response_file.xml
-log user_home/var/temp/install_log.xml
-secureStorageFile user_home/var/IM/credential.store -masterPasswordFile user_home/var/IM/master_password_file.txt

Notes:

v The relevant terms and conditions, notices, and other information are provided in the
license-agreement files in the lafiles or product_name/lafiles subdirectory of the installation
image or repository for this product.

v The program might write important post-installation instructions to standard output.
Read the IBM Installation Manager Information Center.

Example

Windows The following is an example of a response file for installing IBM WebSphere
SDK Java Technology Edition Version 7.0 for Liberty.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input clean="true" temporary="true">
<server>

Chapter 3. Installing Liberty 743

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.IBMJAVA.v70" />
</server>
<install modify=’false’>
<offering id=’com.ibm.websphere.liberty.IBMJAVA.v70’
profile=’WebSphere Liberty V8.5’ installFixes=’none’/>

</install>
<profile id=’WebSphere Liberty V8.5’ installLocation=’C:\Program Files\IBM\WebSphere\Liberty’>
</profile>
</agent-input>

Windows The following is an example of a response file for installing IBM WebSphere
SDK Java Technology Edition Version 7.1 for Liberty.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input clean="true" temporary="true">
<server>
<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.IBMJAVA.v71" />
</server>
<install modify=’false’>
<offering id=’com.ibm.websphere.liberty.IBMJAVA.v71’
profile=’WebSphere Liberty V8.5’ installFixes=’none’/>

</install>
<profile id=’WebSphere Liberty V8.5’ installLocation=’C:\Program Files\IBM\WebSphere\Liberty’>
</profile>
</agent-input>

Installing fix packs on IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty
using the GUI:

You can update IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty to a later
version using the Installation Manager GUI.

Before you begin

Make sure that the web-based or local service repository location is listed and checked or that the Search
service repositories during installation and updates option is selected on the Repositories panel in your
Installation Manager preferences. For more information on using service repositories with Installation
Manager, read the IBM Installation Manager Information Center.

About this task

Note: For information on installing and removing fix packs for WebSphere Application Server Liberty
Core on distributed operating systems using the Installation Manager command line, read the following
articles in this information center:
v “Installing Liberty fix packs on distributed operating systems using the command line” on page 720
v “Uninstalling Liberty fix packs from distributed operating systems using the command line” on page

730

Procedure

1. Start Installation Manager.
2. Click Update.

Note: If you are prompted to authenticate, use the IBM ID and password that you use to access
protected IBM software websites.

3. Select the package group to update.

Tip: If you select Update all, Installation Manager will search all of the added and predefined
repositories for recommended updates to all of the package groups that it has installed.
v Use this feature only if you have full control over which fixes are contained in the targeted

repositories.
– If you create and point to a set of custom repositories that include only the specific

recommended fixes that you want to install, you should be able to use this feature confidently.

744 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

– If you enable searching service repositories or install fixes directly from other live web-based
repositories, you might not want to select this option so that you can select only the fixes that
you want to install for each offering on subsequent panels.

v If you select Update all, Installation Manager will install only the recommended updates to all of
the package groups; it will not allow you to select non-recommended fixes for installation. If you
want to install non-recommended fixes, perform the following actions:
a. On this panel, clear the Update all check box and select an offering to update.
b. On the next panel, clear the option to show only recommended fixes and then select the fixes

that you want to install.
4. Click Next.
5. Select the version to which you want to update under IBM WebSphere SDK Java Technology

Edition Version 7.0 for Liberty.
6. Click Next.
7. Accept the terms in the license agreements, and click Next.
8. Review the summary information, and click Update.
v If the installation is successful, the program displays a message indicating that installation is

successful.
v If the installation is not successful, click View Log File to troubleshoot the problem.

9. Click Finish.
10. Click File > Exit to close Installation Manager.

Uninstalling fix packs from IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for
Liberty using the GUI:

You can roll back IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty to an earlier
version using the Installation Manager GUI.

Before you begin

During the rollback process, Installation Manager must access files from the earlier version of the
package. By default, these files are stored on your computer when you install a package. If you change
the default setting or delete the saved files, Installation Manager requires access to the repository that
was used to install the earlier version.

About this task

Note: For information on installing and removing fix packs for WebSphere Application Server Liberty
Core on distributed operating systems using the Installation Manager command line, read the following
articles in this information center:
v “Installing Liberty fix packs on distributed operating systems using the command line” on page 720
v “Uninstalling Liberty fix packs from distributed operating systems using the command line” on page

730

Procedure

1. Stop all servers on the installation that is being modified.
2. Start Installation Manager.
3. Click Roll Back.

Note: If you are prompted to authenticate, use the IBM ID and password that you use to access
protected IBM software websites.

4. Select the package group to roll back.

Chapter 3. Installing Liberty 745

5. Click Next.
6. Select the version to which you want to roll back under IBM WebSphere SDK Java Technology

Edition Version 6.0 for Liberty.
7. Click Next.
8. Review the summary information, and click Roll Back.
v If the rollback is successful, the program displays a message indicating that the rollback is

successful.
v If the rollback is not successful, click View Log File to troubleshoot the problem.

9. Click Finish.
10. Click File > Exit to close Installation Manager.

Uninstalling IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using the
GUI:

Use the Installation Manager GUI to uninstall IBM WebSphere SDK Java Technology Edition Version 7.0
or 7.1 for Liberty.

Before you begin

Make sure that no commands or server profiles are using IBM WebSphere SDK Java Technology Edition
Version 7.0 or 7.1 for Liberty before uninstalling it. Server profiles using IBM WebSphere SDK Java
Technology Edition Version 7.0 or 7.1 for Liberty will not function if it is uninstalled.

Procedure

1. Log on to your system.
2. Stop all servers and applications on the WebSphere Application Server Liberty Core installation.
3. Start Installation Manager.
4. Click Uninstall.
5. In the Uninstall Packages window, perform the following actions.

a. Select IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty and the
appropriate version.

b. Click Next.
6. Review the summary information.
7. Click Uninstall.
v If the uninstallation is successful, the program displays a message that indicates success.
v If the uninstallation is not successful, click View log to troubleshoot the problem.

8. Click Finish.
9. Click File > Exit to close Installation Manager.

Uninstalling IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using the
command line:

You can uninstall IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using the
Installation Manager command line.

Before you begin

Make sure that no commands or server profiles are using IBM WebSphere SDK Java Technology Edition
Version 7.0 or 7.1 for Liberty before uninstalling it. Server profiles using IBM WebSphere SDK Java
Technology Edition Version 7.0 or 7.1 for Liberty will not function if it is uninstalled.

746 WebSphere Application Server Liberty Core 8.5.5

Procedure

1. Log on to your system.
2. Stop all servers and applications on the WebSphere Application Server Liberty Core installation.
3. Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.
4. Use the imcl command to uninstall the offering.

Windows

imcl.exe uninstall com.ibm.websphere.liberty.IBMJAVA.v70
-installationDirectory installation_directory

AIX HP-UX Linux Solaris

./imcl uninstall com.ibm.websphere.liberty.IBMJAVA.v70
-installationDirectory installation_directory

Go to the IBM Installation Manager Information Center.

Uninstalling IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using
response files:

You can uninstall IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty using
Installation Manager response files.

Before you begin

Make sure that no commands or server profiles are using IBM WebSphere SDK Java Technology Edition
Version 7.0 or 7.1 for Liberty before uninstalling it. Server profiles using IBM WebSphere SDK Java
Technology Edition Version 7.0 or 7.1 for Liberty will not function if it is uninstalled.

Optional: Perform or record the installation of Installation Manager and installation of IBM WebSphere
SDK Java Technology Edition Version 7.0 or 7.1 for Liberty to a temporary installation registry on one of
your systems so that you can use this temporary registry to record the uninstallation without using the
standard registry where Installation Manager is installed.

About this task

Using Installation Manager, you can work with response files to uninstall IBM WebSphere SDK Java
Technology Edition Version 7.0 or 7.1 for Liberty in a variety of ways. You can record a response file
using the GUI as described in the following procedure, or you can generate a new response file by hand
or by taking an example and modifying it.

Procedure

1. Optional: Record a response file to uninstall IBM WebSphere SDK Java Technology Edition
Version 7.0 or 7.1 for Liberty: On one of your systems, perform the following actions to record a
response file that will uninstall IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for
Liberty:
a. From a command line, change to the eclipse subdirectory in the directory where you installed

Installation Manager.
b. Start Installation Manager from the command line using the -record option.

For example:

v Windows Administrator or non-administrator:
IBMIM.exe -skipInstall "C:\temp\imRegistry"
-record C:\temp\uninstall_response_file.xml

v AIX HP-UX Linux Solaris Administrator:
./IBMIM -skipInstall /var/temp/imRegistry
-record /var/temp/uninstall_response_file.xml

v AIX HP-UX Linux Solaris Non-administrator:

Chapter 3. Installing Liberty 747

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

./IBMIM -skipInstall user_home/var/temp/imRegistry
-record user_home/var/temp/uninstall_response_file.xml

Tip: If you choose to use the -skipInstall parameter with a temporary installation registry created
as described in Before you begin, Installation Manager uses the temporary installation registry while
recording the response file. It is important to note that when the -skipInstall parameter is
specified, no packages are installed or uninstalled. All of the actions that you perform in
Installation Manager simply update the installation data that is stored in the specified temporary
registry. After the response file is generated, it can be used to uninstall IBM WebSphere SDK Java
Technology Edition Version 7.0 or 7.1 for Liberty, removing the files and updating the standard
installation registry.

The -skipInstall operation should not be used on the actual agent data location used by
Installation Manager. This is unsupported. Use a clean writable location, and re-use that location
for future recording sessions.
For more information, read the IBM Installation Manager Information Center.

c. Click Uninstall.
d. In the Uninstall Packages window, perform the following actions.

1) Select IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty and the
appropriate version.

2) Click Next.
e. Review the summary information.
f. Click Uninstall.
v If the uninstallation is successful, the program displays a message that indicates success.
v If the uninstallation is not successful, click View log to troubleshoot the problem.

g. Click Finish.
h. Click File > Exit to close Installation Manager.

2. Use the response file to uninstall IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1
for Liberty: From a command line on each of the systems from which you want to uninstall IBM
WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty, change to the eclipse/tools
subdirectory in the directory where you installed Installation Manager and use the response file that
you created to uninstall IBM WebSphere SDK Java Technology Edition Version 7.0 or 7.1 for Liberty.
For example:

v Windows Administrator or non-administrator:
imcl.exe
input C:\temp\uninstall_response_file.xml
-log C:\temp\uninstall_log.xml

v AIX HP-UX Linux Solaris Administrator:
./imcl
input /var/temp/uninstall_response_file.xml
-log /var/temp/uninstall_log.xml

v AIX HP-UX Linux Solaris Non-administrator:
./imcl
input user_home/var/temp/uninstall_response_file.xml
-log user_home/var/temp/uninstall_log.xml

Go to the IBM Installation Manager Information Center.
3. Optional: List all installed packages to verify the uninstallation.

AIX HP-UX Linux Solaris

./imcl listInstalledPackages

Windows

imcl listInstalledPackages

748 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Windows

Example

The following is an example of a response file for uninstalling IBM WebSphere SDK Java Technology
Edition Version 7.0 or 7.1 for Liberty.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input clean=’true’ temporary=’true’>
<uninstall modify=’false’>
<offering id=’com.ibm.websphere.liberty.IBMJAVA.v70’
profile=’WebSphere Liberty V8.5’/>

</uninstall>
<profile id=’WebSphere Liberty V8.5’
installLocation=’C:\Program Files\IBM\WebSphere\Liberty’>

</profile>
</agent-input>

Installing and uninstalling SDK Java Technology Edition Version 8.0 for Liberty on
distributed operating systems

8.5.5.5

You can install IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using Installation
Manager.

About this task

Perform one of these procedures to install, update, roll back, or uninstall IBM WebSphere SDK Java
Technology Edition Version 8.0 for Liberty using Installation Manager.

You can download and install IBM WebSphere SDK Java Technology Edition Version 8.0. This version is
only available from the web. This version is not available on the physical media. You have the following
installation options:
v Download the installation files from the IBM Fix Central website and use a local installation.
v Access the live repositories and use your IBM Software ID for a web-based installation.

Procedure
v Install IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using the GUI.
v Install IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using response files.
v Install IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using the command line.
v Install fix packs on IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using the

GUI.
v Uninstall fix packs on IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using the

GUI.
v Uninstall IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using the GUI.
v Uninstall IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using response files.
v Uninstall IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using the command

line.

Results

Notes on logging and tracing:

v An easy way to view the logs is to open Installation Manager and go to File > View Log. An
individual log file can be opened by selecting it in the table and then clicking the Open log file icon.

v Logs are located in the logs directory of Installation Manager's application data location. For example:

– Windows

Administrative installation:

C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager\logs

Chapter 3. Installing Liberty 749

– Windows

Non-administrative installation:

C:\Documents and Settings\user_name\Application Data\IBM\Installation Manager\logs

– AIX

HP-UX

Linux

Solaris

Administrative installation:

/var/ibm/InstallationManager/logs

– AIX

HP-UX

Linux

Solaris

Non-administrative installation:

user_home/var/ibm/InstallationManager/logs

v The main log files are time-stamped XML files in the logs directory, which you can view using any
standard web browser.

v The log.properties file in the logs directory specifies the level of logging or tracing that Installation
Manager uses.

Notes on troubleshooting:

v HP-UX By default, some HP-UX systems are configured to not use DNS to resolve host names. This
can result in Installation Manager not being able to connect to an external repository.
You can ping the repository, but nslookup does not return anything.
Work with your system administrator to configure your machine to use DNS, or use the IP address of
the repository.

v For more information on using Installation Manager, read the IBM Installation Manager Information
Center.
Read the release notes to learn more about the latest version of Installation Manager. To access the
release notes, complete the following task:

– Windows

Click Start > Programs > IBM Installation Manager > Release Notes.

– AIX

HP-UX

Linux

Solaris

Go to the documentation subdirectory in the directory

where Installation Manager is installed, and open the readme.html file.

Installing IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using the GUI:
8.5.5.5

You can install IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty by using the
Installation Manager GUI.

Before you begin

1. Prepare your system as described in “Installing Installation Manager and preparing to install Liberty”
on page 694.

2. Install one the following offerings:
v IBM WebSphere Application Server Liberty
v IBM WebSphere Application Server Liberty Trial
v IBM WebSphere Application Server Liberty Core
v IBM WebSphere Application Server Liberty Core Trial
v IBM WebSphere Application Server Liberty - Express
v IBM WebSphere Application Server Liberty Network Deployment
v IBM WebSphere Application Server Liberty Network Deployment Trial
v IBM WebSphere Application Server Liberty for Developers
v IBM WebSphere Application Server Liberty for Developers (ILAN)

You can download and install IBM WebSphere SDK Java Technology Edition Version 8.0. This version is
only available from the web. You have the following installation options:
v Download the installation files from the IBM Fix Central website and use a local installation.
v Access the live repositories and use your IBM Software ID for a web-based installation.

750 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Note: You can locate the installation files here IBM Support: Fix central .

Procedure

1. Start Installation Manager.

Tip: AIX HP-UX Linux Solaris You can start Installation Manager in group mode with
the ./IBMIM command.
v Group mode allows users to share packages in a common location and manage them with the same

instance of Installation Manager.
v For more information on using group mode, read the Group mode road maps in the IBM

Installation Manager Information Center.
2. Click Install.

Note: If you are prompted to authenticate, use the IBM ID and password that you registered with on
the program website.
Installation Manager searches its defined repositories for available packages.

3. Perform the appropriate actions.
a. Select IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty and the appropriate

version.
If you already have IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty installed
on a WebSphere Application Server Liberty Core installation on your system, a message displays
indicating that IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty is already
installed. To install IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty on an
installation where it is not yet installed, click Continue.

b. Select the fixes to install.
Any recommended fixes are selected by default.
If there are recommended fixes, you can select the option to show only recommended fixes and
hide non-recommended fixes.

c. Click Next.

Note: If you do not have and have not selected a Version 8.5 installation of one the following
offerings on which to install IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty,
an error dialog displays.
v IBM WebSphere Application Server Liberty
v IBM WebSphere Application Server Liberty Trial
v IBM WebSphere Application Server Liberty Core
v IBM WebSphere Application Server Liberty Core Trial
v IBM WebSphere Application Server Liberty - Express
v IBM WebSphere Application Server Liberty Network Deployment
v IBM WebSphere Application Server Liberty Network Deployment Trial
v IBM WebSphere Application Server Liberty for Developers
v IBM WebSphere Application Server Liberty for Developers (ILAN)

Click OK, select an appropriate offering on which to install IBM WebSphere SDK Java Technology
Edition Version 8.0 for Liberty, and click Next.

4. Select the appropriate installation on which to install IBM WebSphere SDK Java Technology Edition
Version 8.0 for Liberty, and click Next.

Note: The bit architecture that is installed, 32 bit or 64 bit, matches the bit selection that is made
during the installation of the Liberty offering. For GUI installations of Liberty offerings, this selection

Chapter 3. Installing Liberty 751

http://www-933.ibm.com/support/fixcentral/swg/quickorder?parent=ibm/WebS phere&product=ibm/WebSphere/WebSphere+Application+Server&release=All&pla tform=All&function=fixId&fixids=8.0.1.0-WS-IBMLIBERTYJAVA-part1,8.0.1.0- WS-IBMLIBERTYJAVA-part2&includeSupersedes=0&source=fc
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

is made on the Location panel. For command-line and response-file installations of Liberty offerings,
the default can be overridden by using the cic.selector.arch property.

5. Click Next.
6. Review the summary information, and click Install.
v If the installation is successful, the program displays a message that says that installation is

successful.

Note: The program might also display important post-installation instructions.
v If the installation is not successful, click View Log File to troubleshoot the problem.

7. Click Finish.
8. Click File > Exit to close Installation Manager.

Installing IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using the command
line: 8.5.5.5

You can install IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using the
Installation Manager command line.

Before you begin

1. Prepare your system as described in “Installing Installation Manager and preparing to install Liberty”
on page 694.

2. Install one the following offerings:
v IBM WebSphere Application Server Liberty
v IBM WebSphere Application Server Liberty Trial
v IBM WebSphere Application Server Liberty Core
v IBM WebSphere Application Server Liberty Core Trial
v IBM WebSphere Application Server Liberty - Express
v IBM WebSphere Application Server Liberty Network Deployment
v IBM WebSphere Application Server Liberty Network Deployment Trial
v IBM WebSphere Application Server Liberty for Developers
v IBM WebSphere Application Server Liberty for Developers (ILAN)

You can download and install IBM WebSphere SDK Java Technology Edition Version 8.0. This version is
only available from the web. You have the following installation options:
v Download the installation files from the IBM Fix Central website and use a local installation.
v Access the live repositories and use your IBM Software ID for a web-based installation.

Procedure

1. Optional: If the repository requires a username and password, create a credential-storage file to access
this repository.

Tip: When creating a credential-storage file, append /repository.config at the end of the repository
URL location if the imutilsc command is unable to find the URL that is specified.

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage file.
In versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password options
were used to access credentials in a keyring file. These options were deprecated in Version 1.6.2. There
is no migration path from keyring files to storage files because of the differences in the file structures.
For more information on using the -secureStorageFile and -masterPasswordFile options to store
credentials in a credential-storage file, see the Installation Manager Version 1.6 documentation. For

752 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html

more information on using the -keyring and -password options to store credentials in a keyring file,
see the Installation Manager Version 1.5 documentation.

2. Log on to your system.
3. Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.
4. Verify that the repository is available.

Windows

imcl.exe listAvailablePackages -repositories path_to_repository

AIX HP-UX Linux Solaris

./imcl listAvailablePackages -repositories path_to_repository

You should see one or more levels of the offering.
5. Use the imcl command to install the offering.

Windows

imcl.exe install com.ibm.websphere.liberty.IBMJAVA.v80_offering_version
-repositories source_repository
-installationDirectory installation_directory
-secureStorageFile storage_file -masterPasswordFile master_password_file

AIX HP-UX Linux Solaris

./imcl install com.ibm.websphere.liberty.IBMJAVA.v80_offering_version
-repositories source_repository
-installationDirectory installation_directory
-secureStorageFile storage_file -masterPasswordFile master_password_file

The value of the -installationDirectory parameter should be the location of an existing Liberty
installation. The SDK offering will be installed into the <liberty_home>\java\java_1.8_32 or
<liberty_home>\java\java_1.8_64 folder, depending on whether the installation location was
configured to be 32-bit or 64-bit when the Liberty offering was initially installed.

Note: The bit architecture that will be installed, 32 bit or 64 bit, will match the bit selection made
during the installation of the Liberty offering. For GUI installations of Liberty offerings, this selection
is made on the Location panel. For command-line and response-file installations of Liberty offerings,
the default can be overridden using the cic.selector.arch property.

Tips:

v The offering_version, which optionally can be attached to the offering ID with an underscore, is a
specific version of the offering to install (8.5.0.20110503_0200 for example).
– If offering_version is not specified, the latest version of the offering and all interim fixes for that

version are installed.
– If offering_version is specified, the specified version of the offering and no interim fixes for that

version are installed.
The offering version can be found attached to the end of the offering ID with an underscore when
you run the following command against the repository:
imcl listAvailablePackages -repositories source_repository

v You can also specify none, recommended or all with the -installFixes argument to indicate which
interim fixes you want installed with the offering.
– If the offering version is not specified, the -installFixes option defaults to all.
– If the offering version is specified, the -installFixes option defaults to none.

v The relevant terms and conditions, notices, and other information are provided in the
license-agreement files in the lafiles or product_name/lafiles subdirectory of the installation
image or repository for this product.

v The program might write important post-installation instructions to standard output.
For more information on using the imcl command, see the IBM Installation Manager Information
Center.

Chapter 3. Installing Liberty 753

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Installing IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using response files:
8.5.5.5

You can install IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using Installation
Manager response files.

Before you begin

1. Prepare your system as described in “Installing Installation Manager and preparing to install Liberty”
on page 694.

2. Install one the following offerings:
v IBM WebSphere Application Server Liberty
v IBM WebSphere Application Server Liberty Trial
v IBM WebSphere Application Server Liberty Core
v IBM WebSphere Application Server Liberty Core Trial
v IBM WebSphere Application Server Liberty - Express
v IBM WebSphere Application Server Liberty Network Deployment
v IBM WebSphere Application Server Liberty Network Deployment Trial
v IBM WebSphere Application Server Liberty for Developers
v IBM WebSphere Application Server Liberty for Developers (ILAN)

About this task

Using Installation Manager, you can work with response files to install IBM WebSphere SDK Java
Technology Edition Version 8.0 for Liberty in a variety of ways. You can record a response file using the
GUI as described in the following procedure, or you can generate a new response file by hand or by
taking an example and modifying it.

You can download and install IBM WebSphere SDK Java Technology Edition Version 8.0. This version
and later versions are only available from the web. You have the following installation options:
v Download the installation files from the IBM Fix Central website and use a local installation.
v Access the live repositories and use your IBM Software ID for a web-based installation.

Procedure

1. Optional: Record a response file to install IBM WebSphere SDK Java Technology Edition Version
8.0 for Liberty: On one of your systems, perform the following actions to record a response file that
will install IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty.
a. From a command line, change to the eclipse subdirectory in the directory where you installed

Installation Manager.
b. Start Installation Manager from the command line using the -record option.

For example:

v Windows Administrator or non-administrator:
IBMIM.exe -skipInstall "C:\temp\imRegistry"
-record C:\temp\install_response_file.xml

v AIX HP-UX Linux Solaris Administrator:
./IBMIM -skipInstall /var/temp/imRegistry
-record /var/temp/install_response_file.xml

v AIX HP-UX Linux Solaris Non-administrator:
./IBMIM -skipInstall user_home/var/temp/imRegistry
-record user_home/var/temp/install_response_file.xml

754 WebSphere Application Server Liberty Core 8.5.5

Tip: When you record a new response file, you can specify the -skipInstall parameter. Using this
parameter has the following benefits:
v No files are actually installed, and this speeds up the recording.
v If you use a temporary data location with the -skipInstall parameter, Installation Manager writes

the installation registry to the specified data location while recording. When you start
Installation Manager again without the -skipInstall parameter, you then can use your response
file to install against the real installation registry.
The -skipInstall operation should not be used on the actual agent data location used by
Installation Manager. This is unsupported. Use a clean writable location, and re-use that location
for future recording sessions.

For more information, read the IBM Installation Manager Information Center.
c. Add the appropriate repositories to your Installation Manager preferences.

1) Click File > Preferences.
2) Select Repositories.
3) Perform the following actions for each repository:

a) Click Add Repository.
b) Enter the path to the repository.config file in the remote web-based repository or the

local directory into which you unpacked the repository files.
For example:
v Remote repositories:

https://downloads.mycorp.com:8080/WAS_85_repository

or
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.IBMJAVA.v80

v Local repositories:

– Windows

C:\repositories\jdk8\local-repositories

– AIX

HP-UX

Linux

Solaris

/var/repositories/jdk8/local-repositories

c) Click OK.
4) Click Apply.
5) Click OK.

d. Click Install.

Note: If you are prompted to authenticate, use the IBM ID and password that you registered with
on the program website.
Installation Manager searches its defined repositories for available packages.

e. Perform the appropriate actions.
1) Select IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty.

If you already have IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty
installed on a WebSphere Application Server Liberty Core installation on your system in the
targeted location, a message displays indicating that IBM WebSphere SDK Java Technology
Edition Version 8.0 for Liberty is already installed. To install IBM WebSphere SDK Java
Technology Edition Version 8.0 on a WebSphere Application Server Liberty Core installation
where it is not yet installed, click Continue.

2) Select the fixes to install.
Any recommended fixes are selected by default.
If there are recommended fixes, you can select the option to show only recommended fixes
and hide non-recommended fixes.

3) Click Next.

Chapter 3. Installing Liberty 755

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Note: If you do not have and have not selected an installation of one the following offerings
on which to install IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty, an
error dialog displays.
v IBM WebSphere Application Server Liberty
v IBM WebSphere Application Server Liberty Trial
v IBM WebSphere Application Server Liberty Core
v IBM WebSphere Application Server Liberty Core Trial
v IBM WebSphere Application Server Liberty - Express
v IBM WebSphere Application Server Liberty Network Deployment
v IBM WebSphere Application Server Liberty Network Deployment Trial
v IBM WebSphere Application Server Liberty for Developers
v IBM WebSphere Application Server Liberty for Developers (ILAN)

Click OK, select an appropriate offering on which to install IBM WebSphere SDK Java
Technology Edition Version 8.0 for Liberty, and click Next.

f. Select the appropriate WebSphere Application Server Liberty Core installation on which to install
IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty, and click Next.

Note: The bit architecture that will be installed, 32 bit or 64 bit, will match the bit selection made
during the installation of the Liberty offering. For GUI installations of Liberty offerings, this
selection is made on the Location panel. For command-line and response-file installations of
Liberty offerings, the default can be overridden using the cic.selector.arch property.

g. Click Next.
h. Review the summary information, and click Install.
v If the installation is successful, the program displays a message indicating that installation is

successful.

Note: The program might also display important post-installation instructions as well.
v If the installation is not successful, click View Log File to troubleshoot the problem.

i. Click Finish.
j. Click File > Exit to close Installation Manager.
k. Optional: If you are using an authenticated remote repository, create a credential-storage file for

silent installation.

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage
file. In versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password
options were used to access credentials in a keyring file. These options were deprecated in Version
1.6.2. There is no migration path from keyring files to storage files because of the differences in the
file structures. For more information on using the -secureStorageFile and -masterPasswordFile
options to store credentials in a credential-storage file, see the Installation Manager Version 1.6
documentation. For more information on using the -keyring and -password options to store
credentials in a keyring file, see the Installation Manager Version 1.5 documentation.

2. Use the response files to install IBM WebSphere SDK Java Technology Edition Version 8.0 for
Liberty:

a. Optional: Use the response file to install the credential-storage file: Go to a command line on
each of the systems on which you want to install IBM WebSphere SDK Java Technology Edition
Version 8.0 for Liberty, change to the eclipse/tools subdirectory in the directory where you
installed Installation Manager, and install the credential-storage file.
For example:

v Windows Administrator or non-administrator:

756 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html

imcl.exe
input C:\temp\credentialstorage_response_file.xml
-log C:\temp\credentialstorage_log.xml

v AIX HP-UX Linux Solaris Administrator:
./imcl
input /var/temp/credentialstorage_response_file.xml
-log /var/temp/credentialstorage_log.xml

v AIX HP-UX Linux Solaris Non-administrator:
./imcl
input user_home/var/temp/credentialstorage_response_file.xml
-log user_home/var/temp/credentialstorage_log.xml

b. Use the response file to install IBM WebSphere SDK Java Technology Edition Version 8.0 for
Liberty: Go to a command line on each of the systems on which you want to install IBM
WebSphere SDK Java Technology Edition Version 8.0 for Liberty, change to the eclipse/tools
subdirectory in the directory where you installed Installation Manager, and install IBM WebSphere
SDK Java Technology Edition Version 8.0 for Liberty.
For example:

v Windows Administrator or non-administrator:
imcl.exe
input C:\temp\install_response_file.xml
-log C:\temp\install_log.xml
-secureStorageFile C:\IM\credential.store -masterPasswordFile C:\IM\master_password_file.txt

v AIX HP-UX Linux Solaris Administrator:
./imcl
input /var/temp/install_response_file.xml
-log /var/temp/install_log.xml
-secureStorageFile /var/IM/credential.store -masterPasswordFile /var/IM/master_password_file.txt

v AIX HP-UX Linux Solaris Non-administrator:
./imcl
input user_home/var/temp/install_response_file.xml
-log user_home/var/temp/install_log.xml
-secureStorageFile user_home/var/IM/credential.store -masterPasswordFile user_home/var/IM/master_password_file.txt

Notes:

v The relevant terms and conditions, notices, and other information are provided in the
license-agreement files in the lafiles or product_name/lafiles subdirectory of the installation
image or repository for this product.

v The program might write important post-installation instructions to standard output.
Read the IBM Installation Manager Information Center.

Example

Windows The following is an example of a response file for installing IBM WebSphere SDK Java
Technology Edition Version 8.0 for Liberty.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input clean="true" temporary="true">
<server>
<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.IBMJAVA.v80" />
</server>
<install modify=’false’>
<offering id=’com.ibm.websphere.liberty.IBMJAVA.v80’
profile=’WebSphere Liberty V8.5’ installFixes=’none’/>

</install>
<profile id=’WebSphere Liberty V8.5’ installLocation=’C:\Program Files\IBM\WebSphere\Liberty’>
</profile>
</agent-input>

Installing fix packs on IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using the
GUI: 8.5.5.5

You can update IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty to a later version
using the Installation Manager GUI.

Chapter 3. Installing Liberty 757

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Before you begin

Make sure that the web-based or local service repository location is listed and checked or that the Search
service repositories during installation and updates option is selected on the Repositories panel in your
Installation Manager preferences. For more information on using service repositories with Installation
Manager, read the IBM Installation Manager Information Center.

About this task

Note: For information on installing and removing fix packs for WebSphere Application Server Liberty
Core on distributed operating systems using the Installation Manager command line, read the following
articles in this information center:
v “Installing Liberty fix packs on distributed operating systems using the command line” on page 720
v “Uninstalling Liberty fix packs from distributed operating systems using the command line” on page

730

Procedure

1. Start Installation Manager.
2. Click Update.

Note: If you are prompted to authenticate, use the IBM ID and password that you use to access
protected IBM software websites.

3. Select the package group to update.

Tip: If you select Update all, Installation Manager will search all of the added and predefined
repositories for recommended updates to all of the package groups that it has installed.
v Use this feature only if you have full control over which fixes are contained in the targeted

repositories.
– If you create and point to a set of custom repositories that include only the specific

recommended fixes that you want to install, you should be able to use this feature confidently.
– If you enable searching service repositories or install fixes directly from other live web-based

repositories, you might not want to select this option so that you can select only the fixes that
you want to install for each offering on subsequent panels.

v If you select Update all, Installation Manager will install only the recommended updates to all of
the package groups; it will not allow you to select non-recommended fixes for installation. If you
want to install non-recommended fixes, perform the following actions:
a. On this panel, clear the Update all check box and select an offering to update.
b. On the next panel, clear the option to show only recommended fixes and then select the fixes

that you want to install.
4. Click Next.
5. Select the version to which you want to update under IBM WebSphere SDK Java Technology

Edition Version 8.0 for Liberty.
6. Click Next.
7. Accept the terms in the license agreements, and click Next.
8. Review the summary information, and click Update.
v If the installation is successful, the program displays a message indicating that installation is

successful.
v If the installation is not successful, click View Log File to troubleshoot the problem.

9. Click Finish.
10. Click File > Exit to close Installation Manager.

758 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Uninstalling fix packs from IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty
using the GUI: 8.5.5.5

You can roll back IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty to an earlier
version using the Installation Manager GUI.

Before you begin

During the rollback process, Installation Manager must access files from the earlier version of the
package. By default, these files are stored on your computer when you install a package. If you change
the default setting or delete the saved files, Installation Manager requires access to the repository that
was used to install the earlier version.

About this task

Note: For information on installing and removing fix packs for WebSphere Application Server Liberty
Core on distributed operating systems using the Installation Manager command line, read the following
articles in this information center:
v “Installing Liberty fix packs on distributed operating systems using the command line” on page 720
v “Uninstalling Liberty fix packs from distributed operating systems using the command line” on page

730

Procedure

1. Stop all servers on the installation that is being modified.
2. Start Installation Manager.
3. Click Roll Back.

Note: If you are prompted to authenticate, use the IBM ID and password that you use to access
protected IBM software websites.

4. Select the package group to roll back.
5. Click Next.
6. Select the version to which you want to roll back under IBM WebSphere SDK Java Technology

Edition Version 8.0 for Liberty.
7. Click Next.
8. Review the summary information, and click Roll Back.
v If the rollback is successful, the program displays a message indicating that the rollback is

successful.
v If the rollback is not successful, click View Log File to troubleshoot the problem.

9. Click Finish.
10. Click File > Exit to close Installation Manager.

Uninstalling IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using the GUI:

Use the Installation Manager GUI to uninstall IBM WebSphere SDK Java Technology Edition Version 8.0
for Liberty.

Before you begin

Make sure that no commands or server profiles are using IBM WebSphere SDK Java Technology Edition
Version 8.0 for Liberty before uninstalling it. Server profiles using IBM WebSphere SDK Java Technology
Edition Version 8.0 for Liberty will not function if it is uninstalled.

Chapter 3. Installing Liberty 759

Procedure

1. Log on to your system.
2. Stop all servers and applications on the WebSphere Application Server Liberty Core installation.
3. Start Installation Manager.
4. Click Uninstall.
5. In the Uninstall Packages window, perform the following actions.

a. Select IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty and the appropriate
version.

b. Click Next.
6. Review the summary information.
7. Click Uninstall.
v If the uninstallation is successful, the program displays a message that indicates success.
v If the uninstallation is not successful, click View log to troubleshoot the problem.

8. Click Finish.
9. Click File > Exit to close Installation Manager.

Uninstalling IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using the
command line: 8.5.5.5

You can uninstall IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using the
Installation Manager command line.

Before you begin

Make sure that no commands or server profiles are using IBM WebSphere SDK Java Technology Edition
Version 8.0 for Liberty before uninstalling it. Server profiles using IBM WebSphere SDK Java Technology
Edition Version 8.0 for Liberty will not function if it is uninstalled.

Procedure

1. Log on to your system.
2. Stop all servers and applications on the WebSphere Application Server Liberty Core installation.
3. Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.
4. Use the imcl command to uninstall the offering.

Windows

imcl.exe uninstall com.ibm.websphere.liberty.IBMJAVA.v80
-installationDirectory installation_directory

AIX HP-UX Linux Solaris

./imcl uninstall com.ibm.websphere.liberty.IBMJAVA.v80
-installationDirectory installation_directory

Go to the IBM Installation Manager Information Center.

Uninstalling IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using response
files: 8.5.5.5

You can uninstall IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty using Installation
Manager response files.

760 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Before you begin

Make sure that no commands or server profiles are using IBM WebSphere SDK Java Technology Edition
Version 8.0 for Liberty before uninstalling it. Server profiles using IBM WebSphere SDK Java Technology
Edition Version 8.0 for Liberty will not function if it is uninstalled.

Optional: Perform or record the installation of Installation Manager and installation of IBM WebSphere
SDK Java Technology Edition Version 8.0 for Liberty to a temporary installation registry on one of your
systems so that you can use this temporary registry to record the uninstallation without using the
standard registry where Installation Manager is installed.

About this task

Using Installation Manager, you can work with response files to uninstall IBM WebSphere SDK Java
Technology Edition Version 8.0 for Liberty in a variety of ways. You can record a response file using the
GUI as described in the following procedure, or you can generate a new response file by hand or by
taking an example and modifying it.

Procedure

1. Optional: Record a response file to uninstall IBM WebSphere SDK Java Technology Edition
Version 8.0 for Liberty: On one of your systems, perform the following actions to record a response
file that will uninstall IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty:
a. From a command line, change to the eclipse subdirectory in the directory where you installed

Installation Manager.
b. Start Installation Manager from the command line using the -record option.

For example:

v Windows Administrator or non-administrator:
IBMIM.exe -skipInstall "C:\temp\imRegistry"
-record C:\temp\uninstall_response_file.xml

v AIX HP-UX Linux Solaris Administrator:
./IBMIM -skipInstall /var/temp/imRegistry
-record /var/temp/uninstall_response_file.xml

v AIX HP-UX Linux Solaris Non-administrator:
./IBMIM -skipInstall user_home/var/temp/imRegistry
-record user_home/var/temp/uninstall_response_file.xml

Tip: If you choose to use the -skipInstall parameter with a temporary installation registry created
as described in Before you begin, Installation Manager uses the temporary installation registry while
recording the response file. It is important to note that when the -skipInstall parameter is
specified, no packages are installed or uninstalled. All of the actions that you perform in
Installation Manager simply update the installation data that is stored in the specified temporary
registry. After the response file is generated, it can be used to uninstall IBM WebSphere SDK Java
Technology Edition Version 8.0 for Liberty, removing the files and updating the standard
installation registry.

The -skipInstall operation should not be used on the actual agent data location used by
Installation Manager. This is unsupported. Use a clean writable location, and re-use that location
for future recording sessions.
For more information, read the IBM Installation Manager Information Center.

c. Click Uninstall.
d. In the Uninstall Packages window, perform the following actions.

1) Select IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty and the
appropriate version.

Chapter 3. Installing Liberty 761

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

2) Click Next.
e. Review the summary information.
f. Click Uninstall.
v If the uninstallation is successful, the program displays a message that indicates success.
v If the uninstallation is not successful, click View log to troubleshoot the problem.

g. Click Finish.
h. Click File > Exit to close Installation Manager.

2. Use the response file to uninstall IBM WebSphere SDK Java Technology Edition Version 8.0 for
Liberty: From a command line on each of the systems from which you want to uninstall IBM
WebSphere SDK Java Technology Edition Version 8.0 for Liberty, change to the eclipse/tools
subdirectory in the directory where you installed Installation Manager and use the response file that
you created to uninstall IBM WebSphere SDK Java Technology Edition Version 8.0 for Liberty.
For example:

v Windows Administrator or non-administrator:
imcl.exe
input C:\temp\uninstall_response_file.xml
-log C:\temp\uninstall_log.xml

v AIX HP-UX Linux Solaris Administrator:
./imcl
input /var/temp/uninstall_response_file.xml
-log /var/temp/uninstall_log.xml

v AIX HP-UX Linux Solaris Non-administrator:
./imcl
input user_home/var/temp/uninstall_response_file.xml
-log user_home/var/temp/uninstall_log.xml

Go to the IBM Installation Manager Information Center.
3. Optional: List all installed packages to verify the uninstallation.

AIX HP-UX Linux Solaris

./imcl listInstalledPackages

Windows

imcl listInstalledPackages

Windows

Example

The following is an example of a response file for uninstalling IBM WebSphere SDK Java Technology
Edition Version 8.0 for Liberty.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input clean=’true’ temporary=’true’>
<uninstall modify=’false’>
<offering id=’com.ibm.websphere.liberty.IBMJAVA.v80’
profile=’WebSphere Liberty V8.5’/>

</uninstall>
<profile id=’WebSphere Liberty V8.5’
installLocation=’C:\Program Files\IBM\WebSphere\Liberty’>

</profile>
</agent-input>

Using the sample response files
You can edit and use sample response file for installing, modifying, or uninstalling Liberty offerings
silently.

Procedure
v “Sample response file: Installing IBM WebSphere Application Server Liberty Core” on page 763
v “Sample response file: Modifying IBM WebSphere Application Server Liberty Core” on page 767

762 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

v “Sample response file: Uninstalling IBM WebSphere Application Server Liberty Core” on page 772
v “Sample response file: Installing IBM WebSphere SDK Java Technology Edition Version 7.0 for Liberty”

on page 775
v “Sample response file: Uninstalling IBM WebSphere SDK Java Technology Edition Version 7.0 for

Liberty” on page 780

Sample response file: Installing IBM WebSphere Application Server Liberty Core:

You can edit and use this example of a response file for installing IBM WebSphere Application Server
Liberty Core.
<?xml version="1.0" encoding="UTF-8"?>

<!-- ##### Copyright ##
Licensed Materials - Property of IBM (c) Copyright IBM Corp. 2013.
All Rights Reserved. US Government Users Restricted Rights-Use, duplication
or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
-->

<!-- ##### Frequently Asked Questions #####################################
The latest information about using Installation Manager is
located in the online Information Center. There you can find
information about the commands and attributes used in
silent installation response files.
#
Installation Manager Information Center can be found at:
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
Question 1. How do I record a response file using Installation Manager?
Answer 1. Start Installation Manager from the command line under the
eclipse subdirectory with the record parameter and it will generate a
response file containing actions it performed, repositories it used, and
its preferences settings. Optionally use the -skipInstall parameter if
you do not want the product to be installed to the machine. Specify a
new agentDataLocation location value when doing a new installation. Do
not use an existing agentDataLocation for an installation because it might
damage the installation data and prevent you from modifying, updating,
rolling back, or uninstalling the installed packages.
#
Windows: IBMIM -record <responseFile> -skipInstall <agentDataLocation>
Linux or UNIX: ./IBMIM -record <responseFile> -skipInstall <agentDataLocation>
#
For example:
Windows = IBMIM.exe -record c:\temp\responsefiles\WASv85.install.Win32.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
Linux or UNIX = ./IBMIM -record /home/user/responsefiles/WASv85.install.RHEL64.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
#
Question 2. How do I run Installation Manager silently using response file?
Answer 2. Create a silent installation response file and run the following command
from the eclipse\tools subdirectory in the directory where you installed
Installation Manager:
#
Windows = imcl.exe -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
#
For example:
Windows = imcl.exe -acceptLicense -showProgress
input c:\temp\responsefile\WASv85.install.Win32.xml
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input /home/user/responsefile/WASv85.install.RHEL64.xml
#
The -acceptLicense command must be included to indicate acceptance of all
license agreements of all offerings being installed, updated or modified.
The -showProgress command shows progress when running in silent mode.
Additional commands can be displayed by requesting help: IBMIM -help
#
Question 3. How do I store and pass credentials to repositories that
require authentication?
Answer 3. There are two methods for storing authentication credentials
for Installation Manager depending on the version being used,
either key ring files or storage files.
#
Versions of Installation Manger before 1.6.2 use a key ring file to store
encrypted credentials for authenticating with repositories. Follow this
two-step process for creating and using a key ring file with Installation Manager.
#
First, create a key ring file with your credentials by starting
Installation Manager from the command line under eclipse subdirectory
with the keyring parameter.
Use the optional password parameter to password protect your file.
#

Chapter 3. Installing Liberty 763

Windows = IBMIM.exe -keyring <path and file name> -password <password>
Linux, UNIX, IBM i and z/OS = ./IBMIM -keyring <path and file name>
-password <password>
#
Installation Manager will start in graphical mode. Verify that the
repositories to which you need to authenticate are included in the
preferences, File / Preferences / Repositories. If they are not
listed, then click Add Repositories to add the URL or UNC path.
Installation Manager will prompt for your credentials. If the repository
is already in the list, then any attempt to access the repository location,
such as clicking the Test Connections button, will also prompt for your
credentials. Enter the correct credential and check the Save password
checkbox. The credentials are saved to the key ring file you specified.
#
Second, when you start a silent installation, run imcl under eclipse/tools
subdirectory, and provide Installation Manager with the location of the key
ring file and the password if the file is protected. For example:
#
Windows = imcl.exe -acceptLicense -showProgress
input <path and file name of response file>
-keyring <path and name of key ring file> -password <password>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <path and file name of response file>
-keyring <path and name of key ring file> -password <password>
#
Versions of Installation Manager at 1.6.2 or higher use storage files
to store encrypted credentials. Complete the following steps to create
master password and storage files to use with Installation Manager.
#
First, if you do not have a master password file already, create a text file
that contains a master passphrase. An example of a passphrase is:
"This text is the passphrase for a master password file."
#
Next, run imutilsc under the eclipse/tools subdirectory with the following
options to create and store user credentials in a storage file.
-secureStorageFile <path and file name of storage file>
-masterPasswordFile <path and file name of master password file>
-url <repository address> or -passportAdvantage <PPA repository address>
-userName <user name>
-userPassword <password for user>
#
Example of a command to create a storage file by operating system
Windows = imutilsc saveCredential -url http://myServer -userName myUserName
-userPassword myPassword -secureStorageFile C:\IBM\credential.store
-masterPasswordFile C:\IBM\master_password_file.txt
Linux, UNIX, IBM z/OS, and the OS X operating system =
./imutilsc saveCredential -url http://myServer -userName myUserName
-userPassword myPassword -secureStorageFile /home/IBM/credential.store
-masterPasswordFile /home/user/IBM/master_password_file.txt
#
Usage hints:
* Do not use both the -url and -passportAdvantage options in the same command.
* Enclose file paths that include spaces with double quotation marks.
* If you use the IBM service repositories, you can specify the value:
http://www.ibm.com/software/repositorymanager/entitled/repository.xml
for the -url option which is a generic service repository for IBM packages.
* Repeat steps to store credentials for multiple users in one file.
* Repeat steps to store credentials for multiple repositories in one file.
#
Afterwards, when you start a silent installation, run imcl under the eclipse/tools
subdirectory, and provide Installation Manager with the location of the storage
file. For example:
#
Windows = imcl.exe -acceptLicense -showProgress
input <path and file name of response file>
-secureStorageFile <path and name of storage file>
-masterPasswordFile <path and name of master password file>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <path and file name of response file>
-secureStorageFile <path and name of storage file>
-masterPasswordFile <path and name of master password file>
#
-->

<!-- ##### Agent Input ##
#
Note that the acceptLicense attribute has been deprecated.
Use the -acceptLicense command line option to accept license agreements.
#
The clean and temporary attributes specify the repositories and other
preferences Installation Manager uses and whether those settings
should persist after the installation finishes.
#
Valid values for clean:
true = only use the repositories and other preferences that are
specified in the response file.
false = use the repositories and other preferences that are
specified in the response file and Installation Manager.
#
Valid values for temporary:

764 WebSphere Application Server Liberty Core 8.5.5

true = repositories and other preferences specified in the
response file do not persist in Installation Manager.
false = repositories and other preferences specified in the
response file persist in Installation Manager.
#
-->

<agent-input clean="true" temporary="true">

<!-- ##### Repositories ###
Repositories are locations that Installation Manager queries for
installable packages. Repositories can be local (on the machine
with Installation Manager) or remote (on a corporate intranet or
hosted elsewhere on the internet).
#
If the machine using this response file has access to the internet,
then include the IBM WebSphere Live Update Repositories in the list
of repository locations.
#
If the machine using this response file cannot access the internet,
then comment out the IBM WebSphere Live Update Repositories and
specify the URL or UNC path to custom intranet repositories and
directory paths to local repositories to use.
#
-->

<server>
<!-- ##### IBM WebSphere Live Update Repositories ####################
These repositories contain WebSphere Application Server Liberty offerings,
and updates for those offerings
#
To use the secure repository (https), you must have an IBM ID,
which can be obtained by registering at: http://www.ibm.com/account
or your Passport Advantage account.
#
And, you must use a key ring file with your response file.
-->

<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85"/>
<!-- <repository location="https://www.ibm.com/software/rational/repositorymanager/repositories/websphere" /> -->

<!-- ##### Custom Repositories #######################################
Uncomment and update the repository location key below
to specify URLs or UNC paths to any intranet repositories
and directory paths to local repositories to use.
-->
<!-- <repository location=’https:\\w3.mycompany.com\repositories\’/> -->
<!-- <repository location=’/home/user/repositories/websphere/’/> -->

<!-- ##### Local Repositories ##
Uncomment and update the following line when using a local
repository located on your own machine to install a
WebSphere Application Server Liberty offering.
-->
<!-- <repository location=’insert the full directory path inside single quotes’/> -->

</server>

<!-- ##### Install Packages ###
#
Install Command
#
Use the install command to inform Installation Manager of the
installation packages to install.
#
The modify attribute is optional and can be paired with an install
command to add features or paired with an uninstall command to
remove commands. If omitted, the default value is set to false.
false = indicates not to modify an existing install by adding
or removing features.
true = indicates to modify an existing install by adding or
removing features.
#
The offering ID attribute is required because it specifies the
offering to be installed. The offering listed must be present in
at least one of the repositories listed earlier. The example
command below contains the offering ID for the Core
edition of WebSphere Application Server Liberty.
#
The version attribute is optional. If a version number is provided,
then the offering will be installed at the version level specified
as long as it is available in the repositories. If the version
attribute is not provided, then the default behavior is to install
the latest version available in the repositories. The version number
can be found in the repository.xml file in the repositories.
For example, <offering ... version=’8.5.5000.20130326_0211’>.
#
The profile attribute is required and typically is unique to the
offering. If modifying or updating an existing installation, the
profile attribute must match the profile ID of the targeted installation
of WebSphere Application Server Liberty.
#

Chapter 3. Installing Liberty 765

The features attribute is optional. Offerings always have at least
one feature; a required core feature which is installed regardless
of whether it is explicitly specified. If other feature names
are provided, then only those features will be installed.
Features must be comma delimited without spaces.
#
The feature values for WebSphere Application Server Liberty include:
liberty,embeddablecontainer
#
The features embeddablecontainer is a subfeature of liberty.
#
You can use these functions to add or remove feature embeddablecontainer later.
#
The installFixes attribute indicates whether fixes available in
repositories are installed with the product. By default, all
available fixes will be installed with the offering.
#
Valid values for installFixes:
none = do not install available fixes with the offering.
recommended = installs all available recommended fixes with the offering.
all = installs all available fixes with the offering.
#
Interim fixes for offerings also can be installed while they
are being installed by including the offering ID for the interim
fix and specifying the profile ID.
#
Installation Manager supports installing multiple offerings at once.
Additional offerings can be included in the install command,
with each offering requiring its own offering ID, version, profile value,
and feature values.
#
Profile Command
#
A separate profile command must be included for each offering listed
in the install command. The profile command informs Installation
Manager about offering specific properties or configuration values.
#
The installLocation specifies where the offering will be installed.
If the response file is used to modify or update an existing
installation, then ensure the installLocation points to the
location where the offering was installed previously.
#
The eclipseLocation data key should use the same directory path to
WebSphere Application Server Liberty as the installationLocation attribute.
#
Include data keys for product specific profile properties.
For instance, Installing WebSphere Application Server Liberty Offerings on
a 64-bit system will require to include one of the options for an IBM Software
Development Kit, this can be specified by data key cic.selector.arch, its value
can be either x86 (for 32-bit), or x86_64 (for 64-bit).
#
More details for cic.selector.arch can be found in the link below:
#
https://infocenters.hursley.ibm.com/was/vNext/draft/help/index.jsp?topic=%2Fcom.ibm.websphere.wlp.core.doc%2Fae%2Ftwlp_ins_installation_dist_silent.html
#
-->

<install modify="false">
<offering id="com.ibm.websphere.liberty.v85" profile="WebSphere Liberty V8.5" features="liberty,embeddablecontainer" installFixes="none" />
</install>
<profile id="WebSphere Liberty V8.5" installLocation="C:\Program Files\IBM\WebSphere\Liberty">
<data key="eclipseLocation" value="C:\Program Files\IBM\WebSphere\Liberty" />
<data key="cic.selector.arch" value="x86_64" />
</profile>

<!-- ##### Shared Data Location ###
Uncomment the preference for eclipseCache to set the shared data
location the first time you use Installation Manager to do an
installation.
#
Eclipse cache location can be obtained from the installed.xml file found in
Linux/Unix: /var/ibm/InstallationManager
Windows: C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager
from the following property:
<property name=’cacheLocation’ value=’C:\Program Files\IBM\IMShared’/>
#
Open the installed.xml file in a text editor because the style sheet
might hide this value if opened in a web browser.
For further information on how to edit preferences, refer to the public library at:
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp?topic=/com.ibm.silentinstall12.doc/topics/r_silent_prefs.html
#
After the shared data location is set, it cannot be changed
using a response file or the graphical wizard.
#
Ensure that the shared data location is a location that can be written
to by all user accounts that are expected to use Installation Manager.
#
By default, Installation Manager saves downloaded artifacts to
the shared data location. This serves two purposes.
#

766 WebSphere Application Server Liberty Core 8.5.5

First, if the same product is installed a more than once to the machine,
then the files in the shared data location will be used rather than
downloading them again.
#
Second, during the rollback process, the saved artifacts are used.
Otherwise, if the artifacts are not saved or are removed, then
Installation Manager must have to access the repositories used to
install the previous versions.
#
Valid values for preserveDownloadedArtifacts:
true = store downloaded artifacts in the shared data location
false = remove downloaded artifacts from the shared data location
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’ value=’C:\Program Files\IBM\IMShared’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
-->

<!-- ##### Preferences Settings ###
Additional preferences for Installation Manager can be specified.
These preference correspond to those that are located in the graphical
interface under File / Preferences.
#
If a preference command is omitted from or commented out of the response
file, then Installation Manager uses the preference value that was
previously set or the default value for the preference.
#
Preference settings might be added or deprecated in new versions of
Installation Manager. Consult the online Installation Manager
Information Center for the latest set of preferences and
descriptions about how to use them.
#
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’45’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’ value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
<preference name=’com.ibm.cic.agent.ui.displayInternalVersion’ value=’false’/>
-->

</agent-input>

Sample response file: Modifying IBM WebSphere Application Server Liberty Core:

You can edit and use this example of a response file for modifying IBM WebSphere Application Server
Liberty Core.
<?xml version="1.0" encoding="UTF-8"?>

<!-- ##### Copyright ##
Licensed Materials - Property of IBM (c) Copyright IBM Corp. 2013.
All Rights Reserved. US Government Users Restricted Rights-Use, duplication
or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
-->

<!-- ##### Frequently Asked Questions #####################################
The latest information about using Installation Manager is
located in the online Information Center. There you can find
information about the commands and attributes used in
silent installation response files.
#
Installation Manager Information Center can be found at:
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
Question 1. How do I record a response file using Installation Manager?
Answer 1. Start Installation Manager from the command line under the
eclipse subdirectory with the record parameter and it will generate a
response file containing actions it performed, repositories it used, and
its preferences settings. Optionally use the -skipInstall parameter if
you do not want the product to be installed to the machine. Specify a
new agentDataLocation location value when doing a new installation. Do
not use an existing agentDataLocation for an installation because it might
damage the installation data and prevent you from modifying, updating,
rolling back, or uninstalling the installed packages.

Chapter 3. Installing Liberty 767

#
Windows: IBMIM -record <responseFile> -skipInstall <agentDataLocation>
Linux or UNIX: ./IBMIM -record <responseFile> -skipInstall <agentDataLocation>
#
For example:
Windows = IBMIM.exe -record c:\temp\responsefiles\WASv85.install.Win32.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
Linux or UNIX = ./IBMIM -record /home/user/responsefiles/WASv85.install.RHEL64.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
#
Question 2. How do I run Installation Manager silently using response file?
Answer 2. Create a silent installation response file and run the following command
from the eclipse\tools subdirectory in the directory where you installed
Installation Manager:
#
Windows = imcl.exe -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
#
For example:
Windows = imcl.exe -acceptLicense -showProgress
input c:\temp\responsefile\WASv85.install.Win32.xml
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input /home/user/responsefile/WASv85.install.RHEL64.xml
#
The -acceptLicense command must be included to indicate acceptance of all
license agreements of all offerings being installed, updated or modified.
The -showProgress command shows progress when running in silent mode.
Additional commands can be displayed by requesting help: IBMIM -help
#
Question 3. How do I store and pass credentials to repositories that
require authentication?
Answer 3. There are two methods for storing authentication credentials
for Installation Manager depending on the version being used,
either key ring files or storage files.
#
Versions of Installation Manger before 1.6.2 use a key ring file to store
encrypted credentials for authenticating with repositories. Follow this
two-step process for creating and using a key ring file with Installation Manager.
#
First, create a key ring file with your credentials by starting
Installation Manager from the command line under eclipse subdirectory
with the keyring parameter.
Use the optional password parameter to password protect your file.
#
Windows = IBMIM.exe -keyring <path and file name> -password <password>
Linux, UNIX, IBM i and z/OS = ./IBMIM -keyring <path and file name>
-password <password>
#
Installation Manager will start in graphical mode. Verify that the
repositories to which you need to authenticate are included in the
preferences, File / Preferences / Repositories. If they are not
listed, then click Add Repositories to add the URL or UNC path.
Installation Manager will prompt for your credentials. If the repository
is already in the list, then any attempt to access the repository location,
such as clicking the Test Connections button, will also prompt for your
credentials. Enter the correct credential and check the Save password
checkbox. The credentials are saved to the key ring file you specified.
#
Second, when you start a silent installation, run imcl under eclipse/tools
subdirectory, and provide Installation Manager with the location of the key
ring file and the password if the file is protected. For example:
#
Windows = imcl.exe -acceptLicense -showProgress
input <path and file name of response file>
-keyring <path and name of key ring file> -password <password>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <path and file name of response file>
-keyring <path and name of key ring file> -password <password>
#
Versions of Installation Manager at 1.6.2 or higher use storage files
to store encrypted credentials. Complete the following steps to create
master password and storage files to use with Installation Manager.
#
First, if you do not have a master password file already, create a text file
that contains a master passphrase. An example of a passphrase is:
"This text is the passphrase for a master password file."
#
Next, run imutilsc under the eclipse/tools subdirectory with the following
options to create and store user credentials in a storage file.
-secureStorageFile <path and file name of storage file>
-masterPasswordFile <path and file name of master password file>
-url <repository address> or -passportAdvantage <PPA repository address>
-userName <user name>
-userPassword <password for user>
#
Example of a command to create a storage file by operating system
Windows = imutilsc saveCredential -url http://myServer -userName myUserName
-userPassword myPassword -secureStorageFile C:\IBM\credential.store

768 WebSphere Application Server Liberty Core 8.5.5

-masterPasswordFile C:\IBM\master_password_file.txt
Linux, UNIX, IBM z/OS, and the OS X operating system =
./imutilsc saveCredential -url http://myServer -userName myUserName
-userPassword myPassword -secureStorageFile /home/IBM/credential.store
-masterPasswordFile /home/user/IBM/master_password_file.txt
#
Usage hints:
* Do not use both the -url and -passportAdvantage options in the same command.
* Enclose file paths that include spaces with double quotation marks.
* If you use the IBM service repositories, you can specify the value:
http://www.ibm.com/software/repositorymanager/entitled/repository.xml
for the -url option which is a generic service repository for IBM packages.
* Repeat steps to store credentials for multiple users in one file.
* Repeat steps to store credentials for multiple repositories in one file.
#
Afterwards, when you start a silent installation, run imcl under the eclipse/tools
subdirectory, and provide Installation Manager with the location of the storage
file. For example:
#
Windows = imcl.exe -acceptLicense -showProgress
input <path and file name of response file>
-secureStorageFile <path and name of storage file>
-masterPasswordFile <path and name of master password file>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <path and file name of response file>
-secureStorageFile <path and name of storage file>
-masterPasswordFile <path and name of master password file>
#
-->

<!-- ##### Agent Input ##
#
The clean and temporary attributes specify the repositories and other
preferences Installation Manager uses and whether those settings
should persist after the installation finishes.
#
Valid values for clean:
true = only use the repositories and other preferences that are
specified in the response file.
false = use the repositories and other preferences that are
specified in the response file and Installation Manager.
#
Valid values for temporary:
true = repositories and other preferences specified in the
response file do not persist in Installation Manager.
false = repositories and other preferences specified in the
response file persist in Installation Manager.
#
-->

<agent-input clean="true" temporary="true">

<!-- ##### Repositories ###
Repositories are locations that Installation Manager queries for
installable packages. Repositories can be local (on the machine
with Installation Manager) or remote (on a corporate intranet or
hosted elsewhere on the internet).
#
If the machine using this response file has access to the internet,
then include the IBM WebSphere Live Update Repositories in the list
of repository locations.
#
If the machine using this response file cannot access the internet,
then comment out the IBM WebSphere Live Update Repositories and
specify the URL or UNC path to custom intranet repositories and
directory paths to local repositories to use.
#
-->

<server>
<!-- ##### IBM WebSphere Live Update Repositories ####################
These repositories contain WebSphere Application Server Liberty offerings,
and updates for those offerings
#
To use the secure repository (https), you must have an IBM ID,
which can be obtained by registering at: http://www.ibm.com/account
or your Passport Advantage account.
#
And, you must use a key ring file with your response file.
-->

<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85"/>
<!-- <repository location="https://www.ibm.com/software/rational/repositorymanager/repositories/websphere" /> -->

<!-- ##### Custom Repositories #######################################
Uncomment and update the repository location key below
to specify URLs or UNC paths to any intranet repositories
and directory paths to local repositories to use.
-->
<!-- <repository location=’https:\\w3.mycompany.com\repositories\’/> -->
<!-- <repository location=’/home/user/repositories/websphere/’/> -->

Chapter 3. Installing Liberty 769

<!-- ##### Local Repositories ##
Uncomment and update the following line when using a local
repository located on your own machine to install a
WebSphere Application Server Liberty offering.
-->
<!-- <repository location=’insert the full directory path inside single quotes’/> -->

</server>

<!-- ##### Modify Packages ###
#
Install and Uninstall Commands
#
Use the install and uninstall commands to inform Installation Manager
of the installation packages to install or uninstall.
#
The modify attribute is optional and can be paired with an install
command to add features or paired with an uninstall command to
remove commands. If omitted, the default value is set to false.
false = indicates not to modify an existing install by adding
or removing features.
true = indicates to modify an existing install by adding or
removing features.
#
The offering ID attribute is required because it specifies the
offering to be installed. The offering listed must be present in
at least one of the repositories listed earlier. The example
command below contains the offering ID for the Core
edition of WebSphere Application Server Liberty.
#
The version attribute is optional. If a version number is provided,
then the offering will be installed or uninstalled at the version level
specified as long as it is available in the repositories. If the version
attribute is not provided, then the default behavior is to install or
uninstall the latest version available in the repositories. The version
number can be found in the repository.xml file in the repositories.
For example, <offering ... version=’8.5.5000.20130328_1111’>.
#
The profile attribute is required and typically is unique to the
offering. If modifying or updating an existing installation, the
profile attribute must match the profile ID of the targeted installation
of WebSphere Application Server Liberty.
#
The features attribute is optional. Offerings always have at least
one feature; a required core feature which is installed regardless
of whether it is explicitly specified. If other feature names
are provided, then only those features will be installed.
Features must be comma delimited without spaces.
#
The feature values for WebSphere Application Server Liberty include:
liberty,embeddablecontainer
#
The features embeddablecontainer is a subfeature of liberty.
#
You can use these functions to add or remove feature embeddablecontainer
later.
#
In the example that follows, the feature embeddablecontainer is
being added and no feature are being removed from the specified offering.
#
The installFixes attribute indicates whether fixes available in
repositories are installed with the product. By default, all
available fixes will be installed with the offering.
#
Valid values for installFixes:
none = do not install available fixes with the offering.
recommended = installs all available recommended fixes with the offering.
all = installs all available fixes with the offering.
#
Installation Manager supports modifying multiple offerings at once.
Additional offerings can be included in the install and uninstall commands,
with each offering requiring its own offering ID, version, profile value,
and feature values.
#
Profile Command
#
A separate profile command must be included for each offering listed
in the install command. The profile command informs Installation
Manager about offering specific properties or configuration values.
#
The installLocation specifies where the offering will be installed.
If the response file is used to modify or update an existing
installation, then ensure the installLocation points to the
location where the offering was installed previously.
#
The eclipseLocation data key should use the same directory path to
WebSphere Application Server Liberty as the installationLocation attribute.
#
Include data keys for product specific profile properties.
For instance, Installing WebSphere Application Server Liberty Offerings on

770 WebSphere Application Server Liberty Core 8.5.5

a 64-bit system will require to include one of the options for an IBM Software
Development Kit, this can be specified by data key cic.selector.arch, its value
can be either x86 (for 32-bit), or x86_64 (for 64-bit).
#
More details for cic.selector.arch can be found in the link below:
#
https://infocenters.hursley.ibm.com/was/vNext/draft/help/index.jsp?topic=%2Fcom.ibm.websphere.wlp.core.doc%2Fae%2Ftwlp_ins_installation_dist_silent.html
#
-->

<install modify="true">
<offering id="com.ibm.websphere.liberty.v85" profile="WebSphere Liberty V8.5" features="embeddablecontainer" />
</install>
<profile id="WebSphere Liberty V8.5" installLocation="C:\Program Files\IBM\WebSphere\Liberty">
<data key="eclipseLocation" value="C:\Program Files\IBM\WebSphere\Liberty" />
<data key="cic.selector.arch" value="x86_64" />
</profile>

<!-- ##### Shared Data Location ###
Uncomment the preference for eclipseCache to set the shared data
location the first time you use Installation Manager to do an
installation.
#
Eclipse cache location can be obtained from the installed.xml file found in
Linux/Unix: /var/ibm/InstallationManager
Windows: C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager
from the following property:
<property name=’cacheLocation’ value=’C:\Program Files\IBM\IMShared’/>
#
Open the installed.xml file in a text editor because the style sheet
might hide this value if opened in a web browser.
For further information on how to edit preferences, refer to the public library at:
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp?topic=/com.ibm.silentinstall12.doc/topics/r_silent_prefs.html
#
After the shared data location is set, it cannot be changed
using a response file or the graphical wizard.
#
Ensure that the shared data location is a location that can be written
to by all user accounts that are expected to use Installation Manager.
#
By default, Installation Manager saves downloaded artifacts to
the shared data location. This serves two purposes.
#
First, if the same product is installed a more than once to the machine,
then the files in the shared data location will be used rather than
downloading them again.
#
Second, during the rollback process, the saved artifacts are used.
Otherwise, if the artifacts are not saved or are removed, then
Installation Manager must have to access the repositories used to
install the previous versions.
#
Valid values for preserveDownloadedArtifacts:
true = store downloaded artifacts in the shared data location
false = remove downloaded artifacts from the shared data location
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’ value=’C:\Program Files\IBM\IMShared’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
-->

<!-- ##### Preferences Settings ###
Additional preferences for Installation Manager can be specified.
These preference correspond to those that are located in the graphical
interface under File / Preferences.
#
If a preference command is omitted from or commented out of the response
file, then Installation Manager uses the preference value that was
previously set or the default value for the preference.
#
Preference settings might be added or deprecated in new versions of
Installation Manager. Consult the online Installation Manager
Information Center for the latest set of preferences and
descriptions about how to use them.
#
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’45’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’ value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>

Chapter 3. Installing Liberty 771

<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
<preference name=’com.ibm.cic.agent.ui.displayInternalVersion’ value=’false’/>
-->

</agent-input>

Sample response file: Uninstalling IBM WebSphere Application Server Liberty Core:

You can edit and use this example of a response file for uninstalling IBM WebSphere Application Server
Liberty Core.
<?xml version="1.0" encoding="UTF-8"?>

<!-- ##### Copyright ##
Licensed Materials - Property of IBM (c) Copyright IBM Corp. 2013.
All Rights Reserved. US Government Users Restricted Rights-Use, duplication
or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
-->

<!-- ##### Frequently Asked Questions #####################################
The latest information about using Installation Manager is
located in the online Information Center. There you can find
information about the commands and attributes used in
silent installation response files.
#
Installation Manager Information Center can be found at:
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
Question 1. How do I record a response file using Installation Manager?
Answer 1. Start Installation Manager from the command line under the
eclipse subdirectory with the record parameter and it will generate a
response file containing actions it performed, repositories it used, and
its preferences settings. Optionally use the -skipInstall parameter if
you do not want the product to be installed to the machine. Specify a
new agentDataLocation location value when doing a new installation. Do
not use an existing agentDataLocation for an installation because it might
damage the installation data and prevent you from modifying, updating,
rolling back, or uninstalling the installed packages.
#
Windows: IBMIM -record <responseFile> -skipInstall <agentDataLocation>
Linux or UNIX: ./IBMIM -record <responseFile> -skipInstall <agentDataLocation>
#
For example:
Windows = IBMIM.exe -record c:\temp\responsefiles\WASv85.install.Win32.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
Linux or UNIX = ./IBMIM -record /home/user/responsefiles/WASv85.install.RHEL64.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
#
Question 2. How do I run Installation Manager silently using response file?
Answer 2. Create a silent installation response file and run the following command
from the eclipse\tools subdirectory in the directory where you installed
Installation Manager:
#
Windows = imcl.exe -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
#
For example:
Windows = imcl.exe -acceptLicense -showProgress
input c:\temp\responsefile\WASv85.install.Win32.xml
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input /home/user/responsefile/WASv85.install.RHEL64.xml
#
The -acceptLicense command must be included to indicate acceptance of all
license agreements of all offerings being installed, updated or modified.
The -showProgress command shows progress when running in silent mode.
Additional commands can be displayed by requesting help: IBMIM -help
#
-->

<!-- ##### Agent Input ###
The clean and temporary attributes specify the repositories and other
preferences Installation Manager uses and whether those settings
should persist after the uninstall finishes.
#
Valid values for clean:
true = only use the repositories and other preferences that are
specified in the response file.
false = use the repositories and other preferences that are
specified in the response file and Installation Manager.
#
Valid values for temporary:
true = repositories and other preferences specified in the
response file do not persist in Installation Manager.
false = repositories and other preferences specified in the

772 WebSphere Application Server Liberty Core 8.5.5

response file persist in Installation Manager.
#
-->

<agent-input clean="true" temporary="true">

<!-- ##### Repositories ###
Repositories are locations that Installation Manager queries for
installable packages. Repositories can be local (on the machine
with Installation Manager) or remote (on a corporate intranet or
hosted elsewhere on the internet).
#
If the machine using this response file has access to the internet,
then include the IBM WebSphere Live Update Repositories in the list
of repository locations.
#
If the machine using this response file cannot access the internet,
then comment out the IBM WebSphere Live Update Repositories and
specify the URL or UNC path to custom intranet repositories and
directory paths to local repositories to use.
#
-->

<server>
<!-- ##### IBM WebSphere Live Update Repositories ####################
These repositories contain WebSphere Application Server Liberty offerings,
and updates for those offerings
#
To use the secure repository (https), you must have an IBM ID,
which can be obtained by registering at: http://www.ibm.com/account
or your Passport Advantage account.
#
And, you must use a key ring file with your response file.
-->
<!--repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85"/-->
<!-- <repository location="https://www.ibm.com/software/rational/repositorymanager/repositories/websphere" /> -->

<!-- ##### Custom Repositories #######################################
Uncomment and update the repository location key below
to specify URLs or UNC paths to any intranet repositories
and directory paths to local repositories to use.
-->
<!-- <repository location=’https:\\w3.mycompany.com\repositories\’/> -->
<!-- <repository location=’/home/user/repositories/websphere/’/> -->

<!-- ##### Local Repositories ##
Uncomment and update the following line when using a local
repository located on your own machine to install a
WebSphere Application Server Liberty offering.
-->
<!-- <repository location=’insert the full directory path inside single quotes’/> -->

</server>

<!-- ##### Uninstall Packages ##
#
Uninstall Command
#
Use the uninstall command to inform Installation Manager of the
installation packages to uninstall.
#
The modify attribute is optional and can be paired with an install
command to add features or paired with an uninstall command to
remove commands. If omitted, the default value is set to false.
false = indicates not to modify an existing install by adding
or removing features.
true = indicates to modify an existing install by adding or
removing features.
#
The offering ID attribute is required because it specifies the
offering to be uninstalled. The example command below contains the
offering ID for WebSphere Application Server Liberty Core edition.
#
The version attribute is optional. If a version number is provided,
then the offering will be uninstalled at the version level specified
If the version attribute is not provided, then the default behavior is
to uninstall the latest version. The version number can be found in
the repository.xml file in the repositories.
For example, <offering ... version=’8.5.5000.20130326_0211’>.
#
The profile attribute is required and must match the package group
name for the offering to be uninstalled.
#
The features attribute is optional. Offerings always have at least
one feature; a required core feature which is installed regardless
of whether it is explicitly specified. If other feature names
are provided, then only those features will be installed.
Features must be comma delimited without spaces.
#
The feature values for WebSphere Application Server Liberty include:
liberty,embeddablecontainer

Chapter 3. Installing Liberty 773

#
The features embeddablecontainer is a subfeature of liberty.
#
Installation Manager supports uninstalling multiple offerings at once.
Additional offerings can be included in the uninstall command,
with each offering requiring its own offering ID, version, profile value,
and feature values.
#
Profile Command
#
A separate profile command must be included for each offering listed
in the install command. The profile command informs Installation
Manager about offering specific properties or configuration values.
#
The installLocation specifies where the offering will be installed.
If the response file is used to modify or update an existing
installation, then ensure the installLocation points to the
location where the offering was installed previously.
#
The eclipseLocation data key should use the same directory path to
WebSphere Application Server Liberty as the installationLocation attribute.
#
Include data keys for product specific profile properties.
For instance, Installing WebSphere Application Server Liberty Offerings on
a 64-bit system will require to include one of the options for an IBM Software
Development Kit, this can be specified by data key cic.selector.arch, its value
can be either x86 (for 32-bit), or x86_64 (for 64-bit).
#
More details for cic.selector.arch can be found in the link below:
#
https://infocenters.hursley.ibm.com/was/vNext/draft/help/index.jsp?topic=%2Fcom.ibm.websphere.wlp.core.doc%2Fae%2Ftwlp_ins_installation_dist_silent.html
#
-->

<uninstall modify="false">
<offering id="com.ibm.websphere.liberty.v85" profile="WebSphere Liberty V8.5" features="liberty,embeddablecontainer" />
</uninstall>
<profile id="WebSphere Liberty V8.5" installLocation="C:\Program Files\IBM\WebSphere\Liberty">
<data key="eclipseLocation" value="C:\Program Files\IBM\WebSphere\Liberty" />
<data key="cic.selector.arch" value="x86_64" />
</profile>

<!-- ##### Shared Data Location ###
Uncomment the preference for eclipseCache to set the shared data
location the first time you use Installation Manager to do an
installation.
#
Eclipse cache location can be obtained from the installed.xml file found in
Linux/Unix: /var/ibm/InstallationManager
Windows: C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager
from the following property:
<property name=’cacheLocation’ value=’C:\Program Files\IBM\IMShared’/>
#
Open the installed.xml file in a text editor because the style sheet
might hide this value if opened in a web browser.
For further information on how to edit preferences, refer to the public library at:
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp?topic=/com.ibm.silentinstall12.doc/topics/r_silent_prefs.html
#
After the shared data location is set, it cannot be changed
using a response file or the graphical wizard.
#
Ensure that the shared data location is a location that can be written
to by all user accounts that are expected to use Installation Manager.
#
By default, Installation Manager saves downloaded artifacts to
the shared data location. This serves two purposes.
#
First, if the same product is installed a more than once to the machine,
then the files in the shared data location will be used rather than
downloading them again.
#
Second, during the rollback process, the saved artifacts are used.
Otherwise, if the artifacts are not saved or are removed, then
Installation Manager must have to access the repositories used to
install the previous versions.
#
Valid values for preserveDownloadedArtifacts:
true = store downloaded artifacts in the shared data location
false = remove downloaded artifacts from the shared data location
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’ value=’C:\Program Files\IBM\IMShared’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
-->

<!-- ##### Preferences Settings ###
Additional preferences for Installation Manager can be specified.
These preference correspond to those that are located in the graphical

774 WebSphere Application Server Liberty Core 8.5.5

interface under File / Preferences.
#
If a preference command is omitted from or commented out of the response
file, then Installation Manager uses the preference value that was
previously set or the default value for the preference.
#
Preference settings might be added or deprecated in new versions of
Installation Manager. Consult the online Installation Manager
Information Center for the latest set of preferences and
descriptions about how to use them.
#
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’45’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’ value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
<preference name=’com.ibm.cic.agent.ui.displayInternalVersion’ value=’false’/>
-->

</agent-input>

Sample response file: Installing IBM WebSphere SDK Java Technology Edition Version 7.0 for
Liberty:

You can edit and use this example of a response file for installing IBM WebSphere SDK Java Technology
Edition Version 7.0 for Liberty.
<?xml version="1.0" encoding="UTF-8"?>

<!-- ##### Copyright ##
Licensed Materials - Property of IBM (c) Copyright IBM Corp. 2013.
All Rights Reserved. US Government Users Restricted Rights-Use, duplication
or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
-->

<!-- ##### Frequently Asked Questions #####################################
The latest information about using Installation Manager is
located in the online Information Center. There you can find
information about the commands and attributes used in
silent installation response files.
#
Installation Manager Information Center can be found at:
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
Question 1. How do I record a response file using Installation Manager?
Answer 1. Start Installation Manager from the command line under the
eclipse subdirectory with the record parameter and it will generate a
response file containing actions it performed, repositories it used, and
its preferences settings. Optionally use the -skipInstall parameter if
you do not want the product to be installed to the machine. Specify a
new agentDataLocation location value when doing a new installation. Do
not use an existing agentDataLocation for an installation because it might
damage the installation data and prevent you from modifying, updating,
rolling back, or uninstalling the installed packages.
#
Windows: IBMIM -record <responseFile> -skipInstall <agentDataLocation>
Linux or UNIX: ./IBMIM -record <responseFile> -skipInstall <agentDataLocation>
#
For example:
Windows = IBMIM.exe -record c:\temp\responsefiles\WASv85.install.Win32.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
Linux or UNIX = ./IBMIM -record /home/user/responsefiles/WASv85.install.RHEL64.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
#
Question 2. How do I run Installation Manager silently using response file?
Answer 2. Create a silent installation response file and run the following command
from the eclipse\tools subdirectory in the directory where you installed
Installation Manager:
#
Windows = imcl.exe -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
#
For example:
Windows = imcl.exe -acceptLicense -showProgress

Chapter 3. Installing Liberty 775

input c:\temp\responsefile\WASv85.install.Win32.xml
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input /home/user/responsefile/WASv85.install.RHEL64.xml
#
The -acceptLicense command must be included to indicate acceptance of all
license agreements of all offerings being installed, updated or modified.
The -showProgress command shows progress when running in silent mode.
Additional commands can be displayed by requesting help: IBMIM -help
#
Question 3. How do I store and pass credentials to repositories that
require authentication?
Answer 3. There are two methods for storing authentication credentials
for Installation Manager depending on the version being used,
either key ring files or storage files.
#
Versions of Installation Manger before 1.6.2 use a key ring file to store
encrypted credentials for authenticating with repositories. Follow this
two-step process for creating and using a key ring file with Installation Manager.
#
First, create a key ring file with your credentials by starting
Installation Manager from the command line under eclipse subdirectory
with the keyring parameter.
Use the optional password parameter to password protect your file.
#
Windows = IBMIM.exe -keyring <path and file name> -password <password>
Linux, UNIX, IBM i and z/OS = ./IBMIM -keyring <path and file name>
-password <password>
#
Installation Manager will start in graphical mode. Verify that the
repositories to which you need to authenticate are included in the
preferences, File / Preferences / Repositories. If they are not
listed, then click Add Repositories to add the URL or UNC path.
Installation Manager will prompt for your credentials. If the repository
is already in the list, then any attempt to access the repository location,
such as clicking the Test Connections button, will also prompt for your
credentials. Enter the correct credential and check the Save password
checkbox. The credentials are saved to the key ring file you specified.
#
Second, when you start a silent installation, run imcl under eclipse/tools
subdirectory, and provide Installation Manager with the location of the key
ring file and the password if the file is protected. For example:
#
Windows = imcl.exe -acceptLicense -showProgress
input <path and file name of response file>
-keyring <path and name of key ring file> -password <password>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <path and file name of response file>
-keyring <path and name of key ring file> -password <password>
#
Versions of Installation Manager at 1.6.2 or higher use storage files
to store encrypted credentials. Complete the following steps to create
master password and storage files to use with Installation Manager.
#
First, if you do not have a master password file already, create a text file
that contains a master passphrase. An example of a passphrase is:
"This text is the passphrase for a master password file."
#
Next, run imutilsc under the eclipse/tools subdirectory with the following
options to create and store user credentials in a storage file.
-secureStorageFile <path and file name of storage file>
-masterPasswordFile <path and file name of master password file>
-url <repository address> or -passportAdvantage <PPA repository address>
-userName <user name>
-userPassword <password for user>
#
Example of a command to create a storage file by operating system
Windows = imutilsc saveCredential -url http://myServer -userName myUserName
-userPassword myPassword -secureStorageFile C:\IBM\credential.store
-masterPasswordFile C:\IBM\master_password_file.txt
Linux, UNIX, IBM z/OS, and the OS X operating system =
./imutilsc saveCredential -url http://myServer -userName myUserName
-userPassword myPassword -secureStorageFile /home/IBM/credential.store
-masterPasswordFile /home/user/IBM/master_password_file.txt
#
Usage hints:
* Do not use both the -url and -passportAdvantage options in the same command.
* Enclose file paths that include spaces with double quotation marks.
* If you use the IBM service repositories, you can specify the value:
http://www.ibm.com/software/repositorymanager/entitled/repository.xml
for the -url option which is a generic service repository for IBM packages.
* Repeat steps to store credentials for multiple users in one file.
* Repeat steps to store credentials for multiple repositories in one file.
#
Afterwards, when you start a silent installation, run imcl under the eclipse/tools
subdirectory, and provide Installation Manager with the location of the storage
file. For example:
#
Windows = imcl.exe -acceptLicense -showProgress
input <path and file name of response file>
-secureStorageFile <path and name of storage file>

776 WebSphere Application Server Liberty Core 8.5.5

-masterPasswordFile <path and name of master password file>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <path and file name of response file>
-secureStorageFile <path and name of storage file>
-masterPasswordFile <path and name of master password file>
#
-->

<!-- ##### Agent Input ##
#
Note that the acceptLicense attribute has been deprecated.
Use the -acceptLicense command line option to accept license agreements.
#
The clean and temporary attributes specify the repositories and other
preferences Installation Manager uses and whether those settings
should persist after the installation finishes.
#
Valid values for clean:
true = only use the repositories and other preferences that are
specified in the response file.
false = use the repositories and other preferences that are
specified in the response file and Installation Manager.
#
Valid values for temporary:
true = repositories and other preferences specified in the
response file do not persist in Installation Manager.
false = repositories and other preferences specified in the
response file persist in Installation Manager.
#
-->

<agent-input clean="true" temporary="true">

<!-- ##### Repositories ###
Repositories are locations that Installation Manager queries for
installable packages. Repositories can be local (on the machine
with Installation Manager) or remote (on a corporate intranet or
hosted elsewhere on the internet).
#
If the machine using this response file has access to the internet,
then include the IBM WebSphere Live Update Repositories in the list
of repository locations.
#
If the machine using this response file cannot access the internet,
then comment out the IBM WebSphere Live Update Repositories and
specify the URL or UNC path to custom intranet repositories and
directory paths to local repositories to use.
#
-->

<server>

<!-- ##### IBM WebSphere Live Update Repositories ####################
These repositories contain IBMJAVA for WebSphere Application Server
Liberty offerings, and updates for those offerings
#
To use the secure repository (https), you must have an IBM ID,
which can be obtained by registering at: http://www.ibm.com/account
or your Passport Advantage account.
#
And, you must use a key ring file with your response file.
-->

<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.IBMJAVA.v70"/>

<!-- <repository location="https://www.ibm.com/software/rational/repositorymanager/repositories/websphere" /> -->

<!-- ##### Custom Repositories #######################################
Uncomment and update the repository location key below
to specify URLs or UNC paths to any intranet repositories
and directory paths to local repositories to use.
-->
<!-- <repository location=’https:\\w3.mycompany.com\repositories\’/> -->
<!-- <repository location=’/home/user/repositories/websphere/’/> -->

<!-- ##### Local Repositories ##
Uncomment and update the following line when using a local
repository located on your own machine to install a
IBMJAVA for WebSphere Application Server Liberty offering.
-->
<!-- <repository location=’insert the full directory path inside single quotes’/> -->

</server>

<!-- ##### Install Packages ###
#
Install Command
#
Use the install command to inform Installation Manager of the
installation packages to install.

Chapter 3. Installing Liberty 777

#
The modify attribute is optional and can be paired with an install
command to add features or paired with an uninstall command to
remove commands. If omitted, the default value is set to false.
false = indicates not to modify an existing install by adding
or removing features.
true = indicates to modify an existing install by adding or
removing features.
#
The offering ID attribute is required because it specifies the
offering to be installed. The offering listed must be present in
at least one of the repositories listed earlier. The example
command below contains the offering ID for the IBM WebSphere SDK Java
Technology Edition (Optional) .
#
The version attribute is optional. If a version number is provided,
then the offering will be installed at the version level specified
as long as it is available in the repositories. If the version
attribute is not provided, then the default behavior is to install
the latest version available in the repositories. The version number
can be found in the repository.xml file in the repositories.
For example, <offering ... version=’7.0.4000.20130328_1111’>.
#
The profile attribute is required and typically is unique to the
offering. If modifying or updating an existing installation, the
profile attribute must match the profile ID of the targeted installation
of IBMJAVA for WebSphere Application Server Liberty.
#
IBM WebSphere SDK Java Technology Edition (Optional) 7.0.4.0 is an
extension offering which requires a base WebSphere Application
Server / Client product to be installed first The profile id for
IBM WebSphere SDK Java Technology Edition (Optional) 7.0.4.0 must be
the same as the base product.
#
The features attribute is optional. Offerings always have at least
one feature; a required core feature which is installed regardless
of whether it is explicitly specified. If other feature names
are provided, then only those features will be installed.
Features must be comma delimited without spaces.
#
The installFixes attribute indicates whether fixes available in
repositories are installed with the product. By default, all
available fixes will be installed with the offering.
#
Valid values for installFixes:
none = do not install available fixes with the offering.
recommended = installs all available recommended fixes with the offering.
all = installs all available fixes with the offering.
#
Interim fixes for offerings also can be installed while they
are being installed by including the offering ID for the interim
fix and specifying the profile ID. A commented out example is
provided in the install command below.
#
Installation Manager supports installing multiple offerings at once.
Additional offerings can be included in the install command,
with each offering requiring its own offering ID, version, profile value,
and feature values.
#
Profile Command
#
A separate profile command must be included for each offering listed
in the install command. The profile command informs Installation
Manager about offering specific properties or configuration values.
#
The installLocation specifies where the offering will be installed.
If the response file is used to modify or update an existing
installation, then ensure the installLocation points to the
location where the offering was installed previously.
#
Include data keys for product specific profile properties.
For instance, Installing IBMJAVA for Liberty Offerings on
a 64-bit system will require to include one of the options for an IBM Software
Development Kit, this can be specified by data key cic.selector.arch, its value
can be either x86 (for 32-bit), or x86_64 (for 64-bit).
#
More details for cic.selector.arch can be found in the link below:
#
https://infocenters.hursley.ibm.com/was/vNext/draft/help/index.jsp?topic=%2Fcom.ibm.websphere.wlp.core.doc%2Fae%2Ftwlp_ins_installation_dist_silent.html
#
-->

<install modify="false">
<offering id="com.ibm.websphere.liberty.IBMJAVA.v70" profile="WebSphere Liberty V8.5" features="com.ibm.sdk.7" installFixes="none" />
</install>
<profile id="WebSphere Liberty V8.5" installLocation="C:\Program Files\IBM\WebSphere\Liberty">
<data key="eclipseLocation" value="C:\Program Files\IBM\WebSphere\Liberty" />
<data key="cic.selector.arch" value="x86_64" />
</profile>

778 WebSphere Application Server Liberty Core 8.5.5

<!-- ##### Shared Data Location ###
Uncomment the preference for eclipseCache to set the shared data
location the first time you use Installation Manager to do an
installation.
#
Eclipse cache location can be obtained from the installed.xml file found in
Linux/Unix: /var/ibm/InstallationManager
Windows: C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager
from the following property:
<property name=’cacheLocation’ value=’C:\Program Files\IBM\IMShared’/>
#
Open the installed.xml file in a text editor because the style sheet
might hide this value if opened in a web browser.
For further information on how to edit preferences, refer to the public library at:
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp?topic=/com.ibm.silentinstall12.doc/topics/r_silent_prefs.html
#
After the shared data location is set, it cannot be changed
using a response file or the graphical wizard.
#
Ensure that the shared data location is a location that can be written
to by all user accounts that are expected to use Installation Manager.
#
By default, Installation Manager saves downloaded artifacts to
the shared data location. This serves two purposes.
#
First, if the same product is installed a more than once to the machine,
then the files in the shared data location will be used rather than
downloading them again.
#
Second, during the rollback process, the saved artifacts are used.
Otherwise, if the artifacts are not saved or are removed, then
Installation Manager must have to access the repositories used to
install the previous versions.
#
Valid values for preserveDownloadedArtifacts:
true = store downloaded artifacts in the shared data location
false = remove downloaded artifacts from the shared data location
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’ value=’C:\Program Files\IBM\IMShared’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
-->

<!-- ##### Preferences Settings ###
Additional preferences for Installation Manager can be specified.
These preference correspond to those that are located in the graphical
interface under File / Preferences.
#
If a preference command is omitted from or commented out of the response
file, then Installation Manager uses the preference value that was
previously set or the default value for the preference.
#
Preference settings might be added or deprecated in new versions of
Installation Manager. Consult the online Installation Manager
Information Center for the latest set of preferences and
descriptions about how to use them.
#
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’45’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’ value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
<preference name=’com.ibm.cic.agent.ui.displayInternalVersion’ value=’false’/>
<preference name=’com.ibm.cic.common.sharedUI.showErrorLog’ value=’true’/>
<preference name=’com.ibm.cic.common.sharedUI.showWarningLog’ value=’true’/>
<preference name=’com.ibm.cic.common.sharedUI.showNoteLog’ value=’true’/>
-->

</agent-input>

Chapter 3. Installing Liberty 779

Sample response file: Uninstalling IBM WebSphere SDK Java Technology Edition Version 7.0 for
Liberty:

You can edit and use this example of a response file for uninstalling IBM WebSphere SDK Java
Technology Edition Version 7.0 for Liberty.
<?xml version="1.0" encoding="UTF-8"?>

<!-- ##### Copyright ##
Licensed Materials - Property of IBM (c) Copyright IBM Corp. 2013.
All Rights Reserved. US Government Users Restricted Rights-Use, duplication
or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
-->

<!-- ##### Frequently Asked Questions #####################################
The latest information about using Installation Manager is
located in the online Information Center. There you can find
information about the commands and attributes used in
silent installation response files.
#
Installation Manager Information Center can be found at:
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
Question 1. How do I record a response file using Installation Manager?
Answer 1. Start Installation Manager from the command line under the
eclipse subdirectory with the record parameter and it will generate a
response file containing actions it performed, repositories it used, and
its preferences settings. Optionally use the -skipInstall parameter if
you do not want the product to be installed to the machine. Specify a
new agentDataLocation location value when doing a new installation. Do
not use an existing agentDataLocation for an installation because it might
damage the installation data and prevent you from modifying, updating,
rolling back, or uninstalling the installed packages.
#
Windows: IBMIM -record <responseFile> -skipInstall <agentDataLocation>
Linux or UNIX: ./IBMIM -record <responseFile> -skipInstall <agentDataLocation>
#
For example:
Windows = IBMIM.exe -record c:\temp\responsefiles\WASv85.install.Win32.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
Linux or UNIX = ./IBMIM -record /home/user/responsefiles/WASv85.install.RHEL64.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
#
Question 2. How do I run Installation Manager silently using response file?
Answer 2. Create a silent installation response file and run the following command
from the eclipse\tools subdirectory in the directory where you installed
Installation Manager:
#
Windows = imcl.exe -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
#
For example:
Windows = imcl.exe -acceptLicense -showProgress
input c:\temp\responsefile\WASv85.install.Win32.xml
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input /home/user/responsefile/WASv85.install.RHEL64.xml
#
The -acceptLicense command must be included to indicate acceptance of all
license agreements of all offerings being installed, updated or modified.
The -showProgress command shows progress when running in silent mode.
Additional commands can be displayed by requesting help: IBMIM -help
#
-->

<!-- ##### Agent Input ###
The clean and temporary attributes specify the repositories and other
preferences Installation Manager uses and whether those settings
should persist after the uninstall finishes.
#
Valid values for clean:
true = only use the repositories and other preferences that are
specified in the response file.
false = use the repositories and other preferences that are
specified in the response file and Installation Manager.
#
Valid values for temporary:
true = repositories and other preferences specified in the
response file do not persist in Installation Manager.
false = repositories and other preferences specified in the
response file persist in Installation Manager.
#
-->

<agent-input clean="true" temporary="true">

<!-- ##### Repositories ###

780 WebSphere Application Server Liberty Core 8.5.5

Repositories are locations that Installation Manager queries for
installable packages. Repositories can be local (on the machine
with Installation Manager) or remote (on a corporate intranet or
hosted elsewhere on the internet).
#
If the machine using this response file has access to the internet,
then include the IBM WebSphere Live Update Repositories in the list
of repository locations.
#
If the machine using this response file cannot access the internet,
then comment out the IBM WebSphere Live Update Repositories and
specify the URL or UNC path to custom intranet repositories and
directory paths to local repositories to use.
#
-->
<!-- ##### Uninstall Packages ##
#
Uninstall Command
#
Use the uninstall command to inform Installation Manager of the
installation packages to uninstall.
#
The modify attribute is optional and can be paired with an install
command to add features or paired with an uninstall command to
remove commands. If omitted, the default value is set to false.
false = indicates not to modify an existing install by adding
or removing features.
true = indicates to modify an existing install by adding or
removing features.
#
The offering ID attribute is required because it specifies the
offering to be uninstalled. The example command below contains the
offering ID for IBM WebSphere SDK Java Technology Edition (Optional) 7.0.4.0.
#
The version attribute is optional. If a version number is provided,
then the offering will be uninstalled at the version level specified
If the version attribute is not provided, then the default behavior is
to uninstall the latest version. The version number can be found in
the repository.xml file in the repositories.
For example, <offering ... version=’7.0.4000.20130328_1111’>.
#
The profile attribute is required and must match the package group
name for the offering to be uninstalled.
#
The features attribute is optional. If there is no feature attribute,
then all features are uninstalled. If features are specified, then
only those features will be uninstalled.
Features must be comma delimited without spaces.
#
Profile Command
#
A separate profile command must be included for each offering listed
in the install command. The profile command informs Installation
Manager about offering specific properties or configuration values.
#
The installLocation specifies where the offering will be installed.
If the response file is used to modify or update an existing
installation, then ensure the installLocation points to the
location where the offering was installed previously.
#
The eclipseLocation data key should use the same directory path to
IBM WebSphere SDK Java Technology Edition (Optional) 7.0.4.0 as the installationLocation attribute.
#
Include data keys for product specific profile properties.
For instance, Installing WebSphere Application Server Liberty Offerings on
a 64-bit system will require to include one of the options for an IBM Software
Development Kit, this can be specified by data key cic.selector.arch, its value
can be either x86 (for 32-bit), or x86_64 (for 64-bit).
#
More details for cic.selector.arch can be found in the link below:
#
https://infocenters.hursley.ibm.com/was/vNext/draft/help/index.jsp?topic=%2Fcom.ibm.websphere.wlp.core.doc%2Fae%2Ftwlp_ins_installation_dist_silent.html
#
-->

<uninstall modify="false">
<offering id="com.ibm.websphere.liberty.IBMJAVA.v70" profile="WebSphere Liberty V8.5" features="com.ibm.sdk.7" />
</uninstall>
<profile id="WebSphere Liberty V8.5" installLocation="C:\Program Files\IBM\WebSphere\Liberty">
<data key="eclipseLocation" value="C:\Program Files\IBM\WebSphere\Liberty" />
<data key="cic.selector.arch" value="x86_64" />
</profile>

<!-- ##### Shared Data Location ###
Uncomment the preference for eclipseCache to set the shared data
location the first time you use Installation Manager to do an
installation.
#
Eclipse cache location can be obtained from the installed.xml file found in
Linux/Unix: /var/ibm/InstallationManager

Chapter 3. Installing Liberty 781

Windows: C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager
from the following property:
<property name=’cacheLocation’ value=’C:\Program Files\IBM\IMShared’/>
#
Open the installed.xml file in a text editor because the style sheet
might hide this value if opened in a web browser.
For further information on how to edit preferences, refer to the public library at:
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp?topic=/com.ibm.silentinstall12.doc/topics/r_silent_prefs.html
#
After the shared data location is set, it cannot be changed
using a response file or the graphical wizard.
#
Ensure that the shared data location is a location that can be written
to by all user accounts that are expected to use Installation Manager.
#
By default, Installation Manager saves downloaded artifacts to
the shared data location. This serves two purposes.
#
First, if the same product is installed a more than once to the machine,
then the files in the shared data location will be used rather than
downloading them again.
#
Second, during the rollback process, the saved artifacts are used.
Otherwise, if the artifacts are not saved or are removed, then
Installation Manager must have to access the repositories used to
install the previous versions.
#
Valid values for preserveDownloadedArtifacts:
true = store downloaded artifacts in the shared data location
false = remove downloaded artifacts from the shared data location
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’ value=’C:\Program Files\IBM\IMShared’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
-->

<!-- ##### Preferences Settings ###
Additional preferences for Installation Manager can be specified.
These preference correspond to those that are located in the graphical
interface under File / Preferences.
#
If a preference command is omitted from or commented out of the response
file, then Installation Manager uses the preference value that was
previously set or the default value for the preference.
#
Preference settings might be added or deprecated in new versions of
Installation Manager. Consult the online Installation Manager
Information Center for the latest set of preferences and
descriptions about how to use them.
#
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’45’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’ value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
<preference name=’com.ibm.cic.agent.ui.displayInternalVersion’ value=’false’/>
<preference name=’com.ibm.cic.common.sharedUI.showErrorLog’ value=’true’/>
<preference name=’com.ibm.cic.common.sharedUI.showWarningLog’ value=’true’/>
<preference name=’com.ibm.cic.common.sharedUI.showNoteLog’ value=’true’/>
-->

</agent-input>

Creating custom installation repositories with IBM Packaging Utility
IBM WebSphere Application Server Liberty uses IBM Installation Manager for installation and lifecycle
management. Installation Manager accesses source repositories that contain the content for a software
product installation. Repositories are available on product media, in IBM-hosted web-based repositories,
and from Passport Advantage. IBM Packaging Utility can help you create and customize enterprise
repositories that contain the correct combination of products and maintenance levels needed for all
aspects of your business.

782 WebSphere Application Server Liberty Core 8.5.5

About this task

You use Installation Manager to connect to an Installation Manager repository (or set of repositories) to
find products and service updates that are available to you for installation. An Installation Manager
repository is simply a tree-structured file folder that includes product payload and metadata. You can
install the software products that you need directly from an IBM web-based service repository or
download and unpack compressed files from Passport Advantage and install the products from the
resulting unpacked file folders. The result of unpacking the files is also considered to be an Installation
Manager repository. Like any Installation Manager repository, these unpacked files can be hosted on an
internal HTTP server, FTP server, or network mount in order to make them available to the organization.

Packaging Utility is a companion tool for Installation Manager with which you can create and manage
custom Installation Manager repositories for your organization. You can copy multiple packages,
maintenance levels, and fixes into a single repository. Packaging Utility copies from source repositories to
your target custom repositories. Source repositories can include any accessible Installation Manager
repository, including IBM web-hosted product repositories and unzipped Passport Advantage downloads.

For more information on Packaging Utility, go to the IBM Packaging Utility Information Center.

Procedure

Use Packaging Utility to create custom or "enterprise" Installation Manager repositories that contain
specific products and maintenance levels that fit the needs of your business.
As an administrator, you can control the content of your enterprise repository, which then can serve as
the central repository to which your organization connects in order to perform product installations and
updates.
Packaging Utility essentially copies from a set of source Installation Manager repositories to a target
repository and eliminates duplicate artifacts, helping to keep the repository size as small as possible. You
can also delete (or "prune") a repository, removing maintenance levels or products that are not needed.
You can download the latest version of Packaging Utility from the IBM Support Portal.
Like Installation Manager, Packaging Utility has GUI and command-line interfaces. You must specify
repository URLs for Installation Manager repositories that contain the offerings that you wish to copy.
Installation Manager repository URLs follow this pattern:
http://www.ibm.com/software/repositorymanager/offering_name

Note: This location does not contain a web page that you can access using a web browser.
For example, WebSphere Application Server Liberty product repositories are located at the following
URLs:
v WebSphere Application Server Liberty Core Version 8.5

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85

v WebSphere Application Server Liberty Core Trial Version 8.5
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.TRIAL.v85

See Online product repositories for WebSphere Application Server offerings for additional product
repositories.
The target repository that you create with Packaging Utility will always support a full installation;
therefore, you cannot use Packaging Utility to create a repository that is only a copy of a fix pack. You
can, however, create a repository that contains the minimum content to support direct installation to a
fix-pack level. Consider the following two examples that use the Packaging Utility command-line
interface (PUCL.exe) that is available in the Packaging Utility installation folder.
v Example 1

Note: Note that you must read the license agreement that you can find with the product files and then
signify your acceptance of the license agreement by specifying -acceptLicense in the command as
shown in the following example.

Chapter 3. Installing Liberty 783

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_repositories

PUCL copy com.ibm.websphere.liberty.v85
-repositories

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85
-target D:\LIB_CORE_version
-prompt
-showProgress
-acceptLicense

Since no version number is specified with the offering name, this command will create a new
repository that supports direct installation to the latest fix-pack level for WebSphere Application Server
Liberty Version 8.5. This new repository does not support the installation of Version 8.5.5.0, but it does
support the update from an existing Version 8.5.5.0 installation to the latest version.

v Example 2
PUCL copy com.ibm.websphere.liberty.v85_8.5.5.0.20110503_0200
-repositories

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85
-target D:\LIB_CORE
-prompt
-showProgress
-acceptLicense

PUCL copy com.ibm.websphere.liberty.v85_8.5.5.1.20110829_1838
-repositories

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85
-target D:\LIB_CORE
-prompt
-showProgress
-acceptLicense

The first command creates a target repository with WebSphere Application Server Liberty Version
8.5.5.0. The second command adds the Version 8.5.5.1 fix pack to the same repository. You can now use
this resulting repository to install Version 8.5.5.0, install Version 8.5.5.1, or update from Version 8.5.5.0
to Version 8.5.5.1.

Tip: With some offerings, such as WebSphere SDK Java Technology Edition Version 7.0 for Liberty, you
can use Packaging Utility with the -platform option (sometimes called "platform slicing") to create a
repository that is scoped to the platforms and architectures that are used by your organization. This
feature is available in command-line mode by specifying the -platform option with the os and arch
arguments as shown in the following example:
PUCL copy com.ibm.websphere.liberty.IBMJAVA.v70
-repositories http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.IBMJAVA.v70
-platform os=linux,arch=ppc64
-target D:\LIB_CORE
-prompt
-showProgress
-acceptLicense</p>

Your repository can be scoped for platforms other than the one on which it is created or stored. For
example, you can run Packaging Utility on a Windows system to create a repository with the content
needed to install on a Linux system. During installation on Linux, you point Installation Manager to your
custom repository.

The following table lists valid combinations for creating a local WebSphere SDK Java Technology Edition
Version 7.0 for Liberty offering repository that is sliced by operating system and architecture.

784 WebSphere Application Server Liberty Core 8.5.5

Table 62. Valid combinations for creating a local WebSphere SDK Java Technology Edition Version 7.0 for Liberty
offering repository using the Packaging Utility

Platform Options Resulting Repository

Windows os=win32,arch=x86 32-bit repository for 32-bit Windows
OS and 64-bit Windows

os=win32.arch=x86_64 64-bit repository for 64-bit Windows

Linux Intel os=linux,arch=x86 32-bit repository for 32-bit Linux Intel
and 64-bit Linux Intel

os=linux.arch=x86_64 64-bit repository for 64-bit Linux Intel

Linux Power® os=linux,arch=ppc 32-bit repository for 32-bit Linux
Power and 64-bit Linux Power

os=linux.arch=ppc64 64-bit repository for 64-bit Linux
Power

zLinux os=linux,arch=s390 32-bit repository for 32-bit zLinux
and 64-bit zLinux

os=linux.arch=s390x 64-bit repository for 64-bit zLinux

AIX® os=aix,arch=ppc 32-bit repository for 32-bit AIX and
64-bit AIX

os=aix.arch=ppc64 64-bit repository for 64-bit AIX

Solaris Sparc os=solaris,arch=sparc 32-bit repository for 32-bit Solaris
Sparc and 64-bit Solaris Sparc

os=solaris,arch=sparc64 64-bit repository for 64-bit Solaris
Sparc

Solaris Intel os=solaris,arch=x86_64 64-bit repository for 64-bit Solaris
Intel

HP-UX Itanium os=hpux,arch=ia64 64-bit repository for 64-bit HP-UX
Itanium

z/OS os=zos,arch=s390x 64-bit repository for z/OS

For more information on platform slicing, go to the IBM Packaging Utility Information Center.

Using the launchpad to start Liberty installations
The launchpad console is the starting point for installing IBM WebSphere Application Server Liberty
Core.

Before you begin
v The launchpad is a web application. Before using the launchpad, you must have a supported web

browser. The launchpad supports the following browsers:

– AIX

HP-UX

Linux

Solaris

Mozilla Firefox Version 3.5 or later

– Windows

Internet Explorer Version 6.0 Service Pack 2 or later

v Install a supported web browser if one is not installed.

– AIX

HP-UX

Linux

Solaris

Install a browser such as Mozilla Firefox. Download

Firefox from the following location: http://www.mozilla.org/products/firefox/.

– Windows

Install a browser for the Windows operating system.

- Download Internet Explorer from the following location: http://www.microsoft.com/windows/
ie/default.mspx

- Download Mozilla Firefox from the following location: http://www.mozilla.org/products/
firefox/.

Chapter 3. Installing Liberty 785

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www.mozilla.org/products/firefox/
http://www.microsoft.com/windows/ie/default.mspx
http://www.microsoft.com/windows/ie/default.mspx
http://www.mozilla.org/products/firefox/
http://www.mozilla.org/products/firefox/

v AIX HP-UX Linux Solaris You must install the Bash shell package to use the launchpad
application. Although the Bash shell must be installed, the Bash shell does not need to be used to run
the launchpad.sh command. If you attempt to run the launchpad application from a DVD on the
HP-UX, Linux, or Solaris operating systems without the Bash shell installed, the launchpad fails with
an error message indicating that the Bash interpreter is not found. If you attempt to run the launchpad
from any image on AIX, the launchpad fails with an error message indicating that the current browser
is not supported. The Bash package for the AIX operating system is included in the IBM AIX Toolbox.

Examples of what the launchpad can do:

v The launchpad does support installing Installation Manager in admin or non-admin (user) mode.
v The launchpad does support updating Installation Manager from an earlier version in admin or

non-admin (user) mode.

Examples of what the launchpad cannot do:

v The launchpad does not support installing in group mode.
v The launchpad does not support installing or updating with a custom application data location.

Restriction: You cannot run the launchpad remotely to install a product. Only local use of the launchpad
is supported.

About this task

The launchpad identifies components on the product disk or image that you can install (launch).

The launchpad is a single point of reference for installing the application server environment. If you click
a link that points to a product repository on another disk or image, you are prompted to insert that disk
or browse to that image.

Procedure
1. Start the launchpad.

The launchpad program is available in the root directory of the product disk. You can start the
launchpad manually using a fully qualified command instead of changing directories to the disk and
running the command locally from the root directory:

v AIX HP-UX Linux Solaris Mount the disk drive if necessary.
v Open a shell window and issue a fully qualified launchpad command to start the launchpad.

Tip: Windows If you need to navigate using the keyboard, use Mozilla Firefox as your web
browser and start the launchpad with the following command:

launchpad_a11y.exe

Note: Windows Some Windows operating systems such as Windows 2003, Windows Vista, Windows
Server 2008, and Windows 7 have implemented a more restrictive security policy that denies access to
trusted files by non-trusted files or applications. When the launchpad application is run as a
non-trusted program, you will receive JavaScript “Access is denied” errors that subsequently cause
the application to hang. Because downloaded images are automatically blocked, unblock the files so
that the launchpad can successfully access the files. Before you extract the image, right-click the image
file and select Properties to open the Properties panel and locate the security section and click the
Unblock button. You can now extract the image and run the launchpad application.
The launchpad opens in the language of the locale setting of the machine.

2. Use the launchpad to perform the following Liberty Core related tasks.
v View the Welcome page, and access links to the IBM WebSphere Application Server Information

Center and the IBM Education Assistant.

786 WebSphere Application Server Liberty Core 8.5.5

v Launch IBM Installation Manager installation, and access the IBM Installation Manager Information
Center.

v Launch IBM Packaging Utility installation, and access the Packaging Utility information in the IBM
Installation Manager Information Center.

v Launch Installation Manager to install WebSphere Application Server Liberty Core, and access the
installation instructions in the information center.

v Launch Installation Manager to install IBM HTTP Server, and access the installation instructions in
the information center.

v Launch Installation Manager to install Web Server Plug-ins for IBM WebSphere Application Server,
and access the installation instructions in the information center.

v Access the latest version of IBM Support Assistant.
v Launch Installation Manager to install IBM WebSphere SDK Java Technology Edition Version 7.0 for

Liberty, and access the installation instructions in the information center.
v Launch Installation Manager to install the IBM WebSphere Application Server Web 2.0 and Mobile

Toolkit, and access the installation instructions in the information center.

Results

This procedure results in using the launchpad to start the installation and to access information through a
browser.

Troubleshooting

If you can start the launchpad but clicking a link does not resolve to a page in the launchpad, you might
have the wrong media in the disk drive. Check the validity of the media.

Use the following procedure to correct any error that is preventing the launchpad from displaying. Then,
try to start the launchpad again:
1. If the product disk is no longer accessible, insert the disk.

2. AIX HP-UX Linux Solaris Mount the drive as necessary on platforms such as AIX or
Linux.

3. Enable the JavaScript function in your browser.
Mozilla Firefox: Click Tools > Options > Content:
v Select Enable Java.
v Select Enable JavaScript.
v Click Advanced and allow scripts to ... (Select all boxes.)

Windows

Internet Explorer: Click Tools > Internet Options > Security > Custom Level for Internet >

Scripting > Active scripting > Enable.
4. Restart the launchpad by issuing the launchpad command.

If the launchpad links still do not work after following this procedure, launch Installation Manager and
point it at the appropriate repositories to install the offerings.

Distributed operating systems

What to do next

Go to “Installing and uninstalling Liberty on distributed operating systems” on page 691 to continue
installing your application serving environment.

Chapter 3. Installing Liberty 787

Installing and uninstalling Liberty on IBM i operating systems
IBM Installation Manager is a common installer for many IBM software products. You can use Installation
Manager to install and manage the product lifecycle of WebSphere Application Server Liberty Core.

Before you begin

Note: 8.5.5.11 Support for using Java SE 6 with WebSphere Liberty ends in September 2017. After the
end of support, the Liberty kernel will be recompiled and can no longer run with Java SE 6. If you
continue to use Java SE 6 on earlier fix packs after the end of support date, you could expose your
environment to security risks.

Java SE 8 is the recommended Java SDK because it provides the latest features and security updates.

Installation Manager is a single installation program that can use remote or local software repositories to
install, modify, or update WebSphere Application Server Liberty Core. It determines available packages -
including products, fix packs, interim fixes, and so on - checks prerequisites and interdependencies, and
installs the selected packages. You also use Installation Manager to uninstall the packages that it installed.

Restriction: The Installation Manager GUI is not available on IBM i; all interaction with Installation
Manager on IBM i is done through the command line or response files.

Overview of IBM Installation Manager: IBM Installation Manager is a general-purpose software
installation and update tool that runs on a range of computer systems. Installation Manager can be
invoked through a command-line interface. You can also create response files in XML and use them to
direct the performance of Installation Manager tasks in silent mode.

For more information on using Installation Manager, read the IBM Installation Manager Information
Center.

Packages and package groups: Each software product that can be installed with Installation Manager is
referred to as a package. An installed package has a product level and an installation location. A package
group consists of all of the products that are installed at a single location.

How many Installation Managers do you need: You only need to run Installation Manager on those
systems on which you install or update product code. You normally need only one Installation Manager
on a system because one Installation Manager can keep track of any number of product installations.

Creating an Installation Manager: When the installation kit is available on your system, you can create
an Installation Manager. An Installation Manager consists of a set of binaries that are copied from the
installation kit and a set of runtime data that describe the products that have been installed by this
particular Installation Manager. Before creating an Installation Manager, you must decide in which mode
the Installation Manager will run as well as where the binaries and runtime data - called agent data or
appdata - will reside. Then, you issue the Installation Manager installation command from the
appropriate user ID to create the Installation Manager.

Accessing product repositories: All software materials that will be installed with IBM Installation
Manager are stored in repositories. Each repository contains program objects and metadata for one or
more packages - that is, software products at a particular level. Repositories can also contain product
maintenance, such as fix packs and interim fixes. Whenever you install a new product, you can choose
from any of the available product levels in any accessible repository.

Installing the product: After you have created an Installation Manager and have access to all necessary
product repositories, you can use Installation Manager command-line commands or response files to
perform the actual product installations. When you install a product, you provide the package name,
optionally the product level to be installed, the product location, and any other optional properties. For

788 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

example, some products have optional features that you can select at installation time or a list of optional
supported language packs from which you can select.

Working with installed products: You can use Installation Manager commands to list installed products
and product levels. You can also obtain this information for installed copies of WebSphere Application
Server LibertyCore by issuing the versionInfo command from the product file system. You can use
Installation Manager commands or response files to install a new product level, roll back to a previous
level, or modify the product by adding or removing optional features or language packs.

Notes:

v You must have Java SE 6 32 bit (option 11 of the IBM Developer Kit for Java) installed on your IBM i
system before installing WebSphere Application Server LibertyCore. For more information, read IBM i
prerequisites.

v Do not transfer the content of a repository in non-binary mode and do not convert any content on
extraction.

v When you try to install IBM Installation Manager locally from the WebSphere Application Server
LibertyCore media on an IBM i operating system, the following error message might be displayed:
The Installc executable launcher was unable to locate its companion shared library.

This error occurs because all directory and files names contained by the media are displayed in
uppercase. To resolve this issue, enable the handling of mixed case on your IBM i operating system
using the following command:
CHGOPTA EXTMEDFMT(*YES)

v If you are installing WebSphere Application Server Liberty Version 8.5.5.1 in console
mode, you might receive warning messages similar to the following example:

No "conClass" attribute in "commonPanel" element of panel com.ibm.was.liberty.userdata.panel.UserData in com.ibm.was.liberty.userdata.panel.

This problem is caused by an IBM Installation Manager API which is deprecated in Version 1.6.2. These
warning messages can be ignored. No action is required.

About this task

For more information on using Installation Manager, read the IBM Installation Manager Information
Center.

Perform one of these procedures to install, update, rollback, or uninstall the offering using Installation
Manager.

Note: Before using Installation Manager to install a offering, you might want to back up your Installation
Manager configuration using the instructions in the IBM Installation Manager Information Center if the
possibility of corruption is a concern.

Procedure
v “Installing Liberty on IBM i operating systems using response files” on page 794
v “Installing Liberty on IBM i operating systems using the command line” on page 790
v “Installing Liberty remotely on IBM i operating systems using the iRemoteInstall command” on page

800
v “Adding and removing features from Liberty on IBM i operating systems using response files” on page

803
v “Installing Liberty interim fixes on IBM i operating systems using the command line” on page 806
v “Uninstalling Liberty interim fixes from IBM i operating systems using the command line” on page 817
v “Installing Liberty fix packs on IBM i operating systems using response files” on page 814

Chapter 3. Installing Liberty 789

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-iseries&topic=cins_is_prqsvr
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-iseries&topic=cins_is_prqsvr
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

v “Installing Liberty fix packs on IBM i operating systems using the command line” on page 809
v “Uninstalling Liberty fix packs from IBM i operating systems by using response files” on page 819
v “Uninstalling Liberty fix packs from IBM i operating systems using the command line” on page 818
v “Uninstalling Liberty from IBM i operating systems using response files” on page 806
v “Uninstalling Liberty from IBM i operating systems using the command line” on page 805

Results
v The following locations are the defaults for Installation Manager files on IBM i systems:

– Installation location: /QIBM/ProdData/InstallationManager

– Agent data location: /QIBM/UserData/InstallationManager

– Registry:/QIBM/InstallationManager/.ibm/registry/InstallationManager.dat

v Logs are located in the logs directory of Installation Manager's agent data location. For example:
/QIBM/UserData/InstallationManager/logs

The main log files are time-stamped XML files in the logs directory, and they can be viewed using any
standard web browser.

Installing Liberty on IBM i operating systems using the command line
You can install WebSphere Application Server Liberty Core on IBM i operating systems using the
Installation Manager command line.

Before you begin

Prepare for the installation before using this procedure. See Preparing the operating system for
installation on IBM i for more information.

8.5.5.6

If you want to install Liberty assets from local directory-based repositories or an instance

of the Liberty Asset Repository Service, configure the repositories. For more information about the Liberty
asset repositories, see “Installing assets using Installation Manager” on page 872.

Important: Before installing WebSphere Application Server Liberty Core, you must read the license
agreement that you can find with the product files. Signify your acceptance of the license agreement by
specifying -acceptLicense in the command as described in this topic.

Install Installation Manager on the system onto which you want to install the product.
v If you want to use the Installation Manager that comes with this product, perform the following

actions:
1. Obtain the necessary files.

There are three basic options for obtaining and installing Installation Manager and the product.
– Access the physical media, and use local installation

You can access the product repositories on the media.
a. Install Installation Manager on your system.

You can install Installation Manager using the media, using a file obtained from the Passport
Advantage site, or using a file containing the most current version of Installation Manager
from the IBM Installation Manager download website.

b. Use Installation Manager to install the product from the product repositories on the media.
– Download the files from the Passport Advantage site, and use local installation

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.
a. Download the files from the Passport Advantage site.

790 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.iseries.doc/ae/tins_is_prep.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.iseries.doc/ae/tins_is_prep.html
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager

b. Install Installation Manager on your system.
You can install Installation Manager using the media, using a file obtained from the Passport
Advantage site, or using a file containing the most current version of Installation Manager
from the IBM Installation Manager download website.

c. Use Installation Manager to install the product from the downloaded repositories.
– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can install the product from the
web-based repositories.
a. Install Installation Manager on your system.

You can install Installation Manager using the media, using a file obtained from the Passport
Advantage site, or using a file containing the most current version of Installation Manager
from the IBM Installation Manager download website.

b. Use Installation Manager to install the product from the web-based repository located at
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85

Note: This location does not contain a web page that you can access using a web browser.
This is a remote web-based repository location that you must specify for the value of the
-repositories parameter so that the imcl command can access the files in this repository to
install the product.

Whenever possible, you should use the remote web-based repositories so that you are accessing
the most up-to-date installation files.

Note: If you do not have a Passport Advantage ID and password, you must install the product
from the product repositories on the media or local repositories.

2. Choose three separate locations for Installation Manager's binaries, runtime data (agent data), and
shared data locations.

3. Install Installation Manager using the Installation Manager command line.
a. Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special

authorities.
b. On a CL command line, run the STRQSH command to start the Qshell command shell.
c. Make sure that the umask is set to 022.

To verify the umask setting, issue the following command:
umask

To set the umask setting to 022, issue the following command:
umask 022

d. Change to the location containing the Installation Manager installation files, and run the
following command:

installc -acceptLicense -log log_file_path_and_name

Notes:

– For more information on installing Installation Manager, see the IBM Installation Manager
Information Center.

– Use only the installc command to install Installation Manager.
v If you already have a version of Installation Manager installed on your system and you want to use it

to install and maintain the product, obtain the necessary product files.
There are three basic options for installing the product.
– Access the physical media, and use local installation

You can access the product repositories on the media. Use Installation Manager to install the product
from the product repositories on the media.

– Download the files from the Passport Advantage site, and use local installation

Chapter 3. Installing Liberty 791

http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.
1. Download the product repositories from the Passport Advantage site.
2. Use Installation Manager to install the product from the downloaded repositories.

– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can use Installation Manager to install the
product from the web-based repositories. Use Installation Manager to install the product from the
web-based repository located at

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85

Note: This location does not contain a web page that you can access using a web browser. This is a
remote web-based repository location that you must specify for the value of the -repositories
parameter so that the imcl command can access the files in this repository to install the product.
Whenever possible, you should use the remote web-based repositories so that you are accessing the
most up-to-date installation files.

Note: If you do not have a Passport Advantage ID and password, you must install the product from
the product repositories on the media or local repositories.

About this task

8.5.5.4 To install Version 8.5.5.4 and later of Liberty, you must have IBM Installation Manager Version
1.6.2 or later.

Procedure
1. Optional: If the repository requires a username and password, create a credential-storage file to access

this repository.

Tip: When creating a credential-storage file, append /repository.config at the end of the repository
URL location if the imutilsc command is unable to find the URL that is specified.

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage file.
In versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password options
were used to access credentials in a keyring file. These options were deprecated in Version 1.6.2. There
is no migration path from keyring files to storage files because of the differences in the file structures.
For more information on using the -secureStorageFile and -masterPasswordFile options to store
credentials in a credential-storage file, see the Installation Manager Version 1.6 documentation. For
more information on using the -keyring and -password options to store credentials in a keyring file,
see the Installation Manager Version 1.5 documentation.

2. Choose three separate locations for the product's binaries, runtime data (agent data), and shared data
locations.

3. Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special authorities.
4. On a CL command line, run the STRQSH command to start the Qshell command shell.
5. Make sure that the umask is set to 022.

To verify the umask setting, issue the following command:
umask

To set the umask setting to 022, issue the following command:
umask 022

6. Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.
7. Use the imcl command to install the product.

792 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html

./imcl install com.ibm.websphere.liberty.v85_offering_version,optional_feature_ID
-repositories source_repository
-installationDirectory installation_directory
-sharedResourcesDirectory shared_directory
-preferences preference_key=value
-properties property_key=value
-secureStorageFile storage_file -masterPasswordFile master_password_file
-acceptLicense

Tips:

v The relevant terms and conditions, notices, and other information are provided in the
license-agreement files in the lafiles or product_name/lafiles subdirectory of the installation
image or repository for this offering.

v You can install a list of features that are separated by commas.
– Embeddable EJB container and JPA client (embeddablecontainer)

This option installs the embeddable EJB container and JPA client.
The embeddable EJB container is a Java Archive (JAR) file that you can use to run enterprise
beans in a standalone Java Platform, Standard Edition (SE) environment. You can run enterprise
beans using this embeddable container outside the application server. The embeddable EJB
container is a part of the EJB 3.1 specification and is primarily used for unit testing enterprise
beans business logic.
The JPA client can be used with the embeddable EJB container to provide Java Persistence API
capability in a Java SE environment.

Notes:

– If no features are specified, the default feature (embeddablecontainer) is installed.

v You can specify additional assets to install from the Liberty Repository. For a list
of Liberty Repository assets, see the downloads page on WASdev.net.
To install assets from the IBM WebSphere Liberty Repository, you must have access to the internet,
and you must have IBM Installation Manager Version 1.6.2 or later.
If you want to install Liberty Repository features, specify the short names or symbolic names on the
user.feature option of the -properties parameter. Multiple feature names are separated with
double commas. The following example installs the Portlet Container and Portlet Serving features:

-properties user.feature=portlet-2.0,,portletserving-2.0,user.accept.license=true

8.5.5.5 For Version 8.5.5.5 and later, user.accept.license=true is not required.

8.5.5.4

Beginning with Version 8.5.5.4, the extprogmodels feature is no longer available.

Instead, install the extendedPackage-1.0 addon, or install the individual features that you need
from the Liberty Repository. See the following topics for more information:
– Installing Liberty Repository assets
– Liberty features
You can install the complete set of Extended Programming Model features by specifying the
user.addon option:

-properties user.addon=extendedPackage-1.0,user.accept.license=true

If you upgrade WebSphere Application Server Liberty Version 8.5.5.3 or previous versions that
contain the extprogmodels feature, Installation Manager automatically installs the
extendedPackage-1.0 add-on. You must specify the user.accept.license option:

-properties user.accept.license=true

8.5.5.6 You can also install assets from instances of the Liberty Asset Repository Service or
local directory-based repositories. For more information about these asset repositories, see
“Installing assets using Installation Manager” on page 872. Add the repository on the
-repositories parameter. The repositories are accessed in the order that they are specified. By
default, the Liberty Repository is the last of the repositories that are accessed during installation. To

Chapter 3. Installing Liberty 793

https://developer.ibm.com/wasdev/downloads/

disable access to the Liberty Repository, on the -properties parameter, set the
user.useLibertyRepository option to false. 8.5.5.8

./imcl install com.ibm.websphere.liberty.v85
-properties user.useLibertyRepository=false,user.addon=extendedPackage-1.0,user.feature=portlet-2.0
-installationDirectory /QIBM/ProdData/Liberty -acceptLicense
-repositories /QIBM/LibertyProductRepo,https://your_onprem_asset_repo_url,/QIBM/LocalAssetRepo,/QIBM/LocalAssetRepo2.zip
-sharedResourcesDirectory /QIBM/UserData/InstallationManager/IMShared
-showProgress

To learn more about the Liberty Repository and the assets it contains, see “Liberty Repository” on
page 573.

v The offering_version, which optionally can be attached to the offering ID with an underscore, is a
specific version of the offering to install (8.5.5.20110503_0200 for example).
– If offering_version is not specified, the latest version of the offering and all interim fixes for that

version are installed.
– If offering_version is specified, the specified version of the offering and no interim fixes for that

version are installed.
The offering version can be found attached to the end of the offering ID with an underscore when
you run the following command against the repository:
./imcl listAvailablePackages -repositories source_repository

v You can also specify none, recommended or all with the -installFixes argument to indicate which
interim fixes you want installed with the offering.
– If the offering version is not specified, the -installFixes option defaults to all.
– If the offering version is specified, the -installFixes option defaults to none.

v For initial installations, it is a good practice to specify the user_data_root; otherwise, the default
value for the user_data_root, /QIBM/UserData/WebSphere/AppServer/V85/LibertyCore, is used. Use
the was.install.os400.profile.location property to specify the user_data_root. If the user_data_root
is to be /QIBM/UserData/WebSphere/AppServer/V85/Liberty, for example, specify -properties
was.install.os400.profile.location=/QIBM/UserData/WebSphere/AppServer/V85/Liberty on the
imcl installation command.

v The program might write important post-installation instructions to standard output.
For more information on using the imcl command to install the product, see the IBM Installation
Manager Information Center.

Example

The following example uses the imcl command to install Websphere Application Server LibertyCore:
./imcl install com.ibm.websphere.liberty.v85
-repositories https://downloads.mycorp.com:8080/WAS_85_repository
-installationDirectory /QIBM/ProdData/WebSphere/AppServer/V85/LibertyCore
-properties was.install.os400.profile.location=/QIBM/UserData/WebSphere/AppServer/V85/LibertyCore
-sharedResourcesDirectory /QIBM/UserData/InstallationManager/IMShared
-secureStorageFile $HOME/WASFiles/temp/credential.store -masterPasswordFile $HOME/WASFiles/IM/master_password_file.txt
-acceptLicense

Installing Liberty on IBM i operating systems using response files
You can install WebSphere Application Server Liberty on IBM i operating systems using Installation
Manager response files.

Before you begin

Prepare for the installation before using this procedure. See Preparing the operating system for
installation on IBM i for more information.

8.5.5.6

If you want to install Liberty assets from local directory-based repositories or an instance

of the Liberty Asset Repository Service, configure the repositories. For more information about the Liberty
asset repositories, see “Installing assets using Installation Manager” on page 872.

794 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.iseries.doc/ae/tins_is_prep.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.iseries.doc/ae/tins_is_prep.html

Before you install WebSphere Application Server, ensure that your user profile has *ALLOBJ and
*SECADM special authorities.

Install Installation Manager on the system onto which you want to install the product.

8.5.5.4

To install Version 8.5.5.4 and later of Liberty, you must have IBM Installation Manager Version

1.6.2 or later.
v If you want to use the Installation Manager that comes with this product, perform the following

actions:
1. Obtain the necessary files.

There are three basic options for obtaining and installing Installation Manager and the product.
– Access the physical media, and use local installation

You can access the product repositories on the media.
a. Install Installation Manager on your system.

You can install Installation Manager using the media, using a file obtained from the Passport
Advantage site, or using a file containing the most current version of Installation Manager
from the IBM Installation Manager download website.

b. Use Installation Manager to install the product from the product repositories on the media.
– Download the files from the Passport Advantage site, and use local installation

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.
a. Download the files from the Passport Advantage site.
b. Install Installation Manager on your system.

You can install Installation Manager using the media, using a file obtained from the Passport
Advantage site, or using a file containing the most current version of Installation Manager
from the IBM Installation Manager download website.

c. Use Installation Manager to install the product from the downloaded repositories.
– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can install the product from the
web-based repositories.
a. Install Installation Manager on your system.

You can install Installation Manager using the media, using a file obtained from the Passport
Advantage site, or using a file containing the most current version of Installation Manager
from the IBM Installation Manager download website.

b. Use Installation Manager to install the product from the web-based repository located at
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85

Note: This location does not contain a web page that you can access using a web browser.
This is a remote web-based repository location that you must specify in the response file so
that the installation can access the files in this repository.

Whenever possible, you should use the remote web-based repositories so that you are accessing
the most up-to-date installation files.

Note: If you do not have a Passport Advantage ID and password, you must install the product
from the product repositories on the media or local repositories.

2. Install Installation Manager.
a. Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special

authorities.
b. On a CL command line, run the STRQSH command to start the Qshell command shell.
c. Make sure that the umask is set to 022.

Chapter 3. Installing Liberty 795

http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager
http://www.ibm.com/support/entry/portal/Recommended_fix/Software/Rational/IBM_Installation_Manager

To verify the umask setting, issue the following command:
umask

To set the umask setting to 022, issue the following command:
umask 022

d. Change to the temporary directory where you unpacked the Installation Manager files.
e. Run the following command in the temporary folder:

installc -acceptLicense -log log_file_path_and_name

Notes:

– For more information on installing Installation Manager, see the IBM Installation Manager
Information Center.

– Use only the installc command to install Installation Manager.
v If you already have a version of Installation Manager installed on your system and you want to use it

to install and maintain the product, obtain the necessary product files.
There are three basic options for installing the product.
– Access the physical media, and use local installation

You can access the product repositories on the media. Use Installation Manager to install the product
from the product repositories on the media.

– Download the files from the Passport Advantage site, and use local installation

Licensed customers with a Passport Advantage ID and password can download the necessary
product repositories from the Passport Advantage site.
1. Download the product repositories from the Passport Advantage site.
2. Use Installation Manager to install the product from the downloaded repositories.

– Access the live repositories, and use web-based installation

If you have a Passport Advantage ID and password, you can use Installation Manager to install the
product from the web-based repositories. Use Installation Manager to install the product from the
web-based repository located at

http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85

Note: This location does not contain a web page that you can access using a web browser. This is a
remote web-based repository location that you must specify in the response file so that the
installation can access the files in this repository.
Whenever possible, you should use the remote web-based repositories so that you are accessing the
most up-to-date installation files.

Note: If you do not have a Passport Advantage ID and password, you must install the product from
the product repositories on the media or local repositories.

Procedure
1. Optional: If the repository requires a username and password, create a credential-storage file to access

this repository.

Tip: When creating a credential-storage file, append /repository.config at the end of the repository
URL location if the imutilsc command is unable to find the URL that is specified.

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage file.
In versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password options
were used to access credentials in a keyring file. These options were deprecated in Version 1.6.2. There
is no migration path from keyring files to storage files because of the differences in the file structures.
For more information on using the -secureStorageFile and -masterPasswordFile options to store

796 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

credentials in a credential-storage file, see the Installation Manager Version 1.6 documentation. For
more information on using the -keyring and -password options to store credentials in a keyring file,
see the Installation Manager Version 1.5 documentation.

2. Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special authorities.
3. On a CL command line, run the STRQSH command to start the Qshell command shell.
4. Make sure that the umask is set to 022.

To verify the umask setting, issue the following command:
umask

To set the umask setting to 022, issue the following command:
umask 022

5. Use a response file to install the product.
Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager,
and install the product. For example:

./imcl -acceptLicense
input $HOME/WASFiles/temp/install_response_file.xml
-log $HOME/WASFiles/temp/install_log.xml
-secureStorageFile $HOME/WASFiles/temp/credential.store -masterPasswordFile $HOME/WASFiles/master_password_file.txt

Notes:

v The relevant terms and conditions, notices, and other information are provided in the
license-agreement files in the lafiles or product_name/lafiles subdirectory of the installation
image or repository for this offering.

v /QIBM/ProdData/InstallationManager is the default installation location for Installation Manager
files on IBM i systems.

v The program might write important post-installation instructions to standard output.
Read the IBM Installation Manager Information Center for more information.

Example

The following is an example of a response file for installing the product with no optional features into the
/QIBM/ProdData/WebSphere/AppServer/V85/LibertyCore directory using a web-based repository located at
http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input>
<server>
<repository location=’http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85’/>

</server>
<profile id=’WebSphere Liberty V8.5’ installLocation=’/QIBM/ProdData/WebSphere/AppServer/V85/LibertyCore’>
<data key=’was.install.os400.profile.location’ value=’/QIBM/UserData/WebSphere/AppServer/V85/LibertyCore’/>
<data key=’user.import.profile’ value=’false’/>

</profile>
<install modify=’false’>
<offering profile=’WebSphere Liberty V8.5’
features=’’ id=’com.ibm.websphere.liberty.v85’/>

</install>
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’
value=’/QIBM/UserData/InstallationManager/IMShared’/>

<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’ value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
</agent-input>

Tips:

v Make sure that the repository location points to the web-based or local product repository. For
example:

Chapter 3. Installing Liberty 797

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

<repository location=’https://downloads.mycorp.com:8080/WAS_85_repository’/>

v The following line from the example specifies the default value of the profile location for IBM i:
<data key=’was.install.os400.profile.location’ value=’/QIBM/UserData/WebSphere/AppServer/V85/LibertyCore’/>

To override this default location, specify a different location
v The following line from the example specifies the default value of the shared resources directory for

IBM i:
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’ value=’/QIBM/UserData/InstallationManager/IMShared’/>

To override this default location, specify a different location

Note: There is only one shared resources directory for Installation Manager. If there has been an
installation on the system in the past, it will use that shared resources directory and not the one
specified in the response file.

v To disable remote searches for updates in the response file, set the following preferences to false:
– offering.service.repositories.areUsed

Used for searching remote repositories for updates to installed offerings
– com.ibm.cic.common.core.preferences.searchForUpdates

Used for searching for updates to Installation Manager

For example:
<preference value=’false’ name=’offering.service.repositories.areUsed’/>
<preference value=’false’ name=’com.ibm.cic.common.core.preferences.searchForUpdates’/>

You can find more details on silent preference keys in the IBM Installation Manager Information
Center.

v To install more than one instance of an offering, you must make the profile ID of each additional
instance unique. For example:

<offering profile=’WebSphere Liberty V8.5 - Another User’s WAS Liberty CORE’
features=’’ id=’com.ibm.websphere.liberty.v85’/>

This must be changed in both places that specify the profile ID in the response file.

Here are some examples of changes that you could make to manipulate this response file to perform
alternative actions.
v To alter the location of the installation, simply change the installation location. For example:

Replace
<profile id=’WebSphere Liberty V8.5’ installLocation=’/QIBM/ProdData/WebSphere/AppServer/V85/LibertyCore’>

with
<profile id=’WebSphere Liberty V8.5’ installLocation=’/home/user/IBM/Websphere/AppServer/V85/Server’>

v To install from a local repository instead of the live remote repository, replace the repository location.
For example:
Replace

<repository location=’http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85’/>

with
<repository location=’/home/user/repositories/WAS85/local-repositories’/>

v To add the optional features, add each desired feature in the offering as an entry in a comma-separated
list.
In the following list, the offering IDs to be used in the response files are enclosed in parentheses:
– Embeddable EJB container and JPA client (embeddablecontainer)

This option installs the embeddable EJB container and JPA client.

798 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

The embeddable EJB container is a Java Archive (JAR) file that you can use to run enterprise beans
in a standalone Java Platform, Standard Edition (SE) environment. You can run enterprise beans
using this embeddable container outside the application server. The embeddable EJB container is a
part of the EJB 3.1 specification and is primarily used for unit testing enterprise beans business
logic.
The JPA client can be used with the embeddable EJB container to provide Java Persistence API
capability in a Java SE environment.

Notes:

– If no features are specified, the default feature (embeddablecontainer) is installed.

For example, to install the Embeddable EJB container:
Replace

<offering profile=’WebSphere Liberty V8.5’
features=’’ id=’com.ibm.websphere.liberty.v85’/>

with
<offering profile=’WebSphere Liberty V8.5’
features=’embeddablecontainer’ id=’com.ibm.websphere.liberty.v85’/>

v You can specify additional assets to install from the Liberty Repository. For a list of
Liberty Repository assets, see the downloads page on WASdev.net.
To install Liberty Repository assets, you must have access to the internet, and you must have IBM
Installation Manager Version 1.6.2 or later. Previous versions of Installation Manager do not have the
option to install Liberty Repository assets. If you use a response file and did not update Installation
Manager to Version 1.6.2 or later, the assets that you specify in the response file are ignored during
installation.
If you want to install additional features, specify two extra data key elements in your response file.
You can use either the symbolic name or the short name.
The following example installs the Portlet Container and Portlet Serving features using the symbolic
name.

<data key=’user.feature’ value=’com.ibm.websphere.appserver.portlet-2.0,,com.ibm.websphere.appserver.portletserving-2.0’/>
<data key=’user.accept.license’ value=’true’/>

The following example installs the Portlet Container and Portlet Serving features using the short name:
<data key=’user.feature’ value=’portlet-2.0,,portletserving-2.0’/>
<data key=’user.accept.license’ value=’true’/>

8.5.5.5 For Version 8.5.5.5 and later, user.accept.license=true is not required.

8.5.5.4

Beginning with Version 8.5.5.4, the extprogmodels feature is no longer available. Instead,

install the extendedPackage-1.0 addon, or install the individual features that you need from the Liberty
Repository. See the following topics for more information:
– Installing Liberty Repository assets
– Liberty features
The following example installs the Extended Programming Models using the user.addon parameter
and the Portlet Container and Portlet Serving features using the user.feature parameter with short
names:

<data key=’user.addon’ value=’extendedPackage-1.0’/>
<data key=’user.feature’ value=’portlet-2.0,,portletserving-2.0’/>
<data key=’user.accept.license’ value=’true’/>

8.5.5.6 You can also install assets from an instance of the Liberty Asset Repository Service or
local directory-based repositories. For more information, see “Installing assets using Installation
Manager” on page 872. Add the repository on repository elements. If Installation Manager does not
recognize the repository, point directly to the repository.config file. When you install assets, the
repositories are accessed in the order that you specify them.

Chapter 3. Installing Liberty 799

https://developer.ibm.com/wasdev/downloads/

<server>
<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85" />
<repository location="https://your_onprem_asset_repo_url" />
<repository location="/QIBM/LocalAssetRepo" />

8.5.5.8 <repository location="/QIBM/LocalAssetRepo2.zip" /> </server>By default, the Liberty
Repository is the last of the repositories that are accessed during installation. To disable access to the
Liberty Repository, set the user.useLibertyRepository parameter to false:

<data key=’user.addon’ value=’extendedPackage-1.0’/>
<data key=’user.feature’ value=’portlet-2.0,,portletserving-2.0’/>
<data key=’user.useLibertyRepository’ value=’false’/>

To learn more about the Liberty Repository and the assets it contains, see “Liberty Repository” on page
573.

Installing Liberty remotely on IBM i operating systems using the iRemoteInstall
command
You can use the iRemoteInstall command to install IBM Installation Manager or WebSphere Application
Server Liberty Core from a Windows workstation to a remote target IBM i system.

Before you begin

Prepare for the installation before using this procedure. See Preparing the operating system for
installation on IBM i for more information.

The product offering repository files or the IBM Installation Manager for IBM i installation kit
compressed file must be available on the Windows system.

Important: You must set your JAVA_HOME environment variable to your IBM Installation Manager JRE
home before running the command directly from the media.

Restrictions:

v The iRemoteInstall command does not support credential-storage files used to pass confidential
information You must use the physical media or download the installation files to your local system.

v The iRemoteInstall command does not support the use of response files.

About this task

Note: By running this script, you accept the terms of the product license. The relevant terms and
conditions, notices, and other information are provided in the license-agreement files in the lafiles or
offering_name/lafiles subdirectory of the installation image or repository for this offering.

Location of the iRemoteInstall command:
The iRemoteInstall command is located in the following directory when it has been installed as
part of the WebSphere Customization Toolbox:

wct_root/Remote_Installation_Tool_for_IBM_i

Tip: A version of this utility that is current when the product is released is also available on the
media or installation image. You can run the command directly from the media connected to a
Windows system to install the offering on a remote target IBM i system. This version of the utility
is located at the following location:

media_root\Remote_Installation_Tool_for_IBM_i\iRemoteInstall.bat

where media_root is the root directory of the media or installation image containing the product
or supplements.

Syntax of the iRemoteInstall command:

800 WebSphere Application Server Liberty Core 8.5.5

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-iseries&topic=tins_is_prep
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-iseries&topic=tins_is_prep

iRemoteInstall.bat
-hostname i5_hostname
-username user_login_name
-password user_login_password
-iminstkit im_install_kit_file_path_and_name | -wasoid was_offering_id
-wasrepoloc was_install_file_location
-appdataloc im_agent_data_location
-wasinstloc was_install_location
-wassharedloc was_shared_location
-features feature_ID_1,feature_ID_2, . . .
-properties key=value,key=value, . . .
-log log_file_path_and_name
-trace
-version
-help

Parameters of the iRemoteInstall command:

-hostname i5_hostname
Specifies the host name of the target IBM i machine to which Installation Manager or
WebSphere Application Server Liberty Core is going to be installed

This parameter is required.

-username user_login_name
Specifies the login name of the user who is performing the Installation Manager or
WebSphere Application Server Liberty Core remote installation

This user must be a valid user for the target IBM i system with *ALLOBJ and *SECADM
special authorization.

-password user_login_password
Specifies the login password of the user specified in -username

-iminstkit im_install_kit_file_name
Specifies the location of the Installation Manager for IBM i installation kit

You must include the path if it is not in the same directory as the command.

This parameter is required.

-wasoid was_offering_id
Specifies the ID of the WebSphere Application Server Liberty offering being installed

Example values are base, nd, express, etc. This parameter is not case sensitive.

The value to use can be found in the product offering ID. If the offering ID is
com.ibm.websphere.liberty.XXX.v85, for example, the -wasoid value should be liberty.XXX.

-wasrepoloc was_install_file_location
Specifies the location of the WebSphere Application Server Liberty Core installation repository

This option must be specified if the -wasoid parameter is specified.

-appdataloc im_agent_data_location
Specifies the location of the Installation Manager agent data

If no value is specified for this parameter, it is set to the default value of
/QIBM/UserData/InstallationManager.

-wasinstloc was_install_location
Specifies the location of the WebSphere Application Server Liberty Core installation

If no value is specified for this parameter, it is set to the default value of
/QIBM/WAS85/Liberty.

-wassharedloc was_shared_location
Specifies the location of the WebSphere Application Server Liberty Core shared location

If no value is specified for this parameter, it is set to the default value of
/QIBM/WAS85/Liberty_Shared.

Chapter 3. Installing Liberty 801

-features feature_ID_1,feature_ID_2, . . .
Specifies the features to be installed

The feature IDs must be separated by commas (,).

Tip: If no features are specified, the default feature (embeddablecontainer) is installed.

-properties key=value,key=value, . . .
Specifies package-group (profile) properties

-log log_file_path_and_name
Turns on the log, and sends all messages to the specified file and location

The path can be absolute (c:\temp\mylog.log for exampled) or relative (..\mylog.log for
example).

Because you can append multiple installation actions into the same log, the actual name of a
log file that is generated is log_file_path_and_name.x.log, where x is the number of the log
file from 0 to 29. The maximum log file size is approximately 10 MB; and the maximum
number of log files generated is 30.

-trace
Provides trace output of what the command checks and what the command discovers

-version
Displays the version information for the command

-help
Displays usage information for the command

Procedure
1. Log in to the IBM i machine using the IBM Personal Communications tool, or telnet with TN5250 to

the IBM i machine.
2. If TCP/IP is not started or if you do not know if TCP/IP is started, enter the following command on

the Control Language (CL) command line:
STRTCP

3. Verify that the host server jobs are started on your IBM i server.
The host server jobs allow the installation code to run on IBM i.
Enter the following command on the CL command line:

STRHOSTSVR SERVER(*ALL)

4. Verify that your user profile has *ALLOBJ and *SECADM special authorities.
5. Run the iRemoteInstall command in the temporary directory to install Installation Manager or

Websphere Application Server Liberty Core.
In order to install Websphere Application Server Liberty Core, Installation Manager must already be
installed on the target system.

6. Verify the installation.
v Check for error messages in the output from the iRemoteInstall command.
v Look for errors in the installation log.

Example

Here is an example of installing IBM Installation Manager with the iRemoteInstall command:
./iRemoteInstall
-hostname iserver1.somedomain.com
-username wasadmin -password mypwd
-iminstkit E:\agent.installer.os400.motif.ppc_1.6.2000.20101206_0100.zip

802 WebSphere Application Server Liberty Core 8.5.5

Here is an example of installing WebSphere Application Server Liberty Core with the iRemoteInstall
command:
./iRemoteInstall
-hostname iserver1.somedomain.com
-username wasadmin -password mypwd
-wasoid liberty.CORE
-wasrepoloc E:\repository

Verifying the installation
You can verify successful installation of the offering using the capabilities of IBM Installation Manager.

Procedure
v To verify installation of the offering, you can use Installation Manager to find the offering in the list of

installed packages.
Change the directory to the eclipse/tools subdirectory of the Installation Manager binaries location,
and run this command:

./imcl listInstalledPackages

This will display a list indicating which packages this Installation Manager has installed. For example:
com.ibm.websphere.liberty.v85_8.5.5.20110203_0234

v If an installation was successful, the installed.xml file should contain a location element for the
installed offering.
For example, the following file:

installation_manager_root/properties/version/installed.xml

should contain something like this:
<location id="IBM WebSphere Application Server Liberty Core V8.5" kind="product" path="/QIBM/ProdData/WebSphere/AppServer/V85/LibertyCore"> </location>

v If you used the Installation Manager -log option during installation, you can verify that the resulting
log file does not contain any errors.
If you used the following command to install the offering silently for example:

./imcl -acceptLicense
input $HOME/WASFiles/liberty/temp/install_response_file.xml
-log $HOME/WASFiles/liberty/temp/install_log.xml
-secureStorageFile $HOME/WASFiles/liberty/temp/credential.store -masterPasswordFile $HOME/WASFiles/liberty/master_password_file.txt

and the installation was successful, the install_log.xml file should contain something like this:
<?xml version="1.0" encoding="UTF-8"?>
<result>
</result>

Adding and removing features from Liberty on IBM i operating systems using
response files
You can install and remove WebSphere Application Server Liberty Core features using Installation
Manager response files.

About this task

Perform this procedure to use Installation Manager to install or remove a feature silently using a response
file.

Like other Installation Manager operations, you can invoke a modification using the imcl command-line
tool. Go to the IBM Installation Manager Information Center for more information.

8.5.5.4

To install Version 8.5.5.4 and later of Liberty, you must have IBM Installation Manager Version

1.6.2 or later.

Optional features: In the following list of optional features, the names to be used in the response files
are enclosed in parentheses:
v Embeddable EJB container and JPA client (embeddablecontainer)

Chapter 3. Installing Liberty 803

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

This option installs the embeddable EJB container and JPA client.
The embeddable EJB container is a Java Archive (JAR) file that you can use to run enterprise beans in a
standalone Java Platform, Standard Edition (SE) environment. You can run enterprise beans using this
embeddable container outside the application server. The embeddable EJB container is a part of the EJB
3.1 specification and is primarily used for unit testing enterprise beans business logic.
The JPA client can be used with the embeddable EJB container to provide Java Persistence API
capability in a Java SE environment.

Procedure
1. Optional: If the repository requires a username and password, create a credential-storage file to access

this repository.

Tip: When creating a credential-storage file, append /repository.config at the end of the repository
URL location if the imutilsc command is unable to find the URL that is specified.

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage file.
In versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password options
were used to access credentials in a keyring file. These options were deprecated in Version 1.6.2. There
is no migration path from keyring files to storage files because of the differences in the file structures.
For more information on using the -secureStorageFile and -masterPasswordFile options to store
credentials in a credential-storage file, see the Installation Manager Version 1.6 documentation. For
more information on using the -keyring and -password options to store credentials in a keyring file,
see the Installation Manager Version 1.5 documentation.

2. Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special authorities.
3. On a CL command line, run the STRQSH command to start the Qshell command shell.
4. Use a response file to install or remove a feature.

Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager,
and modify the product. For example:

./imcl
input $HOME/WASFiles/temp/modify_response_file.xml
-log $HOME/WASFiles/temp/modify_log.xml
-secureStorageFile $HOME/WASFiles/temp/credential.store -masterPasswordFile $HOME/WASFiles/master_password_file.txt

Note: The program might write important post-installation instructions to standard output.
For more information on using Installation Manager, read the IBM Installation Manager Information
Center.

Example
v Here are examples of response files for modifying the features in an installation:

– Here is a response file that adds the Embeddable EJB container and JPA client to an existing product
that is installed in the /QIBM/ProdData/WebSphere/AppServer/V85/LibertyCore directory:

<?xml version="1.0" encoding="UTF-8"?>
<agent-input>
<server>
<repository location=’https://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85’/>

</server>
<profile id=’WebSphere Liberty V8.5’ installLocation=’/QIBM/ProdData/WebSphere/AppServer/V85/LibertyCore’>
<data key=’was.install.os400.profile.location’ value=’/QIBM/UserData/WebSphere/AppServer/V85/LibertyCore’/>

</profile>
<install modify=’true’>
<offering profile=’WebSphere Liberty V8.5’ features=’embeddablecontainer’ id=’com.ibm.websphere.liberty.v85’/>

</install>
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’ value=’/QIBM/UserData/InstallationManager/IMShared’/>
<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’ value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>

804 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
</agent-input>

– To alter this response file to remove a feature, simply change the install tags to uninstall. Here is
the same response file modified to remove the Embeddable EJB container and JPA client:

<?xml version="1.0" encoding="UTF-8"?>
<agent-input>
<server>
<repository location=’https://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85’/>

</server>
<profile id=’WebSphere Liberty V8.5’ installLocation=’/QIBM/ProdData/WebSphere/AppServer/V85/LibertyCore’>
<data key=’was.install.os400.profile.location’ value=’/QIBM/UserData/WebSphere/AppServer/V85/LibertyCore’/>

</profile>
<uninstall modify=’true’>
<offering profile=’WebSphere Liberty V8.5’ features=’embeddablecontainer’ id=’com.ibm.websphere.liberty.v85’/>

</uninstall>
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’ value=’/QIBM/UserData/InstallationManager/IMShared’/>
<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’ value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
</agent-input>

– To combine adding and removing features using a single response file, add both an install action
and an uninstall action.

v Here is an example of the imcl command for modifying the features in an installation:
./imcl modify com.ibm.websphere.liberty.v85
-addFeatures embeddablecontainer
-repositories http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85
-installationDirectory /QIBM/ProdData/WebSphere/AppServer/V85/LibertyCore
-secureStorageFile /var/credential.store -masterPasswordFile /var/master_password_file.txt

Uninstalling Liberty from IBM i operating systems using the command line
You can use Installation Manager to uninstall WebSphere Application Server Liberty Core using the
Installation Manager command line (imcl).

Procedure
1. Stop all servers and applications on the WebSphere Application Server Liberty Core installation.
2. Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special authorities.
3. On a CL command line, run the STRQSH command to start the Qshell command shell.
4. Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.
5. Use the imcl command to uninstall the product.

For example:
./imcl uninstall com.ibm.websphere.liberty.v85,optional_feature_ID
-installationDirectory installation_directory

You can remove a list of features that are separated by commas. If a list of features is not specified,
the entire product is uninstalled.
For more information on using the imcl command to uninstall the product, see the IBM Installation
Manager Information Center.

6. Optional: Uninstall IBM Installation Manager.

Important: Before you can uninstall IBM Installation Manager, you must uninstall all of the packages
that were installed by Installation Manager.
For more information on uninstalling Installation Manager, see the IBM Installation Manager
Information Center.

Chapter 3. Installing Liberty 805

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

Example

Here is an example of using the imcl command to uninstall Websphere Application Server:
./imcl uninstall com.ibm.websphere.liberty.v85
-installationDirectory /QIBM/ProdData/WebSphere/AppServer/V85/LibertyCore

Uninstalling Liberty from IBM i operating systems using response files
You can uninstall WebSphere Application Server Liberty Core using Installation Manager response files.

About this task

Using Installation Manager, you can work with response files to uninstall the product.

Procedure
1. Stop all servers and applications on the WebSphere Application Server Liberty Core installation.
2. Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special authorities.
3. On a CL command line, run the STRQSH command to start the Qshell command shell.
4. Use a response file to uninstall the product.

From a command line on each of the systems from which you want to uninstall the product, change
to the eclipse/tools subdirectory in the directory where you installed Installation Manager and use a
response file that you created to uninstall the product. For example:

./imcl
input $HOME/WASFiles/temp/uninstall_response_file.xml
-log $HOME/WASFiles/temp/uninstall_log.xml

Here is an example of what the response file might contain:
<agent-input>
<uninstall>
<offering profile="WebSphere Liberty V8.5"/>
</uninstall>
</agent-input>

Go to the IBM Installation Manager Information Center for more information.
5. Optional: Uninstall IBM Installation Manager.

Important: Before you can uninstall IBM Installation Manager, you must uninstall all of the packages
that were installed by Installation Manager.
Read the IBM Installation Manager Information Center for information about using the uninstall script
to perform this procedure.

Installing Liberty interim fixes on IBM i operating systems using the command line
Fix packs contain bundled service to bring WebSphere Application Server Liberty for IBM i up to a new
level. Interim fixes provide corrective service for specific known problems. You can use the IBM
Installation Manager command-line function to update the offering with the fixes that are available for
your service level of WebSphere Application Server Liberty for IBM i.

Before you begin

Contact the IBM Software Support Center for information about updates for WebSphere Application
Server Liberty for IBM i. The most current information is available from the IBM Software Support
Center and Fix Central.

IBM Installation Manager is used to apply maintenance to WebSphere Application Server Liberty for IBM
i.

About this task

Use this procedure whenever you want to apply a new interim fix to your system.

806 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www.ibm.com/support/fixcentral/

Tip: You can also install interim fixes using silent response files with Installation Manager. For
information on creating and using response files, read the IBM Installation Manager Information Center.

Restriction: You cannot use the iRemoteInstall command to install an interim fix.

Procedure
1. For a list of interim fixes that are available for WebSphere Application Server Liberty for IBM i and

specific information about each interim fix, perform the following actions.
a. Go to Fix Central.
b. Select WebSphere as the product group.
c. Select WebSphere Application Server Liberty for IBM i as the product.
d. Select the version of the offering to be updated.
e. Select your operating system as the platform, and click Continue.
f. Select Browse for fixes, and click Continue.
g. Click More Information under each fix to view information about the fix.
h. Recommendation: Make a list of the names of the interim fixes that you would like to install.

2. Update WebSphere Application Server Liberty for IBM i with the interim fixes using one of the
following procedures.
v Access the live service repository that contains the fixes, and use web-based updating.

Use Installation Manager on your local system to update WebSphere Application Server Liberty for
IBM i with the interim fixes from the live web-based service repositories.
– For the live service repositories, use the same URLs as those used for the generally available

product-offering repositories during installation. These URLs are listed in Online product
repositories for WebSphere Application Server offerings.

– These locations do not contain web pages that you can access using a web browser. They are
remote web-based repository locations that you specify for Installation Manager so that it can
maintain the offering.

To install an interim fix from a service repository, perform the following actions:
a. If you do not already have Installation Manager credential-storage and master-password files

containing your IBM software user ID and password, create files that will allow you to access
the repository.

Note: These are the credentials that you use to access protected IBM software websites.

Tip: When creating a credential-storage file, append /repository.config at the end of the
repository URL location if the imutilsc command is unable to find the URL that is specified.

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage
file. In versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password
options were used to access credentials in a keyring file. These options were deprecated in
Version 1.6.2. There is no migration path from keyring files to storage files because of the
differences in the file structures. For more information on using the -secureStorageFile and
-masterPasswordFile options to store credentials in a credential-storage file, see the Installation
Manager Version 1.6 documentation. For more information on using the -keyring and -password
options to store credentials in a keyring file, see the Installation Manager Version 1.5
documentation.

b. Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special
authorities.

c. Stop all servers and applications on the WebSphere Application Server Liberty for IBM i
installation that is being updated.

Chapter 3. Installing Liberty 807

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www.ibm.com/support/fixcentral/
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_repositories
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_repositories
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html

d. On a CL command line, run the STRQSH command to start the Qshell command shell.
e. Make sure that the umask is set to 022.

To verify the umask setting, issue the following command:
umask

To set the umask setting to 022, issue the following command:
umask 022

f. Change to the Installation_Manager_binaries/eclipse/tools directory, where
Installation_Manager_binaries is the installation root directory for the Installation Manager.
On IBM i systems, the root directory for the Installation Manager is /QIBM/ProdData/
InstallationManager.

g. Install the interim fix.
./imcl install interim_fix_name

-installationDirectory offering_installation_location
-repositories repository_URL
-secureStorageFile storage_file -masterPasswordFile master_password_file

h. Optional: List all installed packages to verify the installation:
./imcl listInstalledPackages -long

v Download the files that contain the fixes from Fix Central, and use local updating.

You can download compressed files that contain the fixes from Fix Central. Each compressed fix file
contains an Installation Manager repository for the fix and usually has a .zip extension. After
downloading the fix files, you can use Installation Manager to update WebSphere Application
Server Liberty for IBM i with the interim fixes.
a. To download the interim fixes, perform the following actions:

1) Go to Fix Central.
2) Select WebSphere as the product group.
3) Select WebSphere Application Server Liberty for IBM i as the product.
4) Select the version of the offering to be updated.
5) Select your operating system as the platform, and click Continue.
6) Select Browse for fixes, and click Continue.
7) Select the interim fixes that you want to download, and click Continue.
8) Select your download options, and click Continue.
9) Click I agree to agree to the terms and conditions.

10) Click Download now to download the interim fixes.
11) Transfer the compressed fix files in binary format to the IBM i system on which they will

be installed.
b. To install an interim fix from a downloaded file, perform the following actions:

1) Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special
authorities.

2) Stop all servers and applications on the WebSphere Application Server Liberty for IBM i
installation that is being updated.

3) On a CL command line, run the STRQSH command to start the Qshell command shell.
4) Make sure that the umask is set to 022.

To verify the umask setting, issue the following command:
umask

To set the umask setting to 022, issue the following command:
umask 022

808 WebSphere Application Server Liberty Core 8.5.5

http://www.ibm.com/support/fixcentral/

5) Change to the Installation_Manager_binaries/eclipse/tools directory, where
Installation_Manager_binaries is the installation root directory for the Installation
Manager.
On IBM i systems, the root directory for the Installation Manager is /QIBM/ProdData/
InstallationManager.

6) Install the interim fix.
./imcl install interim_fix_name

-installationDirectory offering_installation_location
-repositories compressed_file

7) Optional: List all installed packages to verify the installation:
./imcl listInstalledPackages -long

Installing Liberty fix packs on IBM i operating systems using the command line
Product fix packs contain bundled service to bring WebSphere Application Server Liberty Core up to a
new product level. Interim fixes provide corrective service for specific known problems. You can use the
IBM Installation Manager command-line function to update the product with the fixes that are available
for your service level of WebSphere Application Server Liberty Core installation.

Before you begin

Contact the IBM Software Support Center for information about updates for WebSphere Application
Server for IBM i. The most current information is available from the IBM Software Support Center and
Fix Central.

8.5.5.6

If you want to install Liberty assets from local directory-based repositories or an instance

of the Liberty Asset Repository Service, configure the repositories. For more information about the Liberty
asset repositories, see “Installing assets using Installation Manager” on page 872.

Tip: As an alternative to the procedure that is described in this article, Installation Manager allows you
to use the updateAll command in a response file or on the command line to search for and update all
installed packages. Use this command only if you have full control over which fixes are contained in the
targeted repositories. If you create and point to a set of custom repositories that include only the specific
fixes that you want to install, you should be able to use this command confidently. If you enable
searching service repositories or install fixes directly from other live web-based repositories, then you
might not want to select this option so that you can select only the fixes that you want to install using
the -installFixes option with the install command on the command line or the installFixes attribute
in a response file.

About this task

New: Fix pack 16.0.0.2 is the next fix pack after 8.5.5.9. You can continue to use the same Version 8.5
Installation Manager repositories and offering IDs to install or update to 16.0.0.2, or you can use the new
versionless repositories and offerings. For more information about fix pack 16.0.0.2, see What is new in
Liberty in the new location of the latest Liberty documentation.
v You can also install fix packs using response files with Installation Manager. For information on

creating and using response files, read “Installing Liberty fix packs on IBM i operating systems using
response files” on page 814 and the IBM Installation Manager Information Center.

v You cannot use the iRemoteInstall command to install a fix pack.
v 8.5.5.4 To install Version 8.5.5.4 and later of Liberty, you must have IBM Installation Manager

Version 1.6.2 or later.

Procedure
1. For a list of fixes that are available for WebSphere Application Server Liberty Core installation and

specific information about each fix, perform the following actions.

Chapter 3. Installing Liberty 809

|
|
|
|

http://www.ibm.com/support/fixcentral/
https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_newinrelease.html
https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_newinrelease.html
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

a. Go to Fix Central.
b. Select WebSphere as the product group.
c. Select WebSphere Application Server as the product.
d. Select the installed version.
e. Select your operating system as the platform, and click Continue.
f. Select Browse for fixes, and click Continue.
g. Click More Information under each fix to view information about the fix.
h. Recommendation: Make a list of the names of the fixes that you would like to install.

2. Update WebSphere Application Server LibertyCore installation with the fix pack using one of the
following procedures.
v Access the live service repository that contains the fix pack, and use web-based updating.

Use Installation Manager on your local system to update WebSphere Application Server Liberty
Core with the interim fixes from the live web-based service repositories.
– For the live service repositories, use the same URLs as those used for the generally available

product-offering repositories during installation. These URLs are based on the following pattern:
http://www.ibm.com/software/repositorymanager/offering_ID

where offering_ID is the offering ID that you can find in WebSphere Application Server product
offerings for supported operating systems.

– These locations do not contain web pages that you can access using a web browser. They are
remote web-based repository locations that you specify for Installation Manager so that it can
maintain the product.

To install a fix from a service repository, perform the following actions:
a. If you do not already have Installation Manager credential-storage and master-password files

containing your IBM software user ID and password, create files that will allow you to access
the repository.

Note: These are the credentials that you use to access protected IBM software websites.
For information on creating credential-storage and master-password files for Installation
Manager, read the IBM Installation Manager Information Center.

Tip: When creating a credential-storage file, append /repository.config at the end of the
repository URL location if the imutilsc command is unable to find the URL that is specified.

b. Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special
authorities.

c. Stop all servers and applications on the WebSphere Application Server Liberty Core installation
that is being updated.

d. On a CL command line, run the STRQSH command to start the Qshell command shell.
e. Make sure that the umask is set to 022.

To verify the umask setting, issue the following command:
umask

To set the umask setting to 022, issue the following command:
umask 022

f. Change to the Installation_Manager_binaries/eclipse/tools directory, where
Installation_Manager_binaries is the installation root directory for the Installation Manager.
On IBM i systems, the root directory for the Installation Manager is /QIBM/ProdData/
InstallationManager.

g. Install the fix pack.

810 WebSphere Application Server Liberty Core 8.5.5

http://www.ibm.com/support/fixcentral/
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.doc/ae/cins_offerings.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.doc/ae/cins_offerings.html
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

./imcl install offering_ID_offering_version,optional_feature_ID
-repositories source_repository
-installationDirectory offering_installation_location
-secureStorageFile storage_file -masterPasswordFile master_password_file
-acceptLicense

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage
file. In versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password
options were used to access credentials in a keyring file. These options were deprecated in
Version 1.6.2. There is no migration path from keyring files to storage files because of the
differences in the file structures. For more information on using the -secureStorageFile and
-masterPasswordFile options to store credentials in a credential-storage file, see the Installation
Manager Version 1.6 documentation. For more information on using the -keyring and -password
options to store credentials in a keyring file, see the Installation Manager Version 1.5
documentation.

Tips:

– The offering_ID is the offering ID that is listed in WebSphere Application Server product
offerings for supported operating systems.

– The offering_version, which optionally can be attached to the offering ID with an underscore,
is a specific version of the offering to install (8.5.5.20110503_0200 for example).
- If offering_version is not specified, the latest version of the offering and all interim fixes for

that version are installed.
- If offering_version is specified, the specified version of the offering and no interim fixes for

that version are installed.
The offering version can be found attached to the end of the offering ID with an underscore
when you run the following command against the repository:
./imcl listAvailablePackages -repositories source_repository

– You can also specify none, recommended or all with the -installFixes argument to indicate
which interim fixes you want installed with the offering.
- If the offering version is not specified, the -installFixes option defaults to all.
- If the offering version is specified, the -installFixes option defaults to none.

– You can add a list of features that are separated by commas.

–

You can specify additional assets to install from the Liberty Repository.
For a list of Liberty Repository assets, see the downloads page on WASdev.net.
To install assets from the IBM WebSphere Liberty Repository, you must have access to the
internet, and you must have IBM Installation Manager Version 1.6.2 or later.
If you want to install Liberty Repository features, specify the short names or symbolic names
on the user.feature option of the -properties parameter. Multiple feature names are
separated with double commas. The following example installs the Portlet Container and
Portlet Serving features:

-properties user.feature=portlet-2.0,,portletserving-2.0,user.accept.license=true

8.5.5.5 For Version 8.5.5.5 and later, user.accept.license=true is not required.

8.5.5.4

Beginning with Version 8.5.5.4, the extprogmodels feature is no longer

available. Instead, install the extendedPackage-1.0 addon, or install the individual features
that you need from the Liberty Repository. See the following topics for more information:
- Installing Liberty Repository assets
- Liberty features
You can install the complete set of Extended Programming Model features by specifying the
user.addon option:

Chapter 3. Installing Liberty 811

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.doc/ae/cins_offerings.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.doc/ae/cins_offerings.html
https://developer.ibm.com/wasdev/downloads/

-properties user.addon=extendedPackage-1.0,user.accept.license=true

If you upgrade WebSphere Application Server Liberty Version 8.5.5.3 or previous versions
that contain the extprogmodels feature, Installation Manager automatically installs the
extendedPackage-1.0 add-on. You must specify the user.accept.license option:

-properties user.accept.license=true

8.5.5.6 You can also install assets from instances of the Liberty Asset Repository
Service or local directory-based repositories. For more information about these asset
repositories, see “Installing assets using Installation Manager” on page 872. Add the
repository on the -repositories parameter. The repositories are accessed in the order that
they are specified. By default, the Liberty Repository is the last of the repositories that are
accessed during installation. To disable access to the Liberty Repository, on the -properties
parameter, set the user.useLibertyRepository option to false. 8.5.5.8

./imcl install com.ibm.websphere.liberty.v85
-properties user.useLibertyRepository=false,user.addon=extendedPackage-1.0,user.feature=portlet-2.0
-installationDirectory /QIBM/ProdData/Liberty -acceptLicense
-repositories /QIBM/LibertyProductRepo,https://your_onprem_asset_repo_url,/QIBM/LocalAssetRepo,/QIBM/LocalAssetRepo2.zip
-sharedResourcesDirectory /QIBM/UserData/InstallationManager/IMShared
-showProgress

To learn more about the Liberty Repository and the assets it contains, see “Liberty
Repository” on page 573.

– If you obtained the fix pack by installing the WebSphere Application Server group PTF, you
can use the local fix-pack repositories to install the fix pack.
For information about the local fix-pack repositories, see file /QIBM/WAS/WASFixpacks/
ReadmeV85.html or /QIBM/WAS/WASFixpacks/ReadmeV85.txt.

h. Optional: List all installed packages to verify the installation:
./imcl listInstalledPackages -long

v Download a file that contains the fix pack from Fix Central, and use local updating.
You can download a compressed file that contains the fix pack from Fix Central. Each compressed
fix file contains an Installation Manager repository for the fix pack and usually has a .zip extension.
After downloading the fix file, you can use Installation Manager to update WebSphere Application
Server Liberty Core with the fix pack.
a. To download the fix pack, perform the following actions:

1) Go to Fix Central.
2) Select WebSphere as the product group.
3) Select WebSphere Application Server as the product.
4) Select the installed version.
5) Select your operating system as the platform, and click Continue.
6) Select Browse for fixes, and click Continue.
7) Select the fix pack that you want to download, and click Continue.
8) Select your download options, and click Continue.
9) Click I agree to agree to the terms and conditions.

10) Click Download now to download the fix pack.
11) Transfer the compressed fix file in binary format to the IBM i systems on which it will be

installed.
12) Extract the compressed repository file to a directory on your system.

b. To install a fix pack from a downloaded file, perform the following actions:
1) Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special

authorities.
2) Stop all servers and applications on the WebSphere Application Server Liberty Core

installation that is being updated.

812 WebSphere Application Server Liberty Core 8.5.5

http://www.ibm.com/support/fixcentral/

3) On a CL command line, run the STRQSH command to start the Qshell command shell.
4) Make sure that the umask is set to 022.

To verify the umask setting, issue the following command:
umask

To set the umask setting to 022, issue the following command:
umask 022

5) Change to the Installation_Manager_binaries/eclipse/tools directory, where
Installation_Manager_binaries is the installation root directory for the Installation
Manager.
On IBM i systems, the root directory for the Installation Manager is /QIBM/ProdData/
InstallationManager.

6) Install the fix pack.
./imcl install offering_ID_offering_version,optional_feature_ID

-repositories location_of_expanded_files
-installationDirectory offering_installation_location
-acceptLicense

Tips:

– The offering_ID is the offering ID that is listed in WebSphere Application Server product
offerings for supported operating systems.

– The offering_version, which optionally can be attached to the offering ID with an
underscore, is a specific version of the offering to install (8.5.5.20110503_0200 for
example).
- If offering_version is not specified, the latest version of the offering and all interim fixes

for that version are installed.
- If offering_version is specified, the specified version of the offering and no interim fixes

for that version are installed.
The offering version can be found attached to the end of the offering ID with an
underscore when you run the following command against the repository:
./imcl listAvailablePackages -repositories source_repository

– You can also specify none, recommended or all with the -installFixes argument to
indicate which interim fixes you want installed with the offering.
- If the offering version is not specified, the -installFixes option defaults to all.
- If the offering version is specified, the -installFixes option defaults to none.

– You can add a list of features that are separated by commas.
– You can specify additional assets to install from the Liberty Repository. For a list of

Liberty Repository assets, see the downloads page on WASdev.net.
To install assets from the IBM WebSphere Liberty Repository, you must have access to the
internet, and you must have IBM Installation Manager Version 1.6.2 or later.
If you want to install Liberty Repository features, specify the short names or symbolic
names on the user.feature option of the -properties parameter. Multiple feature names
are separated with double commas. The following example installs the Portlet Container
and Portlet Serving features:

-properties user.feature=portlet-2.0,,portletserving-2.0,user.accept.license=true

8.5.5.5 For Version 8.5.5.5 and later, user.accept.license=true is not required.

8.5.5.4

Beginning with Version 8.5.5.4, the extprogmodels feature is no longer

available. Instead, install the extendedPackage-1.0 addon, or install the individual
features that you need from the Liberty Repository. See the following topics for more
information:

Chapter 3. Installing Liberty 813

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_offerings
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-dist&topic=cins_offerings
https://developer.ibm.com/wasdev/downloads/

- Installing Liberty Repository assets
- Liberty features
You can install the complete set of Extended Programming Model features by specifying
the user.addon option:

-properties user.addon=extendedPackage-1.0,user.accept.license=true

8.5.5.5 For Version 8.5.5.5 and later, user.accept.license=true is not required.
If you upgrade WebSphere Application Server Liberty Version 8.5.5.3 or previous versions
that contain the extprogmodels feature, Installation Manager automatically installs the
extendedPackage-1.0 add-on. You must specify the user.accept.license option:

-properties user.accept.license=true

8.5.5.6 You can also install assets from instances of the Liberty Asset Repository
Service or local directory-based repositories. For more information about these asset
repositories, see “Installing assets using Installation Manager” on page 872. Add the
repository on the -repositories parameter. The repositories are accessed in the order that
they are specified. By default, the Liberty Repository is the last of the repositories that are
accessed during installation. To disable access to the Liberty Repository, on the
-properties parameter, set the user.useLibertyRepository option to false. 8.5.5.8

imcl install com.ibm.websphere.liberty.v85
-properties user.useLibertyRepository=false,user.addon=extendedPackage-1.0,user.feature=portlet-2.0
-installationDirectory D:\IBM\Liberty -acceptLicense
-repositories D:\IBM\LibertyProductRepo,https://your_onprem_asset_repo_url,D:\IBM\LocalAssetRepo,D:\IBM\LocalAssetRepo2.zip
-sharedResourcesDirectory D:\IBM\IMShared
-showProgress

To learn more about the Liberty Repository and the assets it contains, see “Liberty
Repository” on page 573.

– If you obtained the fix pack by installing the WebSphere Application Server group PTF,
you can use the local fix-pack repositories to install the fix pack.
For information about the local fix-pack repositories, see file /QIBM/WAS/WASFixpacks/
ReadmeV85.html or /QIBM/WAS/WASFixpacks/ReadmeV85.txt.

7) Optional: List all installed packages to verify the installation:
./imcl listInstalledPackages -long

Installing Liberty fix packs on IBM i operating systems using response files
You can update WebSphere Application Server Liberty Core to a later version using Installation Manager
response files.

Before you begin

8.5.5.6 If you want to install Liberty assets from local directory-based repositories or an instance
of the Liberty Asset Repository Service, configure the repositories. For more information about the Liberty
asset repositories, see “Installing assets using Installation Manager” on page 872.

Tip: As an alternative to the procedure that is described in this article, Installation Manager allows you
to use the updateAll command in a response file or on the command line to search for and update all
installed packages. Use this command only if you have full control over which fixes are contained in the
targeted repositories. If you create and point to a set of custom repositories that include only the specific
fixes that you want to install, you should be able to use this command confidently. If you enable
searching service repositories or install fixes directly from other live web-based repositories, then you
might not want to select this option so that you can select only the fixes that you want to install using
the -installFixes option with the install command on the command line or the installFixes attribute
in a response file.

814 WebSphere Application Server Liberty Core 8.5.5

About this task

New: Fix pack 16.0.0.2 is the next fix pack after 8.5.5.9. You can continue to use the same Version 8.5
Installation Manager repositories and offering IDs to install or update to 16.0.0.2, or you can use the new
versionless repositories and offerings. For more information about fix pack 16.0.0.2, see What is new in
Liberty in the new location of the latest Liberty documentation.

8.5.5.4

To install Version 8.5.5.4 and later of Liberty, you must have IBM Installation Manager Version

1.6.2 or later.

Procedure
1. Optional: If the repository requires a username and password, create a credential-storage file to access

this repository.

Tip: When creating a credential-storage file, append /repository.config at the end of the repository
URL location if the imutilsc command is unable to find the URL that is specified.

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage file.
In versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password options
were used to access credentials in a keyring file. These options were deprecated in Version 1.6.2. There
is no migration path from keyring files to storage files because of the differences in the file structures.
For more information on using the -secureStorageFile and -masterPasswordFile options to store
credentials in a credential-storage file, see the Installation Manager Version 1.6 documentation. For
more information on using the -keyring and -password options to store credentials in a keyring file,
see the Installation Manager Version 1.5 documentation.

2. Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special authorities.
3. On a CL command line, run the STRQSH command to start the Qshell command shell.
4. Use a response file to update the product.

Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager,
and update the product. For example:

./imcl -acceptLicense
input $HOME/WASFiles/temp/update_response_file.xml
-log $HOME/WASFiles/temp/update_log.xml
-secureStorageFile $HOME/WASFiles/temp/credential.store -masterPasswordFile $HOME/WASFiles/master_password_file.txt

Note: The program might write important post-installation instructions to standard output.
For more information on using Installation Manager, read the IBM Installation Manager Information
Center.

Example

The following is an example of a response file for updating WebSphere Application Server Liberty Core
to a later version.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input>
<server>
<repository location=’https://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85’/>

</server>
<profile id=’WebSphere Liberty V8.5’ installLocation=’/QIBM/ProdData/WebSphere/AppServer/V85/LibertyCore’>
<data key=’was.install.os400.profile.location’ value=’/QIBM/UserData/WebSphere/AppServer/V85/LibertyCore’/>

</profile>
<install modify=’false’>
<offering profile=’WebSphere Liberty V8.5’ id=’com.ibm.websphere.liberty.v85’
version=’8.5.5.20101025_2108’/>

</install>
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’ value=’/QIBM/UserData/InstallationManager/IMShared’/>
<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>

Chapter 3. Installing Liberty 815

|
|
|
|

https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_newinrelease.html
https://www.ibm.com/support/knowledgecenter/SSAW57_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_newinrelease.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’ value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
</agent-input>

Tips:

v The profile ID (<profile . . . id=’profile_ID’> and <offering . . . profile=’profile_ID’
. . . .>) can be found when you run the imcl listInstallationDirectories -verbose command
from the eclipse/tools subdirectory in the directory where you installed Installation Manager. It is the
same as the package group's name.

v The version is a specific version of the offering to install (8.5.5.20101025_2108 for example). This
specification is optional.
– If version is not specified, the latest version of the offering and all interim fixes for that version are

installed.
– If version is specified, the specified version of the offering and no interim fixes for that version are

installed.
The offering version can be found attached to the end of the offering ID with an underscore when you
run the following command against the repository:
./imcl listAvailablePackages -repositories source_repository

v You can also specify none, recommended or all with the -installFixes argument to indicate which
interim fixes you want installed with the offering.
– If the offering version is not specified, the -installFixes option defaults to all.
– If the offering version is specified, the -installFixes option defaults to none.

v If you obtained the fix pack by installing the WebSphere Application Server group PTF, you can use
the local fix-pack repositories to install the fix pack.
For information about the local fix-pack repositories, see file /QIBM/WAS/WASFixpacks/ReadmeV8.html or
/QIBM/WAS/WASFixpacks/ReadmeV8.txt.

v You can specify additional assets to install from the Liberty Repository. For a list of
Liberty Repository assets, see the downloads page on WASdev.net.
To install Liberty Repository assets, you must have access to the internet, and you must have IBM
Installation Manager Version 1.6.2 or later. Previous versions of Installation Manager do not have the
option to install Liberty Repository assets. If you use a response file and did not update Installation
Manager to Version 1.6.2 or later, the assets that you specify in the response file are ignored during
installation.
If you want to install additional features, specify two extra data key elements in your response file.
You can use either the symbolic name or the short name.
The following example installs the Portlet Container and Portlet Serving features using the symbolic
name.

<data key=’user.feature’ value=’com.ibm.websphere.appserver.portlet-2.0,,com.ibm.websphere.appserver.portletserving-2.0’/>
<data key=’user.accept.license’ value=’true’/>

The following example installs the Portlet Container and Portlet Serving features using the short name:
<data key=’user.feature’ value=’portlet-2.0,,portletserving-2.0’/>
<data key=’user.accept.license’ value=’true’/>

8.5.5.5 For Version 8.5.5.5 and later, user.accept.license=true is not required.

8.5.5.4

Beginning with Version 8.5.5.4, the extprogmodels feature is no longer available. Instead,

install the extendedPackage-1.0 addon, or install the individual features that you need from the Liberty
Repository. See the following topics for more information:
– Installing Liberty Repository assets
– Liberty features

816 WebSphere Application Server Liberty Core 8.5.5

https://developer.ibm.com/wasdev/downloads/

The following example installs the Extended Programming Models using the user.addon parameter
and the Portlet Container and Portlet Serving features using the user.feature parameter with short
names:

<data key=’user.addon’ value=’extendedPackage-1.0’/>
<data key=’user.feature’ value=’portlet-2.0,,portletserving-2.0’/>
<data key=’user.accept.license’ value=’true’/>

8.5.5.6 You can also install assets from an instance of the Liberty Asset Repository Service or
local directory-based repositories. For more information, see “Installing assets using Installation
Manager” on page 872. Add the repository on repository elements. If Installation Manager does not
recognize the repository, point directly to the repository.config file. When you install assets, the
repositories are accessed in the order that you specify them.
<server>
<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85" />
<repository location="https://your_onprem_asset_repo_url" />
<repository location="/QIBM/LocalAssetRepo" />

8.5.5.8 <repository location="/QIBM/LocalAssetRepo2.zip" /> </server>By default, the Liberty
Repository is the last of the repositories that are accessed during installation. To disable access to the
Liberty Repository, set the user.useLibertyRepository parameter to false:

<data key=’user.addon’ value=’extendedPackage-1.0’/>
<data key=’user.feature’ value=’portlet-2.0,,portletserving-2.0’/>
<data key=’user.useLibertyRepository’ value=’false’/>

To learn more about the Liberty Repository and the assets it contains, see “Liberty Repository” on page
573.

v

Note: 8.5.5.3 If you are updating to Version 8.5.5.3 and previously installed Liberty Repository
features but do not currently have a connection to the IBM WebSphere Liberty Repository, you cannot
update using a response file. Instead, update the product by running the imcl command and
specifying the user.feature="" parameter.

Uninstalling Liberty interim fixes from IBM i operating systems using the
command line
You can use the IBM Installation Manager command-line function to remove interim fixes from
WebSphere Application Server Liberty Core.

About this task

Use this procedure whenever you want to remove an interim fix from your system using the command
line.

Tip: You can also uninstall interim fixes using silent response files with Installation Manager. For
information on creating and using response files, read “Installing Liberty fix packs on IBM i operating
systems using response files” on page 814 and the IBM Installation Manager Information Center.

Procedure
1. Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special authorities.
2. Stop all servers and applications on the WebSphere Application Server Liberty Core installation.
3. On a CL command line, run the STRQSH command to start the Qshell command shell.
4. Make sure that the umask is set to 022.

To verify the umask setting, issue the following command:
umask

To set the umask setting to 022, issue the following command:
umask 022

Chapter 3. Installing Liberty 817

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911

5. Change to the Installation_Manager_binaries/eclipse/tools directory, where
Installation_Manager_binaries is the installation root directory for the Installation Manager.
On IBM i systems, the root directory for the Installation Manager is /QIBM/ProdData/
InstallationManager.

6. Uninstall the interim fix:
./imcl uninstall interim_fix_name

-installationDirectory offering_installation_location

7. Optional: List all installed packages to verify the uninstallation.
./imcl listInstalledPackages -long

Uninstalling Liberty fix packs from IBM i operating systems using the command
line
You can roll back WebSphere Application Server Liberty Core to an earlier version using the Installation
Manager command line.

Before you begin

Restriction: In order to use this procedure, you must have Installation Manager Version 1.6 or later
installed on your system.

During the rollback process, Installation Manager must access files from the earlier version of the
package. By default, these files are stored on your computer when you install a package. If you change
the default setting or delete the saved files, Installation Manager requires access to the repository that
was used to install the earlier version.

Procedure
1. Optional: If the repository requires a username and password, create a credential-storage file to access

this repository.

Tip: When creating a credential-storage file, append /repository.config at the end of the repository
URL location if the imutilsc command is unable to find the URL that is specified.

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage file.
In versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password options
were used to access credentials in a keyring file. These options were deprecated in Version 1.6.2. There
is no migration path from keyring files to storage files because of the differences in the file structures.
For more information on using the -secureStorageFile and -masterPasswordFile options to store
credentials in a credential-storage file, see the Installation Manager Version 1.6 documentation. For
more information on using the -keyring and -password options to store credentials in a keyring file,
see the Installation Manager Version 1.5 documentation.

2. Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special authorities.
3. Stop all servers and applications on the installation that is being rolled back.
4. On a CL command line, run the STRQSH command to start the Qshell command shell.
5. Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager.
6. Use the imcl command to roll back the product.

./imcl rollback offering_ID_offering_version
-repositories source_repository
-installationDirectory installation_directory
-preferences preference_key=value
-properties property_key=value
-secureStorageFile storage_file -masterPasswordFile master_password_file
-acceptLicense

818 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html

Tips:

v The offering_ID is the offering ID that is listed in WebSphere Application Server product offerings
for supported operating systems.

v The offering_version, which optionally can be attached to the offering ID with an underscore, is a
specific version of the offering to which to roll back (8.5.5.20110503_0200 for example).
– If offering_version is not specified, the installation rolls back to the previously installed version of

the offering and all interim fixes for that version are installed.
– If offering_version is specified, the installation rolls back to the specified earlier version of the

offering and no interim fixes for that version are installed.
v If you previously installed Liberty Repository features and addons but do not have access to a

Liberty repository when you rollback your installation, specify the following properties in the
response file:
-properties user.addon="",user.feature=""

Specifying these properties enables the product to rollback and uninstalls all features and addons.
For more information on using the imcl command, read the IBM Installation Manager Information
Center.

7. Optional: List all installed packages to verify the roll back.
./imcl listInstalledPackages -long

Uninstalling Liberty fix packs from IBM i operating systems by using response
files
You can rollback WebSphere Application Server Liberty Core to an earlier version by using Installation
Manager response files.

Before you begin

During the rollback process, Installation Manager must access files from the earlier version of the
package. By default, these files are stored on your computer when you install a package. If you change
the default setting or delete the saved files, Installation Manager requires access to the repository that
was used to install the earlier version.

Procedure
1. Optional: If the repository requires a username and password, create a credential-storage file to access

this repository.

Tip: When creating a credential-storage file, append /repository.config at the end of the repository
URL location if the imutilsc command is unable to find the URL that is specified.

Note: When you use Installation Manager Version 1.6.2 and later, you should use the
-secureStorageFile and -masterPasswordFile options to store credentials in a credential-storage file.
In versions of Installation Manager earlier than Version 1.6.2, the -keyring and -password options
were used to access credentials in a keyring file. These options were deprecated in Version 1.6.2. There
is no migration path from keyring files to storage files because of the differences in the file structures.
For more information on using the -secureStorageFile and -masterPasswordFile options to store
credentials in a credential-storage file, see the Installation Manager Version 1.6 documentation. For
more information on using the -keyring and -password options to store credentials in a keyring file,
see the Installation Manager Version 1.5 documentation.

2. Sign on to the IBM i system with a user profile that has *ALLOBJ and *SECADM special authorities.
3. Stop all servers and applications on the installation that is being rolled back.
4. On a CL command line, run the STRQSH command to start the Qshell command shell.
5. Use a response file to rollback the product.

Chapter 3. Installing Liberty 819

https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.doc/ae/cins_offerings.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.doc/ae/cins_offerings.html
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.6.0/com.ibm.cic.agent.ui.doc/helpindex_imic.html
https://www.ibm.com/support/knowledgecenter/SSDV2W_1.5.0/welcome.html

Change to the eclipse/tools subdirectory in the directory where you installed Installation Manager,
and rollback the product. For example:

./imcl
input $HOME/WASFiles/temp/rollback_response_file.xml
-log $HOME/WASFiles/temp/rollback_log.xml
-secureStorageFile $HOME/WASFiles/temp/credential.store -masterPasswordFile $HOME/WASFiles/master_password_file.txt

Note: The program might write important post-installation instructions to standard output.
For more information on using Installation Manager, read the IBM Installation Manager Information
Center.

6. Optional: List all installed packages to verify the rollback.
./imcl listInstalledPackages -long

Example

The following is an example of a response file for rolling back the product to an earlier version.
<?xml version="1.0" encoding="UTF-8"?>
<agent-input>
<server>
<repository location=’https://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.v85’/>

</server>
<profile id=’WebSphere Liberty V8.5’ installLocation=’/QIBM/ProdData/WebSphere/AppServer/V85/LibertyCore’>
</profile>
<rollback>
<offering profile=’WebSphere Liberty V8.5’ id=’com.ibm.websphere.liberty.v85’ version=’8.5.5.20101025_2108’/>

</rollback>
</agent-input>

Tips:

v The profile ID (<profile . . . id=’profile_ID’> and <offering . . . profile=’profile_ID’
. . . .>) can be found when you run the imcl listInstallationDirectories -verbose command
from the eclipse/tools subdirectory in the directory where you installed Installation Manager. It is the
same as the package group’s name.

v The offering ID (<offering . . . id=’offering_ID’>) can be found in WebSphere Application
Server product offerings for supported operating systems.

v The version is a specific version of the offering to which to rollback (8.5.5.20101025_2108 for example).
This specification is optional.
– If version is not specified, the installation rolls back to the previously installed version of the offering

and all interim fixes for that version are installed.
– If version is specified, the installation rolls back to the specified earlier version of the offering and no

interim fixes for that version are installed.
v If you previously installed Liberty Repository features and addons but do not have access to a Liberty

repository when you rollback your installation, specify the following properties in the response file:
<data key=’user.feature’ value=’’/>
<data key=’user.addon’ value=’’/>

Specifying these properties enables the product to rollback and uninstalls all features and addons.

Using the sample response files
You can edit and use sample response files for installing, modifying, or uninstalling IBM Web Enablement
Liberty for IBM i silently.

Procedure
v “Sample response file: Installing IBM Web Enablement Liberty for IBM i” on page 821
v “Sample response file: Modifying IBM Web Enablement Liberty for IBM i” on page 825
v “Sample response file: Uninstalling IBM Web Enablement Liberty for IBM i” on page 830

820 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
http://www-01.ibm.com/support/docview.wss?rs=3352&uid=swg27010911
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.doc/ae/cins_offerings.html
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.installation.nd.doc/ae/cins_offerings.html

Sample response file: Installing IBM Web Enablement Liberty for IBM i:

You can edit and use this example of a response file for installing IBM Web Enablement Liberty for IBM i.
<?xml version="1.0" encoding="UTF-8"?>

<!-- ##### Copyright ##
Licensed Materials - Property of IBM (c) Copyright IBM Corp. 2013.
All Rights Reserved. US Government Users Restricted Rights-Use, duplication
or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
-->

<!-- ##### Frequently Asked Questions #####################################
The latest information about using Installation Manager is
located in the online Information Center. There you can find
information about the commands and attributes used in
silent installation response files.
#
Installation Manager Information Center can be found at:
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
Question 1. How do I record a response file using Installation Manager?
Answer 1. Start Installation Manager from the command line under the
eclipse subdirectory with the record parameter and it will generate a
response file containing actions it performed, repositories it used, and
its preferences settings. Optionally use the -skipInstall parameter if
you do not want the product to be installed to the machine. Specify a
new agentDataLocation location value when doing a new installation. Do
not use an existing agentDataLocation for an installation because it might
damage the installation data and prevent you from modifying, updating,
rolling back, or uninstalling the installed packages.
#
Windows: IBMIM -record <responseFile> -skipInstall <agentDataLocation>
Linux or UNIX: ./IBMIM -record <responseFile> -skipInstall <agentDataLocation>
#
For example:
Windows = IBMIM.exe -record c:\temp\responsefiles\WASv85.install.Win32.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
Linux or UNIX = ./IBMIM -record /home/user/responsefiles/WASv85.install.RHEL64.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
#
Question 2. How do I run Installation Manager silently using response file?
Answer 2. Create a silent installation response file and run the following command
from the eclipse\tools subdirectory in the directory where you installed
Installation Manager:
#
Windows = imcl.exe -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
#
For example:
Windows = imcl.exe -acceptLicense -showProgress
input c:\temp\responsefile\WASv85.install.Win32.xml
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input /home/user/responsefile/WASv85.install.RHEL64.xml
#
The -acceptLicense command must be included to indicate acceptance of all
license agreements of all offerings being installed, updated or modified.
The -showProgress command shows progress when running in silent mode.
Additional commands can be displayed by requesting help: IBMIM -help
#
Question 3. How do I store and pass credentials to repositories that
require authentication?
Answer 3. There are two methods for storing authentication credentials
for Installation Manager depending on the version being used,
either key ring files or storage files.
#
Versions of Installation Manger before 1.6.2 use a key ring file to store
encrypted credentials for authenticating with repositories. Follow this
two-step process for creating and using a key ring file with Installation Manager.
#
First, create a key ring file with your credentials by starting
Installation Manager from the command line under eclipse subdirectory
with the keyring parameter.
Use the optional password parameter to password protect your file.
#
Windows = IBMIM.exe -keyring <path and file name> -password <password>
Linux, UNIX, IBM i and z/OS = ./IBMIM -keyring <path and file name>
-password <password>
#
Installation Manager will start in graphical mode. Verify that the
repositories to which you need to authenticate are included in the
preferences, File / Preferences / Repositories. If they are not
listed, then click Add Repositories to add the URL or UNC path.
Installation Manager will prompt for your credentials. If the repository
is already in the list, then any attempt to access the repository location,
such as clicking the Test Connections button, will also prompt for your
credentials. Enter the correct credential and check the Save password

Chapter 3. Installing Liberty 821

checkbox. The credentials are saved to the key ring file you specified.
#
Second, when you start a silent installation, run imcl under eclipse/tools
subdirectory, and provide Installation Manager with the location of the key
ring file and the password if the file is protected. For example:
#
Windows = imcl.exe -acceptLicense -showProgress
input <path and file name of response file>
-keyring <path and name of key ring file> -password <password>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <path and file name of response file>
-keyring <path and name of key ring file> -password <password>
#
Versions of Installation Manager at 1.6.2 or higher use storage files
to store encrypted credentials. Complete the following steps to create
master password and storage files to use with Installation Manager.
#
First, if you do not have a master password file already, create a text file
that contains a master passphrase. An example of a passphrase is:
"This text is the passphrase for a master password file."
#
Next, run imutilsc under the eclipse/tools subdirectory with the following
options to create and store user credentials in a storage file.
-secureStorageFile <path and file name of storage file>
-masterPasswordFile <path and file name of master password file>
-url <repository address> or -passportAdvantage <PPA repository address>
-userName <user name>
-userPassword <password for user>
#
Example of a command to create a storage file by operating system
Windows = imutilsc saveCredential -url http://myServer -userName myUserName
-userPassword myPassword -secureStorageFile C:\IBM\credential.store
-masterPasswordFile C:\IBM\master_password_file.txt
Linux, UNIX, IBM z/OS, and the OS X operating system =
./imutilsc saveCredential -url http://myServer -userName myUserName
-userPassword myPassword -secureStorageFile /home/IBM/credential.store
-masterPasswordFile /home/user/IBM/master_password_file.txt
#
Usage hints:
* Do not use both the -url and -passportAdvantage options in the same command.
* Enclose file paths that include spaces with double quotation marks.
* If you use the IBM service repositories, you can specify the value:
http://www.ibm.com/software/repositorymanager/entitled/repository.xml
for the -url option which is a generic service repository for IBM packages.
* Repeat steps to store credentials for multiple users in one file.
* Repeat steps to store credentials for multiple repositories in one file.
#
Afterwards, when you start a silent installation, run imcl under the eclipse/tools
subdirectory, and provide Installation Manager with the location of the storage
file. For example:
#
Windows = imcl.exe -acceptLicense -showProgress
input <path and file name of response file>
-secureStorageFile <path and name of storage file>
-masterPasswordFile <path and name of master password file>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <path and file name of response file>
-secureStorageFile <path and name of storage file>
-masterPasswordFile <path and name of master password file>
#
-->

<!-- ##### Agent Input ##
#
Note that the acceptLicense attribute has been deprecated.
Use the -acceptLicense command line option to accept license agreements.
#
The clean and temporary attributes specify the repositories and other
preferences Installation Manager uses and whether those settings
should persist after the installation finishes.
#
Valid values for clean:
true = only use the repositories and other preferences that are
specified in the response file.
false = use the repositories and other preferences that are
specified in the response file and Installation Manager.
#
Valid values for temporary:
true = repositories and other preferences specified in the
response file do not persist in Installation Manager.
false = repositories and other preferences specified in the
response file persist in Installation Manager.
#
-->

<agent-input clean="true" temporary="true">

<!-- ##### Repositories ###
Repositories are locations that Installation Manager queries for
installable packages. Repositories can be local (on the machine

822 WebSphere Application Server Liberty Core 8.5.5

with Installation Manager) or remote (on a corporate intranet or
hosted elsewhere on the internet).
#
If the machine using this response file has access to the internet,
then include the IBM WebSphere Live Update Repositories in the list
of repository locations.
#
If the machine using this response file cannot access the internet,
then comment out the IBM WebSphere Live Update Repositories and
specify the URL or UNC path to custom intranet repositories and
directory paths to local repositories to use.
#
-->

<server>
<!-- ##### IBM WebSphere Live Update Repositories ####################
These repositories contain WebSphere Application Server Liberty offerings,
and updates for those offerings
#
To use the secure repository (https), you must have an IBM ID,
which can be obtained by registering at: http://www.ibm.com/account
or your Passport Advantage account.
#
And, you must use a key ring file with your response file.
-->

<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.WEBENAB.v85"/>
<!-- <repository location="https://www.ibm.com/software/rational/repositorymanager/repositories/websphere" /> -->

<!-- ##### Custom Repositories #######################################
Uncomment and update the repository location key below
to specify URLs or UNC paths to any intranet repositories
and directory paths to local repositories to use.
-->
<!-- <repository location=’https:\\w3.mycompany.com\repositories\’/> -->
<!-- <repository location=’/home/user/repositories/websphere/’/> -->

<!-- ##### Local Repositories ##
Uncomment and update the following line when using a local
repository located on your own machine to install a
WebSphere Application Server Liberty offering.
-->
<!-- <repository location=’insert the full directory path inside single quotes’/> -->

</server>

<!-- ##### Install Packages ###
#
Install Command
#
Use the install command to inform Installation Manager of the
installation packages to install.
#
The modify attribute is optional and can be paired with an install
command to add features or paired with an uninstall command to
remove commands. If omitted, the default value is set to false.
false = indicates not to modify an existing install by adding
or removing features.
true = indicates to modify an existing install by adding or
removing features.
#
The offering ID attribute is required because it specifies the
offering to be installed. The offering listed must be present in
at least one of the repositories listed earlier. The example
command below contains the offering ID for the WEBENAB
edition of WebSphere Application Server Liberty.
#
The version attribute is optional. If a version number is provided,
then the offering will be installed at the version level specified
as long as it is available in the repositories. If the version
attribute is not provided, then the default behavior is to install
the latest version available in the repositories. The version number
can be found in the repository.xml file in the repositories.
For example, <offering ... version=’8.5.5000.20130326_0211’>.
#
The profile attribute is required and typically is unique to the
offering. If modifying or updating an existing installation, the
profile attribute must match the profile ID of the targeted installation
of WebSphere Application Server Liberty.
#
The features attribute is optional. Offerings always have at least
one feature; a required core feature which is installed regardless
of whether it is explicitly specified. If other feature names
are provided, then only those features will be installed.
Features must be comma delimited without spaces.
#
The feature values for WebSphere Application Server Liberty include:
liberty,embeddablecontainer,extprogmodels
#
The features embeddablecontainer,extprogmodels
are subfeatures of liberty.
#

Chapter 3. Installing Liberty 823

You can use these functions to add or remove feature embeddablecontainer or extprogmodels later.
#
The installFixes attribute indicates whether fixes available in
repositories are installed with the product. By default, all
available fixes will be installed with the offering.
#
Valid values for installFixes:
none = do not install available fixes with the offering.
recommended = installs all available recommended fixes with the offering.
all = installs all available fixes with the offering.
#
Interim fixes for offerings also can be installed while they
are being installed by including the offering ID for the interim
fix and specifying the profile ID.
#
Installation Manager supports installing multiple offerings at once.
Additional offerings can be included in the install command,
with each offering requiring its own offering ID, version, profile value,
and feature values.
#
Profile Command
#
A separate profile command must be included for each offering listed
in the install command. The profile command informs Installation
Manager about offering specific properties or configuration values.
#
The installLocation specifies where the offering will be installed.
If the response file is used to modify or update an existing
installation, then ensure the installLocation points to the
location where the offering was installed previously.
#
The eclipseLocation data key should use the same directory path to
WebSphere Application Server Liberty as the installationLocation attribute.
#
Include data keys for product specific profile properties.
For instance, Installing WebSphere Application Server Liberty Offerings on
a 64-bit system will require to include one of the options for an IBM Software
Development Kit, this can be specified by data key cic.selector.arch, its value
can be either x86 (for 32-bit), or x86_64 (for 64-bit).
#
More details for cic.selector.arch can be found in the link below:
#
https://infocenters.hursley.ibm.com/was/vNext/draft/help/index.jsp?topic=%2Fcom.ibm.websphere.wlp.core.doc%2Fae%2Ftwlp_ins_installation_dist_silent.html
#
-->

<install modify="false">
<offering id="com.ibm.websphere.liberty.WEBENAB.v85" profile="WebSphere Liberty V8.5" features="liberty,embeddablecontainer,extprogmodels" installFixes="none" />
</install>
<profile id="WebSphere Liberty V8.5" installLocation="/QIBM/ProdData/WebSphere/Liberty/V85/Express">
<data key="eclipseLocation" value="/QIBM/ProdData/WebSphere/Liberty/V85/Express" />
<data key="cic.selector.arch" value="x86_64" />
</profile>

<!-- ##### Shared Data Location ###
Uncomment the preference for eclipseCache to set the shared data
location the first time you use Installation Manager to do an
installation.
#
Eclipse cache location can be obtained from the installed.xml file found in
Linux/Unix: /var/ibm/InstallationManager
Windows: C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager
from the following property:
<property name=’cacheLocation’ value=’C:\Program Files\IBM\IMShared’/>
#
Open the installed.xml file in a text editor because the style sheet
might hide this value if opened in a web browser.
For further information on how to edit preferences, refer to the public library at:
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp?topic=/com.ibm.silentinstall12.doc/topics/r_silent_prefs.html
#
After the shared data location is set, it cannot be changed
using a response file or the graphical wizard.
#
Ensure that the shared data location is a location that can be written
to by all user accounts that are expected to use Installation Manager.
#
By default, Installation Manager saves downloaded artifacts to
the shared data location. This serves two purposes.
#
First, if the same product is installed a more than once to the machine,
then the files in the shared data location will be used rather than
downloading them again.
#
Second, during the rollback process, the saved artifacts are used.
Otherwise, if the artifacts are not saved or are removed, then
Installation Manager must have to access the repositories used to
install the previous versions.
#
Valid values for preserveDownloadedArtifacts:
true = store downloaded artifacts in the shared data location

824 WebSphere Application Server Liberty Core 8.5.5

false = remove downloaded artifacts from the shared data location
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’ value=’C:\Program Files\IBM\IMShared’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
-->

<!-- ##### Preferences Settings ###
Additional preferences for Installation Manager can be specified.
These preference correspond to those that are located in the graphical
interface under File / Preferences.
#
If a preference command is omitted from or commented out of the response
file, then Installation Manager uses the preference value that was
previously set or the default value for the preference.
#
Preference settings might be added or deprecated in new versions of
Installation Manager. Consult the online Installation Manager
Information Center for the latest set of preferences and
descriptions about how to use them.
#
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’45’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’ value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
<preference name=’com.ibm.cic.agent.ui.displayInternalVersion’ value=’false’/>
-->

</agent-input>

Sample response file: Modifying IBM Web Enablement Liberty for IBM i:

You can edit and use this example of a response file for modifying IBM Web Enablement Liberty for IBM
i.
<?xml version="1.0" encoding="UTF-8"?>

<!-- ##### Copyright ##
Licensed Materials - Property of IBM (c) Copyright IBM Corp. 2013.
All Rights Reserved. US Government Users Restricted Rights-Use, duplication
or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
-->

<!-- ##### Frequently Asked Questions #####################################
The latest information about using Installation Manager is
located in the online Information Center. There you can find
information about the commands and attributes used in
silent installation response files.
#
Installation Manager Information Center can be found at:
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
Question 1. How do I record a response file using Installation Manager?
Answer 1. Start Installation Manager from the command line under the
eclipse subdirectory with the record parameter and it will generate a
response file containing actions it performed, repositories it used, and
its preferences settings. Optionally use the -skipInstall parameter if
you do not want the product to be installed to the machine. Specify a
new agentDataLocation location value when doing a new installation. Do
not use an existing agentDataLocation for an installation because it might
damage the installation data and prevent you from modifying, updating,
rolling back, or uninstalling the installed packages.
#
Windows: IBMIM -record <responseFile> -skipInstall <agentDataLocation>
Linux or UNIX: ./IBMIM -record <responseFile> -skipInstall <agentDataLocation>
#
For example:
Windows = IBMIM.exe -record c:\temp\responsefiles\WASv85.install.Win32.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
Linux or UNIX = ./IBMIM -record /home/user/responsefiles/WASv85.install.RHEL64.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
#
Question 2. How do I run Installation Manager silently using response file?

Chapter 3. Installing Liberty 825

Answer 2. Create a silent installation response file and run the following command
from the eclipse\tools subdirectory in the directory where you installed
Installation Manager:
#
Windows = imcl.exe -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
#
For example:
Windows = imcl.exe -acceptLicense -showProgress
input c:\temp\responsefile\WASv85.install.Win32.xml
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input /home/user/responsefile/WASv85.install.RHEL64.xml
#
The -acceptLicense command must be included to indicate acceptance of all
license agreements of all offerings being installed, updated or modified.
The -showProgress command shows progress when running in silent mode.
Additional commands can be displayed by requesting help: IBMIM -help
#
Question 3. How do I store and pass credentials to repositories that
require authentication?
Answer 3. There are two methods for storing authentication credentials
for Installation Manager depending on the version being used,
either key ring files or storage files.
#
Versions of Installation Manger before 1.6.2 use a key ring file to store
encrypted credentials for authenticating with repositories. Follow this
two-step process for creating and using a key ring file with Installation Manager.
#
First, create a key ring file with your credentials by starting
Installation Manager from the command line under eclipse subdirectory
with the keyring parameter.
Use the optional password parameter to password protect your file.
#
Windows = IBMIM.exe -keyring <path and file name> -password <password>
Linux, UNIX, IBM i and z/OS = ./IBMIM -keyring <path and file name>
-password <password>
#
Installation Manager will start in graphical mode. Verify that the
repositories to which you need to authenticate are included in the
preferences, File / Preferences / Repositories. If they are not
listed, then click Add Repositories to add the URL or UNC path.
Installation Manager will prompt for your credentials. If the repository
is already in the list, then any attempt to access the repository location,
such as clicking the Test Connections button, will also prompt for your
credentials. Enter the correct credential and check the Save password
checkbox. The credentials are saved to the key ring file you specified.
#
Second, when you start a silent installation, run imcl under eclipse/tools
subdirectory, and provide Installation Manager with the location of the key
ring file and the password if the file is protected. For example:
#
Windows = imcl.exe -acceptLicense -showProgress
input <path and file name of response file>
-keyring <path and name of key ring file> -password <password>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <path and file name of response file>
-keyring <path and name of key ring file> -password <password>
#
Versions of Installation Manager at 1.6.2 or higher use storage files
to store encrypted credentials. Complete the following steps to create
master password and storage files to use with Installation Manager.
#
First, if you do not have a master password file already, create a text file
that contains a master passphrase. An example of a passphrase is:
"This text is the passphrase for a master password file."
#
Next, run imutilsc under the eclipse/tools subdirectory with the following
options to create and store user credentials in a storage file.
-secureStorageFile <path and file name of storage file>
-masterPasswordFile <path and file name of master password file>
-url <repository address> or -passportAdvantage <PPA repository address>
-userName <user name>
-userPassword <password for user>
#
Example of a command to create a storage file by operating system
Windows = imutilsc saveCredential -url http://myServer -userName myUserName
-userPassword myPassword -secureStorageFile C:\IBM\credential.store
-masterPasswordFile C:\IBM\master_password_file.txt
Linux, UNIX, IBM z/OS, and the OS X operating system =
./imutilsc saveCredential -url http://myServer -userName myUserName
-userPassword myPassword -secureStorageFile /home/IBM/credential.store
-masterPasswordFile /home/user/IBM/master_password_file.txt
#
Usage hints:
* Do not use both the -url and -passportAdvantage options in the same command.
* Enclose file paths that include spaces with double quotation marks.
* If you use the IBM service repositories, you can specify the value:
http://www.ibm.com/software/repositorymanager/entitled/repository.xml

826 WebSphere Application Server Liberty Core 8.5.5

for the -url option which is a generic service repository for IBM packages.
* Repeat steps to store credentials for multiple users in one file.
* Repeat steps to store credentials for multiple repositories in one file.
#
Afterwards, when you start a silent installation, run imcl under the eclipse/tools
subdirectory, and provide Installation Manager with the location of the storage
file. For example:
#
Windows = imcl.exe -acceptLicense -showProgress
input <path and file name of response file>
-secureStorageFile <path and name of storage file>
-masterPasswordFile <path and name of master password file>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <path and file name of response file>
-secureStorageFile <path and name of storage file>
-masterPasswordFile <path and name of master password file>
#
-->

<!-- ##### Agent Input ##
#
The clean and temporary attributes specify the repositories and other
preferences Installation Manager uses and whether those settings
should persist after the installation finishes.
#
Valid values for clean:
true = only use the repositories and other preferences that are
specified in the response file.
false = use the repositories and other preferences that are
specified in the response file and Installation Manager.
#
Valid values for temporary:
true = repositories and other preferences specified in the
response file do not persist in Installation Manager.
false = repositories and other preferences specified in the
response file persist in Installation Manager.
#
-->

<agent-input clean="true" temporary="true">

<!-- ##### Repositories ###
Repositories are locations that Installation Manager queries for
installable packages. Repositories can be local (on the machine
with Installation Manager) or remote (on a corporate intranet or
hosted elsewhere on the internet).
#
If the machine using this response file has access to the internet,
then include the IBM WebSphere Live Update Repositories in the list
of repository locations.
#
If the machine using this response file cannot access the internet,
then comment out the IBM WebSphere Live Update Repositories and
specify the URL or UNC path to custom intranet repositories and
directory paths to local repositories to use.
#
-->

<server>
<!-- ##### IBM WebSphere Live Update Repositories ####################
These repositories contain WebSphere Application Server Liberty offerings,
and updates for those offerings
#
To use the secure repository (https), you must have an IBM ID,
which can be obtained by registering at: http://www.ibm.com/account
or your Passport Advantage account.
#
And, you must use a key ring file with your response file.
-->

<repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.WEBENAB.v85"/>
<!-- <repository location="https://www.ibm.com/software/rational/repositorymanager/repositories/websphere" /> -->

<!-- ##### Custom Repositories #######################################
Uncomment and update the repository location key below
to specify URLs or UNC paths to any intranet repositories
and directory paths to local repositories to use.
-->
<!-- <repository location=’https:\\w3.mycompany.com\repositories\’/> -->
<!-- <repository location=’/home/user/repositories/websphere/’/> -->

<!-- ##### Local Repositories ##
Uncomment and update the following line when using a local
repository located on your own machine to install a
WebSphere Application Server Liberty offering.
-->
<!-- <repository location=’insert the full directory path inside single quotes’/> -->

</server>

<!-- ##### Modify Packages ###
#

Chapter 3. Installing Liberty 827

Install and Uninstall Commands
#
Use the install and uninstall commands to inform Installation Manager
of the installation packages to install or uninstall.
#
The modify attribute is optional and can be paired with an install
command to add features or paired with an uninstall command to
remove commands. If omitted, the default value is set to false.
false = indicates not to modify an existing install by adding
or removing features.
true = indicates to modify an existing install by adding or
removing features.
#
The offering ID attribute is required because it specifies the
offering to be installed. The offering listed must be present in
at least one of the repositories listed earlier. The example
command below contains the offering ID for the WEBENAB
edition of WebSphere Application Server Liberty.
#
The version attribute is optional. If a version number is provided,
then the offering will be installed or uninstalled at the version level
specified as long as it is available in the repositories. If the version
attribute is not provided, then the default behavior is to install or
uninstall the latest version available in the repositories. The version
number can be found in the repository.xml file in the repositories.
For example, <offering ... version=’8.5.5000.20130328_1111’>.
#
The profile attribute is required and typically is unique to the
offering. If modifying or updating an existing installation, the
profile attribute must match the profile ID of the targeted installation
of WebSphere Application Server Liberty.
#
The features attribute is optional. Offerings always have at least
one feature; a required core feature which is installed regardless
of whether it is explicitly specified. If other feature names
are provided, then only those features will be installed.
Features must be comma delimited without spaces.
#
The feature values for WebSphere Application Server Liberty include:
liberty,embeddablecontainer,extprogmodels
#
The features embeddablecontainer,extprogmodels
are subfeatures of liberty.
#
You can use these functions to add or remove feature embeddablecontainer
or extprogmodels later.
#
In the example that follows, the feature embeddablecontainer and extprogmodels
are being added and no feature are being removed from the specified offering.
#
The installFixes attribute indicates whether fixes available in
repositories are installed with the product. By default, all
available fixes will be installed with the offering.
#
Valid values for installFixes:
none = do not install available fixes with the offering.
recommended = installs all available recommended fixes with the offering.
all = installs all available fixes with the offering.
#
Installation Manager supports modifying multiple offerings at once.
Additional offerings can be included in the install and uninstall commands,
with each offering requiring its own offering ID, version, profile value,
and feature values.
#
Profile Command
#
A separate profile command must be included for each offering listed
in the install command. The profile command informs Installation
Manager about offering specific properties or configuration values.
#
The installLocation specifies where the offering will be installed.
If the response file is used to modify or update an existing
installation, then ensure the installLocation points to the
location where the offering was installed previously.
#
The eclipseLocation data key should use the same directory path to
WebSphere Application Server Liberty as the installationLocation attribute.
#
Include data keys for product specific profile properties.
For instance, Installing WebSphere Application Server Liberty Offerings on
a 64-bit system will require to include one of the options for an IBM Software
Development Kit, this can be specified by data key cic.selector.arch, its value
can be either x86 (for 32-bit), or x86_64 (for 64-bit).
#
More details for cic.selector.arch can be found in the link below:
#
https://infocenters.hursley.ibm.com/was/vNext/draft/help/index.jsp?topic=%2Fcom.ibm.websphere.wlp.core.doc%2Fae%2Ftwlp_ins_installation_dist_silent.html
#
-->

828 WebSphere Application Server Liberty Core 8.5.5

<install modify="true">
<offering id="com.ibm.websphere.liberty.WEBENAB.v85" profile="WebSphere Liberty V8.5" features="embeddablecontainer,extprogmodels" />
</install>
<profile id="WebSphere Liberty V8.5" installLocation="/QIBM/ProdData/WebSphere/Liberty/V85/Express">
<data key="eclipseLocation" value="/QIBM/ProdData/WebSphere/Liberty/V85/Express" />
<data key="cic.selector.arch" value="x86_64" />
</profile>

<!-- ##### Shared Data Location ###
Uncomment the preference for eclipseCache to set the shared data
location the first time you use Installation Manager to do an
installation.
#
Eclipse cache location can be obtained from the installed.xml file found in
Linux/Unix: /var/ibm/InstallationManager
Windows: C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager
from the following property:
<property name=’cacheLocation’ value=’C:\Program Files\IBM\IMShared’/>
#
Open the installed.xml file in a text editor because the style sheet
might hide this value if opened in a web browser.
For further information on how to edit preferences, refer to the public library at:
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp?topic=/com.ibm.silentinstall12.doc/topics/r_silent_prefs.html
#
After the shared data location is set, it cannot be changed
using a response file or the graphical wizard.
#
Ensure that the shared data location is a location that can be written
to by all user accounts that are expected to use Installation Manager.
#
By default, Installation Manager saves downloaded artifacts to
the shared data location. This serves two purposes.
#
First, if the same product is installed a more than once to the machine,
then the files in the shared data location will be used rather than
downloading them again.
#
Second, during the rollback process, the saved artifacts are used.
Otherwise, if the artifacts are not saved or are removed, then
Installation Manager must have to access the repositories used to
install the previous versions.
#
Valid values for preserveDownloadedArtifacts:
true = store downloaded artifacts in the shared data location
false = remove downloaded artifacts from the shared data location
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’ value=’C:\Program Files\IBM\IMShared’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
-->

<!-- ##### Preferences Settings ###
Additional preferences for Installation Manager can be specified.
These preference correspond to those that are located in the graphical
interface under File / Preferences.
#
If a preference command is omitted from or commented out of the response
file, then Installation Manager uses the preference value that was
previously set or the default value for the preference.
#
Preference settings might be added or deprecated in new versions of
Installation Manager. Consult the online Installation Manager
Information Center for the latest set of preferences and
descriptions about how to use them.
#
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’45’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’ value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
<preference name=’com.ibm.cic.agent.ui.displayInternalVersion’ value=’false’/>
-->

</agent-input>

Chapter 3. Installing Liberty 829

Sample response file: Uninstalling IBM Web Enablement Liberty for IBM i:

You can edit and use this example of a response file for uninstalling IBM Web Enablement Liberty for
IBM i.
<?xml version="1.0" encoding="UTF-8"?>

<!-- ##### Copyright ##
Licensed Materials - Property of IBM (c) Copyright IBM Corp. 2013.
All Rights Reserved. US Government Users Restricted Rights-Use, duplication
or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
-->

<!-- ##### Frequently Asked Questions #####################################
The latest information about using Installation Manager is
located in the online Information Center. There you can find
information about the commands and attributes used in
silent installation response files.
#
Installation Manager Information Center can be found at:
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
Question 1. How do I record a response file using Installation Manager?
Answer 1. Start Installation Manager from the command line under the
eclipse subdirectory with the record parameter and it will generate a
response file containing actions it performed, repositories it used, and
its preferences settings. Optionally use the -skipInstall parameter if
you do not want the product to be installed to the machine. Specify a
new agentDataLocation location value when doing a new installation. Do
not use an existing agentDataLocation for an installation because it might
damage the installation data and prevent you from modifying, updating,
rolling back, or uninstalling the installed packages.
#
Windows: IBMIM -record <responseFile> -skipInstall <agentDataLocation>
Linux or UNIX: ./IBMIM -record <responseFile> -skipInstall <agentDataLocation>
#
For example:
Windows = IBMIM.exe -record c:\temp\responsefiles\WASv85.install.Win32.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
Linux or UNIX = ./IBMIM -record /home/user/responsefiles/WASv85.install.RHEL64.xml
-skipInstall c:\temp\skipInstall\WebSphere_Temp_Registry
#
Question 2. How do I run Installation Manager silently using response file?
Answer 2. Create a silent installation response file and run the following command
from the eclipse\tools subdirectory in the directory where you installed
Installation Manager:
#
Windows = imcl.exe -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input <response_file_path_and_name> -log <log_file_path_and_name>
#
For example:
Windows = imcl.exe -acceptLicense -showProgress
input c:\temp\responsefile\WASv85.install.Win32.xml
Linux, UNIX, IBM i and z/OS = ./imcl -acceptLicense -showProgress
input /home/user/responsefile/WASv85.install.RHEL64.xml
#
The -acceptLicense command must be included to indicate acceptance of all
license agreements of all offerings being installed, updated or modified.
The -showProgress command shows progress when running in silent mode.
Additional commands can be displayed by requesting help: IBMIM -help
#
-->

<!-- ##### Agent Input ###
The clean and temporary attributes specify the repositories and other
preferences Installation Manager uses and whether those settings
should persist after the uninstall finishes.
#
Valid values for clean:
true = only use the repositories and other preferences that are
specified in the response file.
false = use the repositories and other preferences that are
specified in the response file and Installation Manager.
#
Valid values for temporary:
true = repositories and other preferences specified in the
response file do not persist in Installation Manager.
false = repositories and other preferences specified in the
response file persist in Installation Manager.
#
-->

<agent-input clean="true" temporary="true">

<!-- ##### Repositories ###
Repositories are locations that Installation Manager queries for

830 WebSphere Application Server Liberty Core 8.5.5

installable packages. Repositories can be local (on the machine
with Installation Manager) or remote (on a corporate intranet or
hosted elsewhere on the internet).
#
If the machine using this response file has access to the internet,
then include the IBM WebSphere Live Update Repositories in the list
of repository locations.
#
If the machine using this response file cannot access the internet,
then comment out the IBM WebSphere Live Update Repositories and
specify the URL or UNC path to custom intranet repositories and
directory paths to local repositories to use.
#
-->

<server>
<!-- ##### IBM WebSphere Live Update Repositories ####################
These repositories contain WebSphere Application Server Liberty offerings,
and updates for those offerings
#
To use the secure repository (https), you must have an IBM ID,
which can be obtained by registering at: http://www.ibm.com/account
or your Passport Advantage account.
#
And, you must use a key ring file with your response file.
-->
<!--repository location="http://www.ibm.com/software/repositorymanager/com.ibm.websphere.liberty.WEBENAB.v85"/-->
<!-- <repository location="https://www.ibm.com/software/rational/repositorymanager/repositories/websphere" /> -->

<!-- ##### Custom Repositories #######################################
Uncomment and update the repository location key below
to specify URLs or UNC paths to any intranet repositories
and directory paths to local repositories to use.
-->
<!-- <repository location=’https:\\w3.mycompany.com\repositories\’/> -->
<!-- <repository location=’/home/user/repositories/websphere/’/> -->

<!-- ##### Local Repositories ##
Uncomment and update the following line when using a local
repository located on your own machine to install a
WebSphere Application Server Liberty offering.
-->
<!-- <repository location=’insert the full directory path inside single quotes’/> -->

</server>

<!-- ##### Uninstall Packages ##
#
Uninstall Command
#
Use the uninstall command to inform Installation Manager of the
installation packages to uninstall.
#
The modify attribute is optional and can be paired with an install
command to add features or paired with an uninstall command to
remove commands. If omitted, the default value is set to false.
false = indicates not to modify an existing install by adding
or removing features.
true = indicates to modify an existing install by adding or
removing features.
#
The offering ID attribute is required because it specifies the
offering to be uninstalled. The example command below contains the
offering ID for WebSphere Application Server Liberty WEBENAB edition.
#
The version attribute is optional. If a version number is provided,
then the offering will be uninstalled at the version level specified
If the version attribute is not provided, then the default behavior is
to uninstall the latest version. The version number can be found in
the repository.xml file in the repositories.
For example, <offering ... version=’8.5.5000.20130326_0211’>.
#
The profile attribute is required and must match the package group
name for the offering to be uninstalled.
#
The features attribute is optional. Offerings always have at least
one feature; a required core feature which is installed regardless
of whether it is explicitly specified. If other feature names
are provided, then only those features will be installed.
Features must be comma delimited without spaces.
#
The feature values for WebSphere Application Server Liberty include:
liberty,embeddablecontainer,extprogmodels
#
The features embeddablecontainer,extprogmodels
are subfeatures of liberty.
#
Installation Manager supports uninstalling multiple offerings at once.
Additional offerings can be included in the uninstall command,
with each offering requiring its own offering ID, version, profile value,
and feature values.

Chapter 3. Installing Liberty 831

#
Profile Command
#
A separate profile command must be included for each offering listed
in the install command. The profile command informs Installation
Manager about offering specific properties or configuration values.
#
The installLocation specifies where the offering will be installed.
If the response file is used to modify or update an existing
installation, then ensure the installLocation points to the
location where the offering was installed previously.
#
The eclipseLocation data key should use the same directory path to
WebSphere Application Server Liberty as the installationLocation attribute.
#
Include data keys for product specific profile properties.
For instance, Installing WebSphere Application Server Liberty Offerings on
a 64-bit system will require to include one of the options for an IBM Software
Development Kit, this can be specified by data key cic.selector.arch, its value
can be either x86 (for 32-bit), or x86_64 (for 64-bit).
#
More details for cic.selector.arch can be found in the link below:
#
https://infocenters.hursley.ibm.com/was/vNext/draft/help/index.jsp?topic=%2Fcom.ibm.websphere.wlp.core.doc%2Fae%2Ftwlp_ins_installation_dist_silent.html
#
-->

<uninstall modify="false">
<offering id="com.ibm.websphere.liberty.WEBENAB.v85" profile="WebSphere Liberty V8.5" features="liberty,embeddablecontainer,extprogmodels" />
</uninstall>
<profile id="WebSphere Liberty V8.5" installLocation="/QIBM/ProdData/WebSphere/Liberty/V85/Express">
<data key="eclipseLocation" value="/QIBM/ProdData/WebSphere/Liberty/V85/Express" />
<data key="cic.selector.arch" value="x86_64" />
</profile>

<!-- ##### Shared Data Location ###
Uncomment the preference for eclipseCache to set the shared data
location the first time you use Installation Manager to do an
installation.
#
Eclipse cache location can be obtained from the installed.xml file found in
Linux/Unix: /var/ibm/InstallationManager
Windows: C:\Documents and Settings\All Users\Application Data\IBM\Installation Manager
from the following property:
<property name=’cacheLocation’ value=’C:\Program Files\IBM\IMShared’/>
#
Open the installed.xml file in a text editor because the style sheet
might hide this value if opened in a web browser.
For further information on how to edit preferences, refer to the public library at:
http://publib.boulder.ibm.com/infocenter/install/v1r5/index.jsp?topic=/com.ibm.silentinstall12.doc/topics/r_silent_prefs.html
#
After the shared data location is set, it cannot be changed
using a response file or the graphical wizard.
#
Ensure that the shared data location is a location that can be written
to by all user accounts that are expected to use Installation Manager.
#
By default, Installation Manager saves downloaded artifacts to
the shared data location. This serves two purposes.
#
First, if the same product is installed a more than once to the machine,
then the files in the shared data location will be used rather than
downloading them again.
#
Second, during the rollback process, the saved artifacts are used.
Otherwise, if the artifacts are not saved or are removed, then
Installation Manager must have to access the repositories used to
install the previous versions.
#
Valid values for preserveDownloadedArtifacts:
true = store downloaded artifacts in the shared data location
false = remove downloaded artifacts from the shared data location
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.eclipseCache’ value=’C:\Program Files\IBM\IMShared’/>
<preference name=’com.ibm.cic.common.core.preferences.preserveDownloadedArtifacts’ value=’true’/>
-->

<!-- ##### Preferences Settings ###
Additional preferences for Installation Manager can be specified.
These preference correspond to those that are located in the graphical
interface under File / Preferences.
#
If a preference command is omitted from or commented out of the response
file, then Installation Manager uses the preference value that was
previously set or the default value for the preference.
#
Preference settings might be added or deprecated in new versions of

832 WebSphere Application Server Liberty Core 8.5.5

Installation Manager. Consult the online Installation Manager
Information Center for the latest set of preferences and
descriptions about how to use them.
#
http://publib.boulder.ibm.com/infocenter/install/v1r6/index.jsp
#
-->

<!--
<preference name=’com.ibm.cic.common.core.preferences.connectTimeout’ value=’30’/>
<preference name=’com.ibm.cic.common.core.preferences.readTimeout’ value=’45’/>
<preference name=’com.ibm.cic.common.core.preferences.downloadAutoRetryCount’ value=’0’/>
<preference name=’offering.service.repositories.areUsed’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.ssl.nonsecureMode’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.http.disablePreemptiveAuthentication’ value=’false’/>
<preference name=’http.ntlm.auth.kind’ value=’NTLM’/>
<preference name=’http.ntlm.auth.enableIntegrated.win32’ value=’true’/>
<preference name=’com.ibm.cic.common.core.preferences.keepFetchedFiles’ value=’false’/>
<preference name=’PassportAdvantageIsEnabled’ value=’false’/>
<preference name=’com.ibm.cic.common.core.preferences.searchForUpdates’ value=’false’/>
<preference name=’com.ibm.cic.agent.ui.displayInternalVersion’ value=’false’/>
-->

</agent-input>

Installing and uninstalling Liberty using downloaded files and archives
Distributed operating systems

IBM i You can install Liberty by extracting an archive file.

Distributed operating systems
IBM i

About this task

To try out Liberty and use Liberty to develop applications that run on WebSphere Application Server
traditional or Liberty, you can download a no-charge, unsupported edition from the WASdev download
page.

To use Liberty in a production environment with guaranteed service levels and IBM support, you must
purchase WebSphere Application Server (base), WebSphere Application Server Network Deployment,
WebSphere Application Server Express, or WebSphere Application Server Liberty Core. Liberty is
included with these editions and can also be downloaded separately, as an edition-specific Java archive
(JAR) file, from Passport Advantage Online. The associated service is available from Fix Central. If you
download and install Liberty from an unsupported JAR or ZIP file, you can later purchase a supported
edition and upgrade the license for your existing installation.

The following table lists where you can download each type of installation archive file.

Table 63. Installation archive file locations

File Content
Passport
Advantage Online IBM Fix Central WASdev website

JAR files for installing a
supported edition-specific
V8.5.5.8 or later Liberty
runtime environment

Example:
wlp-nd-all-8.5.5.x.jar

Runtime
Edition-
specific,
V8.5.5.8 or
later

Features
All
features
that apply
to that
edition

⌂

Chapter 3. Installing Liberty 833

https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download
https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download
http://www-01.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www-933.ibm.com/support/fixcentral/
http://www-01.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www-01.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www-933.ibm.com/support/fixcentral/
https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download

Table 63. Installation archive file locations (continued)

File Content
Passport
Advantage Online IBM Fix Central WASdev website

ZIP files for installing an
unsupported V8.5.5.6 or later
Liberty runtime environment
with a limited production
license

Can be upgraded to a
supported edition by using
the license upgrade JAR file

Example:
wlp-webProfile7-8.5.5.x.zip

Runtime
V8.5.5.6 or
later

Features
Optional
Java EE 7
feature sets

SDK Optional
IBM Java 8
SDK

⌂ ⌂

JAR files for installing an
edition-specific V8.5.5.0
Liberty runtime environment

Example:
wlp-nd-runtime-8.5.5.0.jar

Runtime
Edition-
specific,
V8.5.5.0

Features
V8.5.5.0
features

⌂

JAR files for installing an
edition-specific V8.5.5.1 or
later Liberty runtime
environment

The unsupported JAR file can
be upgraded to a supported
edition by using the license
upgrade JAR file

Example:
wlp-nd-runtime-8.5.5.6.jar

Runtime
Edition-
specific,
V8.5.5.1 or
later

Features
Up to the
latest
levels of
the
V8.5.5.2
feature set

Fully supported
JAR files

Unsupported JAR
file only

JAR files for license upgrades:

v Upgrade trial or
unsupported editions to
supported editions

v Upgrade supported
editions to other supported
editions with more
functionality

Example:
wlp-nd-license-8.5.5.jar

No runtime
environment or
features

⌂ ⌂

Distributed operating systems For Windows, Linux, and Mac OS, you can also install the WebSphere
Application Server Developer Tools for Eclipse, then use the tools to install the profile. For more
information, see “Installing Liberty developer tools and (optionally) Liberty” on page 835.

Distributed operating systems
IBM i

834 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www-01.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www-933.ibm.com/support/fixcentral/
https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download

Procedure
v 8.5.5.8 You can install Liberty and all features that apply to the edition from a self-extracting JAR

file.
1. Install Liberty from the JAR file.
2. Optional: Upgrade your product edition or license. For example, you can upgrade from WebSphere

Application Server Liberty - Express to WebSphere Application Server Liberty Network Deployment
for access to advanced functions.

3. Update your Liberty installation as needed.
v 8.5.5.6 You can install Liberty and optional features in a single step by extracting an installation ZIP

file. Installing Liberty from the ZIP files enables no-charge, unsupported, unlimited use of Liberty in
development environments and unsupported limited use in small-scale test and production
environments.
1. Review the available installation ZIP files. You can install only the Liberty kernel with no additional

features, or you can install Liberty and a set of features that support application development in
certain contexts, such as Java Platform, Enterprise Edition 7.
If you want to install Liberty and IBM SDK Java Technology Edition Version 8, choose the
wlp-webProfile7-java8-<platform>-<architecture>-<version>.zip that fits your system.

2. Install Liberty from the ZIP file. After you install Liberty, you have everything that you need to get
started with your chosen set of features.

3. Optional: Install additional Liberty Repository assets by using the installUtility command. You
can also uninstall any unwanted features.

4. Optional: Upgrade your Liberty profile to an unlimited production edition. Upgrading your license
gives you full access to IBM support in an unlimited test or production environment.

5. Update your Liberty installation as needed.
v You can install Liberty from a self-extracting JAR file. The JAR files contain the Version 8.5.5.2 feature

set, but you can install additional features after you install Liberty.
1. Install Liberty from the JAR file.
2. Install Liberty Repository assets.
3. Optional: Upgrade your product edition or license. For example, you can upgrade from WebSphere

Application Server Liberty - Express to WebSphere Application Server Liberty Network Deployment
for access to advanced functions.

4. Update your Liberty installation as needed.

Installing Liberty developer tools and (optionally) Liberty
Distributed operating systems

The developer tools for Liberty are available as part of the IBM WebSphere Application Server Developer
Tools for Eclipse. In addition, WebSphere Application Server Developer Tools for Eclipse is a lightweight
set of tools for developing, assembling, and deploying Java EE, OSGi, Web 2.0, and mobile applications to
WebSphere Application Server.

About this task

To install WebSphere Application Server Developer Tools for Eclipse, see Installing WebSphere
Application Server Developer Tools for Eclipse.

Chapter 3. Installing Liberty 835

http://www-01.ibm.com/support/knowledgecenter/SSHR6W_8.5.5/com.ibm.websphere.wdt.doc/topics/t_install_wdt.htm
http://www-01.ibm.com/support/knowledgecenter/SSHR6W_8.5.5/com.ibm.websphere.wdt.doc/topics/t_install_wdt.htm

What to do next

After you install the developer tools, you can optionally install WebSphere Application Server Liberty.
The developer tools can install Liberty for you when you create a server for the first time. For more
information about installing Liberty by using the developer tools, see “Creating a Liberty server by using
developer tools” on page 884.

To learn more about Liberty Core, see Chapter 1, “WebSphere Application Server Liberty Core:
Overview,” on page 1.

Installing Liberty by extracting a Java archive file
Distributed operating systems

IBM i

By running a self-extracting Java archive (JAR) file that contains the distribution image, you can install
Liberty and you are ready to create a server.

Before you begin

Your system must meet the operating system and Java requirements for using Liberty. See System
Requirements for WebSphere Application Server V8.5.5.

IBM i

For the IBM i platform, this topic assumes that the minimum supported Java level is installed

at one of the following locations:
v /QOpenSys/QIBM/ProdData/JavaVM/jdk626/32bit

v /QOpenSys/QIBM/ProdData/JavaVM/jdk626/64bit

Procedure
1. Get a copy of the distribution image JAR file.
v 8.5.5.8 You can download a single, edition-specific archive file that contains the Liberty runtime

environment with all applicable features from IBM Fix Central.
These JAR files are called wlp-edition-all-version.jar, such as wlp-core-all-8.5.5.8.jarwlp-nd-
all-8.5.5.8.jar.

v You can download separately packaged archive files that contain the Liberty runtime with the
Version 8.5.5.2 feature set.
The edition-specific runtime JAR files are called wlp-edition-runtime-version.jar.
– Download the archive file for the no-charge, unsupported edition from the WASdev download

page. If you install from this JAR file, you can upgrade later to a supported edition.
– Download the archive file for the initial release, which includes IBM support, from Passport

Advantage online. The associated fix packs are available from Fix Central.
For a list of all available archives, see “List of installation Java archive files” on page 838.

2. Extract the distribution images to your preferred directory.
To extract the distribution image by using the interactive install wizard, run java -jar
wlp-archive-name.jar. All application server files are stored in subdirectories of the wlp directory.
For a list of the available extraction options, see “Java archive file extraction options” on page 837.

3. Optional: Set the JAVA_HOME property for your environment.
Liberty runs in a Java Runtime Environment (JRE). It does not share the JDK or JRE that WebSphere
Application Server traditional uses.You can specify the JDK or JRE location using the JAVA_HOME
property in the server.env file, as described in “Customizing the Liberty environment” on page 947.
When you set the JAVA_HOME property in the server.env file, Liberty uses the same Java runtime
location regardless of the user profile that Liberty server runs under.

836 WebSphere Application Server Liberty Core 8.5.5

http://www.ibm.com/support/docview.wss?uid=swg27038218
http://www.ibm.com/support/docview.wss?uid=swg27038218
http://www-933.ibm.com/support/fixcentral/
https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download
https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download
http://www-01.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www-01.ibm.com/software/howtobuy/passportadvantage/pao_customers.htm
http://www-933.ibm.com/support/fixcentral/

IBM i

On the IBM i platform, setting the JAVA_HOME property as a system-level environment

variable is not recommended. The IBM i platform is a shared environment, and changing system-level
environment variables might affect other applications.

Distributed operating systems

On Linux or UNIX systems, you can instead set JAVA_HOME in the user
.bashrc file, or append the JDK or JRE path to the PATH environment variable. On Windows systems,
you can instead set JAVA_HOME as a system environment variable, or append the JDK or JRE path to
the PATH system variable. For example, on Windows systems you can use the following commands to
set the JAVA_HOME property, and to add the Java /bin directory to the path:
set JAVA_HOME=C:\Progra~1\Java\JDK16
set PATH=%JAVA_HOME%\bin;%PATH%

Note: 8.5.5.11 Support for using Java SE 6 with WebSphere Liberty ends in September 2017. After
the end of support, the Liberty kernel will be recompiled and can no longer run with Java SE 6. If you
continue to use Java SE 6 on earlier fix packs after the end of support date, you could expose your
environment to security risks.

Java SE 8 is the recommended Java SDK because it provides the latest features and security updates.
You can install it by installing the IBM SDK, Java Technology Edition, Version 8 package to the
package group that contains WebSphere Liberty.

Note: The Liberty runtime environment searches for the java command in this order: JAVA_HOME
property, JRE_HOME property, and system PATH property.
For more information about supported Java environments, and where to get them, see “Minimum
supported Java levels” on page 1481.

4. Optional: Upgrade your Liberty installation to a more advanced supported edition. For example, you
can upgrade from WebSphere Application Server Liberty Core to WebSphere Application Server
Network Deployment. For more information, see “Upgrading Liberty installations” on page 847.

What to do next

After you install Liberty, you can further customize your environment by installing additional assets; see
“Installing Liberty Repository assets” on page 852.

IBM i

On the IBM i platform, after you extract the distribution image, you can configure all servers to

run as jobs in the batch subsystem under the QEJBSVR user profile that is provided with the product. For
more information, see “Configuring the Liberty server to start as a job in the QWAS85 subsystem on IBM
i” on page 850.

Java archive file extraction options
You can install Liberty by extracting a Java archive (JAR) file. By running a self-extracting JAR file that
contains the distribution image, you can install Liberty and you are ready to create a server.

Syntax

The command syntax is as follows:
java -jar archive-file-name.jar [Options] [install location]

where archive-file-name.jar is the name of the archive file you are extracting.

Note:

v If you do not specify any options, the distribution image is extracted by using the interactive installer.
v If you do not specify an installation location, the default target directory is the location of the archive

file.

Chapter 3. Installing Liberty 837

Options

The following options are available for the extraction command:

--help Display a short explanation about how to use the command and a list of available options

--acceptLicense
Automatically indicate acceptance of license terms and conditions

--verbose
Display detailed information during archive extraction

--viewLicenseAgreement
View license agreement

--viewLicenseInfo
View license information

Usage

The following examples demonstrate the correct syntax:
java -jar myarchivefile.jar
java -jar myarchivefile.jar --help
java -jar myarchivefile.jar --acceptLicense C:\Liberty-install
java -jar myarchivefile.jar --verbose
java -jar myarchivefile.jar --viewLicenseAgreement
java -jar myarchivefile.jar --viewLicenseInfo

List of installation Java archive files
You can install Liberty by extracting a Java archive (JAR) file.

Note: 8.5.5.6 You can alternatively install Liberty and optional features from the installation ZIP files.
For more information, see “Installing Liberty by extracting a ZIP archive file” on page 842.

8.5.5.8 Java archive files that contain all applicable features

The following JAR files contain the Liberty runtime and all features that apply to the specific edition.

WebSphere Application Server Network Deployment
wlp-nd-all-<version>.jar

The WebSphere Application Server Network Deployment Liberty runtime environment and all
Liberty features that apply to the edition.

WebSphere Application Server (base)
wlp-base-all-<version>.jar

The single-server WebSphere Application Server Liberty runtime environment and all Liberty
features that apply to the edition.

WebSphere Application Server Liberty Core
wlp-core-all-<version>.jar

The WebSphere Application Server Liberty Core runtime environment and all Liberty features
that apply to the edition.

Java archive files that contain the Version 8.5.5.2 feature set

The following JAR files contain up to the Version 8.5.5.2 feature set at the latest level of code for the fix
pack that you install. You can install additional assets from the Liberty Repository. For more information,
see “Installing Liberty Repository assets” on page 852.

838 WebSphere Application Server Liberty Core 8.5.5

WebSphere Application Server Liberty Core

wlp-core-runtime-<version>.jar
The full WebSphere Application Server Liberty Core installation.

wlp-extras-<version>.jar
The embeddable EJB Container, and JPA client, to help with developing and testing EJB Lite and
JPA applications. You must install this JAR file in an empty directory.

WebSphere Application Server Liberty Core trial

wlp-core-trial-runtime-<version>.jar
The full WebSphere Application Server Liberty Core installation. licensed for trial use.

Features included in the JAR files

The following table compares the features that are included in the JAR files that contain the Version
8.5.5.2 feature set. For more information about these features, see “Liberty features” on page 483.

Table 64. Features included in the JAR files

Feature

WebSphere
Application
Server Liberty
Core

WebSphere
Application
Server (base)

WebSphere
Application
Server Express

WebSphere
Application
Server Network
Deployment

WebSphere
Application
Server for
Developers
(IPLA and ILAN)

Runtime JAR
files

wlp-core-runtime-<version>.jar
wlp-core-trial-runtime-<version>.jar

wlp-base-runtime-<version>.jar
wlp-base-runtime-trial-<version>.jar
wlp-runtime-<version>.jar

wlp-express-runtime-<version>.jar
wlp-express-runtime-trial-<version>.jar

wlp-nd-runtime-<version>.jarwlp-developers-runtime-ipla-<version>.jar
wlp-developers-runtime-<version>.jar

Java EE 6 Web Profile

beanValidation-1.0
cdi-1.0
ejbLite-3.1
jaxrs-1.1
jdbc-4.0
jndi-1.0
jpa-2.0
jsf-2.0
json-1.0
jsp-2.2
managedBeans-1.0
servlet-3.0
webProfile-6.0

⌂ ⌂ ⌂ ⌂ ⌂

Enterprise OSGi

blueprint-1.0
osgi.jpa-1.0
wab-1.0

⌂ ⌂ ⌂ ⌂ ⌂

Operations

Chapter 3. Installing Liberty 839

Table 64. Features included in the JAR files (continued)

Feature

WebSphere
Application
Server Liberty
Core

WebSphere
Application
Server (base)

WebSphere
Application
Server Express

WebSphere
Application
Server Network
Deployment

WebSphere
Application
Server for
Developers
(IPLA and ILAN)

appSecurity-1.0
appSecurity-2.0
distributedMap-1.0
ldapRegistry-3.0
localConnector-1.0
monitor-1.0
oauth-2.0
osgiConsole-1.0
restConnector-1.0
serverStatus-1.0
sessionDatabase-1.0
ssl-1.0
timedOperations-1.0
webCache-1.0

⌂ ⌂ ⌂ ⌂ ⌂

Systems Management

clusterMember-1.0
collectiveController-1.0

⌂

collectiveMember-1.0
concurrent-1.0

⌂ ⌂ ⌂ ⌂ ⌂

Extended
Programming
Model JAR files

N/A wlp-extended-<version>.jarwlp-extended-<version>.jarwlp-extended-<version>.jarwlp-extended-<version>.jar
wlp-developers-extended-<version>.jar

jaxb-2.2
jaxws-2.2
jmsMdb-3.1
mongodb-2.0
wasJmsClient-1.1
wasJmsSecurity-1.0
wasJmsServer-1.0
wmqJmsClient-1.1
wsSecurity-1.1

⌂ ⌂ ⌂ ⌂

Applying a fix pack to a Liberty Java archive installation
Distributed operating systems

IBM i

Liberty offers a self-extracting Java archive-based installation as an alternative to using IBM Installation
Manager. If you installed Liberty by using the self-extracting archive, and want to upgrade to the latest
fix pack version, you can apply a new fix pack archive to a new location, then move any required user
files and server configuration data.

About this task

If you used IBM Installation Manager to install Liberty, you must use Installation Manager to apply a fix
pack.

Important: You must apply a new fix pack archive to a new location.

840 WebSphere Application Server Liberty Core 8.5.5

Procedure
1. Install the new runtime environment.

a. Copy or download the new fix pack archive onto the target system.
b. Launch the archive by using a Java command. You must use a Java command because the archive

is an executable JAR file. Run the following command:
v java -jar <downloaded_archive_location>/<downloaded_archive_file_name>

For more information about using a Java command to launch an archive, see the instructions in
“Installing Liberty by extracting a Java archive file” on page 836.

c. Review the license terms, and accept them to continue with the installation.
d. Select the installation location. Use a different location to where the previous version is installed.

2. Move any user data and server configurations. Liberty defines two locations for storing
user-generated content and server configurations:
v WLP_USER_DIR; The location of server configuration files, including shared resources.
v WLP_OUTPUT_DIR; The location of resources generated by the server. For example, log files and

temporary disk storage.
If the WLP_USER_DIR environment variable has been set on your system, then the new runtime
environment will continue to use the same location. This results in no backup of server configuration
data. To ensure that your server configuration is backed up, copy the directory referenced by
WLP_USER_DIR to a new location on your file system. To protect the original environment, change the
value of WLP_USER_DIR to point to the new location. During uninstallation, reset the value of
WLP_USER_DIR to the location of the original server configuration.
If WLP_USER_DIR has not been set, the server configuration and shared resources are stored in the usr
directory at the root of the server's runtime environment (for example,
<liberty_server_runtime_root>/usr). During uninstallation of the runtime environment, you can
reset the WLP_USER_DIR environment variable.
If the WLP_OUTPUT_DIR environment variable is set on your system, the new server also uses this
location. This can result in old log files being overwritten. To ensure that old log files are protected,
either update or unset the WLP_OUTPUT_DIR environment variable. During uninstallation, reset this
value to its original value.
If the WLP_OUTPUT_DIR value is not set, the default location is in the server root directory (for example
<liberty_server_runtime_root>/usr/servers/<serverName>). If the new runtime environment is
installed to a new location, no updates are required during installation or uninstallation because logs
continue to appear under the usr/servers/<serverName>/logs directory of each respective installation.

Note: If the server.xml file, or any included XML configuration file, references another resource
outside the server configuration directory, these resources must also be copied across, or the references
will need to be updated. This also applies to any resources that the application references directly,
such as references to hardcoded paths on file systems. During uninstallation of the fix pack, these
values can be manually reset to their original values.

3. Start the new server. Run <liberty_VX+>/bin/server start <server_name>.

Removing a fix pack from a Liberty Java archive installation: Distributed operating systems
IBM i

If you installed Liberty by using the self-extracting Java archive, you can uninstall a fix pack from the
Liberty runtime environment in a given location by migrating any user data and server configurations to
the previous Liberty profile runtime environment in a different location, and deleting the fix pack
runtime environment.

Procedure

1. Stop all servers running on the system.
v <liberty_VX>/bin/server stop <server_name>

Chapter 3. Installing Liberty 841

2. Move any user data and server configurations. For more information see the Move any user data and
server configurations step in the installation task.

3. Delete the fix pack runtime environment.
4. Start the servers.
v <liberty_VX->/bin/server start <server_name>

Installing Liberty by extracting a ZIP archive file
Distributed operating systems

IBM i 8.5.5.6

You can install Liberty and optional features by extracting a ZIP archive file. These ZIP files are designed
to help you quickly get started with Liberty.

Before you begin

Your system must meet the operating system and Java requirements for using Liberty. See System
Requirements for WebSphere Application Server V8.5.5.

IBM i

For the IBM i platform, this topic assumes that the minimum supported Java level is installed

at one of the following locations:
v /QOpenSys/QIBM/ProdData/JavaVM/jdk626/32bit

v /QOpenSys/QIBM/ProdData/JavaVM/jdk626/64bit

About this task

Installing Liberty from the ZIP files enables no-charge, unsupported, unlimited use of Liberty in
development environments and limited use in small-scale test and production environments. For more
information, see the license information and license agreement files in the wlp\lafiles directory or
WASdev.net. For access to IBM support and unlimited test and production use, you can later purchase
and upgrade to a supported edition from your existing installation.

You can choose from several ZIP files to fit your needs:
v Java Platform, Enterprise Edition (Java EE) 7 technologies: Install the Liberty runtime environment plus

features that support the Java EE 7 full platform, Web Profile, or application client
v IBM Java 8: Install the Liberty runtime environment, features that support the Java EE 7 Web Profile,

and IBM SDK Java Technology Edition Version 8
v 8.5.5.9 OSGi technologies: Install the Liberty runtime environment and features that support the

Java EE 7 Web Profile and OSGi
v Liberty kernel only: Install only the Liberty runtime environment

For a list of the available ZIP archive files, see “List of installation ZIP archive files” on page 843.

Watch: Video: Installing Liberty from a ZIP file shows how you can quickly install Liberty from a ZIP

archive file, start the server and add applications, and upgrade to a supported installation [Transcript]

Procedure
1. Download the ZIP file of the distribution image from Fix Central or the product asset page on

WASdev.net. The wlp-<name>-<version>.zip files contain logical groupings of features.
2. Extract the distribution image to your preferred directory. All of the application server files are stored

in subdirectories of the wlp directory.
3. Optional: Set the JAVA_HOME property for your environment.

Liberty runs in a Java Runtime Environment (JRE). It does not share the JDK or JRE that WebSphere
Application Server traditional uses.You can specify the JDK or JRE location using the JAVA_HOME

842 WebSphere Application Server Liberty Core 8.5.5

http://www.ibm.com/support/docview.wss?uid=swg27038218
http://www.ibm.com/support/docview.wss?uid=swg27038218
https://developer.ibm.com/wasdev/docs/websphere-application-server-everyone/
https://youtu.be/745pU9b24Ds
http://www-933.ibm.com/support/fixcentral/
https://developer.ibm.com/wasdev/downloads/#filter/assetTypeFilters=PRODUCT

property in the server.env file, as described in “Customizing the Liberty environment” on page 947.
When you set the JAVA_HOME property in the server.env file, Liberty uses the same Java runtime
location regardless of the user profile that Liberty server runs under.

IBM i

On the IBM i platform, setting the JAVA_HOME property as a system-level environment

variable is not recommended. The IBM i platform is a shared environment, and changing system-level
environment variables might affect other applications.

Distributed operating systems

On Linux or UNIX systems, you can instead set JAVA_HOME in the user
.bashrc file, or append the JDK or JRE path to the PATH environment variable. On Windows systems,
you can instead set JAVA_HOME as a system environment variable, or append the JDK or JRE path to
the PATH system variable. For example, on Windows systems you can use the following commands to
set the JAVA_HOME property, and to add the Java /bin directory to the path:
set JAVA_HOME=C:\Progra~1\Java\JDK16
set PATH=%JAVA_HOME%\bin;%PATH%

Note: 8.5.5.11 Support for using Java SE 6 with WebSphere Liberty ends in September 2017. After
the end of support, the Liberty kernel will be recompiled and can no longer run with Java SE 6. If you
continue to use Java SE 6 on earlier fix packs after the end of support date, you could expose your
environment to security risks.

Java SE 8 is the recommended Java SDK because it provides the latest features and security updates.
You can install it by installing the IBM SDK, Java Technology Edition, Version 8 package to the
package group that contains WebSphere Liberty.

Note: The Liberty runtime environment searches for the java command in this order: JAVA_HOME
property, JRE_HOME property, and system PATH property.
For more information about supported Java environments, and where to get them, see “Minimum
supported Java levels” on page 1481.

4. Optional: Upgrade your Liberty installation to an unlimited production edition. Upgrading your
license gives you full access to IBM support in an unlimited test or production environment. For more
information, see “Upgrading Liberty installations” on page 847.

What to do next

After you install Liberty from a ZIP file, you can further customize your environment by installing
additional assets; see “Installing Liberty Repository assets” on page 852.

IBM i

On the IBM i platform, after you extract the distribution image, you can configure all servers to

run as jobs in the batch subsystem under the QEJBSVR user profile that is provided with the product. For
more information, see “Configuring the Liberty server to start as a job in the QWAS85 subsystem on IBM
i” on page 850.

List of installation ZIP archive files
Distributed operating systems

IBM i 8.5.5.6

You can install Liberty by extracting a ZIP archive file. After you install Liberty, you can install additional
features by using the installUtility command.

The following sections list Liberty ZIP archive files. For more information about each ZIP file, see the
related product asset description on the WASdev community download page.

WAS Liberty V8.5.5.x Kernel

wlp-kernel-<version>.zip
This basic ZIP file includes only the kernel of the Liberty server and no features.

Chapter 3. Installing Liberty 843

https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download

WAS Liberty V8.5.5.x with Java EE 7 Web Profile

wlp-webProfile7-<version>.zip
This ZIP file includes the Liberty server runtime environment and features that support the Java
EE 7 Web Profile.

wlp-webProfile7-java8-<platform>-<architecture>-<version>.zip
These ZIP files include the Liberty server runtime environment, IBM SDK Java Technology
Edition Version 8, and features that support the Java EE 7 Web Profile. There are individual ZIP
files for each available platform and architecture. You can later update the IBM Java SDK; for
more information, see “Updating the Java software development kit in a Liberty ZIP archive
installation” on page 846.

WAS Liberty V8.5.5.x with Java EE 7 Full Platform

wlp-javaee7-<version>.zip
This ZIP file includes the Liberty server runtime environment and features that support Java EE
7.

WAS Liberty V8.5.5.x with Java EE 7 Application Client

wlp-javaeeClient7-<version>.zip
This ZIP file includes the Liberty server runtime environment and the Java EE 7 application
client.

8.5.5.9

WAS Liberty V8.5.5.x with OSGi Applications

wlp-osgi-<version>.zip
This ZIP file includes the Liberty server runtime environment and features that support OSGi
applications.

Features included in the installation ZIP files

The following table compares the features that are included in each of the available ZIP files. For more
information about these features, see “Liberty features” on page 483.

Table 65. Features that are included in the installation ZIP files

Feature

WAS Liberty
V8.5.5.x
Kernel

WAS Liberty
V8.5.5.x with
Java EE 7 Web
Profile

WAS Liberty
V8.5.5.x with
Java EE 7 Full
Platform

WAS Liberty
V8.5.5.x with
Java EE 7
Application
Client

WAS Liberty
with Micro
profile

WAS Liberty
V8.5.5.x with
OSGi
Applications

webProfile-7.0 ⌂

javaee-7.0 ⌂

appSecurityClient-1.0
javaeeClient-7.0

⌂ ⌂

844 WebSphere Application Server Liberty Core 8.5.5

Table 65. Features that are included in the installation ZIP files (continued)

Feature

WAS Liberty
V8.5.5.x
Kernel

WAS Liberty
V8.5.5.x with
Java EE 7 Web
Profile

WAS Liberty
V8.5.5.x with
Java EE 7 Full
Platform

WAS Liberty
V8.5.5.x with
Java EE 7
Application
Client

WAS Liberty
with Micro
profile

WAS Liberty
V8.5.5.x with
OSGi
Applications

blueprint-1.0
distributedMap-1.0
el-3.0
jaxrs-2.0
jdbc-4.1
jndi-1.0
jpa-2.1
jsf-2.2
jsonp-1.0
jsp-2.3
osgiBundle-1.0
sessionDatabase-1.0
servlet-3.1
websocket-1.1

⌂

appSecurity-2.0
collectiveMember-1.0
ldapRegistry-3.0
localConnector-1.0
monitor-1.0
requestTiming-1.0
restConnector-1.0
ssl-1.0
webCache-1.0

⌂ ⌂ ⌂

Applying a fix pack to a Liberty ZIP archive installation
Distributed operating systems

IBM i 8.5.5.6

Liberty offers a ZIP archive-based installation as an alternative to using IBM Installation Manager. If you
installed Liberty from the ZIP archive file and want to upgrade to the latest fix pack version, you can
apply a new fix pack archive to a new location, and move any required user files and server
configuration data.

About this task

If you used IBM Installation Manager to install Liberty, you must use Installation Manager to apply a fix
pack.

Important: You must apply a new fix pack archive to a new location.

Procedure
1. Install the new runtime environment by downloading the ZIP archive file from WASdev.net and

extracting it. For more information, see “Installing Liberty by extracting a ZIP archive file” on page
842.

2. Optional: Upgrade the new installation to an edition with advanced functionality. If you upgraded
your previous installation, upgrade to a product edition with at least the same level of functionality to
reduce the chance of any incompatibilities. For example, if you previously upgraded to WebSphere
Application Server Liberty (base), upgrade to that same edition or WebSphere Application Server
Liberty Network Deployment. For more information, see “Upgrading Liberty installations” on page
847.

Chapter 3. Installing Liberty 845

https://developer.ibm.com/wasdev/downloads/#filter/assetTypeFilters=PRODUCT

3. Optional: Install Liberty Repository assets to customize the new environment. For more information,
see “Installing Liberty Repository assets” on page 852.

4. Move any user data and server configurations. Liberty defines two locations for storing
user-generated content and server configurations:
v WLP_USER_DIR; The location of server configuration files, including shared resources.
v WLP_OUTPUT_DIR; The location of resources generated by the server. For example, log files and

temporary disk storage.
If the WLP_USER_DIR environment variable has been set on your system, then the new runtime
environment will continue to use the same location. This results in no backup of server configuration
data. To ensure that your server configuration is backed up, copy the directory referenced by
WLP_USER_DIR to a new location on your file system. To protect the original environment, change the
value of WLP_USER_DIR to point to the new location. During uninstallation, reset the value of
WLP_USER_DIR to the location of the original server configuration.
If WLP_USER_DIR has not been set, the server configuration and shared resources are stored in the usr
directory at the root of the server's runtime environment (for example,
<liberty_server_runtime_root>/usr). During uninstallation of the runtime environment, you can
reset the WLP_USER_DIR environment variable.
If the WLP_OUTPUT_DIR environment variable is set on your system, the new server also uses this
location. This can result in old log files being overwritten. To ensure that old log files are protected,
either update or unset the WLP_OUTPUT_DIR environment variable. During uninstallation, reset this
value to its original value.
If the WLP_OUTPUT_DIR value is not set, the default location is in the server root directory (for example
<liberty_server_runtime_root>/usr/servers/<serverName>). If the new runtime environment is
installed to a new location, no updates are required during installation or uninstallation because logs
continue to appear under the usr/servers/<serverName>/logs directory of each respective installation.

Note: If the server.xml file, or any included XML configuration file, references another resource
outside the server configuration directory, these resources must also be copied across, or the references
will need to be updated. This also applies to any resources that the application references directly,
such as references to hardcoded paths on file systems. During uninstallation of the fix pack, these
values can be manually reset to their original values.

5. Start the new server. Run <liberty_VX+>/bin/server start <server_name>.

What to do next

After you verify that the new installation works correctly, you can remove the old installation. In the
previous installation, stop all servers, then delete the wlp directory.

Updating the Java software development kit in a Liberty ZIP archive installation
Distributed operating systems

IBM i 8.5.5.6

If you installed Liberty with IBM SDK, Java Technology Edition, Version 8 by extracting a ZIP archive
file, you can update the Java software development kit (SDK) to incorporate Java service releases and
interim fixes.

About this task

The directories in the following procedures are based on Liberty installations that were installed by
extracting a wlp-webProfile7-java8-<platform>-<architecture>-<version>.zip file, available from IBM
Fix Central or WASdev.net. If you separately installed or moved the IBM Java SDK to a different location,
you can update the SDK by replacing the files at their current location.

846 WebSphere Application Server Liberty Core 8.5.5

http://www-933.ibm.com/support/fixcentral/
http://www-933.ibm.com/support/fixcentral/
https://developer.ibm.com/wasdev/downloads/#filter/assetTypeFilters=PRODUCT

Procedure

8.5.5.7 For Version 8.5.5.7 or later:
v Update the Java SDK in a Liberty ZIP archive installation.

1. Download the IBM SDK, Java Technology Edition, Version 8 ZIP archive file from IBM Fix Central.
If you are applying a Java service release or interim fix that is associated with a certain APAR, see
the APAR text for download information.

2. Extract the Java SDK ZIP archive file to a local directory.
3. Back up the wlp/java/java directory in your Liberty installation by renaming the folder. For

example, rename the wlp/java/java directory to wlp/java/java_backup.
4. Copy the sdk folder from the directory where you extracted the Java SDK ZIP archive file to the

wlp/java directory. Rename the new wlp/java/sdk directory to wlp/java/java.

8.5.5.6

For Version 8.5.5.6 only:

v Update the Java SDK in a Liberty ZIP archive installation.
1. Download the IBM SDK, Java Technology Edition, Version 8 ZIP archive file from IBM Fix Central.

If you are applying a Java service release or interim fix that is associated with a certain APAR, see
the APAR text for download information.

2. Extract the Java SDK ZIP archive file to a local directory.
3. Back up the wlp/java directory in your Liberty installation by renaming the folder. For example,

rename the wlp/java directory to wlp/java_backup.
4. Copy the sdk folder from the directory where you extracted the Java SDK ZIP archive file to the wlp

directory. Rename the new wlp/sdk directory to wlp/java.
5. Copy the java.env file from the wlp/java_backup backup directory to the wlp/java directory.

What to do next

After you verify that IBM SDK, Java Technology Edition, Version 8 updated successfully, delete the Java
backup directory.

Upgrading Liberty installations
Distributed operating systems

IBM i 8.5.5.5

You can upgrade the edition or license of Liberty by using a self-extracting Java archive (JAR) file.

Before you begin

To download the upgrade JAR files from IBM Fix Central or Passport Advantage, you must be enrolled
as a customer.

Your system must meet the operating system and Java requirements for using Liberty. See System
Requirements for WebSphere Application Server V8.5.5.

IBM i

For the IBM i platform, the minimum supported Java level is installed at one of the following

locations:
v /QOpenSys/QIBM/ProdData/JavaVM/jdk626/32bit

v /QOpenSys/QIBM/ProdData/JavaVM/jdk626/64bit

Chapter 3. Installing Liberty 847

http://www-933.ibm.com/support/fixcentral/
http://www-933.ibm.com/support/fixcentral/
http://www.ibm.com/support/docview.wss?uid=swg27038218
http://www.ibm.com/support/docview.wss?uid=swg27038218

About this task

Liberty offers installation from a ZIP archive file or a self-extracting Java archive (JAR) file as an
alternative to using IBM Installation Manager. If you installed Liberty using one of these archive files,
you can upgrade the product license by applying an executable JAR file, available from IBM Fix Central
or the Passport Advantage website.

You might upgrade Liberty in the following example scenarios:
v Upgrade a trial edition or other unsupported edition to a supported production edition.
v Upgrade a basic edition to a more advanced edition for access to advanced features.

You can upgrade WebSphere Application Server Liberty offerings in the following paths:

Table 66. Liberty offering upgrade paths

License JAR file Source edition Target edition

wlp-core-license.jar Unsupported ZIP or JAR file
installations

WebSphere Application Server
Liberty Core

WebSphere Application Server
Liberty Core Trial

wlp-base-license.jar Unsupported ZIP or JAR file
installations

WebSphere Application Server
Liberty

WebSphere Application Server
Liberty Trial

WebSphere Application Server
Liberty Core

WebSphere Application Server
Liberty for Developers

WebSphere Application Server
Liberty - Express

wlp-nd-license.jar Unsupported ZIP or JAR file
installations

WebSphere Application Server
Liberty Network Deployment

WebSphere Application Server
Liberty Network Deployment Trial

WebSphere Application Server
Liberty Core

WebSphere Application Server
Liberty for Developers

WebSphere Application Server
Liberty - Express

WebSphere Application Server
Liberty

For example, an installation of WebSphere Application Server Liberty Core also requires features from
WebSphere Application Server Network Deployment. If you have the required entitlement, you can
download the wlp-nd-license.jar license file and apply it to your Liberty installation, which upgrades
the license from WebSphere Application Server Liberty Core to WebSphere Application Server Network
Deployment. Upgrading the license does not install any features from WebSphere Application Server
Network Deployment, but it enables you to install WebSphere Application Server Network Deployment
features to your Liberty installation if needed.

848 WebSphere Application Server Liberty Core 8.5.5

http://www-933.ibm.com/support/fixcentral/swg/quickorder?parent=ibm/WebSphere&product=ibm/WebSphere/WebSphere+Application+Server&release=All&platform=All&function=fixId&fixids=wlp-core-license*&includeSupersedes=0&source=fc
http://www-933.ibm.com/support/fixcentral/swg/quickorder?parent=ibm/WebSphere&product=ibm/WebSphere/WebSphere+Application+Server&release=All&platform=All&function=fixId&fixids=wlp-base-license*&includeSupersedes=0&source=fc
http://www-933.ibm.com/support/fixcentral/swg/quickorder?parent=ibm/WebSphere&product=ibm/WebSphere/WebSphere+Application+Server&release=All&platform=All&function=fixId&fixids=wlp-nd-license*&includeSupersedes=0&source=fc

Procedure
1. Download the license upgrade archive for the edition that you want to upgrade to from IBM Fix

Central or the IBM Passport Advantage website. You can apply the license JAR files to all fix packs of
Liberty ZIP or JAR file installations.
For a list of the JAR files on IBM Fix Central, see license JAR files on the Fix Central website.
For a list of Passport Advantage part numbers, see How to download WebSphere Application Server
Liberty Core V8.5.5 from Passport Advantage Online.

2. Apply the license archive to an existing Liberty installation. For example, to apply the license by
using the installation wizard and the wlp-nd-license.jar file, run the following command:

java -jar wlp-nd-license.jar

Applying an interim fix to a Liberty archive installation
Distributed operating systems

IBM i

Liberty offers a self-extracting archive-based installation as an alternative to using IBM Installation
Manager. If you installed Liberty using the self-extracting archive, and want to install an interim fix, you
can apply an executable JAR file.

About this task

If you used IBM Installation Manager to install Liberty, you must use Installation Manager to apply an
interim fix.

An archive-based interim fix is named <Liberty profile level>-WS-WASProd_WLPArchive-<fix type><fix
id>.jar

v <Liberty profile level> refers to a 4-digit fix pack level identifier, which indicates the minimum level to
which the fix applies. For example, 8.5.5.0.

v <fix type> refers to the type of fix. For example, IF is used for an interim fix, and TF for a diagnostic fix
v <fix id> refers to the APAR reference number. If a diagnostic fix is provided before an APAR is opened,

the <fix id> is based on the PMR reference number.

Each interim fix is installed by executing the relevant JAR file, which extracts the content into the Liberty
base folder (/wlp).

Note: When the interim fix is applied, no backup data is created. If you want to back out an interim fix,
you must manually remove or restore files from the /wlp folder.

Each interim fix is provided with a readme.txt file, which contains backup and restore instructions
specific to the fix content, in a section titled Directions to apply fix. If the readme.txt file does not
specify any requirement to back up files, you can extract the fix and then restart the server at any time
with the --clean parameter as a launch option.

Procedure
1. Optional: If the fix contains files that will overwrite existing files, stop all servers that are running on

the system.
2. Optional: If the readme.txt file indicates that a backup is required, create a backup of the

lib/features/component.mf files. File locations are relative to your Liberty profile installation root.
3. Open a console and direct it to the location of your interim fix JAR file.
4. To view available options, run java -jar interim_fix_jar_file -help, where interim_fix_jar_file is

the name of the executable JAR file that contains the interim fix. The following launch options are
available for the JAR file:

Chapter 3. Installing Liberty 849

http://www.ibm.com/software/lotus/passportadvantage/aboutpassport.html
http://www-933.ibm.com/support/fixcentral/swg/selectFixes?parent=ibm~WebSphere&product=ibm/WebSphere/WebSphere+Application+Server&release=All&platform=All&function=fixId&fixids=wlp-*-license*&includeSupersedes=0
http://www-01.ibm.com/support/docview.wss?uid=swg27038289
http://www-01.ibm.com/support/docview.wss?uid=swg27038289

--installLocation [LibertyRootDir]
The absolute or relative location of the Liberty installation directory.

By default the JAR file looks for a wlp directory in its current location. If your Liberty profile
installation location is not the wlp folder, or is not in the same directory as the JAR file, then
you can use this option to change where the JAR file will patch. [LibertyRootDir] can either
be relative to the location of the JAR file, or an absolute file path.

--suppressInfo
The only messages output from the JAR file will be error messages or confirmation that
patching is complete.

5. Run the JAR file, using the --installLocation option to specify the installation location. For example,
java -jar interim_fix_jar_file --installLocation. Optionally include --suppressInfo.

6. Start all Liberty profile servers with the --clean parameter as a launch option. For example, server
start --clean. You use the --clean option only once; all subsequent server starts do not require it.

Removing an interim fix from a Liberty archive install
Distributed operating systems

IBM i

If you installed Liberty by using the self-extracting archive, then to remove an interim fix you must
manually remove files, and restore files, from the /wlp folder.

About this task

If you used IBM Installation Manager to apply an interim fix, you can use Installation Manager to
remove the interim fix.

The current set of fixes installed on a Liberty profile can be found in the /lib/fixes directory.

Each interim fix is provided with a readme.txt file, which contains backup and restore instructions
specific to the fix content, in a section titled Directions to apply fix. If the readme.txt file does not
include any requirement to back up files, you can extract the fix and then restart the server at any time
with the --clean parameter as a launch option.

Procedure
1. Stop all servers running on the system. For more information, see Starting and stopping a server.
2. Delete or replace the files as detailed in the readme.txt file. File locations are relative to your Liberty

profile install root. For example:
v lib/com.ibm.ws.component_1.0.0.20120803-1356.jar

v lib/fixes/8.5.0.0-WS-WASProd_WLPArchive-IFPM11111_8.5.0.20120803-1356.xml

3. Start all Liberty profile servers with the --clean parameter as a launch option. For example, server
start --clean. You only need to use the --clean option once. All subsequent server starts will not
require it.

What to do next

You can reapply the fix by following the instructions in “Applying an interim fix to a Liberty archive
installation” on page 849.

Configuring the Liberty server to start as a job in the QWAS85
subsystem on IBM i

IBM i

850 WebSphere Application Server Liberty Core 8.5.5

You can optionally use the iAdmin POSTINSTALL command to configure the Liberty server to start as a job
in the QWAS85 subsystem and to run under the QEJBSVR user profile.

About this task

The iAdmin POSTINSTALL command configures the server start command to start servers as jobs in the
QWAS85 subsystem. Additionally, the task can be used to:
v Configure Liberty to run servers under the QEJBSVR user profile.
v Configure the default JDK location by setting WLP_DEFAULT_JAVA_HOME in file wlp/etc/default.env to

the location of the 32 bit version of the minimum supported Java level.
v Add an entry for the product in the IBM i native product registry.
v Create IBM i native libraries and objects such as the QWAS85 subsystem and the QEJBSVR user profile.

Call the iAdmin POSTINSTALL command only after Installing Liberty by extracting an archive file or when
Installing Liberty resources by using the job manager. When installed using the IBM Installation Manager,
the Liberty server is already configured to start as a job in the QWAS85 subsystem and to run under the
QEJBSVR user profile.

Note: You must have *ALLOBJ and *SECADM special authority to use the iAdmin POSTINSTALL
command.

Procedure
1. On the IBM i command line, run the STRQSH command to start the Qshell.
2. In the resulting Qshell session, change the directory to the wlp directory.
3. Run the following command.

lib/native/os400/bin/iAdmin POSTINSTALL

What to do next

Install the WebSphere Application Server group PTF to apply required PTFs for other products on which
WebSphere Application Server relies. See IBM i Installing the WebSphere Application Server group
PTF on IBM i.

Uninstalling Liberty application-serving environment from IBM i
operating systems

IBM i

By calling the iAdmin PREUNINSTALL command, you can remove any IBM i native objects and libraries
created by the iAdmin POSTINSTALL command. Then you can manually remove the files comprising your
Liberty profile application-serving environment.

Before you begin

After installing the Liberty application-serving environment by executing a JAR file on IBM i, you might
have used the iAdmin POSTINSTALL command to configure the Liberty server to launch as a job in the
QWAS85 subsystem and to run under the QEJBSVR user profile. If so, you must remove the IBM i native
objects and libraries created at that time before you manually remove the files that comprise your Liberty
profile application-serving environment.

Note: You must have *ALLOBJ and *SECADM special authority to use the iAdmin POSTINSTALL
command.

Chapter 3. Installing Liberty 851

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-iseries&topic=tins_is_instptf
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-iseries&topic=tins_is_instptf

Procedure
1. On the IBM i command line, run the STRQSH command to start the Qshell.
2. In the resulting Qshell session, change the directory to the wlp directory.
3. Run the following command.

lib/native/os400/bin/iAdmin PREUNINSTALL

What to do next

Manually remove the files that comprise your Liberty profile application-serving environment.

Installing Liberty Repository assets

You can use a variety of tools to install the assets that are in the Liberty Repository or download them
directly from the WASdev website.

Before you begin

Important: Product documentation that is marked with the

icon indicates information about assets
that are available only from the Liberty Repository.

The Liberty Repository provides an online mechanism to deliver Liberty and additional content, enabling
a single point of access for various asset types. For more information, see “Liberty Repository” on page
573.

Note:

v To install assets from the Liberty Repository, you must have Liberty for WebSphere Application Server
Version 8.5.5.2 or later.

v To access the IBM WebSphere Liberty Repository with limited internet access or through a firewall,
ensure that you have access to the following hosts and ports:
– public.dhe.ibm.com on port 443
– asset-websphere.ibm.com on port 443

About this task

You can use several methods to access and install Liberty Repository assets. Some methods, such as
Installation Manager, require the completion of specific steps in the installation sequence before you can
install the applicable assets.

Procedure
1. Review the list of available assets in the Liberty Repository. See the Downloads page on WASdev.net.

You can sort assets by date, name, or rating, or you can filter assets by asset type or Liberty edition.
For a list of Liberty features, see “Liberty features” on page 483

2. Review the installation methods for the Liberty Repository assets. Use the following table to
determine the appropriate installation methods for each asset type:

Table 67. Installation methods for Liberty Repository asset types

Asset type
installUtility

command
featureManager

command
configUtility

command
Installation

Manager
Developer

toolsa WASdev siteb

Addons U U U U U

852 WebSphere Application Server Liberty Core 8.5.5

https://www.ibmdw.net/wasdev/downloads/

Table 67. Installation methods for Liberty Repository asset types (continued)

Asset type
installUtility

command
featureManager

command
configUtility

command
Installation

Manager
Developer

toolsa WASdev siteb

Admin scripts U

Config
snippets

U U U

Features U U U U

Open source
integrations

U U U U

Products Uc U U

Product
samples

U U U U

Tools U

Note:

1. Developer tools are available only for the Linux, Mac OS, and Windows platforms.

2. You can download assets from the WASdev.net website to install separately.

3. You can install product runtimes from Installation Manager, but they are not in the Liberty Repository.

3. Choose the installation method for the Liberty Repository assets that fits your usage scenario.
v 8.5.5.6 installUtility command: Finds, obtains information about, and installs a variety of

assets that are in a local directory-based repository, an instance of the Liberty Asset Repository
Service, or the IBM WebSphere Liberty Repository. You can also download Liberty Repository assets
to your local system for offline use. The installUtility command downloads and installs all
dependencies for the asset. For more information, see “Installing assets using the installUtility
command.”

v featureManager command: Installs Liberty Repository features and addons to an existing
installation of Liberty or downloads them to your local system for offline use. For more
information, see “Installing assets using the featureManager command” on page 864. For Version
8.5.5.6 and later, use the installUtility command instead because it enables you to work with
more asset types and from multiple repositories.

v 8.5.5.5 configUtility command: Downloads config snippet assets and enables you to replace
configuration snippet variables with your input values. For more information, see “Downloading
and customizing configuration snippets from the command line” on page 958.

v IBM Installation Manager: Installs Liberty Repository assets during the installation or an upgrade to
a new version of Liberty. You can use the Installation Manager graphical user interface,
command-line interface, or the Installation Manager in silent mode with a response file. For more
information, see “Installing assets using Installation Manager” on page 872.

v Distributed operating systems Developer tools: Developer tools for WebSphere Application Server, such
as WebSphere Developer Tools, provide a graphical user interface that you can use to install Liberty
Repository assets. For more information, see “Installing assets by using developer tools” on page
873.

v WASdev site: You can download a subset of the Liberty Repository assets directly from the
WASdev site. See the installation instructions for each downloadable asset on WASdev.net.

Installing assets using the installUtility command

8.5.5.6

You can use the installUtility command to install assets in your Liberty environment and view
required asset information.

Chapter 3. Installing Liberty 853

https://www.ibmdw.net/wasdev/downloads/

About this task

After you install Liberty, you can install assets by running the installUtility command. The
installUtility command automatically installs asset dependencies.

You can install assets from the following repositories:
v The IBM WebSphere Liberty Repository, a public IBM-hosted repository that is accessible through the

internet. For more information, see “Liberty Repository” on page 573.
v The Liberty Asset Repository Service, an open-source service that you can use to create an on-premises

repository that is remotely accessible behind the firewall of an enterprise. For more information, see the
WASdev/tool.lars project on GitHub.

v Local directory-based repositories that are created by using the installUtility download action. For
more information, see “Downloading assets using the installUtility command” on page 860.

By default, the installUtility command is configured to install assets only from the Liberty Repository.
If you want to install assets from a local directory-based repository or an instance of the Liberty Asset
Repository Service, you must configure these repositories in the repositories.properties file. For more
information, see “Configuring repositories and proxy settings for the installUtility command” on page
862.

For a list of the actions and options for the installUtility command, see “installUtility command” on
page 855.

Procedure
1. Review the available assets and obtain the shortName for each asset that you want to install. You can

use the installUtility command to search for and review assets, or you can find them on the
Downloads page on WASdev.net.
v To review assets and obtain the asset shortName by using the installUtility command, use the

installUtility find command.
– To find assets that are applicable to your configuration, use the searchString option. The following

example searches for all assets that match the search string jca:
installUtility find jca

– To find a specific type of asset, use the --type=[feature|sample|opensource|addon|all*] option.
The following example searches for features that match the search string jca:
installUtility find jca --type=feature

v To review assets and obtain the asset shortName from the WASdev website, see the asset details
page on the WASdev website for each feature that you want to install. The shortName is found in
the installation instructions of the asset details page; for example: the Portlet Container shortName is
portlet-2.0.

For a list of all Liberty features, see “Liberty features” on page 483.
2. Run the installUtility install command to install the assets.

For example, the following command installs the jca-1.6 feature:
installUtility install jca-1.6

To install multiple assets, separate each shortName with a space. For example, the following command
installs both the jca-1.6 feature and the adminCenter-1.0 feature:
installUtility install jca-1.6 adminCenter-1.0

Tip: To install all features that apply your edition, you can install a feature bundle addon.

For example, to install all features for WebSphere Application Server Network Deployment Liberty,
install the ndControllerBundle addon on servers that manage Liberty collectives and the
ndMemberBundle addon on servers that are clustered and auto-scaled in a Liberty collective.
installUtility install ndControllerBundle

854 WebSphere Application Server Liberty Core 8.5.5

https://github.com/WASdev/tool.lars
https://www.ibmdw.net/wasdev/downloads/

For example, to install all features for WebSphere Application Server Liberty Core, install the
libertyCoreBundle addon.
installUtility install libertyCoreBundle

For a list of available addons, see Addon downloads on WASdev.

installUtility command
8.5.5.6

Use the installUtility command to find, obtain information about, and install assets that are in a
directory-based repository, an instance of the Liberty Asset Repository Service, or the IBM WebSphere
Liberty Repository.

Asset sources

The installUtility command can access assets in the following repositories:
v The IBM WebSphere Liberty Repository, a public IBM-hosted repository that is accessible through the

internet. For more information, see “Liberty Repository” on page 573.
v The Liberty Asset Repository Service, an open-source service that you can use to create an on-premises

repository that is remotely accessible behind the firewall of an enterprise. For more information, see the
WASdev/tool.lars project on GitHub.

v Local directory-based repositories that are created by using the installUtility download action. For
more information, see “Downloading assets using the installUtility command” on page 860.

8.5.5.8

You can use the installUtility command to work with directory-based repository assets

directly from compressed repositories, such as wlp-featureRepo-<version>.zip, without extracting the
archives. For more information about the wlp-featureRepo-<version>.zip file, see “Downloading assets
using the installUtility command” on page 860.

Syntax

The command syntax is as follows:
installUtility action [options]

The action variable can take one of the following values:

download
Download assets from the repositories.

find Find assets in the repositories that are applicable to your configuration, or view detailed
information about assets.

install Install assets or an enterprise subsystem archive (ESA) file to the run time, or deploy a server
package and install the required features of the package.

testConnection
Test the repository connection.

uninstall
Uninstall features by specifying either the feature short name or the feature symbolic name. You
can specify multiple features, separated by a space.

Note: Ensure that all server processes are stopped before you uninstall a feature.

viewSettings
View a template for configuring repositories or a proxy, or view the settings for the configured
repositories or proxy.

Chapter 3. Installing Liberty 855

https://developer.ibm.com/wasdev/downloads/#filter/assetTypeFilters=ADDON
https://github.com/WASdev/tool.lars

8.5.5.7 For Version 8.5.5.7 and later, this action also validates the settings for any configured
repositories or proxy in the repositories.properties file.

help Display help information for a specified action.

Options

The following options are available for the installUtility download command:

--acceptLicense
Accepts the license agreement.

--viewLicenseAgreement
View the license agreement.

--viewLicenseInfo
View the license agreement.

--location=directoryPath
Specify the destination directory for the downloaded assets. This option is required.

--overwrite
Use this option to overwrite the existing files when you download assets to the local directory.
The default behavior without the option is to ignore all the existing files.

--verbose
Use this option to display additional information during the download.

name Specify asset IDs to download one or more of the following assets, separating multiple asset IDs
with a space:
v Features
v Addons
v Open source integrations
v Samples

The following options are available for the installUtility find command:

8.5.5.7 --from
Specify a single directory-based repository as the source of the assets for the installUtility
command.

8.5.5.8

The directory-based repository can be an uncompressed folder or a compressed archive

file, such as wlp-featureRepo-<version>.zip.

To search for assets in multiple directory-based repositories, you must configure the repositories
in the repositories.properties file. For more information, see “Configuring repositories and
proxy settings for the installUtility command” on page 862.

--showDescriptions
Displays the description for each of the features that are found by the search.

--type=[feature|sample|opensource|addon|all*]
Searches for the specified type of assets.

--name
Searches the asset name for the specified searchString.

--verbose
Use this option to display any available additional information while the action runs.

searchString
Finds assets that are applicable to your configuration. If you do not specify a search string, the
command searches for all applicable assets.

856 WebSphere Application Server Liberty Core 8.5.5

The following options are available for the installUtility install command:

--to=install_option
The install_option option can take one of the following values:
v usr: The feature is installed as a user feature. This value is the default value.
v extension: The location to install the feature. You can install the feature to any configured

product extension location.

8.5.5.7 --from
Specify a single directory-based repository as the source of the assets for the installUtility
command.

8.5.5.8

The directory-based repository can be an uncompressed folder or a compressed archive

file, such as wlp-featureRepo-<version>.zip.

To install assets from multiple directory-based repositories, you must configure the repositories in
the repositories.properties file. For more information, see “Configuring repositories and proxy
settings for the installUtility command” on page 862.

--acceptLicense
Indicate acceptance of license terms and conditions.

--viewLicenseAgreement
View the license agreement.

--viewLicenseInfo
View the license information.

--verbose
Use this option to display any available additional information while the action runs.

name Specify one or more assets that you want to install. You can specify the assets in the following
ways:

Asset IDs
You can specify asset IDs to install one or more of the following assets, separating
multiple asset IDs with a space:
v Features
v Addons
v Open source integrations
v Samples

Server name
You can install features based on an existing server in the same Liberty environment by
specifying the server name. The command installs any applicable features that are
defined in the server.xml file of that server that are not already installed in the Liberty
environment.

Server package
You can specify a server package that you created by using the server package
--include=usr command. The server package deploys, and the required features, which
are defined in the server.xml file, are installed from the repositories.

8.5.5.7 server.xml file
To install features based on a server configuration file, you can specify a path to any local
server.xml file, such as C:\localDir\server.xml. The command installs any applicable
features that are defined in the server.xml file that are not already installed in the Liberty
environment.

.esa file
Install a feature from an .esa file on your local file system. This action uses the

Chapter 3. Installing Liberty 857

OSGI-INF/SUBSYTEM.MF manifest file from the .esa file as a new feature manifest. The
manifest file specifies the name, contents, and dependencies of a feature. If you specify
the --to option, installUtility copies the manifest file into the ${wlp.user.dir}/
extensions/lib/features directory, or the product extension directory. All of the bundles
for the subsystem are extracted into the ${wlp.user.dir}/extensions/lib directory and
renamed as {bundle symbolic name}_{bundle version}.jar. License files, checksum files,
globalization files, and other subsystem content are extracted to the location defined in
the subsystem manifest.

The following option is available for the installUtility testConnection command:

repoName
Specifies the name of the repository to be tested. If not specified, all repositories that are specified
in the repositories.properties file are tested.

The following option is available for the installUtility uninstall command:

8.5.5.8 --force
Uninstall the specified feature regardless of whether other installed features have dependencies
on it.

Note: Uninstalling a feature that is required by other installed features might cause those features
to stop working and might prevent servers from running correctly.

--noPrompts
Uninstalls the feature without prompts. The default is false.

--verbose
Use this option to display additional information during the uninstallation.

name Specify one or more features to uninstall, separating multiple names with a space. You can
specify the following options:
v The short name of the subsystem archive (ESA file), such as adminCenter-1.0.
v The symbolic name of the subsystem archive (ESA file), such as

com.ibm.websphere.appserver.adminCenter-1.0.

8.5.5.8

You can uninstall user features and product extensions by prefixing the feature name

with the extension followed by a colon, such as usr:webCacheMonitor-1.0.

8.5.5.7

The following option is available for the installUtility viewSettings command:

--viewValidationMessages
Use this option to display the detailed messages from the validation of the configured
repositories.properties file. Each message contains an error code, the line number where the
error was found, and the cause of the error.

Usage examples

Use the following example to display help information for the install action:
installUtility help install

Use the following example to install a user feature:
installUtility install my_feature --to=usr

Use the following example to install a user feature to the my_extension product extension location:
installUtility install my_feature --to=my_extension

Use the following example to install multiple features:

858 WebSphere Application Server Liberty Core 8.5.5

installUtility install feature1 feature2 feature3

Use the following example to install a sample:
installUtility install mongoDBSample

8.5.5.7 Use the following example to install a feature bundle addon from a single local directory-based
repository:
installUtility install ndMemberBundlelibertyCoreBundle --from=c:\download\wlp-featureRepo-8.5.5.7

8.5.5.8 Use the following example to install a feature bundle addon from a single compressed
directory-based repository archive:
installUtility install ndMemberBundlelibertyCoreBundle --from=c:\download\wlp-featureRepo-8.5.5.8.zip

Use the following example to install a server:
installUtility install myServer

Use the following example to install a server package compressed .jar file:
installUtility install c:\temp\myServer.jar

Use the following example to install a local .esa file:
installUtility install c:\temp\myFeature.esa

Use the following example to install a server package compressed file:
installUtility install c:\temp\myServer.zip

Use the following example to find assets that are applicable to your configuration:
installUtility find searchString

Use the following example to find samples that are applicable to your configuration:
installUtility find searchString --type=sample

Use the following example to find a particular feature that is applicable to your configuration:
installUtility find webCacheMonitor-1.0 --name --type=feature

Use the following example to list detailed information:
installUtility find searchString --showDescriptions

Use the following example to download required dependencies from the repositories to a local directory:
installUtility download feature_shortName --location=c:\temp\download --acceptLicense

Use the following example to test the connection to the Liberty Repository:
installUtility testConnection default

Use the following example to uninstall a feature:
installUtility uninstall adminCenter-1.0

8.5.5.8 Use the following example to uninstall a user feature or product extension:
installUtility uninstall usr:webCacheMonitor-1.0

Use the following example to uninstall multiple features:
installUtility uninstall feature1 feature2 feature3

Use the following example to uninstall multiple features without prompts:
installUtility uninstall --noPrompts feature1 feature2 feature3

Chapter 3. Installing Liberty 859

Return codes

Table 68. Return codes and explanations.

Return code Explanation

0 The command successfully completed the requested
operation.

20 One or more arguments are not valid.

21 A runtime exception occurred because of one or more of
the following conditions:

v A runtime exception occurred during the installation
of the .esa subsystem archive file.

v A license is not accepted or acknowledged.

v The .esa subsystem archive file did not extract
correctly.

22 The feature to be installed exists.

23 The feature definition was not valid for one or more of
the following reasons:

v The feature does not have a valid manifest file.

v The version of the feature is not supported in this
Liberty environment.

v The .zip or .jar file that contains the feature files does
not exist.

24 The .esa subsystem archive file is missing content.

25 A file to be installed exists.

26 The product is not a core product, and the product
extension files cannot be found.

27 The product is not a core product, and the product
extension is not defined in the ${wlp.install.dir}/etc/
extensions/extension_name.properties file.

28 The manifest files for the feature in the product extension
cannot be found.

29 The feature is not valid for the current product.

8.5.5.7 30 The repositories.properties file failed the validation.

33 The connection to the repository failed.

34 The repository name is not found. The provided
repository name does not exist in the configuration file.

35 The action was canceled by the user.

Downloading assets using the installUtility command

8.5.5.6

You can use the installUtility command to download assets to your local file system.

Before you begin

Before you can access the IBM WebSphere Liberty Repository using the installUtility command, you
must install Liberty for WebSphere Application Server.

860 WebSphere Application Server Liberty Core 8.5.5

About this task

After you install Liberty, you can download assets to your local file system by running the
installUtility command. Assets can be downloaded to a new directory, which you can then use as a
repository, or to an existing directory-based repository.

By default, the installUtility command is configured to download assets only from the public IBM
WebSphere Liberty Repository. If you want to download assets from a local directory-based repository or
an instance of the Liberty Asset Repository Service, you must configure these repositories in the
repositories.properties file. For more information, see “Configuring repositories and proxy settings for
the installUtility command” on page 862.

For a list of the actions and options for the installUtility command, see “installUtility command” on
page 855.

Tip: Rather than downloading individual assets, you can download a wlp-featureRepo-<version>.zip
file from IBM Fix Central. The .zip file contains a directory-based repository of all features and addons
for the particular fix pack of Liberty that you download from IBM Fix Central. Extract the archive file to
populate a local directory-based repository or an instance of the Liberty Asset Repository Service with the
feature and addon ESA files. Assets that are not included in the .zip file must be downloaded by using
the installUtility command.

8.5.5.8

For Version 8.5.5.8 and later, you can use the installUtility command to work with

repository assets directly from the wlp-featureRepo-<version>.zip file and other compressed
directory-based repositories without extracting the archives.

Procedure
1. Review the available assets and obtain the shortName for each asset that you want to download. You

can use the installUtility command to search for and review assets, or you can find them on the
Downloads page on WASdev.net.
v To review assets and obtain the asset shortName using the installUtility command, use the

installUtility find command.
– To find assets that are applicable to your configuration, use the searchString option. The following

example searches for all assets that match the search string adminCenter:
installUtility find adminCenter

– To find a specific type of asset, use the --type=[feature|sample|opensource|addon|all*] option.
The following example searches for features that match the search string adminCenter:
installUtility find adminCenter --type=feature

v To review assets and obtain the asset shortName from the WASdev website, see the asset details
page on the WASdev website for each feature that you want to install. The shortName is found in
the installation instructions of the asset details page; for example: the Portlet Container shortName is
portlet-2.0.

2. Run the installUtility download command to download the assets. You must specify a target
directory for the downloaded assets on the --location option.
For example, the following command downloads the adminCenter-1.0 feature to the
c:\temp\download directory:
installUtility download adminCenter-1.0 --location=c:\temp\download

You can download multiple assets at once by separating each asset shortName with a space. For
example, the following command downloads both the jca-1.6 feature and the adminCenter-1.0 to the
c:\temp\download directory:
installUtility download jca-1.6 adminCenter-1.0 --location=c:\temp\download

Chapter 3. Installing Liberty 861

http://www.ibm.com/support/fixcentral/swg/selectFixes?parent=ibm~WebSphere&product=ibm/WebSphere/WebSphere+Application+Server&release=All&platform=All&function=fixId&fixids=wlp-featureRepo-8.5.5*&includeSupersedes=0
https://www.ibmdw.net/wasdev/downloads/

What to do next

After you download assets to your local file system, you can add a local directory to your repository
configuration so that you can install assets from the directory. For more information about configuring
repositories, see “Configuring repositories and proxy settings for the installUtility command.”

Configuring repositories and proxy settings for the installUtility command
8.5.5.6

In the repositories.properties file, you can configure how the installUtility command accesses local
directory-based repositories, instances of the Liberty Asset Repository Service, and the IBM WebSphere
Liberty Repository.

About this task

The installUtility command can access the following repositories:
v The IBM WebSphere Liberty Repository, a public IBM-hosted repository that is accessible through the

internet. For more information, see “Liberty Repository” on page 573.
v The Liberty Asset Repository Service, an open-source service that you can use to create an on-premises

repository that is remotely accessible behind the firewall of an enterprise. For more information, see the
WASdev/tool.lars project on GitHub.

v Local directory-based repositories that are created by using the installUtility download action. For
more information, see “Downloading assets using the installUtility command” on page 860.

Both the installUtility command and the featureManager command use the same configuration
properties file, repositories.properties. The proxy settings are shared, but the repository settings are
used only by the installUtility command. To manage assets and complete repository-based installation,
find, or uninstallation operations, use the installUtility command instead of the featureManager
command.

Tip: You can download or install assets from a single local directory-based repository by specifying the
repository on the --from option. No additional configuration in the repositories.properties file is
required. For more information, see “installUtility command” on page 855.

To access the IBM WebSphere Liberty Repository with limited internet access or through a firewall,
ensure that you have access to the following hosts and ports:
v public.dhe.ibm.com on port 443
v asset-websphere.ibm.com on port 443

Note: The installUtility command supports only proxy servers with HTTP/HTTPS protocols.

Procedure
1. Optional: When you first configure the repository or proxy settings, you can run the installUtility

viewSettings command to output a configuration template for the repositories.properties file.
Copy the template into a new properties file at ${wlp.install.dir}/etc/repositories.properties.
The properties file must be in ASCII format for all platforms.

2. Define the settings in the ${wlp.install.dir}/etc/repositories.properties file.
If you copied the template from the installUtility viewSettings command, modify the template by
changing the example repository and proxy settings to refer to your environment. Lines that begin
with a number sign (#) are not processed.
v To disable access to the Liberty Repository, set the useDefaultRepository property to false. The

Liberty Repository is enabled by default and is the last repository that is accessed when you install
or download assets.

862 WebSphere Application Server Liberty Core 8.5.5

https://github.com/WASdev/tool.lars

useDefaultRepository=false

v To define a repository, add a property as repoName.url=url. Each repository name must be unique.
The defined repositories are accessed in the order that they are specified in the
repositories.properties file. For Version 8.5.5.7 and later, you can also specify
repoName.url=file_path.

Windows

dev-rep.url=http://dev.repo.ibm.com:9080/ma/v1
local-rep2.url=file:///c:/IBM/localrepo2

8.5.5.7 local-rep3.url=C:\IBM\localrepo3 8.5.5.8 local-rep4.url=C:\IBM\localrepo4.zip HP-UX

Solaris Linux UNIX

dev-rep.url=http://dev.repo.ibm.com:9080/ma/v1
local-rep2.url=file:///usr/IBM/localrepo2

8.5.5.7 local-rep3.url=/usr/IBM/localrepo3 8.5.5.8 local-rep4.url=/usr/IBM/localrepo4.zip
v If a repository requires a user name and password, set the properties repoName.user=userId and

repoName.userPassword=password.
If a user name and password are required and they are not set, you receive a prompt to provide
them. For enhanced security, encode the password by using the securityUtility encode action; for
more information, see Liberty securityUtility command. For Version 8.5.5.6, the password must be
encoded to connect to the repository.
dev-rep.user=myname
dev-rep.userPassword={aes}AH5NLyd7DfGb12pK17Pw+

v If your system requires access to the IBM WebSphere Liberty Repository or an instance of the
Liberty Asset Repository Service through a proxy server, set the proxyHost, proxyPort, proxyUser,
and proxyPassword proxy properties.
For enhanced security, encode the value of the proxyPassword property by using the
securityUtility encode action. If you do not set the user name and password, you receive a
prompt to provide them. For Version 8.5.5.6, the password must be encoded to connect to the proxy.
For example:
proxyHost=my.proxy.server.ibm.com
proxyPort=9080
proxyUser=myname
proxyPassword={aes}AH5NLyd7DfGb12pK17Pw+

3. Save the changes to the repositories.properties file.
4. Review the repository and proxy settings by running the installUtility viewSettings command.

8.5.5.7

When you run the installUtility viewSettings command, the repository and proxy

configuration is automatically validated. To view detailed validation messages, run the command with
the --viewValidationMessages option. 8.5.5.7

>installUtility viewSettings

installUtility Settings
--
Properties File: c:\wlp\etc\repositories.properties
Default Assets Repository: IBM WebSphere Liberty Repository
Use Default Repository: True

Properties File Validation
--
Validation Results: The properties file successfully passed the
validation.

Configured Repositories
--
Name: dev-rep

Chapter 3. Installing Liberty 863

Location: http://dev.repo.ibm.com:9080/ma/v1
User Name: myname
Password: <Unspecified>

Proxy Settings
--
Proxy Server: my.proxy.server.ibm.com
Port: 9080
User Name: myname
Password: ********

5. Test the repository connection by running the installUtility testConnection command. If you do
not set the user name and password, you receive a prompt to provide them. Use the following
example to test the repository connection:
>installUtility testConnection
Testing the connection to all configured repositories...
This process might take several minutes to complete.

Configured Repositories
--
Name: dev-rep
Location: http://dev.repo.ibm.com:9080/ma/v1
Status: Successfully connected to the configured repository.

You can test all configured repositories in the repositories.properties file at once by running the
installUtility testConnection command with no repoName specified. The repository name for the
Liberty Repository is default. To test the connection to the Liberty Repository, run the following
command:
installUtility testConnection default

What to do next

You can use the installUtility command to search for assets and install or download them from the
configured repositories.

Installing assets using the featureManager command

You can use the featureManager command to install Liberty Repository features in your Liberty
environment.

Before you begin

Before you can access the Liberty Repository using the featureManager command, you must install
Liberty for WebSphere Application Server Version 8.5.5.2 or later.

About this task

After you install Liberty, you can install Liberty Repository features by running the featureManager
command. The featureManager command automatically installs asset dependencies.

Tip: 8.5.5.6 Use the installUtility command instead of the featureManager command. With the
installUtility command, you can manage more asset types and install, find, or download assets from
multiple repositories. For more information, see “Installing assets using the installUtility command” on
page 853.

864 WebSphere Application Server Liberty Core 8.5.5

Procedure

1. 8.5.5.4 Review the assets that are located in the Liberty Repository and obtain the
feature_shortName for each asset that you want to install. The asset feature_shortName is required to
download and install assets. You can use the featureManager command to search for and review
assets, or you can find them on the Downloads page on WASdev.net.
a. To review assets and obtain the asset feature_shortName using the featureManager command, use

the featureManager find command.
v To find assets that are applicable to your configuration, specify a string to search for:

featureManager find searchString

v To view detailed information, use the --viewInfo option; for example:
featureManager find searchString --viewInfo

b. To review assets and obtain the asset feature_shortName from the WASdev website, see the asset
details page on the WASdev website for each feature that you want to install. The
feature_shortName is found in the installation instructions of the asset details page; for example: the
Portlet Container feature_shortName is portlet-2.0.

For a list of all Liberty features, see “Liberty features” on page 483.
2. Obtain the feature_shortName from the asset details page on the WASdev website for each feature that

you want to install. The feature_shortName is found in the installation instructions of the asset details
page; for example: the Portlet Container feature_shortName is portlet-2.0.

3. Run the featureManager command to install the assets. Run the following command:
bin/featureManager install feature_shortName --when-file-exists=ignore

To install multiple features, use spaces or commas to separate each feature_shortName; for example:
bin/featureManager install feature_shortName1 feature_shortName2 --when-file-exists=ignore

8.5.5.4 To download a feature to a local directory without installing the feature, use the
--downloadOnly option; for example:
bin/featureManager install feature_shortName1 feature_shortName2 --downloadOnly=[all|required*|none]

You can configure this option to download all the dependent features, the dependent features
required for this runtime, or none of the dependent features. The default is to download the required
dependent features. To specify a local destination directory, use this option with the
--location=directoryPath option.

8.5.5.4

To install features from a local source directory, use the --location=directoryPath

option; for example:
bin/featureManager install feature_shortName1 feature_shortName2 --location=directoryPath

8.5.5.4 If you do not want to connect to the Liberty Repository, use the --offlineOnly option
to install features from a local directory; for example:
bin/featureManager install feature_shortName1 feature_shortName2 --offlineOnly --location=directoryPath

4. Use the featureManager command to see what assets you have installed or to get help. For more
information, see: “featureManager command”

featureManager command
You can use the featureManager command to find, install, uninstall, or obtain details about features.

The feature that you want to install must be packaged as a subsystem archive (ESA file).

8.5.5.5

You can access the Liberty Repository using the featureManager command through a proxy

server. For more information, see “Configuring proxy server support for the featureManager command in
Liberty” on page 871.

Chapter 3. Installing Liberty 865

https://www.ibmdw.net/wasdev/downloads/

Tip: 8.5.5.6 Use the installUtility command instead of the featureManager command. With the
installUtility command, you can manage more asset types and install, find, or download assets from
multiple repositories. For more information, see “Installing assets using the installUtility command” on
page 853.

Syntax

The command syntax is as follows:
featureManager action [options]

where action can take one of the following values:

install Install a feature from an enterprise subsystem archive (ESA) file, a URL to an ESA file, a feature
short name, or a feature symbolic name.

If you specify a feature short name or a symbolic name, the feature is downloaded from an online
repository hosted by IBM.

The install action uses the OSGI-INF/SUBSYSTEM.MF file from the ESA file as a new feature manifest
that can be copied into the ${wlp.user.dir}/extensions/lib/features directory (or product
extension directory if a value is specified for the --to property) being renamed after the symbolic
name of the subsystem. All of the bundles for the subsystem will be extracted into the
${wlp.user.dir}/extensions/lib directory and renamed as {bundle symbolic name}_{bundle
version}.jar. License files, checksum files, localization files and other subsystem content will
also be extracted to the location defined in the subsystem manifest.

The featureManager command can download assets from the Liberty
Repository; for more information, see “Installing Liberty Repository assets” on page 852.

8.5.5.5 uninstall
Uninstall features using either the feature short name or the feature symbolic name.

Note:

v Ensure that all server processes are stopped before you uninstall a feature.
v The uninstall command cannot uninstall user features; for example: webCacheMonitor-1.0.

featureList
Generate an XML file that contains a report that details all the features that are installed.

8.5.5.4 find
Find assets in the Liberty Repository that are applicable to your configuration.

8.5.5.4 classpath
Generate a JAR file that can be added to a compiler classpath in order to use APIs from a list of
features. This action enables you to compile build scripts against the API JARs that are included
in the product without referencing specific JAR names, which can change when a fixpack is
applied. The output JAR contains relative paths to the API JARs in the product. Therefore, you
must not move the output JAR to another directory.

Note: The --features option must be specified with this action.

help Display help information for a specified action.

Options

The following options are available for the featureManager install command:

--acceptLicense
Automatically indicate acceptance of license terms and conditions.

866 WebSphere Application Server Liberty Core 8.5.5

8.5.5.4 --downloadOnly=[all | required* | none]
Download the requested feature to a local directory without installing the feature. This option can
be configured to download all the dependent features, the dependent features required for this
runtime, or none of the dependent features. The default is to download the required dependent
features. Specify the directory with the --location option.

Note: You cannot use this option if you specify the subsystem archive location with a file name
or URL.

8.5.5.4 --location=directoryPath
Specifies the location of the subsystem archive that you want to install. When used with the
--downloadOnly option, this option specifies a destination directory for downloaded features. This
option is required when using the --downloadOnly and --offlineOnly options.

Note: You cannot use this option if you specify the subsystem archive location with a file name
or URL.

8.5.5.4 --offlineOnly
Use this option if you do not want to connect to the Liberty Repository. Instead, the command
only installs features from the local directory. The local directory is specified with the --location
option.

Note: You cannot use this option if you specify the subsystem archive location with a file name
or URL.

--to=install_option
where install_option can take one of the following values:
v usr: The feature is installed as a user feature. This is the default value.
v extension: The location to which you want to install the feature. You can install the feature to

any configured product extension location.

--viewLicenseAgreement
View license agreement.

--viewLicenseInfo
View license information.

--when-file-exists=exist_option
Specifies the action to take if a file to be installed already exists. exist_option can take one of the
following values:
v fail: Cancel the installation.
v ignore: Continue the installation and ignore the file that exists.
v replace: Overwrite the existing file.

--verbose
Use this option to display any available additional information while the action runs.

subsystem_archive
Specifies the location of the subsystem archive that you want to install. You can specify the
location in the following ways:
v A file name; for example: my_feature.esa.
v A URL, for example:

http://myhost.ibm.com/liberty/assets/my_feature.esa

v The short name of the subsystem archive (ESA file), such as adminCenter-1.0

v The symbolic name of the subsystem archive (ESA file), such as
com.ibm.websphere.appserver.adminCenter-1.0

Chapter 3. Installing Liberty 867

For more information, see the Downloads page on WASdev.net.

Note: Specify multiple features by separating the features with a comma or a space. For versions
prior to Version 8.5.5.7, multiple features must be separated by a comma.

8.5.5.5

The following options are available for the featureManager uninstall command:

8.5.5.8 --force
Uninstall the specified feature regardless of whether other installed features have dependencies
on it.

Note: Uninstalling a feature that is required by other installed features might cause those features
to stop working and might prevent servers from running correctly.

--noPrompts
Uninstall features without any user interaction or confirmation messages.

--verbose
Use this option to display any available additional information while the action runs.

name Specify the feature to uninstall. You can specify the following options:
v The short name of the subsystem archive (ESA file), such as adminCenter-1.0.
v The symbolic name of the subsystem archive (ESA file), such as

com.ibm.websphere.appserver.adminCenter-1.0.

Note: Specify multiple features by separating the features with a comma or a space. For versions prior to
Version 8.5.5.7, multiple features must be separated by a comma.

The following options are available for the featureManager featureList command:

--encoding=charset
where charset is the character set to use when creating the XML report file.

--locale=language
where language specifies the language to use when creating the XML report file. This consists of
the ISO-639 two-letter lowercase language code, optionally followed by an underscore and the
ISO-3166 uppercase two-letter country code.

--productExtension=name
where name is the product extension name whose features are to be listed. If the product
extension is installed in the default user location, use the keyword: usr. If this option is not
specified, the action is taken on WebSphere Application Server Liberty Core.

XML_report_file_name
Specifies the name of the XML report file that you want to create.

The following options are available for the featureManager find command:

8.5.5.4 --viewInfo
View detailed information.

--verbose
Use this option to display any available additional information while the action runs.

8.5.5.4 searchString
Use the searchstring option to find applicable features from the IBM WebSphere Liberty
Repository

8.5.5.4

The following options are available for the featureManager classpath command:

868 WebSphere Application Server Liberty Core 8.5.5

https://www.ibmdw.net/wasdev/downloads/

--features=feature1,feature2,...
The list of features that contain the list of API JAR files. This option is required for the classpath
action.

fileName
The name of the generated JAR file.

Usage examples

The following example installs the subsystem archive my_feature.esa as a user feature:
featureManager install my_feature.esa --to=usr

The following example installs the subsystem archive my_feature.esa to the my_extension product
extension location:
featureManager install my_feature.esa --to=my_extension

The following example generates a report for all installed features; the report is written to the file
my_feature_report.xml using the Brazilian Portuguese language:
featureManager featureList my_feature_report.xml --locale=pt_BR

The following example generates a report that contains all installed features that are defined in the
product extension that is installed in the default user location wlp/usr/extension, which is known by the
runtime environment as the usr product extension. The report is written to the file
my_feature_report.xml:
featureManager featureList --productExtension=usr my_feature_report.xml

The following example generates a report that contains all features that are defined in the product
extension that is installed in the location pointed to by the content in the productExtensionName.properties
file in the product installation's etc/extensions directory. The report is written to the file
my_feature_report.xml:
featureManager featureList --productExtension=productExtensionName my_feature_report.xml

The following example displays help information for the install action:
featureManager help install

8.5.5.4 The following example finds applicable assets from the Liberty Repository:
featureManager find searchString

8.5.5.4 The following example lists detailed information:
featureManager find searchString --viewInfo

8.5.5.4 The following example downloads required dependencies from the Liberty Repository to a
local directory and does not install them:
featureManager install feature_shortName --downloadOnly --location=c:\temp\download --acceptLicense

Note: You cannot use this option if you specify the subsystem archive location with a URL.

8.5.5.4

The following example downloads all dependencies from the Liberty Repository and does

not install them:
featureManager install feature_shortName --downloadOnly=all --location=c:\temp\download --acceptLicense

Note: You cannot use this option if you specify the subsystem archive location with a URL.

Chapter 3. Installing Liberty 869

8.5.5.4 The following example installs features that are located in a local directory. If there are
missing dependencies, they are installed from the online repository:
featureManager install feature_shortName --location=c:\temp\download --acceptLicense

Note: You cannot use this option if you specify the subsystem archive location with a URL.

8.5.5.4

The following example installs assets from a local directory without downloading missing

dependencies from the Liberty Repository:
featureManager install feature_shortName --location=c:\temp\download --offlineOnly

Note: You cannot use this option if you specify the subsystem archive location with a URL.

8.5.5.4

The following example creates a classpath JAR file and compiles an application class that

uses it:
featureManager classpath --features=servlet-3.0 classpath.jar
javac -cp classpath.jar TestServlet.java

8.5.5.5 The following example uninstalls a feature:
featureManager uninstall adminCenter-1.0

Return codes

Table 69. Return codes and explanations

Return code Explanation

0 The command successfully completed the requested
operation.

20 One or more arguments are not valid.

21 A runtime exception occurred because of one or more of
the following conditions:

v A runtime exception occurred while installing the .esa
subsystem archive file.

v A license is not accepted or acknowledged.

v The .esa subsystem archive file did not extract
correctly.

22 The feature that you wanted to install already exists.

23 The feature definition was not valid for one or more of
the following reasons:

v The feature does not have a valid manifest file.

v The version of the feature is not supported in this
Liberty environment.

v The .zip or .jar file that contains the feature files does
not exist.

24 The .esa subsystem archive file is missing content.

25 A file that you wanted to install already exists, and you
specified the when-file-exists=fail option.

26 The product is not a core product, and the product
extension files cannot be found.

27 The product is not a core product, and the product
extension is not defined in the ${wlp.install.dir}/etc/
extensions/extension_name.properties file.

870 WebSphere Application Server Liberty Core 8.5.5

|

||

||

||
|

||

||
|

|
|

|

|
|

||

||
|

|

|
|

|
|

||

||
|

||
|

||
|
|

Table 69. Return codes and explanations (continued)

Return code Explanation

28 The manifest files for the feature in the product extension
cannot be found.

29 The feature is not valid for the current product.

Configuring proxy server support for the featureManager command in Liberty
8.5.5.5

You can access the Liberty Repository using a proxy server.

Before you begin

Ensure that you have created the required directory structure. If the etc directory is not found in the
Liberty installation directory, then you must create it.

About this task

You can run the featureManager command to connect to the IBM WebSphere Liberty Repository through
a user-specified proxy server.

Note:

v The featureManager command only supports proxy servers with HTTP/HTTPS protocols.
v The proxy server is only supported for the install and find options for the featureManager command.
v To access the IBM WebSphere Liberty Repository with limited internet access or through a firewall,

ensure that you have access to the following hosts and ports:
– public.dhe.ibm.com on port 443
– asset-websphere.ibm.com on port 443

8.5.5.6

Both the featureManager command and the installUtility command use the same

configuration properties file, repositories.properties. The proxy settings are shared, but the repository
settings are only used by the installUtility command. Using the installUtility command is
recommended over the featureManager command because it enables you to work with more asset types
and from multiple repositories; for more information see “Configuring repositories and proxy settings for
the installUtility command” on page 862.

To configure proxy server support for the featureManager command, complete the following steps.

Procedure
1. In the <Liberty_installation_dir>/etc directory, create an ASCII properties file, and name it

repositories.properties.
2. In the repositories.properties file, specify the following properties with the proxy server

configurations:
a. Specify the proxy server host name with no protocol information.

proxyHost=proxy.xyz.com

b. Specify the proxy server port number:
proxyPort=8080

c. Specify the proxy server user name and encrypted password. The proxy server password must be
encrypted by using the securityUtility command found in the <Liberty_installation_dir>/bin/
directory.

Chapter 3. Installing Liberty 871

|

||

||
|

||
|

|

For more information about the encoding options, see: “securityUtility command” on page 1162.If
the proxy server does not require authentication, then the proxyUser and proxyUserPassword
properties are not required.
proxyUser=user
proxyUserPassword={aes}Ly0wJyYPKDs=

3. Save the repositories.properties file.

What to do next

Run the featureManager install name or featureManager find searchString --viewInfo commands to
install or query applicable Liberty features from the IBM Liberty Repository through the specified proxy
server. For more information, see “featureManager command” on page 865.

Installing assets using Installation Manager

If you have IBM Installation Manager installed, you can download and install Liberty Repository assets
when you install or upgrade Liberty.

Before you begin

Note: To install Liberty Repository assets, you must have IBM Installation Manager Version 1.6.2 or later
and be installing or upgrading to Liberty for WebSphere Application Server Version 8.5.5.2 or later.

About this task

This task applies only to installing Liberty Repository features or addons during the installation or
upgrade of Liberty for WebSphere Application Server Version 8.5.5.2 or later. For information about
installing product samples and open source integrations, see Installation Manager repository for Liberty
samples on WASdev.net. For a list of all assets and their descriptions, see the Downloads page on
WASdev.net.

You can install Liberty Repository assets from the following repositories:
v The IBM WebSphere Liberty Repository, a public IBM-hosted repository that is accessible through the

internet. For more information, see “Liberty Repository” on page 573.
v 8.5.5.6 The Liberty Asset Repository Service, an open-source service that you can use to create an

on-premises repository that is remotely accessible behind the firewall of an enterprise. For more
information, see the WASdev/tool.lars project on GitHub.

v 8.5.5.6 Local directory-based repositories that are created by using the installUtility download
action. For more information, see “Downloading assets using the installUtility command” on page 860.

Rather than downloading individual assets, you can download a wlp-featureRepo-<version>.zip file
from IBM Fix Central. The .zip file contains a directory-based repository of all features and addons for
that fix pack. Downloading assets using these methods creates a repository.config file in the repository
that you must point to from Installation Manager.

You can add the directory-based and Liberty Asset Repository Service repositories to Installation Manager
in the same manner that you add the product offering repositories, then install assets from the
repositories. Assets are installed from the repositories in the order that you specify them. If these
repositories do not contain the assets that you want to install, the assets are installed from the IBM
WebSphere Liberty Repository unless you disable it.

To access the IBM WebSphere Liberty Repository with limited internet access or through a firewall,
ensure that you have access to the following hosts and ports:

872 WebSphere Application Server Liberty Core 8.5.5

https://developer.ibm.com/wasdev/docs/im-liberty-samples/
https://developer.ibm.com/wasdev/docs/im-liberty-samples/
https://www.ibmdw.net/wasdev/downloads/
https://www.ibmdw.net/wasdev/downloads/
https://github.com/WASdev/tool.lars
http://www.ibm.com/support/fixcentral/swg/selectFixes?parent=ibm~WebSphere&product=ibm/WebSphere/WebSphere+Application+Server&release=All&platform=All&function=fixId&fixids=wlp-featureRepo-8.5.5*&includeSupersedes=0

v public.dhe.ibm.com on port 443
v asset-websphere.ibm.com on port 443

Procedure
1. 8.5.5.6 Optional: Set up an instance of the Liberty Asset Repository Service or a local

directory-based repository, then specify the repository URL or directory path in Installation Manager.

8.5.5.8

For Version 8.5.5.8 and later, you can also specify the file path of a directory-based

repository compressed in an archive file.
2. Install Liberty and Liberty Repository assets.

v Distributed operating systems Choose from the following options for working with Installation
Manager:
– Graphical User Interface (GUI) - The Installation Manager GUI provides a list of available assets

and detailed descriptions of each asset. See “Installing Liberty on distributed operating systems
using the GUI” on page 697.

– Command line - The imcl command can download and install assets. See “Installing Liberty on
distributed operating systems by using the command line” on page 700.

– Response files - Installation Manager supports installing assets using recorded or manually
created response files. See “Installing Liberty on distributed operating systems by using response
files” on page 703.

v IBM i Choose from the following options for working with Installation Manager:
– Command line - The imcl command can download and install assets. See “Installing Liberty on

IBM i operating systems using the command line” on page 790.
– Response files - Installation Manager supports installing assets using recorded or manually

created response files. For detailed steps about installing assets using Installation Manager in
silent mode, see “Installing Liberty on IBM i operating systems using response files” on page
794.

Installing assets by using developer tools
Distributed operating systems

If you have developer tools installed, you can install feature assets, open source integration assets,
product sample assets, runtime assets, add-on assets, and config snippet assets from the Liberty
Repository.

About this task

Developer tools for WebSphere Application Server, such as IBM WebSphere Application Server Developer
Tools for Eclipse, provide a graphical user interface that you can use to install Liberty Repository assets.
This task shows you how to install assets by using WebSphere Developer Tools, Version 8.5.5.2 and later
versions.

Procedure
v Optional: Install assets from the Servers view.

If you create a Liberty server and a Liberty runtime environment, either from an archive or from the
Liberty repository, you can install the following assets on the new runtime environment in the Servers
view:
– Feature assets
– Open source integration assets
– Product runtime environment assets
– Product sample assets

Chapter 3. Installing Liberty 873

|
|
|

|

|

|

|

– Add-on assets

You can install configuration snippet assets after you create a Liberty server. For more information, see
“Creating a Liberty server by using developer tools” on page 884.

v Install assets from the Runtime Explorer view.
In the Runtime Explorer view, you can install the following assets when you create a runtime
environment or when you create a server in a runtime environment:
– Feature assets
– Open source integration assets
– Product sample assets
– Add-on assets

For more information, see the “Exploring the runtime environment by using developer tools” on page
943 topic.

v Review the assets on the Downloads page on WASdev.net.
You can use search and filters to narrow your search results. Assets that you can install by using
WebSphere Developer Tools are included on the site, along with assets that you can download by other
methods.

Adding more repositories by using developer tools
8.5.5.7

You can configure the list of repositories that are available for access by the tools. You can add remote
repositories or local, directory-based repositories.

Before you begin
v To create an on-premises repository that is remotely accessible behind the firewall of an enterprise, see

the WASdev/tool.lars project on GitHub.
v To create a local, directory-based repository by using the installUtility download action, see

Downloading assets using the installUtility command.

Procedure
1. Open the Runtime Explorer view.

a. Select Window > Show View > Other from the workbench toolbar.
b. Select Server > Runtime Explorer in the Show View window.

2. Right-click the runtime environment, and then select Install additional content....
The Install Additional Content window is displayed.

3. Click Configure Repositories.
The Configure Repositories window is displayed.

4. Add a repository.
a. To add a repository, click Add....
b. Enter a name for the repository in the Name field.
c. Enter the location for the repository.
v To use a remote repository, select Remote Repository, and then enter the connection

information.
v To use a repository in a local directory, select Local Repository. Then, enter or browse to the

location of the assets, which you downloaded by using the installUtility command of the
runtime environment, or from the Liberty Repository.

v 8.5.5.8 To use a repository in a .zip file, select Browse, and then browse to your .zip file.
You can download a wlp-featureRepo-<version>.zip file from IBM Fix Central. The .zip file
contains a directory-based repository of all features and add-ons for that fix pack.

874 WebSphere Application Server Liberty Core 8.5.5

|

|
|

https://www.ibmdw.net/wasdev/downloads/
https://github.com/WASdev/tool.lars
http://www.ibm.com/support/fixcentral/swg/selectFixes?parent=ibm%7EWebSphere&product=ibm/WebSphere/WebSphere+Application+Server&release=All&platform=All&function=fixId&fixids=wlp-featureRepo-8.5.5*&includeSupersedes=0

d. Click OK.

What to do next

In the Configure Repositories window, you can add, edit, remove, and reorder repositories.

The repository list is in descending order of priority. If an asset is contained in more than one repository,
then the repository that is found first in the list is used during installation. Ensure that your repository is
selected.

Verifying the integrity of Liberty installation
You can use the command utilities to verify the installation integrity of Liberty.

About this task

After you have installed Liberty, you must make sure that the installation is completed successfully and
that all required features or iFixes are installed. The productInfo command provides different options to
complete the following tasks:
v Compare the differences between APAR fixes and the current installation.
v Validate the MD5 checksum file for server installation and each feature.
v Verify the version information of the current installation.
v Verify the feature list on the current installation.

productInfo command
Use the productInfo command to validate the product integrity, compare different versions of the Liberty
servers, and verify the current product versions.

Syntax

The command syntax is as follows:
productInfo action --[options]

Where the possible values of the options vary depending on the value of theaction parameter.

Parameters

The following action parameters and options values are available for the productInfo command:

compare
Allows you to compare APAR fixes that are installed in the current installation with a different
version of Liberty.

--target=path to directory or archive file
Specifies the target file with which to compare the current installation. The value of
--target can be either a directory or an archive file that must be a valid Liberty
installation location. This option is required if --apars is not specified.

--apars=a comma separated list of APAR IDs
Checks the current installation against this comma-separated list of APAR IDs to see if it
contains them, and then lists any APARs that are not included. This option is required if
--target is not specified.

--output=path to an output file
Outputs the result from this command to the supplied file name. By default, the output is
directed to standard output.

Chapter 3. Installing Liberty 875

--verbose
Displays detailed error messages when an error occurs.

Note: At least one of --target or --apars must be supplied

featureInfo
Lists all the features that are installed on the current Liberty server including any installed
product extensions.

--output=path to an output file
Outputs the result from this command to the supplied file name. By default, the output is
directed to standard output.

validate
Validates the Liberty server.

--output=path to an output file
Outputs the result from this command to the supplied file name. By default, the output is
directed to standard output.

version
Displays the product name and version.

The output includes the name and version of product extensions if a product_extension.properties
file is provided in the product extension installations versions directory containing the following
properties:

com.ibm.websphere.productVersion=your_product_version.

com.ibm.websphere.productName=your_product_name.

--output=filename
Outputs the result from this command to the supplied file name. By default, the output is
directed to standard output.

--verbose
Displays the whole content of each properties file.

--ifixes
Displays the APAR fixes that are applied to the system, and the interim fixes that applied
them.

For more information, refer to “Provide product information for your feature extension” on page
1143

8.5.5.6 viewLicenseAgreement
Displays the license agreement for the Liberty edition that is installed.

8.5.5.6 viewLicenseInfo
Displays the license information for the Liberty edition that is installed.

help Displays help information for the specific action.

Usage

The following examples demonstrate correct syntax: 8.5.5.6

productInfo compare --target=C:\wlp\newInstall\wlp
productInfo compare --target=C:\wlp\newInstall.jar --output=C:\wlp\compareOutput.txt
productInfo compare --apars=com.ibm.ws.apar.PM39074,com.ibm.ws.apar.PM39075,com.ibm.ws.apar.PM39080
productInfo featureInfo --output=c:\wlp\featureListOutput.txt
productInfo validate

876 WebSphere Application Server Liberty Core 8.5.5

productInfo help compare
productInfo version
productInfo viewLicenseAgreement
productInfo viewLicenseInfo

Docker support in Liberty
8.5.5.5

Docker is an open source platform that uses Linux containerization and a layered file system. The image
that is built by using Docker consists of layers that contain the application and the dependent binary files
and libraries, but uses the kernel from the host operating system. The layering allows changes to be made
quickly because only the modified layers are rebuilt and deployed.

Liberty is designed to run in a container on multiple platforms compatible with the Docker engine.
Specifically, Liberty has been tested on IBM Containers, Docker Datacenter, and OpenShift V3. To qualify
for support, the base operating system that is used within the container must be a platform supported by
the Liberty product.

For more information about Docker and its advantages, see What is Docker?

Docker Hub is a public repository that hosts Docker images. A Docker image for WebSphere Application
Server for Developers Liberty is available on Docker Hub along with the documentation that describes its
usage.

Running Liberty under Docker is also supported for production usage. Instructions and Dockerfiles for
building production licensed Docker images by using the installation files that are obtained from Passport
Advantage can be found on WASdev GitHub.

Accessing a remote Liberty server in a Docker container by using
developer tools

8.5.5.8

You can set up your remote Liberty server in a Docker container so that you can access it by using
WebSphere Developer Tools. After you complete this setup, you can use WebSphere Developer Tools to
configure and start your remote Liberty server.

Before you begin
1. Install Docker, Cloud Foundry Command Line Interface (CLI), and the Cloud Foundry plug-in for

IBM Containers.
For more information about installation, see IBM Containers plug-in.

2. Log in to your Bluemix account, choose your organization and space, and then log in to your IBM
Containers service.
For more information about logging in to your accounts, see Logging into the CLI.

Tip: You can either run cf ic commands or docker commands to set up a Liberty server in a Docker
container. For more information about cf ic commands and docker commands, see the Step 5 section
of Logging into the CLI.

Procedure
1. To access your remote Liberty server in a Docker container, use the following command:

docker exec -i ContainerID LibertyInstallDirectory/bin configUtility install remoteAdministration --vadminUser=Username --vadminPassword=Password --vkeystorePassword=KeystorePassword

Chapter 3. Installing Liberty 877

https://www.docker.com/whatisdocker/
https://registry.hub.docker.com/_/websphere-liberty/
https://github.com/WASdev/ci.docker/
https://www.ng.bluemix.net/docs/containers/container_cli_ov.html#container_cli_cfic
https://www.ng.bluemix.net/docs/containers/container_cli_ov.html#container_cli_login
https://www.ng.bluemix.net/docs/containers/container_cli_ov.html#container_cli_login

Remember: To find the container ID, use the docker ps command. By default, the KeystorePassword
value is Liberty.

Also, by default the LibertyInstallDirectory value is /opt/ibm/wlp, and the bin directory is in the
/opt/ibm/wlp directory.

For more information about the configUtility command, see Liberty: configUtility command.
2. When the script displays the configuration snippet, copy it into the remoteAdministration.xml file.

The remoteAdministration.xml file is in the LibertyInstallDirectory/usr/servers/serverName/
configDropins/defaults directory. If this directory and file do not exist, create the directory and then
create the file.

3. Specify the <remoteFileAccess> parameter in the remoteAdministration.xml file by replacing its
contents with the following text:
<writeDir>${server.config.dir}</writeDir>
<writeDir>${server.output.dir}</writeDir>
<writeDir>${wlp.user.dir}</writeDir>

4. Save the remoteAdministration.xml file.

What to do next

You can configure and start a remote Liberty server that is in a Docker container.

For more information about how to configure and start a remote Liberty server, see “Creating a remote
Liberty server by using developer tools” on page 887.

Liberty and Chef
Chef software is an open source configuration management tool that you can use to create and manage
the installation of an Infrastructure as a Service (IaaS). You can use Chef to provision a Liberty
installation.

Chef uses cookbooks, which are reusable sets of components that are written in the Ruby programming
language. A cookbook provides all the necessary components that are needed to configure an associated
piece of software, for example, Apache HTTP Server. An important distinction between using Chef and
writing scripts is the ability of Chef to determine the differences between the current software
configuration and a new configuration and make only the changes necessary to move from one to the
other. For more information, see the online Chef documentation About Cookbooks.

By using Chef, you can create scalable infrastructure with minimal configuration to maintain. You can
easily expand your existing infrastructure, for example, by creating and starting a new application server
or web server. Chef automatically connects the new servers into the existing infrastructure as necessary.

The wlp cookbook installs and configures the WebSphere Application Server Liberty. It provides recipes,
resources, and libraries for creating, managing, and configuring Liberty server instances. For more
information, see wlp cookbook.

To learn more about Chef, see the online Chef documentation How Chef works.

To learn more about using Chef cookbooks, see Getting started with the Chef cookbooks for Liberty.

Installing the OpenShift Cartridge for Liberty
Distributed operating systems

IBM i 8.5.5.9

The downloadable OpenShift cartridge allows the Liberty server to be available on OpenShift.

878 WebSphere Application Server Liberty Core 8.5.5

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=cord&product=was-nd-mp&topic=rwlp_command_configutil
http://docs.chef.io/cookbooks.html
https://supermarket.chef.io/cookbooks/wlp
https://www.chef.io/chef/
https://developer.ibm.com/wasdev/docs/getting-started-chef-cookbooks-liberty-profile/

Before you begin
v You must have Ruby version 1.9.3 or later installed.
v This document details how to download the OpenShift cartridge by using the Linux command line.

About this task

OpenShift is an open source platform that allows developers to quickly develop, build, deploy, and
manage Linux containerized services and applications in a cloud environment. When you install the
OpenShift cartridge for Liberty, both Liberty and JRE binary files are downloaded for each application.

The OpenShift cartridge is also available at https://github.com/WASdev/cloud.openshift.cartridge.wlp
where you can find extra documentation.

For more information about OpenShift and its advantages, see OpenShift

Note: Only OpenShift version 2 can be used with this cartridge

Procedure

Installing the cartridge into your OpenShift environment
1. Download the cartridge compressed file from IBM Fix Central.
2. Run the unzip command to extract the contents of the cartridge ibm-websphere-liberty-cartridge-

v*.zip file to the following cartridge directory cloud.openshift.cartridge.wlp
3. The OpenShift cartridge downloads the default Liberty and IBM JRE binary files for development

only. If you have licenses for other binary files that you want to use, they need to be accessible with
HTTP. See for details on how to structure this repository.
a. Update the ibm-websphere-liberty-buildpack/config/ibmjdk.yml file to point to your JRE

binary.
b. Update the ibm-websphere-liberty-buildpack/config/liberty.yml file to point to your Liberty

binary.
4. Run the chmod u+x ibm-websphere-liberty-buildpack/resources/download_buildpack_cache.rb

command and add the binary files from step 3 to the cartridge cache. Run the ibm-websphere-
liberty-buildpack/resources/download_buildpack_cache.rb ibm-websphere-liberty-buildpack/
admin_cache

5. If you are licensed to deploy the cartridge into your environment, you can create a
ibm-websphere-liberty-buildpack/config/licenses.yml file that contains the accepted license
numbers before packaging.
IBM_JVM_LICENSE: <jvm license code>
IBM_LIBERTY_LICENSE: <liberty license code>

Note: When installed the cartridge can be made available to all users. If you are an administrator or
own your OpenShift installation, you can have more control over how the cartridge behaves in these
situations. After you add the license to the cartridge package, individual applications do not need to
accept the license terms with environment variables.

6. Return to your original directory and copy the cartridge directory to each node host on your
OpenShift machines.

7. On each node host run:
oo-admin-cartridge --action install --source cloud.openshift.cartridge.wlp/
service ruby193-mcollective restart

8. On the broker host run:
oo-admin-broker-cache --clear --console
oo-admin-ctl-cartridge -c import-node --activate
oo-admin-console-cache --clear

Chapter 3. Installing Liberty 879

https://github.com/WASdev/cloud.openshift.cartridge.wlp
https://www.openshift.com/
http://www.ibm.com/support/fixcentral/

9. Verify that the cartridge is installed by running the rhc cartridges command.
Uninstalling the cartridge from your OpenShift environment
10. On the broker host run:

oo-admin-ctl-cartridge -c deactivate --name ibm-liberty-8.5.5

11. On each node host run:
oo-admin-cartridge --action erase --name liberty --version 8.5.5 --cartridge_version <Cart_Version_Number>

12. On the broker host run:
oo-admin-broker-cache --clear --console
oo-admin-console-cache --clear

13. Verify that the cartridge uninstalled by running the rhc cartridges command.

Results

The OpenShift cartridge is now installed.

Installing the IBM WebSphere Application Server Liberty Buildpack
into a Cloud Foundry Environment

Distributed operating systems
IBM i 8.5.5.9

The IBM WebSphere Application Server Liberty Buildpack makes the Liberty server available in Cloud
Foundry.

Before you begin
v You must have Ruby version 1.9.3 or later installed.
v This document details how to download the IBM WebSphere Application Server Liberty buildpack by

using the Linux command line.

About this task

Use this task to install the IBM WebSphere Application Server Liberty Buildpack into a Cloud Foundry
Environment. If you are a Cloud Foundry administrator, you can install the Liberty buildpack as an
admin buildpack making it available to all users within the Cloud Foundry.

Note: Buildpack users do not need to specify the -b option to use the buildpack directly from the
administrator.

The IBM WebSphere Application Server Liberty Buildpack is also available at https://github.com/
cloudfoundry/ibm-websphere-liberty-buildpack where you can find extra documentation.

Procedure

Installing the buildpack into your Cloud Foundry environment
1. Download the buildpack compressed file from IBM Fix Central.
2. Run the unzip command to extract the contents of the buildpack ibm-websphere-liberty-buildpack-

v*.zip file to the following buildpack directory ibm-websphere-liberty-buildpack
3. The IBM WebSphere Application Server Liberty buildpack downloads the default Liberty and IBM

JRE binary files for development only. If you have licenses for other binary files that you want to use,
they need to be accessible with HTTP. See for details on how to structure this repository.
a. Update the config/ibmjdk.yml file to point to your JRE binary.
b. Update the config/liberty.yml file to point to your Liberty binary.

880 WebSphere Application Server Liberty Core 8.5.5

https://github.com/cloudfoundry/ibm-websphere-liberty-buildpack
https://github.com/cloudfoundry/ibm-websphere-liberty-buildpack
http://www.ibm.com/support/fixcentral/

4. If you are licensed to deploy the buildpack into your environment, you can create a
config/licenses.yml file that contains the accepted license numbers before packaging.
IBM_JVM_LICENSE: <jvm license code>
IBM_LIBERTY_LICENSE: <liberty license code>

Note: After you add the license to the buildpack package, individual applications do not need to
accept the license terms with environment variables.

5. Install Ruby gems that are needed to package an admin buildpack by running the gem install
bundler and bundle install commands.

6. Run the bundle exec rake package task to create an admin buildpack.
rake ’package[zipfile,hosts,version]’

The zipfile parameter is the name of the generated admin buildpack and includes a relative location
that is NOT the current directory. For example, ../my-admin-buildpack.zip can be specified as the
zipfile parameter to generate the my-admin-buildpack.zip file in the parent directory instead of the
default ibm-websphere-liberty-buildpack-480d2de.zip file.
For example,
rake ’package[../my-admin-buildpack.zip]’

The hosts parameter is a list of sites that the package task pulls binary files from for inclusion in the
admin buildpack. By default, only binary files from the public IBM site are pulled. IBM hosted sites
do not include third-party binary files. A package parameter must be specified to indicate that
third-party binary files can be included in the admin buildpack for cases where the admin buildpack
is used in offline mode. Using * includes all the binary files in the admin buildpack if the download
is possible during the packaging.
An example of this usage:
rake ’package[,*,]’

The version parameter is the version information that is displayed when an application is deployed
to CloudFoundry with the Cloud Foundry command line interface. By default, the displayed version is
the latest commit identifier, such as 480d2de.
The following example illustrates the displayed version information defaults.
Liberty Buildpack Version: 480d2de | git@github.com:cloudfoundry/ibm-websphere-liberty-buildpack.git#480d2de

7. Install the admin buildpack with the cf client as follows:
cf create-buildpack ibm-websphere-liberty-buildpack ibm-websphere-liberty-buildpack-480d2de.zip 1

v ibm-websphere-liberty-buildpack is the name that is given to the admin buildpack.
v ibm-websphere-liberty-buildpack-480d2de.zip is the path to the compressed file that is created by

the Rake task.
v 1 is the priority given to the admin buildpack. The lower the number, the higher the priority.

See the Cloud Foundry documentation for further details.

Results

The IBM WebSphere Application Server Liberty Buildpack is now installed.

Chapter 3. Installing Liberty 881

http://docs.cloudfoundry.org/adminguide/buildpacks.html

882 WebSphere Application Server Liberty Core 8.5.5

Chapter 4. Setting up Liberty

Define directory locations and variables, create and configure servers, and add and remove Liberty
features that specify the capabilities of your server.

Procedure
v Defining directory locations and properties.
v “Verifying the integrity of Liberty installation” on page 875.

v Distributed operating systems “Creating a Liberty server by using developer tools” on page 884.
v “Creating a Liberty server manually.”
v “Specifying Liberty bootstrap properties” on page 897.

The default HTTP port is 9080 and HTTPS port is 9443 for Liberty. You can manually assign
appropriate port numbers in the server.xml files when multiple Liberty servers are running on the
same machine.

Creating a Liberty server manually
You can create a server from the command line.

Distributed operating systems

Before you begin

Distributed operating systems You can create a server as described here, or as described in “Creating a Liberty
server by using developer tools” on page 884.

Procedure
1. Open a command line, then change directory to the wlp/bin directory.

Where path_to_liberty is the location you installed Liberty on your operating system.
Example on Windows: C:\Users\mo> cd path_to_liberty\wlp\bin
Example on Linux: mo@machine01:~> cd path_to_liberty/wlp/bin

2. Run the following command to create a server. If you do not specify a server name, defaultServer is
used.
Where server_name is the name you want to give your server.
Example on Windows: C:\wlp\bin> server create server_name
Example on Linux: mo@machine01:~> server create server_name

Windows AIX Linux UNIX HP-UX Solaris IBM i

server create server_name

server_name must use only Unicode alphanumeric (for example, 0-9, a-z, A-Z), underscore (_), dash
(-), plus (+), and period (.) characters. The name cannot begin with a dash or period. Your file
system, operating system, or compressed file directory might impose additional restrictions.

Results

If the server is created successfully, you receive message: Server server_name created.

If the specified server already exists, no server is created and you receive an exception message:

883

CWWKE0005E: The runtime environment could not be launched.
CWWKE0045E: It was not possible to create the server called server_name because
the server directory C:\wlp\usr\servers\server_name already exists.

A directory with the name of the new server is created under the ${wlp.user.dir}/servers directory,
containing the configuration of the new server. The HTTP port numbers for the new server are assigned
to default values and are shown in the generated server.xml file to make it easy to edit them. You can
also set these values by using variables in a bootstrap.properties file in the same directory. For more
information, see “Specifying Liberty bootstrap properties” on page 897.

What to do next

Configure your server to have the features that your application requires. See “Configuring the Liberty
runtime environment ” in the “Administering” book.

Creating a Liberty server by using developer tools

Distributed operating systems

You can use developer tools to create and start a Liberty server. If you have not yet installed Liberty, the
developer tools can install it for you when you create a server for the first time.

Before you begin

Make sure that you installed the developer tools as described in “Installing Liberty developer tools and
(optionally) Liberty” on page 835.

You can create a server as described in this topic, or as described in “Creating a Liberty server manually”
on page 883.

When you create a new server using the tools, you specify the installation of Liberty that you want to
use. You are offered three options:
v Select an existing installation.
v Install from a previously downloaded archive file.
v For the no-charge developer edition, Download and install.

If you want to use the tools to install a Liberty edition (other than the no-charge developer edition) from
an archive file, make sure that you have downloaded the archive file.

8.5.5.5

If you need to use a proxy server to connect to the Liberty repository, first configure the

proxy settings by selecting Window > Preferences > General > Network Connections from the main
menu in Eclipse. Enter the information there.

About this task

Complete the following steps to create and start a Liberty server.

As you go through the steps, you can download add-ons in the Liberty Repository from the WASdev
community download site.

Procedure
1. In the workbench, open the Servers view by clicking the Servers tab.

884 WebSphere Application Server Liberty Core 8.5.5

Tip: If the Servers view is not visible, navigate to Window > Show view > Other... and type Server
in the filter text. Then, select Servers.

2. Right-click the Servers view and select New > Server.

3. Under the server type list, expand IBM and select the 8.5.5.4 WebSphere Application Server

Liberty server type. 8.5.5.4

The WebSphere Application Server Liberty server type replaces

the old WebSphere Application V8.5 Liberty server type and supports all versions of the WebSphere
Application Server Liberty server. Existing servers in a workspace that were created with the old
server type still work.

4. Click Next. The Liberty Runtime Environment page is displayed.
5.

Tip: If you already have a Liberty run time that is installed, you will go directly to the New Remote
Liberty Server page, skip to Step 7.
Select an installation, install from an archive file, or (for the no-charge developer edition) download
and install, Liberty.
If you previously installed Liberty, complete the following steps:

a. 8.5.5.4 Select Choose an existing installation.

b. 8.5.5.4 In the Path field, type or browse for the directory where you installed the Liberty
runtime environment.

c. 8.5.5.4 On the Liberty Runtime Environment page, click Next.
The application-serving environment is selected, and now you can skip to Step 7.

If you want to install Liberty from an archive file that was previously downloaded, complete the
following steps:

a. 8.5.5.4 Select Install from an archive or repository, and click Next.

b. 8.5.5.4 In the Destination field, type or browse for the directory where you want to
install the Liberty runtime environment.
If you type a path that does not exist, then a folder for that path is created automatically at the
end of Step 10.

c. 8.5.5.4 Select Install a new runtime environment from an archive.

d. 8.5.5.4 In the Path field, either type or browse to the archive file on the local file system,
and click Next.

e. In the Install Add-ons page, click Install or Install Pending to make your selection of add-on
archive files that you want to install on the Liberty runtime environment.
You can install an add-on archive file from your local file system, download, or use a
combination of both when you install multiple add-on archive files. If the workbench is
connected to the internet, the Install Add-ons page is populated with add-on archive files
available for download from the WAS dev community download site.
This download site includes add-ons that you can select from the Liberty Repository, such as
runtime features, samples, or open source integration.
If you want to install add-on archive files from your local file system, click Add Archive. In the
Add-on archive field, type or browse for the add-on archive file on the local file system, and
then click OK. If you have more add-on archive files to install from your local file system, repeat
this step until you are done.

8.5.5.6

If you want to install add-on files from a custom repository, first add the

repository by clicking Configure Repositories. Click New... to add the repository. The files are
then added to the list of add-on files.

Chapter 4. Setting up Liberty 885

https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download

After you complete your selection in the Install Add-ons page, click Next.
f. In the License Acceptance page, if you accept the license terms, select I accept the terms of all the

license agreements then click Next.
Now you can skip to Step 7.

If you want to download and install the no-charge developer edition of Liberty, complete the
following steps:

a. 8.5.5.4 Select Install from an archive or respository, and click Next.

b. 8.5.5.4 In the Destination field, type or browse for the directory where you want to
install the Liberty runtime environment.
If you type a path that does not exist, then a folder for that path is created automatically at the
end of Step 10.

c. 8.5.5.4 Select Download and install a new runtime environment from ibm.com, choose a
runtime environment version, and then click Next.

d. In the Install Add-ons page, click Install or Install Pending to make your selection of add-on
archive files that you want to install on the Liberty runtime environment.
You can install an add-on archive file from your local file system, download, or use a
combination of both when you install multiple add-on archive files. If the workbench is
connected to the internet, the Install Add-ons page is populated with add-on archive files
available for download from the WAS dev community download site.
This download site includes add-ons that you can select from the Liberty Repository, such as
runtime features, samples, or open source integration.
If you want to install add-on archive files from your local file system, click Add Archive. In the
Add-on archive field, type or browse for the add-on archive file on the local file system, and
then click OK. If you have more add-on archive files to install from your local file system, repeat
this step until you are done.
If you want to install add-on files from a custom repository, first add the repository by clicking
Configure Repositories. Click New... to add the repository. The files are then added to the list of
add-on files.
After you complete your selection in the Install Add-ons page, click Next.

e. In the License Acceptance page, if you accept the license terms, select I accept the terms of all
the license agreements then click Next.
Now you can skip to Step 7.

6. If the Liberty Server page displays, in the Liberty server field, use the drop-down list to select an
existing server. Or click New to create a new server.

Note: This step is skipped and the New Liberty Server dialog is displayed directly if there are no
defined Liberty Servers to choose from.

7. If you are creating a new server, in the Server name field of the New Liberty Server page, enter a
server name of your choice or use the default server name, defaultServer. Then, click Next if
available, otherwise click Finish.

8. In the Liberty Server, click Next.
9. Optional: Add the projects of your application to the server. On the Add and Remove page, under

the Available list, select the projects that you want to add to the server and click Add. The project
appears in the Configured list.

10. Click Finish.

What to do next
v Edit the server configuration. For more information, see topic “Editing the Liberty configuration by

using developer tools” in the “Administering” book.

886 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download

v Start the server in “start” mode or in “debug” mode, stop the server, add or remove applications on
the server, and many other tasks. You can perform these tasks by using the server context menu
(right-click on the server to open the pop-up menu) or by selecting the tray buttons in the Servers
view.

Tip: In the Servers view, you must select the server entry to perform these tasks. Do not select the
server configuration, such as the Server Configuration [server.xml] entry for performing these tasks.

v Optionally configure your server to do specific tasks such as configure Liberty to authenticate users
with Tivoli® Directory Server: Right-click Servers. Select Utilities> Add config snippets. After you
select the snippets and accept any licenses, the selected configuration snippets are then downloaded
and included in the server.xml file.

Creating a remote Liberty server by using developer tools
Distributed operating systems

8.5.5.4

You can use developer tools to create and start a remote Liberty server.

Before you begin

You must meet prerequisites for your local system and your remote system.
v The local system refers to the system where you installed the developer tools.
v The remote system refers to the system where you have Liberty runtime environment that is installed

and a Liberty server created.

For your local system, ensure that you meet these prerequisites:
1. The developer tools are installed.

For more information, see “Installing Liberty developer tools and (optionally) Liberty” on page 835.
2. The Liberty runtime environment is installed. For more information, see “Installing and uninstalling

Liberty using downloaded files and archives” on page 833.

For your remote system, ensure that you call the configUtility to download and set up the
remoteAdministration snippet from the repository. Copy the config text that is retrieved by the
configUtility into the server.xml file. For more information, see “configUtility command” on page 957.

You can use the following sample remote configuration as an example for your server.xml file:
<server description="new server">
<!-- Enable features-->
<featureManager>
<feature>restConnector-1.0</feature>
</featureManager>

<keyStore id="defaultKeyStore" password="password" />

<quickStartSecurity userName="admin" userPassword="password"/>

<httpEndpoint id="defaultHttpEndpoint" host="*" httpPort="9080" httpsPort="9443"/>

<remoteFileAccess>
<writeDir>${server.config.dir}</writeDir>
<writeDir>${server.output.dir}</writeDir>
<writeDir>${wlp.user.dir}</writeDir>
</remoteFileAccess>
</server>

Chapter 4. Setting up Liberty 887

Procedure
1. In the workbench, open the Servers view by clicking the Servers tab.

Tip: If the Servers view is not visible, navigate to Window > Show view > Other... and type Server
in the filter text. Then, select Servers.

2. Right-click within the Servers view and select New > Server.
3. Under the server type list, expand IBM and select the WebSphere Application Server Liberty server

type.
4. Enter the host name of the remote server.
5. Click Next. The Liberty Runtime Environment page is displayed.
6.

Tip: If you already have a Liberty run time that is installed, you will go directly to the New Remote
Liberty Server page, skip to Step 7.
Select an installation, install from an archive file, or (for the no-charge developer edition) download
and install Liberty.
If you previously installed Liberty, complete the following steps:

a. 8.5.5.4 Select Choose an existing installation.

b. 8.5.5.4 In the Path field, type or browse for the directory where you installed the Liberty
runtime environment.

c. 8.5.5.4 On the Liberty Runtime Environment page, click Next.
The application-serving environment is selected, and now you can skip to Step 7.

If you want to install Liberty from an archive file that was previously downloaded, complete the
following steps:

a. 8.5.5.4 Select Install from an archive or repository, and click Next.

b. 8.5.5.4 In the Destination field, type or browse for the directory where you want to
install the Liberty runtime environment.
If you type a path that does not exist, then a folder for that path is created automatically at the
end of Step 12.

c. 8.5.5.4 Select Install a new runtime environment from an archive.

d. 8.5.5.4 In the Path field, either type or browse to the archive file on the local file system,
and click Next.

e. In the Install Add-ons page, click Install or Install Pending to make your selection of add-on
archive files that you want to install on the Liberty runtime environment.
You can install an add-on archive file from your local file system, download, or use a
combination of both when you install multiple add-on archive files. If the workbench is
connected to the internet, the Install Add-ons page is populated with add-on archive files
available for download from the WAS dev community download site.
This download site includes add-ons that you can select from the Liberty Repository, such as
runtime features, samples, or open source integration.
If you want to install add-on archive files from your local file system, click Add Archive. In the
Add-on archive field, type or browse for the add-on archive file on the local file system, and
then click OK. If you have more add-on archive files to install from your local file system, repeat
this step until you are done.
If you want to install add-on files from a custom repository, first add the repository by clicking
Configure Repositories. Click New... to add the repository. The files are then added to the list of
add-on files.

888 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download

After you complete your selection in the Install Add-ons page, click Next.
f. In the License Acceptance page, if you accept the license terms, select I accept the terms of all the

license agreements then click Next.
Now you can skip to Step 7.

If you want to download and install the no-charge developer edition of Liberty, complete the
following steps:

a. 8.5.5.4 Select Install from an archive or respository, and click Next.

b. 8.5.5.4 In the Destination field, type or browse for the directory where you want to
install the Liberty runtime environment.
If you type a path that does not exist, then a folder for that path is created automatically at the
end of Step 12.

c. 8.5.5.4 Select Download and install a new runtime environment from ibm.com, choose a
runtime environment version, and then click Next.

d. In the Install Add-ons page, click Install or Install Pending to make your selection of add-on
archive files that you want to install on the Liberty runtime environment.
You can install an add-on archive file from your local file system, download, or use a
combination of both when you install multiple add-on archive files. If the workbench is
connected to the internet, the Install Add-ons page is populated with add-on archive files
available for download from the WAS dev community download site.
This download site includes add-ons that you can select from the Liberty Repository, such as
runtime features, samples, or open source integration.
If you want to install add-on archive files from your local file system, click Add Archive. In the
Add-on archive field, type or browse for the add-on archive file on the local file system, and
then click OK. If you have more add-on archive files to install from your local file system, repeat
this step until you are done.
If you want to install add-on files from a custom repository, first add the repository by clicking
Configure Repositories. Click New... to add the repository. The files are then added to the list of
add-on files.
After you complete your selection in the Install Add-ons page, click Next.

e. In the License Acceptance page, if you accept the license terms, select I accept the terms of all
the license agreements then click Next.
Now you can skip to Step 7.

7. Complete the user ID, password, and port information for the remote server and click Verify.

Important:

v The user ID and password must have the appropriate security credentials as defined by the
quickStartSecurity configuration item or the user registry of the remote Liberty server.

v The port is the HTTPS port that is configured in the server.xml file.

After you click Verify, if you see the following message, a local server or remote server is already
created with the same name.

The Liberty server already exists

You can verify this situation by expanding the following folders in the Enterprise Explorer view and
seeing the listed servers in the following projects:
v WebSphere Application Server Liberty
v WebSphere Application Server Liberty (Remote)

Chapter 4. Setting up Liberty 889

https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download

The remote directory is shown on the same page if the connection is successful. To resolve this issue
of two servers with the same name, you can rename the Remote Directory folder on the remote
system.

8. In the New Remote Liberty Server page, click Next.
The Remote WebSphere Application Server Settings page is displayed.

9. If you do not want to enable remote start, stop, and restart, ensure that Enable the server to start
remotely is cleared, click Next, and skip the next step.

10. Enable remote start, stop, and restart.
a. Select Enable the server to start remotely.
b. Select whether your remote server is installed on the Windows operating system or other

operating systems.
c. Enter the location of the runtime installation and server configuration.

For more information, see the “Directory locations and properties” on page 894 topic.
d. Enter the remote server authentication information.

For authentication, complete one of the following options.
v To access the remote server with logon credentials, enter your user name and password.
v To access the remote server with Secure Sockets Layer (SSL), copy the private key file to the

computer where the workbench is installed, and specify the key file location and user ID.
For more information about starting a remote server, see the Starting a remote WebSphere
Application Server topic.

11. Optional: Add the projects of your application to the server. On the Add and Remove page, under
the Available list, select the projects that you want to add to the server and click Add. The project
appears in the Configured list.

12. Click Finish.

What to do next
v Edit the server configuration. When you make edits, the remote servers synchronize configuration

changes with the remote version of the file. If the configuration files are out of sync with the remote
server, then the developer tools prompt you before they overwrite any remote files. For more
information, see topic “Editing the Liberty configuration by using developer tools” in the
“Administering” book.

v Start the server in “start” mode or in “debug” mode, stop the server, add or remove applications on
the server, and many other tasks. You can perform these tasks by using the server menu (right-click on
the server to open the pop-up menu) or by selecting the tray buttons in the Servers view.

Tip: In the Servers view, you must select the server entry to perform these tasks. Do not select the
server configuration, such as the Server Configuration [server.xml] entry for performing these tasks.

Creating a workbench Liberty server in a Docker container by using
developer tools

8.5.5.9

You can use WebSphere Developer Tools to create a reference in the workbench to a Liberty server that is
running in a Docker container. You can use this reference to handle your server requests from the
workbench.

Before you begin
v Install WebSphere Developer Tools. For more information about installing WebSphere Developer Tools,

see Installing the Liberty developer tools and (optionally) Liberty.

890 WebSphere Application Server Liberty Core 8.5.5

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=cord&product=was-wdt&topic=tremote_start
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=cord&product=was-wdt&topic=tremote_start

v Start a Liberty server in a local Docker container and ensure that both the HTTP and HTTPS ports are
mapped to the host. For more information about starting a Liberty server in a local Docker container,
see WASdev GitHub.

About this task

Remember: You can create a reference in the workbench to a Liberty server that is running in a Docker
container.

As you complete the steps, you can install WebSphere Application Server Liberty and download add-ons
in the Liberty Repository from the WASdev community download site. After you install Liberty, you can
select your Docker container. Then, you can enter the Liberty server security credentials for your Liberty
server to create a workbench reference to your Liberty server in your Docker container.

Procedure
1. In the workbench, open the Servers view by clicking the Servers tab.

Tip: If the Servers view is not visible, select Window > Show view > Other... and type Server in the
filter text. Then, select Servers.

2. Right-click the Servers view and select New > Server.
3. To select your server type, select IBM > WebSphere Application Server Liberty.
4. Enter the localhost value in the Server's host name field.
5. Click Next.
6. If the tools prompt you to install WebSphere Application Server Liberty, either because it is not

installed or because you need to input the directory where it is installed, complete one of the
following options. Otherwise, skip this step.
You need Liberty to be installed so that you can create a workbench reference to a Liberty server in a
Docker container.
If you previously installed Liberty, complete the following steps to select the directory where you
installed it:
a. Select Choose an existing installation.
b. In the Path field, type or browse for the directory where you installed the WebSphere Application

Server Liberty.
c. On the Liberty Runtime Environment page, click Next.

The application-serving environment is selected. Skip the rest of this step.
If you want to install Liberty from an archive file that was previously downloaded, complete the
following steps:
a. Select Install from an archive or repository, and click Next.
b. In the Destination field, type or browse to the directory where you want to install the Liberty

runtime environment.
If you type a path that does not exist, then a folder for that path is created automatically at the
end of the procedure when you click Finish.

c. Select Install a new runtime environment from an archive.
d. In the Path field, either type or browse to the archive file on the local file system, and click Next.
e. In the Install Add-ons page, click Install or Install Pending to make your selection of add-on

archive files that you want to install on the Liberty runtime environment.
You can install an add-on archive file from your local file system, download an add-on archive
file, or use a combination of both when you install multiple add-on archive files. If the
workbench is connected to the internet, the Install Add-ons page is populated with add-on
archive files available for download from the WAS dev community download site.

Chapter 4. Setting up Liberty 891

https://github.com/WASdev/ci.docker/
https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download

This download site includes add-ons that you can select from the Liberty Repository, such as
runtime features, samples, or open source integration.
If you want to install add-on archive files from your local file system, complete the following
steps:
1) Click Add Archive.
2) In the Add-on archive field, type or browse to the add-on archive file on the local file system.
3) Click OK.

If you have more add-on archive files to install from your local file system, repeat this procedure
until you are done.
If you want to install add-on files from a custom repository, complete the following steps:
1) To add the repository, click Configure Repositories.
2) Click New....

The files are then added to the list of add-on files.
After you complete your selection in the Install Add-ons page, click Next.

f. In the License Acceptance page, if you accept the license terms, select I accept the terms of all the
license agreements then click Next.

If you want to download and install the no-charge developer edition for Liberty, complete the
following steps:
a. Select Install from an archive or repository, and click Next.
b. In the Destination field, type or browse to the directory where you want to install the Liberty

runtime environment.
If you type a path that does not exist, then a folder for that path is created automatically at the
end of the main procedure when you click Finish.

c. Select Download and install a new runtime environment from ibm.com, choose a runtime
environment version, and then click Next.

d. In the Install Add-ons page, click Install or Install Pending to make your selection of add-on
archive files that you want to install on the Liberty runtime environment.
You can install an add-on archive file from your local file system, download, or use a
combination of both when you install multiple add-on archive files. If the workbench is
connected to the internet, the Install Add-ons page is populated with add-on archive files
available for download from the WAS dev community download site.
This download site includes add-ons that you can select from the Liberty Repository, such as
runtime features, samples, or open source integration.
If you want to install add-on archive files from your local file system, click Add Archive. In the
Add-on archive field, type or browse for the add-on archive file on the local file system, and
then click OK. If you have more add-on archive files to install from your local file system, repeat
this step until you are done.
If you want to install add-on files from a custom repository, first add the repository by clicking
Configure Repositories. Click New... to add the repository. The files are then added to the list of
add-on files.
After you complete your selection in the Install Add-ons page, click Next.

e. In the License Acceptance page, if you accept the license terms, select I accept the terms of all
the license agreements then click Next.

7. On the Liberty Server Type page, select Server in a Docker container.
8. Click Next.

The tools display the New Liberty Server in Docker Container page.
9. Select your Docker container from the Container name menu.

10. Enter the Liberty server security credentials.

892 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/developerworks/mydeveloperworks/blogs/wasdev/entry/download

Your values for the User name and Password fields must correspond to a user that is defined in a
user registry that has an administrator role. If the tools cannot find a basic user registry that defines
the specified user, the tools display the Security Verification window. If the tools display the Security
Verification window, complete one of the following options:
v Select Create to add a basic user registry that defines a user with your values and an

administrator role.
v Select Proceed to proceed if the user is defined in another user registry type.
v Select Cancel to make changes to the User name and Password that you entered.

11. Enter the value for the Host mapped secured port field that corresponds to the HTTPS port in the
server configuration.

12. Click Finish.

Results

You created a workbench server reference to a server that is running in a Docker container.
v To see the server that you created and its server configuration, open the Servers view.
v To see the project, the server folder, and the server configuration files, open the Enterprise Explorer

view.

What to do next
v You can edit the server configuration. For more information, see “Editing the Liberty configuration by

using developer tools” on page 938
v To start or stop a server, or add or remove applications on the server, right-click your server to use the

server context menu or use the tray buttons in the Servers view. For more information, see “Starting
and stopping a server by using developer tools” on page 940.

Remember: To access these options, select the Server Entry in the Servers view. Do not select a server
configuration such as the Server Configuration or server.xml entry.

Tip: The application address that the server logs in the Console view is valid within the Docker
container only. To load an application in a browser, use the host mapped IP address and host mapped
HTTP or HTTPS port. If you use the Run on Server or Debug on Server options, the application is
automatically loaded with the correct IP address and port.

To make it easier to determine the correct port, map the ports to specific ports on the host by using the
-p option rather than the -P option when you create the Docker container.

v You can configure your Liberty server to authenticate users with Tivoli Directory Server.
1. Right-click Servers.
2. Select Utilities > Add config snippets.
3. Select the snippets and accept the licenses agreements.

The tools download the configuration snippets that you selected and add them to the server.xml file.

Chapter 4. Setting up Liberty 893

Directory locations and properties
In Liberty, many directories have properties that are associated with them. These properties can be used
to specify file locations when you configure the server.

Table 70. Runtime environment default directory structure. Column 1 contains a file and directory tree. If a directory
has a property that is associated with it, this is given in column 2. A description of each file or directory is given in
Column 3.

Directory or file Property Description

wlp/ wlp.install.dir Root of installation

+- bin/ Scripts for managing the installation. For
example, server.

+- clients/ Liberty client and thin client libraries. For
example restConnector.jar.

+- jython/ Jython-based scripts

+- dev/ Root for developer resources (APIs, SPIs,
specifications, and tools)

+- api/ Public APIs available for both compile
and run time by default

+- ibm/ APIs available in Liberty

+- javadoc/ Java document archives

+- spec/ Public specification APIs available for
both compile and run time by default

+- third-party/ Third-party APIs that are available at
compile time by default and must be
specified in the configuration using the
apiTypeVisibility attribute of the
classloader element for applications at
run time.

+- spi/ Public SPIs available for both compile and
run time by default

+- ibm/ SPIs available in Liberty

+- javadoc/ Java document archives for SPI

+- spec/ Public specification SPIs available for both
compile and run time by default

+- tools/ Ant plug-in for Liberty

+- etc/ User customized server variables that
apply to all servers (optional)

+- server.env Default server script environment
variables (optional)

+- client.env Default client script environment variables
(optional)

+- jvm.options Default JVM options (optional)

+- lafiles/ License information files

+- lib/ Platform runtime environment

+- templates/ Runtime customization templates and
examples

8.5.5.6 +- client/ 8.5.5.6 Client template when creating a
client

894 WebSphere Application Server Liberty Core 8.5.5

Table 70. Runtime environment default directory structure (continued). Column 1 contains a file and directory tree. If
a directory has a property that is associated with it, this is given in column 2. A description of each file or directory is
given in Column 3.

Directory or file Property Description

+- server/ Server template when creating a server

+- usr/ wlp.user.dir User directory

+- extension/ usr.extension.dir User-developed features

+- shared/

+- apps/ shared.app.dir Shared applications

+- config/ shared.config.dir Shared configuration files

+- resources/ shared.resource.dir Shared resource definitions: adapters, data
sources

8.5.5.7 +- stackGroups/ shared.stackgroup.dir Shared stack groups for remote
deployment of packages and installables

+- servers/ Shared servers directory

+- server_name server.config.dir Server configuration directory. Use
${server.config.dir} to reference
server-specific configuration
(applications).

+- bootstrap.properties Server bootstrap properties (optional)

+- jvm.options Server JVM options, which replace the
values in wlp/etc/jvm.options (optional)

+- server.env Server script environment variables,
which are merged with
wlp/etc/server.env (optional)

+- server.xml Server configuration overlays (required)

+- apps/ Server configuration for applications

+- dropins/ Server default application dropins folder
(optional)

+- application_name Application folder or archive (optional)

8.5.5.5 +- configDropins/ Server configuration dropins folder
(optional)

8.5.5.5 +- defaults Default server configuration dropins
folder (optional)

8.5.5.5 +- overrides Server configuration overrides dropins
folder (optional)

+- server_name server.output.dir Server output directory. Use
${server.output.dir} to describe artifacts
generated by the server (log files and
workarea).

+- logs/ Server log files, including FFDC logs
(directory is present after server is first
run)

+- console.log Basic server status and operations
messages

+- trace_timestamp.log Time-stamped trace messages, with the
level of detail determined by the current
tracing configuration

Chapter 4. Setting up Liberty 895

Table 70. Runtime environment default directory structure (continued). Column 1 contains a file and directory tree. If
a directory has a property that is associated with it, this is given in column 2. A description of each file or directory is
given in Column 3.

Directory or file Property Description

+- ffdc/ First Failure Data Capture (FFDC) output
directory

+- ffdc_timestamp/ First Failure Data Capture (FFDC) output
that typically includes selective memory
dumps of diagnostic data related to the
failure of a requested operation

+- workarea/ Files created by the server as it operates
(directory is present after server is first
run)

8.5.5.6 +- clients/ Shared clients directory

+- client_name Client configuration directory.

+- bootstrap.properties Client bootstrap properties (optional)

+- client.jvm.options Client JVM options, which replace the
values in wlp/etc/client.jvm.options
(optional)

+- client.xml Client configuration overlays (required)

+- apps/ Client configuration for applications

+- logs/ Client log files, including FFDC logs
(directory is present after client is first
run)

+- trace_timestamp.log Time-stamped trace messages, with the
level of detail determined by the current
tracing configuration

+- ffdc/ First Failure Data Capture (FFDC) output
directory

+- ffdc_timestamp/ First Failure Data Capture (FFDC) output
that typically includes selective memory
dumps of diagnostic data related to the
failure of a requested operation

+- workarea/ Files created by the client as it operates
(directory is present after client is first
run)

You can use the properties that are associated with each directory, if any, to specify file locations when
you configure the server.

Tip: To ensure configuration portability, use the most specific property that is appropriate, and do not
rely on the relationship between resources. For example, in some configurations the installation location,
${wlp.install.dir} might not be the parent of the customized instance ${wlp.user.dir}.

Programmatic access to location properties

Location properties can be bound into the JNDI namespace under names of your choice, using the
jndiEntry configuration elements in the server.xml file, for example:
<jndiEntry jndiName="serverName" value="${wlp.server.name}"/>

896 WebSphere Application Server Liberty Core 8.5.5

Such entries are accessible by any code that runs in the server (applications, shared libraries or features)
through a JNDI lookup:
Object serverName = new InitialContext().lookup("serverName");

For more information on how to use JNDI entries in configuration, see “Using JNDI binding for constants
from the server configuration files” on page 1336.

Feature code can also use a system programming interface (SPI) provided by the kernel to resolve the
values of these properties, for example:
ServiceReference <WsLocationAdmin>locationAdminRef = bundleContext.getServiceReference(WsLocationAdmin.class);
WsLocationAdmin locationAdmin = bundleContext.getService(locationAdminRef);
String serverName = locationAdmin.resolveString("${wlp.server.name}");

Specifying Liberty bootstrap properties
Bootstrap properties initialize the runtime environment for a particular server. Generally, they are
attributes that affect the configuration and initialization of the runtime core.

About this task

Bootstrap properties are set in a text file named bootstrap.properties. This file is not required, so it does
not exist unless you create it. You must create this file in the server directory, which also contains the
configuration root file server.xml. By default, the server directory is usr/servers/server_name. You can
change the server directory as described in “Customizing the Liberty environment” on page 947.

You can create a bootstrap.properties file by using the editor in WebSphere Application Server
Developer Tools for Eclipse. From the Servers view, right-click on the server you want to configure, then
select New, then Server Environment File, then bootstrap.properties, and the file is created from a
template and opened in an editor. Along with the server.xml and server.env files, the
bootstrap.properties file appears in the Servers view under the server that it is associated with and can
be edited by double-clicking it.

You can edit the bootstrap.properties file by using a text editor or the editor in the WebSphere
Application Server Developer Tools for Eclipse. See “Editing the Liberty configuration by using developer
tools” on page 938.

If you update the bootstrap.properties file, you must restart the server for the changes to take effect.

The bootstrap.properties file contains two types of properties:
v A small, predefined set of initialization properties.
v Any custom properties that you choose to define. You can then use these custom properties as

variables in other configuration files such as server.xml and included files.

If you update the bootstrap.properties file, you must restart the server for the changes to take effect.

Procedure
v Use predefined properties to configure trace and logging.

For example:
– To change the name of your trace file, specify the property com.ibm.ws.logging.trace.file.name

with a file name of your choice, as follows:
com.ibm.ws.logging.trace.file.name = trace.log

– To enable binary logging, specify the websphere.log.provider property as follows:
websphere.log.provider = binaryLogging-1.0

Chapter 4. Setting up Liberty 897

For more information, see “Configuring binary logging in Liberty” on page 629
v Use predefined properties for OSGi framework diagnostics. For example, set the port for the OSGi

console as follows:
osgi.console = 5678

For more information, see “Using an OSGi console” on page 967
v Use predefined properties for OSGi framework extensions. Specify the

org.osgi.framework.bootdelegation if this property is required by external monitoring tools. The
value is a comma-delimited list of packages.

v Use predefined properties for configuration password encryption. For more information, see “The
limits to protection through password encryption” on page 616.

v Use custom properties to define the default ports for web applications.
You can share server.xml and use XML configuration files across various development environments
that allow machine- or environment-specific customization. For example:
1. Specify the properties default.http.port and default.https.port in the bootstrap.properties file:

default.http.port = 9081
default.https.port = 9444

Note: If you do not specify the properties, the default HTTP port is 9080 and HTTPS ports is 9443.
To override the default HTTP endpoint definition, set the id attribute of the httpEndpoint element
to defaultHttpEndpoint in the server configuration.

2. Use the following properties in the server.xml configuration file:
<httpEndpoint id="defaultHttpEndpoint"
host="*"
httpPort="${default.http.port}"
httpsPort="${default.https.port}" />

Note: host="*" means “listen on all adapters”. By default, the server is listening only on address
127.0.0.1/localhost. You can also use the host property to specify a single IP address, and then
the system listens only on the specified adapter.

v Use custom properties to set the command port.
Set the command port to enable the server script to communicate with the running Liberty server and
request certain operations, such as stopping the Liberty server or issuing a Java dump.

Distributed operating systems
IBM i By default, the Liberty server acquires an ephemeral port to be used

by the command listener. You can override the default behavior of the Liberty server by using the
command.port property.

Valid values

-1 Command port is disabled.

0 Ephemeral port is chosen at run time.

1-65535
User-specified port.

Default value

0 Distributed operating systems
IBM i Ephemeral port is chosen at run time.

Note: Distributed operating systems
IBM i You are discouraged from disabling the command port. If you

disable the command port, you cannot use the server script to request some operations, for example,
stopping the Liberty server or issuing a Java dump.

v Use custom properties to configure server start wait time.

898 WebSphere Application Server Liberty Core 8.5.5

You can increase the server start wait time beyond the product default setting by adding the
server.start.wait.time property to the boostrap.properties file. The server.start.wait.time is
specified in seconds.
1. Specify the server.start.wait.time property in the bootstrap.properties file. The following

example sets the server start time to 25 seconds.
server.start.wait.time = 25

This setting means that as the server starts, the reporting mechanism for the server attempts to
report on the completed stages of the start. If the reporting mechanism for the server cannot
perform its function within 25 seconds, an error 22 occurs.
If you do not add the server.start.wait.time property to the bootstrap.properties file, the
default server start wait time is internally set to 30 seconds.

v To apply the changes, restart the server.

Setting the default host name of a Liberty server
You can add the defaultHostName variable to the server.xml file to set the default host name by which a
Liberty server is identified.

About this task

This variable is available for use by service configurations. Setting this value is particularly important for
multihomed systems (with multiple NICs and multiple mapped host names for example).

Notes:

v This variable is currently used by the <httpEndpoint> host attribute and the <hostAuthInfo> rpcHost
attribute

v The default host name should be the fully qualified host name of the system.
v The value should not contain any wildcards (* for example).
v The variable default is localhost.

Procedure

To set the default host name by which a Liberty server is identified, add the defaultHostName variable to
the server.xml file.
For example:
<variable name="defaultHostName" value="localhost" />

Default port numbers
Some parts of Liberty use default TCP/IP port numbers. You can override the default port numbers by
specifying a different port number in your server configuration.

Runtime environment port numbers

For the command port, the Liberty server acquires an ephemeral port to be used by the command
listener. You can configure this port in the bootstrap.properties file. For more information, see
“Specifying Liberty bootstrap properties” on page 897.

Feature port numbers

The following table lists the default port numbers of Liberty features and an example of how you can
override the default port in your server configuration.

Chapter 4. Setting up Liberty 899

Table 71. Default port numbers of Liberty features

Feature Default port and configuration example

8.5.5.7 rtcomm-1.0 v MQTT over TCP port: 1883

v MQTT over SSL port: 8883

<mqttTcpEndpoint id="defaultMqttEndpoint"
mqttTcpPort="1885"
mqttSslPort="8885"/>

servlet-3.0 v HTTP port: 9080

v HTTPS port: 9443

<httpEndpoint id="defaultHttpEndpoint"
httpPort="9082"
httpsPort="9445" />

8.5.5.7 sipServlet-1.1 v TCP port: 5060

v TLS port: 5061

v UDP port: 5060

<sipEndpoint id="defaultSipEndpoint"
sipTCPPort="5062"
sipUDPPort="5062"
sipTLSPort="5063" />

Using virtual hosts
8.5.5.7

You can use virtual hosts if you want isolation between applications and the endpoints that serve them.

A single application server is often responding to requests from multiple different host and port
configurations. This occurs for a combination of reasons, such as it is running on a machine with multiple
network interfaces with different names or it is routed to from an http server, proxy, or load balancer. In
these cases, you might want to control which application can be contacted from a specific host. Virtual
hosts provide this capability. It matches the requested host name and port number (as determined from
the HTTP Host header) against the configured list of host aliases.

In WebSphere Application Server Liberty, the default configuration is sufficient. The default virtual host
(default_host) matches requests from any incoming host and port combination, and forwards them on to
the default application container.

The following list illustrates the key configuration elements when you are configuring virtual hosts.
v The virtualHost configuration element ID value.
v The hostAlias subelement configuration.
v The allowFromEndpoint subelement configuration (if used).
v The virtual host configuration in the ibm-web-bnd.xml or ibm-web-bnd.xmi file of the WAR.
v The host attribute value of the httpEndpoint.
v The ID attribute value of the httpEndpoint.

Isolating two applications from each other
The following example illustrates one of the more common usages of virtual hosting to give an
understanding of some of the configuration that is required. This example shows how to configure two
applications that run on differing ports. Further in this example illustrates that one application is only
available on the localhost interface.

900 WebSphere Application Server Liberty Core 8.5.5

<httpEndpoint id="defaultHttpEndpoint" host="*" httpPort="9080" />
<httpEndpoint id="alternateEndpoint" host="*" httpPort="9081" />

<virtualHost id="application-1">
<hostAlias>your_host_name:9080</hostAlias>

</virtualHost>

<virtualHost id="application-2">
<hostAlias>localhost:9081</hostAlias>

</virtualHost>

<enterpriseApplication location="myApp.ear" name="App1"/>
<webApplication location="myApp2.war" name="App2" />

The defaultHttpEndpoint exposes all interfaces on port 9080, and the alternateEndpoint exposes all
interfaces on port 9081.

If App1 has a WAR file with an ibm-web-bnd.xml file that specifies <virtual-host name="application-1"/>,
then this application can be accessed only at your_host_name:9080/app1_context_root.

If App2 (which is a WAR) has an ibm-web-bnd.xml file that specifies <virtual-host name="application-2"/
>, then this application can be accessed only at localhost:9081/app2_context_root.

If a third application was deployed which specified no specific virtual host, in this configuration, that
application would be accessible only if it were a proxied request that contained HOST header that
specifies a different port. For example, if the request was made to a proxy on port 80, that port is not
listed in any of the hostAlias specifications, and so the request would be routed to the default_host
virtual host.

Isolating applications based on the requested host or port
The default virtual host in Liberty is also used for JMX communications. If you wanted to isolate JMX
communications from application traffic, you would need to complete the following steps.
1. Decide on your virtual host name, and update your application to reference the new (non-default)

host. Add a virtual-host element to the ibm-web-bnd.xml or ibm-web-bnd.xmi file of the WAR.
<?xml version="1.0" encoding="UTF-8"?>
<web-bnd

xmlns="http://websphere.ibm.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://websphere.ibm.com/xmk/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-bnd_1_0.xsd"
version="1.0" />

<virtual-host name="proxiedRequests" />

</web-bnd>

2. Add a virtualHost element to your server.xml file. The name must match what is specified in the
application, and must define hostAliases that are routed to the new virtual host.

Note: The host name and the port that is being matched is the one that is originally requested by the
user, which might or might not match the host and port that Liberty is using. The following example
illustrates a virtual host element added to your server.xml file.
<virtualHost id="proxiedRequests">

<hostAlias>external.host.name:80</hostAlias>
<hostAlias>external.host.name:443</hostAlias>

</virtualHost>

If requests are coming from a proxy, this configuration alone routes any request that is made to the
proxy's host and port to the "proxiedRequests" virtual host.

Chapter 4. Setting up Liberty 901

Restricting access based on originating endpoint
If you want to restrict access to the default/system applications that are using the defaultHttpEndpoint,
there are more steps to take.
1. Define another httpEndpoint. The following example illustrates another httpEndpoint.

<httpEndpoint id="localHostOnly" host="localhost" httpPort="9081" httpsPort="9444"/>

This http endpoint specifies that host="localhost," meaning that ports 9081 and 9444 are exposed only
on the localhost interface.

2. Update virtualHost definitions to specify the allowFromEndpointRef attribute. When this attribute is
specified, a virtualHost accepts requests only from the specified endpoint. For example:
<virtualHost id="default_host" allowFromEndpointRef="localHostOnly">

<hostAlias>*:9081</hostAlias>
<hostAlias>*:9444</hostAlias>

</virtualHost>

</virtualHost id="proxiedRequests">
<hostAlias>*:9080</hostAlias>
<hostAlias>*:9443</hostAlias>
<hostAlias>external.host.name:80</hostAlias>
<hostAlias>external.host.name:443</hostAlias>

</virtualHost>

With this configuration:
v The default_host virtual host now accepts requests that are directed only at localhost:9081 and

localhost:9444 that also originate from the localHostOnly endpoint. Any other request to ports 9081
and 9444 are refused. For example, a request from the defaultHttpEndpoint with Host headers that
reference localhost:9081 is refused.

v The proxiedRequests virtual host now accepts any request that is issued to port 9080, or 9443
(which are the default ports that are used by the defaultHttpEndpoint), in addition to those that
have a Host header that references the external host name from the proxy and port 80 or 443.

Virtual hosts
8.5.5.7

A virtual host is a configuration entity that enables a single host machine to resemble multiple host
machines.

A virtual host maintains a list of Multipurpose Internet Mail Extensions (MIME) types that it processes.
You can associate a virtual host to one or more Web modules, but you can associate each web module
with only one virtual host. Resources that are associated with one virtual host cannot share data with
resources associated with another virtual host, even if the virtual hosts share a physical machine.

Each virtual host has a logical name and a list of one or more DNS aliases by which it is known. A DNS
alias is the TCP/IP hostname and port number that is used to request the servlet, for example
yourHostName:80. When no port number is specified, 80 is assumed.

The virtual host configuration uses wildcard entries with the ports for its virtual host entries.
v The default alias is *:80 using an external port that is not secure.
v Aliases of the form *:9080 use the internal port that is not secure.
v Aliases of the form *:9443 use the secure internal port.
v Aliases of the form *:443 use the secure external port.

A client request for a servlet, JavaServer Pages file, or related resource, contains a DNS alias and a
Uniform Resource Indicator (URI) that is unique to that resource. When a client request for a servlet,
JavaServer Pages file, or related resource is received, the DNS alias is compared to the list of all known
virtual host groups to locate the correct virtual host. The URI is compared to the list of all known URI

902 WebSphere Application Server Liberty Core 8.5.5

groups to locate the correct URI group. If the virtual host group and URI group are found, the request is
sent to the corresponding server group for processing and a response is returned to browser. If a
matching virtual host group or URI group is not found, an error is returned to the browser.

A virtual host is not associated with a particular node or machine. It is a configuration, rather than a live
object, which is why you can create it, but cannot start or stop it. A default virtual host, named
default_host, is automatically configured the first time that you start an application server. Unless you
specifically want to isolate resources from one another on the same node, or physical machine, you
probably do not need any virtual hosts in addition to the default host.

The DNS aliases for the default virtual host are configured as *:80 and *:9080, where port 80 is the
HTTP server port and port 9080 is the port for the default server's HTTP transport. The default virtual
host includes common aliases, such as the machine's IP address, short host name, and fully qualified host
name. One of these aliases comprises the first part of the path for accessing a resource such as a servlet.
For example, the alias localhost:80 is used in the request http://localhost:80/myServlet.

When you request a resource, the product tries to map the request to an alias of a defined virtual host.
The http://host:port/ portion of the virtual host is not case sensitive, but the URL that follows is case
sensitive. The match for the URL must be alphanumerically exact. Different port numbers are treated as
different aliases.

For example, the request http://www.myhost.com/myservlet maps successfully to http://WWW.MYHOST.COM/
myservlet but not to http://WWW.MYHOST.COM/MYSERVLET or Www.Myhost.Com/Myservlet. In the latter two
cases, these mappings fail because of case sensitivity. The request http://www.myhost.com/myservletdoes
not map successfully to http://myhost/myservlet or to http://myhost:9876/myservlet. These mappings
fail because they are not alphanumerically correct.

You can use wildcard entries for aliases by port and specify that all valid host name and address
combinations on a particular port map to a particular virtual host.

If you request a resource by using an alias that cannot be mapped to an alias of a defined virtual host,
you receive a 404 error in the browser that you used to issue the request. A message states that the
virtual host could not be found.

Two sets of associations occur for virtual hosts. Application deployment associates an application with a
virtual host. Virtual host definitions associate the network address of the machine and the HTTP
transport or web server port assignment of the application server with the virtual host. Looking at the
flow from the web client request for the snoop servlet, for example, the following actions occur:
1. The web client asks for the snoop servlet: at web address http://

www.some_host.some_company.com:9080/snoop

2. The some_host machine has the 9080 port that is assigned to the stand-alone application server,
server1.

3. Server1 looks at the virtual host assignments to determine the virtual host that is assigned to the alias
some_host.some_company.com:9080.

4. The application server finds that no explicit alias for that DNS string exists. However, a wildcard
assignment for host name * at port 9080 does exist, so this wildcard is a match. The virtual host that
defines the match is default_host.

5. The application server looks at the applications that are deployed on the default_host and finds the
snoop servlet.

6. The application server serves the application to the web client and the requester is able to use the
snoop servlet.

Chapter 4. Setting up Liberty 903

Table 72. Aliases for a virtual host

Virtual host Alias Port number

default_host * 9080

default_host localhost 9080

default_host my_machine 9080

default_host my_machine.my_company.com 9080

default_host localhost 80

You can have any number of aliases for a virtual host. You can even have overlapping aliases, such as:

The Application Server looks for a match by using the explicit address that is specified on the web client
address. However, it might resolve the match to any other alias that matches the pattern before it
matches the explicit address. Defining an alias first in the list of aliases does not guarantee the search
order whenever the product is looking for a matching alias.

Virtual hosts with overlapping aliases. Assume that you define overlapping aliases for both virtual hosts
because you accidentally defined port 9080 for the admin_host instead of port 9060:

A problem can occur if you use the same alias for two different virtual hosts. For example, assume that
you installed the default application and the snoop servlet on the default_host. You also have another
virtual host that is called the admin_host. However, you have not installed the default application or the
snoop servlet on the admin_host.

Table 73. Virtual hosts with overlapping aliases.

Virtual host Alias Port number

default_host * 9080

default_host localhost 9080

admin_host * 9060

admin_host my_machine.com 9080

Assume that a web client request comes in for http://my_machine.com:9080/snoop.

If the application server matches the request against *:9080, the application is served from the
default_host. If the application server matches the request to my.machine.com:9080, the application cannot
be found. A 404 error occurs in the browser that issues the request. A message states that the virtual host
could not be found.

This problem is the result of not finding the requested application in the first virtual host that has a
matching alias. The correct way to code aliases is for the alias name on an incoming request to match
only one virtual host in all of your virtual host definitions. If the URL can match more than one virtual
host, you see the problem that is described.

Preparing and running an application client
8.5.5.6

Learn how to prepare your server and client to run an application client from Liberty application client
container.

904 WebSphere Application Server Liberty Core 8.5.5

About this task

Running an application client successfully requires updates to both the server.xml and client.xml files.

Procedure

Prepare your server, as follows:
1. Package a client module (.jar) and other modules, such as an EJB module (.jar), in an application

EAR file.
2. Place the EAR file in the apps directory; for example, wlp/usr/servers/your_server/apps.
3. Update the server.xml configuration file by adding the appClientSupport-1.0 feature, along with

other necessary features.

Important: This step is not required if your application client is a stand-alone application.
4. Update the server.xml configuration file by configuring <application/> with your application

information; for example:
<?xml version="1.0" encoding="UTF-8"?>
<server description="new server">
<!- Enable features ->
<featureManager>
<feature>javaee-7.0</feature>
</featureManager>
<application id="techsample" name="techSample" type="ear" location="TechnologySamples.ear"/>
</server>

Prepare your client, as follows:
5. Place the EAR file in the apps directory; for example, wlp/usr/clients/your_client/apps.
6. Update the client.xml configuration file by configuring <application/> with your application

information; for example:
<?xml version="1.0" encoding="UTF-8"?>
<client description="new client">
<!- Enable features ->
<featureManager>
<feature>javaeeClient-7.0</feature>
</featureManager>
<application id="techsample" name="techSample" type="ear" location="TechnologySamples.ear"/>
</client>

7. Optional: Add the appClientSecurity-1.0 feature to the client.xml file. Read about “Creating a
Liberty application client manually” on page 906.

8. Start the server.
9. Run the client by entering client run your_client. If your client application uses command-line

arguments, use the following format:
client run {your_client} -- arg1 arg2 ... argn

There are additional steps to take if your server and client are running on different computers. By
default, the server and client are using localhost:2809. You must configure IIOP to establish a connection
between the server and client, as follows:
10. Stop the server.
11. Update the server.xml file with the IIOP configuration; for example:

<iiopEndpoint id="defaultIiopEndpoint" host="user.host.ibm.com" iiopPort="2814" />

12. Update the client.xml file with the IIOP configuration; for example:
<orb id="defaultOrb" nameService="corbaname::user.host.ibm.com:2814" />

13. Start the server.

Chapter 4. Setting up Liberty 905

Creating a Liberty application client manually

8.5.5.6

You can create a Liberty application client from the command line.

Before you begin

You enable the Java EE Application Client 7.0 feature in the client.xml file only.

Procedure
1. Open a command line, then change directory to the wlp/bin directory. In the following examples,

path_to_liberty specifies the location where you installed Liberty on your operating system.

Windows

Example on Windows systems: C:\Users\mo> cd path_to_liberty\wlp\bin

Linux Example on Linux: mo@machine01:~> cd path_to_liberty/wlp/bin
2. Run the following command to create a client, where client_name is the name that you want to give

your client. If you do not specify a client name, defaultClient is used.

Windows

Example on Windows systems: C:\wlp\bin> client create client_name

Linux Example on Linux: mo@machine01:~> client create client_name
client create client_name

If the client is created successfully, you receive the following message:
Client client_name created.

You can find the client.xml file in the wlp/usr/clients/client_name directory. The file contains the
javaeeClient-7.0 feature.
Attention: If a default client exists, you get an error. If a default client does not exist, defaultClient
is created.

3. Run your client application by preparing an application (.ear) file with a client module (.jar) in it.
Specify a main class in the MANIFEST.MF of the client module, for example:
Manifest-Version: 1.0
Main-Class: com.ibm.ws.addressbook.ContactServiceClient_XMLInject

4. Place the EAR file under the wlp/usr/clients/client_name/apps directory.
5. Update the client.xml file to configure your application, for example:

<client>
<featureManager>
<feature>javaeeClient-7.0</feature>

<featureManager>
<application id="CLIENT_APP" name="CLIENT_APP" type="ear" location="clientApp.ear"/>

</client>

If the specified client already exists, no client is created and you receive an exception message:
CWWKE0005E: The runtime environment could not be launched.
CWWKE0904E: It was not possible to create the client called client_name because
the client directory C:\wlp\usr\clients\client_name already exists.

What to do next

You can enable security (SSL, CSIv2, JAAS) for your application client by adding the
appSecurityClient-1.0 feature to your client.xml file:
<featureManager>
<feature>javaeeClient-7.0</feature>
<feature>appSecurityClient-1.0</feature>
</featureManager>

906 WebSphere Application Server Liberty Core 8.5.5

For more information about configuring security on the application client, see 8.5.5.6 “Configuring
security for the Liberty application client container and its applications” on page 1287.

Creating a Liberty application client with multiple client modules
8.5.5.6

You can create a Liberty application client with multiple client modules in the same EAR file.

About this task

You can specify more than one client application (packaged in a client module) in your application EAR
file. If you would like to package multiple client applications in the same EAR file, you must use the
defaultClientModule attribute in <enterpriseApplication/>.

Procedure

Specify the client that you want to run by updating the defaultClientModule attribute in both the
client.xml and server.xml files.
<client>
<featureManager>
<feature>javaeeClient-7.0</feature>
<featureManager>
<enterpriseApplication id="MultipleAppClientModules" name="MultipleAppClientModules" type="ear"
defaultClientModule="HelloAppClient.jar" location="MultipleAppClientModules.ear"/>

</client>

Important: You can run one application at a time.

Setting up the server-management environment for Liberty by using
collectives
To set up the server-management environment for Liberty by using collectives, define the appropriate
features in the server.xml file and run the corresponding collective command-line tasks to establish the
administrative domain security configuration.

About this task

You can use collectives to manage multiple servers from a single management domain. For high
availability, you can configure collective replica sets, clusters, or scaling. For general information about
collectives, see “Collective architecture” on page 908.

Liberty provides multiple-server management in the following features:
v collectiveController-1.0

The collectiveController-1.0 feature enables controller functionality for a management collective and
includes collective- and cluster-management MBeans that are accessible using the REST JMX connector
that is provided by the restConnector-1.0 feature. The collective controller acts as a storage and
collaboration mechanism to which collective members can connect. The administrative domain security
configuration for the collectiveController-1.0 feature is established using the collective
command-line create and replicate tasks.

Distributed operating systems

IBM i

The collectiveController-1.0 feature and its capabilities are

available only in multiple-server products such as WebSphere Application Server Liberty Network
Deployment and WebSphere Application Server Liberty for z/OS. The feature is not available in
single-server products such as WebSphere Application Server Liberty, WebSphere Application Server

Chapter 4. Setting up Liberty 907

Liberty - Express, or WebSphere Application Server Liberty Core. If you have a multiple-server product
installation, you can use its collectiveController-1.0 feature to work with collective members from
single-server products.

v collectiveMember-1.0

The collectiveMember-1.0 feature enables a server to be a member of a management collective and be
managed by the collective controller. The administrative domain security configuration for the
collectiveMember-1.0 feature is established using the collective command-line join task.

Tip: All servers enabled with the collectiveController-1.0 feature are managed; therefore, you do
not need to specify collectiveMember-1.0 if the server already has the collectiveController-1.0
feature enabled.

Procedure
v Configure a server to act as collective controller.

– Create a collective controller server using commands and then configure the controller server.xml
file. See step 1 of “Configuring a Liberty collective” on page 912.

– Create a collective controller using developer tools. See step 1 of “Configuring a Liberty collective
using the developer tools” on page 918.

v Join a server to a collective as a member.
– Join a server to a collective using commands and then configure the member server.xml file. See

step 2 of “Configuring a Liberty collective” on page 912.
– Join a server to a collective using developer tools. See step 2 of “Configuring a Liberty collective

using the developer tools” on page 918.
v Change the collective configuration as needed for your environment.

– Register host computers with a collective.
– Override host information by revising parameters in the hostAuthInfo element of the member

server.xml file.
– Set up Remote Execution and Access (RXA) to enable collective controllers to start and stop servers.
– Set the JAVA_HOME variable for Liberty collective members.

Collective architecture
The set of Liberty servers in a single management domain is called a collective. A collective consists of at
least one server with the collectiveController-1.0 feature enabled that is called a collective controller.
Optionally, a collective can have many servers with the collectiveMember-1.0 feature enabled that are
called collective members and a collective can be configured to have many collective controllers.

Note: Distributed operating systems
IBM i The collectiveController-1.0 feature and its capabilities are

available only in multiple-server products such as WebSphere Application Server Liberty Network
Deployment and WebSphere Application Server Liberty for z/OS. The feature is not available in
single-server products such as WebSphere Application Server Liberty or WebSphere Application Server
Liberty Core. If you have a multiple-server product installation, you can use its collectiveController-
1.0 feature to work with collective members from single-server products.

The collective controller provides for a centralized administrative control point to perform operations
such as MBean routing, file transfer, and cluster management. A core role of collective controllers is to
receive information, such as MBean attributes and operational state, from the members within the
collective so that the data can be retrieved readily without having to invoke an operation on each
individual member.

908 WebSphere Application Server Liberty Core 8.5.5

A set of collective controllers is called a replica set. There is only one replica set per collective, and all
controllers must be part of the replica set. When there is more than one collective controller, each
collective controller replicates its data to the other collective controllers in the replica set to allow for high
availability and data protection. The replica set is logically present even when only one controller is in
use. When changing your configuration to multiple replicas in a set, include at least three replicas in the
set. The controllers in the replica set communicate with each other using a collaboration scheme to ensure
that data is replicated across the set of controllers no matter which controller in the set receives an
operation to store data. Each controller has a dedicated port for use by the replication protocol.
Communication between the controllers in the replica set is always authenticated and protected with SSL.

A collective member can be configured with multiple collective controller endpoints. A collective member
only communicates with one collective controller at a time; however, a configuration with more than one
collective controller endpoint provides failover and workload balancing. Member-to-controller
communication is always in the form of MBean operations that are performed over the IBM JMX Rest
Connector. Communication between controllers and members is always authenticated and protected with
SSL.

See “Setting up the server-management environment for Liberty by using collectives” on page 907 for
more information.

Administrative domain security configuration:

The administrative domain security configuration is made up of two parts:
v User domain

This domain relies on Java role-based security that defines the Administrator role. This can be mapped
to users within the configured user registry.

v Server domain
This domain relies on SSL certificate-based authentication.

For more on collective security, see “Collective security” on page 911.

Replica set

Replication port

HTTPS port

controller1

Replication port

HTTPS port

controller2

Replication port

HTTPS port

controller3

Repository data replication

member3 member4 member5member1 member2

Collective

Figure 15. Liberty collective architecture

Chapter 4. Setting up Liberty 909

Configured and standby replicas

Replicas that have been added to a configured replica set are running (active replicas) or stopped (inactive
replicas). A replica that is started and that has never been added to a configured replica set, or was
removed from a configured replica set, is called a standby replica.

Summary of collective architecture terms

collective
The set of Liberty servers in a single management domain.

collective controller
A server that has the collectiveController-1.0 feature enabled.

collective member
A server that has the collectiveMember-1.0 feature enabled.

replica set
A set of collective controllers. For optimal functionality and high availability, a replica set must
have at least three controllers.

replica port
A dedicated port on a controller that is used by the replication protocol.

configured replica set
The union of the active replicas and inactive replicas.

active replicas
The started replicas that have been added to the configured replica set.

inactive replicas
The stopped replicas that have been added to the configured replica set.

standby replica
The started replicas that have not been added to the configured replica set or that were removed
from the configured replica set.

Figure 16. Configured and standby replicas in a collective controller

910 WebSphere Application Server Liberty Core 8.5.5

Collective security
You can use the principles of collective security in Liberty to address data in motion and data at rest.

The two principal areas of collective security are:
v Administrative domain security configuration

Addresses data in motion, authentication and authorization
v Collective repository data security

Addresses data at rest, authentication and authorization

Administrative domain security configuration

The administrative domain security configuration for collectives is comprised of two parts:
v User domain

This domain relies on Java role-based security that defines the Administrator role. This can be
mapped to users within the configured user registry.

v Server domain
This domain relies on SSL certificate-based authentication.

In order for users to access the collective controller's MBeans, they must be in the Administrator
role. All administrative actions through the collective require that the user be granted the
Administrator role. See “Configuring secure JMX connection to Liberty” on page 1022 for
complete details.

Server-to-server communication falls within the server domain and no user identities or
passwords are used to communicate between members of a collective. Each member of the
collective has a unique identity within the collective that is comprised of its host name, user
directory, and server name. Each member within the collective defines its server domain
configuration, which consists of the serverIdentity.jks and collectiveTrust.jks files. These
files contain the SSL certificates that are necessary to establish secure communications within the
collective. The HTTPS key configuration must have specific trust settings, which are established
by default.

The server domain SSL configuration can be customized by adding additional trusted certificate
entries to the collectiveTrust.jks keystore. All trust is copied when a controller is replicated;
therefore, SSL customization should be applied to the initial controller. Adding trust to the
collectiveTrust.jks keystore is only necessary if the default HTTPS certificates are not used. If
the HTTPS SSL configuration is modified, the following certificate rules apply:
v HTTPS trust must be established by all controllers and members within the collective. If the

HTTPS SSL certificates are modified, the following root signers from the collective controller
must be added to the HTTPS SSL truststore:
– The controllerRoot signer from the rootKeys.jks keystore must be added to all collective

members HTTPS SSL truststore.
– The controllerRoot signer and the memberRoot signer from the rootKeys.jks keystore must

be added to all collective controllers' HTTPS SSL truststore.
v Each member can make an outbound connection to a collective controller. The collective

controller's collectiveTrust.jks keystore must contain a certificate chain that trusts the
HTTPS SSL certificate for each member. It is highly recommended that all HTTPS certificates
be signed by a root signer, which then can be added to the collectiveTrust.jks keystore.
Using individual SSL certificates that do not have a common root signer is sufficient to
establish trust but will not scale.

v Each controller can make an outbound connection to a collective member. The collective
member's collectiveTrust.jks keystore must contain a certificate chain that trusts the HTTPS
SSL certificate for each controller. It is highly recommended that all HTTPS certificates be

Chapter 4. Setting up Liberty 911

signed by a root signer, which then can be added to the collectiveTrust.jks keystore. Using
individual SSL certificates that do not have a common root signer is sufficient to establish trust
but will not scale.

Server-to-server communication requires that SSL authentication be supported. If the HTTPS SSL
configuration is customized, the SSL configuration must specify
clientAuthenticationSupported="true". For example:
<!-- clientAuthenticationSupported set to enable bidirectional trust -->

<ssl id="defaultSSLConfig"
keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore"
clientAuthenticationSupported="true" />

Setting clientAuthentication="true" on the collective controller is inadvisable and prevents
some common and expected behaviors. For example, this setting prevents authentication with
user names and passwords in Admin Center and collective command line utilities.

Setting clientAuthentication="true" on a collective member might be desirable to prevent user
name and password logins. This setting does not break collective operations as all operations
originating from the controller are authenticated using the certificate.

Members can be prevented from publishing information to the collective controller by using the
CollectiveRegistration MBean. The disavow and avow methods prevent authentication and
enable authentication.

Collective repository data security

The collective repository data security policy covers the policy for data at rest - specifically, the
policy of accessing the contents of the collective repository.

The current security policy for collective data is as follows:
v The system reserves three node names: sys.host.auth.info, sys.jmx.auth.info, and

sys.nologin. These nodes are under a host or server's repository namespace. User-created
nodes should avoid using the sys. prefix.

v The sys.host.auth.info and sys.jmx.auth.info nodes are not accessible through the MBean to
prevent disclosure of system credentials. Accessing the data stored at these nodes will result in
a null response.

v A collective member is restricted to modifying only its own information in the repository.
Authenticated administrative users have unrestricted access to information in the repository
except as previously noted. Authenticated administrative users are all users granted the
Administrative role.

Because the collective repository ultimately resides on the disk, the file system permission
settings must be secure for the environment. It is recommended that the collective controller's
configuration be readable and writable only by the user, readable only by the group, and not
accessible at all by the world - in other words, chmod 0640. Follow any security guidelines that
your organization might have established.

Configuring a Liberty collective
You can organize Liberty servers into collectives to support clustering, administration, and other
operations that act on multiple Liberty servers. By using collectives, you can efficiently and accurately
deliver application services to your organization.

Distributed operating systems
IBM i

Before you begin

The collectiveController-1.0 feature and its capabilities are available only in WebSphere Application
Server Liberty Network Deployment and WebSphere Application Server Liberty for z/OS. The feature is
not available in WebSphere Application Server Liberty, WebSphere Application Server Liberty - Express,

912 WebSphere Application Server Liberty Core 8.5.5

or WebSphere Application Server Liberty Core. If you have a WebSphere Application Server Liberty
Network Deployment installation, you can use its collectiveController-1.0 feature to work with
collective members from WebSphere Application Server Liberty, WebSphere Application Server Liberty -
Express, or WebSphere Application Server Liberty Core installations.

About this task

A Liberty collective is a set of Liberty servers that are configured as part of the same administrative and
operational domain.

Configuration and state data about a Liberty collective is housed in an active operational repository.

Membership in a Liberty collective is optional. Liberty servers join a collective by registering with a
collective controller to become members. Members share information about themselves through the
operational repository of the controller.

The following rules apply:
v A Liberty server can be a member of only one collective.
v Different Liberty servers on the same host can be in different collectives.
v Liberty servers on the same host that are members of a collective can coexist with Liberty servers that

are not members of a collective.

Watch: Introduction to creating a collective demonstrates the procedure. This video, and other

information about collectives, is available on the WASdev website. [Transcript]

Procedure
1. Create and configure your controller.

a. Create a server to act as the collective controller.
wlp/bin/server create myController

b. Create the collective controller configuration.
The collective controller configuration consists primarily of the administrative domain security
configuration that is used for secure communication between controllers and members.
wlp/bin/collective create myController --keystorePassword=controllerKSPassword

By default, this collective command writes all output to a console screen. In the
next step, you copy the configuration output into the server.xml. To write the configuration to a
file instead of to a console screen, specify a --createConfigFile=outputFilePath parameter, for
example:
wlp/bin/collective create myController --keystorePassword=controllerKSPassword --createConfigFile=c:/wlp/usr/servers/myController/collective-create-include.xml

After you run the create command, the include statement to use is displayed. To include the
outputted file in the collective configuration, add the include statement to the server.xml file, for
example:
<include location="c:\wlp\usr\servers\myController\collective-create-include.xml" />

c. Update the server.xml file of the collective controller.
v Copy and paste output.

If the command wrote output to a console screen, proceed with the following steps:
1) Copy output from the collective command and paste it into the server.xml file.
2) Specify administrative user ID and password values for the collective. For example, change:

<quickStartSecurity userName="" userPassword="" />

to:
<quickStartSecurity userName="adminUser" userPassword="adminPassword" />

Chapter 4. Setting up Liberty 913

|
|
|
|
|

|
|
|
|

https://www.youtube.com/watch?v=zsMIe1gvkjc
https://developer.ibm.com/wasdev/docs/video-introduction-to-creating-a-collective/
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/video_transcript_adm_collectives.html

The default path for the collective controller server.xml file is ${wlp.install.dir}/usr/
servers/myController/server.xml or, if the $WLP_USER_DIR variable is set in a server.env file or
command window, $WLP_USER_DIR/servers/myController/server.xml. After editing, the file will
resemble the following example:
<server description="controller server">

<!-- Enable features -->

<featureManager>
<feature>jsp-2.2</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint"
host="*"
httpPort="9080"
httpsPort="9443" />

<featureManager>
<feature>collectiveController-1.0</feature>

</featureManager>

<!-- Define the host name for use by the collective.
If the host name needs to be changed, the server should be
removed from the collective and re-joined or re-replicated. -->

<variable name="defaultHostName" value="controllerHostname" />

<!-- TODO: Set the security configuration for Administrative access -->

<quickStartSecurity userName="adminUser" userPassword="adminPassword" />

<!-- clientAuthenticationSupported set to enable bidirectional trust -->

<ssl id="defaultSSLConfig"
keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore"
clientAuthenticationSupported="true" />

<!-- inbound (HTTPS) keystore -->
<keyStore id="defaultKeyStore" password="yourPassword"

location="${server.config.dir}/resources/security/key.jks" />

<!-- inbound (HTTPS) truststore -->
<keyStore id="defaultTrustStore" password="yourPassword"

location="${server.config.dir}/resources/security/trust.jks" />

<!-- server identity keystore -->
<keyStore id="serverIdentity" password="yourPassword"

location="${server.config.dir}/resources/collective/serverIdentity.jks" />

<!-- collective trust keystore -->
<keyStore id="collectiveTrust" password="yourPassword"

location="${server.config.dir}/resources/collective/collectiveTrust.jks" />

<!-- collective root signers keystore -->
<keyStore id="collectiveRootKeys" password="yourPassword"

location="${server.config.dir}/resources/collective/rootKeys.jks" />
</server>

v Add an include statement.
If you wrote the output to a file by using the --createConfigFile=outputFilePath parameter,
add an include statement to $WLP_USER_DIR/servers/myController/server.xml to include the
outputted file in the collective configuration. For example:
<server description="controller server">

<!-- Enable features -->

<featureManager>
<feature>jsp-2.2</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint"
host="*"
httpPort="9080"

914 WebSphere Application Server Liberty Core 8.5.5

httpsPort="9443" />

<include location="c:\wlp\usr\servers\myController\collective-create-include.xml" />

</server>

Ensure the outputted file sets administrative user ID and password values for the collective, for
example:
<quickStartSecurity userName="adminUser" userPassword="adminPassword" />

d. Start the collective controller server.
wlp/bin/server start myController

e. Verify that the collective controller server started correctly and is ready to receive members.
1) Open an editor on the collective controller messages log, $WLP_USER_DIR/servers/

myController/logs/messages.log.
2) Look for the following message:

CWWKX9003I: CollectiveRegistration MBean is available.

If you want to enable a collective controller and its members to use the security TLSv1.2 protocol
for the Secure Sockets Layer (SSL) context, see “Setting up Liberty to run in SP800-131a” on page
1165. The server.xml files of the controller and members need ssl id elements and each host
computer needs a server.env file with the JVM_ARGS=-Dhttps.protocols=TLSv1.2 statement in its
${wlp.install.dir}/etc directory.

2. Create and configure a member to join the collective.
The controller and members can be on separate hosts. In this example, the controller and member are
on the same host.
a. Create a member server.

wlp/bin/server create myMember

b. Join the member.
Run the collective join command to join the server to the collective as a member.
The join command requires a network connection to the collective controller and an
administrative user ID and password for performing MBean operations on the controller. Look at
the server.xml file of the collective controller to find the values for the --host, --port, --user,
and --password parameters. For --keystorePassword, set a value to use for the member keystore
password, such as memberKSPassword. You can specify different --keystorePassword values for each
server that is joined to the collective.
wlp/bin/collective join myMember --host=controllerHostname --port=9443 --user=adminUser --password=adminPassword --keystorePassword=memberKSPassword

The optional parameter --hostname specifies the host name to use for the system. Set --hostname
only if the system has multiple host names or does not have its host name configured. If set, the
value must match the defaultHostName variable that is defined in the server.xml file.

To write the output of this collective command to a file, instead of to a console
screen, specify an optional --createConfigFile=outputFilePath parameter. Then, include the
outputted file in the collective configuration by adding an include statement to the member
server.xml file:

<include location=outputFilePath />

8.5.5.4 By default, the join operation leaves remote procedure call (RPC) credentials undefined.
You must specify values for rpcUser, rpcUserPassword, and the operating system login user and

myController

Figure 17. Collective of one

Chapter 4. Setting up Liberty 915

|
|
|
|
|

password for the host on which the member server resides. If the member host is registered with
the collective controller and the member host is not enabled for SSH, specify an optional
--useHostCredentials parameter to enable the member to inherit RPC credentials from its host
registration on the controller. Typically, Linux hosts are enabled for SSH and Windows hosts are
not enabled for SSH; thus, the --useHostCredentials parameter is useful for Windows member
hosts. Specifying --useHostCredentials adds <hostAuthInfo useHostCredentials="true" /> to the
member server.xml file. You then can run collective member server commands such as start or
stop without specifying RPC credentials because the member inherits credentials from its host. See
“Overriding Liberty server host information” on page 919 for information about hostAuthInfo, the
--useHostCredentials parameter, and connecting the collective controller to the server.
For information about these required parameters and about optional parameters, run collective
help join at a command line.

c. If prompted to accept the certificate chain, enter y (yes).
d. Update the member server.xml file.
v Copy and paste output.

If the command wrote output to a console screen, proceed with the following steps:
1) Copy output from the collective command and paste it into the member server.xml file.
2) Modify the ports so that the server can open its HTTP ports. Ensure the member server.xml

sets unique HTTP port numbers on its host. For example, if the member is on the same host
as the collective controller, change the HTTP port numbers:
<httpEndpoint id="defaultHttpEndpoint" httpPort="9081" httpsPort="9444" />

Optionally, to access the member server from a remote client, also set host="*" in the
httpEndpoint element.

In $WLP_USER_DIR/servers/myMember/server.xml, for example:
<server description="member server">

<!-- Enable features -->

<featureManager>
<feature>jsp-2.2</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint"
host="*"
httpPort="9081"
httpsPort="9444" />

<featureManager>
<feature>collectiveMember-1.0</feature>

</featureManager>

<!-- Define the host name for use by the collective.
If the host name needs to be changed, the server should be
removed from the collective and re-joined or re-replicated. -->

<variable name="defaultHostName" value="memberHostname" />

8.5.5.4 <!-- Remote host authentication configuration --> <hostAuthInfo
rpcUser="admin_user_id" rpcUserPassword="admin_user_password" /> <!-- Connection to the
collective controller --> <collectiveMember controllerHost="controllerHostname"
controllerPort="9443" /> <!-- clientAuthenticationSupported set to enable bidirectional trust -->
<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore" trustStoreRef="defaultTrustStore"
clientAuthenticationSupported="true" /> <!-- inbound (HTTPS) keystore --> <keyStore
id="defaultKeyStore" password="yourPassword" location="${server.config.dir}/resources/
security/key.jks" /> <!-- inbound (HTTPS) truststore --> <keyStore id="defaultTrustStore"
password="yourPassword" location="${server.config.dir}/resources/security/trust.jks" /> <!--
server identity keystore --> <keyStore id="serverIdentity" password="yourPassword"
location="${server.config.dir}/resources/collective/serverIdentity.jks" /> <!-- collective truststore

916 WebSphere Application Server Liberty Core 8.5.5

--> <keyStore id="collectiveTrust" password="yourPassword" location="${server.config.dir}/
resources/collective/collectiveTrust.jks" /> </server>

v Add an include statement.
If you wrote the output to a file by using the --createConfigFile=outputFilePath parameter,
add an include statement to $WLP_USER_DIR/servers/myMember/server.xml to include the
outputted file, for example:
<server description="member server">

<!-- Enable features -->

<featureManager>
<feature>jsp-2.2</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint"
host="*"
httpPort="9081"
httpsPort="9444" />

<include location="c:\wlp\usr\servers\myMember\collective-join-include.xml" />

</server>

e. 8.5.5.4 If you did not specify --useHostCredentials in the join command and the member host
is not enabled for SSH, set RPC credentials for hostAuthInfo in the member server.xml file or the
outputted file. You can set RPC credentials for the member server in either of two ways:
v Set hostAuthInfo RPC user and password values. Set rpcUser to an operating system login user

ID for the host on which the member server resides, and set rpcUserPassword to the operating
system login password for the user ID. For example, if you log into the member computer with
user test1 and password test1pwd, then change the hostAuthInfo element to the following:
<hostAuthInfo rpcUser="test1" rpcUserPassword="test1pwd" />

v If the member host is registered with the collective controller, set hostAuthInfo
useHostCredentials to true for the member server to inherit RPC credentials from its host.
<hostAuthInfo useHostCredentials="true" />

See “Overriding Liberty server host information” on page 919 for information about hostAuthInfo
settings and for an example that shows how to register a member host and run the join command
with --useHostCredentials.

f. Start the member server.
wlp/bin/server start myMember

g. Verify that the member server started correctly and is publishing information to the controller.
1) Open an editor on the member messages log, $WLP_USER_DIR/servers/myMember/logs/

messages.log.
2) Look for the following messages in any order:

CWWKX8112I: The server’s host information was successfully published to the collective repository.
CWWKX8114I: The server’s paths were successfully published to the collective repository.
CWWKX8116I: The server STARTED state was successfully published to the collective repository.

myController

myMember

Figure 18. Simple collective

Chapter 4. Setting up Liberty 917

Configuring a Liberty collective using the developer tools

Using the Liberty Utilities menu in the developer tools, you can create a collective controller or join a
collective.

Before you begin

Using the developer tools simplifies the process of configuring a Liberty collective by providing
convenient utilities for creating collective controllers or joining collectives. For more information about
Liberty collectives, see “Configuring a Liberty collective” on page 912.

Procedure
1. Creating a collective controller:

Note: Creating a collective controller can be done only with the following editions:
v WebSphere Application Server Liberty Network Deployment
v WebSphere Application Server Liberty for z/OS
a. In the Servers view, right-click your Liberty server, and select Utilities > Create Collective

Controller.
b. In the Keystore password field, type a password for your collective.
c. Click Finish.

Results:
An information dialog appears after the collective configuration is complete. This dialog informs you
that the server.xml file was already updated to include the generated configuration file. If there are
instructions to add the configuration lines to the server.xml in the console output, they can be
ignored. However, Administrative Security and other settings might still need to be configured within
the included configuration file before any collective members can join.

2. Joining a collective controller:

Note: You must have a collective controller available before a server can be added to a collective.
Joining a collective can be done with the following editions:
v WebSphere Application Server Liberty
v WebSphere Application Server Liberty - Express
v WebSphere Application Server Liberty Core
a. In the Servers view, right-click your Liberty server, and select Utilities > Join Collective.
b. On the Join Collective page, specify the information of the collective controller you would like to

join.
c. In the Host field, type in the host name for the collective controller.
d. In the Port field, type in the port number for the collective controller.
e. In the User field, type in the user name for the collective controller.
f. In the Password field, type in the password for the collective controller.
g. In the Keystore password field, type the keystore password for the collective controller if

encryption was used.
h. Click Finish.

Results:

918 WebSphere Application Server Liberty Core 8.5.5

An information dialog appears after the collective configuration is complete. This dialog informs you
that the server.xml file was already updated to include the generated configuration file. If there are
instructions to add the configuration lines to the server.xml in the console output, they can be
ignored.

Overriding Liberty server host information
The collectiveMember-1.0 feature enables a server to be managed by the collective controller. Most
server host information can be automatically detected. In certain scenarios, however, you must provide
additional host information so that the collective controller can establish a connection to the server.

Note: Distributed operating systems
IBM i The collectiveController-1.0 feature and its capabilities are

available only in WebSphere Application Server Liberty Network Deployment and WebSphere
Application Server Liberty for z/OS. The feature is not available in WebSphere Application Server
Liberty, WebSphere Application Server Liberty - Express, or WebSphere Application Server Liberty Core.
If you have a WebSphere Application Server Liberty Network Deployment installation, you can use its
collectiveController-1.0 feature to work with collective members from WebSphere Application Server
Liberty, WebSphere Application Server Liberty - Express, or WebSphere Application Server Liberty Core
installations.

To enable the host information override, add the following element to the server.xml file:
<hostAuthInfo rpcPort="ssh_port"

rpcUser="user_ID"
rpcUserPassword="password"
rpcUserHome="user_home"
rpcHost="host_name"
sudoUser="sudo_user"
sudoPassword="sudo_user_password"
sshPublicKeyPath="public_key_path"
sshPrivateKeyPath="private_key_path"
sshPrivateKeyPassword="private_key_password"

8.5.5.4 useHostCredentials="true_or_false"/>

rpcPort
This parameter specifies the port for the RPC mechanism, which is SSH port 22 by default. If your
system uses a nonstandard port, set this value accordingly. If this value is not specified, the default
value is 22.

rpcUser
This parameter specifies the user ID that the collective controller will use to connect to the server. If
the host does not support SSH or using SSH keys is not desired, you can use this parameter to
specify an operating system login user. For example, if you log in to the host with the myID user, then
you specify rpcUser="myID". If this value is not specified, the default value is
System.getProperty("user.name").

rpcUserPassword
This parameter specifies the password for the specified user ID. For example, if you log in to the host
with the myID user and the myPwd password, then you specify rpcUser="myID" and
rpcUserPassword="myPwd". If this value is not specified, the server will either generate an SSH key
pair or use the SSH key pair for the connection that is specified using the privateKeyPath and
publicKeyPath parameters. If SSH is not installed on the server (such as on a Windows or OS/400®

operating system), the password is required.

rpcUserHome
This parameter specifies the home directory of the user. If this value is not specified, the default
value is System.getProperty("user.home"). If rpcUser is specified, you should specify rpcUserHome.

Chapter 4. Setting up Liberty 919

rpcHost
This parameter specifies the host on which the RPC mechanism is configured to listen. If this value is
not specified, the default value is the value of the defaultHostName variable. If your system uses a
host other than the defaultHostName, set this value accordingly.

sudoUser
If this value is specified, it allows the collective controller to run commands as another, or "sudo",
user instead of as the user ID used for the connection. This parameter applies only to servers that
have an SSH server installed. This parameter has no default value.

sudoPassword
This parameter specifies the password for the sudo user specified by the sudoUser parameter. This
parameter applies only to servers that have an SSH server installed. This parameter has no default
value.

sshPublicKeyPath
This parameter specifies the path and file name of a user-specified public key file. If this value is not
specified, the default is ${server.output.dir}/resources/security/ssh/id_rsa.pub. If the specified
file (or default file) does not exist, a new public key file will be generated.

sshPrivateKeyPath
This parameter specifies the path and file name of a user-specified private key file. If this value is not
specified, the default is ${server.output.dir}/resources/security/ssh/id_rsa. If the specified file
(or default file) does not exist, a new private key file will be generated.

sshPrivateKeyPassword
This parameter specifies the password for the private key. This parameter has no default value.

8.5.5.4 useHostCredentials
This parameter specifies whether collective member server commands inherit RPC credentials from
the host. The default is false, requiring the user to specify RPC credentials for the controller to
remotely start or stop the member. When set to true, collective member server commands inherit
RPC credentials from the host registration and ignore all other RPC credentials in the hostAuthInfo
configuration element.

Examples

Scenario 1: Server is on Windows operating system, no SSH is installed
<hostAuthInfo rpcUserPassword="myPassword"/>

Scenario 2: Server has SSH installed, SSH is running on port 2222
<hostAuthInfo rpcPort="2222"/>

Scenario 3: Need to run commands as another user
<hostAuthInfo sudoUser="anotherUser" sudoPassword="anotherPassword"/>

Scenario 4: Server is on a Windows operating system and ssh (e.g. Cygwin) is installed. With the
following server configuration, the controller connects the member server with ssh. In this case, the
requirement to disable Windows User Account Control (UAC) does not apply. The parameter <user's
home directory> is the user default home directory, for example: C:\cygwin\home\bob
<hostAuthInfo rpcUserHome="<user’s home directory>" />

8.5.5.4 Scenario 5: The collective controller and member are on separate hosts, and not on the same
host. To specify that the member inherit RPC credentials from the host, set useHostCredentials to true in
the server.xml file of the member. Complete the following steps to configure the member to inherit RPC
credentials from the host by specifying --useHostCredentials in the join command that joins a server as
a member to the collective.

920 WebSphere Application Server Liberty Core 8.5.5

1. Create, configure, and start a collective controller named myController as shown in step 1 of
“Configuring a Liberty collective” on page 912.

2. Register the host for the member with the collective. The member and the collective controller are on
different hosts.
In this scenario, the registerHost command uses the collective controller host hostA.ibm.com with
port number 9443, user admin, and password adminpwd. The command registers the member host
hostB.ibm.com with the collective, and sets rpcUser to an operating system login user ID for the
member host osUser1, and rpcUserPassword to the operating system login password for the user ID
for the member host osUser1Pwd. Run the registerHost command on the collective controller host.
wlp/bin/collective registerHost hostB.ibm.com --host=hostA.ibm.com --port=9443 --user=admin --password=adminpwd --rpcUser=osUser1 --rpcUserPassword=osUser1Pwd

Enter y (yes) when prompted to accept the certificate chain. After registration, the Host hostB.ibm.com
successfully registered. message displays. The collective controller host now has the operating
system user ID and password of the member host.

3. On the member host, create a server named myMember to use as a collective member.
wlp/bin/server create myMember

4. Add the myMember server to the collective controller, specifying to use host credentials. In the join
command, which is run on the member host, specify --useHostCredentials so that the member
inherits RPC credentials from the host registration.
wlp/bin/collective join myMember --host=hostA.ibm.com --port=9443 --user=admin --password=adminpwd --keystorePassword=memberKSPassword --useHostCredentials

5. Update the member server.xml file as shown in step 2 of “Configuring a Liberty collective” on page
912.
Because you specified --useHostCredentials in the join command, the configuration generated for
the member server.xml file sets useHostCredentials to true:
<!-- Remote host authentication configuration -->
<hostAuthInfo useHostCredentials="true" />

With the --useHostCredentials option, you do not need to specify the operating system user ID and
password in the member server.xml file because the member inherits credentials from the host. Later, if
the operating system user ID or password of the member server changes, run the updateHost command
to change the user ID or password. For more information about the registerHost and updateHost
commands, see “Registering host computers with a Liberty collective.”

Registering host computers with a Liberty collective
You can register a host computer with a Liberty collective controller, update host information, or
unregister a host. Registration enables the collective controller to access applications, command files, and
other resources on the host. Registered hosts are members of the collective.

Before you begin
1. Construct a Liberty collective. See “Configuring a Liberty collective” on page 912.

Distributed operating systems

IBM i

The collectiveController-1.0 feature and its capabilities are

available only in multiple-server products such as WebSphere Application Server Liberty Network
Deployment and WebSphere Application Server Liberty for z/OS. The feature is not available in
single-server products such as WebSphere Application Server Liberty, WebSphere Application Server
Liberty - Express, or WebSphere Application Server Liberty Core. If you have a multiple-server
product installation, you can use its collectiveController-1.0 feature to work with collective
members from single-server products.

2. To enable connections to servers on local and remote hosts, complete the steps for your host operating
system in “Setting up RXA for Liberty collective operations” on page 925. The topic provides
information about the Tivoli Remote Execution and Access (RXA) toolkit and enabling Secure Shell
(SSH) protocol. You can use RXA to remotely start and stop servers, including starting and stopping
servers on your local computer, and to transfer files to and from registered hosts.

Chapter 4. Setting up Liberty 921

Note: Windows In Windows, system environment variables are visible only inside the shell that RXA
connects to. Setting PATH in the command window is not sufficient. You must set PATH in the system
variable section of the environment variables, or use -hostJavaHome <PATH TO IBM JAVA> with the
updateHost option.

3. If you want to enable a collective controller and its members to use the security TLSv1.2 protocol for
the Secure Sockets Layer (SSL) context, see “Setting up Liberty to run in SP800-131a” on page 1165.
The server.xml files of the controller and members need ssl id elements and each host computer
needs a server.env file with the JVM_ARGS=-Dhttps.protocols=TLSv1.2 statement in its
${wlp.install.dir}/etc directory.

About this task

A host computer is not required to have any WebSphere Application Server products installed. There are
no software requirements for a host beyond its operating system. The host can be the same computer on
which the product is installed or a different computer.

To register a host with a collective controller, update host information, and unregister a host, use the
registerHost, updateHost, and unregisterHost commands. Specify the host computer name in one of the
following formats:
v Fully qualified domain name servers (DNS) host name string, such as xmachine.ibm.com
v Default short DNS host name string, such as xmachine
v Numeric IP address, such as 127.1.255.3

Note: When a Liberty server is joined to a collective, the associated host is automatically registered with
the collective controller if it is not already registered.

A host can be registered with the collective under different names. Ensure that the host name specified
for registerHost, updateHost, and unregisterHost is consistent with the host name used for the
registered collective members. The defaultHostName variable in the registered server member's
server.xml file controls the host name to which the server considers itself to belong.

Procedure
v Register a host with a collective controller.

To register the current host where both the collective controller host and the remote target host are the
same computer, run the registerHost command on the collective utility script with no explicit host
target. Specify the collective controller's host name, port, and administrative user name and password.
For example:
wlp/bin/collective registerHost --host=controllerHost --port=controllerHTTPSPort
--user=controllerAdmin --password=controllerAdminPassword

This example command generates a unique SSH key pair for authenticating to the SSH server of a
specified host computer. If you are registering a remote host for which an SSH key pair is already
generated, you can specify the path of the SSH private key file. The following registerHost command
assumes that the SSH private key is stored on the local controller computer at /home/user1/.ssh/
id_rsa. The other file in the SSH key pair is the /home/user1/.ssh/authorized_keys public key file on
the remote target host.
wlp/bin/collective registerHost remotehost.ibm.com --host=controllerHost
--port=controllerHTTPSPort --user=controllerAdmin --password=controllerAdminPassword
--sshPrivateKey=/home/user1/.ssh/id_rsa

If the remote target host does not support SSH or you do not want to use SSH keys, you can specify
an operating system login user for rpcUser and login password for rpcUserPassword. If you include
rpcUser with rpcUserPassword, do not include sshPrivateKey. The command to specify operating
system login user and password resembles:
wlp/bin/collective registerHost remotehost.ibm.com --host=controllerHost
--port=controllerHTTPSPort --user=controllerAdmin --password=controllerAdminPassword
--rpcUser=osUserForRemoteHost --rpcUserPassword=osUserPasswordForRemoteHost

922 WebSphere Application Server Liberty Core 8.5.5

|
|
|
|
|

To transfer files to and from a host, you must specify host read and write paths. Unless
the registerHost command specifies the paths, you cannot deploy a Liberty archive to the host. The
hostReadPath specifies the directories that the collective controller can read. The hostWritePath
specifies the directories to which the collective controller can write. Paths that are specified by
hostWritePath are also readable. For example, to upload an archive to /opt/wlp, you must specify
--hostWritePath=/opt. Specify a parameter multiple times for multiple paths.
wlp/bin/collective registerHost myHost.ibm.com --host=controllerHost
--port=controllerHTTPSPort --user=controllerAdmin --password=controllerAdminPassword
--rpcUser=osUser --rpcUserPassword=osUserPassword
--hostReadPath=/opt --hostWritePath=/dir1 --hostWritePath=/dir2

To use the Deploy tool of the WebSphere Liberty Administrative Center ("Admin Center"), you must
set hostWritePath to the path to which you want to deploy a server package. To transfer files to
multiple directories, include multiple instances of the hostWritePath parameter in the command. For
example:
wlp/bin/collective registerHost myHost.ibm.com --host=controllerHost
--port=controllerHTTPSPort --user=controllerAdmin
--password=controllerAdminPassword --rpcUser=osUser --rpcUserPassword=osUserPassword
--hostWritePath=c:\was\liberty\brokerageAppTest --hostWritePath=c:\wlp_backup

Optionally, specify the path to the Java home directory of the host with the -hostJavaHome parameter.
For example: -hostJavaHome=c:\java\jre

v Update registered host authentication information.
Run the updateHost command on the collective utility script to change the authentication information
of a registered host. For example, if the user password changes, the following command updates the
host password that is used by the collective:
wlp/bin/collective updateHost myHost.ibm.com --host=controllerHost
--port=controllerHTTPSPort --user=controllerAdmin --password=controllerAdminPassword
--rpcUser=osUser --rpcUserPassword=newOsUserPassword

v Update registered host read or write paths.
Run the updateHost command on the collective utility script to change the host read and write paths.
Paths in this command override the previously set paths for hostReadPath and hostWritePath, and do
not add to the existing paths.
wlp/bin/collective updateHost myHost.ibm.com --host=controllerHost
--port=controllerHTTPSPort --user=controllerAdmin --password=controllerAdminPassword
--rpcUser=osUser --rpcUserPassword=osUserPassword
--hostReadPath=/optNew --hostWritePath=/opt --hostWritePath=/home/osUser

v Unregister a host from a collective controller.
Run the unregisterHost command on the collective utility script; for example:
wlp/bin/collective unregisterHost myHost.ibm.com --host=controllerHost
--port=controllerHTTPSPort --user=controllerAdmin --password=controllerAdminPassword

Unregistering a host removes all the registered servers on that host and any other host-based
information from the collective controller.

What to do next

For information about all parameters of the registerHost, updateHost, and unregisterHost commands,
see the API documentation for the CollectiveRegistration MBean.

Setting the JAVA_HOME variable for Liberty collective members
All Liberty collective members must have a Java Runtime Environment (JRE) installed that meets the
minimum requirements of the Liberty server. After a JRE is installed on the host computer, you can set
the JAVA_HOME variable so that the Liberty operation can locate the JRE.

Chapter 4. Setting up Liberty 923

About this task

In order for the collective controller to perform remote operations on Windows members such as starting
or stopping a member server, the collective controller must run with an IBM JRE. Third-party JREs do not
contain the required security classes. You can get a JRE that supports Liberty products and SSL from
Installation Manager offerings or developerWorks:
v Using Installation Manager, select the Liberty product first and then select WebSphere SDK for Liberty.

Use Installation Manager to install the Liberty product and software development kit (SDK). The
WebSphere SDK for Liberty includes the needed support for Liberty products and SSL and offers a
Java client, JConsole.

v Go to http://www.ibm.com/developerworks/java/jdk/index.html on the developerWorks website and
download an IBM Java development kit (JDK) for your operating system. The developerWorks website
does not have a JRE for all operating systems. For example, you have to get the JDK from Eclipse for
Windows operating systems.

You can set the JAVA_HOME variable in operating system settings or at a command line. Setting set the
JAVA_HOME variable enables remote operations to locate the JRE.

Procedure

v Windows To set JAVA_HOME on a Windows system, perform the following actions.
1. On the Control Panel, do the following:

– Click System.
– Click Advanced system settings.

The System Properties window opens.
2. Click the Environment Variables button.
3. Click the New button in the system-variables section.
4. Add the JAVA_HOME variable name and specify a path to the jre directory; for example:

C:\wlp_855\IBM\WebSphere\Liberty\java\java_1.7.1_64\jre

Some collective controller commands require that the path to the Java installation jre\bin directory
be available in the System path, so also add a path to the jre\bin directory.

5. Save the changes. You might need to reboot the computer for the changes to take effect.
6. To verify the changes, at a command line enter set JAVA_HOME. The command displays the

JAVA_HOME settings; for example:
JAVA_HOME=C:\wlp_855\IBM\WebSphere\Liberty\java\java_1.7.1_64\jre

Note: Rather than change operating system settings, you can set JAVA_HOME at a command line by
entering set JAVA_HOME=path_to_jre. A limitation is that the JAVA_HOME setting only applies to
commands entered in the same command window.

v AIX HP-UX Linux Solaris If you are running bash shell, you can add the JAVA_HOME
environment variable to the .bashrc file in the user's home directory.

v One option for setting JAVA_HOME is to create a server.env file in the ${server.config.dir} where
server.xml is residing and add JAVA_HOME there.
For example:
JAVA_HOME=/java/jre

Linux Some collective controller commands require that the path to the Java installation jre/bin
directory be available in the .bashrc file, so set a path to jre/bin in the .bashrc file.

924 WebSphere Application Server Liberty Core 8.5.5

http://www.ibm.com/developerworks/java/jdk/index.html

Setting up RXA for Liberty collective operations
Liberty collective controllers use the Tivoli Remote Execution and Access (RXA) toolkit to perform
selected operations on collective members. Use RXA to remotely start and stop servers, including starting
and stopping servers on your local computer.

Procedure

v AIX HP-UX Linux Solaris Set up Linux, UNIX or z/OS machines

Install and enable SSH on your machine. For Linux and UNIX machines, ensure that the configuration
is set according to the following instructions. For z/OS machines, consult the following instructions for
guidance.
To enable SSH, configure OpenSSH 3.6.1, OpenSSH 4.7 (on AIX), or Oracle SSH 1.1 so that it supports
RXA connections. OpenSSH 3.7.1 or later contains security enhancements not available in earlier
releases and is recommended.

Avoid trouble: OpenSSH Version 4.7.0.5302 for IBM AIX Version 5.3 is not compatible with RXA
Version 2.3. If machines are running AIX Version 5.3 with OpenSSH Version 4.7.0.5302 installed, file
transfers might not complete. To avoid this problem, revert from OpenSSH Version 4.7.0.5302 to
Version 4.7.0.5301.

Using Secure Shell (SSH) protocol

RXA does not supply SSH code for UNIX operating systems. You must ensure that SSH is
installed and enabled on all machines that include collective members.

In all UNIX environments except Solaris, the Bourne shell (sh) is used. On Solaris machines,
the Korn shell (ksh) is used instead due to problems encountered with the Bourne shell (sh).

To use password-based authentication for SSH communications, edit the /etc/ssh/sshd_config
file on each machine that includes one or more collective members. Set the
PasswordAuthentication property to yes. For example:
PasswordAuthentication yes

The default value for the PasswordAuthentication property is no.

After you change this setting, stop and restart the SSH daemon by using the following
commands:
/etc/init.d/sshd stop
/etc/init.d/sshd start

Linux Some collective controller commands require that the path to the Java installation jre/bin
directory to be available in the .bashrc file, so set a path to jre/bin in the .bashrc file.

v IBM i Set up IBM i machines

Using SSH public/private key authentication to IBM i machines is not supported.

v Windows Set up Windows machines

1. Ensure that your collective controller is running with an IBM JDK.
RXA requires some security classes that are in the IBM JDK, and that are not available in the Oracle
or OpenJDK JVMs.

2. Ensure the system environment variables JAVA_HOME and PATH are set to the Java path (jre
directory) on the computer. Some collective controller commands require that the path to the Java
installation jre\bin directory is available in the System path, so also add a path to the jre\bin
directory.
In Windows, system environment variables are visible only inside the shell that RXA connects to.
Setting PATH in the command window is not sufficient. You must set PATH in the system variable
section of the environment variables, or use -hostJavaHome <PATH TO IBM JAVA> with the
updateHost option.

Chapter 4. Setting up Liberty 925

See “Setting the JAVA_HOME variable for Liberty collective members” on page 923.
3. Ensure that the server.xml file of each server to be managed specifies the account user name and

password.
Specify the user name and password in a hostAuthInfo statement in the server.xml file:
<hostAuthInfo rpcUser="Windows_user_ID" rpcUserPassword="Windows_user_password" />

4. Enable connections to member servers on Windows computers.
To enable connections to Windows members, you can use a third-party SSH service such as Cygwin
on your Windows member computer or change Windows operating system settings on a member
computer that does not have an SSH service installed.
– Use a third-party SSH service such as Cygwin on the Windows member computer.

If the member computer uses an SSH service, the controller connects the member server with
SSH. Specify a hostAuthInfo rpcUserHome parameter and the RPC user name and password in
the member server.xml file because the third-party SSH service might have a different home
directory than the one Windows uses:
<hostAuthInfo rpcUser="Windows_user_ID" rpcUserPassword="Windows_user_password" rpcUserHome="user_home_directory"/>

For user_home_directory, specify the user home for the SSH service; for example:
rpcUserHome="C:\cygwin\home\user1". The SSH public and private key pair is generated in the
.ssh directory under this user home directory.

– If the Windows member computer does not use a third-party SSH service such as Cygwin,
change the Windows operating system settings of the member computer to enable connections.
- Ensure that your user account belongs to the Administrators group.

Many RXA operations require access to resources that standard user accounts cannot access.
Thus, the configuration of a collective member must include the name and password of a
Windows user who belongs to the Administrators group.

- Ensure File and Printer Sharing for Microsoft Networks is enabled for your network stack.
a. Click Start > Control Panel > Network and Sharing Center > Change advanced sharing

settings.
b. Select Turn on file and printer sharing.
c. Save the changes.
Ensure that file sharing operations (on port 445) are not blocked on machines that include
collective controllers or collective members. For more information, see the documentation for
your operating system or your firewall software.

- Start the Remote Registry service.
The Remote Registry service must be running on computers that include collective members
for the collective controllers to remotely run commands and scripts.
a. Click Start > Administrative Tools > Services.
b. Within the list of services, locate the Remote Registry entry and verify that the status is

Started. If you intend to use RXA regularly, consider setting the Remote Registry Startup
type property to Automatic.

- Disable User Account Control.
a. Click Start > Control Panel > User Accounts > Change User Account Control settings.
b. Set the User Account Control level to Never notify.
c. Click OK.
d. Restart the computer for the changes to take effect.

For more information, see Liberty Collectives Remote Operation Configuration.

What to do next

If you modified the server.xml of a managed server, manually start the server so that it publishes the
new data to the controller.

After you enable RXA, test the host configuration and verify RXA connectivity:

926 WebSphere Application Server Liberty Core 8.5.5

https://developer.ibm.com/wasdev/docs/liberty-collectives-remote-operation-configuration/

Setting up a Liberty server to use Bluemix services
8.5.5.9

You can configure a Liberty server to use Bluemix services. Not all Bluemix services are available for
configuration.

bluemixUtility command
8.5.5.9

Use the IBM Bluemix command-line utility to configure your on-premises Liberty server to use certain
Bluemix cloud services.

Sources

Learn about Bluemix services, such as Watson and Cloudant® services, that you can use with the
command-line utility.
v To register for or log in to a Bluemix account, see Sign up for IBM Bluemix.
v To learn more about Watson, see Watson services.
v To learn more about Cloudant services, see Getting started with Cloudant NoSQL DB.

Syntax

The command syntax is as follows:
bluemixUtility action [options]

Use the following action commands:

login Log in to Bluemix. If you run the login command without any options, the tool prompts you for
more information, such as username and password. After a successful login, Bluemix credentials
are saved to a file so that you can run other commands without specifying username and
password again.

If you log in to Bluemix with the Cloud Foundry (cf) client, the bluemixUtility uses the
credentials saved by the cf client. For more information, see Cloud Foundry (cf) commands.

marketplace
List all the Bluemix services that can be configured by using the command-line utility.

createService
Create a service instance from the Bluemix catalog.

listServices
List all the available Bluemix service instances.

showService
Show information about a service instance.

import
Import a configuration for a service. The imported service configuration and its dependencies are
placed in the following directory:
${wlp.user.dir}/shared/config/services/serviceName

listImports
List all imported service configurations that can be bound to a Liberty server.

bind Bind a Bluemix service configuration to a Liberty server. The configuration for a service may
provide default values for certain options, such as the jndiName of a dataSource element. In some

Chapter 4. Setting up Liberty 927

https://console.ng.bluemix.net/registration/
http://www.ng.bluemix.net/docs/services/watson.html
http://www.ng.bluemix.net/docs/services/Cloudant/index.html
https://ng.bluemix.net/docs/cli/reference/cfcommands/index.html

cases, the default values do not match what the application expects. Use the --v option to
override a default value with the value that your application expects.

unbind
Unbind a service configuration from a Liberty server.

deleteService
Delete a service instance.

switch Switch to a different Bluemix organization or space.

info View Bluemix connection information.

help Use the help action on each command to view descriptions, usage, and options.

logout Log out of Bluemix. The logout command deletes the file that was created when you logged in
with Bluemix credentials.

Usage

View usage examples that you can run for each action.

Use the following command to run the login action:
bluemixUtility login [options]

Use the following command to run the marketplace action:
bluemixUtility marketplace [serviceType...]

Use the following command to run the createService action:
bluemixUtility createService [options] serviceType servicePlan serviceName

Use the following command to run the listServices action:
bluemixUtility listServices

Use the following command to run the showService action:
bluemixUtility showService [options] serviceName

Use the following command to run the import action:
bluemixUtility import [options] serviceName

Use the following command to run the listImports action:
bluemixUtility listImports [serverName]

Use the following command to run the bind action:
bluemixUtility bind [options] serverName serviceName

Use the following command to run the unbind action:
bluemixUtility unbind serverName serviceName

Use the following command to run the deleteService action:
bluemixUtility deleteService [options] serviceName

Use the following command to run the switch action:
bluemixUtility switch [options]

Use the following command to run the logout action:
bluemixUtility logout

928 WebSphere Application Server Liberty Core 8.5.5

Options

View the available options for each action.

The following options are available for the bluemixUtility login command:

--api=url
Bluemix API endpoint, for example, https://api.ng.bluemix.net. The API endpoint can also be
set as the Bluemix region name. For example, it can be set to us-south for the US South region,
eu-gb for the London, UK region, and au-syd for the Sydney, Australia region.

--user=username
User name of Bluemix account.

--password=password
Password of Bluemix account.

--org=organizationName
Organization name.

--space=spaceName
Space name.

The following options are available for the bluemixUtility marketplace command:

[serviceType...]
Show detailed information about a particular Bluemix service. Specify multiple service names by
separating them with a space.

The following options are available for the bluemixUtility createService command:

--credentialName=name
The name of the service credential. By default, credential-1 is used.

serviceType
The type of service to create.

servicePlan
The name of service plan.

serviceName
The name of service to create.

No options are available for the bluemixUtility listServices command.

The following options are available for the bluemixUtility showService command:

--showCredentials
Display service credentials.

serviceName
The name of a Bluemix service.

The following options are available for the bluemixUtility import command:

--acceptLicense
Automatically indicate acceptance of license terms and conditions.

--credentialName=name
The name of the service credential. By default, the first credential that is found is used.

Chapter 4. Setting up Liberty 929

--encodeAlgorithm=[xor|aes]
Specifies how to encode sensitive information in the imported service configuration. Supported
encodings values are xor and aes. The default encoding algorithm is xor.

--encodeKey=key
Specifies the key to be used when you are encoding with AES encryption. If this option is not
provided, a default key is used.

--p[parameter]=value
Specifies parameters that help in generating and importing a configuration for a service.

serviceName
The name of a Bluemix service.

The following options are available for the bluemixUtility listImports command:

[serverName]
List the services that are already bound to this particular server.

The following options are available for the bluemixUtility bind command:

--v[variable]=value
Override variables in the imported service configuration.

--acceptLicense
Automatically indicate acceptance of license terms and conditions.

serverName
Name of the server to bind to the service configuration.

serviceName
Name of the imported service configuration.

The following options are available for the bluemixUtility unbind command:

serverName
Name of the server to unbind the service configuration from.

serviceName
Name of the service configuration to unbind.

The following options are available for the bluemixUtility deleteService command:

--force Force deletion without confirmation.

serviceName
Name of the service to delete.

The following options are available for the bluemixUtility switch command:

--org=organizationName
Organization name.

--space=spaceName
Space name.

No options are available for the bluemixUtility info command.

No options are available for the bluemixUtility logout command.

930 WebSphere Application Server Liberty Core 8.5.5

Return codes

Table 74. Return codes and explanations

Return code Explanation

0 The command successfully completed the requested
operation.

20 One or more command-line arguments or options are not
valid.

21 An unknown runtime exception has occurred.

22 An IO error occurred, typically when trying to delete a
file from the file system.

24 User abort. Occurs when user fails to respond to a
prompt or cancels the operation.

26 An unknown exception has occurred.

27 Bluemix authentication error when attempting to log in,
or attempting to perform a task without being logged in.

28 A generic error when communicating with Bluemix.

29 A generic error when communicating with the
configuration service.

30 A generic service configuration error has occurred.

31 A generic feature installation error has occurred.

255 An unknown error has occurred.

Configuring Liberty for Bluemix Cloudant services
8.5.5.9

Use the IBM Bluemix utility command-line integration tool to configure your Liberty server to use the
Bluemix Cloudant service.

Before you begin

Before you configure your Liberty server to use Bluemix services, you must create an account. See Sign
up for IBM Bluemix to create your Bluemix account.

About this task

Configure your Liberty server to use the Cloudant service. For more information about Cloudant, see
Getting started with Cloudant NoSQL DB.

Procedure
1. Log in using the bluemixUtility login command. After your initial login, you do not have to

complete this step again.
2. Run the bluemixUtility marketplace command to list details about all the Bluemix services that can

be used with the command-line utility. See the following example:
Service: cloudantNoSQLDB
Description: Cloudant NoSQL DB is a fully managed data layer designed for modern web and mobile applications that leverages a flexible JSON schema.
Cloudant is built upon and compatible with Apache CouchDB and accessible through a secure HTTPS API, which scales as your application grows.
Cloudant is ISO27001 and SOC2 Type 1 certified, and all data is stored in triplicate across separate physical nodes in a cluster for HA/DR within a data center.
Documentation: https://console.ng.bluemix.net/docs/#services/Cloudant/index.html#Cloudant
Plans: Standard, Lite

3.

Chapter 4. Setting up Liberty 931

https://console.ng.bluemix.net/registration/
https://console.ng.bluemix.net/registration/
http://www.ng.bluemix.net/docs/services/Cloudant/index.html

Note: If you already created an instance, skip to step 4. You can also create an instance from the
Bluemix dashboard.
Run the bluemixUtility createService [options] serviceType servicePlan serviceName command
to create an instance of the Bluemix services that you want to use. See the following example and
description of a service listed:
bluemixUtility createService cloudantNoSQLDB Lite myCloudantService

4. Optional: Run the bluemixUtility listServices command to view the Name, Type, and Plan of all
the services instances that you created. See the following example:
myCloudantService cloudantNoSQLDB Lite

5. Run the bluemixUtility import myCloudantService --pversion=v2 command to import the
configuration.

Important: The --pversion=v2 option installs the cloudant-1.0 feature and downloads the official
Cloudant library for Java. For API information, see the official Cloudant Java library API
documentation. If you omit the --pversion=v2 option, the couchdb-1.0 feature is installed and Ektorp
libraries are used instead to communicate with the Cloudant instance.
a. Accept the license terms and conditions of the necessary libraries that are needed to access the

service.
b. After the configuration is successfully imported, complete any additional steps to use the imported

configuration in your application, such as adding a classloader reference to the library. For
example, you must add the following classloader reference to your application to use the
downloaded libraries.
<application id="myCloudantApp">

<classloader commonLibraryRef="cloudantNoSQLDB-library"/>
</application>

6. Optional: Run the bluemixUtility listImports command to view the service configurations that you
imported.
The following IBM Bluemix service configurations have been imported:
myCloudantService

7. Run the bluemixUtility bind [options] serverName serviceName to bind the configuration to a
Liberty server. Accept the license terms and conditions, if you are prompted. See the following
example and description of a service listed:
bluemixUtility bind defaultServer myCloudantService

Checking if features required for the myCloudantService are installed.
All required features are installed.
The myCloudantService is now bound to defaultServer server.

If you imported the service with the --pversion=v2 option to use the official Cloudant Java libraries,
the default JNDI name for the Cloudant database is cloudant/serviceName. If you did not specify that
option, the default JNDI name is couchdb/serviceName. If your application references the database by
using a different JNDI name, use --vjndiName option to specify the JNDI name.
$ bluemixUtility bind defaultServer myCloudantService --vjndiName=couchdb/connector

Results

You can now use Cloudant services with your Liberty server.

Configuring Liberty for Bluemix Watson services
8.5.5.9

Use the IBM Bluemix utility command-line integration tool to configure your on-premise Liberty server to
use Bluemix Watson services.

932 WebSphere Application Server Liberty Core 8.5.5

http://www.javadoc.io/doc/com.cloudant/cloudant-client/
http://www.javadoc.io/doc/com.cloudant/cloudant-client/

Before you begin

Before you configure your Liberty server to any Bluemix service, you must create an account. See

Sign up for IBM Bluemix to create your Bluemix account.

About this task

Configure your Liberty server to use Watson services. Your application must use the Watson Developer
Cloud Java SDK to access the Watson service. For more information, see Watson Developer Cloud Java
SDK services. For more information about Watson, see Watson services.

Procedure
1. Log in using the bluemixUtility login command. After you initially log in, you do not have to

complete this step again.
2. Run the bluemixUtility marketplace command to list details about all the Bluemix services that can

be used with the command-line utility. See the following example of the Concept Insights description:
Service: personality_insights
Description: The Watson Personality Insights derives insights from transactional and social media data to identify psychological traits
Documentation: https://www.ibm.com/watson/developercloud/personality-insights.html
Plans: tiered, premium

3.

Note: If you already created an instance, skip to step 4. You can also create an instance from the
Bluemix dashboard.
Run the bluemixUtility createService [options] serviceType servicePlan serviceName command
to create an instance of the service that you want to use. You can choose a unique serviceName for
your service instance. The following example creates an instance of the Personality Insights service:
bluemixUtility createService personality_insights premium myWatsonService

4. Optional: Run the bluemixUtility listServices command to view the Name, Type, and Plan of all
the service instances that you created. See the following example:
myWatsonService personality_insights premium

5. Run the bluemixUtility import myWatsonService command to import the configuration.
a. Accept the license terms and conditions of the necessary libraries that are needed to access the

service.
b. After the configuration is successfully imported, complete any additional steps to use the imported

configuration in your application, such as adding a classloader reference to the library. The
classloader element must be added to each application that is using the service. The classloader
reference ID is different from each unique Watson service. For example, you must add the
following classloader reference to your application to use the Watson Java SDK libraries.
<application id="myWatsonApp">

<classloader commonLibraryRef="personality_insights-library"/>
</application>

6. Optional: Run the bluemixUtility listImports command to view the service configurations that you
imported.
The following IBM Bluemix service configurations have been imported:
myWatsonService

7. Run the bluemixUtility bind [options] serverName serviceName to bind the configuration to a
Liberty server. See the following example and description of a service listed:
bluemixUtility bind defaultServer myWatsonService

Checking if features required for the myWatsonService are installed.
All required features are installed.
The myWatsonService is now bound to defaultServer server.

Chapter 4. Setting up Liberty 933

https://console.ng.bluemix.net/registration/
https://github.com/watson-developer-cloud/java-sdk
https://github.com/watson-developer-cloud/java-sdk
http://www.ng.bluemix.net/docs/services/watson.html

Results

You can now use Watson services with your Liberty server.

Platform-as-a-service environment considerations for setting up
Liberty
Platform-as-a-service (PaaS) environments, such as IBM Bluemix, Pivotal Cloud Foundry, and OpenShift
Enterprise, provide management and monitoring of application instances, but they also have some
restrictions. Because of the inherent characteristics of PaaS environments, some Liberty features are
redundant or behave differently, and they are therefore not supported.

Liberty server management restrictions

Features related to Liberty collectives do not apply to a PaaS environment because all Liberty server JVM
instances are started, stopped, and managed by the PaaS infrastructure. The Liberty Admin Center
feature is not designed to be used in a PaaS environment, where an application can be scaled to use
multiple JVM instances without a collective controller. In this topology, a request to Admin Center could
be directed to any of the running instances and have visibility only to the server on which the request
runs.

The following administrative features are not supported in a PaaS environment:
v adminCenter-1.0

v clusterMember-1.0

v collectiveController-1.0

v collectiveMember-1.0

v dynamicRouting-1.0

v healthAnalyzer-1.0

v healthManager-1.0

v scalingController-1.0

v scalingMember-1.0

File system restrictions

Most PaaS environments do not provide a persistent local file system to their applications. For Liberty,
this impacts both the applications and the components within the server that write data locally and
expect it to persist across a server JVM restart.

The Liberty transaction manager writes log files to the local file system when multiple resource managers
are involved in the transaction. If the logs are not available after a JVM failure and restart, then
transactions cannot be automatically completed and must be manually resolved to unlock data and to
make it consistent across resource managers. To avoid this scenario, the Liberty buildpack or cartridge
prevents transaction log records from being written and raises an exception to the application to prevent
the second resource from enlisting. As a result, although you can still use transactions with a single XA
resource, a second transactional resource cannot be enlisted in a transaction. Additionally, Web Services
Atomic Transactions cannot be used because they always write log records.

If your PaaS environment provides persistent storage, then you can modify the Liberty buildpack or
cartridge to enable two-phase transactions by removing the following Java property from the JVM
configuration:
-Dcom.ibm.tx.jta.disable2PC=true

The following features depend on persistent local storage:

934 WebSphere Application Server Liberty Core 8.5.5

v wsAtomicTransaction-1.2

v Other features that use transactions, depending on the application behavior

Network restrictions

In general, PaaS routers do not support Internet Inter-ORB Protocol (IIOP) traffic, so remote requests to
Enterprise JavaBeans (EJB) components cannot be used. The following features depend on IIOP transport:
v appClientSupport-1.0

v appSecurityClient-1.0

v ejbRemote-3.2

In some situations, such as SSL termination at the router, Liberty relies on HTTP headers to describe
aspects of the original client request. When you use SSL in a PaaS environment, the headers must be set
by the PaaS router. On IBM Bluemix, these headers are already set, so you can use the ssl-1.0 feature
and any features that depend on it without changes. To get the expected behavior in other PaaS
environments, you might need to configure the router to set these headers as described in NGINX and
WebSphere Application Server.

The following features require the router to set HTTP headers:
v ssl-1.0

v Other features that depend on ssl-1.0, as listed in the Features that enable this feature section of “Secure
Socket Layer” on page 568

Chapter 4. Setting up Liberty 935

https://developer.ibm.com/wasdev/docs/nginx-websphere-application-server/
https://developer.ibm.com/wasdev/docs/nginx-websphere-application-server/

936 WebSphere Application Server Liberty Core 8.5.5

Chapter 5. Administering Liberty

A server configuration consists of a server.xml file, a bootstrap.properties file, and any optional files
that are included by the two main configuration files. You can use WebSphere Application Server
Developer Tools for Eclipse or a text editor to edit the configuration files. There is no administrative
console for Liberty, but you can use Admin Center to administer Liberty servers and applications and
other resources from a web browser on a smartphone, tablet, or computer.

About this task

Liberty is configured by exception. The runtime environment operates from a set of built-in configuration
default settings, and you only need to specify configuration that overrides those default settings. You do
this by editing either the server.xml file or another XML file that is included in server.xml at run time.

Features are the units of functionality by which you control the pieces of the runtime environment that
are loaded into a particular server. They are the primary mechanism that makes the server composable.
The list of features that you specify in the server configuration provides a functional server.

When you first install and start the server, a feature manager and a default server configuration are
available:
v By default, a server contains the jsp-2.2 feature, to support servlet and JSP applications. You can use

the feature manager to add the features that you need.
v Server configuration is by exception. When you specify the features that you need, the default

configuration of those features provides a rich environment that is designed to cover most common
requirements, therefore you only need to specify changes from the default configuration.

You can organize Liberty servers into collectives to administer multiple Liberty servers at a time
efficiently and accurately. For information about collectives, see “Setting up the server-management
environment for Liberty by using collectives” on page 907.

Procedure
v **** MISSING FILE ****
v “Administering Liberty by using developer tools” on page 938
v “Administering Liberty manually” on page 946
v Chapter 6, “Extending Liberty,” on page 1095

XML escape characters
You need to escape specific XML characters in Liberty configuration files, such as the server.xml file
because Liberty does not automatically escape these characters. If you use the Rational Application
Developer tool, you do not need to manually escape these characters.

Table 75. XML characters. For more information, see Extensible Markup Language (XML) .

Original character Escaped character

" "

' '

< <

> >

& &

937

https://www.w3.org/TR/REC-xml/#syntax

Administering Liberty by using developer tools

Distributed operating systems

You can modify how the workbench interacts with Liberty by using the server editor.

Procedure
1. In the Servers view, right-click the server and select Open.
2. The server editor opens.

What to do next

You can modify the publishing, timeout, and other settings regarding the interaction between the
workbench and the server.

Editing the Liberty configuration by using developer tools
Distributed operating systems

You can modify the behavior of Liberty by editing the configuration. For example, you can configure
which HTTP ports to use, what features are enabled, and logging and tracing settings.

Before you begin

For a description of the underlying process of configuring a server, and detailed information about
specific aspects of server configuration, see “Administering Liberty manually” on page 946.

About this task

The server configuration editor consists of two views: the Source view and the Design view. The Design
view is a structured view of the file whereas the Source view is a text view. But both of them are views
of the same server configuration file. The Design view has many features that help with the construction
of some of the more complex elements in the server configuration such as data sources.

The following steps are demonstrated in the Design view.

Procedure
1. To open the Server Configuration editor, select any of the following options:
v In the Servers view, right-click the server configuration and select Open.
v In the Enterprise Explorer view, expand your server project and the server folder. Right-click the

server.xml file and select Open.
2. Under the Configuration Structure section, the elements in the configuration are displayed.
3. Under the Feature Manager section, the details for the currently selected element are displayed. The

details can also be modified here.
4. To add new elements, select Server Configuration under the Configuration Structure section then

click Add.
5. To add child elements, select the parent element under the Configuration Structure section and then

click Add.
6. You can remove or move elements by selecting the element and using the Remove, Up, and Down

buttons.

938 WebSphere Application Server Liberty Core 8.5.5

What to do next

You can use the key combinations from Table 76 in both the Source view and the Design view.

Table 76. Keyboard shortcuts

Key combination Function

Ctrl+Space Content assistance. It displays variables that have the
correct type for the current field (int, string, and other
code) or ids of the correct type for a reference field.

F3 Hyperlink to variable references and id references.

Specifying the Liberty configuration with dropins files by using
developer tools

8.5.5.6

You can specify the server configuration for Liberty by creating configuration dropins files and placing
these files in the configDropins directory.

About this task

You can use the dropins files to set a default configuration, or override configurations that are set in the
server.xml file or included files. The server configuration validator includes configuration dropins files as
part of the overall server configuration validation. The server configuration editor shows variables and
references that are defined in dropins files in the appropriate content assistance and drop-down lists.

You can place configuration dropins files in either the ${server.config.dir}/configDropins/defaults
directory or in the ${server.config.dir}/configDropins/overrides directory.
v If you place these files in the defaults directory, then the configuration is applied before the server

configuration. In this case, the files provide default values, which you can override in the main
server.xml file or the included files.

v If you place the configuration dropins files in the overrides directory, then the configuration is applied
after the server configuration. In this case, the files override the main server.xml or included files.

For more information about configuration dropins files, see: “Using the configuration dropins folder to
specify server configuration” on page 973.

Procedure
1. To create a configuration dropins file, right-click your server in the Servers view.
2. Complete one of the following options:

a. To create a configuration dropins file in the defaults directory, select New > Configuration
Dropins File > Defaults

b. To create a configuration dropins file in the overrides directory, select New > Configuration
Dropins File > Overrides.

3. Enter the name of the file that you want to create.
4. Click OK.

The new file is displayed.
5. To see the merged configuration, complete one of the following options:

a. Right-click the server.xml file in the Enterprise Explorer or Project Explorer view, and then select
Liberty > Open Merged View.

b. In the Servers view, right-click on Server Configuration and select Open Merged View.

Chapter 5. Administering Liberty 939

The merged view of the server configuration shows the defaults at the beginning of the merged
configuration. It also shows the overrides at the end of the merged configuration.

Starting and stopping a server by using developer tools
You can start and stop a server by using the Liberty developer tools.

Procedure
v To start a server:

In the Servers view, right-click the server and click Start to start the server or click Debug to start the

server in the debug mode. Alternatively, click

to start the server, or click

to start the server
in the debug mode.

Tip: 8.5.5.4 When you start a remote Liberty server, you can specify which debug port to use
in the Remote Start Settings section of the server editor. The default port is 7777.

v To stop the server:

In the Servers view, right-click the server and click Stop. Alternatively, click

to stop the server.

Tip: In the Servers view, you must select the server entry to perform these tasks. Do not select the
server configuration entry, for example Server Configuration [server.xml], to perform these tasks.

What to do next

You can configure the server elements by using the tools.

Switching a Liberty Docker server between run and debug mode by
using developer tools

8.5.5.9

For your Liberty Docker server, you can use WebSphere Developer Tools to switch your server between
run and debug mode. When you switch between these modes, the tools create a Docker image and a
Docker container, which you can save.

Before you begin

You must create a Liberty Docker server by using WebSphere Developer Tools. For more information
about using WebSphere Developers Tools to create a Liberty server in a Docker container, see “Creating a
workbench Liberty server in a Docker container by using developer tools” on page 890.

About this task

When you create a Liberty server in a Docker container, the run command and host mapped ports are
fixed. As a result, when you switch a Liberty Docker server between run and debug modes, WebSphere
Developer Tools commit a new Docker image based on your Docker container. This action preserves all
of your changes to the container at that point. Then, the tools create a new container from the new image,
but modify the run command to either run or debug the server. When you switch to debug mode, the
tools map the debug port to the host.

The tools do not delete the original image and container. However, the tools remove any temporary
images and containers when you switch modes. To avoid losing changes that you made to your server in
debug mode, you can save the last temporary image and container when you delete a Liberty Docker
server.

940 WebSphere Application Server Liberty Core 8.5.5

Procedure
1. Switch your server from run mode to debug mode:

a. Open the Servers view in WebSphere Developer Tools by clicking Window > Show view >
Servers.

b. Start your server in debug mode by right-clicking your_server and selecting Debug.
The tools go through the following steps:
1) Disconnect from the your_server container and stop the container.
2) Commit the your_server container to a new image that is named

your_server_debug_websphere-liberty

3) Create a new container that is named your_server_debug from the
your_server_debug_websphere-liberty image.

4) Connect to the your_server_debug container.
c. If the tools display the Server Execution Mode Switch window, click OK to continue.

The tools display the Server Execution Mode Switch window only the first time that you switch
the mode for your server.

2. Switch your server back to run mode from debug mode by right-clicking your_server and selecting
Run.
The tools go through the following steps:
a. Disconnect from the your_server_debug container and stop the container.
b. Commit the your_server_debug container to a new image that is named

your_server_run_websphere-liberty

c. Create a new container that is named your_server_run from the your_server_run_websphere-
liberty image.

d. Connect to the your_server_run container.
3. Delete the your_server server by right-clicking your_server and selecting Delete.
4. Click Yes to save the your_server_run container and the your_server_run_websphere-liberty image.

Results

You switched your server from run mode to debug mode and back to run mode. When you switched
back to run mode, you saved any changes that you made to the container and image when you were in
debug mode.

Defining a utility project as a shared library
Distributed operating systems

You can define a utility project as a shared library and associate defined shared libraries with an
application or web project.

Before you begin

To use the shared library function in the workbench, you must create a utility project and define it as a
shared library. The utility project is the only project type that can be used as a shared library.

About this task

A shared library is an external Java archive (JAR) file that is used by one or more applications. Using
shared libraries enables multiple application published on a server to use a single library, rather than use
multiple copies of the same library. After you associate shared libraries with an application or project, the

Chapter 5. Administering Liberty 941

application or module class loader loads classes in the shared libraries and makes those classes available
to the application or module.

Procedure

To define a utility project as a shared library:
1. Create a utility project:

a. In the toolbar, select File > New > Project.
b. Expand Java EE and select Utility Project. Click Next.
c. In the Project name field, specify a name for the utility project.
d. Under the Ear membership section, clear the Add project to an EAR check box.
e. Under the Target runtime section, verify the WebSphere Application Server Liberty is selected.
f. Click Finish.

2. Define the artifacts in the newly created utility project. For example, you can add Java classes to the
utility project.

3. Define the utility project as a shared library:
a. In the Project Explorer view, right-click the utility project and select Properties > Liberty > Shared

Library.
b. In the Shared library ID field, type a string as an identifier for the shared library.
c. In the Archive directory field, type or browse to a directory where you want to place the

compressed copy of your utility project as a JAR file. The file name convention of the JAR file is
utilityProjectName.jar, where utilityProjectName is the name of the utility project.

d. In the Liberty Shared Library page, click Apply to confirm your changes. Click OK to close the
Properties window.

4. Add the utility project to the server. Distributed operating systems For more details see “Adding and
running an application on Liberty by using developer tools” on page 1331 topic.

Results

Here is an example entry added to the server configuration (server.xml) file:
<library id="libid">

<fileset dir="C:\temp" includes="Util.jar"/>
</library>

In addition, the JAR file is added in the specified archive directory. In the previous example, the Util.jar
file is added in the C:\temp directory.

Setting a web project to use shared libraries

Distributed operating systems

If you have a utility project defined as a shared library, you can associate defined shared libraries with a
web project.

Before you begin
v Define a utility project as a shared library.

About this task

A shared library is an external Java archive (JAR) file that is used by one or more applications. Using
shared libraries enables multiple application published on a server to use a single library, rather than use
multiple copies of the same library. After you associate shared libraries with an application or project, the

942 WebSphere Application Server Liberty Core 8.5.5

application or module class loader loads classes in the shared libraries and make those classes available
to the application or module.

Procedure
1. To set a web project to use shared libraries:

a. In the Project Explorer view, right-click your web project that you want to associate shared
libraries.

b. Select Properties > Liberty > Shared Libraries.
c. When you click the Add button, a list of shared library IDs will appear. In the IDs field, specify

one or more shared library identifiers that you want the project to reference. To specify multiple
identifiers, use a comma-separated list. For example: ID1, ID2, ID3

Tip: The shared library identifier is the value specified in the Shared Libary ID field from the
Defining a utility project as a shared library task.

2. You might want to add its associating utility projects to the class path for compilation-purpose:
a. In the Project Explorer view, right-click your project that you are associating shared libraries.
b. Select Properties > Java Build Path.
c. Select the Projects tab.
d. Click Add.
e. Select the utility projects that the project references.

3. Develop the artifacts in the web project. For example, you can add a servlet in a web project that
references classes in the shared libraries.

4. Add the web project to the server. Distributed operating systems For more details see “Adding and
running an application on Liberty by using developer tools” on page 1331 topic.

Results

Here is an example entry added to the server configuration (server.xml) file:
<application type="war" id="web" name="web" location="web.war">
<classloader commonLibraryRef="libid"/>
</application>

Exploring the runtime environment by using developer tools
Distributed operating systems

You can use the Runtime Explorer view to browse the available servers. This view shows all of the
available servers for the runtime environment as opposed to the Servers view, which shows only those
servers that are configured in the workspace. In both the Runtime Explorer and Servers view, you can
expand each server to show the configuration for that server.

Before you begin

The application server that the Runtime Explorer view supports is the WebSphere Application Server
Liberty.

About this task

You can use the Runtime Explorer view to complete the following tasks:
v View the servers that are defined in a runtime environment.
v View the shared configurations files that are defined in a runtime environment.

Chapter 5. Administering Liberty 943

v Create a server in a runtime environment.

v Create a runtime environment and optionally install add-ons from the Liberty
Repository on the Downloads page on WASdev.net.

–

8.5.5.6

Configure additional repositories.

Procedure

To open the Runtime Explorer view:
1. In the toolbar of the workbench, select Window > Show View > Other.
2. In the Show View window, expand Server and select Runtime Explorer. Click OK.

Displaying the server configuration in a merged view
Distributed operating systems

You can use the Merged Configuration view to see a flattened view of the server configuration and any
included configuration files.

About this task

In the Server Configuration editor, under the Configuration Structure section, you can use the Include
element to import files that contain additional configuration settings. The Include element can embed
multiple layers of configuration files within the server.xml file, which can make the configuration
difficult to read without tools. The Merged Configuration view provides a flattened view of the server
configuration and any included configuration files. This is a read-only view and cannot be edited.

Procedure

To display the server configuration in a merged view:

In the Servers view, right-click the server configuration and select Open Merged View.

Example

Here is an example of the source code for the server.xml file. Look at the include tag which imports the
common.xml file:
<server>
<featureManager>
<feature>jsp-2.2</feature>
<feature>servlet-3.0</feature>
</featureManager>
<application id="Web2.5" location="Web2.5.war" name="Web2.5" type="war"/>
<include location="common.xml"/>
</server>

Here is an example of the source code for the common.xml file:
<server>
<application id="Setup" location="Setup.war" name="Setup" type="war"/>
</server>

Look under the Configuration Structure sections to see the difference between the Server Configuration
editor and Merged Configuration view. The Merged Configuration view replaces the Include:
common.xml element from the Server Configuration editor with Application: Setup element.

944 WebSphere Application Server Liberty Core 8.5.5

https://developer.ibm.com/assets/wasdev/

Viewing the schema documentation for the server configuration
Distributed operating systems

You can view the schema documentation for the server configuration (server.xml file) within the
workbench. The documentation provides information about the configuration elements that are available,
the default settings, and details for each of the elements.

Procedure

In the Servers view, right-click on the server configuration and select Open Schema Reference.

Generating a Liberty server dump using developer tools
Using the Liberty Utilities menu, you can generate a server dump for support.

About this task

You can use the Utilities menu of your Liberty server to generate a server dump to capture all
service-related information for support.

Procedure
1. In the Servers view, right-click your Liberty server, and select Utilities > Generate dump for

Support....
2. In the Generate Dump page, enter a location for the dump archive or use the Browse button. Then,

click Finish to create the server dump file.
3. In the Console view, the path to the server dump is indicated:

Server TestServer dump complete in
D:\LibertyUnzip\wlp\usr\servers\TestServer\TestServer.dump-12.03.22_15.00.11.zip.

Packaging a Liberty server by using developer tools
You can create a compressed file containing a server runtime environment, server configuration, and
applications using the packaging wizard.

About this task

Because a Liberty server is lightweight, you might find it useful to package up your applications and
server in a compressed file. You can then store this package, distribute it to colleagues, use it to deploy
the application to a different location or to another machine, or even embed it in your product
distribution.

Procedure
1. In the Servers view, stop the server.
2. Right-click your Liberty server, and select Utilities > Package Server....
3. In the Package Server page, in the Archive field, type a filename and path for your archive package,

or click Browse to locate a filename and path. This filename can include a full path name. If the full
path is omitted, a compressed file called package_file_name.zip is created in the ${server.output.dir}
directory.

4. In the Include field, select whether to include:
v Full runtime (all)

v Minimal runtime (minify)

v No runtime (usr)

For details on these include options, see Packaging a Liberty server from the command prompt topic.

Chapter 5. Administering Liberty 945

5. Click Finish.

Adding a data source by using developer tools
You can add a data source to your application using the developer tools.

Procedure
1. In the Project Explorer view, expand liberty_name > servers > server_name > server.xml, and select

Open.
2. In the design view, select Server Configuration, and click Add.
3. On the Select item to add to Server Configuration: page, select Data Source and fill in the JNDI name.
4. On the Data Source Details panel, alongside JDBC Driver, click Add.
5. On the Configure a JDBC driver page,
v In the Library ref: field, select an option from the drop-down list, or click Add to create a new one.

– In the Fileset ref: field, select an option from the drop-down list, or click Add to create a new
one.
- In the Base directory field, type a path for your base directory or click Browse to locate a

library location path. Use the drop-down arrow next to Browse to choose between browsing
for a relative path or browsing for an absolute path.

- In the Includes field, type the name of your data source, for example derby.jar, or click
Browse to locate the data source archive file that you want to include.

- In the Excludes field, type the archives that you want to exclude, or click Browse to locate the
data source archive file that you want to exclude.

6. Your JDBC data source has been added to your application.

Administering Liberty manually
You can administer Liberty from the command prompt, configure it with web server plug-ins, and
capture its status. You can package a Liberty server configuration along with the applications that it runs,
for distribution to colleagues, or installation on other systems. If available, you can use the Equinox OSGi
console to aid with debugging.

About this task

The server.xml file is the primary configuration file for the server. You can edit this file, and the files it
includes, in a text editor. You can also change the location of the server.xml file. However, for most
configurations you do not need to do this.

The bootstrap.properties file is used to specify properties that need to be available before the main
configuration is processed. If you update the bootstrap.properties file, you must restart the server for
the changes to take effect.

Example

All the elements that can be configured in the server.xml file, and the files it includes, are described in
“Liberty features” on page 483. However, the only required element is a server definition:
<server/>

Beyond this server definition, you only specify overrides and additions to the default configuration
values. For example, to change the transaction timeout value, you specify:
<transactions timeout="30" />

946 WebSphere Application Server Liberty Core 8.5.5

Some attributes can have multiple values. For example, you use a list of values to define the features that
are to be provided by the server:
<server>
<featureManager>
<feature>servlet-3.0</feature>
<feature>localConnector-1.0</feature>

</featureManager>
</server>

See also “Adding and removing Liberty features” on page 968.

Where multiple instances of a resource type can be configured, for example applications or data sources,
you need only provide the attributes that are unique for the resource. You can let the other attributes use
the default values, or override them as needed. Therefore the contents of the server.xml file can be brief.
For example, here is a complete server configuration to run a web application:
<server>

<featureManager>
<feature>servlet_3.0</feature>

</featureManager>
<application name="snoop" location="/mywebapps/snoop" id="snoop" type="war"/>

</server>

For detailed information about specific aspects of server configuration, see the subtopics.

Customizing the Liberty environment
You can customize the Liberty environment by using certain specific variables to support the placement
of product binary files and shared resources in read-only file systems.

About this task

The Liberty specific environment variables in the following list can be configured in the server.env file to
customize the Liberty environment. The ${wlp.install.dir} configuration variable has an inferred
location that is always set to the parent of the directory that contains the launch script.
v WLP_USER_DIR

This environment variable can be used to specify an alternative location for ${wlp.user.dir}. This
variable must be an absolute path. If this variable is specified, the runtime environment looks for
shared resources and server definitions in the specified directory. The ${server.config.dir} is
equivalent to ${wlp.user.dir}/servers/serverName. If this environment variable is not specified,
${wlp.user.dir} is set to ${wlp.install.dir}/usr.

v WLP_OUTPUT_DIR

This environment variable can be used to specify an alternative location for server generated output
such as logs, the workarea directory, and generated files. Files in the logs directory can include
console.log, messages.log, and any generated FFDC files. Generated files can include server dumps
that are created with the server dump or server javadump command. This variable must be an absolute
path. If this environment variable is specified, ${server.output.dir} is set to the equivalent of
WLP_OUTPUT_DIR/serverName. If this environment variable is not specified, ${server.output.dir} is the
same as ${server.config.dir}.
When the server command is used, the server process uses the output directory as its current working
directory.

v WLP_DEBUG_ADDRESS

This environment variable can be used to specify an alternative port when you run the server in debug
mode. The default value is 7777. When Liberty is run in debug mode from the server command, the
following values are set JAVA_DEBUG="-Dwas.debug.mode=true
-Dcom.ibm.websphere.ras.inject.at.transform=true

Chapter 5. Administering Liberty 947

-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=${WLP_DEBUG_ADDRESS}". However,
if you run Liberty from the ws-server.jar executable JAR file, or the embedded Liberty server SPI,
then you must use the same settings to enable debug mode for Liberty.

You can specify WLP_OUTPUT_DIR, WLP_USER_DIR, and WLP_DEBUG_ADDRESS environment variables in
server.env files. You can also specify JVM options in jvm.options files. Both server.env and jvm.options
files work only when you use the server management script. If you use the ws-server.jar executable JAR
file to launch your server, these files are not supported.

Procedure
v Specify environment variables by using server.env files.

You can use server.env files at the installation and server levels to specify environment variables such
as JAVA_HOME, WLP_USER_DIR, and WLP_OUTPUT_DIR. For example:
Use a specific Java binary
JAVA_HOME=/opt/ibm/java-i386-60/jre
JAVA_HOME=c:\Java

Note:

– The server.env files support only key=value pairs.
– Empty lines and lines that start with the # character are ignored.
– There are no escape characters; all characters are literal, including back-slashes and leading and

trailing white space.
– There should be no white space surrounding the equals "=" sign.
– Shell and variable expansion are not supported.
– WLP_USER_DIR can be specified only in the ${wlp.install.dir}/etc/server.env file because the

purpose of this variable is to specify where the remaining configuration is located. After the
remaining configuration is found and merged, no further configuration in a different location is
expected, or supported.

The server management script searches for server.env files in two locations: ${wlp.install.dir}/etc/
server.env and ${server.config.dir}/server.env. If both files are present, the contents of the two
files are merged; values in the server-level file take precedence over values in the runtime-level file.
You can also specify these environment variables in the shell environment, but the server.env files
take precedence over those variables.

v Customize JVM options by using jvm.options files.
You can use jvm.options files at the runtime and server levels to specify more server startup options,
for example, -X arguments. The options are applied when the start, run, and debug actions are started
through the server management script. Be sure to specify only one option per line. For example:
Set the maximum heap size to 1024m.
-Xmx1024m

Set a system property.
-Dcom.ibm.example.system.property=ExampleValue

Enable verbose output for class loading.
-verbose:class

Enable verbose garbage collection.
-verbose:gc

Specify an alternate verbose garbage collection log on IBM Java Virtual Machines only.
-Xverbosegclog:verbosegc.log

Specify additional verbose garbage collection options on HotSpot Java Virtual Machines only.

948 WebSphere Application Server Liberty Core 8.5.5

-Xloggc:verbosegc.log
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-XX:+PrintHeapAtGC

The server management script searches for jvm.options in two locations: ${wlp.install.dir}/etc/
jvm.options and ${server.config.dir}/jvm.options. If both files are present, the options in the
${server.config.dir}/jvm.options file are used.

Note:

– Do not put property values in quotes.
– Empty lines and lines that start with the # character are ignored.
– There are no escape characters; all characters are literal, including back-slashes and leading and

trailing white space.
– There should be no white space surrounding the equals "=" sign.
– Shell and variable expansion are not supported.

What to do next

If you start the Liberty server by using the server script, all of the operating system environment
variables from the current session are available. If you start the server by using either the MBean or the
Admin Center, the only available environment variables are those variables that are available to a remote
command that is running on that system.

Administering Liberty from the command line
You can use the server command and ws-server.jar executable JAR file to create a server, to start, or
stop a server, to check if it is running, or debug a server.

About this task

The wlp/bin directory contains a script called server to help with controlling the server process. The
syntax of this script is as follows:
server <action> [server] [options]

For available values of the options, see “server command options” on page 950.

Avoid trouble: The administrative console allows a start and a stop of a Liberty server that is a cluster
member of an auto-scalable cluster, but only when the server is in maintenance mode. Starting or
stopping a Liberty server from the command line when the Liberty server is a cluster member of an
auto-scalable cluster can lead to unpredictable results.

This script supports the following actions:

create A command that creates a new server.

run A command that launches the server in the foreground.

debug A command that runs the named server in the console foreground after a debugger connects to
the debug port. The default port is 7777. You can use the WLP_DEBUG_ADDRESS variable to specify
an alternative port.

dump A command that creates a snapshot of a server and saves the result into an archive file for further
tuning and diagnosis.

javadump
A command that creates a snapshot of the server Java virtual machine (JVM) and saves the result
into files. Each dump type creates a file, but not all dump types are supported by all virtual

Chapter 5. Administering Liberty 949

|

|
|

machines. The default directory for dump files is ${server.output.dir}. To set a different default
directory, you must use an IBM JVM and set the following environment variables:
v IBM_HEAPDUMPDIR

v IBM_COREDIR

v IBM_JAVACOREDIR

package
A command that packages a server.

start A command that launches the server as a background process.

stop A command that stops a running server.

status A command that checks to see whether a specified server is running.

version
A command that displays the version information of current server and Java runtime
environment.

help A command that gets command-line script help, including details of additional options.

Note: If a server is not specified on the command line, the action is performed against the default server
instance, defaultServer, if it exists.

You can also carry out similar actions by using the executable JAR file ws-server.jar that is in the
${wlp.install.dir}/bin/tools directory.

Example

To run the server script on Windows systems:
server.bat create server_name
server.bat package server_name
server.bat run server_name
server.bat help server_name

To run the server script on other systems:
server create server_name
server package server_name
server run server_name
server help server_name

To run the executable JAR file ws-server.jar without using the server script:
java -javaagent:bin/tools/ws-javaagent.jar -jar bin/tools/ws-server.jar server_name --create
java -javaagent:bin/tools/ws-javaagent.jar -jar bin/tools/ws-server.jar server_name
java -javaagent:bin/tools/ws-javaagent.jar -jar bin/tools/ws-server.jar --help

The --help option provides information about additional command-line parameters for the executable
JAR file ws-server.jar , such as --stop, --version, --clean, --include.

server command options
The server command supports starting, stopping, creating, packaging, and dumping a Liberty server.
This topic describes all available options and exit codes that you can use with the server command and
the equivalent executable jar file ws-server.jar.

Syntax

The command syntax is as follows:
server action serverName [options]

950 WebSphere Application Server Liberty Core 8.5.5

|
|

|

|

|

where the value of action represents the operation that you can perform on a Liberty server. See
available administration operations for Liberty from the command prompt.

Note: If a server is not specified on the command line, the action is performed against the default server
instance, defaultServer, if it exists.

Options

The following options are available for the server command:

--archive=“path_to_the_target_archive_file”

Specifies a target file for the package or dump operation. This path can be either a relative path,
which is relative to the installation root directory of Liberty, or an absolute path. The default
archive target is a compressed file with the server name, which is stored in the installation root
directory. Use quotation marks if the value contains spaces. You can use this option for both
package and dump operations.

Distributed operating systems

IBM i

If you specify a .jar extension for your archive file name,

the server command creates a new self-extracting archive file from which the Liberty server can
be installed by using the java command; for more information, see “Installing Liberty by
extracting a Java archive file” on page 836. The .jar extension facility is not available on the
z/OS platform.

--clean
Cleans all persistent cached information that is related to the specified server instance, which
includes OSGi resolver metadata and persistent OSGi bundle data. If you use this option, the
server will be required to recompute any cached data at the next startup, which might take more
time than a restart that can reuse cached data.

Note: This option is not necessary for normal operation. IBM service might request that you use
this option when you provide an interim fix, or if there is a suspected problem with the cached
data. This option might also be necessary if you are developing a product extension, and you are
either updating OSGi manifests or planning to clear persistent OSGi bundle data.

--include=package_option
Specifies the files that you want to package, where package_option can take one of the following
values:
v all specifies to package all the files in the Liberty installation directory. If the ${WLP_USER_DIR}

and ${WLP_OUTPUT_DIR} are defined in the server.env file, the files under them are packaged.
This value applies only to the package operation.

v usr specifies to package the files in the ${WLP_USER_DIR} directory. This value applies only to
the package operation.

v minify specifies to package only those parts of the runtime environment, and files in the
${WLP_USER_DIR} directory, that are required to run the server, which minimizes the size of the
resulting archive. This value applies only to the package operation.

--include=diagnose_option,diagnose_option,...
Specifies the type of diagnostic information to be captured. The value of --include is a
comma-delimited list, which can contain any of the following values:
v heap is used to help diagnose the excessive memory consumption and memory leaks, which

shows live objects in the memory and references between them. On IBM J9 virtual machines,
the resulting file is named heapdump.date.time.processID.sequenceNumber.phd. On HotSpot
virtual machines, the resulting file is named java.date.time.processID.sequenceNumber.hprof.
This value applies to both the dump and javadump operations

v system is also used to help diagnose the excessive memory consumption and memory leaks,
but they are also useful for finding defects in the virtual machine. These dumps are only

Chapter 5. Administering Liberty 951

supported on IBM J9 virtual machines. The resulting file is named
core.date.time.processID.sequenceNumber.dmp. This value applies to both the dump and
javadump operations.

v thread is used to help diagnose hung threads, deadlocks, and can sometimes be used for
diagnose excessive CPU issues. These dumps are always created with the server javadump
command. On IBM J9 virtual machines, the resulting file is named
javacore.date.time.processID.sequenceNumber.txt. On HotSpot virtual machines, the
resulting file is named javadump.date.time.processID.sequenceNumber.txt. This value can
also be applied to the dump operation.

Note: The thread dump type is supported only when the server is running on the Java SDK. If
the server is started with a JRE, an error is reported indicating that the server does not support
the dump type. This restriction applies to HotSpot virtual machines only; the thread Java
dump type is supported on any IBM JVM (JRE or SDK).

--os=os_value,os_value,...
Specifies the operating systems that you want the packaged server to support. Supply a
comma-separated list. The default value is any, indicating that the server is to be deployable to
any operating system supported by the source.

To specify that an operating system is not to be supported, prefix it with a minus sign (“-”). For a
list of operating system values, refer to the OSGi Alliance web site at the following URL:
http://www.osgi.org/Specifications/Reference#os.

This option applies only to the package operation, and can be used only with the
--include=minify option. If you exclude an operating system, you cannot later include it if you
repeat the minify operation on the archive.

Server Process

The server process is created by using the environment variables that are specified in the server.env file.
The following JVM options are added by default:
v The -javaagent:wlp/bin/tools/ws-javaagent.jar option is required for trace, monitoring, and other

server capabilities.
v The -Xshareclasses and related options enable the shared class cache on supported IBM J9 virtual

machines. The cache directory is set to WLP_OUTPUT_DIR/.classCache.
v The -XX:MaxPermSize option increases the size of the permanent generation for HotSpot virtual

machines prior to Java 8. You can set the WLP_SKIP_MAXPERMSIZE environment variable to true to avoid
this default option, which avoids warnings such as:
Java HotSpot(TM) Client VM warning: ignoring option MaxPermSize=256m; support was removed in 8.0

You can use the jvm.options file to override these default JVM options or add additional JVM options.
For more information about the server.env and jvm.options file, see “Customizing the Liberty
environment” on page 947.

UNIX

IBM i

By default, the server command sets the umask value to deny all

permissions to “Other” users before running the action. However, you can set the WLP_SKIP_UMASK
environment variable to true to avoid setting the umask value.

The current working directory of the server process is set to the server output directory.

UNIX

IBM i

The server command creates a process ID (PID) file when you start the server and

deletes the PID file when you stop the server. By default, the PID file is set to WLP_OUTPUT_DIR/.pid/
serverName.pid. The absolute path of the PID file can be changed by setting the PID_FILE environment
variable, or the absolute path of the PID directory can be changed by setting the PID_DIR environment
variable.

952 WebSphere Application Server Liberty Core 8.5.5

http://www.osgi.org/Specifications/Reference#os

The standard output and error from the server process is output to the foreground console when you use
the run and debug actions and is redirected to the WLP_OUTPUT_DIR/serverName/logs/console.log file by
default when you use the start action. The log name can be changed by setting the LOG_FILE
environment variable, and the log directory can be changed by setting the LOG_DIR environment variable.
For more information about the logging configuration, see “Logging and Trace” on page 1461.

The stop action prevents new application requests from entering the server, which allows existing
requests some time to complete. After that time, the remaining server components are stopped and the
server process exits. Application requests that do not complete in the allowed time fail, but their exact
behavior depends on their activity when the server components stopped.

Exit codes

The following exit codes are available for the server command and the equivalent executable JAR file
ws-server.jar:

0 OK. 0 indicates successful completion of the requested operation. For server status, 0 indicates
that the server is running.

1 For server status, 1 indicates that the server is not running. For other operations, it indicates
invocation of a redundant operation. For example, starting a started server or stopping a stopped
server. This code might also be returned by JVM if invalid Java options are used.

2 The server does not exist.

3 An unsupported action was called on a running server. For example, the server is running when
the package action is called.

4 An unsupported action was called on a stopped server. For example, the server is not running
when the dump action is called

5 Unknown server status. For example, the workarea directory is missing, or the Attach API fails to
work.

>=20 Return codes greater than or equal to 20 indicates that an error occurred while performing the
requested . Messages are printed and captured in log files with more information about the error.

Usage

The following examples demonstrate the correct syntax:
server run
server start myserver --clean
server package myserver --archive="archivefile.zip" --include=all
server dump myserver --archive="c:\mybackup\myserver.zip" --include=thread
server javadump myserver
server javadump myserver --include=heap,system

iAdmin command
IBM i

The command supports operating a Liberty server on the IBM i platform. The command file is in the
wlp/lib/native/os400/bin directory. The command file is a script named iAdmin.

Syntax

The command syntax is as follows:
iAdmin task [options]

where the value of task can be one of the following options:

Chapter 5. Administering Liberty 953

v POSTINSTALL

v PREUNINSTALL

v GRANTAUTH

The POSTINSTALL task configures the server start command to launch servers as jobs in the QWAS85
subsystem. Additionally, the task:
v Configures Liberty to run servers under the QEJBSVR user profile.
v Configures the default JDK location by setting WLP_DEFAULT_JAVA_HOME in file wlp/etc/default.env to

the location of the 32 bit version of the minimum supported Java level.
v Adds an entry for the product in the IBM i native product registry.
v Creates IBM i native libraries and objects such as the QWAS85 subsystem and the QEJBSVR user

profile.

Call the iAdmin POSTINSTALL command only after Installing Liberty by extracting an archive file or when
Installing Liberty resources by using the job manager.

The GRANTAUTH task grants the QEJBSVR user profile the necessary file permission and ownership for the
server role. The POSTINSTALL sets the file ownership and authorities correctly for the QEJBSVR user
profile. However, if you create files manually, or if you modify the authorities on files used by the Liberty
server, you can call the iAdmin GRANTAUTH command to ensure that QEJBSVR has the correct authorities.

The PREUNINSTALL task removes the native libraries and objects created by the POSTINSTALL task. Call the
iAdmin PREUNINSTALL command before removing the Liberty application-serving environment from your
system, but you only need do so if Liberty was installed by executing a JAR file.

Note:

v You must have *ALLOBJ and *SECADM special authority to use the POSTINSTALL and PREUNINSTALL
commands.

v You must have *ALLOBJ special permission, own, or have *OBJMGT authority to all objects in the
specified directory subtrees to use the GRANTAUTH command.

v After running the POSTINSTALL task, you must also have *ALLOBJ and *SECADM special authority to start
and stop the Liberty server.

Options

The following options are available for the iAdmin command:

--outputdir wlp_user_dir
The directory for server generated files. This option must only be an absolute path, is optional for
the GRANTAUTH task, and is ignored for all other tasks. When not specified, the default location for
server generated output is used.

--rolename role_name
The role that the user profile is assigned. The server role is the only currently supported role.
This option is required for the GRANTAUTH task and is ignored for all other tasks.

--userdir wlp_user_dir
The directory containing shared resources and server definitions. This option can only be an
absolute path, is optional for the GRANTAUTH task, and is ignored for all other tasks. When not
specified, the default location for shared resources and server definitions is used.

--userprofilename user_profile_name
The user profile to grant authority to. QEJBSVR is the only currently supported user profile
name for the server role. This option is required for the GRANTAUTH task and is ignored for all
other tasks.

954 WebSphere Application Server Liberty Core 8.5.5

Usage scenarios

The following examples demonstrate correct syntax. Run the command in any of the following examples
on one line.
v Configuring Liberty to start as a job in the QWAS85 subsystem and to swap to the QEJBSVR user

profile when running.
wlp/lib/native/os400/bin/iAdmin POSTINSTALL

v Granting the server role to the QEJBSVR user profile for the shared resources, server definitions, and
output locations configured for this Liberty runtime environment.
wlp/lib/native/os400/bin/iAdmin GRANTAUTH –-rolename server –-userprofilename QEJBSVR

v Removing the native libraries and objects created by the POSTINSTALL task.
wlp/lib/native/os400/bin/iAdmin PREUNINSTALL

application client commands

8.5.5.6

The client command supports create, run, debug, package and help actions.

Syntax

The wlp/bin directory contains scripts that are called client and client.bat to help with running client
applications. The syntax of these scripts are as follows:
client <action> client_name [options]

where the value of action represents the operation that you can perform on an application client.

Attention: If an application client name is not specified on the command line, the task is taken against
the default application client instance, defaultClient.

Actions

The client script supports the following actions:

create A command that creates a new application client.

run A command that launches the application client in the foreground.

debug A command that runs the named application client in the console foreground after a debugger
connects to the debug port. The default port is 7778.

package
A command that packages an application client.

help A command that gets command-line script help, including details of more options.

Options

The client script supports the following options:

--archive="path to the target archive file"
Specify the archive target to be generated by the package action. You can specify the target as an
absolute path or as a relative path. If this option is omitted, the archive file is created in the client
output directory. The target file name extension might influence the format of the generated
archive. The default archive format for the package action is pax on z/OS and zip on all other
platforms. The jar archive format produces a self-extracting jar file that similar to the original
installer archive.

Chapter 5. Administering Liberty 955

--clean
Clean all cached information related to this client instance.

--include=value,value,...
A comma-delimited list of values. The valid values vary depending on the action.

template="templateName"
Specify the name of the template to use when creating a new client.

--autoAcceptSigner
Automatically accept and store the signer certificate in the client truststore without being
prompted to examine the server certificate.

Example

The following examples show the application client command actions that you can run on Windows
systems: Windows

client.bat create client_name
client.bat run client_name
client.bat help

The following examples show the application client command actions that you can run on other systems:
client create client_name
client run client_name
client help

Running an application client from the command line: 8.5.5.6

You can use the client run task to run an application client.

Before you begin

Before you can run an application client, you must create a client and add a configuration for your client
application in the client.xml file. See the Creating a Liberty client manually topic for examples of how
you would create the application client.

About this task

The wlp/bin directory contains scripts that are called client and client.bat to run client applications.
The syntax of these scripts is as follows:
client action <client_name> [options]

Procedure

Use the following command to run the client:
client run client_name

Windows

client.bat run client_name

where client_name is the name of the client.

Attention: If a default client exists, it runs defaultClient. If a default client does not exist, defaultClient
is created, then runs (and likely fails because there is no application that is configured.

956 WebSphere Application Server Liberty Core 8.5.5

configUtility command
8.5.5.5

The configUtility command enables you to download configuration snippets from the IBM WebSphere
Liberty Repository. The command also enables you to replace configuration snippet variables with your
input values. The Liberty repository config snippets are samples of Liberty server configurations for
specific tasks.

For information about accessing and using the Liberty repository, see “Liberty Repository” on page 573.

Syntax

The command syntax is as follows:
configUtility action | configUtility configSnippet [options]

where action can take one of the following values:

find Display a list of all configuration snippets in the repository.

8.5.5.6

Specify a string to filter the list to configuration snippets that have the specified string

in the description. Enclose strings that contain spaces in double-quotation marks.

help Display help information for a specified action.

install Download the configuration snippet from the repository or use a local configuration snippet for
variable substitution.

The configSnippet variable is the name of the configuration snippet. Run the configUtility find
command to get the names of configuration snippets in the repository.

Options

The following options are available for the configUtility install configSnippet command:

--info List all variable options in the configuration snippet. Return an empty list if the configuration
snippet has no variables for substitution.

--v[variable]=value
Replace configuration snippet variables found by the --info option with your input values. The
utility identifies these variable using --v[variable]. Do not include the brackets ([]) in the
command.

--createConfigFile=path
Optional. The utility writes the code snippet to the file specified by path instead of to the console
screen. Add the provided code snippet to the server.xml configuration to include the specified
file.

--encoding=[xor|aes]
Optional. Specify the keystore password encoding. Supported encodings are xor and aes. The
default encoding is xor.

--key=key
Optional. Specify a key to be used when encoding using AES. This string is hashed to produce an
encryption key which is used to encrypt and decrypt the password. Optionally, provide the key
to the server by defining the variable wlp.password.encryption.key whose value is the key. If this
option is not provided, a default key is used.

--useLocalFile=file
Use a configuration snippet from a local file system. You must specify the file path. This option
replaces specifying a configuration snippet name.

Chapter 5. Administering Liberty 957

Usage

The following examples demonstrate correct syntax:
configUtility find
configUtility find filter_string
configUtility find "filter string"
configUtility help
configUtility install configSnippet
configUtility install configSnippet --info
configUtility install configSnippet --vvariable=value
configUtility install configSnippet --createConfigFile=C:/wlp/usr/servers/server1/snippet-include.xml
configUtility install configSnippet --encoding=aes --key=myAESkey
configUtility install --useLocalFile=C:/wlp_temp/mySnippet.xml

Tip: If your option value has spaces, you must enclose it in double quotation marks ("). For example, if
the file path for the --createConfigFile option is C:\Program Files\mySnipets\snippet-include.xml,
specify --createConfigFile="C:/Program Files/mySnipets/snippet-include.xml" in the command.

CAUTION:
Different operating system might treat some characters differently. For the Windows environment, if
you have ! in your input string, it needs to be escaped by the ^ character. For example,
D:\Liberty\images\855\Liberty855\wlp\bin>configUtility createConfigFile="a^!"

Downloading and customizing configuration snippets from the command line: 8.5.5.5

You can use the configUtility command to download configuration snippets from the IBM WebSphere
Liberty Repository. You can also use the command to replace configuration snippet variables with your
input values. The Liberty repository config snippets are samples of Liberty server configurations for
specific tasks.

Procedure

1. Open a command line, then change directory to the wlp/bin directory.
2. Generate a list of configuration snippets in the Liberty repository.

Run the following command to write a list of configuration snippets to your console screen:
configUtility find

From this generated list, you can determine the name of a configuration snippet to download and,
optionally, modify.

8.5.5.6

You can specify a string to filter the list to configuration snippets that have the specified

string in the description. For example, for a list of security-related configuration snippets, run:
configUtility find security

Enclose strings that contain spaces in double-quotations marks; for example:
configUtility find "ejb security"

3. Optional: Generate a list of all variable options for a configuration snippet.
Using the name of configuration snippet obtained in step 2, run the following command to write a list
of variable options for the snippet to your console screen. For configSnippet, specify the name of the
snippet:
configUtility install configSnippet --info

The command returns an empty list if the configuration snippet has no variables for substitution.
4. Download a configuration snippet.

Using the name of the configuration snippet obtained in step 2, run the following command to write
the configuration snippet to your console screen. For configSnippet, specify the name of the snippet:
configUtility install configSnippet

958 WebSphere Application Server Liberty Core 8.5.5

To write the configuration snippet to a file instead of to your console screen, add the
--createConfigFile option and specify a file path. You can include the generated file in a server.xml
configuration file using an include statement. For example, to write the configuration snippet to the
C:\wlp\usr\servers\server1\snippet-include.xml file on your local file system, run the following
command:
configUtility install configSnippet --createConfigFile=C:/wlp/usr/servers/server1/snippet-include.xml

Tip: If the file path has spaces, you must enclose it in double quotation marks ("). For example, if the
file path is C:\Program Files\mySnipets\snippet-include.xml, specify --createConfigFile="C:/
Program Files/mySnipets/snippet-include.xml" in the command.
To download and replace configuration snippet variables found by the --info option with your input
values, use the --v[variable]=value option:
configUtility install configSnippet --v[variable]=value

For example, to specify a value of user1 for the $[adminUser] variable in the remoteAdministration
snippet, run:
configUtility install remoteAdministration --vadminUser=user1

This command writes a configuration for Remote Administration to a console screen, with user1
replacing the $[adminUser] variable:
<quickStartSecurity userName="user1" userPassword="${adminPassword}"/>

For more information about command options, see “configUtility command” on page 957.

Running the ddlGen utility
8.5.5.6

You can generate data definition language (DDL) if there are features in the server configuration that
require access to a database.

Before you begin

You must start the server before running the ddlGen utility.

About this task

The utility generates data definition language (DDL) for each feature that is configured in the server that
requires access to a database. You can change the path that the ddlGen utility uses to search for the
server by exporting the environment variable, WLP_USER_DIR, in the command line where the utility is
run.

Procedure
1. In the server.xml file, add the localConnector-1.0 feature under the featureManager tag.

<featureManager>
<feature>localConnector-1.0</feature>

</featureManager>

2. In a command line, run the wlp/bin/ddlGen {generate|help} <server_name> command,
where <server_name> is the name of the server that you want to generate DDL for.

Results

The following table shows the nonzero codes that might be returned:

Table 77. Return codes and explanations for the ddlGen utility

Return Code Explanation

0 Success. The DDL is generated to ${server.output.dir}/ddl.

Chapter 5. Administering Liberty 959

Table 77. Return codes and explanations for the ddlGen utility (continued)

Return Code Explanation

20 The action provided is not valid.

21 The server was not found. Message CWWKD0100E shows the file system directory where the
utility looked for the server. This location can be changed by exporting the variable,
WLP_USER_DIR, in the command line where the utility is run.

22 The localConnector feature is not present in the server configuration or the server was not
started.

23 The MBean that generates DDL was not found.

24 The MBean that generates DDL reported an error. The server logs contain more details about the
error.

255 An unexpected error occurred.

Generating Liberty configurations schema from the command line
Use the ws-schemagen.jar tool that is in the installation's bin/tools directory to generate the schema for
Liberty core and other installed products extensions in a single output file.

Syntax

The command syntax is as follows:

java [JVM options] -jar ws-schemagen.jar [options] outputFile

Options

The following options are available:

--encoding=charset
Where charset is the character set to use when you are creating the output file.

--ignorePidsFile=fileName
Where fileName is the name of the file name that contains a list of pids to ignore.

--locale=language
Where language specifies the language to use when you are creating the output file. This string
consists of the ISO-639 two-letter lowercase language code, optionally followed by and
underscores and the ISO-3166 uppercase two-letter country code.

Usage examples

The following example generates the installed products' schema and stores in a file called schema.xsl:
java -jar ws-schemagen.jar schema.xsl

The following example generates the installed products' schema and stores in a file that is called
schema.xsl using the Brazilian Portuguese language:
java -jar ws-schemagen.jar schema.xsl --locale=pt_BR

The following example displays help information:
java -jar ws-schemagen.jar --help

Generating a Liberty server dump from the command line
From the command line, you can use the server dump or server javadump command to capture status
information for a Liberty server.

960 WebSphere Application Server Liberty Core 8.5.5

About this task

The server dump command is useful for problem diagnosis of a Liberty server because the result file
contains server configuration, log information, and details of the deployed applications in the workarea
directory. The command can be applied to either a running or a stopped server.

For a running server, the following information is also included:
v State of each OSGi bundle in the server
v Wiring information for each OSGi bundle in the server
v Component list that is managed by the Service Component Runtime (SCR) environment
v Detailed information of each component from SCR
v Configuration administration data of each OSGi bundle
v Information about registered OSGi services
v Runtime environment settings such as Java virtual machine (JVM), heap size, operating system, thread

information, and network status

The server javadump command is useful for diagnosing problems at the JVM level, such as hung threads,
deadlocks, excessive processing, excessive memory consumption, memory leaks, and defects in the virtual
machine. The command can be used only on a running server. Each dump type creates a file, but not all
dump types are supported by all virtual machines. See “server command options” on page 950. The
default directory for dump files is ${server.output.dir}. To set a different default directory, you must
use an IBM JVM and set the following environment variables:
v IBM_HEAPDUMPDIR

v IBM_COREDIR

v IBM_JAVACOREDIR

Procedure
1. Open a command line, then change directory to the wlp/bin directory.
2. Capture the status information by using one of the following command-line tools. If you do not

specify a server name, defaultServer is used.
v To create a snapshot of the server status, use server dump command.

– Distributed operating systems

IBM i

server dump server_name --archive=package_file_name.dump.zip --include=heap

where package_file_name.dump.zip is a file name that you choose. This file name can include a
full path name. If the full path is omitted, a compressed file called package_file_name.dump.zip
is created in default directory ${server.output.dir}.

The --include parameter is optional. You can request additional memory dump types. For example,
--include=heap option requests a heap dump; --include=thread,heap,system option requests a
thread dump, a heap dump, and a system dump.

v To create a snapshot of the JVM status, use server javadump command.

– Distributed operating systems

IBM i

server javadump server_name --include=heap

The --include parameter is optional. You can request additional memory dump types. For example,
--include=heap option requests a heap dump; --include=heap,system option requests a heap dump
and a system dump. The output files are created in the default directory ${server.output.dir}. To set
a different default directory, you must use an IBM JVM and set the IBM_HEAPDUMPDIR, IBM_COREDIR,
and IBM_JAVACOREDIR environment variables.

Chapter 5. Administering Liberty 961

|
|
|
|
|
|

|

|

|

|
|
|

Note: The resulting file is created by using UTF-8 encoding for entry names, so the tool that you use
to open the file must be able to use UTF-8 encoding for entry names. The jar command in a Java
SDK uses this format.

Results

If the specified server does not exist, the command does not succeed. If the specified server exists, a
result file is created that contains the status information of the server.

Packaging a Liberty server from the command line
From the command line, you can create a compressed file that contains a Liberty runtime environment,
the files in the shared resources directory, a specific server, and the applications that are embedded in the
server. You can also choose to exclude the runtime binary files from the compressed file.

About this task

The Liberty server is lightweight, and therefore you can easily package a server installation in a
compressed file. You can store this package, distribute it to colleagues, and then use it to deploy the
installation to a different location or to another machine, or even embed the installation in a product
distribution.

The server installation that you want to package cannot already be joined to a collective. You can only
package a stand-alone server.

Note: Distributed operating systems The resulting file is created by using UTF-8 encoding for entry names, so
the tool that you use to open the file must be able to use UTF-8 encoding for entry names. The jar
command in a Java SDK uses this format.

Procedure

To package a Liberty server from the command line, complete the following steps:
1. Open a command line, then change directory to the wlp/bin directory.
2. Stop the server.
3. Run the package command to create a package.

8.5.5.5

You can package the Liberty profile server or the runtime.

v Package the Liberty server.
The default archive format is .zip on all platforms apart from z/OS where it is .pax. You can also
generate a .jar archive.
If you do not specify a server name, defaultServer is used. If you do not specify the --archive
parameter, the value of server_name is used for package_file_name, and the compressed file is created
in the ${server.output.dir} directory.
Choose the correct command for your environment.

– Distributed operating systems

IBM i

Use this command to generate a .zip archive.
server package server_name --archive=package_file_name.zip --include=all

where package_file_name.zip is a file name that you choose. This file name can include a full
path name. If the full path is omitted, a compressed file called package_file_name.zip is created
in the ${server.output.dir} directory.

– Distributed operating systems

IBM i

Use this command to generate a .jar archive. The advantage of a .jar archive is that the scripts
in the bin directory keep their permissions, so they are executable when the package is installed.

962 WebSphere Application Server Liberty Core 8.5.5

|
|

server package server_name --archive=package_file_name.jar --include=all

where package_file_name.jar is a file name that you choose.
For more information about extraction options with this archive file, see “Java archive file
extraction options” on page 837.

You can also use the --include option with this command. For example, the --include=all option
packages the runtime binaries and the relevant files in the ${WLP_USER_DIR} directory; the
--include=usr option packages only relevant files in the ${WLP_USER_DIR} directory, effectively
excluding the runtime binaries from the compressed file.
The --include=usr option is not valid with an archive format of .jar.
If you use the --include=minify option, the server command packages only those parts of the
runtime environment, and files in the ${WLP_USER_DIR} directory, that are required to run the server.
This option significantly reduces the size of the resulting archive.
The parts of the runtime environment that are retained by the minify operation depend on the
features that are configured in the server that you are packaging. Only those features that are
required to run the server are retained, and the remaining features are removed. Therefore, you
cannot later enable a feature that has been removed. For example, if only the servlet-3.0 feature is
retained, you cannot later enable the jpa-2.0 feature.
You can repeat the minify operation to further reduce the size of the archive if the configuration is
changed. There is, however, no reverse operation for the minify operation, so if you later require
one or more features that have been removed, you must begin again with a complete Liberty
server.
While the minify operation is running, the server is temporarily started, and you see the associated
messages. For this reason, you cannot use the --include=minify option with a server that is not
able to be started, but you can package it with the --include=all or --include=usr options.
You can specify the operating systems that you want the packaged server to support by using the
--os option with the --include=minify option.
For example, to package a server with z/OS support removed, use the following command:
server package --archive="nozos.zip" --include=minify --os=-z/OS

To package a server with OS/400 support retained, but z/OS support removed, use the following
command:
server package --archive="small.zip" --include=minify --os=OS/400,-z/OS

To package a server that supports only Linux, use the following command:
server package --archive="linux.zip" --include=minify --os=Linux

v 8.5.5.5 Package the Liberty runtime.
Create a runtime archive that contains the wlp directory, but does not contain the usr directory. The
naming convention for a server package is package_name.zip; for example, CustomerPortalApp.zip.
To create a runtime archive, run the package command without a server name and with the
--include=wlp option:
server package --include=wlp

To specify a package file name and target location, add the --archive=package_path_name option;
for example:
server package --include=wlp --archive=c:\temp\myPackage.zip

If you do not specify a valid package name or target location with the --archive option, then the
command creates the wlp.zip runtime archive in the $WLP_OUTPUT_DIR location, which is the
${wlp.install.dir}/usr/servers directory by default. The target location must exist before running
the command. Thus, if the target location is c:\temp, the C:\temp directory must exist and have
write permission for the command to write the archive to the C:\temp directory.

Running a Liberty server from a JAR file
8.5.5.9

Chapter 5. Administering Liberty 963

|

You can start a Liberty server from a Java archive (JAR) file. This method provides a compact, portable
way of starting a Liberty server. You create the JAR file by using the Liberty server command and then
run as an executable JAR file by using the java -jar command.

Create the runnable JAR file

You can specify minify to get the smallest archive possible. You must specify a JAR type archive to get a
runnable JAR file. The default archive type is .zip on all platforms except z/OS, where the only
supported type is pax. For example:
server package <server name> --include=[minify,]runnable --archive=<jar file name>.jar

Run the JAR file

Run the JAR file by using the standard java command with the –jar option, for example:
java –jar <jar file name>.jar

Operation

When the JAR file runs, it gets extracted to a temporary location and then the server runs in the
foreground, started by the Liberty server run command. All output is written to stdout or stderr. By
default, files are extracted to temporary locations:
v For Windows: %HOMEPATH%/wlpExtract/<jar file name>_nnnnnnnnnnnnnnnnnnn
v For all other platforms: $HOME/wlpExtract/<jar file name>_nnnnnnnnnnnnnnnnnnn

You can control the output location by using the WLP_JAR_EXTRACT_ROOT or WLP_JAR_EXTRACT_DIR
environment variable.

Stopping the server

To stop the Liberty server press Ctlr-C. When the Liberty server stops, the extraction directory is
automatically deleted. If you stop the active shell in any other way, the extraction directory is not cleaned
up automatically, you must clean it up manually.

Run in debug mode

You can run the Liberty server in debug mode if you set the environment variable WLP_JAR_DEBUG before
you start the server.

Controlling output

By default, server output is written to the extraction directory, which is deleted when the server stops. If
you want to save the output, specify a durable output location by using the WLP_OUTPUT_DIR environment
variable before you start the server.

Two-phase commit transactions

By default, two-phase commit commit transactions are disabled because the transaction logs are in the
expansion directory and are deleted when the Liberty server is stopped. Therefore, transaction recovery is
not possible.

To enable two-phase commit, configure the transaction log to be in a durable location in the file system
or an RDBMS and set the WLP_JAR_ENABLE_2PC environment variable.

To configure the transaction log, use either the transactionLogDirectory or dataSourceRef attribute on
the transaction element in your server.xml configuration.

964 WebSphere Application Server Liberty Core 8.5.5

Running under CYGWIN

Running a Liberty server JAR file in a CYGWIN shell has two requirements:
1. Specify the WLP_JAR_CYGWIN environment variable.

This variable causes the Liberty server JAR runner to do UNIX-style file and process handling when it
is running in the CYGWIN environment.

2. Run under the bash shell, not mintty.
Automatic extraction file deletion occurs only when you run under the bash shell. You can run under
mintty, but you must delete the extraction files manually. Mintty does not forward the necessary
signal that is required to trigger Java shutdown hooks.

Environment variable reference

Table 78. The environment variable names and their definitions

Environment variable name Description

WLP_JAR_EXTRACT_ROOT Extracts JAR file to directory ${WLP_JAR_EXTRACT_ROOT}/
<jar file name>_nnnnnnnnnnnnnnnnnnn

WLP_JAR_EXTRACT_DIR Extracts JAR file to directory ${WLP_JAR_EXTRACT_DIR}.

WLP_OUTPUT_DIR Writes Liberty server output files to directory
${WLP_OUTPUT_DIR}.

WLP_JAR_DEBUG Runs Liberty server by using server debug <server
name> instead of server run <server name>.

WLP_JAR_ENABLE_2PC Set to value true to enable 2PC when the runnable JAR
file runs.

WLP_JAR_CYGWIN Set to value true if you are running the JAR file under
CYGWIN.

Starting and stopping a server from the command line
You can use the server tasks to start or stop a server.

About this task

The wlp/bin directory contains a script called server to help with controlling the server process. The
syntax of this script is as follows:
server action serverName [options]

For available values of [options], see “server command options” on page 950.

Note: If a server is not specified on the command line, the action is performed against the default server
instance, defaultServer, if it exists.

Procedure
v Use the following command to start the server:

server start serverName

where serverName is the name of the server.
v Use the following command to stop the server:

server stop serverName

where serverName is the name of the server.

Chapter 5. Administering Liberty 965

Note: Normal server stop includes a quiesce stage before the server is shutdown. The quiesce stage, a
period of 30 seconds, allows for services to perform pre-shutdown work, for example, stopping
inbound listeners while allowing existing requests to complete. Applying the --force option to the
stop command will skip the quiesce stage. The --force option will have no effect if server stop was
already invoked. If you use the --force option, you may see unexpected exceptions in the
messages.log file that occur after the server stop command was received by the server.

Example

To start or stop a server by using the server script on Windows systems:
server.bat start serverName

server.bat stop serverName

To start or stop a server by using the server script on other systems:
server start serverName

server stop serverName

Starting and stopping a Liberty server as a Windows service
Windows

You can optionally register the Liberty server as a Microsoft Windows Service program when you run on
Windows operating systems. You can manually start, stop, and unregister the Liberty server as a
Windows service. You can also use the Microsoft Windows Services program to change Liberty to start
automatically as a Windows service when the Windows server starts.

Before you begin

Set the JAVA_HOME environment variable before you run the following commands. You can use the
server.env file path to set the JAVA_HOME value reliably. For more information about using the
server.env file, see “Customizing the Liberty environment” on page 947.

About this task

The commands to register, start, stop, and unregister Liberty as a Windows service use the same
server.bat file that is used when you start the Liberty server from the command line. For available values
of [options], see “server command options” on page 950.

Procedure
v Use the following command to register the server:

server registerWinService serverName

where serverName is the name of the server.
The Windows service name and Windows service display name is the serverName. After you register,
you can find and administer the Liberty server as a service by using regedit from the Windows
Registry program. Entries for the service in the registry are in the following locations:
HKEY_LOCAL_MACHINE->SOFTWARE->Wow6432Node->Apache Software Foundation->Procrun 2.0->serverName
HKEY_LOCAL_MACHINE->SYSTEM->CurrentControlSet->services->serverName

v Use the following command to start the server:
server startWinService serverName [options]

where serverName is the name of the server.
v Use the following command to stop the server:

server stopWinService serverName

966 WebSphere Application Server Liberty Core 8.5.5

where serverName is the name of the server.
v Use the following command to unregister the server:

server unregisterWinService serverName

where serverName is the name of the server.

What to do next

When you install a fix pack by using archives, the directory under which the fix pack is installed can
change from the directory where the Liberty server was running before you installed the fix pack. If you
are running a Liberty server as a Windows service, then unregister that Liberty server as a Windows
service before you install the fix pack. After you install the fix pack, register the Liberty server as a
Windows service again.

If you need to manually remove Liberty as a Windows service, then update the Windows registry by
using the Windows regedit program. The two entries that need to be removed from the Windows
Registry are in the following locations:
HKEY_LOCAL_MACHINE->SOFTWARE->Wow6432Node->Apache Software Foundation->Procrun 2.0->serverName
HKEY_LOCAL_MACHINE->SYSTEM->CurrentControlSet->services->serverName

Using Ant to automate tasks for Liberty
Apache Ant is a Java library tool for automating the build process. You can use Ant tasks that are
provided by Liberty to manage the server and applications.

Before you begin

Important: The wlp-anttasks.jar file that is included with Liberty is planned to be removed. For more
information, see Removal notices. An open source Ant plug-in with more tasks for Liberty is available.
The more recent Ant plug-in has a different antlib namespace, xmlns:wlp="antlib:net.wasdev.wlp.ant.
For more information about the open source Ant plug-in for Liberty, see the GitHub repository.

The Liberty Ant plug-in wlp-anttasks.jar files are located in Maven Central. If you want to use these
tasks in your build script, you must make sure the plug-in is available on the Ant class path. Copy the
plug-in file wlp-anttasks.jar to the /lib directory of the Ant installation, and declare the antlib
namespace in the build.xml file. See the following example:
<project xmlns:wlp="antlib:net.wasdev.wlp.ant">
...

</project>

The namespace can be any string, provided you avoid name conflicts. After that, you must use the
namespace as a prefix of the Ant tasks for Liberty. For example, you must use wlp:server when calling
the server task.

About this task

You can create build scripts that use these Ant tasks to package, install, and test your application on
Liberty.

Using an OSGi console
Eclipse Equinox currently provides an OSGi console that you can use to aid with debugging. This console
is not available by default. You can enable this console in the OSGi framework that is running within
Liberty by using the osgiConsole-1.0 feature and by specifying a port to attach to.

Chapter 5. Administering Liberty 967

https://www.ibm.com/support/knowledgecenter/SSEQTP_liberty/com.ibm.websphere.wlp.doc/ae/rwlp_remfeat.html
https://github.com/WASdev/ci.ant#readme
https://search.maven.org/#search%7Cga%7C1%7Cnet.wasdev.wlp.ant

About this task

Liberty uses the Eclipse Equinox implementation of the OSGi core specification. Equinox currently
provides an OSGi console. To enable this console, you first allocate a specific port to it by setting the
osgi.console property in the bootstrap.properties file. Then you can use Telnet to connect to the
console on that port, and explore the OSGi framework.

Procedure
v Add the osgiConsole-1.0 Liberty feature to your server.xml file.

<feature>osgiConsole-1.0</feature>

v Allocate a specific port to the OSGi console.
You set the OSGi console port by specifying the osgi.console property. You set this property as a
bootstrap property in the bootstrap.properties file. See “Specifying Liberty bootstrap properties” on
page 897.
osgi.console=5471

The OSGi console is disabled when the osgi.console property is not set.
v Use Telnet to connect to the OSGi console port.

telnet localhost 5471

v Use the console to explore the framework.
The available commands vary, depending on the OSGi framework being used. Command-line help
provides enough information to get started.

Adding and removing Liberty features
Features are the units of functionality by which you control the pieces of the runtime environment that
are loaded into a particular server. To add or remove a Liberty feature, you add or remove an XML
snippet in the <feature> subelement of the server.xml configuration file. When you add or remove
Liberty features, the changes are applied dynamically.

Distributed operating systems

Before you begin

You can add and remove Liberty features as described in this topic, or as described in “Editing the
Liberty configuration by using developer tools” on page 938.

About this task

For a list of the main Liberty features, including the XML snippets that enable them, see “Liberty
features” on page 483.

Procedure

To add or remove Liberty features, complete the following steps:
1. Open the server.xml configuration file for editing.

Where path_to_liberty is the location you installed Liberty on your operating system, and server_name
is the name of your server.
You can do this using a text editor. By default, the path and file name for the configuration root
document file is path_to_liberty/wlp/usr/servers/server_name/server.xml. However, you can
change the path. See “Customizing the Liberty environment” on page 947.

2. Add or remove features in the configuration file.
The set of features is enclosed within the <featureManager> element, and each feature within the
<feature> subelement. For example:

968 WebSphere Application Server Liberty Core 8.5.5

<server>
<featureManager>
<feature>servlet-3.0</feature>
<feature>localConnector-1.0</feature>

</featureManager>
</server>

The matching of feature names is not case-sensitive; the following example is also a valid server
configuration:
<featureManager>

<feature>Servlet-3.0</feature>
<feature>localConnector-1.0</feature>

</featureManager>

3. Save the changes to the configuration file.

Results

Your changes are applied. If the server is running, the changes are applied dynamically.

Using include elements, variables, and Ref tags in configuration files
You can keep all your configuration settings in a single server.xml file, or you can use include elements
to consolidate configuration settings from separate files. You can use variables in the configuration to
avoid hardcoding values that might not be appropriate when the configuration is reused in different
environments. You can use Ref tags to refer to (and thereby reuse) existing code blocks that are defined
elsewhere in the configuration.

Procedure
v “Using include elements in configuration files”
v “Using variables in configuration files” on page 970
v “Using Ref tags in configuration files” on page 972

Using include elements in configuration files
You can keep all your configuration in a single server.xml file, or you can use include elements to
consolidate configurations from separate files to create the structure that is most useful to you.

About this task

It can be easier to maintain a complex configuration by splitting it across a set of files. For example:
v You might want to include a file that contains variables that are specific to the local host, so that your

main configuration can be used on multiple hosts.
v You might want to keep all of the configuration for a particular application in a separate file that can

be versioned with the application itself.

Example

This is the syntax for including a configuration file. You can set the optional attribute as true if you
want to skip the include file when it cannot be found :
<include optional="true" location="pathname/filename"/>
or
<include optional="true" location="url"/>

The following list shows the possible locations; they are searched in the order shown.
1. in a location specified relative to the parent file
2. in the server configuration directory

Chapter 5. Administering Liberty 969

3. in a location specified as an absolute path
4. on a web server

To ensure that your include configuration behaves predictably, you need to be aware of the following
processing rules for included configuration files:
v For singleton services such as logging, or application monitoring, entries are processed in the order

they appear in the file and later entries add to or override previous ones. This is also true for
configuration instances, for example an application or data source, where the configuration instances
have the same ID.

v Include statements can be placed anywhere within the <server /> element.
v Each included file must contain a <server /> element that matches the one in the parent configuration

file.
v Included files can nest other included files.
v Each included file is logically merged into the main configuration at the position that the <include />

statement occurs in the parent file.

In the following example, the primary server configuration file server.xml includes the contents of the
blogDS.xml configuration file, which is located in the shared configuration directory. The blogDS.xml file
contains a data source definition. This definition has been put in a separate configuration file so that it
can be included in several different server.xml files, and thereby used across multiple server instances.

Here is example code from the server.xml file:
<server>
<featureManager>
<feature>servlet-3.0</feature>
<feature>jdbc-4.0</feature>

</featureManager>
<application id="blog" location="blog.war" name="blog" type="war"/>
<include optional="true" location="${shared.config.dir}/blogDS.xml"/>

</server>

Here is the example code from the blogDS.xml file:
<server>
<dataSource id="blogDS" jndiName="jdbc/blogDS" jdbcDriverRef="derbyEmbedded">
<properties createDatabase="create" databaseName="C:/liberty/basics/derby/data/blogDB" />

</dataSource>
<jdbcDriver id="derbyEmbedded"/>
<library>
<fileset dir="C:/liberty/basics/derby" includes="derby.jar" />

</library>
</jdbcDriver>

</server>

Using variables in configuration files
You can use variables in the configuration to avoid hardcoding values that might not be appropriate
when the configuration is reused in different environments.

About this task

Variables can be defined by setting a property in any of the following places:
v in the server configuration file, or an included file
v in the bootstrap.properties file

The following predefined variables can be referenced:
v directory properties, see “Directory locations and properties” on page 894

970 WebSphere Application Server Liberty Core 8.5.5

v JVM system properties
v process environment variables

If the same variable is specified in multiple places, the precedence is as follows:
v variables in bootstrap.properties override the process environment variables
v variables in server.xml, or included XML files, override the variables in bootstrap.properties and

process environment variables

Best practice: Variables that are specific to a particular server, for example port numbers, are specified in
the bootstrap.properties file, allowing the server.xml to be shared across multiple servers while you
keep those values different in each server. Variables that are shared across a group of servers, for example
database configuration for a particular host, is better specified in an xml file that is included into the
parent configuration file.

Best practice: Variable names must begin with an alphabetic character, and must contain the following
characters only: alphabetic characters, numeric characters, and the "_" and "." characters.

Procedure
v Specify a variable in a configuration file.

The variable definition syntax is variable_name=value. If the value contains a path, it is normalized
during configuration processing by replacing repeated forward and backward slashes with a single
forward slash, unless the value starts with double forward or backward slashes, which remain
unchanged.

Best practice: If you need to set the value of a variable to contain repeated forward slashes, as are
sometimes used for JDBC driver connection URLs, break the value into two parts at the double slashes.
By placing the double forward slashes as the initial characters, normalization is avoided. For example,
to store the value "jdbc:db2://host_name.com", use two variables:
URL_PART_1="jdbc:db2:"
URL_PART_2="//host_name.com"

Variables that are defined in the configuration files are scoped to the configuration elements by which
they are used. For example, the following code fragment creates a variable that is called
updateTrigger_var to be used in applicationMonitor configuration elements:
<applicationMonitor updateTrigger_var="mbean" />

To create a variable that is used in a particular configuration instance (such as an application or
resource entry), you must also specify the instance identifier. For example: <httpEndpoint
id="defaultHttpEndpoint" HTTP_default_var="8889" />

v Specify a variable in the bootstrap.properties file.
Variables that are defined in the bootstrap.properties file are not scoped to particular configuration
elements. You enter the variables as key-value pairs. For example:
HTTP_default_var=8006

v Use a defined variable in the configuration.
The variable substitution syntax is ${variable_name}. Multiple variable values may be concatenated by
specifying ${variable_name1}${variable_name2}. For example, to use the HTTP_default_var variable,
add the following code fragment to the configuration file:
<httpEndpoint id="defaultHttpEndpoint"
httpPort="${HTTP_default_var}">
</httpEndpoint>

v Use variable element in the configuration
You can use the variable element to define a variable globally in the server configuration. If the same
variable is defined in an included file, it is overridden by the one in the server.xml file. For example,
to use the variable element, add the following code fragment to the configuration file:

Chapter 5. Administering Liberty 971

<variable name="HTTP_default_var" value="8889" />

v Use process environment variables in the configuration
Process environment variables are available if you use the env. configuration variable prefix, for
example:
<fileset dir="${env.LIBRARY_DIR}" includes="*.jar"/>

For more information about specifying environment variables, see “Customizing the Liberty
environment” on page 947.

v 8.5.5.4 Use variable expressions in configuration
For configuration variables, you can use a limited variable expression syntax with the format
${<operand><operator><operand>}. The description of the variable is as follows:

operand
Operands can either be long integer literals or the name of a variable that contains a long
integer value. Variable names must begin with an alphabetic character, and must contain the
following characters only: alphabetic characters, numeric characters, and the "_" and "."
characters.

operator
The available operators are as follows:
– + for addition
– - for subtraction
– * for multiplication
– / for division

If the expression cannot be parsed, a non-integer value is used, or an arithmetic error occurs,
then the behavior is undefined.

For example, if the HTTP_port_base variable is defined, a variable expression might be used to define
multiple httpEndpoints:
<httpEndpoint id="defaultHttpEndpoint" httpPort="${HTTP_port_base+0}"/>
<httpEndpoint id="httpEndpoint2" httpPort="${HTTP_port_base+1}"/>

v Override inheritable attributes in the configuration
You can override the default values of inheritable attributes in the configuration. The inheritable
attributes are listed on the **** MISSING FILE **** page with an Inherits type. For example, the
onError attribute is one of inheritable attributes. You can define a variable name for the onError
attribute globally by either setting it in the bootstrap.properties or server.xml file with a variable
element. If the same variable name is specified in both files, the value in the server.xml file is used. If
the attribute is not explicitly set in either of two files, it uses the default value. If an invalid value is set
to the inheritable attribute, the attribute value falls back to the global value defined in
bootstrap.properties or server.xml file or the default value if not defined at the global level.
Another example is logging properties in Liberty. See “Logging and Trace” on page 1461.

Using Ref tags in configuration files
You can define a common configuration element, then reuse that definition by referring to it (using a Ref
tag) from elsewhere in the configuration. Ref tags can be used in the same configuration file that contains
the element definition, or in an included configuration file.

About this task

Different approaches are used to specify relationships between the required configuration elements. For
example, the following data source definitions are all valid. The first uses no Ref tags, the second uses a
combination of direct element definition and Ref tags, and the third uses Ref tags only.

972 WebSphere Application Server Liberty Core 8.5.5

Example

Example 1: Using no Ref tags.
<dataSource id="blogDS" jndiName="jdbc/blogDS">
<properties createDatabase="create" databaseName="C:/liberty/basics/derby/data/blogDB"/>
<jdbcDriver>
<library>
<fileset dir="C:/liberty/basics/derby" includes="derby.jar"/>

</library>
</jdbcDriver>
<connectionManager maxPoolSize="10"/>

</dataSource>

Example 2: Combining direct element definition and Ref tags.
<dataSource id="blogDS" jndiName="jdbc/blogDS" connectionManagerRef="derbyPool">
<properties createDatabase="create" databaseName="C:/liberty/basics/derby/data/blogDB"/>
<jdbcDriver libaryRef="derbyLib"/>

</dataSource>

<connectionManager id="derbyPool" maxPoolSize="10"/>

<library id="derbyLib"/>
<fileset dir="C:/liberty/basics/derby" includes="derby.jar"/>

</library>

Example 3: Using Ref tags only (except for the properties element, which is only permitted as nested).
<dataSource id="blogDS" jndiName="jdbc/blogDS"

connectionManagerRef="derbyPool" jdbcDriverRef="derbyEmbedded">
<properties createDatabase="create" databaseName="C:/liberty/basics/derby/data/blogDB"/>

</dataSource>

<connectionManager id="derbyPool" maxPoolSize="10"/>

<jdbcDriver id="derbyEmbedded" libraryRef="derbyLib"/>

<library id="derbyLib" filesetRef="derbyFileset"/>

<fileset id="derbyFileset" dir="C:/liberty/basics/derby" includes="derby.jar"/>

Using the configuration dropins folder to specify server configuration
8.5.5.5

You can specify additional configuration files in the configDropins directory without specifying include
elements in the server.xml file.

Procedure
1. Create a configDropins directory under the usr/servers/server_name directory.
v usr/servers/server_name/configDropins/overrides

If you want to add configuration files to replace anything in the server.xml file of the server, create
a configDropins/overrides directory. For example, to change ports that are defined in the
server.xml, use a configDropins/overrides directory.

v usr/servers/server_name/configDropins/defaults

If you want the server.xml file to be the master configuration, but want to specify defaults for
elements that the server.xml does not define, create a configDropins/defaults directory. For
example, if you want developers to be able to provide configuration, but you want the server.xml
to be the master configuration and you do not want the server.xml changed, use a
configDropins/defaults directory.

Chapter 5. Administering Liberty 973

2. Place the server configuration files in either the configDropins/overrides or configDropins/defaults
directory.
Both directories are monitored for updates so that when you add, remove, or update configuration
files, the runtime configuration is updated dynamically.
If there are any conflicts, the following rules determine precedence:
v The configuration that is specified in the configDropins/overrides directory takes precedence over

the configuration in the server.xml file. Configuration specified in server.xml file takes precedence
over configuration that is specified in the configDropins/defaults directory.

v Configuration from files in both the configDropins/defaults and configDropins/overrides
directories take precedence over any default configuration that is specified by a feature.

v The configuration files in the dropins directory are processed in alphabetical order. A later
configuration overrides an earlier one. As an example, if configDropins/defaults contains a.xml,
b.xml and c.xml, the configuration from c.xml takes precedence over b.xml, and b.xml takes
precedence over a.xml.

Note: To maintain consistency across platforms, file names are converted to lower case before sorting
alphabetically. This means that if two files are specified in the same dropins directory that have the
same name except for case variations (such as extraConfig.xml and ExtraConfig.xml), the ordering
behavior is indeterminate.

3. Optional: Turn off configuration monitoring. See “Controlling dynamic updates” on page 975.

ID variables that refer to configuration files
8.5.5.6

The Liberty run time occasionally needs to refer to a configuration element from the server.xml file. This
action can occur in several ways, such as in the text of a message or in a file name.

The Liberty run time uses an xpath-style syntax to refer to configuration elements. The element type is
printed first, followed by brackets that contain the ID of the configuration element. If the configuration
element is nested inside another configuration element, the inner configuration element is preceded with
a forward slash separating the inner and outer elements.
v For example, the following databaseStore configuration element is referred to as

databaseStore[DBTaskStore] because the databaseStore is not nested and has an ID value of
DBTaskStore.
<server>

<databaseStore id="DBTaskStore">
...

</databaseStore>
</server>

v The following data source configuration element is referred to as databaseStore[DBTaskStore]/
dataSource[DataSource0] because the data source is nested underneath databaseStore, databaseStore
has an ID value of DBTaskStore, and data source has an ID value of DataSource0.
<server>

<databaseStore id="DBTaskStore">
<dataSource id="DataSource0">

...
</dataSource>

</databaseStore>
</server>

v In some cases, a configuration element does not have an ID. In this case, an ID is generated. For
example, the following data source configuration element might be referred to as
databaseStore[default-0]/dataSource[DataSource0] because the databaseStore does not define an ID.
<server>

<databaseStore>
<dataSource id="DataSource0">

974 WebSphere Application Server Liberty Core 8.5.5

...
</dataSource>

</databaseStore>
</server>

Controlling dynamic updates
There are three types of dynamic update that can be controlled through configuration: changing the
server configuration; adding and removing applications; updating installed applications. For all deployed
applications, you can configure whether application monitoring is enabled and how often to check for
updates to applications. For the “dropins” directory, you can also configure the name and location of the
directory and choose whether to deploy the applications that are in the directory.

About this task

By default, deployed applications are monitored for updates, and the updates are dynamically applied to
the running application. This applies both to applications that are deployed through configuration entries,
and those deployed from the “dropins” directory. You can change these default behaviors by setting the
config and applicationMonitor elements in the server.xml configuration file. You can use a text editor to
do this, or you can use the developer tools and select Configuration Admin Service or Application
Monitor in the server configuration design view.

See also the descriptions of the config and applicationMonitor elements in **** MISSING FILE ****.

The default settings for application monitoring are as follows:
<applicationMonitor updateTrigger="polled" pollingRate="500ms"

dropins="dropins" dropinsEnabled="true"/>

The default settings for configuration monitoring are as follows:
<config updateTrigger="polled" monitorInterval="500ms"/>

Notes:

v The updateTrigger property has three possible values:

polled The runtime environment scans the server.xml file for changes using the timing interval
specified by the monitorInterval property.

mbean
The runtime environment only looks for updates when prompted to do so through a call to an
MBean. This is the mode that is used by the developer tools to update the server.xml file,
unless you override it.

disabled
The updates are not dynamically applied.

v When you specify the pollingRate property or the monitorInterval property, you include the unit of
time after the number:
– ms (milliseconds)
– s (seconds)
– m (minutes)
– h (hours)

v The dropins property specifies the name of the directory used as the “dropins” directory.
v The dropinsEnabled property is a boolean property that determines whether the applications in the

“dropins” directory are deployed.

Procedure
v Configure dynamic changes to the server configuration.

Chapter 5. Administering Liberty 975

Changes to the server.xml file, or any files it includes, are detected by the runtime environment and
applied to the active configuration. You can disable this behavior by setting the config element in the
server.xml file:
<config updateTrigger="disabled"/>

You can also control dynamic updates to the server configuration through a provided mbean by setting
the config element in the server.xml file:
<config updateTrigger="mbean"/>

You can then use the FileNotificationMbean to notify the server which configuration file or files you
want to be dynamically reprocessed.

v Configure dynamic addition and removal of applications.
As described in Chapter 9, “Deploying applications in Liberty,” on page 1329, applications can be
dynamically added to and removed from the server runtime environment through two mechanisms:
– By adding or removing application entries in the server.xml file.

If you disable dynamic changes to the server configuration as described in the previous step, then
adding or removing application entries has no effect on a running server. Your changes are only
applied at the next server restart. The changes are picked up immediately, if you update application
entries using the developer tools.

– By moving application files into and out of the “dropins” directory.
This behavior can be controlled by setting the applicationMonitor element in the server.xml file.
For example, to disable dynamic installation of applications from the “dropins” location, create an
entry as follows:
<applicationMonitor dropinsEnabled="false"/>

v Configure dynamic updates to installed applications.
By default, if you add, remove or modify any files within a deployed application, or you replace the
whole application with an updated version, the previous version is automatically stopped and the new
version is started. This process applies for any deployed application, whether the application is in the
“dropins” directory or at a location defined in the server.xml file. You can control this behavior by
setting the applicationMonitor element in the server.xml file. For example, to disable dynamic update
of all applications, create an entry as follows:
<applicationMonitor updateTrigger="disabled"/>

v Configure the name and location of the “dropins” directory.
By default, the “dropins” directory is ${server.config.dir}/dropins. You can change this by setting
the applicationMonitor element in the server.xml file. For the location, you can use any known
variable, or a property in the bootstrap.properties file, or an absolute path, or a path relative to the
server directory. For example, both the following settings point to the same location:
<applicationMonitor dropins="${server.config.dir}/applications" />
<applicationMonitor dropins="applications" />

Restriction: For web service applications, if the service client and service provider are not in the same
application and the WSDL file in the service provider application is changed, you need to restart the
web service client application manually to avoid the WSDL definition cache issue.

Configuring class loaders and libraries for Java EE applications
By default, each application can access a set of provided APIs and its own internal classes and libraries.
You can override the default settings, and configure class loading for each application.

About this task

Each Java EE application has its own class loader in a running Liberty server. Liberty assumes some
default settings for all Java EE applications, so that they can access the supported specification APIs (for
example the servlet APIs if the servlet feature is enabled), and the IBM APIs. By default, each application

976 WebSphere Application Server Liberty Core 8.5.5

can access these provided APIs and access its own internal classes and libraries. If you have to override
the default settings and configure class loading for your application, complete one or more of the
following tasks.

Note: If you use configuration to override the default settings, you cannot deploy the application by
dropping it into the “dropins” directory.

Procedure
v “Using a Java library with a Java EE application”
v “Sharing a library across multiple Java EE applications”
v “Accessing third-party APIs from a Java EE application” on page 979
v “Removing access to third-party APIs for a Java EE application” on page 980
v “Overriding a provided API with an alternative version” on page 980
v “Providing global libraries for all Java EE applications” on page 978

Using a Java library with a Java EE application
One way of using Java libraries with an application is to include them in the application itself. This might
not always be desirable or appropriate, especially if the application is already packaged and does not
include the library.

About this task

In the following example, a library called Alexandria consists of two files:
v alexandria-scrolls.jar and
v commons-lang.jar

An application called Scholar, running on a server called Academy, needs access to this library.

Procedure
1. Create a mylib/Alexandria directory in the servers/Academy directory under the ${WLP_USER_DIR}

directory.
For example: wlp/usr/servers/Academy/mylib/Alexandria.

2. Copy the alexandria-scrolls.jar and commons-lang.jar files into the new folder.
3. Configure class loading for the application, so that the Alexandria library is loaded.

In the server.xml file, or an included file, add the following code:
<application id="scholar" name="Scholar" type="ear" location="scholar.ear">
<classloader>
<privateLibrary>
<fileset dir="${server.config.dir}/mylib/Alexandria" includes="*.jar" scanInterval="5s" />

</privateLibrary>
</classloader>

</application>

Note: The <privateLibrary> element can also take a filesetRef attribute with a comma-separated list
of <fileset> element IDs.

Sharing a library across multiple Java EE applications
Libraries can be shared across multiple Java EE applications. All the applications can use the same classes
at run time, or each application can use its own separate copy of those classes loaded from the same
location.

Chapter 5. Administering Liberty 977

About this task

In the following example, a library called Alexandria consists of two files:
v alexandria-scrolls.jar and
v commons-lang.jar

An application called Scholar and an application called Student are running on a server called Academy,
and both need access to this library.

Procedure
1. Create a mylib/Alexandria directory in the servers/Academy directory under the ${WLP_USER_DIR}

directory.
For example: wlp/usr/servers/Academy/mylib/Alexandria.

2. Copy the alexandria-scrolls.jar and commons-lang.jar files into the new folder.
3. Configure class loading for the application, so that the Alexandria library is loaded.

In the server.xml file, or an included file, define the library by adding the following code:
<library id="Alexandria">
<fileset dir="${server.config.dir}/mylib/Alexandria" includes="*.jar" scanInterval="5s" />

</library>

Note: The <library> element can also take a filesetRef attribute with a comma-separated list of
<fileset> element IDs.

4. Reference the library from the applications, so that both these applications share a single copy of the
library.
In the server.xml file, or an included file, add the following code:
<application id="scholar" name="Scholar" type="ear" location="scholar.ear">
<classloader commonLibraryRef="Alexandria" />

</application>

<application id="student" name="Student" type="ear" location="student.ear">
<classloader commonLibraryRef="Alexandria" />

</application>

Note: The <commonLibraryRef> element can take a comma-separated list of library IDs.
5. Optional: Configure another application to have its own set of classes loaded from the same JAR files.

For example, if another application called Spy needs its own copy of the classes, the same physical
files on disk can be used. In the server.xml file, or an included file, add the following code:
<application id="spy" name="Spy" type="war" location="spy.war">
<classloader privateLibraryRef="Alexandria" />

</application>

Note: The <privateLibraryRef> element can take a comma-separated list of library IDs.

Providing global libraries for all Java EE applications
You can provide global libraries that can be used by any Java EE application. You do this by putting the
JAR files for those libraries in a global library directory, then specifying use of global libraries in the class
loader configuration for each application. However, the global libraries cannot be used by other
applications, for example, by OSGi applications.

About this task

Under the user directory specified by using the environment variable WLP_USER_DIR, there are the
following locations in which you can place global libraries:
v ${shared.config.dir}/lib/global

978 WebSphere Application Server Liberty Core 8.5.5

v ${server.config.dir}/lib/global

If there are files present in these locations at the time an application is started, and that application does
not have a <classloader> element configured, the application uses these libraries. If a class loader
configuration is present, these libraries are not used unless the global library is explicitly referenced.

Attention: If you use global libraries, you are advised also to configure a <classloader> element for
every application. The servlet specification requires applications to share the global library class loader in
their class loader parent chain. This breaks the separation of class loaders for each application that is
otherwise possible. So, applications are more likely to have long-lasting effects on classes loaded in
Liberty and on each other, and class space consistency issues are more likely to arise between
applications, especially as features are added and removed from a running server. None of these
considerations apply for applications that specify a <classloader> element in their configuration, because
they maintain this separation.

Example

In the following example, an application called Scholar is configured to use a common library called
Alexandria, and also to use the global library.

In the server.xml file, or an included file, enable the global library for an application by adding the
following code:
<application id="" name="Scholar" type="ear" location="scholar.ear">
<classloader apiTypeVisibility="spec" commonLibraryRef="Alexandria, global" />

</application>

The settings for the global library can also be configured explicitly, as a library element with the special
ID global. For example:
<library id="global">
<fileset dir="/path/to/folder" includes="*.jar" />

</library>

Accessing third-party APIs from a Java EE application
By default, Java EE applications do not have access to the third-party APIs available in Liberty. To enable
this access, the application must be configured in the server.xml file, or an included file.

About this task

In the following example, an application that is called Scholar needs access to the third-party APIs that
are available in Liberty.

The application also uses a common library called Alexandria. This library is located in the
${server.config.dir}/mylib/Alexandria directory.

Avoid trouble: Third party APIs might not remain compatible after an upgrade. For more information,
see “Liberty externals support” on page 14.

Procedure
1. Configure class loading for the application, so that the application can access the third-party APIs.

The default value for the apiTypeVisibility attribute of the classloader element is
spec,ibm-api,api. Where spec represents public specification APIs available for both compile and run
time, ibm-api represents APIs available in Liberty, and api represents public APIs available for both
compile and run time. Including third-party in the apiTypeVisibility attribute of the classloader
element makes third party APIs available.
In the server.xml file, or an included file, configure the API type visibility by adding the following
code:

Chapter 5. Administering Liberty 979

<application id="scholar" name="Scholar" type="ear" location="scholar.ear">
<classloader apiTypeVisibility="spec, ibm-api, third-party" commonLibraryRef="Alexandria" />

</application>

2. Optional: If the application uses any common libraries, set those libraries to use the same API type
visibility setting.
In the server.xml file, or an included file, add the following code:
<library id="Alexandria" apiTypeVisibility="spec, ibm-api, third-party">
<fileset dir="${server.config.dir}/mylib/Alexandria" includes="*.jar" scanInterval="5s" />

</library>

Removing access to third-party APIs for a Java EE application
By default, Java EE applications do not have access to the third-party APIs available in Liberty. You can
also remove access explicitly in the server.xml file, or an included file.

About this task

In the following example, an application called Scholar has previously been configured to access
third-party APIs, as described in “Accessing third-party APIs from a Java EE application” on page 979.
You want to remove this access, and to make it explicit in the configuration that the application now uses
the default access setting.

The application also uses a common library called Alexandria. This library is in the
${server.config.dir}/mylib/Alexandria directory.

Procedure
1. Configure class loading for the application, to show that the application can no longer access the

third-party APIs.
In the server.xml file, or an included file, remove third-party from the set of values included for the
apiTypeVisibility attribute:
<application id="scholar" name="Scholar" type="ear" location="scholar.ear">
<classloader apiTypeVisibility="spec, ibm-api" commonLibraryRef="Alexandria" />

</application>

2. Optional: If the application uses any common libraries, set those libraries to use the same API type
visibility setting.
In the server.xml file, or an included file, add the following code:
<library id="Alexandria" apiTypeVisibility="spec, ibm-api">
<fileset dir="${server.config.dir}/mylib/Alexandria" includes="*.jar" scanInterval="5s" />

</library>

Overriding a provided API with an alternative version
If an application provides (or uses a library that provides) classes that are also available in Liberty, by
default the classes from Liberty are used. To change this so that the application uses the alternative
versions of these classes, the application must be configured in the server.xml file, or an included file.

About this task

If a web application includes classes that are also present in the server runtime environment, you might
want to control which copy of each of those classes is used by the application. For example, if different
versions of the classes are present in both the application and the server runtime environment, you must
ensure that the version packaged in the application is used.

By default, classes from the Liberty runtime environment are used by all Java EE applications. You can
override this behavior by using the class loader configuration delegation attribute. This configuration is
specific to a particular application, or to a shared library that can be selected for use by an application.

980 WebSphere Application Server Liberty Core 8.5.5

Example

In the following example, an application called Scholar needs to use classes that it provides (or that are
provided in a library that it uses), rather than using the copies of the classes that are available in Liberty.
v When the classes are packaged within the application, override the default parentFirst delegation

behavior with a classloader element in the server.xml configuration file or a file that it includes:
<application id="" name="Scholar" type="ear" location="scholar.ear">
<classloader delegation="parentLast" />

</application>

This tells the application class loader to look at the Liberty classes only after looking in the application
and its associated libraries for a class.

v When the classes are packaged in a shared library, add the delegation attribute to the classloader
element that configures the use of the shared library as follows:
<application id="" name="Scholar" type="ear" location="scholar.ear">
<classloader delegation="parentLast" commonLibraryRef="mySharedLib"/>

</application>

<library id="mySharedLib">
<fileset dir="${server.config.dir}/myLib" includes="*.jar" />

</library>

You can also use the privateLibraryRef attribute for private libraries in an application. See “Sharing a
library across multiple Java EE applications” on page 977.

Configuring libraries for OSGi applications
8.5.5.6

Each OSGi application can access a set of provided APIs and its own internal classes. Shared libraries can
also be configured to provide access to extra packages from shared libraries.

About this task

Each OSGi application has its own set of OSGi bundles in a running Liberty server. Each OSGi bundle
specifies the packages that it needs and the packages it provides for use by other OSGi bundles. Bundles
within an OSGi application can access any packages that are provided by other bundles within the same
OSGi application. Additionally, OSGi bundles within an OSGi application can access API packages
provided by the Liberty server. Shared libraries can also be used to provide API packages for use by
OSGi applications.

Libraries can be shared across multiple OSGi applications. All the applications, including Java EE
applications, can use the same classes at runtime that are provided by shared libraries.

Procedure
1. Create a mylib/osgi directory in the servers/defaultServer directory under ${WLP_USER_DIR}

directory. For example: wlp/usr/servers/defaultServer/mylib/osgi.
2. Copy the osgi-lib.jar and commons-lang.jar files into the new folder.
3. Configure the shared library for the application so that the library is loaded. In the server.xml file, or

an included file, define the library by adding the following code:
<library id="mylib">

<fileset dir="${server.config.dir}/mylib/osgi" includes="*.jar" scanInterval="5s">
</library>

Note: The library element can also take a filesetRef attribute with a comma-separated list of
fileset element IDs.

Chapter 5. Administering Liberty 981

4. Reference the library as an OSGi library so that OSGi applications can access the packages provided
by the library and share a single copy of the library. In the server.xml file, or an included file, add
the following code:
<osgiLibrary libraryRef="myLib"/>

5. Optional: Configure the list of packages to make them available for access from OSGi applications.
Packages that are contained in the shared library can be accessed by OSGi applications when the
library is configured by using the osgiLibrary element. Packages can also be listed to give more
control over what packages are accessible by OSGi applications. The package syntax uses the OSGi
Export-Package header syntax to define each package. To list the packages in the server.xmlfile, or an
included file, add the following code:
<osgiLibrary libraryRef="myLib">

<package>org.example.osgi.lib.pkg1; version=1.0</package>
<package>org.example.osgi.lib.pkg2; version=1.1</package>

</osgiLibrary>

Note: When no package elements are used, the library is scanned to find the packages that the library
provides. Each package that is discovered gets the default version of 0.0.0.

Configuring JPA for Liberty
8.5.5.6

About this task

Java Persistence API (JPA) 2.0 for WebSphere Application Server is built on the Apache OpenJPA 2.2.x
open source project.

Apache OpenJPA is a compliant implementation of the JPA 1.0 and 2.0 specifications. Using OpenJPA as a
base implementation, WebSphere Application Server employs extensions to provide more features and
utilities for WebSphere Application Server customers. Because JPA for WebSphere Application Server is
built from OpenJPA, all OpenJPA function, extensions, and configurations are unaffected by the
WebSphere Application Server extensions. You do not need to make changes to OpenJPA applications to
use these applications in WebSphere Application Server.

Java Persistence API (JPA) 2.1 for WebSphere Application Server is built on the EclipseLink open source
project. EclipseLink is the reference implementation for all version of the JPA specification. The provider
of JPA for this product is org.eclipse.persistence.jpa.PersistenceProvider.

Configuring JPA logging
8.5.5.6

Logging supports viewing, tracing, and troubleshooting the runtime behavior of an application. Each of
the JPA features provides different levels of logging for you to specify how detailed you want the logging
to be.

About this task

When using either the jpa-2.0 or jpa-2.1 features, you can configure logging to aid in troubleshooting.
Become familiar with the logging capabilities of these two features.

jpa-2.0

There are many supported jpa-2.0 trace specifications that can be configured through the Liberty
configuration. These trace strings can be used in conjunction with any other trace specifications.

Container-managed JPA applications

v JPA=all

982 WebSphere Application Server Liberty Core 8.5.5

Enables all JPA container trace and all OpenJPA tracing
v openjpa=all

Enables all OpenJPA tracing
v OpenJPA specific log channels

openjpa.jdbc.SQL=all

<server>
...
<logging traceSpecification="openjpa.jdbc.SQL=all"

traceFileName="trace.log"
maxFileSize="20"
maxFiles="10"
traceFormat="BASIC" />

</server>

Application managed JPA applications
When running a JPA application that is application managed, logging and tracing is
controlled by the OpenJPA runtime. All JPA tracing and logging must be configured
through OpenJPA persistence properties.
<persistence version="2.0">
<persistence-unit>

<properties>
<property name="openjpa.Log" value="openjpa.jdbc.SQL=trace"/>

</properties>
</persistence-unit>
</persistence>

Notable OpenJPA logging persistence properties
openjpa.ConnectionFactoryProperties=PrintParameters=true-- If true, SQL bind
parameters are included in exceptions and logs.

jpa-2.1

When the jpa-2.1 feature is enabled, all JPA logging and tracing is routed through the Liberty
loggers.

Supported trace strings

v JPA=all
Enables JPA container trace and all EclipseLink categories

v eclipselink=all
Enables all EclipseLink trace

v EclipseLink specific log categories
– sql, transaction, event, connection, query, cache, propagation, sequencing, ejb, dms,

metadata, weaver, properties, server
– ie: eclipselink.sql=All -- Enables EclipseLink SQL trace

<server>
...
<logging traceSpecification="eclipselink.sql=all"

traceFileName="trace.log"
maxFileSize="20"
maxFiles="10"
traceFormat="BASIC" />

</server>

Notable EclipseLink logging persistence properties
eclipselink.logging.parameters -- If true, SQL bind parameters are included in exceptions and
logs.

Chapter 5. Administering Liberty 983

Procedure

In the persistence unit definition in the persistence.xml file, specify the logging level depending on the
desired level of logging details that you want. Specify the eclipselink.logging.level property where the
value is the logging level. For the list of logging levels available, refer to the EclipseLink logging wiki
page. The following example will turn on all logging that is available.
<persistence-unit name="pu">

<properties>
<property name="eclipselink.logging.level" value="ALL"/>

...
</properties>

</persistence-unit>

Configuring the JPA 2.1 schema generator
8.5.5.6

In the jpa-2.0 feature, which is built on OpenJPA, you can generate data definition langugage (DDL) or
interact directly with the database to define table schemas based on the JPA entity definition by using the
SchemaMapper tool. In the jpa-2.1 feature, which is built on EclipseLink, you can use the new Schema
Generator feature added to the JPA 2.1 specification, which has similar functions to the OpenJPA
SchemaMapper.

About this task

If you need functions similar to the OpenJPA SchemaMapper, you can configure the Schema Generator
feature that is in the JPA 2.1 specification.

Procedure
1. In the persistence unit definition, within the persistence.xml file, specify the database action property

with the possible values of: none, create, drop, drop-and-create. Each value corresponds to the action
that is taken against the database. The following example causes the tables that correspond to the
entities specified in the persistence unit to be dropped and new tables are created in their place.
<persistence-unit name="pu">

<properties>
<property name="javax.persistence.schema-generation.database.action"

value="drop-and-create" />
...

</properties>
</persistence-unit>

2. Specify the script action property with the possible values of: none, create, drop, drop-and-create. If
any value other than none is specified, you must specify a target property as well. This means that if
the script action is create, which generates the create statements for the entity definition, you must
specify a corresponding create target property with a target file where the statements are written to.
<persistence-unit name="pu">

<properties>
<property name="javax.persistence.schema-generation.scripts.action"

value="drop-and-create" />
<property name="javax.persistence.schema-generation.scripts.create-target"

value="createTargetFile.ddl"/>
<property name="javax.persistence.schema-generation.scripts.drop-target"

value="sampleDrop.ddl"/>
...

</properties>
</persistence-unit>

Disabling the EclipseLink shared object cache
8.5.5.6

984 WebSphere Application Server Liberty Core 8.5.5

The EclipseLink shared object cache contains a subset of all objects that are read and persisted for the
persistence unit. The EclipseLink shared cache differs from the local EntityManager/L1/persistence
context cache. The shared cache exists during the persistence unit and is shared by all EntityManagers
and users of the persistence unit.

About this task

If you are migrating an existing application or running an environment where your application spans
multiple Java Virtual Machines (JVMs), you can disable the EclipseLink shared object cache.

Choose one of the following ways to disable the EclipseLink shared object cache.

Procedure
v Set the <shared-cache-mode>NONE</shared-cache-mode> property in the persistence.xml file.

<persistence-unit name="pu">
<shared-cache-mode>NONE</shared-cache-mode>
<properties>

...
</properties>

</persistence-unit>

v Set the eclipselink.cache.shared.default property to false in the persistence unit definition that is
found in the persistence.xml file.
<persistence-unit name="pu">

<properties>
<property name="eclipselink.cache.shared.default" value="false" />

...
</properties>

</persistence-unit>

Configuring a web server plug-in for Liberty
You can configure a web server plug-in to receive an HTTP request for dynamic resources. You can
forward the request to the Liberty server, which provides high-availability and workload balancing
through the web server plug-in.

Before you begin
1. Install a supported web server, such as the IBM HTTP Server that is included with IBM WebSphere

Application Server. See Installing IBM HTTP server for more information. The web server that is
provided with IBM i is already installed with product 5761-DG1 for IBM i V6R1, or 5770-DG1 for IBM
i V7R1. The IBM i web server is referred to as the IBM HTTP Server for IBM i. The HTTP Server that
is provided with WebSphere Application Server does not run on IBM i and is included for z/OS, V7
and V8.0. To download the V8.5 HTTP server, see IBM Ported Tools for z/OS .

2. Install the web server plug-ins and the WebSphere Customization Toolbox (WCT). To install the web
server plug-in, see Installing and configuring web server plug-ins.

IBM i

For IBM i, see Installing and configuring web server plug-ins.To install the WCT, see

Installing and using the WebSphere Customization Toolbox.

IBM i

For IBM i and z/OS, install the WCT on your workstation. You do not need to install any

of the WCT tools. The Java SDK installed with the WCT is used to run the JConsole Java utility in a
later step.

About this task

A web server plug-in is used to forward HTTP requests from a supported web server to one or more
application servers. The plug-in checks the request against configuration data in the plugin-cfg.xml file.
The configuration data maps the URI for the HTTP request to the host name of an application server. The
web server plug-in then uses this information to forward the request to the application server.

Chapter 5. Administering Liberty 985

http://www-03.ibm.com/systems/z/os/zos/features/unix/ported/ihs/ihsv85.html
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-mp&topic=tins_wct

The procedure applies to Liberty servers not in a collective.

Procedure
1. Configure the web server plug-in for your chosen web server by using the WCT.
v When prompted in WCT, choose the remote scenario and specify the host name that Liberty is

accessible on.
v Do not copy or run the generated configureWebserver script. This script is not required with

Liberty.

2. IBM i Configure your HTTP server to use the plugin-cfg.xml file.
Find the location of your current plugin-cfg.xml by finding the value that is specified for the
WebSpherePluginConfig directive at the end of the configuration file of the HTTP server. For example,
<IHS_ROOT>/conf/httpd.conf.
Enable the plug-in within the httpd.conf file of the web server by using the LoadModule phrase, and
specify the location of plugin-cfg.xml file by using the WebSpherePluginConfig phrase. For example:

v On Windows systems: Windows

LoadModule was_ap22_module "path/to/mod_was_ap22_http.dll"
WebSpherePluginConfig "C:\Program Files\IBM\HTTPServer\conf\plugin-cfg.xml"

v On other distributed systems: AIX Linux UNIX HP-UX Solaris

LoadModule was_ap22_module "path/to/mod_was_ap22_http.so"
WebSpherePluginConfig "/opt/IBM/HTTPServer/conf/plugin-cfg.xml"

IBM i For IBM i and z/OS, see Configuring IBM HTTP Server for instructions about enabling the
plug-in within the httpd.conf file.

3. Optional: If you want the web server plug-in to forward HTTP requests to more than one Liberty
server, repeat the previous steps for each additional server. Make sure that you consolidate all the
plug-in configurations into one plugin-cfg.xml file.
v You can use a pluginCfgMerge utility in the traditional server to merge multiple plugin-cfg.xml

files. See Configuring simple load balancing across multiple application server profiles.
v You can use a Plugin Merge command-line tool available on GitHub to merge individual

configuration files into a single merged-plugin-cfg.xml file.

Generating the plugin-cfg.xml file
This information can be used to generate the plugin-cfg.xml file for the web server, which is used to
forward HTTP requests from a supported web server to one or more application servers. The plug-in
takes a request and checks the request against configuration data in the plugin-cfg.xml file.

Before you begin

If an application programmatically modifies the session cookie configuration by using Servlet 3.0 APIs,
then the application must be initialized before you generate the plugin-cfg.xml file. Otherwise, the
AffinityCookie attribute that is defined for that application might be wrong. To avoid this problem, you
can set deferServletLoad to false, start the server, generate the plug-in, and then remove the
deferServletLoad attribute.

About this task

A web server plug-in is used to forward HTTP requests from a supported web server to one or more
application servers. The plug-in takes a request and checks the request against configuration data in the
plugin-cfg.xml file. The configuration data maps the URI for the HTTP request to the host name of an
application server. The web server plug-in then uses this information to forward the request to the
application server.

986 WebSphere Application Server Liberty Core 8.5.5

Procedure
1. Start the server that hosts your applications, and ensure that the localConnector-1.0 feature for IBMi

and z/OS platforms, or the restConnector-1.0 feature if you are configuring a plug-in for IBM i or
z/OS, and any other required features are included in the server configuration.
In the pluginConfiguration element of the server configuration file, you can specify the
webserverPort and webserverSecurePort attributes to forward requests from the web server. By
default, the value of webserverPort is 80 and the value of webserverSecurePort is 443. However, you
might want to change these settings. For example, for Linux and similar platforms, if you are a
non-root user, you must use port numbers greater than 1024.
For all configurable attributes of the pluginConfiguration element, see “Java Servlets 3.1” on page
545.
Here is an example of a server.xml server configuration file:
<server description="new server">
<featureManager>
<feature>localConnector-1.0</feature>
<feature>jsp-2.2</feature>

</featureManager>

<keyStore id="defaultKeyStore" password="{xor}PGY6bW4wOyw+" />

<httpEndpoint id="defaultHttpEndpoint"
host="*"
httpPort="9080">

<tcpOptions soReuseAddr="true" />
</httpEndpoint>

<pluginConfiguration webserverPort="80"
webserverSecurePort="443"
sslKeyringLocation="path/to/sslkeyring"
sslStashfileLocation="path/to/stashfile"
sslCertlabel="definedbyuser"/>

<application type="war" id="myapp" name="myapp" location="${server.config.dir}/apps/myapp.war" />
<application type="war" id="snoop" name="snoop" location="${server.config.dir}/apps/snoop.war" />
</server>

IBM i For IBM i and z/OS, include the restConnector-1.0 feature instead of the
localConnector-1.0 feature. For details, see Configuring secure JMX connection to Liberty.

IBM i

Here is an example of a server.xml server configuration file for IBM i and z/OS:

<server description="new server">

<!-- Enable features -->
<featureManager>

<feature>jsp-2.2</feature>
<feature>restConnector-1.0</feature>

</featureManager>

<keyStore id="defaultKeyStore" password="{xor}PGY6bW4wOyw+" />

<httpEndpoint id="defaultHttpEndpoint"
host="*"
httpPort="9080"
httpsPort="9443">

<tcpOptions soReuseAddr="true" />
</httpEndpoint>

<quickStartSecurity userName="testuser"
userPassword="security" />

<pluginConfiguration webserverPort="80"
webserverSecurePort="443"

Chapter 5. Administering Liberty 987

sslKeyringLocation="path/to/sslkeyring"
sslStashfileLocation="path/to/stashfile"
sslCertlabel="definedbyuser"/>

<application type="war" id="myapp" name="myapp" location="${server.config.dir}/apps/myapp.war" />
<application type="war" id="snoop" name="snoop" location="${server.config.dir}/apps/snoop.war" />
</server>

Note:

v If you configure the web server plug-in to use SSL, you must enable the ssl-1.0 Liberty feature of
Liberty.

v If the web server is using the default ports, you do not have to include the pluginConfiguration
element in the server.xml file.

v The keystore that is used by the web server plug-in must be a CMS keystore, which can be created
by using the Key Management (iKeyman) utility. You cannot use the JKS keystore that is created by
Liberty or traditional for the web server plug-in, though you must exchange signer certificates
between the web server plug-in keystore and the Liberty keystore.

v To configure the location of the plug-in log file, add the following code snippet to the server.xml
file within the pluginConfiguration element:
logDirLocation=“/path/to/log/file/”

2. Generate the plugin-cfg.xml file for your Liberty server and applications by calling the
WebSphere:name=com.ibm.ws.jmx.mbeans.generatePluginConfig MBean.
a. Using the same Java SDK as the server, run the jconsole Java utility in a command window.

For example, run the following command:
c:\java\bin\jconsole

The server process is listed in the choices that are waiting for connection.

IBM i

For IBM i and z/OS, run the jconsole Java utility from a command window by using

the Java SDK installed with the WCT on your workstation. For example, complete the following
steps:
1) Create directory C:\restClient on your workstation.
2) Copy ${wlp.install.dir}/clients/restConnector.jar to the C:\restClient directory on your

workstation.
3) Copy ${server.output.dir}/resources/security/key.jks to the C:\restClient directory on

your workstation.
4) In a command window, type SET JAVA_HOME=wct_root\java.

Note: Ensure that you temporarily modify wct_root\java\jre\lib\security\java.security by
commenting out the two lines that set the SSL socket factories to the WebSphere Application
Server SSL socket factories. This modification is documented in the Troubleshooting SSL
section of the troubleshooting tips topic.

5) From the same command window, run the jconsole Java utility.
For example, run the following command:
"%JAVA_HOME%"\bin\jconsole -J-Djava.class.path="%JAVA_HOME%"\lib\jconsole.jar;"%JAVA_HOME%"\lib\tools.jar;
C:\restClient\restConnector.jar -J-Djavax.net.ssl.trustStore=C:\restClient\key.jks
-J-Djavax.net.ssl.trustStorePassword=Liberty -J-Djavax.net.ssl.trustStoreType=jks

You might also need the following parameter:
-J-Dcom.ibm.ws.jmx.connector.client.disableURLHostnameVerification=true

b. Connect to your server then click the MBeans tab. IBM i After the jConsole starts, select
Remote Process, and enter the JMX service URL: service:jmx:rest://<host>:<port>/
IBMJMXConnectorREST. The port number is the HTTPS port. You must also provide the user name
and password.

988 WebSphere Application Server Liberty Core 8.5.5

c. Locate the com.ibm.ws.jmx.mbeans.generatePluginConfig MBean under the WebSphere domain.
d. Call the generateDefaultPluginConfig operation to generate the plugin-cfg.xml file, or call the

generatePluginConfig operation to customize installation root directory and server name before
you generate the plugin-cfg.xml file.

Here is an example of a plugin-cfg.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<Config ASDisableNagle="false" AcceptAllContent="false" AppServerPortPreference="HostHeader"

ChunkedResponse="false" FIPSEnable="false" IISDisableNagle="false"
IISPluginPriority="High" IgnoreDNSFailures="false" RefreshInterval="60"
ResponseChunkSize="64" SSLConsolidate="false" SSLPKCSDriver="REPLACE"
SSLPKCSPassword="REPLACE" TrustedProxyEnable="false" VHostMatchingCompat="false">

<Log LogLevel="Error" Name=".\logs\defaultServer\http_plugin.log"/>
<Property Name="ESIEnable" Value="true"/>
<Property Name="ESIMaxCacheSize" Value="1024"/>
<Property Name="ESIInvalidationMonitor" Value="false"/>
<Property Name="ESIEnableToPassCookies" Value="false"/>
<Property Name="PluginInstallRoot" Value="."/>
<VirtualHostGroup Name="default_host">

<VirtualHost Name="*:80"/>
<VirtualHost Name="*:443"/>
<VirtualHost Name="*:9080"/>

</VirtualHostGroup>
<ServerCluster CloneSeparatorChange="false" GetDWLMTable="false" IgnoreAffinityRequests="true"

LoadBalance="Round Robin" Name="defaultServer_default_node_Cluster"
PostBufferSize="64" PostSizeLimit="-1" RemoveSpecialHeaders="true"
RetryInterval="60">

<Server CloneID="b564bdc7-2c27-4a4b-ad37-9213c66e60d1" ConnectTimeout="0"
ExtendedHandshake="false" MaxConnections="-1" Name="default_node_defaultServer0"
ServerIOTimeout="900" WaitForContinue="false">

<Transport Hostname="somehost.example.com" Port="9080" Protocol="http"/>
</Server>

<PrimaryServers>
<Server Name="default_node_defaultServer0"/>
</PrimaryServers>

</ServerCluster>
<UriGroup Name="default_host_defaultServer_default_node_Cluster_URIs">

<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/myapp/*"/>
<Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid" Name="/snoop/*"/>

</UriGroup>
<Route ServerCluster="defaultServer_default_node_Cluster"

UriGroup="default_host_defaultServer_default_node_Cluster_URIs"
VirtualHostGroup="default_host"/>

</Config>

The plugin-cfg.xml file is generated in the ${server.output.dir} directory.

Note:

v You can use the jConsole utility with Liberty. However, any issues with the utility itself must be
reported to your Java SDK provider.

v The management interface for the WebSphere:name=com.ibm.ws.jmx.mbeans.generatePluginConfig
MBean is com.ibm.websphere.webcontainer.GeneratePluginConfigMBean.

3. Copy the plugin-cfg.xml file to the machine that hosts the web server. IBM i For IBM i, complete
the following steps:
a. Run the manageprofiles Qshell command to create an http profile. For example,

plugins_root/bin/manageprofiles -create -profileName http -templatePath http.
b. Copy the plugin-cfg.xml file to the config directory of the http profile that was created in substep

a, for example, plugin_profile_root/config/plugin-cfg.xml, and set the file permissions.

Chapter 5. Administering Liberty 989

c. Run the following command from a system command line to change the file authorities to the
required settings:
CHGAUT USER(QEJBSVR QTMHHTTP QNOTES) OBJ(’plugin_profile_root/config/plugin-cfg.xml’) DTAAUT(*RWX)

Configuring session persistence for Liberty
When session data must be maintained across a server restart or an unexpected server failure, you can
configure Liberty to persist the session data to a database. This configuration allows multiple servers to
share the same session data, and session data can be recovered in the event of a failover.

About this task

To configure one or more servers in Liberty to persist session data to a database, complete the following
steps.

Procedure
1. Define a shared session management configuration that you can reuse among all of your servers. You

must complete the following steps, as a minimum requirement:
a. Enable the sessionDatabase-1.0 feature.
b. Define a data source:

<dataSource id="SessionDS" ... />

c. Refer to the data source from the session database configuration.
<httpSessionDatabase id="SessionDB" dataSourceRef="SessionDS" ... />

d. Refer to the persistent storage location from the session management configuration.
<httpSession storageRef="SessionDB" ... />

Note: The storageRef attribute of the httpSession element and the id attribute of the
httpSessionDatabase element are not mandatory. If the sessionDatabase-1.0 feature is enabled and
the httpSessionDatabase element references a valid data source, session persistence is enabled even if
the storageRef attribute is not set.
See **** MISSING FILE **** for details about the httpSession and httpSessionDatabase elements.
For example, you can create a file named ${shared.config.dir}/httpSessionPersistence.xml as
follows:
<server description="Demonstrates HTTP Session Persistence Configuration">

<featureManager>
<feature>sessionDatabase-1.0</feature>
<feature>servlet-3.0</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint" host="*" httpPort="${httpPort}">
<tcpOptions soReuseAddr="true"/>

</httpEndpoint>

<fileset id="DerbyFiles" includes="*.jar" dir="${shared.resource.dir}/derby/client"/>
<library id="DerbyLib" filesetRef="DerbyFiles"/>
<jdbcDriver id="DerbyDriver" libraryRef="DerbyLib"/>
<dataSource id="SessionDS" jdbcDriverRef="DerbyDriver">

<properties.derby.client user="user1" password="password1"
databaseName="${shared.resource.dir}/databases/SessionDB"
createDatabase="create"/>

</dataSource>

<httpSessionDatabase id="SessionDB" dataSourceRef="SessionDS"/>
<httpSession storageRef="SessionDB" cloneId="${cloneId}"/>

990 WebSphere Application Server Liberty Core 8.5.5

<application id="test" name="test" type="ear" location="${shared.app.dir}/test.ear"/>

</server>

Note: When multiple servers are configured to persist session data to the same database, those
servers must share the same session management configuration. Any other configuration is not
supported. For example, it is not possible for one server to use a multi-row schema while another
server uses a single-row schema.
The HTTP server plugin uses the clone ID that is inserted into the response/request header to
maintain session affinity between requests. While the clone ID is normally unchanging, in Liberty, the
clone ID is generated when you start a server for the first time and it is regenerated if you start the
server with the --clean option. For production use, manually assigning a clone ID will ensure that
the ID is stable and that request affinity is correctly maintained. The clone ID must be unique for each
server and can be 8 to 9 alphanumeric characters in length and is specified in step 3.

2. Include the shared session management configuration in each of your servers. For example, create two
server.xml files for server instances named s1 and s2, as follows:
v ${wlp.user.dir}/servers/s1/server.xml

v ${wlp.user.dir}/servers/s2/server.xml

<server description="Example Server">
<include location="${shared.config.dir}/httpSessionPersistence.xml"/>

</server>

See “Using include elements in configuration files” on page 969.
3. Specify unique variables in the bootstrap.properties file of each server.
v ${wlp.user.dir}/servers/s1/bootstrap.properties

httpPort=9081
cloneId=s1

v ${wlp.user.dir}/servers/s2/bootstrap.properties

httpPort=9082
cloneId=s2

4. Create a table for session persistence before you start the servers.
v If you want to change the default row size, table name, or table space name, see **** MISSING

FILE **** for details about the httpSessionDatabase element.

v Distributed operating systems No additional action is required if your server is installed on one of the
distributed operating systems. The server automatically creates the table.

v If your server is using DB2 for session persistence, you can increase the page size to optimize
performance for writing large amounts of data to the database.

5. Synchronize the system clocks of all machines that host Liberty servers. If the system clocks are not
synchronized, session invalidation can occur prematurely

6. Optional: If required, integrate HTTP sessions and security in Liberty. By default, after a session is
created and accessed within a protected resource with security enabled, only the originating owner of
that session can access it. Session security (security integration) is enabled by default.

7. Optional: If required, Install and configure the web server plug-in to route requests to each of the
servers you configured. The session affinity is only maintained if your plug-in configuration specifies
clone IDs that match the clone IDs defined in the server configuration.

Configuring and deploying a basic JCA ResourceAdapter

You can configure and deploy a basic Java™ EE Connector Architecture (JCA) ConnectionFactory and
Resource Adapter.

Chapter 5. Administering Liberty 991

About this task

You can install a resource adapter and configure instances of the resources it provides. This task uses an
example resource adapter called ExampleRA.rar, which provides 3 types of resources: a connection factory
and two types of administered objects.

Procedure
1. Enable the JCA feature in your server.xml file. The server.xml file is found at [path_to_liberty\wlp\

usr\servers\server_name]

<server>
<featureManager>

<feature>jca-1.6</feature>
<feature>servlet-3.0</feature>

</featureManager>
</server>

2. Place the resource adapter RAR file (ExampleRA.rar) into the dropins folder of your server. If your
server is running, you will the following message in your console log indicating that the resource
adapter has been installed:
[AUDIT] J2CA7001I: Resource adapter ExampleRA installed in 1.306 seconds.

3. Inspect the deployment descriptor, annotations, and other documentation from the resource adapter to
identify which types of resources the adapter provides and the configuration properties that each
adapter accepts. The example resource adapter, ExampleRA.rar, has this information in the ra.xml
deployment descriptor. The ra.xml file is found at [path_to_ExampleRA\ExampleRA\META-INF.] The
deployment descriptor identifies 3 types of resources you can configure.
<connection-definition>
<managedconnectionfactory-class>com.ibm.example.jca.adapter.ManagedConnectionFactoryImpl</managedconnectionfactory-class>
<config-property>
<config-property-name>tableName</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>
<connectionfactory-interface>javax.resource.cci.ConnectionFactory</connectionfactory-interface>
...

</connection-definition>

<adminobject>
<adminobject-interface>javax.resource.cci.ConnectionSpec</adminobject-interface>
<adminobject-class>com.ibm.example.jca.adapter.ConnectionSpecImpl</adminobject-class>
<config-property>

<config-property-name>readOnly</config-property-name>
<config-property-type>java.lang.Boolean</config-property-type>
<config-property-value>false</config-property-value>

</config-property>
</adminobject>

<adminobject>
<adminobject-interface>javax.resource.cci.InteractionSpec</adminobject-interface>
<adminobject-class>com.ibm.example.jca.adapter.InteractionSpecImpl</adminobject-class>
<config-property>

<description>Function name. Supported values are: ADD, FIND, REMOVE</description>
<config-property-name>functionName</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>
</adminobject>

4. In the server.xml file, configure instances of the available resource types.
<server>

<featureManager>
<feature>jca-1.6</feature>
<feature>servlet-3.0</feature>

</featureManager>

<connectionFactory jndiName="eis/conFactory">

992 WebSphere Application Server Liberty Core 8.5.5

<properties.ExampleRA tableName="TABLE1"/>
</connectionFactory>

<adminObject jndiName="eis/conSpec">
<properties.ExampleRA.ConnectionSpec/>

</adminObject>

<adminObject jndiName="eis/iSpec_ADD">
<properties.ExampleRA.InteractionSpec functionName="ADD"/>

</adminObject>

<adminObject jndiName="eis/iSpec_FIND">
<properties.ExampleRA.InteractionSpec functionName="FIND"/>

</adminObject>

</server>

5. Use resource injection to access the resources in your servlet; for example:
@Resource(lookup = "eis/conFactory")
private ConnectionFactory conFactory;

@Resource(lookup = "eis/conSpec")
private ConnectionSpec conSpec;

@Resource(lookup = "eis/iSpec_ADD")
private InteractionSpec iSpec_ADD;

@Resource(lookup = "eis/iSpec_FIND")
private InteractionSpec iSpec_FIND;

...

MappedRecord input = conFactory.getRecordFactory().createMappedRecord("input");
input.put("city", "Rochester");
input.put("state", "Minnesota");
input.put("population", 106769);

Connection con = conFactory.getConnection(conSpec);
try {

Interaction interaction = con.createInteraction();
interaction.execute(iSpec_ADD, input);
interaction.close();

} finally {
con.close();

}

Note: You must enable the JNDI feature in the server.xml file if you want to look up the resources
from the namespace rather than using injection.

Overview of JCA configuration elements

The Java Platform, Enteprise Edition Connector Architecture (JCA) feature provides configuration
elements to define instances of connection factories, administered objects, and activation specifications,
and to associate these instances with an installed resource adapter. Each of the JCA configuration
elements consists of two basic parts, a top-level element and a subelement, both of which are required for
the configured instance.

A top-level element configures general capabilities that are provided by the Liberty server, such as JNDI
name, connection management, and container authentication. A subelement ties the instance to an installed
resource adapter and enables you to specify vendor-defined configuration properties.

Generic JCA pre-defined top-level configuration elements:

Chapter 5. Administering Liberty 993

v connectionFactory
v adminObject
v activationSpec

If the JMS feature is enabled, there are also pre-defined generic configuration elements for JMS:
v jmsConnectionFactory
v jmsQueueConnectionFactory
v jmsTopicConnectionFactory
v jmsDestination
v jmsQueue
v jmsTopic
v jmsActivationSpec

Subelements are generated from the resource adapter deployment descriptor and annotations when your
resource adapter is installed. You will not see any documentation of the available subelements in the
static documentation for available server configuration elements.

Use the following rules to generate the names of the server configuration subelements:
v If a resource adapter provides exactly one interface within one of the listed categories, such as

connectionFactory or adminObject, the subelement is: properties.<rar_identifier>
v If the interface name is unique without the package name, the subelement is:

properties.<rar_identifier>.<InterfaceName>

v If the implementation name is unique without the package name, the subelement is:
properties.<rar_identifier>.<ImplementationName>

v In other cases, the subelement name is
properties.<rar_identifier>.<fully.qualified.InterfaceName> or
properties.<rar_identifier>.<fully.qualified.ImplementationName>

The following examples illustrate the case where only one interface within each category is provided by a
resource adapter with identifier MyAdapter:
<connectionFactory jndiName="eis/cf1" containerAuthDataRef="auth1">
<properties.MyAdapter portNumber="1234" someVendorProperty="100"/>
</connectionFactory>

<connectionFactory jndiName="eis/cf2" containerAuthDataRef="auth2">
<properties.MyAdapter portNumber="1234" someVendorProperty="200"/>
</connectionFactory>

<jmsConnectionFactory jndiName="jms/cf">
<properties.MyAdapter serverName="localhost" anotherProperty="40"/>
</jmsConnectionFactory>

<jmsQueueConnectionFactory jndiName="jms/qcf">
<properties.MyAdapter serverName="localhost" vendorProp1="1"/>
</jmsQueueConnectionFactory>

<jmsTopicConnectionFactory jndiName="jms/tcf">
<properties.MyAdapter serverName="localhost" prop1="A" prop2="B"/>
</jmsTopicConnectionFactory>

<adminObject jndiName="eis/interactionSpec">
<properties.MyAdapter functionName="find" executionTimeout="5000"/>
</adminObject>

<jmsDestination jndiName="jms/destination1">
<properties.MyAdapter name="DEST1"/>
</jmsDestination>

<jmsQueue jndiName="jms/queue1">
<properties.MyAdapter queueName="QUEUE1"/>
</jmsQueue>

994 WebSphere Application Server Liberty Core 8.5.5

<jmsTopic id="topic1" jndiName="jms/topic1">
<properties.MyAdapter topicName="TOPIC1"/>

</jmsTopic>

<activationSpec id="app1/module1/MyMessageDrivenBean">
<properties.MyAdapter prop1="a" prop2="b" prop3="c"/>

</activationSpec>

<jmsActivationSpec id="app1/module1/MyJMSMessageDrivenBean">
<properties.MyAdapter destinationRef="topic1"/>

</jmsActivationSpec>

Configuring resource adapters:

You can configure resource adapters that comply with the Java EE Connector Architecture (JCA)
specification versions 1.6, 1.5, or 1.0.

About this task

You can install and configure a resource adapter and the various connection factories, administered
objects, and activation specifications as defined in the JCA specification.

Procedure

1. Update the server.xml file to add the jca-1.6 feature under the featureManager tag. The server.xml
file is found at [path_to_liberty\wlp\usr\servers\server_name]
<featureManager>
<feature>jca-1.6</feature>

</featureManager>

2. (Optional) Enable the following additional features based on the needs of your system:
v If your resource adapter provides JMS specification interfaces, enable the jms-1.1 feature.

<feature>jms-1.1</feature>

v If you want to look up connection factories and administered objects from your application, enable
the jndi-1.0 feature.
<feature>jndi-1.0</feature>

v If your resource adapter provides activation specifications for message driven beans, enable the
mdb-3.1 feature.
<feature>mdb-3.1</feature>

v If your resource adapter supports inbound security, enable the jcaInboundSecurity-1.0 feature.
<feature>jcaInboundSecurity-1.0</feature>

v If your resource adapter supports bean validation and you want your beans to be validated, you
can enable the beanValidation-1.0 feature.
<feature>beanValidation-1.0</feature>

3. Configure one or more resource adapters in the server. You can use one of the following methods to
configure the resource adapter.
v Configure a standalone resource adapter by editing theserver.xml file.

<resourceAdapter location="C:/adapters/MyAdapter.rar"/>

v Configure an embedded resource adapter by editing the server.xml file to install an application
that embeds one or more resource adapter modules. The following example assumes that the
app1.ear file contains one or more embedded RAR files:
<application location="C:/applications/app1.ear"/>

v Allow the server to automatically configure a standalone resource adapter by dropping the RAR file
in the server drop-ins folder.
wlp/usr/servers/your-server-name/dropins/MyDropinAdapter.rar

Chapter 5. Administering Liberty 995

v Allow the server to automatically configure an application containing one or more embedded
resource adapters by dropping the EAR file in the server drop-ins folder. The following example
assumes that the app2.ear file contains one or more embedded RAR files:
wlp/usr/servers/your-server-name/dropins/app2.ear

4. Start the application server. After the server is started, messages such as the following are displayed
in the console.log file:
[AUDIT] J2CA7001I: Resource adapter MyAdapter installed in 0.495 seconds.
[AUDIT] J2CA7001I: Resource adapter MyDropinAdapter installed in 0.311 seconds.
[AUDIT] J2CA7001I: Resource adapter app1.MyEmbeddedAdapter installed in 0.247 seconds.
[AUDIT] J2CA7001I: Resource adapter app2.anotherEmbeddedAdapter installed in 0.518 seconds.

Example

A unique identifier for a resource adapter is necessary to identify configured instances of connection
factories, administered objects, and activation specifications as being associated with an installed resource
adapter. For stand-alone resource adapters, the module name is used as the identifier. For resource
adapters embedded in applications, the combination of the application name plus the module name
(delimited by the period character) are used as the identifier.
v To specify properties for a stand-alone resource adapter using a properties.MyAdapter subelement that

includes the resource adapter identifier, MyAdapter:
<resourceAdapter location="C:/adapters/MyAdapter.rar">

<properties.MyAdapter logFile="${server.output.dir}/logs/myAdapter.log"/>
</resourceAdapter>

v To associate a connection factory with a stand-alone resource adapter using a properties.MyAdapter
subelement that includes the resource adapter identifier, MyAdapter:
<resourceAdapter location="C:/adapters/MyAdapter.rar"/>
<connectionFactory jndiName="eis/cf">
<properties.MyAdapter serverName="localhost" portNumber="1234"/>

</connectionFactory>

v To associate a connection factory with a resource adapter MyEmbeddedAdapter, which is enabled in
the app1 application, using a properties.app1.MyEmbeddedAdapter subelement:
<application location="C:/applications/app1.ear"/>
<connectionFactory jndiName="eis/cf">
<properties.app1.MyEmbeddedAdapter serverName="localhost" portNumber="1234"/>

</connectionFactory>

v In some cases, the module name is not sufficiently unique to serve as the identifier. This might happen,
for example, if you install two different versions of the same resource adapter. Alternately, the module
name might be unique, but undesirable for use in configuration because it is lengthy or contains
non-alphanumeric characters. You can override the resource adapter identifier by specifying the id
attribute.
The following example demonstrates how to override the identifier for stand-alone resource adapters:
<resourceAdapter id="MyAdapterV1" location="C:/adapters/version-1.0/MyAdapter.rar"/>
<resourceAdapter id="MyAdapterV2" location="C:/adapters/version-2.0/MyAdapter.rar"/>
<connectionFactory jndiName="eis/cf1">
<properties.MyAdapterV1 serverName="localhost" portNumber="1234"/>

</connectionFactory>
<connectionFactory jndiName="eis/cf2">
<properties.MyAdapterV2 serverName="localhost" portNumber="1234"/>

</connectionFactory>

v The following example demonstrates how to override the identifier for a resource adapter that is
embedded in an application. The example changes the identifier to MyEmbeddedRA:
<application location="C:/applications/app1.ear">
<resourceAdapter id="MyEmbeddedAdapter" alias="MyEmbeddedRA"/>

</application>
<connectionFactory jndiName="eis/cf">
<properties.app1.MyEmbeddedRA serverName="localhost" portNumber="1234"/>

</connectionFactory>

996 WebSphere Application Server Liberty Core 8.5.5

v To compute the module name for embedded resource adapters, the<module-name> entry in the resource
adapter deployment descriptor (ra.xml) takes precedence as the module name. For example, given the
following definition in ra.xml:
<connector ...>
<module-name>MyRARModule</module-name>

</connector>

the module name would be set to "MyRARModule".
If the module name is absent from the connector deployment descriptor, the short form of the URI
referring to the resource adapter module in the application deployment descriptor (application.xml) is
used. For example, given the following module definition in application.xml:
<module>
<connector>connectors/MyRARModule.rar</connector>

</module>

the module name would be computed as "MyRARModule".
If multiple resource adapters are embedded in an application and define the same <module-name>
value, the first one listed in application.xml uses that module name. The module names of the other
connectors with that same conflicting name are calculated from the full form of the URI with all /
(forward slash) characters converted to a period (.). For example, if two connectors were embedded in
an application both containing the following definition in ra.xml:
<connector ...>
<module-name>MyRARModule</module-name>

</connector>

and the following definitions in application.xml:
<module>
<connector>subfolder1/connector1.rar</connector>

</module>
<module>
<connector>subfolder2/connector2.rar</connector>

</module>

The module name for the first connector would be "MyRARModule" and the module name for the
second would be "subfolder2.connector2.rar"

Configuring JCA connection factories:

You can configure connection factories that comply with Java EE Connector Architecture (JCA)
specification.

About this task

You can configure one or more connection factory instances for connection factory types that are
provided by an installed resource adapter.

Note: To configure JCA support for the Liberty profile, you must edit the server.xml file using either the
Source view of the Server configuration editor of the WebSphere® Application Server Developer Tools for
Eclipse, or some other text editor. This topic assumes that a resource adapter with a unique identifier of
MyAdapter has already been configured in the server, see the documentation on configuring resource
adapters for further details. An end-to-end example of configuring a basic scenario is provided in the
following steps.

Note: Editing the properties sub-elements of the server configuration for connection factories,
administrative objects, activation specifications, and resource adapters in the Design view of WebSphere®

Development Tools (WDT) is not supported.

Procedure

1. Update the server.xml file to add the jca-1.6 feature under the featureManager tag.

Chapter 5. Administering Liberty 997

<featureManager>
<feature>jca-1.6</feature>
<feature>jndi-1.0</feature> <!-- Add the jndi feature to enable look up of connection factories and administered objects. -->
...

</featureManager>

2. Install a resource adapter. For example, update the server.xml file as follows:
<resourceAdapter location="C:/adapters/MyAdapter.rar"/>

3. Configure one or more connection factory instances. When you configure the connection factory
instances, you must supply a properties subelement, even if you do not want to override any
configuration properties, in order to associate the connectionFactory element with a connection factory
interface that is provided by a particular resource adapter. In the following example, the MyAdapter
resource adapter provides only one type of connection factory:
<connectionFactory jndiName="eis/cf1">
<properties.MyAdapter portNumber="1234" someVendorProperty="100"/>

</connectionFactory>

<connectionFactory jndiName="eis/cf2" containerAuthDataRef="auth2">
<connectionManager maxPoolSize="20" connectionTimeout="0"/>
<properties.MyAdapter portNumber="1234" someVendorProperty="200"/>

</connectionFactory>
<authData id="auth2" user="user2" password="{xor}Lz4sLCgwLTtt"/>

4. (Optional) If required, identify the available connection factory property subelement names.
v If a resource adapter provides exactly one connection factory interface, excluding any JMS

connection factories, the subelement is: properties.<rar_identifier>
v If the interface name is unique without the package name, the subelement name is:

properties.<rar_identifier>.<InterfaceName>

v If the implementation name is unique without the package name, the subelement name is:
properties.<rar_identifier>.<ImplementationName>

v In other cases, the subelement name is:
properties.<rar_identifier>.<fully.qualified.InterfaceName>

Example

Use the following example to learn how to configure resource adapters with two connection factories
with unique interface class names.

In the following snippet from a ra.xml file, the MyAdapter resource adapter provides two connection
factories with unique interface class names:
<connection-definition>

<config-property>
<config-property-name>ServerName</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>
<connectionfactory-interface>javax.resource.cci.ConnectionFactory</connectionfactory-interface>
<connectionfactory-impl-class>com.vendor.adapter.ConnectionFactoryImpl</connectionfactory-impl-class>
</connection-defintion>

<connection-definition>
<config-property>
<config-property-name>ServerName</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>
<connectionfactory-interface>javax.sql.DataSource</connectionfactory-interface>
<connectionfactory-impl-class>com.vendor.adapter.DataSourceImpl</connectionfactory-impl-class>
</connection-defintion>

The following is an example of a server configuration for this scenario:

998 WebSphere Application Server Liberty Core 8.5.5

<connectionFactory jndiName="eis/cf">
<properties.MyAdapter.ConnectionFactory serverName="localhost"/>

</connectionFactory>

<connectionFactory jndiName="jdbc/ds">
<properties.MyAdapter.DataSource serverName="localhost"/>

</connectionFactory>

Use the following example to learn how to configure resource adapters with two connection factories
with unique implementation class names.

In the following snippet from a ra.xml file, the MyAdapter resource adapter provides two connection
factories with unique implementation class names:
<connection-definition>

<config-property>
<config-property-name>ServerName</config-property-name>
<config-property-type>java.lang.String</config-property-type>
</config-property>
<connectionfactory-interface>javax.resource.cci.ConnectionFactory</connectionfactory-interface>
<connectionfactory-impl-class>com.vendor.adapter.ConnectionFactoryImpl</connectionfactory-impl-class>

</connection-defintion>

<connection-definition>
<config-property>
<config-property-name>ServerName</config-property-name>
<config-property-type>java.lang.String</config-property-type>
</config-property>
<connectionfactory-interface>com.vendor.adapter.ConnectionFactory</connectionfactory-interface>
<connectionfactory-impl-class>com.vendor.adapter.MyConnectionFactoryImpl</connectionfactory-impl-class>

</connection-defintion>

The following is an example of a server configuration for this scenario:
<connectionFactory jndiName="eis/cf1">
<properties.MyAdapter.ConnectionFactoryImpl serverName="localhost"/>

</connectionFactory>

<connectionFactory jndiName="eis/cf2">
<properties.MyAdapter.MyConnectionFactoryImpl serverName="localhost"/>

</connectionFactory>

Use the following example to learn how to configure resource adapters with two connection factories
where neither the simple interface nor implementation class names are unique.

In the following snippet from a ra.xml file, the MyAdapter resource adapter provides two connection
factories where neither the simple interface nor the implementation class names are unique:
<connection-definition>
<config-property>
<config-property-name>ServerName</config-property-name>
<config-property-type>java.lang.String</config-property-type>
</config-property>
<connectionfactory-interface>javax.resource.cci.ConnectionFactory</connectionfactory-interface>
<connectionfactory-impl-class>com.vendor.adapter.ConnectionFactoryImpl</connectionfactory-impl-class>

</connection-defintion>

<connection-definition>
<config-property>
<config-property-name>HostName</config-property-name>
<config-property-type>java.lang.String</config-property-type>
</config-property>
<connectionfactory-interface>com.vendor.adapter.custom.ConnectionFactory</connectionfactory-interface>
<connectionfactory-impl-class>com.vendor.adapter.custom.ConnectionFactoryImpl</connectionfactory-impl-class>

</connection-defintion>

Chapter 5. Administering Liberty 999

The following is an example of a server configuration for this scenario:
<connectionFactory jndiName="eis/cci-cf">
<properties.MyAdapter.javax.resource.cci.ConnectionFactory serverName="localhost"/>
</connectionFactory>

<connectionFactory jndiName="eis/custom-cf">
<properties.MyAdapter.com.vendor.adapter.custom.ConnectionFactory hostName="localhost"/>
</connectionFactory>

It is possible to override the suffixes of configuration element names. See the information about
customizing JCA configuration elements to learn how to override the suffixes of configuration element
names.

Configuring JCA administered objects:

You can configure administered objects that comply with the Java EE Connector Architecture (JCA)
specification.

About this task

You can configure one or more instances of administered objects that are provided by an installed
resource adapter.

Note: To configure JCA support for Liberty, you must edit the server.xml file using either the Source
view of the Server configuration editor of the WebSphere® Application Server Developer Tools for Eclipse,
or some other text editor. This topic assumes that a resource adapter with a unique identifier of
MyAdapter has already been configured in the server, see the documentation on configuring resource
adapters for further details. An end-to-end example of configuring a basic scenario is provided in the
following steps.

Note: Editing the properties sub-elements of the server configuration for connection factories,
administrative objects, activation specifications, and resource adapters in the Design view of WebSphere®

Development Tools (WDT) is not supported.

Procedure

1. Update the server.xml file to add the jca-1.6 feature under the featureManager tag.
<featureManager>
<feature>jca-1.6</feature>
<feature>jndi-1.0</feature> <!-- Add the jndi feature to enable look up of connection factories and administered objects. -->
...

</featureManager>

2. Install a resource adapter. For example, update the server.xml file as follows:
<resourceAdapter location="C:/adapters/MyAdapter.rar"/>

3. Configure one or more administered object instances. When you configure administered object
instances, you must supply a properties subelement, even if you do not want to override any
configuration properties, to associate the adminObject element with an administered object type that
is provided by a particular resource adapter. In the following example, the MyAdapter resource adapter
provides only one type of administered object:
<adminObject jndiName="eis/interactionSpec">
<properties.MyAdapter functionName="find" executionTimeout="5000"/>

</adminObject>

4. (Optional) If required, identify the available administered object property subelement names.
v If a resource adapter provides exactly one administered object interface excluding any JMS

destinations, queues and topics, the subelement name is: properties.<rar_identifier>

1000 WebSphere Application Server Liberty Core 8.5.5

v If the interface name is unique without the package name, the subelement name is:
properties.<rar_identifier>.<InterfaceName>

v If the implementation name is unique without the package name, the subelement name is:
properties.<rar_identifier>.<ImplementationName>

v If the combination of interface name and implementation name are unique without the package
name, the subelement name is: properties.<rar_identifier>.<InterfaceName>-
<ImplementationName>

v In other cases, the subelement name is:
properties.<rar_identifier>.<fully.qualified.InterfaceName>-
<fully.qualified.ImplementationName>

Example

Use the following example to learn how to configure resource adapters with two administered objects
with unique interface class names.

In the following snippet from a ra.xml file, the MyAdapter resource adapter provides two administered
objects with unique interface class names:
<adminobject>
<adminobject-interface>javax.resource.cci.ConnectionSpec</adminobject-interface>
<adminobject-class>com.vendor.adapter.ConnectionSpecImpl</adminobject-class>
<config-property>
<config-property-name>isolationLevel</config-property-name>
<config-property-type>java.lang.Integer</config-property-type>

</config-property>
...
</adminobject>

<adminobject>
<adminobject-interface>javax.resource.cci.InteractionSpec</adminobject-interface>
<adminobject-class>com.vendor.adapter.InteractionSpecImpl</adminobject-class>
<config-property>
<config-property-name>FunctionName</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>
...
</adminobject>

The following is an example of a server configuration for this scenario:
<adminObject jndiName="eis/connectionSpec">
<properties.MyAdapter.ConnectionSpec isolationLevel="4"/>

</adminObject>

<adminObject jndiName="eis/interactionSpec">
<properties.MyAdapter.InteractionSpec functionName="find"/>

</adminObject>

Use the following example to learn how to configure resource adapters with two administered objects
with unique implementation class names.

In the following snippet from a ra.xml file, the MyAdapter resource adapter provides two administered
objects with unique implementation class names:
<adminobject>
<adminobject-interface>javax.resource.cci.InteractionSpec</adminobject-interface>
<adminobject-class>com.vendor.adapter.FinderInteractionSpec</adminobject-class>
<config-property>
<config-property-name>ResultSetType</config-property-name>
<config-property-type>java.lang.Integer</config-property-type>

</config-property>
...

Chapter 5. Administering Liberty 1001

</adminobject>

<adminobject>
<adminobject-interface>javax.resource.cci.InteractionSpec</adminobject-interface>
<adminobject-class>com.vendor.adapter.UpdaterInteractionSpec</adminobject-class>
<config-property>
<config-property-name>ExecutionTimeout</config-property-name>
<config-property-type>java.lang.Long</config-property-type>
</config-property>
...
</adminobject>

The following is an example of a server configuration for this scenario:
<adminObject jndiName="eis/finder">
<properties.MyAdapter.FinderInteractionSpec resultSetType="1003"/>
</adminObject>

<adminObject jndiName="eis/updater">
<properties.MyAdapter.UpdaterInteractionSpec executionTimeout="3000"/>
</adminObject>

Use the following example to learn how to configure resource adapters with two administered objects
where neither the simple interface nor implementation class names are unique.

In the following snippet from a ra.xml file, the MyAdapter resource adapter provides two administered
objects where neither the simple interface nor the implementation class names are unique:
<adminobject>
<adminobject-interface>javax.resource.cci.InteractionSpec</adminobject-interface>
<adminobject-class>com.vendor.adapter.finder.InteractionSpecImpl</adminobject-class>
<config-property>
<config-property-name>ResultSetType</config-property-name>
<config-property-type>java.lang.Integer</config-property-type>
</config-property>
...
</adminobject>

<adminobject>
<adminobject-interface>javax.resource.cci.InteractionSpec</adminobject-interface>
<adminobject-class>com.vendor.adapter.updater.InteractionSpecImpl</adminobject-class>
<config-property>
<config-property-name>ExecutionTimeout</config-property-name>
<config-property-type>java.lang.Long</config-property-type>
</config-property>
...
</adminobject>

The following is an example of a server configuration for this scenario:
<adminObject jndiName="eis/finder">
<properties.MyAdapter.javax.resource.cci.InteractionSpec-com.vendor.adapter.finder.InteractionSpecImpl resultSetType="1003"/>
</adminObject>

<adminObject jndiName="eis/updater">
<properties.MyAdapter.javax.resource.cci.InteractionSpec-com.vendor.adapter.updater.InteractionSpecImpl executionTimeout="3000"/>
</adminObject>

It is possible to override the suffixes of configuration element names. See the information about
customizing JCA configuration elements to learn how to override the suffixes of configuration element
names.

1002 WebSphere Application Server Liberty Core 8.5.5

Configuring JCA activation specifications:

You can configure activation specifications that comply with the Java EE Connector Architecture (JCA)
specification.

About this task

You can configure one or more instances of activation specifications that are provided by an installed
resource adapter.

Note: To configure JCA support for Liberty, you must edit the server.xml file using either the Source
view of the Server configuration editor of the WebSphere® Application Server Developer Tools for Eclipse,
or some other text editor. This topic assumes that a resource adapter with a unique identifier of
MyAdapter has already been configured in the server, see the documentation on configuring resource
adapters for further details. An end-to-end example of configuring a basic scenario is provided in the
following steps.

Note: Editing the properties sub-elements of the server configuration for connection factories,
administrative objects, activation specifications, and resource adapters in the Design view of WebSphere®

Development Tools (WDT) is not supported.

Procedure

1. Update the server.xml file to add the jca-1.6 feature under the featureManager tag.
<featureManager>
<feature>jca-1.6</feature>
<feature>jndi-1.0</feature> <!-- Add the jndi feature to enable look up of connection factories and administered objects. -->
...

</featureManager>

2. Install a resource adapter. For example, update the server.xml file as follows:
<resourceAdapter location="C:/adapters/MyAdapter.rar"/>

3. Configure one or more activation specifications. When you configure activation specifications, you
must supply a properties subelement, even if you do not want to override any configuration
properties, to associate the activationSpec element with a message listener type that is provided by a
particular resource adapter. In the following example, the MyAdapter resource adapter provides only
one type of message listener:
<activationSpec id="app1/module1/MyMessageDrivenBean">
<properties.MyAdapter messageFilter="ALL"/>

</activationSpec>

4. If required, identify the available activation specification property subelement names.
v If a resource adapter provides exactly one message listener interface, excluding any JMS connection

factories, the subelement name is: properties.<rar_identifier>
v If the message listener interface name is unique without the package name, the subelement name

is:properties.<rar_identifier>.<MessageListenerInterfaceName>
v If the activation specification implementation name is unique without the package name, the

subelement name is:properties.<rar_identifier>.<ActivationSpecificationImplementationName>
v If the activation specification implementation name is unique without the package name, the

subelement name is:properties.<rar_identifier>.<ActivationSpecificationImplementationName>
v In other cases, the subelement name

is:properties.<rar_identifier>.<fully.qualified.MessageListenterInterfaceName>
5. See the documentation on deploying message-driven beans for information about how to associate the

activation specification with a message-driven bean.

Chapter 5. Administering Liberty 1003

Example

Use the following example to learn how to configure resource adapters with two message listener types
with unique interface class names.

In the following snippet from a ra.xml file, the MyAdapter resource adapter provides two message listener
types with unique interface class names:
<messagelistener>
<messagelistener-type>javax.resource.cci.MessageListener</messagelistener-type>
<activationspec>
<activationspec-class>com.vendor.adapter.CCIActivationSpec</activationspec-class>
<config-property>
<config-property-name>maxSize</config-property-name>
<config-property-type>java.lang.Long</config-property-type>

</config-property>
...
</activationspec>
...
</messagelistener>

<messagelistener>
<messagelistener-type>com.vendor.adapter.MyMessageListener</messagelistener-type>
<activationspec>
<activationspec-class>com.vendor.adapter.MyActivationSpec</activationspec-class>
<config-property>
<config-property-name>messageFilter</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>
...
</activationspec>
...
</messagelistener>

The following is an example of a server configuration for this scenario:
<activationSpec id="app1/module1/CCIMessageDrivenBean">
<properties.MyAdapter.MessageListener maxSize="1024"/>
</activationSpec>

<activationSpec id="app1/module1/MyMessageDrivenBean">
<properties.MyAdapter.MyMessageListener messageFilter="ALL"/>
</activationSpec>

Use the following example to learn how to configure resource adapters with two message listener types
with unique implementation class names

In the following snippet from a ra.xml file, the MyAdapter resource adapter provides two message listener
types with unique implementation class names:
<messagelistener>
<messagelistener-type>javax.resource.cci.MessageListener</messagelistener-type>
<activationspec>
<activationspec-class>com.vendor.adapter.CCIActivationSpec</activationspec-class>
<config-property>
<config-property-name>maxSize</config-property-name>
<config-property-type>java.lang.Long</config-property-type>

</config-property>
...
</activationspec>
...
</messagelistener>

<messagelistener>
<messagelistener-type>com.vendor.adapter.MessageListener</messagelistener-type>
<activationspec>

1004 WebSphere Application Server Liberty Core 8.5.5

<activationspec-class>com.vendor.adapter.MyActivationSpec</activationspec-class>
<config-property>
<config-property-name>messageFilter</config-property-name>
<config-property-type>java.lang.String</config-property-type>
</config-property>

...
</activationspec>
...
</messagelistener>

The following is an example of a server configuration for this scenario:
<activationSpec id="app1/module1/CCIMessageDrivenBean">
<properties.MyAdapter.CCIActivationSpec maxSize="1024"/>

</activationSpec>

<activationSpec id="app1/module1/MyMessageDrivenBean">
<properties.MyAdapter.MyActivationSpec messageFilter="ALL"/>

</activationSpec>

Use the following example to learn how to configure resource adapters with two message listener types
where neither the simple interface nor implementation class names are unique.

In the following snippet from a ra.xml file, the MyAdapter resource adapter provides two message listener
types where neither the simple interface nor the implementation class names are unique:
<messagelistener>
<messagelistener-type>javax.resource.cci.MessageListener</messagelistener-type>
<activationspec>
<activationspec-class>com.vendor.adapter.cci.ActivationSpec</activationspec-class>
<config-property>
<config-property-name>maxSize</config-property-name>
<config-property-type>java.lang.Long</config-property-type>
</config-property>

...
</activationspec>
...
</messagelistener>

<messagelistener>
<messagelistener-type>com.vendor.adapter.MessageListener</messagelistener-type>
<activationspec>
<activationspec-class>com.vendor.adapter.ActivationSpec</activationspec-class>
<config-property>
<config-property-name>messageFilter</config-property-name>
<config-property-type>java.lang.String</config-property-type>
</config-property>

...
</activationspec>
...
</messagelistener>

The following is an example of a server configuration for this scenario:
<activationSpec id="app1/module1/CCIMessageDrivenBean">
<properties.MyAdapter.javax.resource.cci.MessageListener maxSize="1024"/>

</activationSpec>

<activationSpec id="app1/module1/MyMessageDrivenBean">
<properties.MyAdapter.com.vendor.adapter.MessageListener messageFilter="ALL"/>

</activationSpec>

It is possible to override the suffixes of configuration element names. See the information about
customizing JCA configuration elements to learn how to override the suffixes of configuration element
names.

Chapter 5. Administering Liberty 1005

Configuring JMS connection factories:

You can configure JMS connection factories that are provided by resource adapters that comply with the
Java EE Connector Architecture (JCA) specification.

About this task

You can configure one or more JMS connection factory instances for JMS connection factory types that are
provided by an installed resource adapter.

Configuration elements are provided for the following types of JMS connection factories:
v javax.jms.ConnectionFactory: jmsConnectionFactory
v javax.jms.QueueConnectionFactory: jmsQueueConnectionFactory
v javax.jms.TopicConnectionFactory: jmsTopicConnectionFactory

Note:

To add JCA support for Liberty, you must edit the server.xml file using either the Source view of the
Server configuration editor of the WebSphere® Application Server Developer Tools for Eclipse, or some
other text editor. Editing portions of the configuration for connection factories, administrative objects,
activation specifications, and resource adapters in the Design view is not supported in the Beta.

Procedure

Configure one or more JMS connection factory instances. When you configure the connection factory
instances, you must supply a properties subelement, even if you do not want to override any
configuration properties, to associate the jmsConnectionFactory, jmsQueueConnectionFactory, or
jmsTopicConnectionFactory element with a connection factory interface that is provided by a particular
resource adapter. The properties subelement always follows the pattern properties.<rar_identifier> for
JMS connection factories. In the following example, the MyAdapter resource adapter provides only one
type of connection factory:
<jmsConnectionFactory jndiName="jms/cf" containerAuthDataRef="auth1">
<properties.MyAdapter serverName="localhost" anotherProperty="40"/>
</jmsConnectionFactory>
<authData id="auth1" user="user1" password="{xor}Lz4sLCgwLTtu"/>

<jmsQueueConnectionFactory jndiName="jms/qcf">
<connectionManager maxPoolSize="20" connectionTimeout="0"/>
<properties.MyAdapter serverName="localhost" vendorProp1="1"/>
</jmsQueueConnectionFactory>

<jmsTopicConnectionFactory jndiName="jms/tcf">
<properties.MyAdapter serverName="localhost" prop1="A" prop2="B"/>
</jmsTopicConnectionFactory>

Note: This topic assumes that a resource adapter with a unique identifier of MyAdapter has already been
configured in the server and that the jms-1.1 feature has been enabled. See topic “Configuring resource
adapters” on page 995 for further details.

Limitation: Editing the properties of the resource adapter configuration for connection factories,
administrative objects, activation specifications, and resource adapters in the Design view of WebSphere
Development Tools (WDT) is not supported.

1006 WebSphere Application Server Liberty Core 8.5.5

Configuring JMS destinations:

You can configure JMS destinations that are provided by resource adapters that comply with the Java EE
Connector Architecture (JCA) specification.

About this task

You can configure one or more instances of JMS destination, queue, or topic types that are provided by
an installed resource adapter.

Configuration elements are provided for the following types of JMS destinations:
v javax.jms.Destination: jmsDestination
v javax.jms.Queue: jmsQueue
v javax.jms.Topic: jmsTopic

Note:

To add JCA support for Liberty, you must edit the server.xml file using either the Source view of the
Server configuration editor of the WebSphere® Application Server Developer Tools for Eclipse, or some
other text editor. Editing portions of the configuration for connection factories, administrative objects,
activation specifications, and resource adapters in the Design view is not supported in the Beta.

Procedure

1. Configure one or more JMS destination, queue, or topic instances. When you configure the
destination instances, you must supply a properties subelement, even if you do not want to override
any configuration properties, to associate the jmsDestination, jmsQueue, or jmsTopic element with a
JMS destination interface that is provided by a particular resource adapter. In the following example,
the MyAdapter resource adapter provides only one type of JMS destination, one type of JMS queue,
and one type of JMS topic:
<jmsDestination jndiName="jms/destination1">
<properties.MyAdapter name="DEST1"/>

</jmsDestination>

<jmsQueue jndiName="jms/queue1">
<properties.MyAdapter queueName="QUEUE1"/>

</jmsQueue>

<jmsTopic id="topic1" jndiName="jms/topic1">
<properties.MyAdapter topicName="TOPIC1"/>

</jmsTopic>

2. (Optional) If required, identify the available destination, queue, and topic property subelement names.

Note: This topic assumes that a resource adapter with a unique identifier of MyAdapter has already
been configured in the server. See topic “Configuring resource adapters” on page 995 for further
details.
Limitation: Editing the properties of the resource adapter configuration for connection factories,
administrative objects, activation specifications, and resource adapters in the Design view of
WebSphere Development Tools (WDT) is not supported.
v If a resource adapter provides exactly one type of administered object with the

javax.jms.Destination interface, the subelement name is: properties.<rar_identifier>
v If the implementation name is unique without the package name the subelement name is:

properties.<rar_identifier>.<ImplementationName>

v In other cases, the subelement name is:
properties.<rar_identifier>.<fully.qualified.InterfaceName>

Chapter 5. Administering Liberty 1007

v If a resource adapter provides exactly one type of administered object with the javax.jms.Queue
interface, the subelement name is: properties.<rar_identifier>

v If the implementation name is unique without the package name, the subelement name is:
properties.<rar_identifier>.<ImplementationName>

v In other cases, the subelement name is:
properties.<rar_identifier>.<fully.qualified.InterfaceName>

v If a resource adapter provides exactly one type of administered object with the javax.jms.Topic
interface, the subelement name is:properties.<rar_identifier>

v If the implementation name is unique without the package name, the subelement name is:
properties.<rar_identifier>.<ImplementationName>

v In other cases, the subelement name is:
properties.<rar_identifier>.<fully.qualified.InterfaceName>

Example

Use the following example to learn how to configure resource adapters with two JMS destinations with
unique implementation class names

In the following snippet from a ra.xml file the MyAdapter resource adapter provides two JMS destinations
with unique implementation class names:
<adminobject>
<adminobject-interface>javax.jms.Destination</adminobject-interface>
<adminobject-class>com.vendor.adapter.QueueImpl</adminobject-class>
<config-property>
<config-property-name>queueName</config-property-name>
<config-property-type>java.lang.String</config-property-type>
</config-property>
...
</adminobject>

<adminobject>
<adminobject-interface>javax.jms.Destination</adminobject-interface>
<adminobject-class>com.vendor.adapter.TopicImpl</adminobject-class>
<config-property>
<config-property-name>topicName</config-property-name>
<config-property-type>java.lang.String</config-property-type>
</config-property>
...
</adminobject>

The following is an example of a server configuration for this scenario:
<jmsDestination jndiName="jms/destination1">
<properties.MyAdapter.QueueImpl queueName="D1"/>
</adminObject>

<jmsDestination jndiName="jms/destination2">
<properties.MyAdapter.TopicImpl topicName="D2"/>
</jmsDestination>

Use the following example to learn how to configure resource adapters with two administered objects
without implementation class names that are unique.

In the following snippet from a ra.xml file the MyAdapter resource adapter provides two administered
objects with non-unique implementation class names:
<adminobject>
<adminobject-interface>javax.jms.Queue</adminobject-interface>
<adminobject-class>com.vendor.adapter.QueueImpl</adminobject-class>
<config-property>
<config-property-name>queueName</config-property-name>

1008 WebSphere Application Server Liberty Core 8.5.5

<config-property-type>java.lang.String</config-property-type>
</config-property>
...
</adminobject>

<adminobject>
<adminobject-interface>javax.jms.Queue</adminobject-interface>
<adminobject-class>com.vendor.adapter.advanced.QueueImpl</adminobject-class>
<config-property>
<config-property-name>name</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>
...

</adminobject>

The following is an example of a server configuration for this scenario:
<jmsQueue jndiName="jms/myQueue">
<properties.MyAdapter.com.vendor.adapter.QueueImpl queueName="Q1"/>

</jmsQueue>

<jmsQueue jndiName="jms/myAdvancedQueue">
<properties.MyAdapter.com.vendor.adapter.advanced.QueueImpl name="Q1"/>

</jmsQueue>

In some scenarios, lengthy configuration element names might be undesirable. See the information about
customizing JCA configuration elements to learn how to override the suffixes of configuration element
names.

Configuring JMS activation specifications:

You can configure JMS activation specifications that are provided by resource adapters that comply with
the Java EE Connector Architecture (JCA) specification.

About this task

You can configure one or more JMS activation specification instances for JMS message listeners that are
provided by an installed resource adapter.

Note:

To add JCA support for Liberty, you must edit the server.xml file using either the Source view of the
Server configuration editor of the WebSphere® Application Server Developer Tools for Eclipse, or some
other text editor. Editing portions of the configuration for connection factories, administrative objects,
activation specifications, and resource adapters in the Design view is not supported in the Beta.

Procedure

Configure one or more JMS activation specification instances. When you configure the activation
specification instances, you must supply a properties subelement, even if you do not want to override
any configuration properties, to associate the jmsActivationSpec element with a JMS message listener that
is provided by a particular resource adapter. The properties subelement always follows the pattern
properties, <rar_identifier> for JMS activation specifications. The following example configures two
instances of JMS activation specifications:
<jmsActivationSpec id="app1/module1/MyJMSMessageDrivenBean">
<properties.MyAdapter destinationRef="topic1"/>

</jmsActivationSpec>

Chapter 5. Administering Liberty 1009

<jmsActivationSpec id="app1/module1/AnotherJMSMessageDrivenBean">
<containerAuthData user="user1" password="{xor}Lz4sLCgwLTtu"/>
<properties.MyAdapter destinationRef="queue1"/>
</jmsActivationSpec>

Note: This topic assumes that a resource adapter with a unique identifier of MyAdapter has already been
configured in the server and that the jms-1.1 and mdb-3.1 features have been enabled. See topic
“Configuring resource adapters” on page 995 for further details.
Limitation: Editing the properties of the resource adapter configuration for connection factories,
administrative objects, activation specifications, and resource adapters in the Design view of WebSphere
Development Tools (WDT) is not supported.

Customizing JCA configuration elements:

You can customize how JCA properties subelements are generated when installing a resource adapter.

About this task

When you install a stand-alone resource adapter or a resource adapter that is embedded in an
application, you can add one or more <customize> subelements under the <resourceAdapter> element to
choose the suffix that is used for the properties subelement for the specified interface or implementation
class. Customizing subelement enables you to avoid lengthy properties subelement names that might
otherwise be required for the configuration elements to have unique names.

Note:

To add JCA support for Liberty, you must edit the server.xml file using either the Source view of the
Server configuration editor of the WebSphere® Application Server Developer Tools for Eclipse, or some
other text editor. Editing portions of the configuration for connection factories, administrative objects,
activation specifications, and resource adapters in the Design view is not supported in the Beta.

Procedure

1. For a stand-alone resource adapter, start with the existing configuration that you want to customize.
For example, if a resource adapter MyAdapter provides two connection factories, where neither the
simple interface nor implementation class names are unique:
<featureManager>
<feature>jca-1.6</feature>
<feature>jndi-1.0</feature> <!-- Add the jndi feature to enable look up of connection factories and administered objects. -->
...

</featureManager>
<resourceAdapter location="C:/adapters/MyAdapter.rar"/>

<connectionFactory jndiName="eis/cci-cf">
<properties.MyAdapter.javax.resource.cci.ConnectionFactory serverName="localhost"/>

</connectionFactory>

<connectionFactory jndiName="eis/custom-cf">
<properties.MyAdapter.com.vendor.adapter.custom.ConnectionFactory hostName="localhost"/>

</connectionFactory>

2. Add customize subelements to the resourceAdapter to choose the suffixes for both of the connection
factory interfaces.
<featureManager>
<feature>jca-1.6</feature>
<feature>jndi-1.0</feature> <!-- Add the jndi feature to enable look up of connection factories and administered objects. -->
...

</featureManager>

<resourceAdapter location="C:/adapters/MyAdapter.rar">
<customize interface="javax.resource.cci.ConnectionFactory" suffix="cci"/>

1010 WebSphere Application Server Liberty Core 8.5.5

<customize interface="com.vendor.adapter.custom.ConnectionFactory" suffix="custom"/>
</resourceAdapter>

<connectionFactory jndiName="eis/cci-cf">
<properties.MyAdapter.cci serverName="localhost"/>

</connectionFactory>

<connectionFactory jndiName="eis/custom-cf">
<properties.MyAdapter.custom hostName="localhost"/>

</connectionFactory>

3. For a resource adapter that is embedded in an application, start with the existing configuration that
you want to customize. For example, assume that you have an application app1 with an embedded
resource adapter named MyAdapter as follows:
<featureManager>
<feature>jca-1.6</feature>
<feature>jndi-1.0</feature> <!-- Add the jndi feature to enable look up of connection factories and administered objects. -->
...

</featureManager>

<application name="app1" type="ear" location="C:/applications/app1.ear"/>

<adminObject jndiName="eis/interactionSpec-find">
<properties.app1.MyAdapter.javax.resource.cci.InteractionSpec-com.vendor.adapter.finder.InteractionSpecImpl resultSetType="1003"/>

</adminObject>

<adminObject jndiName="eis/interactionSpec-update">
<properties.app1.MyAdapter.com.vendor.adapter.InteractionSpec-com.vendor.adapter.updater.InteractionSpecImpl executionTimeout="3000"/>

</adminObject>

4. Specify a resourceAdapter element for the Resource Adapter Archive (RAR) module in the
application. Specify the id attribute to be the module name of the RAR module. Add customize
subelements to choose the suffixes for both of the administered objects that are based on the interface
or implementation class. In this example, only the implementation class is specified, which is
sufficient to identify the administered objects:
<featureManager>
<feature>jca-1.6</feature>
<feature>jndi-1.0</feature> <!-- Add the jndi feature to enable look up of connection factories and administered objects. -->
...

</featureManager>

<application name="app1" type="ear" location="C:/applications/app1.ear">
<resourceAdapter id="MyAdapter">
<customize implementation="com.vendor.adapter.finder.InteractionSpecImpl" suffix="finder"/>
<customize implementation="com.vendor.adapter.updater.InteractionSpecImpl" suffix="updater"/>

</resourceAdapter>
</application>

<adminObject jndiName="eis/interactionSpec-find">
<properties.app1.MyAdapter.finder resultSetType="1003"/>

</adminObject>

<adminObject jndiName="eis/interactionSpec-update">
<properties.app1.MyAdapter.updater executionTimeout="3000"/>

</adminObject>

Accessing stand-alone resource adapters from Java EE applications:

You can access stand-alone resource adapters from Java EE applications.

About this task

Stand-alone resource adapter classes and resources can be shared across multiple Java EE applications. By
default, Java EE applications have access to JCA spec API but do not have access to the vendor classes

Chapter 5. Administering Liberty 1011

and resources of stand-alone resource adapters. A prerequisite of enabling this access is that both the
resource adapter and the application must be configured in the server configuration.

In the following example, an application called Scholar and an application called Student are running on
a server called Academy. Both applications need access to a resource adapter called Socrates16, which is
provided in the socrates.rar file that is located in the C:/adapters/version-1.6 directory.

Procedure

1. Configure the stand-alone resource adapter.
In the server.xml file, configure the stand-alone resource adapter by adding the following code:
<resourceAdapter id="Socrates16" location="C:/adapters/version-1.6/socrates.rar" />

2. Reference the resource adapter from the applications so that both applications can access the classes
and resources that are provided in the resource adapter module.
In the server.xml file, set the classProviderRef attribute to the ID of the resource adapter within the
class loading configurations of the applications by adding the following code:
<application id="scholar" name="Scholar" type="ear" location="scholar.ear">
<classloader classProviderRef="Socrates16" />

</application>

<application id="student" name="Student" type="ear" location="student.ear">
<classloader classProviderRef="Socrates16" />

</application>

3. Optional: Configure the class loading of the stand-alone resource adapter to access third-party APIs.
By default, neither resource adapters nor Java applications can access third-party APIs. Whenever the
class loading configuration of an application requires access to third-party APIs and the application
requires access to a stand-alone resource adapter, configure the class loading of the resource adapter
to also access third-party APIs.
In the server.xml file, configure the apiTypeVisibility attribute of the class loading configuration of
the resource adapter to access third-party APIs by adding the following code:
<resourceAdapter id="Socrates16" location="C:/adapters/version-1.6/socrates.rar">
<classloader apiTypeVisibility="spec, ibm-api, api, third-party" />

<resourceAdapter/>

<application id="scholar" name="Scholar" type="ear" location="scholar.ear">
<classloader classProviderRef="Socrates16" apiTypeVisibility="spec, ibm-api, api, third-party" />

</application>

<application id="student" name="Student" type="ear"location="student.ear">
<classloader classProviderRef="Socrates16" apiTypeVisibility="spec, ibm-api, api, third-party" />

</application>

Configuring ManagedExecutorService instances
You can configure ManagedExecutorService instances to run asynchronous tasks with the specified thread
context. It is a best practice for Java EE applications to avoid directly managing their own threads;
therefore, the ManagedExecutorService extends the JSE ExecutorService to provide a way to launch
asynchronous tasks within an application server environment. You might also configure the
ManagedExecutorService to propagate various thread contexts that are relevant to Java EE applications to
the thread of the asynchronous task.

About this task

The ManagedExecutorService is available under the <concurrent-1.0> feature and enabled in the
server.xml file as follows:
<featureManager>
<feature>concurrent-1.0</feature>
</featureManager>

1012 WebSphere Application Server Liberty Core 8.5.5

Propagation of context to the thread of a task that is executed by the ManagedExecutorService is
managed by the context service. A default instance of the context service (DefaultContextService) is
created by the server and configured to propagate at least classloaderContext, jeeMetadataContext and
securityContext. This default context service instance is used if a ManagedExecutorService is created
without referring to a specific context service instance or configuring a context service instance directly
within. Refer to the Configuring thread context service instances topic for more information.

A default managed executor instance (DefaultManagedExecutorService) is available as
java:comp/DefaultManagedExecutorService and uses the default context service instance for thread
context capture and propagation.

Procedure

Example configuration in the server.xml file:
v Managed executor service instance that is registered in JNDI with the name concurrent/execSvc, and

that uses the default context service instance:
<managedExecutorService jndiName="concurrent/execSvc"/>

v Managed executor service instance with context service configured to propagate jeeMetadataContext
only:
<managedExecutorService jndiName="concurrent/execSvc1">
<contextService>
<jeeMetadataContext/>
</contextService>
</managedExecutorService>

v Managed executor service instance with classloaderContext and securityContext:
<managedExecutorService jndiName="concurrent/execSvc2">
<contextService>
<classloaderContext/>
<securityContext/>
</contextService>
</managedExecutorService>

v Thread context service that is shared by multiple managed executor service instances:
<contextService id="contextSvc1">
<jeeMetadataContext/>
</contextService>

<managedExecutorService jndiName="concurrent/execSvc3" contextServiceRef="contextSvc1"/>

<managedExecutorService jndiName="concurrent/execSvc4" contextServiceRef="contextSvc1"/>

v Thread context service that inherits from the previous example and is used by a managed executor
service instance:
<contextService id="contextSvc2" baseContextRef="contextSvc1">
<classloaderContext/>
</contextService>

<managedExecutorService jndiName="concurrent/execSvc5" contextServiceRef="contextSvc2"/>

v Managed executor service instance with zosWLMContext plus thread context propagation inherited from
the default context service instance:
<managedExecutorService jndiName="concurrent/execSvc6">
<contextService baseContextRef="DefaultContextService">
<zosWLMContext defaultTransactionClass="TRAN1"/>

</contextService>
</managedExecutorService>

Chapter 5. Administering Liberty 1013

Example

Managed executor serviced instances can be injected into application components (by using @Resource) or
looked up with resource environment references (resource-env-ref). Regardless of how the instance is
obtained, you can use it interchangeably as javax.enterprise.concurrent.ManagedExecutorService or its
java.util.concurrent.ExecutorSerivce superclass.
v Example that looks up the default managed executor:

ManagedExecutorService executor =
(ManagedExecutorService) new InitialContext().lookup(

"java:comp/DefaultManagedExecutorService");
executor.submit(doSomethingInParallel);

v Example that uses @Resource to inject as java.util.concurrent.ExecutorService:
@Resource(lookup="concurrent/execSvc1")
ExecutorService execSvc1;

...

// submit task to run
Future<Integer> future1 = execSvc1.submit(new Callable<Integer>() {
public Integer call() throws Exception {
// java:comp lookup is possible because <jeeMetadataContext> is configured
DataSource ds = (DataSource) new InitialContext().lookup("java:comp/env/jdbc/ds1");
... make updates to the database
return updateCount;
}
});
Future<Integer> future2 = execSvc1.submit(anotherTaskThatUpdatesADatabase);

numUpdatesCompleted = future1.get() + future2.get();

v Example that uses @Resource to inject as javax.enterprise.concurrent.ManagedExecutorService:
@Resource(lookup="concurrent/execSvc1")
ManagedExecutorService execSvc1;

...

// submit task to run
Future<Integer> future1 = execSvc1.submit(new Callable<Integer>() {
public Integer call() throws Exception {
// java:comp lookup is possible because <jeeMetadataContext> is configured
DataSource ds = (DataSource) new InitialContext().lookup("java:comp/env/jdbc/ds1");
... make updates to the database
return updateCount;
}
});
Future<Integer> future2 = execSvc1.submit(anotherTaskThatUpdatesADatabase);

numUpdatesCompleted = future1.get() + future2.get();

v Example <resource-env-ref> for java.util.concurrent.ExecutorService in the web.xml file:
<resource-env-ref>
<resource-env-ref-name>concurrent/execSvc2</resource-env-ref-name>
<resource-env-ref-type>java.util.concurrent.ExecutorService</resource-env-ref-type>
</resource-env-ref>

v Example <resource-env-ref> for javax.enterprise.concurrent.ManagedExecutorService in the web.xml
file:
<resource-env-ref>
<resource-env-ref-name>concurrent/execSvc2</resource-env-ref-name>
<resource-env-ref-type>javax.enterprise.concurrent.ManagedExecutorService</resource-env-ref-type>
</resource-env-ref>

v Example lookup that uses a resource environment reference:

1014 WebSphere Application Server Liberty Core 8.5.5

ExecutorService execSvc2 =
(ExecutorService) new InitialContext().lookup("java:comp/env/concurrent/execSvc2");

futures = execSvc2.invokeAll(Arrays.asList(task1, task2, task3));

v Example lookup that uses a resource environment reference and casts to ManagedExecutorService:
ManagedExecutorService execSvc2 =

(ManagedExecutorService) new InitialContext().lookup("java:comp/env/concurrent/execSvc2");

futures = execSvc2.invokeAll(Arrays.asList(task1, task2, task3));

Configuring thread context service instances
8.5.5.4

You can configure ContextService instances to capture a managed thread context and apply it to
invocations of specified interface methods on any thread.

About this task

It is a best practice for Java EE applications to avoid directly managing their own threads; therefore, the
ContextService provides a way to establish a previously captured thread context onto unmanaged
threads, as well as managed threads, overlaying any thread context that is in place.

A default thread context service instance (DefaultContextService) is created by the server and configured
to capture and propagate at least classloaderContext, jeeMetadataContext and securityContext. You can
configure thread context propagation to include the following types of thread context:

classloaderContext

Makes the thread context classloader of the submitter of the task available to the task.
8.5.5.4 If the context classloader is serialized, the classloader must be a thread context

classloader from the application. Classloader serialization for Web Application Bundles is not
currently supported.

jeeMetadataContext
Makes the namespace of the application component that submitted the task available to the task.

securityContext
8.5.5.4 You must enable the appSecurity-2.0 feature in the server.xml file to use this type of

thread context. Makes the caller subject and invocation subject of the submitter of the task
available to the task, and this is accomplished by logging in with the submitter's WSPrincipal
using JAAS login. For details on what information in the submitter's subject is not in the security
context, see the concurrent-1.0 feature restrictions.

Important: Additional thread context providers might be made available by features in stack products.
The optional baseContextRef attribute allows a context service instance to inherit from the context
configuration of another context service instance.

Procedure

Enable the thread context service in the server.xml file. The thread context service is available under the
<concurrent-1.0> feature.
<featureManager>
<feature>concurrent-1.0</feature>

</featureManager>

Example

Configure thread context service instances in the server.xml file:

Chapter 5. Administering Liberty 1015

v Thread context service that is registered in JNDI with the name, concurrent/threadContextSvc1, that
captures and propagates jeeMetadataContext only:
<contextService id="threadContextSvc1" jndiName="concurrent/${id}">
<jeeMetadataContext/>
</contextService>

v Thread context service with classloaderContext and securityContext:
<contextService jndiName="concurrent/threadContextSvc2">
<classloaderContext/>
<securityContext/>
</securityContext/>

v Thread context service that inherits jeeMetadataContext from threadContextSvc1 and adds
securityContext:
<contextService jndiName="concurrent/threadContextSvc3"
baseContextRef="threadContextSvc1">
<securityContext>
</contextService>

Example that looks up the default context service:
ContextService threadContextSvc =

(ContextService) new InitialContext().lookup(
"java:comp/DefaultContextService");

myContextualAsyncCallback = threadContextSvc.createContextualProxy(
myAsyncCallback, MyAsyncCallback.class);

doSomethingAsync(arg1, arg2, myContextualAsyncCallback);

Examples to inject thread context service instances into application components (by using @Resource) or
look up with resource environment references (resource-env-ref).
v Example that uses @Resource:

@Resource(lookup="concurrent/threadContextSvc1")
ContextService threadContextSvc1;

...

Callable<Integer> processSalesOrderCompletion = new Callable<Integer>() {
public Integer call() throws Exception {

DataSource ds = (DataSource) new InitialContext().lookup("java:comp/env/jdbc/ds1");
...update various database tables
return isSuccessful;

}
};
// capture thread context of current application component
execProps = Collections.singletonMap(ManagedTask.TRANSACTION,
ManagedTask.USE_TRANSACTION_OF_EXECUTION_THREAD);
processSalesOrderCompletion = (Callable<Boolean>)
threadContextSvc1.createContextualProxy(processSaleCompletion, execProps,
Callable.class);

//later from a different application component
tran.begin();
...
successful = processSalesOrderCompletion.call();
if (successful)
tran.commit();

else
tran.rollback();

v Example that specifies resource-env-ref in the web.xml file:

1016 WebSphere Application Server Liberty Core 8.5.5

<resource-env-ref>
<resource-env-ref-name>concurrent/threadContextSvc3</resource-env-ref-name>
<resource-env-ref-type>javax.enterprise.concurrent.ContextService</resource-
env-ref-type>
</resource-env-ref>

v Example lookup that uses the resource environment reference:
ContextService threadContextSvc3 =
(ContextService) new InitialContext().lookup("java:comp/env/concurrent/threadContextSvc3");
Runnable updateAndGetNextFromDatabase = threadContextSvc3.createContextualProxy
(new Runnable() {
public void run() {
DataSource ds = (DataSource) new InitialContext().lookup("java:comp/env/jdbc/ds1");
... update the database and get next item to process

}
}, Runnable.class);
barrier = new CyclicBarrier(3, updateAndGetNextFromDatabase);
...

Configuring managed scheduled executors
8.5.5.4

You can configure ManagedScheduledExecutorService instances to schedule asynchronous tasks to run
with the thread context of the thread from which the task is scheduled. It is a best practice for Java EE
applications to avoid directly managing their own threads; therefore, the
ManagedScheduledExecutorService extends the JSE ExecutorService to provide a way to schedule
asynchronous tasks within an application server environment. You might also configure the
ManagedScheduledExecutorService to capture a thread context that is relevant to Java EE applications and
propagate it to the thread of the scheduled task.

About this task

Important: In Liberty, managed scheduled executors do not have their own thread pools. Tasks
submitted to managed scheduled executor instances run on the common Liberty executor thread pool.

The managed scheduled executor <concurrent-1.0> feature is enabled in the server.xml file as follows:
<featureManager>
<feature>concurrent-1.0</feature>

</featureManager>

Thread context capture and propagation is managed by the context service. A default instance of the
context service (DefaultContextService) is created by the server and configured to propagate at least
classloaderContext, jeeMetadataContext and securityContext. This default context service instance is
used if a ManagedScheduledExecutorService is created without referring to a specific context service
instance or configuring a context service instance directly within. For more information about context
service instances, refer to the Configuring thread context service instances topic.

A default managed scheduled executor instance (DefaultManagedScheduledExecutorService) is available
as java:comp/DefaultManagedScheduledExecutorService and uses the default context service instance for
thread context capture and propagation.

Procedure

Example configuration in the server.xml file:
v Managed scheduled executor that is registered in JNDI with the name concurrent/scheduledExecutor,

and that uses the default context service instance:
<managedScheduledExecutorService jndiName="concurrent/scheduledExecutor"/>

Chapter 5. Administering Liberty 1017

v Managed scheduled executor with context service configured to capture and propagate
classloaderContext only:
<managedScheduledExecutorService jndiName="concurrent/scheduledExecutor1">
<contextService>
<classloaderContext/>
</contextService>
</managedScheduledExecutorService>

v Managed scheduled executor with jeeMetadataContext and securityContext:
<managedScheduledExecutorService jndiName="concurrent/scheduledExecutor2">
<contextService>
<jeeMetadataContext/>
<securityContext/>
</contextService>
</managedScheduledExecutorService>

v Thread context service that is shared by multiple managed scheduled executors:
<contextService id="contextSvc1">
<jeeMetadataContext/>
</contextService>

<managedScheduledExecutorService jndiName="concurrent/scheduledExecutor3"
contextServiceRef="contextSvc1"/>

<managedScheduledExecutorService jndiName="concurrent/scheduledExecutor4" contextServiceRef="contextSvc1"/>

Example

Inject managed scheduled executors into application components (by using @Resource) or look up with
resource environment references (resource-env-ref). Regardless of how the instance is obtained, it can be
used interchangeably as javax.enterprise.concurrent.ManagedScheduledExecutorService or any of the
following superclasses: java.util.concurrent.ScheduledExecutorSerivce, java.util.concurrent.ExecutorService,
javax.enterprise.concurrent.ManagedExecutorService
v Example that looks up the default managed scheduled executor:

ManagedScheduledExecutorService executor =
(ManagedScheduledExecutorService) new InitialContext().lookup(

"java:comp/DefaultManagedScheduledExecutorService");
executor.schedule(beginSalePrices, 12, TimeUnit.HOURS);
executor.schedule(restoreNormalPrices, 60, TimeUnit.HOURS);

v Example that uses @Resource to inject as java.util.concurrent.ScheduledExecutorService:
@Resource(lookup="concurrent/scheduledExecutor2")
ScheduledExecutorService executor;
...

// schedule a task to run every half hour from now
Runnable updateSalesReport = new Runnable() {
public void run() throws Exception {
// java:comp lookup is possible because <jeeMetadataContext> is configured
DataSource ds = (DataSource) new InitialContext().lookup("java:comp/env/jdbc/ds1");
... query and update various database tables
}
};
ScheduledFuture<?> future = executor.scheduleAtFixedRate(updateSalesReport, 0, 30, TimeUnit.MINUTES);

v Example that uses @Resource to inject as
javax.enterprise.concurrent.ManagedScheduledExecutorService:
@Resource(lookup="concurrent/scheduledExecutor2")
ManagedScheduledExecutorService executor;

... usage is same as previous example

v Example <resource-env-ref> for java.util.concurrent.ScheduledExecutorService in the web.xml file:

1018 WebSphere Application Server Liberty Core 8.5.5

<resource-env-ref>
<resource-env-ref-name>concurrent/scheduledExecutor1</resource-env-ref-name>
<resource-env-ref-type>java.util.concurrent.ScheduledExecutorService</resource-env-ref-type>
</resource-env-ref>

v Example <resource-env-ref> for javax.enterprise.concurrent.ManagedScheduledExecutorService in
the web.xml file:
<resource-env-ref>
<resource-env-ref-name>concurrent/scheduledExecutor2</resource-env-ref-name>
<resource-env-ref-type>javax.enterprise.concurrent.ManagedScheduledExecutorService</resource-env-ref-type>
</resource-env-ref>

v Example lookup that uses a resource environment reference:
ManagedScheduledExecutorService executor =

(ManagedScheduledExecutorService) new InitialContext().lookup("java:comp/env/concurrent/scheduledExecutor2");
executor.schedule(payrollTask, fridaysAtMidnightTrigger);

Configuring managed thread factories
8.5.5.4

You can configure ManagedThreadFactory instances to create new threads that run with a thread context of
the thread from which the managed thread factory is looked up or injected. It is a best practice for Java
EE applications to avoid directly managing their own threads; therefore, the ManagedThreadFactory
extends the JSE ThreadFactory to provide a way to create managed threads within an application server
environment. You might also configure the ManagedThreadFactory to capture a thread context that is
relevant to Java EE applications and propagate it to the new thread.

About this task

The managed thread factory is available under the <concurrent-1.0> feature and enabled in the
server.xml file as follows:
<featureManager>
<feature>concurrent-1.0</feature>

</featureManager>

Thread context capture and propagation is managed by the context service. A default instance of the
context service (DefaultContextService) is created by the server and configured to propagate at least
classloaderContext, jeeMetadataContext and securityContext. This default context service instance is
used if a ManagedThreadFactory does not specify a context service. For more information about context
service instances, refer to the Configuring thread context service instances topic.

A default instance of ManagedThreadFactory (DefaultManagedThreadFactory) is available as
java:comp/DefaultManagedThreadFactory and uses the default context service instance for thread context
capture and propagation.

Procedure

Example configuration in the server.xml file:
v Managed thread factory that is registered in JNDI with the name concurrent/threadFactory, and that

uses the default context service instance:
<managedThreadFactory jndiName="concurrent/threadFactory" maxPriority="5"/>

v Managed thread factory with context service configured to capture and propagate securityContext
only:
<managedThreadFactory jndiName="concurrent/threadFactory1">
<contextService>
<securityContext/>
</contextService>
</managedThreadFactory>

Chapter 5. Administering Liberty 1019

v Managed thread factory with classloaderContext and jeeMetadataContext:
<managedThreadFactory jndiName="concurrent/threadFactory2">
<contextService>
<classloaderContext/>
<jeeMetadataContext/>
</contextService>
</managedThreadFactory>

v Thread context service that is shared by multiple managed thread factories:
<contextService id="contextSvc1">
<jeeMetadataContext/>
</contextService>

<managedThreadFactory jndiName="concurrent/threadFactory3"
contextServiceRef="contextSvc1"/>

<managedThreadFactory jndiName="concurrent/threadFactory4"
contextServiceRef="contextSvc1"/>

Example

Managed thread factories can be injected into application components (by using @Resource) or looked up
with resource environment references (resource-env-ref). Regardless of how the instance is obtained, it
can be used interchangeably as javax.enterprise.concurrent.ManagedThreadFactory
or java.util.concurrent.ThreadFactory.
v Example that looks up the default managed thread factory:

ManagedThreadFactory threadFactory =
(ManagedThreadFactory) new InitialContext().lookup(

"java:comp/DefaultManagedThreadFactory");
// Create an executor that always runs tasks with the thread context of the managed thread factory
ExecutorService executor = new ThreadPoolExecutor(

coreThreads, maxThreads, keepAliveTime, TimeUnit.MINUTES,
new ArrayBlockingQueue<Runnable>(workRequestQueueSize),
threadFactory, new ThreadPoolExecutor.AbortPolicy());

v Example that uses @Resource to inject asjava.util.concurrent.ThreadFactory::
@Resource(lookup="concurrent/threadFactory2")
ThreadFactory threadFactory
...

// create a new thread
Thread dailySalesAnalysisTask = threadFactory.newThread(new Runnable() {
public void run() {

// java:comp lookup is possible because <jeeMetadataContext> is configured
DataSource ds = (DataSource) new InitialContext().lookup("java:comp/env/jdbc/ds1");
... analyze the data

}
});
dailySalesAnalysisTask.start();

v Example that uses @Resource to inject as javax.enterprise.concurrent.ManagedThreadFactory:
@Resource(lookup="concurrent/threadFactory2")
ManagedThreadFactory threadFactory;

... usage is same as previous example

v Example <resource-env-ref> for java.util.concurrent.ThreadFactory in the web.xml file:
<resource-env-ref>
<resource-env-ref-name>concurrent/threadFactory1</resource-env-ref-name>
<resource-env-ref-type>java.util.concurrent.ThreadFactory</resource-env-ref-type>
</resource-env-ref>

1020 WebSphere Application Server Liberty Core 8.5.5

v Example <resource-env-ref> for javax.enterprise.concurrent.ManagedThreadFactory in the web.xml
file:
<resource-env-ref>
<resource-env-ref-name>concurrent/threadFactory2</resource-env-ref-name>
<resource-env-ref-type>javax.enterprise.concurrent.ManagedThreadFactory</resource-
env-ref-type>
</resource-env-ref>

v Example lookup that uses a resource environment reference:
ManagedThreadFactory threadFactory =
(ManagedThreadFactory) new InitialContext().lookup("java:comp/env/concurrent/threadFactory");

// Create a scheduled executor that always runs tasks with the thread context of the managed thread factory
ScheduledExecutorService executor = Executors.newScheduledThreadPool(5, threadFactory);
... use executor to schedule tasks from any thread

Connecting to Liberty by using JMX
Use this information to access Java Management Extensions (JMX) connectors on Liberty. You can also
access the secured JMX connector remotely by using SSL.

About this task

There are two JMX connectors supported on Liberty, each connector is enabled through a different Liberty
feature: localConnector-1.0 and restConnector-1.0.
v The local connector is enabled through the Liberty feature localConnector-1.0. Access through the

local connector is protected by the policy implemented by the SDK in use. Currently the SDKs require
that the client runs on the same host as Liberty, and under the same user ID.

v The REST connector is enabled through the Liberty feature restConnector-1.0. Remote access through
the REST connector is protected by a single administrator role. In addition, SSL is required to keep the
communication confidential. The restConnector-1.0 feature already includes the ssl-1.0 feature.

An application deployed on Liberty has unrestricted access to its MBeanServer directory.

A JMX connection to the collective controller enables JMX access to multiple Liberty servers through the
same connection. See “Setting up the server-management environment for Liberty by using collectives”
on page 907 for more information.

Restriction: Do not use JDK options that start with com.sun.management.jmxremote, which are described
in http://docs.oracle.com/javase/7/docs/technotes/guides/management/agent.html, with the Liberty
JMX support. Those JDK options adversely affect the Liberty MBean registration framework.

Procedure
v Connect to the local JMX connector
v Connect to the REST connector
v Work with JMX MBeans

Configuring local JMX connection to Liberty
You can access the local Java Management Extensions (JMX) connector on Liberty. The local connector is
enabled through the Liberty feature localConnector-1.0.

About this task

The local connector is enabled through the Liberty feature localConnector-1.0. Access through the local
connector is protected by the policy implemented by the SDK in use. Currently the SDKs require that the
client runs on the same host as Liberty, and under the same user ID.

Note: An application deployed on Liberty has unrestricted access to its MBeanServer directory.

Chapter 5. Administering Liberty 1021

The following section describes how to configure and access the local connector on Liberty.

Procedure
1. Enable the local connector by using the following code in the server.xml file.

<featureManager>
<feature>localConnector-1.0</feature>

</featureManager>

2. Access the local connector by using the JConsole tool or JMX client that is installed on the same host.
v For the JConsole tool, select the local process ws-server.jar defaultServer from the connection

panel then click Connect.
v For the JMX client, see “Working with JMX MBeans on Liberty” on page 1025.

Configuring secure JMX connection to Liberty
You can access the secured Java Management Extensions (JMX) connectors on Liberty by using SSL. The
secured JMX connection is enabled by the Liberty feature restConnector-1.0.

About this task

The REST connector is enabled through the Liberty feature restConnector-1.0. Remote access through
the REST connector is protected by a single administrator role. In addition, SSL is required to keep the
communication confidential. The restConnector-1.0 feature already includes the ssl-1.0 feature.

Note: An application deployed on Liberty has unrestricted access to its MBeanServer directory.

The following section describes how to configure and access the REST connector on Liberty.

Procedure
1. Enable the REST connector using the following code in the server.xml file.

<featureManager>
<feature>restConnector-1.0</feature>

</featureManager>

2. Configure SSL certificates in the server.xml file.
Ensure that the CN value of the certificate's subjectDN is the host name of the machine where the
server is running, and that the truststore contains the certificate of the server in the jConsole
connection.

3. Configure a user or group to the administrator role in the server.xml file.
v Map to the administrator role for Liberty

4. Access the REST connector.

8.5.5.4

You can access a Liberty REST connector from a Java client or directly through an HTTPS

call. A Java client uses the client-side of the connector, which is in wlp/clients/restConnector.jar
and implements the javax.management.MBeanServerConnection interface. HTTPS calls use the
server-side of the connector. As to HTTPS calls on the server-side, any programming language that
can make HTTPS calls, such as C++, JavaScript, curl, Ruby, and Perl, can use the REST APIs. The
REST APIs contain endpoints for management (JMX), file transfer, collective routing and collective
deployment.
v Access the REST connector from a JMX client application or by using the jConsole tool provided in

the Java SDK. Use -J flags to pass the system properties as Java options and set the class path to
include the connector class files. The connector class files are packed in the clients/
restConnector.jar file.
– Use the following properties for SSL certificates:

-J-Djavax.net.ssl.trustStore=<location of your client trust store>
-J-Djavax.net.ssl.trustStorePassword=<password for the trust store>
-J-Djavax.net.ssl.trustStoreType=<type of trust store>

1022 WebSphere Application Server Liberty Core 8.5.5

The following example shows the jConsole tool being used with SSL configurations:
jconsole -J-Djava.class.path=%JAVA_HOME%/lib/jconsole.jar;

%JAVA_HOME%/lib/tools.jar;
%WLP_HOME%/clients/restConnector.jar

-J-Djavax.net.ssl.trustStore=key.jks
-J-Djavax.net.ssl.trustStorePassword=Liberty
-J-Djavax.net.ssl.trustStoreType=jks

After the jConsole starts, select Remote Process, and enter the JMX service URL:
service:jmx:rest://<host>:<port>/IBMJMXConnectorREST. The port number is the HTTPS port.
You must also provide the user name and password.

v 8.5.5.4 Access the REST connector directly using an HTTPS call.
To use HTTPS calls to access REST connectors, you need WebSphere Application Server Liberty
8.5.5.4 or later.
a. Open a browser at https://<host>:<port>/IBMJMXConnectorREST/api, and enter the

administrative credentials you specified in step 3.
b. Examine the available REST APIs. Each item has a description of its behavior, input, output,

query parameters, and header.

Note: You can specify some JMX REST connection options as system properties. See the Liberty API -
WebSphere JMX REST Connector API.

Mapping the administrator role for Liberty:

You can use quickStartSecurity element or any supported user registries for the administrator role
mapping in Liberty.

About this task

All the JMX methods and MBeans accessed through the REST connector are currently protected by a
single role named "administrator". To get started quickly, use quickStartSecurity element to configure a
single user with administrator role and configure the default SSL configuration.

You can also use any supported user registry. You cannot use quickStartSecurity element if you have
already configured another user registry. In this case, you have to map users or roles from the registry to
the administrator role.

Procedure

v Use quickStartSecurity element for a single user mapping.
Here is an example showing the minimal required configuration:
<featureManager>

<feature>restConnector-1.0</feature>
</featureManager>
<quickStartSecurity userName="bob" userPassword="bobpassword" />
<keyStore id="defaultKeyStore" password="keystorePassword"/>

v Or use the basic registry for administrator role mapping.
Here is an example of the basic registry that gives the user "bob" or the group "group1" administrator
role:
<basicRegistry>

<user name="bob" password="bobpassword"/>
<user name="joe" password="joepassword"/>
<group name="group1" ...>
</group>

</basicRegistry>

Chapter 5. Administering Liberty 1023

<administrator-role>
<user>bob</user>
<group>group1</group>

</administrator-role>

v Or use the LDAP registry for administrator role mapping (you will need to add the ldapRegistry-3.0
feature to your server.xml file).
Here is an example of the LDAP registry that gives the user "bob" administrator role.
<ldapRegistry id="basic" host="" port="">

<tds.properties ... />
</ldapRegistry>

<administrator-role>
<user>cn=bob,o=ibm,c=us</user>

</administrator-role>

Developing a JMX Java client for Liberty:

You can develop a Java Management Extensions (JMX) client application to access the secured REST
connector of the Liberty server.

About this task

Using a JMX remote client application, you can administer the Liberty server through JMX programming.

Procedure

v Develop a sample JMX client as follows. The REST connector supports the standard JMX API.
import javax.management.remote.JMXServiceURL;
import javax.management.MBeanServerConnection;
import javax.management.remote.JMXConnector;
import javax.management.remote.JMXConnectorFactory;
import java.util.HashMap;

public class Test {

public static void main(String[] args) {
System.setProperty("javax.net.ssl.trustStore", <truststore location>);
System.setProperty("javax.net.ssl.trustStorePassword", <truststore password>);

//If the type of the trustStore is not jks, which is default,
//set the type by using the following line.
System.setProperty("javax.net.ssl.trustStoreType", <truststore type>);

try {
HashMap<String, Object> environment = new HashMap<String, Object>();
environment.put("jmx.remote.protocol.provider.pkgs", "com.ibm.ws.jmx.connector.client");
environment.put(JMXConnector.CREDENTIALS, new String[] { "bob", "bobpassword" });

JMXServiceURL url = new JMXServiceURL("service:jmx:rest://<host>:<port>/IBMJMXConnectorREST");
JMXConnector connector = JMXConnectorFactory.newJMXConnector(url, environment);
connector.connect();
MBeanServerConnection mbsc = connector.getMBeanServerConnection();

} catch(Throwable t) {
...

}
}

}

v Optional: Disable host name verification for SSL certificates. The certificates that are installed with the
Liberty profile might not contain the host name of where the server is actually running. If you want to
disable host name verification of SSL certificates, you can set the system property

1024 WebSphere Application Server Liberty Core 8.5.5

com.ibm.ws.jmx.connector.client.disableURLHostnameVerification to true, which disables host name
verification for all connections. To disable host name verification on a per-connection basis, pass the
property as a new environment when you create the JMX connection:
HashMap<String, Object> environment = new HashMap<String, Object>();
environment.put("jmx.remote.protocol.provider.pkgs", "com.ibm.ws.jmx.connector.client");
environment.put("com.ibm.ws.jmx.connector.client.disableURLHostnameVerification", Boolean.TRUE);
environment.put(JMXConnector.CREDENTIALS, new String[] { "bob", "bobpassword" });
...

v Optional: Configure JMX REST connector settings by using the environment Map.
...
HashMap<String, Object> environment = new HashMap<String, Object>();
environment.put("com.ibm.ws.jmx.connector.client.rest.maxServerWaitTime", 0);
environment.put("com.ibm.ws.jmx.connector.client.rest.notificationDeliveryInterval", 65000);
...

v Optional: The Liberty REST connector allows you to specify a custom SSL socket factory that can be
used to obtain sockets. If the javax.net.ssl.SSLHandshakeException: com.ibm.jsse2.util.j: PKIX
path building failed: java.security.cert.CertPathBuilderException: unable to find valid
certification path to requested target exception is displayed, you can create your own SSLContext
from your own KeyStores and then use the SocketFactory from that context with the REST connector.
KeyStore trustStore = KeyStore.getInstance(KeyStore.getDefaultType());
InputStream inputStream = new FileInputStream("myTrustStore.jks");
trustStore.load(inputStream, "password".toCharArray());
TrustManagerFactory trustManagerFactory = TrustManagerFactory.getInstance(TrustManagerFactory.getDefaultAlgorithm());
trustManagerFactory.init(trustStore);
TrustManager[] trustManagers = trustManagerFactory.getTrustManagers();
SSLContext sslContext = SSLContext.getInstance("SSL");
sslContext.init(null, trustManagers, null);

Map<String, Object> environment = new HashMap<String, Object>();
environment.put(ConnectorSettings.CUSTOM_SSLSOCKETFACTORY, sslContext.getSocketFactory());
environment.put(ConnectorSettings.DISABLE_HOSTNAME_VERIFICATION, true);
environment.put("jmx.remote.protocol.provider.pkgs", "com.ibm.ws.jmx.connector.client");
environment.put(JMXConnector.CREDENTIALS, new String[] { "admin", "password" });
JMXServiceURL url = new JMXServiceURL("REST", "myhost", 9443, "/IBMJMXConnectorREST");
jmxConn = JMXConnectorFactory.connect(url, environment);

Working with JMX MBeans on Liberty
You can access the attributes and call the operations of Java Management Extensions (JMX) management
beans (MBeans) on Liberty. In addition, you can register your own MBeans from an application running
on Liberty.

About this task

The primary interfaces for interacting with MBeans on Liberty are as follows:
v javax.management.MBeanServer, which is for application code running on Liberty.
v javax.management.MBeanServerConnection, which is for external code running in a separate Java virtual

machine.

You can use an instance of either of these interfaces to access the attributes and call the operations of
MBeans.

Procedure
v For application code running on Liberty, you can use a javax.management.MBeanServer instance by

using the following code:
import java.lang.management.ManagementFactory;
import javax.management.MBeanServer;

Chapter 5. Administering Liberty 1025

...

MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();
...

v For external code running in a separate Java virtual machine, you can use a
javax.management.MBeanServerConnection instance. See “Developing a JMX Java client for Liberty” on
page 1024.

List of provided MBeans:

Liberty provides a list of MBeans and corresponding management interfaces that you can use to
manipulate and monitor the server.

For each MBean or MXBean in the list:
v The name is the javax.management.ObjectName value that uniquely identifies the MBean or MXBean.

When there are multiple instances of an MBean or MXBean, the ObjectName value can contain a
wildcard (*), which is described in the Comments entries in this topic.

v The Management interface entries specify the name of the Java interface that can be used to construct
a proxy object for the MBean or MXBean as described in “Examples of accessing MBean attributes and
operations” on page 1029. For more information about the management interface, see the Java API
document for Liberty. The Java API documentation for each Liberty API is detailed in the
Programming Interfaces (APIs) section of the documentation, and is also available as a separate .zip
file in one of the javadoc subdirectories of the ${wlp.install.dir}/dev directory.

WebSphere:feature=channelfw,type=endpoint,name=*

v Management interface:com.ibm.websphere.endpoint.EndPointInfoMBean
v Comments: One instance is available for each endpoint in the system, where * is a unique endpoint

name.

WebSphere:feature=restConnector,type=FileService,name=FileService

v Management interface:com.ibm.websphere.filetransfer.FileServiceMXBean
v Comments: This MXBean enables you to perform various file-related operations on the host where

Liberty resides.
You can find its class and API documentation in the following locations:
liberty_home/dev/api/ibm/com.ibm.websphere.appserver.api.restConnector_version.jar
liberty_home/dev/api/ibm/javadoc/com.ibm.websphere.appserver.api.restConnector_version-javadoc.zip

The exposed operations include the ability to query certain metadata (last modified date, size, and so
on) for a given file or directory and also to query all child files (and corresponding metadata) for a
given directory. Support for archive creation and expansion is also provided, which can be useful to
compress Liberty log files or to extract an application before deploying it.
This MXBean contains two attributes: the read list and the write list. They represent the lists of
locations that users can read or write to when using the FileService or FileTransfer capabilities
provided by Liberty. Through the MXBean, these attributes can only be read, but they can be
configured or customized through the following elements in the server.xml file:
<remoteFileAccess>

<readDir>${server.output.dir}/logs</readDir>
<readDir>${server.output.dir}/apps</readDir>
<writeDir>${server.output.dir}/dropins</writeDir>

</remoteFileAccess>

If the readDir element is not specified, the default is the combination of: ${wlp.install.dir},
${wlp.user.dir}, and ${server.output.dir}. If a writeDir element is not specified, the default is the
empty set.

1026 WebSphere Application Server Liberty Core 8.5.5

The restConnector-1.0 feature must be included in the server.xml file in order for this MXBean to be
loaded and to honor its configuration elements
Using Liberty-defined variables is allowed with all the server-side parameters that take a string
representing a file path. Such variables are defined on the liberty_home/README.TXT file.

WebSphere:feature=restConnector,type=FileTransfer,name=FileTransfer

v Management interface:com.ibm.websphere.filetransfer.FileTransferMBean
v Comments: This MBean allows you to perform various file-transfer operations on the host where

Liberty resides.
You can find its class and API documentation in the following locations:
liberty_home/dev/api/ibm/com.ibm.websphere.appserver.api.restConnector_version.jar
liberty_home/dev/api/ibm/javadoc/com.ibm.websphere.appserver.api.restConnector_version-javadoc.zip

This MBean is registered on the PlatformMBeanServer from the same JVM that its corresponding
Liberty process is running, but it can be accessed only by using the IBM JMX REST Connector. The
connection can be local or remote, but the REST Connector must be used.
The exposed operations include the ability to download, upload, and delete a file. Each read and write
request on the server is bound to the configurable read and write lists that are accessed through the
FileServiceMXBean. The FileTransferMBean can also be fully accessed and operated from the built-in
Java JConsole, provided that the JConsole is connected through the IBM JMX REST Connector.
Using Liberty-defined variables is allowed with all the server-side parameters that take a string
representing a file path. Such variables are defined on the liberty_home/README.TXT file.

8.5.5.5

WebSphere:name=com.ibm.websphere.config.mbeans.ServerXMLConfigurationMBean

v Management interface:com.ibm.websphere.config.mbeans.ServerXMLConfigurationMBean
v Comments: The ServerXMLConfigurationMBean provides an interface for retrieving the file paths of all

server configuration files known to the server. The MBean is available from the Kernel, so you do not
need to enable a special feature. You can find the MBean class and API documentation in the following
locations:
– ${wlp.install.dir}/dev/api/ibm/com.ibm.websphere.appserver.api.config_version.jar

– ${wlp.install.dir}/dev/api/ibm/javadoc/com.ibm.websphere.appserver.api.config_version-
javadoc.zip

8.5.5.4

WebSphere:name=com.ibm.websphere.runtime.update.RuntimeUpdateNotificationMBean

v Management interface:com.ibm.websphere.runtime.update.RuntimeUpdateNotificationMBean
v Comments: The RuntimeUpdateNotificationMBean provides notifications for server runtime updates.

The user data object attached to the notification is a java.util.Map. The notification type for runtime
update notifications emitted by this MBean is com.ibm.websphere.runtime.update.notification.

8.5.5.5

WebSphere:name=com.ibm.ws.config.mbeans.FeatureListMBean

v Management interface:com.ibm.websphere.config.mbeans.FeatureListMBean
v Comments: The FeatureListMBean exposes a single method to generate an XML report on all the

features installed at run time. The MBean is available from the Kernel, so you do not need to enable a
special feature. You can find the MBean class and API documentation in the following locations:
– ${wlp.install.dir}/dev/api/ibm/com.ibm.websphere.appserver.api.config_version.jar

– ${wlp.install.dir}/dev/api/ibm/javadoc/com.ibm.websphere.appserver.api.config_version-
javadoc.zip

8.5.5.5

Chapter 5. Administering Liberty 1027

WebSphere:name=com.ibm.ws.config.serverSchemaGenerator

v Management interface:com.ibm.websphere.config.mbeans.ServerSchemaGenerator
v Comments: The ServerSchemaGenerator MBean exposes methods to generate schema from the

installed image, the most used way, or from a current runtime. The MBean is available from the Kernel,
so you do not need to enable a special feature. You can find the MBean class and API documentation
in the following locations:
– ${wlp.install.dir}/dev/api/ibm/com.ibm.websphere.appserver.api.config_version.jar

– ${wlp.install.dir}/dev/api/ibm/javadoc/com.ibm.websphere.appserver.api.config_version-
javadoc.zip

WebSphere:name=com.ibm.ws.jmx.mbeans.generatePluginConfig

v Management interface:com.ibm.websphere.webcontainer.GeneratePluginConfigMBean
v Comments: See “Configuring a web server plug-in for Liberty” on page 985.

WebSphere:service=com.ibm.ws.kernel.filemonitor.FileNotificationMBean

v Management interface:com.ibm.websphere.filemonitor.FileNotificationMBean

WebSphere:service=com.ibm.websphere.application.ApplicationMBean,name=*

v Management interface:com.ibm.websphere.application.ApplicationMBean
v Comments: One instance is available for each application in the system, where * is a unique

application name.

8.5.5.6

WebSphere:service=com.ibm.ws.jca.cm.mbean.ConnectionManagerMBean,*

v Management interface:com.ibm.ws.jca.cm.mbean.ConnectionManagerMBean
v Comments: One instance is available for each Connection Manager in the system, including those

created in the following contexts:
– When explicitly configured in the server configuration
– When implicitly created because of @DataSourceDefinition or @ConnectionFactoryDefinition

annotations
– When created as a result of a connection factory or data source in the server configuration

The mbean instance is not available until the corresponding connection factory or data source is first
used.
To narrow the connection manager instance, you can specify additional attributes, such as those shown
in the following examples:
WebSphere:service=com.ibm.ws.jca.cm.mbean.ConnectionManagerMBean,jndiName=jdbc/db2,*
WebSphere:service=com.ibm.ws.jca.cm.mbean.ConnectionManagerMBean,name=jmsConnectionFactory[cf1]/connectionManager[default-0],*
WebSphere:service=com.ibm.ws.jca.cm.mbean.ConnectionManagerMBean,name=databaseStore[dbstore1]/dataSource[default-0]/connectionManager,*
WebSphere:service=com.ibm.ws.jca.cm.mbean.ConnectionManagerMBean,jndiName=java.module/env/jdbc/ds3,application=MyApp,module=myweb,*

WebSphere:type=JvmStats

v Management interface: com.ibm.websphere.monitor.jmx.JvmMXBean
v Comments: Available when the monitor-1.0 feature is enabled. See “JVM monitoring” on page 1423.

WebSphere:type=ServletStats,name=*

v Management interface:com.ibm.websphere.webcontainer.ServletStatsMXBean
v Comments: When the monitor-1.0 feature is enabled, one instance is available for each servlet that has

been served, where * is of the form <AppName>.<ServletName>. See “Web application monitoring” on
page 1424.

1028 WebSphere Application Server Liberty Core 8.5.5

WebSphere:type=ThreadPoolStats,name=Default Executor

v Management interface:com.ibm.websphere.monitor.jmx.ThreadPoolMXBean
v Comments: Available when the monitor-1.0 feature is enabled. See “ThreadPool monitoring” on page

1425.

8.5.5.3

WebSphere:feature=kernel,name=ServerInfo

v Management interface: com.ibm.websphere.kernel.server.ServerInfoMBean
v Comments: The ServerInfoMbean interface is used to retrieve information about the running server.

Search the following directories for the class and API documentation:
liberty_home/dev/api/ibm/com.ibm.websphere.appserver.api.kernel.service_version-javadoc.zip

liberty_home/dev/api/ibm/com.ibm.websphere.appserver.api.kernel.service_version.jar

The exposed operations include a method to retrieve the product install and user directory locations, the
default host name, the server name, the product version, the Java specification version, and the Java
Runtime version.

Examples of accessing MBean attributes and operations:

You can use Liberty to access the attributes, and call the operations, of Java Management Extensions
(JMX) management beans (MBeans).

After you obtain an MBeanServer instance (for an application running on Liberty) or an
MBeanServerConnection instance (for an external client), you can access the attributes or call the
operations of MBeans provided by Liberty. See “Working with JMX MBeans on Liberty” on page 1025.

The following code examples assume the variable mbs is an MBeanServer or MBeanServerConnection
instance. You can use the provided methods to access the attributes and operations in a similar way to
Java reflection. Alternatively, each MBean has a management interface with getter methods for the
attributes and methods for the operations. You can use these interfaces by implementing one of the
javax.managementJMX.newMBeanProxy methods or one of the javax.management.JMX.newMXBeanProxy
methods for MXBeans to obtain a proxy object. The name of a management interface ends with
“MXBean”. For the names of the management interfaces, see “List of provided MBeans” on page 1026.

Example 1: Check the state of application "myApp"
import javax.management.ObjectName;
import javax.management.JMX;
import com.ibm.websphere.application.ApplicationMBean;
...

ObjectName myAppMBean = new ObjectName(
"WebSphere:service=com.ibm.websphere.application.ApplicationMBean,name=myApp");
if (mbs.isRegistered(myAppMBean)) {
String state = (String) mbs.getAttribute(myAppMBean, "State");
// alternatively, obtain a proxy object
ApplicationMBean app = JMX.newMBeanProxy(mbs, myAppMBean, ApplicationMBean.class);
state = app.getState();
}

Example 2: Get response time statistics for servlet “Example Servlet” from application “myApp”
import javax.management.ObjectName;
import javax.management.openmbean.CompositeData;
import javax.management.JMX;
import com.ibm.websphere.webcontainer.ServletStatsMXBean;

...

ObjectName servletMBean = new ObjectName("WebSphere:type=ServletStats,name=myApp.Example Servlet");

Chapter 5. Administering Liberty 1029

if (mbs.isRegistered(servletMBean)) {
CompositeData responseTimeDetails = (CompositeData) mbs.getAttribute(servletMBean, "ResponseTimeDetails");
CompositeData responseTimeReading = (CompositeData) responseTimeDetails.get("reading");
Double mean = (Double) responseTimeReading.get("mean");
Double standardDeviation = (Double) responseTimeReading.get("standardDeviation");
// alternatively, obtain a proxy object
ServletStatsMXBean servletStats = JMX.newMXBeanProxy(mbs, servletMBean, ServletStatsMXBean.class);
StatisticsMeter meter = servletStats.getResponseTimeDetails();
StatisticsReading reading = meter.getReading();
mean = reading.getMean();
standardDeviation = reading.getStandardDeviation();
}

Example 3: Create a web server plug-in configuration file
import com.ibm.websphere.webcontainer.GeneratePluginConfigMBean;

...

ObjectName pluginMBean = new ObjectName("WebSphere:name=com.ibm.ws.jmx.mbeans.generatePluginConfig");
if (mbs.isRegistered(pluginMBean)) {
mbs.invoke(pluginMBean, "generatePluginConfig", new Object[] {

"installRoot", "serverName"}, new String[] {
String.class.getName(), String.class.getName()

});
// alternatively, use a proxy object
GeneratePluginConfigMBean plugin = JMX.newMBeanProxy(mbs, name, GeneratePluginConfigMBean.class);
plugin.generatePluginConfig("installRoot", "serverName");
}

Example 4: Query status of Web Service Endpoint
import javax.management.ObjectName;
import javax.management.MBeanServerConnection;
import javax.management.MBeanInfo;
import javax.management.MBeanAttributeInfo;
import javax.management.MBeanOperationInfo;

...

// Init mbs as needed
MBeanServerConnection mbs;

// Get MBeanInfo for specific ObjectName
ObjectName objName = new ObjectName("WebSphere:feature=jaxws,bus.id=testCXFJMXSupport-Server-Bus,

type=Bus.Service.Endpoint,service=\"{http://jaxws.samples.ibm.com.jmx/}TestEndpointService\",
port=\"TestEndpoint\",instance.id=1816106538");

MBeanInfo beanInfo = mbsc.getMBeanInfo(objName);

// Go through attributes to find the interested one
for (MBeanAttributeInfo attr : beanInfo.getAttributes()) {
if (attr.getName().equals("State")) {

String status = String.valueOf(mbs.getAttribute(objName, attr.getName()));
break;
}
}

Example 5: Shut down the CXF server bus
import javax.management.ObjectName;
import javax.management.MBeanServerConnection;
import javax.management.MBeanInfo;
import javax.management.MBeanAttributeInfo;
import javax.management.MBeanOperationInfo;

...

// Init mbsc as needed
MBeanServerConnection mbs;

// Get MBeanInfo for specific ObjectName
ObjectName objName = new ObjectName("WebSphere:feature=jaxws,bus.id=testCXFJMXSupport-Server-Bus,

type=Bus,instance.id=1618108530");
MBeanInfo beanInfo = mbsc.getMBeanInfo(objName);

// Go through operation to find the interested one and invoke
for (MBeanOperationInfo operation : beanInfo.getOperations()) {
if (operation.getName().equals("shutdown")) {

1030 WebSphere Application Server Liberty Core 8.5.5

mbs.invoke(objName, operation.getName(), new Object[] { true }, new String[] { boolean.class.getName() });
break;
}
}

Examples of registering MBeans:

An application can register its own MBean instances on Liberty. That MBean instance can then be used
by other applications or external administrators.

Any application can register an MBean by using an MBeanServer instance. Suppose an application
contains a class called org.example.Example that implements the interface org.example.ExampleMBean,
which defines some attributes and operations. As in the following example, the application might simply
instantiate the Example class then register it using a unique ObjectName. If the ObjectName chosen is
already in use, a javax.management.InstanceAlreadyExistsException is reported.
import java.lang.management.ManagementFactory;
import javax.management.MBeanServer;
import javax.management.ObjectName;
import org.example.Example;

...

MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();
Object mbean = new Example();
ObjectName name = new ObjectName("org.example.MyApplication:name=Example");
mbs.registerMBean(mbean, name);

In addition, an application might register an MBean that extends java.lang.ClassLoader and provides
access to any number of MBean implementation classes. Then you can use any other JMX client, local or
remote, to create and register MBeans provided by the application. For example, suppose the application
has an MBean class org.example.ApplicationClassLoader that performs the following tasks:
v Implements any empty interface org.example.ApplicationClassLoaderMBean
v Extends java.lang.Classloader, and
v Provides access to the org.example.Example MBean implementation class

The application can register an instance of ApplicationClassLoader to make the Example MBean available
to other JMX clients as follows:
import java.lang.management.ManagementFactory;
import javax.management.MBeanServer;
import javax.management.ObjectName;
import org.example.ApplicationClassLoader;

...

MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();
Object classLoader = new ApplicationClassLoader();
ObjectName name = new ObjectName("org.example.MyApplication:name=ClassLoader");
mbs.registerMBean(classLoader, name);

Any JMX client can create an Example instance. The following example assumes the variable mbs is an
MBeanServer or MBeanServerConnection instance. See “Working with JMX MBeans on Liberty” on page
1025.
import javax.management.ObjectName;

...

ObjectName loaderName = new ObjectName("org.example.MyApplication:name=ClassLoader");
ObjectName exampleName = new ObjectName("org.example.MyApplication:name=Example");
mbs.createMBean("org.example.Example”, exampleName, loaderName);

Chapter 5. Administering Liberty 1031

If necessary, you can use other forms of the MBeanServer.createMBean method to create the MBean by
using non-default constructors.

For more information about the management interface, see the Java API document for Liberty. The Java
API documentation for each Liberty API is detailed in the Programming Interfaces (APIs) section of the
documentation, and is also available as a separate .zip file in one of the javadoc subdirectories of the
${wlp.install.dir}/dev directory.

Example of setting up a JMX routing environment:

You can use Liberty to call Java Management Extensions (JMX) management beans (MBeans) on a
collective member server through a collective controller server.

Note: Distributed operating systems
IBM i The collectiveController-1.0 feature and its capabilities are

available only in WebSphere Application Server Liberty Network Deployment and WebSphere
Application Server Liberty for z/OS. The feature is not available in WebSphere Application Server
Liberty, WebSphere Application Server Liberty - Express, or WebSphere Application Server Liberty Core.
If you have a WebSphere Application Server Liberty Network Deployment installation, you can use its
collectiveController-1.0 feature to work with collective members from WebSphere Application Server
Liberty, WebSphere Application Server Liberty - Express, or WebSphere Application Server Liberty Core
installations.

The collectiveMember-1.0 feature enables a server to be managed by a collective controller (the
collectiveController-1.0 feature) . After a server is configured to be managed by a collective controller,
you can directly call any MBeans on the collective member through the collective controller server.

The following is an example of how to call MBeans on a collective member through a collective controller
server.
// Set up the trust store to the collective controller server.

System.setProperty("javax.net.ssl.trustStore", "<trustStore for https connection to collective controller>");
System.setProperty("javax.net.ssl.trustStorePassword", "<trustStore password>");

Map<String, Object> environment = new HashMap<String, Object>();
environment.put("jmx.remote.protocol.provider.pkgs", "com.ibm.ws.jmx.connector.client");
environment.put(JMXConnector.CREDENTIALS, new String[] { "<username>", "<password>" });
environment.put(ClientProvider.DISABLE_HOSTNAME_VERIFICATION, true);
environment.put(ClientProvider.READ_TIMEOUT, 2 * 60 * 1000);

JMXServiceURL url = new JMXServiceURL(
"REST", "<hostname of collective controller server>", <https port>, "/IBMJMXConnectorREST");

jmxConnector = JMXConnectorFactory.connect(url, environment);
MBeanServerConnection exmbsc = jmxConnector.getMBeanServerConnection();

// You have a MBeanServerConnection now; at this point, however, all of your MBean calls
// are on the collective controller server.

// The next few lines of code are to set up the routing context so that all calls
// can be routed to a collective member.

ObjectName rmObjectName = new ObjectName(
"WebSphere:feature=collectiveController,type=RoutingContext,name=RoutingContext");

// Call the MBeanRoutingContext MBean to set up the routing context.

Object rcObj = connection.invoke(rmObjectName, "assignServerContext",
new Object[] {

"<hostname of the collective member>", "<collective member server usr dir>", "<collective member server name>"
},

// With the collective-member server usr dir and collective-member server name,
// the managed server can be uniquely identified on a host.

new String[] { "java.lang.String", "java.lang.String", "java.lang.String" });

if (rcObj instanceof Boolean) {
Boolean result = (Boolean) rcObj;

1032 WebSphere Application Server Liberty Core 8.5.5

if (result.booleanValue()) {
System.out.println("routing context is configured correctly");
}

Or if (!result.booleanValue()) {
System.out.println("routing context result is false");
}

} else {
System.out.println("failed to configure routing context");

}

If the routing context is configured correctly, all future calls to this MBeanServerConnection will be routed
to target collective member server.

Establishing a JMX MBean Liberty server connection
You can use Jython-based scripts to establish a Java Management Extensions (JMX) MBean Liberty server
connection.

Before you begin

You must obtain and install the Jython version of your choice before you can perform this procedure.
Without a Jython runtime, the instructions will fail.

Procedure
1. Set up the environment.

The files that you need are located in liberty_home/clients/jython.
a. Copy the lib/restConnector.py file to jython_home/Lib.
b. Set the classpath for restConnector.jar in liberty_home/clients.

set CLASSPATH=%CLASSPATH%;c:\wlp\clients\restConnector.jar

2. Run the utility.
Example 1: Getting a simple connection using connector.connect(host,port,user,password)
from restConnector import JMXRESTConnector
JMXRESTConnector.trustStore = "c:/key.jks"
JMXRESTConnector.trustStorePassword = "Liberty"

connector = JMXRESTConnector()
connector.connect("foo.bar.com",9443,"theUser","thePassword")
mconnection = connector.getMBeanServerConnection()
mconnection.invoke(...)
connector.disconnect()

Example 2: Getting an advanced connection using connector.connect(host,port,map) with
user-provided properties

import java
import javax
import jarray
import com.ibm.websphere.jmx.connector.rest
import com.ibm.ws.jmx.connector.client.rest

map=java.util.HashMap()
map.put("jmx.remote.provider.pkgs","com.ibm.ws.jmx.connector.client")
map.put(javax.management.remote.JMXConnector.CREDENTIALS,jarray.array(["theUser","thePassword"],java.lang.String))
map.put(com.ibm.ws.jmx.connector.client.rest.ClientProvider.READ_TIMEOUT,2*60*1000)
map.put(com.ibm.websphere.jmx.connector.rest.ConnectorSettings.DISABLE_HOSTNAME_VERIFICATION, True)

connector = JMXRESTConnector()
connector.connect("foo.bar.com",9443,map)
mconnection = connector.getMBeanServerConnection()
mconnection.invoke(...)
connector.disconnect()

Example 3: Registering a notification listener
import java
import javax

Chapter 5. Administering Liberty 1033

from restConnector import JMXRESTConnector
from restConnector import BaseNotificationListener

class SampleNotificationListener(BaseNotificationListener):
def __init__(self):

pass

def handleNotification(self,notification,handback):
print "Notification received:"
print " Source: " + notification.getSource().toString()
print " Type: " + notification.getType()
print " Message: " + notification.getMessage()

main starts here

JMXRESTConnector.trustStore = "c:/key.jks"
JMXRESTConnector.trustStorePassword = "Liberty"

connector=JMXRESTConnector()
connector.connect("foo.bar.com",9443,"theUser","thePassword")
mconnection=connector.getMBeanServerConnection()

listener=SampleNotificationListener()
handback=java.lang.Object()

notifier1=javax.management.ObjectName("web:name=Notifier1")
mconnection.addNotificationListener(notifier1,listener,None,handback)

JMXRESTConnector.trustStore
Sets the path to where the SSL key file is stored

JMXRESTConnector.trustStorePassword
Sets the password for the key

JMXRESTConnector.connect(host,port,user,password)
Creates a connector to the server

JMXRESTConnector.connect(host,port,map)
Creates a connector with user properties

JMXRESTConnector.getMBeanServerConnection
Gets a connection to the MBean server

JMXRESTConnector.disconnect()
Closes the connection

What to do next

After a connection to the MBean server is established, you can make calls to the MBean server by using
the invoke(...) method.

Note: A library of Jython scripts is available for you to download from the Liberty Repository.

File transfer
The restConnector-1.0 feature includes the FileTransfer and FileService MBeans. The FileTransfer
MBean supports delete, upload, and download operations to and from a running Liberty server. The
FileService MBean provides access to directory lists and file metadata, and it also provides archive
operations such as create and expand.

The FileTransfer and FileService MBeans are useful for carrying out remote operations on a Liberty,
such as updating the configuration or installing an application. A configuration update can be performed
remotely by uploading an updated server.xml file for the target Liberty server. An application can be

1034 WebSphere Application Server Liberty Core 8.5.5

http://www.ibmdw.net/wasdev/repo/

installed by uploading both the application archive and an updated server.xml file or simply by
uploading the application archive to the monitored dropins folder.

The FileTransfer MBean includes configurable read and write lists so that you can control the directories
that can be read or written when using the FileTransfer MBean.

See the section on the FileTransfer MBean in “List of provided MBeans” on page 1026 for information
on how to configure the restConnector-1.0 feature and control the FileTransfer MBean read and write
lists.

The uploadFile method from FileTransfer contains a boolean called "expandOnCompletion" that allows a
user to upload and expand the archive with a single MBean invocation. A directory is created with the
same name as the archive on the target path and the FileService MBean is automatically invoked to
expand the archive.

Example: A call to uploadFile with parameters {"C:/temp/myArchive.zip", "${server.output.dir}/
myArchive.zip", true} will result in a myArchive.zip directory under ${server.output.dir} that
contains the extracted contents of the archive being created.

Transferring files in a Liberty collective
A Liberty controller enables special file transfer capabilities within a Liberty collective. The most
advanced such functionality is file transfer for multiple hosts within a single REST call. You can use the
FileTransfer and FileService MBeans in a Liberty collective to perform file actions on any Liberty
server in the collective. This includes both Liberty servers configured as collective controllers and as
collective members.

About this task

When you establish a remote JMX connection to a collective controller, you can use the RoutingContext
MBean to direct your FileTransfer and FileService MBean calls to execute on any Liberty server in the
collective. The collective controller takes care of routing the request and creating authorized connections
between the collective controller and the target collective member.

By routing file operations to specific collective members, you can perform configuration-file updates and
install applications on any Liberty server in the collective.

The FileTransfer MBean additionally can perform operations on a host computer in a collective whether
or not there is a collective member on that host. By registering the host computer with the Liberty
collective and specifying a RoutingContext that specifies that host, the FileTransfer command can be
used to upload or download files to or from that host system. For example, you can upload and expand
a Liberty archive to push out Liberty to new hosts.

The upload and extract operation in a routing environment has a more complex logic than that in the
non-routing environment:
v If the target host machine has access to an unzip command on its path, that command is invoked to

extract the archive.
v If an unzip command is not found, the process uses a Java-based archive extraction.

1. A small Liberty-built jar file is temporarily pushed into the target host.
2. A path to Java is found by checking the following:

– Configured Java-home value that was setup during host registration
– Configured JAVA_HOME variable visible to RXA
– Configured JRE_HOME variable visible to RXA
– Java home found on the path

3. The custom Java jar file is invoked to extract the original archive.

Chapter 5. Administering Liberty 1035

4. The custom Java jar file is deleted from the target host.
5. If the archive being expanded by the custom Java jar file is a Liberty archive, the process

recursively sets the permissions of its wlp/bin folder to 755 to allow for remote management of that
Liberty instance.

The FileTransfer MBean uses authorization information stored in the collective controller for either the
target host computer or collective member. This information was stored when the host computer or
collective member was registered. See “Registering host computers with a Liberty collective” on page 921
for more information on setting up this information for the host computer.

File-transfer operations directed at the host computer use the authorization information stored for the
host computer. File-transfer operations directed at a collective member use the authorization overridden
by the collective member, if any, or use the information stored for the host computer by default. See
“Overriding Liberty server host information” on page 919 for more information on overriding host
information.

The FileService MBean operates on Liberty (not only on host computers) and uses the authorization
configurations from Liberty. It does not use host-computer authorization information.

Transferring files to and from a collective member or registered host with REST
calls

8.5.5.6

You can perform routed file transfer operations from a collective controller to a collective member or to a
registered host of a collective by invoking REST APIs. The operations include downloading files from a
remote location, uploading files to a remote location, and deleting files in a remote location. Use the GET,
POST, or DELETE REST APIs. The file transfer operations occur within an IBM JMX REST Connector.

Before you begin

To perform file transfer operations from a collective controller to a member server, the server must be
joined as a member to the collective. See “Configuring a Liberty collective” on page 912.

To perform file transfer operations to a host computer, the host must be registered with the collective
controller. See “Registering host computers with a Liberty collective” on page 921.

Procedure
1. Optional: To read about the REST APIs, point a browser at https://

controller_host_name:controller_port_name/IBMJMXConnectorREST/api and enter the controller
administrative user ID and password to log in. The controller must be running to view the REST API
documentation. Alternatively, you can use a collective member host, port, login user ID and password
to view the REST API documentation.
The File Transfer and Routing sections describe the APIs used to transfer files between the collective
controller and a member server or a registered host.
The collectiveController-1.0 and collectiveMember-1.0 features enable the restConnector-1.0
feature, which provides file transfer capability. Thus, collective controllers and members do not need
to specify restConnector-1.0 in a feature manager to view the REST APIs or perform file transfer
operations. A stand-alone server configuration might need the restConnector-1.0 feature to view the
REST APIs.

2. Unless you work directly with a Liberty instance, set the routing context as HTTP headers.
v Member server routing

com.ibm.websphere.jmx.connector.rest.routing.hostName=string
com.ibm.websphere.jmx.connector.rest.routing.serverName=string
com.ibm.websphere.jmx.connector.rest.routing.serverUserDir=string

v Registered host routing

1036 WebSphere Application Server Liberty Core 8.5.5

com.ibm.websphere.jmx.connector.rest.routing.hostName=string

3. Ensure the target file is within the configurable read/write directories of the server for file transfer
operations with a member server, or within configurable read/write directories of the host for file
transfer operations with a registered host.

4. Invoke REST APIs that download, upload, or delete files.
{filePath} must be URL-encoded. For routing operations with registered hosts, {filePath} must be
an absolute path and cannot contain Liberty variables.
v Download one file from a member server or registered host using the GET operation.

GET https://controller_host:controller_port/IBMJMXConnectorREST/file/{filePath}

v Upload one file to a member server or registered host using the POST operation.
POST https://controller_host:controller_port/IBMJMXConnectorREST/file/{filePath}

v Delete one file from a member server or registered host using the DELETE operation.
DELETE https://controller_host:controller_port/IBMJMXConnectorREST/file/{filePath}

v Delete multiple files from a member server or registered host using the POST operation.
POST https://controller_host:controller_port/IBMJMXConnectorREST/file/collection

Example

To download the myFile.txt file from the member server myServerA on the host myTarget.com with a user
directory of C:/server/wlp:
1. Set the member server routing context as HTTP headers.

com.ibm.websphere.jmx.connector.rest.routing.hostName=myTarget.com
com.ibm.websphere.jmx.connector.rest.routing.serverName=myServerA
com.ibm.websphere.jmx.connector.rest.routing.serverUserDir=C:/server/wlp

2. Invoke a GET call to download the file.
GET https://myTarget.com:9443//IBMJMXConnectorREST/file/C%3A%2Ftemp%2FmyFile.txt

To download the myFile.txt file from the registered host myTarget.com:
1. Set the registered host routing context as an HTTP header.

com.ibm.websphere.jmx.connector.rest.routing.hostName=myTarget.com

2. Invoke a GET call to download the file.
GET https://myTarget.com:9443//IBMJMXConnectorREST/file/C%3A%2Ftemp%2FmyFile.txt

To download the server.xml file from the member server myServerA on the host myTarget.com with a user
directory of C:/server/wlp:
1. Set the member server routing context as HTTP headers.

com.ibm.websphere.jmx.connector.rest.routing.hostName=myTarget.com
com.ibm.websphere.jmx.connector.rest.routing.serverName=myServerA
com.ibm.websphere.jmx.connector.rest.routing.serverUserDir=C:/server/wlp

2. Invoke a GET call to download the ${server.config.dir}/server.xml file.
GET https://myTarget.com:9443//IBMJMXConnectorREST/file/%24{server.config.dir}%2Fserver.xml

What to do next

Get status or details on the REST call. See “Getting status on a REST call for multiple registered hosts” on
page 1040.

Uploading files to multiple registered hosts with a single REST call
8.5.5.6

You can upload files from a collective controller to multiple registered hosts of a collective by invoking
the POST REST API. The file transfer operations occur within an IBM JMX REST Connector.

Chapter 5. Administering Liberty 1037

Before you begin

Create a collective controller. See “Configuring a Liberty collective” on page 912.

Register each remote host computer with the collective controller. See “Registering host computers with a
Liberty collective” on page 921.

Procedure
1. Optional: To read about the REST APIs, point a browser at https://

controller_host_name:controller_port_name/IBMJMXConnectorREST/api and enter the controller
administrative user ID and password to log in. The controller must be running to view the REST API
documentation.
The File Transfer and Routing sections describe the APIs used to transfer files between the collective
controller and a member server or a registered host.
The collectiveController-1.0 feature enables the restConnector-1.0 feature, which provides file
transfer capability. Thus, collective controllers do not need to specify restConnector-1.0 in a feature
manager to view the REST APIs or perform file transfer operations. A stand-alone server
configuration might need the restConnector-1.0 feature to view the REST APIs.

2. List the target hosts in an HTTP header for the collective controller.
com.ibm.websphere.collective.hostNames=comma-separated_list_of_target_hosts

Optionally, set other HTTP headers:
v Specify whether to perform the file uploads and the action asynchronously. Default is false. To

change the default, specify true for boolean.
com.ibm.websphere.jmx.connector.rest.asyncExecution=boolean

v Specify a set of actions to perform after the file uploads. An existing built-in action is
com.ibm.websphere.jmx.connector.rest.postTransferAction.join, which joins the Liberty servers
inside the incoming Liberty archive to the collective. Use the header to list other custom actions. If
you list more than one custom action, delimit the action with a URL-encoded comma character.
com.ibm.websphere.jmx.connector.rest.postTransferAction=comma-separated_list_of_actions

To enable the custom actions, add the following configuration to the collective controller
server.xml:
<hostAccess enableCustomActions="true" />

v Specify a list of options to pass into the post-transfer actions. This list of options must be either null
or contain the same number of list items as the postTransferAction header list, where the item
index of each option must match the index of its corresponding action. If you list more than one
option, delimit the action with a URL-encoded comma character.
com.ibm.websphere.jmx.connector.rest.postTransferAction.options=comma-separated_list_of_options

If you specify the built-in action com.ibm.websphere.jmx.connector.rest.postTransferAction.join,
the corresponding option must be:
--user=adminUser --password=adminPw --keystorePassword=keystorePw [--rpcUser=rpcUser --rpcPassword=rpcPw]

v Specify environment variables to set before the transfer actions run. The payload of the header is a
JSON object where each JSON key is an environment variable and each JSON value is its
corresponding value. If you specify system paths, use forward slashes (/).
com.ibm.websphere.jmx.connector.rest.transferEnvVars=list_of_environment_variables

3. Upload a file to multiple registered hosts by using the POST operation.
a. Ensure that the target location is within a configurable write directory of the hosts.
b. Invoke the POST operation.

POST https://controller_host:controller_port/IBMJMXConnectorREST/file/{filePath}[?expandOnCompletion=boolean&local=boolean]

v {filePath} is a UTF-8 URL-encoded absolute path that specifies the target location. For
example, if the file is C:/temp/myFile.txt, the path is C%3A%2Ftemp%2FmyFile.txt.

v expandOnCompletion is an optional query parameter that toggles an automatic expansion of the
uploaded archive. The default value is false.

1038 WebSphere Application Server Liberty Core 8.5.5

v local is an optional query parameter that specifies whether the file to upload is already in the
controller. If true, then the payload of this POST request is a string that represents the source file
location inside the controller. The default value is false.

v If the local query parameter is not used, or explicitly set to false, the POST payload is the binary
content of the source file itself.

What to do next

Get status or details on the REST call. See “Getting status on a REST call for multiple registered hosts” on
page 1040.

Deleting files from multiple registered hosts with a single REST call
8.5.5.6

You can delete files on multiple registered hosts of a collective from a collective controller by invoking
the DELETE REST API. The file deletions occur within an IBM JMX REST Connector.

Before you begin

Create a collective controller. See “Configuring a Liberty collective” on page 912.

Register each remote host computer with the collective controller. See “Registering host computers with a
Liberty collective” on page 921.

Procedure
1. Optional: To read about the REST APIs, point a browser at https://

controller_host_name:controller_port_name/IBMJMXConnectorREST/api and enter the controller
administrative user ID and password to log in. The controller must be running to view the REST API
documentation.
The File Transfer and Routing sections describe the APIs used to transfer files between the collective
controller and a member server or a registered host.
The collectiveController-1.0 feature enables the restConnector-1.0 feature, which provides file
transfer capability. Thus, collective controllers do not need to specify restConnector-1.0 in a feature
manager to view the REST APIs or perform file transfer operations. A stand-alone server
configuration might need the restConnector-1.0 feature to view the REST APIs.

2. List the target hosts in an HTTP header for the collective controller.
com.ibm.websphere.collective.hostNames=comma-separated_list_of_target_hosts

Optionally, set other HTTP headers:
v Specify whether to perform the file deletion and the action asynchronously. Default is false. To

change the default, specify true for boolean.
com.ibm.websphere.jmx.connector.rest.asyncExecution=boolean

v Specify a set of actions to perform before the file deletion. An existing built-in action is
com.ibm.websphere.jmx.connector.rest.preTransferAction.remove, which removes the Liberty
servers inside the Liberty directory to be deleted from the collection. Use the header to list other
custom actions. If you list more than one custom action, delimit the action with a URL-encoded
comma character.
com.ibm.websphere.jmx.connector.rest.preTransferAction=comma-separated_list_of_actions

To enable the custom actions, add the following configuration to the collective controller
server.xml:
<hostAccess enableCustomActions="true" />

v Specify a list of options to pass into the pre-transfer actions. This list of options must be either null
or contain the same number of list items as the preTransferAction header list, where the item

Chapter 5. Administering Liberty 1039

index of each option must match the index of its corresponding action. If you list more than one
option, delimit the action with a URL-encoded comma character.
com.ibm.websphere.jmx.connector.rest.preTransferAction.options=comma-separated_list_of_options

If you specify the built-in action
com.ibm.websphere.jmx.connector.rest.preTransferAction.remove, the corresponding option must
be:
--user=adminUser --password=adminPw --keystorePassword=keystorePw [--rpcUser=rpcUser --rpcPassword=rpcPw]

v Specify credentials to use for the delete action. The payload of the header is a JSON object where
each JSON key is an environment variable and each JSON value is its corresponding value. If you
specify system paths, use forward slashes (/).
com.ibm.websphere.jmx.connector.rest.transferCredentials=list_of_environment_variables

v Specify environment variables to set before the actions run. The payload of the header is a JSON
object where each JSON key is an environment variable and each JSON value is its corresponding
value. If you specify system paths, use forward slashes (/).
com.ibm.websphere.jmx.connector.rest.transferEnvVars=list_of_environment_variables

3. Delete a file from multiple registered hosts using the DELETE operation.
a. Ensure the target location is within a configurable write directory of the hosts.
b. Invoke the DELETE operation.

DELETE https://controller_host:controller_port/IBMJMXConnectorREST/file/{filePath}[?recursiveDelete=boolean]

v {filePath} is a UTF-8 URL-encoded absolute path that specifies the target location. For
example, if the file is C:/temp/myFile.txt, the path is C%3A%2Ftemp%2FmyFile.txt.

v recursiveDelete is an optional query parameter that deletes non-empty directories. The default
value is false.

What to do next

Get status or details on the REST call. See “Getting status on a REST call for multiple registered hosts.”

Getting status on a REST call for multiple registered hosts
8.5.5.6

You can get status or details about a call to upload or delete files on multiple registered hosts of a
collective by invoking the GET REST API.

Before you begin

Call a REST API to upload or delete files on multiple registered hosts. See “Uploading files to multiple
registered hosts with a single REST call” on page 1037 or “Deleting files from multiple registered hosts
with a single REST call” on page 1039.

Procedure
v Get overall multiple task status, with the option of filtering the results.

GET https://controller_host:controller_port/IBMJMXConnectorREST/file/status/[?key=value]

The key variable is a task property filtered with the value variable. You can specify multiple key=value
pairs to use as query filters.

v Get status about a specific task.
GET https://controller_host:controller_port/IBMJMXConnectorREST/file/status/{taskID}

{taskID} represents a task; for example, c8a2b96b-5a6a-493c-ad0c-140df87d61cf.
v Get a list of available properties from a specific task.

GET https://controller_host:controller_port/IBMJMXConnectorREST/file/status/{taskID}/properties

{taskID} represents a task; for example, c8a2b96b-5a6a-493c-ad0c-140df87d61cf.
v Get the value of a property in a specific task.

1040 WebSphere Application Server Liberty Core 8.5.5

GET https://controller_host:controller_port/IBMJMXConnectorREST/file/status/{taskID}/properties/{property}

– {taskID} represents a task; for example, c8a2b96b-5a6a-493c-ad0c-140df87d61cf.
– {property} represents the property to get.

v Get status about the hosts of a specific task.
GET https://controller_host:controller_port/IBMJMXConnectorREST/file/status/{taskID}/hosts

{taskID} represents a task; for example, c8a2b96b-5a6a-493c-ad0c-140df87d61cf.
v Get details about steps that were taken within a specific host of a specific task.

GET https://controller_host:controller_port/IBMJMXConnectorREST/file/status/{taskID}/hosts/{hostName}

– {taskID} represents a task; for example, c8a2b96b-5a6a-493c-ad0c-140df87d61cf.
– {hostName} represents a host; for example, machineA.xyz.com.

Example

Get overall multiple task status, with the option of filtering the results. If the JSON response is:
[
{
"taskID" : String ,
"taskStatus" : String,
"taskURL" : URL

}*
]

For the following GET call:
GET https://myTarget.com:9443/IBMJMXConnectorREST/file/status

Typical status is:
[

{
"taskID" : "c8a2b96b-5a6a-493c-ad0c-140df87d61cf" ,
"taskStatus" : "succeeded",
"taskURL" : "/IBMJMXConnectorREST/file/status/c8a2b96b-5a6a-493c-ad0c-140df87d61cf"

},
{

"taskID" : "18c807ff-e7bb-4584-a988-278039d0aabd" ,
"taskStatus" : "failed",
"taskURL" : "/IBMJMXConnectorREST/file/status/18c807ff-e7bb-4584-a988-278039d0aabd"

}
]

For the following GET call with two key=value pairs:
GET https://myTarget.com:9443/IBMJMXConnectorREST/file/status?user=bob&status=succeeded

Typical status is:
[
{
"taskID" : "c8a2b96b-5a6a-493c-ad0c-140df87d61cf" ,
"taskStatus" : "succeeded",
"taskURL" : "/IBMJMXConnectorREST/file/status/c8a2b96b-5a6a-493c-ad0c-140df87d61cf"

}
]

Configuring binary logging in Liberty
Use this information as a guide for configuring binary logging in your Liberty.

About this task

Binary logging provides faster log and trace handling capabilities and more flexible ways to use log and
trace content than the default Liberty log and trace framework.

Chapter 5. Administering Liberty 1041

A server configuration consists of a bootstrap.properties file, a server.xml file, and any (optional) files
that are included with those files. The bootstrap.properties file specifies properties that need to be
available before the main configuration is processed, and are kept to a minimum. The server.xml file is
the primary configuration file for the server.

The server.xml file and its associated files use a simple xml format that is suitable for most text editors.

Distributed operating systems A richer editing experience is provided by the eclipse server adapter for Liberty
(WAS4D+ adapter), which uses a generated schema to provide drop-down lists of available choices,
auto-completion, and other editing tools. For a description of the eclipse server adapter for Liberty, see
“Editing the Liberty configuration by using developer tools” on page 938.

The bootstrap.properties file specifies whether the server uses binary logging as the log and trace
framework, or the default log and trace framework. A server restart is required to switch between binary
logging and the default log and trace framework.

You can modify the configuration of binary logging through the server configuration or the
bootstrap.properties file.
v Server configuration: To get logging from your own code, which is loaded after server configuration

processing, use the server configuration to configure binary logging.
v bootstrap.properties file: You might need to set logging properties to take effect before the server

configuration files are processed. For example, if you need to analyze problems that occur early in
server start or configuration processing. In this case, you can configure binary logging in the
bootstrap.properties file.

You can set Logging properties in either the bootstrap.properties or the server.xml file. Use attributes
in the server.xml file, or use equivalent properties in the bootstrap.properties file. Any settings in the
bootstrap.properties file are used from the time the server reads the bootstrap.properties file until the
time the server.xml file is processed. If the logging properties in the bootstrap.properties file are not
replaced or reset in the server.xml file, the property values in the bootstrap.properties file continue to
be used.

When binary logging is enabled, the maxFileSize, maxFiles, messageFileName, traceFileName, and
traceFormat logging element attributes are ignored (since binary logging runs without trace.log and
messages.log files). The traceSpecification, consoleLogLevel, and logDirectory attributes continue to
be used to set the trace specification, the level for the console log, and the placement of the log and trace
files.

If you set logging or binary logging attributes in the server.xml file, you can avoid changes in
configuration between startup time and runtime by setting the corresponding properties in the
bootstrap.properties file to the same value. If no logging or binary logging properties are set in the
bootstrap.properties file, the server uses the default logging settings.

Procedure
v Enable binary logging for the server by updating the bootstrap.properties file. In the

bootstrap.properties file, add the following text on a line by itself:
websphere.log.provider=binaryLogging-1.0

v Use the following parameters to configure binary logging. All subelements that are listed are
subelements of the logging element in the server.xml file. The following table lists the attributes that
are configurable in the server.xml file and the equivalent properties that can be set in the
bootstrap.properties file:

1042 WebSphere Application Server Liberty Core 8.5.5

Table 79. Binary logging attributes that are configurable in server.xml and the equivalent properties that can be set in
bootstrap.properties

Logging
subelement Attribute Equivalent bootstrap.properties property

binaryLog purgeMaxSize

purgeMinTime

fileSwitchTime

bufferingEnabled

outOfSpaceAction

com.ibm.hpel.log.purgeMaxSize

com.ibm.hpel.log.purgeMinTime

com.ibm.hpel.log.fileSwitchTime

com.ibm.hpel.log.bufferingEnabled

com.ibm.hpel.log.outOfSpaceAction

binaryTrace purgeMaxSize

purgeMinTime

fileSwitchTime

bufferingEnabled

outOfSpaceAction

com.ibm.hpel.trace.purgeMaxSize

com.ibm.hpel.trace.purgeMinTime

com.ibm.hpel.trace.fileSwitchTime

com.ibm.hpel.trace.bufferingEnabled

com.ibm.hpel.trace.outOfSpaceAction

The following example shows a bootstrap.properties file that is configured to enable binary logging:
websphere.log.provider=binaryLogging-1.0

The following example shows a server.xml file with the binary logging subelements. The log content is
set to expire after 96 hours and the trace content is set to retain a maximum of 1024MB:
<server description="new server">

<logging>
<binaryLog purgeMinTime="96"/>
<binaryTrace purgeMaxSize="1024"/>

</logging>

</server>

For the full logging configuration reference, see the logging, binaryLog, and binaryTrace elements in
the **** MISSING FILE ****.

Results

After you restart the server, binary logging is enabled and configured.

Administering the transaction service on Liberty
Liberty provides many of the same transaction services that are provided in the WebSphere Application
Server traditional. If an application uses two or more resources, the Liberty transaction manager
coordinates the updates to all the resource managers under the control of a global transaction. In Liberty,
transaction services are implicitly activated when you specify features that require the use of transactions;
for example, jpa-2.0, jdbc-4.0, and wasJmsServer-1.0.

About this task

You can control when database transaction recovery occurs, you can specify configuration settings that
determine how database transactions are recovered, and you can choose whether to store your transaction
logs as operating system files or in a relational database.

Liberty: Configuring the startup of the transaction service
Database transaction recovery can occur either when the transaction service is first used, or at server
startup.

Chapter 5. Administering Liberty 1043

About this task

By default, transaction recovery after a server failure happens when the transaction service is first used
rather than at server startup. You can alter this behavior by specifying transaction service attributes that
control when recovery happens, and whether the system waits for recovery to finish before allowing
transactional work to proceed.

Procedure

To configure transaction service startup, specify the following attributes in the transaction element in the
server.xml file:
v recoverOnStartup

This attribute can take the following values:
– true: Transaction recovery occurs at server startup.
– false: Transaction recovery occurs when the transaction service is first used.

v waitForRecovery
This attribute can take the following values:
– true: The server waits for transaction recovery to finish before allowing transactional work to

proceed.
– false: The server allows transactional work to proceed without waiting for transaction recovery to

finish.

Example

With the following transaction element configuration, transaction recovery occurs at server startup, and
the server waits for transaction recovery to finish before allowing transactional work to proceed.
<transaction
recoverOnStartup="true"
waitForRecovery="true"

/>

How database transactions are recovered
When the Liberty transaction manager recovers indoubt database transactions, it uses either the unique
identifier or the JNDI name to locate the current dataSource element, and then determines the user ID
and password to use for recovery.

Configure a data source by specifying the attributes of the dataSource element in the server.xml
configuration file. You can assign a unique identifier or a jndiName attribute for the data source as
follows:
<dataSource id="ds1" jndiName="jdbc/ds1"... />

You must not change the value of the id or jndiName attribute when a recovery is pending for a
transaction in which the data source participated. If you change any other attributes of the dataSource
element, those changes are retained for the recovery. Therefore, you can, for example, add a
recoveryAuthDataRef attribute that specifies a database user ID and password to use for recovery.

The database user ID and password to use for recovery are determined according to the following order
of precedence:
1. If the dataSource element has the recoveryAuthDataRef attribute defined, then the user ID and

password from the authData element are used. For example:
<authData id="recoveryAuth" user="dbuser1" password="{xor}Oz0vKDtu"/>
<dataSource id="ds1" jndiName="jdbc/ds1" jdbcDriverRef="DB2"

recoveryAuthDataRef="recoveryAuth" .../>

1044 WebSphere Application Server Liberty Core 8.5.5

2. If container-managed authentication is used, then the user ID and password from the
container-managed authentication alias are used. For example:
v In the ibm-web-bnd.xml file, you have the following code:

<resource-ref name="jdbc/ds1ref" binding-name="jdbc/ds1">
<authentication-alias name="user1Auth"/>

</resource-ref>

v In the server.xml file, you must define the following code:
<authData id="user1Auth" user="dbuser1" password="{xor}Oz0vKDtu"/>
<dataSource id="ds1" jndiName="jdbc/ds1" jdbcDriverRef="DB2" .../>

3. The user ID and password from the dataSource element are used. For example:
<dataSource id="ds1" jndiName="jdbc/ds1" jdbcDriverRef="DB2" ...>

<properties.db2.jcc databaseName="testdb" user="dbuser1" password="{xor}Oz0vKDtu"/>
</dataSource>

4. If none of the previous conditions are satisfied, and the recovery is attempted without any user ID
and password, then the behavior is determined by the JDBC driver and database.

Note: If the transaction recovery is performed by an application-defined data source, such as an
@DataSourceDefinition annotation or a <data-source> element in the deployment descriptor, you must
ensure that the associated application is running when the recovery is taking place. You cannot use
configuration settings in the server.xml file to recover application-defined data sources.

Storing transaction logs in a relational database
You can, choose to store your Liberty transaction logs in a relational database rather than as operating
system files. In WebSphere Application Server traditional, this feature provides high availability (HA)
support without having to use a shared file system. The feature is provided in Liberty for compatibility
and for evaluation and testing purposes.

About this task

The WebSphere Application Server transaction service writes information to a transaction log for every
global transaction that involves two or more resources, or that is distributed across multiple servers.
These transactions are started or stopped either by applications or by the container in which they are
deployed. The transaction service maintains transaction logs to ensure the integrity of transactions.
Information is written to the transaction logs in the prepare phase of a distributed transaction, so that if a
Websphere Application Server with active transactions restarts after a failure, the transaction service is
able to use the logs to replay any indoubt transactions. This allows the overall system to be brought back
to a consistent state.

In previous releases of WebSphere Application Server, the transaction logs were stored as operating
system files. In WebSphere Application Server Version 8.5.5 and later, this remains the default
configuration but you can choose to store the transaction logs in a relational database management
system (RDBMS). This configuration option is aimed at customers working in an HA environment. In
previous releases of WebSphere Application Server, HA transaction support required the use of a shared
file system to host the transaction logs, such as an NFSv4-mounted network attached storage (NAS) or a
storage area network (SAN). This new feature allows customers, particularly those with an investment in
HA database technology, to use their HA database as a shared repository for the transaction logs, as an
alternative to using a shared file system.

By default, Liberty transaction logs are stored in operating system files. However, for compatibility with
WebSphere Application Server traditional, and for evaluation and testing purposes, you can configure the
transaction logs to be stored in an RDBMS. You can use any database type that is supported by Liberty.

Chapter 5. Administering Liberty 1045

Procedure

To configure the Liberty transaction logs to be stored in an RDBMS, complete the following steps:
1. Configure a dedicated, non-transactional data source in the Liberty server.xml file.

The following example extract from the server.xml file shows how to configure Liberty to store its
transaction logs in a DB2 database:
<transaction>
<dataSource transactional="false">
<jdbcDriver libraryRef="DB2JCC4LIB"/>
<properties.db2.jcc currentSchema="CBIVP"
databaseName="SAMPLE" driverType="4"
portNumber="50000" serverName="localhost"
user="db2admin" password="{xor}Oz1tPjsyNjE=" />

</dataSource>
</transaction>

<library id="DB2JCC4LIB">
<fileset dir="C:/SQLLIB/java" includes="db2jcc4.jar db2jcc_license_cu.jar"/>

</library>

2. (optional) Create the database tables.
Liberty attempts to create the necessary database tables when the server first starts. When this is not
possible, due to insufficient permission for example, the server fails to start. Under these
circumstances, you must create the two required database tables manually.
The following DDL structures show how to create the tables on DB2:
CREATE TABLE WAS_TRAN_LOG(
SERVER_NAME VARCHAR(128),
SERVICE_ID SMALLINT,
RU_ID BIGINT,
RUSECTION_ID BIGINT,
RUSECTION_DATA_INDEX SMALLINT,
DATA LONG VARCHAR FOR BIT DATA)

CREATE TABLE WAS_PARTNER_LOG(
SERVER_NAME VARCHAR(128),
SERVICE_ID SMALLINT,
RU_ID BIGINT,
RUSECTION_ID BIGINT,
RUSECTION_DATA_INDEX SMALLINT,
DATA LONG VARCHAR FOR BIT DATA)

The following DDL structures shows how to create the database table on Oracle:
CREATE TABLE WAS_TRAN_LOG(
SERVER_NAME VARCHAR(128),
SERVICE_ID SMALLINT,
RU_ID NUMBER(19),
RUSECTION_ID NUMBER(19),
RUSECTION_DATA_INDEX SMALLINT,
DATA BLOB)

CREATE TABLE WAS_PARTNER_LOG(
SERVER_NAME VARCHAR(128),
SERVICE_ID SMALLINT,
RU_ID NUMBER(19),
RUSECTION_ID NUMBER(19),
RUSECTION_DATA_INDEX SMALLINT,
DATA BLOB)

Administering data access resources on Liberty
Administer data access resources using the Liberty features for JDBC, MongoDB, and more.

1046 WebSphere Application Server Liberty Core 8.5.5

Administering data access applications on Liberty
With Liberty, applications can access data in both relational and NoSQL databases.

Procedure
v Configuring relational database connectivity in Liberty.
v Configure connection pooling for database connections
v Configure database transaction recovery

Configuring relational database connectivity in Liberty:

You can configure a data source associated with different JDBC providers for database connectivity. The
JDBC providers supply the driver implementation classes that are required for JDBC connectivity with
your specific vendor database.

About this task

To access a database from your application, you must use a data source. Data sources are provided by
JDBC drivers and come in the following varieties:
v javax.sql.DataSource

This is the basic form of a data source. It does not provide interoperability that enhances connection
pooling, and cannot participate as a two-phase capable resource in transactions involving multiple
resources.

v javax.sql.ConnectionPoolDataSource

This type of data source is enabled for connection pooling. It cannot participate as a two-phase capable
resource in transactions involving multiple resources.

v javax.sql.XADataSource

This type of data source is both enabled for connection pooling and is able to participate as a
two-phase capable resource in transactions involving multiple resources.

In order to be usable in the Liberty, your JDBC driver must provide at least one of these types of data
sources. For the commonly used JDBC drivers, Liberty is already aware of the implementation class
names for the various data source types. You only need to tell Liberty where to find the JDBC driver.

Procedure

1. In the server.xml file, define a shared library pointing to the location of your JDBC driver JAR or
compressed files. For example:
<library id="DB2JCC4Lib">

<fileset dir="C:/DB2/java" includes="db2jcc4.jar db2jcc_license_cisuz.jar"/>
</library>

2. Define a data source using the JDBC driver. If you don't specify the type of data source, Liberty
chooses the data source in the following order depending on which is available.
v javax.sql.ConnectionPoolDataSource

v javax.sql.DataSource

v javax.sql.XADataSource

Here is an example that accepts the default for data source type:
<dataSource id="db2" jndiName="jdbc/db2">

<jdbcDriver libraryRef="DB2JCC4Lib"/>
<properties.db2.jcc databaseName="SAMPLEDB" serverName="localhost" portNumber="50000"/>

</dataSource>

Here is an example that uses javax.sql.XADataSource type:

Chapter 5. Administering Liberty 1047

<dataSource id="db2xa" jndiName="jdbc/db2xa" type="javax.sql.XADataSource">
<jdbcDriver libraryRef="DB2JCC4Lib"/>
<properties.db2.jcc databaseName="SAMPLEDB" serverName="localhost" portNumber="50000"/>

</dataSource>

A default data source is available when at least one Java EE 7 feature is enabled. This data source
uses a different priority to determine the type if none is specified.
v javax.sql.XADataSource

v javax.sql.ConnectionPoolDataSource

v javax.sql.DataSource

This data source is available as java:comp/DefaultDataSource. A jndiName does not need to be
specified for it. To configure the default data source, specify a data source with the id set to
DefaultDataSource. Here is an example that configures the default data source to point at a DB2
database:
<dataSource id="DefaultDataSource">
<jdbcDriver libraryRef="DB2JCC4Lib"/>
<properties.db2.jcc databaseName="SAMPLEDB" serverName="localhost" portNumber="50000"/>

</dataSource>

3. Optional: Configure attributes for the data source, such as JDBC vendor properties and connection
pooling properties.
For example:
<dataSource id="DefaultDataSource" jndiName="jdbc/db2" connectionSharing="MatchCurrentState"

isolationLevel="TRANSACTION_READ_COMMITTED" statementCacheSize="20">
<connectionManager maxPoolSize="20" minPoolSize="5"

connectionTimeout="10s" agedTimeout="30m"/>
<jdbcDriver libraryRef="DB2JCC4Lib"/>
<properties.db2.jcc databaseName="SAMPLEDB" serverName="localhost" portNumber="50000"

currentLockTimeout="30s" user="user1" password="pwd1"/>
</dataSource>

For a full list of configuration attributes for the dataSource element, connectionManager element and
some commonly used JDBC vendors, see “Data Source (dataSource)” on page 54.

4. Optional: Configure data sources for commonly used databases according to the following examples.

For DB2
<dataSource id="DefaultDataSource" jndiName="jdbc/db2">

<jdbcDriver libraryRef="DB2JCC4Lib"/>
<properties.db2.jcc databaseName="SAMPLEDB" serverName="localhost" portNumber="50000"/>

</dataSource>

<library id="DB2JCC4Lib">
<fileset dir="C:/DB2/java" includes="db2jcc4.jar db2jcc_license_cisuz.jar"/>

</library>

For DB2 on iSeries (Native)
<dataSource id="DefaultDataSource" jndiName="jdbc/db2iNative">

<jdbcDriver libraryRef="DB2iNativeLib"/>
<properties.db2.i.native databaseName="*LOCAL"/>

</dataSource>

<library id="DB2iNativeLib">
<fileset dir="/QIBM/Proddata/java400/jdk6/lib/ext" includes="db2_classes16.jar"/>

</library>

For DB2 on iSeries (Toolbox)
<dataSource id="DefaultDataSource" jndiName="jdbc/db2iToolbox">

<jdbcDriver libraryRef="DB2iToolboxLib"/>
<properties.db2.i.toolbox databaseName="SAMPLEDB" serverName="localhost"/>

</dataSource>

<library id="DB2iToolboxLib">
<fileset dir="/QIBM/ProdData/Http/Public/jt400/lib" includes="jt400.jar"/>

</library>

1048 WebSphere Application Server Liberty Core 8.5.5

For Derby Embedded
<dataSource id="DefaultDataSource" jndiName="jdbc/derbyEmbedded">

<jdbcDriver libraryRef="DerbyLib"/>
<properties.derby.embedded databaseName="C:/databases/SAMPLEDB" createDatabase="create"/>

</dataSource>

<library id="DerbyLib">
<fileset dir="C:/db-derby-10.8.1.2-bin/lib"/>

</library>

For Derby Network Client
<dataSource id="DefaultDataSource" jndiName="jdbc/derbyClient">

<jdbcDriver libraryRef="DerbyLib"/>
<properties.derby.client databaseName="C:/databases/SAMPLEDB" createDatabase="create"

serverName="localhost" portNumber="1527"/>
</dataSource>

<library id="DerbyLib">
<fileset dir="C:/db-derby-10.8.1.2-bin/lib"/>

</library>

For Informix® JCC
<dataSource id="DefaultDataSource" jndiName="jdbc/informixjcc">

<jdbcDriver libraryRef="DB2JCC4Lib"/>
<properties.informix.jcc databaseName="SAMPLEDB" serverName="localhost" portNumber="1526"/>

</dataSource>

<library id="DB2JCC4Lib">
<fileset dir="C:/Drivers/jcc/4.8" includes="db2jcc4.jar db2jcc_license_cisuz.jar"/>

</library>

For Informix JDBC
<dataSource id="DefaultDataSource" jndiName="jdbc/informix">

<jdbcDriver libraryRef="InformixLib"/>
<properties.informix databaseName="SAMPLEDB" ifxIFXHOST="localhost"

serverName="ol_machinename" portNumber="1526"/>
</dataSource>

<library id="InformixLib">
<fileset dir="C:/Drivers/informix" includes="ifxjdbc.jar ifxjdbcx.jar"/>

</library>

For Microsoft SQL Server (Microsoft JDBC driver)
<dataSource id="DefaultDataSource" jndiName="jdbc/mssqlserver">

<jdbcDriver libraryRef="MSJDBCLib"/>
<properties.microsoft.sqlserver databaseName="SAMPLEDB"

serverName="localhost" portNumber="1433"/>
</dataSource>

<library id="MSJDBCLib">
<fileset dir="C:/sqljdbc_6.0/enu/sqljdbc41.jar"/>
</library>

For Microsoft SQL Server (DataDirect Connect for JDBC driver)
<dataSource id="DefaultDataSource" jndiName="jdbc/ddsqlserver">

<jdbcDriver libraryRef="DataDirectLib"/>
<properties.datadirect.sqlserver databaseName="SAMPLEDB"

serverName="localhost" portNumber="1433"/>
</dataSource>

<library id="DataDirectLib">
<fileset dir="C:/DataDirect/Connect-4.2/lib/sqlserver.jar"/>

</library>

For MySQL
<dataSource id="DefaultDataSource" jndiName="jdbc/mySQL">

<jdbcDriver libraryRef="MySQLLib"/>
<properties databaseName="SAMPLEDB" serverName="localhost" portNumber="3306"/>

</dataSource>

Chapter 5. Administering Liberty 1049

<library id="MySQLLib">
<fileset dir="C:/mysql-connector-java-x.x.xx/mysql-connector-java-x.x.xx.jar"/>

</library>

For Oracle
<dataSource id="DefaultDataSource" jndiName="jdbc/oracle">

<jdbcDriver libraryRef="OracleLib"/>
<properties.oracle URL="jdbc:oracle:thin:@//localhost:1521/SAMPLEDB"/>

</dataSource>

<library id="OracleLib">
<fileset dir="C:/Oracle/lib/ojdbc6.jar"/>

</library>

For Sybase
<dataSource id="DefaultDataSource" jndiName="jdbc/sybase">

<jdbcDriver libraryRef="SybaseLib"/>
<properties.sybase databaseName="SAMPLEDB" serverName="localhost" portNumber="5000"/>

</dataSource>

<library id="SybaseLib">
<fileset dir="C:/Drivers/sybase/jconn4.jar"/>

</library>

For solidDB
<dataSource id="DefaultDataSource" jndiName="jdbc/solidDB">

<jdbcDriver libraryRef="solidLib"/>
<properties databaseName="SAMPLEDB" URL="jdbc:solid://localhost:2315/"/>

</dataSource>

<library id="solidLib">
<fileset dir="C:/Drivers/solidDB/SolidDriver2.0.jar"/>

</library>

For a JDBC driver that is not known to Liberty
<dataSource id="DefaultDataSource" jndiName="jdbc/sample" type="javax.sql.XADataSource">

<jdbcDriver libraryRef="SampleJDBCLib"
javax.sql.XADataSource="com.ibm.sample.SampleXADataSource"/>

<properties databaseName="SAMPLEDB" hostName="localhost" port="12345"/>
</dataSource>

<library id="SampleJDBCLib">
<fileset dir="C:/Drivers/SampleJDBC/sampleDriver.jar"/>

</library>

In the example, the JDBC driver is located at C:/Drivers/SampleJDBC/sampleDriver.jar and
provides an implementation of javax.sql.XADataSource named
com.ibm.sample.SampleXADataSource. The JDBC driver also provides vendor-specific data
source properties such as databaseName, hostName and port.

Configuring a default data source: 8.5.5.6

You can configure a default data source that is associated with different JDBC providers for database
connectivity. The JDBC providers supply the driver implementation classes that are required for JDBC
connectivity with your specific vendor database.

About this task

To access a database from your application, you must configure a data source.

Procedure

1. Configure the datasource element with the ID DefaultDataSource in the server.xml file.

1050 WebSphere Application Server Liberty Core 8.5.5

<dataSource id="DefaultDataSource">
<jdbcDriver libraryRef="MyJDBCLib"/>
<properties.derby.embedded databaseName="myDB" createDatabase="create"/>
<containerAuthData user="user1" password="{xor}Oz0vKDtu" />

</dataSource>
<library id="MyJDBCLib">

<file name="C:/derby/derby.jar"/>
</library>

Note: The server must be running at the Java Enterprise Edition 7 platform level. This platform level
is enabled when one or more Java Enterprise Edition 7 features are enabled in the server.xml file.

2. To use the DefaultDataSource in a web application, a reference can be obtained with dependency
injection:
@Resource
DataSource defaultDataSource;

or through JNDI lookup:
DataSource defaultDataSource = (DataSource) new InitialContext().lookup("java:comp/DefaultDataSource");

How data source configuration updates are applied:

If you change the attributes of the dataSource element while a server is running, the updates to different
attributes are applied at different times and in different ways.

You configure a data source by specifying the attributes of the dataSource element in the server.xml
configuration file. If you change these attributes for a running server, the updates are applied at different
times and in different ways, depending on which attribute is changed. The following table describes, for
each attribute of the dataSource element, how a configuration change is applied at run time.

Table 80. How data source configuration updates are applied at run time. The first column of the table lists the
attributes of the dataSource element. The second column describes, for each attribute, how the configuration update
is applied at run time.

Attribute name How the configuration update is applied

beginTranForResultSetScrollingAPIs The update is effective immediately.

beginTranForVendorAPIs The update is effective immediately.

commitOrRollbackOnCleanup The update is effective immediately.

connectionManagerRef All connections and the connection pool are destroyed. The data
source is then managed by the new connection manager.

connectionSharing The update is applied with each first connection handle in a
transaction.

isolationLevel The update is applied with new connection requests; current
connections retain their isolation level.

jdbcDriverRef All connections and the connection pool are destroyed. The new
JDBC driver is then used.

jndiName All connections and the connection pool are destroyed. The new
JNDI name is then used.

propertiesRef If the data source is Derby Embedded, all connections and the
connection pool are destroyed before new properties go into
effect. For other JDBC drivers, the new properties go into effect
with new connection requests.

queryTimeout The update is effective immediately.

recoveryAuthDataRef Authentication data for transaction recovery. All connections
and the connection pool are destroyed. The new recovery
authentication data is then used.

statementCacheSize The statement cache is resized upon next use.

Chapter 5. Administering Liberty 1051

Table 80. How data source configuration updates are applied at run time (continued). The first column of the table
lists the attributes of the dataSource element. The second column describes, for each attribute, how the configuration
update is applied at run time.

Attribute name How the configuration update is applied

supplementalJDBCTrace All connections and the connection pool are destroyed. The new
setting is then used.

syncQueryTimeoutWithTransactionTimeout The update is effective immediately.

transactional The update is applied to new connections and existing
connections not in use from the connection pool.

type All connections and the connection pool are destroyed. The new
setting is then used.

Application-defined data sources:

You can define a data source within your application, through annotations or in the deployment
descriptor, as defined by the Java EE specification.

Note: The commonLibraryRef class loader attribute is recommended for application defined data sources.
The privateLibraryRef attribute cannot be used for the java:global namespace and is discouraged for
the other scopes. If multiple applications declare the same java:global namespace to specify the data
source, the server.xml files of the applications must all specify a commonLibraryRef attribute to the same
shared library.

When defining a data source in an application, the JDBC driver must be made available to the
application. This is accomplished by configuring a shared library in the server.xml for your application.

For example:
<application id="myApp" name="myApp" location="myApp.war" type="war">

<classloader commonLibraryRef="DB2Lib"/>
</application>

<library id="DB2Lib">
<fileset dir="C:/DB2/java" includes="db2jcc4.jar db2jcc_license_cisuz.jar"/>

</library>

Then, you can define a data source in your application either through annotations or in the deployment
descriptor.
v Use annotations as in the following example:

@DataSourceDefinition(
name = "java:comp/env/jdbc/db2",
className = "com.ibm.db2.jcc.DB2DataSource",
databaseName = "SAMPLEDB",
serverName = "localhost",
portNumber = 50000,
properties = { "driverType=4" },
user = "user1",
password = "pwd1"
)

public class MyServlet extends HttpServlet {

@Resource(lookup="java:comp/env/jdbc/db2")
DataSource ds;

v Use the deployment descriptor as in the following example, for example, in a web.xml file:

1052 WebSphere Application Server Liberty Core 8.5.5

<data-source>
<name>java:comp/env/jdbc/db2</name>
<class-name>com.ibm.db2.jcc.DB2DataSource</class-name>
<server-name>localhost</server-name>
<port-number>50000</port-number>
<database-name>SAMPLEDB</database-name>
<user>user1</user>
<password>pwd1</password>
<property><name>driverType</name><value>4</value></property>

</data-source>

In general, properties that can be defined on dataSource or connectionManager in the server.xml files can
also be specified on application defined data sources. Two exceptions to this are connectionManagerRef
and jdbcDriverRef, which you cannot specify because the application defined data source implicitly
defines the connection manager and JDBC driver. When using application defined data sources for
two-phase commit, you can specify the recoveryAuthDataRef property to select the authentication data
that is used for transaction recovery. However, it is important to be aware that recovery of transactions is
only possible while the application is running. You can use variables, encoded passwords, and duration
syntax in application defined data sources.

Note: The duration syntax does not apply to properties that are explicitly defined in the annotation, such
as loginTimeout or maxIdleTime.

Here is an example of two data sources using connection manager properties, variables, encoded
passwords, and duration syntax.
@DataSourceDefinitions(value = {

@DataSourceDefinition(
name = "java:comp/env/jdbc/derby",
className = "org.apache.derby.jdbc.EmbeddedDataSource40",
databaseName = "${shared.resource.dir}/data/SAMPLEDB",
minPoolSize = 1,
maxPoolSize = 10,
maxIdleTime = 180,
properties = { "agedTimeout=10m", "connectionTimeout=30s", "createDatabase=create" }
),

@DataSourceDefinition(
name = "java:comp/env/jdbc/oracle",
className = "oracle.jdbc.pool.OracleDataSource",
url = "jdbc:oracle:thin:@//localhost:1521/SAMPLEDB",
user = "user1",
password = "{xor}Oz0vKDtt"
)

})

Configuring client reroute for applications that use DB2 databases: 8.5.5.7

You can use the client reroute feature to configure your enterprise applications for a DB2 database to
recover from a communication loss, and the applications can continue to work with minimal interruption.
Rerouting is central to the support of continuous operations, but rerouting is only possible when there is
an alternative location that is identified to the application server connection.

Before you begin

This task assumes that:
v The DB2 data source to which your application connects is running:

– DB2 for z/OS Version 10.1 or later or
– DB2 Database for Linux, UNIX, and Windows Version 9.7 or later

Chapter 5. Administering Liberty 1053

v You configured the DB2 database with a redundant setup or the ability to fail the DB2 server to a
standby node.

About this task

You can use client reroute for DB2 to provide information about alternative servers in case the connection
to the primary database server fails.

Without any configuration on the client side, the Java Common Connectivity (JCC) Java Database
Connectivity (JDBC) driver for DB2 supports the client reroute capability, if it is enabled on the DB2
server, when the driver makes an initial connection to the DB2 server. When the JCC JDBC driver
connects to a DB2 server that has one or more alternative servers that are configured, the primary server
sends information about the alternative servers to the JCC JDBC driver. If the connection to the primary
server fails, the JCC JDBC driver is able to reroute connections to an alternative server. If the application
server process crashes, however, the alternative server information is lost and the client needs to connect
to the primary server again. If the client cannot make an initial connection to the primary server, the
client has no knowledge of the alternative servers and cannot reroute.

To overcome this problem, you can configure a DB2 data source in the application server with the
Alternate server name and Alternate port number fields, or with the clientRerouteAlternateServerName
and clientRerouteAlternatePortNumber data source custom properties, to support client reroute even on
the initial connection attempt. If the JDBC driver is not able to connect to the primary DB2 server, the
information that is necessary for a client reroute is already present, and the JDBC driver can reroute the
connection to an alternate server.

Attention: The data source custom property, enableClientAffinitiesList, changes the semantics of the
clientRerouteAlternateServerName and clientRerouteAlternatePortNumber properties.

When a connection is rerouted and the JCC JDBC driver is connected to the alternative DB2 server, the
alternative server sends information about its own alternative server to the JCC JDBC driver. The JCC
JDBC driver then has the information that is required to reroute the connection again if the alternative
DB2 server is not available. The server that was originally the alternative server is now the primary
server, and a new alternative server is established. However, this new state of the primary and alternative
servers is no longer kept by the JCC JDBC driver. If the application server fails and is restarted, the JCC
JDBC driver must start from the original server configuration and attempt to connect to the server that
was originally considered the primary server.

You can use the automatic client rerouting feature within the following DB2 configurable environments:
v Enterprise Server Edition (ESE) with the data partitioning feature (DPF)
v Data Propagator (DPROPR)-style replication
v High availability cluster multiprocessor (HACMP™™)
v High availability disaster recovery (HADR)

Procedure

1. Define your DB2 data source in the server.xml file with the following properties:
v clientRerouteAlternateServerName

– Type of valid values:
- Domain name; for example: www.ibm.com
- IP address (IPv4 and IPv6); for example: 23.72.11.219

– Format of multiple values:
- Comma separated; for example: host1, host2, host3
- Space separated; for example: host1 host2 host3

– Order significance:

1054 WebSphere Application Server Liberty Core 8.5.5

http://www.ibm.com/developerworks/data/library/techarticle/dm-0504mcarthur/
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.ha.doc/doc/c0051389.html
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.ha.doc/doc/c0051341.html
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.5.0/com.ibm.db2.luw.admin.ha.doc/doc/c0011267.html

- The order of the provided host names is the order that the JCC JDBC driver uses to try to find
the next available server to connect to.

v clientRerouteAlternatePortNumber

– Type of valid values:
- Integer representing the port number; for example: 50000

– Format of multiple values:
- Comma separated; for example: port1, port2, port3
- Space separated; for example: port1 port2 port3

– Order significance:
- The order of the provided ports must match the order of their associated servers.

2. (Optional) You can add one or both of the following properties:
v retryIntervalForClientReroute

This property defines the number of seconds the JCC JDBC driver waits between each attempt to
establish a connection.
If no value is assigned, the default behavior is used. To learn more, see JDBC and SQL support.

v maxRetriesForClientReroute

This property defines the number of retries the JCC JDBC driver attempts to connect the server
before it decides to move on to the next server. This property is only used when
RetryIntervalForClientReroute property is set.
If no value is assigned, the default behavior is used. To learn more, see JDBC and SQL support.

Example
<dataSource id="DefaultDataSource"jndiName="jdbc/db2">

<properties.db2.jcc
databaseName="sampleDatabase"
driverType="4"
serverName="host"
portNumber="50000"
clientRerouteAlternateServerName="host01, host02, host03"
clientRerouteAlternatePortNumber="50000, 50005, 50000"
retryIntervalForClientReroute="2"
maxRetriesForClientReroute="3" />

...
</dataSource>

Note: Ensure that an equal number of entries is specified for both ports and hosts. Otherwise, a warning
is displayed and client reroute is not enabled.

Configuring connection pooling for database connections:

You can configure connection pooling for your data source by defining a connection manager for it.

Example

The following example code uses the connectionManager element in the server.xml file to define a
connection pool for a data source:
<dataSource id="DefaultDataSource" jndiName="jdbc/example" jdbcDriverRef="DB2" >
<connectionManager maxPoolSize="10" minPoolSize="2"/>
<properties.db2.jcc databaseName="TESTDB"/>
</dataSource>

The server uses default values for any connection management settings that are not defined on the
connection manager element. If a connection manager is not defined at all for a data source, the server
uses default values for all of the settings.

Chapter 5. Administering Liberty 1055

http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/c0051316.html
http://www-01.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.wn.doc/doc/c0051316.html

Using thread local storage for connections can increase performance for applications on multi-threaded
systems. See Chapter 11, “Tuning Liberty,” on page 1445.

You can define multiple data sources and associate each with a different connection manager.
However, you cannot associate multiple data sources with a single connection manager.

For more information about the connectionManager element, see **** MISSING FILE ****.

How connection pooling configuration updates are applied:

If you change the attributes of the connectionManager element while a server is running, the updates to
different attributes are applied at different times and in different ways.

You configure a connection pool by specifying the attributes of the connectionManager element in the
server.xml configuration file. If you change these attributes for a running server, the updates are applied
at different times and in different ways, depending on which attribute is changed. The following table
describes, for each attribute of the connectionManager element, how a configuration change is applied at
run time.

Table 81. How connection manager configuration updates are applied at run time. The first column of the table lists
the attributes of the connectionManager element. The second column describes, for each attribute, how the
configuration update is applied at run time.

Attribute name How the configuration update is applied

agedTimeout The update is effective immediately.

connectionTimeout The update is effective immediately.

maxIdleTime The update is effective immediately.

maxNumberOfMCsAllowableInThread The update is effective immediately.

maxPoolSize The update is effective immediately.

minPoolSize The update is effective immediately.

numConnectionsPerThreadLocal The update is effective immediately.

reapTime The update is effective immediately.

purgePolicy The update is effective immediately.

Note: The attributes agedTimeout and maxIdleTime are updated immediately. However, they are not used
fully unless the value of reapTime attribute is greater than zero.

Because updates to the connection manager are effective immediately, errors might occur if you make
changes with active connections; including the potential risks for the connections to be ended
prematurely.

Configuring CouchDB connectivity with the ektorp client library in Liberty: 8.5.5.4

Applications that run on Liberty can use CouchDB. For access to a CouchDB instance, applications can
configure a connector for the NoSQL database with the ektorp client library.

Before you begin

Liberty provides configuration support for CouchDB. CouchDB is a scalable, high-performance, open
source NoSQL database.

You must use Version 1.4.1 or later of the ektorp Java driver. Use the Maven plug-in to obtain the ektorp
driver and its dependencies.

1056 WebSphere Application Server Liberty Core 8.5.5

<dependency>
<groupId>org.ektorp</groupId>
<artifactId>org.ektorp</artifactId>
<version>1.4.1</version>

</dependency>

About this task

To enable an application to use CouchDB, you must configure a shared library for the CouchDB Java
driver and a library reference to the shared library in the server.xml file. An application can access
CouchDB either directly from the application, or through the couchdb-1.0 feature and CouchDB instance
configurations in the server.xml file.

Procedure

1. Install the CouchDB Java driver in a location that your application and the Liberty runtime can access.
For example, place the ektorp driver file and its dependencies in the Liberty_profile_root/usr/
servers/server_name/lib directory.

2. Configure a shared library for the ektorp driver files in the server.xml file of the Liberty server.
<library id="couchdb-lib">

<fileset
dir=’${server.config.dir}/lib’
includes=’org.ektorp-1.4.1.jar
commons-codec-1.6.jar
commons-io-2.0.1.jar
commons-logging-1.1.1.jar
httpclient-4.2.5.jar
httpclient-cache-4.2.5.jar
httpcore-4.2.4.jar
jackson-annotations-2.2.2.jar
jackson-core-2.2.2.jar
jackson-databind-2.2.2.jar
slf4j-api-1.6.4.jar
slf4j-simple-1.6.4.jar’/>

</library>

3. Enable your application to access CouchDB, either by direct access from the application or by using
the couchdb-1.0 feature.
v Enable direct access to CouchDB from the application.

a. Configure a library reference for the shared library in an application element in the server.xml
file.
<application ...>

<classloader commonLibraryRef="couchdb-lib"/>
</application>

The application can now access the CouchDB APIs directly. If you want the application to use
the runtime injection engine, continue with the next steps.

v Configure the couchdb-1.0 feature, and the couchdb elements in the server.xml file.
a. Add the couchdb-1.0 feature to the server.xml file.

<featureManager>
<feature>couchdb-1.0</feature>
<feature>jndi-1.0</feature>

</featureManager>

The JNDI feature is only required when you use JNDI to look up resources. This feature is not
required if you use resource injection.

b. Configure a couchdb element that has a reference to the shared library created in a previous
step.

Chapter 5. Administering Liberty 1057

<couchdb id="couchdb" jndiName="couchdb/connector"
libraryRef="couchdb-lib" url="http://example.com:5984" username="username"
password="password"/>

Configuring a JNDI name enables an application or the Liberty runtime to look up the
CouchDB instance.

c. Enable your application to access CouchDB.
The following example shows both JNDI lookup and resource injection:
public class TestServlet extends HttpServlet {

@Resource(name = "couchdb/connector")
protected CouchDbInstance db;
...

protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

// Alternatively use InitialContext lookup
CouchDbInstance lookup = (CouchDbInstance) new

InitialContext().lookup("java:comp/env/couchdb/connector");
...

d. If you are using JNDI lookup, add a resource environment reference to the web.xml file of your
application:
<resource-env-ref>

<resource-env-ref-name>couchdb/connector</resource-env-ref-name>
<resource-env-ref-type>org.ektorp.CouchDbInstance</resource-env-ref-type>

</resource-env-ref>

You can use the couchdb-1.0 feature to configure a connection to an online Cloudant service.
Specify the URL, userid, and password of your existing Cloudant account in the couchdb
configuration element. For example:
<couchdb id=’couchdb’ jndiName=’couchdb/connector’ libraryRef=’couchdb-lib’ url=’https://mylink.cloudant.com/’ username=’myusername’ password=’mypassword’/>

See the documentation for “The limits to protection through password encryption” on page 616 to
learn about how to secure passwords in configuration files.

What to do next

Now that you have configured your application to enable the use of CouchDB, you are ready to test the
use of CouchDB from your application.

Administering web applications on Liberty
Liberty provides support to the web applications using Liberty features such as servlet-3.0,
servlet-3.1, jsp-2.2, and other features.

Procedure

Specify when servlets are loaded and initialized.

Specifying when servlets are loaded and initialized
By default, Liberty defers servlet loading until a request is received for the associated web application.
You can override this default behavior by specifying the web container deferServletLoad attribute to
false.

About this task

The servlet specification defines the load-on-startup servlet attribute, which is specified in the web.xml
file of a web application. If a servlet has a non-negative value for the load-on-startup attribute, the
servlet must be loaded and initialized when the web application is deployed. Liberty optimizes server
start time and memory use by not starting a servlet until a request is received for the web application.
You can override this deferral so that your servlets are loaded and initialized when the web application is

1058 WebSphere Application Server Liberty Core 8.5.5

installed, rather that waiting for the first request for the application.

Example

To configure the server to load servlets when a web application is installed, add the following line to the
server.xml configuration file or a file that it includes:
<webContainer deferServletLoad="false"/>

This setting applies to all web applications installed in the server.

Configuring Cross Origin Request Sharing on a Liberty server
8.5.5.9

You can enable Cross Origin Request Sharing (CORS) for your web applications on a Liberty server.

About this task

Enabling CORS will allow JavaScript clients to make requests against your application on the Liberty
server even if the client and the server are on two different domains. Web browsers prevent these
requests due to same-origin policy.

Procedure
1. Ensure the server configuration has all features needed for your deployed application, such as

servlet-3.0, jaxrs-1.1, and so on. Also ensure the ports and user registry settings are correct for the
deployed application.

2. Add the CORS service setting to the server.xml file. The cors element defines the CORS settings for
the URL being setup in the domain.

Example

Here is an example of a CORS configuration for a web application at the sampleApp/path context root.
<cors domain="/sampleApp/path"

allowedOrigins="https://alice.com:8090"
allowedMethods="GET, DELETE, POST"
allowedHeaders="accept, MyRequestHeader1"
exposeHeaders="MyResponseHeader1"
allowCredentials="true"
maxAge="3600" />

Here is an example of a CORS configuration for the RESTful endpoint /ibm/api/collective. This setting
will apply to all the endpoint paths which start with /ibm/api/collective including
ibm/api/collective/docs.
<cors domain="/ibm/api/collective"

allowedOrigins="https://alice.com:8090"
allowedMethods="GET, DELETE, POST"
allowedHeaders="accept, MyRequestHeader1"
exposeHeaders="MyResponseHeader1"
allowCredentials="true"
maxAge="3600" />

Configuring Liberty for Servlet 3.1
You can configure Liberty for the Servlet 3.1 feature, which provides full support for the Servlet 3.1
specification.

Chapter 5. Administering Liberty 1059

About this task

To configure a Liberty server to run an application that is enabled for Servlet 3.1, you must set the
<servlet-3.1> feature.

Procedure

Update the server.xml file to add the <servlet-3.1> feature. For example:
<featureManager>
<feature>servlet-3.1</feature>
</featureManager>

Important:

v The websocket-1.0 and websocket-1.1 features require the servlet-3.1 feature and as a result,
configuring the websocket-1.0 or websocket-1.1 feature causes the servlet-3.1 feature to load.

v You can use Java EE 6 features, such as jsp-2.2 and jsf-2.0, with the servlet-3.1 feature. However,
you cannot use a Java EE 6 feature to exploit Servlet 3.1 features.

v You can choose between the Servlet 3.0 and Servlet 3.1 feature implementations for each server
instance, but you must consider any behavior changes. If required behavior is contained only in the
Servlet 3.1 feature, then you must use the Servlet 3.1 feature. If an existing application would be
adversely impacted by behavior changes in the Servlet 3.1 feature, then use the Servlet 3.0 feature to
preserve the existing behavior for that application.

v It is not possible to use both the Servlet 3.0 and Servlet 3.1 features in the same Liberty server. If both
features are configured, it will produce an error. Read the Servlet 3.1 behavior changes topic to learn
about changes from Servlet 3.0 and Servlet 3.1.

Results

The Servlet-3.1 feature is enabled and loads in the Liberty server at run time.

Servlet 3.1 behavior changes:

The Servlet 3.1 implementation contains behavior changes that might cause an application that was
written for Servlet 3.0 to behave differently or fail when you use the Servlet 3.1 feature.

You can choose between the Servlet 3.0 and Servlet 3.1 feature implementations for each server instance,
with consideration for behavior changes. If the required behavior is contained in the Servlet 3.1 feature
only, then you must use the Servlet 3.1 feature. If an existing application would be adversely impacted by
behavior changes in the Servlet 3.1 feature, then using the Servlet 3.0 feature preserves the existing
behavior for that application. It is not possible to use both the Servlet 3.0 and Servlet 3.1 features in the
same server. It is an error to configure both features. If you configure both features, neither servlet feature
is loaded.

The behavior changes are introduced for three reasons:
v Changes that are required by clarifications in the Servlet 3.1 specification.
v Changes that are required for the Servlet 3.1 implementation to pass the Servlet 3.1 Technology

Compatibility Kit (TCK).
v Changes to improve the servlet implementation.

Programmatically added servlets, filters, and listeners

A clarification from the Servlet 3.1 specification now makes it illegal for a ServletContextListener to
programmatically configure servlets, filters, or listeners if the ServletContextListener was not declared in
the web.xml file or web-fragment.xml file or was not annotated with @WebListener. As a result, any call

1060 WebSphere Application Server Liberty Core 8.5.5

on the ServletContext to perform such programmatic configuration results in an
UnsupportedOperationException.

Forward after asynchronous processing is started

In the Servlet 3.0 implementation, a response is always closed before the forward method of the
RequestDispatcher interface returns. However, due to a clarification in the Servlet 3.1 specification, the
Servlet 3.1 implementation does not close or flush the response before the forward method of the
RequestDispatcher interface returns, if the request is put into the asynchronous mode. This change might
affect existing 3.0 applications, which add response output on return from forward because such response
data is now sent, whereas in Servlet 3.0, it was not.

URL pattern clashes

In Servlet 3.0, an application would start successfully even when a URL pattern was mapped to multiple
servlets. However, due to a clarification in the Servlet 3.1 specification, the application must fail to start.
In the Liberty Servlet 3.1 implementation, a message is output and the application fails to start:
SRVE9016E: Unable to insert mapping [{0}] for servlet named [{1}]. The URL pattern is already defined for servlet named [{2}].

Explanation: There is an application error. A servlet mapping URL pattern should not map to multiple servlets.

User action: Change the URL pattern for the servlet mapping.

ServletContext.getMinorVersion()

In the Servlet 3.0 feature implementation, this API returns 0.

In the Servlet 3.1 feature this API now returns 1.

ServletContext.getServerInfo()

In the Servlet 3.0 feature implementation, this API returns SMF WebContainer.

In the Servlet 3.1 feature this API now returns IBM WebSphere Liberty/8.5.5.<x>, where <x> is the
WebSphere Application Server fix pack number.

ServletResponse.reset()

You can use ServletResponse.reset() to clear any buffered response data, the status code, and response
headers when a response is not already committed. If the Servlet 3.1 feature is being used, this method
also clears any record of ServletResonse.getWriter() or ServletResponse.getOutputStream() that were
previously called.

X-Powered-By header

In the Servlet 3.0 feature implementation, the X-Powered-By header is set to Servlet/3.0. In the Servlet
3.1 feature implementation, the X-Powered-By header is set to Servlet/3.1.

Resource reference injection target merging

In the Servlet 3.0 specification, the <injection-target> elements of a resource reference that is defined in
a web-fragment.xml file are added only to the parent web.xml file if the web.xml resource reference
definition with the same name has no <injection-target> elements. In the Servlet 3.1 specification, it is
clarified that all <injection-target> elements in web-fragment.xml descriptors are added to the parent
web.xml descriptors list of <injection-target> elements for a resource reference of the same name. When
the Servlet 3.1 feature is in use, this feature might change existing application function by activating

Chapter 5. Administering Liberty 1061

injection targets that were previously excluded from the web.xml file.

Tolerance of duplicate elements in web descriptors

In the Servlet 3.1 specification, it was clarified that a web.xml file cannot contain two
<absolute-ordering> elements. Deployment of an application with multiple <absolute-ordering>
elements fails. Additionally, web-fragment.xml descriptors cannot contain two <ordering> elements.
Deployment of an application with multiple <ordering> elements fails. Previously, the deployment would
not fail, but the function of the elements might be indeterminate.

Web fragment ordering change in metadata - complete cases

The processing of the <absolute-ordering> element is changed in cases where a web.xml descriptor is
marked metadata-complete="true". Previously in metadata-complete="true" cases, all web fragment
archives would be used. When the Servlet-3.1 feature is in use, the <absolute-ordering> element in
metadata-complete cases is considered to be complete. This change results in fragments that are not listed
in the <absolute-ordering> element to be excluded from processing.

AsyncContext.dispatch()

When AsyncContext.dispatch() is used (for example, with no parameters), the request is dispatched to the
original URL. With the Servlet-3.0 feature in use, if a query string was included with the original request,
this is made available to the dispatched resource. However, when the Servlet 3.1 feature in use, if a query
string was provided to the dispatching resource, it is this query string that is made available to the
dispatched resource. For example:
Request for /FirstResource?param=One
First Resource:

getParameter("param") returns "One"
forward request to /SecondResource?param=Two

SecondResource
getParameter(param) returns "Two"
ac.start()
ac.dispacth() dispatches to /FirstResource

First Resource
Servlet-3.0 feature : getParamter("param") returns "One"
Servlet-3.1 feature : getParameter("param") returns "Two"

This change was required by the Servlet 3.1 TCK.

Obtaining the request or response object after an AsyncContext.dispatch() or AsyncContext.complete() is
not permitted and results in the following exception being thrown:
java.lang.IllegalStateException: SRVE9015E: Cannot obtain the request or response object after an AsyncContext.dispatch() or AsyncContext.complete().

at com.ibm.ws.webcontainer31.async.AsyncContext31Impl.getRequest(AsyncContext31Impl.java:72)
[...]

SessionCookieConfig.setComment()

According to the Java Servlet 3.1 Specification, this API returns an illegalStateException if it is called after
the ServletContext completes initialization, and the Servlet 3.1 feature follows this required behavior.
However, the Servlet 3.0 feature does not prevent use of this API after the context is initialized and as a
result, applications that depend on the Servlet 3.0 feature behavior will not work with the Servlet 3.1
feature.

sendRedirect(java.lang.String location) API

The sendRedirect(java.lang.String location) API accepts relative URLs; however, the servlet container
must convert the relative URL to an absolute URL before it can send the response to the client. If the

1062 WebSphere Application Server Liberty Core 8.5.5

location is relative without a leading ’/’ (folder/default.jsp), the container interprets it as relative to
the current request URI. If the location is relative with a leading ’/’, the container interprets it as relative
to the servlet container root.

For example, if the redirection location that is provided by application is folder/default.jsp, with no
leading ’/’, and the inbound request URL is http://host:port/context_root/folder or
http://host:port/context_root/folder/, the request is redirected to http://host:port/context_root/
folder/folder/default.jsp, which is relative to the current request URI.

This behavior is found in the Servlet 3.0 feature when the
com.ibm.ws.webcontainer.redirectwithpathinfo property is set to true. This property is ignored in the
Servlet 3.1 feature and the behavior defaults, as described.

Default error pages

The IBM extended function is the ability to specify a default error page with a web extension, such as
ibm-web-ext.xml.

As a function of Servlet 3.0 and higher, default error pages are a modification of the ability to specify
error pages. As with normal (non-default) error pages, default error pages are specified in web module
descriptors (web.xml), and in web fragment descriptors (web-fragment.xml).

Normal (non-default) error pages specify either an exception-type or an error-code. A default error page
omits both exception-type and error-code. A default error page is used when a servlet throws an
exception or sets an error-code result and no configured error page matches the type of the exception or
matches the set error code.

The ability to define default error pages is provided by the Servlet 3.0 specification, and is supported by
the Servlet 3.0 schemas. Default error pages are error pages that do not contain an exception-type or an
error-code element, according to the Servlet 3.1 specification.

Examples of error pages and default error pages follow.

Default error page precedence rules
Three rules apply for determining precedence for default error pages in the web.xml,
web-fragment.xml, and ibm-web-ext.xml files.
v Rule 1: web.xml and web-fragment.xml files.

When a default error page is specified in the web.xml file, it overrides (masks) any default error
page that is specified in a web-fragment.xml file. Also, there is no error if, in addition, multiple
web-fragment.xml files specify default error pages.

v Rule 2: web-fragment.xml and web-fragment.xml.
When a default error page is not specified in the web.xml file, an error condition exists if
different default error pages are specified by two or more web-fragment.xml files.

v Rule 3: ibm-web-ext.xml and web.xml or web-fragment.xml files.
The rule of precedence between the ibm-web-ext.xml file and either the web.xml or
web-fragment.xml files depends on the web container feature level.

When the web container feature level is 3.0, a default error page that is defined by an
ibm-web-ext.xml file has precedence over a default error page that is defined in web.xml or
web-fragment.xml files.

Note: When the web container uses feature level 3.0, you cannot use Servlet 3.1 schemas. Refer to
the rule on using default error pages for servlet 3.0 schemas.

Chapter 5. Administering Liberty 1063

When the web container feature level is 3.1 or higher, a default error page that is specified by
web.xml or web-fragment.xml file has precedence over a default error page that is specified in the
ibm-web-ext.xml file.

Schema rules

Two rules apply for whether default error pages are processed in web.xml or web-fragment.xml
files. The rules depend on the web container feature version, which Servlet schema is in use, and
the setting of a Java custom property.

These rules arose because IBM WebSphere Application Server traditional V8.0, did not support
default error pages in the V8.0 general availability release. Support for default error pages was
added to WebSphere Application Server traditional, in a service pack, by APAR PM94199.
Support for default error pages was added to WebSphere Application Server Liberty, in a service
pack, by APAR PI05845. Because these updates are a change of externally visible function, the
new function is disabled by default and must be enabled by a Java system property.
v Rule 1: Default error pages using Servlet 3.0 schema and using web container feature version

3.0.
When the web container feature version is 3.0 and a default error page is specified in web.xml
or web-fragment.xml files that use a Servlet 3.0 schema, the default error pages are processed
only if com.ibm.ws.webcontainer.allowdefaulterrorpage Java system property is set to true.
When the Java system property is not set, or is not set to true, the default error page is
ignored. A default error page that is specified by the ibm-web-ext.xml file is used.

v Case 2: Default error pages by using web container feature version 3.1.
When the web container feature version is 3.1 or higher, a default error page that is specified in
the web.xml file or the web-fragment.xml file is always processed, regardless of what servlet
schema version is used, and regardless of whether the Java custom property is set.
This case occurs when a descriptor uses a Servlet 3.1 schema, since the processing of a
descriptor that uses a Servlet 3.1 schema requires web container feature version 3.1.

Attention: Web fragments were not added until Servlet 3.0. The web-fragment.xml file has no schema
from Servlet 2.5.

Error page and default error page examples
A default error page that is defined in an ibm-web-ext.xml file:
<?xml version="1.0" encoding="UTF-8"?>
<web-ext xmlns="http://websphere.ibm.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://websphere.ibm.com/xml/ns/javaee http://websphere.ibm.com/xml/ns/javaee/ibm-web-ext_1_0.xsd"
version="1.0">

<default-error-page uri="/ExtErrorPage.html"/>
</web-ext>

An error-code error page element, which is defined in either the web.xml file or web-fragment.xml
file:
<error-page>

<error-code>404</error-code>
<location>/ErrorCodeErrorPage.html</location>

</error-page>

An exception-type error page element, which is defined in either the web.xml file or
web-fragment.xml file:
<error-page>

<exception-type>javax.servlet.ServletException</exception-type>
<location>/ExceptionTypeErrorPage.html</location>

</error-page>

A default error page element, which is defined in either the web.xml file or web-fragment.xml file:

1064 WebSphere Application Server Liberty Core 8.5.5

<error-page>
<location>/DefaultErrorPage.html</location>

</error-page>

Schema examples
Example header of a web.xml file that uses a Servlet 2.5 schema:
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
version="2.5">

Example header of a web.xml file that uses a Servlet 3.0 schema:
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
version="3.0">

Example header of a web.xml file that uses a Servlet 3.1 schema:
<?xml version="1.0" encoding="UTF-8"?>
<web-app

xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
version="3.1">

Example header of a web-fragment.xml file that uses a Servlet 3.0 schema:
<?xml version="1.0" encoding="utf-8"?>
<web-fragment xmlns="http://java.sun.com/xml/ns/javaee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-fragment_3_0.xsd"
version="3.0">

Example header of a web-fragment.xml file that uses a Servlet 3.1 schema:
<?xml version="1.0" encoding="utf-8"?>
<web-fragment xmlns="http://java.sun.com/xml/ns/javaee"

xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/web-fragment_3_1.xsd"
version="3.1">

Servlet 3.1 feature functions:

The product supports a subset of Servlet 3.1 functions. View the clarifications and descriptions of some of
the functions available.

Descriptions of the new Servlet 3.1 functions are provided in the specification and are not described here.
However, additional considerations for the Servlet 3.1 feature are as follows:

Asynchronous I/O

A new feature of the Servlet 3.1 feature specifies that when the non-blocking read is started, any resource
during the remaining request lifetime cannot call APIs, which can result in a blocking read. For example,
for a POST request after the read listener is set by the resource, any subsequent call to getParameter() and
getPart() API results in an IllegalStateException.

You must consider setting timeout with the AsyncContext.setTimeout API when you work with async
servlets, otherwise the container default value (for example, 30 seconds) is used. The timeout resets each
time async starts using the ServletRequest. StartAsync API is called and expires when the
AsyncContext.complete API is not called within the timeout period that follows the last time async
started. When you use the async I/O support that is provided by the Servlet 3.1 feature, set the timeout

Chapter 5. Administering Liberty 1065

value with the AsyncContext.setTimeout API to also allow for async I/O to complete. Completion
depends on other external factors, such as environment or network speed.

Upgrade processing

Important: Use the ServletOutputStream class with the WriteListener interface and the
ServletInputStream class with the ReadListener interface. Do not use these classes with the
ObjectInputStream class or the ObjectOutputStream class. These classes circumvent some of the required
checks for the ReadListener and WriteListener interfaces, mainly the isReady checks, and can cause
unexpected behavior.

Upgrade processing is a Servlet 3.1 feature that has non-blocking read and write capability. When the
read or write operations are async, there are no limits on how much time the server waits for the
operation to complete. You can set the timeouts with the web container custom properties in the
server.xml file, such as upgradereadtimeout and upgradewritetimeout. See the following example of a
timeout of 5 seconds:
<webContainer upgradeReadTimeout="5000" />
<webContainer upgradeWriteTimeout="5000" />

The request must not be upgraded by using the upgrade feature for Servlet 3.1 when the request is being
handled by async servlet.

The application that supports the Servlet 3.1 feature for upgrade requires that the connection on the
request remains open between the client and the application that hosts the upgrade. If the application
does not initiate the WebConnection close () when the upgrade processing is complete from its handler
or any other resources, such as ReadListener or WriteListener, the TCP connection remains open until the
server recycles.

When you use an UpgradeHandler and a ReadListener from the Servlet 3.1 feature, the
ReadListener.onAllDataRead method is invoked only when the client closes the connection to the server
that hosts the upgraded application. The Javadoc for onReadListener.onAllDataRead returns the following
message:
Invoked when all data for the current request is read.

In the Upgrade case, the server does not know the end of the data because upgraded data is not
delimited the way that HTTP request body data is. Aside from when the client connection closes, there is
no determination for the end of the data.

Form based authentication

After successful authentication, a client is redirected to the resource of the original request. The Servlet
3.1 specification specifies: To improve the predictability of the HTTP method of the redirected
request, containers should redirect using the 303 (SC_SEE_OTHER) status code, except where
interoperability with HTTP 1.0 user agents is required; in which cases the 302 status code
should be used. The Servlet-3.1 feature maintains interoperability with HTTP 1.0 user agents and always
uses the 302 status code. For more information on configuring Servlet 3.1 for security, read the
Configuring Liberty for Servlet 3.1 topic.

Large post data

The addition of the ServletRequest.getContentLengthLong() API requires support for receiving post data
of a length greater than Integer.MAX_VALUE and cannot be fully accommodated in a single-byte array or
string.

This addition has implications when you obtain post data content that use APIs that return content in a
string or byte[]. For example, the javax.servlet.ServletRequest methods for accessing parameters:

1066 WebSphere Application Server Liberty Core 8.5.5

|
|
|
|
|

|

String getParamter(String name)
String[] getParameterValues()
Map<String,String> getParameterMap()

It is possible to send post data that contains multiple parameters, which when combined, have a length
of greater than Integer.MAX_VALUE. However, each individual parameter name and parameter value must
be less than Integer.MAX_VALUE in length.

Sending a large amount of post data include these additional considerations:
v You must send post data in chunks of less than Integer.MAX-VALUE in length.
v Post data that is processed by the web container, such as parameters or parts, must be fully read before

processing starts. The post data might impose significant memory requirements for large post data
because it might require as much memory as double the size of the post data in order for web
container processing to be successful.

Configuring Liberty for Expression Language 3.0

8.5.5.5

You can configure Liberty for the Expression Language (EL) 3.0 feature, which provides full support for
the EL 3.0 specification.

About this task

To configure a Liberty server to run an application that is enabled for EL 3.0, you must set the <el-3.0>
feature.

Procedure

Update the server.xml file to add the <el-3.0> feature. For example:
<featureManager>
<feature>el-3.0</feature>

</featureManager>

Important:

v The EL 3.0 feature does not require any additional features. You can configure it independently of
JavaServer Pages (JSP) 2.3.

v The JSP 2.3 feature requires the EL 3.0 feature. When you configure the JSP 2.3 feature, the EL 3.0
feature also loads into the server run time.

v You can use other Java EE 6 features, such as JSF 2.0 and CDI 1.0, with the EL 3.0 feature.
v You can choose between EL 3.0 and EL 2.2 (included in the JSP 2.2 feature) for each server instance, but

you must consider any behavior changes. If the required behavior is contained only in the EL 3.0
feature, then you must use the EL 3.0 feature. If an existing application would be adversely impacted
by behavior changes in the EL 3.0 feature, then use the EL 2.2 feature (included in JSP 2.2) to preserve
the existing behavior for that application.

v It is not possible to use both the EL 3.0 feature and JSP 2.2 (includes EL 2.2) features in the same
Liberty server. If both features are configured, it produces an error:
CWWKF0033E: The singleton features com.ibm.websphere.appserver.javax.el-2.2 and com.ibm.websphere.appserver.javax.el-3.0 cannot be loaded at the same time. The configured features jsp-2.2 and el-3.0 include one or more features that cause the conflict.

See 8.5.5.5 “Expression Language 3.0 feature functions” on page 1068 to learn about changes in the
EL 3.0 feature, compared to the EL 2.2 feature.

Results

The EL 3.0 feature is enabled and loads in the Liberty server at run time.

Chapter 5. Administering Liberty 1067

Expression Language 3.0 feature functions: 8.5.5.5

The Expression Language (EL) 3.0 feature provides full support for the EL 3.0 specification.

Descriptions of EL 3.0 functions are provided in the EL 3.0 specification and are not fully described here.
However, some of the key enhancements include the following:
v EL 3.0 is now available as a separate feature and you can configure it independently of JavaServer

Pages (JSP) 2.3.
v Add support for Lambda expressions (value expression with parameters). For more information, see

Section 1.20 of the EL 3.0 specification.
v Addition of operations on collections objects. For more information, see Chapter 2.0 of the EL 3.0

specification.
v New operators:

– String concatenation. For more information, see section 1.8 of the EL 3.0 specification.
– Assignment. For more information, see section 1.13 of the EL 3.0 specification.
– Semi-colon. For more information, see section 1.14 of the EL 3.0 specification.
– Field and Methods. For more information, see Section 1.22 of the EL 3.0 specification.

Important: There is a change in the EL 3.0 feature that might break existing applications. The default
coercion for nulls to non-primitive types (except String) returns nulls. For example, a null that is coerced
to a Double now returns a null value, whereas before it returned 0.0. The following code example
describes this scenario:
Integer number=null;
factory.coerceToType(number, java.lang.Double.class)

Configuring Liberty for JavaServer Faces 2.2
8.5.5.6

You can configure Liberty for the JavaServer Faces (JSF) 2.2 feature, which provides full support for the
JSF 2.2 specification.

About this task

The Liberty JSF implementation is based on the MyFaces open source implementation. To configure a
Liberty server to run an application that is enabled for JSF 2.2, you must set the <jsf-2.2> feature.

Procedure

Update the server.xml file to add the <jsf-2.2> feature. For example:
<featureManager>
<feature>jsf-2.2</feature>
</featureManager>

Important:

Consider the following points when you use JavaServer Faces 2.2:
v JSF 2.2 feature does not implicitly load the bean validation feature like the JSF 2.0 feature does. When

you migrate your application from JSF 2.0 to JSF 2.2, and your application uses bean validation, you
must also enable the beanValidation-1.1 feature.

v The JSF 2.2 feature requires the servlet-3.1, jsp-2.3, timedexit-1.0, and el-3.0 features. When the
JSF 2.2 feature is enabled in the server.xml file, each of these features is also enabled.

v You cannot run the JSF 2.2 feature with Java EE 6 features; for example, servlet-3.0, jsp-2.2 and
cdi-1.0.

1068 WebSphere Application Server Liberty Core 8.5.5

v You can choose between the JSF 2.0 and JSF 2.2 feature implementations for each server instance, but
you must consider any behavior changes. If the required behavior is contained only in the JSF 2.2
feature, then you must use the JSF 2.2 feature. If an existing application would be adversely impacted
by behavior changes in the JSF 2.2 feature, then use the JSF 2.0 feature to preserve the existing behavior
for that application.

v It is not possible to use both the JSF 2.0 and JSF 2.2 features in the same Liberty server. If both features
are configured, it produces an error:
CWWKF0033E: The singleton features jsf-2.0 and jsf-2.2 cannot be loaded at the same time. The configured features jsf-2.0 and jsf-2.2 include one or more features that cause the conflict. Your configuration is not supported; update server.xml to remove incompatible features.

v JSF 2.2 is compatible with earlier releases, such as JSF 2.1 and JSF 2.0; however, consider the following
exceptions:
– An error in previous versions of the JSF specification caused exceptions to be swallowed that now

are propagated to the exception handler. Read Backward Compatibility with Previous Versions in
the overview section of the JSF 2.2 specification.

– Changes made to the specification for Composite Component Attribute ELResolver and Composite
Computer Metadata. Read Backward Compatibility with Previous Versions in the overview section
of the JSF 2.2 specification.

Results

The JSF 2.2 feature is enabled and loads in the Liberty server at run time.

What to do next

To use the FlowBuilder API to create Flows with FlowBuilder annotations, it is required that the relevant
CDI producer method is declared within a managed bean or a session bean class. To ensure that the class
is managed correctly by CDI, define the producer method class as a managed bean (by giving it a scope),
or set CDI bean-discovery-mode to all. You can set the CDI bean-discovery-mode to all in the beans.xml
file in your web archive:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
bean-discovery-mode="all">

</beans>

JavaServer Faces 2.2 feature functions: 8.5.5.6

The JavaServer Faces (JSF) 2.2 feature provides full support for the JSF 2.2 specification.

Descriptions of JSF 2.2 functions are provided in the JSF 2.2 specification and are not fully described here.
However, some of the key enhancements are as follows:
v Faces Flows enables developers to logically group JSF views to represent modules of functions. Each

module has a well-defined set of entry and exit points. Combining modules creates a flow of functions.
An example of a flow of functions is an order checkout process. Read section 7.5 of the JSF 2.2
specification.

v Resource Library Contracts enable resource libraries to reside in the contracts directory of the web-app
root directory, or in the META-INF/contracts entry name in the JAR file. Read section 10.1.3 of the JSF
2.2 specification.

v JSF 2.2 introduced the ability for applications to use stateless views. Read section 7.8.1.1 of the JSF 2.2
specification.

v JSF 2.2 can handle HTML5 attributes through pass-through elements and pass-through attributes. Read
section 10.1.4 of the JSF 2.2 specification

Chapter 5. Administering Liberty 1069

Configuring Liberty for JavaServer Pages 2.3

8.5.5.5

You can configure Liberty for the JavaServer Pages (JSP) 2.3 feature, which provides full support for the
JSP 2.3 specification.

About this task

To configure a Liberty server to run an application that is enabled for JSP 2.3, you must set the <jsp-2.3>
feature.

Procedure

Update the server.xml file to add the <jsp-2.3> feature. For example:
<featureManager>
<feature>jsp-2.3</feature>
</featureManager>

Important:

v The jsp-2.3 feature requires both the servlet-3.1 and el-3.0 features and when configured, causes
these features to load.

v You cannot use jsp-2.3 with the servlet-3.0 feature.
v You can use other Java EE 6 features, such as JSF 2.0 and CDI 1.0, with the JSP 2.3 feature.
v You can choose between the JSP 2.2 and JSP 2.3 feature implementations for each server instance, but

you must consider any behavior changes. If the required behavior is contained only in the JSP 2.3
feature, then you must use the JSP 2.3 feature. If an existing application would be adversely impacted
by behavior changes in the JSP 2.3 feature, then use the JSP 2.2 feature to preserve the existing
behavior for that application.

v It is not possible to use both the JSP 2.2 and JSP 2.3 features in the same Liberty server. If both features
are configured, it produces an error:
CWWKF0033E: The singleton features jsp-2.3 and jsp-2.2 cannot be loaded at the same time. The configured features jsp-2.3 and jsp-2.2 include one or more features that cause the conflict.

See 8.5.5.5 “JavaServer Pages 2.3 feature functions” to learn about changes in the JSP 2.3 feature.

Results

The JSP 2.3 feature is enabled and loads in the Liberty server at run time.

JavaServer Pages 2.3 feature functions: 8.5.5.5

The JavaServer Pages (JSP) 2.3 feature provides full support for the JSP 2.3 specification.

Descriptions of the new JSP 2.3 functions are provided in the JSP 2.3 specification and are not described
here. However, the new specification additions are minor, as compared to the JSP 2.2 feature:
v Support for Expression Language (EL) 3.0
v Availability of Servlet 3.1 APIs to a JSP.
v There are no known behavior differences between JSP 2.2 and JSP 2.3 that directly prevent a JSP that

runs with JSP 2.2 from successfully running with JSP 2.3. However, if a JSP uses Expression Language
(EL) or Servlet API functions, you must consider the changes between Servlet 3.1 and Servlet 3.0, and
between EL 3.0 and EL 2.2.

1070 WebSphere Application Server Liberty Core 8.5.5

Administering Contexts and Dependency Injection applications on
Liberty

8.5.5.6

Liberty provides support for contexts and dependency injection in applications using the Liberty features
cdi-1.0 and cdi-1.2.

Procedure
v 8.5.5.6 “Configuring Liberty for Contexts and Dependency Injection 1.2”
v 8.5.5.6 “Contexts and Dependency Injection 1.2 overview”
v 8.5.5.6 “Contexts and Dependency Injection 1.2 behavior changes” on page 1072

Configuring Liberty for Contexts and Dependency Injection 1.2

8.5.5.6

You can configure Liberty for the Contexts and Dependency Injection (CDI) 1.2 feature, which provides
full support for the Contexts and Dependency Injection 1.2 specification.

About this task

To configure the Liberty server to run an application that is enabled for CDI 1.2, you must set the
<cdi-1.2> feature.

Procedure

Update the server.xml file to add the <cdi-1.2> feature. For example:
<featureManger>
<feature>cdi-1.2</feature>

</featureManger>

Note:

v You can use other Java EE 7 features, such as jsp-2.3 and jsf-2.2 with the cdi-1.2 feature. However, you
cannot use Java EE 6 features such as jsp-2.2 and jsf-2.0 with the cdi-1.2 feature.

v You can choose between the CDI 1.0 and CDI 1.2 feature implementations for each server instance, but
you must consider the behavior changes. If the behavior is only contained in the CDI 1.2 feature, then
you must use the CDI 1.2 feature. If an existing application might be adversely impacted by behavior
changes in the CDI 1.2 feature, then use the CDI 1.0 feature to preserve the existing behavior for that
application.

v It is not possible to use both the CDI 1.0 and CDI 1.2 features in the same Liberty server. If both
features are configured, it produces an error. Read the CDI 1.2 behavior changes topic to learn about
changes from CDI 1.0 to CDI 1.2.

Results

The CDI 1.2 feature is enabled and loads in the Liberty server at run time.

Contexts and Dependency Injection 1.2 overview

8.5.5.6

Liberty provides support for contexts and dependency injection in applications by using the Liberty
features cdi-1.0 and cdi-1.2.

Chapter 5. Administering Liberty 1071

The Contexts and Dependency Injection (CDI) 1.2 feature provides full support for the CDI 1.2
specification. Full descriptions of the CDI 1.2 functions are provided in the CDI 1.2 specification, see
Contexts and Dependency Injection for the Java EE platform.

The set of services that are provided by the CDI 1.2 feature includes a well-defined lifecycle for stateful
objects that are bound to lifecycle contexts and a typesafe dependency injection mechanism.

Using Contexts and Dependency Injection 1.2 with JavaServer Faces applications

You can use the CDI 1.2 feature with the JavaServer Faces (JSF) 2.2 feature to enable JSF applications to
take advantage of the sophisticated context and dependency injection model that is provided in the CDI
1.2 feature. This service is provided through integration with the Unified Expression Language (EL)
which enables any contextual object to be used directly within a JSF or JavaServer Pages (JSP) page.

Using Contexts and Dependency Injection 1.2 with Enterprise JavaBeans (EJB)

You can use the CDI 1.2 feature with the Enterprise JavaBeans (EJB) 3.2 feature to enhance the EJB
component model with contextual lifecycle management. The services that are provided by the CDI 1.2
feature integrate the Java EE web tier with Java EE enterprise services. In particular, this enables EJB
components to be used as JSF managed beans, thus integrating the programming models of EJB and JSF.

Using Contexts and Dependency Injection 1.2 with Servlet 3.1

You can use the CDI 1.2 feature with the Servlet 3.1 feature to enable servlet applications to take full
advantage of the services that are provided by the CDI 1.2 feature. Using both features enables contextual
managed beans to be injected into servlet applications by using field, method or constructor injection. The
CDI 1.2 feature also provides automatic registration of servlet listeners, filters, and interceptors.

Java Interceptors in Contexts and Dependency Injection 1.2 Applications

The CDI 1.2 feature extends the Java model for interceptors. The CDI 1.2 feature provides the ability to
associate interceptors with beans. The interceptors are bound by using typesafe interceptor bindings. This
model can be extended to EJB beans when both the CDI 1.2 and EJB 3.2 features are loaded onto the
Liberty server.

Contexts and Dependency Injection 1.2 behavior changes

8.5.5.6

The Contexts and Dependency Injection (CDI) 1.2 implementation contains some behavior changes that
might cause an application that was migrated from CDI 1.0 to behave differently or fail on CDI 1.2.

You can choose between the CDI 1.0 and CDI 1.2 feature implementations for each server instance, with
consideration for behavior changes. If the required behavior is contained in the CDI 1.2 feature only, then
you must use the CDI 1.2 feature. If an existing application might be adversely impacted by behavior
changes in the CDI 1.2 feature, then by using the CDI 1.0 feature the existing behavior is preserved for
that application. It is not possible to use both the CDI 1.0 and CDI 1.2 features in the same server as the
features are not compatible. If you configure both features, the server produces a configuration error.

The CDI 1.0 feature is built on Apache OpenWebBeans implementation of CDI. The CDI 1.2 feature is
built on the Weld implementation of CDI. The behavior changes introduced are due to the differences in
the two implementations.

1072 WebSphere Application Server Liberty Core 8.5.5

http://docs.jboss.org/cdi/spec/1.2/cdi-spec-1.2.pdf

The conversation ID CID

In the CDI 1.0 implementation, the CID is globally unique. In CDI 1.2, it is unique per HTTP session.
This behavior is in line with the CDI specification and is a convention that is chosen by the Weld. To get
a globally unique CID, the CID must be specified at conversation start by calling Conversation.begin.

Referencing schemas in the beans.xml file

In a CDI 1.2 implementation, here is an example of a schema that is referenced in the beans.xmlfile:
xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"

If you use an invalid schema, the server gives an exception error. You can turn off the validation of the
beans.xml file by setting the org.jboss.weld.xml.disableValidating=true JVM property, which also
prevents the error from being produced. If the beans.xml file specifies decorators or interceptors, a valid
schema must be used, otherwise the decorators and interceptors are not correctly instantiated.

Implicit bean archives

The CDI 1.2 implementation defines two different types of bean archives: explicit and implicit.

An explicit bean archive is an archive that contains a beans.xml file:
v with a version number of 1.1 (or later), and with the bean-discovery-mode of all
v with no version number
v that is an empty file

An implicit bean archive is any other archive, which contains one or more bean classes with a bean
defining annotation as defined in the specification in Section 2.5.1, "Bean defining annotations", or one or
more session beans. See the specification, Contexts and Dependency Injection for the Java EE platform.

When you update the schema to a CDI 1.2 implementation, to keep the bean archive as explicit the bean
discovery mode must be set to all:
<beans xmlns="http://xmlns.jcp.org/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/beans_1_1.xsd"
bean-discovery-mode="all"

version="1.1">

Note: An implicit bean archive discovers only beans that have a bean defining annotation.

This new type of bean archive can result in an archive that is not intended to be a CDI bean archive but
it becomes an implicit bean archive in the CDI 1.2 implementation. To stop this behavior, you can add a
beans.xml file with the bean discovery mode set to none, preventing the archive from being a bean
archive. An alternative solution is to add the following property to the server.xml file for your Liberty
server:
<cdi12 enableImplicitBeanArchives="false"/>

Setting this property to false prevents the archives without beans.xml files from becoming implicit bean
archives.

Setting this property to false gives an improved performance at startup time.

Chapter 5. Administering Liberty 1073

http://docs.jboss.org/cdi/spec/1.2/cdi-spec-1.2.pdf

Administering JavaMail on Liberty

8.5.5.6

You can configure JavaMail on Liberty by adding and configuring elements in the server.xml file.

About this task

If you have an external mail server, you can use the JavaMail API to send and receive email on
applications that are running on a Liberty server. The API allows applications to interact with the external
mail server by providing common store and transport protocols, such as POP3, IMAP, and SMTP.

Liberty supports JavaMail 1.5. For more information about JavaMail 1.5, see the JavaMail API
documentation.

For information about the elements and attributes that you can use to configure JavaMail on Liberty, see
“JavaMail 1.5” on page 548.

Procedure
1. In the server.xml file, add the javaMail-1.5 feature. After you add the feature, you can call the

JavaMail libraries in any application that runs on the server.
<featureManager>

<feature>javaMail-1.5</feature>
</featureManager>

2. Optional: If you want to create a javax.mail.Session object, add and configure a mailSession element.
After the mail session is configured, the session is created and injected by using the Java Naming and
Directory Interface (JNDI).

Note: If you use the standard JNDI context, java:comp/env/mail/exampleMailSession, configure the
jndiName attribute as jndiName="mail/exampleMailSession".
<mailSession mailSessionID="examplePop3MailSession"

jndiName="ExampleApp/POP3Servlet/exampleMailSession"
description="POP3 javax.mail.Session"
storeProtocol="pop3"
transportProtocol="smtp"
host="exampleserver.com"
user="iamanexample@example.com"
password="example"
from="smtp@testserver.com">
<property name="mail.pop3.host" value="pop3.example.com" />
<property name="mail.pop3.port" value="3110" />

</mailSession>

Administering Liberty using Admin Center

You can use WebSphere Liberty Administrative Center ("Admin Center") to administer Liberty servers
and applications and other resources from a web browser on a smartphone, tablet, or computer.

About this task

Use the Admin Center with a Liberty server or Liberty Core installation. An installation of the WebSphere
Application Server full profile is not required.

1074 WebSphere Application Server Liberty Core 8.5.5

http://javamail.java.net
http://javamail.java.net

Admin Center offers the ability to start, stop, and view details about Liberty servers and applications. It
also offers the ability to edit server configuration files, to view bookmarked information, to add tools, to
monitor server resources, and to deploy server packages on hosts within a collective. Advantages of the
Admin Center design include:
v A user interface with a mobile look-and-feel for web browsers on a smartphone or tablet
v Support for multiple lightweight, task-oriented tools
v A toolbox that you can customize by selecting tools from a catalog, specifying bookmarks, or

specifying user preferences

Watch: The Touring Admin Center video shows the user interface and briefly describes Admin Center

features. [Transcript]

Procedure
1. Set up Admin Center.
v Install Liberty with Admin Center.
v Configure the server.xml file to enable Admin Center and secure login.
v If the server is not running, start the server.

2. Log in to Admin Center.
v Point a web browser at Admin Center.
v On the Welcome page, specify an authorized user name and password to log in.

3. Use the Toolbox.
v Select a tool or bookmark.
v Add a tool.
v Remove a tool.
v Add or remove a bookmark.
v 8.5.5.4 Rearrange tool and bookmark icons.
v Filter toolbox contents.
v Edit user preferences such as text direction.
v 8.5.5.6 Uninstall an Admin Center tool.

4. 8.5.5.7 Use the Server Config tool to view and edit server configuration files in the Liberty
topology.
v Enable editing of files to change server.xml or any other files in the server configuration directory.
v View or edit a configuration file in the Server Config tool.
v Customize a default setting for Design or Source mode.

5. Use the Explore tool to explore and manage resources in the Liberty topology.
v View a summary of all resources on the Explore tool Dashboard.
v View a summary of all applications, clusters, servers, or hosts.
v View details about a resource.
v 8.5.5.4 View details about all servers on a Liberty runtime.
v Start, stop, or restart a resource.
v 8.5.5.5 Search for resources.

6. 8.5.5.5 Optional: View charts of server or application metrics in the Monitor view of the Explore
tool.
v Open the Monitor view on a server or application.
v Show or hide charts.
v Show or hide chart legends.
v 8.5.5.6 View chart data in a table.

7. After completing work in Admin Center, log out.

Setting up Admin Center

Chapter 5. Administering Liberty 1075

https://youtu.be/2wgXrNt79Q0

Admin Center is a web user interface that runs on Liberty V8.5.5.2 and later servers. After installing
Liberty and creating a server, configure the server.xml file.

Before you begin

Install WebSphere Application Server Liberty with Liberty Administrative Center ("Admin Center"). The
Installing Liberty Repository assets topic lists the ways to install assets such as Admin Center. The
quickest way to install Admin Center is to run the installUtility command or the featureManager
command:
1. If you have not done so already, install WebSphere Application Server Liberty V8.5.5.2 or later.

Restriction: Ensure that you use a Java virtual machine (JVM) that supports Liberty products and
Secure Sockets Layer (SSL). Do not use an IBM JVM available with a WebSphere Application Server
traditional product, such as Network Deployment, for your Liberty installation with Admin Center.
By default, the IBM JVM available with a traditional product points to security classes that are
available only with a traditional product, and not to security classes needed by Admin Center. Using
an IBM JVM available with a traditional product can cause Admin Center to not display in a browser.

2. Open a command window at the main directory of the Liberty installation. For example, open a
command window at c:\wlp.

3. Run a command to install the adminCenter-1.0 feature.

8.5.5.6

For Version 8.5.5.6 or later, run the installUtility command:

bin/installUtility install adminCenter-1.0

For Version 8.5.5.5 or earlier, run the featureManager command:
bin/featureManager install adminCenter-1.0 --when-file-exists=ignore

4. For the Liberty Developers edition, run a command to install the collectiveController-1.0 feature.

8.5.5.6

For Version 8.5.5.6 or later, run the installUtility command:

bin/installUtility install collectiveController-1.0

For Version 8.5.5.5 or earlier, run the featureManager command:
bin/featureManager install collectiveController-1.0 --when-file-exists=ignore

This step applies only to the Developers edition and not to the Network Deployment, z/OS or Core
editions of Liberty. Optionally, you can install the collectiveController-1.0 feature before installing
the adminCenter-1.0 feature.

For more information, go to the WASdev website, select the Downloads tab, and search the Liberty
repository for the Admin Center asset.

To install Admin Center on hosts that cannot access the internet-based Liberty repository, first install
Liberty and the Admin Center feature on a host that can access the internet. Then transfer the installation
to the target hosts. For information about packaging Liberty servers and runtimes for deployment to
other hosts, see Packaging a Liberty server by using developer tools and Packaging a Liberty server from
the command line.

About this task

You can set up Admin Center on stand-alone servers and on collective controllers. This topic focuses on
setting up a stand-alone Liberty server.

To enable Admin Center on a collective controller, see Configuring a Liberty collective and the example in
Deploying resources with Admin Center. Ensure the server.xml file of the collective controller includes
<feature>adminCenter-1.0</feature> in the feature manager configuration and sets a host value in the
httpEndpoint element, such as host="*" so all hosts can access the collective controller.

1076 WebSphere Application Server Liberty Core 8.5.5

|

|
|

|
|

|
|
|

http://developer.ibm.com/wasdev
https://www.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/twlp_ui_deploy.html

Procedure
1. If your Liberty installation does not have a server, create a Liberty server.

For example, in a command window at the wlp/bin directory, create a server named myServer.
server create myServer

The example command adds server files to the wlp/usr/servers/myServer directory.
2. Open an editor on the server.xml file of the Liberty server, and configure the server for Admin

Center.
a. Add the adminCenter-1.0 feature to the feature manager.

<featureManager>
<feature>adminCenter-1.0</feature>

</featureManager>

For more timely updates to server and application status in the Explore tool, also add the
websocket-1.1 or websocket-1.0 feature to the server configuration.
<featureManager>

<feature>adminCenter-1.0</feature>
<feature>websocket-1.1</feature>

</featureManager>

WebSocket provides a live view of the topology regardless of size. Without the WebSocket feature,
Admin Center periodically and frequently polls for changes.

b. Add one or more users to configure a secure login. For example:
<quickStartSecurity userName="admin" userPassword="adminpwd" />

If user names or passwords include non-English characters, create the jvm.options file for the
server and define the default client encoding as UTF-8:
-Ddefault.client.encoding=UTF-8

For information about the jvm.options file, see “Customizing the Liberty environment” on page
947.

c. To protect keystore files that have server authentication credentials, define a keystore and assign it
a password.
<keyStore id="defaultKeyStore" password="Liberty" />

For an example server.xml file that defines an Administrator and a non-Administrator and that
defines a keystore, see the Example in this topic. For information about defining multiple
administrative users, see “Setting up BasicRegistry and role mapping on Liberty” on page 1150.

d. To access Admin Center from a smartphone, tablet, or remote computer, ensure that the
server.xml file sets the host attribute of the httpEndpoint element to * (asterisk) or to a defined
host name. By default, the host attribute is set to localhost.
<httpEndpoint id="defaultHttpEndpoint"

host="*"
httpPort="9080"
httpsPort="9443" />

e. Save your changes to the server.xml file.
If you defined the default client encoding as UTF-8 for non-English characters in the jvm.options
file and the user registry is in quickStartSecurity or basicRegistry elements, which store user
names and passwords in the server.xml file, then save the server.xml file in UTF-8 encoding.

3. If the server is not running, start the server.
For example, in a command window at the wlp/bin directory, enter a run or start command.
server run myServer

Look for server messages that show the adminCenter web application is running. After Admin Center
is running, you can point a web browser at the application and log in. See “Logging in to Admin
Center” on page 1078.

Watch: The Setting up Admin Center video demonstrates the procedure. [Transcript]

Chapter 5. Administering Liberty 1077

http://youtu.be/W8sMeTZmRkE

Example: server.xml file that defines two authorized users
<server description="new server">

<!-- Enable features -->
<featureManager>

<feature>adminCenter-1.0</feature>
</featureManager>

<!-- Define the host name for use by the collective.
If the host name needs to be changed, the server should be
removed from the collective and re-joined. -->

<variable name="defaultHostName" value="localhost" />

<!-- Define an Administrator and non-Administrator -->
<basicRegistry id="basic">

<user name="admin" password="adminpwd" />
<user name="nonadmin" password="nonadminpwd" />

</basicRegistry>

<!-- Assign ’admin’ to Administrator -->
<administrator-role>

<user>admin</user>
</administrator-role>

<keyStore id="defaultKeyStore" password="Liberty" />

<httpEndpoint id="defaultHttpEndpoint"
host="*"
httpPort="9080"
httpsPort="9443" />

</server>

Logging in to Admin Center

After the Admin Center web application starts, you can point a web browser at Admin Center and log in.
After logging in, the first page shown is the Toolbox.

Before you begin

Ensure that you have a browser that supports Admin Center.
v For browsing the Admin Center on a computer: Firefox ESR 24, Firefox 29, Chrome 35, Safari 7, or

Internet Explorer 11 browser (for best experience, use Chrome or Firefox browser)
v For browsing the Admin Center on an iPhone or iPad: Safari browser on iOS 6.x or 7.x
v For browsing the Admin Center on an Android mobile device: Chrome browser on Android 4.2 or 4.3

Procedure
1. Point a web browser at Admin Center.

https://host_name:port_number/adminCenter/

For host_name, specify the IP address or domain name server (DNS) host name of the computer on
which the Liberty server is running. Specify localhost only if the browser is running on the same
computer as the server.
For port_number, specify the httpsPort value in the server.xml file. For example:
https://localhost:9443/adminCenter/

https://myhost.xyz.com:9443/adminCenter/

https://9.65.234.567:9443/adminCenter/

1078 WebSphere Application Server Liberty Core 8.5.5

2. If your browser prompts you to confirm that the connection is trusted, specify an exception or
otherwise enable the connection to continue to Admin Center.

3. Log in to Admin Center.
When you configured the server.xml file of the server to enable Admin Center, you defined one or
more user names and passwords authorized to access the Admin Center. To log in to Admin Center,
specify an authorized user name and password.
For example, specify the user name admin and the password adminpwd.

What to do next

When you first access the Toolbox, it has the Server Config and Explore tools and a bookmark to
WASdev.net. The Toolbox also has the Deploy tool if Admin Center is run on a collective controller. The
Deploy tool is not available if Admin Center is run on a stand-alone server.

To add or remove tools and bookmarks, select

and use the Tool Catalog to customize your
user-specific Toolbox.

8.5.5.4

To view a tool, select its Toolbox icon or directly launch the tool using the URL that is shown

in the browser when viewing the tool. For example, to directly launch the Explore tool, use a URL such
as https://localhost:9443/adminCenter/#explore.

Later, to log out of Admin Center, select

> Log out user_name.

Customizing the Toolbox

When you first log in to Admin Center, the Toolbox contains the Server Config and Explore tools and a
bookmark to WASdev.net. The Toolbox also has the Deploy tool if the server hosting Admin Center is a
collective controller. You can edit the Toolbox contents by adding tools from the Tool Catalog or by
adding bookmarks. A tool is a web application that performs a particular task and is typically provided
by the product. A bookmark is a user-added link to any site. You can further customize your Toolbox by
rearranging icons, filtering Toolbox contents, or editing preferences.

About this task

Select tools, bookmarks, and menu choices in the Toolbox to use Admin Center. The Toolbox offers the
following options:
v Select a tool or bookmark.
v Add a tool.
v Remove a tool.

Chapter 5. Administering Liberty 1079

v Add or remove a bookmark.
v Rearrange tool and bookmark icons.
v Filter toolbox contents.
v Edit user preferences such as text direction.
v 8.5.5.6 Uninstall an Admin Center tool.

Procedure
v To work with an existing tool or to open a browser on a bookmarked URL, select the icon for the tool

or bookmark.
v Add tools.

1. Select

>

> Add Tool.

2. Select

on the tool to add.
3. Confirm that you want to add the tool.

4. Select

to return to the Toolbox.

8.5.5.4

After you add a tool, use the Toolbox to first launch the tool. To directly launch the tool at a

later time, you can use the URL that is shown in the browser when viewing the tool.
v Remove tools.

1. Select .

2. Select

on the tool to remove.
3. Confirm that you want to remove the tool.

4. Select

to return to the Toolbox.
v Add or remove bookmarks.

1. Select

>

> Add Bookmark.
2. Enter the bookmark name and URL, and then select Add to add the bookmark to your Toolbox. To

later remove the bookmark, select the bookmark and then .

3. Select

to return to the Toolbox.
v 8.5.5.4 Rearrange tool and bookmark icons.

1. Select .
2. Drag and drop the icons into the order that you prefer.

3. Select

to return to the Toolbox.
v Filter toolbox contents.

1. Select .

1080 WebSphere Application Server Liberty Core 8.5.5

2. Type the tool or bookmark name in the text field. Filtered search results are shown if the characters
typed match the names of Toolbox contents.

3. After searching, select

to close the text field.
v Edit your preferences.

1. Select

> Preferences.
2. For Enable bidirectional support, specify whether text displays left to right, the default, or displays

right to left. Select Contextual for the first typed character to determine the direction. When the
first character is in a language such as Arabic or Hebrew, control orientation and typing direction
become right to left, with right alignment for text.

3. Select

to return to the Toolbox.
v 8.5.5.6 Uninstall an Admin Center tool.

By default, the Toolbox contains Admin Center tools such as the Explore tool and, if the server hosting
Admin Center is a collective controller, the Deploy tool. You can use the feature manager to uninstall
Admin Center tools to fully customize your Toolbox. Run the uninstall command for featureManager.
For example, if you use DevOps you might want to uninstall the Deploy tool. To do so, run:
wlp/bin/featureManager uninstall com.ibm.websphere.appserver.adminCenter.tool.deploy-1.0

Admin Center tools use the com.ibm.websphere.appserver.adminCenter.tool.* naming format:
– com.ibm.websphere.appserver.adminCenter.tool.explore-1.0.mf
– com.ibm.websphere.appserver.adminCenter.tool.deploy-1.0

What to do next

Your selections are saved for the user name that was specified when logging in. If you later log in under
the same user name, the Toolbox shows the same tool, bookmark, and preference selections as when you
last logged out. If you log in under a different user name, the Toolbox shows the selections for that other
user name.

Editing server configuration files in Admin Center
8.5.5.7

You can use the Server Config tool to view and edit server configuration files in the Liberty topology. The
Server Config tool displays configuration files such as a server.xml file in two modes. The Design mode
displays the content of configuration files using graphical controls with inline documentation. The Source
mode provides direct access to the file text and has content assist capabilities. You can customize the
modes, for example, to add or remove parameter descriptions on the Design mode or to add or remove
line numbers on the Source mode. Before you can edit files, you must add a remoteFileAccess element to
the server configuration file; otherwise, files are shown in read-only mode.

8.5.5.8

About this task

Watch: The Getting started with the Server Configuration Tool for WebSphere Liberty video shows
how to enable and use the tool.

Procedure
1. Enable editing of files in the server configuration directory.

a. Open an editor on the server configuration file.
The configuration file for a server typically has a path name such as wlp/usr/servers/
server_name/server.xml.

b. Add the following remoteFileAccess element to the server configuration file.

Chapter 5. Administering Liberty 1081

https://youtu.be/_6kyIkPOu1Y

<remoteFileAccess>
<writeDir>${server.config.dir}</writeDir>

</remoteFileAccess>

c. Save the file changes.
Server configuration files such as the server.xml and any included files no longer are read-only in the
Server Config tool. You can change element and parameter settings, and otherwise edit the files.

2. View or edit a configuration file in the Server Config tool.

a. From the Toolbox, select .
b. If Admin Center is run on a collective controller, select the server that has the configuration file

you want to view or edit.
c. After a file is open for editing, you can switch between Design and Source modes.

In the Design mode, select elements in the configuration to see enabled features and parameter
settings.
In the Source mode, hover on elements and parameters to view their documentation. You can
press Ctrl+Space to use content assist, which helps you add new elements, parameters, and values.

d. After you finish working with a file, select Save to save the file changes and then Close to return
to the main page of the tool. To discard file changes, select Close and then confirm to not save the
changes.

3. Optional: Customize the default settings for Design or Source mode.
By default, the Design mode uses enhanced labels for file elements. Enhanced labels display element
names such as featureManager as Feature Manager. Also, the Design mode displays parameter
descriptions by default. The Source mode displays line numbers by default. To change a default
setting:

a. Select .
b. Enable or disable one or more default settings.
c. Select Close.

What to do next

To return to the Toolbox, select .

1082 WebSphere Application Server Liberty Core 8.5.5

Exploring and managing resources with Admin Center

You can use the Explore tool to view and manage resources in the Liberty topology.

About this task

The Explore tool offers the following options to work with application, server, cluster, host, and runtime
resources:
v View a summary of all resources on the Dashboard.
v View a summary of all applications, servers, clusters, hosts, or runtimes.
v View details about a resource.
v 8.5.5.4 View details about all servers on a Liberty runtime.
v Start, stop, or restart a resource.
v 8.5.5.5 Search for resources.

Procedure
v View a summary of all resources on the Explore tool Dashboard.

From the Toolbox, select . The Explore page, or "Dashboard," shows the number of applications,
servers, clusters, hosts, and runtimes that Admin Center is managing. The Dashboard also shows the
number of resources that are running, stopped, or in an unknown state. If an alert condition is met, the
alert is shown on the Dashboard with a link to the appropriate resource page. The resource name, total,
and status also have links to the appropriate resource pages.

v View a summary of all applications, servers, clusters, hosts, or runtimes.
From the Dashboard, select a link on the Applications, Servers, Clusters, Hosts, or Runtimes panel.
For example, to see a summary of all servers, select the View All link on the Servers panel. The state
of all servers is shown. Whether a server is a collective controller or stand-alone server is also shown.

Chapter 5. Administering Liberty 1083

If an alert condition is met, an exclamation mark

is shown on the resource card. Select

for details
on the alert condition.
To filter the view, select an icon that shows the number of resources in a specific state. For example,
select the 1 Alert icon to display the one server with an alert condition.
For more timely updates to server and application status, add the websocket-1.1 or websocket-1.0
feature to the server configuration for your servers that use the adminCenter-1.0 feature.

v View details about a resource.
From the Explore page, select a link on the Applications, Servers, Clusters, Hosts, or Runtimes panel
and then a specific resource. For example, to see details about a server, select a link on the Servers
panel and then one of the servers.

If an alert condition is met, the alert is described with a link to the appropriate resource page.

8.5.5.9

If the apiDiscovery-1.0 feature is in the configuration file for a server, the

icon with the

View server API definition link is shown in details about the server. When the server is stopped, the
View server API definition link is unavailable. For information about the apiDiscovery-1.0 feature,
see “Discovering REST API documentation on a Liberty server” on page 1416.
For resources on Liberty servers, select a resource to see more details. For example, select Apps and
then an application to display details about the application on one of the servers. From the application
details page you also can access the Monitor view for each application.

1084 WebSphere Application Server Liberty Core 8.5.5

v 8.5.5.4 View details about all servers on a Liberty runtime.
From the Dashboard:
– Select a link on the Hosts panel, a host,

Runtimes on the vertical navigation bar, and then a runtime.

– Select a link on the Servers panel, a server, and then

Liberty Runtime on the horizontal
navigation bar.

The Runtime view displays details about the runtime, such as the number and states of servers on the
runtime. The runtime details are useful for distinguishing among servers with the same name on the
same host.

v Start, stop, or restart a resource.

To start, stop, or restart one resource, select

for the resource, select the available action from the
popup dialog, and then confirm the selection.

Alternatively, select

> one_or_more_resources > action_button. You can start, stop, or restart
multiple resources with this option. For example, to start two stopped servers:

1. When viewing Servers, select .
2. Select two servers in a stopped, partially started, or unknown state.

Chapter 5. Administering Liberty 1085

3. Select the Start button.
4. 8.5.5.7 Confirm the selection.

Restriction: 8.5.5.4 If a resource has an enabled scaling policy , you cannot use the Explore tool
to start, stop, or restart the resource. The start, stop, or restart button is unavailable. This button is also
unavailable if you select multiple resources, and one or more of the resources has an enabled scaling
policy. Use Liberty APIs to start, stop, or restart a resource that has an enabled scaling policy, if
needed. You likely do not need to start and stop auto-scaled resources manually because the scaling
controller manages the life cycle of the resources.

v 8.5.5.5 Search for resources.
Select
, specify the search criteria, and then select . To add search criteria, select

and then specify

additional values. To clear the entire search field, select .

The search results list details about resources that fit the search criteria. You can select

and then
select an available action from the popup dialog to change the resource status or, for hosts, to deploy a
server package. To see more details about a resource, select the resource name.

1086 WebSphere Application Server Liberty Core 8.5.5

8.5.5.6

You can filter the search results by entering a string in the search field. For example, enter er

to show resources that contain the "er" string.

8.5.5.9

To show or hide columns, select

and the columns to display.

What to do next

Select

to return to the Explore tool Dashboard. Select a previously viewed resource page on an
Explore tool navigation bar to return to that page.

8.5.5.4

To directly launch the Explore tool in the future, you can use the URL that is shown in the

browser when viewing the Explore tool. For example, to directly view information about a particular
resource in the future, you can use the URL that is shown in the browser when viewing information
about the resource in the Explore tool. Each resource in the Explore tool has a unique URL that you can
bookmark and use to directly launch the same resource page.

To return to the Toolbox, select .

Monitoring metrics in Admin Center
8.5.5.5

You can use the Monitor view of the Admin Center Explore tool to track used heap memory, loaded
classes, active Java virtual machine (JVM) threads, central processing unit (CPU) usage, and other metrics
depending on the resource. The Monitor view shows the metrics graphically in charts. You can customize
the Monitor view by selecting the charts to show or hide.

Chapter 5. Administering Liberty 1087

Procedure
v Open the Monitor view on a server or application.

1. From the Toolbox, select .
2. Select a server or application to monitor.

– To monitor a server, select the Servers panel and then a server.
– To monitor an application, select the Applications panel and then an application instance. Or, to

monitor an application on a server, select the Servers panel, a server, and then an application.

3. Select

Monitor on the vertical navigation bar.
When first displayed, the Monitor view shows the following charts:

Used Heap Memory
The Used Heap Memory chart shows the heap memory used by the server in megabytes (MB)
every two seconds. The chart also shows the used, committed and maximum megabytes.

Loaded Classes
The Loaded Classes chart shows the number of classes loaded every two seconds. The chart
also shows the number of loaded and unloaded classes, as well as the total number of classes.

Active JVM Threads
The Active JVM Threads chart shows the number of JVM threads every two seconds. The chart
also shows the number of live, total, and peak threads.

1088 WebSphere Application Server Liberty Core 8.5.5

CPU Usage
The CPU Usage chart shows the percentage of CPU used every two seconds.

If a server has the monitor-1.0 feature enabled, the Monitor view also has other charts, depending on
the resource:
– Active Sessions
– Active Liberty Threads
– Average Response Time
– Average Wait Time
– Request Count
– Used Connections

8.5.5.6

The charts available if a server enables the monitor-1.0 feature have additional configuration

options. For example, charts for web applications with multiple servlets, servers with active sessions,
or servers with data sources display a drop-down list from which you can select resources to show in
the chart.

Chapter 5. Administering Liberty 1089

Select , the resources to show in the chart, and then Save.
v Show or hide charts.

Select , the charts to show or hide, and then Save. The Monitor view shows or hides the selected
charts, depending on whether the chart is shown or hidden when you make the selection.

8.5.5.6

Your selections are saved for the resource and login user name. When the user opens the

Monitor view on the resource in the future, the same chart selections are shown.
v Show or hide chart legends.

If a chart has multiple grid lines, you can choose whether to show or hide the chart legend depending
on whether a legend is shown or hidden when you make a selection.

For example, to view a chart legend, select

for the chart and then Show legend.

To then hide the legend, select

for the chart and then Hide legend.
v 8.5.5.6 View chart data.

In addition to viewing chart data graphically, you can view chart data in a table. Select

for the
chart and then View chart data.

Configuration updates
You can make updates to the configuration by using the developer tools or from the command line.

Updating the server.xml file

The server.xml file can be updated either from the developer tools or from the command line. If there
are any problems with the configuration, the specific configuration element updates that have problems
do not take effect, but other successful updates are implemented.

This behavior can be changed by updating the onError variable from the default value of WARN to FAIL. If
the value is set to FAIL, any problem with the configuration update causes the entire update to fail.

8.5.5.5

Updates occur if you update any files that are included from the server.xml file or

configuration in the configDropins directories.

Restarting the server with an updated configuration

The WebSphere Application Server Liberty runtime environment caches the currently used configuration
so that when you restart the server, the server.xml file is not processed unless there are any changes. If
the server.xml file is changed, the cached configuration is updated with the new values. If any problems

1090 WebSphere Application Server Liberty Core 8.5.5

are found in the new configuration, the cached configuration values remain in use. The console log
displays a warning message for each configuration element that is still using an older value. For example:
CWWKG0076W: The previous configuration for httpEndpoint with id defaultHttpEndpoint is still in use.

The server can be started without using cached configuration by running the server script with the
--clean option.

Liberty and Chef
Chef software is an open source configuration management tool that you can use to create and manage
the installation of an Infrastructure as a Service (IaaS). You can use Chef to provision a Liberty
installation.

Chef uses cookbooks, which are reusable sets of components that are written in the Ruby programming
language. A cookbook provides all the necessary components that are needed to configure an associated
piece of software, for example, Apache HTTP Server. An important distinction between using Chef and
writing scripts is the ability of Chef to determine the differences between the current software
configuration and a new configuration and make only the changes necessary to move from one to the
other. For more information, see the online Chef documentation About Cookbooks.

By using Chef, you can create scalable infrastructure with minimal configuration to maintain. You can
easily expand your existing infrastructure, for example, by creating and starting a new application server
or web server. Chef automatically connects the new servers into the existing infrastructure as necessary.

The wlp cookbook installs and configures the WebSphere Application Server Liberty. It provides recipes,
resources, and libraries for creating, managing, and configuring Liberty server instances. For more
information, see wlp cookbook.

To learn more about Chef, see the online Chef documentation How Chef works.

To learn more about using Chef cookbooks, see Getting started with the Chef cookbooks for Liberty.

Including configuration information from external xml files in the
server.xml file

8.5.5.6

You can use the include element to include configuration information from an external xml file in the
server.xml file.

If you have configuration information in an external xml file, you can use the include element to include
the configuration information in the server.xml file. For example, if you have an xml file,
simpleSecurity.xml, with the following content:
<server>
<quickStartSecurity userPassword="thePassword"/>

</server>

You can use the following method to include the configuration information in simpleSecurity.xml file in
your server.xml file:
<server>
<featureManager>
<feature>servlet-3.0</feature>
</featureManager>
<quickStartSecurity userName="theUser"/>
<include location="simpleSecurity.xml"/>

</server>

Chapter 5. Administering Liberty 1091

http://docs.chef.io/cookbooks.html
https://supermarket.chef.io/cookbooks/wlp
https://www.chef.io/chef/
https://developer.ibm.com/wasdev/docs/getting-started-chef-cookbooks-liberty-profile/

The effective configuration is as follows:
<server>
<featureManager>
<feature>servlet-3.0</feature>

</featureManager>
<quickStartSecurity userName="theUser"/>
<quickStartSecurity userPassword="thePassword"/>
</server>

Conflict handling

You can configure the onConflict attribute in the server.xml file to handle the value conflict between
server.xml file and the external file. This attribute can be configured to one of the three values: Merge,
Replace, and Ignore.

Merge The values are merged together. Merge is the default value of the onConflict attribute and Merge is
equivalent to the behavior that you get if you specify all of the conflicting elements in the
server.xml file. In the previous example, there are two quickStartSecurity elements, and they
are effectively merged into a single element. The effective configuration is as follows:
<quickStartSecurity userName="theUser" userPassword="thePassword"/>

For more information about how configuration elements are merged, see “Configuration element
merging rules.”

Replace
The value from the included configuration file replaces the conflicting values in the server.xml
file. In the previous example, the included quickStartSecurity element replaces the one from the
server.xml file, so the effective configuration is as follows:
<quickStartSecurity userPassword="thePassword"/>

Ignore The value from the included file is ignored. In the previous example, the quickStartSecurity
element from the included file is ignored, so the effective configuration is as follows:
<quickStartSecurity userName="theUser"/>

Configuration element merging rules
8.5.5.6

If a configuration element is specified multiple times in the server configuration, the elements are
merged. The following rules apply to configuration merging:
v Singleton elements are always merged. In the following example, all instances of the element in the

server configuration arefeatureManager merged to form a single featureManager element:
<featureManager>
<feature>servlet-3.0</feature>

</featureManager>
<featureManager>
<feature>jdbc-4.0</feature>

</featureManager>

The effective configuration becomes:
<featureManager>
<feature>servlet-3.0</feature>
<feature>jdbc-4.0</feature>
</featureManager>

v Factory elements that are specified at the top level of the server configuration are merged if they have
the same ID. In the following example, the dataSource element with id= "ds1" is merged and the
dataSource element with id= "ds2" stays as it is. For example,

1092 WebSphere Application Server Liberty Core 8.5.5

<dataSource id="ds1" jdbcDriverRef="myDriver"/>
<dataSource id="ds1" jndiName="jdbc/myDriver"/>
<dataSource id="ds2" jdbcDriverRef="myDriver2"/>

The effective configuration becomes:
<dataSource id="ds1" jdbcDriverRef="myDriver" jndiName="jdbc/myDriver"/>
<dataSource id="ds2" jdbcDriverDref="myDriver2"/>

v If a factory element does not have an ID value, it is considered distinct from other elements of the
same type without an ID value. Multiple factory elements without ID values are not merged together.
In the following example, the dataSource are not merged, so the effective configuration is the same as
the specified configuration:
<dataSource jdbcDriverRef="myDriver"/>
<dataSource jndiName="jdbc/myDriver"/>

The effective configuration becomes:
<dataSource jdbcDriverRef="myDriver"/>
<dataSource jndiName="jdbc/myDriver"/>

v If the elements that are to be merged have conflicting attributes, the merged element uses the last value
that is encountered by the configuration parser. In the following example, the dataSource element with
id= "ds1" is merged and the jdbcDriverRef="myDriver2" is used, while jdbcDriverRef="myDriver" is
removed.
<dataSource id="ds1" jdbcDriverRef="myDriver"/>
<dataSource id="ds1" jdbcDriverRef="myDriver2"/>

The effective configuration becomes:
<dataSource id="ds1" jdbcDriverRef="myDriver2"/>

v If a factory element is nested underneath another element, it is merged with other elements under the
same effective parent only. In the following example, the dataSource element with id= "ds1" is merged
and the properties.derby.embedded id="props1" element is merged with the other
properties.derby.embedded id="props1" element whose parent is alsodataSource id="ds1".
<dataSource id="ds1">
<properties.derby.embedded id="props1" databaseName="myDB"/>

</dataSource>
<dataSource id="ds2">
<properties.derby.embedded id="props1" user="myUser"/>

</dataSource>
<dataSource id="ds1">
<properties.derby.embedded id="props1" createDatabase="create"/>

</dataSource>

The effective configuration becomes:
<dataSource id="ds1">
<properties.derby.embedded id="props1" databaseName="myDB" createDatabase="create"/>

</dataSource>
<dataSource id="ds2">
<properties.derby.embedded id="props1" user="myUser"/>

</dataSource>

v If a factory element is nested underneath another element and the factory element does not have a
specified ID value, special rules apply depending on the cardinality of the nested element. If multiple
nested elements of a particular type are expected, the elements are not merged. However, if only a
single nested element is expected, the nested elements are merged together. For example,
<topLevel>
<multipleNested enabled="true"/>
<multipleNested value="1"/>
<singleNested enabled="false"/>
<singleNested value="2"/>

</topLevel>

Chapter 5. Administering Liberty 1093

The effective configuration becomes:
<topLevel>
<multipleNested enabled="true"/>
<multipleNested value="1"/>
<singleNested enabled="false" value="2"/>

</topLevel>

v If two factory elements are nested underneath another element and the ID values that do not match,
the merging behavior depends on the cardinality of the nested element. If multiple nested elements are
expected, the elements are not merged. If a single nested element is expected, the nested elements are
merged together despite the conflicting ID values. For example,
<topLevel>
<multipleNested id="1" enabled="true"/>
<multipleNested id="2" value="1"/>
<singleNested id="3" enabled="false"/>
<singleNested id="4" value="2"/>

</topLevel>

The effective configuration becomes:
<topLevel>
<multipleNested id="1" enabled="true"/>
<multipleNested id="2" value="1"/>
<singleNested id="4" enabled="false" value="2"/>

</topLevel>

1094 WebSphere Application Server Liberty Core 8.5.5

Chapter 6. Extending Liberty

You can expand the capability of Liberty by using product extensions. You can write your own Liberty
features and install them onto an existing Liberty server, or you can package them for delivery to your
users.

About this task

This section describes how to develop features for a product extension, how to install features to the
built-in “usr” product extension, and how to use your features in an application server. Liberty provides
various System Programming Interfaces (SPIs) that you can use to extend the runtime environment; you
can also use more advanced features such as operating the Liberty server from your Java applications
programmatically. The Java API documentation for each Liberty SPI is detailed in the Programming
Interfaces (APIs) section of the documentation, and is also available as a separate .zip file in one of the
javadoc subdirectories of the ${wlp.install.dir}/dev directory.

For an overview of writing product extensions for Liberty, see “Product extension” on page 577.

For full details of how to extend Liberty, see the following subtopics:

Developing a Liberty feature for Liberty
A Liberty feature consists of a feature manifest file, and one or more OSGi bundles. The OSGi bundles
contain classes and services that provide a particular capability when the feature is installed onto a
Liberty server.

About this task

You can develop a Liberty feature in either of the following ways:
v Develop the feature manually; see “Developing a Liberty feature manually.”
v Use the WebSphere Application Server Developer Tools; see “Creating a Liberty feature by using

developer tools” on page 1106.

For full details on developing Liberty features, see the following subtopics:

Developing a Liberty feature manually
You can create a Liberty feature manually and install it to Liberty.

About this task

A feature can consist of a single OSGi bundle and a feature manifest file. This example makes a library
available to applications so that the external packages are visible on the default application class path. By
copying the feature manifest into the ${wlp.user.dir}/extension/lib/features directory, and the OSGi
bundle into the ${wlp.user.dir}/extension/lib directory, the feature can be installed to Liberty. Then
you can use the feature in your server.xml file.

For details about the format of a feature manifest file, see “Liberty feature manifest files” on page 1097.

This example describes how to construct a Liberty feature manually. Alternatively, you can use the
WebSphere Application Server Developer Tools. See “Creating a Liberty feature by using developer tools”
on page 1106.

1095

Procedure

To create a Liberty feature manually, complete the following steps:
1. Create an OSGi bundle containing your Java classes, and a bundle manifest file with appropriate

OSGi headers, for example to export the Java packages that you want to expose to applications.
Bundle-SymbolicName is the only required header; this entry specifies a unique identifier for a bundle,
based on the reverse domain name convention. It is good practice to specify a version for the bundle,
and in this example some Java packages are exported for application use:
Bundle-SymbolicName: com.usr.samplebundle
Bundle-Version: 1.0.1
Export-Package: com.usr.samplebundle.pkg1; version="1.0.0",

com.usr.samplebundle.pkg2; version="1.0.1"

2. Use the jar command to package the Java classes and the feature manifest file. For example:
jar cfm samplebundle.jar MANIFEST.Mf *.class

3. Create a feature manifest file named feature-name.mf which describes the feature to the runtime
environment.
a. Provide the required manifest headers:
v Subsystem-SymbolicName to specify the identity and visibility of the feature;
v Subsystem-Content to locate the files that comprise the feature;
v IBM-Feature-Version to identify which version of feature support is required by the runtime

environment.
b. Best practice: Add the optional manifest headers to indicate the applicable version of the

subsystem specification (Subsystem-ManifestVersion), the version of your feature
(Subsystem-Version), and a short name of your feature (IBM-ShortName). Specifying these values
will help you to evolve your feature in the future.

c. In the IBM-API-Package header, list the packages that are to be exposed on the default class loader
for applications.

d. Optional: When you create your Liberty feature, you install it into the user product extension, and
the packages in your feature can be accessed by any other feature that is installed to the user
product extension. To make one or more SPI packages available to features in other product
extensions, list the packages in the IBM-SPI-Package header.

Subsystem-ManifestVersion: 1.0
Subsystem-SymbolicName: com.example.myfeature.sample-1.0; visibility:=public
Subsystem-Version: 1.0.0.qualifier
Subsystem-Type: osgi.subsystem.feature
Subsystem-Content: samplebundle; version="[1,1.0.100)"
IBM-Feature-Version: 2
IBM-API-Package: com.usr.samplebundle.pkg1; type="api",

com.usr.samplebundle.pkg2; type="api"
IBM-SPI-Package: com.sample.myservice.spi;
IBM-ShortName: sample-1.0

4. Copy the bundle into the ${wlp.user.dir}/extension/lib directory.
5. Copy the feature manifest into the ${wlp.user.dir}/extension/lib/features directory.
6. If you have defined Subsystem-Name and Subsystem-Description headers in the feature manifest file,

and have localized the values, copy the localization files specified in the Subsytem-Localization
header into the ${wlp.user.dir}/extension/lib/features/l10n directory.

Results

After your feature is installed to Liberty, you can add the feature name to the list of configured feature in
your server.xml file. For example:
<featureManager>

<feature>usr:sample-1.0</feature>
</featureManager>

1096 WebSphere Application Server Liberty Core 8.5.5

Liberty feature manifest files
A Liberty feature consists of a feature manifest file and a collection of one or more OSGi bundles that
provide classes and services corresponding to a particular capability in the Liberty profile runtime
environment. You can find the introduction of the format of a feature manifest and the meaning of each
header in the manifest file.

The feature manifest file in the Liberty profile uses the Subsystem Service metadata format in the OSGi
Enterprise R5 specification. A feature is defined by a feature manifest file (.mf file) that is stored in the
lib/features directory, and must use a custom type of Subsystem: osgi.subsystem.feature. For more
information on OSGi manifest syntax, see section 1.3.2 of the OSGi core specification.

Note: In the feature manifest file, the attributes take the form name=value, but directives take the form
name:=value.

The following headers are defined:

Table 82. Headers of a feature manifest file.

This table shows the headers of a feature manifest file in the Liberty profile. The first column shows a list of headers.
The second column shows the description of each header, and the third column states whether the header is
required.

Header Description Required?

Subsystem-ManifestVersion The version format for the feature
manifest file. Must be set to 1.

No

Subsystem-SymbolicName The symbolic name of the feature and any
attributes or directives.

Yes

Subsystem-Version The version of the feature. See the OSGi
core specification section 3.2.5 for the
details of how this is defined.

No

Subsystem-Type The subsystem type for the feature. All
features are currently of the same
subsystem type: osgi.subsystem.feature.

Yes

Subsystem-Content The subsystem content of the feature. This
is a comma separated list of bundles and
subsystems that are required to run this
feature. If you want to allow the auto
feature to be configured in the server.xml
file, you must have the capability header
containing the required features, and also
define them in the subsystem content.

Yes

Subsystem-Localization The location of the localization files for
the feature.

No

Subsystem-Name A short, human readable name for the
feature. This value can be localized.

No

Subsystem-Description A description of the feature. This value
can be localized.

No

IBM-Feature-Version The version of this subsystem type. Must
be set to 2.

Yes

IBM-Provision-Capability The capability header that describes
whether a feature can be provisioned
automatically.

No

IBM-API-Package The API packages that are exposed to
applications by this feature, features in
other product extensions, and the Liberty
kernel.

No

IBM-API-Service The OSGi services that are exposed to
OSGi applications by this feature.

No

Chapter 6. Extending Liberty 1097

Table 82. Headers of a feature manifest file (continued).

This table shows the headers of a feature manifest file in the Liberty profile. The first column shows a list of headers.
The second column shows the description of each header, and the third column states whether the header is
required.

Header Description Required?

IBM-SPI-Package The SPI packages that are exposed by this
feature to features in other product
extensions, and the Liberty kernel.

No

IBM-ShortName The short name of the feature. No

IBM-AppliesTo The Liberty version that this feature
applies to.

No

Subsystem-License The license type for this feature. No

IBM-License-Agreement The prefix of the location of the license
agreement files.

No

IBM-License-Information The prefix of the location of the license
information files.

No

IBM-App-ForceRestart Specifies that applications are to be
restarted when the feature is installed to,
or uninstalled from, a running server.

No

Subsystem-SymbolicName

The syntax for this header matches the Bundle-SymbolicName syntax for a bundle. It has a symbolic name
that follows the package names style syntax, and can optionally take a set of attributes and directives.

The following attributes are supported:
v superseded. This attribute indicates whether this feature is superseded by one or more features or

items of functionality. It takes one of the following values:
– true - The feature is superseded.
– false - The feature is not superseded.

This attribute is optional; the default value is false.
For more information, see Superseded features.

v superseded-by. This attribute specifies a comma-separated list of the features that supersede this
feature, if any, and is optional.

The following directive is supported:
v visibility. This directive takes one of the following values:

– public - Feature considered to be API. The feature is supported by the developer tools, for use in
the server.xml file, and output in messages.

– protected - Feature considered to be SPI. The feature is not supported by the developer tools, for
use in the server.xml file, or output in messages. The feature is provided so extenders can use it to
build higher-level features.

– private - (default) The feature is product internals. The feature is not supported for use in the
server.xml file or to be referenced by extender features. The feature can be changed at any time,
including between fix packs.

For example:
Subsystem-SymbolicName: com.ibm.example.feature-1.0;

visibility:=public; superseded=true; superseded-by="com.ibm.example.feature-2.0"

1098 WebSphere Application Server Liberty Core 8.5.5

If a feature name in the superseded-by list is surrounded by brackets, [], this feature is separated from
the superseding feature. In the following example, feature appSecurity-1.0, which contains features
servlet-3.0 and ldapRegistry-3.0, is superseded by feature appSecurity-2.0, which does not contain
servlet-3.0 and ldapRegistry-3.0 features:
IBM-ShortName: appSecurity-1.0
Subsystem-SymbolicName: com.ibm.websphere.appserver.appSecurity-1.0; visibility:=public;
superseded=true; superseded-by="appSecurity-2.0, [servlet-3.0], [ldapRegistry-3.0]"

For more information, see Separated features.

Best practice: If the developer tools must show the feature, it must be public. If the feature is available
only to trusted parties, it must be protected. If the feature is internal and subject to change at any time, it
must be private.
v 8.5.5.6 singleton. This directive takes one of the following values:

– True. The feature is a singleton.
– False. The feature is not a singleton.
The singleton directive is optional. The default value is False.
This directive is used to declare that a particular feature is a singleton. A singleton means that only one
version of a given feature can be loaded into the runtime at a time. By default, features are not
singletons. If the feature is a singleton and multiple versions of a given feature are required by the
server configuration, then the runtime attempts to find a common version that is tolerated by all
requiring features. For more information on version toleration, see the ibm.tolerates directive under
Subsystem-Content.
When a feature is a singleton, then the symbolic name value is in the form "<singleton feature name
>-<singleton version>", where the name and version are separated by a hyphen. The singleton feature
name can contain hyphens, but the characters that follow the last hyphen are interpreted as the
singleton version. If the characters that follow the last hyphen are not a valid version, then a singleton
version of 0.0.0 is used and the complete symbolic name is used as the singleton name. The singleton
version is used when processing "ibm.tolerates directives under Subsystem-Content; for example:

Subsystem-SymbolicName: com.ibm.example.feature-1.0;
visibility:=public; singleton:=true

Subsystem-Content

This header defines the content of the feature, both for run time and install. It follows the same header
syntax as the Subsystem specification with the following syntax:
Subsystem-Content ::= content (’,’ content)*

content ::= unique-name (’;’ parameter)*
unique-name ::= unique-name (see OSGi core spec section 1.3.2)

The unique-name uses the form of the Bundle-SymbolicName or Subsystem-SymbolicName headers. The
following attributes are supported:
v version - The range of versions to be matched when you find a bundle. Only bundles in this range are

selected. A typical example of the version range is [1,1.0.100).
v type - The type of content to be provisioned. You can specify any value to indicate the content type;

some types result in bundles being installed and started in the OSGi framework of a server that uses
the feature, all types cause the content to be included in an installation package that includes the
feature. The following values are predefined:
– osgi.bundle - This is the default value and indicates an OSGi bundle that should be provisioned

both into the OSGi framework of the server and an installation package.
– osgi.subsystem.feature - This value indicates that the feature should be provisioned both into the

OSGi framework of the server and an installation package. These features need to use the name that
is specified in Subsystem-SymbolicName header.

Chapter 6. Extending Liberty 1099

– jar - This value indicates that a JAR file should be included in an installation package and is
selected by using a combination of a version range, a location value, or both.

– file - This value indicates that the file that is identified in the location attribute should be included
in an installation package.

The following directives are supported:
v location - The location of the bundle. For a bundle or JAR type, this value can be a comma-separated

list of directories that represent a search path. For any type, this value might be a single entry that
points directly to the resource and might be specified as a file URL. Paths might be absolute or relative.
Relative paths are resolved relative to the location of the product extension that contains the feature.
For a user feature, the default product extension location is used which is ${wlp.user.dir}/extension.
The location of non-default product extensions is declared by the com.ibm.websphere.productInstall
property in its properties file in the ${wlp.install.dir}/etc/extensions directory.
For example:
Subsystem-Content: com.ibm.websphere.appserver.api.basics; version="[1,1.0.100)"; type=jar; location:="dev/api/ibm/,lib/",

com.ibm.websphere.appserver.spi.application;
location:="dev/spi/ibm/com.ibm.websphere.appserver.spi.application_1.0.0.jar"; type="jar",

com.ibm.websphere.appserver.spi.application_1.0.0-javadoc.zip;
location:="dev/spi/ibm/javadoc/com.ibm.websphere.appserver.spi.application_1.0.0-javadoc.zip"; type="file"

v start-phase - The start phase when the bundle should start during system startup. The start-phase
directive can take one of the following values:
– SERVICE - This value indicates the earliest phase. By default it maps to a start level of 9.
– CONTAINER - This is the default value if no start-phase is provided. It indicates the container phase

when application containers are started. By default it maps to a start level of 12.
– APPLICATION - This value indicates the latest phase when applications are started.

Bundles can also be defined to start before or just after these phases by adding _LATE to be later, or
_EARLY to be earlier than the key phase. So if you want to run immediately after the container phase,
use CONTAINER_LATE, and if you want to run before the APPLICATION phase then use APPLICATION_EARLY.

v 8.5.5.6 ibm.tolerates - Specifies alternative singleton version or versions of a singleton
feature,type=osgi.subsystem.feature, to be provisioned into the system if there are version conflicts.
The unique-name specifies the symbolic name of the preferred version of a singleton feature. If the
including feature is known to work with other singleton versions of a given singleton feature, then
these singleton versions can be specified by using the ibm.tolerates directive. This gives greater
compatibility to the defining feature in the case that other features define conflicting required version
values of a given singleton feature.
Singleton versions that are listed in the ibm.tolerates directive are only used if a version conflict. The
ordering of versions that are listed in the ibm.tolerates directive is not significant - any version that is
listed in the ibm.tolerates directive can be selected to satisfy dependency requirements.
The tolerated version or versions of a given singleton feature must be explicitly listed in the
ibm.tolerates directive. Use commas to separate a list of tolerated versions. Specifying a version range
is not supported.
For example:
Subsystem-Content: com.ibm.websphere.appserver.example.featureA-1.1; ibm.tolerates:="1.2"; type="osgi.subsystem.feature",

com.ibm.websphere.appserver.example.featureB-1.1; ibm.tolerates:="1.2, 1.4, 1.6"; type="osgi.subsystem.feature"

Note:

Tolerated versions are not transitive. This prevents a feature that your feature depends on from being
automatically opted in to supporting a later level of a feature, without testing it.

For example: User feature featureC-1.1 includes sipServlet-1.1 in the Subsystem-Content header of
its manifest file. sipServlet-1.1 includes servlet-3.0 and tolerates servlet 3.1. If featureC-1.1 was

1100 WebSphere Application Server Liberty Core 8.5.5

written before servlet-3.1 existed and then servlet-3.1 was added and tolerated by the feature used
by it (sipServlet-1.1), featureC-1.1 should have a say on whether it also tolerated servlet-3.1.

If you configure the server.xml file to have the following two features:
<feature>usr:featureC-1.1</feature> // includes: sipServlet-1.1
<feature>websocket-1.0</feature> // this feature requires servlet-3.1

You will see an error message that resembles the following displayed:
CWWKF0033E: The singleton features servlet-3.0 and servlet-3.1 cannot be loaded at the same time.
The configured features usr:featureC-1.1 and websocket-1.0 include one or more features that cause the conflict.
Your configuration is not supported; update server.xml to remove incompatible features."

This error is reported because featureC-1.1 is not opted in to tolerating servlet-3.1, and so has to
have servlet-3.0, and websocket-1.0 does not support servlet-3.0 and so has to have servlet-3.1.

The solution is for featureC-1.1 to also directly depend on servlet-3.0 and tolerate servlet-3.1.

AIX

HP-UX

Linux

Solaris

IBM i

8.5.5.4

The following directive is supported in

version 8.5.5.4 and later:
v ibm.executable - Adds the execute permission to the associated file, according to the current umask

setting, when the value is set to "true". Any other value results in no action taken. The following table
shows the current umask and which class gets the execute permission.

Table 83. Examples of umask values and classes with execute permissions set by ibm.executable

Umask Execute permissions granted to class

022 owner, group, other

023 owner, group

055 owner

Subsystem-Localization

This header specifies the location of the localization files for the feature.

For example:
Subsystem-Localization: OSGI-INF/l10n/loc

Subsystem-Name

Use this header to supply a short, human readable name for the feature. You can specify either a literal
string or a property name. If you specify a property name, the value can be localized.

For example
Subsystem-Name: %name

where the value of name is defined in a properties file at the location that is specified by the
Subsystem-Localization header (loc.properties in the previous example), in the following format:
name=feature_name

Subsystem-Description

Use this header to supply a description for the feature. You can specify either a literal string or a property
name. If you specify a property name, the value can be localized.

Chapter 6. Extending Liberty 1101

For example
Subsystem-Description: %desc

where the value of desc is defined in a properties file at the location that is specified by the
Subsystem-Localization header (loc.properties in the previous example), in the following format:
desc=feature_description

IBM-Provision-Capability

Automatically provisioned features are features that have the IBM-Provision-Capability header in the
manifest. This header describes other features that must be provisioned for this feature to be
automatically provisioned. When you list the other features, use the Subsystem-SymbolicName header of
the feature. When any features are configured in the server.xml file, the runtime checks to see whether
any automatically provisioned features have their capabilities satisfied, and if any have, they are
automatically provisioned.

The format of the IBM-Provision-Capability header uses standard OSGi LDAP filters.

IBM-API-Package

This header is used to indicate which API packages are visible to applications. It matches the
Export-Package header syntax. This means it is a comma-separated list of API packages, but each API
package can have some attributes.

The following attribute is supported:
v type - The type of API package. The type attribute takes one of the following values:

– spec - Indicates an API provided by a standard body, such as javax.servlet or org.osgi.framework.
– ibm-api - Indicates a value-add API provided by IBM.
– api - Indicates a user-defined API. This is the default value.
– third-party - Indicates an API that is visible, but not controlled by IBM. Typically, these are open

source packages.
– internal - Indicates non-API packages that must be exposed to applications for them to function.

This might be used if Java code is bytecode enhanced, or weaved, to add references to internal code
at run time.

For example:
IBM-API-Package: javax.servlet; type="spec",

com.ibm.websphere.servlet.session; type="ibm-api",
com.ibm.wsspi.webcontainer.annotation; type="internal"

IBM-API-Service

This header is used to indicate which services from the feature are visible to OSGi applications. The
feature must also register the service in the OSGi service registry.

It has the following syntax
IBM-API-Service ::= service (’,’ service)*

service ::= service-name (’;’ attribute)*
service-name ::= unique-name

The service-name is the Java class or interface name of the service. The attributes are interpreted as the
service properties for the services.

For example:

1102 WebSphere Application Server Liberty Core 8.5.5

IBM-API-Service: com.ibm.example.service.FeatureServiceOne;
myServiceAttribute=myAttributeValue,
com.ibm.example.service.FeatureServiceTwo

If an OSGi application wants to use the services that are provided by the IBM-API-Service header, the
application must include a blueprint reference to the service in order for the service to be provisioned
into the application.

For example:
<?xml version="1.0" encoding="UTF-8"?>
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">
<reference id="FeatureServiceOneRef"
interface="com.ibm.example.service.FeatureServiceOne" />

</blueprint>

In order for a service to be usable by a bundle in an OSGi application, the interface package must be
available to that bundle, which means the interface package must be specified by an Import-Package
header in the manifest file of the consuming bundle. The interface package must also be specified by an
Export-Package header in a feature bundle and specified in the IBM-API-Package header of the feature
manifest file. The service that is provided by a feature must be registered in the OSGi service registry by
using the OSGi BundleContext interface or any other mechanism such as Declarative Services or
Blueprint. For more information, see “Developing an OSGi bundle with simple activation” on page 1111
and “Composing advanced features by using OSGi Declarative Services” on page 1116.

IBM-SPI-Package

When you create your own Liberty feature, you install it into the user product extension. All the
packages in your feature can be accessed by any other feature that is installed into the user product
extension. However, if you want a package in your feature to be accessed by a feature that is installed
into another product extension, you must list the package name in the IBM-SPI-Package header.

Any package that is listed in the IBM-SPI-Package header must be exported by a bundle in the Liberty
feature, by being listed in the Export-Package header of the bundle manifest file.

IBM-ShortName

This header is a short name for a feature that you can use to specify a feature in the server.xml file. If
there is no IBM-ShortName header in the manifest file, then the Subsystem-SymbolicName is used by
default. The IBM-ShortName header is only valid for public features.

IBM-AppliesTo

This header specifies the Liberty version that this feature applies to. Supply a comma-separated list of
items, each in the following form:
product_id; productVersion=product_version; productInstallType=product_install_type; productEdition=product_editions

If you supply more than one item, the value of product_id must be different for each one.

8.5.5.7

The value of productVersion can be either an exact version, such as 8.5.5.7, or a minimum

version, denoted by the version that ends with a plus sign, +, such as 8.5.5.7+.

The value of productEdition can be either a single edition or a comma-separated list of editions that are
enclosed in quotation marks.

For example:
IBM-AppliesTo: com.ibm.websphere.appserver; productVersion=8.5.5.6; productInstallType=Archive; productEdition="BASE,DEVELOPERS,EXPRESS,ND"

Chapter 6. Extending Liberty 1103

Subsystem-License

This header defines the license type for this feature. If you supply a value for the Subsystem-License
header, and do not supply values for the IBM-License-Agreement and IBM-License-Information headers,
then the Subsystem-License header value is displayed to the user for acceptance during installation.

If there is a feature that is already installed with the same Subsystem-License header value, then the
license is not displayed, and license approval is not sought, during the installation. If dependencies in the
Subsystem-Content header mean that there are two or more features being installed that have the same
Subsystem-License header value, the user has only to accept the license once during installation.

For example:
Subsystem-License: L-JTHS-93TMHH

Subsystem-License: http://www.apache.org/licenses/LICENSE-2.0.html

IBM-License-Agreement

This header specifies the prefix of the location of the license agreement files. Supply the file path in the
subsystem archive to the LA_language files, up to, but not including, the "_" character (the language code
is appended by the installation tool). If this license has not been accepted, the user must accept the
license when you install the feature. The license files are copied to the Liberty installation directory.

For example:
IBM-License-Agreement: lafiles/LA

IBM-License-Information

This header specifies the prefix of the location of the license information files. Supply the file path in the
subsystem archive to the LI_language files, up to, but not including, the "_" character (the language code
is appended by the installation tool). If this license has not been accepted, the user must accept the
license when you install the feature. The license files are copied to the Liberty installation directory.

For example:
IBM-License-Information: lafiles/LI

IBM-App-ForceRestart

This header causes applications to be restarted when the feature is installed to, or removed from, a
running server. This header can take one of the following values:
v install - restart applications when the feature is installed.
v uninstall - restart applications when the feature is uninstalled.
v install,uninstall - restart applications when the feature is installed or uninstalled.

Example feature manifest file

The following example shows the definition for the example-1.0 feature. The public visibility attribute
allows this feature to be directly specified in server configuration (server.xml) files; it will also be
included in the drop down list of features that are displayed in Server Configuration view of the
developer tools and will be available for inclusion in features that are in other product extensions. If this
feature is installed into the usr product extension of a runtime install, it can be configured into a server
by including the following code in the server.xml file:
<featureManager>
<feature>usr:example-1.0</feature>
</featureManager>

1104 WebSphere Application Server Liberty Core 8.5.5

Configuration of this feature in a server results in the specified bundle, com.ibm.example.bundle1, being
installed and started in the OSGi framework of the server runtime environment. The single API package,
com.ibm.example.publicapi, will be visible to all applications in that server, except for Java EE
applications that are configured to not have visibility to the api package type. OSGi applications must
explicitly import the package if they wish to use it. The two SPI packages, com.ibm.example.spi.utils
and com.acme.spi.spiservices, will be visible to all feature code in the server, as will the API package.
IBM-Feature-Version: 2
Subsystem-ManifestVersion: 1.0
Subsystem-SymbolicName: com.ibm.example-1.0; visibility:=public
Subsystem-Version: 1.0.0.qualifier
Subsystem-Type: osgi.subsystem.feature
Subsystem-Content: com.ibm.example.bundle1; version="1.0.0"
Subsystem-Localization: OSGI-INF/l10n/loc
Manifest-Version: 1.0
Subsystem-Name: %name
Subsystem-Description: %desc
IBM-API-Package: com.ibm.example.publicapi; type="api"
IBM-SPI-Package: com.ibm.example.spi.utils, com.ibm.example.spi.spiservices
IBM-ShortName: example-1.0

Auto-provisioning a feature
Auto-provisioning allows a feature to have dependencies on features that must be provisioned before it
can be provisioned.

About this task

An auto-provisioned feature is a feature that has dependencies on other features. Because of the
dependencies, the lifecycle of the auto-provisioned feature is as follows:
v The feature is provisioned automatically when all required features are provisioned.
v The feature is de-provisioned automatically when any of the required features are de-provisioned.

Procedure

To configure a feature to be auto-provisioned, follow these steps:
1. Determine which features must be provisioned before the runtime automatically provisions this

feature.
2. Add the IBM-Provision-Capability to the manifest header. The format of the IBM-Provision-

Capability header uses standard OSGi LDAP filters.
3. Deploy the feature to the server.

Results

The feature automatically provisions when the required features are provisioned.

Example

In the following example, if features requiredFeature1-1.0 and requiredFeature2-1.0 are provisioned,
this feature is automatically provisioned. If either of these required features are removed from the
server.xml file, this feature is automatically de-provisioned.

IBM-Provision-Capability: osgi.identity; filter:="(
&(type=osgi.subsystem.feature)(osgi.identity=requiredFeature1-1.0))", osgi.identity;
filter:="(&(type=osgi.subsystem.feature)(osgi.identity=requiredFeature2-1.0))"

Automatic installation of auto-provisioned features

Chapter 6. Extending Liberty 1105

If all the required features are also installed, auto-provisioned features can be installed automatically.

To configure a feature to be auto-installed, the IBM-Install-Policy header must be added to the feature
manifest. The header is optional. If the IBM-Install-Policy header is specified, the following values are
valid:
v manual: The feature is not auto-installed.
v when-satisfied: If all required features are installed, the feature is auto-installed.

If the header is not set, then the feature is not auto-installed, which is equivalent to setting the
IBM-Install-Policy header to manual.

Creating a Liberty feature by using developer tools
You can use the WebSphere Application Server Developer Tools to write your own features and install
them into an existing Liberty server, or to package them for delivery to your users.

About this task

To develop a Liberty feature in the WebSphere Application Server Developer Tools, you create a Liberty
feature project and target it to the WebSphere Application Server Liberty version 8.5.5 or later.

You add OSGi bundles that contain classes and services that implement the function provided by your
Liberty feature. If your feature provides any API packages to OSGi applications, or SPI packages to
features in other product extensions, you can declare those packages in the Liberty feature manifest file.

You can export your liberty feature as a compressed file that can be extracted over an existing WebSphere
Application Server Liberty to extend its capabilities.

For more information on creating Liberty features, see “Product extension” on page 577.

Creating a Liberty feature by using WebSphere Application Server Developer Tools is described in more
detail in the following subtopics:

Procedure
1. “Creating a Liberty feature project.”
2. “Adding OSGi bundles to a Liberty feature project” on page 1107.
3. “Specifying API and SPI packages for a Liberty feature project” on page 1107.
4. “Installing a Liberty feature to Liberty V8.5.5” on page 1108.

Creating a Liberty feature project
To develop a Liberty feature by using the WebSphere Application Server developer tools, you must create
a Liberty feature project in your workspace.

About this task

A Liberty feature project contains classes and services that implement the function provided by your
Liberty feature

Procedure

To create a Liberty feature project, complete the following steps:
1. Click File > New > Other > OSGi > Liberty Feature Project and then click Next. The New Liberty

Feature Project wizard opens.
2. In the Project name field, enter the name of your Liberty feature project.

1106 WebSphere Application Server Liberty Core 8.5.5

3. Select a Target runtime from the drop down list. The list will include the WebSphere Application
Server Liberty 8.5.5 if it is defined in your workspace as an installed runtime environment.

4. Click Next. The OSGi Bundles Selection dialog box opens.
5. Select one or more OSGi bundles to add to the Liberty feature project, or click New Bundle to create

an OSGi bundle to add to the Liberty feature project. You can add further bundles after you have
created the Liberty feature project; see “Adding OSGi bundles to a Liberty feature project.”
For information on creating an OSGi bundle, see Creating OSGi bundle projects.

6. Click Finish to create the Liberty feature project.

Results

The Liberty feature project is added to your workspace.

Adding OSGi bundles to a Liberty feature project
A Liberty feature includes OSGi bundles that contain classes and services. The classes and services
implement the functions that the Liberty feature provides. You can include OSGi bundles in a Liberty
feature that was created with the WebSphere Application Server Developer Tools by adding the bundles
to the corresponding Liberty feature project.

Procedure

To add OSGi bundles to a Liberty feature project, complete the following steps:
1. From the Project Explorer view, open the feature manifest file for the Liberty feature project by

double-clicking the Manifest node in the project hierarchy, indicated by the manifest icon ().
2. In the Contained Bundles pane, click Add to select one or more bundles to add to the Liberty feature

project, or click New to create a new OSGi bundle to add to the Liberty feature project. For
information on creating an OSGi bundle, see Creating OSGi bundle projects.

3. (Optional) Specify the version range for the contained bundle by selecting the bundle, clicking
Properties, and entering the required values in the Minimum Version and Maximum Version fields.

4. (Optional) Use the Location field in the Properties dialog box to specify the location where you want
the bundle to be packaged when exported, relative to the product extension installation folder. If you
want the bundle to be packaged in more than one location, enter the locations as a comma-separated
list. By default, the bundle is packaged in the /lib folder.

Results

The bundle names are added to the Subsystem-Content header in the manifest file. For more information
on the headers in the feature manifest file for a Liberty feature, see “Liberty feature manifest files” on
page 1097.

Specifying API and SPI packages for a Liberty feature project
Use the Liberty feature manifest file to declare which packages you want to share as an API or SPI with
other applications and features in the Liberty runtime environment.

About this task

A package cannot be declared as an API or SPI unless it is exported by a bundle in the Liberty feature, by
being listed in the Export-Package header of the bundle manifest file.

Procedure

To specify API and SPI packages for a Liberty feature project, complete the following steps:

Chapter 6. Extending Liberty 1107

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wdt.doc/topics/tcrtbundleprj.htm
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wdt.doc/topics/tcrtbundleprj.htm

1. From the Project Explorer view, open the feature manifest file for the Liberty feature project by

double-clicking the Manifest node in the project hierarchy, indicated by the manifest icon ().
2. To make one or more API packages available to OSGi applications, click Add in the IBM API

Packages pane.
3. When you create your own Liberty feature, you install it into the user product extension, and all the

packages in your feature can be accessed by any other feature that is installed into the user product
extension. To make one or more SPI packages available to features in other product extensions, click
Add in the IBM SPI Packages pane.

4. (Optional) Specify the package version by selecting the package, clicking Properties, and entering the
required value in the Version field.

5. (Optional) For an API package, select the package type from the Type list in the Properties dialog box.
The type can be one of the following values:
v spec - Indicates an API provided by a standard body, such as javax.servlet or

org.osgi.framework.
v ibm-api - Indicates a value-add API provided by IBM.
v api - Indicates a user-defined API. This is the default value.
v third-party - Indicates an API that is visible, but not controlled by IBM. Typically, these are open

source packages.
v internal - Indicates non-API packages that must be exposed to applications for them to function.

This might be used if Java code is bytecode enhanced, or weaved, to add references to internal code
at run time.

Results

The package names are added to the IBM-API-Package and IBM-SPI-Package headers in the feature
manifest file. For more information on the headers in the feature manifest file for a Liberty feature, see
“Liberty feature manifest files” on page 1097.

Installing a Liberty feature to Liberty V8.5.5
When you develop a Liberty feature by using the WebSphere Application Server Developer Tools, you
need to create a Liberty feature project that packages the Liberty feature. You can use the workbench to
install Liberty features to Liberty runtime environments and enable installed features using the server
configuration editor. Changes to features already installed on Liberty can be pushed to all respective
runtime environments using the Update Feature menu option in the workbench.

Before you begin

Create a Liberty feature project.

Restriction: This topic is supported for WebSphere Application Server Liberty V8.5.5. For versions 8.5 or
earlier, see “Manually installing a Liberty feature to Liberty V8.5 or earlier” on page 1109 topic.

Procedure

To install a Liberty feature, complete the following steps:
1. In the Enterprise Explorer view, right-click your Liberty feature project and select Install Feature.
2. In the Feature install wizard and under Target Runtimes, select the Liberty runtime environment that

you want to install your feature. Click Finish.

1108 WebSphere Application Server Liberty Core 8.5.5

Tip: If the feature is already installed on Liberty, the Liberty entry is no longer an available option in
the list of target runtimes. Instead, you should use the Update Features menu option (available when
you right-click the Liberty feature project in the Enterprise Explorer view) to update any changes to a
feature already installed on Liberty.

3. Add the feature name to the list of configured features in your server configuration (server.xml file):
a. In the Servers view, expand your Liberty server, right-click the Server Configuration [server.xml]

and select Open.
b. In the Server Configuration editor, under the Configuration Structure, expand Server

Configuration and select Feature Manager.
c. Under the Feature Manager, select the Add button.
d. In the Add Features wizard, search and select your feature with the prefix usr: followed by the

name of your Liberty feature project, for example, usr:MyLibertyFeatureProject. Click OK.

In the Source tab of the Server Configuration editor, the server.xml file displays the newly added
feature entry under the featureManager node:
<featureManager>

<feature>usr:MyLibertyFeatureProject</feature>
</featureManager>

Results

After installing the Liberty feature, you can find the following file structure in the ${wlp.user.dir}/
extension directory:
/lib

/features
manifest files
.
.
.

OSGi bundle JAR files
.
.
.

What to do next

To update changes to a feature already installed on the Liberty runtime environments, use the Update
Features menu option (available when you right-click the Liberty feature project in the Enterprise
Explorer view). A Progress Information window opens and the workbench takes a moment to perform
this update action.

Manually installing a Liberty feature to Liberty V8.5 or earlier
When you develop a Liberty feature by using the WebSphere Application Server Developer Tools, you
create a Liberty feature project that packages the Liberty feature in a compressed file. To install the
Liberty feature, you must extract the contents of the compressed file to the Liberty environment.

Before you begin

Create a Liberty feature project.

Restriction: This topic is supported for WebSphere Application Server Liberty V8.5 or earlier. For
versions 8.5.5, see “Installing a Liberty feature to Liberty V8.5.5” on page 1108 topic.

About this task

The compressed file has the following structure:

Chapter 6. Extending Liberty 1109

/lib
OSGi bundle JAR files

.

.

.
/features

manifest file

Procedure

To install a Liberty feature, complete the following steps:
1. In your workspace, right-click your Liberty feature project and select Export > Liberty Feature.
2. In the To ESA file field, specify the location and name of the compressed file to which you want to

export the Liberty feature project.
3. Click Finish to export the Liberty feature project to the specified location.
4. Extract the contents of the compressed file to the ${wlp.user.dir}/extension directory.
5. Add the feature name to the list of configured features in your server.xml file; you must prefix the

feature name with usr:.
For example:
<featureManager>

<feature>usr:sample-1.0</feature>
</featureManager>

Adding OSGi metatype descriptions to a Liberty feature project
You can add OSGi metatype descriptions to a Liberty feature that was created with the WebSphere
Application Server Developer Tools by creating a metatype XML file. You can package that file in an
OSGi bundle project.

Procedure
1. From the Project Explorer view, add a folder in the BundleContent folder, and name it OSGI-INF.
2. Create a folder that is named metatype in the OSGI-INF folder.
3. Create the metatype XML file in the metatype folder.

The metatype XML file must have a .xml suffix. You can use any name for the file.
4. Optional: Provide translated strings for your metatype definitions.

a. Create a folder to contain the translated properties files.
For example, you can create a subfolder that is named I10n in the OSGI-INF folder, and use the
prefix metatype for your translated properties files.

b. In the metatype XML file, specify the location of the folder that you created.
Use the following example as a guide:
<box>
<metatype:MetaData xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.1.0"
localization="OSGI-INF/I10n/metatype">
</box>

Results

You created a metatype XML file, which you can use to add OSGi metatype descriptions to a Liberty
feature.

What to do next

You can add information to the metatype XML file. For more information about what to add to the file,
see “Liberty feature manifest files” on page 1097.

1110 WebSphere Application Server Liberty Core 8.5.5

To describe your configuration by using the OSGi metatype service, package the metatype XML file in the
OSGI-INF/metatype folder of one of your OSGi bundle projects, not in the Liberty feature project. For best
results, put the metatype XML file in the same OSGi bundle as the code that receives and processes the
configuration values, such as the associated ManagedService implementation. For more information, see
“Describing configuration by using the OSGi Metatype service” on page 1121.

Developing an OSGi bundle with simple activation
The most straightforward way to control the lifecycle of your OSGi bundle code is to implement the
org.osgi.framework.BundleActivator interface in one of the classes within your bundle. When the server
starts and stops the bundle, the start and stop methods of the BundleActivator interface are called.

About this task

If you are using the WebSphere Application Server Developer Tools, create an OSGi bundle project, and
create an OSGi BundleActivator class in that project. Then identify your bundle activator class to the
OSGi framework by adding the Bundle-Activator header to the bundle MANIFEST.MF file. For example:
Bundle-Activator: com.example.bundle.Activator.

Example
package com.example.bundle;

import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {
public void start(BundleContext context) throws Exception {
System.out.println("Sample bundle starting");
// Insert bundle activation logic here
}

public void stop(BundleContext context) throws Exception {
System.out.println("Sample bundle stopping");
// Insert bundle deactivation logic here
}
}

Receiving configuration data by using the ManagedService interface
Liberty configuration is managed by the OSGi Configuration Admin service and can be accessed
according to the OSGi Configuration Admin service specification. Sets of configuration properties are
identified by a persisted identity (PID) that is used to associate an element in the server.xml file, where
the PID is used as the element name, with a component that registers to receive the properties.

About this task

For an OSGi bundle whose lifecycle is managed by using the BundleActivator interface, a straightforward
way to receive the configuration properties is to implement the org.osgi.service.cm.ManagedService
interface, which specifies the PID as one its properties.

Example

Remember:

1. In Eclipse, you must select an SPI target runtime from Window > Preferences > Plug-In
Development > Target Platform.

2. Add the following statement to your MANIFEST.MF file:
Import-Package: org.osgi.service.cm;version="1.5.0"

3. Press Ctrl + Shift + O to update your bundle activator.

Chapter 6. Extending Liberty 1111

In this example, the Activator class implements the ManagedService interface in addition to the
BundleActivator interface, and receives configuration properties by using the updated method. You can
provide default property values to simplify what must be specified in the user configuration.
public class Activator implements BundleActivator, ManagedService {

public void start(BundleContext context) throws Exception {
System.out.println("Sample bundle starting");
// register to receive configuration
ServiceRegistration<ManagedService> configRef = context.registerService(
ManagedService.class,
this,
getDefaults()
);

}

public void stop(BundleContext context) throws Exception {
System.out.println("Sample bundle stopping");
configRef.unregister();

}

Hashtable getDefaults() {
Hashtable defaults = new Hashtable();
defaults.put(org.osgi.framework.Constants.SERVICE_PID, "simpleBundle");
return defaults;

}

public void updated(Dictionary<String, ?> properties) throws ConfigurationException {
if (properties != null)
{
String configColor = (String) properties.get("color");
String configFlavor = (String) properties.get("flavor");

}
}

}

User configuration for the bundle can optionally be provided in the server.xml file, or an included file,
by the following entry:
<simpleBundle color="red" flavor="raspberry" />

Note: The element name in the user configuration, simpleBundle matches the value of the
org.osgi.framework.Constants.SERVICE_PID property used in the ManagedService registration.

For more advanced configuration use, see “Describing configuration by using the OSGi Metatype service”
on page 1121.

Working with the OSGi service registry
You can create an object and register it as an OSGi service for use by third-party features that are
deployed to Liberty.

About this task

Services are the OSGi lightweight and flexible component model. When you create services and wire
them together with Java code, you can use mechanisms such as ServiceTrackers to help find the services
that you want, and Declarative Services (DS) and Blueprint to specify the wiring declaratively. Liberty
has standardized on using DS for wiring, except for a small number of cases where extra flexibility is
required.

1112 WebSphere Application Server Liberty Core 8.5.5

Registering OSGi services:

You can create an object and register it as an OSGi service for use by third-party features.

About this task

By using plain old Java code, you can create an object, and then register it as a service using the
BundleContext class. Because the code has to run, you typically register the object in a BundleActivator
interface. When you register the object, you can specify what interfaces it provides, and supply a
property map. A ServiceRegistration object is returned; if necessary, you can use the
ServiceRegistration object to change the properties at any time. When the service is completed, you use
the ServiceRegistration object to unregister the service.

To obtain a service, you query the BundleContext for a service that implements a required interface and,
optionally, supply an LDAP-syntax filter to match the service properties. Depending on the method you
call, you can retrieve the best match or all the matches. You can then use the returned ServiceReference
that provides the properties to do further matching in your code. You can use the ServiceReference to
get the actual service object. When you have finished using the service, you use the BundleContext to
release the service.

Procedure

1. Declare the service interface by adding the following code in your bundle.
package com.ibm.foo.simple;

/**
* Our multifunctional sample interface
*/
public interface Foo
{
}

2. Specify the implementation code of the interface.
package com.ibm.foo.simple;

/**
* The implementation of the Foo interface
*/
public class FooImpl implements Foo
{

public FooImpl()
{
}
public FooImpl(String vendor)
{
}

/**
* used by the ServiceFactory implementation.
*/
public void destroy() {

}
}

3. Use the BundleContext to register the service, modify the service properties, and unregister the service
directly in your code.
import java.util.Dictionary;

import org.osgi.framework.BundleContext;
import org.osgi.framework.ServiceRegistration;

Chapter 6. Extending Liberty 1113

/**
* Registers and unregsiters a Foo service directly,
* and shows how to modify the service properties in code.
*/
public class FooController
{

private final BundleContext bundleContext;
private ServiceRegistration<Foo> sr;

public FooController(BundleContext bundleContext)
{

this.bundleContext = bundleContext;
}

public void register(Dictionary<String, Object> serviceProperties) {
Foo foo = new FooImpl();
//typed service registration with one interface
sr = bundleContext.registerService(Foo.class, foo, serviceProperties);
//or
//untyped service registration with one interface
sr = (ServiceRegistration<Foo>)bundleContext.registerService(

Foo.class.getName(), foo, serviceProperties);
//or
//untyped service registration with more than one interface (or class)
sr = (ServiceRegistration<Foo>)bundleContext.registerService(new String[] {

Foo.class.getName(), FooImpl.class.getName()}, foo, serviceProperties);
}

public void modifyFoo(Dictionary<String, Object> serviceProperties) {
//with the service registration you can modify the service properties at any time
sr.setProperties(serviceProperties);

}

public void unregisterFoo() {
//when you are done unregister the service using the service registration
sr.unregister();

}

}

4. Obtain and return the service from another class:
package com.ibm.foo.simple;

import java.util.Collection;

import org.osgi.framework.BundleContext;
import org.osgi.framework.InvalidSyntaxException;
import org.osgi.framework.ServiceReference;

/**
* A simple Foo client that directly obtains the Foo service and returns it when done.
*/
public class FooUser
{

private final BundleContext bundleContext;

public FooUser(BundleContext bundleContext)
{

this.bundleContext = bundleContext;
}

/**
* assume there’s only one Foo

1114 WebSphere Application Server Liberty Core 8.5.5

*/
public void useFooSimple() {

ServiceReference<Foo> sr = bundleContext.getServiceReference(Foo.class);
String[] propertyKeys = sr.getPropertyKeys();
for (String key: propertyKeys) {

Object prop = sr.getProperty(key);
//think about whether this is the Foo we want....

}
Foo foo = bundleContext.getService(sr);
try {

//use foo
} finally {

//we’re done
bundleContext.ungetService(sr);

}
}

/**
* Use a filter to select a particular Foo. Note we get a collection back and have to pick one.
* @throws InvalidSyntaxException
*/
public void useFooFilter() throws InvalidSyntaxException {

Collection<ServiceReference<Foo>> srs = bundleContext.getServiceReferences(
Foo.class, "(&(service.vendor=IBM)(id=’myFoo’)");

ServiceReference<Foo> sr = srs.iterator().next();
String[] propertyKeys = sr.getPropertyKeys();
for (String key: propertyKeys) {

Object prop = sr.getProperty(key);
//think about whether this is the Foo we want....

}
Foo foo = bundleContext.getService(sr);
try {

//use foo
} finally {

//we’re done
bundleContext.ungetService(sr);

}
}

}

Using OSGi services:

Services can be registered and unregistered asynchronously at any time. Therefore you should call a
service for as short a time as possible. You can use the ServiceTracker class to track service availability
concurrently.

About this task

If you want to track services, you can create a ServiceTracker object by using your bundle context, the
interface you want, and the properties you want to match, and then open the tracker. You can query the
tracker for the best match or all matches. Make sure that you do not occupy the service after you use it.
You do not have to tell the tracker you are done; the tracker caches the matching services internally, and
clears them as they are unregistered. When you have finished using the tracker, use the
serviceTracker.close() method to close it.

Example

The following example shows how to use a ServiceTracker object to track a service:
package com.ibm.foo.tracker;

import com.ibm.foo.simple.Foo;
import org.osgi.framework.BundleContext;

Chapter 6. Extending Liberty 1115

import org.osgi.util.tracker.ServiceTracker;

/**
* Simplest use of a ServiceTracker to get a service
*/
public class TrackingFooUser
{

private ServiceTracker<Foo,Foo> serviceTracker;

public TrackingFooUser(BundleContext bundleContext)
{

serviceTracker = new ServiceTracker<Foo, Foo>(bundleContext, Foo.class, null);
serviceTracker.open();

}

public void doFoo() {
Foo foo = serviceTracker.getService();
//use foo
//no need to return it... just don’t use it for long.

}

public void shutdown() {
serviceTracker.close();

}
}

Composing advanced features by using OSGi Declarative Services
Simple features can be controlled by using bundle activator classes and direct implementation of
interfaces such as ManagedService and ServiceTracker. As relationships between bundles become more
complex, it can be better to use facilities such as OSGi Declarative Services (DS) to decompose a feature
into individual services. DS (sometimes known as the Service Component Runtime, or SCR) provides
lifecycle and injection management of OSGi services.

About this task

Organizing your feature logic as a set of declarative services has a number of advantages:
v Activation of the service (which includes loading the Java classes that provide the service) can be

deferred until the service is used; allowing the server to start quickly and to keep resource use to a
minimum.

v A reference to the service is placed into the service registry, even when the service has not been
activated, so that dependencies on the service can be resolved.

v Dependencies on other services can be injected at runtime, and activation of the various services will
be ordered based on such dependencies.

v A service can be deactivated and reactivated when its service properties change, if required.

Detailed information about use of OSGi Declarative Services is available from a number of online
resources, including the OSGi Community Wiki.

This task provides simple descriptions of how to declare your services to DS, how to obtain references to
other services, and how to manage configuration properties for each service.

Declaring your services to OSGi Declarative Services
You can use a separate XML file to declare each service within a bundle.

1116 WebSphere Application Server Liberty Core 8.5.5

http://wiki.osgi.org

About this task

The Declarative Services (DS) support operates on declared components, each of which is defined by an
XML file in the bundle. When a bundle containing component declarations is added to the framework,
DS reads each component declaration and registers provided services in the service registry. DS then
manages the lifecycle of the component: controlling its lifecycle based on a combination of declared
attributes and satisfied dependencies.

The XML description of components allows DS to resolve service dependencies without requiring the
component to be instantiated, or its implementation classes to be loaded. This facilitates late and lazy
resource loading, which helps improve server startup and reduce runtime memory footprint.

The XML files that describe the components are listed in the MANIFEST.MF file of the bundle using the
Service-Component header, and by convention are located in the /OSGI-INF directory of the bundle.

There are a number of tools that can be used to generate the required XML; the following examples show
the XML itself.

This topic describes a simple OSGi bundle using XML to declare its components to DS.

Procedure
1. Identify your component through its implementation class name.

<component>
<implementation class="com.example.bundle.HelloComponent"/>

</component>

2. Declare the service by referencing the name of the interface that it provides. This is the name that
will be published to the service registry by DS when the bundle is started.
<component>
<implementation class="com.example.bundle.HelloComponent"/>
<service>

<provide interface="com.example.HelloService"/>
</service>

</component>

3. Name the component. The component name also acts as the service “persisted identity”, or PID,
which is used to associate configuration properties with the service. Configuration properties with a
matching PID will be injected into the component on activation, and whenever the properties are
updated.
<component name="HelloService">
<implementation class="com.example.bundle.HelloComponent"/>
<service>
<provide interface="com.example.HelloService"/>

</service>
</component>

Note: In Liberty, a user can add the following element to the server.xml configuration file, and the
properties will be injected into the HelloComponent class.
<HelloService firstKey="firstValue" secondKey="secondValue" />

4. Package the XML file into the bundle.
For example, the XML file is at the location OSGI-INF/HelloService.xml, and you add a header to the
bundle manifest MANIFEST.MF file so that DS can locate the file:
Service-Component: OSGI-INF/HelloService.xml

If multiple components are packaged in the same bundle, the corresponding XML files must be
entered as a comma-separated list. For example:
Service-Component: OSGI-INF/HelloService.xml, OSGI-INF/GoodbyeService

5. The Java implementation of the HelloService component is as follows:

Chapter 6. Extending Liberty 1117

package com.example.bundle;

import com.example;
import org.osgi.service.component.ComponentContext;

/*
* This class must be public and have a public default constructor for it to be
* usable by DS. This class is not required to be exported from the bundle.
*/
public class HelloComponent implements HelloService {
/**
* Optional: DS method to activate this component. If this method exists, it
* will be invoked when the component is activated. Best practice: this
* should be a protected method, not public or private
*
* @param properties
* : Map containing service & config properties
* populated/provided by config admin
*/
protected void activate(ComponentContext cContext,
Map<String, Object> properties) {
modified(properties);
}

/**
* Optional: DS method to deactivate this component. If this method exists,
* it will be invoked when the component is deactivated. Best practice: this
* should be a protected method, not public or private
*
* @param reason
* int representation of reason the component is stopping
*/
protected void deactivate(ComponentContext cContext, int reason) {
}

/**
* Optional: DS method to modify the configuration properties. This may be
* called by multiple threads: configuration admin updates may be processed
* asynchronously. This is called by the activate method, and otherwise when
* the configuration properties are modified while the component is
* activated.
*
* @param properties
*/
public synchronized void modified(Map<String, Object> properties) {
// process configuration properties here
}

/**
* Service method defined by com.example.HelloService interface
*/
public void sayHello() {
System.out.println("Hello");
}
}

Enabling a service to receive configuration data
To enable a service to receive configuration data, you associate the service with a persisted identity, and
code the service to receive the data. You can also provide descriptions and default values for this data,
and make the labels and descriptions available in several languages.

1118 WebSphere Application Server Liberty Core 8.5.5

About this task

To enable a service to receive configuration data, there are a number of steps involved. Only associating
the service with a configuration Admin persisted identity and coding the service to receive configuration
properties are mandatory, and might be considered sufficient for embedded scenarios. The remaining
steps improve the configuration experience for users.

The steps involved in enabling a service to receive configuration data are described in the following
subtopics:

Procedure
1. Associate the service with a Configuration Admin PID (persisted identity).
2. Code the service to receive the configuration properties during activation and when the configuration

is modified.
3. Provide descriptions and default values for configuration metadata.
4. Provide translated strings for configuration property labels and descriptions.

Associating a service with a persisted identity:

You associate a set of configuration properties with its consuming component as described in the OSGi
Configuration Admin specification by using the the persisted identity (PID).

About this task

The OSGi Configuration Admin specification provides a number of association mechanisms, of which the
following are most commonly used in Liberty:

Register an implementation of org.osgi.service.cm.ManagedService or
org.osgi.service.cm.ManagedServiceFactory directly with the OSGi Configuration Admin service (CA)

This is most commonly used in low-level kernel bundles, where service management through
OSGi Declarative Services (DS) or Blueprint is not available at bundle start time. The registration
specifies the PID that identifies the configuration set to be received.

Define a service to DS
This is the most common way for services in feature bundles to receive their configuration. The
service name is used as the PID to associate configuration data. DS receives the configuration set
from CA and passes it on to the defined service.

Example

A service might be declared by using the following entry in the project *.bnd file:
Service-Component: com.ibm.ws.transaction; \

provide:=’com.ibm.tx.config.ConfigurationProvider’; \
immediate:=’true’; \
modified:=’modified’; \
implementation:=com.ibm.ws.transaction.services.JTMConfigurationProvider

This generates the following XML code, which can also be coded by the developer instead of using the
bnd Service-Component entry:
<component name="com.ibm.ws.transaction" xmlns="http://www.osgi.org/xmlns/scr/v1.1.0"

immediate="true" modified="modified">
<implementation class="com.ibm.ws.transaction.services.JTMConfigurationProvider" />

<service>
<provide interface="com.ibm.tx.config.ConfigurationProvider" />

</service>
<property name="service.vendor" value="IBM" />

</component>

Chapter 6. Extending Liberty 1119

The component name, com.ibm.ws.transaction in this example, is used as the PID for the association of
configuration data. If this component does not provide any metadata to describe its configuration, you
can specify configuration properties for the component by using that PID in the server.xml file, or an
included file, by defining an entry of the following form:
<com.ibm.ws.transaction made.up.property.key="47">

What to do next

Code the service to receive the configuration properties during activation and when the configuration is
modified.

Coding the service to receive configuration properties:

Configuration properties are available through the org.osgi.service.component.ComponentContext object
that is provided on the activation method.

Before you begin

You must complete the task described in “Associating a service with a persisted identity” on page 1119.

About this task

If properties are updated after activation has occurred, the method used for injection depends on the
context that the service provides in its OSGi Declarative Services (DS) declaration.

Generally, it is best to declare a method that is to be used specifically for injection of updated properties
by using the modified attribute on the service declaration. If a modified method is not available, DS
deactivates and then reactivates the service with the new properties.

Deactivating and then activating a service can also cause dependent services to be recycled, and should
be avoided unless specifically required. Using the modified attribute is the preferred way to receive
configuration updates.

Example

In the previous task, “Associating a service with a persisted identity” on page 1119, you defined a service
to DS. The following are examples of activate and modified methods from the DS declaration described
in that task.
private static Dictionary<String, Object> _props = null;

protected void activate(ComponentContext cc) {
_props = cc.getProperties();

}

protected void modified(Map<?, ?> newProperties) {
if (newProperties instanceof Dictionary) {

_props = (Dictionary<String, Object>) newProperties;
} else {

_props = new Hashtable(newProperties);
}

}

When you get values from the configuration properties, use the following mechanisms to allow some
flexibility:
v Code the methods to expect at least the default properties that are included in the same bundle, but to

make allowances for user overrides, so that migration of user configuration is not necessary.

1120 WebSphere Application Server Liberty Core 8.5.5

v Ignore redundant or unrecognized properties.

The service must be able to operate on the default configuration alone. To provide a reasonable level of
function, user overrides must not be mandatory.

What to do next

Provide descriptions and default values for configuration metadata

Advanced Configuration
Advanced configuration includes information about providing descriptions and the default values for
configuration and OSGi Metatype Service Extensions.

The configuration properties for each service can be described in metadata that complies with the OSGi
Metatype Service specification. The resulting XML file is packaged into the bundle in the
OSGI-INF/metatype directory, in accordance with the specification. For more information, see Providing
Descriptions and default values for configuration.

The Liberty runtime and developer tools recognize some extensions to the OSGi Metatype specification
for more complex configurations and a better presentation in a user interface. For more information, see
OSGi Metatype Service Extensions.

Describing configuration by using the OSGi Metatype service
The configuration properties for each service can be described in metadata that complies with the OSGi
Metatype Service specification. The metadata can include default values, translatable names and
descriptions, and information to allow validation of input values. The resulting XML file is packaged into
the bundle that contains your service, in the OSGI-INF/metatype directory, in accordance with the
specification.

About this task

Providing metadata to describe your configuration is optional, but it does provide the following benefits:
v default values can be separated from the implementation code into the metatype XML file where they

are easy to locate;
v appropriate data types and other validation data can be specified for each attribute, allowing validation

by the configuration parser and developer tools, and simplifying the code you write to process the
attributes;

v your configuration will be included in the XML schema that describes the available configuration to
the developer tools and other utilities;

v translatable names and descriptions can be provided for each attribute, and will be displayed in the
developer tools.

Procedure
1. Create an xml file in the OSGI-INF/metatype directory of your bundle and add a namespace

declaration for the OSGi Metatype namespaces:.
<metatype:MetaData xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.1.0">
</metatype:MetaData>

2. Add an object class definition (OCD) element to contain the set of attributes, with an identifier and,
optionally, a name and description. Also provide a Designate element to map the OCD to the PID
used in your code and the server.xml file.

Chapter 6. Extending Liberty 1121

<OCD name="b2c" description="bundle two config" id="b2c-id">
</OCD>

<Designate pid="testBundleTwo">
<Object ocdref="b2c-id" />
</Designate>

3. Add attribute definition (AD) elements for each configuration property, within the OCD. Each
attribute needs an identifier which is also used in the server.xml file and in the code that receives the
injected configuration. It can optionally have a name and description which can be used by the
developer tools and other graphical tools. Specifying a data type allows the runtime environment to
validate the input for that type and simplifies your processing code. Specifying a useful default value
allows the user-supplied configuration to be minimal, and contains all your configuration defaults in a
known location:
<AD name="boolProperty" description="a boolean property" id="boolProp"

type="Boolean" default="false" />

4. Then you have the following metatype.xml file.
<?xml version="1.0" encoding="UTF-8"?>
<metatype:MetaData xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.1.0" >

<OCD name="b2c" description="bundle two config" id="testBundleTwo-2-id">
<AD name="textProperty" description="a text property"

id="textProp" type="String" default="default string" />
<AD name="boolProperty" description="a boolean property"

id="boolProp" type="Boolean" default="false" />
<AD name="intProperty" description="an integer property"

id="intProp" type="Integer" default="14" />
</OCD>

<Designate pid="testBundleTwo-2">
<Object ocdref="testBundleTwo-2-id" />
</Designate>

</metatype:MetaData>

5. Code your service to receive the configuration properties. Without the metatype description, all your
properties will be provided as String values and will be processed as follows:
String textProp = (String) properties.get("textProp");
Boolean boolProp = Boolean.parseBoolean((String) properties.get("boolProp"));
int intProp = Integer.parseInt((String) properties.get("intProp"));

String textProp = (String) properties.get("textProp");
Boolean boolProp = (Boolean) properties.get("boolProp");
int intProp = (Integer) properties.get("intProp");

And the runtime environment will already have validated that the input values are of the correct
types.

What to do next

Provide translated strings for configuration property labels and descriptions.

Single versus multiple configuration instances
You can also configure multiple configuration instances by using the OSGi metatype services.

As described in the “Describing configuration by using the OSGi Metatype service” on page 1121, you
can use OSGi metatype service to support a single set of configuration properties for a given service (as
identified by a configuration PID). It is also common to support multiple instances of the same
configuration type, for example in the way that the Liberty profile supports multiple entries for
applications and data sources. This can be done by providing a metatype definition that tells the Liberty
configuration parser, and the Configuration Admin service, that it is dealing with a factory configuration.

1122 WebSphere Application Server Liberty Core 8.5.5

Also, the class that receives the configuration needs to implement the
org.osgi.service.cm.ManagedServiceFactory interface.

To support multiple instances of top-level configuration elements in the server.xml file as follows:
<server>

<teenager name="joy" age="15" />
<teenager name="angela" age="18" />

</server>

You must define the configuration in metadata by adding a factoryPid attribute to the Designate
element.

Note: A pid attribute is still needed if you use a ManagedServiceFactory interface to receive the
configuration; if you use a declarative service (DS) component, this is not required.
<?xml version="1.0" encoding="UTF-8"?>
<metatype:MetaData xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.1.0"

xmlns:ibm="http://www.ibm.com/xmlns/appservers/osgi/metatype/v1.0.0">

<OCD id="teenager-ocd" name="teenager" >
<AD id="name" name="name" type="String" />
<AD id="age" name="age" type="Integer" />

</OCD>

<Designate factoryPid="teenager" pid="teenager">
<Object ocdref="teenager-ocd" />

</Designate>

</metatype:MetaData>

The ManagedServiceFactory implementation is registered as a ManagedServiceFactory service type, with
the factory pid as follows:
bundleContext.registerService(ManagedServiceFactory.class, new MgdSvcFactoryImpl(), new Hashtable();
defaults.put(org.osgi.framework.Constants.SERVICE_PID, "teenager"));

The ManagedServiceFactory implementation receives a set of properties for each instance of the teenager
configuration, each one uniquely identified by its own (internally generated) PID which is provided to
the updated() method as follows:
public void updated(String pid, Dictionary<String, ?> properties)

throws ConfigurationException {
String name = (String) properties.get("name");
Integer age = (Integer) properties.get("age");

}

If a particular configuration instance is deleted, for example because one of the teenager elements is
deleted from the server.xml file, the ManagedServiceFactory implementation is notified through the
deleted() method, and the pid of the deleted instance is provided. This allows the
ManagedServiceFactory implementation to keep track of the instances that are valid at any given time.

Providing default instances of factory configurations:

You can create default instances of your factory configuration when using the OSGi metatype services.
One of the design principles of Liberty is to keep user configuration as small and simple as possible. By
providing default instances of your factory configurations, you don't have to add these configurations
into the server.xml file.

Chapter 6. Extending Liberty 1123

Example

To provide a default configuration instance, you need to include it in an XML file within your OSGi
bundle, and reference the file by using the IBM-Default-Config header in the bundle manifest file as
follows:
IBM-Default-Config: OSGI-INF/wlp/defaultInstances.xml

The format of the XML file is the same as that of the server.xml file, but you must specify a unique
identifier for each instance. For example, to provide a default instance of the teenager configuration that is
used in the example on the “Single versus multiple configuration instances” on page 1122 topic, the
defaultInstances.xml file must have the following settings:
<server>
<teenager id="predefined-teen1" name="Susie" age="19" />
</server>

The default instance is not exposed to users through the configuration schema, and therefore it is not
visible in the development tools; however, you can document the instance so that your users can override
the individual attributes in their server.xml files as follows:
<teenager id="predefined-teen1" age="13" />

This line of code will override the age attribute of the default instance, but the name attribute remains
valid.

Extensions to the OSGi metatype service
The Liberty runtime environment and developer tools recognize some extensions to the OSGi metatype
specification for more complex configurations and a better presentation in a user interface.

Runtime metatype extensions

Add this namespace to your metatype.xml file to use the following extensions:
xmlns:ibm="http://www.ibm.com/xmlns/appservers/osgi/metatype/v1.0.0"

ibm:alias

The alias extension is used to define a user-friendly name for the configuration while reducing
the risk of clashes in the names of configuration elements in the server.xml file.

The following example shows the ibm:alias: extension:
<OCD id="com.ibm.ws.jdbc.dataSource.properties"

name="%properties"
description="%properties.desc"
ibm:alias="properties">

<AD id="username".../>
</OCD>

In this example properties is the user-friendly name for the configuration. The alias must be
different from the id.

When the ibm:alias entry is used in the server.xml file, it must be prefixed with the product
extension name. The product extension name for extensions that are installed in the default user
location is usr. For product extensions defined to the Liberty installation by using an
extension-name.properties file in the wlp/etc/extension directory, the product extension name
is the name that is chosen for extension-name.

For the metatype shown in the previous example, if the feature is installed in the default usr
location then the following are examples of valid server.xml entries:
<usr_properties username="JANE"/>

<com.ibm.ws.jdbc.dataSource.properties username="JANE"/>

1124 WebSphere Application Server Liberty Core 8.5.5

ibm:type

Standard attribute types are defined in the metatype specification. Several IBM extended types
are available. For more information, see “Extended types.”

ibm:reference

The reference attribute specifies the OCD type that a PID references. It is used only with the
ibm:pid type and supports nesting of elements in the server.xml file; see “Nesting configuration
elements” on page 1128.

The following example shows the ibm:reference extension:<AD id="fooRef" type="String"
ibm:type="pid" ibm:reference="com.ibm.ws.foo".../>

ibm:final

The final attribute indicates that the value cannot be specified in the config. Instead, the default
value from the metatype is always used. Use name="internal" to indicate that tools not display
this property.

The following example shows the ibm:final extension:<AD id="foo" name="internal"
ibm:final="true" type="String" default=${someVariable}"/>

ibm:variable

The variable attribute is used to specify a variable to be used for the default value if one is not
specified. The behavior is to choose, in order:
v The value that is specified in server.xml
v The value that is specified as a system property, for example in bootstrap.properties
v The default value from the metatype

The following example shows ibm:variable:<AD id="traceString" ibm:variable="trace.string"
default=*.all=enabled".../>

ibm:unique

The unique attribute indicates that a configuration value must be unique across all attribute
definitions that use the same unique attribute group. The following unique attribute groups are
supported:
v

jndiName: use this group on attributes that register a service by using the osgi.jndi.service.name
property with the JNDI name. For more information, see “Developing with the JNDI default
namespace in a Liberty feature” on page 1139

default value syntax

You can use ${prop-name} syntax in default expressions to construct strings out of other
configuration properties.

The following example shows a default value syntax:
<AD id="httpEndpoint.target"

name="internal" description="internal use only"
ibm:final="true" required="false" type="String"
default="(&(virtualHost=${id}) (enabled=true))"/>

Extended types

Duration

The duration type is used to express a time. It is described in multiple units of time. For example,
"1h30m" would be an hour and a half. "1d5h10s" would be 1 day, 5 hours, and 10 seconds. The
units are globalized, so users enter the values by using abbreviations from their local language.

For English, the following list shows the available units:

Chapter 6. Extending Liberty 1125

v d - Days
v h - Hours
v m - Minutes
v s - Seconds
v ms - Milliseconds

By default, when using the type duration, the value that is specified by the user is evaluated in
milliseconds. For example, "10s" would be a long value of 10000 in the dictionary. Furthermore, if
a user specifies a value without any unit, this value will be evaluated in milliseconds. For
example, a value of "10" would be evaluated as 10 milliseconds. However, you can also specify
the duration type such that it evaluates into a different unit. For example, specifying a value of
"10" with ibm:type="duration(s)" will be evaluated as 10 seconds, and stored as 10 in the
dictionary.

The following list shows the possible types:
v duration(h)
v duration(m)
v duration(s)
v duration(ms)
v duration

There is no difference between specifying duration and duration(ms).

Note:

Best practice: Always include a unit in the value, and express the value with the unit that is
easiest to read. For example, instead of specifying a value of "7200" with ibm:type="duration(s)",
specify the value as "2h".

The following examples show the duration type:
v <AD id="timeout" type="String" ibm:type="duration(s)".../>

v <AD id="timeout" type="String" ibm:type="duration".../>

Location

The location type allows UI tools to provide a more helpful presentation of attributes that
represent various file and directory locations. It does not affect processing by the runtime
environment. The dictionary object is always a String.

The following examples show the possible types:

location
References a file. The reference can be an absolute, relative file, or it can be a url to a file.

location(file)
References a file by using an absolute or relative file path.

location(dir)
References a dir by using an absolute or relative file path.

location(url)
References a file at the end of a url.

The following example shows the location type:<AD id="location" name="
%appmgr.location.name" description="%appmgr.location.desc" type="String" required="true"
ibm:type="location"/>

Password

1126 WebSphere Application Server Liberty Core 8.5.5

The password type is used for password fields. When used, the dictionary object is an instance of
com.ibm.wsspi.kernel.service.utils.SerializableProtectedString. The value of the password field is
not logged in the trace file. Developer tools displays the encoding options that can be used for a
password field. Valid encoding options are xor and aes.

The following example shows the password type:<AD id="password" type="String"
ibm:type="password".../>

Hashed password

The passwordHash type is similar to the password type and is used for hashed password fields.
When used, the dictionary object is an instance of
com.ibm.wsspi.kernel.service.utils.SerializableProtectedString. The value of the hashed password
field is not logged in the trace file. Developer tools displays the encoding options that can be
used for a hashed password field. Valid encoding options are xor, aes, and hash.

Validate a new password against a hashed password by using the PasswordUtil.encode(String,
String, Map) method, with the following parameters:
1. New password.
2. Hash algorithm, which is obtained by calling the PasswordUtil.getCryptoAlgorithm method.

The hash algorithm must match the algorithm of the hashed password.
3. Properties object, where one of the properties uses

PasswordUtil.PROPERTY_HASH_ENCODED for the key and the hashed password for the
value.

If the return value of PasswordUtil.encode is the same as the hashed password, then the
passwords match.

The following example shows the passwordHash type:<AD id="hashedPassword" type="String"
ibm:type="passwordHash".../>

Pid

The pid type is used to reference another object in the config. It is used with the ibm:reference
attribute and supports nesting of elements in the server.xml; see “Nesting configuration
elements” on page 1128.

The following example shows the pid type:<AD id="fooRef" type="String" ibm:type="pid"
ibm:reference="com.ibm.ws.foo".../>

OnError

The onError type results in an instance of the onError enumeration in the dictionary. The possible
values are WARN, FAIL, and IGNORE.

The following example shows the onError type:<AD id="errorBehavior" type="String"
ibm:type="onError".../>

User interface metatype extensions

Add this namespace to your metatype.xml file to use the following extensions:
xmlns:ibmui="http://www.ibm.com/xmlns/appservers/osgi/metatype/ui/v1.0.0"

ibmui:localization

The localization extension is used to specify the metatype localization file. The metatype
localization file is used to look up the translations for labels and descriptions of other UI
extensions. In most cases, the value of the ibmui:localization extension matches the localization
attribute on the <Metadata> element.

The following example shows the ibmui:localization extension:

Chapter 6. Extending Liberty 1127

<OCD id="com.ibm.ws.jdbc.dataSource.properties"
name="%properties"
description="%properties.desc"
ibmui:localization="OSGI-INF/l10n/metatype">

<AD id="username".../>
</OCD>

ibmui:extraProperties

The extraProperties extension is used to indicate that an arbitrary set of configuration attributes
can be set on this configuration.

The following example shows the ibmui:extraproperties extension:
<OCD id="com.ibm.ws.jdbc.dataSource.properties"

name="%properties"
description="%properties.desc"
ibmui:extraProperties="true">

<AD id="username".../>
</OCD>

The label and description that is associated with extension is looked up in the metatype
localization file (if one is specified by using the ibmui:localization extension). For the extension
label, first extraProperties.<ocd id>.name and then extraProperties.name keys are checked. For
the extension description, first extraProperties.<ocd id>.description and then
extraProperties.description keys are checked.

ibmui:group

The group extension is used to specify that the attribute belongs to a group. In the user interface,
the attributes that are annotated with the same group are grouped.

The following examples show the ibmui:group extension:
v <AD id="username" ibmui:group="userInfo".../>

v <AD id="password" ibmui:group="userInfo".../>

v <AD id="port" ibmui:group="hostInfo".../>

The group label and description information are looked up in the metatype localization file (if
one is specified by using the ibmui:localization extension). For the group label, first <group>.<ocd
id>.name and then <group>.name keys are checked. For the group description, first <group>.<ocd
id>.description and then <group>.description keys are checked.

Nesting configuration elements:

You can use metatype extensions to define configuration that can be expressed as nested XML elements
in the server.xml file.

Examples

The following example shows how to support this user configuration in the server.xml file:
<family mother="jane" father="john">
<child name="susie" age="8" />
<child name="danny" age="5" />

</family>

The metatype XML uses ibm:type="pid" and ibm:reference as shown in following example:
<?xml version="1.0" encoding="UTF-8"?>
<metatype:MetaData
xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.1.0"
xmlns:ibm="http://www.ibm.com/xmlns/appservers/osgi/metatype/v1.0.0">

<OCD id="family" name="family">

1128 WebSphere Application Server Liberty Core 8.5.5

<AD id="mother" name="mother" type="String" default="Ma" />
<AD id="father" name="father" type="String" default="Pa" />
<AD id="child" name="child" ibm:type="pid" ibm:reference="child-pid"
required="false" type="String" cardinality="6" />

</OCD>

<Designate pid="family">
<Object ocdref="family" />

</Designate>

<OCD id="child" name="child" >
<AD id="name" name="name" type="String" />
<AD id="age" name="age" type="Integer" />

</OCD>

<Designate factoryPid="child-pid">
<Object ocdref="child" />

</Designate>

</metatype:MetaData>

The following example show how the code that receives the family properties uses the
ConfigurationAdmin service to obtain the child property sets:
public void updated(Dictionary<String, ?> properties)

throws ConfigurationException {

Set<String> pids = new HashSet<String>();
String mother = "null";
String father = "null";

try {
if (properties != null) {

mother = (String) properties.get("mother");
father = (String) properties.get("father");
String[] children = (String[]) properties.get("child");
if (children == null || children.length == 0) {

return;
}

// Get the configuration admin service
ConfigurationAdmin configAdmin = null;
ServiceReference configurationAdminReference =

bundleContext.getServiceReference(ConfigurationAdmin.class.getName());

if (configurationAdminReference != null) {
configAdmin = (ConfigurationAdmin)

bundleContext.getService(configurationAdminReference);
}

for (String childPid : children) {
pids.add(childPid);
Configuration config = configAdmin.getConfiguration(childPid);
String name = (String) config.getProperties().get("name";
Integer age = (Integer) config.getProperties().get("age");

}
}

}

catch (Exception e) {
e.printStackTrace();

}
}

Chapter 6. Extending Liberty 1129

Localizing the configuration metadata
The name and description attributes of each metadata entry can be localized, and the translated strings
packaged into language-specific properties files.

Example

The following example shows how the location of the localized files is specified in the header of the
metatype file:
<metatype:MetaData xmlns:metatype="http://www.osgi.org/xmlns/metatype/v1.1.0"

localization="OSGI-INF/I10n/metatype">

where OSGI-INF/I10n is the location of the translated properties files in the bundle, and metatype is the
prefix of the default language properties file. For example, if the default values, usually in English, are in
a file called metatype.properties, then each locale is added with its own suffix: metatype_fr.properties,
metatype_es.properties and so on.

Unlike the metatype XML file, which must always be in the OSGI-INF/metatype directory, the translated
files can be in any location that is within the bundle and specified by the localization attribute. It is
better to not put the properties files in the OSGI-INF/metatype directory alongside the metatype XML file;
the Metatype service attempts to parse anything in that location as an XML file, and although that does
not cause a failure, it generates unwanted exceptions in the console. The Liberty convention is to put
them in the OSGI-INF/I10n directory, but that is not mandatory.

In the metatype XML file, to show that a value is a localized string you use a percent sign at the start of
the value. For example, you might use the following definition in the metatype XML file:
<AD name="%client.inactivity.timeout" description="%client.inactivity.timeout.desc"

id="clientInactivityTimeout" required="false" type="Integer" default="60" />

and you might use the following definition in the properties file:
client.inactivity.timeout=Client inactivity timeout
client.inactivity.timeout.desc=The maximum duration, in seconds, between transactional requests
from a remote client. Any period of client inactivity that exceeds this timeout results in the
transaction being rolled back in this application server.

Providing an application endpoint
You can make a Liberty feature available as web applications by including one or more web application
bundles (WABs) in the feature. A WAB is an OSGi bundle with a Web-ContextPath manifest header.

Procedure

To enable WABs in your feature's bundles, add the com.ibm.wsspi.appserver.webBundle-1.0 feature to
the Subsystem-Content: header in the .mf file of your feature:
Subsystem-Content:
my.user.feature.bundle; version="[1,1.0.100)",
com.ibm.wsspi.appserver.webBundle-1.0; type="osgi.subsystem.feature"

Securing an application endpoint
You can secure your feature's application endpoint by performing the following steps:

Procedure
1. In the .mf file of your feature, add the com.ibm.wsspi.appserver.webBundleSecurity-1.0 feature to

the Subsystem-Content: header. This addition causes any protected servlets (as specified in your
feature bundle's WEB-INF/web.xml file) to be authenticated, and enables role base authorization. You
can also assign users, groups, and special subjects to any roles that are defined in the WEB-INF/web.xml
file.

1130 WebSphere Application Server Liberty Core 8.5.5

Subsystem-Content:
my.user.feature.bundle; version="[1,1.0.100)",
com.ibm.wsspi.appserver.webBundleSecurity-1.0; type="osgi.subsystem.feature"

2. To map roles to users, groups, and special subjects, do the following steps:
a. Add the IBM-Authorization-Roles header to your OSGi bundle's MANIFEST.MF file. The header

must specify a name which is the id of a role mapping you specify in the server.xml file.
IBM-Authorization-Roles: my.feature.role.map

b. In the server.xml file, add an authorization-roles element to map the role names to users and
groups. The id attribute of the authorization-roles element must have the same value as the
IBM-Authorization-Roles header in the MANIFEST.MF file. Add a <security-role> subelement for
each role that you want to assign user and groups to.
<authorization-roles id="my.feature.role.map">

<security-role name="employee">
<special-subject type="ALL_AUTHENTICATED_USERS"/>

</security-role>
<security-role name="manager">

<user name="bob"/>
<user name="mary"/>
<group name="managers"/>

</security-role>
</authorization-roles>

Liberty SPI utilities
Liberty provides service programming interfaces (SPI) to complete various tasks.

Resource location symbols
Liberty user configuration is made more portable through the use of variables that represent symbolic
locations. Use of these variables helps to prevent the coding of absolute paths that would make the user
configuration brittle and less portable. Feature code that receives configuration properties might have to
deal with values that contain such variables.

The location service of Liberty can be used to resolve symbolic locations to physical resources. For
example, the symbolic location ${wlp.install.dir}/myFile can be mapped to the local file myFile in the
installation directory of Liberty. Most methods return a WsResource object that wraps the physical
resource, but you can also use the resolveString method to transform the symbolic location into a String
that can be used to obtain a File object.

The name of the location service is com.ibm.wsspi.kernel.service.location.WsLocationAdmin and it is
provided by the Liberty kernel, so you do not have to specify a feature in your server.xml file to make it
available. The Java API documentation for each Liberty SPI is detailed in the Programming Interfaces
(APIs) section of the documentation, and is also available as a separate .zip file in one of the javadoc
subdirectories of the ${wlp.install.dir}/dev directory.

Symbols

The com.ibm.wsspi.kernel.service.location.WsLocationConstants class defines symbols that refer to
directory locations:
v /

v server.config.dir

v server.output.dir

v server.workarea.dir

v shared.app.dir

v shared.config.dir

v shared.resource.dir

Chapter 6. Extending Liberty 1131

v wlp.install.dir

v wlp.server.name

v wlp.user.dir

v usr.extension.dir

For the meaning of each symbol, see “Directory locations and properties” on page 894.

Monitoring local files for changes
Liberty has highly dynamic behavior, responding to changes in configuration, applications and other
resources. Much of this dynamic behavior is based on monitoring of the local file system for changes. The
service that performs this monitoring is available to all Liberty features through the FileMonitor SPI. The
file monitor service is provided by the Liberty kernel, so you do not have to specify a feature in your
server.xml file to make it available.

About this task

The FileMonitor SPI provides different properties to specify what resources are monitored and with what
frequency. You have to implement the FileMonitor interface and register the implementation class into the
service registry.

The Java API documentation for each Liberty SPI is detailed in the Programming Interfaces (APIs) section
of the documentation, and is also available as a separate .zip file in one of the javadoc subdirectories of
the ${wlp.install.dir}/dev directory.

Example
...
import com.ibm.wsspi.kernel.filemonitor.FileMonitor;
...

public class MyFileMonitor implements FileMonitor {
...

private final BundleContext bundleContex;
...

public MyFileMonitor(BundleContext bundleContext) {
this.bundleContext = BundleContext;
...

}

public ServiceRegistration<FileMonitor> monitorFiles(Collection<String> paths, long monitorInterval) {
...
final Hashtable<String, Object> fileMonitorProps = new Hashtable<String, Object>();
fileMonitorProps.put(FileMonitor.MONITOR_FILES, paths);
fileMonitorProps.put(FileMonitor.MONITOR_INTERVAL, monitorInterval);
...
return bundleContext.registerService(FileMonitor.class, this, fileMonitorProps);

}
...

}

Configuring tracing and logging for features in the Liberty profile
You can use the tracing and logging mechanism of the Liberty profile for Liberty features. The logging
service is part of the Liberty kernel so you do not have to specify a feature in your server.xml file to use
it.

About this task

Liberty provides the following SPIs for integrating tracing and logging in your customized feature code:

com.ibm.websphere.ras
The com.ibm.websphere.ras package provides classes to log messages and trace records, as well
as some extension points. In general,, feature code can use the java.util.logging package to log

1132 WebSphere Application Server Liberty Core 8.5.5

trace and messages, and to control the output through Liberty logging configuration, but the
extended capability of the WebSphere package is sometimes useful and the trace guards are
slightly more efficient when trace is disabled.

com.ibm.websphere.ras.annotations
The com.ibm.websphere.ras.annotations package provides annotations for use with classes in the
other packages. For example, an @Sensitive annotation can be used to prevent the contents of the
annotated variable from appearing in trace or message output.

com.ibm.ws.ffdc
The com.ibm.ws.ffdc package provides facilities to write first failure data capture (FFDC) records
to assist in debugging unexpected exceptions.

com.ibm.wsspi.logging
The com.ibm.wsspi.logging package provides interception points of log and ffdc records.

The Java API documentation for each Liberty SPI is detailed in the Programming Interfaces (APIs) section
of the documentation, and is also available as a separate .zip file in one of the javadoc subdirectories of
the ${wlp.install.dir}/dev directory.

Procedure

The following steps show you how to configure an example Liberty feature, called myfeature, to use the
tracing and logging mechanism of Liberty:
1. Specify the location of the message file for the feature myfeature, and the name of the group that is

required by the com.ibm.websphere.ras.TraceComponent class.
import java.util.ResourceBundle;

public class myFeatureConstants {

public static final String TR_RESOURCE_BUNDLE =
"com.mycompany.myFeature.internal.resources.FeatureMessages";

public static final String TR_GROUP = "myFeature";

public static final ResourceBundle messages = ResourceBundle.getBundle(TR_RESOURCE_BUNDLE);

}

2. In the implementation class of the feature service code, call the register() method of the
com.ibm.websphere.ras.TraceComponent class to register the implementation class with the trace
manager that is provided by Liberty. Then, you can configure the trace manger to track the DS
methods of the feature.
...
import com.ibm.websphere.ras.Tr;
import com.ibm.websphere.ras.TraceComponent;

public class myFeatureServiceImpl {

private static final TraceComponent tc = Tr.register(myFeatureServiceImpl.class);

protected void activate(ComponentContext cc, Map<String, Object> newProps) {
if (tc.isDebugEnabled()) {

Tr.debug(tc, "myFeatureComponentImpl activated"); }
...

3. Use the TraceOptions annotation to specify the trace group name and the message bundle name.
@TraceOptions(traceGroup = myFeatureConstants.TR_GROUP, messageBundle =

myFeatureConstants.TR_RESOURCE_BUNDLE)
package com.mycompany.myFeature;

Chapter 6. Extending Liberty 1133

import com.ibm.websphere.ras.annotation.TraceOptions;
import com.mycompany.myfeature.internal.myFeatureConstants;
...

Generating first failure data capture (FFDC) records:

FFDC records include the exception stack and optional additional data that is recorded when an
unexpected exception is caught by your code. Methods on the com.ibm.ws.ffdc.FFDCFilter class are used
to generate these records, and there are a number of methods that might cause a variety of data to be
captured.

Example

A typical use of the FFDCFilter class is as follows:
try{

// ... do something
} catch (Exception e) {

FFDCFilter.processException(e, getClass().getName(), unique-probe-id);
if (TraceComponent.isAnyTracingEnabled() && tc.isDebugEnabled()) {

Tr.debug(tc, "Exception when doing something; " + e);
}
return;

}

Where the source id (class name in this example) and the unique probe id (typically the source code line
number) combine to provide the exact location in the source code that generates the resulting record. By
default, the records are written to the ${server.output.dir}/logs/ffdc directory.

The file space used by the FFDC records in the case of a persistently occurring exception is limited by
automatic filtering of duplicate records. For any matching source id, probe id, and exception name, at
most 10 exceptions with unique messages are written per day.

Feature code can contribute data to FFDC records by registering a com.ibm.ws.ffdc.DiagnosticModule
implementation with the FFDC class. Feature code can also intercept FFDC records by registering a
com.ibm.wsspi.logging.IncidentForwarder implementation with the FFDC class.

Adding web services global handlers
8.5.5.4

Components that need to register web services handlers to all the web services end points must
implement the Handler interface and register that implementation in the service registry.

Before you begin

The global handler service is provided either by jaxws-2.2, jaxrs-1.1, 8.5.5.6 jaxrs-2.0, or
jaxrs-2.0 client, so you must specify the following feature or feature combinations in your server.xml
file:
v jaxws-2.2

v jaxrs-1.1

v 8.5.5.6 jaxrs-2.0

v 8.5.5.6 jaxrs-2.0 client

v jaxws-2.2 and jaxrs-1.1

v 8.5.5.6 jaxws-2.2 and jaxrs-2.0

1134 WebSphere Application Server Liberty Core 8.5.5

v 8.5.5.6 jaxws-2.2 and jaxrs-2.0 client

About this task

The Handler SPI provides different properties to specify the ENGINE_TYPE, the FLOW_TYPE, and the
client side (IS_CLIENT_SIDE) or the server side (IS_SERVER_SIDE) where handlers take effect.

You must implement the Handler interface and register the implementation class into the service registry.

The Java API documentation for each Liberty SPI is available in a separate compressed file in one of the
Javadoc subdirectories of the ${wlp.install.dir}/dev directory.

Deploying the handler bundle:

You can deploy the handler bundle by using the WebSphere Application Server Developer Tools for
Eclipse .

Procedure

1. Click File > New > Other and then expand OSGi.
2. Click OSGi Bundle Project and click Next. The New OSGi Bundle Project window opens.
3. Enter MyHandler as the Project name. In the Target runtime list, select WebSphere Application Server

Liberty. If no runtime exists, click New Runtime to create a WebSphere(r) Application Server
Liberty runtime.

4. Clear the Add bundle to application ratio.
5. Click Next twice and go to the OSGi Bundle page.
6. On the OSGi Bundle page, check Generate an activator, a Java class that controls the life cycle of

the bundle. Leave the Activator name as myhandler.Activator and click Finish.
7. Click Window > Preferences > Plug-in Development > Target Platform and select WebSphere

Application Server Liberty with SPI.

Note: Ensure that you have added WebSphere Application Server Liberty runtime in 3.
8. Click Apply and click OK.
9. Expand MyHandler > BundleContent > META-INF and open the MANIFEST.MF file by using the

Plug-in Manifest Editor.
10. Create the MyHander and MyActivitor classes:

...
import com.ibm.wsspi.webservices.handler.Handler;
...

public class MyHandler implements Handler {
...
public void handleFault(GlobalHandlerMessageContext arg0) {

...
}
public void handleMessage(GlobalHandlerMessageContext msgctxt) throws Exception {

if (msgctxt.getFlowType().equalsIgnoreCase(HandlerConstants.FLOW_TYPE_OUT)) {
}

...
}
....

}
public class MyActivator implements BundleActivator {

...
public void start(BundleContext context) throws Exception {

Chapter 6. Extending Liberty 1135

final Hashtable<String, Object> handlerProps = new Hashtable<String, Object>();
handlerProps.put(HandlerConstants.ENGINE_TYPE, HandlerConstants.ENGINE_TYPE_JAXWS);
handlerProps.put(HandlerConstants.FLOW_TYPE, HandlerConstants.FLOW_TYPE_IN);
handlerProps.put(HandlerConstants.IS_CLIENT_SIDE, true);
handlerProps.put(HandlerConstants.IS_SERVER_SIDE, true);
handlerProps.put(org.osgi.framework.Constants.SERVICE_RANKING, 3);
MyHandler myHandler = new MyHandler();
context.registerService(Handler.class, myHandler, handlerProps);
...

}
...

}

11. Click File > New > Other and then expand OSGi.
12. Click Liberty Feature Project and then click Next. The Liberty Feature Project window opens.
13. Specify MyHandlerFeature as the Project name.
14. In the Target runtime list, select WebSphere Application Server Liberty and click Next. The OSGi

Bundles Selection Page opens.
15. On OSGi Bundles Selection Page, select MyHandler 1.0.0 as the Contained Bundles and

click Finish.
16. Modify Manifest:MyHandler in MyHandler project. Click the MANIFEST.MF tab and

add com.ibm.wsspi.webservices.handler to the Import-pacakge element.
17. Right-click the MyHandlerFeature project, click Install Feature to install the feature to Liberty

runtime.
18. Edit the server.xml file to enable the MyHandlerFeature:

<featureManager>
<feature>jsp-2.2</feature>
<feature>jaxws-2.2</feature> // you can also use one of the following feature or feature combinations: jaxrs-1.1, jaxrs-2.0, jaxrsClient-2.0,
jaxws-2.2 and jaxrs-1.1, jaxws-2.2 and jaxrs-2.0, jaxws-2.2 and jaxrsClient-2.0
<feature>usr:MyHandlerFeature</feature>
</featureManager>

Exposing REST endpoints within Liberty
8.5.5.4

You can use the REST Handler framework in the Liberty SPI to expose new REST endpoints.

About this task

The REST Handler framework is for Liberty extenders to use when exposing new REST endpoints. You
can expose REST endpoints in an OSGi component, or a set of components.

Procedure
1. Create an OSGi component that registers itself as listening to a sub-root that appends to /ibm/api and

implements the com.ibm.wsspi.rest.handler.RESTHandler interface; for example:
@Component(service = { RESTHandler.class },

configurationPolicy = ConfigurationPolicy.IGNORE,
immediate = true,
property = { "service.vendor=IBM",

RESTHandler.PROPERTY_REST_HANDLER_ROOT + "=/myTest/abc" })
public class RESTHANDLERTest1 implements RESTHandler {
...

2. Package the component into an OSGi bundle that is part of your extended user feature.
3. Ensure that your feature includes the OSGi subsystem content:

com.ibm.websphere.appserver.restHandler-1.0; type="osgi.subsystem.feature"

4. Configure SSL certificates in the server.xml file.
5. Configure a user or group to the administrator role in the server.xml file.

1136 WebSphere Application Server Liberty Core 8.5.5

v Map to the administrator role for Liberty
6. Start your feature.

Starting the feature starts the REST Handler framework and registers your OSGi component. After the
feature starts, you can make calls to https://<host>:<https_port>/ibm/api/myTest/abc.

Including protected features
Your feature can include one or more other features by listing them in the Subsystem-Content header of
the feature manifest file. Any feature in the same product extension as your own feature can be included;
if the included feature is in a different product extension, or in Liberty, it must have public or protected
visibility.

The included feature must be specified by its Subsystem-SymbolicName, and have a type of
"osgi.subsystem.feature"; for example:
Subsystem-Content:
com.ibm.wsspi.appserver.webBundle-1.0; type="osgi.subsystem.feature",
com.ibm.websphere.appserver.json-1.0; type="osgi.subsystem.feature"

For information on Liberty public features, see “Liberty features” on page 483. The following section
describes Liberty protected features.

Liberty protected features

Application Manager
This feature provides advanced capability for implementing new application containers.

Subsystem-SymbolicName: com.ibm.websphere.appserver.appmanager-1.0.

Provided API and SPI:
v dev/api/ibm/com.ibm.websphere.appserver.api.basics_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.application_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.artifact_1.0.9.jar

Classloader service
This feature provides advanced capability for implementing new application containers.

Subsystem-SymbolicName: com.ibm.websphere.appserver.classloading-1.0.

Provided API and SPI:
v dev/spi/ibm/com.ibm.websphere.appserver.spi.classloading_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.artifact_1.0.9.jar

Container services
This feature provides advanced capability for implementing new application containers.

Subsystem-SymbolicName: com.ibm.websphere.appserver.containerServices-1.0,

Provided API and SPI:
v dev/spi/ibm/com.ibm.websphere.appserver.spi.containerServices_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.anno_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.artifact_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.javaeedd_1.0.9.jar

Transaction manager 1.1
This feature provides a JTA 1.1 compliant transaction manager.

Subsystem-SymbolicName: com.ibm.websphere.appserver.transaction-1.1.

Provided API and SPI:

Chapter 6. Extending Liberty 1137

v dev/api/spec/com.ibm.ws.javaee.transaction.1.1_1.0.9.jar
v dev/api/ibm/com.ibm.websphere.appserver.api.transaction_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.containerServices_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.anno_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.artifact_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.javaeedd_1.0.9.jar

Transaction manager 1.2
This feature provides a JTA 1.2 compliant transaction manager.

Subsystem-SymbolicName: com.ibm.websphere.appserver.transaction-1.2.

Provided API and SPI:
v dev/api/spec/com.ibm.ws.javaee.transaction.1.2_1.0.9.jar
v dev/api/ibm/com.ibm.websphere.appserver.api.transaction_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.containerServices_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.anno_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.artifact_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.javaeedd_1.0.9.jar

Web Bundle
This feature supports the use of web application bundles (WABs) in features. Include this feature
if your feature provides an application endpoint, as described in “Providing an application
endpoint” on page 1130.

Subsystem-SymbolicName: com.ibm.wsspi.appserver.webBundle-1.0.

Provided API and SPI:
v dev/api/spec/com.ibm.ws.javaee.servlet.3.0_1.0.9.jar
v dev/api/ibm/com.ibm.websphere.appserver.api.servlet_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.servlet_1.0.9.jar

Web Bundle Security
This feature supports the application of security to web bundles; see “Securing an application
endpoint” on page 1130.

Subsystem-SymbolicName: com.ibm.wsspi.appserver.webBundleSecurity-1.0.

Provided API and SPI:
v dev/api/spec/com.ibm.ws.javaee.servlet.3.0_1.0.9.jar
v dev/api/ibm/com.ibm.websphere.appserver.api.servlet_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.servlet_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.containerServices_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.anno_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.artifact_1.0.9.jar
v dev/spi/ibm/com.ibm.websphere.appserver.spi.javaeedd_1.0.9.jar

Locating OSGi applications
You can use classes in the org.apache.aries.blueprint package to extend the OSGi application
programming model; this third-party SPI is provided through the blueprint-1.0 server feature. You must
access OSGi application bundles in to apply your extensions. In Liberty, OSGi applications run as
Subsystems. To locate an OSGi application you can create a ServiceTracker in a user feature.

1138 WebSphere Application Server Liberty Core 8.5.5

About this task

This topic describes how the developer of a user feature can locate running OSGi applications. This task
is often required for user features that provide programming model extensions to OSGi applications. For
example, a new user feature might provide such extensions by implementing a new bundle extender,
often referred to as a container, or, more simply, by tracking and invoking services published from within
certain OSGi applications.

Such user features must use the BundleContext of a particular running OSGi application to create new
BundleTracker and ServiceTracker instances. This BundleContext can be obtained from the
org.osgi.service.subsystem.Subsystem that is associated with the OSGi application. The following
procedure describes how to obtain that SubSystem service.

Procedure

To locate an OSGi application by creating a ServiceTracker in a user feature, complete the following
steps:
1. Construct an org.osgi.framework.Filter that is targeted to the Subsystem that you want to locate.
2. Create an org.osgi.util.tracker.ServiceTracker that uses the Filter from step 1 to obtain the

org.osgi.service.subsystem.Subsystem service that is associated with the OSGi application that you
want to locate. This Subsystem service instance provides everything you require to work with the
OSGi application.

Example

The following example shows how to locate an application with symbolic name my.app by using a
ServiceTracker in a user feature:
import org.osgi.framework.BundleContext;
import org.osgi.service.subsystem.Subsystem;
import org.osgi.util.tracker.ServiceTracker;
import org.osgi.util.tracker.ServiceTrackerCustomizer;

In the following code extract, the variable ctx is the BundleContext of one of the bundles of the user
feature:
String SERVICE_FILTER = "(&(objectClass=org.osgi.service.subsystem.Subsystem)

(subsystem.type=osgi.subsystem.application)(subsystem.symbolicName=my.app))"

org.osgi.framework.Filter filter = ctx.createFilter(SERVICE_FILTER);

The last 'null' parameter can be replaced with an instance of a class that implements
ServiceTrackerCustomizer<Subsystem, Subsystem>:
org.osgi.util.tracker.ServiceTracker<Subsystem, Subsystem> str = new ServiceTracker<Subsystem, Subsystem>(ctx, filter, null);

The SERVICE_FILTER can be constructed to make use of such constants as:
org.osgi.framework.Constants.OBJECTCLASS;
org.osgi.service.subsystem.SubsystemConstants.SUBSYSTEM_SYMBOLICNAME_PROPERTY;
org.osgi.service.subsystem.SubsystemConstants.SUBSYSTEM_TYPE_APPLICATION;
org.osgi.service.subsystem.SubsystemConstants.SUBSYSTEM_TYPE_PROPERTY;

Developing with the JNDI default namespace in a Liberty feature
You can make an object available in the default Java Naming and Directory Interface (JNDI) namespace.
To do that, you must register it in the OSGi service registry with the osgi.jndi.service.name service
property. The value of osgi.jndi.service.name is the required JNDI name. Similarly, to find an object in
the default JNDI namespace, you can search the OSGi service registry with the osgi.jndi.service.name
service property. The value of osgi.jndi.service.name is the JNDI name.

Chapter 6. Extending Liberty 1139

About this task

Compared with explicitly calling Context.bind or Context.lookup, using the service registry has the
following benefits:
v Your feature works properly when jndi-1.0 is enabled, but your feature does not need an explicit

dependency on JNDI.
v You do not need to explicitly unbind objects from JNDI when your feature is removed because the

OSGi framework automatically unregisters services when bundles are stopped.
v You can easily implement lazy initialization using declarative services or ServiceFactory rather than

using Reference and ObjectFactory.

For more information about JNDI, see Naming.

Procedure
1. Register a service using the osgi.jndi.service.name property with the JNDI name. For more

information about registering services, see “Registering OSGi services” on page 1113.
2. Update your metatype.xml to allow a JNDI name to be specified in server configuration. To allow

users to specify a JNDI name for your service, you should use the jndiName id for consistency with
other features in the Liberty run time, for example:
<AD id="jndiName" name="JNDI name" description="JNDI name for a widget." type="String" ibm:unique="jndiName"/>

You can use an internal attribute to automatically set the osgi.jndi.service.name service property
with the value of the jndiName attribute, for example:
<AD id="osgi.jndi.service.name" name="internal" description="internal" type="String" default="${jndiName}"/>

For more information about OSGi Metatype, see “Advanced Configuration” on page 1121.

3. Implement the ResourceFactory interface if you need Java EE resource reference
information. If your service needs Java EE resource reference information, such as res-auth, you can
register a ResourceFactory in the OSGi service registry with the jndiName and creates.objectClass
properties. The ResourceFactory service is re-registered automatically with the
osgi.jndi.service.name property. For example:

import com.ibm.wsspi.resource.ResourceFactory;
public class WidgetResourceFactory implements ResourceFactory { ... }

Properties properties = new Properties();
properties.put(ResourceFactory.JNDI_NAME, "widget/abc");
properties.put(ResourceFactory.CREATES_OBJECT_CLASS, Widget.class.getName());
bundleContext.registerService(ResourceFactory.class, new WidgetResourceFactory(), properties);

Alternatively, the service could be registered automatically using declarative services and metatype. In
that case, you can specify the creates.objectClass property as a declarative services property. You do
not need to specify the jndiName property because it is set automatically from the user configuration
with the <AD id="jndiName"> element in the metatype.xml file in step 2, and you do not need an <AD
id="osgi.jndi.service.name> element in the metatype.xml file because the ResourceFactory service
will be re-registered automatically.

4. Locate an object using the osgi.jndi.service.name property with the JNDI name. For example:
bundleContext.getServiceReference(DataSource.class, "(osgi.jndi.service.name=jdbc/myds)");

Alternatively, you can locate a ResourceFactory using the jndiName and creates.objectClass
properties.

5. Update your metatype.xml to allow a resource to be specified in server.xml using the id of the
resource. This allows the resource to be accessed regardless of whether or not the resource has a
jndiName. For example,
<AD id="dataSourceRef" type="String" ibm:type="pid" ibm:reference="com.ibm.ws.jdbc.dataSource" cardinality="1" name="%dataSourceRef" description="%dataSourceRef.desc"/>

1140 WebSphere Application Server Liberty Core 8.5.5

If you are using declarative services, you can use an internal attribute to set a .target service
property with a filter. For example, if your declarative services component has a reference named
dataSource, you can use the following attribute definition to ensure that the dataSource that is
referenced by the dataSourceRef configuration attribute is used.
<AD id="dataSource.target" type="String" default="(service.pid=${dataSourceRef})" ibm:final="true" name="internal" description="internal"/>

Developing a custom TAI as a Liberty feature
You can develop a custom TAI as a Liberty feature by implementing the
com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface provided in the Liberty server and
creating a product extension.

About this task

For a general view of custom TAI, see “Developing a custom TAI for Liberty” on page 1301.

For more information about product extensions, see “Product extension” on page 577.

Avoid trouble: If you have multiple TAIs, you can configure all of them by using either the user feature
or the shared library. Do not mix the two TAI configurations.

Procedure
1. Implement the custom TAI. For more information, see “Developing a custom TAI for Liberty” on page

1301.
2. Convert the implementation class into an OSGi service. You can do the conversion in one of the

following ways:
v Convert your custom TAI class into a Declarative Service (DS) component. For more information,

see “Declaring your services to OSGi Declarative Services” on page 1116.
v Write a new custom TAI class that is a DS component and delegate it to your custom TAI class.
v Register the custom TAI class directly in the Service Registry (SR) by using the OSGi core APIs. For

more information, see “Working with the OSGi service registry” on page 1112.
3. Package the custom TAI as an OSGi bundle and export the custom TAI service. For information on

creating an OSGi bundle, see Creating an OSGi service bundle.
4. Create a feature manifest to include the OSGi bundle. For more information about feature manifest

file, see “Liberty feature manifest files” on page 1097.
5. After the feature is installed into the user product extension location, configure the server.xml file

with the feature name. For example:
<featureManager>

...
<feature>usr:customTaiSample-1.0</feature>

</featureManager>

Dynamic content management
You typically install bundles into the runtime environment by listing them in the Subsystem-Content
header of the feature manifest file. However, you can also dynamically add and remove OSGi bundles by
installing a user-written bundle as part of the Subsystem-Content of a user-written feature. The
user-written bundle obtains the OSGi bundle context to install and control additional bundles.

Installing, starting, stopping, and uninstalling bundles in Liberty

Note: In the following sections, the user-written feature is called UserFeatureA and the user-written
bundle is called FeatureBundleA.

Chapter 6. Extending Liberty 1141

Installing bundles
You can write FeatureBundleA to obtain the OSGi bundle context,
org.osgi.framework.BundleContext, by using one of the following methods:
v Implement the BundleActivator interface, org.osgi.framework.BundleActivator. The

BundleContext parameter of the start method is passed in by the OSGi framework, which is
available to the user-written bundle when that bundle is activated. For more information on
the BundleActivator interface, see “Developing an OSGi bundle with simple activation” on
page 1111.

v Implement an available specification, such as OSGi Declarative Services or Blueprint, that
provides access to the bundle context through another method or interface. For more
information, see “Composing advanced features by using OSGi Declarative Services” on page
1116 and Blueprint bundles.

After FeatureBundleA obtains the bundle context, additional bundles can be installed by using
either the installBundle(String location) or installBundle(String location, InputStream
stream) methods.

Bundles that are dynamically installed resume state on a default restart. They do not persist
across a clean start and require reinstallation. See Bundle caching for more details.

Starting bundles
If you want an installed bundle to be started, it is the responsibility of the installing bundle,
FeatureBundleA, to call the start method for the bundle.

Stopping and uninstalling bundles
If the user-written feature, UserFeatureA, is removed from the server configuration, then
FeatureBundleA is stopped and also uninstalled. Uninstallation of FeatureBundleA triggers
uninstallation of all the bundles that were installed by FeatureBundleA, if they are not already
uninstalled. The org.osgi.framework.Bundle.uninstall() method is called for each bundle,
which stops and uninstalls it. This uninstallation process also applies if FeatureBundleA is
uninstalled by any other means.

If UserFeatureA is removed from the server configuration when the server is stopped, the bundles
that were installed by UserFeatureA are removed on the next server start. If the start levels of the
bundles are unmodified from their defaults, the bundles are removed before they are restarted . If
the start levels of the bundles were modified, they might not be removed until after they have
restarted.

Other lifecycle management tasks are done by FeatureBundleA according to the OSGi core specification,
by using the org.osgi.framework.Bundle and org.osgi.framework.BundleContext interfaces.

Bundle caching, package visibility, and programming model support in Liberty

Bundle caching
When the server is shut down, all the currently installed bundles are stopped and OSGi metadata
is persisted to a bundle cache. On a default start, these installed bundles are returned to their
previous state. On a clean start, any bundles that were installed by FeatureBundleA have their
persistent data deleted. As a result, on a clean start these bundles are not resumed.
FeatureBundleA itself is resumed because it is reinstalled by the feature manager, provided
UserFeatureA is still in the server configuration. If you want to reinstall any bundles after a clean
start, it is the responsibility of FeatureBundleA to do the reinstallation. You are not notified about
a clean start, but you can check whether a bundle is installed by using the OSGi BundleContext
getBundle(String location) method.

Package visibility
Bundles that are dynamically installed, and are not listed in the Subsystem-Content header of the
feature manifest file, have the following visibility:
v Dynamically installed bundles can import any API and SPI packages provided by the currently

configured set of features.

1142 WebSphere Application Server Liberty Core 8.5.5

v Packages that are exported by other bundles within the same product extension that are not
declared as API or SPI, are not visible to dynamically installed bundles.

v Packages that are exported from dynamically installed bundles cannot be declared as API or
SPI.

v There are no restrictions on importing packages that are exported from dynamically installed
bundles.

Programming model support
Dynamically installed bundles can use implementations of OSGi enterprise specifications
provided that the appropriate runtime features are configured to enable them.

Packaging and installing Liberty features
You can package and install Liberty features to WebSphere Application Server Liberty.

About this task

A Liberty feature may be packaged as a subsystem archive, as defined by the OSGi Enterprise
specification (5.0). A subsystem archive is a compressed file with an .esa extension that includes the
feature manifest and the resource files that constitute the feature. The WebSphere Application Server
developer tools will import and export Liberty features by using the subsystem archive format, and
features can be installed to a Liberty runtime environment by using the featureManager command if they
are in the .esa format.

Procedure
v You can manually install a Liberty features onto Liberty.

– To install the feature to the Liberty kernel, the feature manifest file must be in the
${wlp.install.dir}/lib/features directory and related bundles in the ${wlp.install.dir}/lib
directory;

– To install the feature into the user configuration, the feature manifest file must be in the
${wlp.user.dir}/extension/lib/features directory, and related bundles must be in the
${wlp.user.dir}/extension/lib directory;

– To install the feature into a product extension, the feature manifest file and related bundles must be
in the product extension directory. The product extension is registered in the ${wlp.user.dir}/etc/
extension/lib/features directory using a <extension-name>.properties file. For more information,
see“Product extension” on page 577.

v You can also use the featureManager command that is provided in the ${wlp.install.dir}/bin
directory to install a Liberty feature if it is packaged as an .esa file.
– To install a feature as a user feature, use the following command:

featureManager install my_feature.esa --to=usr

– To install a feature to a product extension location, use the following command:
featureManager install my_feature.esa --to=my_extension

For more information about the featureManager command, see “featureManager command” on page
865.

Provide product information for your feature extension
You can provide Version Product information for your Feature Extension

You can provide Version Product information for your Feature Extensions by providing the installation
with a uniquely named product information properties file in the lib/versions directory of the extension.
The file extension must be .properties.

Chapter 6. Extending Liberty 1143

You can add Version Product information manually or by using the featureManager script's installation
option under the following conditions:
v The subsystem manifest file in the feature archive contains a subsystem-content entry that points to the

product information properties file that is being installed.
v The product information properties file can be installed only if the feature that is being installed

defines the IBM-Feature-Version.
v The product information properties file in the feature archive (.esa) has the following path

wlp/lib/versions/filename.properties.

The following properties can be specified in the product information properties file:
com.ibm.websphere.productId=yourProductID
com.ibm.websphere.productOwner=TheProductOwner
com.ibm.websphere.productVersion=yourProductVersion
com.ibm.websphere.productName=yourProductName
com.ibm.websphere.productInstallType=yourProductInstallType
com.ibm.websphere.productEdition=yourProductEdition
com.ibm.websphere.productQualifier=yourProductQualifier

If you want to override a particular feature extension information, include the following property in your
product information properties file:
com.ibm.websphere.productReplaces=theProductIdToReplace

If your product is eligible for Getting Started Subcapacity Pricing (GSSP), set the following property to
true in your product information properties file:
com.ibm.websphere.gssp=true

The following is an example of how to define subsystem entry content for installing the feature extension
by using the featureManager script, subsystem.mf:
Subsystem-ManifestVersion:1
...
Subsystem-Content: userProdExt; version="[1,1.0.100]",
user.ext.version.info; type="file"; location:="lib/versions/user.ext.version.info.properties"
IBM-Feature-Version: 2

The following is an example that shows the output of the productInfo script using the version option that
shows the product name and version entries that are specified in the product information properties file:
com.ibm.websphere.productId=XYZ Product ID
com.ibm.websphere.productOwner=XYZ Inc
com.ibm.websphere.productVersion=1.0.0
com.ibm.websphere.productName=XYZ User Product
com.ibm.websphere.productInstallType=Archive
com.ibm.websphere.productEdition=Enterprise Edition

Command:
productInfo version

Output:
Product name: Websphere Application Server
Product version: 8.5.5.0

Product name: XYZ User Product
Product version: 1.0.0

Embedding Liberty in your applications
You can use the System Programming Interfaces (SPIs) that are provided by Liberty to configure, control,
and monitor a Liberty server in your applications.

1144 WebSphere Application Server Liberty Core 8.5.5

About this task

Liberty provides the following SPIs to start or stop a Liberty server:
v com.ibm.wsspi.kernel.embeddable.Server

v com.ibm.wsspi.kernel.embeddable.ServerBuilder

Use a Future object to store the result of a start or stop operation. The return codes that are used by
embedded operations are the same as the return codes used by the server command. For more
information about return codes, JVM options used by the server script, and the process environment used
by the server script, see “server command options” on page 950.

Additionally, you can receive asynchronous notifications when the server is starting, has started, or has
stopped by creating your own class that implements the
com.ibm.wsspi.kernel.embeddable.ServerEventListener interface.

Note: To create an instance of an embedded server within your application, you must carry out the
following steps:
v Include the ws-server.jar file on the class path. The ws-server.jar file is in the ${wlp.install.dir}/

bin/tools directory of the Liberty installation.
v Specify the name of the target server. The target server must exist.
v Optional: Configure the ws-javaagent.jar file with the -javaagent JVM option. The ws-javaagent.jar

file is in the ${wlp.install.dir}/bin/tools directory of the Liberty installation. You are advised to
configure the ws-javaagent.jar file, but it is not mandatory unless you use capabilities of the server
that require it, such as monitoring or trace. If you contact IBM support, you might need to provide
trace, and if so, you must start the server with the ws-javaagent.jar file, even if you do not normally
use it.

Note: In an embedded environment:
v Environment variables are not checked, and the jvm.options and server.env files are not read.
v Management of the JVM and environment is assumed to be managed by the caller.

Procedure
1. Import the SPIs into your caller class and define the arguments that are required to operate the

Liberty server.
import com.ibm.wsspi.kernel.embeddable.Server;
import com.ibm.wsspi.kernel.embeddable.ServerBuilder;

public class MyEmbeddedServer {
String serverName="defaultServer";
File userDir = new File("usr");
File outputDir = new File("usr/servers/");
...

}

Where
v The serverName is required, and must match the name of a previously created server.
v The userDir is optional and used to set the path of the user directory. By default, the user directory

is ${wlp.user.dir}.
v The outputDir is optional and used to set the path of the output directory. By default, the output

directory is ${wlp.user.dir}/servers.
2. Initialize the server by using the ServerBuilder class.

Chapter 6. Extending Liberty 1145

ServerBuilder sb = new ServerBuilder();
Server libertyServer = sb.setName(serverName)

.setUserDir(userDir)

.setOutputDir(outputDir)

.build();

3. Call the Server.start() method to start the server. Call get() on the future to block until the start
operation completes. Use one of the following to determine whether the server started successfully:
v Check the returned result code.
v Use the successful() method.
v If the server is started, the server.isRunning() method returns true.
Future<Result> startReturnCode = libertyServer.start();
Result result = startReturnCode.get(); // block until operation complete, if necessary
System.out.println("Start returned: success=" + result.successful() + ", rc=" + result.getReturnCode() + ", ex=" + result.getException());

4. Call the Server.stop() method to stop the server. Call get() on the future to block until the stop
operation completes. Use one of the following to determine whether the server stopped successfully:
v Check the returned result code.
v Use the successful() method.
v If the server is stopped, the server.isRunning() method returns false.
Future<Result> stopReturnCode = libertyServer.stop();
Result result = stopReturnCode.get(); // block until operation complete, if necessary
System.out.println("Stop returned: success=" + result.successful() + ", rc=" + result.getReturnCode() + ", ex=" + result.getException());

5. Implement the ServerEventListener interface. If you implement the ServerEventListener interface, you
can receive notifications when the server is started or stopped.
// update the class declaration to indicate that it implements ServerEventListener
public class MyEmbeddedServer implements ServerEventListener {

...
MyEmbeddedServer() throws ServerException {

// set the listener via the server builder
ServerBuilder sb = new ServerBuilder();
Server libertyServer = sb.setName(serverName)

.setServerEventListener(this)

.build();
}

...
@Override
public void serverEvent(ServerEvent event) {

// provide an implementation of the serverEvent method
System.out.println("serverEvent: " + event);

}
}

Creating Liberty servers from custom configurations
You can create a server from a custom configuration for any environment that you require.

About this task

The Liberty server script create command offers a --template option. You can use this option to support
server creation from a custom configuration located within a templates/servers/<template-name>
sub-directory of your product extension. Custom server templates must contain at least a server.xml file,
and can contain any configuration files, for example: bootstrap.properties or jvm.options.

Procedure

You can use the --template option in the following way: server create --template=<extension-
name>:<template-name>

1146 WebSphere Application Server Liberty Core 8.5.5

Chapter 7. Securing Liberty and its applications

This information applies to all types of applications that are deployed on Liberty.

About this task

Security in Liberty supports all the Servlet 3.0 security features and secured Java JMX connections. The
following Liberty features are applicable to security in Liberty:
v appSecurity-2.0 enables security for for web applications when the servlet-3.0 feature is present and

for EJB components when the ejbLite-3.1 feature is present.
v ssl-1.0 enables SSL connections using HTTPS.
v restConnector-1.0 enables remote access by JMX client through a REST-based connector.
v oauth-2.0 enables authorization to resources by using the OAuth 2.0 protocol.
v ldapRegistry-3.0 provides support for the LDAP user registry.

To learn about how security works in Liberty, see “Security” on page 581.

Best practice: There are several security configuration examples on the WASdev.net website for reference
when configuring security for your applications on Liberty. If you see any differences in the configuration
created by the developer tools and the examples, modify the configuration to fit the configuration in the
examples for that feature.

Procedure
v Use quickStartSecurity for minimal security configuration
v Secure communications in Liberty
v Access a secured JMX connector in Liberty
v Authenticate users in Liberty
v Authorize access to resources in Liberty
v Secure a database access application
v Develop extensions to the Liberty security infrastructure

Getting started with security in Liberty
You can use the <quickStartSecurity> element to quickly enable a simple (one user) security setup for
Liberty.

About this task

You can set up a secured Liberty server and web application by following some basic configuration steps.
Configuration actions within Liberty are dynamic, which means the configuration updates take effect
without having to restart the server.

Procedure
1. Create and start your server.

v Windows On Windows systems:
server.bat create MyNewServer
server.bat start MyNewServer

1147

v AIX Linux UNIX HP-UX Solaris IBM i On all systems other than Windows
systems:
server create MyNewServer
server start MyNewServer

2. Include the appSecurity-2.0 and servlet-3.0 features in the server.xml file.
The server.xml file is in the server directory of myNewServer, for example, wlp\usr\servers\
myNewServer\server.xml.
<featureManager>

<feature>appSecurity-2.0</feature>
<feature>servlet-3.0</feature>

</featureManager>

3. Define the user name and password that is to be granted the Administrator role for server
management activities.
<quickStartSecurity userName="Bob" userPassword="bobpwd" />

Note: Choose a user name and password that are meaningful to you. Never use the name and
password in the example for your applications.

4. Configure the deployment descriptor with relevant security constraints to protect web resource. For
example, use <auth-constraint> and <role-name> elements to define a role that can access web
resource.
The following example web.xml file shows that access to all the URIs in the application is protected by
the testing role.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app id="myWebApp">

<!-- SERVLET DEFINITIONS -->
<servlet id="Default">

<servlet-name>myWebApp</servlet-name>
<servlet-class>com.web.app.MyWebAppServlet</servlet-class>
<load-on-startup/>

</servlet>

<!-- SERVLET MAPPINGS -->
<servlet-mapping id="ServletMapping_Default">

<servlet-name>myWebApp</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>

<!-- SECURITY ROLES -->
<security-role>

<role-name>testing</role-name>
</security-role>

<!-- SECURITY CONSTRAINTS -->
<security-constraint>

<web-resource-collection>
<url-pattern>/*</url-pattern>

</web-resource-collection>
<auth-constraint>
<role-name>testing</role-name>

</auth-constraint>
</security-constraint>

<!-- AUTHENTICATION METHOD: Basic authentication -->
<login-config>

1148 WebSphere Application Server Liberty Core 8.5.5

<auth-method>BASIC</auth-method>
</login-config>

</web-app>

5. Configure your application in the server.xml file.
In the following example, the user Bob is mapped to the testing role of the application:
<application type="war" id="myWebApp" name="myWebApp"

location="${server.config.dir}/apps/myWebApp.war">
<application-bnd>

<security-role name="testing">
<user name="Bob" />

</security-role>
</application-bnd>

</application>

6. Access your application and log in with the user name Bob. The default URL for the myWebApp
application is http://localhost:9080/myWebApp

Results

You have now secured your application.

Quick overview of security
To understand the basic workflow of security in Liberty, some common security terms are detailed along
with an example.

Security key terms

Authentication
Authentication confirms the identity of a user. The most common form of authentication is user
name and password, such as through basic authentication or form login for web applications.
When a user is authenticated, the source of a request is represented as a Subject object at run
time.

Authorization
Authorization determines whether a user has access to a given role within the system. The Java
EE model uses subjects, roles, and role mappings to determine if access is allowed.

Role A role is defined within the Java EE application. Some roles, such as the Administrator role, are
predefined by the system. Other roles are defined by the application developer. In Java EE,
subjects are usually granted or denied access to a role based on the roles they perform within the
application.

Subject
A subject is both a general term and a Java object: javax.security.auth.Subject. Generally, the
term subject means active entities within the system, such as users on the system, and even the
system process itself.

Security workflow example

The following example demonstrates how the security is applied when a user requests access to a
resource. For example, a user Bob wants to access a servlet myWebApp. See the code samples in “Getting
started with security in Liberty” on page 1147.

To access the servlet myWebApp, the following conditions must be true:
1. Bob must be able to log in to the system because the servlet is protected.
2. Bob must be in the testing role because the servlet is restricted by using an auth-constraint element

in the deployment descriptor.

Chapter 7. Securing Liberty and its applications 1149

If Bob cannot log in to the system, or Bob is not in the testing role, then the access to the servlet myWebApp
is denied.

Another user Alice can log in to the system because Alice is a valid user. But Alice is not in the testing
role. An HTTP 403 error (Access Denied/Forbidden) displays when Alice logs in.

Setting up BasicRegistry and role mapping on Liberty
You can configure Liberty to authenticate and authorize users by using a basic user registry.

Before you begin

The Liberty features appSecurity-2.0 and servlet-3.0 must be enabled in the server.xml file.

For more information about security configuration in Liberty, see “Getting started with security in
Liberty” on page 1147.

About this task

You can set up a basic user registry and configure more role mapping in the server.xml file for a Liberty
server by going through the following steps.

Procedure
1. Configure the basic registry as follows. Use a user name and password that are meaningful to you.

Never use the name and password from this example in your applications.
<basicRegistry id="basic" realm="WebRealm">
<user name="Bob" password="bobpwd" />

</basicRegistry>

2. Optional: Grant the user or group the Administrator role if the user, or group of users, is used to
perform remote system management activities. This step is done automatically when using the
quickStartSecurity element or may be accomplished by adding the administrator-role element to
the server.xml file as shown.
<administrator-role>

<user>Bob</user>
<group>myAdmins</group>

</administrator-role>

3. Encode the password within the configuration. You can get the encoded value by using the
securityUtility encode task.

4. Optional: Add additional users. Make sure that each user name is unique.
<basicRegistry id="basic" realm="WebRealm">

<user name="Bob" password="bobpwd" />
<user name="user1" password="user1pwd" />
<user name="user2" password="user2pwd" />

</basicRegistry>

5. Create groups for users. Make sure that each group name must be unique.
<basicRegistry id="basic" realm="WebRealm">

<user name="Bob" password="bobpwd" />
<user name="user1" password="user1pwd" />
<user name="user2" password="user2pwd" />

<group name="myAdmins">
<member name="Bob" />
<member name="user1" />

</group>

<group name="users">

1150 WebSphere Application Server Liberty Core 8.5.5

<member name="user1" />
<member name="user2" />

</group>
</basicRegistry>

6. Assign some users and groups to the testing role of an application.
<application type="war" id="myWebApp" name="myWebApp"

location="${server.config.dir}/apps/myWebApp.war">
<application-bnd>

<security-role name="testing">
<user name="Bob" />
<user name="user1" />
<group name="users" />

</security-role>
</application-bnd>

</application>

What to do next

Configure security-related elements in the deployment descriptor of your application. See “Getting
started with security in Liberty” on page 1147 for a sample web.xml file.

Securing communications in Liberty
You can configure the Liberty server to provide secure communications between a client and the server.

About this task

Communications are secured with Secure Sockets Layer (SSL) protocol. The SSL protocol provides
transport layer security including authenticity, data signing, and data encryption to ensure a secure
connection between a client and server that uses WebSphere® Application Server. The foundation
technology for SSL is public key cryptography, which guarantees that when an entity encrypts data using
its public key, only entities with the corresponding private key can decrypt that data. The Liberty Server
uses Java Secure Sockets Extension (JSSE) as the SSL implementation for secure connections. JSSE handles
the handshake negotiation and protection capabilities that are provided by SSL to ensure that secure
connectivity exists across most protocols. JSSE relies on X.509 certificate-based asymmetric key pairs for
secure connection protection and some data encryption. Key pairs effectively encrypt session-based secret
keys that encrypt larger blocks of data. The SSL implementation manages the X.509 certificates.

To configure secure communications, you can either specify a minimal SSL configuration or a detailed
SSL configuration in the server.xml file. The minimal configuration only requires the SSL feature and a
keystore entry to be specified. There are several security configuration examples on the WASdev.net
website for reference when configuring security for your applications on Liberty.

The SSL configuration that is designated as the default SSL configuration is used to create the process's
default SSLContext using the SSLContext.setDefault() method. The default SSL configuration can be the
minimal SSL configuration, or the configuration that is identified by the sslRef attribute on the
sslDefault element if multiple SSL configurations are defined. Because the default SSLContext is set on
the process, the javax.net.ssl.keyStore and javax.net.ssl.trustStore properties will not be
recognized.

Procedure
v Enable SSL communications between a client and a Liberty server
v Optional: Create a keystore from the command prompt
v Optional: Encode passwords from the command prompt
v Optional: Configure client certificate authentication between your application and the Liberty server

Chapter 7. Securing Liberty and its applications 1151

Enabling SSL communication in Liberty
To enable SSL communication in Liberty, there is a minimal set of SSL configuration options. It assumes
most of the SSL options require some keystore configuration information.

About this task

SSL client authentication occurs during the connection handshake by using SSL certificates. The SSL
handshake is a series of messages that are exchanged over the SSL protocol to negotiate for
connection-specific protection. During the handshake, the secure server requests that the client send back
a certificate or certificate chain for the authentication. To enable SSL in Liberty, you add the ssl-1.0
Liberty feature to the configuration root document file, server.xml, along with code of the keystore
information for authentication.

By default, the path and file name for the configuration root document file is path_to_liberty/wlp/usr/
servers/server_name/server.xml. path_to_liberty is the location that you installed Liberty on your
operating system, and server_name is the name of your server. However, you can change the path. See
“Customizing the Liberty environment” on page 947.

Procedure
1. Enable the ssl-1.0 Liberty feature in the server.xml file.

<featureManager>
<feature>ssl-1.0</feature>

</featureManager>

Note: If application security is required and security information is redirected to a secure port, you
must add the appSecurity-2.0 Liberty feature to the server.xml file.

2. Add the keystore service object entry to the server.xml file. The keyStore element is called
defaultKeyStore and contains the keystore password. The password can be entered in clear text or
encoded. The securityUtility encode option can be used to encode the password.
<keyStore id="defaultKeyStore" password="yourPassword" />

This configuration is the minimum that is needed to create an SSL configuration. In this configuration,
the server creates the keystore and certificate if it does not exist during SSL initialization. The
password that is provided must be at least 6 characters long. The keystore is assumed to be a JKS
keystore that is called key.jks in the server home/resources/security directory. If the file does not exist
the server creates it for you. If the server creates the keystore file, it also creates the certificate inside
of it. The certificate is a self-signed certificate with a validity period of 365 days, the CN value of the
certificate's subjectDN is the host name of the machine where the server is running, and has a
signature algorithm of SHA256withRSA.

Note: When the use of a collective controller is not practical, perhaps there is only one or two Liberty
servers, a self-signed certificate can be used to restrict the number of clients that can connect to the
Liberty member server. It is suggested that an IHS server is used in front of the Liberty servers, where
an appropriate CA signed certificate can be used, along with CN whitelisting to control which clients
can connect to HIS. A trusted channel between IHS and the Liberty member server can be maintained
by using the self signed certificate.
An example of a SAF keyring in the minimal configuration:
<keyStore id="defaultKeyStore" location="safkeyring:///WASKeyring"

type="JCERACFKS" password="password" fileBased="false"
readOnly="true" />

RACF® keyring needs to be set up before you configure them for use by the Liberty server. The server
does not create certificates and add them to RACF.
The single keystore entry for a minimal SSL configuration can be extended to include the location and
type as well.
<keyStore id="defaultKeyStore" location="myKeyStore.p12" password="yourPassword" type="PKCS12"/>

1152 WebSphere Application Server Liberty Core 8.5.5

|
|
|
|

The location parameter can be an absolute path to the keystore file. If it is an absolute path, then the
keystore file is assumed to have been already created. Keystore of other types can also be specified in
the minimal SSL configuration if the keystore file is already created. When the minimal SSL
configuration is used, the SSL configuration defaults are used to create the SSL context for an SSL
handshake. The configuration protocol is SSL_TLS by default. The HIGH ciphers, 128 bit, and higher
cipher suites can be used.

SSL configuration attributes
SSL configurations contain attributes that you use to control the behavior of the server SSL transport
layer on Liberty. This topic iterates all the settings available for an SSL configuration.

SSL Feature

To enable SSL on a server, the SSL feature must be included in the server.xml file:
<featureManager>
<feature>ssl-1.0</feature>

</featureManager>

SSL Default

You can have multiple SSL configurations configured. If more than one SSL configuration is configured,
then the default SSL configuration must be specified in the server.xml file that uses the sslDefault
service configuration.

Table 84. Attribute of the sslDefault element. This table describes the attribute of the sslDefault element.

Attribute Description Default Value

sslRef The sslRef attribute specifies the name of
the SSL configuration to be used as the
default.

The default SSL Configuration name is
defaultSSLConfig.

In the server.xml file, the entry is as follows:
<sslDefault sslRef="mySSLSettings" />

SSL Configuration

You use the SSL configuration attributes to customize the SSL environment to suit your needs. These
attributes can be set on the ssl service configuration element in the server.xml file.

Table 85. Attributes of the SSL element. This table describes the attributes of the ssl element.

Attribute Description Default Value

id The id attribute assigns a unique name to
the SSL configuration object.

No default value; a unique
name must be specified.

keyStoreRef The keyStoreRef attribute names the
keystore service object that defines the
SSL configurations keystore. The keystore
holds the key that is required to make an
SSL connection.

No default value; a keystore
reference must be specified.

trustStoreRef The trustStoreRef attribute names the
keystore service object that defines the
SSL configurations truststore. The
truststore holds certificates that are
required for signing verification.

trustStoreRef is an
optional attribute. If the
reference is missing, the
keystore that is specified by
keyStoreRef is used.

Chapter 7. Securing Liberty and its applications 1153

Table 85. Attributes of the SSL element (continued). This table describes the attributes of the ssl element.

Attribute Description Default Value

clientAuthentication The clientAuthentication attribute
determines whether SSL client
authentication is required.

Default value is false.

clientAuthenticationSupported The clientAuthenticationSupported
attribute determines whether SSL client
authentication is supported. The client
does not have to supply a client
certificate. If the clientAuthentication
attribute is set to true, the value of the
clientAuthenticationSupported attribute
is overwritten.

Default value is false.

sslProtocol The sslProtocol attribute defines the SSL
handshake protocol. The protocol can be
SDK-dependent, so if you modify the
protocol make sure that the value is
supported by the SDK you are running
under.

Default value is SSL_TLS.

securityLevel The securityLevel attribute determines
the cipher suite group to be used by the
SSL handshake. The attribute has one of
the following values:

v HIGH (128-bit ciphers and higher)

v MEDIUM (40-bit ciphers)

v WEAK (for all ciphers without encryption)

v CUSTOM (if the cipher suite group is
customized).

When you set the enabledCiphers
attribute with a specific list of ciphers, the
system ignores this attribute.

Default value is HIGH.

enabledCiphers The enabledCiphers attribute is used to
specify a unique list of cipher suites.
Separate each cipher suite in the list with
a space. If the enabledCiphers attribute is
set, then the securityLevel attribute is
ignored.

No default value.

serverKeyAlias The serverKeyAlias attribute names the
key in the keystore to be used as the SSL
configurations key. This attribute is only
required if the keystore has more than one
key entry in it. If the keystore has more
than one key entry and this attribute does
not specify a key, then the JSSE picks a
key.

No default value.

clientKeyAlias The clientKeyAlias attribute names the
key in the keystore to be used as the key
for SSL configuration when
clientAuthentication is enabled. The
attribute is only required if the keystore
contains more than 1 key entry.

No default value.

Note:

1154 WebSphere Application Server Liberty Core 8.5.5

v The key manager is used by the SSL handshake to determine what certificate alias to use. The key
manager is not configured in the server.xml file. It is retrieved from the security property
ssl.KeyManagerFactory.algorithm of the SDK.

v The trust manager is used by the SSL handshake to make trust decisions. The trust manager is not
configured in the server.xml file. It is retrieved from the security property
ssl.TrustManagerFactory.algorithm of the SDK.

Here is an example of how the ssl element is configured in the server.xml file:
<!-- Simple ssl configuration service object. This assumes there is a keystore object named -->
<!-- defaultKeyStore and a truststore object named defaultTrustStore in the server.xml file. -->
<ssl id="myDefaultSSLConfig"

keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore" />

<!-- A ssl configuration service object that enabled clientAuthentication -->
<!-- and specifies the TLS protocol be used. -->
<ssl id="myDefaultSSLConfig"

keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore"
clientAuthentication="true"
sslProtocol="TLS" />

<!-- An SSL configuration service object that names the serverKeyAlias -->
<!-- to be used by the handshake. This assumes there is a certificate -->
<!-- called "default" in the keystore defined by keyStoreRef. -->
<ssl id="myDefaultSSLConfig"

keyStoreRef="defaultKeyStore"
serverKeyAlias="default" />

Keystore Configuration

The keystore configuration consists of the attributes that are required to load a keystore. These attributes
can be set on the keystore service configuration in the server.xml file.

Table 86. Attributes of the keystore element. This table explains the attributes of the keystore element.

Attribute Description Default Value

id The id attribute defines a unique
identifier of the keystore object.

No default value, a unique name
must be specified.

location The location attribute specifies the
keystore file name. The value can
include the absolute path to the file.
If the absolute path is not provided,
then the code looks for the file in the
${server.config.dir}/resources/
security directory.

In the SSL minimal configuration, the
location of the file is assumed to be
${server.config.dir}/resources/
security/key.jks.

type The type attribute specifies the type
of the keystore. Check that the
keystore type that you specify is
supported by the SDK you are
running on.

Default value is jks.

Chapter 7. Securing Liberty and its applications 1155

Table 86. Attributes of the keystore element (continued). This table explains the attributes of the keystore element.

Attribute Description Default Value

password The password attribute specifies the
password that is used to load the
keystore file. The password can be
stored either in clear text or encoded.
For information about how to encode
the password, see the securityUtility
encode option.

Must be provided.

provider The provider attribute specifies the
provider to be used to load the
keystore. Some keystore types
required a provider other than the
SDK default.

By default no provider is specified.

fileBased The fileBased attribute specifies
whether the keystore is file-based.

Default value is true.

pollingRate The rate at which the server checks
for updates to a keystore file.

500ms.

updateTrigger The method that is used to trigger
the server to reload a keystore file.
Specify polled to enable the server
for checking the keystore file for
changes, mbean to enable the server to
wait for an mbean to reload the
keystore file, or disabled to disable
file monitoring.

disabled.

Keystore files can be reloaded by the server if the updateTrigger attribute is set to polled or mbean. If
polled is enabled, then the server monitors the keystore file for changes based on the rate set in the
pollingRate attribute. If the updateTrigger attribute is set to, mbean then the server will reload the
keystore file when it receives notification from the
WebSphere:service=com.ibm.ws.kernel.filemonitor.FileNotificationMBean MBean. File monitoring is
disabled by default.

Here is an example of how the keystore element is configured in the server.xml file:
<!-- A keystore object called defaultKeyStore provides a location, -->
<!-- type, and password. The MyKeyStoreFile.jks file is assumed -->
<!-- to be located in ${server.config.dir}/resources/security -->
<!-- This keystore is configured to be monitored every 5 seconds -->
<!-- for updates -->

<keyStore id="defaultKeyStore"
location="MyKeyStoreFile.jks"
type="JKS" password="myPassword"
pollingRate="5s"
updateTrigger="polled" />

<!-- A keystore object called defaultKeyStore provides a location, -->
<!-- type, and password. The MyKeyStoreFile.jks file is assumed -->
<!-- to be located in ${server.config.dir}/resources/security -->
<!-- This keystore is configured to be reloaded when the server -->
<!-- recieves an mbean notification to do so -->

<keyStore id="defaultKeyStore"
location="MyKeyStoreFile.jks"
type="JKS" password="myPassword"
updateTrigger="mbean" />

1156 WebSphere Application Server Liberty Core 8.5.5

Full SSL Configuration Example

Here is an example of a full SSL configuration in the server.xml file. This example has the following SSL
configurations:
v defaultSSLSettings

v mySSLSettings

By default, the SSL configuration is set to defaultSSLConfig.
<featureManager>
<feature>ssl-1.0</feature>

</featureManager>

<!-- default SSL configuration is defaultSSLSettings ->
<sslDefault sslRef="defaultSSLSettings" />
<ssl id="defaultSSLSettings"

keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore"
clientAuthenticationSupported="true" />

<keyStore id="defaultKeyStore"
location="key.jks"
type="JKS" password="defaultPWD" />

<keyStore id="defaultTrustStore"
location="trust.jks"
type="JKS" password="defaultPWD" />

<ssl id="mySSLSettings"
keyStoreRef="myKeyStore"
trustStoreRef="myTrustStore"
clientAuthentication="true" />

<keyStore id="LDAPKeyStore"
location="${server.config.dir}/myKey.p12"
type="PKCS12"
password="{xor}CDo9Hgw=" />

<keyStore id="LDAPTrustStore"
location="${server.config.dir}/myTrust.p12"
type="PKCS12"
password="{xor}CDo9Hgw=" />

Keystores
Liberty can create only a keystore type of Java Keystore (JKS). Support for other types of keystore in
Liberty can depend on what is supported by the underlying Java Runtime Environment (JRE). The
following are the different keystore types in Liberty.

For more information on configuration attributes of the keystore element, see “SSL configuration
attributes” on page 1153.

JKS and JCEKS

Java Keystore (JKS) and Java Cryptography Extensions Keystore (JCEKS) are common between the IBM
JRE and the Oracle JRE, and can be configured the same using either JRE. JKS is the default keystore type
in Liberty, and the only type of keystore Liberty can create. If no keystore type is specified in the
configuration, JKS is used.

An example of JKS keystore configuration is as follows:
<keyStore id="sampleJKSKeyStore"
location="MyKeyStoreFile.jks"
type="JKS" password="myPassword" />

Chapter 7. Securing Liberty and its applications 1157

An example of JCEKS keystore configuration is as follows:
<keyStore id="sampleJCEKSKeyStore"
location="MyKeyStoreFile.jceks"
type="JCEKS" password="myPassword" />

8.5.5.9

PKCS11 keystore

A hardware cryptographic keystore can be configured so that the Liberty server can be used to provide
cryptographic token support.

The user must provide a hardware device-specific configuration file. The configuration file is a text file
that contains entries in the format of attribute = value. The file must contain at least the name and
library attribute. For example:
name = HWDevice
library = /opt/foo/lib/libpkcs11.so

The name attribute is a name that is being given to this instance of the device. The library attribute
contains a path to the library provided by the hardware device to access the device. The configuration file
can also contain configuration data specific to the hardware device.

To configure a PKCS11 keystore in Liberty the keystore element must contain the following fields:
v id - Uniquely identify the keystore element in the configuration.
v location - The path to the hardware device-specific configuration file.
v type - PKCS11 must be specified as the keystore type.
v fileBased - Must be false to identify this keystore as a device.
v password - Password that is needed to access keys in the device.
v provider - The provider that is needed. For the IBM JRE, the value must be IBMPKCS11Impl and for

Oracle JRE it must be SunPKCS11.

Here is an example configuration:
<keyStore id="hwKeyStore"

location="${server.config.dir}/HWCrypto.cfg"
type="PKCS11"
fileBased="false"
password="{xor}Lz4sLCgwLTs="
provider="IBMPKCS11Impl"/>

PKCS12 keystore

Public Key Cryptography Standards #12 (PKCS12) keystore can be used, but not created by Liberty, when
you use the IBM JRE. An example of PKCS12 keystore configuration is as follows:

<keyStore id="samplePKCS12KeyStore"
location="MyKeyStoreFile.p12"
type="PKCS12" password="myPassword" />

CMS keystore

CMS keystore can be configured, but not created by Liberty, when you use the IBM JRE. However, some
special configuration is required. The CMS provider is not available by default on the IBM JRE, therefore
it must be added to the provider list in the java.security file of the IBM JRE. In the following example,
the com.ibm.security.cmskeystore.CMSProvider class is added to the end of the list. Ensure that the
provider number is correct in the provider list. Liberty does not use the CMS keystore stash file to gain
access to the keystore.

1158 WebSphere Application Server Liberty Core 8.5.5

security.provider.1=com.ibm.jsse2.IBMJSSEProvider2
security.provider.2=com.ibm.crypto.provider.IBMJCE
security.provider.3=com.ibm.security.jgss.IBMJGSSProvider
security.provider.4=com.ibm.security.cert.IBMCertPath
security.provider.5=com.ibm.security.sasl.IBMSASL
security.provider.6=com.ibm.xml.crypto.IBMXMLCryptoProvider
security.provider.7=com.ibm.xml.enc.IBMXMLEncProvider
security.provider.8=org.apache.harmony.security.provider.PolicyProvider
security.provider.9=com.ibm.security.jgss.mech.spnego.IBMSPNEGO
security.provider.10=com.ibm.security.cmskeystore.CMSProvider

To use the CMS keystore, the configuration in the server.xml file is as follows:
<keyStore id="sampleCMSKeyStore"
password="myPassword"
location="MyKeyStoreFile.kdb"
provider="IBMCMSProvider"
type="CMSKS"/>

Enabling the IBM JCE Hybrid Provider for Liberty
The IBM JCE Hybrid Provider IBMJCEHYBRID, is for use by an application that is designed to use
cryptographic hardware and processors when they are available, but continues without those
cryptographic features when they are not available. Using the IBMJCEHYBRID provider enables an
application to take advantage of JCE providers without having to include complex error handling for
when cryptographic features are not available.

Before you begin

Ensure that the IBMJDK running on z/OS is at Java 7 SR3 or later.

About this task

The IBMJCEHYBRID provider does not do any cryptographic operations, but routes requests to JCE
providers registered with the Java Security Framework. The IBMJCEHYBRID provider must be the first JCE
provider in the active JVM provider list, which is initialized from the java.security provider list. The
IBMJCEHYBRID provider routes requests to, and provides failover for, JCE providers according to the
security provider registrations done at JVM initialization. This function enables an application to take
advantage of cryptographic features when they are available and to use a provider that does not depend
on these features when they are not available.

Procedure
1. Add the provider to the java.security file with the hardware cryptographic provider.

security.provider.1=com.ibm.jsse2.IBMJSSEProvider2
security.provider.2=com.ibm.crypto.ibmjcehybrid.provider.IBMJCEHYBRID
security.provider.3=com.ibm.crypto.hdwrCCA.provider.IBMJCECCA
security.provider.4=com.ibm.crypto.provider.IBMJCE
security.provider.5=com.ibm.security.jgss.IBMJGSSProvider
security.provider.6=com.ibm.security.cert.IBMCertPath
security.provider.7=com.ibm.security.sasl.IBMSASL

2. Configure the keyring in file server.xml to set the location to use safkeyringhybrid, and the type to
JCEHYBRIDRACFKS. The following example shows the definition of a minimal SSL configuration
keystore.
<keyStore id="defaultKeyStore" location="safkeyringhybrid:///mykeyring" type="JCEHYBRIDRACFKS"
password="{<u>xor</u>}Lz4sLCgwTs=" fileBased="false" readOnly="true"/>

SSL defaults in Liberty
8.5.5.7

Specifies the default SSL certificate, keystore, and configuration in Liberty.

Chapter 7. Securing Liberty and its applications 1159

|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|

|
|
|

|
|

|

Default Certificate and keystore

As a convenience tool to help developers get up and running, users can use the createSSLCertificate
parameter in the securityUtility command to create self-signed certificates. Users can either call the tool
directly from the command line or let the server call it to create the default certificate and keystore on
server startup.

The server creates the default keystore and certificate if a user has a keystore element that is called
defaultKeyStore in the server.xml file. For example:
<keyStore id="defaultKeyStore" password="yourPassword" />

If a keystore configuration for the defaultKeyStore is in place and the keystore does not exist when the
server starts, the server calls the createSSLCertificate parameter to create the keystore with a password
that is specified in the configuration.

Default keystore details:
v Location: The keystore file is called key.jks and is in the server or clients resources/security

directory.
v Keystore type: The keystore type is JKS.
v Password: Password that is provided in the configuration.

Default certificate that is created by Liberty details:
v Type: The certificate is a self-signed certificate.
v Size: The default certificate size is 2048.
v Signature algorithm: The signature algorithm for the certificate is SHA256WITHRSA.
v Validity: The certificate is valid for 365 days.
v SubjectDN: The certificate gets created with CN=<hostname>,OU=<client or server name>,O=ibm,C=US

as the SubjectDN.

The createSSLCertificate parameter can be called on the command line if users would like to customize
the certificate.

Note: When the use of a collective controller is not practical, perhaps there is only one or two Liberty
servers, a self-signed certificate can be used to restrict the number of clients that can connect to the
Liberty member server. It is suggested that an IHS server is used in front of the Liberty servers, where an
appropriate CA signed certificate can be used, along with CN whitelisting to control which clients can
connect to HIS. A trusted channel between IHS and the Liberty Member server can be maintained by
using the self signed certificate.

Default SSL configuration

The minimal configuration that is needed for SSL is a single keystore element called defaultKeyStore.
When the defaultKeyStore exists in the configuration the run time builds an SSL configuration that is
called defaultSSLConfig around it.

defaultSSLConfig details:
v Protocol: When the IBM JRE is used, the protocol is set to SSL_TLS by default. If the Oracle JRE is used

SSL is used as the protocol.
v Ciphers: The cipher list is built by getting a list of supported ciphers from the underlying JRE. By

default the list is reduced to all the ciphers that are 128 bit and higher or 3DES. RC4 is removed because
they are not considered safe to have enabled. ECDHE ciphers are removed because they can cause errors
if you are going to a server that does not support them. The cipher list can be customized to include
them.

1160 WebSphere Application Server Liberty Core 8.5.5

v Client authentication: By default clientAuthentication and clientAuthenticationSupported are
disabled.

v Keystore: In the default configuration defaultKeyStore is used as both the key and truststore.

An ssl element that is called defaultSSLConfig can be entered in the server.xml file for customization of
the SSL configuration properties. A customized ssl element that is called defaultSSLConfig is still treated
like the default SSL configuration as long as a different SSL configuration has not been identified as the
default. For more information on attributes that can be used to customize an SSL configuration, see SSL
configuration attributes.

To designate a different ssl element in the configuration as the default SSL configuration, users can
identify that with the sslDefault element.
<sslDefault sslRef="customSSLConfiguration" />

The attributes from the Liberty default SSL configuration are used to create an SSLContext. That
SSLContext is set on the process as the default SSLContext by using the Java API
SSLContext.setDefault(). If an application makes a call to an API like httpURLConnection() with an
https URL and does not provide any SSL information, then the application picks up the default
SSLContext of the process and in this case is the SSLContext that is created with the Liberty default SSL
configuration.

If there is no default SSL configuration in Liberty, then the JSSE's default SSLContext is used. The JSSE's
default SSLContext uses the cacerts file for the keystore and truststore. There is no default SSL
configuration in Liberty if there is no SSL feature that is defined or if the SSL configuration that exists is
not identified as the default. The default configuration is either the called defaultSSLConfig, which can
be implicit if a defaultKeyStore is defined or an alternative SSL configuration can be designated by using
the sslDefault element.

The javax system properties, javax.net.ssl.keystore, is used to set up the keystore and truststore
information for the default SSL context and must not be used. If the properties are set on the process,
then the call to SSLContext.setDefault() wipes them out.

Creating SSL certificates for your Liberty using the Utilities menu
Using the Liberty Utilities menu in the developer tools, you can create an SSL certificate.

Procedure
1. In the Servers view, right-click your Liberty server, and select Utilities > Create SSL Certificate.
2. On the Create SSL Certificate page, you can create a default secure socket layer (SSL) certificate to use

with your server.
a. In the Keystore password field, type a password for your SSL certificate.
b. Click the Specify validity period (days) field, and specify the number of days you want the

certificate to be valid for. Minimum length of time is 365 days.
c. Click the Specify subject (DN): field, and provide a value for your SSL subject.

3. Click Finish.

Creating SSL certificates from the command line
You can use the securityUtility command to create a default SSL certificate for use by the Liberty
configuration.

Procedure
1. Open a command line, then change directory to the wlp/bin directory.
2. Create an SSL certificate.

Chapter 7. Securing Liberty and its applications 1161

Run the following command. If you do not specify a server name or a password, the command does
not run. See “securityUtility command.”
securityUtility createSSLCertificate --server=server_name --password=your_password

Results

You have created a default keystore key.jks for the specified server. The keystore file is located under the
/resources/security directory of the specified server. If a default keystore already exists, the command
does not execute successfully.

What to do next

You can configure your server to use the keystore and enable the SSL in the server configuration by
adding the following lines to the server configuration file:

<featureManager>
<feature>ssl-1.0</feature>

</featureManager>

<keyStore id="defaultKeyStore" password="keystore_password" />

See “Enabling SSL communication in Liberty” on page 1152.

securityUtility command
The securityUtility command supports plain text encryption and SSL certificate creation for Liberty.

Syntax

The command syntax is as follows:
securityUtility task [options]

Where the options are different based on the value of task.

Parameters

The following tasks are available for the securityUtility command:

encode
Encodes the provided text by using Base64. If no options are specified, the command enters
interactive mode. Otherwise, the provided text is encoded. If the text includes spaces it must be
put in quotation marks.

The options are:

--encoding=encoding_type
Specifies how to encode the password. Supported encodings are xor, aes, and hash. If this
option is not provided, the default is xor.

Note: The hash encoding option is used for encoding passwords for the basic user
registry only.

--key=encryption_key
Specifies the key to be used when encoding using AES encryption. This string is hashed
to produce an encryption key that is used to encrypt and decrypt the password. The key
can be provided to the server by defining the variable wlp.password.encryption.key
whose value is the key. If this option is not provided, a default key is used.

--notrim
Specify whether space characters are removed from the beginning and end of the

1162 WebSphere Application Server Liberty Core 8.5.5

specified text. If this option is specified, the provided text is encoded as it is. If this
option is not specified, space characters from the beginning and end of the specified text
is removed.

text The text that is to be encoded.

See also “The limits to protection through password encryption” on page 616.

createSSLCertificate
Creates a default keystore including an SSL certificate for use in a server or client configuration.

8.5.5.6

Keystore details:
location: In the server's or client's directory under resource/security/key.jks.

type: JKS

password: Password provided with the --password option. The password is needed to
open the keystore file and retrieve the key from the keystore file.

8.5.5.6

Certificate details:
type: Self-signed certificate

size: 2048 by default, alternate size can be specified with the --keySize option.

signature algorithm: SHA256withRSA, can be customized with the--sigAlg option.

validity: 365 days by default, can be customized with the --validity option.

SubjectDN: CN=<hostname>,OU=<client or server name>,O=ibm,C=us by default, can be
customized with the --subject option.

The options are:

8.5.5.6 --server=name
Specifies the name of the Liberty server for which the keystore and certificate is created.
This option cannot be used if the--client option is specified.

8.5.5.6 --client=name
Specifies the name of the Liberty client for which the keystore and certificate is created.
This option cannot be used if the --server option is specified.

8.5.5.6 --keySize=size
Specifies the certificate key bit size. The default value is 2048.

--password=password
Specifies the password to be used in the keystore, which must be at least 6 characters in
length. This option is required.

--passwordEncoding=password_encoding_type
Specifies how to encode the keystore password. Supported encoding value is xor or aes.
If this option is not provided, a default value of xor is used.

--passwordkey=password_encryption_key
Specifies the key to use to encode the keystore password by using AES encryption. This
string is hashed to produce an encryption key that is used to encrypt and decrypt the
password. The key can be provided to the server by defining the variable
wlp.password.encryption.key whose value is the key. If this option is not provided, a default
key is used.

--validity=days
Specifies the number of days that the certificate is valid, which must be equal to or
greater than 365. If this option is not provided, a default value of 365 is used.

Chapter 7. Securing Liberty and its applications 1163

8.5.5.6 --subject=DN
Specifies the Distinguished Name (DN) for the certificate subject and issuer. If this option
is not provided, a default value of CN=<hostname>,OU=<server or client
name>,O=ibm,C=us is used. The CN value is retrieved by using a java method to get the
machine's local host name. If the host name cannot be resolved, the IP address is
returned.

8.5.5.7 --sigAlg
Specifies the signature algorithm that is used to sign the self-signed certificate. The
signature algorithm that is supported depends on what is supported by the underlying
JRE. Stronger signature algorithms might require the JRE to have the unrestricted policy
file in place.

The command accepts SHA256withRSA (default), SHA1withRSA, SHA384withRSA,
SHA512withRSA, SHA1withECDSA, SHA256withECDSA, SHA384withECDSA, and
SHA512withECDSA. The signature algorithms that end with RSA creates certificates with
RSA keys and those that end with ECDSA creates certificates with Elliptical Curve (EC)
keys.

Note: If you are using certificates that are created with EC keys, then your server needs a
customized ciphers list in the ssl configuration to include EC ciphers.

help Prints help information for a specified task.

Usage

The following examples demonstrate correct syntax:
securityUtility encode --encoding=aes GiveMeLiberty
securityUtility createSSLCertificate --server=myserver --password=mypassword --validity=365

--subject=CN=mycompany,O=myOrg,C=myCountry
securityUtility help createSSLCertificate

CAUTION:
Different operating system might treat some characters differently. For the Windows environment, if
you have ! in your input string, it needs to be escaped by the ^ character. For example,
D:\Liberty\images\855\Liberty855\wlp\bin>securityUtility encode "a^!"

Configuring your web application and server for client certificate
authentication
You can configure your web application on Liberty using SSL client authentication.

Before you begin

This topic assumes that you have already created the SSL certificates, for example as described in
“Creating SSL certificates from the command line” on page 1161.

About this task

Client certificate authentication occurs if the server-side requests that the client-side send a certificate. A
WebSphere server can be configured for client certificate authentication on the SSL configuration. To do
this, you add the ssl-1.0 Liberty feature to the server.xml file, along with code that tells the server the
keystore information for authentication.

For details of which aspects of SSL are supported, see “Liberty features” on page 483.

1164 WebSphere Application Server Liberty Core 8.5.5

Procedure
1. Ensure that the deployment descriptor for your web application specifies client certificate

authentication as the authentication method to use.
Check that the deployment descriptor includes the following element:
<auth-method>CLIENT-CERT</auth-method>

Note: You can use a tool such as Rational Application Developer to create the deployment descriptor.
2. Optional: Generate an SSL certificate using the command line. See “securityUtility command” on page

1162.
3. Configure your server to enable SSL client authentication by adding the following lines to the

server.xml file:
<featureManager>

<feature>ssl-1.0</feature>
<featureManager>

<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore" clientAuthenticationSupported="true" />

<keyStore id="defaultKeyStore" location="key.jks" type="JKS" password="defaultPWD" />
<keyStore id="defaultTrustStore" location="trust.jks" type="JKS" password="defaultPWD" />

v If you specify clientAuthentication="true", the server requests that a client sends a certificate.
However, if the client does not have a certificate, or the certificate is not trusted by the server, the
handshake does not succeed.

v If you specify clientAuthenticationSupported="true", the server requests that a client sends a
certificate. However, if the client does not have a certificate, or the certificate is not trusted by the
server, the handshake might still succeed.

v If you do not specify either clientAuthentication or clientAuthenticationSupported, or you
specify clientAuthentication="false" or clientAuthenticationSupported="false", the server does
not request that a client send a certificate during the handshake.

4. Add a client certificate to your browser. See the documentation of your browser for adding client
certificates.

5. Make sure the server trusts any client certificates that are used.
6. Make sure any client certificates used for client authentication are mapped to a user identity in your

registry.
v For the basic registry, the user identity is the common name (CN) from the distinguished name

(DN) of the certificate.
v For a Lightweight Directory Access Protocol (LDAP) registry, the DN from the client certificate

must be in the LDAP registry.
7. To use basic authentication, user ID and password only, if client certificate authentication does not

succeed, add the following line to your server.xml file.
<webAppSecurity allowFailOverToBasicAuth="true" />

Note: If you specify allowFailOverToBasicAuth="false" or do not specify allowFailOvertoBasicAuth,
and the client certificate authentication does not succeed, the request generates a 403 Authentication
error message, and the client is not prompted for basic authentication.

Setting up Liberty to run in SP800-131a
You can set up Liberty to meet the SP800-131a requirement that is originated by the National Institute of
Standards and Technology (NIST).

About this task

SP800-131a requires longer key lengths and stronger cryptography. The specification also provides a
configuration that enables users to move to a strict enforcement of SP800-131a. The configuration also

Chapter 7. Securing Liberty and its applications 1165

enables users to run with a mixture of settings from both FIPS140-2 and SP800-131a. SP800-131a can be
run in two modes, transition and strict. The transition mode is offered to give user a setting to move their
environment to SP800-131a strict mode. In transition mode, it is optional to use the SP800-131a required
certificates and to set the protocol to SP800-131a

Strict enforcement of SP800-131a requirements on Liberty includes the following:
v The use of the TLSv1.2 protocol for the Secure Sockets Layer (SSL) context.
v Certificates must have a minimum length of 2048. Elliptical Curve (EC) certificate require a minimum

size of 244-bit curves.
v ⌂Certificates must be signed with a signature algorithm of SHA256, SHA384, or SHA512. Valid

signatureAlgorithms include:
– SHA256withRSA
– SHA384withRSA
– SHA512withRSA
– SHA256withECDSA
– SHA384withECDSA
– SHA512withECDSA

Note: If SHA384withECDSA or SHA512withECDSA is used, the unrestricted policy file needs to be in
place for the IBM JDK.

v SP800-131a approved Cipher suites.

Note: To configure a Liberty server to run in SP800-131a mode, users must be running with a level of the
IBM JDK that supports SP800-131a. The minimal levels of the IBM JDK include Java 6 sr 10, Java 6.0.1 sr
2, or Java 7.

For more information about the SP800-131a standard, see the National Institute of Standards and
Technology.

You can configure Liberty to run in SP800-131a strict mode or transition mode as following:

Procedure
v Configure Liberty to run in SP800-131a strict mode.

1. Make sure that you are running on a level of the IBM JDK that supports SP800-131a.
2. Make sure that certificates of your server meet the criteria for SP800-131a.

– Certificates have a minimum length of 2048 and Ellipical Curve (EC) certificates have a
minimum size of 244-bit curve.

– Certificates are signed with at least SHA256 or signed with one of the signature algorithms listed
previously.

3. Configure your SSL Configuration to use the TLSv1.2 protocol. See “Enabling SSL communication
in Liberty” on page 1152 and “SSL configuration attributes” on page 1153 for more details.

4. When using collectives, if the sslProtocol is updated, two configuration changes must be made:
– ${wlp.install.dir}/etc/server.env must specify the -Dhttps.protocols property in order for

the ${wlp.install.dir}/bin/collective utility to successfully communicate with the controller.
For example:
JVM_ARGS=-Dhttps.protocols=TLSv1.2

– Each internal collective replication ssl id must be updated with the desired protocol.
For Example:
<ssl id="controllerConnectionConfig" sslProtocol="TLSv1.2"/>

<ssl id="memberConnectionConfig" sslProtocol="TLSv1.2"/>

1166 WebSphere Application Server Liberty Core 8.5.5

|
|

http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html

5. Optional: If Elliptical Curve (EC) ciphers are required, list them in the enabledCiphers attribute. EC
ciphers are not included when cipher lists are generated using the securityLevel attribute of the
SSL Configuration. For the full list of ciphers, see the Java Technology Security information.

6. The Java Secure Socket Extension (JSSE) is enabled to run in SP800-131a strict mode by setting the
system property com.ibm.jsse2.sp800-131 to strict. For example, -Dcom.ibm.jsse2.sp800-
131=strict. See “Customizing the Liberty environment” on page 947 for how to set system
properties in the jvm.options file.

v Configure Liberty to run in SP800-131a transition mode.
1. Make sure that you are running a level of the IBM JDK that support SP800-131a.
2. Optional: If Elliptical Curve (EC) ciphers are required, list them in the enabledCiphers attribute. EC

ciphers are not included when cipher lists are generated using the securityLevel attribute of the
SSL Configuration. For the full list of ciphers, see the Java Technology Security information.

3. The JSSE is enabled to run in SP800-131a transition mode by setting the system property
com.ibm.jsse2.sp800-131 to transition. For example, -Dcom.ibm.jsse2.sp800-131=transition. See
“Customizing the Liberty environment” on page 947 for how to set system properties in the
jvm.options file.

Note: If you change your protocol to use TLSv1.2, make sure that your browser supports TLSv1.2.

Configuring an httpEndpoint to use an SSL configuration other than
the default
By default, an httpEndpoint element uses the server default SSL configuration, defaultSSLConfig. You can
configure an httpEndpoint to use an SSL configuration other than the default SSL configuration.

About this task

You can configure an httpEndpoint to use an SSL configuration in multiple ways. The following examples
show different ways to configure an httpEndpoint to use an SSL configuration other than the default SSL
configuration.

Procedure
v Set the SSL options directly on the httpEndpoint. The following example shows how to set the SSL

options on the httpEndpoint, and assumes that you have as SSL configuration that is named
wasListenerSSLConfig already defined that is not in this example:
<httpEndpoint id="defaultHttpEndpoint"
host="${listener.host}"
httpPort="${http.port}"
httpsPort="${https.port}">
<sslOptions sslRef="wasListenerSSLConfig" />

</httpEndpoint>

v Reference an sslOption element in the httpEndpoint. The following example shows how to reference an
sslOption element, and assumes that you have an SSL configuration that is named
wasListenerSSLConfig already defined that is not in this example:
<sslOptions id="mySSLOptions" sslRef="wasListenerSSLConfig" />

<httpEndpoint id="defaultHttpEndpoint"
host="${listener.host}"
httpPort="${http.port}"
httpsPort="${https.port}"
sslOptionsRef="mySSLOptions"

/>

v Change the default sslOptions element to point to an SSL configuration other than the default SSL
configuration. This option does not alter the httpEndpoint. The following example shows how to

Chapter 7. Securing Liberty and its applications 1167

|
|
|

|
|
|

http://www.ibm.com/developerworks/java/jdk/security/
http://www.ibm.com/developerworks/java/jdk/security/

change the default sslOptions element, and assumes that you have an SSL configuration that is named
wasListenerSSLConfig already defined that is not in this example:
<sslOptions id="defaultSSLOptions" sslRef="wasListenerSSLConfig" />

Authenticating users in Liberty
The Liberty server uses a user registry to authenticate a user and retrieve information about users and
groups to perform security-related operations, including authentication and authorization.

About this task

To learn about how authentication works in Liberty, see “Authentication” on page 585.

The authentication tasks that you can configure might vary depending on your requirements. Unless you
have used the quickStartSecurity element that can configure only one user, you have to configure the user
registry at the least. You do not have to configure the values for JAAS, authentication Cache and SSO
tasks unless you want to change the default values. Configure TAI configuration only when you have an
implementation of TAI interface to handle authentication.

You can complete one or more of the following authentication tasks:

Procedure
v Configure authentication cache in Liberty
v Configure a custom JAAS login module for Liberty
v Configure SSO on Liberty
v Configure a user registry for Liberty
v Configure RunAS authentication in Liberty
v Configure TAI for Liberty

Configuring a user registry for Liberty
You can store user and group information for authentication in several types of registries. For example
you can use a basic user registry, an LDAP registry, or a Custom User Registry. Optionally, you can
configure two or more LDAP registries so that the operations are executed on all the configured
registries. For example, when you perform an operation of searching a user, the search is performed on
all the configured LDAP registries.

Procedure
v Configure a basic user registry for Liberty
v Configure an LDAP user registry for Liberty

Configuring a basic user registry for Liberty
You can configure a basic user registry in Liberty for authentication.

About this task

You can use a basic user registry by defining the users and groups information for authentication on the
Liberty server. To do this, you add the appSecurity-2.0 Liberty feature to the server.xml file, along with
user information in the basicRegistry element.

Procedure
1. Add the appSecurity-2.0 Liberty feature to the server.xml file.
2. Optional: To use SSL, add the ssl-1.0 Liberty feature in the server.xml file. See “Enabling SSL

communication in Liberty” on page 1152.

1168 WebSphere Application Server Liberty Core 8.5.5

3. Configure the basic registry for the server as follows:
<basicRegistry id="basic" realm="customRealm">

<user name="mlee" password="p@ssw0rd" />
<user name="rkumar" password="pa$$w0rd" />
<user name="gjones" password="{xor}Lz4sLCgwLTs=" />
<group name="students">

<member name="mlee" />
<member name="rkumar" />

</group>
</basicRegistry>

Notes:

v You must use unique names for your users and groups.
v You should remove all trailing and leading spaces from the user and group names.
v If user ID or password contains characters other than US-ASCII, make sure that the file is saved by

using UTF-8 character encoding.

v Distributed operating systems If you use the WebSphere Application Server Developer Tools for Eclipse,
the password is encoded for you automatically.

v If you edit the server.xml file directly, you can use the securityUtility encode command to
encode the password for each user. The securityUtility command-line tool is available in the
$INSTALL_ROOT/bin directory. When you run the securityUtility encode command, you either
supply the password to encode as an input from the command line or, if no arguments are
specified, the tool prompts you for the password. The tool then outputs the encoded value. Copy
the value output by the tool, and use that value for the password. For example, to encode the
password GiveMeLiberty, run the following command:
securityUtility encode GiveMeLiberty

v There are several security configuration examples on the WASdev.net website for reference when
configuring security for your applications on Liberty.

Configuring LDAP user registries in Liberty
You can configure one or more Lightweight Directory Access Protocol (LDAP) servers in Liberty for
authentication.

Before you begin

Ensure that your LDAP server is up and running, and that the host name and port number of the LDAP
server are already in your known list.

About this task

You can use an existing LDAP server for application authentication in Liberty. To do this, you add the
appSecurity-2.0 feature to the server.xml file and specify, in the server.xml file, the ldapRegistry-3.0
feature, and the configuration information for connecting to the LDAP server.

Avoid trouble: There are several security configuration examples on the WASdev.net website for reference
when configuring security for your applications on Liberty. For more information, see the link in the
related reference for config snippets.

Procedure
1. Add the appSecurity-2.0 and ldapRegistry-3.0 Liberty features to the server.xml file.
2. Optional: To communicate with an SSL-enabled LDAP server, add the ssl-1.0 Liberty feature in the

server.xml file.
3. Optional: Copy the truststore to the server configuration directory. For example, you can use the

${server.config.dir} variable.

Chapter 7. Securing Liberty and its applications 1169

For SSL communication with an LDAP server to succeed, the Signer certificate for the LDAP server
must be added to the truststore that is referenced by the sslAlias attribute of the <ldapRegistry>
element. In the following examples, the Signer certificate must be added to the
LdapSSLTrustStore.jks.

4. Configure the LDAP entry for the server.
If you do not want SSL for the LDAP server, remove all SSL and keystore-related lines from the
following examples.
You configure the LDAP server in the server.xml file or by using the WebSphere Application Server
Developer Tools for Eclipse. There are several security configuration examples on the WASdev.net
website for reference when configuring security for your applications on Liberty.
v For IBM Directory Server:

<ldapRegistry id="ldap" realm="SampleLdapIDSRealm"
host="ldapserver.mycity.mycompany.com" port="389" ignoreCase="true"
baseDN="o=mycompany,c=us"
ldapType="IBM Tivoli Directory Server"
sslEnabled="true"
sslRef="LDAPSSLSettings">
<idsFilters
userFilter="(&(uid=%v)(objectclass=ePerson))"
groupFilter="(&(cn=%v)(|(objectclass=groupOfNames)

(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs)))"
userIdMap="*:uid"
groupIdMap="*:cn"
groupMemberIdMap="mycompany-allGroups:member;mycompany-allGroups:uniqueMember;

groupOfNames:member;groupOfUniqueNames:uniqueMember">
</idsFilters>

</ldapRegistry>

<ssl id="LDAPSSLSettings" keyStoreRef="LDAPKeyStore" trustStoreRef="LDAPTrustStore" />

<keyStore id="LDAPKeyStore" location="${server.config.dir}/LdapSSLKeyStore.jks"
type="JKS" password="{xor}CDo9Hgw=" />

<keyStore id="LDAPTrustStore" location="${server.config.dir}/LdapSSLTrustStore.jks"
type="JKS" password="{xor}CDo9Hgw=" />

v For Microsoft Active Directory Server:
<ldapRegistry id="ldap" realm="SampleLdapADRealm"

host="ldapserver.mycity.mycompany.com" port="389" ignoreCase="true"
baseDN="cn=users,dc=adtest,dc=mycity,dc=mycompany,dc=com"
bindDN="cn=testuser,cn=users,dc=adtest,dc=mycity,dc=mycompany,dc=com"
bindPassword="testuserpwd"
ldapType="Microsoft Active Directory"
sslEnabled="true"
sslRef="LDAPSSLSettings">
<activedFilters
userFilter="(&(sAMAccountName=%v)(objectcategory=user))"

groupFilter="(&(cn=%v)(objectcategory=group))"
userIdMap="user:sAMAccountName"
groupIdMap="*:cn"
groupMemberIdMap="memberOf:member" >

</activedFilters>
</ldapRegistry>

<ssl id="LDAPSSLSettings" keyStoreRef="LDAPKeyStore" trustStoreRef="LDAPTrustStore" />

<keyStore id="LDAPKeyStore" location="${server.config.dir}/LdapSSLKeyStore.jks"
type="JKS" password="{xor}CDo9Hgw=" />

<keyStore id="LDAPTrustStore" location="${server.config.dir}/LdapSSLTrustStore.jks"
type="JKS" password="{xor}CDo9Hgw=" />

If you use the WebSphere Application Server Developer Tools for Eclipse, the bindPassword password
is encoded for you automatically. If you edit the server.xml file directly, you can use the
securityUtility encode command to encode the bindPassword password for you. The

1170 WebSphere Application Server Liberty Core 8.5.5

securityUtility command-line tool is available in the $INSTALL_ROOT/bin directory. When you run
the securityUtility encode command, you either supply the password to encode as an input from
the command line or, if no arguments are specified, the tool prompts you for the password. The tool
then outputs the encoded value. Copy the value output by the tool, and use that value for the
bindPassword password.

5. Optional: Configure certificate filter mode for the LDAP server.
<ldapRegistry id="LDAP" realm="SampleLdapIDSRealm"

host="myldap.ibm.com" port="389" ignoreCase="true"
baseDN="o=ibm,c=us"
ldapType="IBM Tivoli Directory Server" searchTimeout="8m"
certificateMapMode="CERTIFICATE_FILTER"
certificateFilter="uid=${SubjectCN}">
<idsFilters
userFilter="(&(uid=%v)(objectclass=ePerson))"
groupFilter="(&(cn=%v)(|(objectclass=groupOfNames)

(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs)))"
userIdMap="*:uid"
groupIdMap="*:cn"
groupMemberIdMap="ibm-allGroups:member;ibm-allGroups:uniqueMember;

groupOfNames:member;groupOfUniqueNames:uniqueMember">
</idsFilters>

</ldapRegistry>

For more information about certificate map mode in Liberty, see “LDAP certificate map mode” on
page 1173.

6. 8.5.5.3 Optional: You can define mapping between LDAP attributes and the user registry
<externalId> attribute.
You can define mapping between LDAP attributes and the user registry <externalId> attribute. After
the mapping is configured, when you use the user registry <externalId> attribute for any operation,
the value will be equivalent to the value of the LDAP attribute that is mapped. The following
example code shows the mapping that is defined for the user registry <externalId> attribute with the
LDAP <distinguishedName> attribute for the entity type <PersonAccount>. The <autoGenerate>
attribute is optional, and the value is false by default.
<ldapRegistry id="LDAP" realm="SampleLdapIDSRealm"

host="myldap.ibm.com" port="389" ignoreCase="true"
baseDN="o=ibm,c=us"
ldapType="IBM Tivoli Directory Server" searchTimeout="8m">
<attributeConfiguration>

<externalIdAttribute name="distinguishedName" entityType="PersonAccount" autoGenerate="false"></externalIdAttribute>
</attributeConfiguration>

</ldapRegistry>

7. Optional: Configure failover for multiple LDAP servers.
<ldapRegistry id="LDAP" realm="SampleLdapIDSRealm"

host="ldapserver1.mycity.mycompany.com" port="389" ignoreCase="true"
baseDN="o=ibm,c=us" ldapType="IBM Tivoli Directory Server" idsFilters="ibm_dir_server">

<failoverServers name="failoverLdapServersGroup1">
<server host="ldapserver2.mycity.mycompany.com" port="389" />
<server host="ldapserver3.mycity.mycompany.com" port="389" />
</failoverServers>
<failoverServers name="failoverLdapServersGroup2">
<server host="ldapserver4.mycity.mycompany.com" port="389" />
</failoverServers>
</ldapRegistry>

<idsLdapFilterProperties id="ibm_dir_server"
userFilter="(&(uid=%v)(objectclass=ePerson))"
groupFilter="(&(cn=%v)(|(objectclass=groupOfNames)

(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs)))"

Chapter 7. Securing Liberty and its applications 1171

userIdMap="*:uid" groupIdMap="*:cn"
groupMemberIdMap="ibm-allGroups:member;ibm-allGroups:uniqueMember;

groupOfNames:member;groupOfUniqueNames:uniqueMember">
</idsLdapFilterProperties>

For more information about the ldapRegistry and failoverServers elements, see **** MISSING FILE
****.

8. Optional: Configure multiple LDAP registries. If multiple LDAP registries are configured in the
server.xml file, they are federated automatically. Ensure that the users are unique across all federated
repositories, otherwise the user registry operations are not successful.

Note: When you use multiple federated LDAP repositories, each repository must define a unique
baseDN.
<ldapRegistry host="ldapserver1.mycity1.mycompany.com" baseDN="o=mycompany,c=us"

port="123" ldapType="IBM Tivoli Directory Server">
</ldapRegistry>

<ldapRegistry host="ldapserver2.mycity2.mycompany.com"
baseDN="cn=users,dc=secfvt2,dc=mycity2,dc=mycompany,dc=com"
port="456"
ldapType="Microsoft Active Directory"
bindDN="cn=testuser,cn=users,dc=secfvt2,dc=mycity2,dc=mycompany,dc=com"
bindPassword="{xor}KzosKyosOi0vKDs=">

</ldapRegistry>

Note:

v Specifying the federatedRepository element is not mandatory to federate multiple LDAP registries
because they are federated automatically. If the federatedRepository element is specified to
configure the participatingBaseEntry and primaryRealm elements, then the user registry operations
are performed only on the repositories that are defined in the primaryRealm element. You can define
the input and output property mappings for different user registry APIs under the primaryRealm
element.

v The name attribute of the participatingBaseEntry element must be the same as the value of baseDN
attribute that is specified in the ldapRegistry element. In the example follows, the baseDN and name
attributes are configured for the LDAP registry on the host ldapserver1.mycity1.mycompany.com. The
value of baseDN attribute must be the same as that of sub tree in your LDAP server and the value
of name attribute must be the name of that sub tree in the federated user registry. It is optional to
specify the name attribute. By default, the name attribute uses the same value as the baseDN attribute.
If the name attribute is specified in the ldapRegistry element, then the name attribute in the
participatingBaseEntry element must use the same value as the name attribute in the ldapRegistry
element.

<ldapRegistry host="ldapserver1.mycity1.mycompany.com" baseDN="o=mycompany,ou=myou,c=us"
port="123" ldapType="IBM Tivoli Directory Server" name="o=mybaseentry">

</ldapRegistry>

<ldapRegistry host="ldapserver2.mycity2.mycompany.com"
baseDN="cn=users,dc=secfvt2,dc=mycity2,dc=mycompany,dc=com"
port="456"
ldapType="Microsoft Active Directory"
bindDN="cn=testuser,cn=users,dc=secfvt2,dc=mycity2,dc=mycompany,dc=com"
bindPassword="{xor}KzosKyosOi0vKDs=">

</ldapRegistry>

<federatedRepository>
<primaryRealm name="RealmName" delimiter="@" allowOpIfRepoDown="true">
<participatingBaseEntry name="o=mybaseentry"/>
<participatingBaseEntry name="cn=users,dc=secfvt2,dc=mycity2,dc=mycompany,dc=com"/>
<uniqueUserIdMapping inputProperty="uniqueName" outputProperty="uniqueName"/>
<userSecurityNameMapping inputProperty="principalName" outputProperty="principalName"/>

<userDisplayNameMapping inputProperty="principalName" outputProperty="principalName"/>

1172 WebSphere Application Server Liberty Core 8.5.5

<uniqueGroupIdMapping inputProperty="uniqueName" outputProperty="uniqueName"/>
<groupSecurityNameMapping inputProperty="cn" outputProperty="cn"/>
<groupDisplayNameMapping inputProperty="cn" outputProperty="cn"/>

</primaryRealm>
</federatedRepository>

For more information about the federated ldapRegistry elements, see **** MISSING FILE ****.
9. Optional: You can configure other optional attributes for the LDAP registry, such as contextPool or

ldapCache, as given in the following example:
<ldapRegistry id="IBMDirectoryServerLDAP" realm="SampleLdapIDSRealm"

host="host.domain.com" port="389" ignoreCase="true"
baseDN="o=domain,c=us"
bindDN="cn=testuser,o=domain,c=us"
bindPassword="mypassword"
ldapType="IBM Tivoli Directory Server"
searchTimeout="8m">

<contextPool enabled="true" initialSize="1" maxSize="0" timeout="0s" waitTime="3000ms" preferredSize="3"/>
<ldapCache>

<attributesCache size="4000" timeout="1200s" enabled="true" sizeLimit="2000"/>
<searchResultsCache size="2000" timeout="600s" enabled="true" resultsSizeLimit="1000"/>

</ldapCache>
</ldapRegistry>

Note:

v Federated user registry uses the context pooling mechanism to improve the performance of
concurrent access to an LDAP server. Context pooling works at a higher level than the connection
pooling. Each context entry in the context pool corresponds to a socket connection to the LDAP
server. The bind credentials that are used by this pool are specified when you configure the LDAP
registry.

v Federated repository uses the cache mechanism for performance enhancement. It caches
information about the LDAP users and groups based on the user operations performed. For
example, if you perform a search operation on the LDAP users and groups, the result of the
operation is cached. You can enable the ldapCache element in the server.xml file as shown in the
previous example.

Troubleshooting tip: To troubleshoot any LDAP authentication issues, use the
following trace specifications in the bootstrap.properties file:
com.ibm.ws.security.wim.*=all:com.ibm.websphere.security.wim.*=all

LDAP certificate map mode:

The certificate map mode is used to specify whether to map X.509 certificates into an LDAP directory by
EXACT_DN or CERTIFICATE_FILTER in Liberty.

The EXACT_DN means that the Distinguished Name (DN) in the certificate must exactly match the user
entry in the LDAP server, including case and spaces. To use the specified certificate filter for the
mapping, you can use the CERTIFICATE_FILTER.

Certificate filter
Specifies the filter certificate mapping property for the LDAP filter. The filter is used to map
attributes in the client certificate to entries in the LDAP registry.

If more than one LDAP entry matches the filter specification at run time, authentication fails
because the result is an ambiguous match. The syntax this filter is:
LDAP attribute=${Client certificate attribute}

.

An example of a simple certificate filter is: uid=${SubjectCN}.

Chapter 7. Securing Liberty and its applications 1173

You can also specify multiple properties and values as part of a certificate filter. The LDAP
attribute of the filter specification depends on the schema that your LDAP server is configured to
use. The client certificate attribute is one of the public attributes in your client certificate. The
client certificate attribute must begin with a dollar sign, $, and opening brace, {, and end with a
closing brace, }. The attributes are case-sensitive.

The following LDAP attributes are supported:
v uid

v initials

v sAMAccountName

v displayName

v distinguishedName

v displayName

v description

The following client certificate attributes are supported:
v ${SubjectCN}

v ${SubjectDN}

v ${IssuerCN}

v ${IssuerDN}

v ${SerialNumber}

An example of an LDAP configuration with certificate filter mode enabled:
<ldapRegistry id="LDAP" realm="SampleLdapIDSRealm"

host="myldap.ibm.com" port="389" ignoreCase="true"
baseDN="o=ibm,c=us"
certificateMapMode="CERTIFICATE_FILTER"
certificateFilter="uid=${SubjectCN}"
userFilter="(&(uid=%v)(objectclass=ePerson))"
groupFilter="(&(cn=%v)(|(objectclass=groupOfNames)

(objectclass=groupOfUniqueNames)(objectclass=groupOfURLs)))"
userIdMap="*:uid"
groupIdMap="*:cn"
groupMemberIdMap="ibm-allGroups:member;ibm-allGroups:uniqueMember;

groupOfNames:member;groupOfUniqueNames:uniqueMember"
ldapType="IBM Tivoli Directory Server" searchTimeout="8m" />

Configuring SCIM for user and group member management
8.5.5.8

You can configure the scim-1.0 feature in the server.xml file to enable user and group member
management. System for Cross-domain Identity Management (SCIM) defines REST APIs to create,
retrieve, update, and delete (CRUD) users and groups. Calls are made through a systems management
REST WAB. The local calls will be HTTP over localhost through Web API only; no java APIs for local
calls.

Procedure

Adding the scim-1.0 feature in the server.xml file enables SCIM functions. But to complete the
configuration, you must also perform the following configuration steps:
v SSL Configuration: The REST services are protected and can be accessed only on the HTTPS port. For

more information about how to complete the SSL configuration, see “Enabling SSL communication in
Liberty” on page 1152.

1174 WebSphere Application Server Liberty Core 8.5.5

v Configuration of Federation Registry: The SCIM functions is only supported by the Federation Registry.
To quickly set up a federation registry by using LDAP, see “Configuring LDAP user registries in
Liberty” on page 1169.

v Configuration of an administrator role: The REST services are only accessible by an administrator, so a
user needs to be configured with an administrator role. For more information about mapping the
administrator role to Liberty, see “Mapping the administrator role for Liberty” on page 1023.

Note: For configuration of the administrator role for SCIM, you cannot use the Quick Start Registry.
v Configuration of HTTPS port (optional): The HTTP end point must be configured. For more

information about the httpEndpoint feature element configuration, see the httpEndpoint section in
“Admin Center” on page 508.

After the configuration steps are completed, the scim-1.0 feature is now ready to be used. A sample
configuration in the server.xml file is shown in the following example:
<server description="server1">

<!-- Enable features -->
<featureManager>

<feature>appSecurity-2.0</feature>
<feature>servlet-3.0</feature>

<feature>ldapRegistry-3.0</feature>
<feature>scim-1.0</feature>
<feature>ssl-1.0</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint" httpPort="9080" httpsPort="9090">
<tcpOptions soReuseAddr="true" />

</httpEndpoint>

<ldapRegistry id="LDAP1" realm="SampleLdapIDSRealm" host="9.127.1.90" port="1389" ignoreCase="true"
baseDN="o=ibm,c=us" ldapType="IBM Tivoli Directory Server" searchTimeout="8m" recursiveSearch="true"
bindDN="cn=xxxx" bindPassword="xxxxxx">

<ldapEntityType name="PersonAccount">
<rdnProperty name="uid" objectClass="inetOrgPerson"/>

<objectClass>inetOrgPerson</objectClass>
</ldapEntityType>
<ldapEntityType name="Group">

<objectClass>groupofnames</objectClass>
<objectClass>ibm-nestedGroup</objectClass>
<rdnProperty name="cn" objectClass="groupofnames"/>
</ldapEntityType>
<attributeConfiguration>

<attribute name="title" propertyName="honorificPrefix" syntax="String" entityType="PersonAccount">
</attribute>

<attribute name="initials" propertyName="middleName" syntax="String" entityType="PersonAccount">
</attribute>

<attribute name="st" propertyName="honorificSuffix" syntax="String" entityType="PersonAccount">
</attribute>

<attribute name="l" propertyName="homeStateOrProvinceName" syntax="String" entityType="PersonAccount">
</attribute>

<attribute name="street" propertyName="homeStreet" syntax="String" entityType="PersonAccount">
</attribute>

<attribute name="postalAddress" propertyName="homeCity" syntax="String" entityType="PersonAccount">
</attribute>

<attribute name="postalCode" propertyName="homePostalCode" syntax="String" entityType="PersonAccount">
</attribute>
<attribute name="postOfficeBox" propertyName="homeCountryName" syntax="String" entityType="PersonAccount">
</attribute>
<attribute name="departmentNumber" propertyName="photoURLThumbnail" syntax="String" entityType="PersonAccount">
</attribute>

<attribute name="description" propertyName="photoURL" syntax="String" entityType="PersonAccount">
</attribute>

Chapter 7. Securing Liberty and its applications 1175

</attributeConfiguration>
<groupProperties>

<memberAttribute name="member" dummyMember="uid=dummy" objectClass="groupOfNames" scope="direct"/>
<memberAttribute name="ibm-memberGroup" objectClass="ibm-nestedGroup" scope="direct"/>

</groupProperties>
</ldapRegistry>

<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore" />
<keyStore id="defaultKeyStore" password="Liberty"/>

<administrator-role>
<user>wasadmin</user>

</administrator-role>

<federatedRepository>
<primaryRealm name="WIMRegistry">

<participatingBaseEntry name="o=ibm,c=us"/>
</primaryRealm>

</federatedRepository>
</server>

SCIM operations in Liberty: 8.5.5.8

The System for Cross-domain Identity Management (SCIM) 1.1 specifications are supported in Liberty.

Retrieving resources

WebSphere Application Server Liberty supports SCIM 1.1 specifications. For more information about the
specification, see http://www.simplecloud.info/.

To retrieve a known resource, you must send a GET request to the configured HTTP endpoint. For
example, /Users/{id} or /Groups/{id}.

The following example shows the operations against an LDAP registry.
<ldapRegistry id="LDAP1" realm="SampleLdapIDSRealm" host="9.127.1.90" port="1389" ignoreCase="true"

baseDN="o=ibm,c=us" ldapType="IBM Tivoli Directory Server" searchTimeout="8m" recursiveSearch="true"
bindDN="xxxxxx" bindPassword="xxxxxxx">

<ldapEntityType name="PersonAccount">
<rdnProperty name="uid" objectClass="inetOrgPerson"/>

<objectClass>inetOrgPerson</objectClass>
</ldapEntityType>
<ldapEntityType name="Group">

<objectClass>groupofnames</objectClass>
<objectClass>ibm-nestedGroup</objectClass>
<rdnProperty name="cn" objectClass="groupofnames"/>
</ldapEntityType>
<attributeConfiguration>

<attribute name="title" propertyName="honorificPrefix" syntax="String" entityType="PersonAccount">
</attribute>

<attribute name="initials" propertyName="middleName" syntax="String" entityType="PersonAccount">
</attribute>

<attribute name="st" propertyName="honorificSuffix" syntax="String" entityType="PersonAccount">
</attribute>

<attribute name="l" propertyName="homeStateOrProvinceName" syntax="String" entityType="PersonAccount">
</attribute>

<attribute name="street" propertyName="homeStreet" syntax="String" entityType="PersonAccount">
</attribute>

<attribute name="postalAddress" propertyName="homeCity" syntax="String" entityType="PersonAccount">
</attribute>

<attribute name="postalCode" propertyName="homePostalCode" syntax="String" entityType="PersonAccount">
</attribute>

1176 WebSphere Application Server Liberty Core 8.5.5

http://www.simplecloud.info/

<attribute name="postOfficeBox" propertyName="homeCountryName" syntax="String" entityType="PersonAccount">
</attribute>
<attribute name="departmentNumber" propertyName="photoURLThumbnail" syntax="String" entityType="PersonAccount">
</attribute>

<attribute name="description" propertyName="photoURL" syntax="String" entityType="PersonAccount">
</attribute>

</attributeConfiguration>
<groupProperties>

<memberAttribute name="member" dummyMember="uid=dummy" objectClass="groupOfNames" scope="direct"/>
<memberAttribute name="ibm-memberGroup" objectClass="ibm-nestedGroup" scope="direct"/>

</groupProperties>
</ldapRegistry>

To retrieve a resource from the LDAP, you must send a GET request as https://localhost:9090/ibm/api/
scim/Users/uid=jsmith,o=ibm,c=us.

Querying resources

To query resources, you must send a GET request to the configured HTTP endpoint and specify the filter
for searching. You can also specify the attributes parameter to return a subset of values from the returned
resources and specify the paging and sorting parameters to organize the returned resources. The
following examples show some of the filter options:
v Specify the parameter to retrieve subset of the values: For example: https://localhost:9090/ibm/api/

scim/Users?filter=givenname sw "Jo" retrieves all users whose name
starts with “Jo”.

v Specify the attributes parameter to retrieve subset of the values: For example: https://localhost:9090/
ibm/api/scim/Users?filter=givenname sw "Jo"
&attributes=username,emails&filter=name.familyname eq "Smith"
retrieves the email addresses of the user name that starts with “Jo” and whose family name is “Smith”.

v Specify the paging and sorting parameters to retrieve organized resources. For example,
https://localhost:9090/ibm/api/scim/Users?filter=givenname sw
"Jo"&attributes=username&sortBy=username&startIndex=3&count=5 retrieves the third page of the
sorted result with each page containing five user names that start with “Jo” and whose family name is
“Smith”.

Notes:

v The underlying federated repositories determine whether the values that are specified in the filters are
case-sensitive. In case of LDAP, the values are not case-sensitive by default, unless the attribute is
mapped to a case-sensitive LDAP attribute.

v User name cannot be used in the search filter.
v When federating basic, SAF or custom registries that do not support the SCIM attributes, the filter

pattern is always searched against the user name and only the user name attribute is returned.

Creating resources

To create new resources, you must send a POST request to the resource endpoint, that is, Users or Groups.
The POST content must contain the user json object and the HTTP header content-type must be set to
application/json.

Note: The application/xml content type is not supported.
To create a user, the following request must be posted to https://localhost:9090/ibm/api/scim/Users
Content-Type

Content-Type: application/json
Content-Length: ...

{

Chapter 7. Securing Liberty and its applications 1177

"schemas":["urn:scim:schemas:core:1.0"],
"userName":"bjensen",
"externalId": "uid=bjensen,o=ibm,c=us",
"name":{
"familyName":"Jensen",
"givenName":"Barbara"

}
}

The request must contain all the attributes that are required to successfully create a User or Group in the
user registry. For example, in a back-end Tivoli Directory Server LDAP, the minimum set of LDAP
attributes needed to create a user would be uid, sn, and cn; so any request for creation of user must
contain userName, givenName, and familyName. The create operation fails if there are any schema violation
from the user registry.

The externalId attribute acts like an identifier and must be specified. The attribute format depends on the
specification of back-end user registry. In the previous example, the back-end is an LDAP server with a
baseEntry as o=ibm,c=us and the RDN property for the user is set as UID, so the externalId becomes
uid=bjensen,o=ibm,c=us.

Based on the create request, the created user object is returned.
{

"schemas":["urn:scim:schemas:core:1.0"],
"id":"uid=bjensen,o=ibm,c=us",
"userName":"bjensen",
"externalId":"uid=bjensen,o=ibm,c=us",
"name":{

"formatted":"Barbara Jensen",
"familyName":"Jensen",
"givenName":"Barbara"

},
"meta":{

"lastModified":"2015-09-15T14:30:11", "location":"https:\\localhost:9090\ibm\api\scim\Users\uid=bjensen,o=ibm,c=us",
"created":"2015-09-15T14:30:11"

}
}

When more than one LDAPs are configured and a create operation needs to be invoked, a default parent
for the entity must be defined. The defined parent specifies the base entry under which the new entity
would be created. The following example shows the configuration of a default parent for PersonAccount.
<federatedRepository>

<primaryRealm name="WIMRegistry">
<participatingBaseEntry name="o=ibm,c=us"/>
<participatingBaseEntry name="o=ldap"/>

</primaryRealm>
<supportedEntityType>

<defaultParent>o=ldap</defaultParent>
<name>PersonAccount</name>

</supportedEntityType>
</federatedRepository>

Modifying resources

To modify resources, one needs to send a PUT request to the resource endpoint, that is, /Users or
/Groups. A PUT request performs a complete update of the resource. Any attributes that is not specified
in the input are deleted.

Note: Partial updates with PATCH are not supported.

1178 WebSphere Application Server Liberty Core 8.5.5

To modify the previously created resource, the following request must be posted to https://
localhost:9090/ibm/api/scim/Users/uid=bjensen,o=ibm,c=us.
Content-Type: application/json
Content-Length: ...

{
"schemas":["urn:scim:schemas:core:1.0"],
"userName":"bjensen",
"externalId":"uid=bjensen,o=ibm,c=us",
"name":{
"familyName":"Jensen",
"givenName":"Barb"

}
}

This request modifies the given name of the object from Barbara to Barb. The ID specified in the URL
must match the externalId specified in the user object.

To modify a Group cn=employeeGroup,o=ibm,c=us and change the Group membership, the member
attribute needs to be specified.
Content-Type: application/json
Content-Length: ...
{

"id":"cn=employeeGroup,o=ibm,c=us",
"schemas":["urn:scim:schemas:core:1.0"],
"displayName":"employeeGroup",
"externalId":"cn=employeeGroup,o=ibm,c=us",
"members":[{"value":"uid=bjensen,o=ibm,c=us", "type":"User"},{"value":"cn=consultants,o=ibm,c=us", "type":"Group"}]

}

To modify a Group cn=employeeGroup,o=ibm,c=us and remove all the members from a group an empty
member attribute needs to be specified.
Content-Type: application/json
Content-Length: ...
{

"id":"cn=employeeGroup,o=ibm,c=us",
"schemas":["urn:scim:schemas:core:1.0"],
"displayName":"employeeGroup",
"externalId":"cn=employeeGroup,o=ibm,c=us",
"members":[]

}

Deleting resources

To delete resources, you need to send a DELETE request to the resource endpoint, that is, /Users or
/Groups. For example, to delete the user uid=bjensen,o=ibm,c=us that is created in the previous example,
send a request to https://localhost:9090/ibm/api/scim/Users/uid=bjensen,o=ibm,c=us

Note: SCIM runs only on Java 7 or later.

Configuring additional properties for users and groups
8.5.5.8

You can configure additional properties for users and groups of federated repositories. To enable schema
or property extensions, ensure that the property can be read from and written to the underlying
repositories.

Chapter 7. Securing Liberty and its applications 1179

Procedure
1. You can specify the following additional property information in the server.xml file to enable schema

or property extension.
v Extended Property Name – The name of the extended property. Ensure that the name specified is

unique and does not match with an existing property name.
v Data type – The data type of the extended property. The possible values are Integer, Long, String,

Boolean, Date, Double, BigInteger, BigDecimal.
v Entity type – The entity to which the property applies. The possible values are PersonAccount or

Group.
Single or multi-valued - You can set the value of the property to be either single or multi-valued. A
default value can also be set for the property. When an entity is created and no value is specified
for the property, the default value is used. For a multi-valued property, you can add an extended
property named assetId for storing assets assigned to a user. If each user can be assigned more
than one assets then the assetId needs to be multi-valued. You must ensure that the attribute to
which the assetId is mapped is also a multi-valued attribute in the back-end LDAP .

The following sample shows the configuration in server.xml:
<federatedRepository>

<primaryRealm name="WIMRegistry">
<participatingBaseEntry name="o=ibm,c=us"/>

</primaryRealm>
<extendedProperty dataType="String" name="extendedProperty" entityType="PersonAccount"> </extendedProperty>

</federatedRepository>

2. To use the extended property in the code, you must use the generic getter/setter methods as shown
in the following example:
PersonAccount person = new PersonAccount();
...
person.set("extendedProperty", "xyz");
...
String value = (String)person.get("extendedProperty");

3. To ensure that property can be read from and written to the LDAP, you have the following two
options:
v Pass-through: If the name of the extended property is same as the name of the LDAP attribute, then

the property is passed through and read from and written to the attribute.
v Property Mapping: If the name of the extended property is different from the name of the LDAP

attribute, then the property needs to be mapped by using attribute mapping.
The following sample configuration shows the mapping of the extended property to an attribute
named extendedAttribute.
<attributeConfiguration>

<attribute name="extendedAttribute" propertyName="extendedProperty" syntax="String" entityType="PersonAccount"></attribute>
</attributeConfiguration>

Dynamic changes to security
Some specific information on how dynamic configuration changes impact security on Liberty is
introduced in this topic.

Dynamically changing the user registry

Changing the user registry can impact both the server configuration and clients using the server. Before
you change the user registry dynamically (without restarting the server), consider the following:
v If you change the user registry type or realm name, all web clients must clear their single sign-on

tokens.
v If you change the user registry type or realm name, any values of accessId that are specified in the

authorization bindings must be updated. The accessId takes the form of user:realmName/uniqueId or
group:realmName/uniqueId. The realmName in the accessId must match the realmName for the
configuration user registry.

1180 WebSphere Application Server Liberty Core 8.5.5

Developing a custom user repository for Liberty
8.5.5.8

You can develop a custom user repository class by implementing the
com.ibm.ws.security.wim.RepositoryFactory and com.ibm.ws.security.wim.Repository interfaces that
are provided in the Liberty server.

About this task

The repository interfaces enable support to virtually any type of account repository.

Procedure
1. Implement the repository factory (com.ibm.ws.security.wim.RepositoryFactory) interface. The

RepositoryFactory interface gets the configuration parameters and creates an instance of the
repository. For example,
public Repository getRepository(Map<String, Object> properties) throws WIMException {
return new CustomRepository(properties);}

2. Implement the repository (com.ibm.ws.security.wim.Repository) interface. This class has the actual
repository operations.
public class CustomRepository extends RepositoryConfiguration implements Repository {

public CustomRepository(Map<String, Object> properties) {
System.out.println("Constructor with " + properties);

}

3. Convert the implementation class into an OSGi service. For more information, see “Declaring your
services to OSGi Declarative Services” on page 1116.

4. Package the custom user repository as an OSGi bundle and export the user repository service. For
more information about creating an OSGi bundle, see Creating an OSGi service bundle.

5. Create a feature manifest to include the OSGi bundle. For more information, see “Product extension”
on page 577.

6. After the feature is installed into the user product extension location, configure the server.xml file
with the feature name. For example:
<featureManager>
...
<feature>usr:customRepositorySample-1.0</feature>
</featureManager>

For a downloadable custom user registry sample, see https://developer.ibm.com/wasdev/
downloads/#asset/samples-Custom_User_Registry.

Example

Refer to the following samples of repository factory and repository interfaces.

Repository factory interface
package com.myorg;

import java.util.Map;

import org.osgi.service.component.ComponentContext;

import com.ibm.websphere.security.wim.exception.WIMException;
import com.ibm.ws.security.wim.Repository;
import com.ibm.ws.security.wim.RepositoryFactory;

public class CustomRepositoryFactory implements RepositoryFactory {

Chapter 7. Securing Liberty and its applications 1181

https://developer.ibm.com/wasdev/downloads/#asset/samples-Custom_User_Registry
https://developer.ibm.com/wasdev/downloads/#asset/samples-Custom_User_Registry

@Override
public Repository getRepository(Map<String, Object> properties) throws WIMException {

System.out.println("getRepository " + properties);
return new CustomRepository(properties);

}

public void activate(ComponentContext cc, Map<String, Object> properties) {
System.out.println("In activate");

}

public void deactivate(ComponentContext cc) {
System.out.println("In deactivate");

}
}

Repository interface
package com.myorg;

import java.util.Map;

import com.ibm.websphere.security.wim.exception.WIMException;
import com.ibm.websphere.security.wim.model.Root;
import com.ibm.ws.security.wim.Repository;
import com.ibm.ws.security.wim.RepositoryConfiguration;

public class CustomRepository extends RepositoryConfiguration implements Repository {

public CustomRepository(Map<String, Object> properties) {
System.out.println("Constructor with " + properties);

}

@Override
public Root create(Root arg0) throws WIMException {

throw new WIMException("Method not supported");
}

@Override
public Root delete(Root arg0) throws WIMException {

throw new WIMException("Method not supported");
}

@Override
public Root get(Root arg0) throws WIMException {

throw new WIMException("Method not supported");
}

@Override
public String getRealm() {

return "customRepository";
}

@Override
public Root login(Root arg0) throws WIMException {

throw new WIMException("Method not supported");
}

@Override
public Root search(Root arg0) throws WIMException {

throw new WIMException("Method not supported");
}

1182 WebSphere Application Server Liberty Core 8.5.5

@Override
public Root update(Root arg0) throws WIMException {

throw new WIMException("Method not supported");
}

}

Configuring the authentication cache in Liberty
You can modify how authenticated users are cached in Liberty.

About this task

Because the creation of a subject might impact performance, Liberty provides an authentication cache to
store a subject after an authentication of a user is successful. The cache is initialized with a certain
number of entries, determined by the initialSize attribute, and has a maximum number of entries,
determined by the maxSize attribute. If the maximum size is reached, then the earliest entries that were
used are removed from the cache. Iif a user has been inactive for longer than period that is specified by
the timeout attribute, then the entry for that user is removed from the cache. By default, the cache size is
initialized to 50 entries and a maximum of 25000 entries, with a timeout of 600 seconds.

You do not have to configure the values for the authCache element unless you want to change the default
values of the authentication cache.

For more information about authentication case, see “Authentication cache” on page 587.

Note:

v Any change that is made to the user registry configuration in the server.xml file clears the
authentication cache. However, if changes are made to an external user registry, such as LDAP, the
authentication cache is unaffected.

v You must consider the following effects of the timeout value on your configuration:
– Larger authentication cache timeout values can increase security risks. For example, you might

revoke a user in the user registry or repository, but the revoked user can log in by using the
credential that is cached in the authentication cache until the cache is refreshed.

– Smaller authentication cache timeout values can affect performance. When this value is smaller, the
Liberty server accesses the user registry or repository more frequently.

– Larger numbers of entries in the authentication cache, which is caused by an increased number of
users, increases the memory usage of the authentication cache. Thus, the application server might
slow down and affect performance.

Procedure
1. Enable the appSecurity-2.0 Liberty feature by adding the following code to the server.xml file.

<featureManager>
<feature>appSecurity-2.0</feature>

</featureManager>

2. Optional: To change the default options for the authentication cache, add the <authCache> element to
the server.xml file. In the following example, the initial size of the authentication cache is changed to
100 entries with a maximum of 50000 entries, and the timeout is changed to 15 minutes.
<authCache initialSize="100" maxSize="50000" timeout="15m"/>

3. Optional: To disable the authentication cache, set the attribute cachEnabled to false in the
<authentication> element as follows:
<authentication id="Basic" cacheEnabled="false" />

For more information about the <authCache> and <authentication> elements, see **** MISSING FILE
****.

Chapter 7. Securing Liberty and its applications 1183

Configuring a JAAS custom login module for Liberty
You can configure a custom Java Authentication and Authorization Service (JAAS) login module before or
after you have configured the Liberty server login module.

Before you begin

8.5.5.9 We support the server.xml file, client.xml file and the JAAS configuration file for JAAS
configuration. However, it is suggested to configure the JAAS custom login module in the server.xml file
or client.xml file. For further details about configuring the JAAS configuration file, see “Configuring an
application JAAS custom login context entry and login module using a JAAS configuration file for
Liberty” on page 1185.

Make sure you have a JAR file containing the JAAS custom login module, which implements the
javax.security.auth.spi.LoginModule interface as described in “Developing JAAS custom login modules
for a system login configuration” on page 1305. In this topic, JAAS custom login module uses hashtable,
callbacks or shared state variables provided by the Liberty server to pass authentication data to the
system login module.

About this task

You can use a custom login module to either make additional authentication decisions or add information
to the subject to make finer-grained authorization decisions inside your application. See “JAAS
configuration” on page 587 and “JAAS login modules” on page 588 for a more detailed overview.

You can also use the developer tools to configure a custom JAAS login module. Distributed operating systems

See “Configuring JAAS on Liberty by using developer tools” on page 1186. There are several security
configuration examples on the WASdev.net website for reference when configuring security for your
applications on Liberty. See “Configuring JAAS on Liberty by using developer tools” on page 1186.

To configure a JAAS custom login module, complete the following steps:

Procedure
1. Enable the appSecurity-2.0 Liberty feature in the server.xml file.

<featureManager>
<feature>appSecurity-2.0</feature>

</featureManager>

2. Create a class com.sample.CustomLoginModule that implements the LoginModule interface and
package it into the CustomLoginModule.jar file.

3. Create a <library> element that uses a <fileset> element indicating where the
CustomLoginModule.jar file is. In this example, the library id is customLoginLib.
<library id="customLoginLib">

<fileset dir="${server.config.dir}" includes="CustomLoginModule.jar"/>
</library>

4. Create a <jaasLoginModule> element. In this example, the id is custom.
a. Configure the custom login module to require a successful authentication by setting the

controlFlag attribute to REQUIRED.
b. Set the libraryRef attribute to customLoginLib, the id of the <library> element configured in the

previous step. This login module also has two options: UserRegistry is ldap and mapToUser is
user1.

<jaasLoginModule id="myCustom"
className="com.sample.CustomLoginModule"
controlFlag="REQUIRED" libraryRef="customLoginLib">

<options myOption1="value1" myOption2="value2"/>
</jaasLoginModule>

1184 WebSphere Application Server Liberty Core 8.5.5

5. Create a <jaasLogincontextEntry> element with an id and a unique name of the system-defined JAAS
configuration: system.WEB_INBOUND. You can also set this JAAS configuration to system.DEFAULT,
WSLogin, or your own JAAS configuration. On the loginModuleRef attribute, add custom, the id of
the jaasLoginModule element created in the previous step. Putting this id first in the list means that it
is the first JAAS login module to be called. You must also list the other default login modules:
hashtable, userNameAndPassword, certificate, and token.
<jaasLoginContextEntry id="system.WEB_INBOUND" name="system.WEB_INBOUND"

loginModuleRef="myCustom, hashtable, userNameAndPassword, certificate, token" />

Note: The option name cannot start with a period (.), config., or service and must be unique. Also,
the property name id or ID is not allowed.
For more information about the <jaasLoginContextEntry>, <jaasLoginModule>, <options>, and
<library> elements, see **** MISSING FILE ****.

Configuring an application JAAS custom login context entry and login module
using a JAAS configuration file for Liberty

8.5.5.9

JAAS configuration information can be configured in a JAAS configuration file.

About this task

We support the server.xml file, client.xml file and the JAAS configuration file for JAAS configuration.
However, it is suggested to configure the JAAS custom login module in the server.xml file or client.xml
file. For further details about configuring the JAAS custom login module, see “Configuring a JAAS
custom login module for Liberty” on page 1184.

The Liberty server reads the JAAS configuration file for an application JAAS custom login context entry
and login module. The changes that are made to the JAAS configuration file are used by the local
application and take effect after the application server is restarted. The JAAS configuration in the
server.xml file takes precedence over what is defined in the JAAS configuration file. A configuration
entry in the JAAS configuration file is overridden by an entry of the same alias name in the server.xml
file.

To configure a JAAS custom login module, complete the following steps:

Procedure
1. Enable the appSecurity-2.0 Liberty feature in the server.xml file.

<featureManager>
<feature>appSecurity-2.0</feature>
...

</featureManager>

2. Create a JAAS custom login module class.
For example, com.sample.CustomLoginModule that implements the LoginModule interface and package
it into the CustomLoginModule.jar file.

3. Create the default jaas directory.

For the server
${server.config.dir}/resources/security/jaas

For the client
${client.config.dir}/resources/security/jaas

Note: All JAAS custom login modules that are specified in the JAAS configuration file must place in
the default jaas directory.

4. Place the CustomLoginModule.jar file in the default jaas directory.

Chapter 7. Securing Liberty and its applications 1185

5. Create a JAAS configuration file.
For example, create a myJaas.conf file and place it in the ${server.config.dir}/resources/security/
jaas directory that has the following content:
myCustomLoginContext {

com.sample.CustomLoginModule required myOption1="value1" myOption2="value2"
};

6. Configure the JAAS configuration file using the jvm.options file. For example,
-Djava.security.auth.login.config=${server.config.dir}/resources/security/jaas/myJaas.conf

Note: We only support the application custom JAAS login module in the JAAS configuration file. Do
not put the default system JAAS configuration information in the JAAS configuration file.

Note: The JAAS configuration file is not dynamically updated if you made any changes. We strongly
recommend configuring the JAAS configuration information in the server.xml file or client.xml file.

Configuring JAAS on Liberty by using developer tools

Distributed operating systems

You can configure a JAAS configuration (system.WEB_INBOUND) with a custom login module for
Liberty by editing the configuration. You do not have to configure JAAS unless you want to customize it.

Before you begin

For a description of the underlying process of configuring a server, and detailed information about
specific aspects of server configuration, see “Administering Liberty manually” on page 946.

Avoid trouble: The developer tools creates the reference to a JAAS login module using the
loginModuleRef element. You must change it and use the loginModuleRef attribute of
jaasLoginContextEntry element. There are several security configuration examples on the WASdev.net
website for reference when configuring security for your applications on Liberty.

Procedure
1. Select JAAS Login Context Entry and click Add, then enter the login module names.
2. Select JAAS Login Module: myCustom and configure your custom login module by entering the ID

and the Class name, then click the arrow next to the Add button and select Global Element to enter
the shared library information.

3. Enter the ID for the shared library in the pop-up panel and click OK.
4. Configure Name and Description fields for the shared library, then click the arrow next to the Add

button and select Child Element to add a Fileset reference as a child element.
5. Configure the Fileset. Click Browse in the Base Directory field and select the directory where the JAR

file is located. Then, click Browse in the Includes pattern field to select your JAR file that contains
your custom login module implementation.

6. Optional: If your custom login module needs any options, you can right-click JAAS Login Module,
select Add and then select login module options.

7. Save the configuration. You can find the following configuration saved in the server.xml file.
<jaasLoginContextEntry name="system.WEB_INBOUND" id="system.WEB_INBOUND">

<loginModuleRef>myCustom, hashtable, userNameAndPassword, certificate, token</loginModuleRef>
</jaasLoginContextEntry>

<jaasLoginModule className="com.sample.CustomLoginModule"
id="myCustom" libraryRef="customLoginLib">

</jaasLoginModule>

1186 WebSphere Application Server Liberty Core 8.5.5

<library id="customLoginLib" name="customLoginLib"
description="Custom login module shared library">

<fileset dir="${server.config.dir}" includes="CustomLoginModule.jar"/>
</library>

8. Required: To make the configuration work, you must change the jaasLoginContextEntry element to
include the loginModuleRef attribute. You must remove the loginModuleRef element and add it as an
attribute of the jaasLoginContextEntry element.
Here is an example of configuration using the loginModuleRef attribute.
<jaasLoginContextEntry name="system.WEB_INBOUND" id="system.WEB_INBOUND"

loginModuleRef="myCustom, hashtable, userNameAndPassword, certificate, token" />

<jaasLoginModule className="com.sample.CustomLoginModule"
id="myCustom" libraryRef="customLoginLib">

</jaasLoginModule>

<library id="customLoginLib" name="customLoginLib"
description="Custom login module shared library">

<fileset dir="${server.config.dir}" includes="CustomLoginModule.jar"/>
</library>

Configuring a Java Authentication SPI for Containers (JASPIC) User
Feature

8.5.5.6

You can develop a JASPIC provider to authenticate inbound web requests by using the
com.ibm.wsspi.security.jaspi.ProviderService interface that is provided in the Liberty server.

About this task

The Java Authentication SPI for Containers specification, JSR 196, defines an interface for authentication
providers. In the Liberty server, you must package your JASPIC provider as a user feature. Your feature
must implement the com.ibm.wsspi.security.jaspi.ProviderService interface.

Procedure
1. Create an OSGi component that provides a service that implements the

com.ibm.wsspi.security.jaspi.ProviderService interface.
The ProviderService interface defines method, getAuthConfigProvider, which the Liberty runtime
invokes to retrieve an instance of your JASPIC provider class that implements the
javax.security.auth.message.config.AuthConfigProvider interface.
The following example uses OSGi declarative services annotations:
@package com.mycompany.jaspi;

import java.util.Map;
import javax.security.auth.message.config.AuthConfigFactory;
import javax.security.auth.message.config.AuthConfigProvider;
import org.osgi.service.component.ComponentContext;
import com.mycompany.jaspi.SampleAuthConfigProvider;
import com.ibm.wsspi.security.jaspi.ProviderService;

@Component(service = { ProviderService.class },
configurationPolicy = ConfigurationPolicy.IGNORE,
immediate = true,
property = { "myPoviderPoperty1=value1",

"myPoviderPoperty2=value2"})
public class SampleJaspiProviderService implements ProviderService {

Map<String, String> configProps = null;

Chapter 7. Securing Liberty and its applications 1187

https://jcp.org/en/jsr/detail?id=196

// This method called by the Liberty runtime
// to get an instance of AuthConfigProvider
@Override
public AuthConfigProvider getAuthConfigProvider(Map<String, String>

AuthConfigFactory factory)
{

return new SampleAuthConfigProvider(configProps, factory);
}

protected void activate(ComponentContext cc) {
// Read provider config properties here if needed,
// then pass them to the AuthConfigProvider factory.
// This example reads the properties from the OSGi
// component definition.
configProps = (Map<String, String>) cc.getProperties();

}

protected void deactivate(ComponentContext cc) {}
}

2. Package the component into an OSGi bundle that is part of your user feature, along with your JASPIC
authentication provider.

3. Ensure that your feature includes the OSGi subsystem content: com.ibm.websphere.appserver.jaspic-
1.1; type="osgi.subsystem.feature".

4. After the feature is installed into the user product extension location, configure the server.xml file
with the feature name. For example:
<featureManager>

...
<feature>usr:myJaspiProvider</feature>

</featureManager>

Configuring LTPA in Liberty
You can configure a Liberty server to use a specific Lightweight Third Party Authentication (LTPA) keys
file, user-defined password, and expiration time.

About this task

The LTPA is configured by default when security is enabled for a Liberty server for the first time. The
default location of the automatically generated LTPA keys file is ${server.output.dir}/resources/
security/ltpa.keys. The LTPA keys are encrypted with a randomly generated key and a default
password of WebAS is initially used to protect the keys. The password is required when importing the
LTPA keys into another server. To protect the security of the LTPA keys, you must change the password.
When the LTPA keys are exchanged between servers, this password must match across the servers for
Single Sign On (SSO) to work.

The default expiration timeout is 120 minutes. The expiration value refers to how long the LTPA tokens
are valid before they expire.

To enable dynamic reloading of the LTPA keys when copying an LTPA keys file from another server, you
can specify a file monitor interval before copying the LTPA keys file. The monitor interval value refers to
how often the LTPA keys file is monitored for updates.

For more information about LTPA, see LTPA concept in Liberty.

Procedure
1. Configure the <ltpa> element in the server.xml file as follows, replacing the sample values in the

example with your values:
<ltpa keysFileName="yourLTPAKeysFileName.keys" keysPassword="keysPassword" expiration="120" />

1188 WebSphere Application Server Liberty Core 8.5.5

2. Optional: Set the monitorInterval attribute to check the lpta.keys file for key changes to be
dynamically reloaded. Specify a positive integer followed by a unit of time, which can be hours (h),
minutes (m), or seconds (s). In the following example, the LTPA keys file is checked for changes to be
dynamically reloaded every 5 seconds:
<ltpa keysFileName="yourLTPAKeysFileName.keys" keysPassword="keysPassword"

expiration="120" monitorInterval="5s" />

3. Encode the password within the configuration. You can get the encoded value by using the
securityUtility encode command.

4. Optional: Copy an existing LTPA keys file to the location specified in the keysFileName attribute. The
default value is ${server.output.dir}/resources/security/ltpa.keys.
For more information on <ltpa> element, see **** MISSING FILE ****.

OpenID

8.5.5.4

OpenID is an open standard where users can authenticate themselves to multiple entities without the
need to manage multiple accounts or sets of credentials. WebSphere Application Server Liberty supports
OpenID 2.0 and plays a role as a Relying Party in web single-sign-on.

OpenID Provider (OP)
An OpenID Authentication server that can assert whether a user controls a unique identifier.

Relying Party (RP)
An entity that requires proof that a user controls a unique identifier.

OpenID Identifier:
An http or https URL that belongs to an OpenID provider or a user.

Accessing various entities such as websites often requires a unique account that is associated with each
entity. OpenID enables a single set of credentials that are handled by an OpenID Provider to grant access
to any number of entities that support OpenID.

When required to sign in to an entity, such as a website that supports OpenID and acts as a Relying
Party, users perform authentication by interacting directly with an OP rather than providing their
credentials to the RP itself. An OP verifies the identity of the user and sends an authentication
confirmation back to the RP. When this confirmation is received from the OP, the RP accepts the user as
authenticated.

A typical OpenID authentication flow is described as follows:
1. A user attempts to access a protected resource, such as a web page.
2. The Liberty server, acting as a RP, presents a form login page for the protected resource.
3. The user enters an OpenID identifier.
4. The RP takes the identifier and redirects the user to the appropriate OP.
5. The OP prompts the user for credentials.
6. The user enters credentials for the account that is associated with the OP.
7. The OP authenticates the user and optionally prompts the user to approve or deny providing user

information to the RP, and subsequently redirects the user back to the RP with the authentication
result.

8. If the OP authentication is successful, the RP attempts to authorize the user.
9. If the user authorization is successful, the RP establishes an authenticated session with the user.

Chapter 7. Securing Liberty and its applications 1189

OpenID Provider

6655

Liberty

profile server

Browser

44

77

11 3322

Optional prompt to

approve providing

more information

OpenID helps minimize the chances of user credentials or sensitive information being mishandled. With
OpenID, a user's credentials are only exchanged with the OpenID Provider, meaning no website other
than the OP ever sees the user's credentials. This standard helps mitigate the possibility of an
unscrupulous or insecure website compromising the identity of a user. The user also controls how much
personal information is shared with the websites visited. For example, users can choose to allow the
name and email address that are associated with their OpenID account to be shared with one website
while electing not to provide their email address, or any information at all, to another website.

The OpenID standard specifications that are supported include:

OpenID Authentication 2.0.

OpenID Attribute Exchange 1.0.

Note: The OpenID 2.0 Claimed Identifier should be used to identify a user per spec, Identifying the end
user. However, the Claimed Identifier is not user friendly and many Relying Parties choose one of the
OpenID attributes to represent the user. The most popular attribute used to represent the user is a user's
email address.

It is known that some OpenID attributes, including email, might not be validated by the OpenID
provider. If you do not trust that a provider will provide you a verified email address, then you must not
use the provider's email as the authenticated user name in the WebSphere Application Server.

OpenID Connect

8.5.5.4

OpenID Connect is a simple identity protocol and open standard that is built on top of the OAuth 2.0
protocol that enables client applications to rely on authentication that is performed by an OpenID
Connect Provider to verify the identity of a user.

OpenID Connect uses OAuth 2.0 for authentication and authorization and then builds identities that
uniquely identify users. Client applications can also obtain basic profile information about a user in an
interoperable and REST-like manner from OpenID Connect Providers.

The WebSphere Application Server Liberty supports OpenID Connect 1.0 and plays a role as a Client, or
Relying Party, and as a Provider in web single sign-on. The following OpenID Connect specification is
supported:

8.5.5.4 OpenID Connect Core 1.0

For those using a Liberty server as a Web-based Relying Party, the 8.5.5.4 OpenID Connect Basic
Client Implementer's Guide 1.0 is a subset of the OpenID Connect Core specification that is easier to read
and provides details for Web-based Relying Parties that use the Authorization Code Flow.

1190 WebSphere Application Server Liberty Core 8.5.5

http://openid.net/specs/openid-authentication-2_0.html
http://openid.net/specs/openid-attribute-exchange-1_0.html
http://openid.net/specs/openid-authentication-2_0.html#identifying
http://openid.net/specs/openid-authentication-2_0.html#identifying
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-basic-1_0.html
http://openid.net/specs/openid-connect-basic-1_0.html

Access Token
A credential that is used to access protected resources. An access token is a string that represents
an authorization that is issued to the client.

Authorization Endpoint
A resource on an OpenID Provider that accepts an authorization request from a client to perform
authentication and authorization of a user. The authorization endpoint returns an authorization
grant, or code, to the client in the Authorization Code Flow. In the Implicit Flow, the
authorization endpoint returns an ID token and access token to the client.

Authorization Grant
A credential that represents a user's authorization to access resources, and is used by a client to
obtain an access token.

Claim Information asserted about an entity. Examples of a claim include phone number, first name, last
name, and others.

ID Token
JSON Web Token (JWT) that contains claims about the authenticated user.

Introspection Endpoint
A resource on an OpenID Provider that enables a client that is holding an access token to retrieve
information that was used to create the access token, such as the user name, granted scopes,
client ID, or other information.

OpenID Connect Provider (OP)
An OAuth 2.0 authorization server that is capable of providing claims to a client, or Relying
Party (RP).

Refresh Token
Issued to the client by the OP and is used to obtain a new access token when the current access
token expires, or to obtain more access tokens.

Relying Party (RP)
Either a Liberty server configured as an OpenID Connect Client, or a client application that
requires claims from an OpenID Provider (OP).

Scope Privilege or permission that is allowed to access resources of a third party.

Token Endpoint
A resource on an OP that accepts an authorization grant, or code, from a client in exchange for an
access token, ID token, and refresh token.

The Liberty server as an OpenID Connect Client

You can configure the WebSphere Application Server Liberty to function as an OpenID Connect Client.
This setup enables the Liberty server to rely on another Liberty server that is acting as an OP for user
authentication and authorization.

A Liberty server that is configured to act as an OpenID Connect Client supports the Authorization Code
Flow of the OpenID Connect 1.0 standard.

In the Authorization Code Flow, all token exchanges are handled by using the token endpoint of the
OpenID Connect Provider. First, the client submits an authorization request to the authorization endpoint
of the OP. Upon successful authentication and authorization with the OP, the client receives an
authorization grant, or code, from the OP. This authorization code can then be sent in a request to the
token endpoint of the OP. The client receives an ID token, an access token, and a refresh token in the
response from the token endpoint. The client then validates the ID token and retrieves the subject
identifier of the user. This profile flow is intended for clients that can securely maintain a client secret
between themselves and the OP. This flow also allows clients to obtain a refresh token.

Chapter 7. Securing Liberty and its applications 1191

For configuring a Liberty server as an OpenID Connect Client, see “Configuring an OpenID Connect
Client in Liberty” on page 1239

The Liberty server as an OpenID Connect Provider

You can configure the WebSphere Application Server Liberty to function as an OpenID Connect Provider.
This setup enables the Liberty server to act as an authorization server that can be used by OpenID
Connect Clients.

A Liberty server that is configured to act as an OpenID Connect Provider supports the Authorization
Code Flow and Implicit Flow of the OpenID Connect 1.0 standard. Each flow determines how the ID
token, access token, and refresh token are returned to the client.

The Authorization Code Flow handles all token exchanges by using the token endpoint of the OpenID
Connect Provider. An OpenID Connect Provider accepts an authorization request from a client at the OP's
authorization endpoint. If authentication is necessary, the OpenID Connect Provider performs the
appropriate authentication. The OpenID Connect Provider also obtains any required consent or
authorization from the user, for example by prompting the user in a browser for permission to grant
access to certain scopes. If successful, or if no authentication was required, the OpenID Provider sends
back an authorization grant, or code, to the client. The OpenID Connect Provider then accepts a request
that is submitted to its token endpoint by the client that includes the authorization code. The request that
includes the authorization code is validated by the OpenID Provider. Upon successful validation, the
OpenID Connect Provider returns a response to the client that includes an ID token and an access token.

In the Implicit Flow, unlike the Authorization Code Flow, all tokens are returned from the authorization
endpoint; the token endpoint of the OP is not used. First, a client prepares and sends an authentication
request to the authorization endpoint of the OP. The OpenID Connect Provider then performs any
necessary authentication and also obtains any required consent or authorization from the user. For
example, the OpenID Connect Provider prompts the user in a browser for permission to grant access to
certain scopes. Upon successful authentication and authorization, the OpenID Connect Provider sends
back an ID token and an access token to the client. The client then validates the ID token and retrieves
the subject identifier of the user. This profile flow is intended for clients that cannot securely maintain a
client secret between themselves and the OP, such as native applications.

For configuring a Liberty server as an OpenID Connect Provider, see “Configuring an OpenID Connect
Provider in Liberty” on page 1214

Authorization Code Flow

A typical OpenID Connect Authorization Code Flow is described as follows:
1. A user accesses an application on the RP.
2. The RP prepares an authentication request and redirects the user to the OP.
3. The OP authenticates the user, for example by prompting the user for credentials. The user authorizes

the RP to access the information that is required by the application. The OP generates a one-time use
authorization code for the RP.

4. The OP redirects the user back to the RP with the authorization code.
5. The RP calls the token endpoint of the OP to exchange the authorization code for an access token, ID

token, and a refresh token.
6. The RP uses the ID token to authorize the user.

1192 WebSphere Application Server Liberty Core 8.5.5

Application

Relying Party (RP) / client

11
User

22

33

44

OpenId Connect Provider (OP)

55

Implicit Flow

The Implicit Flow is only supported by Liberty servers that are acting as an OpenID Connect Provider. A
typical OpenID Connect Implicit Flow is described as follows:
1. A user accesses an application on the RP.
2. The RP prepares an authentication request and redirects the user to the OP.
3. The OP authenticates the user, for example by prompting the user for credentials. The user authorizes

the RP to access the information that is required by the application.
4. The OP redirects the user back to the RP with an ID token and an access token.
5. The RP uses the ID token to authorize the user.

Application

Relying Party (RP) / client

11
User

22

33

44

OpenId Connect Provider (OP)

Configuring an OpenID Relying Party in Liberty

8.5.5.4

You can configure a Liberty server to function as an OpenID Relying Party to take advantage of web
single-sign-on.

Before you begin

You must have at least one OpenID Provider (OP) that is trusted with authenticating users. Several
third-party OpenID Providers are available.

Chapter 7. Securing Liberty and its applications 1193

About this task

You can have users authenticated with an OpenID Provider by enabling the openid-2.0 feature in Liberty,
and in addition to other optional configuration information.

Procedure
1. Add the openid-2.0 Liberty feature to the server.xml file. Add the following element declaration

inside the featureManager element in your server.xml file:
<feature>openid-2.0</feature>

2. Update the server.xml file with the OpenID Relying Party configuration options that are
specified by an <openId> element.
You can either predefine an OpenID provider URL in your server.xml file by using the
providerIdentifier attribute of the <openId> element, or you can package your application with
FormLogin which gives users an option to submit an OpenID provider URL to use for authentication.
If the providerIdentifier attribute is added to the server.xml file, the Liberty server will
automatically redirect users to the OpenID provider specified by that attribute. If the
providerIdentifier attribute is not defined in the server.xml file, the Liberty server will first send a
login form to ask the user to select or confirm an OpenID provider prior to redirecting the user to the
OpenID provider.
The following is a sample OpenID configuration that defines an OpenID provider:
<openId id="myOpenId" providerIdentifier="https://openid.acme.com/op" userInfoRef="email">
<userInfo id="email" alias="email" uriType="http://axschema.org/contact/email" count="1" required="true" />

</openId>

Adding the openid-2.0 feature automatically enforces a certain minimum configuration. Consequently,
there is no <openId> element that is required to be explicitly specified in the server.xml file. Without
an <openId> element that is specified, the following configuration is implicit:
<openId id="myOpenId" userInfoRef="email">

<userInfo id="email" alias="email" uriType="http://axschema.org/contact/email" count="1" required="true" />
</openId>

By default, the user's email address that is returned from the OpenID Provider is used for identity
assertion and subject creation.

3. Configure the server's truststore to include the signer certificates of the OpenID Providers that are
supported. For information about keystores, see Enabling SSL communication for Liberty.
a. Extract the signer certificate from the OpenID Provider. Most major web browsers provide support

for extracting or exporting certificates from websites through the browser interface.
b. Import the OpenID Provider certificate to the server's truststore. For one method of importing

certificates into a truststore, see the -import flag capabilities of the keytool utility that is found in
your Java installation directory.

c. Use the sslRef attribute of the <openId> element to point to your SSL configuration. If no sslRef
attribute is specified, the default SSL configuration described in the keystore page mentioned
previously will be used. Your SSL configuration should include the appropriate references to the
truststore containing the imported OpenID Provider certificates.

4. Optional: Configure the Authentication Filter.
If the providerIdentifier attribute is configured inside the openId element in the server.xml file, you
can configure authFilterRef to limit the requests that should be intercepted by the OpenID provider
defined by the providerIdentifier attribute.

For more information on configuring the authentication filter, see 8.5.5.5 “Authentication
Filters” on page 1252.

1194 WebSphere Application Server Liberty Core 8.5.5

Configuring SPNEGO authentication in Liberty

8.5.5.5

You can use single sign-on for HTTP requests by using the Simple and Protected GSS-API Negotiation
Mechanism (SPNEGO) web authentication for WebSphere Application Server Liberty. SPNEGO single
sign-on enables HTTP users to log in to a Microsoft® domain controller only once at their desktop and to
achieve single sign-on (SSO) with the Liberty server.

Before you begin

Configure the following software and ensure that it is available:
1. A Microsoft Windows® Server running an Active Directory Domain Controller and associated

Kerberos Key Distribution Center (KDC). For this topic, an example host for such a domain controller
is myAdMachine.example.com. The domain controller name is mydomain.example.com and the Kerberos
realm name is MYDOMAIN.EXAMPLE.COM, which is the domain controller name in all uppercase letters.

2. A Microsoft Windows® domain member (client) that supports the SPNEGO authentication mechanism
as defined in IETF RFC 2478. Examples of an appropriate client might be a modern browser or a
Microsoft .NET client. Most modern browsers support SPNEGO authentication. For this topic, an
example host for the client is myClientMachine.example.com.

3. A server platform with a Liberty server that has a protected resource within an application. Users in
the Active Directory must be able to access Liberty server protected resources by using a native
Liberty server authentication mechanism. For this topic, an example Liberty server host is
myLibertyMachine.example.com.

Note: The software configuration must have a running domain controller, at least one client machine in
that domain and a server platform with a Liberty server that has a protected resource within an
application, for a total of three required machines. Using SPNEGO directly from the domain controller is
not supported.

Note: Ensure the clocks for the client, Microsoft Active Directory server, and Liberty server are
synchronized to within 5 minutes of each other, by default. The allowable difference in synchronization is
configurable.

Note: Only IBM JDKs are supported currently. Non-IBM JDKs are not supported.

About this task

The objective of this task is to allow users to successfully access Liberty server resources without having
to authenticate again, and thus achieve Microsoft Windows® desktop single sign-on capability.

This task demonstrates how to configure a Liberty server to support single sign-on for HTTP requests by
using SPNEGO web authentication.

Procedure
1. On the Microsoft domain controller (myAdMachine.example.com), create a Kerberos service principal

name (SPN) and keytab file for the Liberty server. :
a. Create a user account for the Liberty server. This is the account that is used to map to the

Kerberos service principal name (SPN). For Active Directory machines, this can typically be done
by going to Start > Administrative Tools > Active Directory Users and Computers, right-clicking
on Users in the panel, and selecting New > User. This topic assumes that the user
myLibertyMachine_http was created with password security.

Chapter 7. Securing Liberty and its applications 1195

b. Run the Microsoft setspn command to map the user account to a Kerberos SPN. This user account
represents the Liberty server as being a Kerberos service with the KDC. The following is an
example setspn command:
C:\> setspn -a HTTP/myLibertyMachine.example.com myLibertyMachine_http

Registering ServicePrincipalNames for CN=myLibertyMachine_http,CN=Users,DC=MYDOMAIN,DC=EXAMPLE,DC=COM
HTTP/myLibertyMachine.example.com

Updated object

Note: If your Microsoft setspn command version supports the -S option, then you must use the
-S option instead of -A.

c. Create the Kerberos keytab file by using the Microsoft ktpass tool. The default name for this file is
krb5.keytab.
The following is an example ktpass command:
C:\> ktpass -out krb5.keytab -princ HTTP/myLibertyMachine.example.com@MYDOMAIN.EXAMPLE.COM -mapUser myLibertyMachine_http -mapOp set -pass security -crypto RC4-HMAC-NT -ptype KRB5_NT_PRINCIPAL

Targeting domain controller: myAdMachine.MYDOMAIN.EXAMPLE.COM
Using legacy password setting method
Successfully mapped HTTP/myLibertyMachine.example.com to myLibertyMachine_http.
Key created.
Output keytab to krb5.keytab:
Keytab version: 0x502
keysize 93 HTTP/myLibertyMachine.example.com@MYDOMAIN.EXAMPLE.COM ptype 1 (KRB5_NT_PRINCIPAL) vno 3 etype 0x17 (RC4-HMAC) keylength 16 (0x148d643db283327d3f3d44547da8cade)

Make sure that there is not a duplicated SPN in the Microsoft forest by using one of the following
commands:
v If your Microsoft setspn command version supports the -X option to search for a duplicated

SPN, then use setspn -X:
C:\>setspn -X HTTP/myLibertyMachine.example.com

Processing entry 0
found 0 group of duplicate SPNs.

v You can also use the Microsoft ldif command. The following example shows that one entry was
returned, meaning there is not a duplicated SPN.
C:\>ldifde -f check_SPN.txt -t 3268 -d "" -l servicePrincipalName -r "
(servicePrincipalName=HTTP/myLibertyMachine.example.com)" -p subtree

Connecting to "myAdMachine.MYDOMAIN.EXAMPLE.COM"
Logging in as current user using SSPI
Exporting directory to file check_SPN.txt
Searching for entries...
Writing out entries.
1 entries exported

For information on creating SPNs and keytab files on different KDC systems, see Creating a
Kerberos service principal name and keytab file.

2. On the Liberty server machine (myLibertyMachine.example.com), enable the Kerberos keytab and
configuration files and SPNEGO web authentication.
a. Copy the Kerberos keytab file from the domain controller to the Liberty server machine. The

default name of this file is krb5.keytab and the default location varies depending on the platform
but is the same directory as the Kerberos configuration file. For default locations for various
platforms, see the next step.

b. Create a Kerberos configuration file.
The Kerberos configuration file contains client configuration information, including the locations of
KDCs for the realms of interest, defaults for the current Kerberos realm, and mappings of host
names onto Kerberos realms. For Liberty servers, you must create this file manually.
The default location and name of this file varies depending on the operating system:

1196 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsec_kerb_create_spn.html?cp=SSAW57_8.5.5%2F1-3-0-22-0-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/tsec_kerb_create_spn.html?cp=SSAW57_8.5.5%2F1-3-0-22-0-0&lang=en

v Windows Windows - The default location is c:\winnt\krb5.ini. If the krb5.ini file is not in the
c:\winnt directory, it might be in c:\windows

v Linux Linux - The default location is /etc/krb5.conf.

v AIX HP-UX Solaris AIX, z/OS, HP-UX, and Solaris - The default location is
/etc/krb5/krb5.conf.

The following is a sample Kerberos configuration file for the AIX, z/OS, HP-UX, or Solaris
platforms (based on the default keytab location):
[libdefaults]

default_realm = MYDOMAIN.EXAMPLE.COM
default_keytab_name = FILE:/etc/krb5/krb5.keytab
default_tkt_enctypes = rc4-hmac
default_tgs_enctypes = rc4-hmac
forwardable = true
renewable = true
noaddresses = true
clockskew = 300
udp_preference_limit = 1

[realms]
MYDOMAIN.EXAMPLE.COM = {

kdc = myAdMachine.example.com:88
default_domain = example.com

}
[domain_realm]

.example.com = MYDOMAIN.EXAMPLE.COM

Note: Realm names are usually specified in uppercase letters. If using Microsoft Active Directory,
realm names are required to be uppercase.

Note: Not all of the KDC solutions available support all encryption types. Before choosing an
encryption type, ensure that the KDC supports the encryption type that you want to use by
consulting your Kerberos Administrator's and User's Guide.
Ensure that you have a common encryption type for the Kerberos configuration file, Kerberos
keytab file, Kerberos SPN, and Kerberos client. For example, if the Kerberos client uses the
RC4-HMAC encryption type, the target server must also support the RC4-HMAC encryption type and
the Kerberos configuration file must list RC4-HMAC first in the default_tgt_enctypes and
default_tkt_enctypes parameters.
For additional information and requirements on the content of this file, see Creating a Kerberos
configuration file.

c. Verify the Kerberos configuration and keytab files.
v You can use the JDK command klist to list the SPN in the keytab file.

klist -k -t /etc/krb5.keytab

v You can use the JDK command kinit to validate the SPN in the keytab file and the Kerberos
configuration file.
kinit -k -t /etc/krb5.keytab HTTP/myLibertyMachine.example.com

After the kinit command you can use the klist command to list the Kerberos ticket. If you get
the Kerberos ticket, then the Kerberos keytab and configuration are valid.

d. Configure and enable SPNEGO web authentication on the Liberty server.
You can enable SPNEGO web authentication by enabling the spnego-1.0 feature of the Liberty
profile.
1) Add the spnego-1.0 feature to the server.xml file.

<featureManager>
<feature>spnego-1.0</feature>
<feature>appSecurity-2.0</feature>
...

</featuremanager>

Chapter 7. Securing Liberty and its applications 1197

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.iseries.doc/ae/tsec_kerb_create_conf.html?cp=SSAW57_8.5.5%2F2-3-0-21-1-0&lang=en
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.iseries.doc/ae/tsec_kerb_create_conf.html?cp=SSAW57_8.5.5%2F2-3-0-21-1-0&lang=en

Adding the spnego-1.0 feature automatically enforces a certain minimum configuration. You
do not need to specify a <spnego> element in the server.xml file. Without specifying a
<spnego> element, the following configuration is implicit.
<spnego

canonicalHostName="true"
disableFailOverToAppAuthType="true"
trimKerberosRealmNameFromPrincipal="true"
includeClientGSSCredentialInSubject="true" />

Note: The runtime forms the default SPN in the following format:
"HTTP/" + java.net.InetAddress.getLocalHost().getCanonicalHostName();

If the default SPN does not match what you have in the krb5.keytab file, then you need to
specify the servicePrincipalNames, for example:
<spnego id="mySpnego" servicePrincipalNames="HTTP/myLibertyMachine.example.com"/>

Note: When the spnego-1.0 feature is enabled and the <spnego> element is either omitted or
not configured with an authFilterRef attribute, all requests to access protected resources use
SPNEGO authentication.

For more information on configuring the authentication filter, see 8.5.5.5 “Authentication
Filters” on page 1252.

Note: When values for the krb5Config or krb5Keytab attributes are not given, each respective
file is expected to exist at its default location. The default locations for the Kerberos
configuration and keytab files on various platforms are given earlier in this topic.

2) Optional: Specify any additional configuration options as necessary. Liberty supports many
common SPNEGO scenarios and configurations. For example, you can filter HTTP requests to
require SPNEGO authentication for only certain requests, web applications, hosts, or user
agents. Also, you can move the Kerberos configuration and keytab files away from their
respective default locations. The following is a sample configuration that changes the default
<spnego> settings:
<server>

<featureManager>
<feature>spnego-1.0</feature>
<feature>appSecurity-2.0</feature>
...

</featureManager>
...
<authFilter id="myAuthFilter">

<host id="myHost" name="example.com" matchType="contains" />
<webApp id="myWebApp" name="protectedApp" matchType="equals" />

</authFilter>

<spnego id="mySpnego"
includeClientGSSCredentialInSubject="false"
krb5Config="${server.config.dir}/resources/security/kerberos/krb5.conf"
krb5Keytab="${server.config.dir}/resources/security/kerberos/krb5.keytab"
servicePrincipalNames="HTTP/myLibertyMachine.example.com"
authFilterRef="myAuthFilter" />

</spnego>
...

</server>

With this configuration, SPNEGO authentication is used for any requests that are received
containing the host name example.com for resources within the web application protectedApp.
In addition, the client's GSS credentials are not added to the user subject upon successful
authentication. Finally, the Kerberos configuration and keytab files to be used by the server are
given specific locations within the server configuration directory instead of their respective
default locations.

1198 WebSphere Application Server Liberty Core 8.5.5

For more configuration options, see 8.5.5.5 The Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO).
For information on mapping Kerberos principal names to WebSphere user registry IDs, see
Mapping of a client Kerberos principal name to the WebSphere user registry ID.

In the rare event that you wish to use Kerberos principal names for authorization, see
8.5.5.5 “Using Kerberos principal name for authorization with SPNEGO authentication” on

page 1202. These steps should be followed only when necessary and by users who specifically
choose not to use the default mapping or JAAS custom login module mapping.

3. Configure the client application on the client application machine (myClientMachine.example.com).
The following steps must be done only on the client machine. Starting a browser on the Active
Directory machine or Liberty server machine and performing these steps does not work.
The following steps are for users who are accessing SPNEGO-protected resources from a browser. You
must have a browser installed that supports SPNEGO authentication.
Microsoft Internet Explorer:
a. At the desktop, log in to the Windows Active Directory domain.
b. In the Internet Explorer window, click Tools > Internet Options. In the window that is displayed,

click the Security tab.
c. Select the Local intranet icon and click Sites.
d. If using Internet Explorer version 9 or older, go to the next step. If using Internet Explorer 10 or

later, click Advanced in the Local intranet window.
e. In the Local intranet window, complete the Add this website to the zone field with the web

address of the host name so that single sign-on (SSO) can be enabled for the list of websites that
are shown in the websites field. Your site information technology staff provides this information.
Close the second Local intranet window and click OK to complete this step and close the Local
intranet window.

f. On the Internet Options window, click the Advanced tab and scroll to Security settings. Ensure that
the Enable Integrated Windows® Authentication box is selected.

g. Click OK. Restart your Microsoft Internet Explorer to activate this configuration.
Mozilla Firefox:
a. At the desktop, log in to the Windows Active Directory domain.
b. In the address field in Firefox, type about:config.
c. In the Filter/Search box, type network.n.
d. Double-click network.negotiate-auth.trusted-uris. This preference lists the sites that are permitted

to engage in SPNEGO Authentication with the browser. Enter a comma-delimited list of trusted
domains or URLs.

Note: You must set the value for network.negotiate-auth.trusted-uris.
e. If the deployed SPNEGO solution is using the advanced Kerberos feature of Credential Delegation,

double-click network.negotiate-auth.delegation-uris. This preference lists the sites for which the
browser can delegate user authorization to the server. Enter a comma-delimited list of trusted
domains or URLs.

f. Click OK. The configuration reflects the updates.
g. Restart your Firefox browser to activate this configuration.

Note: The user must be logged in to the domain controller for SPNEGO to work. Using the previous
example machines, a user must log in to the domain controller at MYDOMAIN.EXAMPLE.COM\username in
order for SPNEGO authentication through the browser to work.

Chapter 7. Securing Liberty and its applications 1199

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.iseries.doc/ae/tsec_kerb_map.html?cp=SSAW57_8.5.5%2F2-3-0-22-3-0&lang=en

Note: If you are prompted multiple times for a user ID and password, make sure that you enabled
SPNEGO support on your client browser by following the previous instructions. You must also make
sure that the disableFailOverToAppAuthType attribute in the <spnego> configuration is set to false.

Results

Your Internet browser is now properly configured for SPNEGO authentication. You can use applications
with secured resources that are deployed on Liberty servers without being prompted for a user ID and
password.

To verify that SPNEGO is working, you can log in to the domain controller and then access a protected
resource on the Liberty server, and because you are logged in to the domain controller, you are not
prompted for credentials. However, if you do not log in to the domain controller and attempt to access a
protected resource, you are prompted for credentials.

Configuring Kerberos constrained delegation for out-bound SPNEGO tokens in
Liberty
You can configure a Liberty server to support Kerberos constrained delegation for out-bound SPNEGO
tokens.

Before you begin

Make sure that you have configured SPNEGO web authentication.

Only IBM JDK 1.8 and later are supported.

About this task

The Kerberos v5 extension called S4U (Services for Users) also known as constrained delegation
compromises two parts:

S4U2self

Allows a Liberty server to obtain a service ticket to itself on behalf of a user. This can be used
with any form of authentication that is supported by Liberty. S4U2self is the Kerberos Protocol
Transition extension.

S4U2proxy

Allows a Liberty server to obtain service tickets to trusted services on behalf of a user. These
service tickets are obtained by using the user's service ticket to the Liberty service. The services
are constrained by the Kerberos Key Distribution Center (KDC) administrator. S4U2proxy is the
Kerberos Constrained Delegation extension.

The constrained delegation feature provides the following APIs to create the out-bound SPNEGO token
for back end services that support SPNEGO authentication, such as .NET servers and other Liberty
servers.
v S4U2self API:

com.ibm.websphere.security.s4u2proxy.SpnegoHelper.buildS4U2proxyAuthorizationUsingS4U2self()

v S4U2proxy API:
com.ibm.websphere.security.s4u2proxy.SpnegoHelper.buildS4U2proxyAuthorization()

The following steps use the same example system setup that is used in Configuring SPNEGO
authentication in Liberty and illustrated in Single sign-on for HTTP requests using SPNEGO web
authentication.

1200 WebSphere Application Server Liberty Core 8.5.5

Procedure
1. On the Microsoft domain controller myAdMachine.example.com, update the service principal name

(SPN) that you use to validate the incoming SPNEGO token. For example, update the
HTTP/myLibertyMachine.example.com SPN as follows:
a. To use S4U2self, perform the following steps:

1) Open the user account that is mapped to the delegate SPN.
2) Open the Attribute Editor tab.
3) Modify the userAccountControl property as follows:
v Trusted for auth delegation 0x1000000, or the TRUSTED_TO_AUTHENTICATE_FOR_DELEGATION

enum) must be true.
4) Set the trusted service:
v Open the Delegation tab in the user account.
v Select the Trust this user for delegation to specified services only radio button.
v Select the Use any authentication protocol radio button.
v Click on Add to add the trusted service.
v Click Users or Computers.
v Enter the SPN to be used for the trusted service.
v Click Check Names and verify that the appropriate object name was found.
v Click OK.
v Select the SPN specified and click OK.

b. To use S4U2proxy, perform the following steps:
1) Open the user account that is mapped to the delegate SPN.
2) Open the Attribute Editor tab.
3) Modify the userAccountControl property as follows:
v Trusted for auth delegation (0x1000000, or the TRUSTED_TO_AUTHENTICATE_FOR_DELEGATION

enum) must be true.
4) Set the trusted service:
v Open the Delegation tab in the user account.
v Select the Trust this user for delegation to specified services only radio button.
v Click on Add to add the trusted service.
v Click Users or Computers.
v Enter the SPN to be used for the trusted service.
v Click Check Names and verify that the appropriate object name was found.
v Click OK.
v Select the SPN specified and click OK.

2. On the Liberty server machine (myLibertyMachine.example.com), enable the constrained delegation
feature by adding constrianedDelegation-1.0 to the featureManager and configure the JAAS
Kerberos login module in the server.xml file.
<featureManager>

<feature>spnego-1.0</feature>
<feature>contrainedDelegation-1.0</feature>
...

</featuremanager>

<jaasLoginContextEntry id="com.ibm.security.jgss.krb5.accept" name="com.ibm.security.jgss.krb5.accept" loginModuleRef="useKeytab" />
<jaasLoginModule id="useKeytab" className="com.ibm.security.auth.module.Krb5LoginModule" controlFlag="REQUIRED" libraryRef="jaasSharedLib">

<options
credsType="both"
debug="true"
useDefaultCcache="false"
tryFirstPass="true"

Chapter 7. Securing Liberty and its applications 1201

forwardable ="true"
principal="HTTP/myLibertyMachine.example.com"
useKeytab="${server.config.dir}/resources/security/kerberos/krb5.keytab">

</options>
</jaasLoginModule>

<library id="jaasSharedLib" apiTypeVisibility="spec, ibm-api, api">
<fileset dir="${server.config.dir}/lib/global/" includes="*" />

</library>

When the constrainedDelegation-1.0 feature is enabled, the following configuration is implicit:
<constrainedDelegation id="defaultConstrainedDelegation" s4U2selfEnabled="false" />

To use S4U2self, the following configuration is needed in the server.xml file:
<constrainedDelegation s4U2selfEnabled = "true" id="defaultConstrainedDelegation"/>

Note: When you use the S4U2proxy API, the jaasLoginContextEntry id and name
com.ibm.security.jgss.krb5.accept can not change.

Note: By default, S4U2proxy is enabled and S4U2self is disabled. The S4U2self extension can be
enabled or disabled by modifying the s4U2selfEnabled attribute in the server.xml file.

Results

Your application is now ready to call the API provided by the constrained delegation feature.

Using Kerberos principal name for authorization with SPNEGO authentication

8.5.5.5

You can use the fully qualified Kerberos principal name for authorization instead of using simple
mapping or creating your own custom JAAS custom login module.

About this task

The following steps should be rarely followed, and only by users who specifically choose not to use
simple mapping, which is the default configuration, or choose not to add a JAAS custom login module to
map the fully qualified Kerberos principal name to a user in the Liberty server user registry. This task
allows you to use the fully qualified Kerberos principal name for authorization.

Procedure
1. Configure the SPNEGO authentication to not trim the Kerberos realm name from the fully qualified

Kerberos principal name by setting the trimKerberosRealmNameFromPrincipal attribute to false.
2. Configure the Liberty server to use either stand-alone LDAP or federated repositories.

For more information on how to configure LDAP, see Configuring LDAP user registries with Liberty.
a. Make sure that the Active Directory user exists in the LDAP user registry and that this user has a

single userPrincipalName attribute that is associated with it.
b. Update the LDAP filter in the server.xml file to search for the userPrincipalName, as shown in the

following example:
<activedLdapFilterProperties id="myactivedfilters"

userFilter="(&(userPrincipalName=%v))"
groupFilter="(&(cn=%v))"
userIdMap="*:userPrincipalName"
groupIdMap="*:cn"
groupMemberIdMap="ibm-allGroups:member">

</activedLdapFilterProperties>

3. Configure the application bindings for the corresponding application to use the fully qualified
Kerberos principal name as the user name along with a properly configured access-id. For example:

1202 WebSphere Application Server Liberty Core 8.5.5

<application type="war" id="myApp" name="myApp" location="${server.config.dir}/apps/myApp.war">
<application-bnd>

<security-role name="Employee">
<user name="kevin@MYDOMAIN.EXAMPLE.COM" access-id="CN=kevin,CN=Users,DC=MYDOMAIN,DC=EXAMPLE,DC=COM"/>
...

</security-role>
...

</application-bnd>
</application>

Customizing SSO configuration using LTPA cookies in Liberty
With single sign-on (SSO) configuration support, web users can authenticate once when accessing Liberty
resources such as HTML, JavaServer Pages (JSP) files, and servlets, or accessing resources in multiple
Liberty servers that share the same Lightweight Third Party Authentication (LTPA) keys.

Example

When a user passes authentication on one of Liberty servers, authentication information generated by the
server is transported to the web browser in a cookie. The cookie is used to propagate the authentication
information to other Liberty servers.

The LTPA is configured and ready for immediate use. The default cookie name used to store the SSO
token is called ltpaToken2. If you want to use a different name for the cookie, you can customize the
cookie name using the ssoCookieName attribute of the <webAppSecurity> element. If you customize the
cookie name, make sure that all the servers that participate in SSO use the same cookie name.

For more information about SSO, see SSO concept in Liberty.

The following example code sets the user to be logged out after the HTTP session expires and the name
of the SSO cookie as myCookieName:
<webAppSecurity logoutOnHttpSessionExpire=”true” ssoCookieName=”myCookieName” />

Note: For SSO to work across Liberty servers, full profile servers, or both, set the following resources:
v The servers must use the same LTPA keys and share the same user registry.
v If the servers are not in the same domain, use the ssoDomainNames attribute of the <webAppSecurity>

element to list the domains. The following example code sets the domain name to domain.com:
<webAppSecurity ssoDomainNames="domain.com" />

v If the servers are in the same domain, set the ssoUseDomainFromURL attribute of the <webAppSecurity>
element to true, or specify the domain name in the ssoDomainNames attribute. The following example
code sets ssoUseDomainFromURL to true so that the domain name is taken from the request URL:
<webAppSecurity ssoUseDomainFromURL="true" />

For details of all the available SSO settings, see the <webAppSecurity> element in **** MISSING FILE ****.

Configuring RunAs authentication in Liberty
You can delegate authentication to another identity by configuring the RunAs specification for Liberty.

About this task

By mapping a specified user identity and optional password to a RunAs role, you can delegate the
authentication process to a user that has the RunAs role.

You must enable the appSecurity-2.0 and servlet-3.0 Liberty features and have a user registry for your
application to configure the RunAs role.

Chapter 7. Securing Liberty and its applications 1203

For more information about RunAs authentication, see “RunAs() authentication” on page 593.

To configure RunAs authentication, complete the following steps:

Procedure
1. Enable the appSecurity-2.0 and servlet-3.0 Liberty features in the server.xml file.
2. Configure a user registry for your application.
3. Specify the <run-as> element in the deployment descriptor of your application.

The following example of web.xml file specifies subsequent calls be delegated to the user that is
mapped to the role of Employee:

<servlet id="Servlet_1">
<servlet-name>RunAsServlet</servlet-name>
<display-name>RunAsServlet</display-name>
<description>RunAsServlet</description>
<servlet-class>web.RunAsServlet</servlet-class>
<run-as>

<role-name>Employee</role-name>
</run-as>

</servlet>

4. Distributed operating systems Map the role that you specified in the previous step to a user. You can do
this either in the ibm-application-bnd.xmi/xml or in the server.xml file. In the <run-as> element, you
must specify a user name. If you are using the ibm-application-bnd.xml file, the password is also
required; if you are using the server.xml file, the password is optional. If the password is required,
encode the password using the securityUtility encode command in the /bin directory. For more
information about the securityUtility command, see “securityUtility command” on page 1162.
The following example uses the <run-as> element within the <application-bnd> element of the
server.xml file, where the Employee role has been mapped to the RunAs user of user5:

<application-bnd>
<security-role name="Employee">

<user name="user1" />
<user name="user5" />
<run-as userid="user5" password="{xor}Lz4sLCgwLTs=" />

</security-role>
</application-bnd>

Note:

v Because the password is optional in the server.xml file, you can also use the following code for a
user without a password:

<application-bnd>
<security-role name="Employee">

<user name="user1" />
<user name="user5" />
<run-as userid="user5" />

</security-role>
</application-bnd>

v If you specify the <application-bnd> element in the server.xml file, your application must not be
in the dropins folder. If you leave your application in the dropins folder, then you must disable
application monitoring by setting the following in your server.xml file:
<applicationMonitor dropinsEnabled="false" />

The RunAs user name needs to be unique, and does not exist in external accounts. For example, if you
authenticate a user to a SAML identity provider or OpenID Connect provider, make sure the RunAs
user name is not in those external accounts.
For more information about the run-as element, see **** MISSING FILE ****.

1204 WebSphere Application Server Liberty Core 8.5.5

Configuring TAI in Liberty
You can configure Liberty to integrate with a third-party security service by using Trust Association
Interceptors (TAI). The TAI can be called before or after single sign-on (SSO).

Before you begin

Make sure that you have already installed a third-party security server as a reverse proxy server. The
third-party security server can act as a front-end authentication server when the Liberty server applies its
own authorization policy onto the resulting credentials, which are passed by the proxy server. You must
also have a JAR file that contains the custom TAI class, which implements the
com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface.

Note: There is no support for monitoring changes of this JAR file.

About this task

A TAI is used to validate HTTP requests between a third-party security server and a Liberty server. The
TAI inspects the HTTP requests from the third-party security server to see whether they contain any
security attributes. If the process of validating a request by the TAI is successful, the Liberty server
authorizes the request by checking whether the client user has the required permission to access the
resources.

For more information of custom TAI and SSO configuration with LTPA, see “Developing a custom TAI
for Liberty” on page 1301 and “Customizing SSO configuration using LTPA cookies in Liberty” on page
1203.

You can also use the developer tools to configure a TAI service. Distributed operating systems

For more
information about the tools support, see “Configuring TAI on Liberty by using developer tools” on page
1206.

Procedure
1. Enable the appSecurity-2.0 Liberty feature in the server.xml file.

<featureManager>
<feature>appSecurity-2.0</feature>

</featureManager>

2. Deploy your applications to the Liberty server and enable all Liberty features, such as, jsp-2.2 and
jdbc-4.0.

3. Place the TAI implementation library simpleTAI.jar in your server directory.
4. Update the server.xml file with the TAI configuration options and location of the TAI implementation

library.
In the following server.xml file, the custom TAI is enabled, but does not do any authentication for
unprotected URIs and does not allow to fallback to application authentication method if the TAI
authentication fails. As shown in the example, the following configuration elements are available for
TAI support:
v trustAssociation

v interceptors

v properties

<trustAssociation id="myTrustAssociation" invokeForUnprotectedURI="false"
failOverToAppAuthType="false">

<interceptors id="simpleTAI" enabled="true"
className="com.sample.SimpleTAI"
invokeBeforeSSO="true" invokeAfterSSO="false" libraryRef="simpleTAI">

<properties prop1="value1" prop2="value2"/>

Chapter 7. Securing Liberty and its applications 1205

</interceptors>
</trustAssociation>

<library id="simpleTAI">
<fileset dir="${server.config.dir}" includes="simpleTAI.jar"/>

</library>
...

Note: The property name cannot start with a period (.), config., or service. Also, the property name
id or ID is not allowed.

Note: By default, the invokeBeforeSSO property is set to true. By using this setting TAI is invoked
even when the SSO token is present and valid. However, if the expected behavior is to invoke TAI
only when the SSO token is invalid or not present, then this property can be disabled by setting it to
false, and enabling the invokeAfterSSO property. By using this setting TAI is invoked only when the
SSO token is not present or is invalid. In some cases, this setup might improve the performance of
your system.
For more information about the <trustAssociation>, <interceptors> and <properties> elements, see
also **** MISSING FILE ****.

Configuring TAI on Liberty by using developer tools

Distributed operating systems

You can configure a TAI service for Liberty using developer tools.

Before you begin

For a description of the underlying process of configuring a server, and detailed information about
specific aspects of server configuration, see “Administering Liberty manually” on page 946.

Avoid trouble: There are several security configuration examples on the WASdev.net website for reference
when configuring security for your applications on Liberty.

Procedure
1. Select the parent Trust Association Interceptor and enter an ID name.
2. Select the child Trust Association Interceptor and configure the Class name which is the fully

qualified name of your TAI implementation class, then click the arrow next to the Add button and
select Global Element to enter the shared library information.

3. Enter the ID for the shared library in the popup window and click OK.
4. Configure the Name and Description fields for the shared library, then click the arrow next to the

Add button and select Child Element to add a fileset reference as a child element.
5. Configure the Fileset. Click Browse in the Base directory field and select the directory where the JAR

file is located. Then, click Browse in the Includes pattern field to select your JAR file that contains
your TAI implementation.

6. Configure Interceptor properties details by clicking Add to add properties for the interceptor.
7. Save the configuration. You can find the following configuration saved in the server.xml file.

<trustAssociation id="myTrustAssociation" invokeForUnprotectedURI="false"
failOverToAppAuthType="false">

<interceptors id="simpleTAI" enabled="true"
className="com.ibm.websphere.security.sample.SimpleTAI"
invokeBeforeSSO="true" invokeAfterSSO="false" libraryRef="simpleTAI">

<properties hostName="machine1" application="test1"/>
</interceptors>

</trustAssociation>

1206 WebSphere Application Server Liberty Core 8.5.5

<library id="simpleTAI">
<fileset dir="${server.config.dir}" includes="simpleTAI.jar"/>

</library>

Configuring a custom form login page

8.5.5.4

Liberty provides the ability to define a custom form login page for users to submit authentication
credentials.

About this task

You can customize your own custom form login page, but you must implement this page in the required
form-based authentication format as specified in the Servlet 3.0 specification. In all forms, the action on
the form element must be j_security_check. The action must use the j_username input field to get the
user name and the j_password input field to get the user password in forms supporting authentication
schemes that require a user name and password. The custom form login page must be provided as an
unprotected web resource. You can set this login page at the global server level, which applies to all
applications deployed to the server. Alternatively, you can specify the login page for individual
applications.

Note: Make sure that any files included in your form-login page (such as external style sheets, or images)
are unprotected.

Procedure
1. Specify the following form elements in the form login page that expects a user name and password.

<FORM action="j_security_check" method="POST">
User name: <INPUT type="text" name="j_username">

Password: <INPUT type="password" name="j_password">

<INPUT type="submit" name="action" value="Login">

</FORM>

2. Configure the login form for use by applications on the server. There are two possible configurations
to use a form login page in an application that is deployed to the server. You can configure the
custom login page for use in a single application, or you can configure the page as a global login
form that is used for all applications that are deployed to the server.
a. Configure a login form for a single application. You can configure individual applications to direct

users to a specific form login page by configuring the web.xml file that is packaged with the
application.
Specify the path to the login page in the web.xml file that is packaged with the application; for
example:
<login-config>

<auth-method>FORM/<auth-method>
<realm-name>MyRealm/<realm-name>
<form-login-config id="FormLoginConfig_1">
<form-login-page>/login.jsp/<form-login-page>
<form-error-page>/loginError.jsp/<form-error-page>
</form-login-config>

</login-config>

To see how to customize and package a form login page, refer to Customizing web application
login.

b. Configure a global login form. You can omit the form login page from the web.xml files that are
packaged with each application and instead, specify in the server.xml configuration that the login
form is for global use among applications that are deployed to the server.

Chapter 7. Securing Liberty and its applications 1207

In the server.xml file, include a webAppSecurity element with the loginFormURL attribute that is
specified with a value of the path of the login form page; for example:
<webAppSecurity loginFormURL="myGlobalFormLogin/myLogin.jsp" />

Ensure that the form login page is packaged as a web application archive (WAR) file deployed to
the server.
If the form-login-page element within an application's web.xml file does not exist, use the global
login page that is specified in the server configuration.

3. Optional:Configure a custom form login page for OpenID.
4. Optional: Configure a custom form login page for OAuth.

Configuring a custom form login page for OpenID

8.5.5.4

Login pages for Liberty must have a certain configuration in order to support OpenID Authentication.

About this task

If you have configured the providerIdentifier attribute of the <openId> element in your server.xml
file, you can skip this task.

Unlike standard form login pages that require a user name and password, form login for OpenID only
requires submitting an OpenID Identifier.You must therefore configure form login pages to accept this
OpenID Identifier.

Procedure
1. Configure the login form to specify j_security_check as the value for the action.
2. Add an input field to the login form and set the name attribute to openid_identifier for users to

input an OpenID Identifier. The resulting form is similar to the following HTML example:
<FORM action="j_security_check" method="POST">

OpenID: <INPUT type="text" name="openid_identifier">

<INPUT type="submit" name="action" value="Login">

</FORM>

No user name or password inputs are required if authentication is only performed using OpenID.

Configuring a custom form login page for OAuth

8.5.5.4

You can configure custom form login pages for specific OAuth service providers.

About this task

To use a custom form login page for a specific OAuth service provider, you must update the service
provider definition in the server.xml file.

Procedure

In the provider configuration, add the customLoginURL attribute and specify the login page URL as the
value.
The following is an example custom login page entry in the provider definition:
<oauthProvider id="OAuthConfigSample"

customLoginURL="https://acme.com:9043/oath20/login.jsp">

The login form that is used for OAuth must be configured to accept a user name and password.

1208 WebSphere Application Server Liberty Core 8.5.5

Configuring SAML Web Browser SSO in Liberty

8.5.5.7

You can configure a Liberty server to function as a SAML web browser Single-Sign-On (SSO) service
provider.

About this task

You can configure a Liberty server as a SAML web SSO service provider by enabling the samlWeb-2.0
feature in Liberty, and in addition to other configuration information.

Procedure
1. Add the samlWeb-2.0 Liberty feature to your server.xml file by adding the following element

declaration inside the featureManager element.
<feature>samlWeb-2.0</feature>

2. Liberty provides a default samlWebSso20 element.
<samlWebSso20 id="defaultSP">

</samlWebSso20>

In this default configuration, the following default values are assumed:
v AssertionConsumerService URL:

https://<hostname>:<sslport> /ibm/saml20/defaultSP/acs

v Service Provider (SP) metadata URL:
https://<hostname>:<sslport> /ibm/saml20/defaultSP/samlmetadata

You can use a browser to download the metadata for this service provider (SP) by using this URL,
and provide the URL to the SAML identity provider to establish federation between this SP and
Identity Provider (IdP).

v The IdP metadata file must be copied to the resources/security directory on the server, and
named idpMetadata.xml.

v The issuer name for SAML assertion is used as the security realm, and NameID is used as the
principal to create an authenticated subject from the SAML assertion.

v The SAML AuthnRequest is signed with a private key in the default keystore of the server if the
attribute KeyStoreRef is not specified. If the keyAlias is not configured, then samlsp is the default
key alias. If the keyAlias is not configured, and the keystore only contains one private key, the
private key is used in the signature.

Note: If you create a new service provider instance, and the defaultSP is no longer required, then
you must explicitly disable the defaultSP instance, by adding the following to the server.xml file.
<samlWebSso20 id="defaultSP" enabled="false">
</samlWebSso20>

Note: It is required that you specify a URL safe String that is not null as the id for samlWebSso20. If
the id is missing, then the configuration element is omitted, and is not handled as the defaultSP.

Note: When SAML is configured and enabled, all unauthenticated requests will use SAML
authentication. To configure the types of requests that should and should not use SAML
authentication, you must configure an authentication filter as described in step 15.

3. Optional: You can add <samlWebSso20 id="defaultSP"> to the server.xml file, and customize the
defaultSP service provider. For example:
v idpMetadata: Add this parameter to change the IdP metadata location and file name from the

default location and file name (${server.config.dir}/resources/security/idpMetadata.xml).

Chapter 7. Securing Liberty and its applications 1209

v userIdentifier: Add this parameter to select a SAML attribute name whose value is used as the
principal name.

v groupIdentifier: Add this parameter to select a SAML attribute name whose values are included as
group members in the subject.

v realmName: Use this parameter to explicitly specify the realm name to identify a SAML principal
in this service provider. The default realm name is the SAML issuer name.

4. Optional: You can create one or more new samlWebSso20 elements with a different ID. For example, if
you create a new element with an ID as mySP, you effectively create a new SAML SP instance that
has a new AssertionConsumerService URL:
https://<hostname>:<sslport>/ibm/saml20/mySP/acs

Note: The ID you choose for samlWebSso20 is included in URL of the SP, including the
AssertionConsumerService URL and metadata URL. The samlWebSso20 ID must be non-empty and
must not contain unsafe URL characters.

5. Optional: You can configure a trust engine. The Liberty SAML SP supports two types of trust
engines:
v Metadata trust engine: Validates the signature against information that is provided in the

configured IdP metadata.
v PKIX trust engine: Validates the trustworthiness of the certificate in the signature through PKIX

validation. Certificates that pass this validation are assumed to be trusted.
Metadata is the default trust engine. If you want to use the PKIX trust engine, you need to add the
PKIXTrustEngine element, and define the proper trustAnchor.

6. Optional: You can configure how to create an authenticated subject from SAML. By default the
Liberty SP creates a subject from SAML assertion directly without the requirement of a local user
registry, which is equivalent to the configuration mapToUserRegistry=No. The other configuration
options are mapToUserRegistry=User or mapToUserRegistry=Group.
v mapToUserRegistry=No: The SAML issuer's name is realm, and the NameID is used to create a

principal name and unique security name in the subject, and no group member is included. You
can configure the attributes: userIdentifier, realmIdentifier, groupIdentifier, and
userUniqueIdentifier to create an authenticated subject with a customized user name, realm
name, group memberships, and unique security identifier.

v mapToUserRegistry=User: Choose this option if you want to validate a SAML user against your
on-premises user registry, and create the user subject based on the on-premises registry.

v mapToUserRegistry=Group: Choose this option if you want to validate a SAML group against your
local user registry, and create a subject to contain those validated groups. This option is similar to
mapToUserRegistry=No, except for group memberships are verified against the on-premises user
registry.

7. Optional: You can implement the Liberty SAML SPI,
com.ibm.wsspi.security.saml2.UserCredentialResolver as a user feature to dynamically map a
SAML assertion to a Liberty subject.

8. Optional: You can define rules to tell the IdP how to authenticate a user by configuring one or more
of the following attributes when using an SP-initiated Web SSO flow: forceAuthn, isPassive,
allowCreate, authnContextClassRef, and authnContextComparisonType.

9. Optional: You can define a required NameID format in the AuthnRequest by using the nameIDFormat
attribute. You can specify any NameID format that is defined in the SAML specification, or use the
keyword customize to specify the custom NameId format.

10. Optional: You can configure multiple SP and IdP federation partners by creating multiple
samlWebSso20 elements, and each samlWebSso20 refers to one unique authFilter element. All
authFilters must exclude each other. With multiple samlWebSso20 configured, each can perform
single-sign-on with its federated identity provider, and has its own authentication policy and
consuming rules.

1210 WebSphere Application Server Liberty Core 8.5.5

11. Optional: Add support for IdP-initiated unsolicited SSO. Liberty SAML SP supports IdP-initiated
unsolicited SSO with and without the requirement of IdP metadata on-premises. If you do not have
IdP metadata, or if you intend to use unsolicited SSO to federate with multiple identity providers
with one Liberty SP, you must add the following configurations:
v Configure <PKIXTrustEngine>, and import all the IdP signer certificates to the default truststore of

the Liberty server, or to the trustAnchor of the PKIXTrustEngine.
v Configure the trustedIssuers to list the issuer name of the IdP as it appears in the SAML

assertion. The issuer name is used as the EntityID in the metadata.
v If you intend to support unsolicited SSO only, you can configure SP-initiated unsolicited SSO as

documented in the next step. This scenario is useful if the user's security context in the SP that is
associated with SAML becomes invalid, the SP can redirect the user back to the IdP to start
unsolicited SSO again automatically.

12. Optional: Add support for SP-initiated unsolicited SSO. The Liberty SAML SP uses configured IdP
metadata to perform a solicited SAML AuthnRequest. It is possible for the Liberty SP to redirect
unauthenticated requests to a preconfigured login application without using AuthnRequest. This
scenario is useful if a business application performs pre-authentication processing before a user can
authenticate to the SAML IdP, or the SAML IdP must be hidden from the Liberty SP. To configure
this scenario, you add the loginPageURL attribute, and set its value to a URL that can instruct a user
to authenticate to the SAML IdP.

13. Optional: Configure signature requirements with the following considerations:
v SAML assertion. All SAML assertions must be digitally signed by the SAML IdP. In the rare case

that you want to accept an unsigned assertion, you can explicitly configure
wantAssertionsSigned=false.

v The default signature algorithm is SHA256. If you must change the algorithm, use the
signatureMethodAlgorithm attribute to modify it.

v If you do not want to sign the SAML AuthnRequest, you can set authnRequestsSigned=false.
14. Optional: You can configure an SP authentication session and cookie. After SAML assertion is

verified and processed, the Liberty SAML SP maintains an authenticated session between the
browser and the SP without using an LTPA cookie. The authenticated session timeout is set to
SessionNotOnOrAfter in the <saml:AuthnStatement> if presented, or to sessionNotOnOrAfter as
configured in the server.xml file, with the default being 120 minutes. The session cookie name is
automatically generated, and you can customize the cookie name by using the attribute
spCookieName to specify the wanted name.
If you want the Liberty SP to create an LTPA cookie from the SAML assertion and use the LTPA
cookie for subsequent authentication requests, you can add the configuration
disableLtpaCookie=false. If you want to share the LTPA cookie with other servers, you must add
the configuration attribute allowCustomCacheKey="false".

Note: If you configure disableLtpaCookie="false" and allowCustomCacheKey="false", ensure that a
SAML user name is not directly authenticating to an on-premises user registry that prevents a user
from having two accounts.

15. Optional: Configure the Authentication Filter.
When the samlWeb-2.0 feature is enabled, any unauthenticated request is authenticated through one
SAML SP. If you define a customized samlWebSso20 element, all authentication requests are handled
by this samlWebSso20 SP instance; otherwise, all authentication is handled by the default instance
defaultSP. You can use authnFilter to define which SP instance to handle the authentication
request.
For more information on configuring the authentication filter, see Authentication Filters.

16. Optional: Configure the SAML SP in a cluster.
If application servers are cluster members, and you use a router or reverse proxy server to route
your requests, then you need to perform the following tasks:
v The router and proxy server must be configured to support session affinity.

Chapter 7. Securing Liberty and its applications 1211

v Add the configuration attribute spHostAndPort to each application server, and set its value to the
router or proxy server host name and port. For example, spHostAndPort="https://
myRouter.com:443".

v Generate an X509 certificate for signing the SAML AuthnRequest, and use this certificate on all
application servers. For example, you can create a keystore to contain this certificate only, and add
the KeyStoreRef to reference this keystore on all application servers.

v If createSession="true" is not set in a cluster environment, then the following error is
encountered during the stress execution:
E CWWKS5029E: The relay state [sp_initial_KGe22fCWKG1lD9VkOMuDz0Ji8pBxFPnU] in the response from the identity provider (IdP) was not recognized.

Here is a sample cluster configuration:
<keyStore id="samlKeyStore" password="<password>"

location="${server.config.dir}/resources/security/<samlKey.jks>" />

<samlWebSso20 id="defaultSP"
spHostAndPort="https://<IHS host>:<port>"
keyStoreRef="samlKeyStore"
createSession="true"
allowCustomCacheKey="false"
disableLtpaCookie="false"
mapToUserRegistry="User">

</samlWebSso20>

Results

You have now established the configuration that is required to configure a Liberty server as a SAML
service provider capable of single-signing on with SAML identity providers.

Using OpenID Connect

8.5.5.4

OpenID Connect in the Liberty server is implemented as an OAuth 2.0 extension. In addition to
providing OpenID Connect functions, the OpenID Connect provider supports all OAuth 2.0 functions.

OpenID Connect endpoint URLs

8.5.5.4

Learn about OpenID Connect endpoint URLs that are available for communicating with the OpenID
Connect provider.

After OpenID Connect is configured, several endpoint URLs are available on Liberty so that OpenID
Connect clients can communicate with the OpenID Connect provider before accessing protected
resources. By default, all communications must be over Transport Layer Security (TLS).

The following endpoint URLs are available for communicating with the OpenID Connect provider:
v “Authorization endpoint URL” on page 1213
v “Token endpoint URL” on page 1213
v “Introspection endpoint URL” on page 1213
v “UserInfo endpoint URL” on page 1213
v “Discovery endpoint URL” on page 1214
v “Coverage map endpoint URL” on page 1214
v “Registration endpoint URL” on page 1214

1212 WebSphere Application Server Liberty Core 8.5.5

Authorization endpoint URL
https://<host_name>:<port_number>/oidc/endpoint/<provider_name>/authorize

where

host_name
The host name of the OpenID Connect provider.

port_number
The secure port number that is configured on the Liberty server.

provider_name
The OpenID Connect provider name.

For more information, see 8.5.5.4 Invoking the Authorization Endpoint for OpenID Connect.

Token endpoint URL
https://<host_name>:<port_number>/oidc/endpoint/<provider_name>/token

where

host_name
The host name of the OpenID Connect provider.

port_number
The secure port number that is configured on the Liberty server.

provider_name
The OpenID Connect provider name.

For more information, see 8.5.5.4 Invoking the Token Endpoint for OpenID Connect.

Introspection endpoint URL
https://<host_name>:<port_number>/oidc/endpoint/<provider_name>/introspect

where

host_name
The host name of the OpenID Connect provider.

port_number
The secure port number that is configured on the Liberty server.

provider_name
The OpenID Connect provider name.

For more information, see 8.5.5.4 Invoking the Introspection Endpoint for OpenID Connect.

UserInfo endpoint URL
https://<host_name>:<port_number>/oidc/endpoint/<provider_name>/userinfo

where

host_name
The host name of the OpenID Connect provider.

port_number
The secure port number that is configured on the Liberty server.

Chapter 7. Securing Liberty and its applications 1213

provider_name
The OpenID Connect provider name.

For more information, see 8.5.5.4 Invoking the UserInfo Endpoint for OpenID Connect.

Discovery endpoint URL
https://<host_name>:<port_number>/oidc/endpoint/<provider_name>/.well-known/openid-configuration

where

host_name
The host name of the OpenID Connect provider.

port_number
The secure port number that is configured on the Liberty server.

provider_name
The OpenID Connect provider name.

For more information, see 8.5.5.4 Configuring an OpenID Connect Provider to accept discovery
requests.

Coverage map endpoint URL
https://<host_name>:<port_number>/oidc/endpoint/<provider_name>/coverage_map

where

host_name
The host name of the OpenID Connect provider.

port_number
The secure port number that is configured on the Liberty server.

provider_name
The OpenID Connect provider name.

For more information, see 8.5.5.4 Invoking the coverage map service.

Registration endpoint URL
https://<host_name>:<port_number>/oidc/endpoint/<provider_name>/registration

where

host_name
The host name of the OpenID Connect provider.

port_number
The secure port number that is configured on the Liberty server.

provider_name
The OpenID Connect provider name.

For more information, see 8.5.5.4 Configuring an OpenID Connect Provider to accept client
registration requests.

Configuring an OpenID Connect Provider in Liberty

8.5.5.4

1214 WebSphere Application Server Liberty Core 8.5.5

You can configure a Liberty server to function as an OpenID Connect Provider, or authorization server, to
take advantage of web single sign-on.

About this task

You can configure a Liberty server to act as an OpenID Connect Provider by enabling the
openidConnectServer-1.0 feature in Liberty, and in addition to other configuration information.

Procedure
1. Add the openidConnectServer-1.0 Liberty feature and any other needed features to the server.xml

file. The ssl-1.0 feature is also required for the openidConnectServer-1.0 feature.
<feature>openidConnectServer-1.0</feature>
<feature>ssl-1.0</feature>

2. Define an OAuth service provider. OpenID Connect is built on top of the OAuth 2.0 protocol and you
must configure a valid OAuth service provider. The configuration of an OAuth service provider
includes the appropriate oauth-roles, oauthProvider, and user registry elements. Any user that is
authorized to use OpenID Connect must also be mapped to the authenticated oauth-role. See
Defining an OAuth service provider for more information.
The OAuth metadata is updated for OpenID Connect, and the main additions are in the client
metadata. If you use the databaseStore mode for client registration, see “Configuring an OpenID
Connect Provider to accept client registration requests” on page 1230 for more information. It is
suggested that you follow the document to manage clients. If you use the localStore mode for client
registration, you can register the scope, preAuthorizedScope, grantTypes, responseTypes,
introspectTokens, and functionalUserId, as well as other attributes.

3. Add an openidConnectProvider element whose oauthProviderRef attribute references the configured
oauthProvider. Each oauthProvider can only be referenced by one openidConnectProvider, and two or
more openidConnectProvider elements cannot reference to the same oauthProvider. The name attribute
and the secret attribute of the client element must match the client ID and the client secret of the
corresponding OpenID Connect Client. This example works with the default Liberty server OpenID
Connect Client.

Note: In this example, the OP expects the client's SSL port to be set to 443.
<openidConnectProvider id="OidcConfigSample" oauthProviderRef="OAuthConfigSample" />

<oauthProvider id="OAuthConfigSample">
<localStore>
<client name="client01" secret="{xor}LDo8LTor"
displayname="client01"
scope="openid profile email"
redirect="https://server.example.com:443/oidcclient/redirect/client01"/>
</localStore>
</oauthProvider>

Note: A valid client must register its name, redirect, scope, and secret for authorization_code grant
type.

4. Configure the truststore of the server to include the signer certificates of the OpenID Connect Relying
Parties, or clients, that are supported. For information about keystores, see “Enabling SSL
communication in Liberty” on page 1152

5. Modify the SSL configuration of the server to use the configured truststore.
<sslDefault sslRef="DefaultSSLSettings" />
<ssl id="DefaultSSLSettings" keyStoreRef="myKeyStore" trustStoreRef="myTrustStore" />
<keyStore id="myKeyStore" password="{xor}Lz4sLCgwLTs=" type="jks" location="${server.config.dir}/resources/security/BasicKeyStore.jks" />
<keyStore id="myTrustStore" password="{xor}Lz4sLCgwLTs=" type="jks" location="${server.config.dir}/resources/security/BasicTrustStore.jks" />

OpenID Connect is configured to use the default SSL configuration that is specified by the server.
Therefore, the default SSL configuration for the server must use the truststore that is configured for
OpenID Connect.

Chapter 7. Securing Liberty and its applications 1215

The user consent form in OpenID Connect is pluggable, which allows providers to create and
maintain their own consent form. Because this form is retrieved over SSL, you must configure the
truststore to include the signer certificate of the server on which the consent form is hosted. If the
default consent form is used and the truststore that is used for OpenID Connect is configured to be
different from the keystore that is used by the Liberty server, you must import the Liberty server's
signer certificate into the OpenID Connect truststore.
For more OpenID Connect Provider configuration options, see **** MISSING FILE ****.

Note: In order to use OpenID Connect, the scope attribute must include openid in the scope list.

Results

You have now completed the minimum configuration that is required to configure a Liberty server as an
OpenID Connect Provider capable of communicating with other Liberty servers configured as OpenID
Connect Clients.

Using an OpenID Connect provider as an OAuth 2.0 authorization server: 8.5.5.4

An OpenID Connect provider can be used as a normal OAuth 2.0 authorization provider to issue an
OAuth 2.0 access_token, and support all OAuth 2.0 grant types.

An OpenID Connect provider supports JSON Web Token (JWT) Bearer Token as a grant for requesting an

OAuth 2.0 access token, see JSON Web Token (JWT) for OAuth Client Authorization Grants and

Configuring an OpenID Connect Provider to accept JSON Web Tokens (JWT) for authorization grants.

If an authorization request is made with an authorization code grant or implict grant type, and if
openid scope is not included or approved, the request is handled as a normal OAuth authorization
request. An id_token is not issued, and an access_token and refresh_token can be issued.

An OpenID Connect provider can support OAuth authorization flow with Resource Owner Password

Credentials Grant or Client Credentials Grant , see Configuring an OpenID Connect Provider to
enable 2-legged OAuth requests.

JSON Web Token (JWT) for OAuth Client Authorization Grants: 8.5.5.4

JWT for OAuth Client Authorization Grants enables a client to send a signed JWT token to the OpenID
Connect Provider in exchange for an OAuth 2.0 access token.

JWT for OAuth Client Authorization Grants is included in the openidConnectServer-1.0 feature. It
enables a client to send a signed JWT token to the OpenID Connect Provider in exchange for an OAuth
2.0 access token.

An example usage scenario of this functionality might be a customer of an electric company who
authorizes automatic monthly payments from an online bank. Assuming the electric company and the
online bank have established a trusted relationship for the purposes of fulfilling such requests. The
electric company can send a signed JWT Token with proper claims to the token endpoint URI of the
OpenID Connect Provider that are configured for the online bank in order to request an OAuth 2.0 access
token each month. The electric company can then use the access token to cash monthly payments from
the online bank.

Portions of the JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization
Grants specification are supported for Liberty servers that are configured as OpenID Connect Providers.
Users that want to support the JWT client functionality must do so by using their own application.

1216 WebSphere Application Server Liberty Core 8.5.5

http://self-issued.info/docs/draft-ietf-oauth-jwt-bearer.html
http://self-issued.info/docs/draft-ietf-oauth-jwt-bearer.html

v Authorized scopes
v Claims in a JSON Web Token
v Submitting JSON Web Token requests

Authorized scopes

The OpenID Connect Client sends an HTTPS request with a JWT to the token endpoint of the OpenID
Connect Provider to request an access token. During this process, the user sees no consent form for
authorizing the use of scopes. The JWT handler will handle the authorized scopes that are based on the
following criteria:
1. If no scope parameter is specified in the request, the OpenID Connect Provider will not specify any

scopes in the access token.
2. When an OpenID Connect Client is qualified as an autoAuthorized client in the OpenID Connect

Provider configuration, any scope that is specified by the client in the request is specified in the scope
list of the access token.

3. When an OpenID Connect Client is not qualified as an autoAuthorized client, the scope that is
included in the request needs to be filtered by the list of scopes in the client configuration and must
also be specified in the preAuthorizedScope list. If a scope in the HTTPS request is in the scope and
preAuthorizeScope list of the client configuration, the scope can be specified in the scope list of the
access token.

When a client is not qualified as an autoAuthorized client, scopes that can be included in the scope list of
the access token must be properly configured in the client configuration. The scope must be included in
the values for the scope and preAuthorizedScope attributes in the client configuration for the OpenID
Connect Provider. In the example that is shown, the scopes profile and email are specified in the scope
list of the access token because both are included in the scope and preAuthorizedScope value list. If a
scope is not listed in the scope attribute of the client configuration, it is omitted from the scope list of the
access token. If a scope is listed in the scope attribute but is not included in the preAuthorizedScope list
within the client configuration, the authorization request triggers an invalid_grant error in the response
from the OpenID Connect Provider.
<openidConnectProvider id="OidcConfigSample" oauthProviderRef="OAuthConfigSample" />
<oauthProvider id="OAuthConfigSample" ... >

...
<localStore>

<client name="client01" secret="{xor}..."
displayname="client01"
scope="profile email phone"
preAuthorizedScope="profile email"
enabled="true"/>

...
</localStore>

</oauthProvider>

Claims in a JSON Web Token

A valid JSON Web Token must be signed. A Liberty server that is configured as an OpenID Connect
Provider only supports HMAC-SHA256 as the token signing algorithm. The signing key for each OpenID
Connect Client is the secret attribute in the client configuration of the OpenID Connect Provider. In the
example that is shown, the signing key that is used would be "{xor}LDo8LTor".
<client name="client01" displayname="client01" secret="{xor}LDo8LTor" ... />

The OpenID Connect Provider also verifies the following claims in a JWT:

'iss' (issuer)
This claim is required in a JWT. The iss claim must match the name attribute or the redirect

Chapter 7. Securing Liberty and its applications 1217

attribute of the client configuration in the OpenID Connect Provider. In the following example,
the iss claim must match either client01 or http://op201406.ibm.com:8010/oauthclient/
redirect.jsp.
<client name="client01" redirect="http://op201406.ibm.com:8010/oauthclient/redirect.jsp" scope="openid profile email" ... />

'sub' (subject)
This claim is required in a JWT. The value of the subject must be a valid user name in the user
registry of the OpenID Connect Provider server.

'aud' (audience)
This claim is required in a JWT. The value of the audience claim is the name of the
issuerIdentifier when the issuerIdentifier attribute is specified in the openidConnectProvider
configuration. If the issuerIdentifier attribute is not specified in the openidConnectProvider
configuration, the audience must be the token endpoint URI of the OpenID Connect Provider. In
the following example, the value of the audience claim would be "OpenIDConnectProviderID1".
<openidConnectProvider id="OidcConfigSample" oauthProviderRef="OAuthConfigSample" issuerIdentifier="OpenIDConnectProviderID1" />

'exp' (expiration)
This claim is required in a JWT and limits the time window that the JWT can be used. The
OpenID Connect Provider verifies the exp against its system clock, plus some allowable clock
skew.

'nbf' (not before)
This is an optional claim. When present, the token is only valid after the time specified by this
claim. The OpenID Connect Provider verifies this time against its system clock, plus some
allowable clock skew.

'iat' (issued at)
By default, this is an optional claim. However, if the iatRequired attribute of thejwtGrantType
element is set to true, then all JWTs are required to contain the iat claim. When present, the iat
claim indicates the time at which the JWT was issued. A JWT cannot be issued longer than the
maxTokenLifetime.

'jti' (JWT ID)
This is an optional claim and is the unique identifier of a JWT Token. When present, the same
JWT ID cannot be reused by an issuer. For example, if client01 issues a JWT whose jti is
id6098364921, then no other JWT issued by client01 can have a jti value of id6098364921. A
JWT with a jti claim identical to another JWT is considered to be a replay attack. Liberty servers
that are configured as OpenID Connect Providers set up a jti cache on the server. The size of the
cache is specified by the maxJtiCacheSize in the jwtGrantType configuration. The jti IDs that are
kept in the cache are checked against any new incoming jti ID. The jti IDs stored in the cache
are not discarded unless the cache is full.

Submitting JSON Web Token requests

It is a best practice to use the HTTPS protocol instead of HTTP to submit a JWT request. The token
endpoint of the OpenID Connect Provider is used for handling HTTPS JWT requests. To determine the
token endpoint for the OpenID Connect Provider, see Invoking the Token Endpoint for OpenID Connect
or OAuth endpoint URLs.

The request must contain the following parameters:
v grant_type - The value of this parameter must be "urn:ietf:params:oauth:grant-type:jwt-bearer"
v assertion - The value of this parameter must contain a single signed JWT Token.
v scope - This parameter is optional. If scope is omitted, the access token that is returned does not

contain any scopes. The scope values listed in the scope parameter are checked against the OpenID
Connect Provider configuration. For more information, see the previous Authorized Scopes section.

v client_id - The value of this parameter must match the name attribute in the client configuration of the
OpenID Connect Provider.

1218 WebSphere Application Server Liberty Core 8.5.5

v client_secret - The value of this parameter must match the secret attribute in the client configuration
of the OpenID Connect Provider.

An example HTTPS request:
POST /token.oauth2 HTTP/1.1

Host: oidc.ibm.com
Content-Type: application/x-www-form-utlencoded

client_id=client01
&client_secret=secret
&grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer
&assertion=eyJhbGc[---omitted---]kIn0.eyJpc[---ommitted---]A4fQ.MB6ZFlCsHg5MJ-weIHZYz6xgF1jdSZn7ErchHs8-8Rk
&scope=profile email

A Java example to create a signed JWT Token:
package com.ibm.sample;

import java.security.SignatureException;
import com.google.gson.JsonObject;
import net.oauth.jsontoken.crypto.HmacSHA256Signer;

import net.oauth.jsontoken.SystemClock;
import net.oauth.jsontoken.JsonToken;
import org.joda.time.Duration;
import org.joda.time.Instant;

public class SampleJWTToken {
private static final Duration SKEW = Duration.standardMinutes(5);

JsonToken jwtToken = null;
String[] allPayloadKeys = { "iss", "sub", "aud", "exp", // required

"nbf", "iat", "jti" }; // optional

public SampleJWTToken(String clientId,
String keyId,
String signKey,
String audience,
String subject, // user
String jtiId) throws Exception { // InvalidKeyException

byte[] hs256Key = signKey.getBytes();
HmacSHA256Signer hmacSha256Signer = new HmacSHA256Signer(

clientId, keyId, hs256Key);
// _rsaSha256Signer = new RsaSHA256Signer(clientId, _keyId,
// _privateKey);
SystemClock clock = new SystemClock(SKEW);
jwtToken = new JsonToken(hmacSha256Signer, clock);
JsonObject headerObj = jwtToken.getHeader();
JsonObject payloadObj = jwtToken.getPayloadAsJsonObject();

headerObj.addProperty("alg", "HS256");

Instant instantExp = clock.now().plus(600000); // 10 minutes
jwtToken.setExpiration(instantExp);
jwtToken.setAudience(audience);
payloadObj.addProperty("iss", clientId);
payloadObj.addProperty("sub", subject);

// optional
payloadObj.addProperty("jti", jtiId);
jwtToken.setIssuedAt(clock.now()); // issued at time

}

public String getJWTTokenString() throws Exception {
String signedAndSerializedString = null;

Chapter 7. Securing Liberty and its applications 1219

try {
signedAndSerializedString = jwtToken.serializeAndSign();

} catch (SignatureException e) {
throw e;

}
return signedAndSerializedString;

}
}

Configuring an OpenID Connect Provider to accept discovery requests: 8.5.5.4

The discovery configuration endpoint makes information available about the capabilities that are
supported by the OpenID Connect Provider (OP) server.

About this task

The metadata that is returned by this service is based on and extends the OIDC Discovery 1.0
specification provider metadata. The service returns a set of default configurations if nothing is specified.
Otherwise, refer to the list of properties to understand their purpose and possible configurable options.

Procedure

You can override the default values for selected properties in the discovery configuration service. This
action is performed by specifying the values in the server.xml file. Refer to the following table of
properties to view the configurable properties and possible configuration options.

Table 87. Discovery request parameters

Attribute Name Data Type Required/Optional Description

responseTypesSupported Input Optional The response types that are
supported by the OpenID
Connect Provider (OP)
server. Unless specified, the
default values are code,
token, and id_token token.
More than 1 value can be
specified. These values are
strings. For example,
possible values are:

v code

v token

v id_token token

subjectTypesSupported Output only N/A The subject types that are
supported by the OP server.
This value is set to public.
This value is a string.

1220 WebSphere Application Server Liberty Core 8.5.5

http://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata
http://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata

Table 87. Discovery request parameters (continued)

Attribute Name Data Type Required/Optional Description

idTokenSigningAlgValuesSupportedOutput only Optional The ID token signing
algorithms that are
supported by the OP server.
This value is specified as
the server attribute
signatureAlgorithm in the
openidConnectProvider
server configuration. Unless
specified, the default value
is HS256. Only 1 value can
be specified. This is a
string. For example,
possible values for attribute
signatureAlgorithm in the
openidConnectProvider
configuration:

v none

v RS256

v HS256

scopesSupported Input Optional The scope values supported
by the OP server. Unless
specified, the default values
are openid, general,
profile, email, address,
and phone. More than 1
value can be specified.
These values are strings.
For example, possible
values are:

v openid

v general

v profile

v email

v address

v phone

Chapter 7. Securing Liberty and its applications 1221

Table 87. Discovery request parameters (continued)

Attribute Name Data Type Required/Optional Description

claimsSupported Input Optional The claims values that are
supported by the OP server.
Unless specified, the
default values are sub,
groupIds, name,
preferred_username,
picture, locale, email, and
profile. More than 1 value
can be specified. These
values are strings. For
example, possible values
are:

v sub

v groupIds

v name

v preferred_username

v picture

v locale

v email

v profile

responseModesSupported Input Optional The response modes that
are supported by the OP
server. Unless specified, the
default values are query
and fragment. More than 1
value can be specified.
These values are strings.

v query

v fragment

grantTypesSupported Input Optional The grant types that are
supported by the OP server.
Unless specified, the
default values are
authorization_code,
implicit, refresh_token,
client_credentials,
password, and
urn:ietf:params:oauth:grant-
type:jwtbearer. More than
1 value can be specified.
These values are strings.
For example, possible
values are:

v authorization_code

v implicit

v refresh_token

v client_credentials

v password

v
urn:ietf:params:oauth:grant-
type:jwtbearer

1222 WebSphere Application Server Liberty Core 8.5.5

Table 87. Discovery request parameters (continued)

Attribute Name Data Type Required/Optional Description

tokenEndpointAuthMethodsSupportedInput Optional The token endpoint
authorization methods that
are supported by the OP
server. Unless specified, the
default values are
client_secret_post, and
client_secret_basic. More
than 1 value can be
specified. These values are
strings. For example,
possible values are:

v none

v client_secret_post

v client_secret_basic

displayValuesSupported Output only N/A The display values
supported by the OP server.
This value is set to page.
This value is a string.

claimTypesSupported Output only N/A The claim type values that
are supported by the OP
server. This value is set to
normal. This value is a
string.

claimsParameterSupported Input Optional Indication of whether
claims parameter is
supported by the OP server.
Unless specified, the
default value is false. Only
1 value can be specified.
This is a Boolean value. For
example, possible values
are:

v true

v false

requestParameterSupported Input Optional Indication of whether a
request parameter is
supported by the OP server.
Unless specified, the
default value is false. Only
1 value can be specified.
This is a Boolean value. For
example, possible values
are:

v true

v false

Chapter 7. Securing Liberty and its applications 1223

Table 87. Discovery request parameters (continued)

Attribute Name Data Type Required/Optional Description

requestUriParameterSupportedInput Optional Indication of whether
request URI parameter is
supported by the OP server.
Unless specified, the
default value is false. Only
1 value can be specified.
This is a Boolean value. For
example, possible values
are:

v true

v false

requireRequestUriRegistrationInput Optional Indication of whether
require request URI
registration is supported by
the OP server. Unless
specified, the default value
is false. Only 1 value can
be specified. This is a
Boolean value. For
example, possible values
are:

v true

v false

Examples of discovery configuration

The following example assumes that the Liberty OP is configured with SSL on port 443.
https://server.example.com:443/oidc/endpoint/<provider_name>/

The discovery configuration endpoint is accessible at:
https://server.example.com:443/oidc/endpoint/<provider_name>/.well-known/openid-configuration

For example, in the server.xml file, a user can customize their OpenID Connect discovery configuration
properties in the following manner:
<openidConnectProvider id="OidcConfigSample" oauthProviderRef="OAuthConfigSample">
<discovery
responseTypesSupported="token, id_token token"
subjectTypesSupported="public"
scopesSupported="openid, general, profile"
claimsSupported="sub, groupIds, name"
responseModesSupported="query"
grantTypesSupported="implicit"
tokenEndpointAuthMethodsSupported="client_secret_basic"
displayValuesSupported="page"
claimTypesSupported="normal"
claimsParameterSupported="true"
requestParameterSupported="true"
requestUriParameterSupported="true"
requireRequestUriRegistration="true"

/>
</openidConnectProvider>
<oauthProvider id="OAuthConfigSample">
</oauthProvider>

1224 WebSphere Application Server Liberty Core 8.5.5

Example of customized discovery configuration
Request Headers:
GET https://server.example.com:443/oidc/endpoint/<provider_name>/.well-known/openid-configuration

Response Headers:
Status: 200
Content-Type: application/json
Cache-Control:public, max-age=3600

Response Body:
{

"introspection_endpoint":"https://server.example.com:443/oidc/endpoint/<provider_name>/introspect",
"coverage_map_endpoint":"https://server.example.com:443/oidc/endpoint/<provider_name>/coverage_map",
"issuer":"https://server.example.com:443/oidc/endpoint/<provider_name>",
"authorization_endpoint":"https://server.example.com:443/oidc/endpoint/<provider_name>/authorize",
"token_endpoint":"https://server.example.com:443/oidc/endpoint/<provider_name>/token",
"response_types_supported":[

"token",
"id_token token"

],
"subject_types_supported":[

"public"
],
"userinfo_endpoint":"https://server.example.com:443/oidc/endpoint/<provider_name>/userinfo",
"registration_endpoint":"https://server.example.com:443/oidc/endpoint/<provider_name>/registration",
"scopes_supported":[

"openid",
"general",
"profile"

],
"claims_supported":[

"sub",
"groupIds",
"name"

],
"response_modes_supported":[

"query"
],
"grant_types_supported":[

"implicit"
],
"token_endpoint_auth_methods_supported":[

"client_secret_basic"
],
"display_values_supported":[

"page"
],
"claim_types_supported":[

"normal"
],
"claims_parameter_supported":true,
"request_parameter_supported":true,
"request_uri_parameter_supported":true,
"require_request_uri_registration":true,
"check_session_iframe":"https://server.example.com:443/oidc/endpoint/<provider_name>/check_session_iframe",
"end_session_endpoint":"https://server.example.com:443/oidc/endpoint/<provider_name>/end_session"

}

Example of default discovery configuration
Request Headers:
GET https://server.example.com:443/oidc/endpoint/<provider_name>/.well-known/openid-configuration

Response Headers:
Status: 200
Content-Type: application/json

Chapter 7. Securing Liberty and its applications 1225

Cache-Control:public, max-age=3600

Response Body:
{

"introspection_endpoint":"https://server.example.com:443/oidc/endpoint/<provider_name>/introspect",
"coverage_map_endpoint":"https://server.example.com:443/oidc/endpoint/<provider_name>/coverage_map",
"issuer":"https://server.example.com:443/oidc/endpoint/<provider_name>",
"authorization_endpoint":"https://server.example.com:443/oidc/endpoint/<provider_name>/authorize",
"token_endpoint":"https://server.example.com:443/oidc/endpoint/<provider_name>/token",
"response_types_supported":[

"code",
"token",
"id_token token"

],
"subject_types_supported":[

"public"
],
"userinfo_endpoint":"https://server.example.com:443/oidc/endpoint/<provider_name>/userinfo",
"registration_endpoint":"https://server.example.com:443/oidc/endpoint/<provider_name>/registration",
"scopes_supported":[

"openid",
"general",
"profile",
"email",
"address",
"phone"

],
"claims_supported":[

"sub",
"groupIds",
"name",
"preferred_username",
"picture",
"locale",
"email",
"profile"

],
"response_modes_supported":[

"query",
"fragment"

],
"grant_types_supported":[

"authorization_code",
"implicit",
"refresh_token",
"client_credentials",
"password",
"urn:ietf:params:oauth:grant-type:jwt-bearer"

],
"token_endpoint_auth_methods_supported":[

"client_secret_post",
"client_secret_basic"

],
"display_values_supported":[

"page"
],
"claim_types_supported":[

"normal"
],
"claims_parameter_supported":false,
"request_parameter_supported":false,
"request_uri_parameter_supported":false,
"require_request_uri_registration":false,
"check_session_iframe":"https://server.example.com:443/oidc/endpoint/<provider_name>/check_session_iframe",
"end_session_endpoint":"https://server.example.com:443/oidc/endpoint/<provider_name>/end_session"

}

1226 WebSphere Application Server Liberty Core 8.5.5

Configuring claims returned by the UserInfo endpoint: 8.5.5.4

You can configure a Liberty OpenID Connect Provider to customize the claims that are returned by the
UserInfo endpoint.

About this task

You can configure the claims that are returned from a Liberty server OpenID Connect Provider by using
the scopeToClaimMap and claimToUserRegistryMap subelements of the openidConnectProvider element in
the server.xml file.

The OpenID Connect UserInfo endpoint accepts an access token as input and returns a set of claims
about the user for whom the access token was created. The claims that are returned are determined by:
1. The scopes in the access token

An access token can have multiple scopes. The scopes in an access token are the scopes that are
supplied on the authorization endpoint invocation that created the access token.

2. The claims that are associated with the scopes
Each scope can have multiple claims that are associated with it.

3. The federated repository properties that are associated with the claims
A claim can have only one federated repository property that is associated with it.

4. The user registry attributes that are associated with the federated repository properties
A federated repository property can have only one user registry attribute that is associated with it.

Note: The only user registry type that supports the retrieval of UserInfo claims is LDAP.

Liberty defines default scopes, claims, federated registry properties, and default mappings.

Table 88. Default mappings for scopes, claims, and federated registry properties

Scope Claims Federated registry property

profile name, given_name, picture displayName, givenName, photoURL

email email mail

address address postalAddress

phone phone_number telephoneNumber

Each of the following steps is optional. The Liberty server defines default scopes, claims, federated
registry properties, and default mappings. The only time that you need to perform any of the following
steps is if you want to change a default mapping or define a custom scope or claim.

Procedure

1. Configure the claims that are associated with scopes. A scope can be mapped to multiple claims, and
multiple claims must be comma-separated.
In the following example, the scope CUSTOM_SCOPE1 is associated with two claims, CUSTOM_CLAIM1 and
language, and the scope CUSTOM_SCOPE2 is associated with the claim CUSTOM_CLAIM2.
<scopeToClaimMap CUSTOM_SCOPE1="CUSTOM_CLAIM1, language"

CUSTOM_SCOPE2="CUSTOM_CLAIM2" />

Note: Claim and scope names are case-sensitive, CUSTOM_SCOPE1, and custom_scope1 are different
scopes.
a. To define scopes with the same spelling but different case, you must use the property subelement.

In the following example, the scopes CUSTOM_SCOPE1 and custom_scope1 are defined.

Chapter 7. Securing Liberty and its applications 1227

<scopeToClaimMap CUSTOM_SCOPE1="CUSTOM_CLAIM1, language" >
<property name="custom_scope1" value="custom_claim1,mobile"/>

</scopeToClaimMap>

2. Configure the federated repository properties that are associated with claims. A claim can be mapped
to only one federated repository property.
In the following example, the claim CUSTOM_CLAIM1 is associated with the federated repository
property departmentNumber. The claim language is associated with the federated repository property
preferredLanguage, and the claim CUSTOM_CLAIM2 is associated with the federated repository property
mail.
<claimToUserRegistryMap CUSTOM_CLAIM1="departmentNumber"

language="preferredLanguage"
CUSTOM_CLAIM2="mail" />

a. To define claims with the same spelling but different case, you must use the property subelement.
In the following example, the claims CUSTOM_CLAIM1 and custom_claim1 are defined.
<claimToUserRegistryMap CUSTOM_CLAIM1="departmentNumber" >

<property name="custom_claim1" value="employeeType" />
</claimToUserRegistryMap>

3. Configure the user registry attributes that are associated with federated repository properties.
In the following example, the federated repository property photoURL is associated with the LDAP
registry attribute ldapPersonPicture
<ldapRegistry...>

...
<attributeConfiguration>

<attribute name="ldapPersonPicture"
propertyName="photoURL"
entityType="PersonAccount" />

</attributeConfiguration>
...

</ldapRegistry>

Note: The LDAP attribute must be defined in the schema of the LDAP registry.

Results

You have now completed the configuration that is required to customize the claims that are returned by
the UserInfo endpoint.

Configuring an OpenID Connect Provider to enable 2-legged OAuth requests: 8.5.5.4

The typical OAuth flow consists of three “legs”, or stages of interaction between a client and an
authorization server. In 2-legged OAuth scenarios, the client uses pre-authorized scopes so that no
interaction with the user is necessary, removing the need to perform one of the legs in the typical flow.
Specifically, the user does not need to authenticate to the authorization server or give consent for sharing
the information that is specified by the requested scopes. Instead, all requested scope parameters are
considered pre-authorized and are automatically added to the request token, which is then sent to the
authorization server.

Before you begin

This task expects you to have a Liberty server that is properly configured as an OpenID Connect
Provider.

About this task

In scenarios with two legs or stages, an Open ID Connect client can send a 2-legged HTTP request with a
grant type of client_credential or resource owner password. These requests do not go through the

1228 WebSphere Application Server Liberty Core 8.5.5

authorization endpoint, so there is no scope consent form for users to confirm and approve the requested
scopes; however the OpenID Connect Provider still needs to deal with the authorized scopes in its
access_token content.

Liberty servers that are configured as OpenID Connect Providers that are equipped to handle 2-legged
OAuth requests approve the pre-authorized scopes by using the following criteria:
1. If the grant_type parameter value of a request is client_credential or resource owner password and

the request is an OAuth 2.0 request, then all the scopes that are defined in the request are approved
and are copied into the content of the access token. This is the existing behavior of the OAuth 2.0
feature.

2. If the request is an OpenID Connect request or a JWT Token OAuth, or OpenID Connect request, the
following criteria is used:
v If there is no scope parameter that is specified in the request, the OpenID Connect Provider will

not accept the request.
v The requested scopes must be present in the list of scopes that are defined by the scope attribute of

the client configuration and must also be specified in the preAuthorizedScope list of the client
configuration.

This task demonstrates how to configure a Liberty server that is acting as an OpenID Connect Provider to
enable 2-legged OAuth requests.

Procedure

To specify the list of pre-authorized scopes for a client, add the necessary scopes to the scope and
preAuthorizedScope attributes of the client configuration within the appropriate <oauthProvider> element
in your server.xml file. In the example that is shown, the scopes profile and email are qualified to be
specified in the scope list of an access token that is returned by the OpenID Connect Provider. The phone
scope is not considered a pre-authorized scope because it is missing from the preAuthorizedScope list.
<oauthProvider id="OAuthConfigSample" ...>
....

<localStore>
<client name="client01" secret="{xor}..."

displayname="client01"
scope="profile email phone"
preAuthorizedScope="profile email"
enabled="true"/>

....
</localStore>

</oauthProvider>

Note: If a requested scope is not listed in the scope attribute of the client configuration, it is omitted from
the scope of the access token that is returned. If a requested scope is listed in the scope attribute of the
client configuration but is not included in the preAuthorizedScope list of the client configuration, it
triggers an invalid_grant error in the response from the OpenID Connect Provider.

Configuring an OpenID Connect Provider to use the RSA-SHA256 algorithm for signing of ID

tokens: 8.5.5.4

You can configure an OpenID Connect Provider to use the RS256 algorithm for the signing of ID tokens.

About this task

You can configure an OpenID Connect Provider to use the RSA-SHA256 signature algorithm for signing
ID tokens by setting the signatureAlgorithm to RS256 and configuring a keystore with the private key
used for signing.

Chapter 7. Securing Liberty and its applications 1229

Procedure

1. In the server.xml file, create a keystore element that refers to the physical keystore that contains the
private key that is capable of performing a RSA-SHA256 signature algorithm. For example:
<keyStore id="opTestKeyStore" location="${server.config.dir}/opKeyStore.jks" type="JKS" password="keystorePwd" />

2. Set the OpenID Connect Provider signatureAlgorithm attribute to RS256, set thekeyStoreRef attribute
to the id value of the keystore element that is used in step 1, and set the keyAliasName to locate the
private key in the keystore. Setting the keyStoreRef is optional if the keystore element id used in step
1 is opKeyStore. For example:
<openidConnectProvider id="OAuthConfigSample" oauthProviderRef="OAuthConfigSample" signatureAlgorithm="RS256" keyStoreRef="opTestKeyStore" keyAliasName="myOpKeyAlias" />

Results

You have now configured an OpenID Connect Provider for signing ID tokens with RSA-SHA256.

Configuring an OpenID Connect Provider to accept JSON Web Tokens (JWT) for authorization

grants: 8.5.5.4

You can configure a Liberty server that acts as an OpenID Connect Provider to accept a JSON Web Token
in exchange for an access token.

About this task

You can configure a Liberty server that acts as an OpenID Connect Provider to accept JSON Web Tokens
by enabling the openidConnectServer-1.0 and ssl-1.0 features, in addition to other optional
configuration information.

Procedure

1. Ensure the ssl-1.0 and openidConnectServer-1.0 features are included in the feature manifest in the
server.xml file.
<featureManager>

<feature>ssl-1.0</feature>
<feature>openidConnectServer-1.0</feature>

</featureManager>

2. Optional: Configure a jwtGrantType element inside of the appropriate oauthProvider element. The
jwtGrantType element is optional. If no jwtGrantType element is included, the default values for all
attributes are used; for example:
<oauthProvider id="OAuthConfigSample" ...>

<jwtGrantType clockSkew="5m" iatRequired="false" tokenMaxLifetime="120m" maxJtiCacheSize="10000"/>
...

</oauthProvider>

For more JWT configuration options, see the section for the jwtGrantType element in the **** MISSING
FILE **** topic.

Configuring an OpenID Connect Provider to accept client registration requests: 8.5.5.4

The client registration endpoint is an administrator managed service that is used to register, update,
delete, and retrieve information about an OpenID Connect Relying Party that intends to use the OpenID
Connect Provider. In turn, the registration process can provide information for the Relying Party to use it,
including the OAuth 2.0 Client ID and Client Secret, if not specified.

1230 WebSphere Application Server Liberty Core 8.5.5

Before you begin

The client registration service operates in one of two modes: local store or database store. These modes
are determined by how the Liberty server configures its client store, whether clients are defined with the
oauthProvider localStore attributes (local store) in the server.xml file or are configured with a database
(database store).

In a local store configuration, the client registration service is limited to only retrieving OpenID Connect
Relying Party information. You can modify the server.xml file to add more operations to register, update,
or delete an OpenID Connect Relying Party.

In a database store configuration, there is no limitation on the client registration service and all
operations are functional through the REST interface.

Note: A Liberty server must not configure its client store with both local store and database store.
Choose only one configuration route.

The client registration endpoint is a protected administration endpoint with the clientManager role. To
access this endpoint, the user must be granted the clientManager role by the administrator.

The clientManager role is one of the oauth-roles defined for an oauthProvider. The following is a
sample configuration that shows a grant of the clientManager role to the user Alice or members in the
clientAdministrator group.
<oauth-roles>
<authenticated>
<special-subject type="ALL_AUTHENTICATED_USERS" />
</authenticated>
<clientManager>
<group name="clientAdministrator" />
<user name="Alice" />
</clientManager>
</oauth-roles>

About this task

Client registration information about an OpenID Connect Relying Party is largely used to define the
usage scenario constraints of the client. Additionally, other operations of the OP that are opaque to the
client use the client registration metadata to make authorization decisions.

The following example assumes that the Liberty OP is configured with SSL on port 443.
https://server.example.com:443/oidc/endpoint/<provider_name>/registration

The previous example also assumes that the server.xml file is configured with a user name: clientAdmin
and password: clientAdminPassword, that uses the oauth-role: clientManager.

The client registration metadata consists of the following parameters:

Table 89. Client registration parameters

Attribute Name Data Type Required/Optional Description

client_id Input/Output Optional The client identifier that is
being registered with the
OP. Unless specified, this
parameter value is
generated during
registration by default. This
is a string.

Chapter 7. Securing Liberty and its applications 1231

Table 89. Client registration parameters (continued)

Attribute Name Data Type Required/Optional Description

client_secret Input/Output Optional The client secret that is
being registered with the
OP. Unless specified, this
parameter value is
generated during
registration by default. This
is a string. During an
update operation, the
parameter value '*'
preserves the existing
value. A blank parameter
value generates a new
client_secret. A non-blank
parameter value overrides
the existing value with the
newly specified value.

client_name Input/Output Optional A description for the client
that is being registered with
the OP. Unless specified,
this parameter is set to the
client_id parameter value
by default. This is a string.

application_type Input Optional The application type that
describes the client. Unless
specified, the default value
is web. This is a string. For
example, possible values:

v <an empty value is
valid>

v web

v native

response_types Input Optional The response type
constraints that are used by
this client. Unless specified,
the default value is code.
This is a JSON array. For
example, possible values
are:

v <an empty value is
valid>

v code

v token

v id_token token (order
reversible)

For a specific
response_type, the
corresponding grant_types
must be specified. For more
information, see
response_types at the
Client Metadata website.

1232 WebSphere Application Server Liberty Core 8.5.5

http://openid.net/specs/openid-connect-registration-1_0.html#ClientMetadata

Table 89. Client registration parameters (continued)

Attribute Name Data Type Required/Optional Description

grant_types Input Optional The grant type constraints
that are used by this client.
Unless specified, the
default value is
authorization_code. This is
a JSON array. For example,
the possible values are:

v <an empty value is
valid>

v authorization_code

v implicit

v refresh_token

v client_credentials

v
urn:ietf:params:oauth:grant-
type:jwtbearer

v password

redirect_uris Input Optional The array of redirect URIs
to which the client is
constrained to. This is a
JSON array.

post_logout_redirect_uris Input Optional The array of post logout
redirect URIs to which the
client is constrained. This is
a JSON array.

trusted_uri_prefixes Input Optional The array of trusted URI
prefixes that the client has
deemed safe for sending
access tokens. This is a
JSON array.

scope Input Optional The space delimited scope
values to which the client is
constrained. This is a
string. If the client is
allowed to request any
scope, a value of
ALL_SCOPES can be used.

preauthorized_scope Input Optional The space delimited scope
values that the client is
preauthorizing that does
not require user consent.
This is a string.

subject_type Input Optional The subject type constraint
that is described by the
client. This is a string. For
example, possible values
are:

v <an empty value is
valid>

v public

Chapter 7. Securing Liberty and its applications 1233

Table 89. Client registration parameters (continued)

Attribute Name Data Type Required/Optional Description

token_endpoint_auth_methodInput Optional The token endpoint
authentication method
constraint that is used by
the client. Unless specified,
the default value is
client_secret_basic. This
is a string. For example,
possible values are:

v <an empty value is
valid>

v client_secret_basic

v client_secret_post

v none

functional_user_id Input Optional This parameter indicates
which user ID to associate
with a request made on
behalf of a client in a
client_credentials grant
type. This is a string.

functional_user_groupIds Input Optional A list of group IDs to
associate with access tokens
obtained by this client
using the client credentials
grant type. The value is a
list of group IDs to which
the functional user is a
member, where the group
IDs are case-sensitive
strings. The strings are
defined by the
authorization server. If the
value contains multiple
group IDs, their order does
not matter. If the list is
empty, the claim is omitted.
When this client metadata
parameter is specified, the
value is returned in the
functional_user_groupIds
response parameter from
the introspection endpoint
for access tokens that are
issued to this client with a
client credentials grant. If
the functional_user_id
parameter is not used, this
parameter is ignored.
Note: Authorization
Servers must not trust the
client to self-assert this
parameter.

1234 WebSphere Application Server Liberty Core 8.5.5

Table 89. Client registration parameters (continued)

Attribute Name Data Type Required/Optional Description

introspect_tokens Input Optional A parameter value that
indicates whether the
specified client has the
privilege to introspect an
access token that is issued
by the OP. This is a Boolean
value.

registration_client_uri Output only N/A A parameter that is
returned in a response with
the value that indicates the
unique URL for a registered
client. This is a string.

client_secret_expires_at Output only N/A A parameter that is
returned in a response with
the value that indicates the
number of seconds from
1970-01- 01T0:0:0Z as
measured in UTC, at which
the client secret expires.
The value 0 indicates no
expiration time.

client_id_issued_at Output only N/A A parameter that is
returned in a response with
the value that indicates the
number of seconds from
1970-01- 01T0:0:0Z as
measured in UTC, at which
the client ID was issued.
The value 0 indicates that
no client ID issue time was
identified.

Procedure

1. Register a client, as shown in the following example:
Request Headers:
POST https://server.example.com:443/oidc/endpoint/<provider_name>/registration
Accept: application/json
Content-Type: application/json
Authorization: Basic Y2xpZW50QWRtaW46Y2xpZW50QWRtaW5QYXNzd29yZA==

Request Payload:
{

"token_endpoint_auth_method":"client_secret_basic",
"scope":"openid profile email general",
"grant_types":[

"authorization_code",
"client_credentials",
"implicit",
"refresh_token",
"urn:ietf:params:oauth:grant-type:jwt-bearer"

],
"response_types":[

"code",
"token",
"id_token token"

],

Chapter 7. Securing Liberty and its applications 1235

"application_type":"web",
"subject_type":"public",
"post_logout_redirect_uris":[

"https://server.example.com:9000/logout/",
"https://server.example.com:9001/exit/"

],
"preauthorized_scope":"openid profile email general",
"introspect_tokens":true,
"trusted_uri_prefixes":[

"https://server.example.com:9000/trusted/"
],
"redirect_uris":[

"https://server.example.com:443/resource/redirect1",
"https://server.example.com:9000/resource/redirect2"

]
}

Response Headers:
Status: 201
Cache-Control: private
ETag: "1B2M2Y8AsgTpgAmY7PhCfg=="
Content-Type: application/json

Response Body:
{

"client_id_issued_at":1401776782,
"registration_client_uri":"https://server.example.com:8020/oidc/endpoint/OIDC/registration/b0a376ec4b694b67b6baeb0604a312d8",
"client_secret_expires_at":0,
"token_endpoint_auth_method":"client_secret_basic",
"scope":"openid profile email general",
"grant_types":[

"authorization_code",
"client_credentials",
"implicit",
"refresh_token",
"urn:ietf:params:oauth:grant-type:jwt-bearer"

],
"response_types":[

"code",
"token",
"id_token token"

],
"application_type":"web",
"subject_type":"public",
"post_logout_redirect_uris":[

"https://server.example.com:9000/logout/",
"https://server.example.com:9001/exit/"

],
"preauthorized_scope":"openid profile email general",
"introspect_tokens":true,
"trusted_uri_prefixes":[

"https://server.example.com:9000/trusted/"
],
"client_id":"b0a376ec4b694b67b6baeb0604a312d8",
"client_secret":"nmrOQ20CrMdwd4pjqaimutZTcbQPzIoYgItjaccb9Wk33rKarhM3WDLmWIoE",
"client_name":"b0a376ec4b694b67b6baeb0604a312d8",
"redirect_uris":[

"https://server.example.com:443/resource/redirect1",
"https://server.example.com:9000/resource/redirect2"

]
}

2. Update a client, as shown in the following example:
Request Headers:

1236 WebSphere Application Server Liberty Core 8.5.5

PUT https://server.example.com:443/oidc/endpoint/<provider_name>/registration/registration/b0a376ec4b694b67b6baeb0604a312d8
Accept: application/json
Content-Type: application/json
Authorization: Basic Y2xpZW50QWRtaW46Y2xpZW50QWRtaW5QYXNzd29yZA==

Request Payload:
{

"token_endpoint_auth_method":"client_secret_basic",
"scope":"openid profile",
"grant_types":[

"authorization_code"
],
"response_types":[

"code"
],
"application_type":"native",
"subject_type":"public",
"post_logout_redirect_uris":[

"https://server.example.com:9000/logout/"
],
"preauthorized_scope":"openid",
"introspect_tokens":false,
"trusted_uri_prefixes":[

"https://server.example.com:9003/trusted/"
],
"client_id":"b0a376ec4b694b67b6baeb0604a312d8",
"client_secret":"*",
"client_name":"updated client",
"redirect_uris":[

"https://server.example.com:443/resource/redirect1"
]

}

Response Headers:
Status: 200
ETag: "3DD7affTGS91mfhPZ83B39Y=="
Content-Type: application/json

Response Body:
{

"client_id_issued_at":1401776782,
"registration_client_uri":"https://server.example.com:8020/oidc/endpoint/OIDC/registration/b0a376ec4b694b67b6baeb0604a312d8",
"client_secret_expires_at":0,
"token_endpoint_auth_method":"client_secret_basic",
"scope":"openid profile",
"grant_types":[

"authorization_code"
],
"response_types":[

"code"
],
"application_type":"native",
"subject_type":"public",
"post_logout_redirect_uris":[

"https://server.example.com:9000/logout/"
],
"preauthorized_scope":"openid",
"introspect_tokens":false,
"trusted_uri_prefixes":[

"https://server.example.com:9003/trusted/"
],
"client_id":"b0a376ec4b694b67b6baeb0604a312d8",
"client_secret":"*",
"client_name":"updated client",

Chapter 7. Securing Liberty and its applications 1237

"redirect_uris":[
"https://server.example.com:443/resource/redirect1"

]
}

3. Retrieve a client, as shown in the following example:
Request Headers:
GET https://server.example.com:443/oidc/endpoint/<provider_name>/registration/registration/b0a376ec4b694b67b6baeb0604a312d8
Accept: application/json
Authorization: Basic Y2xpZW50QWRtaW46Y2xpZW50QWRtaW5QYXNzd29yZA==

Response Headers:
Status: 200
Cache-Control: private
ETag: "3DD7affTGS91mfhPZ83B39Y=="
Content-Type: application/json

Response Body:
{

"client_id_issued_at":1401776782,
"registration_client_uri":"https://server.example.com:8020/oidc/endpoint/OIDC/registration/b0a376ec4b694b67b6baeb0604a312d8",
"client_secret_expires_at":0,
"token_endpoint_auth_method":"client_secret_basic",
"scope":"openid profile",
"grant_types":[

"authorization_code"
],
"response_types":[

"code"
],
"application_type":"native",
"subject_type":"public",
"post_logout_redirect_uris":[

"https://server.example.com:9000/logout/"
],
"preauthorized_scope":"openid",
"introspect_tokens":false,
"trusted_uri_prefixes":[

"https://server.example.com:9003/trusted/"
],
"client_id":"b0a376ec4b694b67b6baeb0604a312d8",
"client_secret":"*",
"client_name":"updated client",
"redirect_uris":[

"https://server.example.com:443/resource/redirect1"
]

}

4. Retrieve a client (head request), as shown in the following example:
Request Headers:
HEAD https://server.example.com:443/oidc/endpoint/<provider_name>/registration/registration/b0a376ec4b694b67b6baeb0604a312d8
Accept: application/json
Authorization: Basic Y2xpZW50QWRtaW46Y2xpZW50QWRtaW5QYXNzd29yZA==

Response Headers:
Status: 200
Cache-Control: private, no-cache=set-cookie
ETag: "3DD7affTGS91mfhPZ83B39Y=="
Content-Type: application/json

5. Delete a client, as shown in the following example:
Request Headers:
DELETE https://server.example.com:443/oidc/endpoint/<provider_name>/registration/registration/b0a376ec4b694b67b6baeb0604a312d8
Authorization: Basic Y2xpZW50QWRtaW46Y2xpZW50QWRtaW5QYXNzd29yZA==

Response Headers:

1238 WebSphere Application Server Liberty Core 8.5.5

Status: 204
Content-Length: 0
Content-Language: en-US

Note: The information in this topic also applies to client registration services of OAuth 2.0 clients,
and OpenID Connect Relying parties.

OpenID Connect custom forms: 8.5.5.4

You can replace the default form login page for user authentication, or develop your own user consent
form to collect client authorization data.

Authenticating a user: 8.5.5.4

OpenID Connect provider supports traditional Java Platform, Enterprise Edition (J2EE) FormLogin for
user authentication.

You can customize the login form, see 8.5.5.4 OpenID Connect custom forms.

The OpenID Connect provider can be configured to support other authentication methods.

OpenId Connect provider delegates user authentication to third-party authentication service

If you configure Trust Association Interceptor (TAI) to intercept a request to an OpenID Connect
authorization endpoint (/oidc/<provider name>/authorize), the login form is not presented, and the user
authentication is performed by the configured TAI.

OpenId Connect provider authenticates user with HTTP Basic Authentication

If you want an OpenID Connect provider to authenticate a user with HTTP Basic Authentication, the
openid connect autorization request must include a user id and password as defined in the Basic
Authentication Scheme.

OpenID Connect provider authenticates user with a client certificate

If you want an OpenID Connect provider to authenticate a user with a client certificate, you need to
explicitly add the attribute certAuthentication=true inside the oauthProvider configuration element that
is referenced by the openidConnectProvider configuration, and the user agent must be able to provide a
client certificate for an OpenID Connect authorization request.

OpenId Connect provider delegates user authentication to a third-party OpenId Connect provider

You can configure an OpenID Connect provider to delegate user authentication to a third-party OpenID
Connect provider. To enable this authentication delegation, you configure the OP as an OpenID Connect
relying party. Optionally, you can add an authentication filter to limit the openIDConnectClient-1.0
feature to protect an OpenID Connect authorization endpoint (/oidc/<provider name>/authorize) only.

Configuring an OpenID Connect Client in Liberty

8.5.5.4

You can configure a Liberty server to function as an OpenID Connect Client, or Relying Party, to take
advantage of web single sign-on and to use an OpenID Connect Provider as an identity provider.

Chapter 7. Securing Liberty and its applications 1239

About this task

You can configure a Liberty server to act as an OpenID Connect Client by enabling the
openidConnectClient-1.0 feature in Liberty, and in addition to other configuration information.

Procedure
1. Add the openidConnectClient-1.0 Liberty feature and any other needed features to the server.xml

file. The ssl-1.0 feature is also required for the openidConnectClient-1.0 feature. Add the following
element declaration inside the featureManager element in your server.xml file:
<feature>openidConnectClient-1.0</feature>
<feature>ssl-1.0</feature>

2. Configure an openidConnectClient element. The following is an example of a minimal configuration
that works with the default Liberty server OpenID Connect Provider.
The client must have a configured application available at the given URL pattern that can handle
redirect requests from an OpenID Connect Provider. This URL must also precisely match the redirect
URL registered for the client with the OP.

Avoid trouble: In this example, the client expects the SSL port to be set to 443.
<openidConnectClient id="client01"

clientId="client01"
clientSecret="{xor}LDo8LTor"
authorizationEndpointUrl="https://server.example.com:443/oidc/endpoint/OidcConfigSample/authorize"
tokenEndpointUrl="https://server.example.com:443/oidc/endpoint/OidcConfigSample/token">

</openidConnectClient>

In this sample minimal configuration, the following default values are assumed:
v scope=openid profile: The scope of openid is required, and you can use the scope attribute to

edit required scopes. For example, you can change the required scope to openid profile email.
v This RP registers its redirect URL with the OP as https://<host name>:<ssl port>/oidcclient/

redirect/client01, where both the host name and ssl port are automatically resolved, and
client01 is the ID of the openidConnectClient configuration element. If there is a proxy in front of
the RP, you can override the host name and port with the attribute redirectToRPHostAndPort, and
set redirectToRPHostAndPort to https://<host name>:<ssl port>.

3. Configure a user registry. User identities that are returned by the OP are not mapped to a registry
user by default, so no users are required to be configured in the registry. However, if the
mapIdentityToRegistryUser attribute of the openidConnectClient element is set to true, there must be a
user entry for the appropriate identity that is returned from the OP in order for authentication and
authorization to succeed. For more information about configuring a user registry, see “Configuring a
user registry for Liberty” on page 1168.

4. Configure the truststore of the server to include the signer certificates of the OpenID Connect
Providers that are supported. For information about keystores, see “Enabling SSL communication in
Liberty” on page 1152.

5. Modify the SSL configuration of the server to use the configured truststore.
<sslDefault sslRef="DefaultSSLSettings" />
<ssl id="DefaultSSLSettings" keyStoreRef="myKeyStore" trustStoreRef="myTrustStore" />
<keyStore id="myKeyStore" password="{xor}EzY9Oi0rJg==" type="jks" location="${server.config.dir}/resources/security/BasicKeyStore.jks" />
<keyStore id="myTrustStore" password="{xor}EzY9Oi0rJg==" type="jks" location="${server.config.dir}/resources/security/BasicTrustStore.jks" />

OpenID Connect is configured to use the default SSL configuration that is specified by the server.
Therefore, the default SSL configuration for the server must use the truststore that is configured for
OpenID Connect.

6. 8.5.5.5 Optional: Configure a third party OpenID Connect provider.
To configure the Liberty OpenID Connect client to use a third party OpenID Connect Provider such
as (Microsoft Azure or Google), you must configure the following attributes. The attribute values can
be obtained by calling the OP's discovery endpoint, which provides a JSON document at the path
that is formed by concatenating the string /.well-known/openid-configuration to the issuer.

1240 WebSphere Application Server Liberty Core 8.5.5

a. Set the jwkEndpointUrl attribute to the URL of the OP's JSON Web Key Set JWK document that is
defined asjwks_uri in the discovery file. For example, to use Google's OP, you can set
jwkEndpointUrl = "https://www.googleapis.com/oauth2/v2/certs".

b. Set the issuerIdentifier attribute to the issuer as defined in the discovery file. An ID Token
that does not contain this value as an iss claim is rejected. For example, you can set
issuerIdentifier="accounts.google.com" if you are using Google as your OP.

c. Set signatureAlgorithm="RS256". The Liberty OpenID Connect client's default signature
algorithm is HS256.

d. Set the userIdentityToCreateSubject attribute to a claim name used by the vendor's ID Token
that represents a user's unique identifier. For example, you can set userIdentityToCreateSubject
="email" if you are using Google's OP, and userIdentityToCreateSubject ="upn" or
userIdentityToCreateSubject ="unique_name" if you are using Microsoft Azure.

e. Set the groupIdentifier attribute to the claim name that represents the user's group
memberships or roles. For example, you can set groupIdentifier="groups" if you are using
Microsoft Azure.

For more OpenID Connect Client configuration options, see **** MISSING FILE ****.
7. 8.5.5.5 Optional: Authentication Filter.

When the openidConnectClient-1.0 feature is enabled and the openidConnectClient element is not
configured with an authFilterRef attribute, any unauthenticated request is authenticated through
the OpenID Connect provider.

For more information on configuring the authentication filter, see 8.5.5.5 “Authentication
Filters” on page 1252.

8. Support multiple OpenID Connect Providers.
You can configure Liberty as an OpenID Connect Relying Party to multiple OpenID Connect
Providers by creating multiple openidConnectClient elements and multiple Authentication Filters.
Each openidConnectClient element defines one Single-Sign-On relationship with one OpenID
Connect Provider, and use the authFilterRef attribute to reference to one Authentication Filter.

9. Configure a supported ID Token signature algorithm.
You can configure a Liberty OpenID Connect client to support the RS256 signature algorithm in an
ID Token. The Liberty OpenID Connect client's default signature algorithm is HS256. If you
configure RS256 as the ID Token's signature algorithm by setting signatureAlgorithm="RS256", you
must configure both the trustStoreRef and trustAliasName, unless the OP supports a JWK
endpoint.

10. Optional: Configure an “implicit” grant type.
The openidConnectClient-1.0 feature uses an Authorization Code grant type to request a user
authentication token, and you can configure the Liberty openidConnectClient-1.0 feature to use an
“implicit” grant type by adding grantType="implicit" to the server.xml file. If your Liberty server
and OpenID Connect provider are in different firewalls, you must use this configuration option.

Results

You have now established the minimum configuration that is required to configure a Liberty server as an
OpenID Connect Client capable of communicating with other Liberty servers configured as OpenID
Connect Providers.

Invoking the Authorization Endpoint for OpenID Connect: 8.5.5.4

In OpenID Connect the authorization endpoint handles authentication and authorization of a user.

Chapter 7. Securing Liberty and its applications 1241

Before you begin

When starting the authorization endpoint from an in-browser client application or a client application
implemented in a scripting language such as Javascript, for example, no configuration of a Liberty server
as an OpenID Connect Client is necessary.

About this task

The authorization endpoint accepts an authentication request that includes parameters that are defined by
both the OAuth 2.0 and OpenID Connect 1.0 specifications.

In the Authorization Code Flow, the authorization endpoint is used for authentication and authorization
and returns an authorization grant to the client. This authorization grant can then be passed in a request
by the client to the token endpoint in exchange for an ID token, access token, and refresh token. In the
Implicit Flow, the authorization endpoint still performs authentication and authorization but also directly
returns an ID token and access token to the client in its response; no interaction is performed with the
token endpoint.

A Liberty server with OpenID Connect enabled has access to the OpenID Connect authorization endpoint
at the following URL:
https://server.example.com:443/oidc/endpoint/<provider_name>/authorize

Avoid trouble: In this example, the client expects the SSL port to be set to 443.

Procedure

1. Prepare an HTTP GET or POST request that includes the following required and recommended
parameters.
v scope: (Required) OpenID Connect requests must contain the openid scope value. Other scopes may

also be present
v response_type: (Required) Determines the authorization processing flow to be used. When using

the Authorization Code Flow, this value is code. When using the Implicit Flow, this value is
id_token token or id_token. No access token is returned when the value is id_token

v client_id: (Required) Client identifier that is valid at the OpenID Connect Provider.
v redirect_uri: (Required) Redirection URI to which the response will be sent. This value must

exactly match one of the redirection URI values for the registered client at the OP.
v state: (Recommended) Opaque value used to maintain state between the request and the callback.
v nonce: (Required for the Implicit Flow) String value used to associate a client session with an ID

token and to mitigate replay attacks.
You can include more parameters in the request. For a description of other supported parameters, see
the OpenID Connect Core 1.0 specification.
We do not support only an id_token response_type. Using the implicit flow must always use
id_token token and will return an access token.

2. Send the GET or POST request to the authorization endpoint URL.

Results

After completing these steps, you have a valid HTTP request that is being sent to the authorization
endpoint. The authorization endpoint returns a response in the manner described in the Examples
section.

The OpenID Connect Provider attempts to authenticate and authorize the user once it receives a request
from the client.

1242 WebSphere Application Server Liberty Core 8.5.5

In the Authorization Code Flow, if authentication and authorization succeed, the OpenID Connect
Provider issues an authorization code and includes it as a parameter in an OAuth 2.0 Authorization
Response to the client. If the initial request included state, the authorization response will also include
the exact state value that was included in the initial request. Using the application/x-www-form-
urlencoded format, the code and state parameters are added as query parameters to the redirect_uri
value that was specified in the authorization request.

In the Implicit Flow, if authentication and authorization succeed, the following parameters are returned
from the authorization endpoint.
v access_token: Access token. This is returned unless the [response_type] value in the initial request is

[id_token].
v token_type: OAuth 2.0 Token Type. For OpenID Connect, this value is Bearer.
v id_token: ID token.
v state: Required if included in authorization request.
v expires_in: (Optional) Expiration time of the access token in seconds since the response was generated.

These parameters are added to the fragment component of the redirect_uri value that is specified in the
authorization request, not as query parameters such as in the Authorization Code Flow.

Example

The following examples show forms of Authorization and Implicit code flow.

An example request for the Authorization Code Flow is shown here:
GET /authorize?

response_type=code
&scope=openid profile email
&client_id=client01
&state=af0ifjsldkj
&redirect_uri=https://server.example.com:443/oidcclient/redirect/client01 HTTP/1.1

An example request for the Implicit Flow is shown here:
GET /authorize?

response_type=id_token token
&scope=openid profile
&client_id=client01
&state=af0ifjsldkj
&redirect_uri=https://server.example.com:443/oidcclient/redirect/client01
&nonce=n-0S6_WzA2Mj HTTP/1.1

An example response from the authorization endpoint in the Authorization Code Flow is shown here:
HTTP/1.1 302 Found
Location: https://server.example.com:443/oidcclient/redirect/client01

code=SplxlOBeZQQYbYS6WxSbIA
&state=af0ifjsldkj

An example response from the authorization endpoint in the Implicit Flow is shown here:
HTTP/1.1 302 Found
Location: https://server.example.com:443/oidcclient/redirect/client01

access_token=SlAV32hkKG
&token_type=Bearer
&id_token=eyJ0 ... NiJ9.eyJ1c ... I6IjIifX0.DeWt4Qu ... ZXso
&expires_in=3600
&state=af0ifjsldkj

Chapter 7. Securing Liberty and its applications 1243

Invoking the Token Endpoint for OpenID Connect: 8.5.5.4

In the OpenID Connect Authorization Code Flow, the token endpoint is used by a client to obtain an ID
token, access token, and refresh token.

Before you begin

When starting the token endpoint from an in-browser client application or a client application
implemented in a scripting language such as Javascript, for example, no configuration of a Liberty server
as an OpenID Connect Client is necessary.

About this task

The token endpoint accepts a request from the client that includes an authorization code that is issued to
the client by the authorization endpoint. When the authorization code is validated, the appropriate tokens
are returned in a response to the client.

The token endpoint is not used in the OpenID Connect Implicit Flow.

A Liberty server with OpenID Connect enabled has access to the OpenID Connect token endpoint at the
following URL:
https://server.example.com:443/oidc/endpoint/<provider_name>/token

Avoid trouble: In this example, the client expects the SSL port to be set to 443. All communication with
the token endpoint must use TLS.

Procedure

1. Prepare an HTTP POST request with the following parameters.
v grant_type: The value of this parameter must be authorization_code.
v code: The authorization code received from the authorization endpoint.
The parameters must be added by using the application/x-www-form-urlencoded format.

2. POST the request to the token endpoint URL.

Results

After completing these steps you have a valid HTTP POST request that is being sent to the token
endpoint. The token endpoint returns a response as described in the Examples section.

When the OpenID Connect Provider validates the token request that is received from the client, the
OpenID Connect Provider returns an HTTP 200 response back to the client with a JSON object in
application/json format. The response includes the ID token, access token, and refresh token, along with
the following additional parameters:
v token_type: OAuth 2.0 Token Type. For OpenID Connect, this value is Bearer.
v expires_in: Expiration time of the access token in seconds since the response was generated.

All responses from the token endpoint that contain tokens, secrets, or other sensitive information have
their Cache-Control header value set to no-store and Pragma header value set to no-cache.

.

1244 WebSphere Application Server Liberty Core 8.5.5

Example

The following shows examples of an HTTP POST request and response

An example request is shown here:
POST /token HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

grant_type=authorization_code
&code=SplxlOBeZQQYbYS6WxSbIA
&redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

An example response is shown here:
HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache
{

"access_token": "SlAV32hkKG",
"token_type": "Bearer",
"refresh_token": "8xLOxBtZp8",
"expires_in": 3600,
"id_token": "eyJ ... zcifQ.ewo ... NzAKfQ.ggW8h ... Mzqg"

}

Invoking the Introspection Endpoint for OpenID Connect: 8.5.5.4

The introspection endpoint enables holders of access tokens to request a set of metadata about an access
token from the OpenID Connect Provider that issued the access token. The access token must be one that
was obtained through OpenID Connect or OAuth authentication.

Before you begin

When a resource service or a client application invokes the introspection endpoint, it must register itself
as a normal OAuth 2.0 client to the OpenID Connect server. The registered client metadata must include
the attribute introspectTokens = true.

About this task

Information that is contained within access tokens that are used in OpenID Connect and OAuth 2.0 is
opaque to clients. This can enable protected resources or clients to make authorization decisions that are
based on the metadata that is returned from the OpenID Connect Provider about the access token.

A Liberty server with OpenID Connect enabled has access to the OpenID Connect introspection endpoint
at the following URL:
https://server.example.com:443/oidc/endpoint/<provider_name>/introspect

Avoid trouble: In this example, the client expects the SSL port to be set to 443.

Procedure

1. Set up client authentication with the client ID and password for a registered OpenID Connect Client
in the HTTP Basic Authorization header of a GET or POST request. The client ID and password are
encoded by using the application/x-www-form-urlencoded encoding algorithm. The encoded client ID
is used as the username and the encoded password is used as the password.

2. Include the string value for the access token as a parameter in the GET or POST request to the
introspection endpoint.

3. Send the GET or POST request to the introspection endpoint URL.

Chapter 7. Securing Liberty and its applications 1245

Results

After completing these steps you have a valid HTTP request that is being sent to the introspection
endpoint as shown in the Examples section.

For valid requests, the introspection endpoint returns an HTTP 200 response with a JSON object in
application/json format that includes the following information, depending upon whether the access
token is active or expired.

When the access token is active, the endpoint returns active:true, as well as the following additional
information in the JSON object:

active Boolean indicator of whether the access token is active.

client_id
Client identifier of the OpenID Connect Client who requested the access token.

sub Resource owner who authorized the access token.

scope Space-separated list of scopes that are associated with the access token.

iat Integer timestamp, measured in seconds since January 1, 1970 UTC, indicating when the access
token was issued.

exp Integer timestamp, measured in seconds since January 1, 1970 UTC, indicating when the access
token will expire.

realmName
Realm name of the resource owner.

uniqueSecurityName
Unique security name of the resource owner.

tokenType
Access token type. For OpenID Connect, this value is Bearer.

grant_type
String indicating the type of grant that generated the access token. Possible values are:
authorization_code, password, refresh_token, client_credentials, resource_owner, implicit,
and urn:ietf:params:oauth:grant-type:jwt-bearer.

If the access token is expired, but the provided authentication is valid, or if the provided access token is
of the wrong type, the endpoint returns active:false in the JSON object.

Note: For a client or resource service to perform access token introspection, the client or resource service
must register itself as a client to the OpenID Connect provider, and the client metadata must have
introspect_tokens set to true.

Example

The following shows examples of an active and expired access token along with a request.

An example request is shown here:
POST /register HTTP/1.1
Accept: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

token=SOYleDziTitHeKcodp6vqEmRwKPjz3lFZTcsQtVC

An example response for an active access token:

1246 WebSphere Application Server Liberty Core 8.5.5

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

{
"exp" : 1415307710,
"realmName" : "BasicRealm",
"sub" : "testuser",
"scope" : "openid scope2 scope1",
"grant_type" : "authorization_code",
"uniqueSecurityName" : "testuser",
"active" : true,
"token_type" : "Bearer",
"client_id" : "pclient01",
"iat" : 1415307700

}

Example response for an expired access token:
HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
{

"active":"false"
}

Invoking the coverage map service: 8.5.5.4

The coverage map service is an unprotected endpoint that returns a JavaScript Object Notation (JSON)
array of slash-terminated URI prefixes. The array of URI prefixes designates which web contexts are part
of a Single Sign On (SSO) group, thus enabling clients to know whether a URI destination is deemed safe
to send an access token.

Before you begin

The coverage map service returns a JSON array of URI prefixes, which are a unique set that is derived
from the aggregation of the trusted_uri_prefixes parameter values that are specified in the registered
clients. Therefore, a typical case for populating the coverage map service is to register clients and specify
the trusted_uri_prefixes value.

About this task

The following example assumes that the Liberty OpenID Connect provider is configured with SSL on
port 443.
https://server.example.com:443/oidc/endpoint/<provider_name>/coverage_map

Additionally, this example assumes that a client is registered with the specified trusted_uri_prefixes.

Procedure

1. Specify a token_type URI query parameter on the coverage_map endpoint. The following is an
example request that assumes that the client is registered with the specified trusted_uri_prefixes
https://server.example.com:443/oidc/endpoint/<provider_name>/coverage_map?token_type=bearer

The only token_type value that is supported is token_type=bearer.
2. Get the coverage map for the bearer token type, as shown in the following example.

Request Headers:
GET https://server.example.com:443/oidc/endpoint/<provider_name>/coverage_map?token_type=bearer

Response Headers:

Chapter 7. Securing Liberty and its applications 1247

Status: 200
CacheControl: public, maxage=600
ETag:"vvhkgXkRx+BzR3Q4kwCCqw=="
ContentType: application/json

Response Body:
[

"http://res1.ibm.com/",
"https://trusted.server.ibm.com:9554/resources/"

]

Invoking the UserInfo Endpoint for OpenID Connect: 8.5.5.4

The UserInfo endpoint returns claims about a user that is authenticated with OpenID Connect
authentication.

About this task

To obtain the claims for a user, a client makes a request to the UserInfo endpoint by using an access
token as the credential. The access token must be one that was obtained through OpenID Connect
authentication. The claims for the user who is represented by the access token are returned as a JSON
object that contains a collection of name-value pairs for the claims. The UserInfo endpoint is an OAuth
2.0 protected resource, which means that the credential required to access the endpoint is the access
token.

The claims that are returned by the UserInfo endpoint can be customized with the OpenID Connect
Provider configuration, see Configuring claims returned by the UserInfo endpoint.

A Liberty profile server with OpenID Connect enabled has access to the OpenID Connect UserInfo
endpoint at the following URL:
https://server.example.com:443/oidc/endpoint/<provider_name>/userinfo

Avoid trouble: In this example, the client expects the SSL port to be set to 443.

Procedure

1. Set up authentication with an access token that was obtained through OpenID Connect authentication.
The access token can be provided in the HTTP Basic Authorization header or with the access_token
request parameter. In either case, the access token does not need to be encoded.

2. Send the GET or POST request to the UserInfo endpoint URL.

Results

After completing these steps you have a valid HTTP request that is being sent to the UserInfo endpoint
as shown in the Examples section.

For valid requests, the UserInfo endpoint returns an HTTP 200 response with a JSON object in
application/json format that includes the claims that are configured for the OpenID Connect Provider.

Example

The following examples illustrate requests with a valid token and invalid tokens.
v Request that uses the HTTP Bearer Authorization header to pass the access token
v Response for a valid access token
v Invalid access tokens

An example request that uses the HTTP Bearer Authorization header to pass the access token:

1248 WebSphere Application Server Liberty Core 8.5.5

POST /register HTTP/1.1
Accept: application/x-www-form-urlencoded
Authorization: Bearer fAAdLO1c6QWDbPs9HrWHz5e7nRWVAnxqTTP7i88G

The token can also be passed by using the access_token request parameter:
POST /register HTTP/1.1
Accept: application/x-www-form-urlencoded

access_token=fAAdLO1c6QWDbPs9HrWHz5e7nRWVAnxqTTP7i88G

It is a best practice to use the HTTP Authorization header instead of the access_token request parameter
because HTTP request parameters, which can include sensitive information, can be saved in the browser
history or cache.

Here is an example response for a valid access token. The sub and groupIds claims are always returned.
The other claims that are shown here are the default claims for an OpenID Connect Provider.
HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
Pragma: no-cache

{
"sub" : "bob",
"groupIds" : ["bobsdepartment","administrators"],
"given_name" : "Bob",
"name" : "Bob Smith",
"email" : "bob@mycompany.com",
"phone_number" : "+1 (604) 555-1234;ext5678",
"address" : { "formatted" : "123 Main St., Anytown, TX 77777" },
"picture" : "http://mycompany.com/bob_photo.jpg"

}

For an invalid access token, the UserInfo endpoint returns an HTTP 401 status code with an error
message in the WWW-AUTHENTICATE header.
HTTP/1.1 401 Unauthorized
CONTENT-LENGTH : 0
WWW-AUTHENTICATE : Bearer error=invalid_token,

error_description=CWWKS1617E: A userinfo request was made with
an access token that was not recognized. The request URI was

/oidc/endpoint/MyOAuthProvider/userinfo.

Invoking the Session Management Endpoint for OpenID Connect: 8.5.5.4

The session management endpoint enables OpenID Connect Relying Parties to monitor the login status of
a user with a particular OpenID Connect Provider (OP) while minimizing network traffic. With the help
of the session management endpoint, a Relying Party (RP) can log out a user who logged out of the
OpenID Connect Provider.

Before you begin

The OP session management endpoint URL is obtained from the check_session_iframe attribute in the
discovery information that is returned from the discovery endpoint of the OP. This URL must be used as
the target of an iframe in the RP application that requires session management functionality. The RP
application must also know the id attribute of the iframe in order to submit Window.postMessage()
requests to it.

About this task

To help determine the login status of a user, the RP loads an iframe with its src target set to the session
management endpoint of the OP. The session management endpoint has access to a cookie that stores the
login status, or browser state, of a user. This browser state cookie is updated when a user logs out of the

Chapter 7. Securing Liberty and its applications 1249

OP. The RP can then use client side scripting to invoke the Window.postMessage() function of the OP
iframe, sending the client ID and the currently known session state in the text of the message. If the RP
receives a postMessage back from the OP frame with a value of changed, then the login status of the user
at the OP has changed and the RP can decide whether to log out the user. If a value of unchanged is
returned, the user is still logged in at the OP.

A Liberty server with OpenID Connect enabled has access to the OpenID Connect session management
endpoint at the following URL:
https://server.example.com:443/oidc/endpoint/<provider_name>/check_session_iframe

Avoid trouble: In this example, the client expects the SSL port to be set to 443.

Procedure

1. Create a web resource in an appropriate RP application capable of loading an iframe that targets the
OP session management endpoint. The web resource also needs to have access to the session state
value that is returned in the session_state parameter of the authorization response. The session state
value can be stored in a cookie, for example, or in any other way that allows client-side scripting in
the web resource to know what the value is. The following is a sample HTML snippet for such an
iframe.
<iframe id="iframeOP" src="https://server.example.com:443/oidc/endpoint/OidcConfigSample/check_session_iframe" frameborder="0" width="0" height="0"></iframe>

2. To check the login status of a user, invoke the Window.postMessage() function of the OP iframe,
passing the client ID and session state as the message parameter in the format Client ID + " " +
Session State and the host name of the OP as the target origin parameter. In the following JavaScript
sample function, the script expects the session state value to be stored in a cookie that is named
session_state, and the getCookieValue() function returns the value that is stored in the
session_state cookie.
var targetOP = "https://server.example.com:443";
function checkStatus() {

var client = "client01";
var sessionState = getCookieValue("session_state");
var text = client + " " + sessionState;
var iframe = document.getElementById("iframeOP");
iframe.contentWindow.postMessage(text, targetOP);

}

3. Configure the web resource to listen for postMessages from the OP that contain the value changed or
unchanged to reflect the respective login status of the user. The RP can then decide whether to log the
user out of the RP based on the value that is returned from the OP. The function must ensure that the
origin of the postMessage matches the expected OP host name. Any messages that do not match are
rejected. The following JavaScript example shows how to add an event listener to the web resource to
listen for such messages.
var targetOP = "https://server.example.com:443";
window.addEventListener("message", receiveMessage, false);
function receiveMessage(event) {

if (event.origin !== targetOP) {
// Origin did not come from the OP; this message must be rejected.
return;

}
if (event.data === "unchanged") {

// User is still logged in to the OP
} else {

// User has logged out of the OP
}

}

Results

You now have a web resource on the RP that is capable of utilizing the session management functionality
of OpenID Connect on a Liberty server OP. The browser state that is maintained in the OP iframe is

1250 WebSphere Application Server Liberty Core 8.5.5

updated when users log in or log out of the OP. After successful login at the OP, a new session state
value is provided in the authorization response to the RP. The RP can then use client-side scripting to
validate the session state of the user to determine whether the login status of the user changed on the OP
without broadcasting extra network traffic.

Example

The following HTML example shows a complete HTML page that uses OpenID Connect Session
Management. The src attribute of the OP iframe is set to the session management endpoint URL
obtained from the OP. The startChecking() function is automatically called every 60 seconds and checks
the login status of the user. The page has a message event listener that calls the receiveMessage()
function when a postMessage is received. This function makes sure the postMessage comes from the
expected domain for the OP and checks the value of the returned message to see whether the login status
of the user is changed or unchanged.

You can load this HTML page, itself, as an invisible iframe in another web resource within the RP. This
enables any web resource that loads this iframe to monitor the login status of the user on the client side.
<!DOCTYPE html>
<html>
<head>
<meta charset="ISO-8859-1">
<title>iFrame RP Page</title>
</head>
<body onload="javascript:startChecking()">

<iframe id="iframeOP" src="https://localhost:8999/oidc/endpoint/OidcConfigSample/check_session_iframe" frameborder="0" width="0" height="0"></iframe>
</body>
<script>

var targetOP = "https://server.example.com:443";

window.addEventListener("message", receiveMessage, false);

function startChecking() {
checkStatus();
// Check status every 60 seconds
setInterval("checkStatus()", 1000*60);

}

function getCookieValue(cookieName) {
var name = cookieName + "=";
var cookies = document.cookie.split(’;’);
if (!cookies) {

return null;
}
for (var i = 0; i < cookies.length; i++) {

var cookie = cookies[i].trim();
if (cookie.indexOf(name) == 0) {

return cookie.substring(name.length, cookie.length);
}

}
return null;

}

function checkStatus() {
var client = "client01";
var sessionState = getCookieValue("session_state");
var text = client + " " + sessionState;
var iframe = document.getElementById("iframeOP");
iframe.contentWindow.postMessage(text, targetOP);

}

function receiveMessage(event) {
if (event.origin !== targetOP) {

// Origin did not come from the OP; this message must be rejected

Chapter 7. Securing Liberty and its applications 1251

return;
}
if (event.data === "unchanged") {

// User is still logged in to the OP
} else {

// User has logged out of the OP
}

}
</script>
</html>

Authentication Filters

8.5.5.5

You can use the authentication filter to determine whether certain HTTP servlet requests are processed by
certain providers.

Liberty server authentication filter uses the filter criteria that are specified in the authFilter element in
the server.xml file to determine whether certain HTTP servlet requests are processed by certain
providers, such as OpenID, OpenID Connect, or SPNEGO, for authentication.

If all conditions in the authFilter element are met, the HTTP servlet request is processed by the
particular provider that references that authFilter element. If any of the conditions within the
authFilter element are not met, the HTTP servlet request is not processed by the provider.

Supported elements

The authFilter element supports the following elements: userAgent, host, webApp, remoteAddress, and
requestUrl.
v The userAgent element is compared against a corresponding header value that is extracted from the

incoming HTTP servlet request. The userAgent element is compared against the “User-Agent” HTTP
request header, which identifies the client software that is used by the originating request. For web
client browsers, this value reflects the browser type that is used to initiate the request (Internet
Explorer, Firefox, Safari, etc.).

v The host element is used similarly to the userAgent element. The host element is compared against the
“Host” HTTP request header, which identifies the target host name of the request.

v The webApp element is used to specify the application, or list of applications, hosted on the Liberty
server that is protected by this authentication filter.

v The remoteAddress element is compared against the remote TCP/IP address of the client application
that sent the HTTP request. You can configure wildcards for specifying subnets and ranges by using
the lessThan or greaterThan values of the matchType attribute, as shown among the examples that
follow later in this topic.

v The requestUrl element is compared against the URL that is used by the client application to make the
request. Single URL patterns are configured or piped lists of values are configured, as shown among
the examples that follow later in this topic.

Authentication Filter examples

Request URL contains a pattern
The following example shows a typical configuration for an authentication filter. Here, any
incoming request with a request URL containing "/SimpleServlet" is processed by the service
that is configured to use this filter.
<authFilter id="myAuthFilter">

<requestUrl id="myRequestUrl" urlPattern="/SimpleServlet" matchType="contains"/>
</authFilter>

1252 WebSphere Application Server Liberty Core 8.5.5

Request URL contains one of a set of patterns
In the following example, a piped list of request URL patterns is specified. To process an
incoming request with the service configured to use this filter, the incoming request URL must
contain any one of "/SimpleServlet", "/EmployeeRoleServlet", or "/AllRoleServlet".
<authFilter id="myAuthFilter">

<requestUrl id="myURL" urlPattern="/SimpleServlet|/EmployeeRoleServlet|/AllRoleServlet" matchType="contains" />
</authFilter>

Web application name contains a pattern
In the following example, a web application name is specified in the authentication filter.
Incoming requests must target the "myApp" application to be processed by the service that is
configured to use this filter.
<authFilter id="myAuthFilter">

<webApp id="myWebApp" name="myApp" matchType="contains"/>
</authFilter>

Web application name contains one of a set of patterns
In the following example, a piped list of web applications is specified. To process an incoming
request with the service configured to use this filter, the incoming request must target any one of
the "myApp1", "myApp2", or "myApp3" applications.
<authFilter id="myAuthFilter">

<webApp id="myWebApp" name="myApp1|myApp2|myApp3" matchType="contains"/>
</authFilter>

Request originates from a certain IP address
The following example shows how to use wildcards in the remoteAddress element. With this
configuration, the service that is configured to use this filter processes the incoming request if the
request comes from an IP address anywhere in the 127.0.0.* range.
<authFilter id="myAuthFilter">

<remoteAddress id="myRemoteAddress" ip="127.0.0.*" matchType="equals"/>
</authFilter>

Excluding patterns
The following example shows how to use a piped list of values for the requestUrl element.
Matching any of the patterns in the list is sufficient to satisfy the requirements of that particular
element. In this example, the request URL must contain either "/SimpleServlet",
"/EmployeeRoleServlet", or "/AllRoleServlet". In addition, the request URL must not contain
"/ManagerRoleServlet" and the request must come from an Internet Explorer user agent.
<authFilter id="myAuthFilter">

<requestUrl id="myURL1" urlPattern="/SimpleServlet|/EmployeeRoleServlet|/AllRoleServlet" matchType="contains" />
<requestUrl id="myURL2" urlPattern="/ManagerRoleServlet" matchType="notContain" />
<userAgent id="myAgent" agent="IE" matchType="contains" />

</authFilter>

Example using all sub-elements
To process an incoming request with the service configured to use this filter, the request must
meet the following conditions:
v Contains the pattern "/SimpleServlet" in the request URL
v Targets a domain that contains "host.example.com"
v Comes from the IP address 127.0.0.1
v Comes from a Firefox browser
v The name of the target application is myApp
<authFilter id="myAuthFilter">

<requestUrl id="myRequestUrl" urlPattern="/SimpleServlet" matchType="contains"/>
<host id="myHost" name="host.example.com" matchType="contains"/>
<remoteAddress id="myAddress" ip="127.0.0.1" matchType="equals" />
<userAgent id="myUserAgent" agent="Firefox" matchType="equals"/>
<webApp id="myWebApp" name="myApp" matchType="contains"/>

</authFilter>

Chapter 7. Securing Liberty and its applications 1253

Authorizing access to resources in Liberty
The purpose of authorization is to determine whether a user or group has the necessary privileges to
access a resource.

About this task

To learn about how authorization works in Liberty, see “Authorization” on page 606.

The following topics are covered in this section:

Procedure

Configure authorization for applications in a Liberty server

Configuring authorization for applications in Liberty
Configuring authorization for your application is to verify whether a user or group belongs to a specified
role, and whether this role has the privilege to access a resource.

About this task

The Liberty server extracts user and group mapping information from a user registry, then checks the
authorization configuration for the application to determine whether a user or group is assigned to one of
the required roles. Then the server reads the deployment descriptor of the application, to determine
whether the user or group has the privilege to access the resource.

Procedure
1. Enable the appSecurity-2.0 Liberty feature in the server.xml file.

For example:
<featureManager>

<feature>appSecurity-2.0</feature>
</featureManager>

2. Configure a user registry for authentication on the Liberty server.
See “Authenticating users in Liberty” on page 1168.

3. Ensure that the deployment descriptor for your application includes security constraints and other
security related information.

Note: You can also use a tool such as Rational Application Developer to create the deployment
descriptor.

4. Configure the authorization information such as the user and group to role mapping.
You can configure the authorization table in the following ways:
v If you have an EAR file, you can add the authorization configuration definition to the

ibm-application-bnd.xml or ibm-application-bnd.xmi file.
v If you have standalone WAR files, you can add the authorization table definitions to the server.xml

file under the respective application element. You can use the WebSphere Application Server
Developer Tools for Eclipse to do this.

Notes:

v If you have an EAR file, the authorization configuration might already exist. In EAR files that are
written to the current specification, this information is stored in an ibm-application-bnd.xml file; in
older EAR files, this information is stored in an ibm-application-bnd.xmi file.

1254 WebSphere Application Server Liberty Core 8.5.5

v If your EAR file does not already contain an ibm-application-bnd.xm* file, it is not a
straightforward task to create one and you might prefer to add the authorization configuration to
the server.xml file.

v If the authorization configuration for the EAR file is defined in an ibm-application-bnd.xm* file
and also in the server.xml file, then the two tables are merged. If there are any conflicts, the
information from the server.xml file is used.

v If you modify your user registry, be sure to review the authorization table for necessary changes.
For example, if you are specifying an access-id element and change the realm name of the registry,
you must also change the realm name in the access-id element.

v If you specify the application-bnd element in the server.xml file, your application must not be in
the dropins folder. If you leave it in the dropins folder, then you must disable application
monitoring by setting the following in your server.xml file:
<applicationMonitor dropinsEnabled="false" />

A role can be mapped to a user, a group, or a special subject. The two types of special subject are
EVERYONE and ALL_AUTHENTICATED_USERS. When a role is mapped to the EVERYONE special subject, there
is no security because everyone is allowed access and you are not prompted to enter credentials.
When a role is mapped to the ALL_AUTHENTICATED_USERS special subject, then any user who has been
authenticated by the application server can access the protected resource.
Here is example code for configuring the user and group to role mapping in the server.xml file:
<application type="war" id="myapp" name="myapp" location="${server.config.dir}/apps/myapp.war">
<application-bnd>
<security-role name="user">
<group name="students" />
</security-role>
<security-role name="admin">
<user name="gjones" />

<group name="administrators" />
</security-role>
<security-role name="AllAuthenticated">
<special-subject type="ALL_AUTHENTICATED_USERS" />
</security-role>
</application-bnd>
</application>

In this example, the admin role is mapped to the user ID gjones and all users in the group
administrators. The AllAuthenticatedRole is mapped to the special subject ALL_AUTHENTICATED_USERS,
meaning that any user has access as long as they provide valid credentials for authentication.

Configuring security authorization for Liberty servers on IBM i
IBM i

Using the iAdmin GRANTAUTH command, you can authorize the QEJBSVR user profile to access the
required resources for running the Liberty server.

Before you begin

Servers run under the QEJBSVR user profile if one of the following is true:
v The Liberty environment was installed as a feature of a product offering using the IBM Installation

Manager.
v the Job Manager was used to install the Liberty environment and the Run optional installation scripts

on IBM i targets option is selected. See Installing Liberty resources using the job manager.
v The iAdmin POSTINSTALL command was called after Installing Liberty by extracting an archive file.

Also, QEJBSVR is granted authorization to files in the $WLP_USER_DIR and $WLP_OUTPUT_DIR locations in all
of these installation scenarios. Additionally, when servers are created, QEJBSVR is granted authorization

Chapter 7. Securing Liberty and its applications 1255

to server definition files and the $WLP_OUTPUT_DIR location.

About this task

This task provides example commands that show you how to authorize the QEJBSVR user profile to
access the required resources for running the server after doing the following tasks:
v Creating files manually or modifying the authorities on shared resources and server definitions files.
v Configuring a server to access resources the QEJBSVR user profile is not yet authorized to.

Example
v Granting the server role to the QEJBSVR user profile for the shared resources, server definitions and

output locations configured for the Liberty environment installed at /WAS/wlp directory.
/WAS/wlp/lib/native/os400/bin/iAdmin GRANTAUTH –rolename server –userprofilename QEJBSVR

v Granting the server role to the QEJBSVR user profile for shared resources and server definitions in
/WAS/myWlpServers/usr, and for any server output locations defined by the WLP_OUTPUT_DIR variable in
files matching the definition in the /WAS/myWlpServers/usr/servers/*/server.env file.
/WAS/wlp/lib/native/os400/bin/iAdmin GRANTAUTH –rolename server –userprofilename QEJBSVR

–userdir /WAS/myWlpServers/usr

v Granting the server role to the QEJBSVR user profile for output location /WAS/myWlpOutput/servers.
/WAS/wlp/lib/native/os400/bin/iAdmin GRANTAUTH –rolename server –userprofilename QEJBSVR

–outputdir /WAS/myWlpOutput/servers

OAuth
OAuth is an open standard for delegated authorization. With the OAuth authorization framework, a user
can grant a third-party application access to their information stored with another HTTP service without
sharing their access permissions or the full extent of their data.

In OAuth, the client, or third-party application, requests access to resources controlled by the resource
owner and hosted by the resource server, and is issued a different set of credentials than those of the
resource owner. Instead of using the credentials of the resource owner to access protected resources, the
client obtains an access token, which is a string denoting a specific scope, lifetime, and other access
attributes. Access tokens are issued to third-party clients by an authorization server with the approval of
the resource owner. The client uses the access token to access the protected resources hosted by the
resource server.

OAuth 2.0 is not compatible with OAuth 1.0. OAuth 2.0 provides ease of use for client application
developers, and authorization flows for different types of client applications.

WebSphere Application Server supports OAuth 2.0, and can be used as an OAuth service provider
endpoint and an OAuth protected resource enforcement endpoint.

WebSphere Application Server supports the following OAuth standard specifications:
v The OAuth 2.0 Authorization Framework
v The OAuth 2.0 Authorization Framework: Bearer Token Usage

The following list shows a summary of features within WebSphere Application Server OAuth 2.0 services.
v WebSphere Application Server acts as an OAuth Service Provider (SP) to handle OAuth 2.0 protocol

requests.
v WebSphere Application Server acts as protected resource enforcement endpoint to authorize or deny

requests for deployed web resources.
v Allow multiple service providers to co-exist.
v Allow administrator to revoke access tokens.

1256 WebSphere Application Server Liberty Core 8.5.5

v Allow client to revoke its authorization given by a user.
v Optionally provide a Subject for a resource application to make an authenticated downstream call or

perform programmatic J2EE security.
v Support 4 typical OAuth 2.0 flows as defined in the protocol.
v Support persistent OAuth services.

OAuth 2.0 services
WebSphere Application Server OAuth services include both the OAuth authorization service and the web
resource authorization decision service.

The OAuth 2.0 authorization service provides all OAuth 2.0 protocol endpoint URLs, and is responsible
for client authorization and token issuing.

The web resource authorization decision service is built into the Liberty web authentication code. When a
client accesses an OAuth protected web resource, the OAuth token is validated and mapped to a
WebSphere Application Server platform security subject that the web request then runs under.

Defining an OAuth service provider:

An OAuth service provider is a named set of configuration options for OAuth. The id or name of the
provider is specified in the URL of inbound requests to the authorization and token endpoints. The set of
configuration options for that provider is used when the request is handled. This process allows one
server with one endpoint servlet to effectively provide multiple OAuth configurations. For example, the
https://my.company.com:8021/oauth2/endpoint/photoShare/authorize URL is handled by using the set
of OAuth configuration options that are defined for the OAuth provider named photoShare. The
https://my.company.com:8021/oauth2/endpoint/calendarAuthz/authorize URL is handled by using the
set of OAuth configuration options that are defined for the OAuth provider named calendarAuthz.

About this task

An OAuth service provider is defined with the oauthProvider element in the server.xml file. You can
define an OAuth service provider by editing the server.xml file or by using the WebSphere Application
Server Development Tools for Liberty. This task describes how to define a minimal OAuth configuration.

Procedure

1. Add the oauth-2.0 and ssl-1.0 features. OAuth is a secure protocol so SSL is required. On Liberty,
you must supply a keystore password for SSL by using the keyStore element. There is no default
keystore password.
<featureManager>
<feature>oauth-2.0</feature>
<feature>ssl-1.0</feature>

</featureManager>

2. Set up the role mapping for the OAuth web application by using the oauth-roles element. OAuth is
an HTTP-based protocol and a web application is supplied to handle the authorization and token
endpoints. The web application is built in and is started automatically when you specify the
oauth-2.0 feature. However, you must map the authenticated role to one or more users, groups, or
special subjects. Another role, clientManager, is supplied for managing client configuration, but it is
not necessary to map that role for OAuth authorization to function.
<oauth-roles>
<authenticated>
<user>testuser</user>

</authenticated>
</oauth-roles>

Chapter 7. Securing Liberty and its applications 1257

3. Define one or more providers with the oauthProvider element. The provider must have at least one
client defined. Clients can be defined locally with the localStore and client elements. Clients can
also be defined in a relational database with the databaseStore element.
<oauthProvider id="SampleProvider" filter="request-url%=ssodemo">
<localStore>
<client name="client01" secret="{xor}LDo8LTor"

displayname="Test client number 1"
redirect="http://localhost:1234/oauthclient/redirect.jsp"
enabled="true" />

</localStore>
</oauthProvider>

4. Define a user registry, either an LDAP registry by specifying the ldapRegistry-3.0 feature and the
ldapRegistry configuration element, or a basic registry by specifying the basicRegistry configuration
element.
<basicRegistry id="basic" realm="BasicRealm">
<user name="testuser" password="testuserpwd" />

</basicRegistry>

5. Set the allowFailOverToBasicAuth web application security property to true.
<webAppSecurity allowFailOverToBasicAuth="true" />

Results

You have defined a minimal OAuth configuration.

Example

The following example shows a sample server.xml file that defines a simple OAuth provider with one
client:
<server>

<featureManager>
<feature>oauth-2.0</feature>
<feature>ssl-1.0</feature>

</featureManager>

<keyStore password="keyspass" />

<oauth-roles>
<authenticated>
<user>testuser</user>

</authenticated>
</oauth-roles>

<oauthProvider id="SampleProvider" filter="request-url%=ssodemo">
<localStore>
<client name="client01" secret="{xor}LDo8LTor"

displayname="Test client number 1"
redirect="http://localhost:1234/oauthclient/redirect.jsp"
enabled="true" />

</localStore>
</oauthProvider>

<webAppSecurity allowFailOverToBasicAuth="true" />

<basicRegistry id="basic" realm="BasicRealm">
<user name="testuser" password="testuserpwd" />

</basicRegistry>

</server>

1258 WebSphere Application Server Liberty Core 8.5.5

OAuth full profile provider configuration equivalents:

The following tables map the Liberty server.xml file elements and attributes to the equivalent full profile
provider parameters in the provider configuration file.

The following table illustrates the Liberty profile attributes and the equivalent full profile parameters for
the oauthProvider element.

Table 90. Liberty oauthProvider element

Liberty attribute name Full profile equivalent parameter

authorizationGrantLifetime oauth20.max.authorization.grant.lifetime.seconds

authorizationCodeLifetime oauth20.code.lifetime.seconds

authorizationCodeLength oauth20.code.length

accessTokenLifetime oauth20.token.lifetime.seconds

accessTokenLength oauth20.access.token.length

issueRefreshToken oauth20.issue.refresh.token

refreshTokenLength oauth20.refresh.token.length

mediatorClassname oauth20.mediator.classnames

allowPublicClients oauth20.allow.public.clients

grantType oauth20.grant.types.allowed

authorizationFormTemplate oauth20.authorization.form.template

authorizationErrorTemplate oauth20.authorization.error.template

customLoginURL oauth20.authorization.loginURL

autoAuthorizeParam oauth20.autoauthorize.param

autoAuthorizeClient oauth20.autoauthorize.clients

clientURISubstitutions oauth20.client.uri.substitutions

filter Filter

oauthOnly oauthOnly

includeTokenInSubject includeToken

characterEncoding characterEncoding

clientTokenCacheSize oauth20.token.userClientTokenLimit

The following table illustrates the Liberty attributes and the equivalent full profile parameters for the
databaseStore element.

Table 91. Liberty databaseStore element

Liberty attribute name Full profile equivalent parameter

cleanupExpiredTokenInterval oauthjdbc.CleanupInterval

Configuring automatic authorization:
Before you begin

Ensure that you enabled the OAuth 2.0 feature and configured an OAuth service provider by following
Defining an OAuth service provider.

About this task

You can authorize an OAuth client without the approval of the resource owner by enabling the automatic
authorization feature of the WebSphere Application Server OAuth service provider.

Chapter 7. Securing Liberty and its applications 1259

Procedure

To configure auto consent, use the autoAuthorizeParam attribute and the <autoAuthorizeClient>
subelement of the <oauthProvider> element in the server.xml file:
<oauthProvider id="OAuthConfigSample" autoAuthorizeParam="autoauthz" ...>
...
<autoAuthorizeClient>client01</autoAuthorizeClient>
<autoAuthorizeClient>client02</autoAuthorizeClient>

</oauthProvider>

Results

The client01 and client02 OAuth clients are configured for automatic authorization.

OAuth endpoint URLs:

After OAuth 2.0 is enabled, several endpoint URLs are configured on your WebSphere Application Server
so that OAuth clients can communicate with the OAuth service provider before accessing OAuth
protected resources.

The following endpoint URLs are configured for the OAuth service provider:
v Authorization endpoint URL

https://host_name:port_number/oauth2/endpoint/provider_name/authorize

where
– host_name is the host name of the OAuth service provider.
– port_number is the secure port number that is configured on the WebSphere Application Server.
– provider_name is the OAuth provider name.

v Token endpoint URL
https://host_name:port_number/oauth2/endpoint/provider_name/token

where
– host_name is the host name of the OAuth service provider.
– port_number is the secure port number that is configured on the WebSphere Application Server.
– provider_name is the OAuth provider name.

v Authorization endpoint URL of trust association interceptor (TAI) based user authentication
https://host_name:port_number/oauth2/declaritiveEndpoint/provider_name/authorize

where
– host_name is the host name of the OAuth service provider.
– port_number is the secure port number that is configured on the WebSphere Application Server.
– provider_name is the OAuth provider name.

By using this authorization endpoint, the applicable user authentication includes TAI.

OAuth 2.0 service invocation
A registered OAuth client can invoke the WebSphere Application Server OAuth service authorization
endpoint to request an access token. A registered OAuth client can also invoke the WebSphere
Application Server OAuth service token endpoint to request an access token. The client then can use the
access token to request protected web resources from WebSphere Application Server.

WebSphere Application Server OAuth 2.0 service supports the following flows.

1260 WebSphere Application Server Liberty Core 8.5.5

Authorization code flow

Invoke authorization endpoint to request authorization code.

The OAuth client redirects the resource owner or user to the WebSphere Application Server OAuth 2.0
Authorization Service by adding its client id, client secret, state, redirect URI, and the optional scopes.
https://host_name:port_number/oauth2/endpoint/provider_name/authorize

or
https://host_name:port_number/oauth2/declarativeEndpoint/provider_name/authorize

Invoke OAuth token endpoint to request access token.

The OAuth client requests an access token from the WebSphere Application Server OAuth 2.0 token
endpoint by adding authorization_code grant type, authorization code, redirect_url, and client_id as
request parameters.
https://host_name:port_number/oauth2/endpoint/provider_name/token

The following example shows the constructions of the URIs when using authorization code, and the use
of the access token to access web resources:
String charset = "UTF-8";
String param1 = "code";

if (isAuthorizationCode){
String query = String.format("response_type=%s&

client_id=%s&
client_secret=%s&
state=%s&
redirect_uri=%s&
scope=%s",
URLEncoder.encode(param1, charset),
URLEncoder.encode(clientId, charset),
URLEncoder.encode(clientSecret, charset),
URLEncoder.encode(state, charset),
URLEncoder.encode(redirectURI, charset),
URLEncoder.encode(scope, charset));

String s = authorizationEndPoint + "?" + query;
System.out.println("Visit: " + s + "\nand grant permission");
System.out.print("Now enter the OAuth code you have received in redirect uri :");
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String code = br.readLine();
param1 = "authorization_code";
query = String.format("grant_type=%s&

code=%s&
client_id=%s&
client_secret=%s&
state=%s&
redirect_uri=%s&
scope=%s",
URLEncoder.encode(param1, charset),
URLEncoder.encode(code, charset),
URLEncoder.encode(clientId, charset),
URLEncoder.encode(clientSecret, charset),
URLEncoder.encode(state, charset),
URLEncoder.encode(redirectURI, charset),
URLEncoder.encode(scope, charset));

URL url = new URL(tokenEndPoint);
HttpsURLConnection con = (HttpsURLConnection)url. openConnection();
con.setRequestProperty("Content-Type", "application/x-www-form-urlencoded;charset=" + charset);
con.setDoOutput(true);
con.setRequestMethod("POST");
OutputStream output = null;
try {
output = con.getOutputStream();
output.write(query.getBytes(charset));
output.flush();

} finally {
if (output != null) try {
output.close();

Chapter 7. Securing Liberty and its applications 1261

} catch (IOException logOrIgnore) {}
}
con.connect();
System.out.println("response message is = " + con.getResponseMessage());
// read the output from the server
BufferedReader reader = null;
StringBuilder stringBuilder;
reader = new BufferedReader(new InputStreamReader(con.getInputStream()));
stringBuilder = new StringBuilder();
String line = null;
try {
while ((line = reader.readLine()) != null) {
stringBuilder.append(line + "\n");

}
} finally {
if (reader != null) try {
reader.close();

} catch (IOException logOrIgnore) {}
}
String tokenResponse = stringBuilder.toString();
System.out.println ("response is = " + tokenResponse);
JSONObject json = JSONObject.parse(tokenResponse);
if (json.containsKey("access_token")) {
accessToken = (String)json.get("access_token");
this.accessToken = accessToken;

}
if (json.containsKey("refresh_token")) {
refreshToken = (String)json.get("refresh_token");

}
//sendRequestForAccessToken(query);
if (accessToken != null) {
String query = String.format("access_token=%s",

URLEncoder.encode(accessToken, charset));
URL urlResource = new URL(resourceEndPoint);
HttpsURLConnection conn = (HttpsURLConnection) urlResource.openConnection();
conn.setRequestMethod("POST");
conn.setRequestProperty("Content-type", "application/x-www-form-urlencoded");
conn.setDoOutput(true);
output = null;
try {
output = conn.getOutputStream();
output.write(query.getBytes(charset));
output.flush();

} finally {
if (output != null) try {
output.close();

} catch (IOException logOrIgnore) {}
}
conn.connect();
System.out.println("response to the resource request is = " + conn.getResponseMessage ());
reader = null;
if(conn.getResponseCode()>=200 && conn.getResponseCode() < 400) {
reader = new BufferedReader(new InputStreamReader(conn.getInputStream()));
stringBuilder = new StringBuilder();
String line = null;
try {
while ((line = reader.readLine()) != null) {
stringBuilder.append(line + "\n");

}
} finally {
if (reader != null) try {
reader.close();

} catch (IOException logOrIgnore) {}
}
System.out.println ("response message to the request resource is = " + stringBuilder.toString());

} else {
isValidResponse = false;

}
}

}

Implicit grant flow

The OAuth client requests an access token from the WebSphere Application Server OAuth 2.0
authorization endpoint by adding token response_type, redirect_url, client_id, scope, and state as
request parameters.

1262 WebSphere Application Server Liberty Core 8.5.5

https://host_name:port_number/oauth2/endpoint/provider_name/authorize

or
https://host_name:port_number/oauth2/declarativeEndpoint/provider_name/authorize

The following example shows the construction of the URI when using implicit grant:
if (isImplicit) {
param1 = "token";
String query = String.format("response_type=%s&

client_id=%s&
state=%s&
redirect_uri=%s&
scope=%s",
URLEncoder.encode(param1, charset),
URLEncoder.encode(clientId, charset),
URLEncoder.encode(state, charset),
URLEncoder.encode(redirectURI, charset),
URLEncoder.encode(scope, charset));

String s = authorizationEndPoint + "?" + query;
System.out.println("Visit: " + s + "\nand grant permission");
System.out.print("Now enter the access token you have received in redirect uri :");
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
accessToken = br.readLine();
if (accessToken != null) {
// send Resource Request using the access token

}
}

Client credential flow

The OAuth client accesses the token endpoint by using the client ID and client secret, and exchanges for
an access token for future resource requests. In this flow, the client accesses the token endpoint by adding
client_credentials grant type, client_id, and client_secret as request parameters.
https://host_name:port_number/oauth2/endpoint/provider_name/token

The following example shows the construction of the URI when using client credential:
if (isClientCredentials){
param1 = "client_credentials";
String query = String.format("grant_type=%s&

scope=%s&
client_id=%s&
client_secret=%s",
URLEncoder.encode(param1, charset),
URLEncoder.encode(scope, charset),
URLEncoder.encode(clientId, charset),
URLEncoder.encode(clientSecret, charset));

accessToken = sendRequestForAccessToken(query);
if (accessToken != null) {
//send Resource Request using (accessToken);

}
}

Resource owner password credentials flow

The Resource Owner Password Credentials flow passes the user ID and password of the resource owner
to the token endpoint directly. In this flow, The OAuth client accesses the token endpoint by adding
password grant type, client_id, client_secret, username, password, scope, and state as request
parameters.
https://host_name:port_number/oauth2/endpoint/provider_name/token

Chapter 7. Securing Liberty and its applications 1263

The following example shows the construction of the URI when using resource owner password:
if (isResourceOwnerCredentials) {
param1 = "password";
String query = String.format("grant_type=%s&

username=%s&
password=%s&
scope=%s&
client_id=%s&
client_secret=%s",
URLEncoder.encode(param1, charset),
URLEncoder.encode(resOwnerName, charset),
URLEncoder.encode(resOwnerPassword, charset),
URLEncoder.encode(scope, charset),
URLEncoder.encode(clientId, charset),
URLEncoder.encode(clientSecret, charset));

accessToken = sendRequestForAccessToken(query);
if (accessToken != null) {
//send Resource Request using (accessToken);

}
}

If the access token is expired, then the refresh token can be sent to get a valid access token. The following
example shows how to send a refresh token:
if(isAccessToken) {
if (this.accessToken != null) {
if (!sendResourceRequest(this.accessToken)) {
// resource request failed...
//get refresh token
param1 = "refresh_token";
String query = String.format("grant_type=%s&

client_id=%s&
client_secret=%s&
refresh_token=%s&
scope=%s",
URLEncoder.encode(param1, charset),
URLEncoder.encode(clientId, charset),
URLEncoder.encode(clientSecret, charset),
URLEncoder.encode(this.refreshToken, charset),
URLEncoder.encode(scope, charset));

accessToken = sendRequestForAccessToken(query);
if (accessToken != null) {
sendResourceRequest(accessToken);

}
}

}
}

Customizing an OAuth provider
The WebSphere Application Server OAuth service provider has plug-in points for customization. You can
replace the default form login page for user authentication, or develop your own user consent form to
collect client authorization data. WebSphere Application Server OAuth providers also allow customized
post processing for major events in OAuth token issuing by using mediators.

Custom mediator:

An OAuth 2.0 mediator is used as a callback during the OAuth 2.0 message processing to perform
customized post processing.

1264 WebSphere Application Server Liberty Core 8.5.5

Write an OAuth 2.0 mediator

To write a mediator, you must implement the interface named
com.ibm.oauth.core.api.oauth20.mediator.OAuth20Mediator. You can implement one or more of the
following methods to perform custom post processing.
void init(OAuthComponentConfiguration config)

This method is called by a factory when an instance of this object is created.
void mediateAuthorize(AttributeList attributeList)

This method is called by the core component after basic message validation and processing to allow any
post custom processing by the component consumer in the processAuthorization method.
void mediateAuthorizeException(AttributeList attributeList, OAuthException exception)

This method is called by the core component when the protocol exception happens to allow any post
custom processing by the component consumer in the processAuthorization method.
void mediateResource(AttributeList attributeList)

This method is called by the core component after basic message validation and processing to allow any
post custom processing by the component consumer in the processResourceRequest method.
void mediateResourceException(AttributeList attributeList, OAuthException exception)

This method is called by the core component when protocol exception happens to allow any post custom
processing by the component consumer in the processResourceRequest method.
void mediateToken(AttributeList attributeList)

This method is called by the core component after basic message validation and processing to allow any
post custom processing by the component consumer in the processTokenRequest method.
void mediateTokenException(AttributeList attributeList, OAuthException exception)

This method is called by the core component when protocol exception happens to allow any post custom
processing by the component consumer in the processTokenRequest method.

Enable OAuth 2.0 mediator for an OAuth provider

To add a customized mediator to a specific OAuth 2.0 service provider, update the provider definition in
the server.xml file. Add the mediatorClassname attribute of the oauthProvider element and specify the
class name for the mediator. You can also specify multiple class names for mediators by using the
mediatorClassname subelement of the oauthProvider element. If multiple mediators are specified, those
mediators are started in the order they are specified. You must also define a library element that
contains the mediator class and refer to the library with the libraryRef attribute.

The following example shows a sample custom mediator entry in the provider definition in the
server.xml file:
<oauthProvider id="OAuthConfigSample" libraryRef="myLib"
mediatorClassname="com.ibm.ws.security.oauth20.mediator.ResourceOwnerValidationMediator" ...>
...

</oauthProvider>

<library id="myLib">
<fileset dir="C:\mydir" includes="myLib.jar" />

</library>

The following code sample implements the credential validation by using the WebSphere Application
Server user registry in the resource owner password credentials flow.

Chapter 7. Securing Liberty and its applications 1265

package com.ibm.ws.security.oauth20.mediator;

import com.ibm.oauth.core.api.attributes.AttributeList;
import com.ibm.oauth.core.api.config.OAuthComponentConfiguration;
import com.ibm.oauth.core.api.error.OAuthException;
import com.ibm.oauth.core.api.error.oauth20.OAuth20MediatorException;
import com.ibm.oauth.core.api.oauth20.mediator.OAuth20Mediator;
import com.ibm.oauth.core.internal.oauth20.OAuth20Constants;
import com.ibm.websphere.security.CustomRegistryException;
import com.ibm.websphere.security.PasswordCheckFailedException;
import com.ibm.websphere.security.UserRegistry;

import java.rmi.RemoteException;
import java.util.logging.Level;
import java.util.logging.Logger;

import javax.naming.InitialContext;
import javax.naming.NamingException;

public class ResourceOwnerValidationMedidator implements OAuth20Mediator {
private static final String CLASS = ResourceOwnerValidationMedidator.class.getName();
private static final Logger LOG = Logger.getLogger(CLASS);
private UserRegistry reg = null;

public void init(OAuthComponentConfiguration config) {
try {
InitialContext ctx = new InitialContext();
reg = (UserRegistry) ctx.lookup("UserRegistry");

} catch(NamingException ne) {
LOG.log(Level.SEVERE, "Cannot lookup UserRegistry", ne);

}
}

public void mediateAuthorize(AttributeList attributeList)
throws OAuth20MediatorException {
// nothing to do here

}

public void mediateAuthorizeException(AttributeList attributeList,
OAuthException exception)

throws OAuth20MediatorException {
// nothing to do here

}

public void mediateResource(AttributeList attributeList)
throws OAuth20MediatorException {
// nothing to do here

}

public void mediateResourceException(AttributeList attributeList,
OAuthException exception)

throws OAuth20MediatorException {
// nothing to do here

}

public void mediateToken(AttributeList attributeList)
throws OAuth20MediatorException {
final String methodName = "mediateToken";
LOG.entering(CLASS, methodName, attributeList);
if("password".equals(attributeList.getAttributeValueByName("grant_type"))) {
String username = attributeList.getAttributeValueByName("username");
String password = attributeList.getAttributeValueByName("password");
try {

1266 WebSphere Application Server Liberty Core 8.5.5

reg.checkPassword(username, password);
} catch (PasswordCheckFailedException e) {
throw new OAuth20MediatorException("User doesn’t exist or the

password doesn’t match.", e);
} catch (CustomRegistryException e) {
throw new OAuth20MediatorException("Cannot validate resource owner.", e);

} catch (RemoteException e) {
throw new OAuth20MediatorException("Cannot validate resource owner.", e);

}
}
LOG.exiting(CLASS, methodName);

}

public void mediateTokenException(AttributeList attributeList,
OAuthException exception)

throws OAuth20MediatorException {
final String methodName = "mediateTokenException";
LOG.entering(CLASS, methodName, new Object[] {attributeList, exception});
if("password".equals(attributeList.getAttributeValueByName("grant_type"))) {
// clear sensitive data
attributeList.setAttribute("access_token",

OAuth20Constants.ATTRTYPE_RESPONSE_ATTRIBUTE,
new String[0]);

attributeList.setAttribute("refresh_token",
OAuth20Constants.ATTRTYPE_RESPONSE_ATTRIBUTE,
new String[0]);

}
LOG.exiting(CLASS, methodName);

}

}

Custom consent form template:

The OAuth authorization server provides a template to acquire user consent information about which
OAuth clients are authorized to access the protected resource in given scopes. The authorization request
from the OAuth client includes a list of requested scopes from the template.

WebSphere Application Server allows the consent form template to be either a static HTML page or a
dynamic web page. In both cases, the template must be provided as an unprotected web resource. The
form retriever in WebSphere Application Server integration does not perform any authentication when
accessing this template URL.

The WebSphere Application Server OAuth provider includes a sample consent form template, and allows
customization by using oauthFormData variable.

To customize the consent form, you must edit the oauthFormData variable by using JavaScript. The
following variables are included in the form data:
v authorizationUrl - the authorization URL where the form is being submitted
v clientDisplayName - the display name of the client
v nonce - random generated number to prevent cross-site request forgery (CSRF)
v client_id - see the OAuth 2.0 specification
v response_type - see the OAuth 2.0 specification
v redirect_uri - see the OAuth 2.0 specification
v state - see the OAuth 2.0 specification
v scope - see the OAuth 2.0 specification

Chapter 7. Securing Liberty and its applications 1267

The developer of a form template must include the content of the oauthFormData variable, by using
JavaScript. The developer must interpret the scope value to be a meaningful value to a user. When a user
authorizes the request, the developer can call the submitForm(oauthFormData) method to perform the
authorization. The submitForm method is provided by default. However, if developers are familiar with
OAuth 2.0 protocol, they can implement their own function to submit the OAuth authorization request.

8.5.5.4

A cancel(oauthFormData) method is provided by default and can be used to allow a user

to cancel the authorization request.

8.5.5.4

The consent form can also be modified to allow the user's consent selection to be cached.

This means that if the same OpenID Connect client makes a new authorization request with the same
approved scopes or reduced scopes, the user is not be prompted with the consent form. Instead, the
previously allowed scopes are considered authorized and passed to the protected resource accordingly.

8.5.5.4

If client registration is in localStore mode, the user's consent selection is cached in the

browser session. The approved scopes remain cached for the given user until the session is closed or until
a set amount of time (specified in the server configuration) has elapsed.

8.5.5.4

If client registration is in databaseStore mode, the user's consent selection can be

persistent in a database table, OAuthDBSchema.OAUTH20CONSENTCACHE. The scopes remain cached for the
given user until a set amount of time (specified in the server configuration) has elapsed. The OpenID
Connect provider tries to create the consent cache table automatically, but it is suggested that the user
explicitly create the consent table when configuring a database for an OAuth2.0 provider and OpenID
Connect provider, see Persistent OAuth service configuration for further details.

8.5.5.4

To use this functionality, the developer of a form template must include a prompt value

within the oauthFormData JavaScript object. In order to cache the user's affirmative response and prevent
the consent form from being displayed again in the same session, the prompt value is set to the string
none. To allow the user to submit an affirmative response without caching the approval, the prompt value
is set to the string consent.

You can use a dynamic page that returns globalized content according to the Accept-Language header in
the request. When retrieving the template, the Accept-Language header is forwarded, and the template
developer must decide which content to return regarding the preferred language.

Note: The clientDisplayName variable is not escaped in HTML. The template developer must sanitize the
value, as the value is input by a user during client registration.

To use a custom consent form template page for a specific OAuth 2.0 service provider, you must update
the service provider definition in the server.xml file. In the provider configuration, you must use the
authorizationFormTemplate attribute of the oauthProvider element and add the template URL as the
value. The following example shows a sample template entry in the provider configuration:
<oauthProvider id="OAuthConfigSample"
authorizationFormTemplate="https://acme.com:9043/oath20/template.html
...>

The following example illustrates a sample consent form:
<oauthProvider id="OAuthConfigSample"
authorizationLoginURL="https://acme.com:9043/oath20/login.jsp"
...>

function escapeHTML(str) {
var ele = document.createElement("div");
ele.innerText = ele.textContent = str;
return ele.innerHTML;

1268 WebSphere Application Server Liberty Core 8.5.5

}
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>OAuth authorization form</title>
<script language="javascript">
function init() {
var scope = oauthFormData.scope;
var scopeEle = document.getElementById("oauth_scope");
var ul = document.createElement("ul");
if(scope) {
for(var i=0; i< scope.length; i++) {
var n = document.createElement("li");
n.innerHTML = scope[i];
ul.appendChild(n);
}
}
scopeEle.appendChild(ul);
// set client name
var clientEle = document.getElementById("client_name");
clientEle.innerHTML = escapeHTML(oauthFormData.clientDisplayName);
}

function escapeHTML(str) {
var ele = document.createElement("div");
ele.innerText = ele.textContent = str;
return ele.innerHTML;

}
</script>
</head>
<body onload="init()">

<div>Do you want to allow client xxxxxxx to access your data?</div>
<div id="oauth_scope">
</div>
<div>

<form action="javascript:submitForm(oauthFormData);">
<input type="submit" value="Allow, remember my decision" onclick="javascript:oauthFormData.prompt = ’none’;"/>
<input type="submit" value="Allow once" onclick="javascript:oauthFormData.prompt = ’consent’;"/>
<input type="button" value="Cancel" onclick="javascript:cancel(oauthFormData);"/>

</form>
</div>

</body>
</html>

Custom user login form:

The WebSphere Application Server OAuth service provider includes a form login page for a user to
submit a user name and password.

You can customize your own form login page, but it must be implemented as required in the form-based
authentication in the servlet specification. In this form, the action must be j_security_check, and use the
j_username input field to get the user name. The action must also use the j_password input field to get
the user password. The custom form login page must be provided as an unprotected web resource.

To use the custom form login page for a specific OAuth20 service provider, you must update the service
provider definition in the server.xml file. In the provider configuration, you must add the
customLoginURL attribute and specify the login page URL as the value.

The following is an example custom login page entry in the provider definition:
<oauthProvider id="OAuthConfigSample"
customLoginURL="https://acme.com:9043/oath20/login.jsp"
...>

Note: Make sure that any files included in your form-login page (such as external style sheets, or images)
are unprotected.

Chapter 7. Securing Liberty and its applications 1269

Persistent OAuth service configuration
WebSphere Application Server supports a persistent OAuth 2.0 service by persisting OAuth tokens and
clients in a database. With persistent OAuth 2.0 services, an authorized client can access OAuth 2.0
service after OAuth services are restarted.

To configure persistent OAuth 2.0 services, complete the following steps:
1. Configure the OAuth 2.0 service provider.

To use a database store, you must specify the <databaseStore> subelement of the <oauthProvider>
element. The only required attribute on the <databaseStore> element is <dataSourceRef>, whose value
must be the id of the <dataSource> element.
The following example is a sample server.xml file for an OAuth provider that uses a Derby database
store:
<server>

<featureManager>
<feature>oauth-2.0</feature>
<feature>ssl-1.0</feature>
<feature>jdbc-4.0</feature>
<feature>jndi-1.0</feature>

</featureManager>

<keyStore password="keyspass" />

<oauth-roles>
<authenticated>
<user>testuser</user>

</authenticated>
</oauth-roles>

<oauthProvider id="OAuthConfigDerby" filter="request-url%=ssodemo"
oauthOnly="false">

<databaseStore dataSourceRef="OAuthFvtDataSource" />
</oauthProvider>

<jdbcDriver id="DerbyEmbedded" libraryRef="DerbyLib" />

<library id="DerbyLib" fileSetRef="DerbyFileset" />

<fileset id="DerbyFileset" dir="${DERBY_JDBC_DRIVER_PATH}"
includes="derby.jar" />

<dataSource id="OAuthFvtDataSource" jndiName="jdbc/OAuth2DB"
jdbcDriverRef="DerbyEmbedded">

<properties.derby.embedded databaseName="D:\oauth2db"
createDatabase="create" />

</dataSource>

<webAppSecurity allowFailOverToBasicAuth="true" />

<basicRegistry id="basic" realm="BasicRealm">
<user name="testuser" password="testuserpwd" />

</basicRegistry>

</server>

2. Set up a database and table to store the OAuth token and client.
a. Create a database for persistent OAuth service. See the vendor documentation for database

creation. In this example, the database name is D:\oauth2db.
b. Create 3 OAuth tables as defined by the following SQL statements:

1270 WebSphere Application Server Liberty Core 8.5.5

----- CREATE TABLES -----
CREATE TABLE OAuthDBSchema.OAUTH20CACHE
(

LOOKUPKEY VARCHAR(256) NOT NULL,
UNIQUEID VARCHAR(128) NOT NULL,
COMPONENTID VARCHAR(256) NOT NULL,
TYPE VARCHAR(64) NOT NULL,
SUBTYPE VARCHAR(64),
CREATEDAT BIGINT,
LIFETIME INT,
EXPIRES BIGINT,
TOKENSTRING VARCHAR(2048) NOT NULL,
CLIENTID VARCHAR(64) NOT NULL,
USERNAME VARCHAR(64) NOT NULL,
SCOPE VARCHAR(512) NOT NULL,
REDIRECTURI VARCHAR(2048),
STATEID VARCHAR(64) NOT NULL,
EXTENDEDFIELDS CLOB NOT NULL DEFAULT ’{}’

);

CREATE TABLE OAuthDBSchema.OAUTH20CLIENTCONFIG
(

COMPONENTID VARCHAR(256) NOT NULL,
CLIENTID VARCHAR(256) NOT NULL,
CLIENTSECRET VARCHAR(256),
DISPLAYNAME VARCHAR(256) NOT NULL,
REDIRECTURI VARCHAR(2048),
ENABLED INT,
CLIENTMETADATA CLOB NOT NULL DEFAULT ’{}’

);

CREATE TABLE OAuthDBSchema.OAUTH20CONSENTCACHE
(

CLIENTID VARCHAR(256) NOT NULL,
USERID VARCHAR(256),
PROVIDERID VARCHAR(256) NOT NULL,
SCOPE VARCHAR(1024) NOT NULL,
EXPIRES BIGINT,
EXTENDEDFIELDS CLOB NOT NULL DEFAULT ’{}’

);

----- ADD CONSTRAINTS -----
ALTER TABLE OAuthDBSchema.OAUTH20CACHE

ADD CONSTRAINT PK_LOOKUPKEY PRIMARY KEY (LOOKUPKEY);

ALTER TABLE OAuthDBSchema.OAUTH20CLIENTCONFIG
ADD CONSTRAINT PK_COMPIDCLIENTID PRIMARY KEY (COMPONENTID,CLIENTID);

----- CREATE INDEXES -----
CREATE INDEX OAUTH20CACHE_EXPIRES ON OAUTHDBSCHEMA.OAUTH20CACHE (EXPIRES ASC);

3. Configure WebSphere Application Server.
Configure the WebSphere Application Server data source. You must set the data source Java Naming
and Directory Interface (JNDI) name to be jdbc/OAuth2DB. The JNDI name must match the jndiName
attribute of the <dataSource> element in the server.xml file. Enter the database name, for example,
D:\oauth2db.
For more information about the configuration of DB2 and Derby for OAuth persistent services, see
IBM DB2 for persistent OAuth services and Derby database for persistent OAuth services. You can
use them as a sample template to configure other databases.

4. Add the registered OAuth clients to the database.
To persist a client in a database, you must save the client to the database. The following SQL
statements add the dbclient01 and dbclient02 OAuth clients to a Derby database:

Chapter 7. Securing Liberty and its applications 1271

CONNECT ’jdbc:derby:D:\oauth2db’;
INSERT INTO OAuthDBSchema.OAUTH20CLIENTCONFIG VALUES
(
’OAuthConfigDerby’,
’dbclient01’,
’secret’,
’dbclient01’,
’http://localhost:9080/oauthclient/redirect.jsp’,
1

),
(
’OAuthConfigDerby’,
’dbclient02’,
’secret’,
’dbclient02’,
’http://localhost:9080/oauthclient/redirect.jsp’,
1

);
DISCONNECT CURRENT;

Note: The Componentid must be the same as the id of the oauthProvider element in the
server.xml file.

Derby database for persistent OAuth services:

Derby database can be used for persistent OAuth services. For convenience and reference purposes, this
topic documents the steps you need to configure Derby database, either remote or local to the OAuth
service, for OAuth persistent service.

To configure Derby database for persistent OAuth services, complete the following steps:
1. Create a database and tables.

Edit and run the following SQL statement to create an OAuth database and table:
--- Change oauth2db to the name you want for the database
--- Connect to Derby, choose one connection option to uncomment
--- if connecting to Derby as network server
--- CONNECT ’jdbc:derby://localhost:1527/oauth2db;create=true’;

--- if connecting to embedded derby, you can change D:\oauth2db to location of database
--- CONNECT ’jdbc:derby:D:\oauth2db;create=true’;

--- if creating tables in existing Derby database, remove the create=true parameter.

----- CREATE TABLES -----
CREATE TABLE OAuthDBSchema.OAUTH20CACHE (
LOOKUPKEY VARCHAR(256) NOT NULL,
UNIQUEID VARCHAR(128) NOT NULL,
COMPONENTID VARCHAR(256) NOT NULL,
TYPE VARCHAR(64) NOT NULL,
SUBTYPE VARCHAR(64),
CREATEDAT BIGINT,
LIFETIME INT,
EXPIRES BIGINT,
TOKENSTRING VARCHAR(2048) NOT NULL,
CLIENTID VARCHAR(64) NOT NULL,
USERNAME VARCHAR(64) NOT NULL,
SCOPE VARCHAR(512) NOT NULL,
REDIRECTURI VARCHAR(2048),
STATEID VARCHAR(64) NOT NULL,
EXTENDEDFIELDS CLOB NOT NULL DEFAULT ’{}’

);

CREATE TABLE OAuthDBSchema.OAUTH20CLIENTCONFIG (

1272 WebSphere Application Server Liberty Core 8.5.5

COMPONENTID VARCHAR(256) NOT NULL,
CLIENTID VARCHAR(256) NOT NULL,
CLIENTSECRET VARCHAR(256),
DISPLAYNAME VARCHAR(256) NOT NULL,
REDIRECTURI VARCHAR(2048),
ENABLED INT,
CLIENTMETADATA CLOB NOT NULL DEFAULT ’{}’

);

CREATE TABLE OAuthDBSchema.OAUTH20CONSENTCACHE (
CLIENTID VARCHAR(256) NOT NULL,
USERID VARCHAR(256),
PROVIDERID VARCHAR(256) NOT NULL,
SCOPE VARCHAR(1024) NOT NULL,
EXPIRES BIGINT,
EXTENDEDFIELDS CLOB NOT NULL DEFAULT ’{}’

);

----- ADD CONSTRAINTS -----
ALTER TABLE OAuthDBSchema.OAUTH20CACHE
ADD CONSTRAINT PK_LOOKUPKEY PRIMARY KEY (LOOKUPKEY);

ALTER TABLE OAuthDBSchema.OAUTH20CLIENTCONFIG
ADD CONSTRAINT PK_COMPIDCLIENTID PRIMARY KEY (COMPONENTID,CLIENTID);

----- CREATE INDEXES -----
CREATE INDEX OAUTH20CACHE_EXPIRES ON OAUTHDBSCHEMA.OAUTH20CACHE (EXPIRES ASC);

DISCONNECT CURRENT;

Run the createTables.sql file by starting ij with the following command:
ij createTables.sql

2. Configure the WebSphere Application Server Liberty server.
The following example is a sample server.xml file for an OAuth provider that uses a Derby database
store:
<server>

<featureManager>
<feature>oauth-2.0</feature>
<feature>ssl-1.0</feature>
<feature>jdbc-4.0</feature>
<feature>jndi-1.0</feature>

</featureManager>

<keyStore password="keyspass" />

<oauth-roles>
<authenticated>
<user>testuser</user>

</authenticated>
</oauth-roles>

<oauthProvider id="OAuthConfigDerby" filter="request-url%=ssodemo"
oauthOnly="false">

<databaseStore dataSourceRef="OAuthDerbyDataSource" />
</oauthProvider>

<jdbcDriver id="DerbyEmbedded" libraryRef="DerbyLib" />

<library id="DerbyLib" filesetRef="DerbyFileset" />

<fileset id="DerbyFileset" dir="${DERBY_JDBC_DRIVER_PATH}"
includes="derby.jar" />

Chapter 7. Securing Liberty and its applications 1273

<dataSource id="OAuthDerbyDataSource" jndiName="jdbc/OAuth2DB"
jdbcDriverRef="DerbyEmbedded">

<properties.derby.embedded databaseName="D:\oauth2db"
createDatabase="create" />

</dataSource>

<webAppSecurity allowFailOverToBasicAuth="true" />

<basicRegistry id="basic" realm="BasicRealm">
<user name="testuser" password="testuserpwd" />

</basicRegistry>
</server>

Note: The Componentid must be the same as the id of the oauthProvider element in the
server.xml file.

IBM DB2 for persistent OAuth services:

IBM DB2 can be used for persistent OAuth services. For convenience and reference purposes, this topic
documents the steps you need to configure DB2 for OAuth persistent service.

To configure DB2 for persistent OAuth services, complete the following steps:
1. Create a database and tables.

Edit and run the following SQL statement to create an OAuth database and table:
-- Change oauth2db to the name you want for the database

CREATE DATABASE oauth2db USING CODESET UTF8 TERRITORY US;
CONNECT TO oauth2db;

---- CREATE TABLES ----
CREATE TABLE OAuthDBSchema.OAUTH20CACHE
(
LOOKUPKEY VARCHAR(256) NOT NULL,
UNIQUEID VARCHAR(128) NOT NULL,
COMPONENTID VARCHAR(256) NOT NULL,
TYPE VARCHAR(64) NOT NULL,
SUBTYPE VARCHAR(64),
CREATEDAT BIGINT,
LIFETIME INT,
EXPIRES BIGINT,
TOKENSTRING VARCHAR(2048) NOT NULL,
CLIENTID VARCHAR(64) NOT NULL,
USERNAME VARCHAR(64) NOT NULL,
SCOPE VARCHAR(512) NOT NULL,
REDIRECTURI VARCHAR(2048),
STATEID VARCHAR(64) NOT NULL
EXTENDEDFIELDS CLOB NOT NULL DEFAULT ’{}’

);

CREATE TABLE OAuthDBSchema.OAUTH20CLIENTCONFIG
(
COMPONENTID VARCHAR(256) NOT NULL,
CLIENTID VARCHAR(256) NOT NULL,
CLIENTSECRET VARCHAR(256),
DISPLAYNAME VARCHAR(256) NOT NULL,
REDIRECTURI VARCHAR(2048),
ENABLED INT
CLIENTMETADATA CLOB NOT NULL DEFAULT ’{}’

);

CREATE TABLE OAuthDBSchema.OAUTH20CONSENTCACHE (

1274 WebSphere Application Server Liberty Core 8.5.5

CLIENTID VARCHAR(256) NOT NULL,
USERID VARCHAR(256),
PROVIDERID VARCHAR(256) NOT NULL,
SCOPE VARCHAR(1024) NOT NULL,
EXPIRES BIGINT,
EXTENDEDFIELDS CLOB NOT NULL DEFAULT ’{}’

);

---- ADD CONSTRAINTS ----
ALTER TABLE OAuthDBSchema.OAUTH20CACHE
ADD CONSTRAINT PK_LOOKUPKEY PRIMARY KEY (LOOKUPKEY);

ALTER TABLE OAuthDBSchema.OAUTH20CLIENTCONFIG
ADD CONSTRAINT PK_COMPIDCLIENTID PRIMARY KEY (COMPONENTID,CLIENTID);

---- CREATE INDEXES ----
CREATE INDEX OAUTH20CACHE_EXPIRES ON OAUTHDBSCHEMA.OAUTH20CACHE (EXPIRES ASC);

---- GRANT PRIVILEGES ----
---- UNCOMMENT THE FOLLOWING IF YOU USE AN ACCOUNT OTHER THAN ADMINISTRATOR FOR DB ACCESS ----

-- Change dbuser to the account you want to use to access your database
-- GRANT ALL ON OAuthDBSchema.OAUTH20CACHE TO USER dbuser;
-- GRANT ALL ON OAuthDBSchema.OAUTH20CLIENTCONFIG TO USER dbuser;

---- END OF GRANT PRIVILIGES ----

DISCONNECT CURRENT;

The default DB2 listening port is 50000. If you want to find it, run the following command and find
the value of the SVCENAME parameter. If it is a number, then it is the port number. If it is a name, look
for the name in the /etc/services file or the Windows equivalent if you are using Windows.
Linux/Unix: db2 get dbm cfg | grep SVCENAME
Windows: db2 get dbm cfg | findstr SVCENAME

You can create a database and tables in DB2 by running the following statement:
db2 -tvf createTables.sql

2. Configure the WebSphere Application Server Liberty server.
The following example is a sample server.xml file for an OAuth provider that uses a DB2 store:
<server>
<featureManager>
<feature>oauth-2.0</feature>
<feature>ssl-1.0</feature>
<feature>jdbc-4.0</feature>
<feature>jndi-1.0</feature>

</featureManager>

<keyStore password="keyspass" />

<oauth-roles>
<authenticated>
<user>testuser</user>

</authenticated>
</oauth-roles>

<oauthProvider id="DBOAuth20Provider" oauthOnly="true"
filter="request-url%=AnnuityOAuthWeb/index.jsp">

<databaseStore dataSourceRef="OAUTH2DBDS" />
</oauthProvider>

<jdbcDriver id="db2Universal" libraryRef="DB2JCC4LIB" />

Chapter 7. Securing Liberty and its applications 1275

<library apiTypeVisibility="spec,ibm-api,third-party" filesetRef="db2jcc4"
id="DB2JCC4LIB" />

<fileset dir="${shared.resource.dir}/db2" id="db2jcc4"
includes="db2jcc4.jar db2jcc_license_cu.jar" />

<dataStore id="OAUTH2DBDS" jdbcDriverRef="db2Universal"
jndiName="jdbc/oauthProvider">

<properties.db2.jcc databaseName="OAUTH2DB" driverType="4"
user="bob" password="abcdefg="
portNumber="50000"
serverName="db2.server.mycompany.com" />

</dataStore>

<webAppSecurity allowFailOverToBasicAuth="true" />

<basicRegistry id="basic" realm="BasicRealm">
<user name="testuser" password="testuserpwd" />

</basicRegistry>
</server

The following example adds a client to DB2:
INSERT INTO OAuthDBSchema.OAUTH20CLIENTCONFIG
(
COMPONENTID,
CLIENTID,
CLIENTSECRET,
DISPLAYNAME,
REDIRECTURI,
ENABLED

)
VALUES
(
’DBOAuth20Provider’,
’key’,
’secret’,
’My Client’,
’https://localhost:9443/oauth/redirect.jsp’,
1

)

Note: The Componentid must be the same as the id of the oauthProvider element in the
server.xml file.

Configuring Common Secure Interoperability version 2 (CSIv2) in
Liberty

8.5.5.6

Liberty supports CSIv2 security at various levels such as the message authentication (authentication
layer), identity assertion (attribute layer), and client certificate authentication (transport layer). Using the
CSIv2 feature, you can specify the type of authentication for both inbound and outbound requests to
downstream servers. CSIv2 features are enabled automatically when the appSecurity-2.0 and
ejbRemote-3.2 features are configured in the server.xml file. You can configure CSIv2 in Liberty to
enable interoperability between Java Platform, Enterprise Edition vendors.

1276 WebSphere Application Server Liberty Core 8.5.5

Procedure

The following is the default configuration that is used without having to specify it in the server.xml file
when the appSecurity-2.0 and ejbRemote-3.2 features are configured.
<orb id="defaultOrb">

<serverPolicy.csiv2>
<layers>

<attributeLayer identityAssertionEnabled="false"/>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Required"/>
<transportLayer/>

</layers>
</serverPolicy.csiv2>
<clientPolicy.csiv2>

<layers>
<attributeLayer identityAssertionEnabled="false"/>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Supported"/>
<transportLayer/>

</layers>
</clientPolicy.csiv2>

</orb>

You can change each of the layers in serverPolicy.csiv2 and in clientPolicy.csiv2 for customizing the
inbound and outbound CSIv2 settings.

Configuring inbound CSIv2 in Liberty

8.5.5.6

Common Secure Interoperability, version 2 (CSIv2) feature inbound configuration determines the type of
accepted authentication for inbound requests. The CSIv2 feature is enabled automatically when the
appSecurity-2.0 and ejbRemote-3.2 features are configured in the server.xml file.

Before you begin

Understand the CSIv2 concepts, see Common Secure Interoperability version 2 (CSIv2) for further
information.

About this task

The following layers of security are available for inbound requests:

Procedure
1. Configure the inbound CSIv2 attribute layer.
2. Configure the inbound CSIv2 authentication layer.
3. Configure the inbound CSIv2 transport layer.

Configuring inbound CSIv2 attribute layer

8.5.5.6

You can configure a Liberty server to claim support for identity assertion for inbound CSIv2 requests.

About this task

The inbound CSIv2 attribute layer for a Liberty server has identity assertion that is disabled by default.
The server supports Anonymous, Principal Name, X509 Certificate Chain, and Distinguished Name
identity assertions from an upstream server that is acting as a client after the identity assertion is enabled
through the identityAssertionEnabled attribute. You can use the identityAssertionTypes attribute to

Chapter 7. Securing Liberty and its applications 1277

specify the identity token types that the server supports. The trustedIdentities attribute can be used to
specify the identity of the trusted upstream servers that are able to assert an identity to this server.

CAUTION:
Ensure that only trusted entities communicate with the server if presumed trust is set.

Procedure
1. Add the appSecurity-2.0 and ejbRemote-3.2 features in the server.xml file.

<featureManager>
<feature>appSecurity-2.0</feature>
<feature>ejbRemote-3.2</feature>

</featureManager>

The following is the default configuration without having to specify it in the server.xml file.
<orb id="defaultOrb">

<serverPolicy.csiv2>
<layers>

<attributeLayer identityAssertionEnabled="false"/>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Required"/>
<transportLayer/>

</layers>
</serverPolicy.csiv2>
<clientPolicy.csiv2>

<layers>
<attributeLayer identityAssertionEnabled="false"/>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Supported"/>
<transportLayer/>

</layers>
</clientPolicy.csiv2>

</orb>

2. Optional: If you need to change the default inbound attribute layer configuration, then add an <orb>
element in the server.xml file as follows or add the attributeLayer element to an existing one.
Replace the sample values in the example with your values.

<orb id="defaultOrb">
<serverPolicy.csiv2>

<layers>
<attributeLayer identityAssertionEnabled="true"/>

</layers>
</serverPolicy.csiv2>

</orb>

Note: The ID value defaultOrb in the <orb> element is predefined and cannot be modified.
3. Set the trustedIdentities attribute by changing the example values to the trustedIdentity of each of

the upstream servers. The pipe character (|) must be used to separate the values when there are more
than one asserting client.
<attributeLayer identityAssertionEnabled="true" trustedIdentities="yourAssertingUpstreamServer|anotherAssertingUpstreamServer"/>

4. Alternative: Instead of setting a named value for the trustedIdentities in step 2, you can set the
trustedIdentities attribute with the character (*) to indicate that the server supports presumed trust.
With presumed trust, any upstream server is able to assert an identity and must be used only when
the upstream servers can be limited to a set of trusted servers. Therefore, use this value with caution.
<attributeLayer identityAssertionEnabled="true" trustedIdentities="*"/>

5. When an upstream server that sends a certificate chain is trusted, add the issuer distinguished name
of the certificate chain to the trustedIdentities attribute. For example,

<attributeLayer identityAssertionEnabled="true" trustedIdentities="CN=localhost,O=ibm,C=us"/>

6. Optional: If you need to change the default identity assertion token types that are supported by the
server, then add the identityAssertionTypes attribute to the attributeLayer element in the
server.xml file and specify a comma-separated list of values. The valid values are ITTAnonymous,
ITTPrincipalName, ITTX509CertChain, andITTDistinguishedName. For example, you can configure the

1278 WebSphere Application Server Liberty Core 8.5.5

server to support identity assertions with X509 Certificate Chains or Distinguished Names. Replace
the sample values in the example with your values.
<orb id="defaultOrb">

<serverPolicy.csiv2>
<layers>

<attributeLayer identityAssertionEnabled="true" identityAssertionTypes="ITTX509CertChain, ITTDistinguishedName"/>
</layers>

</serverPolicy.csiv2>
</orb>

Note: The upstream server identity is obtained from the security information that the server sent in
either the authentication layer or the transport layer. The authentication layer identity takes
precedence over the transport identity, and the transport identity is used if no security information is
sent at the authentication layer. For sample syntax and more information about authenticationLayer
and transportLayer elements, see Configuring inbound CSIv2 authentication layer and Configuring
inbound CSIv2 transport layer.
Omitting a layer uses the default values for that layer.

Results

Your inbound CSIv2 attribute layer is now configured for identity assertion.

Configuring inbound CSIv2 authentication layer

8.5.5.6

You can configure a Liberty server to use a specific authentication mechanism for inbound CSIv2
requests.

About this task

The inbound CSIv2 authentication layer for a Liberty server is enabled with the support for the LTPA and
GSSUP authentication mechanisms by default. The establishTrustInClient association option of the
authentication layer is set to Required by default to indicate that the authentication mechanisms specified
are required. When you are using the LTPA mechanism, ensure that the communicating Liberty servers
and other servers share the same LTPA keys.

Procedure
1. Add the appSecurity-2.0 and ejbRemote-3.2 features in the server.xml file.

<featureManager>
<feature>appSecurity-2.0</feature>
<feature>ejbRemote-3.2</feature>

</featureManager>

The following example shows the default configuration without having to specify it in the server.xml
file.

<orb id="defaultOrb">
<serverPolicy.csiv2>

<layers>
<attributeLayer identityAssertionEnabled="false"/>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Required"/>
<transportLayer/>

</layers>
</serverPolicy.csiv2>
<clientPolicy.csiv2>

<layers>
<attributeLayer identityAssertionEnabled="false"/>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Supported"/>

Chapter 7. Securing Liberty and its applications 1279

<transportLayer/>
</layers>

</clientPolicy.csiv2>
</orb>

2. Optional: If you need to change the default inbound authentication layer configuration, then add an
<orb> element in the server.xml file as follows or add the authenticationLayer element to an
existing one. Replace the sample values in the example with your values.

<orb id="defaultOrb">
<serverPolicy.csiv2>

<layers>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Required"/>

</layers>
</serverPolicy.csiv2>
</orb>

Note: The ID value defaultOrb in the <orb> element is predefined and cannot be modified.
3. Optional: Set the mechanisms attribute to LTPA or GSSUP to use either LTPA or GSSUP (user name and

password) only as the authentication mechanism.
<authenticationLayer mechanisms="LTPA" establishTrustInClient="Supported"/>
or
<authenticationLayer mechanisms="GSSUP" establishTrustInClient="Supported"/>

4. Optional: Set the establishTrustInClient attribute to Required, Supported, or Never to indicate that
the server requires, supports (optional), or never claims authentication with the specified mechanisms.

Notes:

v When the establishTrustInClient attribute is set to Required, only clients that either require or
support compatible (at least one) authentication mechanisms are able to send a security context to
the server.

v When the establishTrustInClient attribute is set to Supported, a client might choose whether to
send the authentication information in the authentication layer.

v When the establishTrustInClient attribute is set to Never, the inbound CSIv2 authentication layer
is disabled and at least one other CSIv2 layer must be enabled to authenticate.
Omitting a layer uses the default values for that layer.
For more information about the attributeLayer and transportLayer elements, see Configuring
inbound CSIv2 attribute layer and Configuring inbound CSIv2 transport layer.

Results

Your inbound CSIv2 authentication layer is now configured.

Configuring inbound CSIv2 transport layer

8.5.5.6

You can configure a Liberty server to claim support for client certificate authentication for inbound CSIv2
requests.

About this task

The inbound CSIv2 transport layer for a Liberty server has client certificate authentication that is disabled
by default. You can configure the transportLayer to specify the SSL configuration to use. You can
configure the SSL element to either support or require the client certificate authentication. The certificate
that is received is authenticated against the server user registry, and its identity is only used if no other
form of authentication was sent in the CSIv2 request, like an identity assertion in the attribute layer or an
authentication token in the authentication layer.

1280 WebSphere Application Server Liberty Core 8.5.5

When you use the client certificate authentication, ensure that SSL is supported by the server.

Procedure
1. Add the appSecurity-2.0 and ejbRemote-3.2 features in the server.xml file.

<featureManager>
<feature>appSecurity-2.0</feature>
<feature>ejbRemote-3.2</feature>

</featureManager>

The following example is the default configuration without having to specify it in the server.xml file.
<orb id="defaultOrb">

<serverPolicy.csiv2>
<layers>

<attributeLayer identityAssertionEnabled="false"/>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Required"/>
<transportLayer/>

</layers>
</serverPolicy.csiv2>
<clientPolicy.csiv2>

<layers>
<attributeLayer identityAssertionEnabled="false"/>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Supported"/>
<transportLayer/>

</layers>
</clientPolicy.csiv2>

</orb>

2. Configure SSL support as described in the “Enabling SSL communication in Liberty” on page 1152
page.

3. Configure the SSL element to use clientAuthentication or clientAuthenticationSupported. For
example,

<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore" clientAuthentication="true" />

or
<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore"

trustStoreRef="defaultTrustStore" clientAuthenticationSupported="true" />

v If you specify clientAuthentication="true", then the server requests that a client sends a
certificate. However, if the client does not have a certificate or if the certificate is not trusted by the
server, then the handshake does not succeed.

v If you specify clientAuthenticationSupported="true", then the server requests that a client sends a
certificate. However, if the client does not have a certificate or if the certificate is not trusted by the
server, then the handshake might still succeed.

v If you do not specify either clientAuthentication or clientAuthenticationSupported, or if you
specify clientAuthentication="false" or clientAuthenticationSupported="false", then the server
does not request the client to send a certificate during the handshake.

4. Optional: If you need to change the default inbound transport layer configuration, then add an <orb>
element in the server.xml file as follows or add the transportLayer element to an existing one.
Replace the sample values in the example with your values.

<orb id="defaultOrb">
<serverPolicy.csiv2>

<layers>
<transportLayer sslRef="defaultSSLConfig"/>

</layers>
</serverPolicy.csiv2>

</orb>

Note: The ID value defaultOrb in the <orb> element is predefined and cannot be modified.
5. Make sure the server trusts any client certificates that are used.

Chapter 7. Securing Liberty and its applications 1281

6. Make sure any client certificates that are used for client authentication are mapped to a user identity
in your registry.
v For the basic registry, the user identity is the common name (CN) from the distinguished name

(DN) of the certificate.
v For a Lightweight Directory Access Protocol (LDAP) registry, the DN from the client certificate

must be in the LDAP registry.

Omitting a layer uses the default values for that layer. For more information about attributeLayer
and authenticationLayer elements, see Configuring inbound CSIv2 attribute layer and Configuring
inbound CSIv2 authentication layer.

Results

Your inbound CSIv2 transport layer is now configured for client certificate authentication.

Configuring outbound CSIv2 in Liberty

8.5.5.6

The Common Secure Interoperability, version 2 (CSIv2) feature outbound configuration determines the
type of authentication information sent for outbound requests. The CSIv2 feature is enabled automatically
when the appSecurity-2.0 and ejbRemote-3.2 features are configured in the server.xml file.

Before you begin

Understand the CSIv2 concepts, see Common Secure Interoperability version 2 (CSIv2) for further
information.

About this task

The following layers of security are available for outbound requests:

Procedure
1. Configure the outbound CSIv2 attribute layer.
2. Configure the outbound CSIv2 authentication layer.
3. Configure the outbound CSIv2 transport layer.

Configuring outbound CSIv2 attribute layer

8.5.5.6

You can configure a Liberty server to perform identity assertions for outbound CSIv2 requests.

About this task

Identity assertion is disabled by default in the outbound CSIv2 attribute layer for a Liberty server. The
server that is acting as a client supports sending the Principal Name and Anonymous identity assertions
to a downstream server after the identity assertion is enabled through the identityAssertionEnabled
attribute. You can use the identityAssertionTypes attribute to specify more or different identity token
types that the server supports for outbound requests. The trustedIdentity and trustedPassword
attributes can be used to specify the identity of the client to be verified for trust by the downstream
server when the authentication layer mechanism is GSSUP. The trustedIdentity attribute can be set
without a trustedPassword if the authentication mechanism in the authentication layer is LTPA. You must
also configure the upstream server along with enabling the identity assertion so that the client can assert
an identity.

1282 WebSphere Application Server Liberty Core 8.5.5

Procedure
1. Add the appSecurity-2.0 and ejbRemote-3.2 features in the server.xml file.

<featureManager>
<feature>appSecurity-2.0</feature>
<feature>ejbRemote-3.2</feature>

</featureManager>

The following example is the default configuration without having to specify it in the server.xml file.
<orb id="defaultOrb">

<serverPolicy.csiv2>
<layers>

<attributeLayer identityAssertionEnabled="false"/>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Required"/>
<transportLayer/>

</layers>
</serverPolicy.csiv2>
<clientPolicy.csiv2>

<layers>
<attributeLayer identityAssertionEnabled="false"/>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Supported"/>
<transportLayer/>

</layers>
</clientPolicy.csiv2>

</orb>

2. Optional: If you need to change the default outbound attribute layer configuration, then add an <orb>
element in the server.xml file as follows or add the attributeLayer element to an existing one.
Replace the sample values in the example with your values.

<orb id="defaultOrb">
<clientPolicy.csiv2>

<layers>
<attributeLayer identityAssertionEnabled="true"/>

</layers>
</clientPolicy.csiv2>

</orb>

Note: The ID value defaultOrb in the <orb> element is predefined and cannot be modified.
3. Specify the upstream server identity for trust validation by the downstream server. The

trustedIdentity specified must exist in the user registry of the target server.
v When you are using the GSSUP mechanism in the authentication layer, you must set the

trustedIdentity and trustedPassword attributes by changing the example values to the identity
and password of the upstream server that is acting as a client.
<attributeLayer identityAssertionEnabled="true" trustedIdentity="yourTrustedId" trustedPassword="yourTrustedIdPwd"/>

Encode the password within the configuration. You can get the encoded value by using the
securityUtility encode command.

v When you are using the LTPA mechanism in the authentication layer, you must set the
trustedIdentity attribute by changing the example value to the identity of the upstream server
that is acting as a client.
<attributeLayer identityAssertionEnabled="true" trustedIdentity="yourTrustedId"/>

4. Optional: If you need to change the default identity assertion token types that are supported by the
server, then add the identityAssertionTypes attribute to the attributeLayer element in the
server.xml file and specify a comma-separated list of values. The valid values are ITTAnonymous,
ITTPrincipalName, ITTX509CertChain, andITTDistinguishedName. For example, you can configure the
server to support identity assertions with X509 Certificate Chains or Distinguished Names. Replace
the sample values in the example with your values.
<orb id="defaultOrb">

<clientPolicy.csiv2>
<layers>

Chapter 7. Securing Liberty and its applications 1283

<attributeLayer identityAssertionEnabled="true" identityAssertionTypes="ITTX509CertChain, ITTDistinguishedName"/>
</layers>

</clientPolicy.csiv2>
</orb>

Notes:

v If both LTPA and GSSUP are configured in the authentication layer and the downstream server
supports LTPA, then LTPA takes precedence over GSSUP.

v If both LTPA and GSSUP are configured in the authentication layer and the downstream server
supports only GSSUP, then GSSUP is used and the trustedIdentity and trustedPassword attributes
must be specified.

v The trustedIdentity attribute is not required if you are using the transport certificate chain to
identify the server to the downstream server. (The identityAssertionEnabled attribute is set to true
and establishTrustInClient is set to Never in the authenticationLayer).

v Omitting a layer uses the default values for that layer.

For more information about authenticationLayer and transportLayer elements, see Configuring
outbound CSIv2 authentication layer and Configuring outbound CSIv2 transport layer.

Results

Your outbound CSIv2 attribute layer is now configured for identity assertion.

Configuring outbound CSIv2 authentication layer

8.5.5.6

You can configure a Liberty server to use specific authentication mechanisms for outbound CSIv2
requests.

About this task

The outbound CSIv2 authentication layer for a Liberty server is enabled with support for the LTPA and
GSSUP authentication mechanisms by default. The establishTrustInClient association option of the
authentication layer is set to Supported by default to indicate that the authentication mechanisms
specified are supported and optional.

When the LTPA mechanism is used, ensure that the communicating Liberty servers and other servers
share the same LTPA keys.

Procedure
1. Add the appSecurity-2.0 and ejbRemote-3.2 features in the server.xml file.

<featureManager>
<feature>appSecurity-2.0</feature>
<feature>ejbRemote-3.2</feature>

</featureManager>

The following example is the default configuration without having to specify it in the server.xml file.
<orb id="defaultOrb">

<serverPolicy.csiv2>
<layers>

<attributeLayer identityAssertionEnabled="false"/>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Required"/>
<transportLayer/>

</layers>
</serverPolicy.csiv2>
<clientPolicy.csiv2>

<layers>
<attributeLayer identityAssertionEnabled="false"/>

1284 WebSphere Application Server Liberty Core 8.5.5

<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Supported"/>
<transportLayer/>

</layers>
</clientPolicy.csiv2>

</orb>

2. Optional: If you need to change the default outbound authentication layer configuration, then add an
<orb> element in the server.xml file as follows or add the authenticationLayer element to an existing
one. Replace the sample values in the example with your values.

<orb id="defaultOrb">
<clientPolicy.csiv2>

<layers>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Supported"/>

</layers>
</clientPolicy.csiv2>

</orb>

Note: The ID value defaultOrb in the <orb> element is predefined and cannot be modified.
3. Optional: Set the mechanisms attribute to LTPA or GSSUP to use either LTPA or GSSUP (user name and

password) only as the authentication mechanism.
<authenticationLayer mechanisms="LTPA" establishTrustInClient="Supported"/>

or
<authenticationLayer mechanisms="GSSUP" establishTrustInClient="Supported"/>

4. Optional: Set the establishTrustInClient attribute to Required, Supported, or Never to indicate that
the server that is acting as a client requires, supports(optional), or never performs authentication with
the specified mechanisms.

Notes:

v When the establishTrustInClient attribute is set to Required, the client is able to send an
authentication token of one of the specified mechanisms only to servers that either require or
support the same authentication mechanisms.

v When the establishTrustInClient attribute is set to Supported, the client might choose whether to
send the authentication information in the authentication layer. If the downstream server is
configured with Supported or Required, then the client sends a compatible authentication token.

v When the establishTrustInClient attribute is set to Never, the outbound CSIv2 authentication
layer is disabled and at least one other CSIv2 layer must be enabled to authenticate to the
downstream server.

v Omitting a layer uses the default values for that layer.

For more information about the attributeLayer and transportLayer elements, see Configuring
outbound CSIv2 attribute layer and Configuring outbound CSIv2 transport layer. For an example of a
programmatic login when using GSSUP as the authentication mechanism, see Example: Using the
WSLogin configuration to create a basic authentication subject.

Results

Your outbound CSIv2 authentication layer is now configured.

Configuring outbound CSIv2 transport layer

8.5.5.6

You can configure a Liberty server to perform client certificate authentication for outbound CSIv2
requests.

Chapter 7. Securing Liberty and its applications 1285

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/xsec_wsloginbasicauth.html
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/xsec_wsloginbasicauth.html

About this task

The client certificate authentication of the outbound CSIv2 transport layer for a Liberty server is disabled
by default. You can configure the transportLayer to specify the SSL configuration to use.

You can configure the SSL element to support client certificate authentication or require it. The certificate
sent to the downstream server is authenticated against the downstream server user registry and its
identity is only used if no other form of authentication is sent in the CSIv2 request, like an identity
assertion in the attribute layer or an authentication token in the authentication layer.

When the client certificate authentication is used, ensure that SSL is supported by this server.

Procedure
1. Add the appSecurity-2.0 and ejbRemote-3.2 features in the server.xml file.

<featureManager>
<feature>appSecurity-2.0</feature>
<feature>ejbRemote-3.2</feature>

</featureManager>

The following example is the default configuration without having to specify it in the server.xml file.
<orb id="defaultOrb">

<serverPolicy.csiv2>
<layers>

<attributeLayer identityAssertionEnabled="false"/>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Required"/>
<transportLayer/>

</layers>
</serverPolicy.csiv2>
<clientPolicy.csiv2>

<layers>
<attributeLayer identityAssertionEnabled="false"/>
<authenticationLayer mechanisms="LTPA,GSSUP" establishTrustInClient="Supported"/>
<transportLayer/>

</layers>
</clientPolicy.csiv2>

</orb>

2. Configure SSL support as described in Enabling SSL communication for Liberty.
3. Optional: Configure the SSL element to use clientAuthentication or clientAuthenticationSupported.

For example,
<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore"

trustStoreRef="defaultTrustStore" clientAuthentication="true" />

or
<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore"

trustStoreRef="defaultTrustStore" clientAuthenticationSupported="true" />

4. Optional: If you need to change the default outbound transport layer configuration, then add an
<orb> element in the server.xml file as follows or add the transportLayer element to an existing one.
Replace the sample values in the example with your values.

<orb id="defaultOrb">
<clientPolicy.csiv2>

<layers>
<transportLayer sslRef="defaultSSLConfig"/>

</layers>
</clientPolicy.csiv2>

</orb>

Note: The id value defaultOrb in the <orb> element is predefined and cannot be modified.
5. Make sure the downstream server trusts any client certificates that are sent from this server.

1286 WebSphere Application Server Liberty Core 8.5.5

http://www14.software.ibm.com/webapp/wsbroker/redirect?version=cord&product=was-nd-mp&topic=twlp_sec_ssl

6. Make sure that any client certificates used for client authentication are mapped to a user identity in
the downstream server user registry.
v For the basic registry, the user identity is the common name (CN) from the distinguished name

(DN) of the certificate.
v For a Lightweight Directory Access Protocol (LDAP) registry, the DN from the client certificate

must be in the LDAP registry.

Notes:

v When the clientAuthentication attribute is set to true in the <ssl> element, the client sends a
client certificate only to servers that either require or support the client certificate authentication.

v When the clientAuthenticationSupported attribute is set to true in the <ssl> element, the client
might choose whether to send a client certificate based on the <ssl> element configuration that is
used by the downstream server.

v When the clientAuthentication and clientAuthenticationSupported attributes are not set in the
<ssl> element, then the server that is acting as a client is not enabled with the client certificate
authentication.

Omitting a layer uses the default values for that layer. For more information about the
attributeLayer and authenticationLayer elements, see Configuring outbound CSIv2 attribute layer
and Configuring outbound CSIv2 authentication layer.

Results

Your outbound CSIv2 transport layer is now configured for client certificate authentication.

Configuring security for the Liberty application client container and its
applications

8.5.5.6

Configure security on the Liberty application client container and its applications to ensure
communications between the client and server are secure. You can also configure security to ensure that
credentials of clients flow to the server.

Enabling SSL communication for the Liberty application client
container

8.5.5.6

The Liberty application client container might require some SSL configuration for the client container to
communicate with a server. Configuring SSL for the application client container requires the use of the
same SSL feature, ssl-1.0, that the server requires for SSL enablement. The configuration elements and
attributes are the same for the application client as for the server; however, for the application client
container, these values are specified in the client.xml file.

About this task

The SSL handshake is a series of messages that are exchanged over the SSL protocol between a client and
a server to negotiate for connection-specific protection. To enable SSL for the Liberty application client
container the SSL feature, ssl-1.0, must include the minimal information that is needed to form an SSL
configuration that is used by the client. The minimal information that is required to form an SSL
configuration is a keystore and a password.

Chapter 7. Securing Liberty and its applications 1287

You can use the securityUtility createSSLCertificatecommand to create the keystore of the client and to
provide you with information about the configuration. Using the tool is optional, because you can also
create a keystore and the associated configuration for other customer-defined purposes.

Procedure

Add the keystore element to the client.xml file. The id attribute must be defaultKeyStore and the
password attribute contains the keystore password. The password can be entered in clear text or encoded.
Use the securityUtility encode option to encode the password.
<keyStore id="defaultKeyStore" password="yourPassword" />

This is the minimum configuration that is needed to create an SSL configuration. In this configuration,
the client creates the keystore and certificate if it does not exist during SSL initialization. The password
that is provided must be at least 6 characters long. JKS is the default keystore type and the default
keystore is called key.jks and these defaults are in the<client home>/resources/security directory.
The client will create the defaultKeyStore the first time it starts when using the previous configuration,
however having the client create the default certificate comes with a performance cost. To avoid the
performance cost it is recommended that the securityUtilitiy createSSLCertificate command be used
to create the default keystore used in the defaultKeyStore configuration.
If you need a custom SSL configuration, see SSL configuration attributes.

Accepting signer certificates
If the client does not have an established trust relationship with the server the communication
with the client prompts the user and asks if they accept the certificate from the server. If the user
responds with yes, the certificate is taken and stored in the client keystore configuration and the
command proceeds. If the user specifies no then there is no trust that is established and the call
ends in an error.

Example of what the prompt looks like:
*** SSL SIGNER EXCHANGE PROMPT ***
The SSL signer from target host is not found in trust store C:/liberty/workspace/build.image/wlp/usr/clients/myTestClient/resources/security/key.jks.

Here is the signer information (verify the digest value matches what is displayed at the server):
Subject DN: CN=localhost, O=ibm, C=us
Issuer DN: CN=localhost, O=ibm, C=us
Serial number: 1327582458
Expires: Sun Jan 04 06:54:18 CST 2099
SHA-1 Digest: 00:6F:25:F1:78:5D:EB:00:B1:E2:99:DB:E8:D7:DF:3B:F8:E0:20:9A
Add signer to the trust store now? (y/n)

You might receive the following error message if the user specifies no when asked to add the
signer to the truststore:
[ERROR] CWPKI0022E: SSL HANDSHAKE FAILURE: A signer with SubjectDN CN=localhost, O=ibm, C=us
sent from the target host. The signer might need to be added to local trust store C:/liberty/workspace/build.image/wlp/usr/clients/myTestClient/resources/security/key.jks, located in SSL configuration alias defaultSSLConfig. The extended error message from the SSL handshake exception is: PKIX path building failed: java.security.cert.CertPathBuilderException: PKIXCertPathBuilderImpl could not build a valid CertPath.; internal cause is:

java.security.cert.CertPathValidatorException: The certificate issued by SubjectDN CN=localhost, O=ibm, C=us is not trusted; internal cause is:
java.security.cert.CertPathValidatorException: Certificate chaining error

throw able: javax.net.ssl.SSLHandshakeException: java.security.cert.CertificateException: PKIX path building failed: java.security.cert.CertPathBuilderException
: PKIXCertPathBuilderImpl could not build a valid CertPath.; internal cause is:

java.security.cert.CertPathValidatorException: The certificate issued by
SubjectDN CN=localhost, O=ibm, C=us is not trusted; internal cause is:

java.security.cert.CertPathValidatorException: Certificate chaining error

Auto accept signer certificate
If the client does not want to be prompted for the signer certificate and chooses to accept the
server signer certificate without examining the certificate, the user can provide the
-autoAcceptSigner flag to the client container command line.
client run client_name --autoAcceptSigner

Client authentication
If the client is communicating with a server that has client authentication that is enabled, then the

1288 WebSphere Application Server Liberty Core 8.5.5

server needs to trust the client as well as the client trusting the server. The client must have a key,
and personal certificate, in its keystore. If you use the securityUtility createSSLCertificate
command, the keystore contains a personal certificate. The server that the client application
container is communicating with must trust the client, so the signer from the client needs to be
added to the truststore of the server. You can use the java tool, keytool, to extract the signer from
the keystore of the application client container and add the certificate from the client to the
truststore of the server.

Configuring a JAAS programmatic login on the Liberty application
client container

8.5.5.6

The Liberty application client container can be configured to use a JAAS programmatic login.

Before you begin

Review the different ways of authenticating users on the application client container, and decide whether
the programmatic login option is best for your environment. For further details, see Authentication on the
Liberty application client container.

About this task

A programmatic login is a type of form login that supports application presentation login forms for
authentication. This approach requires the application developer to collect the user's credentials and
authenticate that user. This method takes advantage of the JAAS framework to send a user's credentials
to the server for authentication. The JAAS framework consists of creating a login context by specifying a
JAAS login configuration and by using a callback handler to gather the user's credentials. When a subject
is obtained from the login context, you can use a Liberty security API to set that Subject on the thread,
and it is used for your outbound call to the server.

The JAAS login configuration specifies how and which login modules are used for authentication. Here
are the JAAS login configurations that are provided by Liberty on the client:
v WSLogin JAAS login configuration: A generic JAAS login configuration that a Liberty application client

container application can use to perform authentication that is based on a user ID and password.
However, this configuration does not support the CallbackHandler handler that is specified in the
deployment descriptor of the client application module.

v ClientContainer JAAS login configuration: This JAAS login configuration recognizes the
CallbackHandler handler that is specified in the client application module's deployment descriptor, if
one is specified. If a handler is not specified in the deployment descriptor, then the handler that was
specified programmatically is used.
The login modules that are specified by the JAAS login configuration implement a certain
authentication technology. A login module can gather credentials from the user by using the
javax.security.auth.callback.CallbackHandler interface. Liberty provides a non-prompt
implementation of the CallbackHandler interface, which is called
com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl. This implementation enables an
application developer to specify the credentials directly in the application without having to prompt
the user. There are two ways to specify your CallbackHandler implementation:
– Specify your implementation programmatically, as an argument to the

javax.security.auth.login.LoginContext constructor; for example:
LoginContext logincontext = new LoginContext("ClientContainer", new WSCallbackHandlerImpl("user", "password"));

– Specify your implementation name in the client application module's deployment descriptor
(application-client.xml); for example:
<callbackhandler>com.acme.callbackhandler.WSCallbackHandlerImpl/<callbackhandler>

Chapter 7. Securing Liberty and its applications 1289

Note: The WSLogin login configuration does not recognize the second option of specifying a
CallbackHandler handler in the deployment descriptor.

Procedure
1. Add the appSecurityClient-1.0 feature to your client.xml file.

<feature>appSecurityClient-1.0</feature>

2. Configure SSL for your client:
a. Optional: Use the securityUtility command to create an SSL certificate for the client; for

example:
securityUtility createSSLCertificate --client=myClient --password=liberty

b. Recommended: Use the securityUtility command to generate an xor encoded password. For
example, to encode the password liberty:
securityUtility encode liberty

c. Add a keyStore element to your client.xml file. The following example uses the default SSL
configuration:
<keyStore id="defaultKeyStore" password="{xor}MzY9Oi0rJg=="/> <!-- pwd:
liberty -->

3. In the application code, create a Subject using the ClientContainer JAAS login configuration and the
WSCallbackHandlerImpl callback handler.
a. Before the application makes an outbound request, add the following code. Change the userName

and userPassword to valid credentials for a user that exists in the user registry of the target server.
CallbackHandler wscbh = new WSCallbackHandlerImpl("userName", "userPassword");
LoginContext ctx = null;
try {

ctx = new LoginContext("ClientContainer", wscbh);
} catch (LoginException le) {

le.printStackTrace();
}
try {

ctx.login();
} catch (LoginException le) {

le.printStackTrace();
}
Subject subject = ctx.getSubject();

4. Set the Subject obtained in the previous step on the thread and use that Subject to look up an EJB.
Use the WSSubject.doAs, or doAsPrivilieged APIs to accomplish this action. The Subject within the
com.ibm.websphere.security.auth.WSSubject.doAs or
com.ibm.websphere.security.auth.WSSubject.doAsPrivileged code block is used for Java Platform,
Enterprise Edition (J2EE) resources authorization checks.
WSSubject.doAs(subject, new PrivilegedAction() {

public Object run() {
try {

//Perform EJB lookup and invocation
} catch (Exception ex) {

ex.printStackTrace();
}
return null;

}
});

5. 8.5.5.7 If Java 2 security is enabled on your client and your application code is calling JAAS or
Liberty security APIs, add the necessary Java 2 Security permissions to either the permissions.xml file
or the client.xml file of the application. For more details on which Liberty security APIs are
protected by Java 2 Security permissions, see Programming Interfaces (APIs). For further details, see
Java 2 Security.

1290 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.nd.doc/ae/welc_ref_adm_pi.html?lang=en

What to do next

As on the server, you can use a custom login module to either make more authentication decisions or
add information to the subject to make finer-grained authorization decisions inside your client
application. For further details, see Configuring a JAAS custom login module for the Liberty application
client container.

Configuring a JAAS custom login module for the Liberty application
client container

8.5.5.6

You can configure the Liberty application client container to use a custom Java Authentication and
Authorization Service (JAAS) login module.

Before you begin

Make sure that you have a JAR file that contains the JAAS custom login module, which implements the
javax.security.auth.spi.LoginModule interface.

About this task

You can use a custom login module to either make additional authentication decisions or add information
to the subject to make finer-grained authorization decisions inside your application. To configure a JAAS
custom login module, complete the following steps.

Procedure
1. Add the appSecurityClient-1.0 feature to your client.xml file.

<feature>appSecurityClient-1.0</feature>

2. Create a class com.sample.CustomLoginModule that implements the LoginModule interface and package
it into the CustomLoginModule.jar file.

3. Create a <library> element that uses a <fileset> element that indicates where the
CustomLoginModule.jar file is. In this example, the file is in the client's configuration directory, and
the library id is customLoginLib.
<library id="customLoginLib">

<fileset dir="${server.config.dir}" includes="CustomLoginModule.jar"/>
</library>

4. Create a <jaasLoginModule> element. In this example, the id is myCustom.
a. Configure the custom login module to require a successful authentication by setting the

controlFlag attribute to REQUIRED.
b. Set the libraryRef attribute to customLoginLib, the id of the <library> element that is configured

in the previous step.
<jaasLoginModule id="myCustom" className="com.sample.CustomLoginModule" controlFlag="REQUIRED" libraryRef="customLoginLib"/>

5. Create a <jaasLogincontextEntry> element with the id and name of the system-defined JAAS
configuration on the application client container: ClientContainer. You can also set this JAAS
configuration to WSLogin, or your own JAAS configuration. In the loginModuleRef attribute, add
proxy, the id for the proxy login module and myCustom, the id of the jaasLoginModule element that is
created in the previous step.
<jaasLoginContextEntry id="ClientContainer" name="ClientContainer"

loginModuleRef="proxy, myCustom"/>

Chapter 7. Securing Liberty and its applications 1291

Configuring Common Secure Interoperability version 2 (CSIv2) in the
Liberty application client container

8.5.5.6

The WebSphere Application Server Liberty application client container supports CSIv2 security at various
levels such as the message authentication (message layer), and client certificate authentication (transport
layer). Using the CSIv2 feature, you can specify the type of authentication for outbound requests to the
servers. CSIv2 features are enabled by default. You can configure CSIv2 in the Liberty application client
container to enable interoperability between Java Platform, Enterprise Edition vendors.

Configuring outbound CSIv2 in the Liberty application client container

8.5.5.6

CSIv2 features are enabled by default. You can configure CSIv2 in the Liberty application client container
to enable interoperability between Java Platform, Enterprise Edition vendors.

Before you begin

Understand the CSIv2 concepts, see Common Secure Interoperability version 2 (CSIv2) for further
information.

Configuring the outbound CSIv2 authentication layer in the Liberty application client container:
8.5.5.6

You can configure a Liberty application client container to use specific authentication mechanisms for
outbound CSIv2 requests.

About this task

The outbound CSIv2 authentication layer for a Liberty application client container is enabled with
support for the GSSUP authentication mechanism by default. The establishTrustInClient association
option of the authentication layer is set to Supported by default to indicate that the authentication
mechanisms specified are supported and optional.

Procedure

1. Configure the orb element in the client.xml file as follows or add the authenticationLayer element
to an existing one, replacing the sample values in the example with your values:
<orb id="defaultOrb">

<clientPolicy.clientContainerCsiv2>
<layers>
<authenticationLayer user="userId" password="{xor}PDc+MTg6Ejo="/>

</layers>
</clientPolicy.clientContainerCsiv2>

</orb>

Note: The id value defaultOrb in the orb element is predefined and cannot be modified.

Note: Hash encoding cannot be used for encrypting the password because the original password
cannot be decoded from the hashed value.
The mechanisms and establishTrustInClient attributes are optional. The only supported value, and
the default value, for the mechanisms attribute is GSSUP.
Without specifying an <orb> element, the following configuration is implicit.

1292 WebSphere Application Server Liberty Core 8.5.5

<orb id="defaultOrb">
<clientPolicy.clientContainerCsiv2>

<layers>
<authenticationLayer mechanisms="GSSUP" establishTrustInClient="Supported"/>
<transportLayer/>

</layers>
</clientPolicy.clientContainerCsiv2>

</orb>

2. Optional: Set the user and password attributes with a valid user ID and password to access the server.
By default, a server requires the GSSUP mechanism for inbound connections, meaning that the server
must receive a user and password and because of this requirement, the user, and password values are
required in the client.xml file, unless a programmatic login is implemented by the application.

3. Optional: Set the establishTrustInClient attribute to Required, Supported (default), or Never for
performing authentication with the specified mechanisms. For example,
<orb id="defaultOrb">

<clientPolicy.clientContainerCsiv2>
<layers>
<authenticationLayer user="userId" password="{xor}PDc+MTg6Ejo=" establishTrustInClient="Required" />

</layers>
</clientPolicy.clientContainerCsiv2>

</orb>

Note:

v When the establishTrustInClient attribute is set to Required, the client is able to send an
authentication token of one of the specified mechanisms only to servers that either require or
support the same authentication mechanisms.

v When the establishTrustInClient attribute is set to Supported (default), the client can choose
whether to send the authentication information in the authentication layer. If the server is
configured with Supported or Required of the same authentication mechanisms, then the client
sends a compatible authentication token.

v When the establishTrustInClient attribute is set to Never, the outbound CSIv2 authentication
layer is disabled and the CSIv2 transport layer must be enabled to authenticate to the server.

Results

Your outbound CSIv2 authentication layer is now configured.

Configuring the outbound CSIv2 transport layer in the Liberty application client container:
8.5.5.6

You can configure the Liberty application client container to perform client certificate authentication for
outbound CSIv2 requests.

About this task

The client certificate authentication of the outbound CSIv2 transport layer for a Liberty application client
container is not used by default. You can configure the transportLayer to specify the SSL configuration to
use.

You can configure the SSL element to support client certificate authentication or require it. The certificate
sent to the server is authenticated against the server user registry and its identity is only used if no other
form of authentication is sent in the CSIv2 request, like an identity assertion in the attribute layer or an
authentication token in the authentication layer.

Chapter 7. Securing Liberty and its applications 1293

Procedure

1. Configure SSL support as described in Enabling SSL communication for the Liberty application client
container.

2. Optional: Configure the SSL element to use clientAuthentication or clientAuthenticationSupported.
For example,

<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore"
trustStoreRef="defaultTrustStore" clientAuthentication="true" />

or
<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore"

trustStoreRef="defaultTrustStore" clientAuthenticationSupported="true" />

3. Configure the <orb> element in the client.xml file as follows or add the transportLayer element to
an existing one and replace the sample values in the sample with your values:
<orb id="defaultOrb">

<clientPolicy.clientContainerCsiv2>
<layers>

<transportLayer sslRef="defaultSSLConfig"/>
</layers>

</clientPolicy.clientContainerCsiv2>
</orb>

Without specifying an <orb> element, the following configuration is implicit.
<orb id="defaultOrb">

<clientPolicy.clientContainerCsiv2>
<layers>

<authenticationLayer mechanisms="GSSUP" establishTrustInClient="Supported"/>
<transportLayer/>

</layers>
</clientPolicy.clientContainerCsiv2>

</orb>

4. Make sure the server trusts any client certificates that are sent from this server.
v When the clientAuthentication attribute is set to true in the ssl element, the client sends a client

certificate only to servers that either require or support the client certificate authentication.
v When the clientAuthenticationSupported attribute is set to true in the ssl element, the client

might choose whether to send a client certificate based on the ssl element configuration used by the
server.

v When the clientAuthentication and clientAuthenticationSupported attributes are not set in the
ssl element , the server that is acting as a client is not enabled with the client certificate
authentication.

Results

Your outbound CSIv2 transport layer is now configured for client certificate authentication.

Configuring Java Servlet 3.1 support for security

8.5.5.4

Liberty supports all security updates as defined in the Java Servlet 3.1 specification.

About this task

Take advantage of the Java Servlet 3.1 features on Liberty.

1294 WebSphere Application Server Liberty Core 8.5.5

Procedure
1. Add the servlet-3.1 feature in the server.xml file:

<feature>servlet-3.1</feature>

2. Determine which of the following Java Servlet 3.1 functions that you want to use:
v Specify autocomplete=off in the login form.

When you use HTML for a form login page, set the password form field to autocomplete="off" to
disable automatically filling in passwords in the web browser. For example:
<form method="POST" action="j_security_check">
<input type="text" name="j_username">
<input type="password" name="j_password" autocomplete="off">
</form>

v Specify the all authenticate security constraint (**).
The special role name ** indicates any authenticated user. When ** displays in an authorization
constraint, if the user is authenticated, that user has access to the methods that are specified in the
constraint. Users do not have to be mapped to this role in the application bindings. For example:
<security-constraint id="SecurityConstraint_1">

<web-resource-collection id="WebResourceCollection_1">
<web-resource-name>Protected with ** role</web-resource-name>
<url-pattern>/AnyAuthSecurityConstraint</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint id="AuthConstraint_1">
<role-name>**</role-name>

</auth-constraint>
</security-constraint>

When the isUserInRole() method is called with a role name of **, isUserInRole() returns true if
the user is authenticated. If ** is a defined role in the configuration in a security-role, it is not
treated like the special any authenticated user role. The user must be mapped to that role in
application bindings for isUserInRole to return true.

v Specify the deny-uncovered-http-methods flag in web.xml files.
If the deny-uncovered-http-methods element is specified within the web.xml file, the container
denies any uncovered HTTP methods that are not enumerated within the combined security
constraint for a URL pattern that is the best match for the request URL. A 403 (SC_FORBIDDEN)
status code is returned. For example:
<servlet-mapping id="ServletMapping_1">

<servlet-name>MyServlet</servlet-name>
<url-pattern>/MyURLPattern</url-pattern>

</servlet-mapping>

<deny-uncovered-http-methods/>

<!-- SECURITY CONSTRAINTS -->
<security-constraint id="SecurityConstraint_1">

<web-resource-collection id="WebResourceCollection_1">
<web-resource-name>Protected with Employee or Manager roles</web-resource-name>
<url-pattern>/MyURLPattern</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint id="AuthConstraint_1">
<role-name>Employee</role-name>
<role-name>Manager</role-name>

</auth-constraint>
</security-constraint>

If the deny-uncovered-http-methods element is specified in the web.xml file, a message is logged in
the messages.log file for each URL pattern in each servlet, indicating the uncovered methods with a
note that those uncovered methods are unprotected and not accessible. For example:

Chapter 7. Securing Liberty and its applications 1295

For URL MyURLPattern in servlet MyServlet, the following HTTP methods are uncovered, and not accessible: DELETE OPTIONS HEAD PUT TRACE

If the deny-uncovered-http-methods element is not specified in the web.xml file, a message is logged
in the messages.log file for each URL pattern in each servlet, indicating the uncovered methods
with a note that those uncovered methods are unprotected and accessible. For example:
For URL MyURLPattern in servlet MyServlet, the following HTTP methods are uncovered, and accessible: DELETE OPTIONS HEAD PUT TRACE

Results

You have now secured your application.

Configuring secure JMX connection to Liberty
You can access the secured Java Management Extensions (JMX) connectors on Liberty by using SSL. The
secured JMX connection is enabled by the Liberty feature restConnector-1.0.

About this task

The REST connector is enabled through the Liberty feature restConnector-1.0. Remote access through
the REST connector is protected by a single administrator role. In addition, SSL is required to keep the
communication confidential. The restConnector-1.0 feature already includes the ssl-1.0 feature.

Note: An application deployed on Liberty has unrestricted access to its MBeanServer directory.

The following section describes how to configure and access the REST connector on Liberty.

Procedure
1. Enable the REST connector using the following code in the server.xml file.

<featureManager>
<feature>restConnector-1.0</feature>

</featureManager>

2. Configure SSL certificates in the server.xml file.
Ensure that the CN value of the certificate's subjectDN is the host name of the machine where the
server is running, and that the truststore contains the certificate of the server in the jConsole
connection.

3. Configure a user or group to the administrator role in the server.xml file.
v Map to the administrator role for Liberty

4. Access the REST connector.

8.5.5.4

You can access a Liberty REST connector from a Java client or directly through an HTTPS

call. A Java client uses the client-side of the connector, which is in wlp/clients/restConnector.jar
and implements the javax.management.MBeanServerConnection interface. HTTPS calls use the
server-side of the connector. As to HTTPS calls on the server-side, any programming language that
can make HTTPS calls, such as C++, JavaScript, curl, Ruby, and Perl, can use the REST APIs. The
REST APIs contain endpoints for management (JMX), file transfer, collective routing and collective
deployment.
v Access the REST connector from a JMX client application or by using the jConsole tool provided in

the Java SDK. Use -J flags to pass the system properties as Java options and set the class path to
include the connector class files. The connector class files are packed in the clients/
restConnector.jar file.
– Use the following properties for SSL certificates:

-J-Djavax.net.ssl.trustStore=<location of your client trust store>
-J-Djavax.net.ssl.trustStorePassword=<password for the trust store>
-J-Djavax.net.ssl.trustStoreType=<type of trust store>

The following example shows the jConsole tool being used with SSL configurations:

1296 WebSphere Application Server Liberty Core 8.5.5

jconsole -J-Djava.class.path=%JAVA_HOME%/lib/jconsole.jar;
%JAVA_HOME%/lib/tools.jar;
%WLP_HOME%/clients/restConnector.jar

-J-Djavax.net.ssl.trustStore=key.jks
-J-Djavax.net.ssl.trustStorePassword=Liberty
-J-Djavax.net.ssl.trustStoreType=jks

After the jConsole starts, select Remote Process, and enter the JMX service URL:
service:jmx:rest://<host>:<port>/IBMJMXConnectorREST. The port number is the HTTPS port.
You must also provide the user name and password.

v 8.5.5.4 Access the REST connector directly using an HTTPS call.
To use HTTPS calls to access REST connectors, you need WebSphere Application Server Liberty
8.5.5.4 or later.
a. Open a browser at https://<host>:<port>/IBMJMXConnectorREST/api, and enter the

administrative credentials you specified in step 3.
b. Examine the available REST APIs. Each item has a description of its behavior, input, output,

query parameters, and header.

Note: You can specify some JMX REST connection options as system properties. See the Liberty API -
WebSphere JMX REST Connector API.

Configuring web security related properties in Liberty
You can configure web security related properties for Liberty, such as SSO and client certificate
authentication.

About this task

You can use the webAppSecurity element to configure web container application security for Liberty.
Make sure you add the appSecurity-2.0, servlet-3.0 and other required Liberty features to the
server.xml file.

For all available attributes in the webAppSecurity element , see **** MISSING FILE ****.

You can choose to complete one or more of the following tasks according to your requirements.

Procedure
v “Customizing SSO configuration using LTPA cookies in Liberty” on page 1203
v “Configuring your web application and server for client certificate authentication” on page 1164

Customizing SSO configuration using LTPA cookies in Liberty
With single sign-on (SSO) configuration support, web users can authenticate once when accessing Liberty
resources such as HTML, JavaServer Pages (JSP) files, and servlets, or accessing resources in multiple
Liberty servers that share the same Lightweight Third Party Authentication (LTPA) keys.

Example

When a user passes authentication on one of Liberty servers, authentication information generated by the
server is transported to the web browser in a cookie. The cookie is used to propagate the authentication
information to other Liberty servers.

The LTPA is configured and ready for immediate use. The default cookie name used to store the SSO
token is called ltpaToken2. If you want to use a different name for the cookie, you can customize the
cookie name using the ssoCookieName attribute of the <webAppSecurity> element. If you customize the
cookie name, make sure that all the servers that participate in SSO use the same cookie name.

Chapter 7. Securing Liberty and its applications 1297

For more information about SSO, see SSO concept in Liberty.

The following example code sets the user to be logged out after the HTTP session expires and the name
of the SSO cookie as myCookieName:
<webAppSecurity logoutOnHttpSessionExpire=”true” ssoCookieName=”myCookieName” />

Note: For SSO to work across Liberty servers, full profile servers, or both, set the following resources:
v The servers must use the same LTPA keys and share the same user registry.
v If the servers are not in the same domain, use the ssoDomainNames attribute of the <webAppSecurity>

element to list the domains. The following example code sets the domain name to domain.com:
<webAppSecurity ssoDomainNames="domain.com" />

v If the servers are in the same domain, set the ssoUseDomainFromURL attribute of the <webAppSecurity>
element to true, or specify the domain name in the ssoDomainNames attribute. The following example
code sets ssoUseDomainFromURL to true so that the domain name is taken from the request URL:
<webAppSecurity ssoUseDomainFromURL="true" />

For details of all the available SSO settings, see the <webAppSecurity> element in **** MISSING FILE ****.

Configuring your web application and server for client certificate
authentication
You can configure your web application on Liberty using SSL client authentication.

Before you begin

This topic assumes that you have already created the SSL certificates, for example as described in
“Creating SSL certificates from the command line” on page 1161.

About this task

Client certificate authentication occurs if the server-side requests that the client-side send a certificate. A
WebSphere server can be configured for client certificate authentication on the SSL configuration. To do
this, you add the ssl-1.0 Liberty feature to the server.xml file, along with code that tells the server the
keystore information for authentication.

For details of which aspects of SSL are supported, see “Liberty features” on page 483.

Procedure
1. Ensure that the deployment descriptor for your web application specifies client certificate

authentication as the authentication method to use.
Check that the deployment descriptor includes the following element:
<auth-method>CLIENT-CERT</auth-method>

Note: You can use a tool such as Rational Application Developer to create the deployment descriptor.
2. Optional: Generate an SSL certificate using the command line. See “securityUtility command” on page

1162.
3. Configure your server to enable SSL client authentication by adding the following lines to the

server.xml file:
<featureManager>

<feature>ssl-1.0</feature>
<featureManager>

<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore"

1298 WebSphere Application Server Liberty Core 8.5.5

trustStoreRef="defaultTrustStore" clientAuthenticationSupported="true" />
<keyStore id="defaultKeyStore" location="key.jks" type="JKS" password="defaultPWD" />
<keyStore id="defaultTrustStore" location="trust.jks" type="JKS" password="defaultPWD" />

v If you specify clientAuthentication="true", the server requests that a client sends a certificate.
However, if the client does not have a certificate, or the certificate is not trusted by the server, the
handshake does not succeed.

v If you specify clientAuthenticationSupported="true", the server requests that a client sends a
certificate. However, if the client does not have a certificate, or the certificate is not trusted by the
server, the handshake might still succeed.

v If you do not specify either clientAuthentication or clientAuthenticationSupported, or you
specify clientAuthentication="false" or clientAuthenticationSupported="false", the server does
not request that a client send a certificate during the handshake.

4. Add a client certificate to your browser. See the documentation of your browser for adding client
certificates.

5. Make sure the server trusts any client certificates that are used.
6. Make sure any client certificates used for client authentication are mapped to a user identity in your

registry.
v For the basic registry, the user identity is the common name (CN) from the distinguished name

(DN) of the certificate.
v For a Lightweight Directory Access Protocol (LDAP) registry, the DN from the client certificate

must be in the LDAP registry.
7. To use basic authentication, user ID and password only, if client certificate authentication does not

succeed, add the following line to your server.xml file.
<webAppSecurity allowFailOverToBasicAuth="true" />

Note: If you specify allowFailOverToBasicAuth="false" or do not specify allowFailOvertoBasicAuth,
and the client certificate authentication does not succeed, the request generates a 403 Authentication
error message, and the client is not prompted for basic authentication.

Configuring the Liberty server to track logged out LTPA tokens
8.5.5.4

You can configure a Liberty server to track logged out Lightweight Third Party Authentication (LTPA)
tokens.

About this task

When a user is logged out by using either form logout or programmatic logout, the LTPA token that is
used for Single Sign On is removed from the cookie. The LTPA token that is used for SSO is also
removed from the local Authentication cache and the session is invalidated. If the token was persisted
and presented again, it is validated based on the expiration time and the LTPA encryption keys.

With this element enabled, the LTPA SSO tokens that were logged out on the server are tracked and if
presented again on the same server are not used.. A logout is performed and the user needs to
authenticate again.

This configuration only works on the same server. This means that the LTPA token can only be tracked
on the server where the user logged out, and if that same LTPA token is presented to another server it is
used and if the LTPA keys are shared and the token has not expired it is used until it is also logged out
on that server.

Chapter 7. Securing Liberty and its applications 1299

Procedure

To track the tokens that are logged out on a particular Liberty server, you can enable the following
element in the server.xml:
<webAppSecurity trackLoggedOutSSOCookies="true"/>

When this element is enabled, it might affect your Single Sign On (SSO) scenarios. For example, if the
user 'bob' logs in from multiple browsers to the same server and logs out from one browser and tries to
access the resource by using another browser, the user must log in as the token presented is discarded.

Configuring authentication aliases for Liberty
You can configure an authentication data alias to use with a resource reference for authentication in
Liberty.

About this task

You can use an authentication data alias by defining a user and password for authentication in Liberty. To
do this, add the jdbc-4.0 Liberty feature to the server.xml file and add at least one authData element.

Note: There is no authentication alias principal mapping module support.

Procedure
1. Add the jdbc-4.0 Liberty features in the server.xml file.

<featureManager>
<feature>jdbc-4.0</feature>

</featureManager>

2. Configure the authData element in the server.xml file as follows. If the authData element is used as a
top-level configuration element, you must set the id attribute value to a unique authentication alias.

<authData id="auth1" user="dbuser1" password="dbuser1pwd"/>

3. Configure the IBM deployment descriptor, for example, the ibm-web-bnd.xml file, of your application
by using the authentication-alias element in the resource reference. The name attribute value must
match the id attribute defined in the server.xml file.

<resource-ref name="jdbc/mydbresource" binding-name="jdbc/mydbresource">
<authentication-alias name="auth1"/>

</resource-ref>

Configuring JAAS for database authentication
8.5.5.9

You can use Java Authentication and Authorization Service (JAAS) for database authentication.

About this task

You can use a JAAS login context entry to specify a custom login module to use for setting the user name
and password to authenticate to a database.

Procedure
1. Add the appSecurity-2.0, jdbc-4.0, and jca-1.6 features in the server.xml file. You can also add

appSecurity-2.0, jdbc-4.1, and jca-1.7. For example:

1300 WebSphere Application Server Liberty Core 8.5.5

<featureManager>
<feature>appSecurity-2.0</feature>
<feature>jdbc-4.0</feature>
<feature>jca-1.6</feature>

</featureManager>

2. Configure a jaasLoginContextEntry element in the server.xml file with the login module to use. For
example:
<jaasLoginContextEntry id="myJAASLoginEntry" name="myJAASLoginEntry" loginModuleRef="myLoginModule" />
<jaasLoginModule id="myLoginModule" className="my.package.MyLoginModule" controlFlag="REQUIRED" libraryRef="customLoginLib"/>

<library id="customLoginLib">
<fileset dir="${server.config.dir}" includes="MyLoginModule.jar"/>

</library>

3. Configure the dataSource element's jaasLoginContextEntry attribute with the id of the
jaasLoginContextEntry element configured in step 2. For example:
<dataSource id="ds1" jndiName="jdbc/ds1" jdbcDriverRef="DB2"

jaasLoginContextEntry="myJAASLoginEntry" .../>

4. As an alternative to step 3, you can configure a custom-login-configuration element in the
deployment descriptor ibm-web-bnd.xml file of your application. The name attribute must match the
id attribute for jaasLoginContextEntry that is defined in the server.xml file. For example:
<resource-ref name="jdbc/ds1ref" binding-name="jdbc/ds1">

<custom-login-configuration name="myJAASLoginEntry">
<property name="property1" value="value1"/>

</custom-login-configuration>
</resource-ref>

Developing extensions to the Liberty security infrastructure
The Liberty server provides various plug-in points so that you can extend the security infrastructure.

About this task

The following topics are covered in this section:

Procedure
v Follow the instructions in “Developing a custom TAI for Liberty” to develop custom trust association

interceptors (TAI) to extend the security infrastructure of Liberty server.
v Follow the instructions in “Developing JAAS custom login modules for a system login configuration”

on page 1305 to develop JAAS custom login modules to extend the security infrastructure of Liberty
server.

Developing a custom TAI for Liberty
You can develop a custom trust association interceptor (TAI) class by implementing the
com.ibm.wsspi.security.tai.TrustAssociationInterceptor interface provided in the Liberty server.

About this task

The trust association interface is a service provider API that enables the integration of third-party security
services with a Liberty server. When processing the web request, the Liberty server calls out and passes
the HttpServletRequest and HttpServletResponse to the trust association interceptors. The
HttpServletRequest calls the isTargetInterceptor method of the interceptor to see whether the
interceptor can process the request. After an appropriate trust association interceptor is selected, the
HttpServletRequest is processed by the negotiateValidateandEstablishTrust method of the interceptor,
and the result is returned in a TAIResult object. You can add your own logic code to each method of the
custom TAI class.

Chapter 7. Securing Liberty and its applications 1301

See also the Java API document for the TAI interface. The Java API documentation for each Liberty API is
detailed in the Programming Interfaces (APIs) section of the documentation, and is also available as a
separate .zip file in one of the javadoc subdirectories of the ${wlp.install.dir}/dev directory.

Avoid trouble: Distributed operating systems There are several security configuration examples on the
WASdev.net website for reference when configuring security for your applications on Liberty. See
“Configuring TAI on Liberty by using developer tools” on page 1206.

Example

Here is a sample TAI class called SimpleTAI, which also lists all available methods from the
TrustAssociationInterceptor interface.
package com.ibm.websphere.security.sample;

import java.util.Properties;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.ibm.websphere.security.WebTrustAssociationException;
import com.ibm.websphere.security.WebTrustAssociationFailedException;
import com.ibm.wsspi.security.tai.TAIResult;
import com.ibm.wsspi.security.tai.TrustAssociationInterceptor;

public class SimpleTAI implements TrustAssociationInterceptor {
public SimpleTAI() {

super();
}

/*
* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#isTargetInterceptor
* (javax.servlet.http.HttpServletRequest)
*/
public boolean isTargetInterceptor(HttpServletRequest req)

throws WebTrustAssociationException {
//Add logic to determine whether to intercept this request
return true;

}

/*
* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#negotiateValidateandEstablishTrust
* (javax.servlet.http.HttpServletRequest,javax.servlet.http.HttpServletResponse)
*/
public TAIResult negotiateValidateandEstablishTrust(HttpServletRequest req,

HttpServletResponse resp) throws WebTrustAssociationFailedException {
// Add logic to authenticate a request and return a TAI result.
String tai_user = "taiUser";
return TAIResult.create(HttpServletResponse.SC_OK, tai_user);

}

/*
* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#initialize(java.util.Properties)
*/

public int initialize(Properties arg0)
throws WebTrustAssociationFailedException {

return 0;
}

/*
* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#getVersion()

1302 WebSphere Application Server Liberty Core 8.5.5

*/
public String getVersion() {

return "1.0";
}

/*
* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#getType()
*/

public String getType() {
return this.getClass().getName();

}

/*
* @see com.ibm.wsspi.security.tai.TrustAssociationInterceptor#cleanup()
*/

public void cleanup()

{}
}

What to do next

Add the TAI class to the Liberty server.

Use one of the following methods to add the TAI class to the Liberty server:
v Put the custom TAI class in a JAR file, for example simpleTAI.jar, then make the JAR file available as

a shared library. See “Configuring TAI in Liberty” on page 1205.
v Package the custom TAI class as a feature. See “Developing a custom TAI as a Liberty feature” on page

1141.

Developing a custom SIP TAI
8.5.5.7

When you develop Session Initiation Protocol (SIP) applications, you can create a custom trust association
interceptor (TAI).

Before you begin

Developing a SIP TAI is similar to developing any other custom interceptors used in trust associations. In
fact, a custom TAI for a SIP application is an extension of the trust association interceptor model.

About this task

TAI can be invoked by a SIP servlet request or a SIP servlet response. To implement a custom SIP TAI,
you need to write your own Java class.

Procedure
1. Write a Java class that extends the

com.ibm.wsspi.security.tai.extension.BaseTrustAssociationInterceptor class and implements the
com.ibm.websphere.security.tai.extension.SIPTrustAssociationInterceptor interface. Those classes
are defined in the ${wlp.install.dir}/dev/api/ibm/
ccom.ibm.websphere.appserver.api.sipServletSecurity.1.0_1.0.10.jar file.

2. Declare the following Java methods:

public int initialize(Properties properties) throws WebTrustAssociationFailedException;
This is invoked before the first message is processed so that the implementation can allocate
any resources that it needs. For example, it might establish a connection to a database.

Chapter 7. Securing Liberty and its applications 1303

WebTrustAssociationFailedException is defined in the ${wlp.install.dir}/lib/
com.ibm.websphere.security_1.0.10.jar file. The value of the properties argument comes
from the <trustAssociation> configuration.

public void cleanup();
This is invoked when the TAI can free any resources that it holds. For example, it could close
a connection to a database.

public boolean isTargetProtocolInterceptor(SipServletMessage sipMsg) throws
WebTrustAssociationFailedException;

Your custom TAI can use this method to handle the sipMsg message. If the method returns
false, WebSphere ignores your TAI for sipMsg.

public TAIResult negotiateValidateandEstablishProtocolTrust (SipServletRequest req,
SipServletResponse resp) throws WebTrustAssociationFailedException;

This method returns a TAIResult that indicates the status of the message that is being
processed and a user ID or the unique ID for the user who is trying to authenticate. If
authentication succeeds, the TAIResult contains the status HttpServletResponse.SC_OK and a
principal. If authentication fails, the TAIResult will contain a return code of
HttpServletResponse.SC_UNAUTHORIZED (401), SC_FORBIDDEN (403), or
SC_PROXY_AUTHENTICATION_REQUIRED (407). This only indicates whether the container should
accept a message for further processing. To challenge an incoming request, the TAI
implementation must generate and send its own SipServletResponse containing a challenge.
The exception can be thrown for internal TAI errors. Table 1 describes the argument values
and resultant actions for the negotiateValidateandEstablishProtocolTrust method.

Table 92. Description of negotiateValidateandEstablishProtocolTrust arguments and actions.

This table provides a description of the negotiateValidateandEstablishProtocolTrust arguments and actions

Argument or action For a SIP request For a SIP response

Value of req argument The incoming request Null

Value of resp argument Null The incoming response

Action for valid response
credentials

Return TAIResult.status containing
SC_OK and a user ID or unique ID

Return TAIResult.status containing
SC_OK and a user ID or unique ID

Action for incorrect response
credentials

Return the TAIResult with the 4xx
status

Return the TAIResult with the 4xx
status

The sequence of events is as follows:
a. The SIP container maps initial requests to applications by using the rules in each

applications deployment descriptor; subsequent messages are mapped based on JSR289
mechanisms.

b. If any of the applications require security, the SIP container invokes any defined TAI
implementations for the message.

c. If the message passes security, the container invokes the corresponding applications.

Your TAI implementation can modify a SIP message, but the modified message will not be
usable within the request mapping process, because it finishes before the container invokes
the TAI.

The com.ibm.wsspi.security.tai.TAIResult class, which is defined in the
${wlp.install.dir}/lib/com.ibm.ws.security.authentication.tai_1.0.10.jar file, has three
static methods for creating a TAIResult. The TAIResult create methods take an int type as
the first parameter. The WebSphere Application Server expects the result to be a valid HTTP
request return code and is interpreted as follows:

1304 WebSphere Application Server Liberty Core 8.5.5

https://www.jcp.org/en/jsr/detail?id=289

If the value is HttpServletResponse.SC_OK, this response tells WebSphere that the TAI has
completed its negotiation. The response also tells WebSphere to use the information in the
TAIResult to create a user identity.

The created TAIResults have the meanings that are shown in Table 2.

Table 93. Meanings of TAIResults.

This table lists the meanings of TAIResults

TAIResult Explanation

public static TAIResult create(int
status);

Indicates a status to the WebSphere Application Server. The status should
not be SC_OK because the identity information is provided.

public static TAIResult create(int status,
String principal);

Indicates a status to the WebSphere Application Server and provides the
user ID or the unique ID for this user. WebSphere creates credentials by
querying the user registry.

public static TAIResult create(int status,
String principal, Subject subject);

Indicates a status to the WebSphere Application Server, the user ID or the
unique ID for the user, and a custom Subject. If the Subject contains a
Hashtable, the principal is ignored. The contents of the Subject becomes
part of the eventual user Subject.

public String getVersion();
This method returns the version number of the current TAI implementation.

public String getType();
This method's return value is implementation-dependent.

3. Compile the implementation after you have implemented it to create your own SIP TAI jar file.
4. Follow steps 3-4 described in the topic Configuring TAI for Liberty to configure the Liberty server to

use the SIP TAI.

Developing JAAS custom login modules for a system login
configuration
For a Liberty server, multiple Java Authentication and Authorization Service (JAAS) plug-in points exist
for configuring system logins. The Liberty uses system login configurations to authenticate incoming
requests. You can develop a custom JAAS login module to add information to the Subject of a system
login configuration.

About this task

Application login configurations are called by servlet applications for obtaining a Subject that is based on
specific authentication information. When you write a login module that plugs into a Liberty profile
application login or system login configuration, you must develop login configuration logic that knows
when specific information is present, and how to use the information. See “JAAS configuration” on page
587 and “JAAS login modules” on page 588 for more details.

To develop a JAAS custom login module for a system login configuration, follow the steps in the
procedure:

Procedure
v Understand usable callbacks and how they work.

See Programmatic login for JAAS for more information about usable callbacks.

Note: Liberty only supports the following callbacks:
callbacks[0] = new javax.security.auth.callback.NameCallback("Username: ");
callbacks[1] = new javax.security.auth.callback.PasswordCallback("Password: ", false);
callbacks[2] = new com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl("Credential Token: ");

Chapter 7. Securing Liberty and its applications 1305

callbacks[3] = new com.ibm.websphere.security.auth.callback.WSServletRequestCallback("HttpServletRequest: ")
callbacks[4] = new com.ibm.websphere.security.auth.callback.WSServletResponseCallback("HttpServletResponse: ");
callbacks[5] = new com.ibm.websphere.security.auth.callback.WSAppContextCallback("ApplicationContextCallback: ");
callbacks[6] = new WSRealmNameCallbackImpl("Realm Name: ", default_realm);
callbacks[7] = new WSX509CertificateChainCallback("X509Certificate[]: ");
callbacks[8] = wsAuthMechOidCallback = new WSAuthMechOidCallbackImpl("AuthMechOid: ");

v Understand shared state variables and how they work.
If you want to access the objects that the WebSphere Application Server traditional creates during a
login, refer to the following shared state variables. For more information about these variables, see the
“System Programming Interfaces” subtopic of Programming Interfaces.

com.ibm.wsspi.security.auth.callback.Constants.WSPRINCIPAL_KEY
Specifies an implemented object of the java.security.Principal interface. This shared state
variable is for read-only purposes. Do not set this variable in the shared state for custom login
modules. The default login module sets this variable.

com.ibm.wsspi.security.auth.callback.Constants.WSCREDENTIAL_KEY
Specifies the com.ibm.websphere.security.cred.WSCredential object. This shared state variable is
for read-only purposes. Do not set this variable in the shared state for custom login modules.
The default login module will set this variable.

com.ibm.wsspi.security.auth.callback.Constants.WSSSOTOKEN_KEY
Specifies the com.ibm.wsspi.security.token.SingleSignonToken object. Do not set this variable in
the shared state for custom login modules. The default login module sets this variable.

v Optional: Understand hashtables for custom JAAS login modules in Liberty. See “Hash table login
module” on page 594 for more details.

v Develop a sample custom login module using callbacks and shared state.
You can use the following sample to learn on how to use some of the callbacks and shared state
variables.

public class CustomCallbackLoginModule implements LoginModule {

protected Map<String, ?> _sharedState;
protected Subject _subject = null;
protected CallbackHandler _callbackHandler;
private final String customPrivateCredential = "CustomLoginModuleCredential";

/**
* Initialization of login module
*/
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map<String, ?> sharedState, Map<String, ?> options) {
_sharedState = sharedState;
_subject = subject;
_callbackHandler = callbackHandler;

}

public boolean login() throws LoginException {
try {
AccessController.doPrivileged(new PrivilegedExceptionAction<Object>() {
public Object run() throws Exception {
_subject.getPrivateCredentials().add(customPrivateCredential);
return null;

}

});
} catch (PrivilegedActionException e) {
throw new LoginException(e.getLocalizedMessage());

}

String username = null;
char passwordChar[] = null;
byte[] credToken = null;
HttpServletRequest request = null;
HttpServletResponse response = null;
Map appContext = null;
String realm = null;
String authMechOid = null;
java.security.cert.X509Certificate[] certChain = null;

1306 WebSphere Application Server Liberty Core 8.5.5

NameCallback nameCallback = null;
PasswordCallback passwordCallback = null;
WSCredTokenCallbackImpl wsCredTokenCallback = null;
WSServletRequestCallback wsServletRequestCallback = null;
WSServletResponseCallback wsServletResponseCallback = null;
WSAppContextCallback wsAppContextCallback = null;
WSRealmNameCallbackImpl wsRealmNameCallback = null;
WSX509CertificateChainCallback wsX509CertificateCallback = null;
WSAuthMechOidCallbackImpl wsAuthMechOidCallback = null;

Callback[] callbacks = new Callback[9];
callbacks[0] = nameCallback = new NameCallback("Username: ");
callbacks[1] = passwordCallback = new PasswordCallback("Password: ", false);
callbacks[2] = wsCredTokenCallback = new WSCredTokenCallbackImpl("Credential Token: ");
callbacks[3] = wsServletRequestCallback = new WSServletRequestCallback("HttpServletRequest: ");
callbacks[4] = wsServletResponseCallback = new WSServletResponseCallback("HttpServletResponse: ");
callbacks[5] = wsAppContextCallback = new WSAppContextCallback("ApplicationContextCallback: ");
callbacks[6] = wsRealmNameCallback = new WSRealmNameCallbackImpl("Realm name:");
callbacks[7] = wsX509CertificateCallback = new WSX509CertificateChainCallback("X509Certificate[]: ");
callbacks[8] = wsAuthMechOidCallback = new WSAuthMechOidCallbackImpl("AuthMechOid: ");

try {
_callbackHandler.handle(callbacks);

} catch (Exception e) {
// handle exception

}

if (nameCallback != null)
username = nameCallback.getName();

if (passwordCallback != null)
passwordChar = passwordCallback.getPassword();

if (wsCredTokenCallback != null)
credToken = wsCredTokenCallback.getCredToken();

if (wsServletRequestCallback != null)
request = wsServletRequestCallback.getHttpServletRequest();

if (wsServletResponseCallback != null)
response = wsServletResponseCallback.getHttpServletResponse();

if (wsAppContextCallback != null)
appContext = wsAppContextCallback.getContext();

if (wsRealmNameCallback != null)
realm = wsRealmNameCallback.getRealmName();

if (wsX509CertificateCallback != null)
certChain = wsX509CertificateCallback.getX509CertificateChain();

if (wsAuthMechOidCallback != null)
authMechOid = wsAuthMechOidCallback.getAuthMechOid();

_subject.getPrivateCredentials().add("username = " + username);
_subject.getPrivateCredentials().add("password = " + String.valueOf(passwordChar));
_subject.getPrivateCredentials().add("realm = " + realm);
_subject.getPrivateCredentials().add("authMechOid = " + authMechOid.toString());

return true;
}

public boolean commit() throws LoginException {
return true;

}

public boolean abort() {
return true;

}

public boolean logout() {
return true;

}

}

v Optional: Develop a sample custom login module using hashtable login.
You can use the following sample to learn on how to use hashtable login.

Chapter 7. Securing Liberty and its applications 1307

package com.ibm.websphere.security.sample;

import java.util.Map;

import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginException;
import javax.security.auth.spi.LoginModule;

import com.ibm.wsspi.security.token.AttributeNameConstants;

/**
* Custom login module that adds another PublicCredential to the subject
*/
@SuppressWarnings("unchecked")
public class CustomHashtableLoginModule implements LoginModule {

protected Map<String, ?> _sharedState;
protected Map<String, ?> _options;

/**
* Initialization of login module
*/
public void initialize(
Subject subject, CallbackHandler callbackHandler, Map<String, ?> sharedState, Map<String, ?> options) {
_sharedState = sharedState;
_options = options;

}

public boolean login() throws LoginException {
try {
java.util.Hashtable<String, Object> customProperties = (java.util.Hashtable<String, Object>)
_sharedState.get(AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY);

if (customProperties == null) {
customProperties = new java.util.Hashtable<String, Object>();

}

customProperties.put(AttributeNameConstants.WSCREDENTIAL_USERID, "userId");
// Sample of creating custom cache key
customProperties.put(AttributeNameConstants.WSCREDENTIAL_CACHE_KEY, "customCacheKey");

/*
* Sample for creating user ID and security name
* customProperties.put(AttributeNameConstants.WSCREDENTIAL_UNIQUEID, "userId");
* customProperties.put(AttributeNameConstants.WSCREDENTIAL_SECURITYNAME, "securityName");
* customProperties.put(AttributeNameConstants.WSCREDENTIAL_REALM, "realm");
* customProperties.put(AttributeNameConstants.WSCREDENTIAL_GROUPS, "groupList");
*/
/*
* Sample for creating user ID and password
* customProperties.put(AttributeNameConstants.WSCREDENTIAL_USERID, "userId");
* customProperties.put(AttributeNameConstants.WSCREDENTIAL_PASSWORD, "password");
*/
Map<String, java.util.Hashtable> mySharedState = (Map<String, java.util.Hashtable>) _sharedState;
mySharedState.put(AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY, customProperties);

} catch (Exception e) {
throw new LoginException("LoginException: " + e.getMessage());

}

return true;
}

public boolean commit() throws LoginException {
return true;

}

public boolean abort() {
return true;

}

public boolean logout() {
return true;

}
}

1308 WebSphere Application Server Liberty Core 8.5.5

What to do next

Add your custom login module into the WEB_INBOUND, and DEFAULT Java Authentication and
Authorization Service (JAAS) system login configurations of the server.xml file. Put the custom login
module class in a JAR file, for example, customLoginModule.jar, then make the JAR file available to the
Liberty server. See “Configuring a JAAS custom login module for Liberty” on page 1184.

Developing a custom JASPIC authentication provider for Liberty

8.5.5.6

You can develop a custom Java Authentication SPI for Containers (JASPIC) authentication provider by
creating classes that implement the required interfaces noted in the JSR 196: Java Authentication Service
Provider Interface for Containers specification.

Before you begin

Review the specific interface implementation requirements for JASPIC authentication providers and
modules in the JSR 196: Java Authentication Service Provider Interface for Containers specification.

About this task

WebSphere Application Server Liberty supports the use of third-party authentication providers that are
compliant with the servlet container profile specified in Java Authentication SPI for Containers (JASPIC)
Version 1.1.

The servlet container profile defines interfaces that are used by the security runtime environment in
collaboration with the web container in the WebSphere Application Server to invoke authentication
modules before and after a web request is processed by an application. Authentication that uses JASPIC
modules is performed only when JASPIC is enabled in the security configuration.

To develop a custom authentication provider, create classes that implement the required interfaces noted
in the JSR 196: Java Authentication Service Provider Interface for Containers specification. A provider can
use one or more authentication modules for authentication. Modules can use callbacks to perform
authentication, or they can manually add the necessary user identity information to the client subject.

Procedure
1. Create a class that implements thejavax.security.auth.message.config.AuthConfigProvider interface.

The AuthConfigProvider implementation class must define a public two-argument constructor and the
getServerAuthConfig public method:
import java.util.Map;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.config.AuthConfigFactory;
import javax.security.auth.message.config.AuthConfigProvider;
import javax.security.auth.message.config.ServerAuthConfig;

public class SampleAuthConfigProvider implements AuthConfigProvider {

public SampleAuthConfigProvider(Map<String, String> properties, AuthConfigFactory factory) {
...

}
public ServerAuthConfig getServerAuthConfig(String layer, String appContext, CallbackHandler handler)

throws AuthException {
...

}
}

Chapter 7. Securing Liberty and its applications 1309

An instance of the AuthConfigProvider implementation class is used by WebSphere Application Server
when a request arrives to be processed by the web module of the application. The
getServerAuthConfig method is used to obtain a ServerAuthConfig instance. The CallbackHandler
argument in the method call is used by the authentication module.

2. Create a class that implements thejavax.security.auth.message.config.ServerAuthConfig interface.
The ServerAuthConfig implementation class must define the getAuthContextID and getAuthContext
public methods:
import java.util.Map;
import javax.security.auth.Subject;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.MessageInfo;
import javax.security.auth.message.config.ServerAuthConfig;
import javax.security.auth.message.config.ServerAuthContext;

public class SampleServerAuthConfig implements ServerAuthConfig {

public String getAuthContextID(MessageInfo messageInfo) throws IllegalArgumentException {
...

}
public ServerAuthContext getAuthContext(String authContextID, Subject serviceSubject, Map properties)

throws AuthException {
...

}
}

The getAuthContextID and getAuthContext methods in the ServerAuthConfig implementation class are
used to obtain a ServerAuthContext instance.

3. Create a class that implements the javax.security.auth.message.config.ServerAuthContext interface.
The ServerAuthContext implementation class must define the validateRequest and secureResponse
public methods:
import javax.security.auth.Subject;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.AuthStatus;
import javax.security.auth.message.MessageInfo;
import javax.security.auth.message.config.ServerAuthContext;

public class SampleServerAuthContext implements ServerAuthContext {

public AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject serviceSubject)
throws AuthException {
...

}
public AuthStatus secureResponse(MessageInfo messageInfo, Subject serviceSubject)

throws AuthException {
...

}
}

The validateRequest method in the ServerAuthContext implementation class is used to invoke the
module that authenticates the received web request message. If the authentication result is successful,
the web container dispatches the received web request message that the target web module processes
in the application. If the authentication result is not successful, the request is rejected with the
appropriate response status.

4. Create a class that implements the javax.security.auth.message.module.ServerAuthModule interface.
The ServerAuthModule implementation class must define the initialize, validateRequest, and
secureResponse public methods:
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.AuthStatus;
import javax.security.auth.message.MessageInfo;
import javax.security.auth.message.MessagePolicy;

1310 WebSphere Application Server Liberty Core 8.5.5

import javax.security.auth.message.module.ServerAuthModule;

public class SampleAuthModule implements ServerAuthModule {

public void initialize(MessagePolicy requestPolicy, MessagePolicy responsePolicy, CallbackHandler handler, Map options)
throws AuthException {
...

}

public AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject serviceSubject)
throws AuthException {
...

}

public AuthStatus secureResponse(MessageInfo messageInfo, Subject serviceSubject)
throws AuthException {
...

}

public void cleanSubject(MessageInfo messageInfo, Subject subject)
throws AuthException {
...

}
}

The initialize method in the ServerAuthModule implementation class is called by the
ServerAuthContext implementation class to initialize the authentication module and to associate it
with the ServerAuthContext instance.
The validateRequest and secureResponse methods in this class are used to authenticate
thejavax.servlet.http.HttpServletRequest and javax.servlet.http.HttpServletResponse contained
in thejavax.security.auth.message.MessageInfo that is received. These methods can use the
CallbackHandler instance that is received in the initialize method to interact with the WebSphere
security run time to validate a user password, and the active user registry to retrieve a unique id and
group membership for a user. The retrieved data is placed in a Hashtable in the set of private
credentials in the client subject. The WebSphere Application Server implementation of the
CallbackHandler supports the following three callbacks:
v CallerPrincipalCallback
v GroupPrincipalCallback
v PasswordValidationCallback
WebSphere Application Server expects the name values obtained with
PasswordValidationCallback.getUsername() and CallerPrincipalCallback.getName() to be identical.
If they are not, unpredictable results occur. The handle() method of the CallbackHandler processes
each callback that is given in the argument array of the method sequentially. Therefore, the name
value set in the private credentials of the client subject is the one obtained from the last callback
processed.
If CallbackHandler is not used by the authentication module, and validateRequest returns a successful
status, WebSphere Application Server requires that a Hashtable instance be included in the
clientSubject with user identity information so that a custom login can be performed to obtain the
credentials for the user. This Hashtable can be added to the client subject as in the following example:
import java.util.Hashtable;
import java.util.String;
import javax.security.auth.Subject;
import javax.security.auth.message.AuthException;
import javax.security.auth.message.AuthStatus;
import javax.security.auth.message.MessageInfo;
import com.ibm.wsspi.security.registry.RegistryHelper;
import com.ibm.wsspi.security.token.AttributeNameConstants.AttributeNameConstants;

public AuthStatus validateRequest(MessageInfo messageInfo, Subject clientSubject, Subject serviceSubject)
throws AuthException {
...

Chapter 7. Securing Liberty and its applications 1311

UserRegistry reg = RegistryHelper.getUserRegistry(null);
String uniqueid = reg.getUniqueUserID(username);

Hashtable hashtable = new Hashtable();
hashtable.put(AttributeNameConstants.WSCREDENTIAL_UNIQUEID, uniqueid);
hashtable.put(AttributeNameConstants.WSCREDENTIAL_SECURITYNAME, username);
hashtable.put(AttributeNameConstants.WSCREDENTIAL_PASSWORD, password);
hashtable.put(AttributeNameConstants.WSCREDENTIAL_GROUPS, groupList); //optional
clientSubject.getPrivateCredentials().add(hashtable);
...

}

For more information about the Hashtable requirements and custom login, see Developing JAAS
custom login modules for a system login configuration.

Developing a Java Authorization Contract for Containers (JACC)
Authorization Provider

8.5.5.6

You can develop a JACC provider to have custom authorization decisions for Java Platform, Enterprise
Edition (J2EE) applications by implementing the
com.ibm.wsspi.security.authorization.jacc.ProviderService interface that is provided in the Liberty
server.

Before you begin

By default, the application module loading is deferred until the request to the application is being
processed, however the security constraint of the entire module in the application needs to be processed
before the application is ready to be processed. The deferred module loading needs to be disabled. The
following shows you how to disable it:
1. For the WebContainer:

In the server.xml file, the following element needs to be set:
<webContainer deferServletLoad="false"/>

2. For the EJBContainer:
In the server.xml file, the following element needs to be set:
<ejbContainer startEJBsAtAppStart="true"/>

Note: If the previous elements are not set, the complete security constraint information may not be
propagated to the third party JACC provider upon starting the server. As a result, the correct
authorization decision may not be enforced by the third party JACC provider.

About this task

The Java Authorization Contract for Containers specification, JSR 115, defines an interface for
authorization providers. In the Liberty server, you must package your JACC provider as a user feature.
Your feature must implement the com.ibm.wsspi.security.authorization.jacc.ProviderService
interface.

Procedure
1. Create an OSGi component that provides a service that implements the

com.ibm.wsspi.security.authorization.jacc.ProviderService interface.
The ProviderService interface defines two methods, getPolicy, which the Liberty server run time
invokes to retrieve an instance of your Policy class that implements thejava.security.Policy abstract
class, and getPolicyConfigFactory, which the Liberty server run time invokes to retrieve an instance

1312 WebSphere Application Server Liberty Core 8.5.5

https://jcp.org/en/jsr/detail?id=115

of your PolicyConfigurationFactory class that implements the
javax.security.jacc.PolicyConfigurationFactory abstract class.
The following example uses OSGi declarative services annotations:
package com.mycompany.jacc;

import com.mycompany.jacc.MyAuthConfigProvider;
import com.ibm.wsspi.security.authorization.jacc.ProviderService;
import java.security.Policy;
import java.util.Map;
import javax.security.jacc.PolicyConfigurationFactory;
import org.osgi.service.component.ComponentContext;
import org.osgi.service.component.annotations.Activate;
import org.osgi.service.component.annotations.Component;
import org.osgi.service.component.annotations.Deactivate;

// The property value of javax.security.jacc.policy.provider which defines the implementation class of Policy and
// javax.security.jacc.PolicyConfigurationFactory.provider which defines the implementation class of PolicyConfigurationFactory, are required for propagating the properties to the Liberty runtime.

@Component(service = ProviderService.class,
immediate = true,
property = {

"javax.security.jacc.policy.provider=com.myco.jacc.MyPolicy",
"javax.security.jacc.PolicyConfigurationFactory.provider="
+ "com.myco.jacc.MyFactoryImpl"

}
)

public class MyJaccProviderService implements ProviderService {
Map<String, String> configProps;

// This method called by the Liberty runtime
// to get an instance of Policy class
@Override
public Policy getPolicy() {

return new myPolicy();
}

// This method called by the Liberty runtime
// to get an instance of PolicyConfigurationFactory class
@Override
public PolicyConfigurationFactory getPolicyConfigurationFactory() {

ClassLoader cl = null;
PolicyConfigurationFactory pcf = null;
System.setProperty(

"javax.security.jacc.PolicyConfigurationFactory.provider",
"com.myco.jacc.MyFactoryImpl");

try {
cl = Thread.currentThread().getContextClassLoader();
Thread.currentThread().setContextClassLoader(

this.getClass().getClassLoader());
pcf = PolicyConfigurationFactory.getPolicyConfigurationFactory();

} catch (Exception e) {
return null;

} finally {
Thread.currentThread().setContextClassLoader(cl);

}
return pcf;

}

@Activate
protected void activate(ComponentContext cc) {

// Read provider config properties here if needed,
// then pass them to the Provider ctor.
// This example reads the properties from the OSGi
// component definition.
configProps = (Map<String, String>) cc.getProperties();

Chapter 7. Securing Liberty and its applications 1313

}

@Deactivate
protected void deactivate(ComponentContext cc) {}

}

2. Package the component into an OSGi bundle that is part of your user feature, along with your JACC
provider.

3. Ensure that your feature includes the OSGi subsystem content: com.ibm.ws.javaee.jacc.1.5;
version="[1,1.0.100)"; location:="dev/api/spec/".

4. After the feature is installed into the user product extension location, configure the server.xml file
with the feature name. For example:
<featureManager>

...
<feature>usr:myJaccProvider</feature>

</featureManager>

Developing a customPasswordEncryption Provider
8.5.5.9

You can develop a customPasswordEncryption provider to have custom authorization decisions for Java
Platform, Enterprise Edition (J2EE) applications by implementing the
com.ibm.wsspi.security.crypto.CustomPasswordEncryption interface that is provided in the Liberty
server.

About this task

Procedure
1. Create an OSGi component that provides a service that implements the

com.ibm.wsspi.security.crypto.CustomPasswordEncryption interface.
The CustomPasswordEncryption interface defines three methods, decrypt, which the Liberty server run
time invokes to decrypt the string, encrypt, which the Liberty server run time invokes to encrypt the
string, and initialize, which is reserved for future use.
The following example uses OSGi declarative services annotations:
package com.mycompany.custom;

import org.osgi.service.component.ComponentContext;
import org.osgi.service.component.annotations.Activate;
import org.osgi.service.component.annotations.Component;
import org.osgi.service.component.annotations.ConfigurationPolicy;
import org.osgi.service.component.annotations.Deactivate;
import org.osgi.service.component.annotations.Modified;

import com.ibm.wsspi.security.crypto.CustomPasswordEncryption;
import com.ibm.wsspi.security.crypto.EncryptedInfo;
import com.ibm.wsspi.security.crypto.PasswordDecryptException;
import com.ibm.wsspi.security.crypto.PasswordEncryptException;

/**
*/

@Component(service = CustomPasswordEncryption.class,
immediate = true,
name = "com.mycompany.CustomPasswordEncryptionImpl",
configurationPolicy = ConfigurationPolicy.OPTIONAL,
property = { "someKey=someValue" })

public class CustomPasswordEncryptionImpl implements CustomPasswordEncryption {

@Activate
protected synchronized void activate(ComponentContext cc, Map<String, Object> props) {
}

1314 WebSphere Application Server Liberty Core 8.5.5

@Modified
protected synchronized void modify(Map<String, Object> props) {
}

@Deactivate
protected void deactivate(ComponentContext cc) {
}

/**
* The encrypt operation takes a UTF-8 encoded String in the form of a byte[].
* The byte[] is generated from String.getBytes("UTF-8"). An encrypted byte[]
* is returned from the implementation in the EncryptedInfo object.
* Additionally, a logically key alias is returned in EncryptedInfo so which
* is passed back into the decrypt method to determine which key was used to
* encrypt this password. The WebSphere Application Server runtime has no
* knowledge of the algorithm or key used to encrypt the data.
*
* @param decrypted_bytes
* @return com.ibm.wsspi.security.crypto.EncryptedInfo
* @throws com.ibm.wsspi.security.crypto.PasswordEncryptException
**/

@Override
public EncryptedInfo encrypt(byte[] input) throws PasswordEncryptException {

byte[] output = null;
String key = null;
try {

:
<do some encryption>
:
return new EncryptedInfo(output, key);

} catch (Exception e) {
throw new PasswordEncryptException("Exception is caught", e);

}
}

/**
* The decrypt operation takes the EncryptedInfo object containing a byte[]
* and the logical key alias and converts it to the decrypted byte[]. The
* WebSphere Application Server runtime will convert the byte[] to a String
* using new String (byte[], "UTF-8");
*
* @param info
* @return byte[]
* @throws PasswordEncryptException
* @throws com.ibm.wsspi.security.crypto.PasswordDecryptException
**/

@Override
public byte[] decrypt(EncryptedInfo info) throws PasswordDecryptException {

byte[] input = info.getEncryptedBytes();
String key = info.getKeyAlias();
byte[] output = null;
try {

:
<do some decryption>
:
return output;

} catch (Exception e) {
throw new PasswordEncryptException("Exception is caught", e);

}
}

/**
* This is reserved for future use and is currently not called by the
* WebSphere Application Server runtime.
*
* @param initialization_data

Chapter 7. Securing Liberty and its applications 1315

**/
@SuppressWarnings("rawtypes")
@Override
public void initialize(Map initialization_data) {}

}

2. Package the component into an OSGi bundle that is part of your user feature. Make sure that the
bundle includes the OSGi service manifest.
The following example shows the contents of OSGi service manifest:
<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="com.mycompany.custom.CustomPasswordEncryptionImpl" configuration-policy="optional" immediate="true" activate="activate" deactivate="deactivate" modified="modify">

<implementation class="com.mycompany.custom.CusomPasswordEncryptionImpl"/>
<service>

<provide interface="com.ibm.wsspi.security.crypto.CustomPasswordEncryption"/>
</service>
<property name="<someKey>" type="String" value="<someValue>"/>

</scr:component>

3. Ensure that your feature manifest includes the OSGi subsystem content with start-
phase:="SERVICE_EARLY". For example:
Manifest-Version: 1.0
IBM-Feature-Version: 2
IBM-ShortName: customPasswordEncryption-1.0
Subsystem-Type: osgi.subsystem.feature
Subsystem-Version: 1.0.0
Subsystem-ManifestVersion: 1.0
Subsystem-SymbolicName: customPasswordEncryption-1.0;visibility:=public
Subsystem-Content:
com.mycompany.custom; version="[1,1.0.100)"; start-phase:="SERVICE_EARLY"

4. After the feature is installed into the user product extension location, configure the server.xml file
with the feature name.
<featureManager>

...
<feature>usr:customPasswordEncryption-1.0</feature>

</featureManager>

Customizing an application login to perform an identity assertion by
using JAAS
You can use the Java Authentication and Authorization Service (JAAS) login framework to create a JAAS
login configuration that can be used to perform login to an identity assertion on Liberty.

About this task

By configuring identity assertion with trust validation, an application can use the JAAS login
configuration to perform a programmatic identity assertion. See IdentityAssertionLoginModule for more
detail.

Avoid trouble: Distributed operating systems There are several security configuration examples on the
WASdev.net website for reference when configuring security for your applications on Liberty. See
“Configuring JAAS on Liberty by using developer tools” on page 1186.

Procedure
1. Delegate trust validation to a user-implemented plug-in point.

Trust validation is accomplished by a custom login module. This custom login module performs any
trust validation required, then sets the trust and identity information in the shared state to be passed
on to the identity assertion login module. A map is required in the following shared state key:
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.state

1316 WebSphere Application Server Liberty Core 8.5.5

If the state is missing then a WSLoginFailedException problem is reported by the
IdentityAssertionLoginModule class.
The map in the shared state key must include a trust key with the following key name:
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.trust

If this key is set to true, then trust is established. If the key is set to false, then no trust is established
and IdentityAssertionLoginModule class creates a WSLoginFailedException problem.
The map in the shared state key must also set one of the following resources:
v An identity key. A java.security.Principal can be set in the following key:

com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.principal

v A java.security.cert.X509Certificate[]. This certificate can be set in the following key:
com.ibm.wsspi.security.common.auth.module.IdentityAssertionLoginModule.certficates

If both a principal and certificate are supplied, then the principal is used and a warning is reported.
2. Create a JAAS configuration for application logins. The JAAS configuration will contain the

user-implemented trust validation custom login module and IdentityAssertionLoginModule class.
Then to configure an application login configuration, add the following code in the server.xml file:
<jaasLoginContextEntry id="CustomIdentityAssertion" name="CustomIdentityAssertion"

loginModuleRef="customIdentityAssertion,identityAssertion" />
<jaasLoginModule id="customIdentityAssertion"

className="com.ibm.ws.security.authentication.IdentityAssertionLoginModule"
controlFlag="REQUIRED" libraryRef="customLoginLib"/>

<library id="customLoginLib">
<fileset dir="${server.config.dir}" includes="IdentityAssertionLoginModule.jar"/>

</library>

This JAAS configuration is used by the application to perform an identity assertion.
3. Perform the programmable identity assertion. A program can now use the JAAS login configuration to

perform a programmatic identity assertion. The application program can create a login context for the
JAAS configuration created in step 2, then log in to that login context with the identity that would
assert to. If the login is successful then that identity can be set in the current running process. The
following example illustrates this process:
NameCallback handler = new NameCallback(new MyPrincipal("Joe"));
LoginContext lc = new LoginContext("customIdentityAssertion", handler);
lc.login(); //assume successful
Subject s = lc.getSubject();
WSSubject.setRunAsSubject(s);
// From here on , the runas identity is "Joe"

Note: The MyPrincipal class is the implementation of the java.security.Principal interface in the
example.

Results

Using the JAAS login framework and two user-implemented login modules, you can create a JAAS login
configuration that can be used to log in to an identity assertion.

Developing a custom user registry in Liberty
You can develop a custom user registry class by implementing the
com.ibm.websphere.security.UserRegistry interface provided in the Liberty server.

Chapter 7. Securing Liberty and its applications 1317

About this task

The UserRegistry interface is a Service Programming Interface (SPI) that enables support to virtually any
type of account repository. For a general view of stand-alone custom registries, see Stand-alone custom
registries.

Procedure
1. Implement the custom user registry. For more information, see Developing the UserRegistry interface

for using custom registries.
2. Convert the implementation class into an OSGi service. You can do the conversion in the following

ways:
v Convert your UserRegistry class into a Declarative Service (DS) component. For more information,

see “Declaring your services to OSGi Declarative Services” on page 1116.
v Write a new UserRegistry class that is a DS component and delegate it to your UserRegistry class.
v Register your UserRegistry class directly in the Service Registry (SR) using the OSGi core APIs. For

more information, see “Working with the OSGi service registry” on page 1112.
3. Package the custom user registry as an OSGi bundle and export the UserRegistry service. For

information on creating an OSGi bundle, see Creating an OSGi service bundle.
4. Create a feature manifest to include the OSGi bundle. For more information, see “Product extension”

on page 577.
5. After the feature is installed into the user product extension location, configure the server.xml file

with the feature name. For example:
<featureManager>

...
<feature>usr:customRegistrySample-1.0</feature>

</featureManager>

For a downloadable custom user registry sample, see https://developer.ibm.com/wasdev/
downloads/#asset/samples-Custom_User_Registry.
For more information, see https://www.ibmdw.net/wasdev/docs/creating-a-custom-user-registry-as-
a-liberty-user-feature/.

Developing JAAS custom login modules for database authentication
8.5.5.9

You can develop a Java Authentication and Authorization Service (JAAS) custom login module for
adding a user name and password to authenticate to a database.

About this task

You can develop a JAAS custom login module that can be invoked when a database connection that
requires authentication is created. The JAAS custom login module is responsible of creating a password
credential that contains the user name, password, and managed connection factory. The login module
must add the password credential to the subject's private credentials set to be used to authenticate to the
database.

Procedure
1. Create a class that implements the javax.security.auth.spi.LoginModule interface.
2. Save the necessary fields in the initialize method. For example:

/** {@inheritDoc} */
@SuppressWarnings("unchecked")
@Override
public void initialize(Subject subject, CallbackHandler callbackHandler, Map<String, ?> sharedState, Map<String, ?> options) {

this.callbackHandler = callbackHandler;

1318 WebSphere Application Server Liberty Core 8.5.5

https://developer.ibm.com/wasdev/downloads/#asset/samples-Custom_User_Registry
https://developer.ibm.com/wasdev/downloads/#asset/samples-Custom_User_Registry
https://www.ibmdw.net/wasdev/docs/creating-a-custom-user-registry-as-a-liberty-user-feature/
https://www.ibmdw.net/wasdev/docs/creating-a-custom-user-registry-as-a-liberty-user-feature/

this.subject = subject;
this.sharedState = (Map<String, Object>) sharedState;
this.options = options;

}

3. Handle the WSManagedConnectionFactoryCallback and WSMappingPropertiesCallback callbacks in the
login method. For example:
/** {@inheritDoc} */
@Override
public boolean login() throws LoginException {

...
Callback callbacks[] = new Callback[2];
callbacks[0] = new WSManagedConnectionFactoryCallback("Target ManagedConnectionFactory: ");
callbacks[1] = new WSMappingPropertiesCallback("Mapping Properties (HashMap): ");
callbackHandler.handle(callbacks);

4. Obtain the managed connection factory and properties in the login method. For example:
// The method getManagedConnectionFacotry must be used as shown for compatiblity with WAS Classic
ManagedConnectionFactory managedConnectionFactory = ((WSManagedConnectionFactoryCallback) callbacks[0]).getManagedConnectionFacotry();
Map properties = ((WSMappingPropertiesCallback) callbacks[1]).getProperties();

5. Obtain the user name and password based on the authentication data alias or some other criteria. For
example:
String alias = (String) properties.get(com.ibm.wsspi.security.auth.callback.Constants.MAPPING_ALIAS);
String user = getUser(alias); // Implementation specific
char[] password = getPassword(alias); // Implementation specific

6. Create a javax.resources.spi.PasswordCredential object with the user name and password and set
the managed connection factory. For example:
javax.resource.spi.security.PasswordCredential passwordCredential = new PasswordCredential(user, password);
passwordCredential.setManagedConnectionFactory(managedConnectionFactory);

7. Add the password credential to the subject in the commit method. For example:
/** {@inheritDoc} */
@Override
public boolean commit() throws LoginException {

// Verify that the login was successful before adding the PasswordCredential to the subject.
subject.getPrivateCredentials().add(passwordCredential);
return true;

}

Developing a programmatic login for obtaining authentication data
8.5.5.9

You can use the Java Authentication and Authorization Service (JAAS) login framework to obtain the
authentication data from your application.

About this task

Your application can perform a JAAS programmatic login using the DefaultPrincipalMapping JAAS
context entry name to obtain a Subject object with a javax.resource.spi.security.PasswordCredential
instance in the private credentials set that contains the user name and password configured for an
authData element.

Procedure
1. Add the appSecurity-2.0, passwordUtilities-1.0, and jca-1.7 features in the server.xml file. You

can also add appSecurity-2.0, passwordUtilities-1.0, and jca-1.6. For example:
<featureManager>

<feature>appSecurity-2.0</feature>
<feature>passwordUtilities-1.0</feature>
<feature>jca-1.7</feature>

</featureManager>

Chapter 7. Securing Liberty and its applications 1319

2. Configure an authData element in the server.xml file. For example:
<authData id="myAuthData" user="myUser" password="myPassword"/> <!-- password can also be encoded -->

Encode the password within the configuration. You can get the encoded value by using the securityUtility encode command.

3. Perform a programmatic login with the DefaultPrincipalMapping JAAS login context entry name
from your application servlet or enterprise bean, replacing the mapping alias with the one you need.
For example:
HashMap map = new HashMap();
map.put(com.ibm.wsspi.security.auth.callback.Constants.MAPPING_ALIAS, "myAuthData"); // Replace value with your alias.
CallbackHandler callbackHandler = new com.ibm.wsspi.security.auth.callback.WSMappingCallbackHandler(map, null);
LoginContext loginContext = new LoginContext("DefaultPrincipalMapping", callbackHandler);
loginContext.login();
Subject subject = loginContext.getSubject();
Set<javax.resource.spi.security.PasswordCredential> creds = subject.getPrivateCredentials(javax.resource.spi.security.PasswordCredential.class);
PasswordCredential passwordCredential = creds.iterator().next();

Note: The error handling is not shown for simplicity. A javax.security.auth.login.LoginException
is returned if the authentication alias requested does not exist or is malformed.

4. Obtain the user name and password from the PasswordCredential. For example:
String userName = passwordCredential.getUserName();
char[] password = passwordCredential.getPassword();
// Do something with the userName and password.

5. If Java 2 Security is enabled, then the application must be granted the
javax.security.auth.PrivateCredentialPermission. For example, grant the permission in the
application's META-INF/permissions.xml file to access the PasswordCredential object:
<?xml version="1.0" encoding="UTF-8"?>
<permissions xmlns="http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee http://xmlns.jcp.org/xml/ns/javaee/permissions_7.xsd" version="7">

<permission>
<class-name>javax.security.auth.PrivateCredentialPermission</class-name>
<name>javax.resource.spi.security.PasswordCredential * "*"</name>
<actions>read</actions>

</permission>

<!-- Other permissions -->

</permissions>

For more information about Java 2 Security, see Liberty: Java 2 Security.

Developing a custom thread identity service
You can develop a custom thread identity service class by implementing the
com.ibm.wsspi.kernel.security.thread.ThreadIdentityService interface that is provided in the Liberty
server. The ThreadIdentityService interface is a Service Programming Interface (SPI) that enables
support to receive notifications of user identity switches.

Procedure
1. Create a custom thread identity service by implementing the ThreadIdentityService interface.
2. Convert the implementation class into an OSGi service. You can do the conversion in either of two

ways:
a. Convert your ThreadIdentityService class into a Declarative Service (DS) component. For more

information, see “Declaring your services to OSGi Declarative Services” on page 1116.
b. Write a new ThreadIdentityService class that is a DS component and delegate it to your

ThreadIdentityService class. Register your ThreadIdentityService class directly in the Service
Registry (SR) by using the OSGi core APIs. For more information, see “Working with the OSGi
service registry” on page 1112.

1320 WebSphere Application Server Liberty Core 8.5.5

3. Package the custom thread identity service as an OSGi bundle and export the ThreadIdentityService
service. For information on creating an OSGi bundle, see .

4. Create a feature manifest to include the OSGi bundle. For more information, see “Product extension”
on page 577.

5. After the feature is installed into the user product extension location, configure the server.xml file
with the feature name.
<featureManager>
...
<feature>usr:sampleThreadIdentityService-1.0</feature>

</featureManager>

Security considerations
Consider the following when you configure Security for Liberty.

LTPA
v Protect file access to the LTPA keys file because it contains the cryptographic material that is used to

encrypt and decrypt the user data. Ensure that only the server and administrators have access to this
file.

v Ensure that all servers use the same LTPA keys. In addition, make sure that the all the servers have
their time and date synchronized.

v When you specify a password, ensure that it is the same password for all servers that use the same set
of LTPA keys. The password is not used to generate the keys, but rather it is used to encrypt the LTPA
keys file to prevent the keys from being read. If you copy the LTPA keys file to another Liberty server
to achieve Single Sign-On (SSO), the password is required to gain access to the keys in the LTPA keys
file. For more information about LTPA, see Configuring LTPA on Liberty topic.

Passwords
v Encrypt passwords by using the securityUtility encode command.
v If you override the default encryption key with the wlp.password.encryption.key property, set the

property in a separate configuration file that is stored outside the normal configuration directory for
the server.

Authorization
v If you specify an auth-constraint with no roles in an application, then no one is allowed to access the

resource.
v Be cautious when you specify the EVERYONE special subject, as this specification is equivalent to not

protecting a resource.

Authentication
v The timeout value for the authentication cache that is specified in the <authCache> element must be

smaller than the expiration value for the LTPA token that is specified in the <ltpa> element.

Securing Liberty by using HTTP Strict Transport Security (HSTS)
You can secure Liberty by first setting up HTTP Strict Transport Security (HSTS) in IBM HTTP Server.
Then, add IBM HTTP Server as a front end to Liberty so that connections between Liberty and a client
are over HTTPS.

Procedure
1. Set up HSTS in IBM HTTP Server.
2. Add IBM HTTP Server as a front end to Liberty.

Chapter 7. Securing Liberty and its applications 1321

|

|
|
|

|

|

|

|

1322 WebSphere Application Server Liberty Core 8.5.5

Chapter 8. Developing applications in the Liberty environment

WebSphere Application Server Liberty is a lightweight, composable application server that provides a
convenient application development environment for your web and OSGi applications. Applications that
run on Liberty also run on the WebSphere Application Server traditional server.

About this task

Liberty simplifies application development by providing the following key benefits and more:
v Frictionless download, at no cost, for development purposes
v Ultra lightweight modular runtime environment, with an install size of under 50 MB
v Very fast startup time; for example, less than 5 seconds for simple web applications
v Simplified configuration for quick time to productivity
v Java EE and OSGi application deployment support for web applications
v LDAP registry support
v Deployment, as a package, of an application and configured server
v Managed, centralized deployment of a packaged application and server
v Availability of WebSphere Application Server Developer Tools as Eclipse plug-ins for broad tools

support
v Platform support for distributed platforms, z/OS, and Mac OS

Very fast restart times, coupled with its small size, dynamic behavior, and ease of use, make Liberty a
good option for developers building web applications that do not require the full Java EE environment of
traditional enterprise application server profiles. Familiar WebSphere Application Server enterprise
qualities of service, such as security and transaction integrity, are enabled as required.

Developing OSGi applications in Liberty
8.5.5.5

8.5.5.7

About this task

This section includes the OSGi application features that are specific to Liberty. Currently a WebSocket
application can be deployed in an OSGi Web Application Bundle on Liberty. For more information on
creating an application in an OSGi application on WebSphere Application Server traditional, see
http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/
tcrtbundleprj.htm?lang=en.

For information about developing OSGi applications by using WebSphere Developer Tools, see
Developing OSGi applications.

Enable OSGi Applications with Java EE 7 technologies
8.5.5.6

You can enable OSGi Applications with key Java Platform, Enterprise Edition (Java EE) 7 technologies.
WebSphere Application Server Liberty Version 8.5.5.6 and later, is a production ready server certified for
Java EE 7 Full Platform.

1323

http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/tcrtbundleprj.htm?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wdt.doc/topics/tcrtbundleprj.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSHR6W_8.5.5/com.ibm.websphere.wdt.doc/topics/tdeveloposgiapps.htm?lang=en

To achieve zero migrations, new features are created and existing features remain unaltered. For example,
when support for servlet 3.1 was added, a servlet-3.1 feature was created, and servlet-3.0 was kept
to ensure behavior did not change for an existing server deployment.

In an environment before Java EE 7 support, you were required to configure blueprint-1.0, or something
that depends on it, to be able to deploy OSGi applications. You then either configured other OSGi-specific
features, like wab-1.0, or generic ones, like jpa-2.0, to get other capabilities.

In a Java EE 7 environment, OSGi configuration is in two steps:
1. Decide you want to deploy OSGi Bundles.
2. Decide what technologies you want to use to implement those OSGi Bundles.

Telling the server you want to deploy OSGi Bundles

The first step is to add the osgiBundle-1.0 feature to your server.xml:
<featureManager>

<feature>osgiBundle-1.0</feature>
</featureManager>

Adding the osgiBundle-1.0 feature enables OSGi Bundles to be deployed as part of an OSGi application.

Telling the server what component models you want to use

Rather than having OSGi-specific features, like wab-1.0, you now configure the same component models
you would for Java EE. This configuration enables the use of servlets in Bundles, for example, Web
Application Bundles or Http Whiteboard servlets:
<featureManager>

<feature>osgiBundle-1.0</feature>
<feature>servlet-3.1</feature>

</featureManager>

For more information, see , and .

This server configuration adds the ability to use jpa-2.1 in a Persistence Bundle:
<featureManager>

<feature>osgiBundle-1.0</feature>
<feature>servlet-3.1</feature>
<feature>jpa-2.1</feature>

</featureManager>

For more information, see .

Optionally, you can still include blueprint-1.0:
<featureManager>

<feature>osgiBundle-1.0</feature>
<feature>servlet-3.1</feature>
<feature>jpa-2.1</feature>

<feature>blueprint-1.0</feature>
</featureManager>

Which Java EE 7 component models are supported?

You can see the full list of Java EE 7 technologies that are enabled for OSGi applications.

Enabling integration of OSGi application services

8.5.5.5

1324 WebSphere Application Server Liberty Core 8.5.5

http://www.ibm.com/support/knowledgecenter/was_beta_liberty/com.ibm.websphere.wlp.nd.multiplatform.doc/ae/rwlp_prog_model_support_osgi.html?lang=en

Using the osgiAppIntegration-1.0 feature, the OSGi applications that are available within the same Java
virtual machine (JVM) can share their services with each other. To enable communication between the
OSGi applications, you must declare the appropriate service headers in the application manifest file,
META-INF/APPLICATION.MF. An application that wants to import services from other applications must
include the Application-ImportService header, and an application that wants to export services to other
applications must include the Application-ExportService header. If an application wants to export and
import services, then both headers must be used.

About this task

To enable the osgiAppIntegration-1.0 feature, you must include the feature in the server.xml file. To use
the feature, you need to use the appropriate headers, such as the Application-ImportService and
Application-ExportService. For more information, see Application manifest files. You must add the
binding:=local directive in the headers to specify the integration of applications that are within the same
JVM. The binding directive is specific only to the osgiAppIntegration-1.0 Liberty feature.

Procedure
1. Based on your requirement, add one or both application headers to your MANIFEST.MF file as given in

the following example:
Application-ExportService: com.acme.Foo;binding:=local
Application-ImportService: com.acme.Foo;binding:=local

where com.acme.Foo is the name of the Java interface or class associated with the OSGi service.

Note: You must add the binding:=local directive along with the application import and export
service headers to allow the applications within the same JVM to communicate with each other.

2. Add the feature in the server.xml file.
<feature>osgiAppIntegration-1.0</feature>

Custom blueprint namespace handlers
8.5.5.4

The Blueprint Container specification, introduced in the OSGi Enterprise Specification Release 5, provides
a simple and easy programming model for creating dynamic applications in the OSGi environment
without adding complexity to the Java code.

For more information about the OSGi Enterprise Release specification, see OSGi specification download.

The Blueprint Container specification defines a Dependency injection framework for OSGi. It is designed
to handle the dynamic nature of OSGi, where services can become available and unavailable at any time.
The specification is also designed to work with plain old Java objects (POJOs) so that the same objects
can be used within and outside the OSGi framework. The Blueprint XML files that define and describe
the various components of an application are key to the Blueprint programming model. The specification
describes how the components get instantiated and wired together to form a running application. For
more information, see OSGi Blueprint Container Specification.

Each blueprint bundle must contain a blueprint XML file in order for the blueprint runtime to process the
blueprint component of the bundle. The standard blueprint element is defined by the OSGi blueprint
specification, and required in every blueprint xml document. It sets the default document namespace to
http://www.osgi.org/xmlns/blueprint/v1.0.0, for example:
<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0">

Chapter 8. Developing applications in the Liberty environment 1325

http://www.ibm.com/support/knowledgecenter/SSHR6W_8.5.5/com.ibm.websphere.wdt.doc/topics/capplicationmf.htm
http://www.osgi.org/Download/Release5
http://en.wikipedia.org/wiki/Dependency_injection
http://www.ibm.com/support/knowledgecenter/SSHR6W_8.5.5/com.ibm.websphere.wdt.doc/topics/cosgiblueprint.htm

Other namespaces can be added to the blueprint by using standard XML rules, either as prefixed entries,
or directly within the custom XML elements. These namespaces can be added either at the top level or
they can be inline with the custom XML elements. If it is valid XML, it is parsed correctly. For example,
defined in the top-level blueprint element:
<blueprint

xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
xmlns:tx="http://aries.apache.org/xmlns/transactions/v1.0.0">

For example, inline in a custom element:
<transaction method="*" value="Required"

xmlns:tx="http://aries.apache.org/xmlns/transactions/v1.0.0"/>

The Blueprint runtime implementation that is provided by Apache Aries project is used to support
Blueprint bundles that are contained in OSGi Applications for Liberty. For more information, see Apache
Aries. The Aries Blueprint runtime provides an extension mechanism called namespace handlers. A
namespace handler provides a processor for custom blueprint extensions or namespaces. A namespace
handler implements the org.apache.aries.blueprint.NamespaceHandler interface and must be registered
in the OSGi service registry with an associated osgi.service.blueprint.namespace service property. This
property denotes the namespace URIs this handler can process. For example: http://aries.apache.org/
xmlns/transactions/v1.0.0. The service property value can either be a single String or URI, or a
Collection, or an array of String or URI.

The blueprint runtime parses the blueprint descriptors twice. The first pass is fast, and finds only every
namespace that is used by the blueprint bundle. If the blueprint bundle uses a non-standard namespace,
then the blueprint container attempts to locate NamespaceHandler services in the OSGi service registry for
each custom namespace. A NamespaceHandler service advertises every xml namespace that it can process
by using OSGi service properties. The blueprint runtime does not parse the blueprint xml until
NamespaceHandler services can be found for every custom namespace that is used in the bundle. Unless
NamespaceHandler services can be found for every custom namespace, the blueprint container is unable to
process the bundle. This result can mean that the blueprint container waits indefinitely if no
NamespaceHandler exists. If this situation is encountered, then the blueprint container issues a warning to
the log. When the blueprint parser begins to parse the blueprint xml files, it parses any standard
blueprint elements. When the parser reaches a custom element, the parser calls out to the
NamespaceHandler that advertised support for the namespace of the custom element. Here, the
NamespaceHandler has the opportunity to process the information in the custom element, modify the
runtime blueprint model, or do any other operation. If there is a typing error in any of the namespace
definitions, then the blueprint almost certainly fails to start.

A custom NamespaceHandler service can be provided by any bundle that is running in Liberty, including
Liberty Feature bundles , and OSGi Applications bundles.

Developing WebSocket applications in Liberty
You can configure Liberty to use the WebSocket protocol to enable applications to communicate by using
a full duplex connection.

About this task

To configure a Liberty server to run an application that is enabled for WebSocket 1.0, you must set the
websocket-1.0 feature for WebSocket 1.0 or the websocket-1.1 feature for WebSocket 1.1.

Note: 8.5.5.7

In addition to the Websocket API which is defined in JSR 356 (Java API for WebSocket version 1.1), an
API was added to the WebSphere implementation which allows a servlet or filter to request that the
current HTTP Request be "upgraded" to start a WebSocket session. This new API is documented here:

1326 WebSphere Application Server Liberty Core 8.5.5

http://aries.apache.org/
http://aries.apache.org/
http://www.ibm.com/support/knowledgecenter/SSHR6W_8.5.5/com.ibm.websphere.wdt.doc/topics/ceba.htm
https://jcp.org/en/jsr/detail?id=356

Interface WsWsocServerContainer

Websocket endpoints can make use of templates to match an endpoint to a URI. URIs that should not
map to websocket endpoints, even though they match a websocket template, can also be used by a web
application. The distinction between mapping a websocket endpoint to a URI or allowing the URI to be
treated as a "non-websocket" HTTP Request, is made by the presence or absence of an "Upgrade" header
with a value of "websocket" in the HTTP Request.

For information about developing WebSocket applications by using WebSphere Developer Tools, see
Developing WebSocket applications.

WebSocket

8.5.5.4

WebSocket is a standard protocol that enables a web browser or client application and a web server
application to communicate by using one full duplex connection.

HTTP was not designed for long-lived, real-time, full duplex communication between two applications.
In many instances, a user's web server application or servlet wants to communicate with a client browser
or application in a long-lived, real-time, full duplex conversation. In other words, the two applications
want to freely read and write data back and forth. An example of this type of application is one that
constantly displays changing currency exchange rates on the web browser of a stock trader. Current
solutions that involve existing HTTP technology to accomplish this type of communication are
cumbersome and inefficient. HTTP solutions, for constant two-way communication between a browser
and a server, mostly consists of either polling or two open HTTP connections that handle one-way traffic
only, or both.

WebSocket uses a standard HTTP request-response sequence to establish a connection. When the
connection is established, the WebSocket API provides a read and write interface for reading and writing
data over the established connection in an asynchronous full duplex manner. WebSocket also provides an
interface for asynchronously closing the connection from either side.

Because WebSocket uses a standard HTTP request-response sequence to establish a connection, the
connection initiation connects though firewalls and proxies in the same manner as an HTTP connection.
WebSocket requires full duplex communication, including simultaneous reads and writes on the same
connection. Version 8.5.5.3 and later of the WebSphere web server plug-in support full duplex
communication, but other firewalls and proxies might require modification to enable this support.
WebSocket can also use SSL for secure connections and transmission of data. This protocol uses SSL in
the same way that the HTTP protocol uses SSL.

The Liberty WebSocket feature implements the following specifications:
v The WebSocket Protocol - RFC 6455
v Java API for WebSocket - JSR 356

8.5.5.5

Liberty supports the WebSocket 1.0 and WebSocket 1.1 specifications. Compared to

WebSocket 1.0, WebSocket 1.1 supports a more robust way of specifying message handlers.

You can download sample programs that implement the WebSocket protocol from WASdev.net. For a
walkthrough of using WebSocket on Liberty, see WebSocket sample application on WASdev.net.

Chapter 8. Developing applications in the Liberty environment 1327

https://www-01.ibm.com/support/knowledgecenter/SSHR6W_8.5.5/com.ibm.websphere.wdt.doc/topics/twebsocket.htm?lang=en
http://tools.ietf.org/html/rfc6455
http://jcp.org/en/jsr/detail?id=356
https://developer.ibm.com/wasdev/downloads/#filter/assetTypeFilters=PRODUCT_SAMPLE;sortby=relevance;q=websocket
https://developer.ibm.com/wasdev/blog/2014/12/17/websocket-sample-application/

1328 WebSphere Application Server Liberty Core 8.5.5

Chapter 9. Deploying applications in Liberty

You can deploy web applications, enterprise applications, and OSGi applications in Liberty. You deploy
an application by either dropping the application into a previously-defined dropins directory, or by
adding an application entry to the server configuration.

Before you begin

Distributed operating systems You can deploy applications as described in this topic, or as described in
“Adding and running an application on Liberty by using developer tools” on page 1331.

This topic assumes that you have not disabled dynamic updates to the runtime configuration, as
described in “Controlling dynamic updates” on page 975.

About this task

By default, the “dropins” directory is automatically monitored. If you drop an application into this
directory, the application is automatically deployed on the server. Similarly, if the application is deleted
from the directory, the application is automatically removed from the server. The “dropins” directory can
be used for applications that do not require additional configuration, such as security role mapping. If
you put your applications in the “dropins” directory, you must not include an entry for the application in
the server configuration. Otherwise, the server will try to load the application twice and an error might
occur. For applications that are not in the “dropins” directory, you specify the location using an
application entry in the server configuration. The location can be on the file system or at a URL.

Your application can be packaged as an archive file, a directory, 8.5.5.4 or as a loose application where
files are in multiple locations. For more information about loose applications, see “Loose applications” on
page 1412.

For applications in the “dropins” directory, the file name and file extension are used by the application
monitor to determine the type of application, and to generate the application id and application name.
For example, if the archive file or directory is named snoop.war, the application monitor assumes that the
application is a web application and that the application id and application name is “snoop”. For
configured applications, the application type and name are specified.

For more information about the default directory structure and the properties that are associated with
directories (for example server.config.dir), see “Directory locations and properties” on page 894.

Note: Restrictions apply when using the “dropins” directory in a production environment. See
“Versioning is not possible for applications in the "dropins" directory” on page 1484.

Procedure
v Deploy an application by dropping it into the dropins directory.

For example, using the default directory structure, to deploy an application you drop it into the
${server.config.dir}/dropins directory (that is, wlp/usr/servers/server_name/dropins).
You can deploy your application in any of the following ways:
– Place the archive file with its identifying suffix (.ear, .war, and so on) directly into the /dropins

directory. For example, ${server.config.dir}/dropins/myApp.war
– Extract the archive file into a directory named with the application name and the identifying suffix.

For example, ${server.config.dir}/dropins/myApp.war/WEB-INF/...

1329

– Place the archive file or the extracted archive into a subdirectory named with the identifying suffix.
For example, ${server.config.dir}/dropins/war/myApp/WEB-INF/...

v Deploy an application by adding it to the server configuration file.
Configure the application element in the server.xml configuration file. See **** MISSING FILE ****.
You must configure the following attributes for the application:

id Must be unique and is used internally by the server.

name Must be unique and depending on the application. The value of name might be used as the
context-root of the application. For more information on how the context-root is set for an
application, see “Deploying a web application to Liberty” on page 1344.

type Specifies the type of application.
– For web applications, the supported type is war.
– For enterprise applications, the supported type is ear.

location
Specifies the location of the application. It can be an absolute path or a URL which you can
download the application from. It can also be the file name of your application (including file
extension if any).

If the application is available on the file system, the location can either be the full path name or a
simple file name. If the location does not include the full path, the application manager looks for the
application in ${server.config.dir}/apps and ${shared.app.dir}. If the application is available at a
URL, the application manager downloads the application to a temporary folder inside the server work
area, then starts the application.

Note: The location that you specify for a configured application should not be in the “dropins”
directory. If you drop an application into the “dropins” directory, and also specify the location in the
server.xml file, you are telling the server to deploy the application twice.
In the following two examples, the location is the file system. If the location is a URL, enter the URL in
the location field.
<osgiApplication location="D:/apps/ImpactEBA.eba"/>
<webApplication location="ImpactWeb.war"/>

The second example does not include the full path. In this case, you must put the application in one of
the following locations:
– ${server.config.dir}/apps (that is, server_directory/user/servers/server_name/apps)
– ${shared.app.dir} (that is, liberty_install_location/usr/shared/apps)
You can deploy your application to the file system in either of the following ways:
– Place the archive file with its identifying suffix (.ear, .war, and so on) directly into the chosen

location. For example, application_directory_path/myApp.war
– Extract the archive file into a subdirectory of the chosen location, named with the application name

and the identifying suffix. For example, application_directory_path/myApp.war/WEB-INF/...

Note:

– You must create the server-level apps directory, whereas the shared apps directory is present by
default. See “Directory locations and properties” on page 894 for more information about the
properties associated with the server directories.

– The application element can be set before or after the server has started. If the element is set after
the server has started, the changes are picked up dynamically.

v 8.5.5.6 Deploying Contexts and Dependency (CDI) applications in Liberty
A Liberty server can be used to deploy CDI applications by configuring the server for the CDI 1.2
Liberty feature. See “Configuring Liberty for Contexts and Dependency Injection 1.2” on page 1071 for
more information.

1330 WebSphere Application Server Liberty Core 8.5.5

Applications that use contexts and dependency injection must have CDI enabled. For the CDI 1.2
Liberty feature, CDI is enabled if either:
– There is a beans.xml file with a bean discovery mode of all.
– There is no beans.xml file or a blank beans.xml file and classes with bean defining annotations. In

this case, there must be a bean deployment archive.
For more information on the different types of bean deployment archive recognized by the CDI 1.2
feature, see “Contexts and Dependency Injection 1.2 behavior changes” on page 1072.

v Remove an application.
For applications that are included in the server configuration, remove the reference to the application
from the server.xml file. The application is then automatically removed from the server.
For applications that are deployed to the “dropins” directory, delete the application from the directory.
The application is then automatically removed from the server.
To uninstall all applications that are in the “dropins” directory, set the application monitor
dropinsEnabled property to false as described in “Controlling dynamic updates” on page 975.

What to do next

For all deployed applications, you can configure whether application monitoring is enabled and how
often to check for updates to applications. For the “dropins” directory, you can also configure the name
and location of the directory and choose whether to deploy the applications that are in the directory. See
“Controlling dynamic updates” on page 975.

Adding and running an application on Liberty by using developer tools

Distributed operating systems

You can add applications to the server by right-clicking on the server in the Servers view then selecting
Add and Remove from the menu.

Before you begin

This task assumes that your application is in your Eclipse workspace. If you have a prebuilt application
archive file that you want to add and run, you must first import the file into your Eclipse workspace.
Alternatively, you can use the steps described in Chapter 9, “Deploying applications in Liberty,” on page
1329.

About this task

When you add an application to the server, the workbench tries to determine which features are required
by the application and enables them in the server configuration for you if they are not already enabled.

Procedure
1. In the Servers view, right-click the server and select Add and Remove.
2. In the Add and Remove wizard, under the Available list, select the applications you want to add

then click Add. Or click Add All to add all available applications to the server.
3. Alternatively, you can right-click on an application in the Project Explorer view and select Run As >

Run on Server, or Debug As > Debug on Server. This adds the application to the server (if not
already added), starts the server (if not already started) and runs the application.

Chapter 9. Deploying applications in Liberty 1331

Results

Tip: If you are using Run on Server or Debug on Server and the server is already started, the browser
might try to load the application before the server has finished loading it. If this happens, wait for the
message in the console view that displays the application has been started and then refresh the browser if
necessary.

Publishing your application by using developer tools
Distributed operating systems

Publishing involves copying files (projects, resource files, and server configurations) to the correct
location for the server to find and use them. You can either publish your application automatically or
manually.

About this task

If you choose to publish your application automatically, the publishing frequency is controlled by a
configurable publishing interval. If you do not want to wait for the automatic publishing interval to pass,
or the Never publish automatically option is enabled, at anytime you can manually request the
workbench to issue a publish command to the server. Each manual publish command causes a single
publishing request to the server.

Procedure
v To publish your application to a server automatically, complete the following steps:

1. Open the Server preferences page by clicking Window > Preferences > Server > Launching, and
select the Automatically publish when starting servers check box. The workbench checks to see if
your project and files on the server are synchronized. If they are not, the project and the files are
automatically updated when the server is either started or restarted.

2. (optional) Modify the Publishing settings. To modify the Publishing settings, right-click the server
in the Servers view and select Open. In the Overview page of the server editor, under the
Publishing settings, you will find the following settings:
– Never publish automatically: Specifies the workbench should never publish files to the server.
– Automatically publish when resources change: Specifies the workbench to issue a publish after

changes on a file that is associated with the server are saved and a full time interval has passed
in the Publishing interval setting. In the workbench, the default setting is the Automatically
publish when resources change option is enabled with a value set in the publishing interval.

– Automatically publish after a build event: Specifies the workbench to issue a publish after
changes on a file that requires a build and is associated with the server are saved, and a full time
interval has passed in the Publishing interval setting.

– Publishing interval (in seconds): Specifies the number of seconds required before the
workbench calls a publish to happen on the server. However, if you make a subsequent change
to the files before this time interval has completed, the publish is delayed as the timer is reset.
The workbench makes a publish to the server only after the full time interval has passed. If you
set the publishing interval to 0 seconds, an immediate publish should happen after changes on a
file are saved.

v To publish your application to a server manually, complete the following steps:
1. Select the server and then click the Publish to the server icon located on the toolbar.
2. Right-click the server and then select Publish.

1332 WebSphere Application Server Liberty Core 8.5.5

Publishing settings for a WebSphere Application Server Liberty
Publishing involves copying files such as application, resource files, and deployment descriptor files to the
correct location for the server to find and use them. You can choose whether you want to publish your
application on the server or run your application within the development environment without copying
the application into the directories of the server.

About this task

Run applications directly from the workspace

The Run applications directly from the workspace publishing option requests the server to run your
application from the workspace.

This publishing option publishes faster when an application contains a single root, as opposed to
containing multiple roots. The workbench might require additional processing time to publish an
application with multiple roots. To determine whether the structure of your application contains a single
or multiple roots, use the Project Structure Validator. For details, see Creating and configuring Java EE
projects using wizards.

CAUTION:
When you are using the Run applications directly from the workspace publishing option, the server
can lose track of your application under the following scenarios:

v If you delete your workspace, the server can no longer find your application. As a result, if you did
not put your application under source control management and the workspace is deleted, you can
lose your application from your file system.

v If you delete an application from the workspace without removing it from the server, the server can
no longer find your application. As a result, you might encounter errors when starting the server
because the server tries to start the missing application from the workspace.

Procedure
1. In the Servers view, double-click your WebSphere Application Server Liberty server to open the server

editor.
2. In Liberty Settings, configure publishing settings by choosing any or none of the following options:
v You can select Run applications directly from the workspace.

This option is selected by default.
v 8.5.5.8 You can select Allow publishing of applications containing errors.

If you do not select this option, then when you attempt to publish an application that contains
errors, you receive a warning. You can choose to cancel publishing and fix your errors, or you can
choose to publish your application without correcting the errors. If you select this option, then you
do not receive a warning when you attempt to publish an application that contains errors.

3. Save and close the editor.

Restart requirements for a modified application on Liberty
When you change an application on Liberty, whether an application or server restart is required depends
on whether the Liberty server is started in run mode or debug mode.

Modifying an application when the server is started in debug mode

In debug mode, some changes require an application restart. For details of which changes require an
application restart, use the IBM Rational Application Developer documentation, and see the “Hot Method
Replace” section in WebSphere Application Server debug limitations.

Chapter 9. Deploying applications in Liberty 1333

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wdt.doc/topics/tcreatajavaeeprojwiz.htm
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wdt.doc/topics/tcreatajavaeeprojwiz.htm
https://www.ibm.com/support/knowledgecenter/SSRTLW_8.5.5/com.ibm.debug.wsa.doc/topics/rbwlimit.html

If an application restart is required, a Hot Code Replace Failed dialog box is displayed, giving you an
option to restart the application. If you click Yes, the application is restarted automatically; if you click
No, you must restart the application manually.

For details on how to start the server in debug mode, use the IBM Rational Application Developer
documentation, and see Debug on server.

Modifying an application when the server is started in run mode

In run mode, most changes require an application restart. If an application restart is required, the
application is restarted automatically as part of the application publish operation from the developer
tools. Some changes require a server restart.

Customizing automatic feature detection
Control which features are added to each project and resolve feature conflicts.

About this task

Automatic feature detection selects and enables features that an application needs. However, the
automatic process can lead to conflicts among features. Customize automatic feature detection to fit your
preferences and resolve conflicts.

Procedure
1. Right-click the project and select Properties.
2. Expand Liberty and select Required Features.
3. Set the action for each feature to Always add, Prompt before adding, or Never add. Always add is

the default. See Disabling automatic feature detection to set the default for all projects or to disable
automatic feature detection.

4. Resolve or ignore feature conflicts by using the Feature Conflict dialog box.
a. The Feature Conflict dialog box appears when features conflict. New features are marked with new.
b. Click Add... to add a feature, or select a feature and click Remove to remove it.
c. Click OK after you resolve the conflicts.

Note: Click Ignore to avoid conflict resolution. If conflicts are ignored, the server might not work
as expected.

Packaging a Liberty server from the command line
From the command line, you can create a compressed file that contains a Liberty runtime environment,
the files in the shared resources directory, a specific server, and the applications that are embedded in the
server. You can also choose to exclude the runtime binary files from the compressed file.

About this task

The Liberty server is lightweight, and therefore you can easily package a server installation in a
compressed file. You can store this package, distribute it to colleagues, and then use it to deploy the
installation to a different location or to another machine, or even embed the installation in a product
distribution.

The server installation that you want to package cannot already be joined to a collective. You can only
package a stand-alone server.

1334 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSRTLW_8.5.5/com.ibm.debug.help.doc/topics/tbaodons.html

Note: Distributed operating systems The resulting file is created by using UTF-8 encoding for entry names, so
the tool that you use to open the file must be able to use UTF-8 encoding for entry names. The jar
command in a Java SDK uses this format.

Procedure

To package a Liberty server from the command line, complete the following steps:
1. Open a command line, then change directory to the wlp/bin directory.
2. Stop the server.
3. Run the package command to create a package.

8.5.5.5

You can package the Liberty profile server or the runtime.

v Package the Liberty server.
The default archive format is .zip on all platforms apart from z/OS where it is .pax. You can also
generate a .jar archive.
If you do not specify a server name, defaultServer is used. If you do not specify the --archive
parameter, the value of server_name is used for package_file_name, and the compressed file is created
in the ${server.output.dir} directory.
Choose the correct command for your environment.

– Distributed operating systems

IBM i

Use this command to generate a .zip archive.
server package server_name --archive=package_file_name.zip --include=all

where package_file_name.zip is a file name that you choose. This file name can include a full
path name. If the full path is omitted, a compressed file called package_file_name.zip is created
in the ${server.output.dir} directory.

– Distributed operating systems

IBM i

Use this command to generate a .jar archive. The advantage of a .jar archive is that the scripts
in the bin directory keep their permissions, so they are executable when the package is installed.
server package server_name --archive=package_file_name.jar --include=all

where package_file_name.jar is a file name that you choose.
For more information about extraction options with this archive file, see “Java archive file
extraction options” on page 837.

You can also use the --include option with this command. For example, the --include=all option
packages the runtime binaries and the relevant files in the ${WLP_USER_DIR} directory; the
--include=usr option packages only relevant files in the ${WLP_USER_DIR} directory, effectively
excluding the runtime binaries from the compressed file.
The --include=usr option is not valid with an archive format of .jar.
If you use the --include=minify option, the server command packages only those parts of the
runtime environment, and files in the ${WLP_USER_DIR} directory, that are required to run the server.
This option significantly reduces the size of the resulting archive.
The parts of the runtime environment that are retained by the minify operation depend on the
features that are configured in the server that you are packaging. Only those features that are
required to run the server are retained, and the remaining features are removed. Therefore, you
cannot later enable a feature that has been removed. For example, if only the servlet-3.0 feature is
retained, you cannot later enable the jpa-2.0 feature.
You can repeat the minify operation to further reduce the size of the archive if the configuration is
changed. There is, however, no reverse operation for the minify operation, so if you later require
one or more features that have been removed, you must begin again with a complete Liberty
server.

Chapter 9. Deploying applications in Liberty 1335

|
|

|

While the minify operation is running, the server is temporarily started, and you see the associated
messages. For this reason, you cannot use the --include=minify option with a server that is not
able to be started, but you can package it with the --include=all or --include=usr options.
You can specify the operating systems that you want the packaged server to support by using the
--os option with the --include=minify option.
For example, to package a server with z/OS support removed, use the following command:
server package --archive="nozos.zip" --include=minify --os=-z/OS

To package a server with OS/400 support retained, but z/OS support removed, use the following
command:
server package --archive="small.zip" --include=minify --os=OS/400,-z/OS

To package a server that supports only Linux, use the following command:
server package --archive="linux.zip" --include=minify --os=Linux

v 8.5.5.5 Package the Liberty runtime.
Create a runtime archive that contains the wlp directory, but does not contain the usr directory. The
naming convention for a server package is package_name.zip; for example, CustomerPortalApp.zip.
To create a runtime archive, run the package command without a server name and with the
--include=wlp option:
server package --include=wlp

To specify a package file name and target location, add the --archive=package_path_name option;
for example:
server package --include=wlp --archive=c:\temp\myPackage.zip

If you do not specify a valid package name or target location with the --archive option, then the
command creates the wlp.zip runtime archive in the $WLP_OUTPUT_DIR location, which is the
${wlp.install.dir}/usr/servers directory by default. The target location must exist before running
the command. Thus, if the target location is c:\temp, the C:\temp directory must exist and have
write permission for the command to write the archive to the C:\temp directory.

Using JNDI binding for constants from the server configuration files
You can bind constants into the default Java Naming and Directory Interface (JNDI) namespace from the
server configuration files by using the <jndiEntry> element on Liberty.

About this task

The default JNDI namespace is available in the Liberty profile to provide bindings to miscellaneous
objects required by applications. Any data sources declared in the server configuration files are available
in the default JNDI namespace. Additionally, you can bind Java strings and primitive data types in the
configuration file into JNDI namespace. These constants are then made available to an application at run
time, providing a simple and portable way to pass configuration values into the application.

For more information about the JNDI naming, see Naming.

Procedure
1. Add a constant into the default JNDI namespace by specifying the jndi-1.0 Liberty feature in the

server.xml file of the Liberty server.
<featureManager>

<feature>jndi-1.0</feature>
</featureManager>

2. Bind constants into the JNDI namespace by specifying the <jndiEntry> elements with jndiName and
value attributes in the server.xml file.
<jndiEntry jndiName="schoolOfAthens/defaultAdminUserName" value=’"plato"’ />
<jndiEntry jndiName="schoolOfAthens/defaultAdminPassword" value=’"republic"’ />

1336 WebSphere Application Server Liberty Core 8.5.5

If you want to bind an instance of java.net.URL into the JNDI namespace, use the jndiURLEntry
configuration:
<jndiURLEntry jndiName="urls/IBMKnowledgeCenter" value="http://www-01.ibm.com/support/knowledgecenter/" />
<jndiURLEntry jndiName="urls/WASDevNet" value="http://wasdev.net" />

3. Look up the constants from an application by using a JNDI context with the following code:
Object jndiConstant = new InitialContext().lookup("schoolOfAthens/defaultAdminUserName");
String defaultAdmin = (String) jndiConstant;

Note:

v The lookup() method returns an object to the application. The type of the object is determined by
interpreting the value stored in the jndiEntry element as a Java literal string or primitive data type.
If the parsing fails, the exact value is provided as an unmodified string.

v The jndiEntry element supports the integer, floating-point, boolean, character, and string literals as
described in Java Language Specification, Java SE 7 Edition, section 3.10. String and character
literals might contain unicode escaped sequences (see section 3.3: Unicode Escaped Sequences),
and the octal and character escape sequences (see section 3.10.6: Escape Sequences for Character
and String Literals). Null literals and class literals are not supported; for more information see
section 3.10.7: The null literal and section 15.8.2: Class Literals .

See the following examples of Java literals:
v The string "Hello, world" followed by a newline character:

<jndiEntry jndiName="a" value=’"Hello, world.\n"’ />

v The integer with a binary value 1010101:
<jndiEntry jndiName="b" value="0b1010101" />

v The single character 'X':
<jndiEntry jndiName="c" value="’X’" />

v The double-precision floating point number 1.0:
<jndiEntry jndiName="d" value="1.0D" />

For more information about <jndiEntry> element, see **** MISSING FILE ****.

Using JNDI binding for dynamic values from the server configuration
files

8.5.5.4

You can bind a reference for dynamic values into the default Java Naming and Directory Interface (JNDI)
namespace from the server configuration files by using the jndiReferenceEntry element on the Liberty
profile.

About this task

The default JNDI namespace is available in Liberty to provide bindings to miscellaneous objects that are
required by applications. Based on the features that are enabled in your server, you can bind a
predetermined set of objects to the default JNDI namespace. Additionally, you can bind a reference to an
object factory, which dynamically determines the value that it returns. You can also use this object factory
to return custom object types to an application.

For more information about the JNDI naming, see Naming.

Procedure
1. Add the jndi-1.0 Liberty feature to the server.xml file.

Chapter 9. Deploying applications in Liberty 1337

http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10
http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.3
http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.6
http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.6
http://docs.oracle.com/javase/specs/jls/se7/html/jls-3.html#jls-3.10.7
http://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.8.2

<featureManager>
<feature>jndi-1.0</feature>

</featureManager>

2. Create an ObjectFactory class that returns a programmatically defined value.
import javax.naming.spi.ObjectFactory;

public class MyObjectFactory implements ObjectFactory {
@Override
public Object getObjectInstance(Object o, Name n, Context c, Hashtable<?, ?> envmt) throws Exception {
Properties p = new Properties();
p.put("abc", 123);
return p;

}
}

3. Include the ObjectFactory in a library element in the server.xml file:
<library id="objectFactoryLib">

<fileset dir="${server.config.dir}/lib" includes="factory.jar"/>
</library>

4. Declare the factory in a jndiObjectFactory element in the server.xml file and reference the previously
declared library.
<jndiObjectFactory id="objectFactory" libraryRef="objectFactoryLib"

className="com.ibm.example.factory.MyObjectFactory"/>

You can also declare the type of object that the factory returns. The type is returned by the
javax.naming.Context.list() method.
<jndiObjectFactory id="objectFactory" libraryRef="objectFactoryLib"

className="com.ibm.example.factory.MyObjectFactory"
objectClassName="java.util.Properties"/>

5. Declare the entry in a jndiReferenceEntry element in the server.xml file and reference the previously
declared factory.
<jndiReferenceEntry id="refEntry" jndiName="ref/entry" factoryRef="objectFactory"/>

6. To declare more properties for the jndiReferenceEntry element in the server.xml file:
<jndiReferenceEntry id="refEntry" jndiName="ref/entry" factoryRef="objectFactory">

<properties abc="123"/>
</jndiReferenceEntry>

These additional properties are represented as javax.naming.StringRefAddr on the
javax.naming.Reference that is passed to the factory:
import javax.naming.spi.ObjectFactory;

public class MyObjectFactory implements ObjectFactory {
@Override
public Object getObjectInstance(Object o, Name n, Context c, Hashtable<?, ?> envmt) throws Exception {

Properties p = new Properties();
Reference ref = (Reference) o;
RefAddr refAddr = ref.get("abc");
p.put("abc", refAddr == null ? 123 : refAddr.getContent());
return p;

}
}

7. You can inject the resulting object to an application by using a resource environment reference:
@Resource(name="ref/entry")
private Properties properties;

Deploying OSGi applications to Liberty
You can deploy OSGi applications to Liberty by enabling a list of server features in the server.xml file.

1338 WebSphere Application Server Liberty Core 8.5.5

About this task

By providing a list of OSGi-specific server features, Liberty provides OSGi support for your applications.
These features are as follows:
v blueprint-1.0

v osgi.jpa-1.0

v wab-1.0

For a full list of server features in Liberty, see “Liberty features” on page 483.

Sharing common OSGi bundles for Liberty
You can share common OSGi bundles by placing them in a directory and configuring the server.xml file
for your server, so that those common OSGi bundles are available to your OSGi applications.

Procedure
v Create a directory in your file system and place all the common OSGi bundles into the directory.
v Add the following lines into the server.xml file.

<bundleRepository>
<fileset dir="directory_path" include="*.jar"/>
</bundleRepository>

Where directory_path is the path to the directory that contains the common OSGi bundles.
v Define a dependency on the common bundle using import phrase in the manifest.mf file of your OSGi

application.

Deploying data access applications to Liberty
Deploying a data access application includes more than installing your web application archive (WAR) or
enterprise archive (EAR) file onto Liberty. Deployment can include tasks for configuring the data access
resources of the server and overall runtime environment.

About this task

This following topics are covered in this section:

Procedure
v Configure a data source and JDBC driver for database connectivity in a Liberty profile
v Deploy an JDBC application to Liberty
v Optional: Configure connection pooling in Liberty
v Optional: Develop an application-defined data source on Liberty
v Optional: Configure transaction recovery for data sources on Liberty
v Migrating data access applications to Liberty

Deploying an existing JDBC application to Liberty
You can take an existing application that uses Java Database Connectivity (JDBC) and a data source, and
deploy the application to a server.

About this task

You can take an existing JDBC application and deploy it to Liberty. To complete this deployment, you
add the jdbc-4.0 Liberty feature to the server.xml file. You must also add code that tells the server the
JDBC driver location and specifies properties that the JDBC driver uses to connect to the database.

Chapter 9. Deploying applications in Liberty 1339

In this example, you can extend your servlet application, or use the one provided here to test the
interactivity that is used through the JDBC driver is working as expected.

Procedure
1. Create a server.
2. Start the server.
3. Add the jdbc-4.0 and the servlet-3.0 Liberty features to the server.xml file.

<server>
<featureManager>

<feature>jdbc-4.0</feature>
<feature>servlet-3.0</feature>

</featureManager>
</server>

To check that the server is working and that the features are enabled successfully, see the console.log
file, which is stored in the logs directory of the server. You can view it using any text editor. You
should see something like this example:
[AUDIT] CWWKF0012I: The server installed the following features: [jdbc-4.0, jndi-1.0].
[AUDIT] CWWKF0008I: Feature update completed in 0.326 seconds.

4. Specify the database type and the data source location in the server.xml file.
Where path_to_derby is the location where derby is installed on your operating system, lib is the
folder where derby.jar is located, and data/exampleDB is the directory that is created if it does not
exist.
For example:
<jdbcDriver id="DerbyEmbedded" libraryRef="DerbyLib"/>

<library id="DerbyLib">
<fileset dir="C:/path_to_derby/lib" includes="derby.jar"/>

</library>

<dataSource id="ds1" jndiName="jdbc/exampleDS" jdbcDriverRef="DerbyEmbedded">
<properties.derby.embedded
databaseName="C:/path_to_derby/data/exampleDB"
createDatabase="create"
/>

</dataSource>

For information about other options for coding data source definitions, see “Using Ref tags in
configuration files” on page 972.

5. Add some SQL create, read, update, and delete statements to your JDBC application to test the
interactivity with the database.
package wasdev;

import java.io.*;
import java.sql.Connection;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
import javax.annotation.Resource;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.annotation.WebServlet;
import javax.sql.DataSource;

@WebServlet("/HelloWorld")
public class HelloWorld extends HttpServlet {

@Resource(name = "jdbc/exampleDS")
private DataSource ds1;

1340 WebSphere Application Server Liberty Core 8.5.5

private Connection con = null;
private static final long serialVersionUID = 1L;

public HelloWorld() {
super();

}
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<H1>Hello World Liberty</H1>\n");
try {

con = ds1.getConnection();
Statement stmt = null;
stmt = con.createStatement();
// create a table
stmt.executeUpdate("create table cities (name varchar(50) not null primary key, population int, county varchar(30))");
// insert a test record
stmt.executeUpdate("insert into cities values (’myHomeCity’, 106769, ’myHomeCounty’)");
// select a record
ResultSet result = stmt.executeQuery("select county from cities where name=’myHomeCity’"); would result.next();
// display the county information for the city.
out.println("The county for myHomeCity is " + result.getString(1));
// drop the table to clean up and to be able to rerun the test.
stmt.executeUpdate("drop table cities");
}

catch (SQLException e) {
e.printStackTrace();
}

finally {
if (con != null){

try{
con.close();
}

catch (SQLException e) {
e.printStackTrace();
}

}
}

}
}

6. Compile your application.
Where path_to_liberty is the location you installed Liberty on your operating system, and path_to_app is
the location of the Java file of the application you want to compile.
Example on Windows:
C:\> javac -cp
path_to_liberty\wlp\dev\api\spec\com.ibm.ws.javaee.servlet.3.0_1.0.1.jar

path_to_App\HelloWorld.java

Example on Linux:
mo@machine01:~> javac -cp

path_to_liberty/wlp/dev/api/spec/com.ibm.ws.javaee.servlet.3.0_1.0.1.jar
path_to_App/HelloWorld.java

If the javac command is not recognized, ensure that you have the Java bin directory in the PATH
environment variable of your operating system.

7. Add the application to the server.
In this example, the JDBC application is put in the dropins directory of the server:
...\dropins\HelloWorldApp.war\WEB-INF\classes\wasdev\HelloWorld

The wasdev directory uses the same package name that is used in HelloWorld.java.
8. Check that your JDBC application is working.

Chapter 9. Deploying applications in Liberty 1341

For this example, go to this URL:
http://localhost:9080/HelloWorldApp/HelloWorld

Port 9080 is the default HTTP port that is used by the Liberty server. You can check which HTTP port
your server is set on by looking in the server.xml file.
The output on the browser for this example looks like:
Hello World Liberty
The county for myHomeCity is myHomeCounty

Enabling JDBC Tracing for Liberty
JDBC tracing for Liberty is enabled either through a driver-specific custom trace setting, or using the
application server supplemental JDBC tracing option.

About this task

There are two ways of using driver-specific custom trace facilities:
v Using the Java built-in logging mechanism, java.util.logging, if the driver supports it.
v Configuring a custom trace setting as a vendor property.

If your JDBC driver does not provide its own custom tracing or logging facilities, or the facilities it
provides are minimal, you can use supplemental JDBC tracing from the application server.

If you enable tracing by using either a custom vendor property or supplemental JDBC tracing, you must
add the logwriter name to the trace specification in the bootstrap.properties file. You can use any of the
following logwriters:

DB2 com.ibm.ws.db2.logwriter

Derby com.ibm.ws.derby.logwriter

Informix JCC (uses the same driver as DB2)
com.ibm.ws.db2.logwriter

Informix JDBC
com.ibm.ws.informix.logwriter

Microsoft SQL Server JDBC Driver
com.ibm.ws.sqlserver.logwriter

DataDirect Connect for JDBC for Microsoft SQL Server
com.ibm.ws.sqlserver.logwriter

Sybase
com.ibm.ws.sybase.logwriter

Other databases (for example solidDB and MySQL)
com.ibm.ws.database.logwriter

Because changes to trace enablement involve altering the bootstrap.properties file, you must restart the
server for the changes to take effect.

The following examples illustrate the use of the various JDBC trace methods.

Procedure
v Use java.util.logging.

If the driver you are using supports java.util.logging, you can enable it by appending the driver's
trace level to com.ibm.ws.logging.trace.specification in the bootstrap.properties file. See Using
Java logging in an application, and the JDBC vendor documentation for levels and other trace
information specific to your driver.

1342 WebSphere Application Server Liberty Core 8.5.5

Here is an example for Microsoft SQL Server JDBC Driver:
– Example code for the bootstrap.properties file:

com.ibm.ws.logging.trace.specification=*=audit=enabled:com.microsoft.sqlserver.jdbc=FINE

Here is an example for Oracle JDBC:
– Example code for the bootstrap.properties file:

com.ibm.ws.logging.trace.specification=*=audit=enabled:oracle=FINE

– For Oracle, you must also enable the tracing using the system property oracle.jdbc.Trace, using
one of the following two options:
- In the bootstrap.properties file, add the setting oracle.jdbc.Trace=true
- In a Java program, add the setting System.setProperty("oracle.jdbc.Trace","true");

v Use custom trace settings.
If the driver you are using has custom trace settings, you set them as JDBC driver vendor properties in
the server.xml file. You also add the logwriter name to the trace specification in the
bootstrap.properties file.
Here is an example for DB2 JCC, using the custom property traceLevel:
– Example code for the server.xml file:

<dataSource id="db2" jndiName="jdbc/db2" jdbcDriverRef="DB2Driver" >
<properties.db2.jcc databaseName="myDB" traceLevel="-1"/>

</dataSource>

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.db2.logwriter=all=enabled

Here is an example for Derby Network Client:
– Example code for the server.xml file:

<dataSource id="derbyNC" jndiName="jdbc/derbyNC" jdbcDriverRef="DerbyNC" >
<properties.derby.client databaseName="myDB" createDatabase="create" traceLevel="1"/>

</dataSource>

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.derby.logwriter=all=enabled

Here is an example for Informix JCC. This database uses the DB2 drivers for JCC connectivity.
– Example code for the server.xml file:

<dataSource id="informixJCC" jndiName="jdbc/informixJCC" jdbcDriverRef="InformixDriverJCC" >
<properties.informix.jcc databaseName="myDB" traceLevel="-1"/>

</dataSource>

– Example code for the bootstrap.properties file:
com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.db2.logwriter=all=enabled

v Use supplemental JDBC tracing.
If your JDBC driver does not provide suitable tracing or logging facilities, you can use supplemental
JDBC tracing from the application server. The application server automatically determines whether to
enable supplemental JDBC tracing, based on the JDBC driver being used. To override this, set the data
source property supplementalJDBCTrace to true or false.
1. Enable supplemental tracing.

Here is an example for enabling supplemental tracing with the embedded Derby database.
Supplemental JDBC tracing is enabled by default for this database, so you only need to set the
logwriter in the bootstrap.properties file:
– Example code for the bootstrap.properties file:

com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.derby.logwriter=all=enabled

Here is an example for enabling supplemental tracing with Informix JDBC. Supplemental JDBC
tracing is enabled by default for this database.
– Example code for the bootstrap.properties file:

Chapter 9. Deploying applications in Liberty 1343

com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.informix.logwriter=all=enabled

Here is an example for enabling supplemental tracing, and java.util.logging, with Microsoft SQL
Server JDBC Driver:
– Example code for the bootstrap.properties file:

com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.sqlserver.logwriter=all=enabled:
com.microsoft.sqlserver.jdbc=all

Here is an example for enabling supplemental tracing with DataDirect Connect for JDBC for
Microsoft SQL Server:
– Example code for the bootstrap.properties file:

com.ibm.ws.logging.trace.specification=*=audit=enabled:com.microsoft.sqlserver.jdbc=all

Here is an example for enabling supplemental tracing with solidDB. Supplemental JDBC tracing is
enabled by default for this database.
– Example code for the bootstrap.properties file:

com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.database.logwriter=all=enabled

Here is an example for enabling supplemental tracing with Sybase. Supplemental JDBC tracing is
enabled by default for this database.
– Example code for the bootstrap.properties file:

com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.sybase.logwriter=all=enabled

Here is an example for enabling supplemental tracing with other databases:
– Example code for the bootstrap.properties file:

com.ibm.ws.logging.trace.specification=*=audit=enabled:com.ibm.ws.database.logwriter=all=enabled

2. Disable supplemental tracing
To disable supplemental JDBC tracing, either set the supplementalJDBCTrace data source property to
false in the server.xml file, or remove the logwriter name from the
com.ibm.ws.logging.trace.specification property in the bootstrap.properties file:
– Example code for the server.xml file for solidDB:

<dataSource id="soliddb" jndiName="jdbc/soliddb"
jdbcDriverRef="solidDBDriver" supplementalJDBCTrace="false">

<properties databaseName="dba" URL="jdbc:solid://localhost:2315/dba/dba" />
</dataSource>

– Example code for the bootstrap.properties file for solidDB:
com.ibm.ws.logging.trace.specification=*=audit=enabled

Note: If you are not seeing JDBC trace, a feature might be activating JDBC immediately. Check
bootstrapping.properties and edit it to add JDBC trace specifications.

Deploying a web application to Liberty
By deploying a helloworld.war application, you can learn how server configurations change in Liberty.

Before you begin

The helloworld.war application uses a simple servlet to display a message on your browser. You can
create any other messages to be displayed. The coding of the application is not described within Liberty
documents.

About this task

When you deploy a web application to Liberty by using the developer tools, all configurations that are
related to the application are automatically enabled in the server.xml file. However, you can also
configure the server.xml file manually by completing the following steps.

1344 WebSphere Application Server Liberty Core 8.5.5

This example uses the helloworld.war application and can be accessed by using http://localhost:9090/
helloworld. In this example, a Liberty server instance is created, and then its default HTTP port is
changed to 9090, and then an application is deployed to it.

Procedure
1. Create a server named hwserver by using the command server create hwserver.
2. Copy the helloworld.war application into the /usr/servers/hwserver/apps directory; this directory

was created by the server create command in step 1.
3. In the server.xml file that was created by the server create command, change the

default HTTP port of the server hwserver to 9090 by replacing the attribute value httpPort="9080"
with httpPort="9090":
<server description="new server">

<!-- Enable features -->
<featureManager>
<feature>jsp-2.2</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint"
host="localhost"
httpPort="9090"
httpsPort="9443" />

</server>

4. Configure the application by updating the server.xml in either of the following ways:
v Define the application by using a webApplication element:

<server description="Hello World Server">

<featureManager>
<feature>servlet-3.0</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint" host="*" httpPort="9090" />

<webApplication contextRoot="helloworld" location="helloworld.war" />

</server>

v Define the application by using an application element:
<server description="Hello World Server">

<featureManager>
<feature>servlet-3.0</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint" host="*" httpPort="9090" />

<application context-root="helloworld" type="war" id="helloworld"
location="helloworld.war" name="helloworld"/>

</server>

The webApplication element can use the same child elements as the application element, except for
context-root and type. The two elements do not work together for a context-root, and if both an
application and webApplication element define the same context-root, only one is used and an
error is displayed.
The context-root attribute specifies the entry point of the deployed application. The entry point of a
deployed application is determined in the following precedence:
v context-root in the server.xml file
v application.xml, if an EAR application
v ibm-web-ext.xml, if a web application

Chapter 9. Deploying applications in Liberty 1345

v name of the application in the server.xml file, if a web application
v Manifest.MF, if a WAB application
v Directory name or the file name relative to the drop-ins directory of Liberty

Note: In an application server server.xml configuration, the application element can contain a
context-root tag. This context-root tag is applicable in combination with the tag type="war". For all
other application types, the context-root element has no effect.

It is not possible to override the context-root for either an EAR application, or an EBA application. It
is only possible to do an override for a stand-alone war file, or webApplication.

5. Start the server in foreground by using the command server run hwserver.
6. Test the application at http://localhost:9090/helloworld.
7. Optional: Stop the server if you don't need it.

Deploying SIP applications to Liberty
8.5.5.7

Session Initiation Protocol (SIP) applications are Java applications that contain at least one SIP servlet. SIP
applications are deployed the same way as other web applications.

Before you begin

Install the sipServlet-1.1 feature in your Liberty server. For more information, see “Adding and
removing Liberty features” on page 968.

Configure the SIP container.

About this task

To deploy a SIP application, the application must be packaged in a web archive (WAR) file, a servlet
archive (SAR) file, or an enterprise archive (EAR) file that contains a WAR or SAR file.

This task describes how to manually deploy a SIP application. Alternatively, you can deploy a SIP
application to Liberty by using the developer tools, which automatically enable all configurations related
to the application in the server.xml file. For more information, see WebSphere Developer Tools >
Developing > Developing SIP applications.

Procedure

Add your SIP application WAR, SAR, or EAR file to the Liberty server in one of the following ways:
v Move the archive file to the folder for drop-in artifacts in the server configuration directory at

wlp/usr/servers/server_name/dropins. The Liberty server monitors the dropins folder for new
applications and automatically installs the application with the default configuration.

v Move the archive file to the folder for applications in the server configuration directory at
wlp/usr/servers/server_name/apps. Then, install the SIP application in the Liberty server by
configuring an application element in the server.xml file.
The following example installs the appName.ear file. The context-root attribute specifies the entry
point of the deployed application.
<application id="appId" name="appName" type="ear" location="appName.ear" context-root="/sip289/"/>

1346 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/knowledgecenter/was_beta_devtools/com.ibm.websphere.wdt.doc/topics/welcome_wdt.htm

Deploying a JPA application to Liberty
To enable Liberty to support an application that uses the Java Persistence API (JPA), you add the jpa-2.0
or jpa-2.1 feature to the server.xml file, depending on which specification level you need. You also need
to define persistence contexts and persistence units, and configure access to the entity manager and entity
manager factory.

Before you begin

This task assumes that you have created a Liberty server, on which you want to deploy an application
that uses JPA. See “Creating a Liberty server manually” on page 883.

About this task

8.5.5.6 There are two JPA features available in Liberty:
v The jpa-2.0 feature provides support for applications that use application-managed and

container-managed JPA written to the JPA 2.0 specification. The support is built on Apache OpenJPA
with extensions to support the container-managed programming model.

v The jpa-2.1 feature provides support for applications that use application-managed and
container-managed JPA written to the JPA 2.1 specification. The support is built on EclipseLink

For information about developing JPA applications by using WebSphere Developer Tools, see Developing
JPA applications.

Procedure
v Add the jpa-2.0 or jpa-2.1 feature to the server.xml file.
v Add persistence context and persistence unit definitions to the web.xml file.

For example:
<persistence-context-ref>

<persistence-context-ref-name>example/em</persistence-context-ref-name>
<persistence-unit-name>ExamplePersistenceUnit</persistence-unit-name>

</persistence-context-ref>

<persistence-unit-ref>
<persistence-unit-ref-name>example/emf</persistence-unit-ref-name>
<persistence-unit-name>ExamplePersistenceUnit</persistence-unit-name>

</persistence-unit-ref>

v Configure access to the entity manager.
For example:
Context ctx = new InitialContext();
UserTransaction tran = (UserTransaction) ctx.lookup("java:comp/UserTransaction");
tran.begin();
EntityManager em = (EntityManager) ctx.lookup(java:comp/env/example/em");
Thing thing = new Thing();
em.persist(thing);
tran.commit();

v Configure access to the entity manager factory.
For example:
Context ctx = new InitialContext();
EntityManagerFactory emf = (EntityManager) ctx.lookup(java:comp/env/example/emf");
EntityManager em = emf.createEntityManager();
EntityTransaction tx = em.getTransaction();
tx.begin();
Thing thing = new Thing();

Chapter 9. Deploying applications in Liberty 1347

https://www-01.ibm.com/support/knowledgecenter/SSHR6W_8.5.5/com.ibm.websphere.wdt.doc/topics/t_jpa.htm?lang=en
https://www-01.ibm.com/support/knowledgecenter/SSHR6W_8.5.5/com.ibm.websphere.wdt.doc/topics/t_jpa.htm?lang=en

em.persist(thing);
tx.commit();
int id = thing.getId();
em.close();

Enhancement of JPA entities
The JPA 2.0 specification provider that is included in Liberty is based on Apache OpenJPA. OpenJPA uses
Java bytecode enhancement of JPA persistent types (Entity, Embeddable, MappedSuperclass) to add state
tracking, and other necessary information to enable persistence and other optimized features within JPA
classes. In an application server environment, enhancement of your JPA entities occurs automatically
when the application is loaded by the Liberty server.

Pre-enhancement of JPA classes (or build time enhancement) is necessary when a persistence JAR is used
in both application server, and non-application server environments. The most common ways to perform
build time enhancement are the OpenJPA enhancer Ant task, and PCEnhancer. These build time
enhancement options require the OpenJPA library and dependent libraries to be on the classpath. The
wsenhancer command, in the WebSphere Application Server traditional install, can also be used.

Note: The JPA 2.1 specification provider for Liberty is EclipseLink. EclipseLink does not require entity
enhancement.

Deploying web services applications to Liberty
By configuring Liberty features in the server.xml file, you can deploy web services applications to
Liberty.

Deploying JAX-RS 2.0 applications to Liberty
You can use Java API for RESTful Web Services (JAX-RS) to develop services that follow Representational
State Transfer (REST) principles. RESTful services are based on manipulating resources. Resources can
contain static or dynamically updated data. By identifying the resources in your application, you can

make the service more useful and easier to develop. Liberty provides two Liberty features, jaxrs-1.1
8.5.5.6 and jaxrs-2.0, to support the JAX-RS programming model.

Asynchronous processing

You can use the asynchronous processing technique in JAX-RS 2.0 to process threads. Asynchronous
processing is supported both in the Client API and in the Server API. For more information about
asynchronous processing in Client and Server APIs, see Chapter 8 of JSR 339: JAX-RS 2.0: The Java API
for RESTful Web Services (the "Specification").

The following two examples show asynchronous processing in the Client and Server APIs:
v Asynchronous processing in the Client API:

Client client = ClientBuilder.newClient();
WebTarget target = client.target("http://example.org/customers/{id}");
target.resolveTemplate("id", 123).request().async().get(

new InvocationCallbackCustomer() {
@Override
public void completed(Customer customer) {

// Do something
}

@Override
public void failed(Throwable throwable) {

// Process error
}

});

v Asynchronous processing in the Server API:

1348 WebSphere Application Server Liberty Core 8.5.5

https://www.jcp.org/en/jsr/detail?id=339
https://www.jcp.org/en/jsr/detail?id=339

@Path("/async")
public class MyResource{

@GET
public void getAsync(@Suspended final AsyncResponse asyncResponse){

CompletionCallback callBack = new CompletionCallback(){
@Override
public void onComplete(Throwable throwable) {

...
}

};
asyncResponse.register(callBack);
asyncResponse.resume("some Response");

}
}

The JAX-RS 2.0 implementation in Liberty supports EJB and the use of stateless and singleton session
beans as root resource classes. When an EJB method is annotated with @Asynchronous, the EJB container
automatically allocates the necessary resources for its execution. Thus, in this scenario, it is unnecessary
to use an Executor to generate an asynchronous response. For example,
@Stateless
@Path("/")
class EJBResource {

@GET @Asynchronous
public void longRunningOp(@Suspended AsyncResponse ar) {
executeLongRunningOp();
ar.resume("Hello async world!");
}

}

Explicit thread management is not needed in this case because that is under the control of the EJB
container. The response is produced by calling resume on the injected AsyncResponse. Hence, the return
type of longRunningOp is void.

Configuring a resource to receive multipart/form-data parts from an HTML form
submission in JAX-RS 2.0
HTML forms that transmit file data must be configured with the POST method and the
"multipart/form-data" action. This data can be received in one of the two ways by the JAX-RS resource
method that accepts it with the IBM Java API for RESTful Web Services (JAX-RS) implementation.

About this task

This task provides instructions for configuring a JAX-RS method to use and produce
multipart/form-data. The following example illustrates an HTML form:
<form action="http://www.example.com/" method="POST" enctype="multipart/form-data">

<input type="text" name="fileid" />

<input type="text" name="description" />

<input type="file" name="thefile" />

<input type="submit" name="submit" value="submit"/>

</form>

You can implement the IBM JAX-RS to receive the data in parts, so you can process these parts yourself,
if needed.

Procedure

Create a resource method. You must declare one of the following resource methods to receive and echo
multipart/form-data content from an HTTP POST:

Chapter 9. Deploying applications in Liberty 1349

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|

|

|
|

package com.example.jaxrs;
@POST
@Consumes("multipart/form-data")
@Produces("multipart/form-data")

public Response postFormData(IMultipartBody multipartBody) {
List <IAttachment> attachments = multipartBody.getAllAttachments();

String formElementValue = null;
InputStream stream = null;
for (Iterator<IAttachment> it = attachments.iterator(); it.hasNext();) {

IAttachment attachment = it.next();
if (attachment == null) {

continue;
}
DataHandler dataHandler = attachment.getDataHandler();
stream = dataHandler.getInputStream();
MultivaluedMap<String, String> map = attachment.getHeaders();
String fileName = null;
String formElementName = null;
String[] contentDisposition = map.getFirst("Content-Disposition").split(";");
for (String tempName : contentDisposition) {

String[] names = tempName.split("=");
formElementName = names[1].trim().replaceAll("\"", "");
if ((tempName.trim().startsWith("filename"))) {

fileName = formElementName;
}

}
if (fileName == null) {

StringBuffer sb = new StringBuffer();
BufferedReader br = new BufferedReader(new InputStreamReader(stream));
String line = null;
try {

while ((line = br.readLine()) != null) {
sb.append(line);

}
} catch (IOException e) {

e.printStackTrace();
} finally {

if (br != null) {
try {

br.close();
} catch (IOException e) {

e.printStackTrace();
}

}
}
formElementValue = sb.toString();
System.out.println(formElementName + ":" + formElementValue);

} else {
//handle the file as you want
File tempFile = new File(fileName);
...
}

}
if (stream != null) {

stream.close();
}
return Response.ok("test").build();

}

Or
package com.example.jaxrs;
@POST
@Consumes("multipart/form-data")
@Produces("multipart/form-data")

public Response postFormData(List<IAttachment>attachments) {
List <IAttachment> attachments = multipartBody.getAllAttachments();

String formElementValue = null;
InputStream stream = null;
for (Iterator<IAttachment> it = attachments.iterator(); it.hasNext();) {

IAttachment attachment = it.next();
if (attachment == null) {

continue;
}
DataHandler dataHandler = attachment.getDataHandler();
stream = dataHandler.getInputStream();
MultivaluedMap<String, String> map = attachment.getHeaders();
String fileName = null;
String formElementName = null;
String[] contentDisposition = map.getFirst("Content-Disposition").split(";");
for (String tempName : contentDisposition) {

String[] names = tempName.split("=");
formElementName = names[1].trim().replaceAll("\"", "");
if ((tempName.trim().startsWith("filename"))) {

fileName = formElementName;
}

}

1350 WebSphere Application Server Liberty Core 8.5.5

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

if (fileName == null) {
StringBuffer sb = new StringBuffer();
BufferedReader br = new BufferedReader(new InputStreamReader(stream));
String line = null;
try {

while ((line = br.readLine()) != null) {
sb.append(line);

}
} catch (IOException e) {

e.printStackTrace();
} finally {

if (br != null) {
try {

br.close();
} catch (IOException e) {

e.printStackTrace();
}

}
}
formElementValue = sb.toString();
System.out.println(formElementName + ":" + formElementValue);

} else {
//handle the file as you want
File tempFile = new File(fileName);
...
}

}
if (stream != null) {

stream.close();
}
return Response.ok("test").build();

}

The originator of the form POST submission can generate a Content-Transfer-Encoding header for one or
more parts of the multipart message. The IBM JAX-RS implementation attempts to auto-decode the
payload of the part according to this header when the header is of base64 or quoted-printable encoding
type.

Results

You have received and echoed data from an HTTP POST with multipart/form-data Content-Type, by
allowing the IBM JAX-RS implementation to split and auto-decode the parts for you, and by receiving the
still encoded parts to process yourself.

Configuring JAX-RS 2.0 client

8.5.5.6

For Java API for XML RESTful Web Services 2.0, you can configure the client to access REST endpoints.
JAX-RS 2.0 introduces a new and standardized Client API so that you can make HTTP requests to your
remote RESTful web services.

About this task

An instance of Client is required to access a Web resource using the Client API. The default instance of
Client can be obtained by calling newClient or build on ClientBuilder.

Procedure
1. Enable the jaxrsClient-2.0 or jaxrs-2.0 feature in your server.xml file:

<featureManager>
<feature>jaxrs-2.0</feature>// If you only need the JAX-RS 2.0 client feature, you can enable jaxrsClient-2.0 instead of jaxrs-2.0

</featureManager>

2. Create a JAX-RS 2.0 client and send the request to the server:
javax.ws.rs.client.ClientBuilder cb = ClientBuilder.newBuilder();

javax.ws.rs.client.Client c = cb.build();
String res = null;

try {

Chapter 9. Deploying applications in Liberty 1351

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|
|
|

res = c.target("<Resource_URL>")
.path("<PATH>")
.request()
.get(String.class);

} catch (Exception e) {
res = "[Error]:" + e.toString();

} finally {
c.close();

}

For more information about the asynchronous JAX-RS 2.0 client, see “Asynchronous processing” on
page 1348.

What to do next
v

–

8.5.5.6

Use the com.ibm.ws.jaxrs.client.timeout client property to set the timeout value.

javax.ws.rs.client.ClientBuilder cb = ClientBuilder.newBuilder();
cb.property("com.ibm.ws.jaxrs.client.timeout", "1000");
Client c = cb.build();

Tip: The value of the timeout property is milliseconds, and the type must be long or int. If the type
of the value is invalid, the following message is displayed:
CWWKW0700E: The timeout value {0} that you specified in the property com.ibm.ws.jaxrs.client.timeout on the JAX-RS Client side is invalid. The value is set to default 30000.{3}

–

8.5.5.7

Use the com.ibm.ws.jaxrs.client.connection.timeout client property and the

com.ibm.ws.jaxrs.client.receive.timeout client property to set the timeout values.
- com.ibm.ws.jaxrs.client.connection.timeout

javax.ws.rs.client.ClientBuilder cb = ClientBuilder.newBuilder();
cb.property("com.ibm.ws.jaxrs.client.connection.timeout", "1000");
Client c = cb.build();

- com.ibm.ws.jaxrs.client.receive.timeout
javax.ws.rs.client.ClientBuilder cb = ClientBuilder.newBuilder();

cb.property("com.ibm.ws.jaxrs.client.receive.timeout", "1000");
Client c = cb.build();

Tip: The value of the timeout property is millisecond, and the type must be long or int. If the type
of the value is invalid, the following message is displayed:
CWWKW0700E: The timeout value {0} that you specified in the property com.ibm.ws.jaxrs.client.receive.timeout on the JAX-RS Client side is invalid. The value is set to default 30000. {3}

v Use the following client properties for client proxy support:
ClientBuilder cb = ClientBuilder.newBuilder();
cb.property("com.ibm.ws.jaxrs.client.proxy.host", "hostname");
cb.property("com.ibm.ws.jaxrs.client.proxy.port", "8888";);
cb.property("com.ibm.ws.jaxrs.client.proxy.type", "HTTP");

Client c = cb.build();

– com.ibm.ws.jaxrs.client.proxy.host
– com.ibm.ws.jaxrs.client.proxy.port

Tip: The type of the proxy server port value must be int. The default value is 80. If the value type is
invalid, the following message is displayed:
CWWKW0701E: The proxy server port value {0} that you specified in the property com.ibm.ws.jaxrs.client.proxy.port on the JAX-RS Client side is invalid. The value is set to default 80. {3}

– com.ibm.ws.jaxrs.client.proxy.type

Tip: The value of the proxy server type must be HTTP or SOCKS. The default value is HTTP. If the
type of the proxy server is invalid, the following message is displayed:
CWWKW0702E: The proxy server type value {0} that you specified in the property com.ibm.ws.jaxrs.client.proxy.type on the JAX-RS Client side is invalid. The value is set to default HTTP. {3}

1352 WebSphere Application Server Liberty Core 8.5.5

v Use the com.ibm.ws.jaxrs.client.ltpa.handler client property to set the SSO cookie and set the value to true.
ClientBuilder cb = ClientBuilder.newBuilder();

Client c = cb.build();
c.property("com.ibm.ws.jaxrs.client.ltpa.handler", "true");

If you want to use the Secure Sockets Layer (SSL) function in JAX-RS 2.0, you need to enable the ssl-1.0
or appSecurity-2.0 feature. For the LTPA token function, you must enable the appSecurity-2.0 feature.
For more information about how to configure the environment to run the JAX-RS 2.0 client with SSL
through IHS, see Configuring IBM HTTP server SSL support.

Note: The ssl-1.0 feature is a subfeature of the appSecurity-2.0 feature. If you enable the jaxrsClient-2.0
feature and the ssl-1.0 feature, the appSecurity-2.0 feature is enabled automatically.

v Use the com.ibm.ws.jaxrs.client.ssl.config client property to set the SSL reference id of your server.xml
file.
ClientBuilder cb = ClientBuilder.newBuilder();

cb.property("com.ibm.ws.jaxrs.client.ssl.config", "mySSLRefId");
Client c = cb.build();

For more information about establishing trust by extracting the certificate from the IHS key file and
adding it to the Liberty JKS file, see Create a key database file and certificates needed to authenticate
the Web server during an SSL handshake.

Note: The configuration in the server.xml file shows as follows:
<ssl id="mySSLRefId" keyStoreRef="clientKeyStore" trustStoreRef="clientTrustStore" />

v 8.5.5.9 Use the com.ibm.ws.jaxrs.client.disableCNCheck client property to disable the common name
check.
ClientBuilder cb = ClientBuilder.newBuilder();
cb.property("com.ibm.ws.jaxrs.client.disableCNCheck", true);

Deploying EJB in an EAR file for JAX-RS 2.0

8.5.5.6

In Liberty, JAX-RS 2.0 supports EJB JAX-RS in EJB JAR file that must be included in an EAR file.

Procedure
1. Deploy the new myearfile.ear file to Liberty.
2. Use the following URL pattern to access the JAX-RS service::

http://<host>:<port>/<context root>/<path of jaxrs resource>

For example, you can access EJB JAX-RS in <myejbjaxrs.jar>:
http://<host>:<port>/myejbjaxrs/<path of jaxrs resource>

Note: If there are EJB JAX-WS classes in the same EJB-jar and the JAX-WS 2.2 feature is enabled, that
means JAX-WS router module also exists, then the default context root should be the short file name
of EJB jar+".jaxrs" like "myejbjaxrs.jaxrs" for <myejbjaxrs.jar>.

Implementation of JAX-RS 2.0 web applications
You can use Java API for RESTful Web Services (JAX-RS) to develop services that follow Representational
State Transfer (REST) principles. Using JAX-RS, development of RESTful services is simplified.

JAX-RS is a Java API for developing REST applications quickly. This standard API continues to gain
support throughout the Java community. While JAX-RS provides a faster way of developing web

applications than servlets, the primary goal of JAX-RS is to build RESTful services. jaxrs-1.1 and
8.5.5.6

Chapter 9. Deploying applications in Liberty 1353

http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.0.0/com.ibm.websphere.ihs.doc/info/ihs/ihs/rihs_ssldirs.html
http://www-01.ibm.com/support/docview.wss?uid=swg21179559#step2
http://www-01.ibm.com/support/docview.wss?uid=swg21179559#step2

8.5.5.6 jaxrs-2.0 define a server-side component API to build REST applications. IBM JAX-RS
provides an implementation of the JAX-RS (JSR 311) specification.

By using the principles of REST, your business applications can benefit from several advantages. RESTful
services are generally simpler to develop and consume. Most RESTful services use well-defined standards
for delivery such as HTTP. Because HTTP is a protocol that has RESTful properties, RESTful services gain
scalability advantages that enable the service to serve different clients and interoperate with multiple
services, while permitting future growth. Additionally, clients for RESTful services generally are not
difficult to develop, yielding interoperability advantages because most RESTful services use common data
representations such as XML and JSON.

By using JAX-RS technology, REST applications are simpler to develop, simpler to consume, and simpler
to scale when compared to other types of distributed systems. Many popular and widely used Internet
services have successfully provided RESTful APIs to their applications. Third parties have used various
REST APIs to build their own businesses and applications.

JAX-RS capabilities are provided by the use of a servlet or a filter. When you configure the web.xml file
of your web application and assemble the IBM JAX-RS implementation that is based on the Apache Wink
framework into the library directory of your web application, your business application is now ready to
use JAX-RS capabilities.

For more information, see
v Define the resources in JAX-RS web applications
v Configure the JAX-RS application
v Assemble JAX-RS web applications
v Deploy JAX-RS web applications

Note: The context root value in Liberty is either the name of the web module, or the user-defined context
root found in the EAR file.

Implementation of secure JAX-RS applications
The JAX-RS 1.1 runtime environment from IBM is driven by a servlet derived from the Apache Wink

project. 8.5.5.6 The JAX-RS 2.0 runtime environment is driven by a servlet derived from the Apache
CXF 3.0.2. Within the WebSphere Application Server environment, the lifecycle of servlets is managed in
the web container. Therefore, the security services offered by the web container are applicable to REST
resources that are deployed in WebSphere Application Server.

You can define and add security constraints on the REST resources using the same tools that is used to
assemble REST applications. These constraints are captured in the J2EE web deployment descriptor that is
associated with your application. The following list describes security definitions that you can include in
the deployment descriptor:
v User authentication when invoking REST resources embodied in the application, including

– HTTP basic authentication.
– Form login authentication.

v Authorization control over REST resources as defined by the URL patterns for the resources.
v Use of SSL for transport when invoking REST resources.
v Programmatic use of the SecurityContext object to determine user identity and roles.

All the security mechanisms supported by the web container are applicable to REST resources, including
the use of the Kerberos-based SPNEGO authentication mechanism.

For more information, see:
v Securing JAX-RS applications within the web container

1354 WebSphere Application Server Liberty Core 8.5.5

v Securing JAX-RS resources using annotations
v Securing downstream JAX-RS resources

Note: In Liberty, the default context root is the name of the WAR file. For more information about
options when configuring context roots, see “Deploying a web application to Liberty” on page 1344.

Securing downstream JAX-RS resources:

You can secure downstream Java API for RESTful Web Services (JAX-RS) resources by configuring the
BasicAuth method for authentication and by using the LTPA JAX-RS security handler to take advantage
of single sign-on for user authentication.

Before you begin

This task assumes that you have completed the following steps:
v You have installed your JAX-RS application onto the application server.
v You have enabled security for your JAX-RS application.
v You have secured your JAX-RS applications within the web container by configuring downstream

JAX-RS applications to use the basic authentication (BasicAuth) method for user authentication.

About this task

When composing JAX-RS resources, a new LTPA JAX-RS security handler can be used to seamlessly
authenticate on downstream resource invocations.

When invoking downstream secure JAX-RS resources, the calling application is required to authenticate to
the target resource. If the target resource on a downstream server uses the BasicAuth method for security,
the calling application can take advantage of single sign-on (SSO) for JAX-RS resources. Using single
sign-on, an authenticated context is propagated along downstream calls. You can use the LTPA-based
security client handler to authenticate to downstream resources that are distributed across servers.

To illustrate this scenario, assume that you have two servers in your cell and that you have deployed
JAX-RS resources on both of these servers. Suppose from one resource on server1 you need to invoke
another resource that is deployed on server2. When server2 resources are secured using the BasicAuth
method for authentication, use the LTPA JAX-RS security handler to take advantage of single sign-on and
seamlessly propagate user authentication on downstream calls without having to provide or manage user
identities and passwords in the application.

Use the following steps to configure user authentication to a downstream server using the JAX-RS
security handler at application build time.

Figure 19. Securing JAX-RS downstream resources

Chapter 9. Deploying applications in Liberty 1355

Procedure

1. At application build time, use the LTPA-based security client handler, LtpaAuthSecurityHandler, to
authenticate to downstream resources that are distributed across servers.
v For JAX-RS 1.1, when using the LtpaAuthSecurityHandler class, ensure that you target resources

using the https scheme for your URLs, and that the target application is SSL-enabled. It is highly
recommended to use SSL connections when sending user credentials, including LTPA cookies. You
may explicitly turn off the requirement for SSL in the LtpaAuthSecurityHandler class by invoking
the setSSLRequired method on the security handler with the false value. The default value is true.

yourLtpaAuthSecHandler.setSSLRequired(false);

v 8.5.5.6 For JAX-RS 2.0, you can use the com.ibm.ws.jaxrs.client.ltpa.handler client
property to set SSO cookie and set the value to true:

ClientBuilder cb = ClientBuilder.newBuilder();

Client c = cb.build();
c.property("com.ibm.ws.jaxrs.client.ltpa.handler", "true");
WebTarget t = c.target("http://" + serverIP + ":" + serverPort + "/" + moduleName + "/ComplexClientTest/ComplexResource");
String res = t.path("echo1").path("test1").request().get(String.class);
c.close();
ret.append(res);

8.5.5.6 If you want to use the Secure Sockets Layer (SSL) function in JAX-RS 2.0, you need to
enable the ssl-1.0 or appSecurity-2.0 feature. For the LTPA token function, the appSecurity-2.0 feature
is must.

Note: The ssl-1.0 feature is a subfeature of the appSecurity-2.0 feature. If you enable the
jaxrsClient-2.0 feature and the ssl-1.0 feature, the appSecurity-2.0 feature is enabled automatically.

2. Add the security handler to the handlers chain.
3. Create the REST client instance.
4. Create the resource instance that you want to interact with.
5. Substitute a value representing your resource address.

Results

You have defined secure JAX-RS resources such that when downstream resources are invoked, you can
use single sign-on and seamlessly propagate user authentication on downstream calls without having to
provide or manage user identities and passwords in the application.

Example

For JAX-RS 1.1, the following code snippet demonstrates how to use this security handler that is
packaged as part of the JAX-RS client.
import org.apache.wink.client.Resource;
import org.apache.wink.client.RestClient;
import org.apache.wink.client.ClientConfig;
import org.apache.wink.client.handlers.LtpaAuthSecurityHandler;

ClientConfig config = new ClientConfig();
LtpaAuthSecurityHandler secHandler = new LtpaAuthSecurityHandler();

// Add this security handler to the handlers chain.
config.handlers(secHandler);

// Create the REST client instance.
RestClient client = new RestClient(config);

// Create the resource instance that you want to interact with.
// Substitute a value representing your resource address

1356 WebSphere Application Server Liberty Core 8.5.5

resource =
client.resource("http://localhost:8080/path/to/resource");

// Now you are ready to begin calling your resource.

8.5.5.6 For JAX-RS 2.0, the following code snippet demonstrates how to use this security handler
that is packaged as part of the JAX-RS client.
ClientBuilder cb = ClientBuilder.newBuilder();
Client c = cb.build();
c.property("com.ibm.ws.jaxrs.client.ltpa.handler", "true");

String res = "";
res = c.target("http://" + serverIP + ":" + serverPort + "/" + moduleName + "/rest/ltpa")

.request()
c.close();
return res;

JAX-RS 2.0 behavior changes

8.5.5.6

The JAX-RS 2.0 implementation contains some behavior changes. These changes might cause applications
to behave differently or fail on JAX-RS 2.0 if the applications are upgraded from JAX-RS 1.1.

The following list describes the differences between JAX-RS 1.1 and JAX-RS 2.0:
v In JAX-RS 1.1 and Jersey, if an EJB or CDI class creates a new instance that is returned by the JAX-RS

application.getSingletons() method, the engine uses the returned instance and does not try to access the
instance from the EJB or CDI container. In JAX-RS 2.0, for the same scenario, the engine tries to access
the instance from the EJB or CDI container. If the instance can be accessed, the retrieved instance is
used. But if the instance cannot be accessed, the returned instance from the getSingletons() method is
used. For example:
@Override
public SetObject getSingletons() {

SetObject objs = new HashSetObject();
objs.add(new CDIInjectResource());
objs.add(new EJBInjectResource());
return objs;

}

v JAX-RS 2.0 includes many API changes when it handles the MultiPart file. For example, in JAX-RS 1.1,
the @FormParam can be used to handle the MultiPart file, but in JAX-RS 2.0, only @IMultipartBody or
@IAttachment can be used to handle the MultiPart file. For more information, see Configuring a
resource to receive multipart/form-data parts from an HTML form submission in JAX-RS 2.0.

v The jackson packages that are displayed as a third-party API in JAX-RS 1.1 are no longer displayed in
JAX-RS 2.0. If you want to use any org.codehaus.jackson APIs in your application, you need to
compress the jackson packages in your application.

v If you specify javax.ws.rs.core.Application for the servlet name in the web.xml file, the getClasses
method in the Application object, which is injected by @Context, does not return the resource classes.

<servlet>
<servlet-name>javax.ws.rs.core.Application</servlet-name>

</servlet>
<servlet-mapping>
<servlet-name>javax.ws.rs.core.Application</servlet-name>
<url-pattern>/*</url-pattern>

</servlet-mapping>

v The JAX-RS 2.0 specification states that a provider is a class that implements one or more JAX-RS
interfaces and that can be annotated with @Provider for automatic discovery. In the scenario, a class
has @Local annotation that refers to a provider interface, but it does not implement any POJO provider
interface, and then it is an invalid provider. For example:

Chapter 9. Deploying applications in Liberty 1357

|
|
|
|

@Stateless
@Local(OneLocalInterfaceMyOtherStuffMessageBodyWriter.class)
public class OneLocalInterfaceMyOtherStuffProvide

v If you use the MessageBodyReader and MessageBodyWriter @Consumes and @Produces annotations,
some supported media types might be restricted. Use the isReadable method or isWriteable method
to check the media type. For example:
@Provider
@Consumes("<custom/type>")
@Produces("<custom/type>")
@Singleton
public class MyMessageBodyReaderAndWriter implements MessageBodyReader,MessageBodyWriter {

public boolean isReadable(Class<?> type,
Type genericType,
Annotation[] annotations,
MediaType mediaType) {

if (mediaType.toString().equals("<custom/type>"))
return true;

return false;
}

public boolean isWriteable(Class<?> type,
Type genericType,
Annotation[] annotations,
MediaType mediaType) {

if (mediaType.toString().equals("<custom/type>"))
return true;

return false;
}

...
}

v You can use asynchronous processing in JAX-RS 2.0 to process threads. For more information, see
“Asynchronous processing” on page 1348.

v None of the Wink APIs that are displayed as third-party APIs in JAX-RS 1.1 are supported in JAX-RS
2.0. Here is a partial list:
– 8.5.5.8

org.apache.wink.common.model.atom.AtomEntry. For more information about integrating

JAX-RS 2.0 with Atom, see “JAX-RS 2.0 integration with Atom” on page 1360.
– org.apache.wink.client.handlers.BasicAuthSecurityHandler. If you want to use basic

authentication in JAX-RS 2.0, see the following code snippets:
1. Use ClientRequestFilter through the JAX-RS 2.0 standard Client API as shown in the code

example:
import java.io.IOException;
import java.io.UnsupportedEncodingException;
import javax.ws.rs.client.ClientRequestContext;
import javax.ws.rs.client.ClientRequestFilter;
import javax.ws.rs.core.MultivaluedMap;
import javax.xml.bind.DatatypeConverter;

public class BasicAuthFilter implements ClientRequestFilter {

private final String usr;
private final String pwd;

public BasicAuthFilter(String usr, String pwd) {
this.usr = user;
this.pwd = pwd;

}

public void filter(ClientRequestContext requestContext) throws IOException {
MultivaluedMap<String, Object> headers = requestContext.getHeaders();

String token = this.usr + ":" + this.pwd;

1358 WebSphere Application Server Liberty Core 8.5.5

final String basicAuthentication ="Basic " + DatatypeConverter.printBase64Binary(token.getBytes("UTF-8"));
headers.add("Authorization", basicAuthentication);

}
}

2. Register to the ClientBuilder:
ClientBuilder cb = ClientBuilder.newBuilder();
cb.register(new BasicAuthFilter("user","password"));

– org.apache.wink.client.handlers.LtpaAuthSecurityHandler. If you want to use the LTPA-based
security client to secure downstream resources, see “Securing downstream JAX-RS resources” on
page 1355.

– org.apache.wink.server.internal.providers.exception.EJBAccessExceptionMapper. This API is no
longer supported because it is the Wink-specified ExceptionMapper. You can define your own
ExceptionMapper to map the EJBAccessException.

– com.ibm.websphere.jaxrs.server.IBMRestFilter. This API is no longer supported because it is
based on Wink Filter.

Note: Detect if there are wink jar packages in your application. If there are any wink packages in your
application, you must do the following steps:
1. Make sure that there is Application subclass defined.
2. At least one of getClasses and getSingletons must not return null.

v For more information about the supported client properties that can be used in the JAX-RS 2.0 client,
see Configuring JAX-RS 2.0 client.

v If you want to use the Secure Sockets Layer (SSL) function in JAX-RS 2.0, do the following steps:
1. Enable either the ssl-1.0 feature or the appSecurity-2.0 feature. For the LTPA token function, the

appSecurity-2.0 feature is required.

Note: The ssl-1.0 feature is a sub-feature of the appSecurity-2.0 feature. If you enable the
jaxrsClient-2.0 feature and the ssl-1.0 feature, the
appSecurity-2.0 feature is automatically enabled.

2. Enable the com.ibm.ws.jaxrs.client.ssl.config property in the JAX-RS 2.0 client code as follows:
ClientBuilder cb = ClientBuilder.newBuilder();
Client c = cb.build();
c.property("com.ibm.ws.jaxrs.client.ssl.config", "mySSLConfig"); //mySSLConfig is the ssl ref id in Liberty server.xml

Note: This property can bind the Liberty SSL configuration to scopes of ClientBuilder, Client, and
WebTarget.

v If you want to use the Wink Client in the JAX-RS 2.0 server run time, do the following steps:
1. Download the following files that can enable Wink Client in the JAX-RS 2.0 server run time.

– Download the Apache Wink and related JAR files from http://wink.apache.org/downloads.html.
– Download the Apache HTTP and related JAR files from http://hc.apache.org/.

Note: If the JAX-RS 2.0 feature is not enabled, you must also download and add the JAX-RS API to
the third-party lib. Download the JAX-RS API from https://jax-rs-spec.java.net/nonav/.

2. Save all JAR files into the <third-party lib> directory.
3. Add the location of <third-party lib> to the server.xml file:

<library id="thirdPartyLib">
<fileset dir=" <third-party lib>" includes="*.jar" scanInterval="5s"/>

</library>
<enterpriseApplication id="<Your Ear ID>" location="<Your Ear Name>" name="<Your Ear Name>">

<classloader commonLibraryRef="thirdPartyLib"/>
</enterpriseApplication>

Chapter 9. Deploying applications in Liberty 1359

|
|

|

|

http://wink.apache.org/downloads.html
http://hc.apache.org/
https://jax-rs-spec.java.net/nonav/

Note: For more information about asynchronous processing in Client and Server APIs, see Chapter 8 of
JSR 339: JAX-RS 2.0: The Java API for RESTful Web Services (the "Specification").

JAX-RS 2.0 integration with Atom
8.5.5.8

JAX-RS 2.0 can use Apache Abdera to add Atom support.

You can register the following Apache Abdera-based providers with a JAX-RS endpoint and use resource
methods to explicitly deal with Abdera Feed or Entry classes:
v Apache Abdera-based Feed provider: net.wasdev.wlp.sample.abdera.jaxrs.atom.AtomFeedProvider
v Apache Abdera-based Entry provider: net.wasdev.wlp.sample.abdera.jaxrs.atom.AtomEntryProvider

Note: Both AtomFeedProvider and AtomEntryProvider support a formatted Output property.

Now the JAX-RS 2.0 sample on GitHub supports both Maven and Gradle. The online instruction on
GitHub also shows you how to use commands or WebSphere Development Tools (WDT) for Eclipse to
build or test Liberty sample. For more information, see https://github.com/WASdev/
sample.abdera.jaxrs.

Note: Apache CXF offers you other ways of integrating JAX-RS 2.0 with Atom. For more information, see
https://cxf.apache.org/docs/jax-rs-data-bindings.html#JAX-RSDataBindings-Atom.

JAX-RS 2.0 integration with EJB and CDI

8.5.5.6

JAX-RS 2.0 in Liberty integrates with Enterprise JavaBeans (EJB) and Contexts and Dependency Injection
(CDI).

For JAX-RS 2.0 to work with enterprise beans, you need to use @Path to annotate the class of a bean and
convert it to a root resource class.

By integrating with EJB, you can annotate the EJB beans to expose them as REST endpoints. You can also
use the JTA and security functions of EJB. JAX-RS 2.0 in Liberty supports the use of stateless and
singleton session beans as root resource classes, providers, and application subclasses. By integrating with
CDI, you can annotate CDI beans or Managed beans as REST endpoints and use CDI injection for web
services. JAX-RS 2.0 in Liberty supports CDI-style beans as root resource classes, providers, and
application subclasses. Providers and application subclasses must be singletons or use the application
scope. CDI specification makes it easier to integrate Java EE components of different types. It provides a
common mechanism to inject component such as EJB components or Managed beans into other
components such as JSPs or other EJBs.

For EJB, you can use annotation with stateless session beans and singleton POJO beans.
v For a stateless session bean, use the @Stateless annotation as is shown in the following example:

@Stateless
@Path("stateless-bean")
public class StatelessResource {...}

v For a singleton bean, use the @Singleton annotation as is shown in the following example:
@Singleton
@Path("singleton-bean")
public class SingletonResource {...}

For CDI, you can use the @ApplicationScoped and @Inject annotations with application scoped beans.

1360 WebSphere Application Server Liberty Core 8.5.5

https://www.jcp.org/en/jsr/detail?id=339
https://github.com/WASdev/sample.abdera.jaxrs
https://github.com/WASdev/sample.abdera.jaxrs
https://cxf.apache.org/docs/jax-rs-data-bindings.html#JAX-RSDataBindings-Atom

Tip: If the CDI feature is disabled, JAX-RS reports no errors, but the instances are obtained by using
POJO.
@ApplicationScoped
@Path("/ApplicationScopedResource")
public class ApplicationScopedResource {

private @Inject
SimpleBean injected;

...

}

Restrictions on JAX-RS 2.0 with EJB and CDI

See the following items for the restrictions of JAX-RS 2.0 in Liberty:
v If you use EJB as JAX-RS resource, provider or application, you cannot use the @Context injection on

constructor of the EJB bean. The reason is that the EJB with default constructor can only be used for
JAX-RS according to EJB and JAX-RS specification.

v If you use EJB or CDI annotation in a Java class, but the Liberty feature for EJB (such as ejbLite-3.2) or
CDI (such as cdi-1.0) is not configured in the server.xml file, which means there are no EJB or CDI
supports in Liberty run time, then the JAX-RS 2.0 engine uses the Java class as POJO class.

v For an Application class, if it implements no interface or it has @Localbean annotation, it is seen as EJB;
if it implements local or POJO interfaces, it is not seen as EJB.
– For a Provider:

- If a class implements POJO provider interfaces only without the @Local annotation, it is seen as a
valid EJB provider.

- If a class has the @LocalBean annotation and it implements the POJO provider interface, then it is
seen as a valid EJB provider.

- If a class has the local interface with the @Local annotation, the local interface is a provider
interface. If this class implements the provider interface, then it is a valid EJB provider.

- If a class has a local interface with @Local annotation, and if the local interface is not a provider
interface, then it is not a valid provider.
The reason is that in this case, EJB container can generate EJB stub for the local interface only
rather than the POJO provider interface.

- If a class has the @Local annotation only that refers a provider interface, but it does not
implement this provider interface, then it is not a valid provider according to the JAX-RS 2.0
specification: A provider is a class that implements one or more JAX-RS interfaces that are
introduced in this specification and that might be annotated with @Provider for automatic
discovery.

– For Resource:
- If EJB-based resource does not implement any interface, all of the methods that are declared in

this class are available as JAX-RS resources.
- If EJB-based resource implements one interface (local or POJO), then all the methods that are

declared in this interface are available as JAX-RS resources.
- If EJB-based resource implements multiple interface,

1. If all the interfaces are POJO interfaces without the @Local annotation, then all the methods
that are declared in interface are available as JAX-RS resources.

2. If all the interfaces are local interfaces with the @Local annotation, then all the methods that
are declared in the interface are available as JAX-RS resources.

Chapter 9. Deploying applications in Liberty 1361

3. If some of the interfaces are local interfaces with the @Local annotation while others are not
local interfaces, then only the methods declared in the local interfaces are available as JAX-RS
resources. The reason is that the EJB container can generate EJB stub for local interfaces only
in this scenario.

4. If the EJB-based resource has the @LocalBean annotation, then all the methods that are declared
in class are available as JAX-RS resource.

5. If EJB-based resource implements an interface, then JAX-RS resource method must be declared
in the interface. If the interface is a provider that can't be modified, then you must create a
new interface for the resource class to add the resource method. Otherwise, it is not seen as
EJB resource.

v If a resource class with the @Path annotation implements JAX-RS provider interface or it declares with
the @Provider annotation, this class works as both a resource and a provider. In this case, by default,
the JAX-RS 2.0 engine uses only one instance of this class that is shared by the resource and the
provider, and the lifecycle of the instance is singleton.

v If a class is registered in both the getClasses and getSingletons methods of the application class, then
by default, the JAX-RS 2.0 engine uses the instance from the getSingletons method and ignore the
registration in the getClasses method.

v If a RESTful resource is also a CDI managed bean and its scope is
javax.enterprise.context.Dependent, the PreDestroy method cannot be called because of the CDI
restriction.

JAX-RS 2.0 bean and EJB bean lifecycle

JAX-RS bean and EJB bean have different lifecycle. If the bean lifecycle of JAX-RS and EJB conflicts, the
lifecycle is managed by EJB container in Liberty. So the EJB instance is applied while the JAX-RS lifecycle
does not work. For more information, see the following table:

Table 94. JAX-RS 2.0 bean and EJB bean lifecycle

Application JAX-RS 2.0 EJB Result

Resource perRequest Stateless Stateless

perRequest Singleton Singleton

Singleton Stateless Stateless

Singleton Singleton Singleton

Provider Singleton Stateless Stateless

Singleton Singleton Singleton

JAX-RS 2.0 scope and CDI scope lifecycle

Beans have a scope that determines the lifecycle of its instances. JAX-RS and CDI have slightly different
scopes. If the cope lifecycle of JAX-RS and CDI conflict, see the following table for the result:

Table 95. JAX-RS 2.0 scope and CDI scope lifecycle

Application JAX-RS 2.0 Scope CDI Scope annotation Result

Resource perRequest @ApplicationScoped Singleton

perRequest @RequestScoped perRequest

perRequest @Dependent perRequest

perRequest @SessionScoped Session

perRequest perRequest

Singleton @ApplicationScoped Singleton

1362 WebSphere Application Server Liberty Core 8.5.5

Table 95. JAX-RS 2.0 scope and CDI scope lifecycle (continued)

Application JAX-RS 2.0 Scope CDI Scope annotation Result

Singleton @RequestScoped perRequest

Singleton @Dependent Singleton

Singleton @SessionScoped Session

Singleton Singleton

Provider Singleton @ApplicationScoped Singleton

Singleton @RequestScoped Singleton

Singleton @Dependent Singleton

Singleton @SessionScoped Singleton

Singleton Singleton

JAX-RS 2.0 scope and CDI scope lifecycle conflict messages

The following warning messages are displayed when the scope lifecycle of JAX-RS 2.0 and CDI conflicts.
They are warning messages and no actions are required.
v

CWWKW1001W: The scope {1} of JAXRS-2.0 Resource {0} does not match the CDI scope {2}. Liberty gets resource instance from {3}.

This message is displayed if the JAXRS-2.0 resource scope does not match the CDI scope and the
resource instance exists in CDI, so Liberty gets the resource instance from CDI. Instance does not
include CDI injection if it is from JAXRS.

v CWWKW1002W: The CDI scope of JAXRS-2.0 Provider {0} is {1}. Liberty gets the provider instance from {2}.

This message is displayed because provider instance is Singleton only. Liberty gets provider instance
from CDI if the CDI scope of provider is Dependent or ApplicationScoped. Instance does not include
CDI injection if it is from JAXRS.

JAX-RS 2.0 integration with managed beans
8.5.5.8

JAX-RS 2.0 in Liberty supports the use of managed beans as root resource classes, providers, and
application subclasses.
v To integrate JAX-RS 2.0 with managed beans, add the <feature>managedBeans-1.0</feature> entry

inside the featureManager element in the server.xml file.
v To use a managed bean as a JAX-RS resource, provider, or application, use the @ManagedBean to

annotate these classes.
For example, use the Interceptors managed bean feature as follows:
@ManagedBean ("JaxrsManagedBean")
@Path ("/managedbean")
public class ManagedBeanResource {

public static class MyInterceptor {
@AroundInvoke
public Object around(InvocationContext ctx) throws Exception {

System. out .println("around() called");
return ctx.proceed();

}
}

@GET
@Produces("text/plain")
@Interceptors(MyInterceptor. class)

Chapter 9. Deploying applications in Liberty 1363

public String getIt() {
return "Hi managed bean!" ;

}
}

Restrictions on JAX-RS 2.0 with managed beans

Resource injection is only supported by the following JAX-RS component classes that are managed by
Contexts and Dependency Injection (CDI):
v Application subclasses
v Providers
v Root resource classes

Specifically, to inject a managed bean instance into a certain JAX-RS component class, you must ensure
that this component class can be recognized and managed as a CDI bean.

For example, to inject the printMyName managed bean instance into a JAX-RS root resource class as
follows, you must add an empty beans.xml file in the .WAR file/WEB-INF repository:
@Path ("/managedbean")
public class ManagedBeanResource {

@Resource(name = "printMyName")
private PrintMyName printMyName ;

@GET
@Produces("text/plain")
public String getIt() {

printMyName .print();
return "Hi managed bean!" ;

}
}

@ManagedBean ("printmyname")
public class PrintMyName {

public void print() {
// TODO Auto-generated method stub
System. out .println("Injection of ManagedBean is successful");

}

}

Sending multiple query parameters from Client - Cascaded or Iterated
programming

8.5.5.6

You can see the following sample if you want to send multiple query parameters from the client side to
the server.

About this task

Note: Normally, the way to put multiple query parameters in a WebTarget object is by using the
following cascaded programming mode:
javax.ws.rs.core.Response response = client.target(...).queryParam(key, value).queryParam(key, value).queryParam(key, value).request.get();

However, in some cases, the cascaded programming mode does not apply because the number of key
value pairs is flexible and cannot be predicated. For these cases, you can use the following iteration based
programming mode:

1364 WebSphere Application Server Liberty Core 8.5.5

Map<String, String> queryStrings;
...
javax.ws.rs.client.WebTarget target = client.target(....);
for (String key: queryStrings.keySet()){

String value = queryStrings.get(key);
target = target.queryParam(key, value); //It is important to know queryParam method won’t update current WebTarget object, but return a new one.
}
}
javax.ws.rs.core.Response response = target.request().get();

Using JAX-RS 2.0 context objects to obtain more information about requests

8.5.5.6

Java API for RESTful Web Services (JAX-RS) 2.0 provides different types of context to application
subclasses, root resource classes, and providers. You can use the @Context annotation to inject context
objects such as HttpHeaders, UriInfo, HttpServletRequest into class field or method parameter in
application subclasses, root resource classes, and providers.

About this task

You can use the following context objects that are available to providers (client and server), resource
classes (server only), and Application subclasses (server only):

Context object Type Description

Application Class The instance of the
application-supplied Application
subclass can be injected into a class
field or method parameter using the
@Context annotation. Access to the
Application subclass instance allows
configuration information to be
centralized in that class.
Note: This Applicationsubclass
cannot be injected into the
Application subclass itself since this
would create a circular dependency.

UriInfo Interface The UriInfo interface provides static
and dynamic, per-request
information, about the components of
a request URI.

HttpHeaders Interface The HttpHeaders interface provides
access to request header information
either in map form or via strongly
typed convenience methods.

Request Interface The Request interface allows a caller
to determine the best matching
representation variant and to
evaluate whether the current state of
the resource matches any
preconditions in the request.

SecurityContext Interface The SecurityContext interface
provides access to information about
the security context of the current
request.

Providers Interface The Providers interface allows for
lookup of provider instances based
on a set of search criteria.

Chapter 9. Deploying applications in Liberty 1365

Context object Type Description

ResourceContext Interface The ResourceContext interface
provides access to instantiation and
initialization of resource or
subresource classes in the default
per-request scope.

Configuration Interface Both the client and the server
runtime configurations are available
for injection via @Context. These
configurations are available for
injection in providers (client or
server) and resource classes (server
only).

WADL2JAVA command

8.5.5.6

The wadl2java command line tool processes an existing Web Application Description Language (WADL)
file and generates the required artifacts for developing Java API for RESTful Web Services (JAX-RS) web
service applications. The wadl2java command line tool supports the top-down approach to developing
JAX-RS web services. When you start with an existing WADL file, use the wadl2java command line tool
to generate the required JAX-RS artifacts.

Web Application Description Language (WADL)

WADL is a resource-centric description language that is designed to facilitate the modeling, description,
and testing of RESTful web applications. For more information, see Web Application Description
Language.

Syntax

The command syntax is as follows:
wadl2java --[options]

wadl2java -wadlns wadl-namespace -p package-name -sp [schema-namespace =]package-name -tMap schema-type=java-type * -repMap media-type=class-name * -resource resource-name -b binding-file-name * -catalog catalog-file-name -d output-directory -interface -impl -async methodNames * -generateEnums -inheritResourceParams -noTypes -noVoidForEmptyResponses -noAddressBinding -supportMultipleXmlReps -generateResponseIfHeadersSet -generateResponseForMethods methodNames * -async methodNames * -xjc xjc-argumentsv * -encoding encoding -h|-?|-help -version|-v -verbose|-V -quiet|-q|-Q wadl

Parameters

The following options values are available for the wadl2java command:

-wadlns wadl-namespace
Specify the WADL namespace.

-p package-name
Specifies the Java package name to use for the generated code that represents WADL resource
elements.

-sp [schema-namespace =]package-name
Specifies the Java package name to use for the generated code that represents WADL grammar
elements. Optionally specify a namespace to Java package name mapping.

-tMap schema-type=java-type *
Specifies the optional mapping between WADL parameter or representation schema type and
custom Java type.

-repMap media-type=class-name *
Specifies the optional mapping between a WADL representation with no wadl:element attribute
and Java class.

1366 WebSphere Application Server Liberty Core 8.5.5

http://www.w3.org/Submission/wadl/
http://www.w3.org/Submission/wadl/

-resource resource-name
Specify the simple class name to use for the generated code code that represents a WADL
resource without the id attribute.

-b binding-file-name *
Specify external jaxb binding files. Use one -b flag for each binding file.

-catalog catalog-file-name
Specify catalog file to map the imported wadl or schema.

-d output-directory
Specify the directory into which the code is placed.

-interface
Specifies that interface is generated.

-impl Specifies that a dummy service implementation is generated.

-async methodNames *
Specifies a comma-separated list of method names or identifiers that need to support suspended
asynchronous invocations.

-generateEnums
Specifies that Enum classes can be generated to represent parameters with multiple options.

-inheritResourceParams
Specifies that resource-level (path or matrix) parameters can be inherited by child resources.

-noTypes
Turns off generating types

-noVoidForEmptyResponses
Use JAX-RS Response return type for methods with no response representation.

-noAddressBinding
Specifies that the generator might not use the address jaxb binding file to map
wsa:EndpointReferenceType or wsa:EndpointReference to
javax.xml.ws.wsaddressing.W3CEndpointReference.

-supportMultipleXmlReps
Specifies that if a method contains multiple request XML representations then a separate method
per every such representation is generated. Do not enable this option when a server-side JAX-RS
code is generated. A single method that contains a javax.xml.transform. Source input parameter is
generated by default such cases.

-generateResponseIfHeadersSet
Use JAX-RS Response return type if WADL Response element has 'header' parameters.

-generateResponseForMethods methodNames *
Specifies a comma-separated list of method names or identifiers that need to have JAXRS
Response return type generated.

-async methodNames *
Specifies a comma-separated list of method names or identifiers that need to support suspended
asynchronous invocations.

-xjc xjc-argumentsv *
Specifies a comma-separated list of arguments that are passed directly to XJC when the JAXB
data binding is used. This option causes XJC to load extra plug-ins that augment code generation.
For example, to load the toString(ts) plug-in that adds a toString() method to all generated types
the followingarguments would be used: -xjc-Xts A list of available XJC plug-ins can be obtained by
using -xjc-X.

Chapter 9. Deploying applications in Liberty 1367

-encoding encoding
Specifies the charset encoding to use when Java sources are generated.

-h|-?|-help
Display detailed information for options.

-version|-v
Display the version of the tool.

-verbose|-V
Specifies that the generator runs in verbose mode.

-quiet|-q|-Q
-quiet|-q|-Q

wadl wadl-url

Deploying Java batch applications for Liberty

8.5.5.6

You can develop Java batch applications that are based on Java Specification Request (JSR) 352, and then
submit Java batch jobs to run on a Liberty server.

Java batch and managed batch overview

8.5.5.6

The Java batch function extends the application server to accommodate applications that must perform
batch work alongside transactional applications. Batch work might take hours or even days to finish and
uses large amounts of memory or processing power while it runs.

The Java Platform, Enterprise Edition Version 7 (Java EE 7) applications that are typically hosted by the
product perform short, lightweight, transactional units of work. In most cases, an individual request can
be completed with seconds of processor time and relatively little memory. Many applications, however,
must complete batch work that is computational and resource-intensive.

Liberty supports the following batch features:
v Java batch

The batch-1.0 feature enables the use of the JSR-352 programming model.
v Managed batch

The batchManagement-1.0 feature provides the following functions:
– A REST interface for remote job submission
– The batchManager command-line utility
– Job logging support
– Multiple server support by using JMS

The batch-1.0 and the batchManagement-1.0 features support Java SE 7 and later.

Note: The batchManagement-1.0 feature also enables the batch-1.0 feature.

Configuring Liberty for the batch REST API

8.5.5.6

1368 WebSphere Application Server Liberty Core 8.5.5

WebSphere Application Server Liberty includes a RESTful management interface to manage your Java
batch jobs. Managed batch enables a secure HTTPS REST interface so that you can externally manage
your Java batch jobs.

Procedure
1. Add the batchManagement-1.0 feature to your server.xml file.

<featureManager>
<feature>batchManagement-1.0</feature>

</featureManager>

2. Configure batch persistence by configuring the databaseStore used by the Java batch feature.
Reference the databaseStore in the server.xml file by using the jobStoreRef element. The following
example illustrates what your server.xml file should look like.
<batchPersistence jobStoreRef="BatchDatabaseStore" />

<databaseStore id="BatchDatabaseStore" dataSourceRef="batchDB" />

For more information on database persistence, including auto-creation versus manual creation of
tables, see Java batch persistence configuration.

3. Create an SSL certificate and user registry in your server.xml file, so that batchManagement-1.0
automatically enables the SSL feature.
<keyStore id="defaultKeyStore" password="Liberty"/>

<basicRegistry id="basic" realm="ibm/api">
<user name="bob" password="bobpwd" />
<user name="jane" password="janepwd" />

</basicRegistry>

Important: The default self-signed SSL certificate in this example is intended only for development
use and not for production.
For information on configuring role-based management of the batch environment and assigning users
to roles, see Securing the Liberty batch environment.

Results

The RESTful interface is now configured for the Liberty server.

Java batch persistence configuration

8.5.5.6

Java batch uses a persistent store to persist status, checkpoints, and application persistent data across
multiple runs of a job instance. The persistent store enables a job instance to be restarted if an earlier run
fails or must be stopped by supplying the restarted job with the appropriate data.

Java batch memory-based persistence configuration

The batch persistence allows a job instance to be restarted if the execution ends in a FAILED or STOPPED
state. In the absence of batch persistence configuration, Java batch uses a default capability of
memory-based persistence to track status, checkpoints, and application persistent data across multiple
runs of a job instance.

The default memory-based persistence implementation for Java batch is used by the underlying batch
container when there is no batchPersistence and databaseStore elements present in the server.xml file.

Chapter 9. Deploying applications in Liberty 1369

Note: As a limitation for Java batch memory-based persistence, by default, persistence in Java batch is
based on memory. If the batch container runtime or server JVM crash or are restarted, persistence is
lost. This function is intended for development purposes only and is not to be considered for production
systems or critical batch processing support.

Java batch database persistence configuration

By default, the batch run time auto-creates non-existent tables based on the server configuration defined
in the databaseStore element. The table definitions are customized based on the schema and tablePrefix
attributes of the database store.

Alternatively, the ddlGen script can be used to generate a DDL based on the server configuration. If
necessary, the DDL can be customized before manually creating the tables. This DDL also incorporates
server configuration such as schema andtablePrefix and contains the appropriate SQL for the database
type of the data source referenced by the databaseStore.

Note: Customized DDL must use positive integer primary key IDs. As a limitation for database
persistence, Java Batch does not accept negative or zero integer IDs persisted in the primary key identity
columns. The Java Batch container runtime only runs jobs that use positive integer job IDs persisted in
the primary key identity columns.

The auto-creation of tables can be disabled by using the createTables="false" attribute on the
databaseStore. This option can be used to ensure that you use manually created tables instead of using
auto-created tables if the batch runtime unexpectedly could not find your manually created tables.

The samples shown on this page use the default auto-create behavior. This behavior is equivalent to
createTables="true".

Note: To avoid data integrity issues that are caused by having an isolation level less than
REPEATABLE_READ, set the isolation level of the data source to TRANSACTION_REPEATABLE_READ.
If you do not specify an isolation level, the default depends on the database. In most cases, the default is
TRANSACTION_REPEATABLE_READ.

Persistence configuration sample

The following sample configures batch access to the automatically created target database table
RUNTIMEDB for Derby.
<!-- Batch persistence config. References a databaseStore. -->

<batchPersistence jobStoreRef="BatchDatabaseStore" />

<!-- The database store for the batch tables. -->
<!-- Note this database store is referenced by the batchPersistence element. -->
<databaseStore id="BatchDatabaseStore" dataSourceRef="batchDB" schema="JBATCH" tablePrefix="" />

<!-- Derby JDBC driver -->
<!-- Note this library is referenced by the dataSource element -->
<library id="DerbyLib">

<fileset dir="${server.config.dir}/resources/derby" />
</library>

<!-- Data source for the batch tables. -->
<!-- Note this data source is referenced by databaseStore element -->
<dataSource id="batchDB" isolationLevel="TRANSACTION_REPEATABLE_READ" >

<jdbcDriver libraryRef="DerbyLib" />
<properties.derby.embedded

databaseName="${server.config.dir}/resources/RUNTIMEDB"

1370 WebSphere Application Server Liberty Core 8.5.5

createDatabase="create"
user="user"
password="pass" />

</dataSource>

Securing the Liberty batch environment

8.5.5.6

The Liberty batch framework allows you to configure role-based access to all batch management
operations and also to view metadata and logs associated with your batch jobs.

Before you begin

Three batch roles are defined by the batch container. A single user can have more than one batch role.

batchAdmin
A batchAdmin has unrestricted access to all batch operations. This includes permission to submit
new jobs, stop and restart any user's jobs, view any job metadata and job logs that are submitted
by any user in the batch domain, and to purge any jobs. A batchAdmin is not necessarily a
WebSphere Application Server administrator.

batchSubmitter
A batchSubmitter has permission to submit new jobs and can only perform batch operations such
as stop, restart, or purge on their own jobs. A batchSubmitter cannot view or modify other user's
jobs. For example, if user1 and user2 are defined as batchSubmitters, and user1 submits a job,
user2 cannot view the job instance data that is associated with user1's job.

batchMonitor
A batchMonitor has read-only permissions to all jobs. Users in this role can view all job instances
and executions and have access to all job logs. A batchMonitor cannot submit their own jobs, or
stop, restart, or purge any jobs.

Note: Once batch security is enabled, any JobOperator API method or REST operation that returns a list
will be filtered based on the batch roles granted to the current user. For example, when a user with only
batchSubmitter permissions requests a list of all job instances, only job instances submitted by the current
user will be returned.

About this task

Procedure
1. By default, the batch-1.0 feature does not enable any security. The JobOperator methods are left open

for all users whether they are authenticated or not. The methods are left open for development
purposes only and require no security configuration. The batchManagement-1.0 feature enables the
batch REST API. The REST API always requires a user to authenticate even when the appSecurity-2.0
feature is not enabled, but all users will be treated as batch administrators and can perform all batch
operations on any job instance. Once appSecurity-2.0 is enabled, batch role-based security
authorization will be performed and users will be restricted to batch operations defined by their given
batch roles.
a. Enable the batch role-based security through the JobOperator API

<featureManager>
<feature>batch-1.0</feature>
<feature>appSecurity-2.0</feature>

</featureManager>

b. Enable the batch role-based security through the REST API.

Note: The batchManagement-1.0 feature includes the batch-1.0 feature.

Chapter 9. Deploying applications in Liberty 1371

<featureManager>
<feature>batchManagement-1.0</feature>
<feature>appSecurity-2.0</feature>

</featureManager>

2. Configure your server.xml file to support role-based security. The following example illustrates a
basic user registry that defines a list of users. This registry is used by sample batch role based security
configurations.
<basicRegistry id="basic" realm="ibm/api">
<user name="alice" password="alicepwd" />
<user name="bob" password="bobpwd" />
<user name="jane" password="janepwd" />
<user name="joe" password="joepwd" />
<user name="phyllis" password="phyllispwd" />
<user name="kai" password="kaipwd" />

</basicRegistry>

In this example, one user occupies multiple roles.
<authorization-roles id="com.ibm.ws.batch">
<security-role name="batchAdmin" >
<user name="alice" />

</security-role>
<security-role name="batchSubmitter" >
<user name="jane" />
<user name="phyllis" />
<user name="bob" />

</security-role>
<security-role name="batchMonitor" >
<user name="joe" />
<user name="bob" />

</security-role>
</authorization-roles>

In this example, one user occupies multiple roles. All users have the batchSubmitter role.
<authorization-roles id="com.ibm.ws.batch">
<security-role name="batchAdmin" >
<user name="alice" />

</security-role>
<security-role name="batchSubmitter" >
<special-subject type="ALL_AUTHENTICATED_USERS"/>

</security-role>
<security-role name="batchMonitor" >
<user name="joe" />
<user name="bob" />

</security-role>
</authorization-roles>

In this example, one user occupies multiple roles. All users, including those users that are not
authenticated, are allowed to have the batchMonitor role.
<authorization-roles id="com.ibm.ws.batch">
<security-role name="batchAdmin" >
<user name="alice" />

</security-role>
<security-role name="batchSubmitter" >
<user name="joe" />
<user name="bob" />

</security-role>
<security-role name="batchMonitor" >
<special-subject type="EVERYONE"/>

</security-role>
</authorization-roles>

1372 WebSphere Application Server Liberty Core 8.5.5

Java batch shutdown and recovery

8.5.5.6

The Java batch feature behaves differently when the server is shut down while jobs are still running.

Deactivating Java batch

Java batch is deactivated when the server is stopped or the Java batch feature is removed. It is also
deactivated and reactivated to process a dynamic configuration update. Deactivating Java batch causes
stop requests to be issued to all active jobs and messages to be logged for each stop. There is a 2-second
period for the jobs to stop. If after 2 seconds there are Java batch jobs that are still running, a message is
logged that indicates which job execution IDs are still active. Java batch then shuts down. If jobs are still
running after Java batch shuts down, they can experience unpredictable behavior.

Important: If the server is unexpectedly stopped, Java batch recovers by marking all jobs that were
running on the server but not completed as FAILED when the server is restarted.

Batch REST API

8.5.5.6

The WebSphere Application Server Liberty includes a RESTful management interface to manage your
batch jobs.

The basic operations that are associated with a batch job are to submit (start), stop, restart, and view
status. You can perform these operations by using any HTTP REST client. Any data that is submitted as
part of a request or returned as part of a response is JSON formatted.

The following examples show the functions that you can perform with the REST API.

Note: The Batch REST API is versioned on a URL by URL basis. URL's with no version number are
considered as version 1 of the API. The web addresses of the batch REST interface all start with the root
web address: https://{host}:{port}/ibm/api/batch/{version}/.

Remember: The web addresses of the batch REST interface all start with the root web address:
https://{host}:{port}/ibm/api/batch.
v “REST API with a user ID that is only a submitter”
v “Job instances” on page 1374
v “Job executions” on page 1381
v “Step executions” on page 1382
v “Job logs” on page 1385
v “HTTP Return Codes” on page 1386
v “STOP requests in a distributed server batch environment” on page 1386
v “JOBLOGS requests in a distributed server batch environment” on page 1386
v “Purge requests in a distributed server batch environment” on page 1387

REST API with a user ID that is only a submitter

The results returned by the GET ("read") URLs will be filtered when the user ID that invokes the REST
API over HTTPS has only been granted access to the batchSubmitter role. The submitter only sees
instance and execution data that is associated with job instances that were submitted by the submitter
himself. In contrast, user ids granted access to the batchAdmin and batchMonitor roles will be able to
view all instance and execution data (returned by any given URL with any given set of parameters).

Chapter 9. Deploying applications in Liberty 1373

A userid which only has access to the batchSubmitter role sees results that are first filtered by the
standard parameters as described in the documentation of the given URL, and then further filtered by
only returning instance and execution data associated with job instances submitted by the submitter
himself.

See Securing the Liberty batch environment for more information.

Job instances

GET /ibm/api/batch/jobinstances/
This URI returns a list of job instances. Query parameters include:
v page=[page number]: Indicates which page (subset of records) to return. The default is 0.
v pageSize=[number of records per page]: Indicates the number of records per page. The default

is 50.

Sample requests:
https://localhost:9443/ibm/api/batch/jobinstances
https://localhost:9443/ibm/api/batch/jobinstances?page=13&pagesize=20

Sample response:
[

{
"jobName":"test_sleepyBatchlet",
"instanceId":7,
"appName":"SimpleBatchJob#SimpleBatchJob.war",
"submitter":"bob",
"batchStatus":"COMPLETED",
"jobXMLName":"test_sleepyBatchlet",
"instanceState":"COMPLETED",
"_links":[

{
"rel":"self",
"href":"https://localhost:9443/ibm/api/batch/jobinstances/7"

},
{

"rel":"job logs",
"href":"https://localhost:9443/ibm/api/batch/jobinstances/7/joblogs"

}
]

},
{

"jobName":"test_sleepyBatchlet",
"instanceId":6,
"appName":"SimpleBatchJob#SimpleBatchJob.war",
"submitter":"bob",
"batchStatus":"COMPLETED",
"jobXMLName":"test_sleepyBatchlet",
"instanceState":"COMPLETED",
"_links":[

{
"rel":"self",
"href":"https://localhost:9443/ibm/api/batch/jobinstances/6"

},
{

"rel":"job logs",
"href":"https://localhost:9443/ibm/api/batch/jobinstances/6/joblogs"

}
]

}
]

GET /ibm/api/batch/v2/jobinstances/
This URI returns a list of job instances filtered by the following query parameters:

1374 WebSphere Application Server Liberty Core 8.5.5

v jobInstanceId=[instanceId]:[instanceId]: Returns job instances equal to and between the
instanceId range.

v jobInstanceId=>[instanceId]: Returns job instances equal to and greater than the provided
instanceId.

v jobInstanceId=<[instanceId]: Returns job instances equal to and less than the provided
instanceId.

v jobinstanceId=[instanceId],[instanceId],[instanceId]: Returns job instances specified.
v createTime=[yyyy-MM-dd]:[yyy-MM-dd]: Returns job instances between the date range

inclusively. For more information, see note further on in this topic.
v createTime=[yyyy-MM-dd]: Returns job instances on the given date. For more information, see

note further on in this topic.
v createTime=>3d: Returns job instances that were created on or after the day which was three

days ago. For example, the createTime is greater than or equal to the beginning of the day
three days ago. For more information, see note further on in this topic.

v createTime=<3d: Returns job instances that were created on or before the day which was three
days ago. For example, the createTime is less than or equal to the end of the day three days
ago. For more information, see note further on in this topic.

v instanceState=[state],[state]: Returns job instances with the provided state. Valid Instance States
are SUBMITTED, JMS_QUEUED, JMS_CONSUMED, DISPATCHED, FAILED, STOPPED,
COMPLETED and ABANDONED.

v exitStatus=[string]: Returns job instances matching the exit status string. The string criteria may
utilize the wildcard(*) operator on either end.

v page=[page number]: Indicates which page (subset of records) to return. The default is 0.
v pageSize=[number of records per page]: Indicates the number of records per page. The default

is 50.

Note: The role of the server default timezone in queries involving createTime

When you submit a job, the createTime for the job instance is stored in the job repository and
normalized to UTC. When specifying dates via yyyy-MM-dd, as in createTime=[yyyy-MM-dd] or
createTime=[yyyy-MM-dd]:[yyy-MM-dd]:, then you must convert the yyyy-MM-dd date string into
a specific range of UTC times to match against the createTime values in the job instance table
records. To do this, the application uses the default timezone of the server handling the REST
request. It is this server's timezone that is used to convert the date string into a UTC time range
that will be matched against.

The following table illustrates data returned by the query parameters jobInstanceId=10:13.

JOBINSTANCEID
CREATETIME(* in
server1's timezone) INSTANCESTATE EXITSTATUS

10 11-05-2015.01:10:00 COMPLETED SUCCESS
11 11-08-2014.02:20:00 COMPLETED SUCCESS
12 11-10-2015.03:30:00 FAILED FAILURE
13 11-11-2015:04:40:00 COMPLETED SUCCESS

*Since the job repository stores the createTime in a UTC format, it is important to understand that
the table data above shows the createTime formatted using the server’s default timezone of a
particular server, for example, "server1". If we had constructed a similar table from the
perspective of a second server with a different default timezone (than "server1"), we would show
a different set of CREATETIME column values which a corresponding timezone-based difference.
It is the default timezone of the server handling the REST request which is used to map
yyyy-MM-dd date string parameters to UTC createTime values in the database in the examples
below.

Chapter 9. Deploying applications in Liberty 1375

The following commands return the same result regardless of which server they are issued
against:
v jobInstanceId=11:13 would return JOBINSTANCEID’s 11, 12 and 13.
v jobInstanceId=>12 would return JOBINSTANCEID’s 12 and 13.
v jobInstanceId=<12 would return JOBINSTANCEID’s 11 and 12.
v jobInstanceId=11,12 would return JOBINSTANCEID’s 11 and 12.
v instanceState=FAILED would return JOBINSTANCEID 12..
v exitStatus=SUCCESS would return JOBINSTANCEID’s 10, 11 and 13.

The following commands may return different results against servers with different default
timezones. In these examples, they are issued against "server1" (the same server used to populate
the table above) at date and time: 11-11-2015:07:00:00 in the server's default timezone.
v createTime=>2d would return JOBINSTANCEID’s 12 and 13 (on or after 2 days ago, which was

11-09-2015)
v createTime=<2d would return JOBINSTANCEID’s 10 and 11 (on or before 2 days ago, which

was 11-09-2015)
v createTime=2015-11-08:2015-11-11 would return records with JOBINSTANCEID’s 11,12, and 13.
v createTime=2015-11-10 would return record with JOBINSTANCEID 12.

Sample requests:
https://localhost:9443/ibm/api/batch/v2/jobinstances?instanceId=20:50
https://localhost:9443/ibm/api/batch/jobinstances?createTime=>2d
https://localhost:9443/ibm/api/batch/v2/jobinstances?instanceId=4,12,17&instanceState=COMPLETED
https://localhost:9443/ibm/api/batch/v2/jobinstances?instanceId=4500:4600&createTime=2015-11-27&instanceState=COMPLETED&exitStatus=*JOB*&page=0&pageSize=1000

GET /ibm/api/batch/jobinstances/job instance id
This URI returns detailed information about the specified job instance such as all executions that
are associated with a specified job instance. Results are returned in order from most recent to the
oldest. The most recent result is displayed first in the list.

Sample response:
{

"jobName":"test_sleepyBatchlet",
"instanceId":7,
"appName":"SimpleBatchJob#SimpleBatchJob.war",
"submitter":"bob",
"batchStatus":"COMPLETED",
"jobXMLName":"test_sleepyBatchlet",
"instanceState":"COMPLETED",
"_links":[

{
"rel":"self",
"href":"https://localhost:9443/ibm/api/batch/jobinstances/7"

},
{

"rel":"job logs",
"href":"https://localhost:9443/ibm/api/batch/jobinstances/7/joblogs"

},
{

"rel":"job execution",
"href":"https://localhost:9443/ibm/api/batch/jobinstances/7/jobexecutions/7"

}
]

}

POST /ibm/api/batch/jobinstances/
Use this URI to submit (start) a new job.

The following example illustrates the request body for submitting a job that is packaged in a
WAR module, in JSON formatting:

1376 WebSphere Application Server Liberty Core 8.5.5

{
"applicationName" : "SimpleBatchJob",
"moduleName" : "SimpleBatchJob.war",
"jobXMLName" : "test_batchlet_jsl",
"jobParameters" : { "prop1" : "prop1value", "prop2" : "prop2value"}

}

The following example illustrates the request body for submitting a job that is packaged in an
EJB module, in JSON formatting:
{

"applicationName" : "SimpleBatchJob",
"moduleName" : "SimpleBatchJobEJB.jar",
"componentName" : "MyEJB",
"jobXMLName" : "test_batchlet_jsl",
"jobParameters" : { "prop1" : "prop1value", "prop2" : "prop2value"}

}

The applicationName identifies the batch application. It is required unless moduleName is specified,
in which case the applicationName is derived from the moduleName by trimming off the .war or .jar
suffix of the moduleName. For example, if you provide no applicationName and
moduleName=SimpleBatchJob.war, then applicationName defaults to SimpleBatchJob.

The moduleName identifies the module within the batch application that contains the job artifacts,
such as the JSL. The job is submitted under the module's component context. The moduleName is
required unless applicationName is specified, in which case the moduleName is derived from the
applicationName by appending .war to the applicationName. For example, if you provide
applicationName=SimpleBatchJob and no moduleName, then moduleName defaults to
SimpleBatchJob.war.

The componentName identifies the EJB component within the batch application EJB module. If
specified, the job is submitted under the EJB's component context.

Note: The componentName is required only when the module is an EJB module. When the module
is a WAR module, the componentName is not required.

You must enter a value for jobXMLName. The value for jobParameters is optional.

8.5.5.7

As an alternative to using the JSL job definition that is packaged within your batch

application under META-INF/batch-jobs, you can pass your JSL inline as part of your REST job
submission request. The JSL that is submitted inline always overrides any JSL that is packaged
with the batch application. There are two ways to submit your JSL inline as part of your HTTP
request.
1. Include your JSL as a JSON property in your job submission request. Add the property jobXML

to the JSON object and add the entire content of the JSL file as a JSON string as the value of
the property.

Note: You must properly escape the XML string so it can be parsed by a JSON parser. Most
JSON libraries will do this for you.
The following example illustrates the request body for submitting a job that utilizes a single
part HTTP request with the JSL being passed in-line by the JSON.
{

"applicationName":"SimpleBatchJob",
"jobXMLName":"test_multiPartition_3Steps",
"jobXML":"<?xml version=\"1.0\" encoding=\"UTF-8\"

standalone=\"yes\"?>
\r\n<job id=\"test_multiPartition_3Steps\"
xmlns=\"http://xmlns.jcp.org/xml/ns/javaee\"r\n\tversion=\"1.0>
\r\n\t<step id=\"step1"\" next=\"step2\">
\r\n\t\t<batchlet ref=\"simpleBatchlet\"/>
\r\n\t\t<partition>\r\n\t\t\t<plan partitions=\"3\"/>
\r\n\t\t</partition>\r\n\t</step>
\r\n\t<step id=\"step2\" next=\"step3\">

Chapter 9. Deploying applications in Liberty 1377

\r\n\t\t<batchlet ref=\"simpleBatchlet\" />
\r\n\t\t<partition>\r\n\t\t\t<plan partitions=\"3\" />
\r\n\t\t</partition>\r\n\t</step>\r\n\t<step id=\"step3\">
\r\n\t\t<batchlet ref=\"simpleBatchlet\" />\r\n\t\t<partition>
\r\n\t\t\t<plan partitions=\"3\"/>
\r\n\t\t</partition>\r\n\t</step>\r\n</job>"

}

Note: The jobXML field must be parsed by a JSON parser and marshalled into a valid JSON
object. The jobXMLName field is optional, as the job ID information in the inline JSL is used for
the job name.

2. Use an HTTP multi-part form. When you use an HTTP multipart form the JSON job
submission data and XML job definition need to be submitted as two separate parts of the
HTTP body. The JSON part of the multi-part form must be named jobdata and the XML part
of the form must be named jsl. The XML does not need to be marshalled to a JSON string
when you use a multi-part form.
The following example illustrates the HTTP request for submitting a job that uses a multi-part
HTTP request with the JSL being passed inline via the jsl message part.
Content-Type: multipart/form-data;boundary=---------------------------49424d5f4a4241544348

-----------------------------49424d5f4a4241544348
Content-Disposition: form-data; name="jobdata"
Content-Type: application/json; charset=UTF-8
{

"applicationName" : "SimpleBatchJob",
"moduleName" : "SimpleBatchJob.war",
"jobXMLName" : "test_multiPartition"

}

-----------------------------49424d5f4a4241544348
Content-Disposition: form-data; name="jsl"
Content-Type: application/xml; charset=UTF-8

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<job id="test_multiPartition" xmlns="http://xmlns.jcp.org/xml/ns/javaee"
version="1.0">
<step id="step1">
<batchlet ref="simpleBatchlet" />
<partition>

<plan partitions="3" />
</partition>

</step>
</job>

-----------------------------49424d5f4a4241544348--

Note: The jobXMLName field is optional, as the job ID information in the inline JSL is used for
the job name.

The following sample response illustrates a successful job submission:
{

"jobName": "test_sleepyBatchlet",
"instanceId": 10,
"appName": "SimpleBatchJob#SimpleBatchJob.war",
"submitter": "bob",
"batchStatus": "STARTING",
"jobXMLName": "test_sleepyBatchlet",
"instanceState": "SUBMITTED",
"_links": [

{
"rel": "self",
"href": "https://localhost:9443/ibm/api/batch/jobinstances/10"

},

1378 WebSphere Application Server Liberty Core 8.5.5

{
"rel": "job logs",
"href": "https://localhost:9443/ibm/api/batch/jobinstances/10/joblogs"

}
]

}

PUT /ibm/api/batch/jobinstances/job instance id?action=stop
Use this URI to stop the most recent job execution that is associated with this job instance if it is
running. If it is not, the API returns an error.

PUT /ibm/api/batch/jobinstances/job instance id?action=restart
Use this URI to restart the most recent job execution that is associated with this job instance only
if it is in STOPPED or FAILED state. If no job execution is associated with this instance, or the
latest job execution is in COMPLETED state, the API returns an error.

PUT /ibm/api/batch/jobinstances/job instance id?action=restart&reusePreviousParams=true
Use this URI to restart the most recent job execution and reuse the job parameters from the
previous execution that is associated with this job instance. The previous execution must be in
STOPPED or FAILED state. If no job execution is associated with this instance, or the latest job
execution is in COMPLETED state, then the API returns an error. Note that reusePreviousParams
is an optional setting. The default setting is reusePreviousParams=false.

Note: When reusePreviousParams=true, any job parameters that are submitted as part of the
current restart request take precedence over any previous job parameters. Current parameters
override previous parameters with the same job parameter key name.

DELETE /ibm/api/batch/jobinstances/job instance id
This URI purges all database entries and job logs that are associated with this job instance. This
API returns an error if the job instance has active job executions. If there is an error when you
delete the job logs, then no attempt is made to delete the job instance data from the job store
database. Query parameters include:
v purgeJobStoreOnly=true|false: When purgeJobStoreOnly=true, no attempt is made to purge

the job logs associated with this job instance. The default setting is purgeJobStoreOnly=false.
This API returns an error if the job instance has active job executions.

Note: No purge response message is returned when you utilize the single purge API.

DELETE /ibm/api/batch/v2/jobinstances/
This URI purges all database entries and job logs associated with the job instances returned by
the following purge filter parameters:

Note: It is recommended that you utilize the GET interface to list out the jobs and verify they are
the correct jobs to purge before performing the DELETE interface to purge them.
v page=[page number]: Indicates which page (subset of records) to return. The default is 0
v pageSize=[number of records per page]: Indicates the number of records per page. The default

is 50.
v purgeJobStoreOnly=true|false: When purgeJobStoreOnly=true, no attempt is made to purge the

job logs associated with this job instance. The default setting is purgeJobStoreOnly=false. This
API returns an error if the job instance has active job executions.

v jobInstanceId=[instanceId]:[instanceId]: Purges job instances equal to and between the
instanceId range.

v jobInstanceId=>[instanceId]: Purges job instances equal to and greater than the provided
instanceId.

v jobInstanceId=<[instanceId]: Purges job instances equal to and less than the provided
instanceId.

v jobinstanceId=[instanceId],[instanceId],[instanceId]: Purges job instances specified.

Chapter 9. Deploying applications in Liberty 1379

v createTime=[yyyy-MM-dd]:[yyy-MM-dd]: Returns job instances between the date range
inclusively. For more information, see note further on in this topic.

v createTime=[yyyy-MM-dd]: Returns job instances on the given date. For more information, see
note further on in this topic.

v createTime=>3d: Returns job instances that were created on or after the day which was three
days ago. For example, the createTime is greater than or equal to the beginning of the day
three days ago. For more information, see note further on in this topic.

v createTime=<3d: Returns job instances that were created on or before the day which was three
days ago. For example, the createTime is less than or equal to the end of the day three days
ago. For more information, see note further on in this topic.

v instanceState=[state],[state]: Purges job instances with the provided state. Valid Instance States
are SUBMITTED, JMS_QUEUED, JMS_CONSUMED, DISPATCHED, FAILED, STOPPED,
COMPLETED, and ABANDONED.

v exitStatus=[string]: Returns job instances matching the exit status string. The string criteria may
utilize the wildcard(*) operator on either end.

Note: By default, unless the page and pageSize parameters are specified, a maximum of 50
records are purged.

Note: The role of the server default timezone in queries involving createTime

When you submit a job, the createTime for the job instance is stored in the job repository and
normalized to UTC. When specifying dates via yyyy-MM-dd, as in createTime=[yyyy-MM-dd] or
createTime=[yyyy-MM-dd]:[yyy-MM-dd]:, then you must convert the yyyy-MM-dd date string into
a specific range of UTC times to match against the createTime values in the job instance table
records. To do this, the application uses the default timezone of the server handling the REST
request. It is this server's timezone that is used to convert the date string into a UTC time range
that will be matched against.

The following table illustrates data returned by the query parameters jobInstanceId=10:13.

JOBINSTANCEID
CREATETIME(* in
server1's timezone) INSTANCESTATE EXITSTATUS

10 11-05-2015.01:10:00 COMPLETED SUCCESS
11 11-08-2014.02:20:00 COMPLETED SUCCESS
12 11-10-2015.03:30:00 FAILED FAILURE
13 11-11-2015:04:40:00 COMPLETED SUCCESS

*Since the job repository stores the createTime in a UTC format, it is important to understand that
the table data above shows the createTime formatted using the server’s default timezone of a
particular server, for example, "server1". If we had constructed a similar table from the
perspective of a second server with a different default timezone (than "server1"), we would show
a different set of CREATETIME column values which a corresponding timezone-based difference.
It is the default timezone of the server handling the REST request which is used to map
yyyy-MM-dd date string parameters to UTC createTime values in the database in the examples
below.

The following commands return the same result regardless of which server they are issued
against:
v jobInstanceId=11:13 would return JOBINSTANCEID’s 11, 12 and 13.
v jobInstanceId=>12 would return JOBINSTANCEID’s 12 and 13.
v jobInstanceId=<12 would return JOBINSTANCEID’s 11 and 12.
v jobInstanceId=11,12 would return JOBINSTANCEID’s 11 and 12.
v instanceState=FAILED would return JOBINSTANCEID 12..

1380 WebSphere Application Server Liberty Core 8.5.5

v exitStatus=SUCCESS would return JOBINSTANCEID’s 10, 11 and 13.

The following commands may return different results against servers with different default
timezones. In these examples, they are issued against "server1" (the same server used to populate
the table above) at date and time: 11-11-2015:07:00:00 in the server's default timezone.
v createTime=>2d would return JOBINSTANCEID’s 12 and 13 (on or after 2 days ago, which was

11-09-2015)
v createTime=<2d would return JOBINSTANCEID’s 10 and 11 (on or before 2 days ago, which

was 11-09-2015)
v createTime=2015-11-08:2015-11-11 would return records with JOBINSTANCEID’s 11,12, and 13.
v createTime=2015-11-10 would return record with JOBINSTANCEID 12.

Sample response:
[{"instanceId":394,"purgeStatus":"COMPLETED","message":"Successful purge.","redirectUrl":""},
{"instanceId":395,"purgeStatus":"COMPLETED","message":"Successful purge.","redirectUrl":""},
{"instanceId":396,"purgeStatus":"COMPLETED","message":"Successful purge.","redirectUrl":""},
{"instanceId":397,"purgeStatus":"COMPLETED","message":"Successful purge.","redirectUrl":""},
{"instanceId":398,"purgeStatus":"COMPLETED","message":"Successful purge.","redirectUrl":""}]

The following purgeStatus values can be returned:

COMPLETED
Indicates that the job purge completed successfully.

FAILED
Indicates that the job purge failed.

STILL_ACTIVE
Indicates that the job purge failed because it was still active.

JOBLOGS_ONLY
Indicates that the database purge failed, but that the job logs were successfully purged.

NOT_LOCAL
Indicates that the job purge failed because the job is not local.

Job executions

GET /ibm/api/batch/jobexecutions/job execution id
This URI returns detailed information about a specified job execution and includes links to
associated step executions and job logs.

Sample request:
https://localhost:9443/ibm/api/batch/jobexecutions/9

Sample response:
{

"jobName":"test_sleepyBatchlet",
"executionId":9,
"instanceId":9,
"batchStatus":"COMPLETED",
"exitStatus":"COMPLETED",
"createTime":"2015/05/07 16:09:41.025 -0400",
"endTime":"2015/05/07 16:09:52.127 -0400",
"lastUpdatedTime":"2015/05/07 16:09:52.127 -0400",
"startTime":"2015/05/07 16:09:41.327 -0400",
"jobParameters":{
},
"restUrl":"https://localhost:9443/ibm/api/batch",
"serverId":"localhost/C:/ibm/RAD_workspaces/Liberty7/build.image/wlp/usr/server1",
"logpath":"C:\\ibm\\Liberty\\wlp\\usr\\servers\\server1\\logs\\joblogs\\test_sleepyBatchlet\\2015-05-07\\instance.9\\execution.9\\",
"stepExecutions":[

{

Chapter 9. Deploying applications in Liberty 1381

"stepExecutionId":9,
"stepName":"step1",
"batchStatus":"COMPLETED",
"exitStatus":"SleepyBatchlet:i=10;stopRequested=false",
"stepExecution":"https://localhost:9443/ibm/api/batch/jobexecutions/9/stepexecutions/step1"

}
],
"_links":[

{
"rel":"self",
"href":"https://localhost:9443/ibm/api/batch/jobexecutions/9"

},
{

"rel":"job instance",
"href":"https://localhost:9443/ibm/api/batch/jobinstances/9"

},
{

"rel":"step executions",
"href":"https://localhost:9443/ibm/api/batch/jobexecutions/9/stepexecutions"

},
{

"rel":"job logs",
"href":"https://localhost:9443/ibm/api/batch/jobexecutions/9/joblogs"

},
{

"rel":"stop url",
"href":"https://localhost:9443/ibm/api/batch/jobexecutions/9?action=stop"

}
]

}

GET /ibm/api/batch/jobexecutions/job execution id/jobinstance
This URI returns detailed information about the job instance related to the specified job execution.

GET /ibm/api/batch/jobinstances/job instance id/jobexecutions
This URI returns detailed information about the job execution(s) for a specified job instance. This
includes links to associated step executions and job logs.

GET /ibm/api/batch/jobinstances/job instance id/jobexecutions/job execution sequence number
This URI returns detailed information about the specified job execution in relation to the specified
job instance ID. This includes links to associated step executions and job logs.

Note: The job execution sequence number means the 0th, 1st, 2nd, etc. job execution related to
the specified job instance.

PUT /ibm/api/batch/jobexecutions/job execution id?action=stop
Use this URI to stop the specified running job execution. Required parameters include action =
stop, restart.

PUT /ibm/api/batch/jobexecutions/job execution id?action=restart
Use this URI to restart the specified job execution. Required parameters include action = stop,
restart.

Step executions

GET /ibm/api/batch/jobexecutions/job execution id/stepexecutions
This URI returns a JSON array of all the step execution details for the specified job execution. If
your job contains a partitioned step, the partition information will be returned listed within each
step.

Sample request:
https://localhost:8020/ibm/api/batch/jobexecutions/40/stepexecutions

The following sample illustrates a response for a partitioned step.

1382 WebSphere Application Server Liberty Core 8.5.5

[
{

"stepExecutionId":47,
"executionId":39,
"instanceId":35,
"stepName":"step1",
"batchStatus":"COMPLETED",
"startTime":"2015/03/30 11:10:08.652 -0400",
"endTime":"2015/03/30 11:10:09.817 -0400",
"exitStatus":"COMPLETED",
"metrics":{

"READ_COUNT":"0",
"WRITE_COUNT":"0",
"COMMIT_COUNT":"0",
"ROLLBACK_COUNT":"0",
"READ_SKIP_COUNT":"0",
"PROCESS_SKIP_COUNT":"0",
"FILTER_COUNT":"0",
"WRITE_SKIP_COUNT":"0"

},
"partitions":[

{
"partitionNumber":0,
"batchStatus":"COMPLETED",
"startTime":"2015/03/30 11:10:09.579 -0400",
"endTime":"2015/03/30 11:10:09.706 -0400",
"exitStatus":"step1",
"metrics":{

"READ_COUNT":"0",
"WRITE_COUNT":"0",
"COMMIT_COUNT":"0",
"ROLLBACK_COUNT":"0",
"READ_SKIP_COUNT":"0",
"PROCESS_SKIP_COUNT":"0",
"FILTER_COUNT":"0",
"WRITE_SKIP_COUNT":"0"

}
},
{

"partitionNumber":1,
"batchStatus":"COMPLETED",
"startTime":"2015/03/30 11:10:09.257 -0400",
"endTime":"2015/03/30 11:10:09.302 -0400",
"exitStatus":"step1",
"metrics":{

"READ_COUNT":"0",
"WRITE_COUNT":"0",
"COMMIT_COUNT":"0",
"ROLLBACK_COUNT":"0",
"READ_SKIP_COUNT":"0",
"PROCESS_SKIP_COUNT":"0",
"FILTER_COUNT":"0",
"WRITE_SKIP_COUNT":"0"

}
},
{

"partitionNumber":2,
"batchStatus":"COMPLETED",
"startTime":"2015/03/30 11:10:09.469 -0400",
"endTime":"2015/03/30 11:10:09.548 -0400",
"exitStatus":"step1",
"metrics":{

"READ_COUNT":"0",
"WRITE_COUNT":"0",
"COMMIT_COUNT":"0",
"ROLLBACK_COUNT":"0",
"READ_SKIP_COUNT":"0",

Chapter 9. Deploying applications in Liberty 1383

"PROCESS_SKIP_COUNT":"0",
"FILTER_COUNT":"0",
"WRITE_SKIP_COUNT":"0"

}
}

]
},
{

"stepExecutionId":51,
"executionId":39,
"instanceId":35,
"stepName":"step2",
"batchStatus":"COMPLETED",
"startTime":"2015/03/30 11:10:09.915 -0400",
"endTime":"2015/03/30 11:10:10.648 -0400",
"exitStatus":"COMPLETED",
"metrics":{

"READ_COUNT":"0",
"WRITE_COUNT":"0",
"COMMIT_COUNT":"0",
"ROLLBACK_COUNT":"0",
"READ_SKIP_COUNT":"0",
"PROCESS_SKIP_COUNT":"0",
"FILTER_COUNT":"0",
"WRITE_SKIP_COUNT":"0"

},
"partitions":[

{
"partitionNumber":0,
"batchStatus":"COMPLETED",
"startTime":"2015/03/30 11:10:10.324 -0400",
"endTime":"2015/03/30 11:10:10.417 -0400",
"exitStatus":"step2",
"metrics":{

"READ_COUNT":"0",
"WRITE_COUNT":"0",
"COMMIT_COUNT":"0",
"ROLLBACK_COUNT":"0",
"READ_SKIP_COUNT":"0",
"PROCESS_SKIP_COUNT":"0",
"FILTER_COUNT":"0",
"WRITE_SKIP_COUNT":"0"

}
},
{

"partitionNumber":1,
"batchStatus":"COMPLETED",
"startTime":"2015/03/30 11:10:10.260 -0400",
"endTime":"2015/03/30 11:10:10.347 -0400",
"exitStatus":"step2",
"metrics":{

"READ_COUNT":"0",
"WRITE_COUNT":"0",
"COMMIT_COUNT":"0",
"ROLLBACK_COUNT":"0",
"READ_SKIP_COUNT":"0",
"PROCESS_SKIP_COUNT":"0",
"FILTER_COUNT":"0",
"WRITE_SKIP_COUNT":"0"

}
},
{

"partitionNumber":2,
"batchStatus":"COMPLETED",
"startTime":"2015/03/30 11:10:10.507 -0400",
"endTime":"2015/03/30 11:10:10.557 -0400",
"exitStatus":"step2",

1384 WebSphere Application Server Liberty Core 8.5.5

"metrics":{
"READ_COUNT":"0",
"WRITE_COUNT":"0",
"COMMIT_COUNT":"0",
"ROLLBACK_COUNT":"0",
"READ_SKIP_COUNT":"0",
"PROCESS_SKIP_COUNT":"0",
"FILTER_COUNT":"0",
"WRITE_SKIP_COUNT":"0"

}
},
{

"_links":[
{

"rel":"job execution",
"href":"https://localhost:9443/ibm/api/batch/jobexecutions/9"

},
{

"rel":"job instance",
"href":"https://localhost:9443/ibm/api/batch/jobinstances/9"

}
]

}
]

GET /ibm/api/batch/jobexecutions/job execution id/stepexecutions/step name
This URI returns a JSON array containing the step execution details for the specified job
execution and step name.

GET /ibm/api/batch/jobinstances/job instance id/jobexecutions/job execution sequence
number/stepexecutions/step name

This URI returns a JSON array containing the step execution details for the specified job instance,
job execution, and step name.

GET /ibm/api/batch/stepexecutions/step execution id
This URI returns a JSON array containing the step execution details for the specified step
execution.

Job logs

GET /ibm/api/batch/jobinstances/job instance id/joblogs
This URI returns a JSON array with REST links to all job log parts for the specified job instance.

GET /ibm/api/batch/jobexecutions/job execution id/joblogs
This URI returns a JSON array with REST links to all job log parts for the specified job execution.

Important: The following example shows the format of the REST links.

If your job execution has the following job log parts,
joblogs/instance.inst-id/execution.exec-id/part.1.log
joblogs/instance.inst-id/execution.exec-id/part.2.log
joblogs/instance.inst-id/execution.exec-id/step.step-name/partition.0/part.1.log
joblogs/instance.inst-id/execution.exec-id/step.step-name/partition.1/part.1.log

then the corresponding REST links are:
/ibm/api/batch/jobexecutionsexec-id/joblogs?part=part.1.log
/ibm/api/batch/jobexecutionsexec-id/joblogs?part=part.2.log
/ibm/api/batch/jobexecutionsexec-id/joblogs?part=step.step-name/partition.0/part.1.log
/ibm/api/batch/jobexecutionsexec-id/joblogs?part=step.step-name/partition.1/part.1.log

Optional parameters include:

Chapter 9. Deploying applications in Liberty 1385

type = text
Text returns all job logs as plain text. All job log parts are aggregated together. Part delimiting
header and footer records are inserted into the stream to delimit the different parts as they
are aggregated together.

type = zip
Zip returns all job logs for the specified job instance or job execution as a compressed file.
The directory structure of the job logs is preserved in the compressed file.

GET /ibm/api/batch/jobinstances/job instance id/joblogs?type=text|zip
GET /ibm/api/batch/jobexecutions/job execution id/joblogs?type=text|zip

The behavior of these two URIs with the type parameter specified varies by value.

type = text
Text returns all job logs as plain text. All job log parts are aggregated together. Part
delimiting header and footer records are inserted into the stream to delimit the different
parts as they are aggregated together.

type = zip

Zip returns all job logs for the specified job instance or job execution as a compressed file.
The directory structure of the job logs is preserved in the compressed file.

GET /ibm/api/batch/jobexecutions/job execution id/joblogs?part=path to part&type=text|zip
With the part parameter specified, this URI returns job log parts as either plain text (type=text) or
in a compressed file (type=zip). The default setting is type=text.

HTTP Return Codes

The following HTTP return codes for the REST API.
v HTTP 200 OK
v HTTP 201 Successfully created a new resource.
v HTTP 202 Accepted request, but processing is not complete.
v HTTP 400 Bad Request with invalid parameters. See returned message for details.
v HTTP 401 Unauthorized to access this resource.
v HTTP 403 Authentication failed.
v HTTP 404 The requested resource cannot be found or does not exist.
v HTTP 409 The request conflicts with the current state of the resource. See returned message for details.
v HTTP 500 Internal Server Error.

STOP requests in a distributed server batch environment

Stop requests sent to the batch REST API must be sent directly to the executor where the job is running.
If a stop request is sent to a dispatcher or executor where the job is not running, the request is redirected
to the correct executor by an HTTP 302 redirection response message. The location field in the HTTP 302
redirection response indicates the correct URL to use for the stop request.

JOBLOGS requests in a distributed server batch environment

Job logs requests sent to the batch REST API must be sent directly to the executor where the job is
running. If a job logs request is sent to a dispatcher or executor where the job is not running, the request
is redirected to the correct executor by an HTTP 302 redirection response message. The location field in
the HTTP 302 redirection response indicates the correct URL to use for the job logs request.

1386 WebSphere Application Server Liberty Core 8.5.5

Note: Job logs requests that are sent to the batch REST API for an entire job instance work only if all job
executions for that instance ran on the same executor. If the executions ran on different executors, then
the job logs requests for the instance fails. In this case, you must fetch the job logs for each execution
separately.

Purge requests in a distributed server batch environment

Purge requests sent to the batch REST API must be sent directly to the executor where the job is running.
If a purge request is sent to a dispatcher or executor where the job is not running, the request is
redirected to the correct executor by an HTTP 302 redirection response message. The location field in the
HTTP 302 redirection response indicates the correct URL to use for the purge request.

Note: Purge requests that are sent to the batch REST API for an entire job instance work only if all job
executions for that instance ran on the same executor. If the executions ran on different executors, then
the purge requests for the instance fails.

Enabling multiple server support by using the Liberty embedded
messaging provider

8.5.5.6

The batch environment can be set up to have servers function as batch dispatchers while other servers
function as batch executors. Batch dispatchers accept requests from external clients and make them
available to the batch executors. The batch executors receive requests that match its defined capabilities
and execute those requests. Batch dispatchers and batch executors communicate by using Java Messaging
Service (JMS).

Before you begin

Determine where the embedded message engine is hosted. It can be hosted on the batch dispatch server,
the batch executor server, or on a separate server. This server must be configured before you complete
this task. The JMS connection factory and activation specification references the message engine server in
its configuration. To configure the message engine:
1. Add the wasJmsServer-1.0 feature to the server.xml.
2. Define the message engine by adding the messageEngine element. Define the queue that is used for

the batch dispatcher and batch executor. The following example illustrates the message engine
configuration in your server.xml.

<!-specify the ports for the message engine.
The ports in this example are the default ports.
This element is not needed when the default ports are used. -->
<wasJmsEndpoint host="*"

wasJmsPort="7280"
wasJmsSSLPort="7290"
enabled="true">

</wasJmsEndpoint>

<messagingEngine>
<!- queue for batch jms message. -->
<queue id="batchLibertyQueue"
forceReliability="ReliablePersistent"
receiveAllowed="true"/>

</messagingEngine>

About this task

This task helps you configure the batch dispatch server and the batch executor by using the Liberty
embedded messaging provider.

Chapter 9. Deploying applications in Liberty 1387

Procedure

To configure batch dispatcher and executor that uses Liberty embedded messaging provider:
1. Configure the batch JMS dispatcher.

a. Enable JMS support by adding the wasJmsClient-2.0 feature to the feature manager in your
server.xml.

b. Add the batchJmsDispatcher element to your server.xml on the server that hosts the batch
dispatcher.

<batchJmsDispatcher connectionFactoryRef={reference to a configured JMS connection factory}
queueRef={reference to a configured JMS queue} />

Note: If you do not specify the connectionFactoryRef and queueRef attributes, the default value
for connectionFactoryRef is batchConnectionFactory and the default value for queueRef is
batchJobSubmissionQueue. You can specify the batchJmsDispatcher element as
<batchJmsDispatcher />. You still must configure the batchConnectionFactory JMS connection
factory and the JMS batchJobSubmissionQueue queue in the server.xml file.

c. Add the corresponding JMS connection factory and JMS queue to the server configuration. This is
not specific to batch configuration. The following example illustrates the batch JMS dispatcher
configuration and its JMS configuration.

Note: The remoteServerAddress attribute points to the host:port of the server that is hosting the
Liberty message engine.

<batchJmsDispatcher connectionFactoryRef="batchConnectionFactory"
queueRef="batchJobSubmissionQueue" />

<jmsConnectionFactory id="batchConnectionFactory"
jndiName="jms/batch/connectionFactory">

<properties.wasJms remoteServerAddress="host:7280:BootstrapBasicMessaging">
</properties.wasJms>

</jmsConnectionFactory>

<jmsQueue id="batchJobSubmissionQueue"
jndiName="jms/batch/jobSubmissionQueue">
<properties.wasJms deliveryMode="Persistent"

queuename="batchLibertyQueue">
</properties.wasJms>

</jmsQueue>

2. Configure the batch JMS executor.
a. Enable JMS support by adding the wasJmsClient-2.0 feature to the feature manager in your

server.xml.
b. Add the batchJmsExecutor element to your server.xml file on the server that hosts the batch

executor.
<batchJmsExecutor activationSpecRef={configured activation specification or batch executor}
queueRef={reference to the configured JMS queue} />

Note: If you do not specify the activationSpecRef and queueRef attributes, the default value for
activationSpecRef is batchActivationSpec and the default value for queueRef is
batchJobSubmissionQueue. You can specify the batchJmsExecutor element as <batchJmsExecutor
/>. You still must configure the JMS activation specification for batchActivationSpec and the
batchJobSubmissionQueue JMS queue in the server.xml file.

c. Add the corresponding JMS activation specification and JMS queue to the server configuration.
This is not specific to batch configuration.

d. Define batch executor server capabilities by including a JMS message selector in the activation
specification.
v Filtering based on system defined properties:

There is a set of batch dispatcher properties available on the batch JMS message that the batch
executor can use to filter for inbound messages.

1388 WebSphere Application Server Liberty Core 8.5.5

– com_ibm_ws_batch_applicationName: the name of the batch application for the job request
– com_ibm_ws_batch_moduleName: the module name of the batch application for the job request
– com_ibm_ws_batch_componentName: the component name of the batch application for the job

request

Note: It is recommended that a message selector is specified with at least the
com_ibm_ws_batch_applicationName property to ensure that the executor only receives jobs that
it can process.
The following example indicates the messageSelector attribute for the executor to accept a job
for the application SimpleBatchJob and BonusPayout.

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ OR com_ibm_ws_batch_applicationName = ’BonusPayout’">

The following example indicates the messageSelector attribute for the executor to accept a job
for the application SimpleBatchJob.

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’">

v Filtering based on user-defined properties:
The batch dispatcher sets all job parameters that conform to the proper JMS message property
on the batch dispatcher request message. These properties can also be used by the message
selector to add extra filtering to the message selector. The property name, or identifier, must
conform to JMS message property constraints. For example, the property is an unlimited length
sequence of letters and digits, the first of which must be a letter. A letter is any character for
which the method Character.isJavaLetter returns true, and includes '_' and '$'. A letter or
digit is any character for which the method Character.isJavaLetterOrDigit returns true. Check
JMS Javadoc for more information on JMS message selectory.
The following example illustrates a possible message selector using the
com_ibm_ws_batch_applicationName property and a job parameter specialCapability.

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ AND specialCapability = ’superCapability’">

The following example illustrates the batch JMS executor configuration and its JMS configuration.
<batchJmsExecutor activationSpecRef="batchActivationSpec"

queueRef="batchJobSubmissionQueue"/>

<jmsActivationSpec id="batchActivationSpec" >
<properties.wasJms destinationRef="batchJobSubmissionQueue"

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ OR com_ibm_ws_batch_applicationName = ’BonusPayoutCDI’"
destinationType="javax.jms.Queue"
remoteServerAddress="host:7280:BootstrapBasicMessaging">

</properties.wasJms>
</jmsActivationSpec>

<jmsQueue id="batchJobSubmissionQueue"
jndiName="jms/batch/jobSubmissionQueue">

<properties.wasJms deliveryMode="Persistent"
queueName="batchLibertyQueue">

</properties.wasJms>
</jmsQueue>

3. Install your batch application on the server. For more information, see Chapter 9, “Deploying
applications in Liberty,” on page 1329.

Enabling multiple server support by using the WebSphere MQ
messaging provider

8.5.5.6

The batch environment can be set up to have servers function as batch dispatchers while other servers
function as batch executors. Batch dispatchers accept requests from external clients and make them
available to the batch executors. The batch executors receive requests that match its defined capabilities
and execute those requests. Batch dispatchers and batch executors communicate by using Java Messaging
Service (JMS).

Chapter 9. Deploying applications in Liberty 1389

About this task

This task helps you configure the batch dispatch server and the batch executor by using the WebSphere
MQ messaging provider.

Procedure
1. Configure the batch JMS dispatcher.

a. Enable JMS support by adding the wmqJmsClient-2.0 feature to the feature manager in your
server.xml file.

b. Add the batchJmsDispatcher element to your server.xml file on the server that hosts the batch
dispatcher.

<batchJmsDispatcher connectionFactoryRef={reference to a configured JMS connection factory}
queueRef={reference to a configured JMS queue} />

Note: If you do not specify the connectionFactoryRef and queueRef attributes, the default value
for connectionFactoryRef is batchConnectionFactory and the default value for queueRef is
batchJobSubmissionQueue. You can specify the batchJmsDispatcher element as
<batchJmsDispatcher />. You still must configure the batchConnectionFactory JMS connection
factory and the JMS batchJobSubmissionQueue queue in the server.xml file.

c. Add the corresponding JMS connection factory and JMS queue to the server configuration. This is
not specific to batch configuration.
The following example illustrates the batch JMS dispatcher configuration and its JMS configuration
using WMQ binding mode.

<batchJmsDispatcher connectionFactoryRef="batchConnectionFactory"
queueRef="batchJobSubmissionQueue" />

<!-- wmq resource adapter -->
<variable name="wmqJmsClient.rar.location"

value="${server.config.dir}/wmq.wlp.rar"/>

<!-- nativeLibraryPath is required for BINDING mode -->
<!-- the startup retry and reconnect retry properties are

recommended to ensure robustness of the system.-->
<wmqJmsClient nativeLibraryPath="/mqm/jms/java/lib"
startupRetryCount=999
startupRetryInterval="1000ms"
reconnectionRetryCount=10
reconnectionRetryInterval="5m">

</wmqJmsClient>

<authData password="pwd" user="user">
</authData>

<jmsConnectionFactory id="batchConnectionFactory"
jndiName="jms/batch/connectionFactory">

<properties.wmqJms transportType="BINDINGS"
queueManager="WMQX">

</properties.wmqJms>
</jmsConnectionFactory>

<!-- baseQueueName is the queue defined on WMQ system -->
<jmsQueue id="batchJobSubmissionQueue"

jndiName="jms/batch/jobSubmissionQueue">
<properties.wmqJms baseQueueName="BATCHQ"
priority="QDEF"
baseQueueManagerName="WMQX">
</properties.wmqJms>

</jmsQueue>

The following example illustrates the batch JMS dispatcher configuration and its JMS configuration
using WMQ in client mode.

<batchJmsDispatcher connectionFactoryRef="batchConnectionFactory"
queueRef="batchJobSubmissionQueue" />

<!-- wmq resource adapter -->
<variable name="wmqJmsClient.rar.location"

value="${server.config.dir}/wmq.wlp.rar"/>

1390 WebSphere Application Server Liberty Core 8.5.5

<!-- the startup retry and reconnect retry properties are
recommended to ensure robustness of the system.-->

<wmqJmsClient startupRetryCount=999
startupRetryInterval="1000ms"
reconnectionRetryCount=10
reconnectionRetryInterval="5m">

</wmqJmsClient>

<authData password="pwd" user="user">
</authData>

<jmsConnectionFactory id="batchConnectionFactory"
jndiName="jms/batch/connectionFactory">

<properties.wmqJms
hostName="webs24.pok.stglabs.ibm.com"
transportType="CLIENT"
channel="WAS.JMS.SVRCONN"
port="1414"
queueManager="WMQX"/>>

</properties.wmqJms>
</jmsConnectionFactory>

<!-- baseQueueName is the queue defined on WMQ system -->
<jmsQueue id="batchJobSubmissionQueue"

jndiName="jms/batch/jobSubmissionQueue">
<properties.wmqJms baseQueueName="BATCHQ"
priority="QDEF"
baseQueueManagerName="WMQX">
</properties.wmqJms>

</jmsQueue>

2. Configure the batch JMS executor.
a. Enable JMS support by adding the wmqJmsClient-2.0 feature to the feature manager in your

server.xml file.
b. Add the batchJmsExecutor element to your server.xml file on the server that hosts the batch

executor.
<batchJmsExecutor activationSpecRef={configured activation specification or batch executor}
queueRef={reference to the configured JMS queue} />

Note: If you do not specify the activationSpecRef and queueRef attributes, the default value for
activationSpecRef is batchActivationSpec and the default value for queueRef is
batchJobSubmissionQueue. You can specify the batchJmsExecutor element as <batchJmsExecutor
/>. You still must configure the JMS activation specification for batchActivationSpec and the
batchJobSubmissionQueue JMS queue in the server.xml file.

c. Add the corresponding JMS activation specification and JMS queue to the server configuration.
This is not specific to batch configuration.

d. Define batch executor server capabilities by including a JMS message selector in the activation
specification.
v Filtering based on system defined properties:

There is a set of batch dispatcher properties available on the batch JMS message that the batch
executor can use to filter for inbound messages.
– com_ibm_ws_batch_applicationName: the name of the batch application for the job request
– com_ibm_ws_batch_moduleName: the module name of the batch application for the job request
– com_ibm_ws_batch_componentName: the component name of the batch application for the job

request

Note: It is recommended that a message selector is specified with at least the
com_ibm_ws_batch_applicationName property to ensure that the executor only receives jobs that
it can process.
The following example indicates the messageSelector attribute for the executor to accept a job
for the application SimpleBatchJob and BonusPayout.

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ OR com_ibm_ws_batch_applicationName = ’BonusPayout’">

Chapter 9. Deploying applications in Liberty 1391

The following example indicates the messageSelector attribute for the executor to accept a job
for the application SimpleBatchJob.

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’">

v Filtering based on user-defined properties:
The batch dispatcher sets all job parameters that conform to the proper JMS message property
on the batch dispatcher request message. These properties can also be used by the message
selector to add extra filtering to the message selector. The property name, or identifier, must
conform to JMS message property constraints. For example, the property is an unlimited length
sequence of letters and digits, the first of which must be a letter. A letter is any character for
which the method Character.isJavaLetter returns true, and includes '_' and '$'. A letter or
digit is any character for which the method Character.isJavaLetterOrDigit returns true. Check
JMS Javadoc for more information on JMS message selectory.
The following example illustrates a possible message selector by using the
com_ibm_ws_batch_applicationName property and a job parameter specialCapability.

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ AND specialCapability = ’superCapability’">

The following example illustrates the batch JMS executor configuration and its JMS configuration
using WMQ binding mode.

<batchJmsExecutor activationSpecRef="batchActivationSpec"
queueRef="batchJobSubmissionQueue"/>

<!-- wmq resource adapter -->
<variable name="wmqJmsClient.rar.location"

value="${server.config.dir}/wmq.wlp.rar"/>

<!-- nativeLibraryPath is required for BINDING mode -->
<!-- the startup retry and reconnect retry properties are

recommended to ensure robustness of the system.-->
<wmqJmsClient nativeLibraryPath="/mqm/jms/java/lib"
startupRetryCount=999
startupRetryInterval="1000ms"
reconnectionRetryCount=10
reconnectionRetryInterval="5m">

</wmqJmsClient>

<authData password="pwd" user="user">
</authData>

<JmsActivationSpec id="batchActivationSpec" >
<properties.wmqJms destinationRef="batchJobSubmissionQueue"

destinationType="javax.jms.Queue"
messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ OR com_ibm_ws_batch_applicationName = ’BonusPayout’"
transportType="BINDINGS"
queueManager="WMQX">

</properties.wmqJms>
</jmsActivationSpec>

<!-- baseQueueName is the queue defined on WMQ system -->
<jmsQueue id="batchJobSubmissionQueue"

jndiName="jms/batch/jobSubmissionQueue">
<properties.wmqJms baseQueueName="BATCHQ"

priority="QDEF"
baseQueueManagerName="WMQX">

</properties.wmqJms>
</jmsQueue>

The following example illustrates the batch JMS executor configuration and its JMS configurations
using WMQ client mode.

<batchJmsExecutor activationSpecRef="batchActivationSpec"
queueRef="batchJobSubmissionQueue"/>

<!-- wmq resource adapter -->
<variable name="wmqJmsClient.rar.location"

value="${server.config.dir}/wmq.wlp.rar"/>

<!-- the startup retry and reconnect retry properties are
recommended to ensure robustness of the system.-->

<wmqJmsClient startupRetryCount=999
startupRetryInterval="1000ms"

1392 WebSphere Application Server Liberty Core 8.5.5

reconnectionRetryCount=10
reconnectionRetryInterval="5m">

</wmqJmsClient>

<authData password="pwd" user="user">
</authData>

<JmsActivationSpec id="batchActivationSpec" >
<properties.wmqJms destinationRef="batchJobSubmissionQueue"
messageSelector="com_ibm_ws_batch_applicationName = SimpleBatchJob’ OR com_ibm_ws_batch_applicationName = ’BonusPayout’"

transportType="CLIENT"
channel="WAS.JMS.SVRCONN"
destinationType="javax.jms.Queue"
queueManager="WMQX"
hostName="webs24.pok.stglabs.ibm.com"
port="1414">
</properties.wmqJms>

</jmsActivationSpec>

<!-- baseQueueName is the queue defined on WMQ system -->
<jmsQueue id="batchJobSubmissionQueue"

jndiName="jms/batch/jobSubmissionQueue">
<properties.wmqJms baseQueueName="BATCHQ"
baseQueueManagerName="WMQX">
</properties.wmqJms>

</jmsQueue>

3. Install your batch application on the server. For more information, see Chapter 9, “Deploying
applications in Liberty,” on page 1329.

Enabling multiple server partitions support by using the WebSphere
MQ messaging provider

8.5.5.8

You can set up the batch environment to have servers function as batch dispatchers, while other servers
function as batch executors.

About this task

Batch dispatchers accept requests from external clients and make them available to the batch executors.
The batch executors receive requests that match its defined capabilities and execute those requests. If the
job is configured to run partitions, the batch executors make them available to the other executors to run.
The batch executors communicate by using Java Messaging Service (JMS). This task helps you configure
the batch dispatch server and the batch executor by using the WebSphere MQ messaging provider.

Procedure
1. Configure the batch JMS dispatcher.

a. Enable JMS support by adding the wmqJmsClient-2.0 feature to the feature manager in your
server.xml file.

b. Add the batchJmsDispatcher element to your server.xml file on the server that hosts the batch
dispatcher; for example:

<batchJmsDispatcher connectionFactoryRef={reference to a configured JMS connection factory}
queueRef={reference to a configured JMS queue} />

Note: If you do not specify the connectionFactoryRef and queueRef attributes, the default value
for connectionFactoryRef is batchConnectionFactory and the default value for queueRef is
batchJobSubmissionQueue. You can specify the batchJmsDispatcher element as
<batchJmsDispatcher/>. You still must configure the batchConnectionFactory JMS connection
factory and the JMS batchJobSubmissionQueue queue in the server.xml file.

c. Add the corresponding JMS connection factory and JMS queue to the server configuration. This is
not specific to batch configuration.

Chapter 9. Deploying applications in Liberty 1393

The following example illustrates the batch JMS dispatcher configuration and its JMS configuration
using WebSphere MQ binding mode:

<batchJmsDispatcher connectionFactoryRef="batchConnectionFactory"
queueRef="batchJobSubmissionQueue" />

<!-- wmq resource adapter -->
<variable name="wmqJmsClient.rar.location"

value="${server.config.dir}/wmq.wlp.rar"/>

<!-- nativeLibraryPath is required for BINDING mode -->
<!-- the startup retry and reconnect retry properties are

recommended to ensure robustness of the system.-->
<wmqJmsClient nativeLibraryPath="/mqm/jms/java/lib"
startupRetryCount=999
startupRetryInterval="1000ms"
reconnectionRetryCount=10
reconnectionRetryInterval="5m">

</wmqJmsClient>

<authData password="pwd" user="user">
</authData>

<jmsConnectionFactory id="batchConnectionFactory"
jndiName="jms/batch/connectionFactory">

<properties.wmqJms transportType="BINDINGS"
queueManager="WMQX">

</properties.wmqJms>
</jmsConnectionFactory>

<!-- baseQueueName is the queue defined on WMQ system -->
<jmsQueue id="batchJobSubmissionQueue"

jndiName="jms/batch/jobSubmissionQueue">
<properties.wmqJms baseQueueName="BATCHQ"
priority="QDEF"
baseQueueManagerName="WMQX">
</properties.wmqJms>

</jmsQueue>

The following example illustrates the batch JMS dispatcher configuration and its JMS configuration
using WebSphere MQ in client mode:

<batchJmsDispatcher connectionFactoryRef="batchConnectionFactory"
queueRef="batchJobSubmissionQueue" />

<!-- wmq resource adapter -->
<variable name="wmqJmsClient.rar.location"

value="${server.config.dir}/wmq.wlp.rar"/>

<!-- the startup retry and reconnect retry properties are
recommended to ensure robustness of the system.-->

<wmqJmsClient startupRetryCount=999
startupRetryInterval="1000ms"
reconnectionRetryCount=10
reconnectionRetryInterval="5m">

</wmqJmsClient>

<authData password="pwd" user="user">
</authData>

<jmsConnectionFactory id="batchConnectionFactory"
jndiName="jms/batch/connectionFactory">

<properties.wmqJms
hostName="webs24.pok.stglabs.ibm.com"
transportType="CLIENT"
channel="WAS.JMS.SVRCONN"
port="1414"
queueManager="WMQX"/>>

</properties.wmqJms>
</jmsConnectionFactory>

<!-- baseQueueName is the queue defined on WMQ system -->
<jmsQueue id="batchJobSubmissionQueue"

jndiName="jms/batch/jobSubmissionQueue">
<properties.wmqJms baseQueueName="BATCHQ"
priority="QDEF"
baseQueueManagerName="WMQX">
</properties.wmqJms>

</jmsQueue>

1394 WebSphere Application Server Liberty Core 8.5.5

2. Configure the batch JMS executor for executing jobs
a. Enable JMS support by adding the wmqJmsClient-2.0 feature to the feature manager in your

server.xml file.
b. Add the batchJmsDispatcher element to your server.xml file on the server that hosts the batch

executor.

Note: If you do not add the batchJmsDispatcher element to your server.xml file, the server will
not dispatch partitions to run on multiple servers and will run the partitions locally.

c. Add the batchJmsExecutor element and a connectionFactory to your server.xml file on the server
that hosts the batch executor. For more information, see step 1b and 1c.

<batchJmsExecutor activationSpecRef={configured activation specification or batch executor}
queueRef={reference to the configured JMS queue} />

Note: If you do not specify the activationSpecRef and queueRef attributes, the default value for
activationSpecRef is batchActivationSpec and the default value for queueRef is
batchJobSubmissionQueue. You can specify the batchJmsExecutor element as <batchJmsExecutor/>.
You still must configure the JMS activation specification for batchActivationSpec and the
batchJobSubmissionQueue JMS queue in the server.xml file.

d. Add the corresponding JMS activation specification and JMS queue to the server configuration.
This is not specific to batch configuration.

e. Define batch executor server capabilities by including a JMS message selector in the activation
specification.
v Filter based on system-defined properties:

The following batch dispatcher properties are available on the batch JMS message that the batch
executor can use to filter for inbound messages.
– com_ibm_ws_batch_applicationName: the name of the batch application for the job request
– com_ibm_ws_batch_moduleName: the module name of the batch application for the job request
– com_ibm_ws_batch_componentName: the component name of the batch application for the job

request
– com_ibm_ws_batch_work_type: the work type : "Job"

Note: Specify a message selector with at least the com_ibm_ws_batch_applicationName property
to ensure that the executor only receives jobs that it can process.
The following example indicates the messageSelector attribute for the executor to accept a job
for the application SimpleBatchJob and BonusPayout:.

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ OR com_ibm_ws_batch_applicationName = ’BonusPayout’">

v Filter based on user-defined properties:
The batch dispatcher sets all job parameters that conform to the proper JMS message property
on the batch dispatcher request message. These properties can also be used by the message
selector to add extra filtering to the message selector. The property name, or identifier, must
conform to JMS message property constraints. For example, the property is an unlimited length
sequence of letters and digits, the first of which must be a letter. A letter is any character for
which the method Character.isJavaLetter returns true, and includes '_' and '$'. A letter or
digit is any character for which the method Character.isJavaLetterOrDigit returns true. Check
the JMS API documentation for more information on JMS message selectory.
The following example illustrates a possible message selector by using the
com_ibm_ws_batch_applicationName property and a job parameter specialCapability:

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ AND specialCapability = ’superCapability’">

The following example illustrates the batch JMS executor configuration and its JMS configuration
using WebSphere MQ binding mode:

Chapter 9. Deploying applications in Liberty 1395

<batchJmsExecutor activationSpecRef="batchActivationSpec"
queueRef="batchJobSubmissionQueue"/>

<!-- wmq resource adapter -->
<variable name="wmqJmsClient.rar.location"

value="${server.config.dir}/wmq.wlp.rar"/>

<!-- nativeLibraryPath is required for BINDING mode -->
<!-- the startup retry and reconnect retry properties are

recommended to ensure robustness of the system.-->
<wmqJmsClient nativeLibraryPath="/mqm/jms/java/lib"
startupRetryCount=999
startupRetryInterval="1000ms"
reconnectionRetryCount=10
reconnectionRetryInterval="5m">

</wmqJmsClient>

<authData password="pwd" user="user">
</authData>

<JmsActivationSpec id="batchActivationSpec" >
<properties.wmqJms destinationRef="batchJobSubmissionQueue"

destinationType="javax.jms.Queue"
messageSelector="(com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ OR com_ibm_ws_batch_applicationName = ’BonusPayout’) AND com_ibm_ws_batch_work_type=’Job’""
transportType="BINDINGS"
queueManager="WMQX">

</properties.wmqJms>
</jmsActivationSpec>

<!-- baseQueueName is the queue defined on WMQ system -->
<jmsQueue id="batchJobSubmissionQueue"

jndiName="jms/batch/jobSubmissionQueue">
<properties.wmqJms baseQueueName="BATCHQ"

priority="QDEF"
baseQueueManagerName="WMQX">

</properties.wmqJms>
</jmsQueue>

The following example illustrates the batch JMS executor configuration and its JMS configurations
using Webs Sphere MQ client mode:

<batchJmsExecutor activationSpecRef="batchActivationSpec"
queueRef="batchJobSubmissionQueue"/>

<!-- wmq resource adapter -->
<variable name="wmqJmsClient.rar.location"

value="${server.config.dir}/wmq.wlp.rar"/>

<!-- the startup retry and reconnect retry properties are
recommended to ensure robustness of the system.-->

<wmqJmsClient startupRetryCount=999
startupRetryInterval="1000ms"
reconnectionRetryCount=10
reconnectionRetryInterval="5m">

</wmqJmsClient>

<authData password="pwd" user="user">
</authData>

<JmsActivationSpec id="batchActivationSpec" >
<properties.wmqJms destinationRef="batchJobSubmissionQueue"
messageSelector="com_ibm_ws_batch_applicationName = SimpleBatchJob’ OR com_ibm_ws_batch_applicationName = ’BonusPayout’"

transportType="CLIENT"
channel="WAS.JMS.SVRCONN"
destinationType="javax.jms.Queue"
queueManager="WMQX"
hostName="webs24.pok.stglabs.ibm.com"
port="1414">
</properties.wmqJms>

</jmsActivationSpec>

<!-- baseQueueName is the queue defined on WMQ system -->
<jmsQueue id="batchJobSubmissionQueue"

jndiName="jms/batch/jobSubmissionQueue">
<properties.wmqJms baseQueueName="BATCHQ"
baseQueueManagerName="WMQX">
</properties.wmqJms>

</jmsQueue>

1396 WebSphere Application Server Liberty Core 8.5.5

3. Configure the batch JMS executor for executing only partitions.
a. Enable JMS support by adding the wmqJmsClient-2.0 feature to the feature manager in your

server.xml file.
b. Add the batchJmsExecutor element and a connectionFactory to your server.xml file on the server

that hosts the batch executor. For more information, see step 1b and 1c.
<batchJmsExecutor activationSpecRef={configured activation specification or batch executor}
queueRef={reference to the configured JMS queue}

replyConnectionFactoryRef={reference to the configured JMS connection factory} />

Note: If you do not specify the activationSpecRef and queueRef attributes, the default value for
activationSpecRef is batchActivationSpec and the default value for queueRef is
batchJobSubmissionQueue. You can specify the batchJmsExecutor element as <batchJmsExecutor/>.
You still must configure the JMS activation specification for batchActivationSpec and the
batchJobSubmissionQueue JMS queue in the server.xml file.

c. Add the corresponding JMS activation specification and JMS queue to the server configuration.
This is not specific to batch configuration.

d. Define batch executor server capabilities by including a JMS message selector in the activation
specification.
v Filter based on system-defined properties:

The following batch dispatcher properties are available on the batch JMS message that the batch
executor can use to filter for inbound messages.
– com_ibm_ws_batch_applicationName: the name of the batch application for the job request
– com_ibm_ws_batch_moduleName: the module name of the batch application for the job request
– com_ibm_ws_batch_componentName: the component name of the batch application for the job

request
– com_ibm_ws_batch_work_type: the work type : "Partition"
– com_ibm_ws_batch_partitionNum(Type=Integer): the partition number of the partition that is

being dispatched
– com_ibm_ws_batch_stepName: the name of the step as defined in the JSL

Note: Specify a message selector with at least the com_ibm_ws_batch_applicationName property
to ensure that the executor only receives jobs that it can process.
The following example indicates the messageSelector attribute for the executor to accept a job
for the application SimpleBatchJob and BonusPayout:.

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ OR com_ibm_ws_batch_applicationName = ’BonusPayout’">

v Filter based on user-defined properties:
The batch dispatcher sets all job parameters that conform to the proper JMS message property
on the batch dispatcher request message. These properties can also be used by the message
selector to add extra filtering to the message selector. The property name, or identifier, must
conform to JMS message property constraints. For example, the property is an unlimited length
sequence of letters and digits, the first of which must be a letter. A letter is any character for
which the method Character.isJavaLetter returns true, and includes '_' and '$'. A letter or
digit is any character for which the method Character.isJavaLetterOrDigit returns true. Check
the JMS API documentation for more information on JMS message selectory.
The following example illustrates a possible message selector by using the
com_ibm_ws_batch_applicationName property and a job parameter specialCapability:

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ AND specialCapability = ’superCapability’">

The following example illustrates the batch JMS executor configuration and its JMS configuration
using WebSphere MQ binding mode:

<jmsConnectionFactory id="batchConnectionFactory"
jndiName="jms/batch/connectionFactory"/>

<batchJmsExecutor activationSpecRef="batchActivationSpec"

Chapter 9. Deploying applications in Liberty 1397

queueRef="batchJobSubmissionQueue"
replyConnectionFactoryRef="batchConnectionFactory"/>

<!-- wmq resource adapter -->
<variable name="wmqJmsClient.rar.location"

value="${server.config.dir}/wmq.wlp.rar"/>

<!-- nativeLibraryPath is required for BINDING mode -->
<!-- the startup retry and reconnect retry properties are

recommended to ensure robustness of the system.-->
<wmqJmsClient nativeLibraryPath="/mqm/jms/java/lib"
startupRetryCount=999
startupRetryInterval="1000ms"
reconnectionRetryCount=10
reconnectionRetryInterval="5m">

</wmqJmsClient>

<authData password="pwd" user="user">
</authData>

<JmsActivationSpec id="batchActivationSpec" >
<properties.wmqJms destinationRef="batchJobSubmissionQueue"

destinationType="javax.jms.Queue"
messageSelector="(com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ OR com_ibm_ws_batch_applicationName = ’BonusPayout’) AND com_ibm_batch_work_type=’Job’"
transportType="BINDINGS"
queueManager="WMQX">

</properties.wmqJms>
</jmsActivationSpec>

<!-- baseQueueName is the queue defined on WMQ system -->
<jmsQueue id="batchJobSubmissionQueue"

jndiName="jms/batch/jobSubmissionQueue">
<properties.wmqJms baseQueueName="BATCHQ"

priority="QDEF"
baseQueueManagerName="WMQX">

</properties.wmqJms>
</jmsQueue>

The following example illustrates the batch JMS executor configuration and its JMS configurations
using Webs Sphere MQ client mode:

<jmsConnectionFactory id="batchConnectionFactory"
jndiName="jms/batch/connectionFactory"/>

<batchJmsExecutor activationSpecRef="batchActivationSpec"
queueRef="batchJobSubmissionQueue"

replyConnectionFactoryRef="batchConnectionFactory"/>

<!-- wmq resource adapter -->
<variable name="wmqJmsClient.rar.location"

value="${server.config.dir}/wmq.wlp.rar"/>

<!-- the startup retry and reconnect retry properties are
recommended to ensure robustness of the system.-->

<wmqJmsClient startupRetryCount=999
startupRetryInterval="1000ms"
reconnectionRetryCount=10
reconnectionRetryInterval="5m">

</wmqJmsClient>

<authData password="pwd" user="user">
</authData>

<JmsActivationSpec id="batchActivationSpec" >
<properties.wmqJms destinationRef="batchJobSubmissionQueue"
messageSelector="(com_ibm_ws_batch_applicationName = SimpleBatchJob’ OR com_ibm_ws_batch_applicationName = ’BonusPayout’) AND com_ibm_batch_work_type=’Job’"

transportType="CLIENT"
channel="WAS.JMS.SVRCONN"
destinationType="javax.jms.Queue"
queueManager="WMQX"
hostName="webs24.pok.stglabs.ibm.com"
port="1414">
</properties.wmqJms>

</jmsActivationSpec>

<!-- baseQueueName is the queue defined on WMQ system -->
<jmsQueue id="batchJobSubmissionQueue"

jndiName="jms/batch/jobSubmissionQueue">

1398 WebSphere Application Server Liberty Core 8.5.5

<properties.wmqJms baseQueueName="BATCHQ"
baseQueueManagerName="WMQX">
</properties.wmqJms>

</jmsQueue>

4. Install your batch application on the server. For more information, see Chapter 9, “Deploying
applications in Liberty,” on page 1329. To disable multiple server partition execution: If you want to
have multiple server support but do not want multiple server partition executions, you can set job
property come.ibm.websphere.batch.partition.multiJVM to false in your jsl job XML file. The
following example illustrates a JSL job to disable multiple server partitions:
<property name="com.ibm.websphere.batch.partition.multiJVM" value="false"/>

Note: If you are running a partition on a remote executor, there are no job logs created for that
partition.

Enabling multiple server partitions support by using the Liberty
embedded messaging provider

8.5.5.8

You can set up the batch environment to have servers function as batch dispatchers, while other servers
function as batch executors.

Before you begin
1. Determine where the embedded message engine is hosted. It can be hosted on the batch dispatch

server, the batch executor server, or on a separate server. This server must be configured before you
complete this task. The JMS connection factory and activation specification references the message
engine server in its configuration.

2. To configure the message engine:
a. Add the wasJmsServer-1.0 feature to the server.xml.
b. Define the message engine by adding the messageEngine element. Define the queue that is used for

the batch dispatcher and batch executor. The following example illustrates the message engine
configuration in your server.xml file:

<!-specify the ports for the message engine.
The ports in this example are the default ports.
This element is not needed when the default ports are used. -->
<wasJmsEndpoint host="*"

wasJmsPort="7280"
wasJmsSSLPort="7290"
enabled="true">

</wasJmsEndpoint>

<messagingEngine>
<!- queue for batch jms message. -->
<queue id="batchLibertyQueue"
forceReliability="ReliablePersistent"
receiveAllowed="true"/>

</messagingEngine>

About this task

Batch dispatchers accept requests from external clients and make them available to the batch executors.
The batch executors receive requests that match its defined capabilities and execute those requests. If the
job is configured to run partitions, the batch executors make them available to the other executors to run.
The batch executors communicate with each other by using Java Messaging Service (JMS). This task helps
you configure the batch dispatch server and the batch executor by using the Liberty profile embedded
messaging provider.

Procedure
1. Configure the batch JMS dispatcher.

Chapter 9. Deploying applications in Liberty 1399

a. Enable JMS support by adding the wasJmsClient-2.0 feature to the feature manager in your
server.xml file.

b. Add the batchJmsDispatcher element to your server.xml file on the server that hosts the batch
dispatcher; for example:

<batchJmsDispatcher connectionFactoryRef={reference to a configured JMS connection factory}
queueRef={reference to a configured JMS queue} />

Note: If you do not specify the connectionFactoryRef and queueRef attributes, the default value
for connectionFactoryRef is batchConnectionFactory and the default value for queueRef is
batchJobSubmissionQueue. You can specify the batchJmsDispatcher element as
<batchJmsDispatcher/>. You still must configure the batchConnectionFactory JMS connection
factory and the JMS batchJobSubmissionQueue queue in the server.xml file.

c. Add the corresponding JMS connection factory and JMS queue to the server configuration. This is
not specific to batch configuration. The following example illustrates the batch JMS dispatcher
configuration and its JMS configuration:

Note: The remoteServerAddress attribute points to the host:port of the server that is hosting the
Liberty profile message engine.

<batchJmsDispatcher connectionFactoryRef="batchConnectionFactory"
queueRef="batchJobSubmissionQueue" />

<jmsConnectionFactory id="batchConnectionFactory"
jndiName="jms/batch/connectionFactory">

<properties.wasJms remoteServerAddress="host:7280:BootstrapBasicMessaging">
</properties.wasJms>

</jmsConnectionFactory>

<jmsQueue id="batchJobSubmissionQueue"
jndiName="jms/batch/jobSubmissionQueue">
<properties.wasJms deliveryMode="Persistent"

queuename="batchLibertyQueue">
</properties.wasJms>

</jmsQueue>

2. Configure the batch JMS executor for executing batch jobs.
a. Enable JMS support by adding the wasJmsClient-2.0 feature to the feature manager in your

server.xml file.
b. Add the batchJmsDispatcher element to your server.xml file on the server that hosts the batch

executor.
<batchJmsExecutor activationSpecRef={configured activation specification or batch executor}
queueRef={reference to the configured JMS queue} />

Note: If you do not add the batchJmsDispatcher element to your server.xml file, the server will
not dispatch partitions to run on multiple servers and will run the partitions locally.

Note: If you do not specify the connectionFactoryRef and queueRef attributes, the default value
for connectionFactoryRef is batchConnectionFactory and the default value for queueRef is
batchJobSubmissionQueue. You can specify the batchJmsDispatcher element as
<batchJmsDispatcher/>. You still must configure the batchConnectionFactory JMS connections
factory and the batchJobSubmissionQueue in the server.xml file.

c. Add the corresponding JMS connection factory and JMS queue to the server configuration. This is
not specific to batch configuration. The following example illustrates the batch JMS dispatcher
configuration and its JMS configuration:

Note: The remoteServerAddress attribute points to the host:port of the server that is hosting the
Liberty profile message engine.

<batchJmsDispatcher connectionFactoryRef="batchConnectionFactory"
queueRef="batchJobSubmissionQueue" />

<jmsConnectionFactory id="batchConnectionFactory"
jndiName="jms/batch/connectionFactory">

1400 WebSphere Application Server Liberty Core 8.5.5

<properties.wasJms remoteServerAddress="host:7280:BootstrapBasicMessaging">
</properties.wasJms>

</jmsConnectionFactory>

<jmsQueue id=’batchJobSubmissionQueue"
jndiName="jms/batch/jobSubmissionQueue">
<properties.wasJms deliveryMode="Persistent"

queuename="batchLibertyQueue">
</properties.wasJms>

</jmsQueue>

d. Add the batchJmsExecutor element to your server.xml on the server that hosts the batch executor;
for example:

<batchJmsExecutor activationSpecRef={configured activation specification or batch executor}
queueRef={reference to the configured JMS queue} />

Note: If you do not specify the activationSpecRef and queueRef attributes, the default value for
activationSpecRef is batchConnectionFactory and the default value for queueRef is
batchJobSubmissionQueue. You can specify the batchJmsExecutor element as <batchJmsExecutor/>.
You still must configure the JMS activation specification for batchActivationSpec and the
batchJobSubmissionQueue queue in the server.xml file.

e. Add the corresponding JMS activation specification and JMS queue to the server configuration.
This is not specific to batch configuration.

f. Define batch executor server capabilities by including a JMS message selector in the activation
specification.
v Filter based on system-defined properties:

The following batch dispatcher properties are available on the batch JMS message that the batch
executor can use to filter for inbound messages.
– com_ibm_ws_batch_applicationName: the name of the batch application for the job request
– com_ibm_ws_batch_moduleName: the module name of the batch application for the job request
– com_ibm_ws_batch_componentName: the component name of the batch application for the job

request
– com_ibm_ws_batch_work_type: the work type : "Job"

Note: Specify a message selector with at least the com_ibm_ws_batch_applicationName property
to ensure that the executor only receives jobs that it can process.
The following example indicates the messageSelector attribute for the executor to accept only
batch jobs for the application SimpleBatchJob:

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ AND com_ibm_ws_batch_work_type = ’Job’">

v Filtering based on user-defined properties:
The batch dispatcher sets all job parameters that conform to the proper JMS message property
on the batch dispatcher request message. These properties can also be used by the message
selector to add extra filtering to the message selector. The property name, or identifier, must
conform to JMS message property constraints. For example, the property is an unlimited length
sequence of letters and digits, the first of which must be a letter. A letter is any character for
which the method Character.isJavaLetter returns true, and includes '_' and '$'. A letter or digit
is any character for which the method Character.isJavaLetterOrDigit returns true. Check the
JMS API documentation for more information on JMS message selectory.
The following example illustrates a possible message selector by using the
com_ibm_ws_batch_applicationName property and a job parameter specialCapability:

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ AND specialCapability = ’superCapability’">

The following example illustrates the batch JMS executor configuration and its JMS configuration:
<batchJmsExecutor activationSpecRef="batchActivationSpec"

queueRef="batchJobSubmissionQueue"/>

<jmsActivationSpec id="batchActivationSpec" >
<properties.wasJms destinationRef="batchJobSubmissionQueue"

Chapter 9. Deploying applications in Liberty 1401

messageSelector="(com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ OR com_ibm_ws_batch_applicationName = ’BonusPayoutCDI’) AND com_ibm_ws_batch_work_type=’Job’"
destinationType="javax.jms.Queue"
remoteServerAddress="host:7280:BootstrapBasicMessaging">

</properties.wasJms>
</jmsActivationSpec>

<jmsQueue id="batchJobSubmissionQueue"
jndiName="jms/batch/jobSubmissionQueue">

<properties.wasJms deliveryMode="Persistent"
queueName="batchLibertyQueue">

</properties.wasJms>
</jmsQueue>

3. Configure the batch JMS executor for executing only partitions.
a. Enable JMS support by adding the wasJmsClient-2.0 feature to the feature manager in your

server.xml file.
b. Add the batchJmsExecutor element to your server.xml file on the server that hosts the batch

executor that is running batch jobs.
<batchJmsExecutor activationSpecRef={configured activation specification or batch executor}
queueRef={reference to the configured JMS queue}

replyConnectionFactoryRef={reference to the configured JMS connection factory} />

Note: If you do not specify the connectionFactoryRef and queueRef attributes, the default value
for connectionFactoryRef is batchConnectionFactory and the default value for queueRef is
batchJobSubmissionQueue. You can specify the batchJmsDispatcher element as
<batchJmsDispatcher/>. You still must configure the batchConnectionFactory JMS connections
factory and the batchJobSubmissionQueue in the server.xml file.

c. Add the corresponding JMS connection factory and JMS queue to the server configuration. This is
not specific to batch configuration.

d. Define batch executor server capabilities by including a JMS message selector in the activation
specification.
v Filter based on system-defined properties:

The following batch dispatcher properties are available on the batch JMS message that the batch
executor can use to filter for inbound messages.
– com_ibm_ws_batch_applicationName: the name of the batch application for the job request
– com_ibm_ws_batch_moduleName: the module name of the batch application for the job request
– com_ibm_ws_batch_componentName: the component name of the batch application for the job

request
– com_ibm_ws_batch_work_type: the work type : "Partition"
– com_ibm_ws_batch_partitionNum(Type=Integer): the partition number of the partition that is

being dispatched
– com_ibm_ws_batch_stepName: the name of the step as defined in the JSL

Note: Specify a message selector with at least the com_ibm_ws_batch_applicationName property
to ensure that the executor only receives jobs that it can process.
The following example indicates the messageSelector attribute for the executor to accept only
partitions for the application SimpleBatchJob:

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ AND com_ibm_ws_batch_work_type = ’Partition’">

The following example indicates the messageSelector attribute for the executor to accept only
partitions for the application SimpleBatchJob:

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ AND com_ibm_ws_batch_work_type = ’Partition’ AND come_ibm_ws_batch_stepName = ’step1’">

v Filtering based on user-defined properties:
The batch dispatcher sets all job parameters that conform to the proper JMS message property
on the batch dispatcher request message. These properties can also be used by the message
selector to add extra filtering to the message selector. The property name, or identifier, must
conform to JMS message property constraints. For example, the property is an unlimited length

1402 WebSphere Application Server Liberty Core 8.5.5

sequence of letters and digits, the first of which must be a letter. A letter is any character for
which the method Character.isJavaLetter returns true, and includes '_' and '$'. A letter or
digit is any character for which the method Character.isJavaLetterOrDigit returns true. Check
the JMS API documentation for more information on JMS message selectory.
The following example illustrates a possible message selector by using the
com_ibm_ws_batch_applicationName property and a job parameter specialCapability:

messageSelector="com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ AND specialCapability = ’superCapability’">

The following example illustrates the batch JMS executor configuration and its JMS configuration:
<jmsConnectionFactory id="batchConnectionFactory"

jndiName="jms/batch/connectionFactory"/>

<batchJmsExecutor activationSpecRef="batchActivationSpec"
queueRef="batchJobSubmissionQueue"

replyConnectionFactoryRef="batchConnectionFactory"/>

<jmsActivationSpec id="batchActivationSpec" >
<properties.wasJms destinationRef="batchJobSubmissionQueue"

messageSelector="(com_ibm_ws_batch_applicationName = ’SimpleBatchJob’ OR com_ibm_ws_batch_applicationName = ’BonusPayoutCDI’) AND com_ibm_ws_batch_work_type=’Partition’"
destinationRef="batchJobSubmissionQueue"

destinationType="javax.jms.Queue"
remoteServerAddress="host:7280:BootstrapBasicMessaging">

</properties.wasJms>
</jmsActivationSpec>

<jmsQueue id="batchJobSubmissionQueue"
jndiName="jms/batch/jobSubmissionQueue">

<properties.wasJms deliveryMode="Persistent"
queueName="batchLibertyQueue">

</properties.wasJms>
</jmsQueue>

4. Install your batch application on the server. For more information, see Chapter 9, “Deploying
applications in Liberty,” on page 1329. To disable multiple server partition execution: If you want to
have multiple server support but do not want multiple server partition executions, you can set job
property come.ibm.websphere.batch.partition.multiJVM to false in your jsl job XML file. The
following example illustrates a JSL job to disable multiple server partitions:
<property name="com.ibm.websphere.batch.partition.multiJVM" value="false"/>

Note: If you are running a partition on a remote executor, there are no job logs created for that
partition.

Enabling batch job events publishing
8.5.5.7

By using Java Messaging System (JMS), the batch server can publish job-related events to external clients.

About this task

The ability of the batch server to publish job-related events to external clients enables a monitor to see
job-related events and report on failures. The batch dispatcher server can publish events for a job in the
dispatching phase. The batch executor server can publish events for jobs when it moves through different
phases of execution. These events are published in a topic tree in the following structures:

Table 96. File structures of topic trees for event publishing

Structure Description

batch The root of the topic tree.

batch/jobs The topic tree for all job-related events.

batch/jobs/instance The topic tree for all events that are related to a job
instance.

Chapter 9. Deploying applications in Liberty 1403

Table 96. File structures of topic trees for event publishing (continued)

Structure Description

batch/jobs/instance/submitted A topic tree node. A message is published when the
batch server creates a job instance for a new job
submission.

batch/jobs/instance/jms_queued A topic tree node. A message is published when job
submission is placed on the job submission queue by the
batch JMS dispatcher.

batch/jobs/instance/jms_consumed A topic tree node. A message is published when the
batch executor receives the job submission from the job
submission queue.

batch/jobs/instance/dispatched A topic tree node. A message is published when the
batch executor accepts a job instance for execution.

batch/jobs/instance/completed A topic tree node. A message is published when the job
instance is completed.

batch/jobs/instance/stopped A topic tree node. A message is published when the job
instance is stopped.

batch/jobs/instance/stopping A topic tree node. A message is published when the job
instance is stopping.

batch/jobs/instance/failed A topic tree node. A message is published when the job
instance failed.

batch/jobs/instance/purged A topic tree node. A message is published when a job
instance is purged successfully.

batch/jobs/execution The topic tree for all events that are related to a job
execution.

batch/jobs/execution/restarting A topic tree node. A message is published when the
batch executor is restarting an execution.

batch/jobs/execution/starting A topic tree node. A message is published when a job
execution is starting.

batch/jobs/execution/completed A topic tree node. A message is published when a job
execution ends successfully.

batch/jobs/execution/failed A topic tree node. A message is published when a job
execution ends because of failure.

batch/jobs/execution/stopped A topic tree node. A message is published when a job
execution is stopped.

batch/jobs/execution/jobLogPart A topic tree node. A message is published when a new
job log part is created, a job stops, or a job ends.

batch/jobs/execution/step/started A topic tree node. A message is published when a step
execution is started.

batch/jobs/execution/step/completed A topic tree node. A message is published when a step
execution is completed successfully.

batch/jobs/execution/step/failed A topic tree node. A message is published when a step
execution fails.

batch/jobs/execution/step/stopped A topic tree node. A message is published when a step
execution is stopped.

1404 WebSphere Application Server Liberty Core 8.5.5

Table 96. File structures of topic trees for event publishing (continued)

Structure Description

batch/jobs/execution/step/checkpoint A topic tree node. A message is published when a
checkpoint is taken.

batch/jobs/execution/partition/started A topic tree node. A message is published when a
partition is started.

batch/jobs/execution/partition/completed A topic tree node. A message is published when a
partition is completed successfully.

batch/jobs/execution/partition/failed A topic tree node. A message is published when a
partition fails.

batch/jobs/execution/partition/stopped A topic tree node. A message is published when a
partition is stopped.

batch/jobs/execution/split-flow/started A topic tree node. A message is published when a
split-flow is started.

batch/jobs/execution/split-flow/ended A topic tree node. A message is published when a
split-flow is completed.

The published message for each topic is a JMS TextMessage. The contents of this message is a JSON
formatted string that represents the object of the topic, such as job instance, job execution, step execution,
or partition. In addition, this message also includes the following JMS message properties set:
v com_ibm_ws_batch_internal_jobInstanceId: The job instance ID, if available.
v com_ibm_ws_batch_internal_jobExecutionId: The job execution ID, if available.
v com_ibm_ws_batch_internal_stepExecutionId: The job step execution ID, if available.

The batch server must be configured to enable the publishing of job-related events. The batch dispatcher
and batch executor have the same configuration. The following steps enable the publication of job-related
events for a batch server.

Procedure
1. Enable JMS support by adding the appropriate JMS feature to the feature manager in the server.xml

file. If you are using the WebSphere Application Server Liberty default messaging provider, add the
wasJmsClient-2.0 feature and related JMS configurations for the message engine. If you are using
WebSphere MQ Messaging provider, add the wmqJmsClient-2.0 feature.

2. Add the batchJmsEvents element to the server.xml file.
<batchJmsEvents connectionFactoryRef="batchConnectionFactory" />

Note: If you do not specify the connectionFactoryRef attribute, the default value for
connectionFactoryRef is batchConnectionFactory. You must still configure the
batchConnectionFactory JMS connection factory in the server.xml file.

3. Add the corresponding JMS connection factory to the server configuration. This is not specific to
batch configuration.
The following example illustrates the batch events configuration and its JMS configuration by using
the WebSphere MQ messaging provider.
<!-- wmq resource adapter -->
<variable name="wmqJmsClient.rar.location" value="${server.config.dir}/wmq.wlp.rar"/>
<!-- require for BINDING mode -->
<wmqJmsClient nativeLibraryPath="/mqm/jms/java/lib"/>

<batchJmsEvents connectionFactoryRef="batchConnectionFactory" />

Chapter 9. Deploying applications in Liberty 1405

<jmsConnectionFactory id="batchConnectionFactory" jndiName="jms/batch/connectionFactory">
<properties.wmq.Jms

transportType="BINDINGS"
queueManager="WMQX" />

</jmsConnectionFactory>

The following example illustrates the batch events configuration and its JMS configuration by using
the WebSphere Liberty default messaging provider.
<batchJmsEvents connectionFactoryRef="batchConnectionFactory" />
<jmsConnectionFactory id="batchConnectionFactory" jndiName="jms/batch/connectionFactory">

<properties.wasJms></properties.wasJms>
</jmsConnectionFactory>

Example

The following examples illustrate sequence of events for basic execution flows.
v Submit and run a single-step job with checkpoints.

batch/jobs/instance/submitted
batch/jobs/instance/jms_queued
batch/jobs/instance/jms_consumed
batch/jobs/execution/starting
batch/jobs/instance/dispatched
batch/jobs/execution/started
batch/jobs/execution/step/started
batch/jobs/execution/step/checkpoint
batch/jobs/execution/step/checkpoint
...
batch/jobs/execution/step/checkpoint
batch/jobs/execution/step/completed
batch/jobs/execution/completed
batch/jobs/instance/completed

v Submit and run a single-step job with partition.
batch/jobs/instance/submitted
batch/jobs/instance/jms_queued
batch/jobs/instance/jms_consumed
batch/jobs/execution/starting
batch/jobs/instance/dispatched
batch/jobs/execution/started
batch/jobs/execution/step/started
batch/jobs/execution/partition/started
batch/jobs/execution/partition/started
batch/jobs/execution/partition/started
batch/jobs/execution/partition/completed
batch/jobs/execution/partition/completed
batch/jobs/execution/partition/completed
batch/jobs/execution/step/completed
batch/jobs/execution/completed
batch/jobs/instance/completed

batchManager command-line client utility

8.5.5.6

The batchManager command-line client utility provides a command-line interface for managing your
batch jobs that run on Liberty.

The batchManager command-line client utility interacts with the batch manager over the batch manager's
REST API. To use the batchManager command-line client utility, the batch manager must be running on
your Liberty server. Use the batch management feature to install and enable the Liberty batch manager.

1406 WebSphere Application Server Liberty Core 8.5.5

SSL configuration

The batchManager command-line client utility communicates with the batch manager over an SSL
connection. To facilitate SSL communication with a batch manager that is running on a Liberty server, the
utility must be able to verify the SSL certificate of the Liberty server.

If the SSL certificate is signed by a well-known certificate authority (CA), the utility can verify the
certificate by the CA. No further configuration is necessary.

If the SSL certificate is not signed by a CA, then you must configure the utility to trust the SSL certificate
of the server by doing one of the following actions.
v Specify the option --trustSslCertificates, which configures the utility to trust all SSL certificates.
v Include the server's SSL certificate in the utility's truststore.

If you choose to specify the option --trustSslCertificates, the utility trusts all SSL certificates that it
receives and no further configuration is necessary.

If you choose the option to include the server's SSL certificate in the utility's truststore, then you must
also configure the utility so that it can find its truststore. The utility is a stand-alone Java main. You
configure SSL by using system properties such as javax.net.ssl.truststore.

If the batch manager is running on the same machine as the utility, then you can point the utility
directly at the server keystore:

$ export JVM_ARGS="-Djavax.net.ssl.trustStore=/path/to/server/keystore.jks"
$ batchManager submit ...

Attention: JVM arguments, such as -D properties, are passed to the batchManager command-line client
utility by the JVM-ARGS environment variable.

If you cannot use the server keystore directly, you must export the server certificate from the server
keystore and import it into the client truststore. Use the JDK keytool utility for exporting and importing
certificates. In the following example, the server certificate is stored in the [server-dir]/resources/
security/key.jks keystore file under the default alias, and the password is Liberty.

$ keytool -export -alias default -file server.crt -keystore [server-dir]/resources/security/key.jks -storepass Liberty
$ keytool -import -alias server_crt -file server.crt -keystore /path/to/truststore.jks -storepass passw0rd

Attention: The import command creates the truststore.jks file if the file does not exist.
$ export JVM_ARGS="-Djavax.net.ssl.trustStore=/path/to/truststore.jks"
$ batchManager submit ...

Commands and usage

The batchManager command-line client utility provides commands for submitting, stopping, restarting,
and checking the status of jobs.

To generally use the utility:

$ batchManager [command] [options]

To see a list of available commands:

$ batchManager help

To see the description and options for a specific command:

Chapter 9. Deploying applications in Liberty 1407

$ batchManager help [command]

The following example illustrates how to submit a job and wait for its completion:
$ batchManager submit \

--batchManager=<host>:<port>
--user=[credentials for logging into the batch manager]
--password=[credentials for logging into the batch manager]
--applicationName=[application name used when packaging the batch app]
--jobXMLName=[job XML file basename in the app’s batch-jobs dir]
--wait

jobParametersFile and jobPropertiesFile

When submitting a batch job by using the batchManagerZos client utility, the jobParametersFile and
jobPropertiesFilesupports the use of multiple files separated by commas. Files later in the comma
separated list take precedence over files that appear first in the list. The following example illustrates
correct usage of the comma separated list.
jobParametersFile=filePath1,filePath2,filePath3
jobPropertiesFile=filePath1,filePath2,filePath3

As an example, --jobParametersFile=<filepath1> would override
--jobParametersFile=<filepath1>,<filepath2> in the control properties file. The resulting parameter is
--jobParametersFile=<filepath1>.

Return codes

The batchManager command-line client utility outputs the following return codes:

Code Description

0 The task completed normally.

20 A required argument was not specified.

21 An unrecognized argument was specified.

22 An invalid argument value was specified.

255 An unknown error occurred.

Note: If you specify the --wait argument, the utility outputs the following return codes about the status
of the job that you are waiting for.

Code Description

33 The job stopped.

34 The job did not complete successfully.

35 The job completed successfully.

36 The job was abandoned.

Viewing Java batch job logs

8.5.5.6

When you are running Java batch jobs in the WebSphere Application Server Liberty, a log is written for
each job.

The logs are created in the following directory structure:

1408 WebSphere Application Server Liberty Core 8.5.5

|

|
|
|
|

|
|

|
|
|

log directory/joblogs/job name/date/instance.job instance ID/execution.execution ID

Attention: The variable job name is the id attribute of the job element within the JSL (XML) document.
It is not necessarily related to the file name of the JSL file.

The naming of logs begins at part.1.log and rotates to new log parts as needed. By default, the job log
contains all messages and trace information that is logged in the server by the thread that performs the
job execution. Output that is not logged within the java.util.logging framework is not collected.

Important: If a new log part cannot be created, batch attempts to continue processing without a log, or
with the current log part.

For more information about retrieving or deleting job logs by using the REST API, see the REST API
administration documentation.

Important: If you use the log4j API, applications that use the log4j framework can participate in batch
job logging by using org.apache.log4j.jul.JULAppender. The JULAppender forwards log4j log records to
the java.util.logging framework, where they are collected for job logging.

Configuring job logging

Batch job logging can be configured by using the <batchJobLogging> configuration element
<batchJobLogging enabled="true" maxRecords="1000" />.

The attribute maxRecords indicates the number of records that are written to a job log part before the
records roll over to the next part.

The batch feature uses a logger that is named com.ibm.ws.batch.JobLogger to log certain batch messages
to the job log only. Examples include job lifecycle messages and checkpoint messages. The logger does
not write to the server log. By default, the logger is enabled for Level.FINE messages. You can configure
the level of the logger by specifying it in the trace specification of the server. For example, <logging
traceSpecification="*=info:com.ibm.ws.batch.JobLogger=all" />.

Any log messages that are written by the job thread, including messages that are written by the run time
and by application code, are written to both the job log and the server log.

The System.out and System.err files are only written to the server log and are not written to the job log.

Partitioned steps

Partitioned steps have more subdirectories for each partition. The log files in the execution ID directory
contain entries from the thread that is running the top-level job. The job logs for the partitions are stored
with the following structure:

log directory/joblogs/job name/date/instance.job instance ID/execution.execution ID/name of
partitioned step/partition number

Important: A directory is created in the name of partitioned step directory for each partition.

Split flows

If a split flow occurs in the job, more subdirectories are created to capture the output from the thread of
each flow. The log files that are located directly under the execution ID directory contains entries from the
thread that is running the top-level job. The job logs for individual flow threads are stored with the
following structure:

Chapter 9. Deploying applications in Liberty 1409

log directory/joblogs/job name/date/instance.job instance ID/execution.execution ID/split
ID/flow ID

Important: A directory is created in the split ID directory for each flow.

Job log events

If batch job events are enabled, then job log events are published when a job log part is completed and
when a job goes to an ended state, such as stopped, failed, or completed. The job log event messages
contain multiple JSON properties to help with identifying the message along with the actual job log file
content.

Important: The JSON properties are part of the JMS message body and can be retrieved by converting
the body text to a JsonObject and pulling the specific JSON property from that object.

The following example illustrates how to retrieve the job log content property.
//The retrieved job log event message
Message msg
//Convert the Message to a TextMessage
TextMessage txtMsg = (TextMessage) msg;
//Convert the text in the message to a JsonObject
JsonObject jobLogEventObject = Json.createReader(new StringReader(txtMsg.getText())).readObject();
//Pull the job log text content from the JsonObject as an example
JsonArray logContentArray = jobLogEventObject.getJsonArray("contents");

For more information about enabling batch job events, see Enabling batch job events publishing.

Shared libraries
Shared libraries are files used by multiple applications. You can use shared libraries and global libraries
to reduce the number of duplicate library files on your system.

Library elements

Liberty libraries have three elements; <folder>, <file>, and <fileset>. For example:
<library>

<folder dir="..." />
<file name="..." />
<fileset dir="..." includes="*.jar" scanInterval="5s" />

</library>

A specified file must be a container for the resource (for example a JAR file) rather than the resource
itself.

If an element in the list is a file, the contents of that JAR or compressed .zip file are searched. If a folder
is specified then resources are loaded from that directory.

Global libraries

Global libraries can be used by any application. JAR files are placed in a global library directory, and then
are specified in the class loader configuration for each application.

You can place global libraries in two locations:
v ${shared.config.dir}/lib/global

v ${server.config.dir}/lib/global

1410 WebSphere Application Server Liberty Core 8.5.5

|

|
|
|
|

|
|

|

|
|
|
|
|
|
|
|

|

If there are files present in these locations at the time an application is started, and that application does
not have a <classloader> element configured, the application uses these libraries. If a class loader
configuration is present, these libraries are not used unless the global library is explicitly referenced.

For more information, see “Providing global libraries for all Java EE applications” on page 978.

Resource files

Within Liberty libraries, you can have resource files defined in the library element. For example,
<library>

<folder dir="..." />
<file name="..." />
<fileset dir="..." includes="*.jar" scanInterval="5s" />
<folder dir="${server.config.dir}/mylibs" />
<file name="${server.config.dir}/otherlibs/my.jar" />

</library>

The folder setting in the previous example, allows all files under the mylibs directory to be available on
the classpath. You can use this style of entry to have your .xml and .properties available.

Library elements

Liberty libraries have three child elements, <folder>, <file> and <fileset>. For example,
<library>

<folder dir="..." />
<file name="..." />
<fileset dir="..." includes="*.jar" scanInterval="5s" />

</library>

v <folder>: All resources under each configured folder will be loadable
v <file>: Each configured file should be either a native library or a container for resources (such as a

JAR or a ZIP file). All resources within a container are loadable and any other filetype that is specified
will have no effect.

v <fileset>: Each configured fileset is effectively a collection of files. Each file in the fileset should be a
native library or a container for resources (such as a JAR or a ZIP file). All resources within a container
are loadable and any other filetype that is specified will have no effect.

For example,
<library id="someLibrary">

<!-- Location of XML and .properties files in the file system for easy editing -->
<folder dir="${server.config.dir}/editableConfig" />

<!-- Location of some classes and resources in the file system -->
<folder dir="${server.config.dir}/extraStuff" />

<!-- A zip file containing some resources -->
<file name="${server.config.dir}/lib/someResources.zip" />

<!-- All the jar files in ther servers lib folder -->
<fileset dir="${server.config.dir}/lib" includes="*.jar" scanInterval="5s" />

</library>

<application location ="webStore.war">
<classloader commonLibraryRef="someLibrary" />

</application>

The configuration snippet in the previous example, allows all resources under the editableConfig
directory to be loaded by the webStore application.

Chapter 9. Deploying applications in Liberty 1411

Loose applications
8.5.5.4

Loose applications are applications that are composed from multiple physical locations, which are
provided to the run time via an XML file. Loose applications are supported for Java EE and OSGi
applications and are particularly beneficial in a development environment.

Normal application

Normally an application is contained under one directory (or in one archive), with its content, modules,
resources, classdata, and metadata at known locations within that directory. For example: the location of
resources for a web application is as follows:
v Library Java archive (JAR) files are stored in WEB-INF/lib
v Classes are either in library JAR files or in WEB-INF/classes
v The deployment descriptor is in WEB-INF/web.xml
v Content to be served is located from the root of the directory

Loose application

A loose application is described as “a virtual directory that represents the application, where information
might be in any location”. It enables development tools, such as WebSphere Application Server Developer
Tools, to run applications where the associated files are loaded directly from the workspace, rather than
being exported. Examples of associated files are Java classes, JavaServer Pages, or images. If you load the
associated files directly from the workspace, it results in a faster build-run-debugging cycle. The content
is not present under one directory, but can come from other locations. These locations are specified in an
XML configuration file.

There are two ways you can provide the XML file to the run time:
1. By placing the XML file in the location attribute in an application configuration element with an

appended .xml suffix
2. By placing the XML file directly into the application dropins folder

For example, if you specify <application location="myapp.war" />, the run time looks for a file called
myapp.war.xml. The search rules are the same as for an application directory or archive. If the application
files and the .xml loose application configuration files are both found, then the loose application
configuration file is ignored. For example, if you have myapp.war and myapp.war.xml, the Liberty server
uses myapp.war to run the application. You can also deploy loose applications directly into the dropins
folder. To use the dropins folder, follow the naming conventions that are defined for the folder and
append .xml to the end of the file name.

Loose application configuration file

The Liberty server uses the loose application configuration file to obtain the application content, rather
than locating it from a root directory or single archive. Using the appropriate XML, you can take the
following actions:
v Map any physical directory to any location within the application
v Map any physical file to any location within the application
v Map any physical JAR file or directory to any location as a nested archive
v Map multiple physical sources to a single target location (merging)

For example:
1. Map the root of the archive to one location on disk, such as a folder in an Eclipse project.

1412 WebSphere Application Server Liberty Core 8.5.5

2. Map a Java bin/output folder that is not in the “usual” location into the WEB-INF/classes folder. This
location might be in a different folder due to your workspace preferences, corporate guidelines, source
control project layout guidelines, and so on. You might have multiple Java source and output
locations in the same project, and want to map them both to WEB-INF/classes.

3. Map an “external” JAR file into the application. This “external” JAR file might be one of the
following:
v A separate Java project that you want to treat like a JAR file in WEB-INF/lib
v A utility JAR file somewhere else on your hard disk drive that you built the .war file against, and

need to include in WEB-INF/lib at run time

Loose application configuration file examples

You can configure three different elements in the loose application configuration file:
v <archive> for archives
v <file> for files
v <dir> for directories

Archives
The <archive> element is always used as the root of the loose application configuration file. It is
also the root of the virtual file system that is represented in the XML. You can nest any of the
three elements under the root <archive> element. The root <archive> element does not have any
attributes.

Archive elements can be nested recursively. For <archive> elements nested under the root
<archive> element, you can set the targetInArchive attribute. The targetInArchive attribute
defines the path where the archive appears within the loose defined enclosing archive. You
cannot map an archive on the file system as an archive in the application with an <archive>
element. To use loose application configuration to map an archive on disk, use a <file> element
instead.

Note: The targetInArchive attribute value is an absolute path with a leading forward slash (/).

The following code is an example of the root <archive> element with another <archive> element
nested under it:
<archive>

<archive targetInArchive="/jarName.jar">
<!-- more objects can be embedded here-->

</archive>
</archive>

Files You can use the <file> element to map a file on your hard disk to a file in your loose application
configuration. You can set the following attributes on the <file> element:
v targetInArchive defines the path where the archive appears within the loose defined enclosing

archive.
v sourceOnDisk defines the actual location of your file on your file system.

Note: The sourceOnDisk attribute value is an absolute location. You can use Liberty variables
such as ${was.server.dir}, which are resolved correctly.

The following code is an example of a file in C:/devFolder/myApplication.zip that is represented
as /apps/webApplication.war by the loose application configuration:
<file targetInArchive="/apps/webApplication.war"

sourceOnDisk="C:/devFolder/myApplication.zip" />

The following code is an example of an enclosing archive that defines an archive at path
/apps/webApplication.war. Within the archive, webApplication.war defines a file, jarName.jar at
path /applications/myApplications. The actual file location is c:\devFolder\myApplication.zip:

Chapter 9. Deploying applications in Liberty 1413

<archive targetInArchive="/apps/webApplication.war">
<file targetInArchive="/applications/myApplications/jarName.jar"

sourceOnDisk="C:/devFolder/myApplication.zip" />
</archive>

Directories
You can use the <dir> element to map a directory, and all of its contents on disk, to a directory
location in the loose application configuration. The element has the same attributes as the <file>
element and you use it in a similar way.

The following code is an example of a directory that the loose application configuration shows as
being in /META-INF and on your file system in ${was.server.dir}/applicationData/
myApplication:
<dir targetInArchive="/META-INF"

sourceOnDisk="${was.server.dir}/applicationData/myApplication" />

To add the directory to an archive so it appears to be in /apps/jarName.jar/META-INF, embed the
<dir> element as follows:
<archive targetInArchive="/apps/jarName.jar">

<dir targetInArchive="/META-INF"
sourceOnDisk="${was.server.dir}/applicationData/myApplication" />

</archive>

In both of the previous examples, all files that are in ${was.server.dir}/applicationData/
myApplication are mapped and visible in the loose application configuration under the directory
that is mapped by the targetInArchive attribute.

Virtual paths and file names

If you add <file> or <dir> elements to an archive, the name of the file or directory in the loose archive
does not need to be the same as the actual name on disk.

The following code is an example of how you can configure ${was.server.dir}/applicationFiles/
newfile.txt to appear in the archive as /application.txt:
<archive>

<file targetInArchive="/application.txt"
sourceOnDisk="${was.server.dir}/applicationFiles/newfile.txt"/>

</archive>

The same concept also holds true for the path of any added file or directory. The physical resource on
disk does not need to be in a directory hierarchy that corresponds to the one being declared.

The following code is an example of how you can make ${was.server.dir}/applicationFiles/
newfile.txt appear in the archive as /only/available/in/application.txt:
<archive>

<file targetInArchive="/only/available/in/application.txt"
sourceOnDisk=""${was.server.dir}/applicationFiles/newfile.txt"/>

</archive>

In each case, the Liberty server sees the resource by the name and path declared by the targetInArchive
attribute. The Liberty server can navigate the directory hierarchy declared, even if the hierarchy contains
only virtual elements, as in the previous example.
<archive>

<file targetInArchive="/only/available/in/red.txt"
sourceOnDisk="${was.server.dir}/applicationFiles/newfile.txt" />

<archive targetInArchive="/apps/jarName.jar">
<dir targetInArchive="/META-INF"

sourceOnDisk="${was.server.dir}/applicationData/myApplication" />
</archive>

1414 WebSphere Application Server Liberty Core 8.5.5

Folders and files with the same name

If you have two folders with the same name in the same virtual location in the loose application
configuration, the folders are merged, and the contents of both folders are available. If you have two files
with the same target location in the loose archive, the first occurrence of the file is used. The first
occurrence is based on a top-down approach to reading the elements of the loose application
configuration file.

If the first file found is the wrong file, reorder the XML so that the element that contains the version of
the file you want is processed first. The first occurrence applies to files defined in <dir> elements and
files that are defined in <file> elements. The first occurrence of a file with the same name and virtual
location is the one returned from the virtual file system.

Considerations for loose applications

For all loose configured applications, the files are not on disk in the hierarchy that they are declared to
be. If your applications directly access their own resources, and expect them to be arranged on disk as
they would be with an expanded war or ear layout, they might exhibit unexpected behavior.

You can use ServletContext.getRealPath in your applications to discover physical resource paths.
ServletContext.getRealPath can discover file paths to open to read or write data, and obtain directories.
However, if you use ServletContext.getRealPath in web applications to obtain a path for “/”, you
cannot use this path to navigate the application on disk.

ServletContext.getRealPath allows only a single physical path to be returned, and the loose application
might have merged multiple directories to form one path visible to the application.

Consider the following configuration:
<archive>

<dir targetInArchive="/"
sourceOnDisk="c:\myapplication" />

<dir targetInArchive="/web/pages"
sourceOnDisk="c:\webpagesforapplication" />

</archive>

An application that directly accesses /web/pages and then navigates up the directory hierarchy, finds that
the parent of the physical path of /web/pages is c:\ and not /web. c:\ has no pages directory and no
parent directory.

These considerations apply only if your applications attempt to directly access the content on disk, and
perform their own path navigation based on an assumption of a corresponding hierarchical layout on
disk. The same applications also encounter issues if they are deployed as an archive. These applications
generally experience issues with portability.

Complex example

The following code is a more complex example of loose application configuration. This example uses all
of the elements and creates a complex mapping of files and directories:
<archive>

<dir targetInArchive="/appResources"
sourceOnDisk="${was.server.dir}/applicationFiles" />

<archive targetInArchive="application.jar">
<dir targetInArchive="/src"

sourceOnDisk="${was.server.dir}/applicationCode/src" />
</archive>
<archive targetInArchive="webApp.war">

<dir targetInArchive="/META-INF"
sourceOnDisk="${was.server.dir}/manifestFiles/" />

Chapter 9. Deploying applications in Liberty 1415

<dir targetInArchive="/WEB-INF"
sourceOnDisk="c:/myWorkspace/webAppProject/web-inf" />

<archive targetInArchive="/WEB-INF/lib/myUtility.jar">
<dir targetInArchive="/"

sourceOnDisk="c:/myWorkspace/myUtilityProject/src" />
<file targetInArchive="/someJar.jar"

sourceOnDisk="c:/myWorkspace/myUtilityProject/aJar.jar" />
</archive>

</archive>
<file targetInArchive="/myjar.jar"

sourceOnDisk="${was.server.dir}/apps/application.zip" />
</archive>

Discovering REST API documentation on a Liberty server
8.5.5.8

You can discover your REST API documentation. Use the API Discovery feature to find what REST APIs
are available on a Liberty server and then use the Swagger user interface to invoke the found REST
endpoints.

Procedure
1. Add the apiDiscovery-1.0 feature to a feature manager in the server.xml file of the Liberty server

whose available REST APIs you want to find.
The apiDiscovery-1.0 feature enables the REST API discovery bundles in the product. The feature
also exposes documentation from Liberty REST endpoints such as JMX, if the server configuration
uses the restConnector-1.0 feature, and collectives, if the server configuration uses the
collectiveController-1.0 feature.
Ensure the server configuration has all features needed for your deployed application, such as
servlet-3.0, jsp-2.2, and so on. Also ensure the ports and user registry settings are correct for the
deployed application.
The following server.xml file has the apiDiscovery-1.0 feature:
<server>

<featureManager>
<feature>apiDiscovery-1.0</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint"
host="*"
httpPort="8010"
httpsPort="8020"/>

<keyStore id="defaultKeyStore" password="Liberty"/>

<basicRegistry id="basic" realm="ibm/api">
<user name="bob" password="bobpwd" />

</basicRegistry>
</server>

2. Expose the Swagger 2.0 documentation in Liberty REST endpoints.
You can configure the location of your API documentation in either of two ways:
v Use the getDocument method of the SPI com.ibm.wsspi.rest.api.discovery.APIProvider interface.

The getDocument method enables OSGi bundles from extension features to contribute REST API
documents to the overall “master” documentation. For this release, the only supported DocType are
DocType.Swagger_20_JSON and DocType.Swagger_20_YAML. Implementers of this interface can return
the serialized JSON or YAML document as a java.lang.String value, or they can pass in a file
reference (prefixed with file:///) to the JSON or YAML file location.

v Use a deployed web application.
Each web module can contribute its own REST API document. Multiple WAR files inside an
enterprise application (EAR) file can have different Swagger 2.0 documents.

1416 WebSphere Application Server Liberty Core 8.5.5

The easiest way to expose the documentation of web modules is to include a swagger.json or
swagger.yaml file inside the corresponding META-INF folder. During application deployment, the
API Discovery feature looks for a META-INF/swagger.json value for each of the web modules. If a
META-INF/swagger.json value is not found then the API Discovery feature looks for a
META⌂INF/swagger.yaml value.
Another way to expose the REST API documentation for a web module is in a server.xml
configuration file. Put a webModuleDoc element for each web module in a parent apiDiscovery
element; for example:
<apiDiscovery>

<webModuleDoc contextRoot="/30ExampleServletInEar" enabled="true" docURL="/swagger.json" />
<webModuleDoc contextRoot="/22ExampleServlet" enabled="false" />
<webModuleDoc contextRoot="/custom" enabled="true" docURL="http://petstore.swagger.io/v2/swagger.json" />

</apiDiscovery>

The webModuleDoc element must have a contextRoot attribute to uniquely identify the web module
whose documentation you want to expose.
An optional attribute, enabled, toggles the API discovery for a web module. The default of this
attribute is true.
The docURL attribute specifies where to find the documentation for the web module. The docURL
value can start with a forward slash (/) so that the URL is relative to the context root; for example,
/30ExampleServletInEar/swagger.json. Or the docURL value can start with http or https for an
absolute URL that identifies the complete location of the documentation.

8.5.5.9

If the web application does not provide a swagger.json or swagger.yaml file and the

application contains JAX-RS annotated resources, you can automatically generate the Swagger
document. The server configuration must have the apiDiscovery-1.0 feature and the jaxrs-1.1 or
jaxrs-2.0 feature; for example:
<featureManager>

<feature>apiDiscovery-1.0</feature>
<feature>jaxrs-1.0</feature>

</featureManager>

The product scans all classes in the web application for JAX-RS and Swagger annotations, searching
for classes with @Path, @Api, and @SwaggerDefinition annotations. The product also automatically
generates a corresponding Swagger document during the web application deployment or startup.

8.5.5.9

You can also use the apiDiscovery-1.0 feature to merge previously generated

documentation with the documentation that it finds during annotation scanning. The product
searches for a META-INF/stub/swagger.json or META-INF/stub/swagger.yaml file in the web module.
If the feature finds either of these files, the feature generates a Swagger document that contains
both the content of the file and any JAX-RS and Swagger annotations that are in the web module.
You can use this feature to document non-JAX-RS servlets because the documentation is
automatically merged with the JAX-RS portions.

8.5.5.9

Another way to expose the REST API documentation for a web module is to add

swagger.json or swagger.yaml to the context root of the web application; for example:
http://host:http_port/context_root/swagger.json

or
http://host:http_port/context_root/swagger.yaml

A call to context_root/swagger.json or context_root/swagger.yaml returns the documentation for
the context root in the requested JSON or YAML format. During web module startup, the API
Discovery feature pulls any available context_root/swagger.json into the aggregated document
from /ibm/api/docs and /ibm/api/explorer. If context_root/swagger.json is not available, then the
API Discovery feature pulls any available context_root/swagger.yaml into the aggregated
document from /ibm/api/docs and /ibm/api/explorer. The apiDiscovery-1.0 feature can handle
swagger.json or swagger.yaml virtually, which means that if the web application has a server.xml
file that configures a docURL attribute, a swagger.json or swagger.yaml file in the META-INF folder,

Chapter 9. Deploying applications in Liberty 1417

or JAX-RS and Swagger annotations, then the call to context_root/swagger.json or
context_root/swagger.yaml returns the documentation for this other configuration in the requested
JSON or YAML format.

3. Discover your API documentation.
After you configure the location of your API documentation, you can discover it in the following
ways:
v Use the GET https://host:https_port/ibm/api/docs endpoint.

This endpoint provides a valid Swagger 2.0 document with all available Liberty REST APIs merged
into a single document. This is useful for consumer applications that want to programmatically
navigate the set of available APIs, such as an API Management solution. Including an optional
Accept header with an application/yaml value provides the Swagger 2.0 document in YAML
format. This endpoint has a multiple-cardinality, optional query parameter called root that can filter
the found context roots. For example, a call to GET https://host:https_port/ibm/api/docs?root=/
myApp retrieves a Swagger 2.0 document that only has the documentation for the myApp context root.

v Use the GET https://host:https_port/ibm/api/explorer endpoint.
This endpoint provides an attractive, rendered HTML page that displays the content from the
/ibm/api/docs URL. This page follows the same pattern as the standard online sample
(http://petstore.swagger.io/), so that users can invoke the REST API. This endpoint helps you
explore the available REST APIs on a Liberty server, and perhaps invoke them from the page. A
filter input box enables a comma-separated list of context roots to filter the content. This filtering
works like the root query parameter. You can test drive the APIs by providing the required input
values and click the "Try it out" button.

8.5.5.9 After you enable the apiDiscovery-1.0 feature, the management bean (MBean) that has the
ObjectName value WebSphere:feature=apiDiscovery,name=APIDiscovery is registered in the Liberty
MBeanServer. This MBean provides the following attributes:
v The DocumentationURL attribute is the full URL of the /ibm/api/docs endpoint, and it displays the

raw JSON or YAML documentation.
v The ExplorerURL attribute is the full URL of the /ibm/api/explorer endpoint, and it displays the

rendered UI of the documentation.
You can use this MBean to learn whether REST API Discovery is enabled and where a client can reach
it.

Subscribe to Liberty REST API updates
8.5.5.9

The Liberty REST API discovery feature now exposes a new REST API, /ibm/api/docs/subscription,
which allows users to subscribe to any REST API update, such as new APIs being available or old APIs
being removed. This is useful when a user wants to be notified immediately of any changes in the
endpoints that are provided by a particular Liberty instance.
v Enable subscriptions
v Example request and response

Enable subscriptions

In addition to the base apiDiscovery-1.0 configuration, it is required to also configure either
websocket-1.0 or websocket-1.1 in your server.xml.
<server>

<featureManager>
<feature>apiDiscovery-1.0</feature>
<feature>websocket-1.1</feature>

</featureManager>

<httpEndpoint id="defaultHttpEndpoint"
host="*"

1418 WebSphere Application Server Liberty Core 8.5.5

http://petstore.swagger.io/

httpPort="8010"
httpsPort="8020"/>

<keyStore id="defaultKeyStore" password="Liberty"/>

<basicRegistry id="basic" realm="ibm/api">
<user name="bob" password="bobpwd" />

</basicRegistry>
</server>

The /ibm/api/docs/subscription endpoint allows for POST requests with a JSON payload in the format:
{ "docType" : String }

Where the String can be one of Swagger_20_JSON or Swagger_20_YAML. The returning JSON payload
outlines the type of subscription feed and its URL.

Example request and corresponding response

Request:
{"docType":"Swagger_20_JSON"}

Response:
{

"feedType": "websocket",
"feedURL": "wss://myserver.com:8020/ibm/api/docs/subscription/websocket/60db0d79-1863-48f5-a0f9-4fe22a27b82d"

}

You can now use a websocket client to connect to the feed URL. Once connected, any further updates to
REST APIs in the Liberty server is pushed through the websocket. The update is either in JSON or YAML
format, depending on the subscription.

REST endpoints for pushing APIs into IBM API Connect
8.5.5.9

Use the REST endpoint, which is a central location for both on-premises and cloud Liberty users, to
visualize, call, and push APIs into IBM API Connect.

Pushing deployed REST endpoints into IBM API Connect

To push deployed REST endpoints into IBM API Connect, you must call a new REST endpoint,
/ibm/api/docs/apiconnect, which is exposed by the apiDiscovery-1.0 feature in the server configuration.
Administrators and developers can use the REST endpoints to expose assets from a Liberty instance to
any enterprise developer who is searching the IBM API Connect framework catalogs.

Providing a product definition

All APIs are referenced by a product and exposed from a catalog. Therefore, the caller provides a product
definition that Liberty uses to refer to its RESTful APIs and push the resulting product into IBM API
Connect. A sample product is provided in this topic.

Exposing assets of a Liberty collective into IBM API Connect

Using a corresponding Liberty collective endpoint, /ibm/api/collective/docs/apiconnect, you can
expose all assets of a Liberty Collective into IBM API Connect with a single RESTful trigger. The Liberty
collective endpoint can expose thousands of APIs to any cloud developer connected to API Connect. See
the Liberty RESTful API registry, /ibm/api/explorer, for the full Swagger definition of this endpoint.

Chapter 9. Deploying applications in Liberty 1419

Endpoint summary

HTTP Request method: POST

URL: https://server:https_port/ibm/api/docs/apiconnect

Required headers

X-APIM-Authorization
Credentials to connect to API Connect display in the two following forms:
v username and password
v xyz where xyz is the base64 encoded version of username: password.

Required query parameters

Server The name of the IBM API Connect server, starting with https://.

Catalog
The name of the catalog that hosts the resulting product.

Organization
The name of the organization of the caller.

Optional query parameters

apiRoot
A multi-cardinality parameter that specifies exactly which context roots, such as, apiRoot=/myApp,
the caller wants to push into API Connect. By default, Liberty includes any deployed application
except known Liberty runtime Web Application Bundles. This parameter is useful when you want
to filter which applications get exposed.

member ID (only available for the Collective variant)
A multi-cardinality parameter that specifies the ID of the exact Collective Members from which
the caller wants to expose assets. This ID is composed of a string with the host name,the
URLEncoded user dir, and the server name, all separated by a comma, for example: myHost.com,
%2Ftmp%2Fwlp%2Fusr, server1.

Input body
Product definition in either in YAML or JSON code. See the following YAML example:
product: "1.0.0"
info:
name: "pushed-product"
title: "A Product that encapsulates Liberty APIs"
version: "1.0.0"

visibility:
view:
enabled: true
type: "public"
tags:
- "string"

orgs:
- "string"

subscribe:
enabled: true
type: "authenticated"
tags:
- "string"

orgs:
- "string"

apis:
liberty:
name: "liberty-api:1.0.0"
x-ibm-configuration:
phase: "realized"
testable: true
enforced: true

1420 WebSphere Application Server Liberty Core 8.5.5

cors:
enabled: true

assembly:
execute:
-
invoke:
target-url: "${gateway.target}"
title: "Invocation"
description: "Invoking back-end service"

plans:
default:
title: "Default Plan"
rate-limit:
hard-limit: false
value: "100/hour"

approval: false
createdAt: "2016-04-18T20:33:22.937Z"
createdBy: "string"

Chapter 9. Deploying applications in Liberty 1421

1422 WebSphere Application Server Liberty Core 8.5.5

Chapter 10. Monitoring the Liberty server runtime
environment

You can use the monitor-1.0 feature to monitor the server runtime environment.

About this task

To enable monitoring for your Liberty server, you add monitor-1.0 Liberty feature in the server.xml file.

The monitor-1.0 feature provides monitoring support for user runtime components.
v JVM
v Web applications
v Thread pool
v Session management
v ConnectionPool

For more details, see “Liberty features” on page 483.

Procedure
1. Add the monitor-1.0 feature and the monitoring starts.

Note: 8.5.5.3 If you launch the server by not using the server script (server.sh or server.bat) on
a Java Virtual Machine (JVM), ensure that the JavaAgent is configured for JVM as given in the
following example: agentlib=-javaagent:<path to liberty install>/bin/tools/ws-javaagent.jar.

2. Monitoring data is reported as standard MXBeans.
3. You can use JConsole to connect to JVM and look at the performance data by clicking each attribute

of the MXBean.
The MXBeans for monitoring are as following:
v WebSphere:type=JvmStats

v WebSphere:type=ServletStats,name=*

v WebSphere:type=ThreadPoolStats,name=Default Executor

v WebSphere:type=SessionStats,name=*

v Websphere:type=ConnectionPool,name=*

4. Optional: The same data is available with traditional PMI MBean (Perf MBean). Note that the Perf
MBean is stabilized.

JVM monitoring
You can use the JvmStats MXBean for JVM monitoring in Liberty.

Each Liberty instance has one JvmStats MXBean.

The ObjectName for identifying JVM MXBean is:
WebSphere:type=JvmStats

Available Instances = 1

This MXBean is responsible for reporting performance of JVM. Following attributes are available for JVM.

1423

http://www-01.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.zos.71.doc/diag/tools/JConsole.html

Heap Information

v Amount of free heap available (in Bytes)
v Total used memory by JVM for from heap (in Bytes)
v Heap size (in Bytes)

.

CPU Information

v Percentage of CPU consumed by this JVM

.

Garbage Collection (GC) Information

v Number of times that GC happened since JVM started
v Total time taken by GC activity

.

General Information

v Time in milliseconds since JVM has started.

.

Counter definitions (Attributes to MXBean)

v Heap: Heap size used for current JVM.
v FreeMemory: Free heap available for current JVM.
v UsedMemory: Used heap for current JVM.
v ProcessCPU: Percentage of CPU used by JVM process.
v GcCount: Number of times GC has happened since JVM starts.
v GcTime: Total accumulated value of GC time.
v UpTime: Time in milliseconds, since JVM has started.

.

Management Interface
The management interface of JVM monitoring is com.ibm.websphere.monitor.jmx.JvmMXBean. You
can use the management interface to obtain a proxy object. See “Examples of accessing MBean
attributes and operations” on page 1029.

For more information about the management interface, see the Java API document for Liberty.
The Java API documentation for each Liberty API is detailed in the Programming Interfaces
(APIs) section of the documentation, and is also available as a separate .zip file in one of the
javadoc subdirectories of the ${wlp.install.dir}/dev directory.

Web application monitoring
You can use a servlet MXBean for web application monitoring of Liberty.

Performance data is available for each Servlet in the Web Application. Each servlet has its own MXBean.

The ObjectName for identifying each servlet MXBean is:
WebSphere:type=ServletStats,name=<AppName>.<ServletName>

For example:
WebSphere:type=ServletStats,name=snoop.Alpine Snoop Servlet
WebSphere:type=ServletStats,name=MyApp.MyServlet

1424 WebSphere Application Server Liberty Core 8.5.5

This MXBean is responsible for reporting ServletStats for each servlet. Following key data is available
for ServletStats MXBean:
v Request Count
v Response Time
v Servlet Name
v Application Name

Counter definitions (Attributes to MXBean)

v AppName: Name of the application.
v ServletName: Name of the servlet.
v RequestCount: Number of hits to this servlet.
v ResponseTime: Average response time (nano-seconds).
v Description: Description of counter.
v RequestCountDetails: RequestCount details including last time stamp.
v ResponseTimeDetails: ResponseTime details including number of snapshot taken, min, and max

values.

.

Management Interface
The management interface of web application monitoring is
com.ibm.websphere.webcontainer.ServletStatsMXBean. You can use the management interface to
obtain a proxy object. See “Examples of accessing MBean attributes and operations” on page
1029.

For more information about the management interface, see the Java API document for Liberty.
The Java API documentation for each Liberty API is detailed in the Programming Interfaces
(APIs) section of the documentation, and is also available as a separate .zip file in one of the
javadoc subdirectories of the ${wlp.install.dir}/dev directory.

ThreadPool monitoring
You can use a ThreadPool MXBean for thread pool monitoring in Liberty.

All Web Requests executes in the thread pool, named Default Executor thread pool. You can monitor the
usage of Default Executor thread pool using ThreadPoolMXBean.

The ObjectName for identifying MXBean for thread pool is :
WebSphere:type=ThreadPoolStats,name=Default Executor

Key Performance data available for ThreadPool are:
v Threads in the pool which represents the pool size.
v Active threads which are serving requests.

Attributes for ThreadPool

v ActiveThreads

v PoolSize

v PoolName (Only supports Default Executor thread pool)

.

Management Interface
The management interface of ThreadPool monitoring is

Chapter 10. Monitoring the Liberty server runtime environment 1425

com.ibm.websphere.monitor.jmx.ThreadPoolMXBean. You can use the management interface to
obtain a proxy object. See “Examples of accessing MBean attributes and operations” on page
1029.

For more information about the management interface, see the Java API document for Liberty.
The Java API documentation for each Liberty API is detailed in the Programming Interfaces
(APIs) section of the documentation, and is also available as a separate .zip file in one of the
javadoc subdirectories of the ${wlp.install.dir}/dev directory.

SIP application monitoring
8.5.5.9

Session Initiation Protocol (SIP) Performance Monitoring Infrastructure (PMI) is a component that collects
SIP performance metrics of a running application server. To monitor the SIP metrics, you must enable
PMI on your server. To enable monitoring for SIP, add monitor-1.0 and sipServlet-1.1 Liberty features
to the server.xml file.

All Liberty SIP PMI counters are shown by standard MXBeans.

The SIP container provides the following MXBean interfaces for the SIP counters:
v WebSphere:type=SipContainerBasicCounters,name=SipContainer.Basic
v WebSphere:type=TaskDurationCounters,name=SipContainer.TaskDuration
v WebSphere:type=InboundRequestCounters,name=SipContainer.InboundRequest
v WebSphere:type=OutboundRequestCounters,name=SipContainer.OutboundRequest
v WebSphere:type=InboundResponseCounters,name=SipContainer.InboundResponse
v WebSphere:type=OutboundResponseCounters,name=SipContainer.OutboundResponse
v WebSphere:type=QueueMonitoringModule,name=SipContainer.QueueMonitor

Each interface shows a different set of SIP PMI metrics. Refer to the tables for module details. You can
view the SIP PMI counters in multiple ways:
v Use JConsole to connect to JVM and look at the SIP PMI counters by clicking each attribute of the

MXBean.
v Create your own JMX client application to inspect the counters by starting the MXBean operations.

For more information about how to create a JMX client to start the MXBean operations, see Connecting to
Liberty by using JMX and Liberty: Examples of accessing MBean attributes and operations. SIP provides
the following counters in PMI to monitor SIP performance.

Table 97. SIP container basic counters. The object name of the MXBean from which the counters can be retrieved
is:“WebSphere:type=SipContainerBasicCounters,name=SipContainer.Basic”. To retrieve the attributes, use the
JMXConnection.getAttribute method. For example:
_connection.getAttribute("WebSphere:type=SipContainerBasicCounters,name=SipContainer.Basic",
"SipAppSessions").

This table lists the SIP container basic counters.

Name Attribute Description Granularity

Incoming traffic ReceivedSipMsgs The average number of
messages that are handled
by the container and
calculated over a
configurable period

Server

1426 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.zos.71.doc/diag/tools/JConsole.html
https://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_admin_jmx.html?lang=en-us&cp=SSEQTP_8.5.5
https://www-01.ibm.com/support/knowledgecenter/SSEQTP_8.5.5/com.ibm.websphere.wlp.doc/ae/twlp_admin_jmx.html?lang=en-us&cp=SSEQTP_8.5.5
http://www-01.ibm.com/support/knowledgecenter/SSAW57_8.5.5/com.ibm.websphere.wlp.nd.doc/ae/rwlp_mbeans_operation.html?lang=en-us&cp=SSAW57_8.5.5

Table 97. SIP container basic counters (continued). The object name of the MXBean from which the counters can be
retrieved is:“WebSphere:type=SipContainerBasicCounters,name=SipContainer.Basic”. To retrieve the attributes, use
the JMXConnection.getAttribute method. For example:
_connection.getAttribute("WebSphere:type=SipContainerBasicCounters,name=SipContainer.Basic",
"SipAppSessions").

This table lists the SIP container basic counters.

Name Attribute Description Granularity

New SIP application
sessions

NewSipApplications The average number of
new SIP application
sessions created in the
container and calculated
over a configurable period

Server

Response time SipRequestProcessing The average amount of
time that it takes between
when a message gets into
the container and when a
response is sent from the
container

Server

Queue size InvokerSize The size of the invoke
queue in the product

Server

Rejected SIP messages RejectedMessages The number of rejected SIP
messages

Server

SIP timer invocations SipTimersInvocations The number of invocations
of the SIP timers (Timer A,
Timer B, Timer C, Timer D,
Timer E, Timer F, Timer G,
Timer H)

Server

Number of active SIP
sessions

SipSessions The number of SIP sessions
that belong to each
application

Server

Number of active SIP
application sessions

SipAppSessions The number of SIP
application sessions that
belong to each application

Server

Table 98. SIP container inbound requests. The object name of the MXBean from which the counters can be retrieved
is: “WebSphere:type=InboundRequestCounters,name=SipContainer.InboundRequest”. To retrieve the counters, use the
JMXConnection.invoke method. For
example,_connection.invoke("WebSphere:type=InboundRequestCounters,name=SipContainer.InboundRequest",
"getTotalInboundRequests", _appName, "INVITE").

This table lists the inbound request counters.

Name Method Description Granularity

Number of inbound NOT
SIP STANDARD requests

getTotalInboundRequests(appName,
“NOTSIPSTANDARD”);

The number of inbound
NOT SIP STANDARD
requests that belong to each
application

Application

Number of inbound
REGISTER requests

getTotalInboundRequests(appName,
“REGISTER”);

The number of inbound
REGISTER requests that
belong to each application

Application

Number of inbound
INVITE requests

getTotalInboundRequests(appName,
“INVITE”);

The number of inbound
INVITE requests that
belong to each application

Application

Chapter 10. Monitoring the Liberty server runtime environment 1427

Table 98. SIP container inbound requests (continued). The object name of the MXBean from which the counters can
be retrieved is: “WebSphere:type=InboundRequestCounters,name=SipContainer.InboundRequest”. To retrieve the
counters, use the JMXConnection.invoke method. For
example,_connection.invoke("WebSphere:type=InboundRequestCounters,name=SipContainer.InboundRequest",
"getTotalInboundRequests", _appName, "INVITE").

This table lists the inbound request counters.

Name Method Description Granularity

Number of inbound ACK
requests

getTotalInboundRequests(appName,
“ACK”);

The number of inbound
ACK requests that belong
to each application

Application

Number of inbound
OPTIONS requests

getTotalInboundRequests(appName,
“OPTIONS”);

The number of inbound
OPTIONS requests that
belong to each application

Application

Number of inbound BYE
requests

getTotalInboundRequests(appName,
“BYE”);

The number of inbound
BYE requests that belong to
each application

Application

Number of inbound
CANCEL requests

getTotalInboundRequests(appName,
“CANCEL”);

The number of inbound
CANCEL requests that
belong to each application

Application

Number of inbound
PRACK requests

getTotalInboundRequests(appName,
“PRACK”);

The number of inbound
PRACK requests that
belong to each application

Application

Number of inbound INFO
requests

getTotalInboundRequests(appName,
“INFO”);

The number of inbound
INFO requests that belong
to each application

Application

Number of inbound
SUBSCRIBE requests

getTotalInboundRequests(appName,
“SUBSCRIBE”);

The number of inbound
SUBSCRIBE requests that
belong to each application

Application

Number of inbound
NOTIFY requests

getTotalInboundRequests(appName,
“NOTIFY”);

The number of inbound
NOTIFY requests that
belong to each application

Application

Number of inbound
MESSAGE requests

getTotalInboundRequests(appName,
“MESSAGE”);

The number of inbound
MESSAGE requests that
belong to each application

Application

Number of inbound
PUBLISH requests

getTotalInboundRequests(appName,
“PUBLISH”);

The number of inbound
PUBLISH requests that
belong to each application

Application

Number of inbound REFER
requests

getTotalInboundRequests(appName,
“REFER”);

The number of inbound
REFER requests that belong
to each application

Application

Number of inbound
UPDATE requests

getTotalInboundRequests(appName,
“UPDATE”);

The number of inbound
UPDATE requests that
belong to each application

Application

1428 WebSphere Application Server Liberty Core 8.5.5

Table 99. SIP container inbound responses. The object name of the MXBean from which the counters can be
retrieved is: “WebSphere:type=InboundResponseCounters,name=SipContainer.InboundResponse”. To retrieve the
counters, use the JMXConnection.invoke method. For
example,_connection.invoke("WebSphere:type=InboundResponseCounters,name=SipContainer.InboundResponse",
"getTotalInboundResponses", _appName, "100").

This table lists the inbound response counters.

Name Method Description Granularity

Number of inbound 100
responses

getTotalInboundResponses(appName,
“100”);

The number of inbound 100
(Trying) responses that
belong to each application

Application

Number of inbound 180
responses

getTotalInboundResponses(appName,
“180”);

The number of inbound 180
(Ringing) responses that
belong to each application

Application

Number of inbound 181
responses

getTotalInboundResponses(appName,
“181”);

The number of inbound 181
(Call being forwarded)
responses that belong to
each application

Application

Number of inbound 182
responses

getTotalInboundResponses(appName,
“182”);

The number of inbound 182
(Call Queued) responses
that belong to each
application

Application

Number of inbound 183
responses

getTotalInboundResponses(appName,
“183”);

The number of inbound 183
(Session Progress)
responses that belong to
each application

Application

Number of inbound 200
responses

getTotalInboundResponses(appName,
“200”);

The number of inbound 200
(OK) responses that belong
to each application

Application

Number of inbound 202
responses

getTotalInboundResponses(appName,
“202”);

The number of inbound 202
(Accepted) responses that
belong to each application

Application

Number of inbound 300
responses

getTotalInboundResponses(appName,
“300”);

The number of inbound 300
(Multiple choices)
responses that belong to
each application

Application

Number of inbound 301
responses

getTotalInboundResponses(appName,
“301”);

The number of inbound 301
(Moved Permanently)
responses that belong to
each application

Application

Number of inbound 302
responses

getTotalInboundResponses(appName,
“302”);

The number of inbound 302
(Moved Temporarily)
responses that belong to
each application

Application

Number of inbound 305
responses

getTotalInboundResponses(appName,
“305”);

The number of inbound 305
(Use Proxy) responses that
belong to each application

Application

Number of inbound 380
responses

getTotalInboundResponses(appName,
“380”);

The number of inbound 380
(Alternative Service)
responses that belong to
each application

Application

Chapter 10. Monitoring the Liberty server runtime environment 1429

Table 99. SIP container inbound responses (continued). The object name of the MXBean from which the counters
can be retrieved is: “WebSphere:type=InboundResponseCounters,name=SipContainer.InboundResponse”. To retrieve
the counters, use the JMXConnection.invoke method. For
example,_connection.invoke("WebSphere:type=InboundResponseCounters,name=SipContainer.InboundResponse",
"getTotalInboundResponses", _appName, "100").

This table lists the inbound response counters.

Name Method Description Granularity

Number of inbound 400
responses

getTotalInboundResponses(appName,
“400”);

The number of inbound 400
(Bad Request) responses
that belong to each
application

Application

Number of inbound 401
responses

getTotalInboundResponses(appName,
“401”);

The number of inbound 401
(Unauthorized) responses
that belong to each
application

Application

Number of inbound 402
responses

getTotalInboundResponses(appName,
“402”);

The number of inbound 402
(Payment Required)
responses that belong to
each application

Application

Number of inbound 403
responses

getTotalInboundResponses(appName,
“403”);

The number of inbound 403
(Forbidden) responses that
belong to each application

Application

Number of inbound 404
responses

getTotalInboundResponses(appName,
“404”);

The number of inbound 404
(Not Found) responses that
belong to each application

Application

Number of inbound 405
responses

getTotalInboundResponses(appName,
“405”);

The number of inbound 405
(Method Not Allowed)
responses that belong to
each application

Application

Number of inbound 406
responses

getTotalInboundResponses(appName,
“406”);

The number of inbound 406
(Not Acceptable) responses
that belong to each
application

Application

Number of inbound 407
responses

getTotalInboundResponses(appName,
“407”);

The number of inbound 407
(Proxy Authentication
Required) responses that
belong to each application

Application

Number of inbound 408
responses

getTotalInboundResponses(appName,
“408”);

The number of inbound 408
(Request Timeout)
responses that belong to
each application

Application

Number of inbound 410
responses

getTotalInboundResponses(appName,
“410”);

The number of inbound 410
(Gone) responses that
belong to each application

Application

Number of inbound 413
responses

getTotalInboundResponses(appName,
“413”);

The number of inbound 413
(Request Entity Too Large)
responses that belong to
each application

Application

Number of inbound 414
responses

getTotalInboundResponses(appName,
“414”);

The number of inbound 414
(Request URI Too Long)
responses that belong to
each application

Application

1430 WebSphere Application Server Liberty Core 8.5.5

Table 99. SIP container inbound responses (continued). The object name of the MXBean from which the counters
can be retrieved is: “WebSphere:type=InboundResponseCounters,name=SipContainer.InboundResponse”. To retrieve
the counters, use the JMXConnection.invoke method. For
example,_connection.invoke("WebSphere:type=InboundResponseCounters,name=SipContainer.InboundResponse",
"getTotalInboundResponses", _appName, "100").

This table lists the inbound response counters.

Name Method Description Granularity

Number of inbound 415
responses

getTotalInboundResponses(appName,
“415”);

The number of inbound 415
(Unsupported Media Type)
responses that belong to
each application

Application

Number of inbound 416
responses

getTotalInboundResponses(appName,
“416”);

The number of inbound 416
(Unsupported URI Scheme)
responses that belong to
each application

Application

Number of inbound 420
responses

getTotalInboundResponses(appName,
“420”);

The number of inbound 420
(Bad Extension) responses
that belong to each
application

Application

Number of inbound 421
responses

getTotalInboundResponses(appName,
“421”);

The number of inbound 421
(Extension Required)
responses that belong to
each application

Application

Number of inbound 423
responses

getTotalInboundResponses(appName,
“423”);

The number of inbound 423
(Interval Too Brief)
responses that belong to
each application

Application

Number of inbound 480
responses

getTotalInboundResponses(appName,
“480”);

The number of inbound 480
(Temporarily Unavailable)
responses that belong to
each application

Application

Number of inbound 481
responses

getTotalInboundResponses(appName,
“481”);

The number of inbound 481
(Call Leg Done) responses
that belong to each
application

Application

Number of inbound 482
responses

getTotalInboundResponses(appName,
“482”);

The number of inbound 482
(Loop Detected) responses
that belong to each
application

Application

Number of inbound 483
responses

getTotalInboundResponses(appName,
“483”);

The number of inbound 483
(Too Many Hops) responses
that belong to each
application

Application

Number of inbound 484
responses

getTotalInboundResponses(appName,
“484”);

The number of inbound 484
(Address Incomplete)
responses that belong to
each application

Application

Number of inbound 485
responses

getTotalInboundResponses(appName,
“485”);

The number of inbound 485
(Ambiguous) responses that
belong to each application

Application

Number of inbound 486
responses

getTotalInboundResponses(appName,
“486”);

The number of inbound 486
(Busy Here) responses that
belong to each application

Application

Chapter 10. Monitoring the Liberty server runtime environment 1431

Table 99. SIP container inbound responses (continued). The object name of the MXBean from which the counters
can be retrieved is: “WebSphere:type=InboundResponseCounters,name=SipContainer.InboundResponse”. To retrieve
the counters, use the JMXConnection.invoke method. For
example,_connection.invoke("WebSphere:type=InboundResponseCounters,name=SipContainer.InboundResponse",
"getTotalInboundResponses", _appName, "100").

This table lists the inbound response counters.

Name Method Description Granularity

Number of inbound 487
responses

getTotalInboundResponses(appName,
“487”);

The number of inbound 487
(Request Terminated)
responses that belong to
each application

Application

Number of inbound 488
responses

getTotalInboundResponses(appName,
“488”);

The number of inbound 488
(Not Acceptable Here)
responses that belong to
each application

Application

Number of inbound 491
responses

getTotalInboundResponses(appName,
“491”);

The number of inbound 491
(Request Pending)
responses that belong to
each application

Application

Number of inbound 493
responses

getTotalInboundResponses(appName,
“493”);

The number of inbound 493
(Undecipherable) responses
that belong to each
application

Application

Number of inbound 500
responses

getTotalInboundResponses(appName,
“500”);

The number of inbound 500
(Server Internal Error)
responses that belong to
each application

Application

Number of inbound 501
responses

getTotalInboundResponses(appName,
“501”);

The number of inbound 501
(Not Implemented)
responses that belong to
each application

Application

Number of inbound 502
responses

getTotalInboundResponses(appName,
“502”);

The number of inbound 502
(Bad Gateway) responses
that belong to each
application

Application

Number of inbound 503
responses

getTotalInboundResponses(appName,
“503”);

The number of inbound 503
(Service Unavailable)
responses that belong to
each application

Application

Number of inbound 504
responses

getTotalInboundResponses(appName,
“504”);

The number of inbound 504
(Server Timeout) responses
that belong to each
application

Application

Number of inbound 505
responses

getTotalInboundResponses(appName,
“505”);

The number of inbound 505
(Version Not Supported)
responses that belong to
each application

Application

Number of inbound 513
responses

getTotalInboundResponses(appName,
“513”);

The number of inbound 513
(Message Too Large)
responses that belong to
each application

Application

1432 WebSphere Application Server Liberty Core 8.5.5

Table 99. SIP container inbound responses (continued). The object name of the MXBean from which the counters
can be retrieved is: “WebSphere:type=InboundResponseCounters,name=SipContainer.InboundResponse”. To retrieve
the counters, use the JMXConnection.invoke method. For
example,_connection.invoke("WebSphere:type=InboundResponseCounters,name=SipContainer.InboundResponse",
"getTotalInboundResponses", _appName, "100").

This table lists the inbound response counters.

Name Method Description Granularity

Number of inbound 600
responses

getTotalInboundResponses(appName,
“600”);

The number of inbound 600
(Busy Everywhere)
responses that belong to
each application

Application

Number of inbound 603
responses

getTotalInboundResponses(appName,
“603”);

The number of inbound 603
(Decline) responses that
belong to each application

Application

Number of inbound 604
responses

getTotalInboundResponses(appName,
“604”);

The number of inbound 604
(Does Not Exit Anywhere)
responses that belong to
each application

Application

Number of inbound 606
responses

getTotalInboundResponses(appName,
“606”);

The number of inbound 606
(Not Acceptable Anywhere)
responses that belong to
each application

Application

Table 100. SIP container outbound requests. The object name of the MXBean from which the counters can be
retrieved is:“WebSphere:type=OutboundRequestCounters,name=SipContainer.OutboundRequest”. To retrieve the
counters, use the JMXConnection.invoke method. For
example,_connection.invoke("WebSphere:type=OutboundRequestCounters,name=SipContainer.OutboundRequest",
"getTotalOutboundRequests", _appName, "INVITE").

This table lists the outbound request counters.

Name Method Description Granularity

Number of outbound NOT
SIP STANDARD requests

getTotalOutboundRequests(appName,
“NOTSIPSTANDARD”);

The number of outbound
NOT SIP STANDARD
requests that belong to each
application

Application

Number of outbound
REGISTER requests

getTotalOutboundRequests(appName,
“REGISTER”);

The number of outbound
REGISTER requests that
belong to each application

Application

Number of outbound
INVITE requests

getTotalOutboundRequests(appName,
“INVITE”);

The number of outbound
INVITE requests that
belong to each application

Application

Number of outbound ACK
requests

getTotalOutboundRequests(appName,
“ACK”);

The number of outbound
ACK requests that belong
to each application

Application

Number of outbound
OPTIONS requests

getTotalOutboundRequests(appName,
“OPTIONS”);

The number of outbound
OPTIONS requests that
belong to each application

Application

Number of outbound BYE
requests

getTotalOutboundRequests(appName,
“BYE”);

The number of outbound
BYE requests that belong to
each application

Application

Chapter 10. Monitoring the Liberty server runtime environment 1433

Table 100. SIP container outbound requests (continued). The object name of the MXBean from which the counters
can be retrieved is:“WebSphere:type=OutboundRequestCounters,name=SipContainer.OutboundRequest”. To retrieve the
counters, use the JMXConnection.invoke method. For
example,_connection.invoke("WebSphere:type=OutboundRequestCounters,name=SipContainer.OutboundRequest",
"getTotalOutboundRequests", _appName, "INVITE").

This table lists the outbound request counters.

Name Method Description Granularity

Number of outbound
CANCEL requests

getTotalOutboundRequests(appName,
“CANCEL”);

The number of outbound
CANCEL requests that
belong to each application

Application

Number of outbound
PRACK requests

getTotalOutboundRequests(appName,
“PRACK”);

The number of outbound
PRACK requests that
belong to each application

Application

Number of outbound INFO
requests

getTotalOutboundRequests(appName,
“INFO”);

The number of outbound
INFO requests that belong
to each application

Application

Number of outbound
SUBSCRIBE requests

getTotalOutboundRequests(appName,
“SUBSCRIBE”);

The number of outbound
SUBSCRIBE requests that
belong to each application

Application

Number of outbound
NOTIFY requests

getTotalOutboundRequests(appName,
“NOTIFY”);

The number of outbound
NOTIFY requests that
belong to each application

Application

Number of outbound
MESSAGE requests

getTotalOutboundRequests(appName,
“MESSAGE”);

The number of outbound
MESSAGE requests that
belong to each application

Application

Number of outbound
PUBLISH requests

getTotalOutboundRequests(appName,
“PUBLISH”);

The number of outbound
PUBLISH requests that
belong to each application

Application

Number of outbound
REFER requests

getTotalOutboundRequests(appName,
“REFER”);

The number of outbound
REFER requests that belong
to each application

Application

Number of outbound
UPDATE requests

getTotalOutboundRequests(appName,
“UPDATE”);

The number of outbound
UPDATE requests that
belong to each application

Application

Table 101. SIP container outbound responses. The object name of the MXBean from which the counters can be
retrieved is:“WebSphere:type=OutboundResponseCounters,name=SipContainer.OutboundResponse”. To retrieve the
counters, use the JMXConnection.invoke method. For example,
_connection.invoke("WebSphere:type=OutboundResponseCounters,name=SipContainer.OutboundResponse",
"getTotalOutboundResponses", _appName, "100").

This table lists the outbound response counters.

Name Method Description Granularity

Number of outbound 100
responses

getTotalOutboundResponses(appName,
“100”);

The number of outbound
100 (Trying) responses that
belong to each application

Application

Number of outbound 180
responses

getTotalOutboundResponses(appName,
“180”);

The number of outbound
180 (Ringing) responses
that belong to each
application

Application

1434 WebSphere Application Server Liberty Core 8.5.5

Table 101. SIP container outbound responses (continued). The object name of the MXBean from which the counters
can be retrieved is:“WebSphere:type=OutboundResponseCounters,name=SipContainer.OutboundResponse”. To retrieve
the counters, use the JMXConnection.invoke method. For example,
_connection.invoke("WebSphere:type=OutboundResponseCounters,name=SipContainer.OutboundResponse",
"getTotalOutboundResponses", _appName, "100").

This table lists the outbound response counters.

Name Method Description Granularity

Number of outbound 181
responses

getTotalOutboundResponses(appName,
“181”);

The number of outbound
181 (Call being forwarded)
responses that belong to
each application

Application

Number of outbound 182
responses

getTotalOutboundResponses(appName,
“182”);

The number of outbound
182 (Call Queued)
responses that belong to
each application

Application

Number of outbound 183
responses

getTotalOutboundResponses(appName,
“183”);

The number of outbound
183 (Session Progress)
responses that belong to
each application

Application

Number of outbound 200
responses

getTotalOutboundResponses(appName,
“200”);

The number of outbound
200 (OK) responses that
belong to each application

Application

Number of outbound 202
responses

getTotalOutboundResponses(appName,
“202”);

The number of outbound
202 (Accepted) responses
that belong to each
application

Application

Number of outbound 300
responses

getTotalOutboundResponses(appName,
“300”);

The number of outbound
300 (Multiple choices)
responses that belong to
each application

Application

Number of outbound 301
responses

getTotalOutboundResponses(appName,
“301”);

The number of outbound
301 (Moved Permanently)
responses that belong to
each application

Application

Number of outbound 302
responses

getTotalOutboundResponses(appName,
“302”);

The number of outbound
302 (Moved Temporarily)
responses that belong to
each application

Application

Number of outbound 305
responses

getTotalOutboundResponses(appName,
“305”);

The number of outbound
305 (Use Proxy) responses
that belong to each
application

Application

Number of outbound 380
responses

getTotalOutboundResponses(appName,
“380”);

The number of outbound
380 (Alternative Service)
responses that belong to
each application

Application

Number of outbound 400
responses

getTotalOutboundResponses(appName,
“400”);

The number of outbound
400 (Bad Request)
responses that belong to
each application

Application

Chapter 10. Monitoring the Liberty server runtime environment 1435

Table 101. SIP container outbound responses (continued). The object name of the MXBean from which the counters
can be retrieved is:“WebSphere:type=OutboundResponseCounters,name=SipContainer.OutboundResponse”. To retrieve
the counters, use the JMXConnection.invoke method. For example,
_connection.invoke("WebSphere:type=OutboundResponseCounters,name=SipContainer.OutboundResponse",
"getTotalOutboundResponses", _appName, "100").

This table lists the outbound response counters.

Name Method Description Granularity

Number of outbound 401
responses

getTotalOutboundResponses(appName,
“401”);

The number of outbound
401 (Unauthorized)
responses that belong to
each application

Application

Number of outbound 402
responses

getTotalOutboundResponses(appName,
“402”);

The number of outbound
402 (Payment Required)
responses that belong to
each application

Application

Number of outbound 403
responses

getTotalOutboundResponses(appName,
“403”);

The number of outbound
403 (Forbidden) responses
that belong to each
application

Application

Number of outbound 404
responses

getTotalOutboundResponses(appName,
“404”);

The number of outbound
404 (Not Found) responses
that belong to each
application

Application

Number of outbound 405
responses

getTotalOutboundResponses(appName,
“405”);

The number of outbound
405 (Method Not Allowed)
responses that belong to
each application

Application

Number of outbound 406
responses

getTotalOutboundResponses(appName,
“406”);

The number of outbound
406 (Not Acceptable)
responses that belong to
each application

Application

Number of outbound 407
responses

getTotalOutboundResponses(appName,
“407”);

The number of outbound
407 (Proxy Authentication
Required) responses that
belong to each application

Application

Number of outbound 408
responses

getTotalOutboundResponses(appName,
“408”);

The number of outbound
408 (Request Timeout)
responses that belong to
each application

Application

Number of outbound 410
responses

getTotalOutboundResponses(appName,
“410”);

The number of outbound
410 (Gone) responses that
belong to each application

Application

Number of outbound 413
responses

getTotalOutboundResponses(appName,
“413”);

The number of outbound
413 (Request Entity Too
Large) responses that
belong to each application

Application

Number of outbound 414
responses

getTotalOutboundResponses(appName,
“414”);

The number of outbound
414 (Request URI Too
Long) responses that
belong to each application

Application

1436 WebSphere Application Server Liberty Core 8.5.5

Table 101. SIP container outbound responses (continued). The object name of the MXBean from which the counters
can be retrieved is:“WebSphere:type=OutboundResponseCounters,name=SipContainer.OutboundResponse”. To retrieve
the counters, use the JMXConnection.invoke method. For example,
_connection.invoke("WebSphere:type=OutboundResponseCounters,name=SipContainer.OutboundResponse",
"getTotalOutboundResponses", _appName, "100").

This table lists the outbound response counters.

Name Method Description Granularity

Number of outbound 415
responses

getTotalOutboundResponses(appName,
“415”);

The number of outbound
415 (Unsupported Media
Type) responses that belong
to each application

Application

Number of outbound 416
responses

getTotalOutboundResponses(appName,
“416”);

The number of outbound
416 (Unsupported URI
Scheme) responses that
belong to each application

Application

Number of outbound 420
responses

getTotalOutboundResponses(appName,
“420”);

The number of outbound
420 (Bad Extension)
responses that belong to
each application

Application

Number of outbound 421
responses

getTotalOutboundResponses(appName,
“421”);

The number of outbound
421 (Extension Required)
responses that belong to
each application

Application

Number of outbound 423
responses

getTotalOutboundResponses(appName,
“423”);

The number of outbound
423 (Interval Too Brief)
responses that belong to
each application

Application

Number of outbound 480
responses

getTotalOutboundResponses(appName,
“480”);

The number of outbound
480 (Temporarily
Unavailable) responses that
belong to each application

Application

Number of outbound 481
responses

getTotalOutboundResponses(appName,
“481”);

The number of outbound
481 (Call Leg Done)
responses that belong to
each application

Application

Number of outbound 482
responses

getTotalOutboundResponses(appName,
“482”);

The number of outbound
482 (Loop Detected)
responses that belong to
each application

Application

Number of outbound 483
responses

getTotalOutboundResponses(appName,
“483”);

The number of outbound
483 (Too Many Hops)
responses that belong to
each application

Application

Number of outbound 484
responses

getTotalOutboundResponses(appName,
“484”);

The number of outbound
484 (Address Incomplete)
responses that belong to
each application

Application

Number of outbound 485
responses

getTotalOutboundResponses(appName,
“485”);

The number of outbound
485 (Ambiguous) responses
that belong to each
application

Application

Chapter 10. Monitoring the Liberty server runtime environment 1437

Table 101. SIP container outbound responses (continued). The object name of the MXBean from which the counters
can be retrieved is:“WebSphere:type=OutboundResponseCounters,name=SipContainer.OutboundResponse”. To retrieve
the counters, use the JMXConnection.invoke method. For example,
_connection.invoke("WebSphere:type=OutboundResponseCounters,name=SipContainer.OutboundResponse",
"getTotalOutboundResponses", _appName, "100").

This table lists the outbound response counters.

Name Method Description Granularity

Number of outbound 486
responses

getTotalOutboundResponses(appName,
“486”);

The number of outbound
486 (Busy Here) responses
that belong to each
application

Application

Number of outbound 487
responses

getTotalOutboundResponses(appName,
“487”);

The number of outbound
487 (Request Terminated)
responses that belong to
each application

Application

Number of outbound 488
responses

getTotalOutboundResponses(appName,
“488”);

The number of outbound
488 (Not Acceptable Here)
responses that belong to
each application

Application

Number of outbound 491
responses

getTotalOutboundResponses(appName,
“491”);

The number of outbound
491 (Request Pending)
responses that belong to
each application

Application

Number of outbound 493
responses

getTotalOutboundResponses(appName,
“493”);

The number of outbound
493 (Undecipherable)
responses that belong to
each application

Application

Number of outbound 500
responses

getTotalOutboundResponses(appName,
“500”);

The number of outbound
500 (Server Internal Error)
responses that belong to
each application

Application

Number of outbound 501
responses

getTotalOutboundResponses(appName,
“501”);

The number of outbound
501 (Not Implemented)
responses that belong to
each application

Application

Number of outbound 502
responses

getTotalOutboundResponses(appName,
“502”);

The number of outbound
502 (Bad Gateway)
responses that belong to
each application

Application

Number of outbound 503
responses

getTotalOutboundResponses(appName,
“503”);

The number of outbound
503 (Service Unavailable)
responses that belong to
each application

Application

Number of outbound 504
responses

getTotalOutboundResponses(appName,
“504”);

The number of outbound
504 (Server Timeout)
responses that belong to
each application

Application

Number of outbound 505
responses

getTotalOutboundResponses(appName,
“505”);

The number of outbound
505 (Version Not
Supported) responses that
belong to each application

Application

1438 WebSphere Application Server Liberty Core 8.5.5

Table 101. SIP container outbound responses (continued). The object name of the MXBean from which the counters
can be retrieved is:“WebSphere:type=OutboundResponseCounters,name=SipContainer.OutboundResponse”. To retrieve
the counters, use the JMXConnection.invoke method. For example,
_connection.invoke("WebSphere:type=OutboundResponseCounters,name=SipContainer.OutboundResponse",
"getTotalOutboundResponses", _appName, "100").

This table lists the outbound response counters.

Name Method Description Granularity

Number of outbound 513
responses

getTotalOutboundResponses(appName,
“513”);

The number of outbound
513 (Message Too Large)
responses that belong to
each application

Application

Number of outbound 600
responses

getTotalOutboundResponses(appName,
“600”);

The number of outbound
600 (Busy Everywhere)
responses that belong to
each application

Application

Number of outbound 603
responses

getTotalOutboundResponses(appName,
“603”);

The number of outbound
603 (Decline) responses that
belong to each application

Application

Number of outbound 604
responses

getTotalOutboundResponses(appName,
“604”);

The number of outbound
604 (Does Not Exit
Anywhere) responses that
belong to each application

Application

Number of outbound 606
responses

getTotalOutboundResponses(appName,
“606”);

The number of outbound
606 (Not Acceptable
Anywhere) responses that
belong to each application

Application

Table 102. SIP container task duration counters. The object name of the MXBean from which the counters can be
retrieved is:“WebSphere:type=TaskDurationCounters,name=SipContainer.TaskDuration”. To retrieve the attributes,
use the JMXConnection.getAttribute method. For example:
_connection.getAttribute("WebSphere:type=TaskDurationCounters,name=SipContainer.TaskDuration", "
AvgTaskDurationOutBoundQueue")

This table lists the task duration module counters.

Name Attribute/Method Description Granularity

Average Task Duration in
outbound queue

AvgTaskDurationOutBoundQueueThe average task duration
in the SIP stack outbound
queue over a configured
window of time

Server

Maximum Task Duration in
outbound queue

MaxTaskDurationOutBoundQueueThe maximum task
duration in the SIP stack
outbound queue over a
configured window of time

Server

Minimum Task Duration in
outbound queue

MinTaskDurationOutBoundQueueThe minimum task
duration in the SIP stack
outbound queue over a
configured window of time

Server

Average Task Duration in
processing queue

AvgTaskDurationInProcessingQueueThe average task duration
in the SIP container
processing queue over a
configured window of time

Server

Chapter 10. Monitoring the Liberty server runtime environment 1439

Table 102. SIP container task duration counters (continued). The object name of the MXBean from which the
counters can be retrieved is:“WebSphere:type=TaskDurationCounters,name=SipContainer.TaskDuration”. To retrieve
the attributes, use the JMXConnection.getAttribute method. For example:
_connection.getAttribute("WebSphere:type=TaskDurationCounters,name=SipContainer.TaskDuration", "
AvgTaskDurationOutBoundQueue")

This table lists the task duration module counters.

Name Attribute/Method Description Granularity

Maximum Task Duration in
processing queue

MaxTaskDurationInProcessingQueueThe maximum task
duration in the SIP
container processing queue
over a configured window
of time

Server

Minimum Task Duration in
processing queue

MinTaskDurationInProcessingQueueThe minimum task
duration in the SIP
container processing queue
over a configured window
of time

Server

Average Task Duration in
application code

getAvgTaskDurationInApplication(String
appName)

The average task duration
the SIP application code
over a configured period

Application

Maximum Task Duration in
application code

getMaxTaskDurationInApplication(String
appName)

The maximum task
duration in the SIP
application code over a
configured period

Application

Minimum Task Duration in
application code

getMinTaskDurationInApplication(String
appName)

The minimum task
duration in the SIP
application code over a
configured period

Application

Table 103. SIP container queue monitoring counters. The object name of the MXBean from which the counters can
be retrieved is: “WebSphere:type=QueueMonitoringModule,name=SipContainer.QueueMonitor”. To retrieve the
attributes, use the JMXConnection.getAttribute method. For example:
_connection.getAttribute("WebSphere:type=QueueMonitoringModule,name=SipContainer.QueueMonitor", "
TotalTasksCountInProcessingQueue").

This table lists the queue monitoring counters.

Name Attribute Description Granularity

Total number of tasks that
have flowed through the
processing SIP container
queue

TotalTasksCountInProcessingQueueThe total number of tasks,
such as messages or SIP
timer events, that have
flowed through the
processing SIP container
queue over a configured
window of time

Server

Maximum number of tasks
in the processing SIP
container queue

PeakTasksCountInProcessingQueueThe maximum number of
tasks in the processing SIP
container queue over a
configured window of time

Server

Minimum number of tasks
in the processing SIP
container queue

MinTasksCountInProcessingQueueThe minimum number of
tasks in the processing SIP
container queue over a
configured window of time

Server

1440 WebSphere Application Server Liberty Core 8.5.5

Table 103. SIP container queue monitoring counters (continued). The object name of the MXBean from which the
counters can be retrieved is: “WebSphere:type=QueueMonitoringModule,name=SipContainer.QueueMonitor”. To
retrieve the attributes, use the JMXConnection.getAttribute method. For example:
_connection.getAttribute("WebSphere:type=QueueMonitoringModule,name=SipContainer.QueueMonitor", "
TotalTasksCountInProcessingQueue").

This table lists the queue monitoring counters.

Name Attribute Description Granularity

Maximum percent full of
the processing SIP
container queue

PercentageFullTasksCountInProcessingQueueThe maximum processing
SIP container queue usage
percentage over a
configured window of time

Server

Total number of tasks that
have flowed through the
outbound SIP stack queue

TotalTasksCountInOutboundQueueThe total number of tasks
that have flowed through
the outbound SIP stack
queue over a configured
window of time

Server

Maximum number of tasks
in the outbound SIP stack
queue

PeakTasksCountInOutboundQueueThe maximum number of
tasks in the outbound SIP
stack queue over a
configured window of time

Server

Minimum number of tasks
in the outbound SIP stack
queue

MinTasksCountInOutboundQueueThe minimum number of
tasks in the outbound SIP
stack queue over a
configured window of time

Server

Maximum percent full of
the outbound SIP stack
queue

PercentageFullTasksCountInOutboundQueueThe maximum outbound
SIP stack queue usage
percentage over a
configured window of time

Server

Sessions monitoring
You can use the SessionStats MXBean to monitor the performance data of sessions in Liberty.

The performance data of sessions for each application is available as an MXBean, which can be accessed
through JMX.

The sessions that are associated with a single web application have their own SessionStats MXBean (that
is, one SessionStats MXBean for each web application).

The ObjectName for identifying each Session MXBean is:
WebSphere:type=SessionStats,name=*

For example:
WebSphere:type=SessionStats,name=default_host/trade_lite
WebSphere:type=SessionStats,name=default_host/moneybank

The MXBean is responsible for reporting SessionStats for a single web application. The following key data
is available for the SessionStats MXBean after monitoring is enabled:

CreateCount
The total number of sessions created.

LiveCount
The total number of sessions that are currently cached in memory.

Chapter 10. Monitoring the Liberty server runtime environment 1441

ActiveCount
The total number of concurrently active sessions. A session is active if Liberty is processing a
request that uses that session.

InvalidatedCount
The total number of sessions that are invalidated.

InvalidatedCountbyTimeout
The total number of sessions invalidated by a timeout.

ConnectionPool monitoring
You can use the ConnectionPool MXBean for ConnectionPool monitoring of Liberty.

Performance data is made available for each ConnectionPool. Connection pools manage connections from
data sources and connection factories.

Each connection manager has a ConnectionPool MXBean associated with it, and there is one MXBean for
every connection manager.

The ObjectName for identifying each ConnectionPool MXBean is:
WebSphere:type=ConnectionPoolStats,name=<IDENTIFIER_OF_CONNECTION_MANAGER>

The following example shows a connection pool (for a data source or connection factory) that does not
have a JNDI name. The data source [default-x] name is considered as the data source object when JNDI is
not specified.
WebSphere:type=ConnectionPoolStats,name=transaction/dataSource[default-0]/connectionManager

<transaction enableLoggingForHeuristicReporting="true" transactionLogSize="2048">
<dataSource transactional="false">
<jdbcDriver libraryRef="DerbyLib"/>
<properties.derby.embedded databaseName="<DIR Path>/<DatabaseName>" createDatabase="create"/>
</dataSource>
</transaction>

Example configurations when connection manager is provided
v When an explicit ID is not specified, an ID is generated based on its parent

WebSphere:type=ConnectionPoolStats,name=dataSource[MyDataSource]/connectionManager[default-0]

<dataSource id="MyDataSource">
<connectionManager maxPoolSize="10"/>
<jdbcDriver libraryRef="DB2JCC4LIB"/>
<properties.db2.jcc .../>
</dataSource>

v When an ID is specified, that becomes the identifier
WebSphere:type=ConnectionPoolStats,name=connectionManager[Pool2]

<dataSource id="DataSource2" jdbcDriverRef="DB2JCCDriver" connectionManagerRef="Pool2">
<properties.db2.jcc .../>
</dataSource>
<connectionManager id="Pool2" maxPoolSize="20"/>

v Obtaining the correct identifier for a type 2 driver connection pool.
– Ensure that the application that is using the pool makes a call to DB2 so that the pool is initialized.
– Navigate to the REST interface to determine the proper identifier to use in the configuration. For

example:
host:443/IBMJMXConnectorREST/mbeans

Specifying the correct identifier for a connection pool for a type 2 driver

1442 WebSphere Application Server Liberty Core 8.5.5

{"objectName":"WebSphere:type=ConnectionPoolStats,name=jdbc/acp01","
className":"com.ibm.ws.connectionpool.monitor.ConnectionPoolStats","
URL":"/IBMJMXConnectorREST/mbeans/WebSphere%3Aname%3Djdbc%2Facp01%
2Ctype%3DConnectionPoolStats"}

The ConnectionPool MXBean is responsible for reporting ConnectionPool Stats for a single connection
manager. The following counter attributes are available for the ConnectionPool MXBean after monitoring
is enabled:

CreateCount
The total number of connections created.

DestroyCount
The total number of connections destroyed.

ManagedConnectionCount
The number of ManagedConnection objects that are in use.

WaitTime
The average waiting time in milliseconds until a connection is granted.

ConnectionHandleCount
The number of Connection objects that are in use.

FreeConnectionCount
The number of free connections in the pool.

Multiple components monitoring
You can filter the components that you want to monitor by using the monitor-1.0 feature in Liberty. The
components to be filtered must be configured in the server.xml file.
1. To specify the components that you want to filter, add the following code to the server.xml file.

<server description="new server">

<featureManager>
<feature>jsp-2.2</feature>
<feature>jdbc-4.0</feature>
<feature>monitor-1.0</feature>

<monitor filter="JVM,ThreadPool,WebContainer,Session,ConnectionPool"/>
</server>

By default, if the filters are not provided in the <monitor> tag, all the components that are currently
monitored as part of the monitor-1.0 feature are monitored. You can specify the components that you
want to monitor by providing the group name as part of the filter.
For example: If you want to monitor only the JVM and WebContainer components, specify the
components in the server.xml file as follows:
<monitor filter="JVM,WebContainer"/>

2. To remove components from monitoring.
To stop monitoring a component, you must remove the component from the filter group at run time.
For example: The following filter configuration monitors the JVM, ThreadPool, WebContainer, Session
and ConnectionPool components:
<monitor filter="JVM,ThreadPool,WebContainer,Session,ConnectionPool"/>

To stop monitoring the components WebContainer and Session, remove those components from the
filter configuration:
<monitor filter="JVM,ThreadPool,ConnectionPool" />

3. To enable monitoring of components at run time.

Chapter 10. Monitoring the Liberty server runtime environment 1443

If you want to enable monitoring for specific components at run time, you can specify the
components in the monitor tag at run time.
The data that is collected by the filtering components is available as MXBeans. For more information
about the various MXBeans, see Chapter 10, “Monitoring the Liberty server runtime environment,” on
page 1423.

Note: Currently, fine-grained monitoring is supported only at the component level (such as
WebContainer, ThreadPool, JVM) and not at the counter level.

HTTP access logging
You can configure access log settings for HTTP endpoints.

HTTP access log settings
An HTTP access log contains a record of all inbound client requests handled by HTTP endpoints. You can
enable access logging in the HTTP server, or you can enable it in the Liberty server in two modes: one
log common to multiple endpoints, or one log for each endpoint.

Note: If you do not specify attributes, the defaults are used. To see a list of the default attributes, see
httpAccessLogging in the list of liberty configuration elements: **** MISSING FILE ****.
v Using a common log

To enable logging for multiple endpoints using common settings, include httpAccessLogging as a
top-level element in your server.xml file, and then reference it from multiple httpEndpoint elements:
<httpAccessLogging id="accessLogging"/>
<httpEndpoint id="defaulHttpEndpoint" accessLoggingRef="accessLogging"/>
<httpEndpoint id="otherHttpEndpoint" accessLoggingRef="accessLogging" httpPort="9081" httpsPort="9444"/>

v Using distinct logs for each endpoint
To enable logging for individual endpoints, use an accessLogging child element and specify a file path
that does not conflict with other logs:
<httpEndpoint id="defaultHttpEndpoint">
<accessLogging filepath="${server.output.dir}/logs/http_defaultEndpoint_access.log"/>

</httpEndpoint>
v Using logs for the HTTP server

For a list of the available HTTP server side properties and their descriptions, seeApache Module
mod_log_config.

HTTP access log format
For a list of the available log format properties and their descriptions, see the accessLogFormat
configuration for WebSphere Application Server traditional in HTTP transport channel custom properties.
This log format string is specified using the logFormat attribute of httpAcccessLogging or accessLogging
elements in server.xml:
<httpAccessLogging logFormat=’%h %u %{t}W "%r" %s %b’/>

or
<httpEndpoint id="defaultHttpEndpoint">
<accessLogging filepath="${server.output.dir}/logs/http_defaultEndpoint_access.log"

logFormat=’%h %i %u %t "%r" %s %b’ />
</httpEndpoint>

1444 WebSphere Application Server Liberty Core 8.5.5

http://publib.boulder.ibm.com/httpserv/manual70/mod/mod_log_config.html
http://publib.boulder.ibm.com/httpserv/manual70/mod/mod_log_config.html
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-nd-mp&topic=rrun_chain_httpcustom

Chapter 11. Tuning Liberty

You can tune parameters and attributes of Liberty.

About this task

Liberty supports different attributes in the server.xml file to influence application performance. You can
use these parameters and attributes to achieve better performance. To tune Liberty for secure applications,
see Tuning Liberty for secure applications.

Procedure
v Tune the JVM.

Tuning the JVM is a most important tuning step whether you configure a development or production
environment. When you tune the JVM for Liberty, use the jvm.options file in the
${server.config.dir} directory. You can specify each of the JVM arguments that you want to use, one
option per line. For more information, see “Customizing the Liberty environment” on page 947. An
example of the jvm.options file is as follows:
-Xms50m
-Xmx256m

For a development environment, you might be interested in faster server startup, so consider setting
the minimum heap size to a small value, and the maximum heap size to whatever value is needed for
your application. For a production environment, setting the minimum heap size and maximum heap
size to the same value can provide the best performance by avoiding heap expansion and contraction.

v Tune transport channel services.
The transport channel services manage client connections, I/O processing for HTTP, thread pools, and
connection pools. For applications on Liberty, the following attributes are available for different
elements that can be used to improve runtime performance, scalability, or both. For each of these
attributes, see **** MISSING FILE ****.

maxKeepAliveRequests of httpOptions
This option specifies the maximum number of persistent requests that are allowed on a single
HTTP connection if persistent connections are enabled. A value of -1 means unlimited. This
option supports low latency or high throughput applications, and SSL connections for use in
situations where building up a new connection can be costly. Here is an example of how you
code this option in the server.xml file:
<httpOptions maxKeepAliveRequests="-1" />

maxPoolSize of connectionManager
This option specifies the maximum number of physical connections for the connection pool.
The default value is 50. The optimal setting here depends on the application characteristics. For
an application in which every thread obtains a connection to the database, you might start with
a 1:1 mapping to the coreThreads attribute. Here is an example of how you code this option in
the server.xml file:
<connectionManager ... maxPoolSize="40" />

purgePolicy of connectionManager
This option specifies which connections to destroy when a stale connection is detected in a
pool. The default value is the entire pool. It might be better to purge only the failing
connection. Here is an example of how you code this option in the server.xml file:
<connectionManager ... purgePolicy="FailingConnectionOnly" />

numConnectionsPerThreadLocal of connectionManager
This option specifies the number of database connections to cache for each executor thread.

1445

This setting can provide a major improvement on large multi-core (8+) machines by reserving
the specified number of database connections for each thread.

Using thread local storage for connections can increase performance for applications on
multi-threaded systems. When you set numConnectionsPerThreadLocal to 1 or more, these
connections per thread are stored in thread local storage. When you use
numConnectionsPerThreadLocal, consider two other values:
– The number of application threads
– The connection pool maximum connections

For best performance, if you have n applications threads, you must set the maximum pool
connections to at least n times the value of the numConnectionsPerThreadLocal attribute and
you must use the same credentials for all connection requests. For example, if you use 20
application threads, set the maximum pool connections to 20 or more; If you set the value of
numConnectionPerThreadLocal attribute as 2 and there are 20 application threads, set the
maximum pool connection to 40 or more. Here is an example of how you code this option in
the server.xml file:
<connectionManager ... numConnectionsPerThreadLocal="1" />

statementCacheSize of dataSource
This option specifies the maximum number of cached prepared statements per connection. To
set this option, complete the following prerequisite:
– Review the application code (or an SQL trace that you gather from the database or database

driver) for all unique prepared statements.
– Ensure that the cache size is larger than the number of statements.

Here is an example of how you code this option in the server.xml file:
<dataSource ... statementCacheSize="60" >

isolationLevel of dataSource
The data source isolation level specifies the degree of data integrity and concurrency, which in
turns controls the level of database locking. Four different options are available as following in
order of best performing (least integrity) to worst performing (best integrity).

TRANSACTION_READ_UNCOMMITTED
Dirty reads, non-repeatable reads, and phantom reads can occur.

TRANSACTION_READ_COMMITTED
Dirty reads are prevented; non-repeatable reads and phantom reads can occur.

TRANSACTION_REPEATABLE_READ
Dirty reads and non-repeatable reads are prevented; phantom reads can occur.

TRANSACTION_SERIALIZABLE
Dirty reads, non-repeatable reads, and phantom reads are prevented.

Here is an example of how you code this option in the server.xml file:
<dataSource ... isolationLevel="TRANSACTION_READ_COMMITTED">

v 8.5.5.6 Tune the default executor.
The Liberty default executor is self-tuning and adapts to the current workload by dynamically adding
or removing threads. For most workloads, the executor does not require any tuning, and you are
advised not to change any settings of the executor unless you encounter specific problems with thread
creation.
If necessary, you can configure the coreThreads and maxThreads parameters of the executor element in
the server.xml file to set lower and upper bounds for the Liberty auto-tuning code. The coreThreads
setting is not usually needed because the executor contains aggressive anti-deadlocking code that adds
threads to break the executor out of deadlock scenarios. Rarely, the anti-deadlocking code adds more

1446 WebSphere Application Server Liberty Core 8.5.5

threads than are required. In this situation, you can use the maxThreads parameter of the executor
element to cap the number of threads the executor is allowed to create.

v Decrease response time of servlets.
To decrease response time of servlets, add the following attribute to the server.xml file:
<webContainer skipMetaInfResourcesProcessing="true"/>

v Reduce idle server CPU time.
To reduce idle server CPU time, add the following attributes to the server.xml file:
<applicationMonitor dropinsEnabled="false" updateTrigger="disabled"/>
<config updateTrigger="disabled"/>

When the attributes are added, your server no longer monitors for configuration or application
updates.
For more information about the configuration element descriptions, see **** MISSING FILE ****.

v 8.5.5.7 Tuning startup time.

CDI 1.2
By default, the CDI 1.2 feature scans all application archives. The CDI 1.2 feature can increase
startup time substantially and have the most effect on larger applications. Implicit archive
scanning for annotations can be disabled by setting enableImplicitBeanArchives value to
false. This setting skips the scanning of archives unless they contain a beans.xml file.
<cdi12 enableImplicitBeanArchives="false"/>

Note: The cdi-1.2 feature may be included even if its not in the <features> section of your
server.xml file because other features, such as webProfile-7.0 and javaee-7.0, include the
cdi-1.2 feature. Look in the messages.log file for "The server installed the following features:"
to see if cdi-1.2 was installed.

Tuning Liberty for secure applications
You can tune Liberty to maximize the performance for secure applications.

About this task

When you are securing your WebSphere application environment, it is important to understand the
impact security can have on performance. Within an application server environment, running applications
with security settings can often decrease performance because of increased processor usage from security
tasks such as encryption, authentication, and authorization. These services can often increase the path
length of application server requests, requiring more resources for each request and slowing down
application throughput.

In most cases, you can reduce or eliminate some of this security-related performance loss through
performance tuning. You can adjust the resources that are used by security services and choose to use
only the security services that are required by a particular application or environment. Achieving the best
possible performance, without sacrificing any necessary security, requires an understanding of your
network topology and the security needs of your applications.

Procedure
v Choose the connections that you want to encrypt.

In a WebSphere Application Server environment, you can encrypt the following transports:
– HTTP traffic that is to the web server
– HTTP traffic that is from the web server to the application server
– SOAP/JMX traffic
– File transfer service

Chapter 11. Tuning Liberty 1447

– Web services over HTTP
When you are determining which traffic to transport over encrypted connections, consider whether the
network that is connecting the communicating machines is private or public. There is a significant
amount of resources that are associated with setting up a secured connection and encrypting and
decrypting the traffic over that connection. You can make significant performance improvements by not
requiring encryption over a secured network, for instance. If your application does not require that
traffic is encrypted from the client to the HTTP server and from the HTTP server to the application
Server, you might be able to use SSL only from the client to the HTTP server and therefore reduce
resources that are required by security.

v Enable on-chip Advanced Encryption Standard (AES) Encryption.
If you are using IBM® SDK Java Technology Edition Version 7, Service Refresh 3 or later, and you are
running on an Intel processor that supports the Advanced Encryption Standard (AES) New Instructions
(AES-NI) instruction set, you can achieve performance improvement by taking advantage of on-chip
AES encryption. Using these features, you can run AES encryption and decryption using hardware
instructions without extra software.
To enable AES-NI usage, add the following property to the JVM command line or jvm.options file:
com.ibm.crypto.provider.doAESInHardware=true

Add the following property to the JVM command line or the jvm.options file to verify that the
processor supports AES-NI instruction set:
com.ibm.crypto.provider.AESNITrace=true

For more information, see Intel Advanced Encryption Standard New Instructions.
v Choose your cipher key length.

In some cases, the bit length of a cipher key is governed by regulations that are put on the transfer of
certain types of data. In these cases, the cipher and key length that you choose for a particular SSL
connection can be predetermined. For situations where the key length is not regulated, you must
choose the appropriate resources to allocate to security so that performance is not decreased more than
is necessary. For example, a 256-bit cipher offers stronger encryption than a corresponding 128-bit
cipher. However, decrypting messages with a stronger cipher requires more processing time.
When you are making your decision about the encryption strength to choose, consider the type of data
that is traveling across a network. For example, sensitive information, such as financial or medical
records, needs the maximum amount of security. Also, consider who has access to the network. If the
network is protected by a firewall, consider decreasing the strength of the cipher, or possibly
transmitting the data over an decrypted connection.
For more information about configuring SSL settings on Liberty, see “SSL configuration attributes” on
page 1153

v Set connection keep-alive requests.
In the Secure Socket Layer (SSL) protocol, the initial handshake uses a public-key cipher to exchange a
private key for a faster private-key cipher. This faster cipher is used to encrypt and decrypt
communication beyond the initial handshake. Because the cipher used for subsequent communication
is faster than the one used for the initial handshake, it is important from a performance perspective to
limit the number of SSL handshakes that are performed within the application server. You can achieve
this result by increasing the length of an SSL connection by increasing session affinity.
One way to increase the duration of a single SSL connection is to enable persistent HTTP keep-alive
connections. Increasing the duration prevents SSL handshakes from taking place on consecutive
requests. You can make sure that persistent connections are enabled by verifying that the
keepAliveEnabled attribute in the httpOptions element is set to true in the server.xml file. The default
value is true.
Another way to tune persistent connections is by setting the maximum number of consecutive requests
on a single HTTP connection. If your clients are making more than 100 requests consecutively, consider
increasing the value of the maxKeepAliveRequests attribute in the httpOptions element in the
server.xml file. The default value is 100.
For more information, see **** MISSING FILE ****.

1448 WebSphere Application Server Liberty Core 8.5.5

https://www.ibm.com/support/knowledgecenter/SSYKE2_7.0.0/com.ibm.java.security.component.70.doc/security-component/JceDocs/aesni.html

v Set the authentication cache settings.
Because the creation of an authentication subject can increase processor usage, Liberty provides an
authentication cache to store a subject after the authentication of a user is successful. To fully take
advantage of this service to increase performance, you must make sure that it is turned on and tuned
according to your users and applications.
– Make sure that you do not disable the authentication cache. By default, the authentication cache is

enabled to help improve performance.
– Consider changing the authentication cache timeout value. Increasing the timeout value enables

subjects to remain in the authentication cache longer and reduces the number of reauthentications
needed. However, increasing the timeout value increases the risk of user permissions becoming stale
compared to a modified external repository, such as LDAP. Set your authentication cache timeout to
reflect the estimated length of client sessions. You can specify the cache timeout by setting the value
of the timeout attribute to whichever time you choose in the authCache element in the server.xml
file. The default value is 600 seconds.

– Finally, if you are experiencing authentication times longer than expected, or you are noticing more
traffic to an external authentication repository than expected, the authentication cache might be full.
When the authentication cache is full, subjects are evicted. There is not a one-to-one mapping of
authenticated users to authentication cache entries. The number of entries in the cache per user
depends on other security configurations. It is a best practice for the maximum size of the
authentication cache to be larger than the number of distinct authenticated users that are accessing
the server at one time. Setting the maximum size of the authentication cache this way helps prevent
subjects from being evicted from the cache before timing out. You can change the maximum size of
the authentication cache by setting the value of the maxSize attribute in the authCache element in
the server.xml file. The default size is 25000.

For more information, see “Configuring the authentication cache in Liberty” on page 1183.
v Configure the HTTP session affinity settings.

One of the operations in a secure application environment that drains performance the most is the
initial setup, including the SSL handshake and authentication. In clustered environments, performance
decreases might occur when a web client accesses different application servers. To prevent the
increased processor usage of the SSL handshake and reauthentication, it is important to make sure that
HTTP session affinity is configured.
HTTP session affinity ensures that consecutive client requests are routed to the same application server.
HTTP session affinity aids performance in various ways, but specifically, it prevents the increased
processor usage of reauthentication and SSL handshaking. Consult the documentation of your HTTP
Server or Load Balancer for instructions on setting up HTTP session affinity.
For more information, see “Configuring session persistence for Liberty” on page 990.

Tuning federated LDAP repositories in Liberty

You can improve the performance of the federated LDAP repositories by monitoring and adjusting the
cache and the context pool elements in the server.xml file.

About this task

The cached query results of the LDAP repositories save time, because the data need not be retrieved from
the back-end server every time an LDAP operation is performed. The LDAP cache attributes are stored in
the <ldapCache> element for quicker access. You must monitor the status of the cache and adjust the
cache control parameters to improve the performance of the cache. The context pooling parameters can be
adjusted to improve the performance of concurrent accesses to the LDAP servers.

Chapter 11. Tuning Liberty 1449

Procedure
v Configure the <ldapCache> element in the server.xml file.

Specify the LDAP cache control parameters to improve the performance:

attributesCache
<size>: Specifies the number of entities that are stored in the cache. You can increase the size of
the cache based on your business requirement, for example, increase the cache size if more
number of entities are required in a business scenario.

<timeout>: Specifies how long the results can be cached before they are invalidated. If the
back-end LDAP data is refreshed frequently to maintain an up-to-date cache, set a lesser
timeout duration value.

<sizeLimit>: Specifies the maximum number of LDAP attributes per entity that can be stored
in the cache. If an entity is associated with many attributes, increase the <sizeLimit> value.

searchResultSizeLimit
Specifies the maximum number of search results that can be stored in the cache. Use the
parameters in the <searchResultSizeLimit> element to tune the search results that are returned
as part of the query.

v Configure the <contextPool> element parameters in the server.xml file to improve the performance of
concurrent access to an LDAP server.
You can adjust the following parameters in the <contextPool> element to control the cache:

contextPool
<initialSize>: Specifies the initial size of the context pool. The value must be set based on the
load on the repository. If the initial number of requests to the LDAP server is expected to be
high, increase the value of the initial size.

<maxSize>: Specifies the maximum context pool size. The value must be set based on the load
on the repository. If you want to restrict the number of connections to the LDAP server, then
set the value of the <maxSize> element to less than half of the maximum number of
connections that the LDAP server can handle.

<timeout>: Specifies the duration after which the context pool times out. Specify a shorter
timeout value so that fresh connections can be made to the LDAP server after the specified
duration is timed out. For example, if the established connection is timed out after the
configured interval, then set a shorter duration than the firewall timeout duration so that the
connection is re-established.

<waitTime>: Specifies the waiting time before the context pool times out. If the value specified
is high, then the time that is taken to establish a connection to the LDAP server is increased
accordingly.

For more information about the <ldapCache> and <contextPool> elements, see **** MISSING FILE ****

1450 WebSphere Application Server Liberty Core 8.5.5

Chapter 12. Troubleshooting tips

Tips for troubleshooting Liberty.

To help you identify and resolve problems, the product has a unified logging component. See “Logging
and Trace” on page 1461. You can also use theIBM Support Assistant Data Collector (ISADC) command
tool in the ${wlp.install.dir}/bin directory to quickly collect diagnostic files, such as log files,
configuration files or to run traces.

If you receive an exception message, information about the message is available in “Messages” on page
1490.

The Java API documentation for each Liberty API is detailed in the Programming Interfaces (APIs)
section of the documentation, and is also available as a separate .zip file in one of the javadoc
subdirectories of the ${wlp.install.dir}/dev directory.

Distributed operating systems

Details of the main known restrictions that apply when you use Liberty are
provided in the following two topics:
v “Runtime environment known issues and restrictions” on page 1480.

v Distributed operating systems “Developer Tools known issues and restrictions” on page 1488.

IBM i

For details of the main known restrictions that apply when using Liberty, see “Runtime

environment known issues and restrictions” on page 1480.

Here is a set of tips to help you troubleshoot commonly experienced problems:
v Troubleshooting JDKs
v “Troubleshooting security” on page 1452
v “Troubleshooting LDAP” on page 1454
v “Troubleshooting SSL” on page 1454
v “Troubleshooting CORBA/IIOP” on page 1455
v “Troubleshooting logging and tracing” on page 1456
v Distributed operating systems

IBM i “Applying fix packs and interim fixes to an archive install” on
page 1456

v “Troubleshooting performance” on page 1456
v 8.5.5.7 Troubleshooting SAML

Check that your JDKs are at a supported level

If you experience problems that are not readily explained, check that the JDKs you are using are
compliant with Java Version 6 or later, and are at a current service level. See “Minimum supported Java
levels” on page 1481.

Note: A deadlock can occur when using Oracle based JVMs using Java Version 6. If you are using an
affected JVM or JDK, the following settings can help prevent the deadlock from occurring:
v Enable the following VM option: -XX:+UnlockDiagnosticVMOptions -XX:+UnsyncloadClass
v Set the Equinox framework option to use classname locking for classloading by setting the following

Equinox configuration option: -Dosgi.classloader.lock=classname

These can be set in a Java properties file, for example jvm.options, when starting the Liberty server.

1451

Troubleshooting security

This section describes some common security problems and solutions you can choose.

SESN0008E: A user authenticated as anonymous has attempted to access a session owned by
user:LdapRegistry/cn=steven,o=myCompany,c=US.

This error happens when an unauthenticated user tries to access a session created by an
authenticated user. Session security that is enabled by default prevents unauthorized access of the
sessions. Only the user who created a session can access it. See session security for more
information.

This error can happen when you use a JSP (login.jsp for example) for your form-login and the
SSO token sent by the browser is expired. Because the SSO token is expired, the user is prompted
to log in again using the login.jsp page configured for the form-login. The jsp page, by default,
tries to get a session. This session was originally created by the user whose token is expired.
However, the token is expired and the user is not authenticated, no credentials are established
when accessing this session that results in this error.
To avoid this error, restart the browser that starts a new session, or configure the login.jsp file to
not create the session by default. If you choose to update the login.jsp file, set <%@ page
session="false" %>.

CWWKS9104A: Authorization failed for user {0} while invoking {1} on {2}. The user is not granted
access to any of the required roles: {3}.

This error occurs when you do not have authorization to the roles required by the application.
Make sure that the user or the group it belongs to is mapped to at least one of the roles that are
mentioned in the error message. A user-to-role mapping defined in the ibm-application-bnd.xmi/
xml file takes precedence over a mapping defined in the server.xml file. Check both resources to
ensure that the correct mapping is defined. See “Configuring authorization for applications in
Liberty” on page 1254.

CWWKS9104A: Authorization failed for user {0}.
This error can occur if you specify both an application and webApplication for the same context
root. If a conflict happens the latest configuration that is defined is ignored and causes an
unexpected error, such as CWWKS9104A.

CWWKZ0013E: It is not possible to start two applications called {0} followed by unexpected security
behavior and error messages such as CWWKS9104A.

This error occurs when you specify your application in both the server.xml by using the
application element and in the dropins folder. As a result, the application is attempted to be
installed twice and the security configuration in the server.xml file might or might not take
effect. To fix this, you must remove your application from the dropins folder and copy it to
another directory. If you have to leave it in the dropins folder, you must disable the application
monitoring by using the following code in your server.xml file:
<applicationMonitor dropinsEnabled="false"/>

An unauthenticated user was able to access my servlet or JSP.
A user with a principal of UNAUTHENTICATED (or the unauthenticated SAF user on z/OS) is created
when authentication fails or when your servlet or JSP is unprotected. An unauthenticated user
can access your servlet or JSP if you do not define any security constraints or if you map the
EVERYONE special subject to the role required by your application. Review the user-to-role
mappings in the ibm-application-bnd.xmi/xml and server.xml files. Take one of the following
options:
v If your servlet or JSP is unprotected, add security constraints to the deployment descriptor of

your application. See “Authentication” on page 585.
v If you do not want any unauthenticated user to access your application, remove the EVERYONE

special subject from the mapping for that role. See “Configuring authorization for applications
in Liberty” on page 1254.

1452 WebSphere Application Server Liberty Core 8.5.5

v If a certain user cannot be authorized to your servlet or JSP, review who is mapped to that role
by examining the ibm-application-bnd.xmi/xml and server.xml files. You can map a role to a
user, group, or special subject. If your role is mapped to the EVERYONE special subject, any user
is granted access. If your role is mapped to the ALL_AUTHENTICATED special subject, any
authenticated user is granted access. Remove these special subjects if you want to further limit
who can access your servlet or JSP. Finally, check what group the user belongs to. Although the
user might not have explicit access, the group might be mapped to the role. In this case,
remove the user from the authorized group or remove the group from role mapping. See
“Configuring authorization for applications in Liberty” on page 1254.

Single sign-on (SSO) does not work.
If SSO does not work, make sure that the different Liberty servers that use the same LTPA keys,
password, and ssoCookieName attribute of webAppSecurity element have the same Universal Time
(UTC) and share the same user registry. Also, if the token expires or if the cookie is sent from a
web browser after changing the user registry in a manner that is inconsistent, such as modifying
the realm or removing the user the cookie represents, the SSO fails and the user is prompted to
enter the credential information again. See “Customizing SSO configuration using LTPA cookies
in Liberty” on page 1203.

Debugging security public APIs.
WSSecurityHelper and RegistryHelper are loaded even if security is not enabled, for example, if a
security feature - appSecurity-1.0,appSecurity-2.0 or zosSecurity-1.0 - is not specified. If
security is not enabled, then WSSecurityHelper.isServerSecurityEnabled() and
WSSecurityHelper.isGlobalSecurityEnabled() methods both return false, and
RegistryHelper.getUserRegistry() method returns null.

Other security public API classes might not be loaded if security is not enabled. If you try to
access these classes and call a method on one of these classes, you might get a
java.lang.NoClassDefFoundError exception.

To avoid getting java.lang.NoClassDefFoundError exceptions, you must first test to see whether
security is enabled by calling the WSSecurityHelper.isServerSecurityEnabled() or
WSSecurityHelper.isGlobalSecurityEnabled() class, and then call other security public API classes
only when security is enabled. See “Security public APIs” on page 611 for examples of this
coding technique.

Note: This behavior is different from the traditional. In traditional, all classes are always loaded
regardless of whether security is enabled or not.

Cannot authenticate users with Unicode characters
In order to authenticate users whose names contain Unicode characters, you must set the
character encoding type used by the Liberty server to UTF-8 by adding the following jvm option
to the server start command:
-Dclient.encoding.override=UTF-8

You must also specify the charset and pageEncoding in your login page. Here is an example for
specifying these parameters on a login JSP page:
<%@page contentType="text/html; charset=UTF-8" pageEncoding="UTF-8"%>

8.5.5.4 java.lang.annotation.AnnotationFormatError: java.lang.IllegalArgumentException:Wrong
type at constant pool index at
sun.reflect.annotation.AnnotationParser.parseAnnotations(AnnotationParser.java:87)

This error can occur when an OpenID Connect or OAuth provider uses a Database Store for
client registration with some JDK 7 versions.

To avoid this problem, upgrade to JDK version 7.1.

Chapter 12. Troubleshooting tips 1453

Troubleshooting LDAP

This section describes some common LDAP problems and solutions you can choose.

FFDC1015I: An FFDC Incident has been created: javax.naming.ServiceUnavailableException:
myldapserver.mycompany.com:636; socket closed
com.ibm.ws.security.registry.ldap.internal.LdapRegistry 298

This message in messages.log indicates that the configured LDAP server cannot be reached.
Check your LDAP server to verify that it is running and that its IP address can be accessed from
Liberty server.

The javax.naming.CommunicationException: simple bind failed: myldapserver.mycompany.com:636
[Root exception is javax.net.ssl.SSLHandshakeException: com.ibm.jsse2.util.g: PKIX path building
failed: java.security.cert.CertPathBuilderException: unable to find valid certification path to requested
target]

If you enable SSL on your LDAP server without copying the signer of the LDAP server into the
truststore referenced in the LDAPSSLSettings element, a connection with the LDAP server fails
with an SSL handshake error. Make sure that you copy the signer of the LDAP server into your
truststore.

The javax.naming.CommunicationException: myldapserver.mycompany.com:389 [Root exception is
java.net.BindException: Address already in use: connect]

This message might appear in the FFDC logs and indicates that the usable sockets on the local
server are exhausted, which can result in a failure when connecting to your LDAP server. Make
sure that the socket is not used and try again.

CWWKS1100A: Authentication did not succeed for user ID xxxxx. An invalid user ID or password was
specified

This FFDC exception might happen on the server even though the user mentioned in the message
is a valid user on the LDAP server under heavy load. With the LDAP configuration, you can add
the reuseConnection=false property or disable it by using the developer tools. To fix the
problem, set this property to the default value of true.

Troubleshooting SSL

This section describes some common SSL problems and solutions you can choose.

CWWKS9105E: Could not determine the SSL port for automatic redirection.
This error occurs when you try to access an application that redirects to an SSL port and the SSL
port is not available. The port might not be available because of a missing SSL configuration or
some error in the SSL configuration definition. Check the SSL configuration in the server.xml file
to make sure that it exists and is correct. See “Securing communications in Liberty” on page 1151.

FFDC1015I: An FFDC Incident has been created: “java.lang.IllegalArgumentException: Unknown,
incomplete configuration: missing id field
com.ibm.ws.config.internal.cm.ManagedServiceFactoryTracker aSyncReadNupdate. Exception thrown
while trying to read configuration and update ManagedServiceFactory. Exception =
java.lang.IllegalArgumentException: Unknown, incomplete configuration: missing id field” at
ffdc_12.04.18_16.09.42.0.log

This error occurs when a keystore element exists in the configuration without an ID field. If you
use a minimal SSL configuration, set the ID field to defaultKeyStore.

You might get an exception if using a LDAP user registry with sslEnabled and a sslRef value is not
specified.

For example, a configuration has sslEnabled set to true but there is not a sslRef value, as shown
in the following example:
<ltldapRegistry id="ldap" realm="SampleLdapIDSRealm"
host="ccwin12.austin.ibm.com" port="636" ignoreCase="true"
baseDN="o=ibm,c=us"
bindDN="cn=root"

1454 WebSphere Application Server Liberty Core 8.5.5

bindPassword="rootpwd"
ldapType="IBM Tivoli Directory Server"
idsFilters="ibm_dir_server"
sslEnabled="true"
searchTimeout="8m" />

You must enter a sslRef value. If you are using a minimal SSL configuration that is similar to the
following:
<ltkeyStore id="defaultKeyStore" location="key.jks"
password="mypassword" />

the sslRef field should be set to defaultSSLConfig.

If a custom SSL configuration is configured, the name of that configuration should be placed in
the sslRef field.

If you use a JDK from the WebSphere Application Server, you might see the following error if SSL is
enabled on your Liberty Server.

java.net.SocketException: java.lang.ClassNotFoundException: Cannot find the specified class com.ibm.websphere.ssl.protocol.SSLSocketFactory
at javax.net.ssl.DefaultSSLSocketFactory.a(SSLSocketFactory.java:11)
at javax.net.ssl.DefaultSSLSocketFactory.createSocket(SSLSocketFactory.java:6)
at com.ibm.net.ssl.www2.protocol.https.c.afterConnect(c.java:161)
at com.ibm.net.ssl.www2.protocol.https.d.connect(d.java:36)
at sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1184)
at java.net.HttpURLConnection.getResponseCode(HttpURLConnection.java:390)
at com.ibm.net.ssl.www2.protocol.https.b.getResponseCode(b.java:75)
at com.ibm.ws.jmx.connector.client.rest.internal.RESTMBeanServerConnection.loadJMXServerInfo(RESTMBeanServerConnection.java:142)
at com.ibm.ws.jmx.connector.client.rest.internal.RESTMBeanServerConnection.<init>(RESTMBeanServerConnection.java:114)
at com.ibm.ws.jmx.connector.client.rest.internal.Connector.connect(Connector.java:315)
at com.ibm.ws.jmx.connector.client.rest.internal.Connector.connect(Connector.java:103)

This error occurs because the WebSphere Application Server SSL socket factories are not
supported by Liberty. You can get past this problem by taking the following steps:
v Create a text file, such as my.java.security with the following two empty entries

ssl.SocketFactory.provider=
ssl.ServerSocketFactory.provider=

v Create a jvm.options file for your Liberty server
v Add the following property to your jvm.options file, that includes the full path to your text

file that you just created
-Djava.security.properties=fullPathTo/my.java.security

v If you want to make this more reusable, you can put the my.java.security file in your server
directory, and then you will be able to use a relative path like this:
-Djava.security.properties=./my.java.security

For more information, see “Customizing the Liberty environment” on page 947.

Troubleshooting CORBA/IIOP

This section describes some common CORBA problems and solutions you can choose.

If you use a JDK from the WebSphere Application Server, you might see the following error if your
application uses CORBA/IIOP communications.

15:21:58.096 com.ibm.rmi.pi.InterceptorManager runPreInit:178 Init Process ORBRas [default] java.lang.ClassNotFoundException:
com.ibm.ISecurityLocalObjectBaseL13Impl.CSIClientRI

at com.ibm.CORBA.iiop.UtilDelegateImpl.loadClass(UtilDelegateImpl.java:685)
at javax.rmi.CORBA.Util.loadClass(Util.java:246)
at com.ibm.rmi.pi.InterceptorManager.runPreInit(InterceptorManager.java:172)
at com.ibm.rmi.corba.ORB.initializeInterceptors(ORB.java:664)
at com.ibm.CORBA.iiop.ORB.initializeInterceptors(ORB.java:1084)
at com.ibm.rmi.corba.ORB.orbParameters(ORB.java:1359)

Chapter 12. Troubleshooting tips 1455

at com.ibm.rmi.corba.ORB.set_parameters(ORB.java:1271)
at com.ibm.CORBA.iiop.ORB.set_parameters(ORB.java:1694)
at org.omg.CORBA.ORB.init(ORB.java:371)
...

This error occurs because the WebSphere Application Server Object Request Broker (ORB)
interceptors are not supported by Liberty. You can resolve this problem by editing the
orb.properties file from the JDK to not use these interceptors. This file is usually found in the
WebSphere <JAVA_HOME>/jre/lib directory directory, though you might have overridden it with
a copy in the user's <USER_HOME> directory. The following example shows the lines in the
orb.properties file that must be commented out:
WS Interceptors
#org.omg.PortableInterceptor.ORBInitializerClass.com.ibm.ws.Transaction.JTS.TxInterceptorInitializer
#org.omg.PortableInterceptor.ORBInitializerClass.com.ibm.ejs.ras.RasContextSupport
#org.omg.PortableInterceptor.ORBInitializerClass.com.ibm.ISecurityLocalObjectBaseL13Impl.ClientRIWrapper
#org.omg.PortableInterceptor.ORBInitializerClass.com.ibm.ws.activity.remote.cos.ActivityServiceClientInterceptor
#org.omg.PortableInterceptor.ORBInitializerClass.com.ibm.ISecurityLocalObjectBaseL13Impl.CSIClientRI
#org.omg.PortableInterceptor.ORBInitializerClass.com.ibm.debug.olt.ivbtrjrt.OLT_RI
#org.omg.PortableInterceptor.ORBInitializerClass.com.ibm.ws.wlm.client.WLMClientInitializer

WS ORB & Plugins properties
#com.ibm.ws.orb.transport.ConnectionInterceptorName=com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor

Troubleshooting logging and tracing

This section describes some common problems with logging and tracing.

The java.util.logging -- Java logging programming interface.
Liberty does not support using the logging.properties file to configure java.util.logging. Use
java code, for example in a deployed application or user feature, to create and add
java.util.logging handlers, filters, or formatters.

Since the Liberty server manages the java.util.logging logger levels in accordance with the
traceSpecification attribute of the logging configuration element, you should avoid using the
Logger.setLevel method.

Distributed operating systems
IBM i

Applying fix packs and interim fixes to an archive install

If you installed your Liberty runtime environment from an archive file, rather than by using Installation
Manager, you must take special measures when you apply service updates. For more information, see
“Applying a fix pack to a Liberty Java archive installation” on page 840 and “Applying an interim fix to
a Liberty archive installation” on page 849.

Troubleshooting performance

This section describes some common performance problems and solutions you can choose.

High CPU usage by your application monitor.

This error can occur if your application monitor has many files under the apps/ directory and is
polling too frequently.

To avoid this problem there are a number of things you can change.
1. Increase the value of the pollingRate attribute.
2. Update the server.xml to include an applicationMonitor element with an updateTrigger that

is not polled.
server.xml
<applicationMonitor updateTrigger="mbean" />

3. Reduce the number of files under the apps/ directory.

1456 WebSphere Application Server Liberty Core 8.5.5

For more information about the applicationMonitor element, see “Controlling dynamic updates”
on page 975.

8.5.5.7

Troubleshooting SAML

This section describes some common problems with SAML and the solutions you must apply.

java.lang.ArrayIndexOutOfBoundsException: Array index out of range: 0
This exception can occur when attempting multiple logins through an unsolicited Service
Provider (SP) initiated request without removing the Identity Provider token (IdP).

To avoid this, add <httpSession invalidateOnUnauthorizedSessionRequestException="true" />
in the relevant unsolicited server.xml file.

java.lang.IllegalStateException: CWWKS0010E: While getting the caller principal, the caller subject
was found to have more than one principal of type WSPrincipal. Only one WSPrincipal can exist in
the subject. The names of the WSPrincipals are: {0}

This exception can occur if a SAML user has previously logged directly into an on-premises user
registry. To avoid this problem, a SAML user must not directly login to an on-premises user
registry.

Security bulletins for the Liberty profile
To avoid preventable security issues, stay up to date on the most current maintenance options for the
product.

Subscription to security bulletins

Subscribe to My Notifications to receive notifications of security bulletins for WebSphere Application
Server. These notifications include important product support alerts.

Update Strategy

Refer to the Update Strategy for fix packs. Take special note of the recommended update path.

Security fixes

Refer to the security fixes for WebSphere Application Server traditional, WebSphere Application Server
Liberty, IBM HTTP Server, and Java.

Logstash collector
8.5.5.9

Liberty generates various events at runtime, such as log events, trace events, first failure data capture
(ffdc) events, access log events, and garbage collection events. It is helpful to consolidate events from all
servers so the events can be searched, filtered, and analyzed, particularly when you are managing many
servers, or when you are running servers on different platforms (for example on dedicated hardware and
in the cloud). It can also be helpful to store events on a separate server in cases where you use Liberty in
environments that lack persistent file storage for problem determination data. Liberty now provides the
Logstash collector feature to help you remotely consolidate events. You can avoid running the agents on
your Liberty server machine to collect your events using this feature. The collector captures in-flight
events, breaks them into fields, and securely forwards the events to the configured Logstash server.

Chapter 12. Troubleshooting tips 1457

http://www-01.ibm.com/software/support/einfo.html
http://www-01.ibm.com/support/docview.wss?uid=swg27036014
http://www-01.ibm.com/support/docview.wss?uid=swg21984533

Logstash collector

The Logstash collector feature (logstashCollector-1.0) sends events to a Logstash server that you
provide.

The logstash collector feature offers a flexible way to choose one or more of the following supported
sources of data that needs to be sent to logstash:
v message - messages log events
v trace - traces log events
v accesslog - Http access log events
v ffdc - FFDC log events
v garbageCollection - GarbageCollection events

Logstash can be used with the Elasticsearch search server and Kibana dashboard, all of which you
provide, set up, and manage, to give a consolidated view of logs or other events from across your
enterprise. Note that there are no separate processes or agents to be set up on the Liberty server machine
when using the Logstash collector to forward events.

Event structure

The collectors send each event as a set of field name-value pairs. Each different type of event has its own
set of fields. Knowing which fields each event has is useful when creating your own Kibana dashboards.

The following fields are common and present in all events:

type – a string that identifies the type of event

datetime – time at which the event occurred

hostName – host name of the server that was the source of the event

wlpUserDir – user directory of the server that was the source of the event, for example,
D:\wlp\usr

serverName – server name of the server that was the source of the event

sequence – sequence number of event (useful for sorting records with the same time stamp)

Figure 20. Logstash collector

1458 WebSphere Application Server Liberty Core 8.5.5

Besides the common fields, each of the event types also has its own unique fields:

Message events (type:"liberty_message")
severity – 1 letter severity indicator (F = Fatal, E = Error, W = Warning, A = Audit, I = Info, O =
SystemOut, R = SystemErr)

messageId – message ID in the log line, which can be used to find out specific types of errors, for
example, SRVE0250I

methodName – method name from log record

className – class name from log record

loggerName – logger name from log record

threadId – thread ID in the log line, for example, 00000015. Note that the thread ID is a string
and not a number

message – the message, starting with the message ID

Trace events (type:"liberty_trace")
severity – 1 letter severity indicator (1 = Fine, 2 = Finer, 3 = Finest, > = Entry, < = Exit)

methodName – method name from log record

className – class name from log record

loggerName – logger name from log record

threadId – thread ID in the log line, for example, 00000015. Note that the thread ID is a string
and not a number

message – the message

HTTP access log events (type:"liberty_accesslog")
uriPath – Path information for the requested URL. This does NOT contain the query parameters,
for example, /pushworksserver/ push/apps/tags

requestMethod – HTTP verb used, for example, GET

remoteHost – remote host IP address in the log line, for example, 127.0.0.1

userAgent – userAgent value in the request.

requestProtocol – Protocol information in the log line, for example, HTTP/1.1

queryString – string representing query string from the HTTP request, for example,
color=blue&size=large

bytesReceived – bytes received in the URL, for example, 94 in the sample 1

responseCode – HTTP response code, for example, 200

elapsedTime – time that is taken to serve the request

requestHost – request host IP address in the log line, for example, 127.0.0.1

requestPort – port number of the request

FFDC events (type:"liberty_ffdc")
className – the class that emitted the FFDC entry

exceptionName – the exception that was reported in the FFDC entry

probeID – the unique identifier of the FFDC point within the class

stackTrace – the stack trace of the FFDC incident

objectDetails – the incident details for the FFDC incident

threadId – the thread ID of the ffdc incident

Chapter 12. Troubleshooting tips 1459

Garbage Collection events (type:"liberty_gc")
heap – the total heap available

usedHeap – the amount of heap used

duration – the duration for which GarbageCollection was run

gcType – the type of garbage collection event (for example: Nursery, Global, etc.)

reason – the reason for garbage collection

Using the Logstash collector
8.5.5.9

Use the Logstash collector feature in Liberty to collect log and other events from your Liberty servers and
send them to a remote Logstash server. The collected events can be used for log analysis and
troubleshooting purposes.

Before you begin

The logstashCollector-1.0 feature was tested with Logstash V2.x, Elasticsearch V2.x, and Kibana V4.x. You
can use the logstashCollector-1.0 feature with a Logstash server that runs with any of the available output
plug-ins from Logstash. However, many users choose to use Logstash V2.x with Elasticsearch V2.x and
Kibana V4.x to provide a complete log consolidation and analysis facility. For more information, see
Elasticsearch.

Procedure
1. Set up Logstash V2.x by following the instructions from Elasticsearch.
2. Create or acquire certificate and key pair files for SSL for Logstash. The following example is the

command for openSSL that can be used for generating a certificate and key pair. Customize the
number of days the keys are valid as required.
openssl req -x509 -newkey rsa:2048 -keyout logstash.key -out logstash.crt -days 365 -nodes

3. For Logstash V2.x and Elasticsearch users, copy the sample into a liberty_logstash_template.json
file. See the repository for a sample Logstash index template. Customize the _ttl defaults as required
to indicate the number of milliseconds to keep records of each event type.

4. For Logstash V2.x and Elasticsearch users, copy the sample into a liberty_logstash.conf file. See the
repository for sample Logstash filters. Customize lumberjack ssl_certificate path, ssl_key path, and
port number as required. Customize Elasticsearch hosts and template path as required.

5. Complete the following steps for each of the Liberty servers that you want to collect events from:
a. Acquire or create a keystore for the Liberty server. To create a self-signed certificate use the

following command. Customize the server name, password, and subject as required.
d:\wlp\bin\securityUtility createSSLCertificate --server=myServerName --password="Liberty" --subject=CN=myHostname,OU=defaultServer,O=ibm,C=us

b. Import the logstash.crt file from step 2 into your server's key.jks file. Customize the
wlp_install_dir and server name as required. When prompted for a password, use the certificate
password from step 5a.
d:\java\bin\keytool -import -noprompt -alias logstash -file logstash.crt -keystore wlp_install_dir\usr\servers\myServerName\resources\security\key.jks

c. Run the following command to install the logstashcollector-1.0 feature:
d:\wlp\bin\installUtility install logstashcollector-1.0

d. Configure Logstash collector in the server.xml file in Liberty by adding the following content.
Customize the logstashCollector list of sources, host name, and port as required.
<featureManager>

<feature>logstashCollector-1.0</feature>
</featureManager>

<keyStore id="defaultKeyStore" password="Liberty" />

1460 WebSphere Application Server Liberty Core 8.5.5

https://www.elastic.co/downloads
https://github.com/WASdev/sample.logstash.collector
https://github.com/WASdev/sample.logstash.collector

<ssl id="mySSLConfig" trustStoreRef="defaultKeyStore" keyStoreRef="defaultKeyStore" />

<logstashCollector
source="message,trace,garbageCollection,ffdc,accessLog"
hostName="localhost"
port="5043"
sslRef="mySSLConfig"

/>

Note: Trace and access logs are usually high volume logs and require more network, CPU, and
storage resources to collect.

6. For users of Elasticsearch and Kibana V4.x, import the Kibana dashboard as follows:
a. Save the Kibana dashboard JSON to a file on your local file system. For Elasticsearch and Kibana

V4.x users, see the repository for a sample Kibana dashboard.
b. Import the dashboard into Kibana by clicking Settings > Objects > Import.. When prompted

provide the path to the file you saved in the previous step.
7. Save the dashboard using the save (disk) icon. Enter "Liberty" in the text box that is provided and

click the save icon near the text box. The next time that you visit Kibana from any browser you can
reload this dashboard using the load icon and clicking Liberty.

Results

Your Liberty servers are configured to send events to your Logstash server, and you can now view your
events in the Liberty dashboard using Kibana.

Logging and Trace
The product has a unified logging component that handles messages that are written by the product and
provides First Failure Data Capture (FFDC) services.

Additionally, the logging component captures messages that are written to System.out, System.err,
java.util.logging, and OSGi logging. The logging component unifies the handling of these messages
with other messages written by the product. The logging component is not capable of capturing messages
that are written directly by the JVM process, such as -verbose:gc output.

There are three primary log files for a server:
1. console.log - containing the redirected standard output and standard error from the JVM process.

This console output is intended for direct human consumption. The console output contains major
events and errors if you use the default consoleLogLevel configuration. The console output also
contains any messages that are written to the System.out and System.err streams if you use the
default copySystemStreams configuration. The console output always contains messages that are
written directly by the JVM process, such as -verbose:gc output. This file is created only if the server
start command is used, and its location can be altered only by using the LOG_DIR environment
variable. For more information, see “Administering Liberty from the command line” on page 949.

2. messages.log - containing all messages except trace messages that are written or captured by the
logging component. All messages that are written to this file contain additional information such as
the message time stamp and the ID of the thread that wrote the message. This file does not contain
messages that are written directly by the JVM process.

3. trace.log - containing all messages that are written or captured by the product. This file is created
only if you enable additional trace. This file does not contain messages that are written directly by the
JVM process.

Logging configuration

The logging component can be controlled through the server configuration. The primary location for the
logging configuration is in the server.xml file. Occasionally, you might need to configure trace to

Chapter 12. Troubleshooting tips 1461

https://github.com/WASdev/sample.logstash.collector

diagnose a problem that occurs before the server.xml file is processed. In this case, the equivalent
configuration properties can be specified in the bootstrap.properties file. If a configuration property is
specified in both the bootstrap.properties file and the server.xml file, the value in
bootstrap.properties is used until the server.xml file is processed. Then, the value in the server.xml
file is used. Avoid specifying different values for the same configuration property in both the
bootstrap.properties and the server.xml file.

Table 104. Logging properties for Liberty. Column 1 contains attributes that can be set in the server.xml file. Column
2 contains equivalent properties that can be used in the bootstrap.properties file. Column 3 provides a description
of each logging property.

Attribute Equivalent property Description

logDirectory com.ibm.ws.logging
.log.directory

This attribute sets the directory for all log files,
excluding the console.log file, but including
FFDC. By default, logDirectory is set to the
LOG_DIR environment variable. The default
LOG_DIR environment variable path is
WLP_OUTPUT_DIR/serverName/logs.
Avoid trouble: Use the LOG_DIR environment
variable or com.ibm.ws.logging.log.directory
property rather than the logDirectory attribute
to configure the directory in which you want all
the messages to be written. Otherwise, a few
messages are written initially in the logs
directory by default, and then the remaining
messages are written to the specified directory
based on your configuration. The logDirectory
attribute might be used to dynamically update
the logs to the specified directory while the
server is running.

maxFileSize com.ibm.ws.logging
.max.file.size

The maximum size (in MB) that a log file can
reach before it is rolled. The Liberty runtime
does only size-based log rolling. To disable this
attribute, set the value to 0. The maximum file
size is approximate. By default, the value is 20.
Note: maxFileSize does not apply to the
console.log file.

maxFiles com.ibm.ws.logging
.max.files

If an enforced maximum file size exists, this
setting is used to determine how many of each
of the log files are kept. This setting also applies
to the number of exception logs that summarize
exceptions that occurred on any particular day.
So if this number is 10, you might have 10
message logs, 10 trace logs, and 10 exception
summaries in the ffdc/ directory. By default,
the value is 2.
Note: maxFiles does not apply to the
console.log file.

consoleLogLevel com.ibm.ws.logging
.console.log.level

This filter controls the granularity of messages
that go to the console.log file. The valid values
are INFO, AUDIT, WARNING, ERROR, and
OFF. By default, the level is AUDIT.

Note: Distributed operating systems Before you
change this value, consider the information in
section “Unable to interact with the Liberty
server after modifying the console log level
settings” in the topic “Developer Tools known
issues and restrictions” on page 1488.

1462 WebSphere Application Server Liberty Core 8.5.5

Table 104. Logging properties for Liberty (continued). Column 1 contains attributes that can be set in the server.xml
file. Column 2 contains equivalent properties that can be used in the bootstrap.properties file. Column 3 provides a
description of each logging property.

Attribute Equivalent property Description

copySystemStreams com.ibm.ws.logging.
copy.system.streams

If true, messages that are written to the
System.out and System.err streams are copied
to console.log. If false, those messages are
written to configured logs such as messages.log
or trace.log, but they are not copied to
console.log. The default value is true.

messageFileName com.ibm.ws.logging
.message.file.name

The message log has a default name of
messages.log. This file always exists, and
contains INFO and other (AUDIT, WARNING,
ERROR, FAILURE) messages in addition to
System.out and System.err. This log also
contains time stamps and the issuing thread ID.
If the log file is rolled over, the names of earlier
log files have the format
messages_timestamp.log

suppressSensitiveTrace The server trace can expose sensitive data when
it traces untyped data, such as bytes received
over a network connection. This attribute, when
set to true, prevents potentially sensitive
information from being exposed in log and trace
files. The default value is false.

traceFileName com.ibm.ws.logging
.trace.file.name

The trace.log file is only created if additional
or detailed trace is enabled. stdout is recognized
as a special value, and causes trace to be
directed to the original standard out stream.

traceSpecification com.ibm.ws.logging
.trace.specification

The trace string is used to selectively enable
trace. The default is *=info.

traceFormat com.ibm.ws.logging
.trace.format

This attribute controls the format of the trace
log. The default format for Liberty is
ENHANCED. You can also use BASIC and
ADVANCED formats as in the traditional.

8.5.5.4 hideMessage com.ibm.ws.logging.hideMessage You can use the hideMessage attribute to
configure the messages that you want to hide
from the console.log and message.log files. If
the messages are configured to be hidden, then
they are redirected to the trace.log file.

Note: Distributed operating systems Before you
use this attribute, consider the information that
is given under the Unable to recognize the start of
the server when the hideMessage attribute is used to
suppress the messages section in the “Developer
Tools known issues and restrictions” on page
1488 topic.

You can set logging properties in the server configuration file by selecting Logging and Tracing in the
Server Configuration view in the developer tools, or by adding a logging element to the server
configuration file as follows:
<logging traceSpecification="*=audit:com.myco.mypackage.*=finest"/>

The format of the log detail level specification is:

Chapter 12. Troubleshooting tips 1463

<component> = <level>

where <component> is the component for which to set a log detail level, and <level> is one of the valid
logger levels (off, fatal, severe, warning, audit, info, config, detail, fine, finer, finest, all). Separate multiple
log detail level specifications with colons (:).

Attention: For a given logger, the level is determined by the most specific trace specification that
applies to that logger.

Components correspond to Java packages and classes, or to collections of Java packages. Use an asterisk
(*) as a wildcard to indicate components that include all the classes in all the packages that are contained
by the specified component. For example:

* Specifies all traceable code that is running in the application server, including the product system
code and customer code.

com.ibm.ws.*
Specifies all classes with the package name beginning with com.ibm.ws.

com.ibm.ws.classloader.JarClassLoader
Specifies the JarClassLoader class only.

Table 105. Valid logging levels. The following table lists the valid levels for application servers at WebSphere
Application Server Version 6 and later.

Version 6 and later logging level Content / Significance

off Logging is turned off.

fatal Task cannot continue and component, application, and
server cannot function.

severe Task cannot continue but component, application, and
server can still function. This level can also indicate an
impending unrecoverable error.

warning Potential error or impending error. This level can also
indicate a progressive failure (for example, the potential
leaking of resources).

audit Significant event that affects server state or resources

info General information that outlines overall task progress

config Configuration change or status

detail General information that details subtask progress

fine Trace information - General trace + method entry, exit,
and return values

finer Trace information - Detailed trace

finest Trace information - A more detailed trace that includes
all the detail that is needed to debug problems

all All events are logged. If you create custom levels, all
includes those levels, and can provide a more detailed
trace than finest.

The console.log file does not have the same level of management as other log files. The only property
that you can change is consoleLogLevel. If you are concerned about the increasing size of the
console.log file, you can disable the console.log file and use the message log file instead. The same
data, in a different format, is written to the message log file, and you can control the size and number of
message log files by using the maxFileSize and maxFiles attributes. For example, the following
bootstrap.properties file results in an empty console.log file and a maximum of three rolling 1 MB

1464 WebSphere Application Server Liberty Core 8.5.5

loggingMessages.log files. However, messages from the underlying JVM can still be written to the
console.log. Settings in the bootstrap.properties file take effect before the message log file is created, so
the message log file is initially created as loggingMessages.log and not the default messages.log.

com.ibm.ws.logging.max.file.size=1
com.ibm.ws.logging.max.files=3
com.ibm.ws.logging.console.log.level=OFF
com.ibm.ws.logging.message.file.name=loggingMessages.log

The console.log file is reset when the server is restarted.

Note: On all platforms, logs are written in the default system encoding.

v Windows On Windows systems, there are two types of encoding: OEM code page, which is used for
console output, and ANSI code page, which is used to read and write files. The console.log file uses
the OEM code page, and all other logs use the ANSI code page.

v Distributed operating systems On all other platforms, all log files use the default encoding.

Note: For general help on understanding message formats, see Message log interpretation.

Viewing trace and message log files by using developer tools
Linux Windows 8.5.5.7

You can view trace and message log files for either local or remote servers by using WebSphere
Developer Tools.

Before you begin
v To view the trace file, you must enable tracing by specifying the traceformat and tracespecification

settings in the server.xml file or the bootstrap.properties file. For more information about enabling
tracing, see Liberty: Logging and Trace.

v You can change the default log file names from messages.log and trace.log, and the default directory
name from WLP_OUTPUT_DIR/serverName/logs by changing any of the configuration files.
– Configuration files include server.xml, bootstrap.properties, and server.properties.

v Actions for local servers:
– Ensure that the log file is in the log directory that you specified. Otherwise, the menu actions for

the local server are disabled.
– If you change the bootstrap.properties file or the server.env file, you must restart the server for

changes to take effect. Menu actions are temporarily disabled until the server is restarted.
– If the same configuration setting is specified in more than one configuration file, the setting in the

server.xml file overrides the other values.
v Actions for remote servers:

– Ensure that the server is running. If it is not running, menu actions are not displayed.
– If you change the default location of a log file, include remote access by adding either a ReadDir or a

WriteDir configuration to your server.xml file to indicate the log location. The following example
shows how to add remote access.

<logging logDirectory="${server.output.dir}/log_a" maxFiles="10" traceFormat="BASIC" traceSpecification="com.ibm.ws.webcontainer*=all:com.ibm.wsspi.webcontainer*=all:HTTPChannel=all"/>
<remoteFileAccess>

<writeDir >${wlp.user.dir}</writeDir>
<writeDir>${server.config.dir}</writeDir>
<writeDir>${server.output.dir}</writeDir>
<writeDir>${server.output.dir}/log_a</writeDir>

</remoteFileAccess>

Chapter 12. Troubleshooting tips 1465

https://www.ibm.com/support/knowledgecenter/was_beta/com.ibm.websphere.base.doc/ae/rtrb_readmsglogs.html
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=phil&product=was-base-dist&topic=rwlp_logging

Procedure
1. To view a list of servers, select Window > Show View > Servers.
2. Right-click a server.
v To view the trace log file, select Open Log Files > Trace File from the menu.
v To view the messages log file, select Open Log Files > Message Log File from the menu.
For remote servers, downloading log files can take several seconds depending on the size of the log
file.

Results

The log file that you selected is displayed in the default editor. The following example shows records in a
message log file.
[3/3/11 23:01:30:147 EST] 0000000f ApplicationMg Z WSVR0221I: Application started: DefaultApplication

In this example, [3/3/11 23:01:30:147 EST] is the time stamp, 0000000f is the thread ID, ApplicationMg is the
logger, Z is the level, WSVR0221I is the message ID, and Application started: DefaultApplication is the
message.

Timed operations and JDBC calls
Timed operations generate a logged warning when JDBC calls in the application server are operating
more slowly or quickly than expected.

Overview

When enabled, the timed operation feature tracks the duration of JDBC operations running in the
application server. In cases where operations take more or less time to execute than expected, the timed
operation feature logs a warning. Periodically, the timed operation feature will create a report, in the
application server log, detailing which operations took longest to execute. If you run the server dump
command, the timed operation feature will generate a report containing information about all operations
it has tracked. You can use the information listed in these reports to decide if anything is running slower
or faster than you expect.

Periodically, the system generates a report to the logs that contains the ten longest JDBC timed
operations. The frequency and enablement of this report is configurable in the server.xml file, with a
default of once per day (24 hours).

To enable timed operations, add the timedOperations-1.0 feature to the server.xml file.

You can disable the generation of the report to the logs, or change the frequency of the report, for
example to once every 12 hours, using the timedOperation element as shown in the following example:
<timedOperation enableReport="false" reportFrequency="12" />

You can also use the maxNumberTimedOperations attribute to log a warning when the total number of
timed operations reaches the value specified by this attribute. The number of timed operations is
monitored and useful to know since each timed operation is allocated memory from the heap, and if you
find that the number of timed operations is excessive, you can disable the timed operations feature. You
can use the following example to configure the maxNumberTimedOperations attribute:
<timedOperation enableReport="false" reportFrequency="12" maxNumberTimedOperations="10000"/>

This example results in a warning message in the log as follows when the number of timed operations
exceeds 10000:

1466 WebSphere Application Server Liberty Core 8.5.5

[4/18/13 23:01:37:316 EDT] 0000002c com.ibm.wsspi.timedoperations.TimedOperationService W TRAS0094I:
The total number of timed operations is 10000, which exceeds the configured maximum number of 10000.
You can also find the number of timed operations in the report that is periodically generated to the logs.
If you find that the number of timed operations is excessive, you can disable the timed operations feature.

If you set the value of the com.ibm.timedOperations.autoCleanup WebSphere environment
variable to true, the server automatically limits the number of tracked timed operations to the value
specified in the <maxNumberTimedOperations> attribute. A warning is logged when the total number of
timed operations reaches the maximum value specified. To limit the number of tracked timed operations,
when a new timed operation is required to be tracked, the least recently used timed operation record is
deleted. When the number of timed operations that are tracked reaches the specified maximum value, a
warning message is displayed as follows:
TRAS0095I: The total number of timed operations has reached the configured maximum of 10000. As new timed operations are created the least recently used timed operations will be removed to maintain the total number of tracked timed operations at this level.

You can also use the server dump command to get a full report of all timed operations in the
messages.log file, grouped by type, and sorted within each group by average of actual duration.

The following example shows a sample logged message:
[3/14/13 14:01:25:960 CDT] 00000025 TimedOperatio W TRAS0080W: Operation websphere.datasource.execute:
jdbc/exampleDS:insert into cities values (’myHomeCity’, 106769, ’myHomeCountry’) took 1.541 ms to complete,
which was longer than the expected duration of 0.213 ms based on past observations.

The following example shows a sample automatically generated report in the log:
[12/13/12 7:42:29:509 CST] 0000001d com.ibm.wsspi.timedoperations.TimedOperationService I TRAS0092I:
The following operations took the longest time to run since the last report has been generated:
Operation websphere.datasource.execute:jdbc/exampleDS:insert into cities values (’myHomeCity’,
106769, ’myHomeCounty’) took 194ms to complete
Operation websphere.datasource.execute:jdbc/exampleDS:select county from cities where name=
’myHomeCity’ took 187ms to complete
Operation websphere.datasource.execute:jdbc/exampleDS:drop table cities took 182ms to
complete\Operation websphere.datasource.execute:jdbc/exampleDS:insert into cities values
(’myHomeCity’, 106769, ’myHomeCounty’) took 151ms to complete

For the full timed operation configuration reference, see the timedOperation element in the following
topic: **** MISSING FILE ****

Event Logging

8.5.5.6

As part of the monitoring and diagnostic capabilities, the WebSphere Application Server Liberty generates
events at various components of Java Platform, Enterprise Edition to track the requests. The
eventLogging-1.0 feature logs such events when the application requests are running. Using this feature,
the user can track the requests that are running in the WebSphere Application Server Liberty. Each
request is associated with a unique correlator called the request ID and the context information that helps
the user to understand the request-specific data.

The event logging feature is controlled through the server configuration. The feature is configured in the
server.xml file.

The following sample log shows the end-to-end event logs for the AAY6TalVDTO_AAAAAAAAAAK
request ID and TradeWeb context:
[12/15/14 18:24:29:528 IST] 0000002e EventLogging I BEGIN requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.servlet.service # contextInfo=TradeWeb | TradeScenarioServlet
[12/15/14 18:24:29:531 IST] 0000002e EventLogging I BEGIN requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.servlet.service # contextInfo=TradeWeb | TradeAppServlet
[12/15/14 18:24:29:532 IST] 0000002e EventLogging I BEGIN requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.servlet.service # contextInfo=TradeWeb | /quote.jsp
[12/15/14 18:24:29:533 IST] 0000002e EventLogging I BEGIN requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.servlet.service # contextInfo=TradeWeb | /displayQuote.jsp
[12/15/14 18:24:29:534 IST] 0000002e EventLogging I BEGIN requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.datasource.psExecuteQuery # contextInfo=jdbc/TradeDataSource | select * from quoteejb q where q.symbol=?
[12/15/14 18:24:29:547 IST] 0000002e EventLogging I END requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.datasource.psExecuteQuery # contextInfo=jdbc/TradeDataSource | select * from quoteejb q where q.symbol=? # duration=12.537ms
[12/15/14 18:24:29:556 IST] 0000002e EventLogging I END requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.servlet.service # contextInfo=TradeWeb | /displayQuote.jsp # duration=22.171ms

Chapter 12. Troubleshooting tips 1467

[12/15/14 18:24:29:671 IST] 0000002e EventLogging I BEGIN requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.servlet.service # contextInfo=TradeWeb | /displayQuote.jsp
[12/15/14 18:24:29:672 IST] 0000002e EventLogging I BEGIN requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.datasource.psExecuteQuery # contextInfo=jdbc/TradeDataSource | select * from quoteejb q where q.symbol=?
[12/15/14 18:24:29:677 IST] 0000002e EventLogging I END requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.datasource.psExecuteQuery # contextInfo=jdbc/TradeDataSource | select * from quoteejb q where q.symbol=? # duration=4.968ms
[12/15/14 18:24:29:684 IST] 0000002e EventLogging I END requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.servlet.service # contextInfo=TradeWeb | /displayQuote.jsp # duration=12.569ms
[12/15/14 18:24:29:685 IST] 0000002e EventLogging I END requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.servlet.service # contextInfo=TradeWeb | /quote.jsp # duration=152.752ms
[12/15/14 18:24:29:686 IST] 0000002e EventLogging I END requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.servlet.service # contextInfo=TradeWeb | TradeAppServlet # duration=154.616ms
[12/15/14 18:24:29:687 IST] 0000002e EventLogging I END requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.servlet.service # contextInfo=TradeWeb | TradeScenarioServlet # duration=158.283ms

The request begins at the BEGIN websphere.servlet.service "contextInfo=TradeWeb |
TradeScenarioServlet" event (refer to the first line in the sample code) and ends at END
websphere.servlet.service "contextInfo=TradeWeb | TradeScenarioServlet" (refer to the last line in the
sample code). The total time that is taken by this request is also displayed at the end (which is 158.283
ms in the sample code).

You can look at the child requests by looking at the BEGIN and END of the main request. You can also find
the time that is taken by each of the child request.

For best performance, you might use binary logging when event logging is enabled. The eventType,
contextInfo, and requestID attributes from the event log entries are stored as log record extensions. You
can use those log record extensions to filter the logs with the binaryLog command.

Parsing the event log entries in the messages.log file

The event logs capture the information of the events in the following format:
[Log mode] [Request Identifier] # [Event Type] # [Context Information] # [Duration] (optional)

where

- Log mode indicates whether the log was recorded at the entry to the event or the exit from the event. BEGIN refers to the entry to the event and END refers to the exit from the event.
- Request identifier is a unique string that is assigned to each request. This can be used for filtering events that belong to a particular request. Example: requestId=AAY6TalVDTO_AAAAAAAAAAK
- Event type provides information about the event source and can be any of the supported event types as given in the following table. The event type can be used for filtering events of a specific type. Example: eventType=websphere.servlet.service
- Context information of the event provides details relevant to the event type. The information varies depending on the event type. Context information can contain multiple sections and are separated by | (space|space). Examples of the context information for various event types are given in the following table.
- Duration indicates the time that is taken by the event. The duration appears only in the exit event entries. Example: duration=158.283ms

Except the log mode, which is separated by a space, all other log attributes are separated by
#(space#space). For example,
[12/15/14 18:24:29:687 IST] 0000002e EventLogging I END requestID=AAY6TalVDTO_AAAAAAAAAAK # eventType=websphere.servlet.service # contextInfo=TradeWeb | TradeScenarioServlet # duration=158.283ms

The following table lists the event types that are supported by event logging:

Table 106. Supported event types along with the relevant context information

Component Event types Context information Example

Servlet websphere.servlet.destroy
websphere.servlet.service

[Application Name] | [Servlet Name] | [Path Information] | [Query String]contextInfo=TradeWeb | /displayQuote.jsp

Session websphere.session.dbSessionDestroyedByTimeout,
websphere.session.dbSessionDestroyed
websphere.session.sessionAccessed
websphere.session.sessionCreated
websphere.session.sessionDestroyedByTimeout
websphere.session.sessionDestroyed
websphere.session.sessionLiveCountDec
websphere.session.sessionLiveCountInc
websphere.session.sessionReleased

websphere.session.getAttribute
websphere.session.setAttribute

[Session Id]

[Session Id] | [Session Attribute Name]

contextInfo=EuitabHZUOD7J2u01HDdAG0

contextInfo=EuitabHZUOD7J2u01HDdAG0 | userID

1468 WebSphere Application Server Liberty Core 8.5.5

Table 106. Supported event types along with the relevant context information (continued)

Component Event types Context information Example

JDBC websphere.datasource.execute
websphere.datasource.executeQuery
websphere.datasource.executeUpdate
websphere.datasource.psExecute
websphere.datasource.psExecuteQuery
websphere.datasource.psExecuteUpdate
websphere.datasource.rsCancelRowUpdates
websphere.datasource.rsDeleteRow
websphere.datasource.rsInsertRow
websphere.datasource.rsUpdateRow

[Jndi Name Of Data Source] | [SQL Query]contextInfo=jdbc/TradeDataSource | select * from quoteejb q where q.symbol=?

Slow and hung request detection

8.5.5.6

The requestTiming-1.0 feature provides diagnostic information when the duration of any request exceeds
the configured threshold.

The request timing feature can track the duration of every request that is coming into the system. You can
configure the feature to watch for slow and hung requests.
v “Slow request detection”
v “Hung request detection” on page 1470

Slow request detection

When a request has been running for longer than configured, a warning message is written in the
messages log file. Details about the request and events that made up the request are captured.

The following sample shows the log message for a request that crossed the slow request threshold
(default is 10 seconds):
[12/1/14 11:58:09:629 IST] 0000001d com.ibm.ws.request.timing.SlowRequestTimer W TRAS0112W: Request AABjnS+lIn0_AAAAAAAAAAb has been running on thread 00000021 for at least 10003.571ms. The following stack trace shows what this thread is currently running.

at java.util.HashMap.getEntry(HashMap.java:516)
at java.util.HashMap.get(HashMap.java:504)
at org.apache.derby.iapi.store.access.BackingStoreHashtable.get(Unknown Source)
at org.apache.derby.impl.sql.execute.HashScanResultSet.getNextRowCore(Unknown Source)
at org.apache.derby.impl.sql.execute.NestedLoopJoinResultSet.getNextRowCore(Unknown Source)
at org.apache.derby.impl.sql.execute.ProjectRestrictResultSet.getNextRowCore(Unknown Source)
at org.apache.derby.impl.sql.execute.DMLWriteResultSet.getNextRowCore(Unknown Source)
at org.apache.derby.impl.sql.execute.DeleteResultSet.setup(Unknown Source)
at org.apache.derby.impl.sql.execute.DeleteResultSet.open(Unknown Source)
at org.apache.derby.impl.sql.GenericPreparedStatement.executeStmt(Unknown Source)
at org.apache.derby.impl.sql.GenericPreparedStatement.execute(Unknown Source)
at org.apache.derby.impl.jdbc.EmbedStatement.executeStatement(Unknown Source)
at org.apache.derby.impl.jdbc.EmbedPreparedStatement.executeStatement(Unknown Source)
at org.apache.derby.impl.jdbc.EmbedPreparedStatement.executeUpdate(Unknown Source)
at com.ibm.ws.rsadapter.jdbc.WSJdbcPreparedStatement.executeUpdate(WSJdbcPreparedStatement.java:626)
at com.ibm.websphere.samples.trade.direct.TradeDirect.resetTrade(TradeDirect.java:1832)
at com.ibm.websphere.samples.trade.web.TradeConfigServlet.doResetTrade(TradeConfigServlet.java:65)
at com.ibm.websphere.samples.trade.web.TradeConfigServlet.service(TradeConfigServlet.java:348)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:668)
at com.ibm.ws.webcontainer.servlet.ServletWrapper.service(ServletWrapper.java:1275)
....
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1121)

Chapter 12. Troubleshooting tips 1469

at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:614)
at java.lang.Thread.run(Thread.java:769)

Duration Operation
10007.571ms + websphere.servlet.service | TradeWeb | TradeConfigServlet?action=resetTrade

3.923ms websphere.datasource.psExecuteUpdate | jdbc/TradeDataSource | delete from holdingejb where holdingejb.account_accountid is null
0.853ms websphere.datasource.psExecuteUpdate | jdbc/TradeDataSource | delete from accountprofileejb where userid like ’ru:%’

5271.341ms + websphere.datasource.psExecuteUpdate | jdbc/TradeDataSource | delete from orderejb where account_accountid in (select accountid from accountejb a where a.profile_useri like ’ru:%’)

The request continues to be monitored, and a further warning is logged if the request is running beyond
another 10 seconds. The log messages are in the following format:
TRAS0112W: Request < (Request ID)> has been running on thread <THREADID> for at least <DURATION>. The following stack trace shows what this thread is currently running.
<STACK TRACE>
<DURATION AND OPERATIONS Table>

REQUEST ID
This same ID can be used to search for log and trace messages corresponding to the request. In
particular, if you use binary logging, you can search for log and trace entries with the same
requestID extension by using the binary log command.

STACK TRACE
Indicates the method that is running. In the previous sample, you can see a stack trace of the
current request after TRAS0112W line.

DURATION AND OPERATIONS Table
After the stack trace, you can find the tabular format of the request that shows the duration and
operation (also referred to as the event). The Duration column indicates the time that is taken by
the corresponding operation of the request. The plus sign (+) indicates events within the request
that are still running. The next line shows the duration without +, which indicates that the
corresponding operation has completed in the specified duration. Operation shows the EVENT
TYPE and CONTEXT INFO (which is optional) for that operation. For more information about event
types and context information, see “Event Logging” on page 1467.

By analyzing the messages, you can figure out why the request is slow. However, it might be difficult to
determine whether the request is stuck at that point or is still running slowly. Hence you can see three
messages that are logged for any slow request at the interval of specified <slowRequestThreshold>. Using
the three different stack trace and request data, you get a better insight into the issue. After the third
warning, no further warnings are logged about the request unless the duration of the request crosses the
hung request detection threshold.

Hung request detection

If the request exceeds the default hungRequestThreshold or the configured threshold value, a warning
message is written in the messages log file along with the details about the request. Details about the
request and events that made up the request are captured. In case of hung request detection, a series of
three thread dumps (javacores) is taken, with 1 minute delay between them. The following log message
sample shows the log messages for a request that crossed the hung request detection threshold. The
default duration value is 10 min. The value that is configured in the following example is 4 min.

[WARNING] TRAS0114W: Request AAA7WlpP7l7_AAAAAAAAAAA has been running on thread
00000021 for at least 240001.015ms. The following table shows the events that have run during this
request.
Duration Operation
240001.754ms + websphere.servlet.service | TestWebApp | TestServlet?sleepTime=480000

0.095ms websphere.session.setAttribute | mCzBMyzMvAEnjMJJx9zQYIw | userID
0.007ms websphere.session.setAttribute | mCzBMyzMvAEnjMJJx9zQYIw | visitCount

1470 WebSphere Application Server Liberty Core 8.5.5

If a request gets completed later, which was detected to be hanging initially, a message similar to the
following example is logged: TRAS0115W: Request AAA7WlpP7l7_AAAAAAAAAAA, which was
previously detected to be hung, has completed after 479999.681 s.

Note: When a request is detected to be hanging, a series of three thread dumps is initiated. After the
completion of the three thread dumps, further thread dumps are created only if the new requests are
detected to be hanging.

Binary logging
Binary logging is a high performance log and trace facility based on the High Performance Extensible
Logging (HPEL) technology in WebSphere Application Server traditional.

Overview

Note: You must enable the binary logging facility to use it.

Binary logging provides a convenient mechanism for storing and accessing log, trace, System.err, and
System.out information produced by the application server or your applications. It is an alternative to the
default log and trace facility, which provides the JVM logs and diagnostic trace files commonly named
messages.log and trace.log.

Log and trace storage

Binary logging provides a log data repository and a trace data repository. See the following figure to
understand how applications and the application server store log and trace information.

Chapter 12. Troubleshooting tips 1471

Log data

repository

Trace data

repository

Text log

trace.log

console.log

messages.log

Application code Application code

com.xyz.abc.def

(logger)

Log/Trace

Service

Log/Trace

data handler

Log/Trace

service

Log/Trace

handler

com.xyz.abc.ghi

(logger)

root

(logger)

Tr SPI

com.xyz.abc

(logger)

Legend

default logging framework

HPEL logging framework

com.ibm.ws

(logger)

Service broker

HPEL

Default

WebSphere Application Server

Applications

Log data repository

The log data repository is a storage facility for log records. Log data is typically intended to be
reviewed by administrators. This includes any information applications or the server write to
System.out, System.err, OSGi logging service at level LOG_INFO or higher (including
LOG_INFO, LOG_WARNING, and LOG_ERROR), or java.util.logging at level Detail or higher
(including Detail, Config, Info, Audit, Warning, Severe, Fatal, and any custom levels at level
Detail or higher).

Trace data repository

The trace data repository is a storage facility for trace records. Trace data is typically intended for
use by application programmers or by the WebSphere Application Server support team. This
includes any information applications or the server write to the OSGi logging service at level
LOG_DEBUG or java.util.logging at levels below level Detail (including Fine, Finer, Finest, and
any custom levels below level Detail).

1472 WebSphere Application Server Liberty Core 8.5.5

Log and trace performance

Binary logging has been designed and tested to significantly outperform the default log and trace facility.
One result is that the application server can run with trace enabled while causing less impact to
performance than tracing the same components using the default log and trace framework. Another result
is that applications that frequently write to the logs can run faster when using binary logging.

Log and trace events are each stored in only one place

Log events, System.out, and System.err are stored in the log data repository. Trace events are
stored in the trace data repository. Storing each type of event in only one place ensures that
performance is not wasted on redundant data storage.

Note: The console log should be disabled in cases where logging performance is important. Any
content written to the console log will already be stored in the log data repository.

Application server

Trace data
repository

Text
log

(optional)

Log data
repository

System.out,
System.err,

,
trace data
log data

trace data

System.out,
System.err,
log data

Data is not formatted unless it is needed

Formatting data for a user to read uses processor time. Rather than format log event and trace
event data at run time, log and trace data are stored more rapidly in a proprietary binary
representation. This improves the performance of the log and trace facility. By deferring log and
trace formatting until the binaryLog command is run, sections of the log or trace that are never
viewed are never formatted.

Log and trace data are buffered before being written to disk

Writing large blocks of data to a disk is more efficient than writing the same amount of data in
small blocks. The binary logging facility provides the capability to buffer log and trace data
before writing it to disk. By default, log and trace data are stored in an 8 KB buffer before being
written to disk. If the buffer is filled within 10 seconds, the buffer is written to disk. If the buffer
is not filled within that time it is automatically written to disk to ensure that the logs have the
most current information.

Chapter 12. Troubleshooting tips 1473

Administration of log and trace

Binary logging has been designed to be easy to configure and understand. For example, administrators
can easily configure how much disk space to dedicate to logs or trace, or how long to retain log and trace
records, and leave the management of log and trace content up to the server. As another example all log,
trace, System.out, and System.err content can be accessed using one easy-to-use command (binaryLog),
avoiding any possible confusion over which file to access for certain content.

Reading from the log data and trace data repositories

The log data and trace data repositories are stored in a WebSphere Application Server proprietary
format and cannot be read using text file editors such as Notepad or VI. You can copy the log
data and trace data repositories in to a plain text format using the binaryLog command.

Log Data

Repository

Trace Data

Repository

binaryLog

text log

binaryLog command

binaryLog is an easy-to-use command-line tool provided for users to work with the log data and
trace data repositories. binaryLog provides filtering and formatting options that make finding
important content in the log data and trace data repositories easy. For example, a user might filter
any errors or warnings, then filter all log and trace entries that occurred within 10 seconds of a
key error message on the same thread.

Filtering using log and trace record extension content

The binary logging facility provides the capability for developers to add custom extensions to log
and trace records using a log record context API
(com.ibm.websphere.logging.hpel.LogRecordContext). You can use the binaryLog command-line
tool to filter records based on the content of log and trace record extensions.

Development resources

Binary logging has been designed to make working with log and trace content more flexible and effective
than the default logging facility. Log and trace content can be easily filtered to show only the records that
are of interest. You can use the command line (see the description of the binaryLog command), or
developers can create powerful log handling programs using the HPEL API.

1474 WebSphere Application Server Liberty Core 8.5.5

com.ibm.websphere.

logging.hpel API

Log Data

Repository

Trace Data

Repository

Reading the log data and trace data

An API has been provided to make it easy for developers to develop tools to consume content
from the binary log and trace repositories. For example, a developer might write a Java program
to search the log and trace content to find any messages with message IDs that match a known
list of important message IDs. This API is in the com.ibm.websphere.logging.hpel package. Refer
to the API documentation for details on the HPEL log reading API.

Log and trace record extensibility

Developers can add custom extensions to log and trace records through a log record context API
(com.ibm.websphere.logging.hpel.LogRecordContext). When binary logging stores log and trace
records, it includes any extensions present in the log record context on the same thread. For
example, a developer might write a servlet filter to add important HTTP request parameters to
the log record context. While that servlet runs, HPEL API adds those extensions to any log and
trace records created on the same thread.

As with other log and trace record fields, developers can access the record extensions using the
HPEL API. This is useful when writing tools to read from log and trace repositories. Developers
can also make use of the log record context API to access extensions in custom log handlers,
filters, and formatters at run time.

BinaryLog command options
Use the binaryLog command to view or copy the contents of a binary logging repository, or list the
available server process instances in the repository. The binaryLog command is equivalent to the
logViewer command in the profile bin directory of the traditional application server.

The binary log and trace facility writes to a repository in a binary format. You can view, query and filter
the repository using the binaryLog command. The binaryLog command provides options for quickly
converting repository contents into a text file in various formats, such as basic and advanced formats. The
command also provides options to make getting the data you need from the logs easier; for example,
allowing you to filter what log records you want by level, logger name, or date and time.

Syntax

The command syntax is as follows:
binaryLog action {serverName | repositoryPath} [options]

The value of options is different based on the value of action.

Parameters

The following actions are available for the binaryLog command:

Chapter 12. Troubleshooting tips 1475

view
Read a repository, optionally filter it, and create a version that users can read.

The command syntax is as follows:
binaryLog view {serverName | repositoryPath} [options]

serverName

Specify the name of a Liberty server with a repository to read from.

repositoryPath

Specify the path to a repository to read from. This is typically the directory that contains both the
logdata and tracedata directories.

Note: If neither a serverName nor a repositoryPath is specified on the command line, the task is
performed against the default server instance, defaultServer, if it exists.

Filter options:

All filters are optional. When multiple filters are used, they are logically ANDed together.
v --minDate=value

Filter based on minimum record creation date. Value must be specified as either a date (for
example --minDate="2/20/13") or a date and time (for example --minDate="2/20/13 16:47:21:445
EST").

v --maxDate=value

Filter based on maximum record creation date. Value must be specified as either a date (for
example --maxDate="2/20/13") or a date and time (for example --maxDate="2/20/13 16:47:21:445
EST").

v --minLevel=value

Filter based on minimum level. Value must be one of FINEST | FINER | FINE | DETAIL | CONFIG |
INFO | AUDIT | WARNING | SEVERE | FATAL.

v --maxLevel=value

Filter based on maximum level. Value must be one of the following: FINEST | FINER | FINE |
DETAIL | CONFIG | INFO | AUDIT | WARNING | SEVERE | FATAL.

v --includeLogger=value[,value]*
Include records with specified logger name. Value may include * or ? as a wildcard.

v --includeMessage=value

Filter based on message name. Value may include * or ? as a wildcard.
v --includeThread=value

Include records with specified thread id. Values must be in hexadecimal (for example,
--includeThread=2a).

v --includeExtension=name=value[,name=value]*
Include records with specified extension name and value. Value may include * or ? as a wildcard.
To include a comma in the value, you must use "\,"

v --includeInstance=value

Include records from the specified server instance. Value must either be "latest" or be a valid
instance ID. Run this command using the listInstances action to see a list of valid instance IDs.

Monitor option:

--monitor
Continuously monitor the repository and output new content as it is generated.
Output options:
v --format={basic | advanced | CBE-1.0.1}

1476 WebSphere Application Server Liberty Core 8.5.5

Specify the output format to use. "basic" is the default format.
v --encoding=value

Specify the character encoding to use for output.

copy
Read a repository, optionally filter it, and write the contents to a new repository.

The command syntax is as follows:
binaryLog copy {serverName | repositoryPath} targetPath [options]

serverName
Specify the name of a Liberty server with a repository to read from.

repositoryPath
Specify the path to a repository to read from. This is typically the directory that contains the logdata
and tracedata directories.

targetPath
Specify the path at which to create a new repository. The targetPath must be specified.

Note: Either serverName or repositoryPath must be specified, as well as the targetPath.

Filter options:

All filters are optional. When multiple filters are used, they are logically ANDed together.
v --minDate=value

Filter based on minimum record creation date. Value must be specified as either a date (for
example --minDate="2/20/13") or a date and time (for example --minDate="2/20/13 16:52:32:808
EST").

v --maxDate=value

Filter based on maximum record creation date. Value must be specified as either a date (for
example --maxDate="2/20/13") or a date and time (for example --maxDate="2/20/13 16:52:32:808
EST").

v --minLevel=value

Filter based on minimum level. Value must be one of the following: FINEST | FINER | FINE |
DETAIL | CONFIG | INFO | AUDIT | WARNING | SEVERE | FATAL.

v --maxLevel=value

Filter based on maximum level. Value must be one of the following: FINEST | FINER | FINE |
DETAIL | CONFIG | INFO | AUDIT | WARNING | SEVERE | FATAL.

v --includeLogger=value[,value]*
Include records with specified logger name. Value may include * or ? as a wildcard.

v --excludeLogger=value[,value]*
Exclude records with specified logger name. Value may include * or ? as a wildcard.

v --includeMessage=value

Filter based on message name. Value may include * or ? as a wildcard.
v --includeThread=value

Include records with specified thread id. Values must be in hexadecimal (for example,
--includeThread=2a).

v --includeExtension=name=value[,name=value]*
Include records with specified extension name and value. Value may include * or ? as a wildcard.
To include a comma in the value, you must use "\,"

v --includeInstance=value

Include records from the specified server instance. Value must either be "latest" or be a valid
instance ID. Run this command using the listInstances action to see a list of valid instance IDs.

Chapter 12. Troubleshooting tips 1477

listInstances
List the IDs of server instances in the repository. A server instance is the collection of all log/trace
records written from the time a server is started until it is stopped. Server instance IDs can be used
with the --includeInstance option of the binaryLog view action.

The command syntax is as follows:
binaryLog listInstances {serverName | repositoryPath}

serverName
Specify the name of a Liberty server with a repository to read from.

repositoryPath
Specify the path to a repository to read from. This is typically the directory that contains the logdata
and tracedata directories.

Note: If serverName or repositoryPath are not specified on the command line, the task is performed
against the default server instance, defaultServer, if it exists.

Be aware of binaryLog filtering optimizations. The binaryLog tool is able to filter log and trace data
most efficiently when used with the following filter options:
v --minDate
v --maxDate
v --includeThread
v --minLevel
v --maxLevel

Example usage

See the following examples of binaryLog commands.
v Display all events in the defaultServer repository between July 19th, 2013 and August 2nd, 2013.

binaryLog view --minDate=07/19/13 --maxDate=08/02/13

v Display new events from server myServer, whose specified level is WARNING or higher, using the
advanced format as the server writes them to the log repository.
binaryLog view myServer --monitor --minLevel=WARNING --format=advanced

v Write log messages from a repository at /apps/server1/logs; include only those that were written
to the error stream of a specific repository.
binaryLog view /apps/server1/logs --includeLogger=SystemErr

v View events from the defaultServer repository that occurred before September 14th, 2012 4:28 PM
eastern daylight time.
binaryLog view --maxDate="09/14/12 16:28:00:000 EDT"

v Write events from the defaultServer repository that contain a 'thread' extension with value 'Default
Executor-thread-4'
binaryLog view --includeExtension=thread="Default Executor-thread-4" --format=advanced

v View the list of server instances in the defaultServer repository:
binaryLog listInstances

Using D:\wlp\usr\servers\defaultServer\logs as repository directory.

Instance ID Start Date
1358809441761 1/21/13 18:04:01:761 EST
1358864476191 1/22/13 9:21:16:191 EST
1358869523192 1/22/13 10:45:23:192 EST
1358871281166 1/22/13 11:14:41:166 EST
1358879829000 1/22/13 13:37:09:000 EST
1358892222067 1/22/13 17:03:42:067 EST

v View events from the defaultServer using one of the instance IDs from the previous example:
binaryLog view --includeInstance=1358871281166

1478 WebSphere Application Server Liberty Core 8.5.5

v Copy events from the defaultServer, whose specified level is WARNING or higher, from the latest
server instance to a new repository at d:\toSupport directory.
binaryLog copy defaultServer d:\toSupport --minLevel=warning --includeInstance=latest

Configuring binary logging in Liberty
Use this information as a guide for configuring binary logging in your Liberty.

About this task

Binary logging provides faster log and trace handling capabilities and more flexible ways to use log and
trace content than the default Liberty log and trace framework.

A server configuration consists of a bootstrap.properties file, a server.xml file, and any (optional) files
that are included with those files. The bootstrap.properties file specifies properties that need to be
available before the main configuration is processed, and are kept to a minimum. The server.xml file is
the primary configuration file for the server.

The server.xml file and its associated files use a simple xml format that is suitable for most text editors.

Distributed operating systems A richer editing experience is provided by the eclipse server adapter for Liberty
(WAS4D+ adapter), which uses a generated schema to provide drop-down lists of available choices,
auto-completion, and other editing tools. For a description of the eclipse server adapter for Liberty, see
“Editing the Liberty configuration by using developer tools” on page 938.

The bootstrap.properties file specifies whether the server uses binary logging as the log and trace
framework, or the default log and trace framework. A server restart is required to switch between binary
logging and the default log and trace framework.

You can modify the configuration of binary logging through the server configuration or the
bootstrap.properties file.
v Server configuration: To get logging from your own code, which is loaded after server configuration

processing, use the server configuration to configure binary logging.
v bootstrap.properties file: You might need to set logging properties to take effect before the server

configuration files are processed. For example, if you need to analyze problems that occur early in
server start or configuration processing. In this case, you can configure binary logging in the
bootstrap.properties file.

You can set Logging properties in either the bootstrap.properties or the server.xml file. Use attributes
in the server.xml file, or use equivalent properties in the bootstrap.properties file. Any settings in the
bootstrap.properties file are used from the time the server reads the bootstrap.properties file until the
time the server.xml file is processed. If the logging properties in the bootstrap.properties file are not
replaced or reset in the server.xml file, the property values in the bootstrap.properties file continue to
be used.

When binary logging is enabled, the maxFileSize, maxFiles, messageFileName, traceFileName, and
traceFormat logging element attributes are ignored (since binary logging runs without trace.log and
messages.log files). The traceSpecification, consoleLogLevel, and logDirectory attributes continue to
be used to set the trace specification, the level for the console log, and the placement of the log and trace
files.

If you set logging or binary logging attributes in the server.xml file, you can avoid changes in
configuration between startup time and runtime by setting the corresponding properties in the
bootstrap.properties file to the same value. If no logging or binary logging properties are set in the
bootstrap.properties file, the server uses the default logging settings.

Chapter 12. Troubleshooting tips 1479

Procedure
v Enable binary logging for the server by updating the bootstrap.properties file. In the

bootstrap.properties file, add the following text on a line by itself:
websphere.log.provider=binaryLogging-1.0

v Use the following parameters to configure binary logging. All subelements that are listed are
subelements of the logging element in the server.xml file. The following table lists the attributes that
are configurable in the server.xml file and the equivalent properties that can be set in the
bootstrap.properties file:

Table 107. Binary logging attributes that are configurable in server.xml and the equivalent properties that can be set
in bootstrap.properties

Logging
subelement Attribute Equivalent bootstrap.properties property

binaryLog purgeMaxSize

purgeMinTime

fileSwitchTime

bufferingEnabled

outOfSpaceAction

com.ibm.hpel.log.purgeMaxSize

com.ibm.hpel.log.purgeMinTime

com.ibm.hpel.log.fileSwitchTime

com.ibm.hpel.log.bufferingEnabled

com.ibm.hpel.log.outOfSpaceAction

binaryTrace purgeMaxSize

purgeMinTime

fileSwitchTime

bufferingEnabled

outOfSpaceAction

com.ibm.hpel.trace.purgeMaxSize

com.ibm.hpel.trace.purgeMinTime

com.ibm.hpel.trace.fileSwitchTime

com.ibm.hpel.trace.bufferingEnabled

com.ibm.hpel.trace.outOfSpaceAction

The following example shows a bootstrap.properties file that is configured to enable binary logging:
websphere.log.provider=binaryLogging-1.0

The following example shows a server.xml file with the binary logging subelements. The log content is
set to expire after 96 hours and the trace content is set to retain a maximum of 1024MB:
<server description="new server">

<logging>
<binaryLog purgeMinTime="96"/>
<binaryTrace purgeMaxSize="1024"/>

</logging>

</server>

For the full logging configuration reference, see the logging, binaryLog, and binaryTrace elements in
the **** MISSING FILE ****.

Results

After you restart the server, binary logging is enabled and configured.

Runtime environment known issues and restrictions
There are some known issues and restrictions that apply when working with the Liberty runtime
environment.

Distributed operating systems

See also “Developer Tools known issues and restrictions” on page 1488.

1480 WebSphere Application Server Liberty Core 8.5.5

Minimum supported Java levels

Liberty is supported with any compliant Java SE 6, Java SE 7, or Java SE 8 runtime environment (JRE) or
Java SDK, subject to the minimum supported levels shown for the following specific implementations.

Java SE 6 runtime environment
For the Java SDK from IBM, the minimum supported level is 6.0 (J9 2.6) SR 1. For the JDK from
Oracle, the minimum supported level is Java 6 update 26.

Java SE 7 runtime environment
For the Java SDK from IBM, the minimum supported level is IBM Runtime Environment, Java
Technology Edition 7.0.4.1. For the JDK from Oracle on Windows and Linux, the minimum
supported level is Java SDK/JRE/JDK 7.0.17. For the JDK from Oracle on Mac OS X, the
minimum supported level is Java SDK/JRE/JDK 7.0 Update 15.

8.5.5.5 Java SE 8 runtime environment
For the Java SDK from IBM, the minimum supported level is IBM SDK, Java Technology Edition,
Version 8. For the JDK from Oracle, the minimum supported level is Java 8 update 25.

Distributed operating systems On distributed platforms, 32-bit or 64-bit Java is supported.

Distributed operating systems For Windows and Linux systems, you can use either the JDK from Oracle or the
JDK from IBM. If you are developing applications on Windows or Linux, and you plan to deploy those
applications to a server running on WebSphere Application Server classic, you should use the JDK from
IBM. For HP systems and Mac OS, use the JDK from Oracle.

Note: IBM i To obtain the minimum supported Java level for IBM iSeries, install IBM J2SE 6.0 32-bit

JVM (5761-JV1 option 11

or 5770-JV1 option 11) or IBM SE 6.0 64 bit (5761-JV1 option 12
or 5770-JV1 option 12), and also install Java PTF group SF99572 level 8 (or later) for IBM i

7.1.

The installation directory name and path cannot include non-ASCII characters

Recent JVMs do not fully support use of non-ASCII characters with the -jar and -javaagent commands.
You should use only ASCII characters in your installation directory names and paths.

Changing the JDBC data source at run time might result in JPA failures

If the database dictionary type is not specified through properties, it is detected and calculated by
OpenJPA when the first entity manager is created and the database connection is made. This database
dictionary type is used for all entity managers that are subsequently created. If the JDBC data source is
changed while an application is running, the entity manager factory does not detect this change and
continues to use the old dictionary for operations against the new data source. This can result in failures
if the database is changed to a different vendor.

When you change a database to a different vendor, restart the application.

Modifying the dataSource, jdbcDriver, connectionManager, and JDBC vendor
properties at run time might result in JPA failures

If you update the configuration of dataSource, jdbcDriver, connectionManager or any of the JDBC vendor
properties lists (for example, properties.db2.jcc or properties.oracle) while the server is running, you
might see J2CA8040E failures. These failures state that multiple dataSource elements cannot be associated
with a single connectionManager. These failures are generated even if your configuration associates only
one connectionManager with the dataSource element.

Chapter 12. Troubleshooting tips 1481

When you make updates to the configuration of any of these JDBC resources, restart the server.

An application that relies on a result being returned by getRealPath must be
deployed as an expanded application, not as a WAR file

The Java EE specification states that the getRealPath() method returns a null value if the content is
being made available from a web archive (WAR) file. When you deploy a WAR file to Liberty, Liberty
does not automatically extract the archive file into a directory structure. Therefore the application might
fail to start. If your application relies on a result being returned by getRealPath(), you must deploy the
application as an expanded web application, not as a WAR file. For example, you can manually extract
the WAR file and copy the expanded application to the dropins directory.

WebSphere Application Server traditional scripts do not work with Liberty

You cannot use any of the scripts under the bin directory of the WebSphere Application Server traditional
to administer Liberty.

Fileset restrictions

The following restriction applies to Filesets:
v Filesets do not recursively explore subdirectories of the base directory. For example, the following

instructions are not supported:
<fileset id="testFileset" dir="\temp" includes="**\a.jar"/>
<fileset id="testFileset" dir="\temp" includes="a\a.jar"/>
<fileset id="testFileset" dir="\temp" includes="*\a.jar"/>
<fileset id="testFileset" dir="\temp" includes="a\b\a.jar"/>

Overriding classes from the Java SDK

Some Java EE 6 technologies supported by Liberty require newer versions of APIs that are provided by
Java SE 6. JAX-WS, JAXB and the javax.annotation.Resource annotation are all examples where a Java 6
SDK contains older classes than those required by Java EE 6. When compiling your application code
against these APIs using Java SDK version 6, you need to use classes that are provided by Liberty rather
than the Java SDK. You must take one of the following actions:
v If you are using javac to build from the command line, compile your code by using the javac

-endorseddirs option and the JAR files in the ${wlp.install.dir}/dev/specs directory.
v If you are using Apache Ant to build, compile your code by using the <compilerarg> child element of

the javac task and the JAR files in the ${wlp.install.dir}/dev/specs directory. In the build script,
specify the -endorseddirs option and the ${wlp.install.dir}/dev/specs directory as separate
<compilerarg> elements. For example:
<javac srcdir="src" destdir="classes"/>

<compilerarg value="-endorseddirs"/>
<compilerarg value="${wlp.install.dir}/dev/specs"/>

</javac>

v If you are using Apache Maven to build, compile your code by using the endorseddirs element of the
Maven compiler plug-in and the JAR files in the ${wlp.install.dir}/dev/specs directory. For example:
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.6</source>
<target>1.6</target>
<compilerArguments>

1482 WebSphere Application Server Liberty Core 8.5.5

<endorseddirs>${wlp.install.dir}/dev/specs</endorseddirs>
</compilerArguments>

</configuration>
</plugin>

Windows

When you unpublish a shared library, it cannot be deleted until the server is
stopped

When you unpublish a shared library from a server, the library JAR file is not immediately released from
the server. Therefore the operating system does not know that the file is no longer in use, and does not
let you delete the file. When you next stop the server, the library JAR file is released and you can delete
the file.

java:global lookups restrictions

Resources defined in applications with java:global lookups can only be used to access names declared
by applications deployed in the current server.

appSecurity-2.0 feature restrictions

For the appSecurity-2.0 feature, the following restrictions apply:
v For EJB applications, the run-as-mode of SYSTEM_IDENTITY is not supported in the extension settings

of the ibm-ejb-jar-ext.xml file.
v The getCallerIdentity API is not supported for Singleton session beans.
v Role names can be referenced by the HttpServletRequest.isUserInRole and

EJBContext.isCallerInRole APIs or by elements in the deployment descriptor without first declaring
the role names using the @DeclareRoles annotation or the <security-role/> element in the deployment
descriptor. However, roles must be declared before being used in WebSphere Application Server
traditional.

Applications not starting in an embedded Liberty server

Ensure that the Java process that starts the embedded Liberty server was started with the -javaagent
JVM argument that pointed to the libertyInstallDir/bin/tools/ws-javaagent.jar. If the -javaagent
JVM argument is not used the server runtime starts, but applications fail to start with no obvious
exceptions.

8.5.5.6

WebSphere MQ resource adapter and generic JCA support related restrictions

The WebSphere® MQ resource adapter can be used within the WebSphere Application Server Liberty by
using either the wmqJmsClient-1.1 or wmqJmsClient-2.0 feature or by using generic JCA support.

You can use the WebSphere MQ resource adapter version 7.5 with Liberty version 8.5.5 and later. If you
want to use WebSphere MQ resource adapter version 8.0, which is based on JMS 2.0 resource adapter,
you must ensure that you are using the latest Liberty version that is compatible with the JMS 2.0 resource
adapter.

Notes:

v With Liberty version 8.5.5.2, the wmqJmsClient-1.1 feature must be used with a IBM MQ resource
adapter version 7.5.0.5 or later.

v With Liberty version 8.5.5.6, the wmqJmsClient-2.0 feature must be used with a IBM MQ resource
adapter version 8.0.0.3 or later

Chapter 12. Troubleshooting tips 1483

To know more about the version compatibility information between WebSphere MQ resource adapter and
Liberty, see the Reference to obtain the WebSphere MQ resource adapter.

If you are using generic JCA support, the following restrictions apply:
v To run the IBM® WebSphere MQ resource adapter on z/OS, you must use the wmqJmsClient-1.1 or

wmqJmsClient-2.0 feature.
v Tracing and logging are not integrated within the Liberty trace system using generic JCA. Trace is

written to a separate file, and it must be enabled by setting the system properties. The procedure to
enable tracing is the same as configuring the WebSphere MQ classes for JMS trace facility for a Java
Standard Environment. See Java Standard Environment Trace stanza.

v The IBM MQ classes for Java are not supported in Liberty. They must not be used with either the IBM
MQ Liberty messaging feature or with the generic JCA support. For more information, see Using
WebSphere MQ Java Interfaces in J2EE/JEE Environments.

Versioning is not possible for applications in the “dropins” directory

For applications in the “dropins” directory, the file name and file extension are used by the application
monitor to determine the type of application, and to generate the application id and application name. It
is therefore not possible to specify the version number for the application by using the file name or file
extension. In a production environment, you are not recommended to use the “dropins” directory.

Shared session applications must store session objects in shared libraries

When you are using the shared-session-context application extension, or <shared-session-context
value="true"/> in ibm-application-ext.xml, all objects that are stored in the session must be available in
the shared libraries that are associated with the application so that the session can be invalidated.

Configuring session persistence

There is only one server.xml file for each server, not a server.xml file for each EAR or WAR file. You set
session persistence in a database by adding:
<httpSessionDatabase id="SessionDB" dataSourceRef="SessionDS" ... />

In Liberty, this setting for the database applies to all EAR and WAR files. It is not possible to set up some
databases with session persistence and others without.

Ported locally transacted JMS sessions do not work in Liberty

In WebSphere Application Server traditional, you can develop applications to take advantage of locally
transacted JMS sessions. When you port these applications to Liberty, these applications behave
differently or do not work at all.

Even though WebSphere Application Server traditional allows locally transacted JMS sessions, porting a
WebSphere Application Server traditional locally transacted JMS session to Liberty is not allowed.

Admin Center feature restrictions

For the adminCenter-1.0 feature, the following restriction applies:

v Using an IBM Java virtual machine (JVM) available with a WebSphere Application
Server traditional product, such as Network Deployment, can cause WebSphere Liberty Administrative
Center ("Admin Center") to not display in a browser. By default, the IBM JVM available with the
WebSphere Application Server traditional product points to security classes that are available only with
the WebSphere Application Server traditional product, and not to security classes needed by Admin
Center, which requires Secure Sockets Layer (SSL). Use a JVM that supports Liberty products and SSL.

1484 WebSphere Application Server Liberty Core 8.5.5

http://www-01.ibm.com/support/docview.wss?uid=swg21633761
http://www-01.ibm.com/support/knowledgecenter/SSFKSJ_8.0.0/com.ibm.mq.dev.doc/q119150_.htm
https://www-304.ibm.com/support/docview.wss?uid=swg21266535
https://www-304.ibm.com/support/docview.wss?uid=swg21266535

8.5.5.4

You can get a JVM that supports Liberty products and SSL from Installation Manager

offerings or developerWorks:
– Using Installation Manager, select the Liberty product first and then select WebSphere SDK for

Liberty. Use Installation Manager to install the Liberty product and software development kit (SDK).
The WebSphere SDK for Liberty includes the needed support for Liberty products and SSL and
offers a Java client, JConsole.

– Go to http://www.ibm.com/developerworks/java/jdk/index.html on the developerWorks website
and download an IBM Java development kit (JDK) for your operating system. The developerWorks
website does not have a JVM for all operating systems. For example, you have to get the JDK from
Eclipse for Windows operating systems.

v 8.5.5.4 From the Admin Center Deploy tool, you cannot use the Use the connection method and
credentials configured for each target host option of Remote Management Credentials to deploy
Liberty 8.5.5.3 or earlier server package to a registered host. The server package must support Liberty
8.5.5.4 or later.

v 8.5.5.5 The CPU Usage chart of the Admin Center Monitor view shows either 0% or null% CPU
usage for JVMs that do not supply process CPU statistics. For information about the chart, see
“Monitoring metrics in Admin Center” on page 1087.

Bean validation feature restrictions

For the beanvalidation-1.0 feature, the following restriction applies:
v There is no support for bean validation inside OSGi applications.

8.5.5.6

For the beanValidation-1.1 feature, the following restrictions apply:

v There is no support for bean validation inside OSGi applications.
v Applications that provide a custom ConstraintValidatorFactory implementation in a validation.xml

file with the beanValidation-1.0 feature do not compile against the Bean Validation 1.1 API.
v If a validation.xml file is not located in the module it is associated with, then there can be only one

validation.xml file and the com.ibm.ws.beanvalidation.allowMultipleConfigsPerApp property must
be set to false in either of the following files:
– jvm.options

-Dcom.ibm.ws.beanvalidation.allowMultipleConfigsPerApp=false

– bootstrap.properties
com.ibm.ws.beanvalidation.allowMultipleConfigsPerApp=false

Dynamic cache feature restrictions

The following dynamic cache features are not available or have limited availability:
v Cache replication is not supported.
v Only high performance disk caching mode is supported with random and size based eviction

techniques.
v There is no support for Web Services client and server side caching as well as portlet cache in the

cachespec.xml file.
v There is no support for servlet caching of SingleThreadModel servlets.
v Defining cache configuration by using properties files is not supported for JAR files that contain only

Enterprise JavaBeans (EJBs).
v Limiting a heap cache size works only for 32-bit Java virtual machines (JVM).

ejbLite-3.1 feature restrictions

For the ejbLite-3.1 feature, the following restrictions apply:

Chapter 12. Troubleshooting tips 1485

|
|
|

|
|

|
|

http://www.ibm.com/developerworks/java/jdk/index.html

v EJB modules prior to version 3.0 are not supported. This restriction also means that bindings and
extensions using the .xmi file format rather than the .xml file format are not supported.

v Session beans are not bound to the ejblocal namespace, which means JNDI lookups and ejb-ref binding
names must use java:global, java:app, or java:module names. The simple-binding-name and interface
binding-name elements are ignored in ibm-ejb-jar-bnd.xml files.

v The stateful bean passivation directory is not configurable. Files are passivated to the server work area.

8.5.5.6

jpa-2.1 feature restrictions

For the jpa-2.1 feature, JPA entity exchange over CORBA/RMI-IIOP requires that both participants in
the communication must enable identical JPA feature levels.

jsp-2.2 feature restrictions

For the jsp-2.2 feature, the following restriction applies:
v There is no support for the useInMemory configuration option to only store the translated JSP file in

memory.

8.5.5.9

logstashCollector-1.0 feature restrictions

The following limitations apply to the logstashCollector-1.0 feature:
v Data Loss – Some events that are generated in Liberty might not be forwarded to Logstash as expected.

Data loss might occur under the following scenarios:
1. Starting the Liberty server before the Logstash server is started. It is recommended that you start

the Logstash server before starting the Liberty server.
2. Heavy load conditions. Events might be dropped in cases where events are created in Liberty faster

than they can be processed by Liberty's event pipeline, Logstash, and any other downstream
consumers. Liberty uses buffers to avoid data loss when event creation is briefly faster than event
consumption.

v The logstashCollector-1.0 feature is tested and is compatible with Logstash V2.x.

monitor-1.0 feature restriction

For the monitor-1.0 feature, the following restriction applies:
v When the feature is removed from the server.xml file, you must restart the server to make the JAX-WS

applications work.

8.5.5.6

requestTiming-1.0 feature restrictions

For the requestTiming-1.0 feature, the following restriction applies:
v The requestTiming-1.0 feature, when activated, has been shown to have an 4% impact on maximum

possible application throughput when measured with the DayTrader application. While the impact on
your application might be more or less than that, you should be aware that some performance
degradation might be noticeable.

8.5.5.6

restConnector-1.0 feature restriction

For the restConnector-1.0 feature, the following restriction applies:

1486 WebSphere Application Server Liberty Core 8.5.5

v Users of the restConnector-1.0 feature or any feature that includes restConnector-1.0, such as
collectiveMember-1.0 and collectiveController-1.0, who want to run applications containing a
custom JAXRS 2.0 runtime must add the jaxrs-2.0 feature to that server.

8.5.5.8

scim-1.0 feature restrictions

The following restrictions apply for the scim-1.0 feature:
v The members attributes are not retrieved while searching for groups.
v The groups attributes of users are not retrieved while searching for users.
v The Canonical type of direct/indirect cannot be set for groups attribute of users.
v Only one email attribute of user of Canonical type, work, can be defined.
v Only one ims attribute of user of Canonical type, work, can be defined.
v Extended schema attributes of SCIM such as entitlements, roles and x509Certificates cannot be set

or returned.
v The userName attribute cannot be used with some other attibutes in a filter.
v For users in Basic and SAF registries, only userName, displayName, id, schema, meta.location and

groups can be set. The userName and displayName will have the same value.
v List/query with Basic and SAF registries does not work the same as the ldapRegistry registry.
v Operators like pr, gt, ge, lt, le, and, or, and () will not work with Basic and SAF registries. Also, only

one operator must be used in the filter for Basic and SAF registries.
v Basic and SAF are read only registries.
v While creating user, groups attribute cannot be set.

wmqJmsClient-1.1 feature restrictions

For the wmqJmsClient-1.1 feature, the following restrictions apply:
v You must manually set the PATH variable in the Windows environment variables to point to the IBM

MQ installation bin directory. You must set this path variable when the application uses the BINDING
connection mode.

v The IBM MQ classes for Java (generally called the Base Java) are not included in the wmqJmsClient-1.1
feature. This is included in the Resource Adapter for other application servers but is not recommended
for the Base Java APIs in the Java Enterprise Edition environments. For more information, see Using
IBM MQ Java Interfaces in J2EE/JEE Environments.

v The BINDINGS_THEN_CLIENT transport type of IBM MQ resource adapter is not supported for the
wmqJmsClient-1.1 feature.

v The Advanced Messaging Security (AMS) feature is not included for the wmqJmsClient-1.1 feature.

8.5.5.6

wmqJmsClient-2.0 feature restrictions

For the wmqJmsClient-2.0 feature, the following restrictions apply:
v You must manually set the PATH variable in the Windows environment variables to point to the IBM

MQ installation bin directory. You must set this path variable when the application uses the BINDING
connection mode.

v The IBM MQ classes for Java (generally called the Base Java) are not included in the wmqJmsClient-2.0
feature. This is included in the Resource Adapter for other application servers but is not recommended
for the Base Java APIs in the Java Enterprise Edition environments. For more information, see Using
IBM MQ Java Interfaces in J2EE/JEE Environments.

v The BINDINGS_THEN_CLIENT transport type of IBM MQ resource adapter is not supported for the
wmqJmsClient-2.0 feature.

Chapter 12. Troubleshooting tips 1487

https://www-304.ibm.com/support/docview.wss?uid=swg21266535
https://www-304.ibm.com/support/docview.wss?uid=swg21266535
https://www-304.ibm.com/support/docview.wss?uid=swg21266535
https://www-304.ibm.com/support/docview.wss?uid=swg21266535

concurrent-1.0 feature restrictions

8.5.5.4 For the concurrent-1.0 feature, the following restrictions apply:

For the thread context of type securityContext, any custom information in the subject that was not
added by using a JAAS login module will not be propagated. For example, if the submitter's subject
contains a custom Principal that was added by a TAI, the propagated subject will not contain this custom
Principal.

8.5.5.6

jacc-1.5 feature restrictions

For the jacc-1.5 feature, the following configurations are ignored:
v Authorization information (the users and groups attributes of the authorizations attribute) in an

ibm-application-bnd.xml file or an ibm-application-bnd.xmi file of the application's ear file.
v Authorization information (the user, group and special-subject attributes of the security-role attribute in

the application-bnd element) in the server.xml file.

Developer Tools known issues and restrictions

Distributed operating systems

Several known issues and restrictions apply when you are working with WebSphere Application Server
Developer Tools for Eclipse.

See also “Runtime environment known issues and restrictions” on page 1480.

Unable to interact with the Liberty server after you modify the console log level
settings

There is a known limitation when the console log level is set to WARNING, ERROR, or OFF. The workbench
has problems when it interacts with the Liberty server, such as cannot start, stop, or publish to the server.
For example, the workbench is unable to start the Liberty server and the following timeout error message
displays:

The console log level (consoleLogLevel) is an attribute of the logging configuration element in the server
configuration (server.xml) file with the following range options: INFO, AUDIT, WARNING, ERROR, and OFF.
AUDIT is the default value for the console log level settings. For more details, search for the
consoleLogLevel attribute in the Configuration elements in the server.xml topic.

To work around this known limitation, specify INFO or use the default AUDIT setting for the console log
level:

1488 WebSphere Application Server Liberty Core 8.5.5

1. In the Servers view, expand your Liberty server.
2. Right-click the Server Configuration[server.xml] node and select Open.
3. In the Server Configuration editor and under the Configuration Structure section, expand Server

Configuration node. The next step depends if the Logging element is available:
v If the Logging element is available, select it and under the Logging section of the server

configuration editor, use the drop-down menu for the Console log level field, and select either the
AUDIT or INFO option. Type Ctrl + s to save your changes in the editor.

v If the Logging element is not available, the workbench is already using the default AUDIT setting. As
a result, you might be experiencing a different problem that is causing interaction failures between
the workbench and the Liberty server.

.

Copying and pasting servers might cause the publishing state to become out of
synchronization

Try to avoid copying and pasting servers because they point to the same configuration file. Copying and
pasting servers might cause the publishing state to become out of synchronization. For example, when
you remove an application from one server, the application still appears to be deployed to the other
server even though it is not. Server state will not synchronize up again until the next publish operation.

8.5.5.4

Unable to recognize the start of the server when the hideMessage attribute is used
to suppress the messages

You can configure the <hideMessage> attribute in the Logging element of Server Configuration
[server.xml] to suppress messages. If you configure to hide the server start message, for example
<logging hideMessage="CWWKF0011I"/>, then the tool fails to recognize the state of the server when it is
started. In such a situation, the state of the server in the Server view remains as starting until timeout and
finally displays the following message:

8.5.5.4

Chapter 12. Troubleshooting tips 1489

Remote servers cannot run projects that were created with a newer version of
Java

If you compile a project with a higher version of Java than your remote server is running, you can
receive the following error messages:
Error 404: javax.servlet.UnavailableException:
SRVE0202E: Servlet [s1]: s1 was found, but is corrupted:
SRVE0227E: Check that the class resides in the proper package directory.
SRVE0228E: Check that the classname has been defined in the server using the proper case and fully qualified package.
SRVE0229E: Check that the class was transferred to the filesystem using a binary transfer mode.
SRVE0230E: Check that the class was compiled using the proper case (as defined in the class definition).
SRVE0231E: Check that the class file was not renamed after it was compiled.

If you create a project in a package with a higher version of Java than your remote server is running, you
can receive the following error messages:
Error 404: java.io.FileNotFoundException: SRVE0190E: File not found: /s2
Console output: [ERROR] SRVE0266E: Error occurred while initializing servlets: java.lang.UnsupportedClassVersionError: JVMCFRE003 bad major version; class=s1, offset=6
at java.lang.ClassLoader.defineClassImpl(Native Method)
at java.lang.ClassLoader.defineClass(ClassLoader.java:383)
at com.ibm.ws.classloading.internal.AppClassLoader.definePackageAndClass(AppClassLoader.java:318)
at [internal classes]

To avoid these errors, compile your project with the same version of Java that your remote server is
running, or with an earlier version. You can also create your project in a package with the same version
of Java that your remote server is running, or with an earlier one. To find the Java version of the remote
server, check the messages.log file. For more information about viewing the messages.log file, see
“Viewing trace and message log files by using developer tools” on page 1465.

8.5.5.10

Some utilities are unavailable when you use a remote Liberty server or a Liberty
server in a Docker container

WebSphere Developer Tools do not support some of the utilities when you use a remote Liberty server or
Liberty server in a Docker container.

The tools do not support the following utilities when you use a remote Liberty server:
v Generate Web Server Plug-in...

v Add Config Snippets...

The tools do not support the following utilities when you use a Liberty server in a Docker container:
v Generate Web Server Plug-in...

v Package Server...

v Create Collective...

v Add Config Snippets...

Messages
When you use Liberty, you might encounter system messages. Each message has a unique message
identifier, and includes an explanation of the problem, and details of any action that you can take to
resolve the problem.

Liberty system messages are logged from various sources, including application server components and
applications. For Liberty, the message identifier is 10 characters in length and has the following form:
CWXXX9999X

where:

1490 WebSphere Application Server Liberty Core 8.5.5

CWXXX
Is a five-character alphabetic message prefix that identifies the Liberty component.

9999 Is a four-character numeric identifier used to identify the specific message for that component.
X Is an optional alphabetic indicator that identifies the message type: I=Informational, W=Warning,

E=Error.

The Troubleshooter reference: Messages topic contains information about all WebSphere Application
Server messages, indexed by message prefix. For each message there is an explanation of the problem,
and details of any action that you can take to resolve the problem.

Table 108. Alphabetic message prefixes for Liberty messages

Liberty message
prefix Range Liberty component

CWIMK 0001-0500 LDAP registry federation (configuration
messages)

CWIML 0001-5000 LDAP registry federation (runtime
messages)

CWLIB
0001-0100 Transactions

0101-0200 z/OS Transaction Extensions

CWWKB z/OS Native integration

0001-0050 z/OS Command Processing

0051-0100 z/OS Native code only

0101-0150 z/OS Core

0151-0200 z/OS WLM services

0201-0250 z/OS Native code non-console

CWWKC 0000-0250 Annotation scanning

CWWKE Core kernel and kernel services

0001-0099 Boot/Launcher

0100-0199 Service utilities

0200-0299 Location service

0300-0399 File installation service

0400-0499 FileMonitor service

0500-0599 Extensible Class Scanner

CWWKF Feature manager

CWWKG Configuration manager

CWWKJ Light touch administration

CWWKL 0001-0100 Class loading service

Chapter 12. Troubleshooting tips 1491

Table 108. Alphabetic message prefixes for Liberty messages (continued)

Liberty message
prefix Range Liberty component

CWWKM 0001-0050 Artifact API messages (container factory)

0051-0100 Overlay Messages (all implementations)

0101-0150 Artifact API Zip implementation

0151-0200 Artifact API File implementation

0401-0450 Adaptable API Implementation
messages (adaptable module factory /
adapter service)

1001-1100 Loose archive API (used by the
Eclipse-based tools option that runs an
application directly from the Eclipse
workspace(The Eclipse platform
supports a "virtual" application archive,
where a set of files that appear to be in
the same archive file are actually spread
out across the Eclipse workspace.
Liberty calls this a “loose archive”, and
the tools option that uses the loose
archive API is called Run this
application directly from the
workspace)).

2000-2999 Ant and Maven plug-in

CWWKN 0001-0100 JNDI default namespace

CWWKO CFW components

0000-0199 CFW

0200-0399 TCP

0400-0599 UDP

0600-0799 bytebuffer

0800-0899 SSL channel

0900-0999 SSL

1492 WebSphere Application Server Liberty Core 8.5.5

Table 108. Alphabetic message prefixes for Liberty messages (continued)

Liberty message
prefix Range Liberty component

CWWKS Security

0000 series Security: General messages

0000-0099 Security

0900-0999 Security quickStart

1000 series Security: Authentication services

1000-1099 Authentication

1100-1199 JAAS authentication

1200-1299 TAI authentication

2000 series Security: Authorization services

2000-2099 Authorization

2100-2199 Built-in authorization

2900-2999 SAF authorization

3000 series Security: Registry services

3000-3099 Registry

3100-3199 Basic registry

3200-3299 LDAP registry

3300-3399 FileBased (VMM) registry

3800-3899 Custom registry

3900-3999 SAF registry

4000 series Security: Token services

4000-4099 Token services

4100-4199 LTPA

4200-4299 Kerberos

4300-4399 SPNEGO

9000 series Security: Collaborators

9100-9199 Web Collaborator (common code)

9200-9299 Web Application Collaborator

9300-9399 Web Administration Collaborator

CWWKT HTTP transport/dispatcher

CWWKX

0000 series JMX

0001-0100 JMX Security

0101-0200 JMX REST Connector

0201-0300 JMX REST Client

8.5.5.3 1000
series

Administrative Center

8.5.5.3 1000-1899 Admin Center

Chapter 12. Troubleshooting tips 1493

Table 108. Alphabetic message prefixes for Liberty messages (continued)

Liberty message
prefix Range Liberty component

CWWKZ Applications

0001-0100 Application manager

0101-0200 WARs

0201-0300 WABs

0301-0400 EBAs

Troubleshooting OSGi applications by using developer tools
8.5.5.9

You can configure the osgiAppConsole-1.0 feature with WebSphere Developer Tools and then use it to
determine and analyze the OSGi applications-related issues.

Before you begin
v Install WebSphere Developer Tools for Eclipse and WebSphere Application Server Liberty. You can

install the tools by using downloaded installation files. For more information about installing
WebSphere Developer Tools and Liberty, see “Installing Liberty developer tools and (optionally)
Liberty” on page 835.

v Deploy an OSGi application to a running Liberty server.
v The osgiAppConsole-1.0 feature is available as part of the downloaded compressed files. If the feature

is not already installed, then install the feature from the Liberty Repository by using the following
command:
bin\installUtility install osgiAppConsole-1.0

Procedure
1. Configure the osgiAppConsole-1.0 feature in the server.xml file.

<featureManager>
<feature>osgiAppConsole-1.0</feature>

</featureManager>

2. Add the security configurations.
The following example shows a sample security configuration with an admin role that uses basic
authorization and HTTPS security.
<httpEndpoint httpPort=”9080⌂ httpsPort=”9443⌂ id=”defaultHttpEndpoint”/>
<keyStore id=”defaultKeyStore” password=”Liberty”/>
<quickStartSecurity userName=”admin” userPassword=”password”/>

3. Start the OSGi Application Console or the OSGi Shared Bundle Console by completing one of the
following tasks.
v Start the OSGi Application Console:

a. In the Servers view, right-click the OSGi module.
b. Select Launch OSGi Application Console.
The tools open a browser that displays the OSGi Application Console page.

v Start the OSGi Shared Bundle Console:
a. Right-click your server.
b. Select Utilities > Launch OSGi Shared Bundle Console.
The tools open a browser that displays the OSGi Shared Bundle Console page.

1494 WebSphere Application Server Liberty Core 8.5.5

Troubleshooting Session Initiation Protocol (SIP) on Liberty
Troubleshoot SIP by using the available log and trace facilities. You can use the default log and trace
facility, or you can enable binary logging for high-performance, extensible logging and tracing.

Troubleshooting the SIP container session repository on Liberty
8.5.5.7

When you troubleshoot the SIP container session repository, you might need the SIP session details to
dump to a specified trace file.

About this task

You can use the SIP session memory dump utility to help debug problems that are related to SIP
container sessions. The SIP container provides the SipContainerMBean method to perform several
serviceability type operations on the SIP container, including the initiation of a server quiesce through the
command line. This task describes how you can use the SipContainerMBean method to dump SIP
application session and SIP session information that is contained in the in-memory session repository for
SIP containers. By configuring the SIPContainerMBean method to use various trace methods, you can
specify the SIP session details to dump to the specified trace file.

When the session dump methods are started, the requested information about the sessions prints by
default into the console.log file. You can also send the information to a predefined source specified on
the setDumpMethod method.

You can run the dumping utility in two modes, succinct and verbose. When you use the succinct session
dump methods, only the session IDs are printed for every dump method execution. If you want to use
the verbose session dump methods, the following actions occur:
v Transaction user details, along with the SIP session details, if they exist, print for every dump method

execution.
v The only attributes that dump to the trace file are those attributes that the JSR 289 specification permits

for exposure.
v The verbose methods print the following information in the trace file: appName, callID, dialog state,

creation time, attribute names.

The trace printouts occur per SIP application; therefore, the sorting of all the SIP session data structures
occurs before printing. The SIPContainerMBean dump facility runs in a low-priority thread so that the
tracing does not affect the call processing latency of the overall system for a production server.

The dump distinguishes between a transaction user that has a SIP session versus a transaction user that
has no SipSession object. Also included in the dump, in a delineated fashion, are SIP sessions that no
longer exist, that are no longer valid, or that exist at the time of the trace snapshot.

On Liberty, you can invoke the SIPContainerMBean dumping methods in two ways:
v By running the server dump command
v By implementing a Java Management Extensions (JMX) client that establishes a connection to the JMX

connector to invoke the methods

The following succinct SipContainerMBean methods are used to dump SIP session IDs.

Table 109. Succinct SipContainerMBean methods used to dump SIP session information.

Method Description

dumpAllSASIds() Prints a number of all SIP application sessions and the
SIP application session IDs.

Chapter 12. Troubleshooting tips 1495

Table 109. Succinct SipContainerMBean methods used to dump SIP session information (continued).

Method Description

dumpAllTUSipSessionIds() Prints a number of transaction users and the SIP session
IDs within the transaction user (TU), if one exists.

The following verbose SipContainerMBean methods are used to dump SIP session details.

Table 110. Verbose SipContainerMBean methods used to dump SIP session information.

Method Description

dumpAllSASDetails() Prints a number of all SIP application sessions and the
SIP application session ID details.

dumpAllTUSipSessionDetails() Prints a number of transaction users and details of the
SIP session IDs within the transaction user (TU), if one
exists.

dumpSASDetails(String sasId) Prints the details of the SIP application session that is
specified by the sasId parameter.

dumpSipSessionDetails(String sessionId) Prints the details of the SIP session that is specified by
the sessionId parameter.

Note: Use the following information to help parse print output:
v For all print output, the first line provides an application name and a number of records.
v The delimiter between the output is a TAB.
v The delimiter between session attributes is a ; (semi-colon).

Procedure
v Invoke the SIPContainerMBean methods with the server dump command. For more information about

the server dump command, see “Generating a Liberty server dump from the command line” on page
960.
1. In the server.xml file, specify the dumping utility mode on a sipIntrospect element.

– For succinct mode, specify the following code:
<sipContainer>

<sipIntrospect method="SUCCINCT"/>
</sipContainer>

– For verbose mode, specify the following code:
<sipContainer>

<sipIntrospect method="VERBOSE"/>
</sipContainer>

2. Open a command line and change to the wlp/bin directory.
3. To generate the SIP sessions and SIP application sessions dump, run the following command, where

server_name is the Liberty server:
server dump server_name

If you do not specify a server name, defaultServer is used.
You can optionally specify the name of the server dump package file on the archive parameter:
server dump server_name --archive=package_file_name.dump.zip

After you run the command, the server dump package file is generated and contains the following
files:
– SipContainerIntrospector.txt, which includes the requested level of trace information about the

SIP application sessions and SIP sessions
– Other artifactIntrospector.txt files, which provide the server status information

1496 WebSphere Application Server Liberty Core 8.5.5

SipContainerIntrospector.txt includes the following information, where dump.ids.test.app1 is
the application name, 2 is the number of sessions, and the local.##### lines are the SAS_ids:
The description of this introspector:
SIP state details

Succinct dumping

dump.ids.test.app1 2
local.1347524282775_8
local.1347524282775_7

--- End of Dump ---

v Invoke a specific dumping utility method through JMX connectors. For more information, see
“Connecting to Liberty by using JMX” on page 1021 and “Developing a JMX Java client for Liberty” on
page 1024.
The following Java code example invokes the dumpAllSASIds method:

System.setProperty("javax.net.ssl.trustStore", "..\\wlp\\usr\\servers\\SIPServer\\resources\\security\\key.jks");
System.setProperty("javax.net.ssl.trustStorePassword", "Liberty");

//If the type of the trustStore is not jks, which is default,
//set the type by using the following line.
System.setProperty("javax.net.ssl.trustStoreType", "jks");

try {
HashMap<String, Object> environment = new HashMap<String, Object>();
environment.put("jmx.remote.protocol.provider.pkgs", "com.ibm.ws.jmx.connector.client");
environment.put("com.ibm.ws.jmx.connector.client.disableURLHostnameVerification", Boolean.TRUE);
environment.put(JMXConnector.CREDENTIALS, new String[] { "theUser", "thePassword" });
environment.put(ConnectorSettings.DISABLE_HOSTNAME_VERIFICATION, true);

JMXServiceURL url = new JMXServiceURL("service:jmx:rest://localhost:9443/IBMJMXConnectorREST");
JMXConnector connector = JMXConnectorFactory.newJMXConnector(url, environment);
connector.connect();
MBeanServerConnection connection = connector.getMBeanServerConnection();

// test dumping utility
connection.invoke(new ObjectName("WebSphere:name=com.ibm.ws.sip.container.SipContainerMBean"), "dumpAllSASIds", null, null);

Succinct SipContainerMBean methods have the following print formats.

Table 111. Succinct SipContainerMBean method print formats.

Method Print format

dumpAllSASIds() Each line represents a SIP application session ID, in the
format [SAS_ID].

For example:

local.1347524282775_8

dumpAllTUSipSessionIds() Each line represents the transaction ID, whether the
transaction has a SIP session, and the session ID if it
exists, in the format [TU_ID] [hasSIPSession]
[SipSessionId]

For example:

local.1349965420866_1_0 true local.1349965420866_1_0_1

Verbose SipContainerMBean methods have the following print formats.

Chapter 12. Troubleshooting tips 1497

Table 112. Verbose SipContainerMBean method print formats.

Method Description

dumpAllSASDetails() Each line represents the SIP application session ID, the
creation time, and the SIP session attributes, in the
format [SAS_ID] [CreationTime] [attributes]

For example:

local.1348147884986_2 Sep 20,2012 16:31 DumpSasDetailsAttr;

dumpAllTUSipSessionDetails() Each line represents the transaction ID, whether the
transaction has a SIP session, and the session details if it
exists, in the format [TU_ID] [hasSIPSession]
[SipSessionId] [Call-Id] [DialogState]
[hasOutgoingTransaction] [initialMethod] [SAS_ID]
[CreationTime] [attributes]

For example:

local.1349965420866_1_0 true local.1349965420866_1_0_1 8-8548@9.148.57.128 2 false INVITE
local.1349965420866_1 Jan 24,2013 14:41 TestSSAttr1; TestSSAttr2;

dumpSASDetails(String sasId) Only one line is printed, in the format [TU_ID]
[hasSIPSession] [SipSessionId]

For example:

local.1349965420866_1_0 true local.1349965420866_1_0_1

If the requested session does not exist, the following
error message is printed:

ERROR: Requested session <local.1349965420866_1_0_1> does not exist.

dumpSipSessionDetails(String sessionId) Only one line is printed, in the format [SipSessionId]
[Call-Id] [DialogState] [hasOutgoingTransaction]
[initialMethod] [SAS_ID] [CreationTime] [attributes]

For example:

local.1349965420866_1_0_1 8-8548@9.148.57.128 2 false INVITE local.1349965420866_1
Jan 24,2013 14:41 TestSSAttr1; TestSSAttr2;

If the requested session does not exist, the following
error message is printed:

ERROR: Requested session <local.1349965420866_1_0_1> does not exist.

Tracing a Session Initiation Protocol (SIP) container on Liberty
8.5.5.7

You can trace a Session Initiation Protocol (SIP) container, starting either immediately or after the next
server start. This tracing writes a record of SIP events to a log file.

Procedure

In the server.xml file, add a logging element and specify tracing for the SIP container by setting
traceSpecification="*=info:com.ibm.ws.sip=all".
<logging logDirectory="${server.config.dir}/logs" traceFileName="trace.log" traceSpecification="*=info:com.ibm.ws.sip=all"/>

Results

SIP-level tracing messages appear in serverName/logs/trace.log, where serverName is the name of the
specific instance of the application server that is running the SIP container to be traced. These messages

1498 WebSphere Application Server Liberty Core 8.5.5

include application load events as well as SIP request and response parsing and SIP servlet invocation.

Session Initiation Protocol (SIP) binary log and trace extensions on
Liberty

8.5.5.7

Binary logging provides a way for developers to add extension fields to log and trace records, and a
corresponding way for you to filter log and trace records by extension value.

Log and trace records contain fields for information such as the time the record was created and the
content of the message that is logged. These fields are core fields that are present in every log and trace
record. In contrast, extension fields are fields which application developers can add to log and trace
records, which you can use as filter criteria when you search for specific log and trace content. These log
and trace extensions are visible in the binary log when you configure the text output format to use the
advanced format, or they are visible when you use the binaryLog command in the advanced format.

Administrators

The application server automatically creates a number of extensions that you can use to filter log
and trace records. You can also filter log and trace records by using any extensions that are added
by your application developers. You can use the binaryLog command-line tool to filter records
based on the content of log and trace record extensions. For more information, see “BinaryLog
command options” on page 625.

For example, to see all SIP application sessions that the SIP container processed, you can use the
following binaryLog command:
binaryLog view binaryFile --includeExtension=SIPASId=* --format=advanced

Developers

Developers can use binary logging to add custom extensions to log and trace records through the
log record context API, com.ibm.websphere.logging.hpel.LogRecordContext. When binary logging
stores log and trace records, it includes any extensions that are present in the log record context
on the same thread. For example, you can write a servlet filter to add important HTTP request
parameters to the log record context. While that servlet runs, the HPEL API adds those extensions
to any log and trace records that are created on the same thread.

As with other log and trace record fields, developers can access the record extensions by using
the HPEL API. This API is useful when you write tools to read from log and trace repositories.
Developers can also use the log record context API to access extensions in custom log handlers,
filters, and formatters at run time.

The following table describes the log and trace extensions, including the identifier that you can use to
filter various aspects of the trace.

Table 113. Log and trace extensions.

Extension Description

appName
Specifies the name of the Java Platform, Enterprise Edition (Java EE) application
that the log or trace record relates to, if any.

requestID
Specifies the unique ID of the request that each log or trace record relates to, if
any. For the application server to add the requestID extension to log and trace
records, you must enable Cross Component Trace (XCT), also referred to in the
administrative console as log and trace correlation. Request IDs are only added
for certain types of requests, such as HTTP or JMS requests.

Chapter 12. Troubleshooting tips 1499

Table 113. Log and trace extensions (continued).

Extension Description

SIPCallId
Specifies the SIP call identifier that is being processed by the SIP proxy server or
SIP container. This information is common across SIP proxy servers and SIP
containers. You can use this extension to track the SIP call flow across the
various components. The SIP proxy server and SIP container automatically adds
this identifier to each log and trace record when HPEL logging is enabled.

SIPASId
Specifies the SIP application session ID that is being processed by the SIP
container. This information is common across SIP containers. You can use this
extension to track the SIP call flow. The SIP container automatically adds this
identifier to each log and trace record when HPEL logging is enabled.

SIPSessionId
Specifies the SIP session ID that is being processed by the SIP container. This
information is common across SIP containers. You can use this extension to track
the SIP call flow. The SIP container automatically adds this identifier to each log
and trace record when HPEL logging is enabled.

SIPCallId2
Specifies the second SIP call ID that is associated with the same SIP application
session and is being processed by the SIP container. This information is common
across SIP containers. You can use this extension to track the SIP call flow. The
SIP container automatically adds this identifier to each log and trace record
when HPEL logging is enabled.

If more than two SIP call IDs are associated with a single SIP application
session, only the first two IDs are recorded. The additional IDs are not recorded.

SIPSessionId2
Specifies the second SIP session ID that is associated with the same SIP
application session and is being processed by the SIP container. This information
is common across SIP containers. You can use this extension to track the SIP call
flow. The SIP container automatically adds this identifier to each log and trace
record when HPEL logging is enabled.

If more than two SIP session IDs are associated with a single SIP application
session, only the first two IDs are recorded. The additional IDs are not recorded.

thread
Specifies the thread name of the request that each log or trace record relates to.

1500 WebSphere Application Server Liberty Core 8.5.5

Chapter 13. Reference

Reference information is organized to help you locate particular facts quickly.

Programming Interfaces (APIs and SPIs)
Look up a package or class name to find details about programming interfaces for extending and
interoperating with the systems management infrastructure of this product. This listing is in addition to
the generated API and SPI documentation.

For Liberty API documentation, see the Programming Interfaces section in the WebSphere Application
Server documentation.

Messages
This reference information provides additional information about messages you might encounter while
using the product. It is organized according to the identifier of the product feature that produces the
message.

For Liberty messages, see the Messages section in the WebSphere Application Server documentation.

1501

1502 WebSphere Application Server Liberty Core 8.5.5

Index

A
Alpha Liberty developer tools

installing 835
Ant plug-in 967
application defined data sources 1052
application development

installing 1323
Application Monitor

dynamic updates 975
application security setting

restrictions 1480
Application Server

creating 884
installing 835
logging 1461, 1467
runtime environments 943

Application Server Tools feature
installing 835

authentication
SPNEGO 596

Authentication aliases 1300
Authentication caches 1183
Authentication configurations 1168
authorization configurations 1254
authorization on IBM i 1255
authorization tasks 1254

B
basic registry security 1150
Beta Liberty developer tools

installing 835

C
client authentication

SSL certificates 1164, 1298
cnfiguration elements

jndiEntry 1336
command port 897
common OSGi bundles

sharing 1339
common secure interoperability version

2 1277
communications

securing 1147
Configuration Admin Service

persisted identity 1119
configuration data 1119
configuration elements

application-bnd 1254
authData 1044
basicRegistry 1168, 1180
bundleRepository 1339
connectionManager 1055
context-root 1344
Embedding and Ref tags 972
Embedding only 972
httpSession 990
interceptors 1205

configuration elements (continued)
jaasLoginContextEntry 1184
jaasLoginModule 1184
jndiReferenceEntry 1337
keystore 1153
keystores 1161
ldapRegistry 1169
ltpa 1188
pluginConfiguration 985
quickStartSecurity 1023
repertoire 1164, 1298
scim 1174
security-role 1254
SSL 1153
SSLDefault 1153
trustAssociation 1205
webAppSecurity 1203, 1297
webContainer 1012, 1015, 1017, 1019,

1058, 1060, 1067, 1068, 1070
configuration instances 1122
connection pooling 1055
connectionManager properties 684
context-root

deploying 1329
CSIv2 1277
custom configuration Liberty servers

create 1146
Custom user registry 1318
Custom user repository 1181

D
data source properties 683
data source types 1047
data sources

restrictions
runtime environments 1480

Declarative services registration 1116
default keystores 1164, 1298
Derby data sources migration 685, 687
Design view

restrictions 1488
Developer Tools

installing 835
diagnosis information 961
directory locations and properties 894
dynamic content 1141
dynamic updates

controlling 975

E
EAR files

securing 1254
EAR files

restrictions 1480
Eclipse IDE

installing 835
Eclipse Marketplace

installing 835

Embedded server SPI 1145
enterprise bundles

restrictions 1480
entity manager

configuring 1347
environment variables 947
Equinox OSGi console

administering 937

F
factory configurations for default

instances 1124
feature configurations

features 482
Feature definition format 1097
feature examples

creating 1095
locating 1139

feature FFDC records 1134
feature logging SPI 1132
feature restrictions

restrictions 1480
feature SPIs 1095
features installation 1143
FFDC log files

logging 1461, 1467
restrictions 1480

FFDC services
logging 1461, 1467

FIPS support 1165

H
hashtable login module 1305
HTTP access log 1444
HTTP authentications

Trust Association Interceptors 1205
HTTP port

configuring 938, 1186
HTTP servlets

features 483
httpEndpoint SSL configuration 1167
HTTPS listener

features 483
HTTPS port

features 483
restrictions 1480

I
Identity assertion customization 1316
include statements 969
installation integrity 875
installation procedure

installing 835
IP addresses

bootstrap properties 897

1503

J
JAAS authentications

login modules 1184
JAAS custom login modules

developing 1305
Java command

configuration variables 970
JavaMail

Administering 1074
JAX-RS

context objects 1365
secure downstream resources 1355

JAX-RS 2.0 1351, 1364
JAX-RS applications

deploying 1348
JDBC applications

deploying 1339
JDBC data source

restrictions
runtime environments 1480

JDBC data source
restrictions

tools 1488
JDBC driver configurations 683
JDBC driver location

deploying 1339
JDBC drivers

deploying 1339
JDBC tracing options 1342
JDBC vendor properties 1047
JMX connectors 1021, 1022, 1024, 1296
JMX MBeans 1025
JNDI binding 1140
JNDI binding for constants 1336
JNDI binding for dynamic values 1337
JPA annotations

restrictions 1480
JPA applications

configuring 1347
JSF framework

features 483
JSF support

restrictions 1480
JVM monitoring 1423
JVM options

bootstrap properties 897

L
Liberty 862, 1351, 1364

installing 835
OSGi console 968
restrictions 1480

Liberty
administering 937
OSGi console 968

Liberty feature project
specifying API and SPI

packages 1107
Liberty feature projects

adding OSGi bundles 1107
creating 1106

Liberty features 1106, 1107
installing 1108, 1109

Liberty features
administering 968

Liberty features (continued)
deploying 1339

Liberty profile
adding 1331
development environments 1323
global handlers 1134
monitoring local files 1132

Liberty Profile
creating 884
exploring 943

Liberty runtime environment
overview 934

Liberty server
dumping 961
packaging 962, 1334

Local download
creating 884

local JMX connectors 1021
Location services 1131
log files

restrictions 1480
logging configuration 1461, 1467
LTPA keys 1188

M
MBeans attributes and operations 1029
Merged Configuration view

configuring 944
merged view

configuring 944

O
OAuth tasks 1257
OSGi applications 981

deploying 1339
features 483
OSGi application integration 1323

OSGi applications
deploying 1329
development environments 1323
running 1331
runtime environments 1480

OSGi blueprint container specification
features 483

OSGi bundles
adding to a Liberty feature

project 1107
simple activation 1111

OSGi Configuration Admin specification
persisted identities 1119

OSGi console
administering 937
using 968

OSGi console port
using 968

OSGi metatype service extensions 1124
OSGi Metatype Service specification

configuration metatypes 1121
OSGi services availability 1115
OSGi services registration 1112, 1113
OSGi tool

installing 835

P
password encryption

encoding 1162
plugin-cfg.xml in Liberty 985
Port numbers

Default port numbers 899
product extensions

features 577
Project Explorer view

creating 884
protected features 1137

R
reference tags 972
role-based authorization 1254
runtime environments

creating 884
exploring 943

Runtime Explorer
exploring 943

S
SAF registry

features 483
Schema Reference

server configurations 945
secure communications 1151, 1277
Security 1321
Security differences 615
security features 1147
security infrastructure extensions 1301
securityUtility command 1162
Server Configuration editor

displaying 944
server configuration files

logging 1461, 1467
server configurations

include statements 969
server configurations

configuring 938, 1186
creating 884
displaying 944
logging 1461, 1467
schema 945

Server page 884
server ports 897
Server Version

logging 1461, 1467
Servers view

configuring 1331
creating 884
editing 938
exploring 943
restrictions 1488
schema 945
server configurations 944

serving environment
installing 835

servlets loading 1012, 1015, 1017, 1019,
1058, 1060

session failover 990
Session Initiation Protocol (SIP)

Deploying SIP applications 1346
Troubleshooting 1498

1504 WebSphere Application Server Liberty Core 8.5.5

shared state variables 1305
single sign-on

HTTP requests 596
LTPA cookies 1203, 1297

SIP
troubleshooting 1495

SSL certificate
creating 1162

SSL certificates 1161
features 483

SSL communications 1152, 1203
SSL configuration attributes 1153

T
TAI configuration 1206
TAI customization 1301
TAI user feature 1141
third-party features development 1095
Thread pool monitoring 1425
Tools

installing 835
Tools feature

installing 835
Transaction logs 1045
transaction recovery 1044

transaction service
administering 1043

Troubleshooter reference
messages 1490

Trust Association Interceptors 1205

U
usable callbacks 1305
user ID

restrictions 1480

V
vendor databases configuration 1047

W
Web application monitoring 1424, 1441,

1442, 1443
Web applications

features 483
web applications

restrictions 1480
web services applications

deploying 1348

Web services monitoring 1176
WebSphere Application Server Liberty

profile 943
WebSphere Runtime Environment page

creating 884
WebSphere Server page

creating 884

X
XMI files

securing 1254
XMI files

restrictions 1480
XML code

persisted identities 1119
XML configuration files

bootstrap properties 897
XML files

basic architecture 1
configuration metadata 1121
Liberty Repository 574
localizing 1130
server configurations 16, 1091, 1092

XML snippets
features 968

Index 1505

	Contents
	Chapter 1. WebSphere Application Server Liberty Core: Overview
	Architecture
	Java EE 7 programming model support
	Java EE 6 programming model support
	Supported Java EE 6 and 7 feature combinations
	Java EE 7 behavior changes
	Enterprise OSGi programming model support
	Liberty externals support

	Server configuration
	Microsoft Active Directory LDAP Filters (activedLdapFilterProperties)
	Administrator Role (administrator-role)
	API Discovery (apiDiscovery)
	Application (application)
	Application Manager (applicationManager)
	Application Monitoring (applicationMonitor)
	Authentication Cache (authCache)
	Authentication Data (authData)
	Authentication Filter (authFilter)
	Authentication (authentication)
	Feature Authorization Role Mapping (authorization-roles)
	Basic User Registry (basicRegistry)
	BELL (bell)
	OSGi Applications Bundle Repository (bundleRepository)
	Contexts And Dependency Injection (CDI) V1.2 (cdi12)
	CDI Container (cdiContainer)
	Channel Framework (channelfw)
	Classloading (classloading)
	Certificate Authority Signed Certificate (collectiveCertificate)
	Collective Member (collectiveMember)
	Configuration Management (config)
	Connection Manager (connectionManager)
	Constrained Delegation (constrainedDelegation)
	Thread Context Propagation (contextService)
	Cross-Origin Resource Sharing (cors)
	Custom LDAP Filters (customLdapFilterProperties)
	Data Source (dataSource)
	Distributed Map (distributedMap)
	IBM Lotus Domino LDAP Filters (domino50LdapFilterProperties)
	Novell eDirectory LDAP Filters (edirectoryLdapFilterProperties)
	EJB Application (ejbApplication)
	EJB Container (ejbContainer)
	Enterprise Application (enterpriseApplication)
	Event Logging (eventLogging)
	Executor Management (executor)
	Feature Manager (featureManager)
	User Registry Federation (federatedRepository)
	Fileset (fileset)
	Host Authentication Information (hostAuthInfo)
	Host Singleton (hostSingleton)
	HTTP Access Logging (httpAccessLogging)
	HTTP Dispatcher (httpDispatcher)
	HTTP Transport Encoding (httpEncoding)
	HTTP Endpoint (httpEndpoint)
	HTTP Options (httpOptions)
	HTTP Proxy Redirect (httpProxyRedirect)
	HTTP Session (httpSession)
	HTTP Session Database (httpSessionDatabase)
	HTTP Whiteboard (httpWhiteboard)
	IBM Tivoli Directory Server LDAP Filters (idsLdapFilterProperties)
	Include (include)
	Sun Java System Directory Server LDAP Filters (iplanetLdapFilterProperties)
	JAAS Login Context Entry (jaasLoginContextEntry)
	JAAS Login Module (jaasLoginModule)
	Java 2 Security (javaPermission)
	JDBC Driver (jdbcDriver)
	JNDI Entry (jndiEntry)
	JNDI Object Factory (jndiObjectFactory)
	JNDI Reference Entry (jndiReferenceEntry)
	JNDI URL Entry (jndiURLEntry)
	JPA Container (jpa)
	JSP Engine (jspEngine)
	Keystore (keyStore)
	LDAP User Registry (ldapRegistry)
	Shared Library (library)
	Logging (logging)
	Logstash Collector (logstashCollector)
	LTPA Token (ltpa)
	Mail Session Object (mailSession)
	Managed Executor (managedExecutorService)
	Managed Scheduled Executor (managedScheduledExecutorService)
	Managed Thread Factory (managedThreadFactory)
	Default Mime Types (mimeTypes)
	Monitor (monitor)
	Netscape Directory Server LDAP Filters (netscapeLdapFilterProperties)
	OAuth Role Map (oauth-roles)
	OAuth Provider Definition (oauthProvider)
	OpenId Authentication (openId)
	OpenID Connect Client (openidConnectClient)
	OpenID Connect Server Provider (openidConnectProvider)
	OSGi Application (osgiApplication)
	OSGi Applications (osgiApplications)
	OSGi Library (osgiLibrary)
	Web Server Plugin (pluginConfiguration)
	Quick Start Security (quickStartSecurity)
	Remote File Access (remoteFileAccess)
	Request Timing (requestTiming)
	SAML Web SSO 2.0 Authentication (samlWebSso20)
	IBM SecureWay Directory Server LDAP Filters (securewayLdapFilterProperties)
	Spnego Authentication (spnego)
	SSL Repertoire (ssl)
	SSL Default Repertoire (sslDefault)
	SSL Options (sslOptions)
	TCP Options (tcpOptions)
	Timed Operation (timedOperation)
	Transaction Manager (transaction)
	Trust Association Interceptor (trustAssociation)
	User Information (userInfo)
	Variable Declaration (variable)
	Virtual Host (virtualHost)
	Web Container Application Security (webAppSecurity)
	Web Application (webApplication)
	Web Container (webContainer)
	WAS WebSocket Outbound (wsocOutbound)
	z/OS Logging (zosLogging)

	Feature management
	Liberty features
	API Discovery 1.0
	Admin Center
	Application Security 1.0
	Application Security 2.0
	Basic Extensions using Liberty Libraries
	Bean Validation 1.0
	Bean Validation 1.1
	Bluemix Utilities 1.0
	Collective Member
	Concurrency Utilities for Java EE 1.0
	Contexts and Dependency Injection 1.0
	Contexts and Dependency Injection 1.2
	Database Session Persistence
	Distributed Map interface for Dynamic Caching
	Enterprise JavaBeans Lite 3.1
	Enterprise JavaBeans Lite 3.2
	Event Logging
	Expression Language 3.0
	Federated User Registry
	JMX Local Connector
	JMX REST Connector 1.0
	JMX REST Connector 2.0
	Java Authentication SPI for Containers 1.1
	Java Authorization Contract for Containers 1.5
	Java Database Connectivity 4.0
	Java Database Connectivity 4.1
	Java EE Managed Bean 1.0
	Java EE Web Profile 6.0
	Java EE Web Profile 7.0
	Java Naming and Directory Interface
	Java Persistence API 2.0
	Java Persistence API 2.1
	Java RESTful Services 1.1
	Java RESTful Services 2.0
	Java RESTful Services Client 2.0
	Java Servlets 3.0
	Java Servlets 3.1
	Java WebSocket 1.0
	Java WebSocket 1.1
	JavaMail 1.5
	JavaScript Object Notation Processing
	JavaScript Object Notation for Java
	JavaServer Faces 2.0
	JavaServer Faces 2.2
	JavaServer Pages 2.2
	JavaServer Pages 2.3
	Job Manager Integration
	Kerberos Constrained Delegation for SPNEGO
	LDAP User Registry
	Logstash Collector 1.0
	Micro Profile 1.0
	OAuth
	OSGi Application Integration
	OSGi Blueprint
	OSGi Bundle
	OSGi Debug Console
	OSGi Http Whiteboard
	OSGi Java Persistence API
	OSGi Web Application Bundles
	OpenID
	OpenID Connect Client
	OpenID Connect Provider
	Performance Monitoring
	Request Timing
	SAML web single sign-on version 2.0
	Secure Socket Layer
	Simple and Protected GSSAPI Negotiation Mechanism
	System for Cross-domain Identity Management
	Timed Operations
	Web Response Cache

	Liberty Kernel
	Liberty Repository
	Shared libraries
	Product extension
	Security
	Quick overview of security
	Authentication
	Single sign-on for HTTP requests using SPNEGO web authentication
	Common Secure Interoperability version 2 (CSIv2)
	Authentication on the Liberty application client container
	SAML 2.0 Web Browser Single-Sign-On

	Authorization
	Security on the Liberty application client container
	Java 2 Security
	Security public APIs
	Configuration differences between the traditional and Liberty: security
	The limits to protection through password encryption

	Java Persistence API (JPA)
	Java Persistence API (JPA) feature overview
	Java Persistence API 2.1 behavior changes

	Binary logging
	BinaryLog command options
	Configuring binary logging in Liberty

	Multimedia
	Video: Configure session cache management with Liberty and WebSphere eXtreme Scale
	Video: DevOps with WebSphere Liberty Server
	Video: Enabling IHS for Liberty Dynamic Routing
	Video: Getting started with the Server Configuration Tool for WebSphere Liberty
	Video: Google OpenID Connect for applications on WebSphere Liberty
	Video: Installing Liberty from a ZIP file
	Video: Java EE 7 in Liberty
	Video: OpenID Connect on Liberty
	Video: Setting up Admin Center
	Video: Thoughts on Liberty: Interview with Alasdair Nottingham
	Video: Touring Admin Center
	Video: Using the IBM WebSphere Liberty Repository to enhance Liberty environments
	Video: Why Liberty? Performance that scales
	Video: Why Liberty? Fast application development
	Video: Why Liberty? Rapid deployment and powerful administration

	Notices
	Privacy Policy Considerations

	Chapter 2. Migrating applications to Liberty
	Migrating data access applications to Liberty
	Configuration differences between the traditional and Liberty: dataSource and jdbcDriver elements
	Configuration differences between the traditional and Liberty: connectionManager element
	Migrating a DB2 data source to Liberty
	Migrating a Derby embedded data source to Liberty

	Chapter 3. Installing Liberty
	Installing and uninstalling Liberty using Installation Manager
	Installing and uninstalling Liberty on distributed operating systems
	Installing Installation Manager and preparing to install Liberty
	Installing Liberty on distributed operating systems using the GUI
	Installing Liberty on distributed operating systems by using the command line
	Installing Liberty on distributed operating systems by using response files
	Adding and removing features from Liberty on distributed operating systems
	Uninstalling Liberty from distributed operating systems using the GUI
	Uninstalling Liberty from distributed operating systems using the command line
	Uninstalling Liberty from distributed operating systems by using response files
	Installing and uninstalling Liberty interim fixes and fix packs on distributed operating systems
	Upgrading Liberty on distributed operating systems using the GUI
	Installing and uninstalling SDK Java Technology Edition Version 7.0 or 7.1 for Liberty on distributed operating systems
	Installing and uninstalling SDK Java Technology Edition Version 8.0 for Liberty on distributed operating systems
	Using the sample response files
	Creating custom installation repositories with IBM Packaging Utility
	Using the launchpad to start Liberty installations

	Installing and uninstalling Liberty on IBM i operating systems
	Installing Liberty on IBM i operating systems using the command line
	Installing Liberty on IBM i operating systems using response files
	Installing Liberty remotely on IBM i operating systems using the iRemoteInstall command
	Verifying the installation
	Adding and removing features from Liberty on IBM i operating systems using response files
	Uninstalling Liberty from IBM i operating systems using the command line
	Uninstalling Liberty from IBM i operating systems using response files
	Installing Liberty interim fixes on IBM i operating systems using the command line
	Installing Liberty fix packs on IBM i operating systems using the command line
	Installing Liberty fix packs on IBM i operating systems using response files
	Uninstalling Liberty interim fixes from IBM i operating systems using the command line
	Uninstalling Liberty fix packs from IBM i operating systems using the command line
	Uninstalling Liberty fix packs from IBM i operating systems by using response files
	Using the sample response files

	Installing and uninstalling Liberty using downloaded files and archives
	Installing Liberty developer tools and (optionally) Liberty
	Installing Liberty by extracting a Java archive file
	Java archive file extraction options
	List of installation Java archive files
	Applying a fix pack to a Liberty Java archive installation

	Installing Liberty by extracting a ZIP archive file
	List of installation ZIP archive files
	Applying a fix pack to a Liberty ZIP archive installation
	Updating the Java software development kit in a Liberty ZIP archive installation

	Upgrading Liberty installations
	Applying an interim fix to a Liberty archive installation
	Removing an interim fix from a Liberty archive install

	Configuring the Liberty server to start as a job in the QWAS85 subsystem on IBM i
	Uninstalling Liberty application-serving environment from IBM i operating systems

	Installing Liberty Repository assets
	Installing assets using the installUtility command
	installUtility command
	Downloading assets using the installUtility command
	Configuring repositories and proxy settings for the installUtility command

	Installing assets using the featureManager command
	featureManager command
	Configuring proxy server support for the featureManager command in Liberty

	Installing assets using Installation Manager
	Installing assets by using developer tools
	Adding more repositories by using developer tools

	Verifying the integrity of Liberty installation
	productInfo command

	Docker support in Liberty
	Accessing a remote Liberty server in a Docker container by using developer tools
	Liberty and Chef
	Installing the OpenShift Cartridge for Liberty
	Installing the IBM WebSphere Application Server Liberty Buildpack into a Cloud Foundry Environment

	Chapter 4. Setting up Liberty
	Creating a Liberty server manually
	Creating a Liberty server by using developer tools
	Creating a remote Liberty server by using developer tools
	Creating a workbench Liberty server in a Docker container by using developer tools
	Directory locations and properties
	Specifying Liberty bootstrap properties
	Setting the default host name of a Liberty server
	Default port numbers
	Using virtual hosts
	Isolating two applications from each other
	Isolating applications based on the requested host or port
	Restricting access based on originating endpoint
	Virtual hosts

	Preparing and running an application client
	Creating a Liberty application client manually
	Creating a Liberty application client with multiple client modules

	Setting up the server-management environment for Liberty by using collectives
	Collective architecture
	Collective security
	Configuring a Liberty collective
	Configuring a Liberty collective using the developer tools

	Overriding Liberty server host information
	Registering host computers with a Liberty collective
	Setting the JAVA_HOME variable for Liberty collective members
	Setting up RXA for Liberty collective operations

	Setting up a Liberty server to use Bluemix services
	bluemixUtility command
	Configuring Liberty for Bluemix Cloudant services
	Configuring Liberty for Bluemix Watson services

	Platform-as-a-service environment considerations for setting up Liberty

	Chapter 5. Administering Liberty
	XML escape characters
	Administering Liberty by using developer tools
	Editing the Liberty configuration by using developer tools
	Specifying the Liberty configuration with dropins files by using developer tools
	Starting and stopping a server by using developer tools
	Switching a Liberty Docker server between run and debug mode by using developer tools
	Defining a utility project as a shared library
	Setting a web project to use shared libraries

	Exploring the runtime environment by using developer tools
	Displaying the server configuration in a merged view
	Viewing the schema documentation for the server configuration
	Generating a Liberty server dump using developer tools
	Packaging a Liberty server by using developer tools
	Adding a data source by using developer tools

	Administering Liberty manually
	Customizing the Liberty environment
	Administering Liberty from the command line
	server command options
	iAdmin command
	application client commands
	configUtility command
	Running the ddlGen utility
	Generating Liberty configurations schema from the command line
	Generating a Liberty server dump from the command line
	Packaging a Liberty server from the command line
	Running a Liberty server from a JAR file
	Starting and stopping a server from the command line
	Starting and stopping a Liberty server as a Windows service
	Using Ant to automate tasks for Liberty
	Using an OSGi console

	Adding and removing Liberty features
	Using include elements, variables, and Ref tags in configuration files
	Using include elements in configuration files
	Using variables in configuration files
	Using Ref tags in configuration files
	Using the configuration dropins folder to specify server configuration
	ID variables that refer to configuration files

	Controlling dynamic updates
	Configuring class loaders and libraries for Java EE applications
	Using a Java library with a Java EE application
	Sharing a library across multiple Java EE applications
	Providing global libraries for all Java EE applications
	Accessing third-party APIs from a Java EE application
	Removing access to third-party APIs for a Java EE application
	Overriding a provided API with an alternative version

	Configuring libraries for OSGi applications
	Configuring JPA for Liberty
	Configuring JPA logging
	Configuring the JPA 2.1 schema generator
	Disabling the EclipseLink shared object cache

	Configuring a web server plug-in for Liberty
	Generating the plugin-cfg.xml file

	Configuring session persistence for Liberty
	Configuring and deploying a basic JCA ResourceAdapter
	Overview of JCA configuration elements

	Configuring ManagedExecutorService instances
	Configuring thread context service instances
	Configuring managed scheduled executors
	Configuring managed thread factories
	Connecting to Liberty by using JMX
	Configuring local JMX connection to Liberty
	Configuring secure JMX connection to Liberty
	Working with JMX MBeans on Liberty

	Establishing a JMX MBean Liberty server connection
	File transfer
	Transferring files in a Liberty collective
	Transferring files to and from a collective member or registered host with REST calls
	Uploading files to multiple registered hosts with a single REST call
	Deleting files from multiple registered hosts with a single REST call
	Getting status on a REST call for multiple registered hosts

	Configuring binary logging in Liberty
	Administering the transaction service on Liberty
	Liberty: Configuring the startup of the transaction service
	How database transactions are recovered
	Storing transaction logs in a relational database

	Administering data access resources on Liberty
	Administering data access applications on Liberty

	Administering web applications on Liberty
	Specifying when servlets are loaded and initialized
	Configuring Cross Origin Request Sharing on a Liberty server
	Configuring Liberty for Servlet 3.1
	Configuring Liberty for Expression Language 3.0
	Configuring Liberty for JavaServer Faces 2.2
	Configuring Liberty for JavaServer Pages 2.3

	Administering Contexts and Dependency Injection applications on Liberty
	Configuring Liberty for Contexts and Dependency Injection 1.2
	Contexts and Dependency Injection 1.2 overview
	Contexts and Dependency Injection 1.2 behavior changes

	Administering JavaMail on Liberty

	Administering Liberty using Admin Center
	Setting up Admin Center
	Logging in to Admin Center
	Customizing the Toolbox
	Editing server configuration files in Admin Center
	Exploring and managing resources with Admin Center
	Monitoring metrics in Admin Center

	Configuration updates
	Liberty and Chef
	Including configuration information from external xml files in the server.xml file
	Configuration element merging rules

	Chapter 6. Extending Liberty
	Developing a Liberty feature for Liberty
	Developing a Liberty feature manually
	Liberty feature manifest files
	Auto-provisioning a feature

	Creating a Liberty feature by using developer tools
	Creating a Liberty feature project
	Adding OSGi bundles to a Liberty feature project
	Specifying API and SPI packages for a Liberty feature project
	Installing a Liberty feature to Liberty V8.5.5
	Manually installing a Liberty feature to Liberty V8.5 or earlier
	Adding OSGi metatype descriptions to a Liberty feature project

	Developing an OSGi bundle with simple activation
	Receiving configuration data by using the ManagedService interface
	Working with the OSGi service registry

	Composing advanced features by using OSGi Declarative Services
	Declaring your services to OSGi Declarative Services
	Enabling a service to receive configuration data

	Advanced Configuration
	Describing configuration by using the OSGi Metatype service
	Single versus multiple configuration instances
	Extensions to the OSGi metatype service
	Localizing the configuration metadata

	Providing an application endpoint
	Securing an application endpoint

	Liberty SPI utilities
	Resource location symbols
	Monitoring local files for changes
	Configuring tracing and logging for features in the Liberty profile
	Adding web services global handlers
	Exposing REST endpoints within Liberty

	Including protected features
	Locating OSGi applications
	Developing with the JNDI default namespace in a Liberty feature
	Developing a custom TAI as a Liberty feature
	Dynamic content management

	Packaging and installing Liberty features
	Provide product information for your feature extension

	Embedding Liberty in your applications
	Creating Liberty servers from custom configurations

	Chapter 7. Securing Liberty and its applications
	Getting started with security in Liberty
	Quick overview of security
	Setting up BasicRegistry and role mapping on Liberty

	Securing communications in Liberty
	Enabling SSL communication in Liberty
	SSL configuration attributes
	Keystores
	Enabling the IBM JCE Hybrid Provider for Liberty
	SSL defaults in Liberty

	Creating SSL certificates for your Liberty using the Utilities menu
	Creating SSL certificates from the command line
	securityUtility command

	Configuring your web application and server for client certificate authentication
	Setting up Liberty to run in SP800-131a
	Configuring an httpEndpoint to use an SSL configuration other than the default

	Authenticating users in Liberty
	Configuring a user registry for Liberty
	Configuring a basic user registry for Liberty
	Configuring LDAP user registries in Liberty
	Configuring SCIM for user and group member management
	Configuring additional properties for users and groups
	Dynamic changes to security
	Developing a custom user repository for Liberty

	Configuring the authentication cache in Liberty
	Configuring a JAAS custom login module for Liberty
	Configuring an application JAAS custom login context entry and login module using a JAAS configuration file for Liberty
	Configuring JAAS on Liberty by using developer tools

	Configuring a Java Authentication SPI for Containers (JASPIC) User Feature
	Configuring LTPA in Liberty
	OpenID
	OpenID Connect
	Configuring an OpenID Relying Party in Liberty
	Configuring SPNEGO authentication in Liberty
	Configuring Kerberos constrained delegation for out-bound SPNEGO tokens in Liberty
	Using Kerberos principal name for authorization with SPNEGO authentication

	Customizing SSO configuration using LTPA cookies in Liberty
	Configuring RunAs authentication in Liberty
	Configuring TAI in Liberty
	Configuring TAI on Liberty by using developer tools

	Configuring a custom form login page
	Configuring a custom form login page for OpenID
	Configuring a custom form login page for OAuth

	Configuring SAML Web Browser SSO in Liberty
	Using OpenID Connect
	OpenID Connect endpoint URLs
	Configuring an OpenID Connect Provider in Liberty
	Configuring an OpenID Connect Client in Liberty

	Authentication Filters

	Authorizing access to resources in Liberty
	Configuring authorization for applications in Liberty
	Configuring security authorization for Liberty servers on IBM i
	OAuth
	OAuth 2.0 services
	OAuth 2.0 service invocation
	Customizing an OAuth provider
	Persistent OAuth service configuration

	Configuring Common Secure Interoperability version 2 (CSIv2) in Liberty
	Configuring inbound CSIv2 in Liberty
	Configuring inbound CSIv2 attribute layer
	Configuring inbound CSIv2 authentication layer
	Configuring inbound CSIv2 transport layer

	Configuring outbound CSIv2 in Liberty
	Configuring outbound CSIv2 attribute layer
	Configuring outbound CSIv2 authentication layer
	Configuring outbound CSIv2 transport layer

	Configuring security for the Liberty application client container and its applications
	Enabling SSL communication for the Liberty application client container
	Configuring a JAAS programmatic login on the Liberty application client container
	Configuring a JAAS custom login module for the Liberty application client container
	Configuring Common Secure Interoperability version 2 (CSIv2) in the Liberty application client container
	Configuring outbound CSIv2 in the Liberty application client container

	Configuring Java Servlet 3.1 support for security
	Configuring secure JMX connection to Liberty
	Configuring web security related properties in Liberty
	Customizing SSO configuration using LTPA cookies in Liberty
	Configuring your web application and server for client certificate authentication
	Configuring the Liberty server to track logged out LTPA tokens

	Configuring authentication aliases for Liberty
	Configuring JAAS for database authentication
	Developing extensions to the Liberty security infrastructure
	Developing a custom TAI for Liberty
	Developing a custom SIP TAI

	Developing JAAS custom login modules for a system login configuration
	Developing a custom JASPIC authentication provider for Liberty
	Developing a Java Authorization Contract for Containers (JACC) Authorization Provider
	Developing a customPasswordEncryption Provider
	Customizing an application login to perform an identity assertion by using JAAS
	Developing a custom user registry in Liberty
	Developing JAAS custom login modules for database authentication
	Developing a programmatic login for obtaining authentication data
	Developing a custom thread identity service

	Security considerations
	Securing Liberty by using HTTP Strict Transport Security (HSTS)

	Chapter 8. Developing applications in the Liberty environment
	Developing OSGi applications in Liberty
	Enable OSGi Applications with Java EE 7 technologies
	Enabling integration of OSGi application services
	Custom blueprint namespace handlers

	Developing WebSocket applications in Liberty
	WebSocket

	Chapter 9. Deploying applications in Liberty
	Adding and running an application on Liberty by using developer tools
	Publishing your application by using developer tools
	Publishing settings for a WebSphere Application Server Liberty

	Restart requirements for a modified application on Liberty

	Customizing automatic feature detection
	Packaging a Liberty server from the command line
	Using JNDI binding for constants from the server configuration files
	Using JNDI binding for dynamic values from the server configuration files
	Deploying OSGi applications to Liberty
	Sharing common OSGi bundles for Liberty

	Deploying data access applications to Liberty
	Deploying an existing JDBC application to Liberty
	Enabling JDBC Tracing for Liberty

	Deploying a web application to Liberty
	Deploying SIP applications to Liberty
	Deploying a JPA application to Liberty
	Enhancement of JPA entities

	Deploying web services applications to Liberty
	Deploying JAX-RS 2.0 applications to Liberty
	Asynchronous processing
	Configuring a resource to receive multipart/form-data parts from an HTML form submission in JAX-RS 2.0
	Configuring JAX-RS 2.0 client
	Deploying EJB in an EAR file for JAX-RS 2.0
	Implementation of JAX-RS 2.0 web applications
	Implementation of secure JAX-RS applications
	JAX-RS 2.0 behavior changes
	JAX-RS 2.0 integration with Atom
	JAX-RS 2.0 integration with EJB and CDI
	JAX-RS 2.0 integration with managed beans
	Sending multiple query parameters from Client - Cascaded or Iterated programming
	Using JAX-RS 2.0 context objects to obtain more information about requests
	WADL2JAVA command

	Deploying Java batch applications for Liberty
	Java batch and managed batch overview
	Configuring Liberty for the batch REST API
	Java batch persistence configuration
	Securing the Liberty batch environment
	Java batch shutdown and recovery
	Batch REST API
	Enabling multiple server support by using the Liberty embedded messaging provider
	Enabling multiple server support by using the WebSphere MQ messaging provider
	Enabling multiple server partitions support by using the WebSphere MQ messaging provider
	Enabling multiple server partitions support by using the Liberty embedded messaging provider
	Enabling batch job events publishing
	batchManager command-line client utility
	Viewing Java batch job logs

	Shared libraries
	Loose applications
	Discovering REST API documentation on a Liberty server
	Subscribe to Liberty REST API updates
	REST endpoints for pushing APIs into IBM API Connect

	Chapter 10. Monitoring the Liberty server runtime environment
	JVM monitoring
	Web application monitoring
	ThreadPool monitoring
	SIP application monitoring
	Sessions monitoring
	ConnectionPool monitoring
	Multiple components monitoring
	HTTP access logging
	HTTP access log settings
	HTTP access log format

	Chapter 11. Tuning Liberty
	Tuning Liberty for secure applications
	Tuning federated LDAP repositories in Liberty

	Chapter 12. Troubleshooting tips
	Security bulletins for the Liberty profile
	Logstash collector
	Using the Logstash collector

	Logging and Trace
	Viewing trace and message log files by using developer tools
	Timed operations and JDBC calls
	Event Logging
	Slow and hung request detection
	Binary logging
	BinaryLog command options
	Configuring binary logging in Liberty

	Runtime environment known issues and restrictions
	Developer Tools known issues and restrictions
	Messages
	Troubleshooting OSGi applications by using developer tools
	Troubleshooting Session Initiation Protocol (SIP) on Liberty
	Troubleshooting the SIP container session repository on Liberty
	Tracing a Session Initiation Protocol (SIP) container on Liberty
	Session Initiation Protocol (SIP) binary log and trace extensions on Liberty

	Chapter 13. Reference
	Programming Interfaces (APIs and SPIs)
	Messages

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

