SMAPI Reference

IBM ViaVoice(tm) Software Developer’s Kit
Version 1.7

Printed in the USA

Note: Before using this information and the product it supports, be sure to read the general
information under Appendix C [Notices|, page 367.

First Edition (December 1999)

The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied war-
ranties in certain transactions, therefore, this statement may not apply to you. This publi-
cation could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the
publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country. Requests
for technical information about IBM products should be made to your IBM reseller or IBM
marketing representative.

(© International Business Machines Corporation 1999. All Rights Reserved. Note to U.S.
Government Users-Documentation related to restricted rights- Use, duplication or disclosure
is subject to restrictions set forth in GS ADP Schedule Contract with IBM Corp.

Table of Contents

About This Document 1
Who Should Read This Document?............................ 1
Related Publications 1

1 SMAPIOverview.........covviiieeen... 3
1.1 Format of the Function Call Descriptions.................. 3

1.1.1 Reply Structure Functions by Message Type...... 3
1.1.2 Task Related Functions and Callbacks............ 4
1.1.3 Reply Structure-Related Functions and Callbacks. . 4
1.2 Naming Conventionsooiiiiiinenn... 4
1.3 SMAPI Function Calls by Group 4
1.3.1 Attribute Handling Functions.................... 5t
1.3.2 Callback and Dispatching Functions.............. 5
1.3.3 Data Access Functions 5
1.3.4 Connection Functions 7
1.3.5 Session Functions............................... 7
1.3.6 Database Functions............................. 7
1.3.7 Administrative Functions........................ 8
1.3.8 Speech Recognition Engine State Functions....... 8
1.3.9 Vocabulary Functions........................... 8
1.3.10 Audio Functions............................... 9
1.3.11 Parallel Session API Calls...................... 9
2 SMAPI Starter Set APIs.................. 11
2.1 Starter Set SMAPIs for Command and Control........... 11
2.1.1 Establishing a Recognition Session.............. 12
2.1.2 Setting Up and Enabling Vocabularies........... 12
2.1.3 Directing the Engine to Process Speech.......... 12
2.1.4 Processing Recognized Commands 13
2.1.5 Disconnecting from the Engine 13
2.2 Starter Set SMAPIs for Dictation........................ 13
2.2.1 Establishing a Recognition Session 14
2.2.2 Setting Up and Enabling Vocabularies........... 14
2.2.3 Directing the Engine to Process Speech.......... 14
2.2.4 Processing Recognized Text 15
2.2.5 Correcting Errors............ 15
2.2.6 Disconnecting from the Engine 16

i SMAPI Reference

3 Function Calls to the Speech Recognition

Engine............ 17
3.1 SmAddCallback.......... ... 17
3.2 SmAddEnrollid 18
3.3 SmAddPronunciation.................ciiiiiii. .. 20
3.4 SmAddToVocab......... ... 23
3.5 SmMAAAUSEr. ..o 25
3.6 SmApiVersionCheck, 27
3.7 SmAutoComplete 28
3.8 SmCancelPlayback L. 30
3.9 SMCIOSE . ..ottt 32
3.10 SmMCONNECE . . oottt 33
3.11 SmCorrectTexto 36
3.12 SmCorrectTextEx........ 38
3.13 SmDefineGrammar.................. 40
3.14 SmDefineVocab 43
3.15 SmDefineVocabEx........... 46
3.16 SmDetachSessions.............. ... 50
3.17 SmDisableVocab 51
3.18 SmDiscardData 53
3.19 SmDiscardSpeechData.............. 54
3.20 SmDiscardUtterance.coooiiiiniiiina... 56
3.21 SmDisconnect................ 57
3.22 SmDispatch......... ... 59
3.23 SmkEnableVocab........... 60
3.24 SmEventNotify 62
3.25 SmEventNotifyEx.......... 64
3.26 SmEventTime i 66
3.27 SmHaltRecognizer. 67
3.28 SmMicOff 69
3.20 SIMICON ..ot 71
3.30 SmNewContextovviee i 73
3.31 SmNewContextEx............. 75
3.32 SMOPEN. ..t 7
3.33 SmPlayMessaget 78
3.34 SmPlayUtterance 80
3.35 SmPlayWords. ... 82
3.36 SMQUETY . . oottt 85
3.37 SmQueryAddedWords 90
3.38 SmQueryAddedWordsEx 92
3.39 SmQueryAlternates ... 94
3.40 SmQueryBinary........ 96
3.41 SmQueryDefault 98
3.42 SmQueryEnabledVocabs.............................. 100
3.43 SmQueryEnrolllds 102
3.44 SmQueryLanguages i 104
3.45 SmQueryPhraseAlternatives 105

ii SMAPI Reference

iii

3.46
3.47
3.48
3.49
3.50
3.51
3.52
3.53
3.54
3.55
3.56
3.57
3.58
3.59
3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69
3.70
3.71
3.72
3.73
3.74
3.75
3.76
3.77
3.78
3.79
3.80
3.81
3.82
3.83
3.84
3.85
3.86
3.87
3.88
3.89
3.90
3.91
3.92

SmQueryPronunciation 107

SmQueryPronunciationEx o o oL 109
SmQueryPronunciations 111
SmQueryPronunciationsEx............ 113
SmQuUeryScripts.o 115
SMQUErYSESSIONS . .ottt 117
SmQuerySpeechData 118
SmQuerySpeechDataEx 119
SmQuerySpeechUserSize. 121
SmQueryTasks. ... 123
SmMQUeryTopics 125
SmQueryUserDefault, 127
SmQueryUserInfo.......... 129
SMQUEryUSErs . ..ot 131
SmQueryUtterancesccooiviiiiniii.. 133
SmQueryVocabs 135
SmQueryWord 137
SmReceiveMsg 139
SmRecognizeNextWord, 140
SmReleaseFocus 142
SmRemoveCallback 143
SmRemoveEnrollid 144
SmRemoveFromVocab.............. 146
SmRemovePronunciation, 148
SmRemoveUser 150
SmRequestFocus 152
SmRequestMicOff 154
SmRequestMicOn.......... ... 155
SmRequestNewEnrollid 156
SmRequestScriptText 158
SmRestoreSpeechData................................ 160
SmRestoreSpeechDataEx 162
SmRestoreSpeechUser 164
SmSaveSpeechData............. 166
SmSaveSpeechDataEx 168
SmSaveSpeechUser i ... 171
SmSelectScript.o 173
SmSet. .. 175
SMSEtATE . oo 182
SmSetBinary 183
SmSetDefault........ 185
SmSetDirectoryc 187
SmSetUserDefault.............. 189
SmSetUserInfo.......... 191
SmSetUtteranceNumber 193
SmUndefineVocab.................................... 194
SmWordCorrection. ..., 196

SMAPI Reference

4 Data Access Functions................... 199

4.1 SmGetAlphabets............. 199
4.2 SmGetAlternates.ii 200
4.3 SmGetAnnotations................iiiii 201
4.4 SmGetApplication 203
4.5 SmGetApplications. 204
4.6 SmGetAudioLevel.......... 205
4.7 SmGetBinaryltemValue............, 206
4.8 SmGetCodePage 207
4.9 SmGetCommentoiiiii 208
4.10 SmGetConfidenceScorescouiiia... 209
4.11 SmGetDescriptions. 210
4.12 SmGetEngineState L. 211
4.13 SmGetEnrollld......... 213
414 SmGetEnrolllds.......... 214
415 SmGetEventId.......... 215
4.16 SmGetEventOptions.............. 216
4.17 SmGetExpectedRecordingSpace 217
4.18 SmGetExpectedTrainingSpace 218
419 SmGetFirmWords. 219
420 SmGetFlags ... 220
4.21 SmGetFocusChangeReason 221
4.22 SmGetFocusState 222
4.23 SmGetFreeSpace 223
4.24 SmGetGrammarPath................. 224
4.25 SmGetIncrements 225
4.26 SmGetltemValue............. 226
4.27 SmGetLanguages.o 227
4.28 SmGetMicState 228
4.29 SmGetMsgName ... 229
4.30 SmGetMsgType. 230
4.31 SmGetNameValue..................... 231
4.32 SmGetNextAlternateoiiiio. ... 232
4.33 SmGetNumberProcessed 233
4.34 SmGetNumberRecorded 234
4.35 SmGetNumberRequired 235
4.36 SmGetNumberUtterances............................. 236
4.37 SmGetNumberWordMsgs 237
4.38 SmGetOptionsooii i 238
4.39 SmGetPercentages i 239
4.40 SmGetPhoneticPronunciations 240
4.41 SmGetPhraseScore............... 241
4.42 SmGetPhraseState 242
4.43 SmGetPreferred......... 243
4.44 SmGetPronunciations 244
4.45 SmGetRce. ... 245
4.46 SmGetRcDescription 246

iv SMAPI Reference

4.47 SmGetReName 247

4.48 SmGetRequiredTrainingSpace......................... 248
4.49 SmGetSampleRates 249
4.50 SmGetScriptFlags......... ... 250
451 SmGetScripts . ..o 251
4.52 SmGetService. 252
4.53 SmGetSessionld......... 253
4.54 SmGetSeverity 254
4.55 SmGetSizes 255
4.56 SmGetSpeechDataArchive 256
4.57 SmGetSpeechDataOptions............................ 257
4.58 SmGetSpeechDataSize............... 258
4.59 SmGetSpeechDataVersion 259
4.60 SmGetSpelling...........co 260
4.61 SmGetSpellings i 261
4.62 SmGetStates. 262
4.63 SmGetStatus 263
4.64 SmGetTagOffset 265
4.65 SmGetTagso 266
4.66 SmGetTask....... ... 267
4.67 SmGetTaskFlags.............. . 268
4.68 SmGetTaskso 269
4.69 SmGetTimes....... ... 270
4.70 SmGetTopics ... vve e 271
4.71 SmGetTrained i 272
4.72 SmGetUserId 273
4.73 SmGetUserIds 274
4.74 SMGetUSersS . ..ot 275
4.75 SmGetUtterancelist. 276
4.76 SmGetUtteranceNumber. 277
4.77 SmGetVocabList 278
4.78 SmGetVocabName 279
4.79 SmGetVocabPath, 280
4.80 SmGetVocWords. 281
4.81 SmGetWords ... 282
4.82 SmGetWordTimest 283
4.83 SmReturnRec........ 285
4.84 SmReturnRcDescription 286
4.85 SmReturnRecName 287

5 Reply Message Structures and Callbacks.. 289

5.1 Reply Message Structures Received from the Speech
Recognition Engine L. 289

5.2 Callbacks. 299

5.3 Reply Structure Functions for Unsolicited Callbacks 303

v SMAPI Reference

6 DataTypesccoviiiiiiiiiinnnnnnnns 305

6.1 SmArgdatatype......... 305
6.2 SmArgVal data type. ... 306
6.3 SmHandler data type............ ... 307
6.4 SM_ANNOTATION data typeccoiiinn. .. 308
6.5 SM_MSG datatype ... 309
6.6 SM_VOCWORD data type...........cooviiiiiiii... 310
6.7 SM_WORD data typecoooiiiiiii .. 311
7 SMAPI Attributes....................... 313
7.1 System Dependent Definition for Argument Lists........ 313
7.2 Argument Attribute List................. 313
7.2.1 Application Information Attributes 313

7.2.2 Requested Services 313

7.2.3 Options Flags 314

7.2.4 FExternal Notifier 314

7.2.5 User Definition Arguments 315

8 SMAPI Grammar Compiler API Overview

....................................... 317
8.1 Format of the Function Call Descriptions 317
8.2 Grammar Compiler API Function Calls................. 317
9 SMAPI Grammar Compiler API Function
Calls........oiiiiiiiiii it 319
9.1 VEAAAATE . o oot 310
9.2 VtCompileGrammar.coiiieii..... 320
9.3 VEtGetMeSSagettt 321
9.4 VtGetTranslation, 322
9.5 VtLoadFSG 323
9.6 VESetATg . ..ot 324
9.7 VtUnloadFSG 325
10 SMAPI Grammar Compiler Data Types
....................................... 327
101 VEATE . oo oottt 327

Appendix A SMAPI Return Codes, Messages,

and Message Types...........cccvun... 329
A.1 SMAPI Return and Status Codes 329

A11 SMAPIReturn Codes........................ 329

A.1.2 SMAPI Status Codes......................... 332
A.2 SMAPI Message Types......oovveeeeiiiiinnnn.. ... 333
A.3 SMAPI Message Explanations......................... 337
A4 SMAPI Logging ..., 363

vi SMAPI Reference

Appendix B Speech Recognition Engine Error

MeESSALEeS . v oo v i tinet e nnnanns 365
Appendix C Notices....................... 367
C.1 TrademarKkso 367
Indexcoiiii i 369

vii SMAPI Reference

viii SMAPI Reference

About This Document

About This Document

This document provides detailed information on developing speech-aware applications using
IBM ViaVoice(tm) Software Developer’s Kit (SDK) and Speech Manager Application Pro-
gramming Interfaces (SMAPI) from IBM. The ViaVoice SDK provides three sets of APIs:
Speech Manager APIs (SMAPI), Dictation Macro APIs (DMAPI), and Grammar Compiler
APIs. This document covers only SMAPI and the Grammar Compiler. Refer to the Speech
Developer’s Tools Guide for information about DMAPI.

Who Should Read This Document?

Read this document if you are a software developer interested in writing applications using
the ViaVoice SDK APIs.

Related Publications

Refer to the following publications for additional programming, reference, and design infor-
mation:

SMAPI Developer’s Guide
SAPI Reference (Windows developers only)
ActiveX Developer’s Guide (Window developers only)
Refer to the following sources for additional programming, reference, and design informa-

tion:

ViaVoice Developer’s Corner website at:
http://www.ibm.com/viavoice/dev_home.html

IBM ViaVoice SDK Web Channel at:
http://www.software.ibm.com /viavoice/subscribe.html

OLE Automation Reference from Microsoft
(Windows developers only)

1 SMAPI Reference

About This Document

2 SMAPI Reference

Chapter 1: SMAPI Overview

1 SMAPI Overview

This chapter describes the format of the function calls that are presented in Chapter 3
"Function Calls to the Speech Recognition Engine" and Chapter 4 "Data Access Functions".
Chapter 3 contains the function calls that go directly to the speech recognition engine.
Chapter 4 contains the function calls that do not interact with the engine; they provide
local access to the logical contents of a message that has already been received.

This chapter also lists the calls by functional group.

1.1 Format of the Function Call Descriptions

The description of each function call contains the following information:

Function Name
The name of the function call.

Purpose The purpose and description of the function call.
Syntax The syntax of the function as declared in SMAPIL.H.

Parameters
Definitions of the parameters.

Return Values
Return values are listed in two groups:

e Return values that are set by the SMAPI or as a result of an unsuccess-
ful connection to the speech recognition engine. These values are always
returned by the called function whether it was called synchronously or
asynchronously.

e Return values that are set from within the speech recognition engine.
These values are returned by the called function only if it was called syn-
chronously. If it was called asynchronously, the speech-aware application
must retrieve this type of return value from within the appropriate callback
by using the SmGetRc function.

For detailed descriptions of SMAPI errors, reference <Pantone 2718 CVP>"SMAPI
Return Codes and Messages" on page 353<Default Paragraph Font>.

1.1.1 Reply Structure Functions by Message Type
A list of all reply message structures that can be received from the speech recognition

engine; and for each listed reply message structure, the SmGet functions that can extract
data from it.

3 SMAPI Reference

Chapter 1: SMAPI Overview

1.1.2 Task Related Functions and Callbacks

A list of functions and callbacks broadly related by task to this function. This is applicable
to functions that do not return a reply structure. For example, task related groups include:

Vocabulary Processing

User Processing

Application Initiation

Speech Processing

e Application Termination

This section also lists related unsolicited callbacks.

1.1.3 Reply Structure-Related Functions and Callbacks

Clarifies when the SmGet functions can be called. If the function prototype SmXxx is listed
as related for any SmGet function, then that function can be called as follows:

e Immediately after a synchronous SmXxx call
e From SmNXxxCallback after an asynchronous SmXxx call

e From the message reply structure after an asynchronous SmXxx call.

1.2 Naming Conventions

Use the following conventions when creating various IDs and names passed to the speech
recognition engine:

e User IDs can consist of only lowercase alphanumeric characters plus the underscore and
hyphen characters.

e Descriptions cannot contain a new line character.
e An ID must contain at least one character.
The following values, found in the file SMLIMITS.H, shows the maximum lengths of key
variables:
#define SM_MAX_USERID_LEN 8
#define SM_MAX_ENROLLID_LEN 8
#define SM_MAX_TASKNAME_LEN 8
#define SM_MAX_SCRIPTNAME_LEN 8

1.3 SMAPI Function Calls by Group

The following information lists the SMAPI calls by functional group.

4 SMAPI Reference

Chapter 1: SMAPI Overview

1.3.1 Attribute Handling Functions

These functions are implemented locally within the application’s address space by the
SMAPI layer and do not require any interaction with the speech recognition engine. Con-
sequently, they can be made at any time, independent of the speech focus.

e SmSetArg

1.3.2 Callback and Dispatching Functions

These functions are also implemented locally in the application’s address space by the
SMAPI layer.

SmAddCallback
e SmDispatch

e SmReceiveMsg
e SmRemoveCallback

1.3.3 Data Access Functions

The data access functions manipulate data received by the application. They are indepen-
dent of the speech focus.

e SmGetAlphabets

e SmGetAlternates

e SmGetAnnotations
e SmGetApplication
e SmGetApplications
e SmGetAudioLevel
o SmGetBinaryltemValue
e SmGetCodepage

e SmGetDefaultTopics
e SmGetDescriptions
e SmGetEngineState
e SmGetEnrollld

e SmGetEnrolllds

e SmGetEventld

e SmGetEventOptions
o SmGetFirmWords
o SmGetFlags

e SmGetFocusState

5 SMAPI Reference

Chapter 1: SMAPI Overview

e SmGetIncrements

e SmGetltemValue

e SmGetLanguages

e SmGetMicState

e SmGetMsgName

e SmGetMsgType

e SmGetNameValue

e SmGetNumber WordMsgs
e SmGetOptions

o SmGetPercentages

e SmGetPhraseScore

o SmGetPreferred

e SmGetPronunciations

e SmGetRc

e SmGetRcDescription

e SmGetRcName

e SmGetSampleRates

e SmGetScriptFlags

e SmGetScripts

e SmGetService

e SmGetSessionld

e SmGetSeverity

e SmGetSizes

e SmGetSpeechDataArchive
e SmGetSpeechDataOptions
e SmGetSpeechDataSize

e SmGetSpeechDataVersion
e SmGetSpelling

e SmGetSpellings

e SmGetStates

o SmGetStatus

o SmGetTags

o SmGetTask

e SmGetTaskFlags

o SmGetTasks

e SmGetTimes

o SmGetTopics

e SmGetTrained

6 SMAPI Reference

Chapter 1: SMAPI Overview

o SmGetUserld

e SmGetUserlds

e SmGetUsers

e SmGetUtteranceNumber
e SmGetVocabList

e SmGetVocabName

e SmGetVocabPath

e SmGetVocWords

e SmGetWords

e SmGetWordTimes

e SmReturnRc

e SmReturnRcDescription
e SmReturnRcName

1.3.4 Connection Functions

These functions enable an application to connect to, or disconnect from, the speech recog-
nition engine.

e SmApiVersionCheck

e SmOpen

e SmConnect

e SmDisconnect

e SmClose

1.3.5 Session Functions

The session-sharing related calls are appropriate when an application is in a particular state.
e SmDetachSessions
e SmReleaseFocus
e SmRequestFocus
e SmRequestMicOff
e SmRequestMicOn

1.3.6 Database Functions

These functions access database information. Although they do divert some engine re-
sources, they do not interfere with the application’s use of the speech recognition engine.
Consequently, they are permitted at any time after calling SmConnect. Some returned
information pertains to a specific session; some pertains to the speech recognition engine as
a whole.

7 SMAPI Reference

Chapter 1: SMAPI Overview

e SmQueryAddedWords

e SmQueryAddedWordsEx
e SmQueryAlternates

e SmQueryDefaults

e SmQueryEnabledVocabs
e SmQueryEnrolllds

e SmQueryLanguages

e SmQueryPronunciation
e SmQueryPronunciations
e SmQueryPronunciationsEx
e SmQuerySessions

e SmQueryTasks

e SmQueryTopics

e SmQueryUserDefault

e SmQueryUserInfo

e SmQueryUsers

e SmQueryVocabs

e SmQueryWord

1.3.7 Administrative Functions

The following functions are administrative. They do not change the state of the engine for
the application with focus:

e SmSetDefault
e SmSetUserDefault
e SmSetUserInfo

1.3.8 Speech Recognition Engine State Functions

These functions set and query the state of the speech recognition engine.
e SmSet
e SmQuery

1.3.9 Vocabulary Functions

These functions change the state of the active, dynamically specified vocabularies, and they
are handled independently for each session.

e SmAddPronunciation

8 SMAPI Reference

Chapter 1: SMAPI Overview

e SmAddToVocab

e SmCorrectText

e SmDefineVocab

e SmDefineVocabEx

e SmDisableVocab

e SmDiscardData

e SmEnableVocab

e SmEventNotify

e SmHaltRecognizer

e SmNewContext

e SmRecognizeNext Word
e SmRemoveFromVocab
e SmRemovePronunciation
e SmUndefineVocab

e SmWordCorrection

1.3.10 Audio Functions

These functions change the state of the audio system. Given a single audio source, this
changes the engine state for the application with focus. Therefore, these functions can only
be called by the application with focus.

e SmCancelPlayback
e SmMicOn

e SmMicOff

e SmPlayMessage

e SmPlayUtterance
e SmPlayWords

1.3.11 Parallel Session API Calls

The feature of having multiple engine connections from a single application is known as
parallel sessions. If you want more than one connection from your application, you must
use the parallel session calls. The name of a parallel session call is the same as the regular
function call except for two things: the name of the call has the characters Ses inserted after
the Sm, for example the parallel session disconnect call is SmSesDisconnect. Secondly, each
parallel session call takes one additional parameter, which is the session ID. This is always
the first parameter. So for the disconnect example, the call is SmSesDisconnect(hSession),
where hSession is the session ID. The session ID is returned in the first parameter of
the SmSesOpen call. The SmSesOpen returns SM_RC_NO_MORE_CONNECTIONS if
SM_MAX_SESSIONS (8) is exceeded. Currently you are allowed to have up to 8 paral-

lel connections from one application.

9 SMAPI Reference

Chapter 1: SMAPI Overview

10 SMAPI Reference

Chapter 2: SMAPI Starter Set APIs

2 SMAPI Starter Set APIs

To develop a full-function speech application, you do not need to use all of the functions
provided in the SMAPI. You can use a subset of calls, known as the Starter Set SMAPIs.
These calls do not use separate header or library files.

Please Note:

The ViaVoice Run Time Kit contains several user interface applications that you must
include with your speech-aware application. (For more information, consult the SMAPI
Developer’s Guide documentation.) Inclusion of these applications ensures optimal recog-
nition performance for your users. They also serve as reusable applications, so that you
don’t have to develop these same functions yourself (setting up the microphone, changing
ViaVoice system parameters, enrollment, and managing the user’s personal vocabulary).

2.1 Starter Set SMAPIs for Command and Control

When writing your command and control application, you must first establish a connection
with the speech recognition engine. Next, you direct the engine to start processing speech.
Your application interacts with the engine to set up and activate vocabularies and grammars.
Most of your work is involved in processing the recognized speech. When you are done, you
disconnect from the engine. Here are the Starter Set SMAPIs for command and control
applications:

e SmOpen

e SmConnect

e SmDefineGrammar
e SmDefineVocab

e SmDefineVocabEx
e SmEnableVocab

e SmDisableVocab
e SmRequestFocus
e SmReleaseFocus

e SmMicOn

e SmMicOff

e SmRecognizeNext Word
e SmReceiveMsg

e SmGetFirmWords
e SmGetAnnotations
e SmDisconnect

e SmClose

11 SMAPI Reference

Chapter 2: SMAPI Starter Set APIs

2.1.1 Establishing a Recognition Session

To establish a recognition session with the engine, use SmOpen to set up local parameters
for starting the engine and SmConnect, which actually establishes the link between your
application and the engine. You can use SmSetArg to set the input parameters to SmOpen
and SmConnect (such as language, user ID, and enroll ID), or you can specify to take the
defaults using the default parameters, SM_DEFAULT_USERID.

2.1.2 Setting Up and Enabling Vocabularies

A vocabulary is a list of words and/or phrases that the engine uses to match speech input
and translate it into text. Your command and control application specifies the set of active
words by defining and enabling one or more vocabularies. A vocabulary can be predefined
in a grammar file, or it can be created at runtime as a dynamic command vocabulary. For
more information on grammars, refer to the SMAPI Developer’s Guide.

By passing the name of your compiled grammar file to SmDefineGrammar, the words and
phrases of your grammar are defined to the engine. SmDefineVocab allows you to build
command vocabularies dynamically by passing a list of words and phrases that make up
that vocabulary. You would also use this call to define the names for any external references
in your grammar file. The function SmDefineVocabEx is an extension called by a client
application to define a vocabulary. SmEnableVocab enables a vocabulary. When decoding
speech, the engine searches all of the enabled vocabularies to translate speech to text. You
can have more than one vocabulary active in your application at a time.

To improve performance (both recognition speed and accuracy), your application should
narrow the possibilities by enabling and disabling vocabularies as they are needed. You
disable a vocabulary by using the SmDisableVocab call.

2.1.3 Directing the Engine to Process Speech

The speech recognition engine supports both shared and parallel sessions, which means that
there can be several applications connected to the speech recognition engine at the same
time, and that a single application can have more than one connection to the speech recogni-
tion engine at the same time, too. You should design your application so that it cooperates
with other speech-aware applications for control of the microphone. This is known as "hav-
ing speech focus." An application must have speech focus to receive recognized text; this
may or may not equate to input focus. You need to ensure that your application has speech
focus when it needs it. This is done by using SmRequestFocus to request speech focus and
SmReleaseFocus to release speech focus when you’re done. Once you have speech focus,
your application must tell the engine to start processing audio data. SmMicOn engages
the engine to start processing audio data, and SmMicOff tells the engine to stop processing
audio data.

12 SMAPI Reference

Chapter 2: SMAPI Starter Set APIs

2.1.4 Processing Recognized Commands

The bulk of the work in your application involves getting the recognized commands from
the engine and determining what to do with it. For a command and control application,
the engine waits for your application to direct it to start recognizing words. Use SmRecog-
nizeNext Word to start the engine looking for words to decode. When the engine recognizes
a word from a dynamic command vocabulary, it returns the word with alternates in the
SM_RECOGNIZED_WORD message. When a phrase is recognized from a grammar, the
engine returns the set of words and annotations in the SM_RECOGNIZED_PHRASE mes-
sage. Use SmReceiveMsg to accept and process these messages. In either case, the engine
stops decoding until your application makes another SmRecognizeNextWord call. This
gives you a chance to change active vocabularies for recognizing the next command. While
halted, however, the engine continues to capture and process audio, so no words are lost.

2.1.5 Disconnecting from the Engine

When your application is closing down, you must disconnect and close the session with the
speech recognition engine. To do this, use SmDisconnect and SmClose.

2.2 Starter Set SMAPIs for Dictation

The Dictation Starter Set SMAPIs will enable you to develop a dictation application that
supports commands, dictation, word-error playback and correction, and language model
cache updates.

e SmOpen

e SmConnect

e SmDefineGrammar
e SmDefineVocab

e SmDefineVocabEx
e SmEnableVocab

e SmDisableVocab
e SmUndefineVocab
e SmMicOn

e SmMicOff

e SmRequestFocus
e SmReleaseFocus

e SmNewContext

e SmRecognizeNext Word
e SmGetFirmWords

13 SMAPI Reference

Chapter 2: SMAPI Starter Set APIs

e SmHaltRecognizer
e SmEventNotify

e SmReceiveMsg

e SmQueryAlternates
e SmPlayWords

e SmWordCorrection
e SmDiscardData

e SmDisconnect

e SmClose

2.2.1 Establishing a Recognition Session

To establish a recognition session with the engine, use SmOpen to set up local parameters
for starting the engine and SmConnect, which actually establishes the link between your
application and the engine. You can use SmSetArg to set the input parameters to SmOpen
and SmConnect (such as language, user ID, and enroll ID), but you’ll probably want to
take the defaults using SM_DEFAULT_* parameters.

2.2.2 Setting Up and Enabling Vocabularies

A vocabulary is a list of words and/or phrases that the engine uses to match speech input
and translate it into text. Your application specifies the set of active words by defining and
enabling one or more vocabularies. A dictation application must first enable a predefined
domain (such as the general office vocabulary) before the engine can use it to decode text. It
does so by using the SmEnableVocab function. To have command words recognized during
dictation (such as "stop dictation"), the application must enable the dictation vocabulary
first, and then define the command vocabulary. Grammar vocabularies cannot be active
at the same time as dictation vocabularies, although you can support both dictation and
command and control within the same application. SmDefineGrammar defines a grammar
vocabulary to the engine, and SmDefineVocab defines a dynamic command vocabulary.
SmEnableVocab enables all types of vocabularies (dictation, grammar, and dynamic com-
mand). To improve performance (both recognition speech and accuracy), your application
should narrow the possibilities by enabling and disabling vocabularies as they are needed.
You disable a vocabulary by using the SmDisableVocab call. You can also use SmUndefine-
Vocab to delete a dynamic command vocabulary, but it must have been disabled first.

2.2.3 Directing the Engine to Process Speech

The speech recognition engine supports both shared and parallel sessions, which means that
there can be several applications connected to the speech recognition engine at the same

14 SMAPI Reference

Chapter 2: SMAPI Starter Set APIs

time, and that a single application can have more than one connection to the speech recogni-
tion engine at the same time, too. You should design your application so that it cooperates
with other speech-aware applications for control of the microphone. This is known as "hav-
ing speech focus." An application must have speech focus to receive recognized text; this
may or may not equate to input focus. You need to ensure that your application has speech
focus when it needs it. This is done by using SmRequestFocus to request speech focus and
SmReleaseFocus to release speech focus when you’re done. Once you have speech focus,
your application must tell the engine to start processing audio data. SmMicOn engages
the engine to start processing audio data, and SmMicOff tells the engine to stop processing
audio data.

2.2.4 Processing Recognized Text

The bulk of the work in your application involves getting the recognized text from the
engine and determining what to do with it. For a dictation application, the engine waits
for your application to direct it to start recognizing words. Use SmRecognizeNextWord
to start the engine looking for words to decode. If the engine recognizes a word from
a dictation vocabulary, the available decoded words are sent to the application in an
SM_RECOGNIZED_TEXT reply message. The SM_RECOGNIZED_TEXT reply message
provides a list of firm words. Use SmReceiveMsg to receive messages from the engine. The
engine continues decoding words as they are spoken. SmEventNotify requests that your
application be notified when the engine completes decoding all of the audio up to the point
of the call.

Commands are handled as described in the preceding section, "Processing Recognized Com-
mands".

When a word is recognized, there is a reply structure generated which you can access via
function calls. When your application is notified that a word is recognized, use SmGetFirm-
Words to retrieve the list of words from the reply message. The engine continues decoding
speech after a word is recognized during dictation. There are times your application may
need to halt the engine during dictation recognition; for example, while setting new context
or adding pronunciations. To do this, use SmHaltRecognizer, which will temporarily halt
recognition. A subsequent SmRecognizeNextWord call restarts the recognition process.

SmNewContext is called when dictation begins at a new location in the document. Context
refers to the previous and following words, which are used to decode the current word.

If the engine recognizes a word from a command vocabulary, the word is sent to the applica-
tion in an SM_RECOGNIZED_WORD reply message. The engine halts and waits for further
instruction from the application. Use SmGetFirmWords on SM_RECOGNIZED_WORD to
get the recognized text from the engine.

2.2.5 Correcting Errors

Correcting misrecognized words and improving recognition by updating personal data files
are key functions of dictation applications. Use SmPlayWords to play back previously

15 SMAPI Reference

Chapter 2: SMAPI Starter Set APIs

spoken words or phrases to the user. This can be of great help to the user in the correction
process. Use SmQueryAlternates to provide alternative choices when incorrectly recognized
words have been detected by the user. SmWordCorrection corrects a misrecognized word.
It notifies the engine that a word or sequence of words was corrected by the user. It can be
used to update the user’s text vocabulary, word-usage model, and pronunciation pool. Since
the data that the engine stores can be resource intensive, use SmDiscardData to discard
audio and error correction data for recognized words that are not referenced again. This
can conserve speech recognition engine disk space requirements.

2.2.6 Disconnecting from the Engine

When your application is closing down, you must disconnect and close the session with the
speech recognition engine. To do this, use SmDisconnect and SmClose.

16 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3 Function Calls to the Speech Recognition
Engine

This chapter lists and describes the function calls that go directly to the speech recognition
engine.

3.1 SmAddCallback

Purpose

SmAddCallback adds a single callback routine for the specified message.

Syntax

int SmAddCallback (char xreply_name,
SmHandler *handler,
void *client_data);

Parameters
reply_name
input - The name of the type of message.
handler input - The function name of the routine that handles the message.

client_data
input - Data passed back to the handler when it is called.

Return Values

SM_RC_EALLOC
SM_RC_ENOMEM
SM_RC_NOT_VALID_REQUEST
SM_RC_OK
SM_RC_SM_NOT_OPEN

Task Related Functions and Callbacks

SmDispatch
SmRemoveCallback

17 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.2 SmAddEnrollid

Purpose

SmAddEnrollid adds another enrollid for a particular userid. This enrollid can be used to
enroll another acoustic environment or sample rate for that userid.

Syntax

int SmAddEnrollid (char *user_id,

char *xenroll_id,
char *description,
char *language,
short sample_rate,

SM_MSG *reply);

Parameters

user_id

enroll_id

description

language

sample_rate

reply

input - Identifies the user to which the enrollid is added. Must be no more than
SM_MAX_USERID_LEN in length

input - Identifies the enrollid to be added. Must be no more than SM_MAX_ENROLLID _LENJQ
in length.

input - A description of the enrollid.

input - The language used by this enrollid. Must be no more than SM_MAX LANGUAGE_LEN]
in length.

input - The sample rate used for recording by this enrollid. Valid values 8, 11,
22

input/output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG

18

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_USERID
SM_RC_BAD_ENROLLID
SM_RC_ENROLLID_EXISTS
SM_RC_BAD_DESCRIPTION

Reply Structure Functions by Message Type

SM_ADD_ENROLLID_REPLY

Task Related Functions and Callbacks

SmAddUser
SmRemoveEnrollid
SmRemoveUser
SmRequestNewEnrollid
SmNaddEnrollidCallback

19 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.3 SmAddPronunciation

Purpose

SmAddPronunciation adds a new pronunciation. This function provides the method for
associating a pronunciation with a spelling. The following restrictions apply when calling
SmAddPronunciation:

e The engine must be halted.
e The utterance used to build the pronunciation must be complete.

e If an SmAddPronunciation call fails and the call is immediately repeated with ex-
actly the same parameters, the engine will automatically apply more lenient threshold
parameters the second time.

For a detailed description of the SM_REJECTION_THRESHOLD parameter see Sec-
tion 3.83 [SmSet|, page 175.
Please Note: For this call to be valid, the application must first enable audio saving through:

SM_MSG reply;
SmSet (SM_SAVE_AUDIO, SM_SAVE_AUDIO_DEFAULT, &reply);

Syntax

int SmAddPronunciation (char #*spelling,
char *pronunciation,

long uttno,
short repetitions,
long options,

SM_MSG *reply);

Parameters

spelling input - A null-terminated character string containing the spelling for the added
pronunciation.

pronunciation

input - A null-terminated character string containing an optional sounds-like
spelling that matches the acoustics and is used to help find the pronunciation
that best matches both the spelling and the speech. If omitted, the value of
the spelling parameter is used to help the search.

uttno input - Utterance number of the utterance in which a recording of the word is
stored.

repetitions input - Number of repetitions must be set to 1.

options input - The options are:

20 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

e SM_ADD_PRONUNCIATION_ADD - The pronunciation is added to any
existing ones for this word, up to a maximum of SM_MAX_ADDED_PRONUNCIATIONS |
This is the default.

e SM_ADD_PRONUNCIATION_REPLACE - Delete existing pronunciations
and replace them with this new one.

e SM_ADD_PRONUNCIATION_PHONETIC - An acoustic utterance is not
used, and the pronunciation parameter must hold a string of blank sepa-
rated phone spellings. The string may be preceeded by an optional sounds-
like spelling surrounded by ~ characters.

e SM_ADD PRONUNCIATION_ACOUSTIC - Only the acoustics are used
to construct the pronunciation, the spelling is ignored during the search.

e SM_ADD PRONUNCIATION PERMANENT - This option forces the
added pronunciation to be saved in the personal pool so it is available for
later sessions.

reply input /output - A pointer to a reply structure or to SmAsynchronous, indicating

that the call is made asynchronously.

Return Values

21

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_.EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM

SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_ADDWORD_LIMIT_EXCEEDED
SM_RC_BAD_ACOUSTICS
SM_RC_BAD_ADDWORD
SM_RC_ILLEGAL_SOUNDSLIKE
SM_RC_ILLEGAL_SPELLING
SM_RC_MISMATCHED_ACOUSTICS
SM_RC_NOT_ADDED
SM_RC_NOT_VALID_REQUEST
SM_RC_NOT_YET

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_SERVER_ERROR
SM_RC_SERVER_FILE_OPEN_ERROR
SM_RC_SERVER_FILE_READ_ERROR
SM_RC_SERVER_FILE_WRITE_ERROR
SM_RC_SERVER_MALLOC_ERROR

Reply Structure Functions by Message Type

SM_ADD_PRONUNCIATION_REPLY
SmGetRc

SmGetSpelling

SmGetSpellings

Task Related Functions and Callbacks

SmQueryPronunciation
SmQueryPronunciations
SmRemovePronunciation
SmNaddPronunciationCallback
SmNqueryPronunciationCallback
SmNqueryPronunciationsCallback

SmNremovePronunciationCallback

22 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.4 SmAddToVocab

Purpose

SmAddToVocab adds words to a vocabulary. This function adds words to predefined vo-
cabularies or to a vocabulary previously created by SmDefineVocab. SmAddToVocab can
be used to dynamically change command vocabularies within an application. If any of the
specified words do not have an existing pronunciation, the call returns the list of words
without pronunciations. Missing pronunciations must be added by using the SmAddPro-
nunciation function. Pronunciations exist for all words in the predefined vocabularies and
for words added by the user. For a predefined vocabulary the words are added in the user’s
personal pronunciation area of the vocabulary.

This call is valid only when the speech recognition engine is not decoding speech to text.

If a specified word does not exist in the current pool, the backup dictionary will be searched.
If the word is found in the backup dictionary, it will be added to the temporary pool, except
that when SmAddToVocab specifies a dictation vocabulary such as "text," the word will
be added to the personal pool.

Syntax
int SmAddToVocab (char *vocab,
short nvocwords,
SM_VOCWORD *vocwords[],
SM_MSG xreply) ;
Parameters
vocab input - The name of the vocabulary to which words are added.

nvocwords input - The number of words added to the vocabulary, up to the limit defined
by SM_MAX_WORDS.

vocwords input - The spellings of the words added to the vocabulary.

reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN

23 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_ENOMEM

SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_VOCAB
SM_RC_NOT_VALID_REQUEST
SM_RC_SERVER_FILE_OPEN_ERROR
SM_RC_SERVER_FILE_WRITE_ERROR

Reply Structure Functions by Message Type

SM_ADD_TO_VOCAB_REPLY
SmGetRc

SmGetVocabName
SmGetVocWords

Task Related Functions and Callbacks

SmDefineVocab
SmDisableVocab
SmEnableVocab
SmQueryAddedWords
SmQueryEnabled Vocabs
SmQueryVocabs

SmQueryWord
SmRemoveFromVocab
SmUndefineVocab
SmNaddToVocabCallback
SmNdefineVocabCallback
SmNdisableVocabCallback
SmNenableVocabCallback
SmNqueryAdded WordsCallback
SmNqueryEnabled VocabsCallback
SmNqueryVocabsCallback
SmNquery WordsCallback
SmNremoveFromVocabCallback
SmNundefineVocabCallback

24 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.5 SmAddUser

Purpose

SmAddEnrollid adds another speech user to the system.

Syntax
int SmAddUser (char
char
char
char

*user_id,
*user_name,
*description,
*password,

SM_MSG *reply);

Parameters

user_id input - Short name to identify the user. Must be no more than SM_MAX_USERID_LEN]
in length. The following characters must not appear in a userid: :\/\n\r\t"’#$%& ()*,.;;<=>7|

user-name

input - Full name of the user.

description

input - A description of the user.

password — input - Password used to limit access to userid. (Password access disabled on
Windows). Must be no more than SM_MAX_PASSWORD_LEN in length. The

following characters must not appear in a password: :\/\n\r\t"’ 14#$%&()*,.;;<=>7}

reply input /output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM

SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

25

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_USERID
SM_RC_USERID_EXISTS
SM_RC_BAD_PASSWORD

Reply Structure Functions by Message Type

SM_ADD_USER_REPLY

Task Related Functions and Callbacks

SmAddEnrollid
SmRemoveEnrollid
SmRemoveUser
SmRequestNewEnrollid
SmNaddUserCallback

26 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.6 SmApiVersionCheck

Purpose

SmApiVersionCheck verifies the current version of the SMAPI. This function checks whether
the version of the SMAPI used to compile the speech-aware application is compatible with
the API currently installed on the system. The reply message contains the return code
indicating the current status.

Syntax

int SmApiVersionCheck (char *caller_version,
char **sm_version);

Parameters

caller_version
input - Indicates the version used to compile the application. The constant
SM_API_VERSION_STRING is used for the comparison check.

sm_version
output - The version of the SMAPI currently installed on the system.

Return Values

SM_RC_OK
SM_RC_-WRONG_SM_VERSION

27 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.7 SmAutoComplete

Purpose

SmAutoComplete is called by a client application to request completions of a specified
string. SmAutoComplete will search active vocabularies, including topics, for completions
of the given string. If the number requested cannot be satisfied from the active vocabularies,
the backup dictionary will be searched.

Syntax
int SmAutoComplete (unsigned long flags,
int max_depth,
char *spelling,
SM_MSG *xreply) ;
Parameters
flags input - reserved

maz_depth input - maximum number of completions to return. Limited to SM_MAX_VOCWORDS.J
spelling input - string for which completions are requested

reply input - The pointer to a reply structure or to SmAsynchronous indicating that
the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST
SM_RC_SERVER_FILE_OPEN_ERROR

28 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_SERVER_FILE_READ_ERROR
SM_RC_SERVER_MALLOC_ERROR

Reply Structure Functions by Message Type

SM_AUTO_COMPLETE_REPLY
SmGetSpelling
SmGetSpellings

Task Related Functions and Callbacks

SmNautoCompleteCallback

29

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.8 SmCancelPlayback

Purpose

SmCancelPlayback cancels the request to play back a message, utterance, or words. This
function cancels a play request from the SmPlayMessage, SmPlayUtterance, and SmPlay-
Words functions.

Syntax

int SmCancelPlayback (SM_MSG *reply);

Parameters

reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_.EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK
SM_RC_NOT_VALID_REQUEST

Reply Structure Functions by Message Type

SM_CANCEL_PLAYBACK_REPLY
SmGetRe

30 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

31

SmPlayMessage

SmPlayUtterance

SmPlayWords
SmNcancelPlaybackCallback
SmNplayMessageCallback
SmNplayMessageStatusCallback
SmNplayUtteranceCallback
SmNplayUtteranceStatusCallback
SmNplayWordsCallback
SmNplayWordsStatusCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.9 SmClose

Purpose

SmClose closes the SMAPI connection. If the speech-aware application has not already
called the SmDisconnect function to terminate the connection with the speech recognition
engine, the speech API does so before executing SmClose.

Syntax

int SmClose ();

Parameters

None.

Return Values

SM_RC_OK
SM_RC_SM_NOT_OPEN

Task Related Functions and Callbacks

SmDisconnect
SmNdisconnectCallback

32 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.10 SmConnect

Purpose

SmConnect connects to the speech recognition engine. This function establishes a session
with the speech recognition engine. The desired type of session and other necessary in-
formation are provided by setting SMAPI attributes. Once a session is established the
session type cannot be changed. To change the session type, call SmDisconnect then call
SmConnect again.

Syntax
int SmConnect (int nargs,
SmArg *Args,
SM_MSG *reply);
Parameters
narqgs input - The number of arguments in the accompanying argument list.
Args input - A set of arguments that indicate the parameters used to connect to the

speech recognition engine. Speech API arguments can also be set prior to an
SmConnect call by using the SmSetArg function, which specifies the param-
eter or attribute name and its value. The attributes passed to this function
determine the session type. For details on establishing a speech session, see
the SMAPI Developer’s Guide. For details on the attributes, see Chapter 7
[Attributes|, page 313.

reply input - The pointer to a reply structure or to SmAsynchronous, indicating that
the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

33 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_OK
SM_RC_INCOMPATIBLE_ENROLLMENT
SM_RC_NAVIGATOR_ALREADY_DEFINED
SM_RC_ALREADY_CONNECTED
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_ADDWORD
SM_RC_BAD_AP

SM_RC_BAD_AUDIO

SM_RC_BAD_DECO
SM_RC_BAD_DESCRIPTION
SM_RC_BAD_ENROLLID
SM_RC_BAD_PASSWORD
SM_RC_BAD_SCRIPT
SM_RC_BAD_TASKID
SM_RC_BAD_USERID
SM_RC_ENROLLID_EXISTS
SM_RC_ENROLLID_RUNNING
SM_RC_ENROLLMENT_NOT_COMPLETE
SM_RC_MISMATCHED_ALPHABET
SM_RC_MISMATCHED_LANGUAGE
SM_RC_MISMATCHED_SCRIPT
SM_RC_NOT_VALID_REQUEST
SM_RC_SERVER_ERROR
SM_RC_SEVER_FILE_OPEN_ERROR

Reply Structure Functions by Message Type

SM_CONNECT_REPLY
SmGetMsgType
SmGetRc

SmGetService
SmGetSessionld
SmGetTask
SmGetTasks
SmGetUserld

Only recognition sessions:
SmGetCodepage
SmGetEnrollld

34 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SmGetEnrolllds
SmGetLanguages
SmGetSessionld
SmGetUserld
SmGetUserlds

Task Related Functions and Callbacks

SmOpen
SmSetArg
SmNconnectCallback

35 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.11 SmCorrectText

Purpose

SmCorrectText updates the user’s voice model with a sequence of text the user considers
correct.

This function provides the speech recognition engine with a sequence of correctly recognized
text. This text can be used to adapt the user’s voice model, thereby improving future
recognition of dictated text.

Syntax

int SmCorrectText (short nwords,
SM_WORD *words[],
SM_MSG *reply);

Parameters

nwords input - The number of words in the text sequence.
words input - An array of pointers to the words of the text.

reply input/output - The pointer to a reply structure indicating that the call is made
asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN

SM_RC_LENOMEM

SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST
SM_RC_SERVER_FILE_OPEN_ERROR
SM_RC_SERVER_FILE_WRITE_ERROR

36 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_CORRECT_TEXT_REPLY
SmGetRe

Task Related Functions and Callbacks

37

SmNewContext
SmRemovePronunciation
SmWordCorrection

SmNcorrect TextCallback
SmNnewContextCallback
SmNremovePronunciationCallback
SmNwordCorrectionCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.12 SmCorrectTextEx

Purpose

SmCorrectTextEx updates the user’s voice model with a sequence of text the user consid-
ers correct. This function is an extension of the function SmCorrectText. This function
provides the speech recognition engine with a sequence of correctly recognized text for a
particular document. This text can be used to adapt the user’s voice model, thereby im-
proving future recognition of dictated text. Since the api will only support specifying up
to SM_MAX_WORDS in a request this function may be called multiple times for a specific
document.

Syntax
int SmCorrectTextEx (unsigned long flags,

int docID,
short nwords,
SM_WORD *words[],
SM_MSG xreply) ;

Parameters

flags input - Control flags. Specify only one of the first four. The last one can be

specified with any of the others. Valid values:

SM_CORRECT_-TEXT_-OPEN
Set reference point if words already in cache, otherwise clear refer-
ence point.

SM_CORRECT_-TEXT_-UPDATE
Update reference point (undo previous one and update cache again.

)
SM_CORRECT_-TEXT_CLOSE
Discard reference point

SM_CORRECT_TEXT_DISCARD
Undo any updates made for this document

SM_CORRECT_-TEXT_-COMPLETE
Specifies this request contains the end of the document.

doclD input - Application defined document identifier.

nwords input - The number of words in the text sequence.

words input - An array of pointers to the words of the text.

reply input/output - The pointer to a reply structure indicating that the call is made
asynchronously.

38 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST
SM_RC_DOCUMENT_CACHED
SM_RC_BAD_NAME

Reply Structure Functions by Message Type

SM_CORRECT_TEXT_REPLY
SmGetRe

Task Related Functions and Callbacks

SmCorrectText

SmNewContext
SmRemovePronunciation
SmWordCorrection

SmNcorrect TextCallback
SmNnewContextCallback
SmNremovePronunciationCallback
SmNwordCorrectionCallback

39 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.13 SmDefineGrammar

Purpose

SmDefineGrammar defines a grammar-based vocabulary.

This function dynamically defines a new vocabulary that can be enabled through the
SmEnableVocab function, along with dynamic command vocabularies defined through
SmDefineVocab. The vocabulary content is specified by a precompiled FSG file, produced
by the grammar compiler.

Like SmDefineVocab, SmDefineGrammar returns a list of grammar words that don’t have
pronunciations. Unlike SmDefineVocab, if any pronunciation is missing, SmDefineGrammar
fails with a return code of SM_RC_NOT_INVOCAB, since recognition of a grammar network
with missing pronunciations is not well defined. Use SmGetVocWords to retrieve the list of
missing words.

If external lists are missing (for example, there was no SmDefineVocab before the SmDefine-

Grammar), SmDefineGrammar will also fail. This time, the return code is SM_RC_MISSING_EXTERN. |}
The names of the external lists are returned as if they were words without pronuncia-

tions, and can also be obtained with SmGetVocWords. Since missing externs is really

a program logic error, these are checked and returned before determining if any words

are missing pronunciations. So, if both externs and words are missing, you first get
SM_RC_MISSING_EXTERN. When that is fixed, you get SM_RC_NOT_INVOCAB.

Note that pronunciations can be found in the user’s personal pool, application-specific
pools (created by Dictionary Builder) or the base domain pool. If a specified word does not
exist in the current pool, the backup dictionary will be searched. If the word is found in the
backup dictionary, it will be added to the temporary pool, except that when SmAddToVocab
specifies a dictation vocabulary such as "text," the word will be added to the personal pool.

Syntax
int SmDefineGrammar (char *vocab,
char *grammar,
long options,
SM_MSG *reply);
Parameters
vocab input - The name of the new grammar.

grammar input - The fully qualified path name of the FSG file containing the compiled
grammar.

options flags include:

SM_PHRASE_ALLOW_SILENCES
Allow inter-word silences within phrase.

40 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_PHRASE_SHOW_SILENCES
Silence indicated in returned phrase. Silences are returned via the
word spelling "" in the recognized phrase message.

SM_PHRASE_NO_SILENCES
Don’t allow inter-word silences

SM_PHRASE_ALLOW_INSERTIONS
Allow insertions within phrase

SM_PHRASE_SHOW_INSERTIONS
Insertions indicated in returned phrase. Insertions are returned via
an empty word spelling "" in the recognized phrase message.

SM_PHRASE_NO_INSERTIONS
Don’t allow insertions

Note: These run-time flags override settings compiled in the FSG file.

reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.

Return Values

SM_RC_OK

SM_RC_MISSING_EXTERN
SM_RC_NOT_VALID_REQUEST
SM_RC_NOT_INVOCAB
SM_RC_BAD_VOCAB
SM_RC_SERVER_FILE_ MALLOC_ERROR
SM_RC_SERVER_FILE_OPEN_ERROR
SM_RC_SERVER_FILE_READ_ERROR

Reply Structure Functions by Message Type

SM_DEFINE_.GRAMMAR_REPLY
SmNdefineGrammarCallback
SmGetVocabName
SmGetGrammarPath
SmGetVocWords

Task Related Functions and Callbacks

SmEnableVocab
SmUndefineGrammar
SmDisableVocab

41 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SmNdisableVocabCallback
SmNdenableVocabCallback
SmNundefineVocabCallback

42

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.14 SmDefineVocab

Purpose

SmDefineVocab defines a new vocabulary.

This function dynamically creates a new vocabulary that can later be used by calling the
SmEnableVocab function. The vocabulary created by SmDefineVocab consists only of the
words specified in the call with all words receiving an equal voice model weighting. This
function can be used to dynamically create command vocabularies in an application. If
any of the specified words do not have an existing pronunciation, the call returns a list of
words without pronunciations. Pronunciations can be found in the predefined vocabulary
and in the user’s personal vocabulary. Predefined vocabularies are not dynamic. Dynamic
vocabularies are intended for command vocabulary recognition.

SmDefineVocab takes more time to execute than SmEnableVocab and SmDisableVocab;
therefore, it is more efficient to define a vocabulary once and enable/disable frequently
rather than to define multiple times.

This call is valid only when the speech recognition engine is not decoding speech to text.
For examples of conditions when the engine is not decoding speech to text, see "Setting
Up Vocabularies" in the SMAPI Developer’s Guide. If a specified word does not exist
in the current pool, the backup dictionary will be searched. If the word is found in the
backup dictionary, it will be added to the temporary pool, except that when SmAddToVocab
specifies a dictation vocabulary such as "text," the word will be added to the personal pool.

Syntax
int SmDefineVocab (char *vocab,
short nvocwords,
SM_VOCWORD *vocwords[],
SM_MSG xreply);
Parameters
vocab input - The name of the new vocabulary.

nvocwords input - The number of words in the new vocabulary. Limited to SM_MAX_VOCWORDS.}
vocwords input - The spellings of the words in the new vocabulary.
reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-

cating that the call is made asynchronously.

43 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN

SM_RC_ENOMEM

SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_VOCAB
SM_RC_NOT_VALID_REQUEST
SM_RC_SERVER_FILE_OPEN_ERROR
SM_RC_SERVER_FILE_WRITE_ERROR

Reply Structure Functions by Message Type

SM_DEFINE_-VOCAB_REPLY
SmGetRc

SmGetVocabName
SmGetVocWords

Task Related Functions and Callbacks

SmAddToVocab
SmDisableVocab
SmEnableVocab
SmQueryAddedWords
SmQueryEnabled Vocabs
SmQueryVocabs
SmQueryWord
SmRemoveFromVocab
SmUndefineVocab
SmNaddToVocabCallback
SmNdefineVocabCallback
SmNdisableVocabCallback

44 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

45

SmNenableVocabCallback
SmNquery Added WordsCallback
SmNqueryEnabled VocabsCallback
SmNqueryVocabsCallback
SmNquery WordsCallback
SmNremoveFromVocabCallback
SmNundefineVocabCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.15 SmDefineVocabEx

Purpose

SmDefineVocabEx is an extension of the SMAPI function SmDefineVocab. This function
is called by a client application to define a vocabulary.

If a specified word does not exist in the current pool, the backup dictionary will be searched.
If the word is found in the backup dictionary, it will be added to the temporary pool, except
that when SmAddToVocab specifies a dictation vocabulary such as "text," the word will
be added to the personal pool.

Calling SmDefineVocabEx with options SM_VOCAB_VOCWORDS and SM_VOCAB_COMMANDJ
set is equivalent to calling SmDefineVocab. Calling SmDefineVocabEx with options
SM_VOCAB_FILE and SM_VOCAB_FSG set is equivalent to calling SmDefineGrammar.
Calling SmDefineVocabEx with options SM_VOCAB_WORDS and SM_VOCAB_PHRASE
set is equivalent to calling SmDefineGrammar with SM_PHRASE LITERAL set. Only a
few combinations of format and type option flags are currently supported:

e SM_VOCAB_VOCWORDS + SM_VOCAB_COMMAND

e SM_VOCAB_VOCWORDS + SM_VOCAB_TEXT

e SM_VOCAB_FILE + SM_VOCAB_FSB

e SM_VOCAB_WORDS + SM_VOCAB_PHRASE

Syntax
int SmDefineVocabEx (char *vocab,
void *xdata,
int length,
long options,
char *xacoustic_id,
char *poolname,
SM_MSG *reply);
Parameters
vocab input - The name of the vocabulary being defined.
data input - Data used to define the new vocabulary. The form of the data depends
on the value of the options argument.
length input - Length of data in bytes or number of elements
options input - Options which specify how vocabulary is defined. These options are

valid for almost all vocabularies:

46 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

acoustic_id

poolname

reply

47

SM_VOCAB_REPLACE
Replace any currently defined vocabulary with the same name.
This eliminates the need to undefine the current vocabulary be-
fore defining the new one.

SM_VOCAB_GLOBAL
Active even if the client does not have focus.

SM_VOCAB_NOHALT
Engine does not halt after returning a command.

These options specify the format of the data:

SM_VOCAB_BINARY
The data is a buffer in binary format.

SM_VOCAB_FILE
The data is the name of a file.

SM_VOCAB_-WORDS
The data is a list of words in ASCII format.

SM_VOCAB_-VOCWORDS
The data is an array of pointers to SM_VOCWORD structures and
the length field specifies the number of elements in the array. This
length must be limited to SM_MAX_VOCWORDS.

These options specify the type of vocabulary:

SM_VOCAB_-COMMAND
Regular command vocabulary.

SM_VOCAB_TEXT
Acts like the "text" vocabulary but with no LM.

SM_VOCAB_FSG
Regular compiled grammar.

SM_VOCAB_PHRASFE
Single-phrase grammar (for example, for Enrollment).

SM_VOCAB_SELECT
Select-phrase grammar (verb + any phrase)

SM_VOCAB_VERBFINAL
Verb follows selected phrase

In addition, the existing SM_PHRASE_ options may be set for grammars.

input - Reserved: must be set to NULL
input - Reserved: must be set to NULL

input/output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOC
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_VOCAB
SM_RC_MISSING_EXTERN
SM_RC_NOT_INVOCAB
SM_RC_NOT_VALID_REQUEST

Reply Structure Functions by Message Type

SM_DEFINE_-VOCABULARY _REPLY
SmGetVocabName

SmGetVocabPath

SmGetVocWords

SmGetEventOptions

SmGetOptions

Task Related Functions and Callbacks

SmAddToVocab
SmDefineVocab
SmDefineGrammar
SmDisableVocab
SmEnableVocab
SmQuery Added Words
SmQueryEnabled Vocabs
SmQueryVocabs
SmQueryWord
SmRemoveFromVocab
SmUndefineVocab

48 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

49

SmNaddToVocabCallback
SmNdefineVocabCallback
SmNdisableVocabCallback
SmNenableVocabCallback
SmNqueryAdded WordsCallback
SmNqueryEnabledVocabsCallback
SmNqueryVocabsCallback
SmNqueryWordsCallback
SmNremoveFromVocabCallback
SmNundefineVocabCallback
SmNdefineVocabExCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.16 SmDetachSessions

Purpose

SmDetachSessions requests that one or more sessions detach. This function requests all
applications connected to the speech recognition engine to disconnect from it. SmQuery-
Sessions can be used to monitor the number of attached applications. The disconnect
request is in the form of the SM_REQUEST_DETACH reply message structure. The en-
gine does not force a session to disconnect and does not wait for a reply to the disconnect
request. This function can be used for switching users (or user ID, enroll ID, task).

Syntax

int SmDetachSessions (SM_MSG *reply);

Parameters

reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.

Return Values

SM_RC_OK

Reply Structure Functions by Message Type
SM_DETACH_SESSIONS_REPLY
SmGetRc

Task Related Functions and Callbacks

SmQuerySessions
SmNdetachRequestedCallback
SmNdetachSessionsCallback
SmNquerySessionsCallback

50 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.17 SmDisableVocab

Purpose

SmDisableVocab disables a defined vocabulary. This function disables a vocabulary so it is
no longer used by the speech recognition engine to decode speech to text during a recognition
session. Only the specified vocabulary is disabled. Any other enabled vocabularies remain
active. This function is valid only when the speech recognition engine is not decoding speech
to text. For examples of conditions when the engine is not decoding speech to text, see
"Setting Up Vocabularies" in the SMAPI Developer’s Guide.

Syntax

int SmDisableVocab (char *vocab,
SM_MSG *reply);

Parameters
vocab input - The name of the vocabulary to be disabled.
reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-

cating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOC
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_VOCAB
SM_RC_NOT_VALID_REQUEST

51 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_DISABLE_VOCAB_REPLY
SmGetRe
SmGetVocabName

Task Related Functions and Callbacks

SmAddToVocab
SmDefineVocab
SmEnableVocab

SmQuery Added Words
SmQueryEnabled Vocabs
SmQueryVocabs

SmQueryWord
SmRemoveFromVocab
SmUndefineVocab
SmNaddToVocabCallback
SmNdefineVocabCallback
SmNdisableVocabCallback
SmNenableVocabCallback
SmNquery Added WordsCallback
SmNqueryEnabledVocabsCallback
SmNqueryVocabsCallback
SmNqueryWordsCallback
SmNremoveFromVocabCallback
SmNundefineVocabCallback

52 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.18 SmDiscardData

Purpose

SmDiscardData discards audio and error-correction data. This function discards audio
data and error-correction information for recognized words that are not referenced again,
thus conserving speech recognition engine disk space. (Note that this data can also be
deleted by specifying the SmNdiscardSessionData attribute when calling SmDisconnect.
See Section 3.21 [SmDisconnect|, page 57.)

SmDiscardData works on the granularity of utterances (between SmMicOn and SmMicOff)
and discards utterance files owned by the application. Ownership is established by the
application that turned the microphone on to create the utterance. An application can
guarantee ownership of its data by toggling the microphone Off and On when it receives
focus.

Syntax

int SmDiscardData (SM_MSG *reply);

Parameters

reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOC
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK
SM_RC_NOT_VALID_REQUEST

Reply Structure Functions by Message Type

SM_DISCARD_DATA_REPLY
SmGetRe

53 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.19 SmDiscardSpeechData

Purpose

SmDiscardSpeechData will be called by a client application to specify audio data that can be
deleted. The total number of tags which may be specified is limited to SM_MAX_API_TAGS
(16000). If the tags specified cover the entire utterance, the files associated with that utter-
ance will be deleted. When the speech data is saved (SmSaveSpeechData) those sections of
remaining .wav files associated with the tags marked as discarded will not be saved. Any
tags marked as discarded will no longer be usable.

Syntax

int SmDiscardSpeechData (unsigned long flags,
short ntags,
long stagsl[],
long etagsl[],
SM_MSG *reply);

Parameters

flags input - Reserved, must be set to 0.

ntags input - Specifies number of tags in tag arrays. Valid values 1 - SM_MAX_API_TAGSH
stags input - Array of starting tags

etags input - Array of ending tags

reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-

cating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOC
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST

54 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_DISCARD_SPEECH_DATA_REPLY
SmGetStatus
SmGetFlags

Task Related Functions and Callbacks

SmQuerySpeechData
SmRestoreSpeechData
SmSaveSpeechData
SmNdiscardSpeechDataCallback
SmNquerySpeechDataCallback
SmNrestoreSpeechDataCallback
SmNsaveSpeechDataCallback

55 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.20 SmDiscardUtterance

Purpose

SmDiscardUtterance deletes all audio files associated with an utterance.

Syntax

int SmDiscardUtterance (long uttno,
SM_MSG *reply);

Parameters

uttno input - Utterance number to be deleted

reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOC
SM_RC_.EBADHANDLE
SM_RC_ENOCONN
SM_RC_LENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST
SM_RC_ENROLLMENT_NOT_COMPLETE
SM_RC_BAD_UTTNO

Reply Structure Functions by Message Type
SM_DISCARD_UTTERANCE_REPLY

Task Related Functions and Callbacks

SmQueryUtterances
SmNdiscardUtteranceCallback

56 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.21 SmDisconnect

Purpose

SmDisconnect disconnects from the speech recognition engine. This function closes the
communication connection with the speech recognition engine. Any asynchronous engine
messages left in the application message queue after the SmDisconnect() call returns are no
longer valid and should not be used in any further SMAPI calls.

If the application needs to reconnect to the engine after a call to SmDisconnect(), then any
engine messages remaining in the application message queue for the previously connected
session must be removed before calling SmConnect().

Syntax
int SmDisconnect (int nargs,
SmArg *Args,
SM_MSG *reply);
Parameters
nargs input - The number of arguments in the accompanying argument list.
Args input - A set of arguments that indicate default parameters for disconnecting

from the speech recognition engine. Different attributes can be specified de-
pending on the type of session and the disposition of current data. Arguments
include:

In recognition sessions:
SmNdiscardSessionAdaptation

Reset the user’s voice model to the state it was in before the de-
coding session.

SmNdiscardSessionData
Delete any data for this session.

SmNsaveSessionData
Keep the session data until the user re-initializes. (Default)

SmNsaveSessionAdaptation
Keep words added to the word-usage model during this session.
(Default)

In enrollment sessions:

SmNcompleteEnrollment
Start the training program after disconnecting from the enrollment
session.

57 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SmNsuspendEnrollment
Do not start the training program after disconnecting from the
enrollment session.

reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOC
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG

SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_BAD_ENROLLID
SM_BAD_SCRIPT
SM_RC_BAD_VALUE
SM_RC_ENROLLID_EXISTS
SM_RC_ENROLLID_RUNNING
SM_RC_NO_SPACE_-TERM_ENROLL
SM_RC_NOT_VALID_REQUEST
SM_RC_SERVER_ERROR

Reply Structure Functions by Message Type

SM_DISCONNECT_REPLY
SmGetMsgType
SmGetRc

SmGetService

Task Related Functions and Callbacks

SmClose
SmNdisconnectCallback

58 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.22 SmDispatch

Purpose

SmDispatch receives one message and dispatches the callbacks. This function provides the
method through which callback functions are executed by Windows applications. More
specifically, this function receives one message from the speech recognition engine and dis-
patches the appropriate callback routines, which were previously registered using SmAdd-
Callback, for the default connection.

Syntax

int SmDispatch (unsigned long ap_val);

Parameters

ap_val input - Windows applications need to specify 1Param here for ap_val. Non-
Windows applications should set this parameter to 0.

Return Values

SM_RC_EALLOC
SM_RC_EBADHANDLE
SM_RC_EINVAL
SM_RC_EMSGSIZE
SM_RC_ENOCONN
SM_RC_ENOHANDLES
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_ETIMEOUT
SM_RC_EUNEXP
SM_RC_EUNKMSG
SM_RC_NOT_OPEN
SM_RC_OK

Task Related Functions and Callbacks

SmAddCallback
SmRemoveCallback

59 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.23 SmEnableVocab

Purpose

SmEnableVocab enables a defined vocabulary. This function enables a vocabulary to be
used by the speech recognition engine to decode speech to text during a recognition session.
Currently enabled vocabularies are not disabled by this function but remain enabled along
with the newly enabled vocabulary. If currently enabled vocabularies are to be disabled
first, then an SmDisableVocab call must be made beforehand for each vocabulary to be
disabled.

This call is valid only when the speech recognition engine is not decoding speech to text.

Syntax

int SmEnableVocab (char *vocab,
SM_MSG *reply);

Parameters
vocab input - The name of the vocabulary to be enabled.
reply input /output - The pointer to a reply structure or to SmAsynchronous, indi-

cating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOC
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_VOCAB
SM_RC_NOT_VALID_REQUEST

60 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_ENABLE_VOCAB_REPLY
SmGetRe
SmGetVocabName

Task Related Functions and Callbacks

SmAddToVocab
SmDefineVocab
SmDisableVocab

SmQuery Added Words
SmQueryEnabled Vocabs
SmQueryVocabs

SmQueryWord
SmRemoveFromVocab
SmUndefineVocab
SmNaddToVocabCallback
SmNdefineVocabCallback
SmNdisableVocabCallback
SmNenableVocabCallback
SmNqueryAdded WordsCallback
SmNqueryEnabledVocabsCallback
SmNqueryVocabsCallback
SmNqueryWordsCallback
SmNremoveFromVocabCallback
SmNundefineVocabCallback

61 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.24 SmEventNotify

Purpose

SmEventNotify requests notification when the speech recognition engine completes decoding
all the audio dictated up to the time SmEventNotify was called. This function causes the
callback associated with the SmNeventSynchCallback to be called as soon as decoding is
completed for all the words dictated up to the time SmEventNotify was called. If a callback
is not used, the application is notified with the reply message structure SM_EVENT_SYNCH
sent by the speech recognition engine.

Syntax

int SmEventNotify (long event_id,
long options,
SM_MSG *reply);

Parameters

event_id input - The event ID.

options input - The options for the event, which can be logically OR’ed:

e SM_EVENT_HALT_RECOGNITION - Halt and switch to command recog-
nition when event is encountered (Default)

e SM_EVENT_CONTINUE_RECOGNITION - Notify application that event

was encountered and continue with recognition
e SM_EVENT_FIRM_UP - Process audio preceding event
e SM_EVENT_DISCARD - Discard audio preceding event (Default)

Please Note:

e SM_EVENT_HALT_RECOGNITION and SM_EVENT_CONTINUE_RECOGNITIONE

cannot be specified together.

e SM_EVENT_FIRM_UP and SM_EVENT_DISCARD cannot be specified
together.

reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.
Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOC
SM_RC_EBADHANDLE

62 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK
SM_RC_NOT_VALID_REQUEST

SM_EVENT _NOTIFY_REPLY
SmGetEventld

SmGetRc

SM_EVENT _SYNCH
SmGetEventld
SmGetEventOptions

SmGetRc

Task Related Functions and Callbacks

63

SmNeventNotifyCallback
SmNeventSynchCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.25 SmEventNotifyEx

Purpose

SmEventNotifyEx is an extension of the function SmEventNotify. It allows an application
to request notification for an abitrary time.

This function can be used by an application to create bookmarks. The application can first
call the SmEventTime function to get the current time. It can then call SmEventNotifyEx
passing it the time returned by SmEventTime. The engine will send notification when
speech has been processed which corresponds to this time.

Syntax
int SmEventNotifyEx (long event_id,
unsigned long flags,
unsigned long time,
SM_MSG xreply);
Parameters

event_id input - The event ID.

flags input - The options for the event, which can be logically OR’ed:

e SM_EVENT HALT_RECOGNITION - Halt and switch to command recog-
nition when event is encountered (Default)

e SM_EVENT_CONTINUE_RECOGNITION - Notify application that event

was encountered and continue with recognition
e SM_EVENT_FIRM_UP - Process audio following event
e SM_EVENT_DISCARD - Discard audio preceding event (Default)

reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOC
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER

64 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN

Reply Structure Functions by Message Type

SM_EVENT_NOTIFY_REPLY
SmGetEventld

SmGetTimes

SmGetFlags

Task Related Functions and Callbacks

SmEventNotify
SmEventTime
SmNeventNotifyCallback

65 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.26 SmEventTime

Purpose

SmEventTime allows an application to get the current time.

Syntax

int SmEventTime (long event_id,
long options,
SM_MSG *reply);

Parameters

flags input - Reserved.

reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOC
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN

Reply Structure Functions by Message Type

SM_EVENT_TIME_REPLY
SmGetTimes
SmGetFlags

Task Related Functions and Callbacks

SmEventNotify
SmEventNotifyEx
SmNeventTimeCallback

66 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.27 SmHaltRecognizer

Purpose

SmHaltRecognizer temporarily halts recognition. This function can be called when the
speech recognition engine is decoding speech to text. Halting recognition may be neces-
sary, for example, to define and/or enable vocabularies to be used by the engine during
recognition. Recognition can be restarted with SmRecognizeNextWord.

Syntax

int SmHaltRecognizer (SM_MSG *reply);

Parameters
reply input/output - The pointer to the reply structure or to the SmAsynchronous
value.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOC
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK
SM_RC_NOT_VALID_REQUEST
SM_RC_SERVER_ERROR

Reply Structure Functions by Message Type

SM_HALT_RECOGNIZER_REPLY
SmGetNumber WordMsgs
SmGetRce

67 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

68

SmMicOff

SmMicOn

SmQuery
SmRecognizeNext Word

SmSet
SmNhaltRecognizerCallback
SmNmicOffCallback
SmNmicOnCallback
SmNqueryCallback
SmNrecognizeNext WordCallback
SmNrecognized TextCallback
SmNrecognized Word Callback
SmNsetCallback
SmNutteranceCompleted Callback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.28 SmMicOff

Purpose

SmMicOff turns off the microphone. This function turns off the microphone; however, in
a recognition session, after the microphone is turned off, the speech recognition engine
continues speech to text decoding of words already spoken. Depending on the speed and
what is said before the microphone is turned off, this process can take several seconds to
complete.

Syntax

int SmMicOff (SM_MSG *reply);

Parameters

reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOC
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK
SM_RC_MIC_ALREADY_OFF
SM_RC_MIC_OFF_PENDING
SM_RC_NOT_VALID_REQUEST

Reply Structure Functions by Message Type

SM_MIC_OFF_REPLY
SmGetRe

69 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

70

SmHaltRecognizer

SmMicOn

SmQuery
SmRecognizeNext Word

SmSet
SmNhaltRecognizerCallback
SmNmicOffCallback
SmNmicOnCallback
SmNqueryCallback
SmNrecognizeNext WordCallback
SmNrecognized TextCallback
SmNrecognized Word Callback
SmNsetCallback
SmNutteranceCompleted Callback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.29 SmMicOn

Purpose

SmMicOn turns on the microphone. In a recognition session, this function turns on the
microphone and starts the audio stream. The application must issue an SmRecognized-
NextWord to start the engine decoding.

Syntax

int SmMicOn (SM_MSG *reply);

Parameters
reply input/output - The pointer to the reply structure or to the SmAsynchronous
value.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOC
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEMS
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_AP
SM_RC_BAD_DECO
SM_RC_BUSY_LAST_.UTTERANCE
SM_RC_BUSY_-WORD_CORRECTION
SM_RC_ENROLLMENT_NOT_COMPLETE
SM_RC_MIC_ALREADY_ON
SM_RC_MIC_OFF_PENDING
SM_RC_MIC_ON_PENDING
SM_RC_NO_SPACE_MIC_ON
SM_RC_NOT_VALID_REQUEST

71 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_MIC_ON_REPLY
SmGetRe
SmGetUtteranceNumber

During a recognition session:
SM_RECOGNIZED_TEXT
SmGetFirmWords
SmGetRc
SmGetTimes

Task Related Functions and Callbacks

SmHaltRecognizer

SmMicOff

SmQuery
SmRecognizeNext Word

SmSet
SmNhaltRecognizerCallback
SmNmicOffCallback
SmNmicOnCallback
SmNqueryCallback
SmNrecognizeNext WordCallback
SmNrecognized TextCallback
SmNrecognized WordCallback
SmNsetCallback
SmNutteranceCompletedCallback

72 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.30 SmNewContext

Purpose

SmNewContext sends a new text context. This function allows a change in text context
sent to the speech recognition engine. This function is usually called when text dictation
begins at a new location in a document and can only be called when the speech recognition
engine is halted. Context refers to previous and following words, which are used to decode
the current word in a recognition session.

Syntax

int SmNewContext (short nwords,
SM_WORD *words[],
SM_MSG *reply);

Parameters

nwords input - The number of words of context sent. Zero means no left context.

words input - An array of pointers to the context words, ordered from left to right in
the text.

reply input/output - The pointer to the reply structure or to the SmAsynchronous

value indicating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST

73 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

Task Related Functions and Callbacks

74

SM_NEW_CONTEXT_REPLY
SmGetRe

SmCorrectText
SmCorrectTextCancel
SmRemovePronunciation
SmWordCorrection

SmNcorrect TextCallback
SmNcorrect TextCancelCallback
SmNnewContextCallback
SmNremovePronunciationCallback
SmNwordCorrectionCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.31 SmNewContextEx

Purpose

SmNewContextEx sends a new text context. This function is an extension of the function
SmNewContext.

This function allows a change in text context sent to the speech recognition engine. This
function is usually called when text dictation begins at a new location in a document and
can only be called when the speech recognition engine is halted. Context refers to previous
(left) and following (right) words, which are used to decode the current word in a recognition
session. This function allows an application to specify left and right context, as well as a list
of words between the left and right context to be ignored by the recognition engine when
setting the context

Syntax

int SmNewContextEx (const char *vocab,
int numleft,
const char *lefwordsl[],
int numexclude,
const char *excludephrases[],
int numright,
const char *rightwordsl[],
SM_MSG xreply) ;

Parameters

vocab input - Specifies the vocabulary of the new context.
numleft input - The number of left context words.

leftwords input - An array of pointers to the left context words, ordered from left to right
in the text.

numezxclude
input - The number of exclude phrases.

excludephrases
input - An array of pointers to the excluded phrases.

numright input - The number of right context words.

rightwords input - An array of pointers to the right context words, ordered from left to
right in the text.

reply input/output - The pointer to the reply structure or to the SmAsynchronous
value indicating that the call is made asynchronously.

75 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST

Reply Structure Functions by Message Type

SM_NEW_CONTEXT_REPLY
SmGetRe

Task Related Functions and Callbacks

SmCorrectText
SmCorrectTextCancel
SmRemovePronunciation
SmWordCorrection

SmNcorrect TextCallback
SmNcorrect TextCancelCallback
SmNnewContextCallback
SmNremovePronunciationCallback
SmNwordCorrectionCallback

76 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.32 SmOpen

Purpose

SmOpen opens the SMAPI. This function establishes a SMAPI connection and initializes
values in a connection structure.

Syntax

int SmOpen (int nargs,
SmArg *Args) ;

Parameters
nargs input - The number of arguments in the accompanying argument list.
Args input - A set of arguments that indicate default parameters for the SMAPI

connection. They are stored in a connection structure for the speech-aware
application. The values in the structure are used to set up the session with
the speech recognition engine. SMAPI attributes can also be set by using the
SmSetArg function, which specifies the attribute name and its value. For details
on establishing a speech session, see the SMAPI Developer’s Guide. For details
on the attributes, see Chapter 7 [Attributes|, page 313.

Return Values

SM_RC_EALLOC

SM_RC_ENOMEM
SM_RC_NAVIGATOR_-ALREADY _DEFINED
SM_RC_OK
SM_RC_ALREADY_CONNECTED
SM_RC_ALREADY_OPENED
SM_RC_OPEN_SYNCH_QUEUE_FAILED
SM_RC_NOT_VALID_REQUEST

Task Related Functions and Callbacks

SmConnect
SmSetArg
SmNconnectCallback

77 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.33 SmPlayMessage

Purpose

SmPlayMessage plays back a prerecorded audio file. This function allows the user to play
a prerecorded audio file. After the speech-aware application requests a playback, it can call
SmGetStatus to retrieve the last playback status, which can be one of the following:

e SM_STAT_BAD_AUDIO - The connection to the audio source was lost during playback.
e SM STAT PLAY _START - The message has started playing.
e SM STAT_PLAY_STOP - The message has stopped playing.

Possible return values passed to the SmNplayMessageStatusCallback are:
e SM_RC_OK
e SM_RC_BAD_AUDIO
e SM_RC_PLAY_OPEN_ERROR

The following restrictions apply when calling SmPlayMessage:

e Microphone must be off.

e Speech recognition engine must not be decoding speech to text. In other words, the
application must have received SM_UTTERANCE_COMPLETED from the engine.

Syntax

int SmPlayMessage (char #*message_name,
char *language,
SM_MSG *reply);

Parameters

message_name
input - The fully qualified name of an audio file in IBM ViaVoice format, which
is 8, 11, or 22 kHz ADPCM WAV file format. These audio files can be created
by dictating the message and saving to a file in the IBM ViaVoice user path.

language input - The name of the language played.

reply input/output - The pointer to the reply structure or to the SmAsynchronous
value indicating that the call is made asynchronously.

78 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_LANGUAGE
SM_RC_BAD_MESSAGE
SM_RC_NOT_VALID_REQUEST
SM_RC_NOT_WHILE_MIC_ON

Reply Structure Functions by Message Type

SM_PLAY MESSAGE_REPLY
SmGetRc

SM_PLAY _MESSAGE_STATUS
SmGetMsgName

SmGetRc

SmGetStatus

Task Related Functions and Callbacks

SmCancelPlayback
SmPlayUtterance

SmPlayWords
SmNcancelPlaybackCallback
SmNplayMessageCallback
SmNplayMessageStatusCallback
SmNplay UtteranceCallback
SmNplayUtteranceStatusCallback
SmNplayWordsCallback
SmNplayWordsStatusCallback

79 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.34 SmPlayUtterance

Purpose

SmPlayUtterance plays back a spoken utterance. This function allows an utterance or a
portion of an utterance previously spoken during dictation or enrollment to be played back
to the user as an error-correction aid. For a monitored enrollment session, an utterance cor-
responds to a sentence of an enrollment script and, for a recognition session, it corresponds
to any word spoken between SmMicOn and subsequent SmMicOff.

After the speech-aware application requests a playback it can call SmGetStatus to retrieve
the last playback status, which can be one of the following:

e SM_STAT_BAD_AUDIO - The connection to the audio source was lost during playback.
e SM_STAT_PLAY_START - The utterance has started playing.
e SM_STAT_PLAY_STOP - The utterance has stopped playing.
Possible return values passed to the SmNplayUtteranceStatusCallback are:
e SM_RC_OK
e SM_RC_BAD_AUDIO
¢ SM_RC_PLAY_OPEN_ERROR
The following restrictions apply when calling SmPlayUtterance:
e Microphone must be off.

e Speech recognition engine must not be decoding speech to text. In other words, the
application must have received SM_UTTERANCE_COMPLETED from the engine.

Please note: For this call to be valid, the application must first enable audio saving through
SmSet(SM_SAVE_AUDIO, SM_SAVE_AUDIO_DEFAULT, &reply).

Syntax

int SmPlayUtterance(long uttno,
long begtime,
long endtime,
SM_MSG *reply);

Parameters

uttno input - The utterance number to play back. The current utterance number can
be extracted from SM_MIC_ON_REPLY with SmGetUtteranceNumber.

begtime input - Reserved. Must be set to 0.
endtime input - Reserved. Must be set to 0.

reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-
cating that the call is made asynchronously.

80 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK
SM_RC_NOT_VALID_REQUEST
SM_RC_NOT_WHILE_MIC_ON

Reply Structure Functions by Message Type

SM_PLAY_UTTERANCE_REPLY
SmGetRc
SM_PLAY_UTTERANCE_STATUS
SmGetRc

SmGetStatus
SmGetUtteranceNumber

Task Related Functions and Callbacks

SmCancelPlayback
SmPlayMessage

SmPlayWords
SmNcancelPlaybackCallback
SmNplayMessageCallback
SmNplayMessageStatusCallback
SmNplayUtteranceCallback
SmNplayUtteranceStatusCallback
SmNplayWordsCallback
SmNplayWordsStatusCallback

81 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.35 SmPlayWords

Purpose

SmPlayWords plays back spoken words. This function allows a previously spoken word or
collection of words to be played back to the user as an error correction aid.

The SmPlayWords call generates one or more SM_PLAY_WORDS_STATUS messages.
When this message is received, the application can call SmGetStatus to retrieve the status
of the last playback, which can be one of the following:

e SM STAT BAD_AUDIO - The connection to the audio source was lost during playback.
e SM_STAT _BAD_TAG - An invalid word (tag) was specified for the played word.

e SM STAT PLAY _START - The word has started playing.

e SM STAT PLAY_STOP - The word has stopped playing.

Possible return values passed to the SmNplayWordsStatusCallback are:
e SM RC OK
e SM_RC_BAD_TAG
e SM_RC_PLAY_OPEN_ERROR

The following restrictions apply when calling SmPlayWords:
e Microphone must be off.
e Speech recognition engine must not be decoding speech to text. In other words, the
application must have received SM_UTTERANCE_COMPLETED from the engine.

Please note: For this call to be valid, the application must first enable audio saving through
SmSet(SM_SAVE_AUDIO, SM_SAVE_AUDIO_DEFAULT, &reply).

Syntax

int SmPlayWords (short ntags,
long tags([],
long options,
SM_MSG *reply);

Parameters

ntags input - The number of words (tags) to play back.
tags input - The array of word tags.

options input - One of the following:

SM_PLAY_WORDS_-CONTIGUOUS
When playing multiple words, return a single SM_PLAY_WORDS_STATUSH
message at the beginning (SM_STAT_PLAY_START) of each word

82 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

played, and return a single message (SM_STAT_PLAY_STOP) after
all words have been played. This is the default.

SM_PLAY_WORDS_SAVE_WAVFILE
Instead of sending audio to the output device, this flag saves the
audio data as a wave(WAV) file. The name of the wave file must be
set via an SmSetDirectory call prior to calling the SmPlayWords
function. If the SM_PLAY_WORDS_WITH_SILENCE flag is also
set, then the entire utterance(s) corresponding to the input tag
array will be written to the wave file.

SM_PLAY WORDS_SEPARATE
When playing multiple words, return separate SM_PLAY_WORDS_STATUSH
messages at the beginning (SM_STAT_PLAY_START) of each word
played and a single message (SM_STAT_PLAY_STOP) when the
entire list of tags has been played. If playback is canceled, the
SM_STAT_PLAY_STOP is also sent to indicate completion of the
interrupted playback request.

SM_PLAY WORDS_WITH_SILENCE
When playing multiple words, playback the silence between words.
The default is to play only the non-silence portion of recognized
words.

reply input/output - The pointer to a reply structure or to SmAsynchronous, indi-

cating that the call is made asynchronously.

Return Values

83

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_.EBADHANDLE
SM_RC_ENOCONN
SM_RC_LENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_TAG
SM_RC_NOT_VALID_REQUEST
SM_RC_NOT_WHILE_MIC_ON

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

Task Related Functions and Callbacks

84

SM_PLAY_WORDS_REPLY
SmGetRc
SM_PLAY_WORDS_STATUS
SmGetRe

SmGetStatus

SmGetTags

SmCancelPlayback
SmPlayMessage
SmPlayUtterance
SmQueryWord
SmWordCorrection
SmNcancelPlaybackCallback
SmNplayMessageCallback
SmNplayMessageStatusCallback
SmNplayUtteranceCallback
SmNplayUtteranceStatusCallback
SmNplay WordsCallback
SmNplayWordsStatusCallback
SmNqueryAdded WordsCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.36 SmQuery

Purpose

SmQuery queries a speech recognition engine parameter. This function queries the value
of the specified speech recognition engine parameter. Call the SmGetltemValue function to
extract the queried value.

Syntax

int SmQuery (short item,
SM_MSG *reply);

Parameters

item input - The parameter queried, which can be one of the following:

SM_API_DEBUG
Values include the following: 0 is debugging off, 1 to 5 provide
progressively more debug information. A value of 1 or 2 provides
flow of control information.

SM_API_DISPLAY
Reserved

SM_API LOG
Reserved

SM_API_TIMING
Reserved

SM_AUDIO_CONFIGURATION
(Not applicable to Windows. Instead use Audio Setup program.)
Query the input source of the audio hardware where audio data
is collected. The returned value is bit mapped and can be any
combination of the following values:

SM_AUDIO_INPUT_MIC_HI_GAIN
SM_AUDIO_INPUT_MIC_LO_GAIN
SM_AUDIO_INPUT_LINE_LEFT
SM_AUDIO_INPUT_LINE_RIGHT
SM_AUDIO_INPUT_VARIABLE_GAIN
SM_AUDIO_.OUTPUT_LINE_LEFT
SM_AUDIO_.OUTPUT_LINE_RIGHT
SM_AUDIO_.OUTPUT_INTERNAL_SPEAKER
SM_AUDIO_.OUTPUT_VARIABLE_GAIN

85 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Refer to the SMLIMITS.H file for bounds on input and output
values.

SM_AUDIO_DEVICE
Query the type of audio hardware. Return values include the fol-
lowing:
e SM_ACPA_AUDIO - Reserved
e SM PERSONAL _DICTATION_AUDIO - 777

e SM_SYSTEM_AUDIO - Native audio system for hardware/operating]]
systems.

SM_AUDIO_INPUT_MODE
(Not applicable to Windows. Instead use Audio Setup program.)
Query the input source of the audio hardware where audio data is
collected. We suggest you use the supplied AUDIO.DLL instead.
The returned value is bit mapped and can be any one of the fol-
lowing values:

SM_AUDIO_INPUT_LINE_LEFT
SM_AUDIO_INPUT_LINE_RIGHT
SM_AUDIO_INPUT_MIC_HI_GAIN
SM_AUDIO_INPUT_MIC_LO_GAIN

SM_AUDIO_INPUT_GAIN
(Not applicable to Windows. Instead use Audio Setup program.) If
supported by underlying audio, this parameter allows you to query
current gain setting.

SM_AUDIO_-OUTPUT-GAIN
(Not applicable to Windows. Instead use Audio Setup program.) If
supported by underlying audio, this parameter allows you to query
current gain setting.

SM_AUDIO_OUTPUT_-MODE
(Not applicable to Windows. Instead use Audio Setup program.)
If supported by underlying audio, this bit value indicates the cur-
rent output destination. We suggest you use the supplied audio.dll
instead. The returned value can be any one of the following values:

SM_AUDIO_OUTPUT_LINE_LEFT
SM_AUDIO_.OUTPUT_LINE_RIGHT
SM_AUDIO_OUTPUT_LINE_INTERNAL_SPEAKER
SM_COMPLETE_COMMAND_TIMEOUT
These timeout parameters are used to control the behavior of fi-
nite state grammars. In particular, they specify how much silence

is needed at the end of commands before the engine will make a
recognition decision to accept or reject the command. The amount

86 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

of silence required to accept or reject a phrase that is unambigu-
ously complete. Default value is 25 (csecs). Can be overridden by
task dependent .par values.

SM_DELAY_EXIT

Query the amount of time the engine waits before terminating after
the last client disconnects. Valid values: -1 - MAX_LONG. If set to
-1 the engine will not terminate after the last client disconnects. If
set to 0 the engine will terminate immediately after the last client
disconnects. For values of x where 0 < x <= MAX_LONG, the
engine will wait x seconds before terminating after the last client
disconnects.

SM_ENABLE_EXCLUSIVE_VOCABS
Query the calling application’s vocabularies. The value is either
TRUE (1) for enabled, or FALSE (0) for disabled.

SM_REJECTION_-THRESHOLD
Query the engine’s threshold for rejecting a recognized phrase. Re-
turns value from SM_MIN_REJECTION_THRESHOLD to SM_MAX REJECTIOM

SM_NOTIFY_AUDIO_.LEVEL
Query the returning of audio-level data during recognition or en-
rollment. The value is either TRUE (1) or FALSE (0).

SM_NOTIFY_-COMMAND_WORD
Query whether the application is notified when a command word is
recognized by having the engine send a SM_COMMAND_WORD
reply message. The value is either TRUE (1) or FALSE (0).

SM_NOTIFY_ENGINE_STATE
Query whether the application is notified of a speech recognition
engine state change. The value is either TRUE (1) or FALSE (0).

SM_NOTIFY_FOCUS_STATE
Query whether the application is notified of a speech focus state
change. The value is either TRUE (1) or FALSE (0).

SM_NOTIFY_MIC_STATE
Query whether the application is notified of a microphone state
change. The value is either TRUE (1) or FALSE (0).

SM_PARTIAL_COMMAND_TIMEOUT
These timeout parameters are used to control the behavior of fi-
nite state grammars. In particular, they specify how much silence
is needed at the end of commands before the engine will make a
recognition decision to accept or reject the command. The amount
of silence required to accept or reject a phrase that is both par-
tially complete and complete. Default value is 250 (csecs). It can
be overridden by task dependent .par value. For example, consider
the grammar: command = move up 3 move up five Now consider

7 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

the following acoustic scenarios: 1.MOVE 2.MOVE UP 3.MOVE
UP FIVE 1.The engine will accept silences up to 0.5 seconds, wait-
ing for the UP, before rejecting the phrase as incomplete. 2.The en-
gine will accept silences up to 0.5 seconds, waiting for the optional
FIVE, before accepting the phrase MOVE UP. 3.Then engine will
wait only 0.1 seconds after the FIVE to accept the phrase. For
the example given, it seems that you would like to increase the
SM_PARTIAL_.COMMAND_TIMEOUT in order to allow longer
pauses within phrases. Note that increasing this parameter will also
increase the decision time for "ambiguously complete" phrases.

SM_PHRASE_ALTERNATIVES
Queries the maximum number of alternatives which can be returned
by the engine when querying phrase alternatives. See Section 3.45
[SmQueryPhraseAlternatives|, page 105.

SM_REDUCED_CPU_-MODE
Query the CPU mode of the speech recognition engine. The value is
either TRUE (1) for reduced CPU mode, or FALSE (0) for normal
CPU mode. See Section 4.12 [SmGetEngineState|, page 211.

SM_SAVE_AUDIO
Query whether recorded audio is being saved during recognition.
The value is either TRUE (1) or FALSE (0). The returned value is
a 32 bit variable containing one or more of the following flags set:

SM_SAVE_AUDIO_DEFAULT
(SM_SAVE_AUDIO_PLAYBACK, SM_SAVE_AUDIO_ALTERNATES
SM_SAVE_AUDIO_-TRAINWORD)

SM_SAVE_AUDIO_-PLAYBACK
Saves the files required for playback.

SM_SAVE_AUDIO_-ALTERNATES
Saves the files required for querying alternates.

SM_SAVE_AUDIO-TRAINWORD
Saves the files required for adding a pronunciation.

SM_SAVE_AUDIO_-ADAPTATION
Saves the files required for training.

SM_SILENCE_DETECTION
Query silence detection setting. Valid values: 0, 1. If set to 1,
silence detection enabled, if set to 0, silence detection disabled.

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-

ing that the call is made asynchronously.

Return Values

88 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK
SM_RC_BAD_MODE
SM_RC_NOT_YET
SM_RC_EXISTS_IN_.NOTIFY
SM_RC_NOT_IN_NOTIFY
SM_RC_NOT_VALID_REQUEST

Reply Structure Functions by Message Type

SM_QUERY_REPLY
SmGetlItemValue
SmGetRe

Task Related Functions and Callbacks

SmHaltRecognizer

SmMicOff

SmMicOn
SmRecognizeNext Word

SmSet
SmNhaltRecognizerCallback
SmNmicOffCallback
SmNmicOnCallback
SmNqueryCallback
SmNrecognizeNext Word Callback
SmNrecognized TextCallback
SmNrecognized Word Callback
SmNsetCallback
SmNutteranceCompletedCallback

89 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.37 SmQueryAddedWords

Purpose

SmQueryAddedWords queries added words. This function requests a list of all words that
have been added to vocabularies of the currently active session.

Syntax

int SmQueryAddedWords (char *vocab,
SM_MSG *reply);

Parameters
vocab input - The name of the vocabulary to query.
reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-

ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_.EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_VOCAB
SM_RC_NOT_VALID_REQUEST

Reply Structure Functions by Message Type

SM_QUERY_ADDED_WORDS_REPLY
SmGetRe
SmGetWords

90 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

SmAddToVocab
SmDefineVocab
SmDisableVocab
SmEnableVocab
SmNaddToVocabCallback
SmNdefineVocabCallback
SmNdisableVocabCallback
SmNenableVocabCallback
SmNplayWordsCallback
SmNplayWordsStatusCallback
SmNqueryAdded WordsCallback
SmNqueryEnabled VocabsCallback
SmNqueryVocabsCallback
SmNqueryWordsCallback
SmNremoveFromVocabCallback
SmNundefineVocabCallback
SmNwordCorrectionCallback
SmPlayWords
SmQueryAddedWords
SmQueryEnabled Vocabs
SmQueryVocabs

SmQueryWord
SmRemoveFromVocab
SmUndefineVocab

SmWordCorrection

91 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.38 SmQueryAddedWordsEx

Purpose

SmQueryAddedWordsEx extends SmQueryAddedWords. This new function accepts an
argument which specifies a starting point. It will return words beginning from this starting
point up to the limit SM_MAX_WORDS (500). If the specified starting point is greater than
the number of added words, no words will be returned. Calling SmQueryAddedWords is
equivalent to calling SmQueryAddedWordsEx with a start argument of 0. If there are more
added words than the limit SM_MAX_WORDS, this function may be called repeatedly,
specifying a start argument of 0 the first time and incrementing the start argument by the
number of words returned. When 0 words are returned, all added words have been retrieved.

Syntax

int SmQueryAddedWordsEx (unsigned long flags,
unsigned long start,

char *vocab,
SM_MSG *xreply);
Parameters
flags Reserved.
start Specifies O-origin starting place.
vocab Specifies the name of the vocabulary to query.
reply SmAsynchronous or the pointer to a reply structure.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST
SM_RC_BAD_VOCAB

92

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_QUERY_ADDED_WORDS_REPLY
SmGetWords

Task Related Functions and Callbacks

SmAddToVocab
SmDefineVocab
SmDisableVocab
SmEnableVocab
SmNaddToVocabCallback
SmNdefineVocabCallback
SmNdisableVocabCallback
SmNenableVocabCallback
SmNplayWordsCallback
SmNplayWordsStatusCallback
SmNqueryAdded WordsCallback
SmNqueryAdded WordsExCallback
SmNqueryEnabled VocabsCallback
SmNqueryVocabsCallback
SmNquery WordsCallback
SmNremoveFromVocabCallback
SmNundefineVocabCallback
SmNwordCorrectionCallback
SmPlayWords
SmQueryAddedWords
SmQueryEnabled Vocabs
SmQueryVocabs

SmQueryWord
SmRemoveFromVocab
SmUndefineVocab

SmWordCorrection

93 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.39 SmQueryAlternates

Purpose

SmQueryAlternates requests a list of alternative words. This function requests a list of
alternative choices for a firm word or a group of firm words that has been incorrectly
recognized. Errors are usually one-for-one substitutions, in which case only one tag needs
to be specified on the call to SmQueryAlternates. A word may, however, be recognized
incorrectly as two or more words. In that case, two or more tags might need to be specified
in order to get an alternative list containing the correct word. The following restrictions
apply when calling SmQueryAlternates:

e Speech recognition engine must not be decoding speech to text. In other words, the

application must have received SM_UTTERANCE_COMPLETED from the engine.

e SM_SAVE_AUDIO must be enabled with SmSet.

Syntax

int SmQueryAlternates (short ntags,
long tags([],
SM_MSG *reply);

Parameters

ntags input - The number of words (tags) for which alternatives are requested.

tags input - The tags of the word for which alternatives are requested.

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-

ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST

94 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_QUERY_ALTERNATES_REPLY
SmGetAlternates
SmGetNextAlternate

SmGetRe

SmGetTags

Task Related Functions and Callbacks

95

SmNqueryAlternatesCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.40 SmQueryBinary

Purpose

SmQueryBinary queries the value of a specified speech recognition engine parameter. This
function is used instead of SmQuery to query values of arbitrary length and data type.

Syntax

int SmQueryBinary (short item,
SM_MSG *reply);

Parameters

item input - The parameter to be queried, which can be any of the following;:

SM_AUDIO_SOURCE
Specifies querying value in audio library. Value returned in reply
depends on audio library implementation.

SM_MNR_VALUE
Specifies querying mnr value. Value returned in reply is mnr value.

SM_SIGNAL_NOISE
Specifies querying signal/noise ration values. Value returned in
reply is character string with the following blank delimited sig-
nal/noise ratio values: signal to noise ratio in decibels, signal level
in decibels, fraction of samples clipped.

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK
SM_RC_NOT_VALID_REQUEST

96 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_QUERY _BINARY_REPLY
SmGetRc
SmGetBinaryltemValue

Task Related Functions and Callbacks

SmSetBinary
SmNsetBinaryCallback

97

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.41 SmQueryDefault

Purpose

SmQueryDefault queries the default value for a user, enrollment, task ID speech attribute,
or the default topics.

The default enrollid, taskid, and topics are stored on a per-user basis. SmQueryDefault
called with an item value of SM_DEFAULT_USERID will return the value of the default
userid. It can be accessed in the reply structure using the function SmGetUserld or SmGe-
tUserlds. SmQueryDefault called with other item values will return default enrollid, taskid,
or topics for the default userid. The value of the default enrollid can be accessed in the
reply structure using the functions SmGetEnrollld or SmGetEnrolllds. The value of the
default taskid can be accessed in the reply structure using the functions SmGetTask or
SmGetTasks. The value of the default topics can be accessed in the reply structure using
the function SmGetDefaultTopics. Since multiple default topics can be associated with a
userid the default topics will be returned concatenated in a blank delimited string. To
query the default enrollid, task or topics for a user other than the default user, the function
SmQueryUserDefault is provided. See Section 3.57 [SmQueryUserDefault|, page 127.

Syntax

int SmQueryDefault (long item,
SM_MSG *reply);

Parameters

item input - Type of default ID speech attribute. Valid values include the following:
e SM_DEFAULT_USERID

SM_DEFAULT_ENROLLID

SM_DEFAULT _TASK

SM_DEFAULT_TOPICS

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM

98 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK

Reply Structure Functions by Message Type

SM_QUERY_DEFAULT_REPLY
SmGetEnrollld

SmGetEnrolllds

SmGetRc

SmGetScripts

SmGetTask

SmGetTasks

SmGetUserld

SmGetUserlds

SmGetDefault Topics

Task Related Functions and Callbacks

SmConnect

SmOpen

SmSetDefault
SmQueryUserDefault
SmSetUserDefault
SmNqueryDefaultCallback
SmNqueryUserDefaultCallback
SmNsetDefaultCallback
SmNsetUserDefaultCallback

99 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.42 SmQueryEnabledVocabs

Purpose

SmQueryEnabledVocabs queries currently enabled vocabularies. This function obtains a
list of all currently enabled vocabularies.

Syntax

int SmQueryEnabledVocabs (SM_MSG *reply);

Parameters

reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK
SM_RC_NOT_VALID_REQUEST

Reply Structure Functions by Message Type

SM_QUERY_ENABLED_VOCABS_REPLY
SmGetRe
SmGetVocabList

100 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

101

SmAddToVocab
SmDefineVocab
SmDisableVocab
SmEnableVocab
SmQueryAddedWords
SmQueryVocabs

SmQueryWord
SmRemoveFromVocab
SmUndefineVocab
SmNaddToVocabCallback
SmNdefineVocabCallback
SmNdisableVocabCallback
SmNenableVocabCallback
SmNqueryAdded WordsCallback
SmNqueryEnabled VocabsCallback
SmNqueryVocabsCallback
SmNqueryWordsCallback
SmNremoveFrom VocabCallback
SmNundefineVocabCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.43 SmQueryEnrolllds

Purpose

SmQueryEnrolllds queries user enrollment IDs. This function returns a list of the enrollment
IDs previously generated for a user by an enrollment procedure. Each time a user enrolls
for the recognition system a new enrollment ID is generated for that user. When speech
recognition is performed, one of the enrollment IDs from the user’s enrollment ID list must
be specified for the SmConnect function.

SmQueryEnrolllds returns the sample rate associated with each queried enrollid. The new
access function SmGetSampleRates is provided to access the array of sample rates.

Syntax

int SmQueryEnrolllds (char *xuser_id,
char *enroll_id,
char *language,
SM_MSG *reply);

Parameters

user_id input - The name of the user whose enrollment ID list is to be returned.
enroll_id input - The enrollment ID queried, or NULL if all enrollments are queried.
language input - The language for the enrollment ID, or NULL if all languages are queried.

reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN

102 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_RC_BAD_ENROLLID
SM_RC_BAD_USERID
SM_RC_SERVER_MALLOC_ERROR

SM_QUERY_ENROLLIDS REPLY
SmGetAlphabets
SmGetDescriptions
SmGetEnrolllds

SmGetLanguages
SmGetPercentages

SmGetRc

SmGetSampleRates

SmGetScripts

SmGetStates

Task Related Functions and Callbacks

103

SmNrequestNewEnrollldCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.44 SmQueryLanguages

Purpose

SmQueryLanguages queries the available languages. This function returns a list of available
languages that can be used to initialize the speech recognition engine.

Syntax

int SmQueryLanguages (SM_MSG *reply);

Parameters

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_SERVER_MALLOC_ERROR

Reply Structure Functions by Message Type

SM_QUERY_LANGUAGES_REPLY
SmGetDescriptions
SmGetLanguages

SmGetRc

Task Related Functions and Callbacks

SmNqueryLanguagesCallback

104 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.45 SmQueryPhraseAlternatives

Purpose

SmQueryPhraseAlternatives returns the next recognition phrase alternative for a grammar
vocabulary. This function is called repeatedly to get recognition phrase alternatives. When
the lag SM_PHRASE_NO_ALTERNATIVES_AVAILABLE is set in thge flags field of the re-
ply, it indicates no more alternatives are available. The flags field can be retrieved by calling
the access function SmGetFlags against the SM_QUERY _PHRASE_ALTERNATIVES_REPLYR
message. The maximum number of alternative calculated by the engine can be set/queryied
using SmSet/SmQuery.

Syntax

int SmQueryPharaseAlternatives (unsigned long flags,
SM_MSG xreply) ;

Parameters

flags Reserved. Should be set to 0.

reply The pointer to a reply structure or to SmAsynchronous indicating that the call
is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST

105 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_QUERY_PHRASE_ALTERNATIVES_REPLY
SmGetVocabName

SmGetFirmWords

SmGetAnnotations

SmGetWord Times

SmGetFlags

Task Related Functions and Callbacks

106

SmNqueryPhraseAlternativesReply
SmSet
SmQuery

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.46 SmQueryPronunciation

Purpose

SmQueryPronunciation queries the existence of a pronunciation. This function provides
a method for a requesting application to determine whether an associated pronunciation
exists for a given spelling. This query is applied to the pronunciations that have been added
to the user’s personal pronunciation pool and the temporary pool. The reply indicates
whether or not the pronunciation exists, but not where it was found. If a specified word
does not exist in the current pool, the backup dictionary will be searched. If the word is
found in the backup dictionary, it will be added to the temporary pool, except that when
SmAddToVocab specifies a dictation vocabulary such as "text," the word will be added to
the personal pool.

Syntax

int SmQueryPronunciation (char *spelling,
SM_MSG *reply);

Parameters
spelling input - A spelling for which a pronunciation is sought.
reply input/output - A pointer to a reply structure or to SmAsynchronous indicating

that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_INVOCAB
SM_RC_NOT_VALID_REQUEST

107 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_QUERY_PRONUNCIATION_REPLY
SmGetRe

SmGetSpelling

SmGetSpellings

Task Related Functions and Callbacks

SmAddPronunciation
SmQueryPronunciations
SmRemovePronunciation
SmNaddPronunciationCallback
SmNqueryPronunciationCallback
SmNqueryPronunciationsCallback

SmNremovePronunciationCallback

108 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.47 SmQueryPronunciationEx

Purpose

SmQueryPronunciationEx queries the existence of a pronunciation in a specified vocabulary.
This function is an extension of the function SmQueryPronunciation. This function provides
a method for a requesting application to determine whether an associated pronunciation
exists for a given spelling in a given vocabulary. If a vocabulary is not specified, this function
defaults to the behavior of SmQueryPronunciation. If a vocabulary is specified, this function
returns pronunciations for the given spelling in that vocabulary. If the vocabulary specified
is "text", the search for pronunciations will include personal words added by the application
and any enabled topics.

Syntax
int SmQueryPronunciationEx (char *spelling,
char *xvocab,
unsigned long flags,
SM_MSG xreply);
Parameters
spelling input - A spelling for which a pronunciation is sought.
vocab input - A vocab in which a pronunciation is sought. This parameter is optional.

If null all vocabs in the current pool will be searched.
flags input - Reserved. must be set to 0.

reply input /output - A pointer to a reply structure or to SmAsynchronous indicating
that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_.EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

109 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_INVOCAB
SM_RC_NOT_VALID_REQUEST

Reply Structure Functions by Message Type

SM_QUERY_PRONUNCIATION_REPLY
SmGetPhoneticPronunciations
SmGetPronunciations

SmGetRc

SmGetSpelling

SmGetSpellings

SmGetVocabName

Task Related Functions and Callbacks

SmAddPronunciation
SmQueryPronunciation
SmQueryPronunciations
SmRemovePronunciation
SmNaddPronunciationCallback
SmNqueryPronunciationCallback
SmNqueryPronunciationsCallback

SmNremovePronunciationCallback

110 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.48 SmQueryPronunciations

Purpose

SmQueryPronunciations queries a listing of added pronunciations. This function provides
a method for an application to request a list of word pronunciations that have been added
to the user’s pronunciation pool within the buffer limits.

Syntax

int SmQueryPronunciations (SM_MSG *reply);

Parameters

reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_NOT_VALID_REQUEST
SM_RC_SERVER_ERROR
SM_RC_SERVER_FILE_OPEN_ERROR

Reply Structure Functions by Message Type

SM_QUERY_PRONUNCIATIONS _REPLY
SmGetPronunciations

SmGetRc

SmGetSpellings

111 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

112

SmAddPronunciation
SmQueryPronunciation
SmRemovePronunciation
SmNaddPronunciationCallback
SmNqueryPronunciationCallback
SmNqueryPronunciationsCallback

SmNremovePronunciationCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.49 SmQueryPronunciationsEx

Purpose

SmQueryPronunciationsEx is an extension of SmQueryPronunciations. This function ac-
cepts an argument which specifies a starting point. It will return words beginning from this
starting point up to the limit SM_MAX_WORDS (500). If the specified starting point is
greater than the number of added words, no words will be returned.

Calling SmQueryPronuciations is equivalent to calling SmQueryPronunciationsEx with a
start argument of 0. If there are more added pronunciations than the limit SM_MAX_WORDS,}}
this function may be called repeatedly, specifying a start argument of 0 the first time and
incrementing the start argument by the number of pronunciations returned. When 0
pronunciations are returned, all pronunciations have been retrieved.

Syntax

int SmQueryPronunciationsEx (unsigned long flags,
unsigned long start,

SM_MSG xreply);
Parameters
flags Reserved. Should be set to 0.
start Specifies 0-origin starting place.
reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-

ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST
SM_RC_SERVER_MALLOC_ERROR

113 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_QUERY_PRONUNCIATIONS_REPLY
SmGetSpellings

SmGetPronunciations

Task Related Functions and Callbacks

SmAddPronunciation
SmQueryPronunciation
SmRemovePronunciation
SmNaddPronunciationCallback
SmNqueryPronunciationCallback
SmNqueryPronunciationsCallback
SmNqueryPronunciationsExCallback

SmNremovePronunciationCallback

114 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.50 SmQueryScripts

Purpose

SmQueryScripts returns information about available scripts. The scripts about which in-
formation is returned can be filtered by userid/enrollid, or task.

Syntax

int SmQueryScripts (char *xuser_id,
char *xenrollid,
char *task,
SM_MSG *reply);

Parameters

user_id input - Required if enrollid specified. Specifies user identifier.

enrollid input - Required if user_id specified. Specifies enrollment identifier.

task input - Optional: if not NULL specifies task for which data on associated scripts

will be returned.

reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST
SM_RC_BAD_LANGUAGE

115 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_QUERY_SCRIPTS_REPLY
SmGetDescriptions
SmGetIncrements
SmGetScriptFlags
SmGetScripts

SmGetSizes

SmGetStates

SmGetTasks

SmGetTrained

Task Related Functions and Callbacks

116

SmSelectScript
SmRequestScriptText
SmNqueryScriptsCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.51 SmQuerySessions

Purpose

SmQuerySessions queries sessions and returns a list of connected recognition sessions.

Syntax

int SmQuerySessions (SM_MSG *reply);

Parameters

reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK

Reply Structure Functions by Message Type

SM_QUERY _SESSIONS_REPLY
SmGetApplications
SmGetEnrolllds

SmGetRe

SmGetTasks

SmGetUserlds

Task Related Functions and Callbacks

SmDetachSessions
SmNdetachSessionsCallback
SmNquerySessionsCallback

117 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.52 SmQuerySpeechData

Purpose

SmQuerySpeechData queries the estimated size of speech data for the current session.

Syntax

int SmQuerySpeechData (SM_MSG *reply);

Parameters

reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK

Reply Structure Functions by Message Type

SM_QUERY_SPEECH_DATA_REPLY
SmGetSpeechDataSize

Task Related Functions and Callbacks

SmQuerySpeechDataEx
SmSaveSpeechData
SmSaveSpeechDataEx
SmRestoreSpeechData
SmRestoreSpeechDatakx
SmDiscardSpeechData
SmNquerySpeechDataCallback

118 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.53 SmQuerySpeechDataEx

Purpose

SmQuerySpeechDataEx allows an application to query the estimated size of session data
associated with specific tags.

Syntax

int SmQuerySpeechDataEx (unsigned long flags,
long ntags,
unsigned long *tags,
SM_MSG xreply);

Parameters

flags input - Identifies options flags. Valid values:

SM_SAVE_ALL_TAGS
Queries size for all tags in session.

ntags input - The number of tags.
tags input - The array of tags.
reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-

ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_SERVER_MALLOC_ERROR
SM_RC_NOT_VALID_REQUEST

119 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_QUERY_SPEECH_DATA _REPLY
SmGetSpeechDataSize

SmGetTags

SmGetFlags

Task Related Functions and Callbacks

120

SmSaveSpeechData
SmRestoreSpeechData
SmQuerySpeechData
SmSaveSpeechDataEx
SmRestoreSpeechDataEx
SmNquerySpeechDataCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.54 SmQuerySpeechUserSize

Purpose

SmQuerySpeechUserSize allows an application to query the size of speaker data associated

with a userid.

Syntax
int SmQuerySpeechUserSize (char *userid,

char *xenrollid,
char *language,
char *script,
unsigned long flags,
SM_MSG xreply);

Parameters

userid input - UserID for which speaker data is to be archived.

enrollid input - Optional EnrollID for which speaker data is to be archived.

language input - Optional language for which speaker data is to be archived.

script input - Optional script for which speaker data is to be archived.
flags input - Reserved options flags.
reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-

ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN

121

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_QUERY_SPEECH_USER_SIZE REPLY
SmGetUserid

SmGetEnrollid

SmGetLanguages

SmGetScript

SmGetFlags

SmGetSpeechDataSize

Task Related Functions and Callbacks

122

SmRestoreSpeechUser
SmSaveSpeechUser
SmNquerySpeechUserSizeCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.55 SmQueryTasks

Purpose

SmQueryTasks queries a speech recognition engine domain list. This function returns a
list of the domains that can be used for dictation and enrollment. A domain consists of
a set of vocabularies, word-usage models, and other associated parameters used during a
recognition session. A domain name must be specified when the speech recognition engine
is initialized for a user. This function will also return the maximum sample rate supported
by a domain.

Syntax

int SmQueryTasks (char *language,
SM_MSG *reply);

Parameters

language input - The language used for the domain. If specified as NULL, all domains
are returned, regardless of language.

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_SERVER_MALLOC_ERROR

123 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_QUERY_TASKS_REPLY
SmGetAlphabets
SmGetDescriptions
SmGetLanguages

SmGetRc

SmGetTasks

Task Related Functions and Callbacks

124

SmNqueryTasksCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.56 SmQueryTopics

Purpose

SmQueryTopics will be called by a client application to request information about the
current topics or a specified topic. It accepts a taskid argument and if specified will return
information about only those topics associated with that task.

The topics will be returned in sorted order such that the topics which are designed to be
used the this task (for example, the preferred topics) will appear first. The npreferred
field refers to these topics. The entire array of topics is accessed using SmGetTopics. The
npreferred field is accessed using SmGetPreferred.

Syntax
int SmQueryTopics (unsigned long flags,
char *xtaskid,
char *topic,
SM_MSG *xreply) ;
Parameters
flags input - Identifies options flags. Valid values:

SM_INSTALLED_TOPICS
Query all installed topics on the system

SM_ACTIVE_TOPICS
Query only topics currently in use

taskid input - Name of task for which associated topics will be returned.

topic input Optional topic name, if specified only information about this topic will
be returned.

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG

125 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_SERVER_MALLOC_ERROR
SM_RC_SERVER_FILE_OPEN_ERROR

Reply Structure Functions by Message Type

SM_QUERY_TOPICS_REPLY
SmGetDescriptions
SmGetSpellings

SmGetFlags

SmGetPreferred

SmGetTopics

Task Related Functions and Callbacks

SmQueryUserDefault
SmNqueryTopicsCallback
SmNqueryUserDefaultCallback
SmNsetUserDefaultCallback

126 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.57 SmQueryUserDefault

Purpose

The default enrollid, taskid, and topics are stored by the engine on a per-user basis. The
function SmQueryUserDefault is used to query one of these defaults for a particular user.

If the item SM_DEFAULT _TOPICS is specified, the item_value returned in the reply struc-
ture will be a string of the default topics for the specified userid concatenated with blank
delimiters (for example, "topicl topic2 topic3").

Syntax

int SmQueryUserDefault (char *user_id,
long item,
SM_MSG *reply);

Parameters

user_id input - Specifies which default to query. Valid values:

SM_DEFAULT_ENROLLID
Specifies request for default enrollid.

SM_DEFAULT_-TASK
Specifies a request for default task.

SM_DEFAULT_TOPICS
Specifies request for default topics.

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK

127 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST

SM_QUERY_USER_DEFAULT_REPLY
SmGetTask

SmGetTasks

SmGetUserld

SmGetUserlds

SmGetEnrollld

SmGetEnrolllds

SmGetDefaultTopics

Task Related Functions and Callbacks

128

SmConnect

SmOpen

SmSetUserDefault
SmNconnectCallback
SmNqueryUserDefaultCallback
SmNconnectCallback
SmNsetUserDefaultCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.58 SmQueryUserInfo

Purpose

SmQueryUserInfo queries user ID or enrollment ID information. This function retrieves
information associated with a user ID or an enrollment ID. Only one value can be queried

at a time.
Syntax
int SmQueryUserInfo (char
char
char

*xuser_id,
*xenroll_id,
*itemname,

SM_MSG *reply);

Parameters

user_id input - The name of the user whose information is retrieved.

enroll_id input - The enrollment ID of the user whose information is retrieved. This
parameter is NULL if information on the user ID is retrieved.

itemname input - The queried item name. The special predefined itemname parameter,
SM_USER_DIRECTORY, returns the full path of the location where user files
are stored. An application can store its files in the same location.

reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM

SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK

SM_RC_INVALID_PARM_MAX_LEN

SM_RC_BAD_ENROLLID
SM_RC_BAD_ITEM
SM_RC_BAD_USERID

129

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_QUERY_USER_INFO_REPLY
SmGetEnrollld

SmGetEnrolllds

SmGetNameValue

SmGetRc

SmGetUserld

SmGetUserlds

Task Related Functions and Callbacks

130

SmQueryUsers
SmSetUserInfo
SmNqueryUsersCallback
SmNqueryUserInfoCallback
SmNsetUserInfoCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.59 SmQueryUsers

Purpose

SmQueryUsers queries a user list. This function returns a list of users allowed to use the
speech recognition engine. To establish a speech session, a user from this list must be
supplied in the SmNuserld speech attribute in the argument list passed to SmConnect.

Syntax

int SmQueryUsers (SM_MSG *reply);

Parameters

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_SERVER_MALLOC_ERROR

Reply Structure Functions by Message Type

SM_QUERY_USERS_REPLY
SmGetAlphabets
SmGetDescriptions

SmGetRc

SmGetUserlds

SmGetUsers

131 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

132

SmQueryUserInfo

SmSet UslerInfo
SmNqueryUsersCallback
SmNqueryUserInfoCallback
SmNsetUserInfoCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.60 SmQueryUtterances

Purpose

SmQueryUtterances returns information about the sentances which have been recorded
with the current script. This function can only be called when connected to the speech
recognition engine for an enrollment session.

Syntax

int SmQueryUtterances (SM_MSG *reply);

Parameters

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_NOT_VALID_REQUEST
SM_RC_BAD_SCRIPT
SM_RC_SERVER_MALLOC_ERROR

Reply Structure Functions by Message Type

SM_QUERY_UTTERANCES_REPLY
SmGetNumberProcessed
SmGetNumberRequired
SmGetNumberUtterances
SmGetUtterancelist

133 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

SmDiscardUtterance
SmSetUtteranceNumber
SmNqueryUtterancesCallback

134

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.61 SmQueryVocabs

Purpose

SmQueryVocabs queries currently defined vocabularies. This function obtains the list of
all defined speech recognition engine vocabularies that belong to the current session. This
includes predefined vocabularies and those defined after initialization with the SmDefine-
Vocab or SmDefineVocabEx function.

Syntax

int SmQueryVocabs (SM_MSG *reply);

Parameters

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK
SM_RC_NOT_VALID_REQUEST

Reply Structure Functions by Message Type

SM_QUERY_VOCABS_REPLY
SmGetRe
SmGetVocabList

135 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

136

SmAddToVocab
SmDefineVocab
SmDisableVocab
SmEnableVocab
SmQueryAddedWords
SmQueryEnabled Vocabs
SmQueryWord
SmRemoveFromVocab
SmUndefineVocab
SmNaddToVocabCallback
SmNdefineVocabCallback
SmNdisableVocabCallback
SmNenableVocabCallback
SmNqueryAdded WordsCallback
SmNqueryEnabled VocabsCallback
SmNqueryVocabsCallback
SmNqueryWordsCallback
SmNremoveFrom VocabCallback
SmNundefineVocabCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.62 SmQueryWord

Purpose

SmQueryWord checks for a specified word in all active vocabularies.

Syntax

int SmQueryWord (SM_WORD *word,
SM_MSG *reply);

Parameters
word input - The queried word.
reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-

ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_.EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_INVOCAB

Reply Structure Functions by Message Type

SM_QUERY_WORD_REPLY
SmGetRc

SmGetVocabList
SmGetWords

137 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

SmAddToVocab
SmDefineVocab
SmDisableVocab
SmEnableVocab

SmPlayWords

SmQuery Added Words
SmQueryEnabled Vocabs
SmQueryVocabs
SmRemoveFromVocab
SmUndefineVocab
SmWordCorrection
SmNaddToVocabCallback
SmNdefineVocabCallback
SmNdisableVocabCallback
SmNenableVocabCallback
SmNplay WordsCallback
SmNplayWordsStatusCallback
SmNqueryAdded WordsCallback
SmNqueryEnabled VocabsCallback
SmNqueryVocabsCallback
SmNqueryWordsCallback
SmNremoveFrom VocabCallback
SmNundefineVocabCallback
SmNwordCorrectionCallback

138 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.63 SmReceiveMsg

Purpose

SmReceiveMsg receives a message from the speech recognition engine. This function pro-
vides the method through which speech-aware applications receive asynchronous messages,
including unsolicited asynchronous messages such as SM_RECOGNIZED_TEXT, from the
speech recognition engine. This function receives one complete message from the speech
recognition engine. For details, see "Session Sharing" in the SMAPI Developer’s Guide.

Syntax
int SmReceiveMsg (unsigned long ap_val,
SM_MSG *msg) ;
Parameters
ap_val input - For Windows applications, pass |Param here. Non-Windows applica-

tions should set this to 0.

msg output - The pointer to the reply structure.

Return Values

SM_RC_OK
SM_RC_REPLY_NULL
SM_RC_SM_NOT_OPEN
Reply Structure Functions by Message Type

SmGetRe
SmGetReName

139 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.64 SmRecognizeNext Word

Purpose

SmRecognizeNextWord enables the recognition of the next word. This function searches
for the next word to decode. When running, the engine searches the currently enabled
vocabularies to find a word that matches the incoming speech. The vocabulary that contains
the best match determines what happens next:

e If the matching word comes from a dictation vocabulary, the engine sends the firm words
to the application in an SM_RECOGNIZED_TEXT message and continues decoding.

e If the matching word comes from a command vocabulary, the engine sends the word and
some alternative choices to the application in an SM_RECOGNIZED WORD message.
The engine then halts and waits for the application to request another word.

If a recognized word occurs in two or more vocabularies enabled at the same time, the
engine selects the word from the more recently enabled command vocabulary. Command
vocabularies always override dictation vocabularies; when a recognized word occurs in both
a command and dictation vocabulary enabled at the same time, the engine selects the
command-vocabulary word.

Syntax

int SmRecognizeNextWord (SM_MSG *reply);

Parameters

reply input /output - The pointer to the reply structure or to the SmAsynchronous
value indicating that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK
SM_RC_NOT_VALID_REQUEST

140 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_RECOGNIZED_WORD
SmGetAlternates

SmGetFirmWords

SmGetRe

SmGetTimes
SM_RECOGNIZE_NEXT_WORD_REPLY

SmGetRc For command vocabularies with microphone off and audio input stream pro-
cessed:

SM_UTTERANCE_COMPLETED
SmGetRe
SmGetUtteranceNumber

Task Related Functions and Callbacks

SmHaltRecognizer

SmMicOff

SmMicOn

SmQuery

SmSet
SmNhaltRecognizerCallback
SmNmicOffCallback
SmNmicOnCallback
SmNqueryCallback
SmNrecognizeNext WordCallback
SmNrecognized TextCallback
SmNrecognized Word Callback
SmNsetCallback
SmNutteranceCompletedCallback

141 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.65 SmReleaseFocus

Purpose

SmReleaseFocus releases speech focus. This function releases speech focus for the applica-
tion calling this APL. If the application does not have the speech focus, this function returns
SM_RC_NOT_VALID REQUEST; otherwise it returns SM_RC_OK.

If the call is made asynchronously the reply can be dispatched through either of the follow-
ing:
e SM_RELEASE_FOCUS

e SmNreleaseFocusCallback

Syntax

int SmReleaseFocus (SM_MSG *reply);

Parameters

reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_NOT_VALID_REQUEST
SM_RC_OK

Reply Structure Functions by Message Type

SM_RELEASE_FOCUS
SmGetRe
SM_FOCUS_LOST

Task Related Functions and Callbacks

SmRequestFocus
SmNfocusGrantedCallback
SmNfocusRequestedCallback
SmNreleaseFocusCallback
SmNrequestFocusCallback

142 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.66 SmRemoveCallback

Purpose

SmRemoveCallback removes a single callback routine for a specific callback.

Syntax
int SmRemoveCallback (char *reply_name,
SmHandler *handler,
void *client_data);
Parameters
reply_name

input - The name of the type of message.
handler input - The function name of the routine that handles the message.

client_data
input - The data passed back to the handler when it is called.
Return Values

SM_RC_ENOMEM
SM_RC_NOT_VALID_REQUEST
SM_RC_OK
SM_RC_SM_NOT_OPEN

Task Related Functions and Callbacks

SmAddCallback
SmDispatch

143 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.67 SmRemoveEnrollid

Purpose

SmRemoveEnrollid removes an enrollid from a userid.

Syntax

int SmRemoveEnrollid (char *xuser_id,
char *enroll_id,
SM_MSG *reply);

Parameters

user_id input - The userid from which the enrollid is removed.
enroll_id input - The enrollid to remove.

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_USERID
SM_RC_BAD_ENROLLID
SM_RC_SERVER_-MALLOC_ERROR
SM_RC_SERVER_FILE_CLOSE_ERROR

Reply Structure Functions by Message Type

SM_REMOVE_ENROLLID_REPLY

144 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

SmAddUser

SmAddEnrollid
SmRemoveUser
SmNremoveEnrollidCallback

145 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.68 SmRemoveFromVocab

Purpose

SmRemoveFromVocab removes words from a dynamic vocabulary. This function removes
words previously added, using SmAddToVocab, to either dynamic vocabularies created by
SmDefineVocab, SmDefinVocabEx or added to predefined vocabularies. This function can
be used to dynamically change command vocabularies in an application. Pronunciations
for the specified words are not removed by this call and can be reused later by words added
to this or any other vocabulary. This call is valid only when the speech recognition engine
is not accepting dictation.

Syntax
int SmRemoveFromVocab (char *xyvocab,
short nvocwords,
SM_VOCWORD *vocwords[],
SM_MSG *reply) ;
Parameters
vocab input - The name of the vocabulary from which words are removed.

nvocwords input - The number of words removed from the vocabulary. Limited to

SM_MAX_VOCWORDS.
vocwords input - The spellings of the words removed from the vocabulary.

reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN

146 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_BAD_VOCAB
SM_RC_NOT_VALID_REQUEST
SM_RC_SERVER_FILE_OPEN_ERROR
SM_RC_SERVER_FILE_WRITE_ERROR

Reply Structure Functions by Message Type

SM_REMOVE_FROM_VOCAB_REPLY
SmGetRe
SmGetVocabName

Task Related Functions and Callbacks

SmAddToVocab
SmDefineVocab
SmDefineVocabEx
SmDisableVocab
SmEnableVocab

SmQuery Added Words
SmQueryEnabled Vocabs
SmQueryVocabs

SmQueryWord
SmUndefineVocab
SmNaddToVocabCallback
SmNdefineVocabCallback
SmNdisableVocabCallback
SmNenableVocabCallback
SmNquery Added WordsCallback
SmNqueryEnabled VocabsCallback
SmNqueryVocabsCallback
SmNquery WordsCallback
SmNremoveFromVocabCallback
SmNundefineVocabCallback

147 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.69 SmRemovePronunciation

Purpose

SmRemovePronunciation removes a pronunciation from the user’s personal pronunciation
pool. You cannot remove pronunciations from the permanent pool.

Syntax

int SmRemovePronunciation (char *spelling,
char *pronunciation,
SM_MSG *reply);

Parameters

spelling input - The word spelling which references the pronunciation.

pronunciation
input - The sounds-like spelling of the pronunciation to be removed.

reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST
SM_RC_NOT_YET
SM_RC_SERVER_ERROR

148 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

Task Related Functions and Callbacks

149

SM_REMOVE_PRONUNCIATION_REPLY

SmGetRe
SmGetSpelling
SmGetSpellings

SmAddPronunciation
SmCorrectText
SmCorrectTextCancel
SmNewContext
SmQueryPronunciation
SmQueryPronunciations
SmWordCorrection
SmNaddPronunciationCallback
SmNcorrect TextCallback
SmNcorrect TextCancelCallback
SmNnewContextCallback
SmNqueryPronunciationCallback
SmNqueryPronunciationsCallback
SmNremovePronunciationCallback
SmNwordCorrectionCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.70 SmRemoveUser

Purpose

SmRemoveUser removes a speech user from the system.

Syntax

int SmRemoveUser (char *user_id,
SM_MSG *reply);

Parameters
user_id input - Identifies the speech user to be removed.
reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-

ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_USERID
SM_RC_SERVER_MALLOC_ERROR
SM_RC_SERVER_FILE_CLOSE_ERROR

Reply Structure Functions by Message Type

SM_REMOVE_USER_REPLY

150

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

SmAddUser
SmAddEnrollid
SmRemoveEnrollid
SmNremoveUserCallback

151 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.71 SmRequestFocus

Purpose

SmRequestFocus requests speech focus. An application requests speech focus with a Sm-
RequestFocus function call. If the call is made asynchronously, the reply can be dispatched
through either of the following:

e SM_REQUEST_FOCUS
e SmNrequestFocusCallback

If the request is accepted, an asynchronous message is sent after the engine grants focus.
This event can be dispatched through either of the following:

e SM_FOCUS_GRANTED
e SmNfocusGrantedCallback

Please note: SM_RC_FOCUS_GRANTED means the requesting application had previously
been granted speech focus and no asynchronous notification message is generated by the
engine.

Syntax

int SmRequestFocus (SM_MSG *reply);

Parameters

reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.
Return Values

SM_RC_FOCUS_GRANTED
SM_RC_OK

Reply Structure Functions by Message Type

SM_REQUEST_FOCUS
SmGetRe
SM_FOCUS_GRANTED

152 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

153

SmReleaseFocus
SmNfocusGrantedCallback
SmNfocusRequestedCallback
SmNreleaseFocusCallback
SmNrequestFocusCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.72 SmRequestMicOff

Purpose

SmRequestMicOff requests that the microphone be turned off. This function requests the
speech recognition engine to request the application with speech focus to turn off the mi-
crophone. If no application has speech focus, then SM_RC_NO_FOCUS_APP is returned.
Syntax

int SmRequestMicO0ff (SM_MSG *reply);

Parameters

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_NO_FOCUS_APP
SM_RC_OK

Reply Structure Functions by Message Type

SM_REQUEST_MIC_OFF_REPLY
SmGetRe
SM_REQUEST_MIC_OFF

Task Related Functions and Callbacks

SmRequestMicOn
SmNrequestMicOffCallback
SmNrequestMicOnCallback

154 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.73 SmRequestMicOn

Purpose

SmRequestMicOn requests that the microphone be turned on. This function requests the
speech recognition engine to request the application with speech focus to turn on the mi-
crophone. If no application has speech focus, then SM_RC_NO_FOCUS_APP is returned.

Syntax

int SmRequestMicOn (SM_MSG *reply);

Parameters

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_NO_FOCUS_APP
SM_RC_OK

Reply Structure Functions by Message Type

SM_REQUEST_MIC_ON_REPLY
SmGetRe
SM_REQUEST_MIC_ON

Task Related Functions and Callbacks

SmRequestMicOff
SmNrequestMicOffCallback
SmNrequestMicOnCallback

155 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.74 SmRequestNewEnrollid

Purpose

SmRequestNewEnrollid returns a valid enrollid name which can be used for adding a new
enrollid to a userid.

Syntax

int SmRequestNewEnrollid (char *user_id,
char *user_name,
SM_MSG *reply);

Parameters

user_id input - Short name to identify the user. Must be no more than SM_MAX _USERID_LENN
in length. The following characters must not appear in a userid: :\/\n\r\t"’1#$%&()*,.;;<=>7|

user-name
input - Full name of the user.

reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_LENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN

156 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_REQUEST_NEW_ENROLLID_REPLY
SmGetUserid

SmGetUserids

SmGetEnrollid

SmGetEnrollids

Task Related Functions and Callbacks

157

SmAddUser

SmAddEnrollid
SmRemoveEnrollid
SmRemoveUser
SmNrequestNewEnrollidCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.75 SmRequestScriptText

Purpose

SmRequestScriptText returns script text for a particular utterance. This function can only
be called when connected to the speech recognition engine for an enrollment session.

Syntax

int SmRequestScriptText (long uttno,
SM_MSG *reply);

Parameters
uttno input - The utterance number for which script text is requested.
reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-

ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_NOT_VALID_REQUEST
SM_RC_BAD_UTTNO
SM_RC_BAD_SCRIPT
SM_RC_SERVER_MALLOC_ERROR

Reply Structure Functions by Message Type

SM_REQUEST_SCRIPT_TEXT_REPLY
SmGetWords

SmGetComment

158 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

SmQueryScripts
SmSelectScript
SmNrequestScript TextCallback

159 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.76 SmRestoreSpeechData

Purpose

SmRestoreSpeechData overwrites the current session files and resets the running utterance
number.

Please note: For this call to be valid, the application must first enable audio saving through
SmSet(SM_SAVE_AUDIO, TRUE). For more information on saving and restoring speech
sessions, reference "Writing ViaVoice Applications to Save and Restore Audio" in the
SMAPI Developer’s Guide.

Since this function can take a long time, we suggest that applications call SmRestore-
SpeechData asynchronously to avoid the SMAPI synchronous call timeout If this function
is called asynchronously all subsequent SMAPI function requests from the application will

be returned with an rc of SM_RC_NOT_VALID_REQUEST until the SmRestoreSpeechData
request completes.

Syntax

int SmRestoreSpeechData (char *archive,
long version,
SM_MSG *reply);

Parameters
archive input - File name specified on SmSaveSpeechData.
version input - Value passed as argument to SmSaveSpeechData by the application

when saving session audio data and checked by the engine when the session
audio data is restored. reply

input/output - The pointer to a reply structure or to SmAsynchronous indicating that the
call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_.EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP

160 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_SERVER_FILE_OPEN_ERROR
SM_RC_SERVER_FILE_READ_ERROR
SM_RC_SERVER_FILE_WRITE_ERROR

Reply Structure Functions by Message Type

SM_RESTORE_SPEECH _DATA REPLY
SmGetSpeechDataArchive
SmGetSpeechDataVersion

Task Related Functions and Callbacks

SmDiscardSpeechData
SmQuerySpeechData
SmQuerySpeechDataEx
SmRestoreSpeechDatakx
SmSaveSpeechData
SmSaveSpeechDataEx

161 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.77 SmRestoreSpeechDataEx

Purpose

SmRestoreSpeechDataEx restores audio data from an archive file into the current session
and resets the running utterance number. This function is an extension of the function
SmRestoreSpeechDataEx.

Please note: For this call to be valid, the application must first enable audio saving through
SmSet(SM_SAVE_AUDIO, TRUE). For more information on saving and restoring speech
sessions, reference "Writing ViaVoice Applications to Save and Restore Audio" in the
SMAPI Developer’s Guide. Since this function can take a long time, we suggest that appli-
cations call SmRestoreSpeechDataFx asynchronously to avoid the SMAPI synchronous call
timeout If this function is called asynchronously all subsequent SMAPI function requests
from the application will be returned with an rc of SM_RC_NOT_VALID_REQUEST until
the SmRestoreSpeechDataEx request completes.

Syntax
int SmRestoreSpeechDataE (char *archive,
long version,
unsigned long flags,
SM_MSG *reply) ;
Parameters
archive input - File name specified on SmSaveSpeechData.
Version input - Value passed as argument to SmSaveSpeechData by the application

when saving session audio data and checked by the engine when the session
audio data is restored.

flags input - Options flags. Valid values:

SM_MERGE_TAGS
Specifies that data restored from archive will be merged with cur-
rent session data instead of replacing it. An offset is returned which,
when added to the archived tags, will yield the new tag values. This
offset is retreived from the reply using the access function SmGet-
TagOffset

SM_REPLACE_TAGS
Specifies that data restored from the archive will replace current
session data.

SM_RESTORE_VERSION_NUMBER
Specifies to skip the version number check and restore data from
the archive regardless of its version number. The version number

162 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

from the archive is returned and can be retrieved from the reply
using the access function SmGetSpeechDataVersion.

reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN

SM_RC_ENOMEM

SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_SERVER_FILE_OPEN_ERROR
SM_RC_SERVER_FILE_READ_ERROR
SM_RC_SERVER_FILE_WRITE_ERROR

Reply Structure Functions by Message Type

SM_RESTORE_SPEECH _DATA REPLY
SmGetFlags

SmGetSpeechDataArchive
SmGetSpeechDataVersion
SmGetTagOffset

Task Related Functions and Callbacks

SmDiscardSpeechData
SmQuerySpeechData
SmQuerySpeechDataEx
SmRestoreSpeechData
SmSaveSpeechData
SmSaveSpeechDataEx

163 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.78 SmRestoreSpeechUser

Purpose

SmRestoreSpeechUser allows an application to restore speaker data associated with a userid.

Syntax
int SmRestoreSpeechUser (void *archive,

char *userid,
char *enrollid,
char *language,
char *script,
unsigned long flags,
SM_MSG xreply) ;

Parameters

archive input - Archive file name where data is saved.

userid input - UserID for which speaker data is to be restored.

enrollid input - Optional EnrollID for which speaker data is to be restored.

language input - Optional language for which speaker data is to be restored.

script input - Optional script for which speaker data is to be restored.
flags input - Reserved options flags.
reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-

ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_SERVER_PROCESS_ERROR

164

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_RESTORE_SPEECH_DATA REPLY S
SmGetSpeechDataArchive

SmGetUserid

SmGetEnrollid

SmGetLanguages

SmGetScript

SmGetFlags

Task Related Functions and Callbacks

165

SmQuerySpeechUserSize
SmSaveSpeechUser
SmNsaveSpeechuserCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.79 SmSaveSpeechData

Purpose

SmSaveSpeechData saves current session speech data to a file.

Please note: For this call to be valid, the application must first enable audio saving through
SmSet(SM_SAVE_AUDIO, TRUE). For more information on saving and restoring speech
sessions, reference "Writing ViaVoice Applications to Save and Restore Audio" in the
SMAPI Developer’s Guide.

Since this function can take a long time, we suggest that applications call SmSaveSpeech-
Data asynchronously to avoid the SMAPI synchronous call timeout If this function is called
asynchronously all subsequent SMAPI function requests from the application will be re-
turned with an rc of SM_RC_NOT_VALID_REQUEST until the SmSaveSpeechData request

completes.

Syntax

int SmSaveSpeechData (char *archive,
long version,
long flags,
SM_MSG *reply);

Parameters

archive input - File name where data will be stored.

version input - Identifies the archive file version.

flags input - Identifies how the data should be saved, using one of the following
values:

SM_NORMAL_FILE
The speech data is written to the file specified by the file name.
This file will contain only engine data.

SM_COMPOUND_FILE
The speech data is written to the Windows compound file specified
by the file name, using IStorage/IStream. The data is saved in a
section named "VTDSessionArchive." This allows an application

to save both engine state and application state data in the same
file.

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

166 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN

SM_RC_ENOMEM

SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_SERVER_FILE_OPEN_ERROR
SM_RC_SERVER_FILE_READ_ERROR
SM_RC_SERVER_FILE_WRITE_ERROR

Reply Structure Functions by Message Type

SM_SAVE_SPEECH DATA REPLY
SmGetSpeechDataArchive
SmGetSpeechDataOptions
SmGetSpeechDataSize
SmGetSpeechDataVersion

Task Related Functions and Callbacks

SmDiscardSpeechData
SmQuerySpeechData
SmQuerySpeechDataEx
SmSaveSpeechDataEx
SmRestoreSpeechData
SmRestoreSpeechDataEx

167 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.80 SmSaveSpeechDataEx

Purpose

SmSaveSpeechDataEx saves current session speech data to a file. This function is an ex-
tension of the function SmSaveSpeechData. It allows an application to specify a list of tags
for which the associated audio data will be saved. This function can also be used to save
audio data for unsupervised training.

Please note: For this call to be valid, the application must first enable audio saving through
SmSet(SM_SAVE_AUDIO, TRUE). For more information on saving and restoring speech
sessions, reference "Writing ViaVoice Applications to Save and Restore Audio" in the
SMAPI Developer’s Guide.

Since this function can take a long time, we suggest that applications call SmSaveSpeech-
DataEx asynchronously to avoid the SMAPI synchronous call timeout If this function is
called asynchronously all subsequent SMAPI function requests from the application will be

returned with an rc of SM_RC_NOT_VALID_REQUEST until the SmSaveSpeechDataEx
request completes.

Syntax
int SmSaveSpeechDataEx (char *archive,
long version,
unsigned long flags,
long ntags,
unsigned long *tsg,
SM_MSG xreply);
Parameters
archive input - File name where data will be stored. May be null if only copying data
for unsupervised adaptation.
version input - Identifies the archive file version. If copying data for unsupervised
adaptation this is an application defined document identifier. Data to be saved
for unsupervised adaptation will be grouped by document identifier.
flags input - Identifies how the data should be saved, using one of the following

values:

SM_NORMAL_FILE
The speech data is written to the file specified by the file name.
This file will contain only engine data.

SM_COMPOUND_FILE
Windows only - The speech data is written to the Windows com-
pound file specified by the file name, using IStorage/IStream. The

168 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

ntags

tags
reply

data is saved in a section named "VTDSessionArchive." This al-
lows an application to save both engine state and application state
data in the same file.

SM_SAVE_ALL_TAGS
Specifies saving audio data associated with all tags in the session.

SM_SAVE_FOR_ADAPTATION
Specifies saving audio data for unsupervised adaptation. Data is
copied to a location where it can be read by the training program.
If the archive name is null data will not be written to the archive;
only copied for unsupervised adaptation.

input - Specifies the number of tags in the tags array. Valid values: 1 -
SM_MAX_API_TAGS.

input - A list of tags for which associated audio data will be saved.

input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN

SM_RC_ENOMEM

SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_SERVER_MALLOC_ERROR
SM_RC_NOT_VALID_REQUEST
SM_RC_SERVER_FILE_OPEN_ERROR
SM_RC_SERVER_FILE_READ_ERROR
SM_RC_SERVER_FILE_WRITE_ERROR

Reply Structure Functions by Message Type

SM_SAVE_SPEECH_DATA_REPLY
SmGetFlags
SmGetSpeechDataArchive

169

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

170

SmGetSpeechDataSize
SmGetSpeechDataVersion
SmGetTags

SmDiscardSpeechData
SmQuerySpeechData
SmQuerySpeechDataEx
SmRestoreSpeechData
SmRestoreSpeechDatakx
SmSaveSpeechData
SmNsaveSpeechDataCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.8

1 SmSaveSpeechUser

Purpose

SmSaveSpeechUser allows an application to save speaker data associated with a userid.

Syntax
int SmSaveSpeechUser (void *archive,
char *userid,
char *enrollid,
char *language,
char *script,
unsigned long flags,
SM_MSG xreply) ;
Parameters
archive input - Archive file name where data is saved.
userid input - UserID for which speaker data is to be archived.
enrollid input - Optional EnrollID for which speaker data is to be archived.
language input - Optional language for which speaker data is to be archived.
script input - Optional script for which speaker data is to be archived.
flags input - Reserved, must be set to 0.
reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-

ing that the call is made asynchronously.

Return Values

171

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_SERVER_PROCESS_ERROR

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_SAVE_SPEECH_DATA_REPLY
SmGetSpeechDataArchive
SmGetUserid

SmGetEnrollid

SmGetLanguages

SmGetScript

SmGetFlags

SmGetSpeechDataSize

Task Related Functions and Callbacks

172

SmQuerySpeechUserSize
SmRestoreSpeechUser
SmNsaveSpeechUserCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.82 SmSelectScript

Purpose

SmSelectScript selects a particular script for enrollment. This function can be used to
change the script which was specified when connecting for enrollment. This function can
only be called when connected to the speech recognition engine for an enrollment session.

Syntax

int SmSelectScript (char *scriptname,
char *language,
SM_MSG *reply);

Parameters

scriptname
input - The name of the script to select.

language input - The language of the script.

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST
SM_RC_BAD_SCRIPT

Reply Structure Functions by Message Type

SM_SELECT_SCRIPT_REPLY
SmGetNumberUtterances

173 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

SmQueryScripts
SmRequestScriptText
SmNselectScriptCallback

174 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.83 SmSet

Purpose

SmSet sets the value of a specified speech recognition engine parameter.

Syntax

int SmSet (short item,
long value,
SM_MSG *reply);

Parameters
item input - The parameter set, which can be any one of the following:
SM_API_DEBUG
Values that can be set include the following: 0 is debugging off, 1
to 5 provide progressively more debug information. A value of 1 or
2 provides flow of control information.
SM_API_DISPLAY
Reserved.
SM_API.LOG
The values are:
o 0=0Off

e 1=DMessage headers

e 2=DMessage headers + content

e 3=DMessage headers + content + internal engine messages
e Values above 3 are reserved.

SM_API_TIMING
Reserved.

SM_AUDIO_DEVICE
Selects the type of audio hardware.

SM_AUDIO_-CONFIGURATION
(Not applicable to Windows. Instead use Audio Setup program.)
Query the input source of the audio hardware where audio data
is collected. The returned value is bit mapped and can be any
combination of the following values:

e SM_AUDIO_INPUT_MIC_HI_.GAIN
e SM_AUDIO_INPUT_MIC_LO_GAIN
e SM_AUDIO_INPUT_LINE_LEFT

175 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

e SM_AUDIO_INPUT_LINE_RIGHT

e SM_AUDIO_INPUT_VARIABLE_GAIN

e SM_AUDIO_OUTPUT_LINE_LEFT

e SM_AUDIO_OUTPUT_LINE_RIGHT

e SM_AUDIO_.OUTPUT_INTERNAL_SPEAKER
e SM_AUDIO_OUTPUT_VARIABLE_GAIN

Refer to the SMLIMITS.H file for bounds on input and output
values.

SM_AUDIO_INPUT_-MODE
(Not applicable to Windows. Instead use Audio Setup program.)
Sets the input source of the audio hardware where audio data is col-
lected. Only one value can be specified per call and values include
the following:

e SM_AUDIO_INPUT_LINE_LEFT
e SM_AUDIO_INPUT_LINE_RIGHT
e SM_AUDIO_INPUT _MIC_HI_ GAIN
e SM_AUDIO_INPUT_MIC_.LO_GAIN
SM_AUDIO_-OUTPUT_-MODE
(Not applicable to Windows. Instead use the Audio Setup pro-
gram.) If supported by the underlying audio, this parameter indi-

cates the current output destination. Only one value can be speci-
fied per call and values include the following:

e SM_AUDIO_.OUTPUT_LINE_LEFT
e SM_AUDIO_OUTPUT_LINE_RIGHT
e SM_AUDIO_OUTPUT.INTERNAL_SPEAKER

SM_AUDIO_INPUT_-GAIN
(Not applicable to Windows. Instead use Audio Setup program.)
If supported by underlying audio, this parameter allows you to set
current gain setting. Refer to the SMLIMITS.H file for bounds on
input and output values.

SM_AUDIO_OUTPUT_GAIN
(Not applicable to Windows. Instead use Audio Setup program.)
If supported by underlying audio, this parameter allows you to set
current gain setting. Refer to the SMLIMITS.H file for bounds on
input and output values.

SM_AVAILABLE_AUDIO_DEVICES
For the default, SPCH DEFAULT_SYSTEM_AUDIO. If using
MWAVE, SPCH.MWAVE_AUDIO.

SM_COMMAND_PHRASE_TIMEOUT
This timeout parameter is used to control the behavior of finite
state grammars. In particular, they specify how much silence is

176 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

needed at the end of commands before the engine will make a
recognition decision to accept or reject the command. The amount
of silence required to accept or reject a phrase that is both par-
tially complete and complete. Default value is 250 (csecs). It can
be overridden by task dependent .par value. (Previously called
SM_PARTTIAL_.COMMAND_TIMEOUT). For example, consider
the grammar: command = move up 3 move up five Now consider
the following acoustic scenarios: 1.MOVE 2.MOVE UP 3.MOVE
UP FIVE 1.The engine will accept silences up to 0.5 seconds, wait-
ing for the UP, before rejecting the phrase as incomplete. 2.The
engine will accept silences up to 0.5 seconds, waiting for the op-
tional FIVE, before accepting the phrase MOVE UP. 3.Then engine
will wait only 0.1 seconds after the FIVE to accept the phrase. For
the example given, it seems that you would like to increase the
SM_PARTTAL_COMMAND _TIMEOUT in order to allow longer
pauses within phrases. Note that increasing this parameter will
also increase the decision time for "ambiguously complete" phrases.

SM_CONNECTION_ID
Sets the value of the WPARAM parameter for WM_CONTROL
messages received from the engine. If SM_PM_ENABLE is TRUE
all asynchronous API messages from the engine are WM_CONTROLJ
messages. The WPARAM parameter is the value of the SM_CONNECTION_ID.}}

SM_DELAY_EXIT

Set the amount of time the engine waits before terminating after
the last client disconnects. Valid values: -1 - MAX_LONG. If set to
-1 the engine will not terminate after the last client disconnects. If
set to 0 the engine will terminate immediately after the last client
disconnects. For values of x where 0 < x <= MAX_LONG, the
engine will wait x seconds before terminating after the last client
disconnects.

SM_ENABLE_EXCLUSIVE_VOCABS
Sets the calling application’s vocabularies. As part of the new
global vocabulary mechanism, applications have been given con-

trol of these as well as the navigator vocabularies. The SmSet item
SM_ENABLE_EXCLUSIVE_VOCABS now takes four values:

SM_EXCLUDE_NONE

SM_EXCLUDE_ALL

SM_EXCLUDE_GLOBALS
SM_EXCLUDE_ALLBUTNAVGLOBALS

The first two correspond to the old 0/1 values, so old clients will
work as before. The third is not very useful but would let a client
hide any of these new globals. The fourth provides the "super-

global" function so that dictation clients can hide all vocabularies
except those the navigator defines as global.

177 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

178

SM_ENGINE_DEBUG
Reserved. Values that can be set include the following: 0 is dis-
abled, greater than 0 provides progressively more information.

SM_ENGINE_DISPLAY
Reserved. Values that can be set include the following: 0 is dis-
abled, greater than 0 provides progressively more information.

SM_ENGINE_LOG
Reserved. Values that can be set include the following: 0 is dis-
abled, greater than 0 provides progressively more information.

SM_ENGINE_TIMING
Reserved

SM_IMMEDIATE_FIRMUP_MODE
This formerly unused item will now enable quick-firm-up mode,
causing the engine to firm-up the next command or short phrase
terminated by silence. It is reset when the first firm word is sent.
Currently there are no new notifications, so the last 3 modes pro-
duce the same SM_NOTIFY_FOCUS_APP_EXCLUSIVE engine
state notification:

e SM_NOTIFY_NAVIGATOR_EXCLUSIVE
e SM_NOTIFY_FOCUS_APP_EXCLUSIVE
e SM_NOTIFY_NONE_EXCLUSIVE

SM_NOTIFY_AUDIO_.LEVEL
Sets the returning of audio-level data during recognition or enroll-
ment. The value is either TRUE (1) or FALSE (0). See Section 4.6
[SmGetAudioLevel], page 205.

SM_NOTIFY_-COMMAND_WORD
Sets whether the application is notified when a command word is
recognized by having the engine send a SM_COMMAND_WORD
reply message. The value is either TRUE (1) or FALSE (0).

SM_NOTIFY_ENGINE_STATE
Sets whether the application is notified of a speech recognition en-
gine state change. The value is either TRUE (1) or FALSE (0). See
Section 4.12 [SmGetEngineState], page 211.

SM_NOTIFY_FOCUS_STATE
Sets whether the application is notified of a speech focus state
change. The value is either TRUE (1) or FALSE (0). See Sec-
tion 4.22 [SmGetFocusState], page 222.

SM_NOTIFY_MIC_STATE
Sets whether the application is notified of a microphone state
change. The value is either TRUE (1) or FALSE (0). See Sec-
tion 4.28 [SmGetMicState|, page 228.

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_OPTIMIZE_PERFORMANCE
Sets the speech recognition value for the engine depending on your
requirements. Only one value can be specified per call. Valid values
are:

e SM_OPTIMIZE_SPEED (fast)
e SM_OPTIMIZE_DEFAULT (balanced)
e SM_OPTIMIZE_ACCURACY (accurate)

SM_PHRASE_ALTERNATIVES
Sets the maximum number of alternatives which can be returned
by the engine when querying phrase alternatives. Valid values: 1 -
100. See Section 3.45 [SmQueryPhraseAlternatives], page 105.

SM_REDUCED_CPU_MODE
Sets the CPU mode of the speech recognition engine. The value is
either TRUE (1) for reduced CPU mode, or FALSE (0) for normal
CPU mode. See Section 4.12 [SmGetEngineState|, page 211.

SM_REJECTION_.THRESHOLD
The speech recognition engine rejects out-of-vocabulary words
or background noise during monitored enrollment or command
recognition. However, there is a trade-off between correctly reject-
ing these words/mnoises, and incorrectly rejecting properly spoken
words.

SM_REJECTION_THRESHOLD allows an application to adjust

this trade-off. The limits for the value of this parameter are
SM_MIN_REJECTION_THRESHOLD and SM_MAX_REJECTION_THRESHOLI
which are defined in SMLIMITS.H. At low settings of SM_REJECTION_THRESHC
the engine allows more matches through with fewer rejections. This

causes more background noises or incorrect word matches to be

recognized as speech. Fewer correct words are rejected. At high

rejection threshold values, the engine is biased toward requiring

a closer match, resulting in more rejections, and potentially more

rejections of correct words. This parameter also determines how

close the match must be between spoken acoustics and pronunci-

ations in the SmAddPronunciation and SmWordCorrection calls.

See SMLIMITS.H for minimum and maximum limits.

SM_RELOAD_ACOUSTICS
This flag will be specified as an argument to the SmSet function. It
will be used by a client application to request that the engine reload
acoustic data after speaker clustering or microphone adaptation.

SM_SAVE_AUDIO
Enables the saving of speech data during recognition based on the
following flags:

SM_SAVE_AUDIO_ADAPTATION
Saves audio data required for training.

179 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_SAVE_AUDIO_ALTERNATES
Saves audio data required for alternates (SmQueryAl-
ternates).

SM_SAVE_AUDIO_DEFAULT
Saves all audio data for playback, add pronuncia-
tion and alternates. DEFAULT is mapped to PLAY-
BACK|ALTERNATES| TRAINWORD to preserve
compatibility with older applications which asserted
TRUE.

SM_SAVE_AUDIO_-PLAYBACK
Saves audio data required for playback (SmPlayWords)

SM_SAVE_AUDIO_-PLAYBACKHIQ
Saves audio data required for high quality playback.

SM_SAVE_AUDIO_-TRAINWORD
Saves audio data required for trainword (SmAddPro-
nunciation).

A value of 0 will turn off all audio saving.

SM_TEXT_PHRASE_TIMEOUT

This timeout parameter is used to specify the length of silence at
the end of commands during dictation.

SM_UNAMBIGUOUS-COMMAND_PHRASE_TIMEOUT

This timeout parameter is used to control the behavior of finite
state grammars. In particular, they specify how much silence
is needed at the end of commands before the engine will make
a recognition decision to accept or reject the command. It is
the amount of silence required to accept or reject a phrase that
is unambiguously complete. Default value is 25 (csecs). Can
be overridden by task dependent .par value. (Previously called
SM_COMPLETE_COMMAND_TIMEOUT).

SM_SILENCE_DETECTION

value input - The

reply

Enables or disables silence detection. Valid values: 1, 0. If set to
1, silence detection enabled, if set to 0, silence detection disabled.

value to set the parameter to.

input/output - The pointer to a reply structure or to SmAsynchronous indicat-

ing that the call is made asynchronously.

Return Values

180

SM_RC_DEALLOCATING_SH_-MEM

SM_RC_EALLOCS

SM_RC_EBADHANDLE

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK
SM_RC_BAD_MODE
SM_RC_BAD_VALUE
SM_RC_NOT_YET
SM_RC_SERVER_FILE_OPEN_ERROR
SM_RC_SERVER_ERROR
SM_RC_EXISTS_IN_.NOTIFY
SM_RC_NOT_IN_NOTIFY
SM_RC_NOT_VALID_REQUEST

Reply Structure Functions by Message Type

SM_SET_REPLY
SmGetRcS
mGetltemValue

Task Related Functions and Callbacks

SmHaltRecognizer

SmMicOff

SmMicOn

SmQuery
SmRecognizeNext Word
SmNhaltRecognizerCallback
SmNmicOffCallback
SmNmicOnCallback
SmNqueryCallback
SmNrecognizeNext WordCallback
SmNrecognized TextCallback
SmNrecognized Word Callback
SmNsetCallback
SmNutteranceCompletedCallback

181 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.84 SmSetArg

Purpose

SmSetArg is a macro that fills an SmArg structure when given its components. This function
sets the components of the arg parameter. The pointer to arg or to a list of similarly created
arguments can then be passed to a number of functions, such as SmOpen and SmConnect.
For further information on attributes, see Chapter 7 [Attributes|, page 313. Also, see
"Establishing a Speech Session" in the SMAPI Developer’s Guide.

Syntax

void SmSetArg (SmArg arg,
char *name,
long value);

Parameters

arg input - The argument.

name input - The name of the attribute.
value input - The value of the attribute.

Task Related Functions and Callbacks

SmConnect
SmOpen
SmNconnectCallback

182 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.85 SmSetBinary

Purpose

SmSetBinary sets the value of a specified speech recognition engine parameter. This function
is used instead of SmSet to set values of arbitrary length and data type.

Syntax

int SmSetBinary (short item,
short length,
void *value,
SM_MSG *reply);

Parameters

item input - The parameter to be set, which can be any one of the following:

SM_AUDIO_SOURCE
Specifies setting value in audio library. Value depends on audio
library implementation.

SM_MNR_VALUE
Specifies setting mnr value. Value is hexidecimal representation of
mnr.

SM_SIGNAL_NOISE
Specifies setting signal /noise ratio values. Value is character string
holding the following blank delimited values: signal to noise ratio
in decibels, signal level in decibels, fraction of samples clipped.

length input - The length in bytes of the data pointed to by the argument value.
value input - Points to data to which item is to be set.
reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-

ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG

183 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK

Reply Structure Functions by Message Type

SM_SET_BINARY_REPLY
SmGetRc
SmGetBinaryltemValue

Task Related Functions and Callbacks

SmQueryBinary
SmNsetBinaryCallback

184 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.86 SmSetDefault

Purpose

SmSetDefault sets a default value for a user, enrollment, task ID speech attribute, or the
default topics. The default user, enrollment, or task ID is used by the speech recogni-
tion engine when SM_USE_DEFAULT is specified for the speech attribute as arguments
when calling SmOpen and SmConnect. The default topics are always used by the speech
recognition engine.

The default enrollid, taskid, and topics are stored on a per-user basis. SmSetDefault called
with an item value of SM_DEFAULT_USERID will set the value of the default userid and will
change the current topics for all sessions. SmSetDefault called with other item values will
set the default enrollid, taskid or topics for the default userid. To set the default enrollid,
task or topics for a user other than the default user, the function SmSetUserDefault is
provided.

Syntax

int SmSetDefault (long item,
char *item_value,
SM_MSG *reply);

Parameters

item input - Type of default ID speech attribute. Valid values include the following:
e SM DEFAULT_USERID

SM_DEFAULT_ENROLLID

SM_DEFAULT_TASK

SM_DEFAULT_TOPICS

item_value input - Value for default ID speech attribute.

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG

185 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK

Reply Structure Functions by Message Type

SM_SET_DEFAULT_REPLY
SmGetRe

Task Related Functions and Callbacks

SmConnect

SmOpen

SmQueryDefault
SmQueryUserDefault

SmSet UserDefault
SmNqueryDefaultCallback
SmNqueryUserDefaultCallback
SmNsetDefaultCallback
SmNsetUserDefaultCallback

186 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.87 SmSetDirectory

Purpose

SmSetDirectory sets the name of files or directories used by the engine. In this release,
SmSetDirectory defines the output.wav file name, used when SmPlayWords is subsequently
called with the SM_PLAY _WORDS_SAVE_WAVFILE option flag asserted. The fully qual-
ified file name is passed in the directory_name string.

Syntax

int SmSetDirectory(short x*file_class,
char *directory_name,
SM_MSG *reply);

Parameters

file_class input - Reserved, must be set to 0.

directory_name
input - String containing the file/directory name being set.

reply input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_.EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK
SM_RC_BAD_VALUE

Reply Structure Functions by Message Type

SM_SET_DEFAULT_REPLY
SmGetRe

187 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Task Related Functions and Callbacks

SmConnect
SmOpen
SmQueryDefault

188 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.88 SmSetUserDefault

Purpose

SmSetUserDefault sets a default value for the enrollid, task id, or topics for a particular
user. If the item SM_DEFAULT_TOPICS is specified, the item_value argument must be a
string of the default topics for the specified userid concatenated with blank delimiters (for
example, "topicl topic2 topic3") and will change the current topics for all sessions.

Syntax

int SmSetUserDefault (char *user_id,
long item,
char *item_value,
SM_MSG *reply);

Parameters
user_id Userid for which default is set.
item Specifies which default is set. Valid values:

SM_DEFAULT_ENROLLID
Specifies setting default enrollid

SM_DEFAULT_TASK
Specifies setting default task

SM_DEFAULT_TOPICS
Specifies setting default topics.

itemvalue New default value to set.

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP

189 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_RC_SM_NOT_OPEN

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST
SM_RC_SERVER_FILE_OPEN_ERROR

SM_SET_USER_DEFAULT_REPLY

Task Related Functions and Callbacks

190

SmConnect

SmOpen

SmQueryUserDefault
SmNconnectCallback
SmNqueryUserDefaultCallback
SmNconnectCallback
SmNsetUserDefaultCallback

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.89 SmSetUserInfo

Purpose

SmSetUserInfo sets user information. This function stores any information that pertains
to a user ID or an enrollment ID. It is the responsibility of the speech-aware application
to select a proper item name (tag) that uniquely identifies stored information. This item
is used later by the SmQueryUserInfo function for retrieving the stored information. This
function allows an application to associate string information with a particular user 1D or
enrollment ID.

Syntax

int SmSetUserInfo (char *xuser_id,
char *xenroll_id,
char *jitemname,
char *itemvalue,
SM_MSG *reply);

Parameters

user_id input - The name of the user whose information is stored.

enroll_id input - The enrollment ID of the user whose information is to be stored. This
parameter is NULL if the information stored is related to the user ID.

itemname input - The name of the information item to be stored.
itemwvalue input - The value of the information item to be stored.

reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

191 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_OK
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_BAD_ENROLLID
SM_RC_BAD_ITEM
SM_RC_BAD_USERID

Reply Structure Functions by Message Type

SM_SET_USER_INFO_REPLY
SmGetEnrollld
SmGetEnrolllds

SmGetRc

SmGetUserld

SmGetUserlds

Task Related Functions and Callbacks

SmQueryUserInfo
SmQueryUsers
SmNqueryUsersCallback
SmNqueryUserInfoCallback
SmNsetUserInfoCallback

192 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.90 SmSetUtteranceNumber

Purpose

SmSetUtteranceNumber sets the current utterance number. This function can only be
called when connected to the speech recognition engine for an enrollment session.

Syntax

int SmSetUtteranceNumber (long uttno,
SM_MSG *reply);

Parameters
uttno input - The utterance number to be set.
reply input/output - The pointer to a reply structure or to SmAsynchronous indicat-

ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_.EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN
SM_RC_OK
SM_RC_BAD_SCRIPT
SM_RC_BAD_UTTNO

Reply Structure Functions by Message Type
SM_SET_UTTERANCE_NUMBER_REPLY

Task Related Functions and Callbacks

SmDiscardUtterance
SmQueryUtterances
SmNsetUtteranceNumberCallback

193 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.91 SmUndefineVocab

Purpose

SmUndefineVocab deletes a dynamic vocabulary. This function deletes a vocabulary defined
by a call to SmDefineVocab or SmDefineVocabEx. After the vocabulary is deleted, no calls
to SmEnableVocab, SmDisableVocab, SmAddToVocab, or SmRemoveFromVocab can be
made for the specified vocabulary. The specified vocabulary must be disabled to be deleted.
SmUndefineVocab releases the image of the private area of the FSG file. SmUndefineVocab
is valid only when the speech recognition engine is not decoding speech to text. See "Setting
Up Vocabularies" in the SMAPI Developer’s Guide for examples of conditions when the
engine is not decoding speech to text.

Syntax

int SmUndefineVocab (char *vocab,
SM_MSG *reply);

Parameters

vocab

reply

Return Values

194

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK

SM_RC_BAD_VOCAB
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NOT_VALID_REQUEST

input - The name of the vocabulary undefined.

input/output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

Reply Structure Functions by Message Type

SM_UNDEFINE_VOCAB_REPLY
SmGetRe
SmGetVocabName

Task Related Functions and Callbacks

SmAddToVocab
SmDefineVocab
SmDisableVocab
SmEnableVocab
SmQueryAddedWords
SmQueryEnabledVocabs
SmQueryVocabs

SmQueryWord
SmRemoveFromVocab
SmNaddToVocabCallback
SmNdefineVocabCallback
SmNdisableVocabCallback
SmNenableVocabCallbackS
SmNqueryAdded WordsCallback
SmNqueryEnabledVocabsCallback
SmNqueryVocabsCallback
SmNqueryWordsCallback
SmNremoveFromVocabCallback
SmNundefineVocabCallback

195 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

3.92 SmWordCorrection

Purpose

SmWordCorrection corrects a misrecognized word. This function notifies the speech recog-
nition engine that an incorrectly recognized word or sequence of words was corrected by
the user. The user corrects the word by providing the correct spelling. This call specifies
whether the pronunciation for this word is to be added to the user’s personal pronunciation
pool and whether the corrected spelling is to be added to the user’s personal text vocabulary
extension. The speech recognition engine uses this information to assist future recognition.

If an SmWordCorrection call fails and the call is immediately repeated with exactly the
same parameters, the engine will automatically apply more lenient threshold parameters the
second time. (For a detailed description of the SM_REJECTION_THRESHOLD parameter
see Section 3.83 [SmSet], page 175.)

This call is valid only when the speech recognition engine is not decoding speech to text.
See "Changing the Engine Decoding State" in the SMAPI Developer’s Guide for examples
of conditions when the engine is not decoding speech to text. Please note:

e For this call to be valid, the application must first enable audio saving through Sm-
Set(SM_SAVE_AUDIO, TRUE). For more information on saving and restoring speech
sessions, reference "Writing ViaVoice Applications to Save and Restore Audio" in the
SMAPI Developer’s Guide.

e If you get an RC_OK return value for a synchronous call, you need to check the status
by performing an SmGetStatus function.

Syntax

int SmWordCorrection (short ntags,
long tags([],
short nspells,
char *spellings[],
char *pronunciations[],
short new_pronunciation,
SM_MSG *reply);

Parameters

ntags input - The number of tagged words corrected.

tags input - An array of tags for the words corrected.

nspells input - The number of new words to replace the words in error.

spellings input - An array of new spellings for the words corrected.

196 SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

pronunciations

input - An array of spoken-like spellings for the words that were corrected if
their pronunciation is different than the spellings would suggest. Specify NULL
if the spoken-like spelling is the same as the true spelling.

new_pronunciation

reply

input - A flag to indicate whether the corrected word is a new pronunciation
for a word already in the recognition vocabulary. The following flag values are
valid:

SM_CHECK_SPELLING
Check the spelling of the new word before adding it to the recog-
nition vocabulary as a new word. SM_CHECK_SPELLING is valid
only with SM_DEFAULT_ADDWORD. SM_FORCE_ADDWORD
and SM_REPLACE_ADDWORD override the spelling check.

SM_FORCE_ADDWORD
The corrected word is a new pronunciation and needs to be added
as a new word even if the word already exists in the vocabulary.

SM_NO_ADDWORD
The corrected word need not be added to the recognition vocabu-
lary as a new word.

SM_DEFAULT-ADDWORD
The user needs to decide whether to add the corrected word to the
recognition vocabulary. The speech recognition engine produces a
pronunciation if one does not already exist.

SM_REPLACE_ADDWORD
The new pronunciation needs to replace any existing pronunciations
of the corrected word.

input /output - The pointer to a reply structure or to SmAsynchronous indicat-
ing that the call is made asynchronously.

Return Values

SM_RC_DEALLOCATING_SH_-MEM
SM_RC_EALLOCS
SM_RC_EBADHANDLE
SM_RC_ENOCONN
SM_RC_ENOMEM
SM_RC_ENOMSG
SM_RC_ENOSERVER
SM_RC_EUNEXP
SM_RC_SM_NOT_OPEN

SM_RC_OK

197

SMAPI Reference

Chapter 3: Function Calls to the Speech Recognition Engine

SM_RC_INVALID_PARM_MAX_LEN
SM_RC_RECORDING_REQUIRED
SM_RC_SM_NOT_OPEN
SM_RC_MULTIPLE_SPELLINGS
SM_RC_NOT_VALID_REQUEST
SM_RC_RECORDING_REQUIRED

Reply Structure Functions by Message Type

SM_WORD_CORRECTION_REPLY
SmGetPronunciations

SmGetRc

SmGetSpellings

SmGetStatus

SmGetTags

Task Related Functions and Callbacks

SmCorrectText
SmCorrectTextCancel
SmNewContext

SmNcorrect TextCallback
SmNcorrect TextCancelCallback
SmNnewContextCallback
SmNplay WordsCallback
SmNplayWordsStatusCallback
SmNqueryAddedWordsCallback
SmNquery WordsCallback
SmNremovePronunciationCallback
SmNwordCorrectionCallback
SmPlayWords
SmQueryAddedWords
SmQueryWord

SmRemovePronunciation

198 SMAPI Reference

Chapter 4: Data Access Functions

4 Data Access Functions

This chapter lists and describes the function calls that retrieve data from reply messages.
These function calls do not interact with the engine; they provide local access to the logical
contents of a message that has already been received.

4.1 SmGetAlphabets

Purpose

SmGet Alphabets retrieves a list of alphabets related to specific enroll IDs or tasks.

SmGetAlphabets retrieves a list of alphabet strings. This function can extract data from
the following reply message structures:

e SM_QUERY_ENROLLIDS_REPLY
e SM_QUERY_TASKS_REPLY

The alphabet identifies the base technology used in the engine. Enrollment data must match
engine technology. The current engine is using a ranks based technology (alphabet="R".).
The previous engine used a Z-label based technology (alphabet="7Z".).

Syntax

int SmGetAlphabets (SM_MSG reply,
unsigned long *nalphabets,
char *x*x*alphabets);

Parameters

reply input - The reply structure from a SMAPI function.
nalphabets output - The pointer to the number of alphabets.
alphabets output - The pointer to a list of alphabets.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Task Related Functions and Callbacks

SmQueryEnrolllds
SmQueryTasks

199 SMAPI Reference

Chapter 4: Data Access Functions

4.2 SmGetAlternates

Purpose

SmGetAlternates retrieves alternative words.

SmGetAlternates retrieves the list of alternative words from the reply message. This func-
tion can extract data from the following reply message structures:

e SM_QUERY_ALTERNATES_REPLY
e SM_RECOGNIZED_WORD
Syntax

int SmGetAlternates (SM_MSG reply,
unsigned long *nwords,
SM_WORD **yords) ;

Parameters

reply input - The reply structure from a SMAPI function.
nwords output - The pointer to the number of alternative words.

words output - The pointer to a list of alternative words.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure Functions by Message Type

SmQueryAlternates

200 SMAPI Reference

Chapter 4: Data Access Functions

4.3 SmGetAnnotations

Purpose

SmGetAnnotations retrieves annotations.

SmGetAnnotations extracts the base vocabulary name from the reply message, uses this
name to access the image of the private area of the FSG file, and uses the offsets stored
in SM_WORD to access the annotation data. This function can extract data from the
following reply message structures:

e SM_RECOGNIZED_PHRASE
e SM_QUERY_PHRASE_ALTERNATIVES_REPLY

Annotations are stored in an SM_ANNOTATION structure. SmGetAnnotations returns a
pointer to an array of SM_ANNOTATION structures. SM_ANNOTATION is defined as:

struct _SM_ANNOTATION

long type; // Type of annotation
union
long numeric; // Return numeric annotations
char *string; // Return string annotations
void *other; // Reserved
annodata;

Types of annotations are defined as:

SM_ANNOTATION_NONE

SM_ANNOTATION_NUMERIC

SM_ANNOTATION_STRING

SM_ANNOTATION_OTHER (Reserved)
For every element of the array of SM_WORD structures returned in a SM_RECOGNIZED _PHRASE]
or SM_QUERY_PHRASE_ALTERNATIVES message there is a corresponding element in

the SM_ANNOTATION array. If there is no annotation associated with a particular word
this is indicated by an annotation of type SM_ANNOTATION_NONE.

Syntax
int SmGetAnnotations (SM_MSG reply,

unsigned long *nwords,
SM_ANNOTATION **annotations);

201 SMAPI Reference

Chapter 4: Data Access Functions

Parameters

reply input - The reply structure from a SMAPI function.
nwords output - The pointer to the number of annotations.
annotations

output - The pointer to an annotation structure.

Return Values

SM_RC_SM_EINVAL_MSC_TYPE
SM_RC_OK
SM_RC_SERVER_FILE_READ_ERROR
Reply Structure Functions by Message Type

SmDefineGrammar
SmUndefineVocab

202

SMAPI Reference

Chapter 4: Data Access Functions

4.4 SmGetApplication

Purpose

SmGetApplication retrieves the name of the application.

SmGet Application extracts the application name from the following reply messages:
e SM_COMMAND WORD
e SM_FOCUS_STATE

Syntax

int SmGetApplication (SM_MSG reply,
char =*xapplication);

Parameters

reply input - The reply structure from a SMAPI function.

application
output - The pointer to the name of the application.
Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure Functions by Message Type

SmNcommandWordCallback
SmNfocusStateCallback

203 SMAPI Reference

Chapter 4: Data Access Functions

4.5 SmGetApplications

Purpose

SmGetApplications retrieves the names of the applications that have established a session.

SmGet Applications extracts the application names from the SM_QUERY _SESSIONS_REPLYQ
reply message sent by the speech recognition engine to the application.

Syntax
int SmGetApplications (SM_MSG reply,
unsigned long *nsessions,
char ***reco_sessions);
Parameters
reply input - The reply structure from a SMAPI function.

nsessions output - A pointer to the number of sessions that have been established with
the speech recognition engine.

TeCO_SesSLoNs
output - A pointer to a list of applications that have established sessions with
the speech recognition engine.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure Functions by Message Type

SmNquerySessionsCallback

204 SMAPI Reference

Chapter 4: Data Access Functions

4.6 SmGetAudioLevel

Purpose

SmGet AudioLevel retrieves the level of the audio signal during recognition. SmGetAudi-
oLevel provides information about the level of audio received by the speech recognition en-
gine when the microphone is on. If previously requested by the SM_AUDIO_INPUT _LEVEL
parameter supplied to the SmSet function, packets of audio level values are periodically
sent to the speech recognition engine, which in turn calls SmNaudioLevelCallback and/or
sends a message to your window procedure. Audio-level information can then be ob-
tained using this function. Audio-level values range from 0(SM_MIN_AUDIO_LEVEL) to
10(SM_-MAX_AUDIO_LEVEL) with acceptable volume ranges from 2 to 7. The average
rate sent by the engine is 5 audio-level values per second. This function can extract data
from the following reply message structures:

e SM_AUDIO_LEVEL
Syntax

int SmGetAudioLevel (SM_MSG reply,
short =*volume);

Parameters

reply input - The reply structure from a SMAPI function.

volume output - The pointer to a short. Volume can range from SM_MIN_AUDIO_LEVEL]
to SM_MAX_AUDIO_LEVEL inclusive.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmNaudioLevelCallback

205 SMAPI Reference

Chapter 4: Data Access Functions

4.7 SmGetBinaryltemValue

Purpose

SmGetBinaryltemValue retrieves the value of item of arbitrary length and data type.
SmGetBinaryltemValue can extract data from the following reply message structures:
e SM SET BINARY REPLY
e SM_QUERY_BINARY_REPLY

Syntax
int SmGetBinaryItemValue (SM_MSG sm_reply,
unsigned long *item,
unsigned long *length,
void *kxyalue) ;
Parameters

sm_reply input - The reply structure from a SMAPI function.

item output - A pointer to the name of the item.
length output - A pointer to the length of the data pointed by the value argument.
value output - A pointer to the value of the item.

Return Values

SM_RC_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL
Reply Structure Functions by Message Type

SmSetBinary
SmQueryBinary

206 SMAPI Reference

Chapter 4: Data Access Functions

4.8 SmGetCodePage

Purpose

SmGetCodepage returns the Windows codepage which is to be used by the client application
for sending/receiving character strings in/out of the engine. SmGetCodepage can extract
data from the following reply message structures:

e SM_CONNECT_REPLY (Recognition and Enrollment Mode Only)

Syntax

int SmGetCodepage (SM_MSG reply,
unsigned long *codepage);

Parameters

reply input - The reply structure from a SMAPI function.

codepage output - Returns the Windows codepage used for character strings in/out of
the engine.
Return Values

SM_RC_OK
SM_RC_REPLY_NULL
SM_RC_SM_EINVAL_MSG_TYPE

207 SMAPI Reference

Chapter 4: Data Access Functions

4.9 SmGetComment

Purpose

SmGetComment retrieves a comment. It can extract data from the following reply message
structure:

e SM_REQUEST_SCRIPT_TEXT_REPLY
Syntax

int SmGetComment (SM_MSG reply,
char **kcomment) ;

Parameters

reply input - The reply structure from a SMAPI function.

comment output - The pointer to a comment from the script text.

Return Values

SM_RC_OK
SM_RC_REPLY_NULL
SM_RC_SM_EINVAL_MSG_TYPE

208 SMAPI Reference

Chapter 4: Data Access Functions

4.10 SmGetConfidenceScores

Purpose

SmGetConfidenceScores retrieves an array of confidence scores. It can extract data from
the following reply message structures:

e SM_RECOGNIZED_PHRASE
e SM_RECOGNIZED_TEXT
e SM_RECOGNIZED_WORD

Syntax

int SmGetConfidenceScores (SM_MSG reply,
unsigned long nscores,
short **scores);

Parameters

reply input - The reply structure from a SMAPI function.

nscores output - The number of elements in the array of confidence scores.
scores output - The array of confidence scores.

Return Values

SM_RC_OK
SM_RC_REPLY_NULL
SM_RC_SM_EINVAL_MSG_TYPE

209 SMAPI Reference

Chapter 4: Data Access Functions

4.11 SmGetDescriptions

Purpose

SmGetDescriptions retrieves a list of enrollment enroll IDs, scripts, tasks, or users.

SmGetDescriptions can extract data from the following reply message structures:

e SM_QUERY_ENROLLIDS_REPLY

e SM_QUERY_SCRIPTS_REPLY SM_QUERY_TASKS_REPLY
e SM_QUERY_USERS_REPLY

e SM_QUERY_LANGUAGES_REPLY

e SM_QUERY_TOPICS_REPLY

Syntax

int SmGetDescriptions (SM_MSG reply,
unsigned long *ndescriptions,
char x**descriptions)

Parameters

reply input - The reply structure from a SMAPI function.

ndescriptions
output - The pointer to the number of descriptions.

descriptions
output - The pointer to a list of descriptions.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure Functions by Message Type

SmQueryEnrolllds
SmQueryLanguages
SmQueryTasks
SmQueryUsers

210

b

SMAPI Reference

Chapter 4: Data Access Functions

4.12 SmGetEngineState

Purpose

SmGetEngineState retrieves the engine state.

SmGetEngineState extracts the engine state from an SM_ENGINE_STATE reply message
sent by the speech recognition engine to an application. SM_ENGINE_STATE reply mes-
sages are controlled by the SM_NOTIFY_ENGINE_STATE parameter of the SmSet func-
tion.

Syntax

int SmGetEngineState (SM_MSG reply,
unsigned long *engine_state);

Parameters

reply input - The reply structure from a SMAPI function.
engine_state
output - The pointer to an unsigned long. Values include the following:

e SM_NOTIFY_NORMAL_CPU

e SM_NOTIFY_REDUCED_CPU

e SM_NOTIFY_ENGINE_BUSY

e SM NOTIFY_ENGINE_IDLE

e SM NOTIFY_NAVIGATOR_EXCLUSIVE

e SM_NOTIFY_FOCUS_APP_EXCLUSIVE

e SM_NOTIFY_NONE_EXCLUSIVE

e SM_NOTIFY_RECOGNIZED_SPEECH

e SM_NOTIFY_SPEECH_START

e SM NOTIFY_SPEECH_STOP

e SM_NOTIFY_SPEECH_TOO_HIGH

e SM_NOTIFY_SPEECH_TOO_LOW

e SM_NOTIFY_PRONUNCIATIONS_ADDED

e SM_NOTIFY_PRONUNCIATIONS_DELETED

e SM_NOTIFY_ENGINE_SETTINGS_CHANGED for the following param-
eters:

e SM_REJECTION_THRESHOLD
e SM_AUDIO_CONFIGURATION
e SM_AUDIO_DEVICE

211 SMAPI Reference

Chapter 4: Data Access Functions

e SM_AUDIO_INPUT_GAIN

e SM_AUDIO_INPUT_MODE

e SM_AUDIO_OUTPUT_GAIN

e SM_AUDIO_OUTPUT_MODE

e SM_NOTIFY_APPLICATION_CONNECTED

e SM_NOTIFY_APPLICATION_DISCONNECTED

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure Functions by Message Type

SmNengineStateCallback

212

SMAPI Reference

Chapter 4: Data Access Functions

4.13 SmGetEnrollld

Purpose

SmGetEnrollld retrieves an enrollment ID.

SmGetEnrollld is valid only for reply message structures that contain one enrollment ID. Use
SmGetEnrolllds for reply message structures with multiple enrollment IDs. SmGetEnrollld
can extract data from the following reply message structures:

e SM_CONNECT_REPLY
SM_QUERY_DEFAULT_REPLY
SM_QUERY_USER_DEFAULT_REPLY
SM_QUERY_USER_INFO_REPLY

e SM_SET_USER_INFO_REPLY

Syntax

int SmGetEnrollId (SM_MSG reply,
char **xenroll_id);

Parameters

reply input - The reply structure from a SMAPI function.

enroll_id output - The pointer to an enrollment ID.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure Functions by Message Type

SmQueryDefault
SmQueryEnrolllds
SmQueryUserInfo
SmSet UserInfo

213 SMAPI Reference

Chapter 4: Data Access Functions

4.14 SmGetEnrolllds

Purpose

SmGetEnrolllds retrieves a list of enrollment IDs.

SmGetEnrolllds extracts data from the following reply message structures:

e SM_QUERY_DEFAULT_REPLY

e SM_QUERY_SESSIONS_REPLY

e SM_CONNECT_REPLY

e SM_QUERY_ENROLLIDS_REPLY

e SM_QUERY_USER_DEFAULT_REPLY
e SM_QUERY_USER_INFO_REPLY

e SM_SET_USER_INFO_REPLY

Syntax

int SmGetEnrollIds (SM_MSG reply,
unsigned long *nenroll_ids,
char **x*xenroll_ids);

Parameters

reply input - The reply structure from a SMAPI function.

nenroll_ids
output - The pointer to the number of enrollment IDs.

enroll_ids output - The pointer to a list of enrollment IDs.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure Functions by Message Type

SmQueryEnrolllds
SmQueryUserInfo
SmSet UserInfo

214

SMAPI Reference

Chapter 4: Data Access Functions

4.15 SmGetEventld

Purpose

SmGetEventld retrieves the event ID.

SmGetEventld can extract data from the following reply message structures:

e SM_EVENT_NOTIFY_REPLY
e SM_EVENT_SYNCH
Syntax

int SmGetEventId (SM_MSG reply,
unsigned long *event_id);

Parameters

reply input - The reply structure from a SMAPI function.
event_id output - The pointer to the event ID.

Return Values

SM_RC_SM_EINVAL MSC_TYPE
SM_RC_OK
SM_RC_REPLY NULL
Reply Structure Functions by Message Type

SmEventNotify
SmNeventSynchCallback

215

SMAPI Reference

Chapter 4: Data Access Functions

4.16 SmGetEventOptions

Purpose

SmGetEventOptions retrieves options for an event.

SmGetEventOptions can extract data from the following reply message structure:

e SM_EVENT_SYNCH

Syntax

int SmGetEventOptions (SM_MSG reply,
unsigned long *options);

Parameters

reply input - The reply structure from a SMAPI function.

options output - The pointer to options.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure Functions by Message Type

SmNeventSynchCallback

216

SMAPI Reference

Chapter 4: Data Access Functions

4.17 SmGetExpectedRecordingSpace

Purpose

SmGetExpectedRecordingSpace retrieves the approximate number of bytes of disk space
that will be used by the speech recognition engine for recording during enrollment. This
function is limited by what can be returned in an unsigned long. Actual recording space
may be greater. This function can extract data from the following reply message structure:

e SM_CONNECT_REPLY (Enrollment mode only)

Syntax
int SmGetExpectedRecordingSpace (SM_MSG reply,
unsigned long *expected_space);
Parameters
reply input - The reply structure from a SMAPI function.

expected_space
output - The expected number of bytes required for recording.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure Functions by Message Type

SmConnect

217 SMAPI Reference

Chapter 4: Data Access Functions

4.18 SmGetExpectedTrainingSpace

Purpose

SmGetExpected TrainingSpace retrieves the approximate number of bytes of disk space that
may be used by the training program. This function is limited by what can be returned in
an unsigned long. Actual training space may be greater. This function can extract data
from the following reply message structure:

e SM_CONNECT_REPLY (Enrollment mode only)

Syntax

int SmGetExpectedTrainingSpace (SM_MSG reply,
unsigned long *expected_space);

Parameters

reply input - The reply structure from a SMAPI function.

expected_space
output - The expected number of bytes required for training.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure Functions by Message Type

SmConnect

218 SMAPI Reference

Chapter 4: Data Access Functions

4.19 SmGetFirmWords

Purpose

SmGetFirmWords retrieves firm words.

SmGetFirmWords extracts the SM_WORD from the following reply message structures:

SM_RECOGNIZED_PHRASE
SM_RECOGNIZED_TEXT
SM_RECOGNIZED_WORD
SM_COMMAND_WORD
SM_QUERY_PHRASE_ALTERNATIVES_REPLY

Syntax

int SmGetFirmWords (SM_MSG reply,
unsigned long *nwords,

SM_WORD **words) ;

Parameters

reply

nwords

words output - The pointer to a list of firm words.

Return Values

Reply Structure Functions by Message Type

219

SM_RC_SM_EINVAL_MSG_TYPE

SM_RC_OK
SM_RC_REPLY_NULL

SmNrecognized TextCallback
SmNrecognized Word Callback
SmNcommandWordCallback

input - The reply structure from a SMAPI function.

output - The pointer to the number of firm words.

SMAPI Reference

Chapter 4: Data Access Functions

4.20 SmGetFlags

Purpose

SmGetFlags is used to retrieve a single flags field from a reply structure. It is valid only for
the following message types:

e SM_AUTO_.COMPLETE_REPLY

e SM_CONNECT_REPLY

e SM_DISCARD_SPEECH_DATA_REPLY

e SM_QUERY_PHRASE_ALTERNATIVES_REPLY
e SM_QUERY_PRONUNCIATIONS_REPLY

e SM_QUERY_TOPICS

e SM_QUERY_TASKS_REPLY

Syntax

int SmGetFlags (SM_MSG reply,
unsigned long *flags);

Parameters

reply input - The reply structure from a SMAPI function.
flags output - Receives flags field.

Return Values

SM_RC_OK
SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryPhraseAlternatives
SmConnect
SmAutoComplete
SmDiscardSpeechData,
SmQuerAddedWordsEx
SmQuerPhraseAlternatives
SmQueryPronunciationskEx

SmQueryTopics

220 SMAPI Reference

Chapter 4: Data Access Functions

4.21 SmGetFocusChangeReason

Purpose

SmGetFocusChangeReason returns a reason code on focus changes.

SmGetFocusChangeReason extracts the reason from the SM_FOCUS_STATE reply struc-
ture. The change reason is only available when the focus state notification is for SM_NOTIFY_FOCUS_REL
The "change reason" flags can be:

SM_NOTIFY FOCUS_CHANGE_ON_RELEASE
The application released the focus by itself.

SM_NOTIFY_FOCUS_CHANGE_ON_REQUEST
The application released focus due to request.

Syntax

int SmGetFocusChangeReason (SM_MSG reply,
unsigned long *reason);

Parameters

reply input - The reply structure from a SMAPI function.

reason output - The pointer to the reason change.

Return Values

SM_RC_OK
SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmGetFocusState
SmNFocusStateCallback

221 SMAPI Reference

Chapter 4: Data Access Functions

4.22 SmGetFocusState

Purpose

SmGetFocusState retrieves the focus state.

SmGetFocusState extracts the focus state from the SM_FOCUS_STATE reply message sent
by the speech recognition engine to an application. SM_FOCUS_STATE reply messages are
controlled by the SmSet SM_NOTIFY_FOCUS_STATE parameter. The name of the ap-
plication causing the focus change can be extracted from SM_FOCUS_STATE with SmGe-
tApplication.

Syntax

int SmGetFocusState (SM_MSG reply,
unsigned long *focus_state);

Parameters

reply input - The reply structure from an API function.
focus_state

output - The pointer to an unsigned long. Values include the following:
SM_NOTIFY_FOCUS_REQUESTED
SM_NOTIFY_FOCUS_GRANTED
SM_NOTIFY_FOCUS_DENIED
SM_NOTIFY_FOCUS_RELEASED

Return Values

SM_RC_OK
SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmGetFocusChangeReason
SmNfocusStateCallback

222 SMAPI Reference

Chapter 4: Data Access Functions

4.23 SmGetFreeSpace

Purpose

SmGetFreeSpace retrieves the approximate number of bytes of free disk space on the disk
used by the speech recognition engine during enrollment and by the training program. This
function is limited by what can be returned in an unsigned long. Actual free space may be
greater. This function extracts data from the following reply message structures:

e SM_CONNECT_REPLY (Enrollment mode only)
e SM_DISCONNECT_REPLY (Enrollment mode only)
Syntax

int SmGetFreeSpace (SM_MSG reply,
unsigned long *free_space);

Parameters

reply input - The reply structure from an API function.

free_space output - The approximate number of bytes of free disk space.

Return Values

SM_RC_OK
SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmConnect

SmDisconnect

223 SMAPI Reference

Chapter 4: Data Access Functions

4.24 SmGetGrammarPath

Purpose

SmGetGrammarPath retrieves the full path name of an FSG file.

SmGetGrammarPath extracts data from the following reply message structure:

SM_DEFINE_GRAMMAR_REPLY

Syntax

int SmGetGrammarPath (SM_MSG reply,
char **xgrammar_path) ;

Parameters

reply input - The reply structure from a SMAPI function.

grammar_path
output - The pointer to the full path name.

Return Values

SM_RC_OK
SM_RC_REPLY_NULL
SM_RC_SM_EINVAL_MSG_TYPE

Reply Structure - Related Functions and Callbacks

SmDefineGrammar

224 SMAPI Reference

Chapter 4: Data Access Functions

4.25 SmGetIncrements

Purpose

SmGetIncrements is used to retrieve an array of increment values from a reply structure.
It is valid only for the following message types:

e SM_QUERY_SCRIPTS_REPLY

The increments values are the minimum number of sentences which must be recorded for
that script before the training program can be run.

Syntax
int SmGetIncrements (SM_MSG reply,
unsigned long *nincrements,
short **increments) ;
Parameters
reply input - The reply structure from a SMAPI function.
nincrements

output - Receives number of elements in array of increments returned.

mcrements
output - Receives array of increments.

Return Values

SM_RC_OK
SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_REPLY_NULL

Reply Structure Related Functions and Callbacks

SmQueryScripts

225 SMAPI Reference

Chapter 4: Data Access Functions

4.26 SmGetltemValue

Purpose

SmGetltemValue retrieves the value for an item.

SmGetltemValue can extract data from the following reply message structures:
e SM_QUERY_REPLY
e SM SET REPLY

Syntax

int SmGetItemValue (SM_MSG reply,
unsigned long *item,
unsigned long *value);

Parameters

reply input - The reply structure from a SMAPI function.
item output - The pointer to the name of the item.

value output - The pointer to the value of the item.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQuery
SmSet

226 SMAPI Reference

Chapter 4: Data Access Functions

4.27 SmGetLanguages

Purpose

SmGetLanguages retrieves a list of languages.
SmGetLanguages can extract data from the following reply message structures:
e SM_CONNECT_REPLY
e SM_QUERY_ENROLLIDS_REPLY
e SM_QUERY_LANGUAGES_REPLY
e SM_QUERY_TASKS_REPLY

Syntax

int SmGetLanguages (SM_MSG reply,
unsigned long *nlanguages,
char ***languages);

Parameters

reply input - The reply structure from a SMAPI function.

nlanguages
output - The pointer to the number of languages.

languages output - The pointer to a list of languages.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryEnrolllds
SmQueryLanguages
SmQueryTasks

SmConnect

227 SMAPI Reference

Chapter 4: Data Access Functions

4.28 SmGetMicState

Purpose

SmGetMicState gets the microphone state.

SmGetMicState extracts the microphone state from one of the following messages sent by
the speech recognition engine to the application:

e SM_REPORT_ENGINE_ERROR
e SM_FOCUS_.GRANTED
e SM_MIC_STATE

SM_REPORT_ENGINE_ERROR is unsolicited, and SM_FOCUS_GRANTED and SM_MIC_STATER
are sent if the application issues SmSet for SM_NOTIFY_FOCUS_STATE and SM_NOTIFY_MIC_STATE,}
respectively.

Syntax

int SmGetMicState (SM_MSG reply,
unsigned long *mic_state);

Parameters

reply input - The reply structure from a SMAPI function.

mic_state output - Pointer to an unsigned long, which can be any of the following:
e SM_NOTIFY_MIC_ON
e SM_ENGINE_MIC_OFF

Return Values

None

Reply Structure - Related Functions and Callbacks

SmNmicStateCallback

228 SMAPI Reference

Chapter 4: Data Access Functions

4.29 SmGetMsgName

Purpose

SmGetMsgName retrieves the name of the audio message.

SmGetMsgName can extract data from the following reply message structures:

e SM_PLAY_MESSAGE_STATUS

Syntax

int SmGetMsgName (SM_MSG reply,
char **message_name) ;

Parameters

reply input - The reply structure from a SMAPI function.

message_name

output - The pointer to the name of the audio message.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmNplayMessageStatusCallback

229

SMAPI Reference

Chapter 4: Data Access Functions

4.30 SmGetMsgType

Purpose

SmGetMsgType retrieves the type of message from the reply structure associated with the
input.

The values for SMAPI message types are defined in the SMCOMM.H file and in the section
Section A.2 [SMAPI Message Types|, page 333.
SmGetMsgType can extract data from all defined reply message structures.
Syntax
int SmGetMsgType (SM_MSG reply,

int *message_type);

Parameters

reply input - The reply structure from a SMAPI function.

message_type
output - The message type.
Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

230 SMAPI Reference

Chapter 4: Data Access Functions

4.31 SmGetNameValue

Purpose

SmGetNameValue retrieves a name and its value.

SmGetNameValue retrieves a name (tag) of user information and its corresponding value.
This function can extract data from the following reply message structures:

e SM_QUERY_USER_INFO_REPLY

Syntax

int SmGetNameValue (SM_MSG reply,
char *kname,
char **value);

Parameters

reply input - The reply structure from a SMAPI function.
name output - The pointer to the name.

value output - The pointer to the value of the name.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryUserInfo

231 SMAPI Reference

Chapter 4: Data Access Functions

4.32 SmGetNextAlternate

Purpose

SmGetNextAlternate retrieves the next alternate from a reply structure. This function can
extract data from the following reply message structures:

e SM_QUERY_USER_INFO_REPLY

This access function differs from others in that it is called multiple times against one reply
structure. The first time it is called it will return information about the first alternate.
Each successive time it is called it will return information about the next alternate. When
it has returned information about all alternates in the reply structure it will set the nwords
parameter to 0.

Syntax
int SmGetNextAlternate (SM_MSG reply,
unsigned long *nwords,
SM_WORD *xyords) ;
Parameters
reply input - The reply structure from a SMAPI function.
nwords output - The number of words in the words array.
words output - The list of words which make up the next alternate.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryAlternates

232 SMAPI Reference

Chapter 4: Data Access Functions

4.33 SmGetNumberProcessed

Purpose

SmGetNumberProcessed retrieves the number of sentances from the current script which
have been trained. This function can extract data from the following reply message struc-
tures:

e SM_QUERY_UTTERANCES_REPLY

Syntax

int SmGetNumberProcessed (SM_MSG reply,
unsigned long *nprocessed);

Parameters

reply input - The reply structure from a SMAPI function.

nprocessed output - The number of sentences which have been trained.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryUtterances

233 SMAPI Reference

Chapter 4: Data Access Functions

4.34 SmGetNumberRecorded

Purpose

SmGetNumberRecorded retrieves a list of the number of recorded sentances. This function
can extract data from the following reply message structures:

e SM_QUERY_SCRIPTS_REPLY

Please note: The information returned by this function may be invalid if any recording for
supervised or unsupervised training has been done and a backup/restore user operation is
performed before running the training program for that recorded data.

Syntax
int SmGetNumberRecorded (SM_MSG reply,
unsigned long *nrecorded,
short *xrecorded);
Parameters
reply input - The reply structure from a SMAPI function.

nrecorded —output - A pointer size of the recorded list.

recorded output - A pointer to the list of the number of recorded sentences. Each element
in the list holds the number of recorded sentences for a particular script.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryScripts

234 SMAPI Reference

Chapter 4: Data Access Functions

4.35 SmGetNumberRequired

Purpose

SmGetNumberRequired retrieves the minimum number of sentences which must be recorded
for the current script before running the training program. This function can extract data
from the following reply message structures:

e SM_QUERY_UTTERANCES_REPLY

Syntax

int SmGetNumberRequired (SM_MSG reply,
unsigned long *nrequired);

Parameters

reply input - The reply structure from a SMAPI function.

nrequired — output - The number of sentences which must be recorded.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryUtterances

235 SMAPI Reference

Chapter 4: Data Access Functions

4.36 SmGetNumberUtterances

Purpose

SmGetNumberUtterances retrieves the number of recorded utterances. This function can
extract data from the following reply message structures:

e SM_CONNECT_REPLY (Enrollment mode only)
e SM_QUERY_UTTERANCES_REPLY
e SM_SELECT_SCRIPT_REPLY

Syntax

int SmGetNumberUtterances (SM_MSG reply,
unsigned long *nutterances) ;

Parameters

reply input - The reply structure from a SMAPI function.

nutterances
output - The number of recorded utterances.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmConnect
SmQueryUtterances

SmSelectScript

236 SMAPI Reference

Chapter 4: Data Access Functions

4.37 SmGetNumberWordMsgs

Purpose

SmGetNumberWordMsgs gets the number of words from a message.

SmGetNumberWordMsgs retrieves the number of SM_RECOGNIZED_WORD messages

that have been sent since the last SM_RECOGNIZE_NEXT_WORD function call request.

The value returned is 0 or 1. This is used with a synchronous SM_HALT_RECOGNIZER _REPLYQ
message to tell if any unprocessed command words are still queued.

Syntax

int SmGetNumberWordMsgs (SM_MSG *reply,
unsigned long *nwords);

Parameters

reply input - The reply structure from a SMAPI function.

nwords output - Pointer to an unsigned long that will be filled in with the number of
words.
Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

237 SMAPI Reference

Chapter 4: Data Access Functions

4.38 SmGetOptions

Purpose

SmGetOptions is used to retrieve an options field from a reply structure. It is valid only
for the following message types:

e SM_DEFINE_VOCABULARY_REPLY
Syntax

int SmGetOptions (SM_MSG *xreply,
unsigned long *optiomns);

Parameters
reply input reply structure from a SMAPI function.

options output -output - receives options field.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmDefineVocabEx

238 SMAPI Reference

Chapter 4: Data Access Functions

4.39 SmGetPercentages

Purpose

SmGetPercentages retrieves percentages of the completeness of processing for specified en-
rollments. SmGetPercentages can extract data from the following reply message structure:

e SM_QUERY_ENROLLIDS_REPLY

A query of enrollids for a given user returns an array of enrollids, with related fields, in-
cluding percent-complete. This procedure provides an array of the percent-complete values.
The percent-complete values represent the amount of training which is complete for a given
enrollid. When percent-complete is 100 the training program is finished.

Syntax
int SmGetPercentages (SM_MSG reply,
unsigned long *npercentages,
short x*percentages) ;
Parameters
reply input - The reply structure from a SMAPI function.
npercentages

output - The pointer to the number of percentages.

percentages
output - The pointer to a list of percentages.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryEnrolllds

239 SMAPI Reference

Chapter 4: Data Access Functions

4.40 SmGetPhoneticPronunciations

Purpose

SmGetPhoneticPronunciations retrieves phonetic pronunciations from a reply. SmGetPho-
neticPronunciations can extract data from the following reply message structure:

e SM_QUERY_PRONUNCIATION_REPLY

Syntax
int SmGetPhoneticPronunciations (SM_MSG reply,
unsigned long *nphonetics,
char x*x*phonetics);
Parameters
reply input - The reply structure from a SMAPI function.
nphonetics

output - The pointer to the number of phonetic pronunciations.

phonetics output - The pointer to a list of phonetic pronunciations.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryPronunciation

240 SMAPI Reference

Chapter 4: Data Access Functions

4.41 SmGetPhraseScore

Purpose

SmGetPhraseScore is used to retrieve the phrase score from a reply structure. It is valid
only for the following message types:

e SM_RECOGNIZED_PHRASE

Syntax

int SmGetPhraseScore (SM_MSG reply, short *score);

Parameters
reply inputinput - Reply structure from a SMAPI function.
score output - Receives score of phrase.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmNrecognized PhraseCallback

241 SMAPI Reference

Chapter 4: Data Access Functions

4.42 SmGetPhraseState

Purpose

SmGetPhraseState retrieves phrase state flags.
SmGetPhraseState can extract data from the following reply message structure:
e SM_RECOGNIZED_PHRASE

Syntax

int SmGetPhraseState (SM_MSG reply,
unsigned long *phrase_state);

Parameters

reply input - The reply structure from a SMAPI function.
phrase_state
output - The pointer to an unsigned long which can be either of the following:
You can get both of the following as output:
SM_PHRASE HALTED

The engine is in a halted state and is waiting for the application
to tell it what to do next.

SM_PHRASE_ACCEPTED

The engine has accepted the phrase.
You can get both of the following as output:
SM_PHRASE HALTED

The engine is in a halted state and is waiting for the application
to tell it what to do next.

SM_PHRASE REJECTED
The engine has rejected the phrase, with the best guess phrase
returned in the SM_WORD array.

Return Values

SM_RC_OK
SM_RC_REPLY_NULL
SM_RC_SM_EINVAL_MSG_TYPE

Reply Structure - Related Functions and Callbacks

SmNRecognized PhraseCallback

242 SMAPI Reference

Chapter 4: Data Access Functions

4.43 SmGetPreferred

Purpose

SmGetPreferred is used to retrieve the number of preferred topics from a reply structure.
It is valid only for the following message types:

e SM_QUERY_TOPICS_REPLY

Syntax

int SmGetPreferred (SM_MSG reply,
short =*preferred);

Parameters

reply input - Reply structure from a SMAPI function.

preferred output - Receives number of preferred topics.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryTopics

243 SMAPI Reference

Chapter 4: Data Access Functions

4.44 SmGetPronunciations

Purpose

SmGetPronunciations retrieves pronunciations.

SmGetPronunciations can extract data from the following reply message structures:
SM_QUERY_PRONUNCIATIONS REPLY
SM_WORD_CORRECTION_REPLY
SM_QUERY_PRONUNCIATION_REPLY

SM_RECOGNIZED_TEXT

Syntax

int SmGetPronunciations (SM_MSG reply,
unsigned long *npronun,
char **k*pronuns) ;

Parameters

reply input - The reply structure from a SMAPI function.
npronun output - The pointer to the number of pronunciations.

pronuns output - The pointer to a list of pronunciations.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryPronunciations
SmWordCorrection

244 SMAPI Reference

Chapter 4: Data Access Functions

4.45 SmGetRc

Purpose

SmGetRe retrieves the return code for the SMAPI functions.

Syntax

int SmGetRc (SM_MSG reply,
int *rc);

Parameters

reply input - The reply structure from a SMAPI function.

re output - The pointer to the return code.

Return Values

SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

All functions.

245 SMAPI Reference

Chapter 4: Data Access Functions

4.46 SmGetRcDescription

Purpose

SmGetRcDescription retrieves the ASCII string describing the return code. SmGetR-
cDescription remaps return codes to ASCII strings that describe the return code and,
potentially, the associated failure. Messages are in US English only for diagnostic pur-
poses. This function returns a pointer to an ASCII character string that describes the
return code in the parameter rc_description. For example, for the symbolic return code

"SM_RC_ACOUSTICS_TOO_LONG", the associated return code description character
string would be "The acoustics specified are too long." For a list of all return code charac-
ter strings, see Section A.3 [SMAPI Message Explanations|, page 337.

Syntax

int SmGetRcDescription (SM_MSG reply,
char *x*rc_description);

Parameters

reply input - The reply structure from a SMAPI function.

rc_description
output - Pointer to a character string.

Return Values

SM_RC_OK
SM_RC_REPLY_NULL

246 SMAPI Reference

Chapter 4: Data Access Functions

4.47 SmGetRcName

Purpose

SmGetRcName returns the symbolic name of the return code as a string.

SmGetRcName retrieves the ASCII strings containing the symbol associated with the return
code as a string. For example, for a return code value of 49, the associated symbolic return
code name character string would be SM_RC_ACOUSTICS_TOO_LONG. For a list of all
return code values, see Section A.1 [SMAPI Return Codes and Messages|, page 329.

Syntax

int SmGetRcName (SM_MSG reply,
char **rc_name);

Parameters

reply input - Any return code associated with any Sm call.

re_name output - Pointer to a character string.

Return Values

SM_RC_OK
SM_RC_REPLY_NULL

247 SMAPI Reference

Chapter 4: Data Access Functions

4.48 SmGetRequiredTrainingSpace

Purpose

SmGetRequired TrainingSpace retrieves the approximate number of bytes of disk space that
is required by the training program. This function is limited by what can be returned in
an unsigned long. Actual training space requirements may be greater. This function can
extract data from the following reply message structure:

e SM_DISCONNECT

Syntax
int SmGetRequiredTrainingSpace (SM_MSG reply,
unsigned long *required_space);
Parameters
reply input - Reply structure from SMAPI function

required_space
output - Approximate number of bytes required by training.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmDisconnect

248 SMAPI Reference

Chapter 4: Data Access Functions

4.49 SmGetSampleRates

Purpose

SmGetSampleRates is used to retrieve an array of sample rates from a reply structure.

is valid only for the following message types:
e SM_QUERY_ENROLLIDS_REPLY
e SM_QUERY_TASKS_REPLY

Syntax

int SmGetSampleRates (SM_MSG reply,
unsigned long *nrates,
short **sample_rates) ;

Parameters

reply input - Reply structure from SMAPI function
nrates output - Receives number of elements in array of sample_rates.

sample_rates
output - Receives array of sample_rates.
Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryEnrollids
SmQueryTasks

It

249 SMAPI Reference

Chapter 4: Data Access Functions

4.50 SmGetScriptFlags

Purpose

SmGetScriptFlags is used to retrieve an array of script flags from a reply structure. It is
valid only for the following message types:

e SM_QUERY_SCRIPTS_REPLY
Syntax

int SmGetScriptFlags (SM_MSG reply,
unsigned long *nflags,
long xxflags);

Parameters

reply input - Reply structure from SMAPT function
nflags output - Receives number of elements in array of flags.

flags output - Receives array of flags.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryScripts

250 SMAPI Reference

Chapter 4: Data Access Functions

4.51 SmGetScripts

Purpose

SmGetScripts retrieves a list of enrollment scripts.

SmGetScripts can extract data from the following reply message structures:
e SM_QUERY_SCRIPTS_REPLY
e SM_QUERY_ENROLLIDS_REPLY

Syntax

int SmGetScripts (SM_MSG reply,
unsigned long *nscripts,
char x**kscripts);

Parameters

reply input - The reply structure from a SMAPI function.
nscripts output - The pointer to the number of scripts.

scripts output - The pointer to a list of scripts.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryEnrolllds

251 SMAPI Reference

Chapter 4: Data Access Functions

4.52 SmGetService

Purpose

SmGetService retrieves a pointer to the argument name describing the service requested
from the speech recognition engine.

SmGetService can extract data from the following reply message structures:
e SM_CONNECT_REPLY
e SM_DISCONNECT_REPLY

Syntax

int SmGetService (SM_MSG reply,
char **xservice);

Parameters
reply input - The reply structure from a SMAPI function.
seruvice output - The pointer to the service name.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmConnect

SmDisconnect

252 SMAPI Reference

Chapter 4: Data Access Functions

4.53 SmGetSessionld

Purpose

SmGetSessionld retrieves the session ID from the reply structure.

SmGetSessionld can extract data from the following reply message structure:
e SM_CONNECT_REPLY

Syntax

int SmGetSessionId (SM_MSG reply,
char **session_id);

Parameters

reply input - The reply structure from a SMAPI function.

session_id output - The pointer to the ID of the session.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmConnect

253 SMAPI Reference

Chapter 4: Data Access Functions

4.54 SmGetSeverity

Purpose

SmGetSeverity retrieves the severity associated with an unsolicited SM_REPORT_ENGINE_ERRORJ

message.

Syntax

int SmGetSeverity (SM_MSG reply,
unsigned long *severity);

Parameters

reply input - The reply structure from a SMAPI function.

severity output - Pointer to an unsigned long that will be filled in with the severity.
Values include the following:

SM_ENGINE_INFO
Informational message/can be ignored.

SM_ENGINE_WARNING
Non-terminal error detected by engine.

SM_ENGINE_ERROR
Currently unused, but can be used in the future.

SM_ENGINE_TERMINAL_ERROR
Engine terminated due to unrecoverable error.
Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

254 SMAPI Reference

Chapter 4: Data Access Functions

4.55 SmGetSizes

Purpose

SmGetSizes is used to retrieve an array of size values from a reply structure. It is valid only
for the following message types:

e SM_QUERY_SCRIPTS_REPLY

The size values represent the number of sentences in a script.

Syntax

int SmGetSizes (SM_MSG reply,
unsigned long *nsizes,
short *ksizes);

Parameters

reply input - Reply structure from a SMAPI function.

nsizes output - Receives number of elements in array of sizes Non-terminal error de-
tected by engine.

sizes output - Receives array of sizes.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryScripts

255 SMAPI Reference

Chapter 4: Data Access Functions

4.56 SmGetSpeechDataArchive

Purpose

SmGetSpeechDataArchive retrieves the name of the archive file.

SmGetSpeechDataArchive extracts data associated with the following reply message struc-
tures:

e SM_SAVE_SPEECH_DATA _REPLY
e SM_RESTORE_SPEECH_DATA_REPLY

Syntax

int SmGetSpeechDataArchive (SM_MSG reply,
char **archive);

Parameters
reply input - The reply structure from a SMAPI function.
archive output - The pointer to the archive name.

Return Values

SM_RC_OK
SM_RC_REPLY_NULL
SM_RC_SM_EINVAL_MSG_TYPE

Reply Structure - Related Functions and Callbacks

SmSaveSpeechData
SmRestoreSpeechData

256 SMAPI Reference

Chapter 4: Data Access Functions

4.57 SmGetSpeechDataOptions

Purpose

SmGetSpeechDataOptions retrieves the options flags.

SmGetSpeechDataOptions extracts data associated with the following reply message struc-
ture:

e SM_SAVE_SPEECH_DATA REPLY
Syntax

int SmGetSpeechDataOptions (SM_MSG reply,
long *optioms);

Parameters
reply input - The reply structure from a SMAPI function.
options output - The pointer to the options flags, which can be one of the following:

SM_NORMAL_FILE
This indicates that the speech data was written to a flat file. It will
contain only engine data.

SM_COMPOUND _FILE
This indicates that the speech data is written to a Windows com-
pound file, and the data is saved in a section named "VTDSession-
Archive." The file can contain both engine state and application
state data.

Return Values

SM_RC_OK
SM_RC_REPLY_NULL
SM_RC_SM_EINVAL_MSG_TYPE

Reply Structure - Related Functions and Callbacks

SmSaveSpeechData

257 SMAPI Reference

Chapter 4: Data Access Functions

4.58 SmGetSpeechDataSize

Purpose

SmGetSpeechDataSize retrieves the size of the speech data archive.
SmGetSpeechDataSize extracts data associated with the following reply message structures:
e SM SAVE SPEECH _DATA REPLY
e SM_QUERY_SPEECH_DATA_REPLY

Syntax

int SmGetSpeechDataSize (SM_MSG reply,
unsigned long *size);

Parameters

reply input - The reply structure from a SMAPI function.

size output - The pointer to the size of the speech data archive.

Return Values

SM_RC_OK
SM_RC_REPLY_NULL
SM_RC_SM_EINVAL_MSG_TYPE

Reply Structure - Related Functions and Callbacks

SmQuerySpeechData
SmSaveSpeechData

258 SMAPI Reference

Chapter 4: Data Access Functions

4.59 SmGetSpeechDataVersion

Purpose

SmGetSpeechDataVersion retrieves the version identifier.

SmGetSpeechDataVersion extracts data associated with the following reply message struc-
tures:

e SM_SAVE_SPEECH_DATA _REPLY
e SM_RESTORE_SPEECH_DATA_REPLY

Syntax

int SmGetSpeechDataVersion (SM_MSG reply,
long *version);

Parameters
reply input - The reply structure from a SMAPI function.
version output - The pointer to the version identifier.

Return Values

SM_RC_OK
SM_RC_REPLY_NULL
SM_RC_SM_EINVAL_MSG_TYPE

Reply Structure - Related Functions and Callbacks

SmRestoreSpeechData
SmSaveSpeechData

259 SMAPI Reference

Chapter 4: Data Access Functions

4.60 SmGetSpelling

Purpose

SmGetSpelling gets the spelling from a message.

SmGetSpelling extracts data and retrieves the spelling associated with the following reply
message structures:

e SM_ADD_PRONUNCIATION_REPLY

e SM_AUTO_.COMPLETE_REPLY

e SM_QUERY_PRONUNCIATION_REPLY
e SM_QUERY_SPELLING_REPLY

e SM_QUERY_TOPICS_REPLY

e SM_QUERY_USER_DEFAULT_REPLY

e SM_REMOVE_PRONUNCIATION_REPLY

Syntax

int SmGetSpelling (SM_MSG reply,
char #**spelling);

Parameters
reply input - The reply structure from a SMAPI function.
spelling output - Pointer to a character string.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmAddPronunciation
SmQueryPronunciation
SmRemovePronunciation

SmWordCorrection

260 SMAPI Reference

Chapter 4: Data Access Functions

4.61 SmGetSpellings

Purpose

SmGetSpellings retrieves an array of spellings.

SmGetSpellings extracts data and retrieves the spelling associated with the following reply
message structures:

SM_ADD_PRONUNCIATION_REPLY
SM_QUERY_PRONUNCIATIONS_REPLY
SM_REMOVE_PRONUNCIATION_REPLY
SM_WORD_CORRECTION_REPLY

Syntax

int SmGetSpellings (SM_MSG reply,
unsigned long *nspellings,
char *x*kspellings);

Parameters

reply input - The reply structure from a SMAPI function.
nspellings output - The pointer to the number of spellings.

spellings output - The pointer to a list of spellings.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmAddPronunciation
SmQueryPronunciations
SmRemovePronunciation

SmWordCorrection

261 SMAPI Reference

Chapter 4: Data Access Functions

4.62 SmGetStates

Purpose

SmGetStates retrieves enrollment statuses.

SmGetStates can extract data from the following reply message structure:
e SM_QUERY_ENROLLIDS REPLY
e SM_QUERY_SCRIPTS_REPLY

Syntax

int SmGetStates (SM_MSG reply, unsigned long *nstati, short *xstati);

Parameters

reply input - The reply structure from a SMAPI function.

nstati output - The pointer to the number of statuses.

stati output - The pointer to a list of statuses. Values include the following:

e SM_STAT_ENROLLMENT_RECORDING
e SM_STAT_ENROLLMENT_RUNNING

e SM_STAT ENROLLMENT_COMPLETE
e SM_STAT ENROLLMENT_FAILED

e SM_STAT ENROLLMENT_BUSY

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure Functions by Message Type

SmQueryEnrolllds

262 SMAPI Reference

Chapter 4: Data Access Functions

4.63 SmGetStatus

Purpose

SmGetStatus retrieves the status.

SmGetStatus can extract data from the following reply message structures:

SM_DISCARD_SPEECH_DATA_REPLY
SM_PLAY_MESSAGE_STATUS
SM_PLAY_UTTERANCE_STATUS
SM_PLAY_WORDS_STATUS
SM_WORD_CORRECTION_REPLY

The SmGetStatus function retrieves the status from the reply structure. This status and
its meaning depend on the message type of the reply structure. The following statuses are
possible:

263

For SmNplayMessageCallback and SmNplayUtteranceCallback:

SM_STAT PLAY _START
The message, utterance, or word playback started.

SM_STAT PLAY_STOP
The message, utterance, or word playback stopped.
For SmNplayWordsStatusCallback:

SM_STAT PLAY_START
The message, utterance, or word playback started.

SM_STAT PLAY_STOP
The message, utterance, or word playback stopped.

SM_STAT_BAD_AUDIO
The connection to the audio source was lost during playback.

SM_STAT BAD_TAG
An invalid tag value was specified for the word.
For an SmWordCorrection call:

SM_RC_ADDED
The word was added to the vocabulary.

SM_RC_INVOCAB
The word is already in the vocabulary.

SM_RC_NOT_INVOCAB
The word is not in the IBM ViaVoice spelling dictionary.

SM_RC_NOT_ADDED
The word has not been added to the vocabulary.

SMAPI Reference

Chapter 4: Data Access Functions

Syntax

int SmGetStatus (SM_MSG reply, int *status);

Parameters
reply input - The reply structure from a SMAPI function.
status output - The pointer to the status.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmWordCorrection
SmNplayMessageStatusCallback
SmNplay UtteranceStatusCallback
SmNplayWordsStatusCallback

264

SMAPI Reference

Chapter 4: Data Access Functions

4.64 SmGetTagOffset

Purpose

SmGetTagOffset retrieves the offset which was applied to all tags restored in a speech session
when SmRestoreSpeechData was called with the SM_MERGE_TAGS flags set.

SmGetTagOffset can extract the tag offset from the following reply message structures:
e SM RESTORE_SPEECH_DATA _REPLY
Syntax

int SmGetTagOffset (SM_MSG reply,
unsigned long *offset);

Parameters
reply input - The reply structure from a SMAPI function.
offset output - The offset to be added to merged tags.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmNrestoreSpeechDataCallback

265 SMAPI Reference

Chapter 4: Data Access Functions

4.65 SmGetTags

Purpose

SmGetTags retrieves tags from the reply structure.

SmGetTags can extract data from the following reply message structures:
e SM PLAY WORDS_STATUS
e SM_QUERY_ALTERNATES REPLY
e SM_WORD_CORRECTION_REPLY

Syntax

int SmGetTags (SM_MSG reply,
unsigned long *ntags,
long *x*xtags) ;

Parameters

reply input - The reply structure from a SMAPI function.
ntags output - The pointer to the number of tags.

tags output - The pointer to a list of tags.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryAlternates
SmWordCorrection
SmNplayWordsStatusCallback

266 SMAPI Reference

Chapter 4: Data Access Functions

4.66 SmGetTask

Purpose

SmGetTask retrieves a domain from the reply structure.

SmGetTask is valid only for reply message structures that contain one domain. Use SmGet-
Tasks for reply message structures with multiple domains. SmGetTask can extract data
from the following reply message structures:

e SM_CONNECT_REPLY
SM_QUERY_DEFAULT_REPLY
SM_QUERY_TASKS_REPLY
SM_QUERY_USER_DEFAULT_REPLY

Syntax

int SmGetTask (SM_MSG reply,
char *xtask);

Parameters
reply input - The reply structure from a SMAPI function.
domain output - The pointer to a domain.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryDefault
SmQueryTasks

267 SMAPI Reference

Chapter 4: Data Access Functions

4.67 SmGetTaskFlags

Purpose

SmGetTaskFlags retrieves attribute information about tasks.

SmGetTaskFlags extracts the task attribute flags from the SM_QUERY_TASKS_REPLY
reply message sent by the speech recognition engine to the application

Syntax

int SmGetTaskFlags (SM_MSG reply,
unsigned long *nflags,
unsigned long **flags);

Parameters

reply input - The reply structure from a SMAPI function.
nflags output - A pointer to the number of flags in the list of return flags.

flags output - A pointer to a list of task flags. Each flag in the list contains informa-
tion about one or more of the following attributes of a task:

SM_TASK_CONTINUOUS - This task supports continuous dictation
SM_TASK_NUMBER_FMT - This task supports number formatting

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryTasks

268 SMAPI Reference

Chapter 4: Data Access Functions

4.68 SmGetTasks

Purpose

SmGetTasks retrieves domains from the reply structure.
SmGetTasks extracts data from the following reply message structures:
e SM_CONNECT_REPLY
e SM_QUERY_DEFAULT_REPLY
e SM_QUERY_SCRIPTS_REPLY
e SM_QUERY_SESSIONS_REPLY
e SM_QUERY_TASKS_REPLY
e SM_QUERY_USER_DEFAULT_REPLY

Syntax
int SmGetTasks (SM_MSG reply,

unsigned long *ntasks,
char **kxtasks);

Parameters

reply input - The reply structure from a SMAPI function.
ndomains output - The pointer to the number of domains.

domains output - The pointer to a list of domains.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryTasks

269 SMAPI Reference

Chapter 4: Data Access Functions

4.69 SmGetTimes

This API call is ONLY here for compatibility purposes. If you are writing a new application,
you should use SmGetWordTimes instead to return the start and end times for text, word,
and phrase messages.

Purpose

SmGetTimes retrieves time values of spoken words.

SmGetTimes retrieves an array of time values sent with words received in the last
SM_RECOGNIZED _TEXT or SM_RECOGNIZED_WORD message from the speech recog-
nition engine. Each time, expressed in milliseconds, specifies the time elapsed from the
beginning of the utterance to the beginning of the spoken word. This function can extract
data from the following reply message structures:

e SM_RECOGNIZED_TEXT
e SM_RECOGNIZED_WORD

Syntax
int SmGetTimes (SM_MSG reply,

unsigned long *ntimes,

unsigned long **times);
Parameters
reply input - The reply structure from a SMAPI function.
ntimes output - The pointer to the number of times in the list.
times output - The pointer to a list of times.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmNrecognized TextCallback
SmNrecognized WordCallback
SmNaudioEventCallback

270 SMAPI Reference

Chapter 4: Data Access Functions

4.70 SmGetTopics

Purpose

SmGetTopics is used to retrieve an array of topics from a reply structure
for the following message types:

e SM_QUERY_TOPICS_REPLY

Syntax

int SmGetTopics (SM_MSG reply,
unsigned long *ntopics,
char *x*k*ktopics);

Parameters

reply input - reply structure from a SMAPI function.
ntopics output - receives number of elements in array of topics

trained output - receives array of topics.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

. It is valid only

Reply Structure - Related Functions and Callbacks

SmQueryTopics

271 SMAPI Reference

Chapter 4: Data Access Functions

4.71 SmGetTrained

Purpose

SmGetTrained is used to retrieve an array of trained values from a reply structure. It is
valid only for the following message types:

e SM_QUERY_SCRIPTS_REPLY

The trained values represent the number of sentences of a script which have been recorded
and processed by the training program.

Syntax
int SmGetTrained (SM_MSG reply,
unsigned long *ntrained,
short **xtrained) ;
Parameters
reply input - reply structure from a SMAPI function.

ntrained — output - receives number of elements in array of trained

trained output - receives array of trained.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryScripts

272 SMAPI Reference

Chapter 4: Data Access Functions

4.72 SmGetUserld

Purpose

SmGetUserld retrieves a user ID from the reply structure.

SmGetUserld is valid only for reply message structures that contain one user ID. Use SmGe-
tUserlds for reply message structures with multiple user IDs. SmGetUserld can extract data
from the following reply message structures:

e SM_CONNECT_REPLY

e SM_QUERY_DEFAULT_REPLY

e SM_QUERY_USER_INFO_REPLY

e SM_QUERY_USER_DEFAULT_REPLY

e SM_REQUEST_NEW_ENROLLID_REPLY
e SM_REQUEST NEW_USERID_REPLY

e SM_SET_USER_INFO_REPLY

Syntax

int SmGetUserId (SM_MSG reply,
char **user_id);

Parameters
reply input - The reply structure from a SMAPI function.
user_id output - The pointer to a user ID.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryDefault
SmQueryUserInfo
SmQueryUsers
SmSetUserInfo

273 SMAPI Reference

Chapter 4: Data Access Functions

4.73 SmGetUserlds

Purpose

SmGetUserlds retrieves user IDs from the reply structure.
SmGetUserlds can extract data from the following reply message structures:
e SM_QUERY_DEFAULT_REPLY
e SM_QUERY_SESSIONS_REPLY
e SM_QUERY_USER_DEFAULT_REPLY
e SM_QUERY_USER_INFO_REPLY
e SM_QUERY_USERS_REPLY
e SM_REQUEST_NEW_ENROLLID_REPLY
e SM_REQUEST_NEW_USERID_REPLY
e SM_SET_USER_INFO_REPLY

Syntax

int SmGetUserIds(SM_MSG reply,
unsigned long *nuser_ids,
char *kkuser_ids);

Parameters

reply input - The reply structure from a SMAPI function.
nuser_ids output - The pointer to the number of user IDs.

user_ids output - The pointer to a list of user IDs.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryUserInfo
SmQueryUsers
SmSetUserInfo

274 SMAPI Reference

Chapter 4: Data Access Functions

4.74 SmGetUsers

Purpose

SmGetUsers retrieves users from the reply structure.

SmGetUsers can extract data from the following reply message structure:
e SM_QUERY_USERS_REPLY
e SM REQUEST NEW_USERID_REPLY

Syntax

int SmGetUsers (SM_MSG reply,
unsigned long *nusers,
char *kkusers) ;

Parameters

reply input - The reply structure from a SMAPI function.
nusers output - The pointer to the number of users.

users output - The pointer to a list of users.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryUsers

275 SMAPI Reference

Chapter 4: Data Access Functions

4.75 SmGetUtterancelList

Purpose

SmGetUtterancelist retrieves a list of utterances. It can extract data from the following
reply message structure:

e SM_QUERY_UTTERANCES_REPLY
Syntax

int SmGetUtterancelList (SM_MSG reply,
unsigned long *nutterances,
long **kutterances);

Parameters

reply input - The reply structure from a SMAPI function.

nutterances
output - The pointer to the number of utterances.

utterances output - The pointer to a list of utterances.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryUtterances

276 SMAPI Reference

Chapter 4: Data Access Functions

4.76 SmGetUtteranceNumber

Purpose

SmGetUtteranceNumber retrieves the utterance number from the reply structure.
SmGetUtteranceNumber can extract data from the following reply message structures:
e SM_MIC_ON_REPLY
e SM_PLAY_UTTERANCE_STATUS
e SM_.UTTERANCE_.COMPLETED

Syntax

int SmGetUtteranceNumber (SM_MSG reply,
unsigned long *nutterance);

Parameters

reply input - The reply structure from a SMAPI function.

nutterance output - The pointer to the utterance number.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmMicOn
SmNplayUtteranceStatusCallback
SmNutteranceCompletedCallback

277 SMAPI Reference

Chapter 4: Data Access Functions

4.77 SmGetVocabList

Purpose

SmGetVocabList function retrieves a vocabulary list from the reply structure.
SmGetVocabList can extract data from the following reply message structures:
SM_QUERY_ENABLED _VOCABS_REPLY

SM_QUERY _VOCABS_REPLY

SM_QUERY_WORD_REPLY

SM_SET_VOCABS_REPLY

Syntax

int SmGetVocabList (SM_MSG reply,
unsigned long *nvocabs,
char **x*xyocabs);

Parameters

reply input - The reply structure from a SMAPI function.
nvocabs output - The pointer to the number of vocabularies in the vocabulary list.

vocabs output - The pointer to a list of vocabularies.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmQueryEnabled Vocabs
SmQuery Vocabs
SmQueryWord

278 SMAPI Reference

Chapter 4: Data Access Functions

4.78 SmGetVocabName

Purpose

SmGetVocabName retrieves the vocabulary name from the reply structure.
SmGetVocabName extracts data from the following reply message structures:

e SM_ADD_TO_VOCAB_REPLY

e SM_DEFINE_.GRAMMAR_REPLY

e SM_DEFINE_VOCAB_REPLY

e SM_DEFINE_VOCABULARY_REPLY

e SM_DISABLE_VOCAB_REPLY

e SM_ENABLE_VOCAB_REPLY

e SM_QUERY_PHRASE_ALTERNATES_REPLY

e SM_RECOGNIZED_PHRASE

e SM_REMOVE_FROM_VOCAB_REPLY

e SM_UNDEFINE_VOCAB_REPLY

Syntax

int SmGetVocabName (SM_MSG reply,
char **vocabname);

Parameters

reply input - The reply structure from a SMAPI function.

vocabname
output - The pointer to the name of the vocabulary.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmAddToVocab
SmDefineVocab
SmDisableVocab
SmEnableVocab
SmRemoveFromVocab
SmUndefineVocab

279 SMAPI Reference

Chapter 4: Data Access Functions

4.79 SmGetVocabPath

Purpose

SmGetVocabPath is used to retrieve a vocabulary path from a reply structure

only for the following message types:
e SM_DEFINE_VOCABULARY_REPLY

Syntax

int SmGetVocabPath (SM_MSG reply,
char **xvocab_path);

Parameters

reply input - reply structure from a SMAPI function.

vocab_path output - receives vocabulary path string.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmDefineVocabEx
Related Functions
SmDefineVocabEx

. It is valid

280 SMAPI Reference

Chapter 4: Data Access Functions

4.80 SmGetVocWords

Purpose

SmGetVocWords retrieves vocabulary words from the reply structure.
SmGetVocWords extracts data from the following reply message structures:
e SM_ADD TO_VOCAB_REPLY
e SM DEFINE_.GRAMMAR_REPLY
e SM DEFINE_VOCAB_REPLY
e SM DEFINE_VOCABULARY_REPLY
e SM_QUERY_VOCAB_WORDS_REPLY
Following an SmAddToVocab call, SmGetVocWords extracts the vocabulary words that
failed to be added.

Following an SmDefineVocab call, SmGetVocWords extracts the vocabulary words that
failed to be defined.

For a description of the SM_VOCWORD data type, see Section 6.6 [SM_VOCWORD data
type], page 310.
Syntax

int SmGetVocWords (SM_MSG reply,
unsigned long *nwords,
SM_VOCWORD **xyords) ;

Parameters

reply input - The reply structure from a SMAPI function.
nwords output - The pointer to the number of vocabulary words. Limited to SM_MAX_VOCWORDS.}

words output - The pointer to a list of vocabulary words.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL
Reply Structure - Related Functions and Callbacks

SmAddToVocab
SmDefineVocab

281 SMAPI Reference

Chapter 4: Data Access Functions

4.81 SmGetWords

Purpose

SmGetWords retrieves words from the reply structure.

SmGetWords can extract data from the following reply message structures:
e SM_QUERY_ADDED_WORDS_REPLY
e SM_QUERY_WORD_REPLY

Syntax

int SmGetWords (SM_MSG reply,
unsigned long *nwords,
SM_WORD **xyords);

Parameters

reply input - The reply structure from a SMAPI function.
nwords output - The pointer to the number of words.

words output - The pointer to a list of words.

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL
Reply Structure - Related Functions and Callbacks

SmQueryAddedWords
SmQueryWord

282 SMAPI Reference

Chapter 4: Data Access Functions

4.82 SmGetWordTimes

Purpose

SmGetWordTimes retrieves the most likely start and end times for recognized words from
the reply structure.

During recognition, the speech recognition engine computes the most likely start and end
times for each recognized word. These times are used for playback and for computing
alternates for word correction.

The recognition engine keeps track of word start and end times in frame time offsets since the
beginning of the utterance. The frame time is converted to wall time before returning the
times to the application. On Windows the engine uses the Windows function GetTickCount
to create the timestamp for the beginning of the utterance. On Unix the engine uses the
function times. Frame time is essentially in centiseconds (hundredths of a second), but there
can be slight differences in frame time versus clock time depending on the sample rate. For
example, at 11025Hz sampling, a frame is represented by 110 samples, so there is a drift of
11000/11025 between frame time and clock time. In order to determine a word’s start or
end time offset from the beginning of the utterance, the application must subtract the word
start or end time from the time returned in the SM_SPEECH_START engine state message.
See Section 3.83 [SmSet|, page 175, SM_ZNOTIFY_ENGINE_STATE for information on how
to receive engine state messages. SmGetWordTimes can extract data from the following
reply message structures:

e SM_ADD_PRONUNCIATION_REPLY

e SM_COMMAND_WORD

e SM_QUERY_PHRASE_ALTERNATIVES_REPLY
e SM_RECOGNIZED_PHRASE

e SM_RECOGNIZED_TEXT

e SM_RECOGNIZED_WORD

Syntax
int SmGetWordTimes (SM_MSG reply,
unsigned long *ntimes,
unsigned long **stimes,
unsigned long **etimes);
Parameters
reply input - The reply structure from one of the supported messages.
ntimes output - The pointer to the number of times in the list.
stimes output - The pointer to the list of start times.
etimes output - The pointer to the list of end times.

283 SMAPI Reference

Chapter 4: Data Access Functions

Return Values

SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_OK
SM_RC_REPLY_NULL

Reply Structure - Related Functions and Callbacks

SmNrecognizedPhraseCallback
SmNrecognized TextCallback
SmNrecognized WordCallback
SmAddPronunciation
SmQueryPhraseAlternatives
SmSet

284 SMAPI Reference

Chapter 4: Data Access Functions

4.83 SmReturnRc

Purpose

SmReturnRe returns the return code from SM_MSG.

SmReturnRc provides an alternative to SmGetRe for accessing return codes from messages
received from the speech recognition engine. The return value of the function is the return

code value in the given SM_MSG.

Syntax

int SmReturnRc (SM_MSG reply);

Parameters

reply input - The reply structure from a SMAPI function.

Return Values

SM_RC_OK
SM_RC_REPLY_NULL

Task Related Functions and Callbacks

SmReturnRcDescription

SmReturnRcName

285

SMAPI Reference

Chapter 4: Data Access Functions

4.84 SmReturnRcDescription

Purpose

SmReturnRcDescription retrieves the ASCII string describing the return code. SmReturnR-
cDescription remaps return codes to ASCII strings that describe the return code and, poten-
tially, the associated failure. Messages are in US English only for diagnostic purposes. For
example, if this function were passed the return code, SM_RC_ACOUSTICS_TOO_LONG,
a pointer to the associated return code description character string "The acoustics speci-
fied are too long." would be returned. For a list of all return code character strings, see
Section A.3 [SMAPI Message Explanations|, page 337.

Syntax

char *SmReturnRcDescription (int rc);

Parameters
rc input - Any return code associated with any Sm call.

Task Related Functions and Callbacks

SmReturnRec

SmReturnRcName

286 SMAPI Reference

Chapter 4: Data Access Functions

4.85 SmReturnRcName

Purpose

SmReturnRcName returns the symbolic name of a return code as a string. SmReturnRc-
Name provides an alternative to SmGetRcName for retrieving an ASCII string containing
the symbol associated with a return code. For example, if this function was passed the
return code, SM_RC_ACOUSTICS_TOO_LONG, a pointer to the associated symbolic re-
turn code name character string "SM_RC_ACOUSTICS_TOO_LONG" would be returned.
For a list of all return code values, see Section A.1 [SMAPI Return Codes and Messages|,
page 329.

Syntax

char *SmReturnRcName (int rc);

Parameters

rc input - Any return code associated with any Sm call.

Return Values

Function directly returns a pointer to a statically defined character string containing a
description associated with the return code. Refer to Appendix A. "SMAPI Return Codes
and Messages" for a complete list of the character strings, their associated return values,
and their symbolic return code names.

Task Related Functions and Callbacks

SmReturnRe

SmReturnRcDescription

287 SMAPI Reference

Chapter 4: Data Access Functions

288 SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

5 Reply Message Structures and Callbacks

This chapter describes reply structures and callbacks.

5.1 Reply Message Structures Received from the Speech

Recognition Engine

An application can receive the following reply message structures, defined in SMCOMM.H,

from the speech recognition engine.

Reply message structures received by the application that are in response to an API call
request are termed solicited. Reply message structures received by the application that are
not in response to an API call request are termed unsolicited.

Reply Message Structure
SM_AUTO_COMPLETE_REPLY

SM_ADD_PRONUNCIATION_REPLY

SM_ADD_TO_VOCAB_REPLY

SM_AUDIO_LEVEL

SM_CANCEL_PLAYBACK_REPLY

289

Sol./
Unsol.

S

Explanation

Response to an asynchronous
SmAddComplete call. Data
can be extracted with SmGet-
Flags, SmGetSpelling or SmGet-
Spellings.

Response to an asynchronous
SmAddPronunciation call. Data
can be extracted with SmGet-
Spelling or SmGetSpellings.

Response to an asynchronous
SmAddToVocab call. Data can be
extracted with SmGetVocabName
or SmGetVocWords.

Controlled by SmSet
SM_NOTIFY_AUDIO_LEVEL,
this message provides the audio

level data. Data can be extracted
with SmGetAudioLevel.

Response to an asynchronous Sm-
CancelPlayback call.

SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

SM_COMMAND_WORD U Controlled by SmSet
SM_NOTIFY_COMMAND_WORD,
this message provides the name of
the application that currently has
focus as well as the last recog-
nized input word. The SmGet-
FirmWords function extracts the
SM_WORD and the SmGetAppli-
cation function extracts the appli-
cation name.

SM_CONNECT_REPLY S Response to an asynchronous
SmConnect call. Data can be
extracted with SmGetEnrol-
1Id, SmGetEnrolllds, SmGet-
Languages, SmGetMsgType,
SmGetNumberUtterances,
SmGetService, SmGetSessionld,
SmGetTask, SmGetTasks, SmGe-
tUserld, or SmGetUserlds.

SM_CORRECT_TEXT_REPLY S Response to an asynchronous Sm-
CorrectText call.
SM_DEFINE_.GRAMMAR_REPLY S Response to an asynchronous

SmDefineGrammar call. Data can
be extracted with SmSetGram-
marPath.

SM_DEFINE_VOCAB_REPLY S Response to an asynchronous
SmDefineVocab call. Data can be
extracted with SmGetVocabName
or SmGetVocWords.

SM_DEFINE_-VOCABULARY _REPLY S Response to an asynchronous
SmDefineVocab call. Data can
be extracted with SmGetVo-

cabName, SmGetVocWords,
SmGetVocabPath, or SmGetOp-
tions.
SM_DETACH_SESSIONS_REPLY S Response to an asynchronous
SmDetachSessions call.
SM_DISCARD_DATA REPLY S Response to an asynchronous

SmDiscardData call.

290 SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

SM_DISCARD_SPEECH_DATA_REPLY S Response to an asynchronous
SmDiscardSpeechData call. Data
can be extracted with SmGet-
Flags or SmGetStatus.

SM_DISCONNECT_REPLY S Response to an asynchronous
SmDisconnect call. Data can be
extracted with SmGetMsgType,
or SmGetService.

SM_ENABLE_VOCAB_REPLY S Response to an asynchronous
SmEnableVocab call. Data can
be extracted with SmGetVocab-
Name.

SM_ENGINE_STATE U Controlled by SmSet
SM_NOTIFY_ENGINE_STATE.
This message indicates current
engine status. Data can be ex-
tracted with SmGetEngineState.

SM_EVENT_NOTIFY_REPLY S Response to an asynchronous
SmEventNotify call. Data can be
extracted with SmGetEventld.

SM_EVENT_SYNCH U Notification of an occurrence
of event specified in previous
SmEventNotify. ~ Data can be
extracted with SmGetEventld or
SmGetEventOptions.

SM_EVENT_TIME_REPLY S Reply to an asynchronous
SmEventTime call. Data can be
extracted with SmGetTimes or
SmGetFlags.

SM_FOCUS_GRANTED U Asynchronous notification of focus
granted. Data can be extracted
with SmGetMicState.

SM_FOCUS_LOST U Asynchronous notification of focus
lost.

291 SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

SM_FOCUS_STATE U
SM_HALT_RECOGNIZER_REPLY S
SM_MIC_OFF_REPLY S
SM_MIC_ON_REPLY S
SM_REQUEST_MIC_OFF U
SM_REQUEST_MIC_ON U
SM_MIC_STATE U
SM_NEW_CONTEXT_REPLY S
SM_PLAY_MESSAGE_REPLY S

292

Controlled by SmSet
SM_NOTIFY_FOCUS_STATE,
this message shows a change in
focus status and includes the
name of the associated applica-
tion. Data can be extracted with
SmGetFocusState, SmGetAppli-
cation and SmGetFocusChang-
eReason.

Response to an asynchronous
SmHaltRecognizer call. Data can
be extracted with SmGetNumber-
WordMsgs.

Response to an asynchronous Sm-
MicOff call.

Response to an asynchronous
SmMicOn call. Data can be
extracted with SmGetUtteran-
ceNumber.

Request to turn off the micro-
phone.

Request to turn on the micro-
phone.

Controlled by SmSet
SM_NOTIFY_MIC_STATE, this
message indicated whether the
microphone is on or off. Data
can be extracted with SmGetMic-
State.

Response to an asynchronous Sm-
NewContext call.

Response to an asynchronous
SmPlayMessage call. As-
suming a successful call,
SM_PLAY MESSAGE_STATUS
reply message structures will fol-
low.

SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

SM_PLAY_MESSAGE_STATUS U Notification of the start and com-
pletion of the audio playback
initiated by an SmPlayMessage
call. Data can be extracted
with SmGetMsgName or SmGet-
Status.

SM_PLAY_UTTERANCE_REPLY S Response to an asynchronous
SmPlayUtterance call. As-
suming a successful call,
SM_PLAY _UTTERANCE_STATUS
reply message structures will fol-
low.

SM_PLAY_UTTERANCE_STATUS U Notification of the start and com-
pletion of the audio playback ini-
tiated by an SmPlayUtterance
call. Data can be extracted with
SmGetStatus or SmGetUtteran-

ceNumber.
SM_PLAY_ WORDS_REPLY S Response to an asynchronous
SmPlayWords call. As-

suming a successful call,
SM_PLAY WORDS_STATUS re-
ply message structures will follow.

SM_PLAY WORDS_STATUS U Notification of the start and com-
pletion of the audio playback ini-
tiated by an SmPlayWords call.
Audio playback may be for one
word or multiple words. Data can
be extracted with SmGetStatus or
SmGetTags.

SM_QUERY_ADDED WORDS _REPLY S Response to an asynchronous Sm-
QueryAddedWords call. Data can
be extracted with SmGetWords.

SM_QUERY_ALTERNATES_REPLY S Response to an asynchronous Sm-
QueryAlternates call. Data can
be extracted with SmGetAlter-
nates or SmGetTags.

293 SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

SM_QUERY_DEFAULT_REPLY S Response to an asynchronous Sm-
QueryDefault call. Data can
be extracted with SmGetEnrollld,
SmGetEnrolllds, SmGetScripts,
SmGetTask, SmGetTasks, SmGe-
tUserld or SmGetUserlds.

SM_QUERY_ENABLED_VOCABS_REPLY S Response to an asynchronous Sm-
QueryEnabledVocabs call. Data
can be extracted with SmGetVo-
cabList.

SM_QUERY_ENROLLIDS_REPLY S Response to an asynchronous Sm-
QueryEnrolllds call. Data can be
extracted with SmGetAlphabets,
SmGetDescriptions, SmGetEnrol-
lIds, SmGetLanguages, SmGet-
Percentages, SmGetScripts, or
SmGetStates.

SM_QUERY _LANGUAGES_REPLY S Response to an asynchronous
SmQueryLanguages call. Data
can be extracted with SmGet-
Languages.

SM_QUERY_PHRASE_ALTERNATIVES_REPISY Response to an asynchronous
SmQueryPhraseAlternatives call.
Data can be extracted with
SmGetFirmWords, SmGet Vo-
cabName, SmGetAnnotations,
SmGetWordTimes, and SmGet-
PhraseState.

SM_QUERY_PRONUNCIATION_REPLY S Response to an asynchronous Sm-
QueryPronunciation call. Data
can be extracted with SmGet-
Spelling or SmGetSpellings.

SM_QUERY_PRONUNCIATIONS _REPLY S Response to an asynchronous
SmQueryPronunciationsEx call.
Data can be extracted with
SmGetPronunciations or SmGet-
Spellings.

SM_QUERY_REPLY S Response to an asynchronous Sm-
Query call. Data can be extracted
with SmGetltemValue.

294 SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

SM_QUERY _SESSIONS_REPLY S Response to an asynchronous Sm-
QuerySessions call. Data can
be extracted with SmGetApplica-
tions, SmGetEnrolllds, or SmGe-
tUserlds.

SM_QUERY_SPEECH_DATA _REPLY S Response to an asynchronous Sm-
QuerySpeechData call. Data can
be extracted with SmGetSpeech-
DataSize.

SM_QUERY_SPEECH_USER_SIZE_ REPLY S Response to an asynchronous Sm-
QuerySpeechUserSize call. Data
can be extracted with SmGe-
tUserld, SmGetEnrollld, SmGet-
Languages, SmGetScript, SmGet-
Flags, SmGetSpeechDataSize.

SM_QUERY_TASKS_REPLY S Response to an asynchronous Sm-
QueryTasks call. Data can
be extracted with SmGetAlpha-
bets, SmGetDescriptions, SmGet-
Languages or SmGetTasks.

SM_QUERY_TOPICS_REPLY S Response to an asynchronous Sm-
QueryTopics call. Data can
be extracted from SmGetTopics,
SmGetPreferred, SmGetDescrip-
tions, or SmGetFlags.

SM_QUERY _USER_DEFAULT_REPLY S Response to an asynchronous Sm-
QueryUserDefault call. Data can
be extracted with SmGetUserld,
SmGetUserlds, SmGetEnrollld,
SmGetEnrolllds, SmGetTask,
SmGetTasks, or SmGetDefault-
Topics.

SM_QUERY_USER_INFO_REPLY S Response to an asynchronous
SmQueryUserInfo call. Data
can be extracted with SmGetEn-
rollld, SmGetEnrolllds, SmGet-
NameValue, SmGetUserld, or
SmGetUserlds.

295 SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

SM_QUERY_USERS_REPLY S
SM_QUERY_VOCABS_REPLY S
SM_QUERY_WORD_REPLY S
SM_RECOGNIZED_PHRASE U
SM_RECOGNIZED_TEXT U
SM_RECOGNIZED_WORD U

SM_RECOGNIZE_NEXT_WORD_REPLY S

SM_RELEASE_FOCUS_REPLY S

SM_REMOVE_FROM_VOCAB_REPLY S

296

Response to an asynchronous Sm-
QueryUsers call. Data can be ex-
tracted with SmGetDescriptions,
SmGetUserlds, or SmGetUsers.

Response to an asynchronous Sm-
QueryVocabs call. Data can be
extracted with SmGetVocabList.

Response to an asynchronous Sm-
QueryWord call. Data can be ex-
tracted with SmGetVocabList or
SmGetWords.

Includes firm words sent dur-
ing grammar vocabulary recogni-
tion. Data can be extracted with
SmGetFirmWords, SmGet Vo-
cabName, SmGetPhraseState,
SmGetAnnotations, SmGet-
WordTimes, and SmGetConfi-
denceScores.

Includes firm words sent dur-
ing dictation vocabulary recogni-
tion. Data can be extracted with
SmGetFirmWords, SmGetTimes,
SmGetWordTimes, and SmGet-
ConfidenceScores.

Includes firm words sent during
command vocabulary recogni-
tion. Data can be extracted with
SmGetAlternates, SmGetFirm-
Words, SmGetTimes, SmGet-
WordTimes, and SmGetConfi-
denceScores.

Response to an asynchronous Sm-
RecognizeNextWord call.

Response to an asynchronous Sm-
ReleaseFocus call.

Response to an asynchronous Sm-
RemoveFromVocab call. Data can
be extracted with SmGetVocab-
Name.

SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

SM_REMOVE_PRONUNCIATION_REPLY S

SM_REPORT_ENGINE_ERROR U
SM_REQUEST_DETACH U
SM_REQUEST_FOCUS_REPLY S
SM_REQUEST_MIC_OFF_REPLY S
SM_REQUEST_MIC_ON_REPLY S
SM_RESTORE_SPEECH_DATA_REPLY S
SM_RESTORE_SPEECH_USER_REPLY S
SM_SAVE_SPEECH_DATA_REPLY S

297

Response to an asynchronous Sm-
RemovePronunciation call. Data
can be extracted with SmGet-
Spelling or SmGetSpellings.

Notification that the speech recog-
nition engine has encountered an
error. Data can be extracted with
SmGetMicState or SmGetSever-

1ty.
Request to detach sessions.

Response to an asynchronous Sm-
RequestFocus call.

Response to an asynchronous Sm-
RequestMicOff call.

Response to an asynchronous Sm-
RequestMicOn call.

Response to an asynchronous Sm-
RestoreSpeechData call. Data can
be extracted using SmGetSpeech-
DataArchive.

Response to an asynchronous Sm-
RestoreSpeechUser call. Data
can be extracted using SmGet-
SpeechDataArchive, SmGe-
tUserld, SmGetEnrollld, SmGet-
Languages, = SmGetScript, or
SmGetFlags.

Response to an asynchronous Sm-
SaveSpeechData call. Data can
be extracted using SmGetSpeech-
DataArchive, SmGetSpeech-
DataOptions, or SmGetSpeech-
DataSize.

SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

SM_SAVE_SPEECH_USER_REPLY S
SM_SET_DEFAULT_REPLY S
SM_SET_REPLY S
SM_SET_USER_DEFAULT_REPLY S
SM_SET_USER_INFO_REPLY S
SM_UNDEFINE_VOCAB_REPLY S
SM_UTTERANCE_COMPLETED U
SM_WORD_CORRECTION_REPLY S

298

Response to an asynchronous
SmSaveSpeechUser call. Data
can be extracted using SmGet-
SpeechDataArchive, SmGet-
SpeechUserld, SmGetEnrollld,
SmGetLanguages, SmGetScript,
SmGetFlags, or SmGetSpeech-
DataSize.

Response to an asynchronous Sm-
SetDefault call.

Response to an asynchronous Sm-
Set call. Data can be extracted
with SmGetltem Value.

Response to an asynchronous Sm-
SetUserDefault call. No data re-
turned.

Response to an asynchronous Sm-
SetUserInfo call. Data can be
extracted with SmGetEnrollld,
SmGetEnrolllds, SmGetUserld or
SmGetUserlds.

Response to an asynchronous
SmUndefineVocab call. Data can
be extracted with SmGetVocab-
Name.

Notification that speech-to-text
decoding of the audio input
stream has been completed af-
ter the microphone was turned
off. Data can be extracted with
SmGetUtteranceNumber.

Response to an asynchronous Sm-
WordCorrection call. Data can
be extracted with SmGetPronun-
ciations, SmGetSpellings, SmGet-
Status or SmGetTags.

SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

5.2 Callbacks

The following callbacks are available for processing messages from the router and the speech

recognition engine.

Callback
SmNautoCompleteCallback
SmNaddPronunciationCallback
SmNaddToVocabCallback
SmNaudioLevelCallback
SmNcancelPlaybackCallback
SmNcommandWordCallback
SmNconnectCallback
SmNcorrect TextCallback
SmNcorrect TextCancelCallback
SmNdefineGrammarCallback
SmNdefineVocabCallback
SmNdefineVocabExCallback
SmNdetachRequestedCallback
SmNdetachSessionsCallback
SmNdisableVocabCallback
SmNdiscardDataCallback
SmNdiscardSpeechDataCallback
SmNdisconnectCallback
SmNenableVocabCallback
SmNengineStateCallback
SmNeventNotifyCallback
SmNeventSynchCallback
SmNeventTimeCallback
SmNfocusGrantedCallback

299

Sol./
Unsol.

S

B> B B 7> T e B & S /> S > B & - B /> B ¢ > W o B > B /R ¢ B > B ¢ B /> B s B &> B e B /SRR 0

Message Type
SM_AUTO_.COMPLETE_REPLY
SM_ADD_PRONUNCIATION_REPLY
SM_ADD_TO_VOCAB_REPLY
SM_AUDIO_LEVEL
SM_CANCEL_PLAYBACK_REPLY
SM_COMMAND_WORD
SM_CONNECT_REPLY
SM_CORRECT_TEXT_REPLY
SM_CORRECT_TEXT_CANCEL_REPLY
SM_DEFINE_.GRAMMAR_REPLY
SM_DEFINE_VOCAB_REPLY
SM_DEFINE_VOCABULARY_REPLY
SM_REQUEST_DETACH
SM_DETACH_SESSIONS_REPLY
SM_DISABLE_VOCAB_REPLY
SM_DISCARD_DATA _REPLY
SM_DISCARD_SPEECH_DATA_REPLY
SM_DISCONNECT_REPLY
SM_ENABLE_VOCAB_REPLY
SM_ENGINE_STATE
SM_EVENT_NOTIFY_REPLY
SM_EVENT_SYNCH
SM_EVENT_TIME_REPLY
SM_FOCUS_GRANTED

SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

SmNfocusLostCallback
SmNfocusStateCallback
SmNhaltRecognizerCallback
SmNmicOffCallback
SmNmicOnCallback
SmNmicOffRequestedCallback
SmNmicOnRequestedCallback
SmNmicStateCallback
SmNnewContextCallback
SmNplayMessageCallback
SmNplayMessageStatusCallback
SmNplayUtteranceCallback
SmNplayUtteranceStatusCallback
SmNplayWordsCallback
SmNplayWordsStatusCallback
SmNqueryAdded WordsCallback
SmNquery Added WordsExCallback
SmNqueryAlternatesCallback
SmNqueryCallback
SmNqueryDefaultCallback
SmNqueryEnabled VocabsCallback
SmNqueryEnrollldsCallback
SmNqueryLanguagesCallback

SmNqueryPhraseAlternativesCallback

SmNqueryPronunciationCallback

SmNqueryPronunciationsCallback

SmNqueryPronunciationsExCallback

SmNquerySessionsCallback
SmNquerySpeechDataCallback

300

3 7> N /R & T /> B R /> N /B & - B /> B U ¢ S /> B & > B e BV > B e B 7> W s R @ T > B o B e B e R @ >SN 7> B > Bl e B

SM_FOCUS_LOST

SM_FOCUS_STATE
SM_HALT_RECOGNIZER_REPLY
SM_MIC_OFF_REPLY
SM_MIC_ON_REPLY
SM_REQUEST_MIC_OFF
SM_REQUEST_MIC_ON

SM_MIC_STATE
SM_NEW_CONTEXT_REPLY
SM_PLAY_MESSAGE_REPLY
SM_PLAY_MESSAGE_STATUS

SM_PLAY _UTTERANCE_REPLY
SM_PLAY_UTTERANCE_STATUS
SM_PLAY_WORDS_REPLY
SM_PLAY_WORDS_STATUS
SM_QUERY_ADDED_WORDS_REPLY
SM_QUERY_ADDED_WORDS_REPLY
SM_QUERY_ALTERNATES_REPLY
SM_QUERY_REPLY
SM_QUERY_DEFAULT_REPLY
SM_QUERY_ENABLED_VOCABS_REPLY
SM_QUERY_ENROLLIDS_REPLY
SM_QUERY_LANGUAGES_REPLY
SM_QUERY_PHRASE_ALTERNATIVES_REPL
SM_QUERY_PRONUNCIATION_REPLY
SM_QUERY_PRONUNCIATIONS_REPLY
SM_QUERY_PRONUNCIATIONS_REPLY
SM_QUERY_SESSIONS_REPLY
SM_QUERY_SPEECH_DATA_REPLY

SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

SmNquerySpeechUserSizeCallback
SmNqueryTasksCallback
SmNqueryTopicsCallback
SmNqueryUsersCallback
SmNqueryUserDefaultCallback
SmNqueryUserInfoCallback
SmNqueryVocabsCallback
SmNquery WordCallback
SmNrecognizeNext WordCallback
SmNrecognizedPhraseCallback
SmNrecognized TextCallback
SmNrecognized Word Callback
SmNreleaseFocusCallback
SmNremoveFromVocabCallback
SmNremovePronunciationCallback
SmNreportEngineErrorCallback
SmNrequestFocusCallback
SmNrequestMicOffCallback
SmNrequestMicOnCallback
SmNrestoreSpeechDataCallback
SmNrestoreSpeech UserCallback
SmNsaveSpeechDataCallback
SmNsaveSpeechUserCallback
SmNsetCallback
SmNsetDefaultCallback
SmNsetUserDefaultCallback
SmNsetUserInfoCallback
SmNundefineVocabCallback
SmNutteranceCompletedCallback

301

[B> B />R 7> T /> B /R /> T /> B ¢ - B /> B S o B /> B B ¢~ T > B &~ S e B e S e B 7> B SR 0 S /> B /"R 0 B /> B /R O]

SM_QUERY_SPEECH_USER_SIZE_REPLY
SM_QUERY_TASKS_REPLY
SM_QUERY_TOPICS_REPLY
SM_QUERY_USERS_REPLY
SM_QUERY_USER_DEFAULT_REPLY
SM_QUERY_USER_INFO_REPLY
SM_QUERY_VOCABS_REPLY
SM_QUERY_WORD_REPLY
SM_RECOGNIZE_NEXT_WORD_REPLY
SM_RECOGNIZED_PHRASE
SM_RECOGNIZE_TEXT
SM_RECOGNIZE_-WORD
SM_RELEASE_FOCUS_REPLY
SM_REMOVE_FROM_VOCAB_REPLY
SM_REMOVE_PRONUNCIATION_REPLY
SM_REPORT_ENGINE_ERROR
SM_REQUEST_FOCUS_REPLY
SM_REQUEST_MIC_OFF_REPLY
SM_REQUEST_MIC_ON_REPLY
SM_RESTORE_SPEECH_DATA _REPLY
SM_RESTORE_SPEECH_USER_REPLY
SM_SAVE_SPEECH_DATA _REPLY
SM_SAVE_SPEECH_USER_REPLY
SM_SET_REPLY
SM_SET_DEFAULT_REPLY
SM_SET_USER_-DEFAULT_REPLY
SM_SET_USER_INFO_REPLY
SM_UNDEFINE_VOCAB_REPLY
SM_UTTERANCE_COMPLETED

SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

SmNwordCorrectionCallback S SM_WORD_CORRECTION_REPLY

302 SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

5.3 Reply Structure Functions for Unsolicited Callbacks

The following is a list of all unsolicited callbacks available for processing messages from the
speech recognition engine. Each callback is followed by a list of the reply structure functions

that can be called from within it.
o SmNaudioLevelCallback
e SmGetRc
e SmGetAudioLevel
e SmGetTimes
e SmNcommandWordCallback
e SmGetRe
e SmGetApplication
e SmGetFirmWords

e SmNdetachRequestedCallback

e SmGetRc

e SmNengineStateCallback
e SmGetRc
e SmGetengineState
e SmGetTimes

e SmNeventSynchCallback
e SmGetRc
e SmGetEventld
e SmGetEventOptions

o SmNfocusGrantedCallback
e SmGetRe

e SmNfocusLostCallback
e SmGetRc

e SmNfocusStateCallback
e SmGetRc

e SmGetFocusChangeReason

e SmGetFocusState
SmGetApplication

e SmNmicOffRequestedCallback

e SmGetRc

e SmNmicOnRequestedCallback

e SmGetRe
e SmNmicStateCallback
e SmGetRe

303

SMAPI Reference

Chapter 5: Reply Message Structures and Callbacks

304

e SmGetMicState
SmNplayMessageStatusCallback

e SmGetRc

e SmGetMsgName

e SmGetStatus
SmNplay UtteranceStatusCallback

e SmGetRc

e SmGetStatus

e SmGetUtteranceNumber
SmNplayWordsStatusCallback

e SmGetRc

e SmGetStatus

o SmGetTags
SmNrecognized PhraseCallback

e SmGetRc

e SmGetAnnotations

e SmGetFirmWords

e SmGetVocabName

e SmGetPhraseState

e SmGetConfidenceScores
SmNrecognized TextCallback

e SmGetRc

e SmGetFirmWords

o SmGetTimes

e SmGetConfidenceScores
SmNrecognized WordCallback

e SmGetRc
SmGetAlternates
e SmGetFirmWords
o SmGetTimes

e SmGetConfidenceScores

SmNreportEngineErrorCallback
e SmGetRc
e SmGetMicState
e SmGetSeverity
SmNutteranceCompletedCallback
e SmGetRc

e SmGetUtteranceNumber

SMAPI Reference

Chapter 6: Data Types

6 Data Types

The following data types are used. They are listed in alphabetic order.

6.1 SmArg data type

Speech argument list structure.

typedef struct { char name;
SmArgVal value;
} SmArg;
Fields:
name Name of speech argument.
value Value of speech argument if size of argument is less than or equal to size of

(long); otherwise, a pointer to the speech argument value.

305 SMAPI Reference

Chapter 6: Data Types

6.2 SmArgVal data type

Value of speech argument if size of argument is less than or equal to size of (long); otherwise,
a pointer to the speech argument value.

typedef long SmArgVal;

306 SMAPI Reference

Chapter 6: Data Types

6.3 SmHandler data type

Return value from callback-handler function.
typedef int SmHandler;

307 SMAPI Reference

Chapter 6: Data Types

6.4 SM_ANNOTATION data type

Annotation structure.

typedef struct _SM_ANNOTATION { long type;
union {
long numeric;
char *string;
void *xother;
} annodata;
+;

typedef struct _SM_ANNOTATION SM_ANNOTATION;

Fields:

type
NUMEric
string

other

308

The type of annotation.
Return numeric annotations.

Pointer to a string annotation.

RESERVED.

SMAPI Reference

Chapter 6: Data Types

6.5 SM_MSG data type

Pointer to message between speech recognition engine and application.
typedef void SM_MSG;

309 SMAPI Reference

Chapter 6: Data Types

6.6 SM_VOCWORD data type

Vocabulary word-attribute structure.

typedef struct _SM_VOCWORD { long flags;
short spelling_size;
char *spelling;
s
typedef struct _SM_VOCWORD SM_VOCWORD;
Fields:
flags Reserved for internal use.

spelling_size

Number of characters in word spelling plus one for terminating NULL.

spelling Word spelling.

310

SMAPI Reference

Chapter 6: Data Types

6.7 SM_WORD data type

Word-attribute structure.

typedef struct _SM_WORD { long tag;
long flags;
short score;
short spelling_size;
char *spelling;
short vocab_size;
char *xvocab;
+;
typedef struct _SM_WORD SM_WORD;
Fields:
tag Unique ID defined by speech recognition engine for this word.
flags Formatting flags for words from predefined vocabularies.
score Measure of word’s probability. The score is relative and can vary from -100 to
100.

spelling_size
Number of characters in word spelling plus one for terminating NULL.

spelling Word spelling.
vocab_size Number of characters in vocabulary name plus one for terminating NULL.

vocab Vocabulary name.

311 SMAPI Reference

Chapter 6: Data Types

312 SMAPI Reference

Chapter 7: SMAPI Attributes

7 SMAPI Attributes

This chapter lists and describes the SMAPT attributes. These attributes describe the current
state of your application’s connection with the speech recognition engine (such as session
type). You must set several of the SMAPI attributes when you open and connect to a speech
session. You set the values of these attributes using SmSetArg or SmSesSetArg. When you
set arguments, the engine creates an internal structure to track the state of your session.
Refer to "Programming Tasks" in the SMAPI Developer’s Guide for more information on
the use of SmSetArg.

7.1 System Dependent Definition for Argument Lists

typedef long SmArgVal;

typedef struct { char *name ; /* name of the argument */
SmArgVal value; /* value of the argument */
} SmArg;

7.2 Argument Attribute List

7.2.1 Application Information Attributes

SmNapplicationName
Used to specify the name of your speech-aware application when initializing a
recognition or enrollment session. The speech recognition engine will use this
attribute to identify your application to other speech-aware applications.

7.2.2 Requested Services

SmNresetServices
Set to true to specify that the type of session your application requests to the
speech recognition engine be reset.

SmNdatabase
Set to true to specify a database session with the engine.

SmNrecognize
Set to true to specify a recognition session with the engine.

SmNenrollment
Set to true to specify an enrollment session with the engine.

313 SMAPI Reference

Chapter 7: SMAPI Attributes

7.2.3 Options Flags

SmNdiscardSessionData
Set to true to discard the engine’s temporary directory at session close.

SmNdiscardSessionAdaptation
Set to true to discard language model cache updates.

SmNsaveSessionData
Set to true to save the engine’s temporary directory at session close.

SmNsaveSessionAdaptation
Set to true to merge the language model updates into persistent storage.

SmNcompleteEnrollment
Set to true to begin the training program to modify the user’s acoustic model
when terminating an enrollment session.

SmNsuspendEnrollment
Set to true to not begin the training program when terminating an enrollment
session.

7.2.4 External Notifier

SmNwindowHandle
On Windows set to the window handle in your application that will receive all
speech-related messages.

SmNexternalNotifier
On Unix the SmNexternalNotifier attribute allows the speech recognition en-
gine’s asychronous message dispatching loop to be integrated into an external
main loop, for example: the GTK or Tcl/Tk dispatching mechanism.The Sm-
NexternalNotifier takes as it’s argument the pointer to a callback function of
the form:
int NotifierCallback(int socket,

int (*recv) (),

void *data,

void *cinfo);
This callback function will be called when then engine initializes and begins to
dispatch internal messages, and when the engine is shutting down. When the
engine is shutting down, the recv function pointer will be NULL. During initial-
izatoin, the application should register the socket with the main select or poll
loop of the application and, upon the socket being ready for read, should call
the recv function passing the data value as its argument. The cinfo parameter
is connection specific information that can be set using the SmNexternalNo-
tiferData parameter.

SmNexternalNotifierData
On Unix the SmNexternalNotifierData argument is used to specify application
specific data which is passed to the external notifier function specified by the
SmNexternalNotifier attribute.

314 SMAPI Reference

Chapter 7: SMAPI Attributes

7.2.5 User Definition Arguments

SmNaudioHost
Used to specify the audio source when initializing a recognition or enrollment
session. It can be set to use default values. Can also be used by a recognition,
enrollment, or database session to specify which engine to start or connect with
in a multipe speech engine environment. Refer to "Overview of the Custom
Audio DLL’s" in the SMAPI Developer’s Guide for more information.

SmNconnectID
Used to specify a connection identifier when initializing a recognition or enroll-
ment session. Refer to "Establishing a Speech Session" in the SMAPI Devel-
oper’s Guide for more information.

SmNenrolllD
Used to specify an enrollid when initializing a recognition or enrollment session.
It can be set to use default values. Refer to "Establishing a Speech Session" in
the SMAPI Developer’s Guide for more information.

SmNenrollldDescription
Used to specify the description of an enrollid when initializing an enrollment
session. Refer to "Establishing an Enrollment Session" in the SMAPI Devel-
oper’s Guide for more information.

SmNnavigator
Used to define a session as the Navigator session. Refer to "Navigator Session"
in the SMAPI Developer’s Guide for more information.

SmNscript
Used to specify the name of a script when initializing an enrollment session.
Refer to "Establishing an Enrollment Session" in the SMAPI Developer’s Guide
for more information.

SmNtask Used to specify a speech domain when initializing a recognition session. It can
be set to use default values. Refer to "Establishing a Speech Session" in the
SMAPI Developer’s Guide for more information.

SmNuserlD
Used to specify a userid when initializing a recognition or enrollment session.
It can be set to use default values. Refer to "Establishing a Speech Session" in
the SMAPI Developer’s Guide for more information.

315 SMAPI Reference

Chapter 7: SMAPI Attributes

316 SMAPI Reference

Chapter 8: SMAPI Grammar Compiler API Overview

8 SMAPI Grammar Compiler API Overview

This chapter describes the format of the Grammar Compiler API function calls that are
presented in the chapter "Grammar Compiler API Function Calls". It also lists the calls
that are provided by the Grammar Compiler.

8.1 Format of the Function Call Descriptions

The description of each function call contains the following information:

Function Name
The name of the function call.

Purpose The purpose and description of the function call.
Syntax The syntax of the function as declared in VIBNFC.H.

Parameters
Definitions of the parameters.

Return Values
Return values that are set by the Grammar Compiler.

8.2 Grammar Compiler API Function Calls

The following function calls are provided as part of the Grammar Compiler:
e VtAddArg
e VtCompileGrammar
e VtGetMessage
o VtGetTranslation
e VtLoadFSG
e VtSetArg
e VtUnloadFSG

317 SMAPI Reference

Chapter 8: SMAPI Grammar Compiler API Overview

318 SMAPI Reference

Chapter 9: SMAPI Grammar Compiler API Function Calls

9 SMAPI Grammar Compiler API Function Calls

This chapter lists and describes the SMAPI Grammar Compiler API function calls.

9.1 VtAddArg

Purpose

VtAddArg is a macro that adds an argument with the specified attributes to the end of a
VtArg structure. This function sets the components of the arg parameter. The pointer to
arg or to a list of similarly created arguments can then be passed to VtCompileGrammar.
VtAddArg increments an index to point to the last argument in the argument list.

For further information on using the VtArg data structure, see Chapter 10 [SMAPT Gram-
mar Compiler Data Types|, page 327.

Syntax

void VtAddArg (VtArg arg,
long index,
char *name,
long value);

Parameters
arg input - The argument.
index output - The index into the argument structure. VtAddArg increments the

index by one.
name input - The name of the attribute.

value input - The value of the attribute.

Return Values

None.

319 SMAPI Reference

Chapter 9: SMAPI Grammar Compiler API Function Calls

9.2 VtCompileGrammar

Purpose

VtCompileGrammar compiles a BNF file and produces an FSG using the specified param-
eters. The Grammar Compiler parameters are provided by setting up an argument list
(VtArg). For more information on creating and using the VtArg structure, see Chapter 10
[SMAPI Grammar Compiler Data Types|, page 327.

Syntax
int VtCompileGrammar (int nargs,
VtArg *args);
Parameters
narqgs input - The number of arguments in the argument list.
args input - The pointer to an argument structure that indicates the Grammar

Compiler parameters to be used.

Return Values

0 - Successful.

Other - Use VtGetMessage to obtain more detailed error information.

320 SMAPI Reference

Chapter 9: SMAPI Grammar Compiler API Function Calls

9.3 VtGetMessage

Purpose

VtGetMessage returns a pointer to a message string that describes the errors encountered
during the last VtCompileGrammar call that returned a non-zero error code.

The messages returned by VtGetMessage are exactly the same messages (errors and warn-
ings) that are generated by the Grammar Compiler and can be used to determine the cause
of the errors and appropriate action to be taken by the application.

Syntax

int VtGetMessage(char **message);

Parameters

message input - The pointer to a character string which holds the error information.

Return Values

None.

321 SMAPI Reference

Chapter 9: SMAPI Grammar Compiler API Function Calls

9.4 VtGetTranslation

Purpose

VtCompileGrammar gets a translation for a phrase contained in the "words" parameter
according to the FSG file referred to by the "fsg" parameter.

Syntax

int VtGetTranslation (void x*fsg,
char **words,
char **translation);

Parameters

fsg input - The pointer to an FST file loaded by VtLoadFSG.

words input - The pointer to a NULL-terminated array of pointers to words that you
supply.

translation

input - The pointer to a character pointer that will hold the translation returned
by VtGetTranslation.

Return Values

0 - Successful.

Other - Use VtGetMessage to obtain more detailed error information.

Example

char *name = // name of your .fsg file
void *fsg;
int rc = VtLoadFSG(name, &fsg);
char *translation;
int n = // number of words
char **words = new char*[n+1];
for (int i=0; i<n; i++)
words[i] = // assign the ith word
words [n] = NULL;
rc = VtGetTranslation(fsg, words, &translation);
printf("translation is ’%s’\n", translation);
rc = VtUnloadFSG(fsg);

322 SMAPI Reference

Chapter 9: SMAPI Grammar Compiler API Function Calls

9.5 VtLoadFSG

Purpose

VtLoadFSG loads an FSG or FST file produced by the command-line compiler executable,
or by the compiler API VtCompileGrammar. After loading a grammar with VtLoadFSG,
you may use VtGetTranslation to get translations for recognized phrases returned by the
ViaVoice recognition engine.

Syntax

int VtLoadFSG (char *name,
void *xfsg);

Parameters
name input - The file name of the FST or FSG file you want to load.
fsg input - The pointer to a void* to receive the loaded grammar.

Return Values

0 - Successful.

Other - Use VtGetMessage to obtain more detailed error information.

323 SMAPI Reference

Chapter 9: SMAPI Grammar Compiler API Function Calls

9.6 VtSetArg

Purpose

VtSetArg is a macro that fills a VtArg structure with the specified attributes. This function
sets the components of the arg parameter. The pointer to arg or to a list of similarly created
arguments can then be passed to VtCompileGrammar. For further information on using
the VtArg data type, see Chapter 10 [SMAPI Grammar Compiler Data Types|, page 327.

Syntax

void VtSetArg (VtArg arg,
char *name,
long value);

Parameters

arg input - The argument.

name input - The name of the attribute.
value input - The value of the attribute.

Return Values

None.

324

SMAPI Reference

Chapter 9: SMAPI Grammar Compiler API Function Calls

9.7 VtUnloadFSG

Purpose

VtUnloadFSG unloads an FSG or FST file that was previously loaded by VtLoadFSG.

Syntax

void VtUnloadFSG (void *fsg);

Parameters

fsg input - The pointer to an FST loaded by VtLoadFSG.

Return Values

0 - Successful.

Other - Use VtGetMessage to obtain more detailed error information.

325 SMAPI Reference

Chapter 9: SMAPI Grammar Compiler API Function Calls

326 SMAPI Reference

Chapter 10: SMAPI Grammar Compiler Data Types

10 SMAPI Grammar Compiler Data Types

The following data type is used by the SMAPI Grammar Compiler APIs:

10.1 VtArg

Argument structure for VtCompileGrammar.

typedef struct {

Fields:

name

value

327

char *name;
long value;
} VtArg;

Name of a VtCompileGrammar argument.

Value of the VtCompileGrammar argument if the size of the argument is less
than or equal to the size of (long); otherwise, a pointer to the VtCompileGram-
mar argument value.

VtArg is analogous to SmArg in SMAPL.; therefore, VtSetArg is analogous to
SmSetArg. Possible arguments for VtSetArg (and VtAddArg) are:

VtNbnfFile
The input BNF file.

VtfsgFile The output FSG file. This is equivalent to -o on the command line.

VtNfsgDirectory
The output directory for multiple roots. This is equivalent to the
-d parameter on the command line.

VtNequalize ArcProbabilities
The non-uniform probability computation. When set to 1, arc prob-
abilities are equalized. (This is the default if not specified.) When
set to 0, arc probabilities are not equalized. This argument is equiv-
alent to the -n parameter on the command line.

VitNfsgFlags
SmDefineGrammar flags. The possible flag values are:
e SM PHRASE_ALLOW _SILENCES
e SM_PHRASE_SHOW _SILENCES
e SM_PHRASE_NO_SILENCES
e SM PHRASE_ALLOW_INSERTIONS
e SM PHRASE SHOW _INSERTIONS
e SM_PHRASE_NO_INSERTIONS

SMAPI Reference

Chapter 10: SMAPI Grammar Compiler Data Types

VtNtrMode
Specified with a parameter value of 1. It is used to compile gram-
mars that contain translations to produce an FST file for use by Vt-
LoadFSG. It is equivalent to the "-tr" for the VIBNFC command-
line compiler.

VtNenMode
Specified with a parameter value of 1. It is used to compile gram-
mars that contain translations to produce an FSG file for use by
the engine (SmDefineGrammar). It is equivalent to the "-en" for
the VIBNFC command-line compiler.

Please note:

For more information on command line parameters, refer to "Grammar Compiler" in the
IBM SMAPI Developer’s Guide.

The following example illustrates how to fill in a VtArg structure before calling VtCompi-
leGrammar and how to use VtGetMessage if the return from VtCompileGrammar is not
equal to zero:

int n = 0;
VtArg args[10];
VtAddArg(args, n, VtNbnfFile, "mygrammar.bnf");
VtAddArg(args, n, VtNfsgFlags, SM_PHRASE_SHOW_SILENCES |
SM_PHRASE_ALLOW_INSERTIONS);
// Additional parameters specified by additional VtAddArg calls
int rc = VtCompileGrammar(n, args);
if (rc !'=0) {
char *message;
VtGetMessage (&message);
printf(message);

¥

328 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

Appendix A SMAPI Return Codes, Messages,
and Message Types

The return codes and messages, defined in SMRC.H, and the message types, defined in
SMCOMM.H, are generated by the SMAPI.

A.1 SMAPI Return and Status Codes

A.1.1 SMAPI Return Codes

The following list contains the return code values in numeric order for the SMAPI.

-28 SM_API_RC_MIN_NAMES

-27 SM_RC_ATTACH-MUTEX_SEM_FAILED
-26 SM_RC_CREATE_MUTEX_SEM_FAILED
-25 SM_RC_OPEN_QUEUE_FAILED

-24 SM_RC_SUB_UNSET_ERROR

-23 SM_RC_CLOSE_EVENT_SEM_FAILED
-22 SM_RC_FREE_.MEM_ERROR

-21 SM_RC_QUEUE_CLOSE_ERROR

-20 SM_RC_DEALLOCATING_SH_-MEM
-19 SM_RC_ASSOC_EVENT_SEM_FAILED
-18 SM_RC_CREATE_EVENT_SEM_FAILED
-17 SM_RC_CREATE_MBOX_FAILED

-16 SM_RC_EALLBUSY

-15 SM_RC_LENOACCEPT

-14 SM_RC_EBADAPPNAME

-13 SM_RC_EALLOC

-12 SM_RC_ENOMEM

-11 SM_RC_EBADHANDLE

-10 SM_RC_ENOHANDLES

-9 SM_RC_EMSGSIZE

-8 SM_RC_EUNKMSG

-7 SM_RC_ETIMEOUT

-6 SM_RC_EUNEXP

-5 SM_RC_EINVAL

-4 SM_RC_ENOSERVER

-3 SM_RC_ENOCONN

-2 SM_RC_ENOMSG

-1 SM_RC_EAPIVERSION

0 SM_RC_OK

1 SM_RC_NOT_VALID_REQUEST

2 SM_RC_BAD_MODE

3 SM_RC_NOT_WHILE_MIC_ON

329 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

~ O Ot

11
12
13
14
15
16
17
18
19
20
28
30
40
41
42
43
44
45
46
47
48
49
50
60
61
62
63
64
65
66
67
70
71
72
80
81
82
83
84
90

330

SM_RC_MIC_ALREADY_ON
SM_RC_MIC_ALREADY_OFF
SM_RC_MIC_ON_PENDING
SM_RC_MIC_OFF_PENDING
SM_RC_NOT_WHILE_PLAYING
SM_RC_BAD_AUDIO
SM_RC_RECORD_OPEN_ERROR
SM_RC_PLAY_OPEN_ERROR
SM_RC_AUDIO_IN_USE
SM_RC_BAD_AUDIO_PROTOCOL
SM_RC_AUDIO_TIMEOUT
SM_RC_AUDIO_DISCONNECTED
SM_RC_AUDIO_OVERRUN
SM_RC_AUDIO_FORCED_MIC_OFF
SM_RC_.NO_-MORE_AUDIO_FILES
SM_RC_BAD_AP
SM_API_RC_MAX_NAMES
SM_RC_BAD_DECO
SM_RC_BAD_ADDWORD
SM_RC_ADDED

SM_RC_NOT_ADDED
SM_RC_MULTIPLE_SPELLINGS
SM_RC_ILLEGAL_SPELLING
SM_RC_ILLEGAL_SPOKENLIKE
SM_RC_MISMATCHED_ACOUSTICS
SM_RC_BAD_ACOUSTICS
SM_RC_SPELLING_TOO_LONG
SM_RC_ACOUSTICS-TOO_LONG
SM_RC_ADDWORD_LIMIT_EXCEEDED
SM_RC_SERVER_ERROR
SM_RC_SERVER_MALLOC_ERROR
SM_RC_SERVER_FILE_OPEN_ERROR
SM_RC_SERVER_FILE_WRITE_ERROR
SM_RC_SERVER_FILE_READ_ERROR
SM_RC_SERVER_FILE_CLOSE_ERROR
SM_RC_SERVER_PROCESS_ERROR
SM_RC_SERVER_TERMINATED
SM_RC_BAD_TAG
SM_RC_BAD_UTTNO
SM_RC_BAD_MESSAGE
SM_RC_NOT_DELETED
SM_RC_NOT_INVOCAB
SM_RC_INVOCAB
SM_RC_BAD_VOCAB
SM_RC_MISSING_EXTERN
SM_RC_BAD_USERID

SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

91

92

93

94

95

96

97

98

99

100
101
102
103
104
105
106
107
108
110
111
120
121
130
131
132
133
134
140
170
171
172
173
174
175
176
178
200
201
202
203
204
205
206
207
208
209

331

SM_RC_BAD_ENROLLID
SM_RC_BAD_PASSWORD
SM_RC_BAD_TASKID
SM_RC_BAD_CLIENT
SM_RC_USERID_EXISTS
SM_RC_ENROLLID_EXISTS
SM_RC_USERID_BUSY
SM_RC_ENROLLID_BUSY
SM_RC_BAD_SCRIPT
SM_RC_BAD_DESCRIPTION
SM_RC_ENROLLID_RUNNING
SM_RC_ENROLLMENT_NOT_COMPLETE
SM_RC_MISMATCHED_LANGUAGE
SM_RC_MISMATCHED_ALPHABET
SM_RC_MISMATCHED_SCRIPT
SM_RC_BAD_LANGUAGE
SM_RC_BAD_NAME
SM_RC_INVALID_WINDOW_HANDLE
SM_RC_BAD_ITEM
SM_RC_BAD_VALUE
SM_RC_BUSY_LAST_.UTTERANCE
SM_RC_BUSY_WORD_CORRECTION
SM_RC_NO_SPACE
SM_RC_NO_SPACE_INIT_RECO
SM_RC_NO_SPACE_INIT_ENROLL
SM_RC_NO_SPACE_TERM_ENROLL
SM_RC_NO_SPACE_MIC_ON
SM_RC_INVALID_PARM_MAX_LEN
SM_RC_NO_FOCUS_APP
SM_RC_FOCUS_GRANTED
SM_RC_FOCUS_REQUEST_PENDING
SM_RC_FOCUS_DENIED
SM_RC_NAV_ALREADY_DEFINED
SM_RC_NOT_IN_NOTIFY
SM_RC_EXISTS_IN_.NOTIFY
SM_RC_INCOMPATIBLE_ENROLLMENT
SM_RC_SM_NOT_OPEN
SM_RC_WRONG_SM_VERSION
SM_RC_SM_NOT_ACTIVE_CLIENT
SM_RC_SM_EINVAL_MSG_TYPE
SM_RC_REPLY_NULL
SM_RC_NO_MORE_CONNECTIONS
SM_RC_NO_TOPLEVEL_WIDGET
SM_RC_CONNECTION_CHANGED
SM_RC_CALLBACK_LIST_.CHANGED
SM_RC_ASCII_ ALREADY_SET

SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

210
211
214
215
216
250
1000

SM_RC_NOTHING_TO_DISPATCH
SM_RC_MAX_MSG_-QUEUES_EXCEEDED
SM_RC_OPEN_SYNCH_QUEUE_FAILED
SM_RC_ALREADY_CONNECTED
SM_RC_ALREADY_OPENED
SM_RC_MAX_NAMES

SM_RC_NOT_YET

A.1.2 SMAPI Status Codes

100
101
102
103
104
105
106
107
108
109
110

332

SM_STAT_PLAY_START
SM_STAT_PLAY_STOP
SM_STAT_BAD_AUDIO

SM_STAT BAD_TAG
SM_STAT_BAD_UTTERANCE
SM_STAT_BAD_MESSAGE
SM_STAT_ENROLLMENT_RECORDING
SM_STAT_ENROLLMENT_RUNNING
SM_STAT_ENROLLMENT_FAILED
SM_STAT_ENROLLMENT_COMPLETE
SM_STAT_ENROLLMENT_BUSY

SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

A.2 SMAPI Message Types

These message values are defined in the SMCOMM.H file.

SM_SET_REPLY

SM_QUERY_REPLY
SM_QUERY_LANGUAGES_REPLY
SM_QUERY_USERS_REPLY
SM_QUERY_ENROLLIDS_REPLY
SM_QUERY_TASKS_REPLY
SM_INIT_RECOGNIZER _REPLY
SM_SPARE_PUBLIC_1_REPLY
SM_MIC_ON_REPLY
SM_MIC_OFF_REPLY
SM_REQUEST_MIC_ON_REPLY
SM_REQUEST _MIC_OFF_REPLY
SM_RECOGNIZE_NEXT_WORD_REPLY
SM_PLAY_WORDS_REPLY
SM_PLAY_UTTERANCE_REPLY
SM_PLAY_MESSAGE_REPLY
SM_CANCEL_PLAYBACK_REPLY
SM_NEW_CONTEXT_REPLY
SM_EVENT_NOTIFY_REPLY
SM_QUERY_ALTERNATES_REPLY
SM_WORD_CORRECTION_REPLY
SM_CORRECT_TEXT_REPLY
SM_CORRECT_TEXT_CANCEL_REPLY
SM_QUERY_WORD_REPLY
SM_ADD_PRONUNCIATION_REPLY
SM_REMOVE_PRONUNCIATION_REPLY
SM_QUERY_PRONUNCIATIONS_REPLY
SM_DEFINE_VOCAB_REPLY
SM_ADD_TO_VOCAB_REPLY
SM_REMOVE_FROM_VOCAB_REPLY
SM_QUERY_ADDED_WORDS_REPLY
SM_ENABLE_VOCAB_REPLY
SM_DISABLE_VOCAB_REPLY
SM_UNDEFINE_VOCAB_REPLY
SM_QUERY_VOCABS_REPLY
SM_QUERY_ENABLED_VOCABS_REPLY
SM_SET_USER_INFO_REPLY
SM_QUERY_USER_INFO_REPLY
SM_DISCARD_DATA _REPLY
SM_HALT_RECOGNIZER_REPLY

333

53
54
55
56
o7
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_TERMINATE_RECOGNIZER_REPLY
SM_INIT_ENROLLMENT_REPLY

SM_TERMINATE_ENROLLMENT_REPLY

SM_INIT_DATABASE_REPLY
SM_TERMINATE_DATABASE_REPLY
SM_QUERY_PRONUNCIATION_REPLY
SM_REQUEST_FOCUS_REPLY
SM_RELEASE_FOCUS_REPLY
SM_QUERY _SESSIONS_REPLY
SM_DETACH_SESSIONS_REPLY
SM_SET_DEFAULT_REPLY
SM_QUERY_DEFAULT_REPLY
SM_RECOGNIZED_TEXT
SM_RECOGNIZED_WORD
SM_UTTERANCE_COMPLETED
SM_PLAY_WORDS_STATUS
SM_PLAY_UTTERANCE_STATUS
SM_PLAY_MESSAGE_STATUS
SM_SERVER_STATUS
SM_EVENT_SYNCH
SM_REPORT_ENGINE_ERROR
SM_FOCUS_LOST
SM_FOCUS_GRANTED
SM_REQUEST_DETACH
SM_AUDIO_LEVEL
SM_COMMAND_WORD
SM_MIC_STATE
SM_FOCUS_STATE
SM_ENGINE_STATE
SM_REQUEST_MIC_ON
SM_REQUEST_MIC_OFF
SM_CONNECT_REPLY
SM_DISCONNECT_REPLY
SM_CLIENT_DETACH
SM_ADD_USER_REQUEST
SM_REQUEST_NEW_ENROLLID
SM_QUERY_SCRIPTS
SM_REQUEST_SCRIPT_TEXT
SM_SELECT_SCRIPT
SM_QUERY_UTTERANCES
SM_SET_UTTERANCE_NUMBER
SM_DISCARD_UTTERANCE
SM_ADD_USER_REPLY
SM_REQUEST_NEW_ENROLLID_REPLY
SM_QUERY_SCRIPTS_REPLY
SM_REQUEST_SCRIPT_TEXT_REPLY

334

93

94

95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_SELECT_SCRIPT_REPLY
SM_QUERY_UTTERANCES_REPLY

SM_SET_UTTERANCE_NUMBER_REPLY

SM_DISCARD_UTTERANCE_REPLY
SM_DEFINE_GRAMMAR
SM_DEFINE_GRAMMAR_REPLY
SM_QUERY_SPEECH_DATA
SM_QUERY_SPEECH_DATA _REPLY
SM_SAVE_SPEECH_DATA
SM_SAVE_SPEECH_DATA _REPLY
SM_RESTORE_SPEECH_DATA
SM_RESTORE_SPEECH_DATA_REPLY
SM_RECOGNIZED_PHRASE
SM_ADD_ENROLLID
SM_ADD_ENROLLID_REPLY
SM_SET_BINARY
SM_SET_BINARY_REPLY

SM_QUERY _BINARY

SM_QUERY _BINARY_REPLY
SM_QUERY_ACOUSTICIDS
SM_QUERY_ACOUSTICIDS_REPLY
SM_QUERY_PHRASE_ALTERNATIVES

139
140
141
142
143
150
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

SM_QUERY_PHRASE_ALTERNATIVES_REPII®5

SM_DISCARD_SPEECH_DATA
SM_DISCARD_SPEECH_DATA_REPLY
SM_SET_TOPICS
SM_SET_TOPICS_REPLY
SM_QUERY_TOPICS
SM_QUERY_TOPICS_REPLY
SM_AUTO_COMPLETE
SM_AUTO_COMPLETE_REPLY
SM_SET_USER_DEFAULT
SM_SET_USER_DEFAULT_REPLY
SM_QUERY_USER_DEFAULT
SM_QUERY_USER_DEFAULT_REPLY
SM_REMOVE_USER
SM_REMOVE_USER_REPLY
SM_REMOVE_ENROLLID
SM_REMOVE_ENROLLID_REPLY
SM_EVENT_TIME
SM_EVENT_TIME_REPLY
SM_SAVE_SPEECH_USER
SM_SAVE_SPEECH_USER_REPLY
SM_RESTORE_SPEECH_USER
SM_RESTORE_SPEECH_USER_REPLY
SM_QUERY_SPEECH_USER_SIZE

335

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
206
207
208
209
210

SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_QUERY_SPEECH_USER_SIZE_REPLY 211

336 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

A.3 SMAPI Message Explanations

The following are explanations for the SMAPI messages.

SM_RC_ACOUSTICS_-TOO_LONG

The acoustics specified are too long.

Explanation:
The recording made for a specified word is longer than the phonetic represen-
tation of the requested word.

User response:
Enter a phonetic spelling or record the word again.

SM_RC_ADDED

The specified word has been added to the speech vocabulary.

Explanation:
The request to add a word was successfully completed.

User response:
None

SM_RC_ADDWORD_LIMIT_EXCEEDED

The added-word limit has been reached.

Explanation:
Only a specified number of words can be added to a speaker’s vocabulary. The
speech system has reached your added-word limit.

User response:
Review your added words and delete the ones that are either unneeded or
infrequently used.

SM_RC_ALREADY_CONNECTED

Already connected to speech recognition engine.

Explanation:
Either SmConnect() or SmOpen() was called after the application had already
successfully connected to the engine.

User response:
Correct the application programming error.

337 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_ALREADY_OPENED

Already opened for connection to speech recognition engine.

Explanation:
A second call to SmOpen() was made after the application had already success-
fully opened the local API data structure.

User response:
Correct the application programming error.

SM_RC_ASSOC_EVENT_SEM_FAILED

An IPC error: Unable to associate semaphore.

Explanation:
Unable to associate semaphore.

User response:
Submit a problem report.

SM_RC_AUDIO_FORCED_MIC_OFF

The speech system has forced the microphone off.

Explanation:
The speech system turned off the microphone unexpectedly. This event can
occur if the speech system has an internal error or if the disk is full.

User response:
Try the request again. Save the log files of the session and submit a problem
report.

SM_RC_AUDIO_IN_USE

The speech system is already in use.

Explanation:
The speech system is being used by another session.

User response:
Correct the application programming error.

SM_RC_AUDIO_OVERRUN

The speech system has overrun its recording buffers.

Explanation:
The speech system was not able to continue sending audio data because the
recording buffers are full.

338 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

User response:
Up to 100 seconds of audio can be stored in an internal audio memory buffer.
For details, see "Processing Speech Engine Audio" in the SMAPI Developer’s
Guide.

SM_RC_BAD_ACOUSTICS

Invalid acoustic data has been found.

Explanation:
The recorded data was not found for the word requested to be added.

User response:
Ensure that the disk is not full, which would cause files to be lost.

SM_RC_BAD_ADDWORD

The add-word process could not be initiated.

Explanation:
The speech recognition engine detected an error with the add word component.

User response:
Save the log files of the session and submit a problem report.

SM_RC_BAD_AP

The system detected an error with the acoustic processor.

Explanation:
The speech recognition engine detected an error with the acoustic-processor
component.

User response:
Save the log files of the session and submit a problem report.

SM_RC_BAD_AUDIO

The system detected an error with the audio source.

Explanation:
An application will get this return code if there is a problem with the audio
source (for example, if there is a problem initializing the audio hardware, or
audio driver).

User response:
Try the request again. If the problem persists, save the log files of the session,
report the error, and restart.

339 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_BAD_DECO

The system detected an error with the speech recognition engine.

Explanation:
The speech recognition engine detected an error with the decoding-processor
component.

User response:
Save the log files of the session and submit a problem report.

SM_RC_BAD_DESCRIPTION

An invalid description has been specified.

Explanation:
An attempt was made to write an enrollment description containing a non-
ASCII character or an enrollment description that exceeded the maximum
length.

User response:
Enter a description that is equal to or less than the maximum length and use
only valid, printable ASCII characters.

SM_RC_BAD_ENROLLID

An invalid enrollment identifier has been specified.

Explanation:
The enrollment ID for the specified speaker is not valid.

User response:
Select a valid enrollment 1D for the specified user ID.

SM_RC_BAD_ITEM

An invalid item name has been specified.

Explanation:
An attempt was made to write an item name containing a non-ASCII character.

User response:
Enter an item name using only valid, printable ASCII characters.

SM_RC_BAD_LANGUAGE

An invalid language has been specified, or this language is not installed.

Explanation:
The requested language is not valid or is not installed.

User response:
Specify a valid language for the installed speech recognition engine.

340 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_BAD_MESSAGE

An invalid audio message name has been specified.

Explanation:
An invalid audio message name was passed by the application to the SMAPI.
This is an application programming error.

User response:
Correct the application programming error.

SM_RC_BAD_MODE

The request is not valid in this speech recognition engine mode.

Explanation:
The speech recognition engine was initialized for a mode that does not support
the requested function. This is an application programming error.

User response:
Correct the application programming error.

SM_RC_BAD_NAME

An invalid name tag has been specified.

Explanation:
An attempt was made used to use an invalid name.

User response:
Specify a valid name.

SM_RC_BAD_SCRIPT

A bad script has been specified, or no scripts are available.

Explanation:
An attempt was made to use an invalid script for enrollment.

User response:
Specify a valid script.

SM_RC_BAD_TAG

An invalid word tag value has been specified.

Explanation:
An invalid tag value was passed by the application to the SMAPI. This is an
application programming error.

User response:
Correct the application programming error.

341 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_BAD_TASKID

A match could not be found for the specified domain ID.

Explanation:
The domain ID is not valid.

User response:
Select a valid domain ID.

SM_RC_BAD_USERID

A match could not be found for the specified user ID.

Explanation:
The user ID is not valid.

User response:
Select a valid user ID.

SM_RC_BAD_UTTNO

An invalid utterance number has been specified.

Explanation:
An invalid utterance number was passed by the application to the SMAPI. This
is an application programming error.

User response:
Correct the application programming error.

SM_RC_BAD_VALUE

An invalid value has been specified.

Explanation:
An attempt was made to write a value containing a non-ASCII character.

User response:
Enter a value using only valid, printable ASCII characters.

SM_RC_BAD_VOCAB

The specified vocabulary is not valid.

Explanation:
An invalid vocabulary name was passed by the application to the SMAPI. This
is an application programming error.

User response:
Correct the application programming error.

342 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_BUSY_LAST UTTERANCE

The speech recognition engine is busy processing the last utterance.

Explanation:
An attempt was made to play a message or word before all the speech had been
processed after an SmMicOff call.

User response:
Wait a few seconds and repeat the request until you receive a response.

SM_RC_BUSY_WORD_CORRECTION

The speech recognition engine is busy processing the last word correction.

Explanation:
An attempt was made to correct a word and turn on the microphone before the
previous request was completed.

User response:
Wait a few seconds and repeat the request until you receive a response.

SM_RC_CALLBACK_LIST_CHANGED

The callback list has been changed during the execution of another callback.

Explanation:
The callback list has been modified while executing a callback procedure.

User response:
Correct the application programming error.

SM_RC_CONNECTION_CHANGED

New or closed connection when executing callback procedure.

Explanation:
A new connection to the SMAPI was created or an old one was removed from
within a callback procedure.

User response:
Submit a problem report.

SM_RC_CREATE_EVENT_SEM_FAILED

An IPC error: Unable to create event semaphore.

Explanation:
Unable to create event semaphore.

User response:
Submit a problem report.

343 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_CREATE_MBOX_FAILED

An IPC error: Unable to create mbox.

Explanation:
Unable to create mbox.

User response:
Submit a problem report.

SM_RC_DEEALLOCATING_SH_MEM

Unable to deallocate shared memory.

Explanation:
There is not sufficient memory for messages to pass between the SMAPI and
the speech recognition engine.

User response:
Try the request again. If the problem persists, record the error and submit a
problem report.

SM_RC_EALLBUSY

IBM ViaVoice is busy.

Explanation:
IBM ViaVoice is busy.

User response:
Try the request again. If the problem persists, record the error and submit a
problem report.

SM_RC_EALLOC

Unable to allocate memory for speech recognition engine messages.

Explanation:
There is not sufficient memory for messages to pass between the SMAPI and
the speech recognition engine.

User response:
Record the error and submit a problem report.

SM_RC_EAPIVERSION

Incorrect API version.

Explanation:
The speech recognition engine and the SMAPI are not compatible.

User response:
Install a complete and compatible version.

344 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_EBADAPPNAME

An invalid application name has been specified.

Explanation:
An invalid application name was specified for a session between the SMAPI and
the speech recognition engine.

User response:
Correct the application programming error.

SM_RC_EBADHANDLE

Invalid handle passed to the speech recognition engine.

Explanation:
An invalid internal handle was used by the SMAPI.

User response:
Correct the application programming error.

SM_RC_EINVAL

Invalid value passed to speech recognition engine.

Explanation:
The value passed from the application to the SMAPI could not be passed to
the speech recognition engine.

User response:
Correct the application programming error.

SM_RC_ENOCONN

No connection to speech recognition engine.

Explanation:
The application is unable to establish a session with the speech recognition
engine; most likely, this is because the speech recognition engine is not running.

User response:
Restart the speech recognition engine. If the system is running, verify that the
level of the client software and the level of the speech recognition engine are
compatible.

345 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_ENOHANDLES

No handles for speech recognition engine.

Explanation:
An internal resource needed by the SMAPI is not available.

User response:
Restart the speech recognition engine.

SM_RC_ENOMEM

No memory available for speech recognition engine.

Explanation:
No memory is available for the speech recognition engine communications pro-
cess.

User response:
Restart the speech recognition engine.

SM_RC_ENOMSG

No message available from speech recognition engine.

Explanation:
A request was made to the speech recognition engine but no response was
received. A communications error or a speech recognition engine error prevented
the speech recognition engine from responding to the application request.

User response:
Report the error and try the request again.

SM_RC_ENOSERVER

Unable to find an available speech recognition engine.

Explanation:
All speech recognition engines are being used by other users.

User response:
Wait a few minutes and try again to establish a session.

SM_RC_ENROLLID_BUSY

Enrollment is busy.

Explanation:
The enrollment ID is still being processed.

User response:
An attempt was made to use an enrollment ID that was locked. Try to use the
enrollment ID later.

346 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_ENROLLID_EXISTS

The specified enrollment identifier already exists.

Explanation:
An attempt was made to specify an enrollment ID that already exists for the
specified user ID.

User response:
Provide a unique enrollment ID to the enrollment program.

SM_RC_ENROLLID_RUNNING

The enrollment data set specified is being processed.

Explanation:
A fully recorded enrollment data set is being processed and will be available for
dictation when it has been processed.

User response:
None.

SM_RC_ENROLLMENT _NOT_COMPLETE

Enrollment has not completed for this identifier.

Explanation:
An enrollment data set that is still being processed offline was specified for
decoding.

User response:
Try to use the enrollment data set for dictating after the offline processing is
completed.

SM_RC_FREE_MEM_ERROR

An IPC error: Error freeing memory.

Explanation:
Error freeing memory.

User response:
Submit a problem report.

SM_RC_EXISTS_IN_NOTIFY

Application is already in specified group

Explanation:
An application asks to enable a notification group in which the application is
already registered.

User response:
None.

347 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_FOCUS_DENIED

A focus request has been denied.

Explanation:
The current application with speech focus has "grabbed" the focus and changes
are being blocked by the engine.

User response:
None.

SM_RC_FOCUS_GRANTED

The application already has the speech focus.

Explanation:
The requesting application has already been granted speech focus and an asyn-
chronous notification message will not be sent by the engine.

User response:
None.

SM_RC_INCOMPATIBLE_ENROLLMENT

Enrollment was not compatible with the current engine.

Explanation:
An enrollment created for a previous release may not be supported on the
current engine.

User response:
Re-enroll.

SM_RC_ILLEGAL_SPOKENLIKE

An invalid spoken-like spelling has been specified.

Explanation:
For a given language, certain ASCII characters are not valid.

User response:
Provide a valid spoken-like spelling for the language you are using.

SM_RC_ILLEGAL_SPELLING

An invalid spelling has been specified.

Explanation:
For a given language, certain ASCII characters are not valid.

User response:
Provide a valid spelling for the language you are using.

348 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_INVALID_ PARM_MAX_LEN

The specified parameter exceeds the maximum length.

Explanation:
The specified parameter exceeds the maximum length permitted by the speech
recognition engine.

User response:
Specify the parameter again.

SM_RC_INVOCAB

The specified word is in the speech recognition engine vocabulary.

Explanation:
The specified word already exists in the speech recognition engine vocabulary.

User response:
None.

SM_RC_MIC_ALREADY OFF

The microphone is already off.

Explanation:
A request was made to turn off the microphone, but it is already off.

User response:
None.

SM_RC_MIC_ALREADY_ON

The microphone is already on.

Explanation:
A request was made to turn on the microphone, but it is already on. This is
an application programming error.

User response:
Correct the application programming error.

SM_RC_MIC_OFF_PENDING

A microphone-off request is already in progress.

Explanation:
A request was made to turn off the microphone while it was in the process of
being turned off. This is an application programming error.

User response:
Correct the application programming error.

349 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_MIC_ON_PENDING

A microphone-on request is already in progress.

Explanation:
A request was made to turn on the microphone while it was in the process of
being turned on. This is an application programming error.

User response:
Correct the application programming error.

SM_RC_MISMATCHED_ACOUSTICS

An acoustics mismatch has been found.

Explanation:
The recording does not match the spelling provided for the added word.

User response:
Try recording the word again, or specify a spelling that phonetically matches
the requested word.

SM_RC_MISMATCHED_ALPHABET

The domain and enrollment identifier specified are in different alphabets.

Explanation:
The domain specified is not for the same alphabet as the enrollment ID.

User response:
Specify a valid domain for the alphabet in which you want to dictate.

SM_RC_MISMATCHED _LANGUAGE

The domain and enrollment identifier specified are in different languages.

Explanation:
The specified domain is not for the same language as the enrollment ID.

User response:
Specify a valid domain for the language in which you want to dictate.

SM_RC_MISMATCHED_SCRIPT

The script specified does not match the previously specified script.

Explanation:
A partially recorded enrollment used a script that is different from the one
currently specified.

User response:
Use the script specified in the last session to continue the enrollment session.

350 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_MISSING_EXTERN

A required external vocabulary does not exist.

Explanation:
An external vocabulary referenced in a grammar has not been defined.

User response:
None.

SM_RC_MULTIPLE_SPELLINGS

Multiple spellings specified.

Explanation:
More than one spelling was specified for an added-word or more than one tag
was specified. This is an application programming error.

User response:
Correct the application programming error.

SM_RC_NAV_ALREADY_DEFINED

Navigator application already defined.

Explanation:
A second application has attempted to assert the navigator field.

User response:
None.

SM_RC_NO_FOCUS_APP

No application has the speech focus.

Explanation:
A request has been made to turn the microphone on, but no application has
speech focus.

User response:
Request speech focus for an application.

SM_RC_NO_MORE_CONNECTIONS

Duplicate SmOpen call.

Explanation:
The SmOpen function was called again without previously closing the connec-
tion to the SMAPI through SmClose.

User response:
This is an application programming error.

351 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_NO_SPACE

No space is left on the disk.

Explanation:
No space is left on the disk.

User response:
None.

SM_RC_NO_SPACE_INIT_ENROLL

No space is left on the disk for an enrollment session.

Explanation:
Not enough disk space is available to record the next sentence during enrollment.

User response:
Restart the speech recognition engine.

SM_RC_NO_SPACE_INIT_RECO

No space is left on the disk for a recognition session.

Explanation:
Not enough disk space is available to record the next sentence during dictation.

User response:
None.

SM_RC_NO_SPACE_MIC_ON

No space is left on the disk for PCM.

Explanation:
No space is left on the disk for PCM.

User response:
None.

SM_RC_NO_SPACE_TERM_ENROLL

Not enough disk space to complete training.

Explanation:
Not enough disk space available to complete training.

User response:
Restart the speech recognition engine.

352 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_NOT_ADDED

The specified word has not been added to the speech recognition engine vocabulary.

Explanation:
The add-word request was not successfully completed. For a given language, a
request to add a word might fail.

User response:
Try a new recording of the word or provide a phonetic spelling.

SM_RC_NOT_DELETED

The speech recognition engine was unable to delete the specified added word.

Explanation:
The speech recognition engine attempted to delete a word that is not in the
specified vocabulary.

User response:
Correct the application programming error.

SM_RC_NOT_IN_NOTIFY

Application is not in the specified group.

Explanation:
An application asks to disable a notification group in which the application is
not registered.

User response:
None.

SM_RC_NOT_INVOCAB

The specified word is not in the speech recognition engine vocabulary.

Explanation:
The specified word does not exist in the speech recognition engine vocabulary.

User response:
None.

SM_RC_NOT_VALID_REQUEST

The engine is not in the proper state to handle this request.

Explanation:
The engine is not in the proper state to handle this request.

User response:
Correct the application programming error.

353 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_NOT_WHILE_MIC_ON

The given request is not valid while the microphone is on.

Explanation:
Some requests are not valid when the microphone is on. This is an application
programming error.

User response:
Turn off the microphone before making the request.

SM_RC_NOT_WHILE_PLAYING

The given request is not valid while playing audio.

Explanation:
Some requests are not valid while audio is playing. This is an application
programming error.

User response:
Wait until the audio has finished playing before making this request.

SM_RC_NOT_YET

SMAPI function call not supported.

Explanation:
The application made a function call that is not supported by the installed
SMAPI. The supporting function in the speech recognition engine is not present.
All applications must match the installed SMAPI.

User response:
If a new application is installed, ensure that it matches the installed SMAPI or
install the required SMAPI and upgrade the existing applications.

SM_RC_OK

Successful completion.

Explanation:
The most recent application request to the SMAPI was successfully completed.

User response:
None.

354 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_OPEN_SYNCH_QUEUE_FAILED

SmOpen failed to get required resources.

Explanation:
A system problem occurred during the SmOpen call when certain system re-
sources are allocated.

User response:
Try the request again. If the problem persists, report the error and restart the
speech system. Save the log files of the session and submit a problem report on
the speech recognition engine.

SM_RC_PLAY_OPEN_ERROR

The system was unable to open the play device.

Explanation:
The speech recognition engine was not able to open the play device. Another
application is using the IBM VoiceType Dictation Adapter or the device driver
was replaced by another application.

User response:
Try the request again. If the problem persists, report the error and restart the
speech system. Save the log files of the session and submit a problem report on
the speech recognition engine.

SM_RC_QUEUE_CLOSE_ERROR

An IPC error: Error closing queue.

Explanation:
Error closing queue.

User response:
Try the request again. If the problem persists, submit a problem report.

SM_RC_RECORD_OPEN_ERROR

The system was unable to open the recording device.

Explanation:
The speech recognition engine was not able to open the recording device. An-
other application is using the IBM VoiceType Dictation Adapter or the device
driver was replaced by another application.

User response:
Try the request again. If the problem persists, report the error and restart the
speech system. Save the log files of the session and submit a problem report on
the speech recognition engine.

355 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_REPLY _NULL

NULL reply parameter.

Explanation:
The pointer to the reply structure that was given to one of the reply message
functions is NULL.

User response:
Correct the application programming error.

SM_RC_SERVER_ERROR

The speech recognition engine detected an internal error.

Explanation:
The speech recognition engine has detected an internal error.

User response:
Save the log files of the session. Ensure that sufficient disk space is available
for the system. Restart the speech recognition engine.

SM_RC_SERVER _FILE_CLOSE_ERROR

The speech recognition engine has an internal close error.

Explanation:
The speech recognition engine was not able to close one of its files. It is possible
that, because of the additional applications running on the speech recognition
engine, the maximum number of open file handles, the microprocessor limits,
or the page space limits have been reached.

User response:
Save the log files of the session. Ensure that sufficient disk space is available
for the system. Restart the speech recognition engine.

SM_RC_SERVER_FILE_OPEN_ERROR

The speech recognition engine has an internal open error.

Explanation:
The speech recognition engine was not able to open one of its files. It is possible
that, because of the additional applications running on the speech recognition
engine, the maximum number of open file handles, the microprocessor limits,
or the page space limits have been reached.

User response:
Save the log files of the session. Ensure that sufficient disk space is available
for the system. Restart the speech recognition engine.

356 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_SERVER _FILE_ READ_ERROR

The speech recognition engine has an internal read error.

Explanation:
The speech recognition engine was not able to read one of its files. It is possible
that, because of the additional applications running on the speech recognition
engine, the maximum number of open file handles, the microprocessor limits,
or the page space limits have been reached.

User response:
Save the log files of the session. Ensure that sufficient disk space is available
for the system. Restart the speech recognition engine.

SM_RC_SERVER_FILE_ WRITE_ERROR

The speech recognition engine has an internal write error.

Explanation:
The speech recognition engine was not able to write one of its files. It is possible
that, because of the additional applications running on the speech recognition
engine, the maximum number of open file handles, the microprocessor limits,
or the page space limits have been reached.

User response:
Save the log files of the session. Ensure that sufficient disk space is available
for the system. Restart the speech recognition engine.

SM_RC_SERVER_MALLOC_ERROR

The speech recognition engine has an internal malloc error.

Explanation:
The speech recognition engine was not able to allocate memory for its process.

User response:
Save the log files of the session. Ensure that sufficient memory is available for
the system. Restart the speech recognition engine.

SM_RC_SERVER_PROCESS_ERROR

The speech recognition engine has an internal process error.

Explanation:
The speech recognition engine had an unrecoverable error. It is possible that,
because of the additional applications running on the speech recognition engine,
the maximum number of open file handles, the microprocessor limits, or the
page space limits have been reached.

User response:
Save the log files of the session. Ensure that sufficient disk space is available
for the system. Restart the speech recognition engine.

357 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_SERVER_TERMINATED

Speech recognition engine terminated.

Explanation:
The speech recognition engine has stopped.

User response:
Save the log files of the session and restart the speech recognition engine.

SM_RC_SM_EINVAL_MSG_TYPE

Invalid message type.

Explanation:
This is a program logic error. The program has used an access function against
an invalid message type.

User response:
Use an access function that is valid for the message type.

SM_RC_SM_NOT_ACTIVE_CLIENT

The speech-aware application is not active.

Explanation:
The speech-aware application is not active.

User response:
Correct the application programming error.

SM_RC_SM_NOT_OPEN

Application has not opened SMAPI using an SmOpen call.

Explanation:
The speech application has not been opened by an SmOpen call.

User response:
Correct the application programming error.

SM_RC_SUB_UNSET_ERROR

An TPC error: Error unsetting memory.

Explanation:
The speech application has not been opened by an SmOpen call.

User response:
Correct the application programming error.

358 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_RC_SPELLING_TOO_LONG

The spelling specified is too long.

Explanation:
The specified word is too long.

User response:
The spelling of the specified word is phonetically longer than the recording
made for the word. Enter a phonetic spelling or record the word again.

SM_RC_USERID_BUSY

User identifier is busy.

Explanation:
An attempt was made to use a user ID that was locked by another client
workstation or application.

User response:
Try to use the user ID later.

SM_RC_USERID_EXISTS

User identifier already exists.

Explanation:
An attempt was made to add a user ID that already exists on the speech
recognition engine.

User response:
Provide a unique user ID to the program.

SM_RC_WRONG_SM_VERSION

Incompatible versions of compiled/dynamically linked SMAPI.

Explanation:
The version of the SMAPI with which the application has been compiled is
different from that of the installed run-time libraries.

User response:
Compile your application with the same version of the API currently installed
on your computer.

359 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_STAT_BAD_AUDIO

Bad audio.

Explanation:
The connection to the audio source was lost during playback.

User response:
Try the request again.

SM_STAT_BAD_MESSAGE

Bad message.

Explanation:
An invalid message was specified for playback. This is an application program-
ming error.

User response:
Try again with a valid message.

SM_STAT_BAD_TAG

Bad tag.

Explanation:
An invalid word tag was specified for playback. This is an application program-
ming error.

User response:
Try again with a valid word tag.

SM_STAT BAD_UTTERANCE

Bad utterance.

Explanation:
An invalid utterance was specified for playback. This is an application pro-
gramming error.

User response:
Try again with a valid utterance.

SM_STAT_ENROLLMENT_BUSY

Enroll ID is busy.

Explanation:
This enroll ID is locked through use from a different machine.

User response:
Try to use the enroll ID later.

360 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_STAT _ENROLLMENT_COMPLETE

Enrollment complete.

Explanation:
Training completed successfully for this enroll ID. This is informational only.

User response:
None.

SM_STAT_ENROLLMENT_FAILED

Enrollment failed.

Explanation:
The training process failed for this enroll ID.

User response:
Refer to the help for Enrollment.

SM_STAT_ENROLLMENT_RECORDING

Enrollment recording.

Explanation:
The user is recording the enrollment script for this enroll ID. This is informa-
tional only.

User response:
None.

SM_STAT_ENROLLMENT_RUNNING

Enrollment running.

Explanation:
The engine is running training for this enroll ID. This is informational only.

User response:
None.

SM_STAT_PLAY_START

Audio play started.

Explanation:
The message, word, or utterance has started playing. This is informational
only.

User response:
None.

361 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_STAT_PLAY_STOP

Audio play stopped.

Explanation:
The message, word, or utterance has stopped playing. This is informational
only.

User response:
None.

362 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

A.4 SMAPI Logging

Logs used for debugging are disabled by default. Logging is controlled by the value setting of
the parameter api_log_level in the following file: (ViaVoice)\bin\engine.cfg This file should
be used for debugging and diagnostics. The content of the file is not defined as a public
interface. You must create a key in the "defaults:" section of the engine.cfg file. The key
must appear as follows: api_log_level = <log level value> The example below shows how this
should appear in engine.cfg file:

defaults:
discard_session_data = true
api_log_level = 2

Please note: Be sure to leave a blank line after ’api_log_level = 2.
The log level value settings are as follows:

0 - Disables logging

1 - Message headers

2 - Message headers + content

3 - Message headers + content + internal engine messages

>3 - Reserved
After this logging parameter has been changed the engine must be restarted before the
new parameter value can take effect. Logs of interest are located in the following IBM
ViaVoice host-drive directory: (ViaVoice\Temp) The log file, router.msg, includes a trace

of IBM ViaVoice SMAPI calls. Differences between SMAPI names in this log file and the
documentation include the following:

e "SPCH_" prefix in the log file and "Sm" prefix in the documentation.

e Underscore(".") is used in the log file, but not in the documentation.

An explanation of reply message structures that can be logged but will not be seen by the
application include the following:

SM_INIT_DATABASE_REPLY
Response to an asynchronous SmConnect that is establishing a database session
but is presented to the application as a SM_CONNECT_REPLY reply message
structure.

SM_INIT_RECOGNIZER_REPLY
Response to an asynchronous SmConnect that is establishing a recognition ses-
sion but is presented to the application as a SM_CONNECT_REPLY reply
message structure.

SM_TERMINATE_DATABASE_REPLY
Response to an asynchronous SmDisconnect that is disconnecting from the
speech recognition engine during a database session but is presented to the
application as a SM_DISCONNECT_REPLY reply message structure.

363 SMAPI Reference

Appendix A: SMAPI Return Codes, Messages, and Message Types

SM_TERMINATE_RECOGNIZER_REPLY
Response to an asynchronous SmDisconnect that is disconnecting from the
speech recognition engine during a recognition session but is presented to the
application as a SM_DISCONNECT_REPLY reply message structure.

364 SMAPI Reference

Appendix B: Speech Recognition Engine Error Messages

Appendix B Speech Recognition Engine Error
Messages

These error messages are generated by the speech recognition engine. They can be found
in the error.log and engine.log files, which are located in the engine’s working directory.

Bad Data in File *%s’
Indicates problems with data found in a successfully opened file. Files have been
damaged or incompatible speech data is being used. Restore the file indicated
from backup or reinstall IBM ViaVoice.

Bad Value ’%s’ for Tag ’%s’ in File *%s’
Control data is inconsistent. Files have been damaged or incompatible speech

data is being used. Restore the file indicated from backup or reinstall the IBM
ViaVoice.

Duplicate Use of Vocabulary Name *%s’
A duplicate name has been used to define a vocabulary (static or dynamic).
This is an application programming error.

Exceeded Limit of %d %s
A system limit has been exceeded; for example, the maximum number of defined
vocabularies is 100.

Failed to Open File *%s’
The specified file failed to open successfully. The file has probably been in-
advertently erased. Restore the file indicated from backup or reinstall IBM
ViaVoice.

Missing Tag *%s’ in File *%s’
A required control parameter (tag) was not found in the specified file. Control
data is inconsistent. Files have been damaged or incompatible speech data is
being used. Restore the file indicated from backup or reinstall IBM ViaVoice.

Severe Error in %s (%d)
A variety of severe error conditions that typically terminate the recognition
session. File write errors indicate file system problems (for example, the hard
disk is full).

Mailbox Errors might occur if one of the engine tasks fails and communication breaks
down. Therefore, this error is most likely secondary to the primary problem.

Label Buffer Overrun
In these cases the session is not ended, only the microphone is forced off. This
situation is caused by a very long pause in dictation (approximately 30 seconds)
or by an ill-behaved application that turns on the microphone and fails to ask
for recognized words.

365 SMAPI Reference

Appendix B: Speech Recognition Engine Error Messages

366 SMAPI Reference

Appendix C: Notices

Appendix C Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any reference
to an IBM product, program or service is not intended to state or imply that only that IBM
product, program, or service may be used.

Subject to IBM’s valid intellectual property or other legally protectable rights, any func-
tionally equivalent product, program, or service may be used instead of the IBM product,
program, or service.

The evaluation and verification of operation in conjunction with other products, except
those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this docu-
ment. The furnishing of this document does not give you any license to these patents. You
can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armand, NY 10504-1785

USA

Asia-Pacific users can inquire, in writing, to the IBM Director of Intellectual Property and
Licensing, IBM World Trade Asia Corporation, 2-31 Roppongi 3-chome, Minato-ku, Tokyo
106, Japan.

Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been exchanged,
should contact IBM Corporation, Department T01B, 3039 Cornwallis, Research Triangle
Park, NC 27709-2195, USA. Such information may be available, subject to appropriate
terms and conditions, including in some cases, payment of a fee.

C.1 Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other
countries or both:

IBM
ViaVoice
VoiceType
Visual Age

Adobe Acrobat is a trademark or registered trademark of Adobe Systems Incorporated.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation in the
United States and/or other countries.

367 SMAPI Reference

Appendix C: Notices

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation in the United States and/or other countries.

Other company, product, and service names may be trademarks or service marks of others.

368 SMAPI Reference

Index

Index

A

access functions, data 5
added pronunciations, querying 111
added words, querying.................... 90, 92
adding new pronunciation 20
adding single callback routine................. 17
adding words to vocabulary 23
administrative functions....................... 8
alphabets, retrieving 199
alternative words, requesting a list 94
alternative words, retrieving 200
annotations, retrieving 201
API calls, parallel session...................... 9
API starter set command and control 11
APT starter set dictation 13
application closing down and disconnecting engine
.. 13
application detaching from speech engine 50
application establishing recognition session.... 12,
14
application processing recognized commands ... 13
application receiving reply message structures
....................................... 289
application, callbacks executed by............. 59
application, retrieving name of 203, 204
archive size, retrieving 258
archived file name, retrieving 256
ASCII string, returning 286
associating pronunciation with a spelling 20
attribute handling functions 5
attributes, SMAPIL.......................... 313
audio data, discarding 53, 54
audio file, playing prerecorded 78
audio functions 9
audio message name, retrieving 229
audio signal, retrieving level 205
available languages, querying 104
B
beginning text dictation at a new document
location................. o i, 73

369

C

callback dispatching................... 59
callback functions............. 5
callback removing routine 143
callbacks, speech engine 299
cancelling request for playback................ 30
changing text context sent to speech engine.... 73
checking specified word in active vocabularies
....................................... 137
checking version of SMAPT 27
closing connection to speech engine 57
codepage, retrieving......... 207
command processing recognized............... 13
command starter set APIs.................... 11
command vocabulary, dynamically change 23
communication, closing with speech engine. 57
compatibility, checking SMAPI and API....... 27
connecting to speech engine 33
connection functions L 7
connection initializing values.................. 7
connection, closing SMAPI 32
connection, detaching all applications from speech
eNgiNe 50
control starter set APIs 11
correcting errors 15
correcting misrecognized word 196
current speech data, saving.................. 168
current vocabularies enabled, querying 100
D
data access functions 5, 199
data type, SM_ANNOTATION 308
data type, SM.MSG 309
data type, SM_VOCWORD 310
data type, SM_.WORD 311
data type, SmATg. ... 305
data type, SmArgVal........................ 306
data type, SmHandler....................... 307
data type, VEATg 327
data, discarding audio and error-correction. ... 53,
54
data, querying speech................... 118, 119
database functions................, 7
default values querying....................... 98

SMAPI Reference

Index

default values, setting 185
defined vocabulary, disabling 51
defined vocabulary, enabling 60
defining grammar based vocabulary 40
deleting dynamic vocabulary................. 194
detaching one or more sessions................ 50
dictation starter set APIs 13
direct calls to speech engine 17
disabling defined vocabulary.................. 51
discarding audio data..................... 53, 54
discarding error-correction data 53, b4
disconnecting engine 13
disconnecting speech engine 57
dispatching functions.......................... 5
domains, querying list 123, 125
dynamic actions, change command vocabularies
.. 23
dynamic actions, creating new vocabulary .. 43, 46
dynamic actions, defining new grammar 40
dynamic vocabulary, deleting 194

E

enabling defined vocabulary 60
enabling recognition of next word 140
enabling vocabularies..................... 12, 14
engine, directing to process speech......... 12, 14
engine, disconnecting......................... 13
engine, establishing recognition session. 12, 14
engine/SMAPI return codes 329
enrollment ID descriptions, retrieving 210
enrollment status, retrieving................. 262
enrollment, query user IDs 102
error messages, speech engine................ 365
error-correction, data, discarding 53, 54
error-correction, playing back spoken words.... 82
error-correction, utterance playback 80
errors, correcting speech recognition........... 15
establishing connection to speech engine....... 33
event ID, retrieving 215

F

firm words, retrieving 219
flags, retrieving 220
focus state, retrieving 222

370

FSG file, retrieving path 224
function call descriptions, format............... 3
function calls to speech engine................ 17
function calls, SMAPIT......................... 4
functions, administrative 8
functions, attribute handling................... 5
functions, audio oL 9
functions, callback and dispatching............. 5
functions, callbacks executed by application. ... 59
functions, connection.......................... 7
functions, data access 5
functions, database 7
functions, sessionooiiiiiiii... 7
functions, speech engine state.................. 8
functions, vocabulary 8
G

grammar compiler function calls 319
H

halt recognition temporarily 67
I

improving future recognition 36, 38
increment values, retrieving.................. 225
initializing values in a connection 7
L

languages, querying available 104
languages, retrieving 227
list of alternative words, requesting............ 94
M

message explanations, SMAPT 337
message type, retrieving..................... 230
message types, SMAPI...................... 333
message word count, retrieving 237
message, cancelling request for playback 30
message, receiving and dispatching callbacks ... 59
message, receiving from speech engine........ 139
microphone state, retrieving 228

SMAPI Reference

Index

microphone, turning off 69, 154
microphone, turning on.................. 71, 155
misrecognized word, correcting............... 196

N

name values, retrieving............ 231
naming conventions 4
Nbest feature.............. 105
next word to decode, searching 140
notification, requesting specific time........... 64
notification, requesting when speech engine
completes decoding 62
O
opening SMAPI 7
options field, retrieving...................... 238
options flags, retrieving 257
P
parallel session APl calls...................... 9
parameters, querying engine 85
parameters, querying value of engine 96
percent complete, retrieving 239
phonetic pronunciations, retrieving........... 240
phrase score, retrieving...................... 241
phrase state, retrieving...................... 242
playback request, cancelling 30
playing back spoken utterance 80
playing back spoken words 82
playing prerecorded audio file................. 78
predefined vocabularies, adding words to 23
preferred topics count, retrieving............. 243
processing recognized commands.............. 13
processing recognized text.................... 15
processing speech, directing engine......... 12, 14
pronunciation, adding new.................... 20
pronunciation, querying added 111, 113
pronunciation, querying existence........ 107, 109

pronunciation, removing from personal pool... 148
pronunciations, retrieving 244

371

Q

querying added words 90, 92
querying available languages................. 104
querying currently enabled vocabularies 100
querying default userid, enrollid, taskid........ 98
querying engine parameters................... 85
querying enrollment ID info 129
querying existence of pronunciation 107
querying list of added pronunciations.... 111, 113
querying Sessionsii... 117
querying speech data........................ 118
querying speech engine state................... 8
querying user enrollment IDs 102
querying user ID info 129
querying users in system 131
querying vocabularies, defined 135

R

reason code for focus change, retrieving....... 221
receiving messages from speech engine........ 139
receiving messages, dispatching callbacks 59
recognition session, enabling defined vocabulary
.. 60
recognition session, establishing 12, 14
recognition session, querying................. 117
recognition session, temporary halt............ 67
recognition, improving future.............. 36, 38
recognized commands, processing 13
recognized text, processing 15
releasing speech focus....................... 142
removing callback routine 143
removing pronunciation from personal pool ... 148
removing words from dynamic vocabulary 146
reply message structures 289
reply structure functions unsolicited callbacks
....................................... 303
requesting completions of specified string 28
requesting microphone turnoff 154
requesting microphone turnon 155
requesting speech focus...................... 152
resetting utterance number............... ... 160
retrieving alphabets......................... 199
retrieving alternative words.................. 200
retrieving annotations....................... 201

SMAPI Reference

Index

retrieving archive size 258
retrieving archive version.................... 259
retrieving archived file name................. 256
retrieving array of increment values 225
retrieving audio message name............... 229
retrieving audio signal 205
retrieving codepage 207
retrieving engine state 211
retrieving enroll ID 213, 214
retrieving enrollment ID descriptions......... 210
retrieving enrollment status 262
retrieving event ID........ oL 215
retrieving firm words........... 219
retrieving focus state............ 222
retrieving languages.................... ... 227
retrieving message type 230
retrieving message word count 237
retrieving microphone state.................. 228
retrieving name of application........... 203, 204
retrieving name values 231
retrieving options field 238
retrieving options flags............... 257
retrieving options for event 216
retrieving path name of FSG file............. 224
retrieving percent complete.................. 239
retrieving phonetic pronunciations 240
retrieving phrase score 241
retrieving phrase state 242
retrieving preferred topics count 243
retrieving pronunciations.................... 244
retrieving reason code for focus change 221
retrieving return code 245
retrieving return code description 246
retrieving return code name 247
retrieving sample rates 249
retrieving script flags. 250
retrieving scripts............. L 251
retrieving service description................. 252
retrieving session ID 253
retrieving severity 254
retrieving single flags........................ 220
retrieving size values.............. 255
retrieving spelling 260, 261
retrieving start/end times................... 283
retrieving status o 263
retrieving task attributes................. ... 268

372

retrieving time values 270
retrieving topics array....................... 271
retrieving trained values..................... 272
retrieving user ID oLl 273, 274
retrieving users........... 275
retrieving utterance number 277
retrieving value of item 206, 226
retrieving vocabulary list 278
retrieving vocabulary name.................. 279
retrieving vocabulary path 280
retrieving vocabulary words 281
retrieving words 282
return code description, retrieving 246
return code name, retrieving................. 247
return code, retrieving 245
return codes, engine/SMAPI................. 329
returning ASCII string 286
returning SM_MSG return code.............. 285
returning symbolic name 287
router.msg logging 363

S

sample rates, retrieving 249
saving current speech data 166, 168
script flags, retrieving 250
searching next word to decode 140
service description, retrieving................ 252
session detaching 50
session disabling a defined vocabulary 51
session functions........... 7
session ID, retrieving........................ 253
session qUerying, 117
session starting a speech engine connection 33
session, recognition, establishing........... 12, 14
setting default values 185
setting files used by engine 187
setting up vocabularies 12, 14
setting user information..................... 191
setting value of speech engine parameter.. 175, 183
severity, retrieving L 254
single callback routine, adding 17
size values, retrieving 255
Sm AddToVocab 23
SM_ANNOTATION 308
SM_MSG ..o 309

SMAPI Reference

Index

SM_MSG return code, returning 285
SM.VOCWORDooiiiiiiiiian. 310
SM_WORD ... 311
SmAddCallback 17
SmAddEnrollid.............................. 18
SmAddPronunciation 20
SmAddUser i 25
SMAPI administrative functions 8
SMAPI attributes 313
SMAPI audio functions 9
SMAPI callback and dispatching functions. 5
SMAPIT checking version...................... 27
SMAPI closing connection.................... 32
SMAPI connecting........................... 33
SMAPIT connection functions................... 7
SMAPI database functions 7
SMAPT engine return codes 329
SMAPI establishing connection 7
SMAPI function calls by group 4
SMAPI message explanations................ 337
SMAPI message types....................... 333
SMAPI openingcoovvvieennn .. 7
SMAPIT parallel session calls 9
SMAPI return codescooviun... 329
SMAPI routermsg log 363
SMAPI session functions 7
SMAPI status codes 329
SmApi VersionCheck......................... 27
SMAPI vocabulary functions 8
SIMATE . 305
SmArgVal.......... 306
SmAutoComplete............................ 28
SmCancelPlayback........................... 30
SMCIOSE .« v oottt 32
SmConnect.............ciieeiiinena..... 33
SmCorrectText 36
SmCorrectTextEx............................ 38
SmDefineGrammar 40
SmDefineVocab.............................. 43
SmDefineVocabEx 46
SmDetachSessions 50
SmDisableVocab............................. 51
SmDiscardData................. .. L. 53
SmDiscardSpeechData 54
SmDiscardUtterance 56
SmDisconnect 57

373

SmDispatch 59
SmEnableVocab 60
SmEventNotify 62
SmEventNotifyEx 64
SmEventTime 66
SmGetAlphabets 199
SmGetAlternates 200
SmGetAnnotations 201
SmGetApplication 203
SmGetApplications 204
SmGetAudioLevel 205
SmGetBinaryltemValue 206
SmGetCodePage............................ 207
SmGetComment 208
SmGetConfidenceScores 209
SmGetDescriptions 210
SmGetEngineState........... L. 211
SmGetEnrollld 213
SmGetEnrolllds 214
SmGetEventld 215
SmGetEventOptions 216
SmGetExpectedRecordingSpace.............. 217
SmGetExpected TrainingSpace 218
SmGetFirmWords 219
SmGetFlags.......... ... oL 220
SmGetFocusChangeReason 221
SmGetFocusState........................... 222
SmGetFreeSpace. 223
SmGetGrammarPath 224
SmGetIncrements........................... 225
SmGetltemValue 226
SmGetLanguages 227
SmGetMicState 228
SmGetMsgName. 229
SmGetMsgType ... 230
SmGetNameValue 231
SmGetNextAlternate........................ 232
SmGetNumberProcessed 233
SmGetNumberRecorded 234
SmGetNumberRequired 235
SmGetNumberUtterances 236
SmGetNumberWordMsgs. 237
SmGetOptions ... 238
SmGetPercentages 239
SmGetPhoneticPronunciations............... 240
SmGetPhraseScore. 241

SMAPI Reference

Index

SmGetPhraseState. 242
SmGetPreferred 243
SmGetPronunciations 244
SmGetRe ... 245
SmGetRcDescription.............. 246
SmGetRcName 247
SmGetRequiredTrainingSpace 248
SmGetSampleRates......................... 249
SmGetScriptFlags 250
SmGetScripts 251
SmGetService 252
SmGetSessionld 253
SmGetSeverity L. 254
SmGetSizes 255
SmGetSpeechDataArchive................... 256
SmGetSpeechDataOptions................... 257
SmGetSpeechDataSize 258
SmGetSpeechDataVersion 259
SmGetSpelling L. 260
SmGetSpellings. 261
SmGetStates 262
SmGetStatus............................... 203
SmGetTagOffset 265
SmGetTags L. 266
SmGetTask 267
SmGetTaskFlags 268
SmGetTasks.co i 269
SmGetTimesieeiineinnan... 270
SmGetTopics.oovviiiii 271
SmGetTrained 272
SmGetUserld............... 273
SmGetUserlds.................ooviiiia ... 274
SmGetUSsers.......ooovvinneiniine, 275
SmGetUtteranceliist 276
SmGetUtteranceNumber 277
SmGetVocabList............................ 278
SmGetVocabName.......................... 279
SmGetVocabPath........................... 280
SmGetVocWords, 281
SmGetWords 282
SmGetWordTimes 283
SmHaltRecognizer 67
SmHandler................................. 307
SmMicOff 69
SMMicOn 71
SmNewContextooouiiiin... 73

374

SmNewContextEx 75
SmOpenco 7
SmPlayMessage. ..o, 78
SmPlayUtterance 80
SmPlayWords 82
SMQUETY . .o 85
SmQueryAddedWords. 90
SmQueryAddedWordsEx 92
SmQueryAlternates.......................... 94
SmQueryBinary oo 96
SmQueryDefault............ 98
SmQueryEnabledVocabs 100
SmQueryEnrolllds 102
SmQueryLanguages......................... 104
SmQueryPhraseAlternatives 105
SmQueryPronunciation 107
SmQueryPronunciationEx 109
SmQueryPronunciations..................... 111
SmQueryPronunciationsEx 113
SmQueryScripts 115
SmQuerySessions 117
SmQuerySpeechData........................ 118
SmQuerySpeechDataEx 119
SmQuerySpeechUserSize 121
SmQueryTasks 123
SmQueryTopics. ... 125
SmQueryUserDefault 127
SmQueryUserInfo........................... 129
SmQueryUsers, 131
SmQueryUtterances. 133
SmQueryVocabs 135
SmQueryWord 137
SmReceiveMsg ...l 139
SmRecognizeNextWord 140
SmReleaseFocus 142
SmRemoveCallback 143
SmRemoveEnrollid 144
SmRemoveFromVocab 146
SmRemovePronunciation 148
SmRemoveUser............................. 150
SmRequestFocus............................ 152
SmRequestMicOff 154
SmRequestMicOn........................... 155
SmRequestNewEnrollid 156
SmRequestScriptText 158
SmRestoreSpeechData 160

SMAPI Reference

Index

SmRestoreSpeechDataEx.................... 162
SmRestoreSpeechUser....................... 164
SmReturnRe 285
SmReturnRcDescription. 286
SmReturnRcName 287
SmSaveSpeechData 166
SmSaveSpeechDataEx....................... 168
SmSaveSpeechUser 171
SmSelectScript 173
SmSet ..o 175
SMSetATg . ..o 182
SmSetBinary L 183
SmSetDefault 185
SmSetDirectory............ 187
SmSetUserDefault 189
SmSetUserInfo 191
SmSetUtteranceNumber..................... 193
SmUndefineVocab 194
SmWordCorrection 196
specified word, checking active vocabularies... 137
speech attributes, querying default 98
speech data, querying................... 118, 119
speech data, saving current 166, 168
speech engine callbacks...................... 299
speech focus, releasing 142
speech focus, requesting 152
speech recognition errors, correcting........... 15
spelling, associating pronunciation with........ 20
spelling, retrieving 260, 261
spoken words, playing back................... 82
start/end times, retrieving................... 283
starter set APIs command and control......... 11
starter set APIs dictation 13
status codes, SMAPI........................ 329
status, retrieving oL 263
symbolic name, returning. 287

T

task attributes, retrieving 268
temporary halt of recognition session.......... 67
terminating SMAPI connection 32
text, processing recognized 15
time values, retrieving....................... 270
topics array, retrieving 271
trained values, retrieving 272

375

turning off microphone 69
turning on microphone 71

U

unsolicited callbacks, reply structure functions

....................................... 303
updating user’s voice model 36, 38
user ID, retrieving................ 273, 274
user information, setting 191
user, querying enrollment IDs................ 102
users, retrieving L oL 275
utterance number, retrieving................. 277
utterance, cancelling request for playback...... 30
utterance, playing back.............. 80
utterance, resetting number 160
\%
value of item, retrieving 226
version, archive, retrieving................... 259
version, checking SMAPI and API 27
vocabularies, checking for specified word. 137
vocabularies, querying added words........ 90, 92
vocabularies, querying currently enabled. 100
vocabularies, setting up and enabling 12, 14
vocabulary functions 8
vocabulary list, retrieving 278
vocabulary name, retrieving 279
vocabulary path, retrieving 280
vocabulary words, retrieving................. 281
vocabulary, adding words to 23
vocabulary, deleting dynamic................ 194
vocabulary, disabling defined 51
vocabulary, dynamically creating new 43, 46
vocabulary, enabling defined 60
vocabulary, removing words from 146
voice model, updating user’s 36, 38
VtAddArg . ..o 319
VtCompileGrammar 320
VtGetMessageooovviiiiiiiiiii .. 321
VtGetTranslation........................... 322
VtLoadFSG i 323
VESetArg . oo 324
VtUnloadFSG........ o . 325

SMAPI Reference

Index

W words, cancelling request for playback 30

words, alternative, requesting list of 94 words, retrieving. 282

376 SMAPI Reference

	About This Document
	Who Should Read This Document?
	Related Publications
	SMAPI Overview
	Format of the Function Call Descriptions
	Reply Structure Functions by Message Type
	Task Related Functions and Callbacks
	Reply Structure-Related Functions and Callbacks

	Naming Conventions
	SMAPI Function Calls by Group
	Attribute Handling Functions
	Callback and Dispatching Functions
	Data Access Functions
	Connection Functions
	Session Functions
	Database Functions
	Administrative Functions
	Speech Recognition Engine State Functions
	Vocabulary Functions
	Audio Functions
	Parallel Session API Calls

	SMAPI Starter Set APIs
	Starter Set SMAPIs for Command and Control
	Establishing a Recognition Session
	Setting Up and Enabling Vocabularies
	Directing the Engine to Process Speech
	Processing Recognized Commands
	Disconnecting from the Engine

	Starter Set SMAPIs for Dictation
	Establishing a Recognition Session
	Setting Up and Enabling Vocabularies
	Directing the Engine to Process Speech
	Processing Recognized Text
	Correcting Errors
	Disconnecting from the Engine

	Function Calls to the Speech Recognition Engine
	SmAddCallback
	SmAddEnrollid
	SmAddPronunciation
	SmAddToVocab
	SmAddUser
	SmApiVersionCheck
	SmAutoComplete
	SmCancelPlayback
	SmClose
	SmConnect
	SmCorrectText
	SmCorrectTextEx
	SmDefineGrammar
	SmDefineVocab
	SmDefineVocabEx
	SmDetachSessions
	SmDisableVocab
	SmDiscardData
	SmDiscardSpeechData
	SmDiscardUtterance
	SmDisconnect
	SmDispatch
	SmEnableVocab
	SmEventNotify
	SmEventNotifyEx
	SmEventTime
	SmHaltRecognizer
	SmMicOff
	SmMicOn
	SmNewContext
	SmNewContextEx
	SmOpen
	SmPlayMessage
	SmPlayUtterance
	SmPlayWords
	SmQuery
	SmQueryAddedWords
	SmQueryAddedWordsEx
	SmQueryAlternates
	SmQueryBinary
	SmQueryDefault
	SmQueryEnabledVocabs
	SmQueryEnrollIds
	SmQueryLanguages
	SmQueryPhraseAlternatives
	SmQueryPronunciation
	SmQueryPronunciationEx
	SmQueryPronunciations
	SmQueryPronunciationsEx
	SmQueryScripts
	SmQuerySessions
	SmQuerySpeechData
	SmQuerySpeechDataEx
	SmQuerySpeechUserSize
	SmQueryTasks
	SmQueryTopics
	SmQueryUserDefault
	SmQueryUserInfo
	SmQueryUsers
	SmQueryUtterances
	SmQueryVocabs
	SmQueryWord
	SmReceiveMsg
	SmRecognizeNextWord
	SmReleaseFocus
	SmRemoveCallback
	SmRemoveEnrollid
	SmRemoveFromVocab
	SmRemovePronunciation
	SmRemoveUser
	SmRequestFocus
	SmRequestMicOff
	SmRequestMicOn
	SmRequestNewEnrollid
	SmRequestScriptText
	SmRestoreSpeechData
	SmRestoreSpeechDataEx
	SmRestoreSpeechUser
	SmSaveSpeechData
	SmSaveSpeechDataEx
	SmSaveSpeechUser
	SmSelectScript
	SmSet
	SmSetArg
	SmSetBinary
	SmSetDefault
	SmSetDirectory
	SmSetUserDefault
	SmSetUserInfo
	SmSetUtteranceNumber
	SmUndefineVocab
	SmWordCorrection

	Data Access Functions
	SmGetAlphabets
	SmGetAlternates
	SmGetAnnotations
	SmGetApplication
	SmGetApplications
	SmGetAudioLevel
	SmGetBinaryItemValue
	SmGetCodePage
	SmGetComment
	SmGetConfidenceScores
	SmGetDescriptions
	SmGetEngineState
	SmGetEnrollId
	SmGetEnrollIds
	SmGetEventId
	SmGetEventOptions
	SmGetExpectedRecordingSpace
	SmGetExpectedTrainingSpace
	SmGetFirmWords
	SmGetFlags
	SmGetFocusChangeReason
	SmGetFocusState
	SmGetFreeSpace
	SmGetGrammarPath
	SmGetIncrements
	SmGetItemValue
	SmGetLanguages
	SmGetMicState
	SmGetMsgName
	SmGetMsgType
	SmGetNameValue
	SmGetNextAlternate
	SmGetNumberProcessed
	SmGetNumberRecorded
	SmGetNumberRequired
	SmGetNumberUtterances
	SmGetNumberWordMsgs
	SmGetOptions
	SmGetPercentages
	SmGetPhoneticPronunciations
	SmGetPhraseScore
	SmGetPhraseState
	SmGetPreferred
	SmGetPronunciations
	SmGetRc
	SmGetRcDescription
	SmGetRcName
	SmGetRequiredTrainingSpace
	SmGetSampleRates
	SmGetScriptFlags
	SmGetScripts
	SmGetService
	SmGetSessionId
	SmGetSeverity
	SmGetSizes
	SmGetSpeechDataArchive
	SmGetSpeechDataOptions
	SmGetSpeechDataSize
	SmGetSpeechDataVersion
	SmGetSpelling
	SmGetSpellings
	SmGetStates
	SmGetStatus
	SmGetTagOffset
	SmGetTags
	SmGetTask
	SmGetTaskFlags
	SmGetTasks
	SmGetTimes
	SmGetTopics
	SmGetTrained
	SmGetUserId
	SmGetUserIds
	SmGetUsers
	SmGetUtteranceList
	SmGetUtteranceNumber
	SmGetVocabList
	SmGetVocabName
	SmGetVocabPath
	SmGetVocWords
	SmGetWords
	SmGetWordTimes
	SmReturnRc
	SmReturnRcDescription
	SmReturnRcName

	Reply Message Structures and Callbacks
	Reply Message Structures Received from the Speech Recognition Engine
	Callbacks
	Reply Structure Functions for Unsolicited Callbacks

	Data Types
	SmArg data type
	SmArgVal data type
	SmHandler data type
	SM_ANNOTATION data type
	SM_MSG data type
	SM_VOCWORD data type
	SM_WORD data type

	SMAPI Attributes
	System Dependent Definition for Argument Lists
	Argument Attribute List
	Application Information Attributes
	Requested Services
	Options Flags
	External Notifier
	User Definition Arguments

	SMAPI Grammar Compiler API Overview
	Format of the Function Call Descriptions
	Grammar Compiler API Function Calls

	SMAPI Grammar Compiler API Function Calls
	VtAddArg
	VtCompileGrammar
	VtGetMessage
	VtGetTranslation
	VtLoadFSG
	VtSetArg
	VtUnloadFSG

	SMAPI Grammar Compiler Data Types
	VtArg

	SMAPI Return Codes, Messages, and Message Types
	SMAPI Return and Status Codes
	SMAPI Return Codes
	SMAPI Status Codes

	SMAPI Message Types
	SMAPI Message Explanations
	SMAPI Logging

	Speech Recognition Engine Error Messages
	Notices
	Trademarks

	Index

