
SMAPI Developer’s Guide
IBM ViaVoice(tm) Software Developer’s Kit

Version 1.7

Printed in the USA
Note: Before using this information and the product it supports, be sure to read the general
information under Appendix A [Notices], page 151.
First Edition (December 1999)
The following paragraph does not apply to the United Kingdom or any country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied war-
ranties in certain transactions, therefore, this statement may not apply to you. This publi-
cation could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the
publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time.
It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced in
your country. Such references or information must not be construed to mean that IBM
intends to announce such IBM products, programming, or services in your country. Requests
for technical information about IBM products should be made to your IBM reseller or IBM
marketing representative.

c© International Business Machines Corporation 1999. All Rights Reserved. Note to U.S.
Government Users-Documentation related to restricted rights- Use, duplication or disclosure
is subject to restrictions set forth in GS ADP Schedule Contract with IBM Corp.

Table of Contents

About This Document . 1
Who Should Read This Document . 1
How This Document Is Organized . 1
Related Publications . 1

1 Introduction to SMAPI Developer’s Guide . . 3
1.1 IBM Native Architecture Overview . 3

1.1.1 Speech Resources . 3
1.1.1.1 User’s Language of Origin 3
1.1.1.2 Domains . 4

1.1.2 Speech Engine Architecture . 5
1.2 Application Programming Interfaces . 5

1.2.1 SMAPI . 5
1.2.2 DMAPI . 6
1.2.3 SMAPI Grammar Compiler API 6

2 Introduction to SMAPI Programming. 9
2.1 Developing a Command and Control Application 9

2.1.1 Identifying What the User Can Say 9
2.1.2 Creating a Vocabulary . 10
2.1.3 Compiling the Grammar . 10
2.1.4 Refining the Grammar . 10
2.1.5 Building a Dictionary . 11
2.1.6 Testing the Vocabulary . 11
2.1.7 Writing the Application Interface 11
2.1.8 Building a Distributable Runtime for your

Application . 12
2.2 Developing a Dictation Application . 12

2.2.1 Writing the Application Interface 12
2.2.2 Building a Distributable Runtime for your

Application . 13
2.3 Developing an Application for Both Command and Control

and Dictation . 13
2.4 Speech Engine Runtime Limitations . 14

3 Dynamic Command Vocabularies 15
3.1 What is a Dynamic Command Vocabulary? 15
3.2 When to Use a Dynamic Vocabulary . 15
3.3 Building Pronunciations for a Dynamic Command Vocabulary

. 16
3.4 Testing a Dynamic Command Vocabulary 16

i SMAPI Developer’s Guide

4 SMAPI Grammars . 17
4.1 What is a Grammar? . 17
4.2 Why is a Grammar Necessary? . 17

4.2.1 Acceptance or Rejection of Utterances 17
4.2.2 Handling Embedded Silence and Mumbles 18

4.3 Introduction to SRCL Grammars . 18
4.3.1 Defining Common Words and Phrases with

Nonterminal Symbols . 20
4.3.2 Defining Optional Words and Phrases 21
4.3.3 Defining Repeated Word and Phrases 21
4.3.4 Grammar Annotations–A Post Parsing Aid 22

4.3.4.1 Defining Annotations 22
4.4 The Kiosk Example . 22
4.5 Dynamic Command Vocabularies . 26
4.6 Guidelines for Designing SMAPI Grammars 27
4.7 SRCL Syntax . 27

4.7.1 Language Definition . 28
4.7.2 Language Elements . 28

4.7.2.1 Comment Formats . 28
4.7.2.2 Terminals . 28
4.7.2.3 Nonterminals . 29
4.7.2.4 Grammar Rules (Productions) 29
4.7.2.5 External Lists . 30
4.7.2.6 Include Declarations. 30

4.8 Using the Grammar Translation Facility 31
4.8.1 Working with the Details . 31
4.8.2 Example . 32

5 SMAPI Grammar Compiler 37
5.1 Using the SMAPI Grammar Compiler 37
5.2 SMAPI Grammar Compiler Options . 38
5.3 Compiling a Grammar . 40

6 Writing the Application Interface 41
6.1 Basic Command and Control Tasks . 41

6.1.1 Enabling and Disabling Vocabularies 41
6.1.2 Handling Speech Focus . 42
6.1.3 Notification . 42

6.2 Other Command and Control Tasks . 42
6.2.1 Querying System Parameters 42
6.2.2 Enrolling . 43
6.2.3 Supporting Annotations . 43
6.2.4 Supporting Dictation as well as Command and

Control . 43
6.3 User Interface Considerations . 44

ii SMAPI Developer’s Guide

7 Developing Dictation Applications 45
7.1 Basic Dictation Tasks . 45

7.1.1 Correcting Errors . 45
7.1.2 Processing Firm and Infirm Words 46
7.1.3 Handling Speech Focus . 47
7.1.4 Notification . 47

7.2 Other Dictation Tasks . 47
7.2.1 Querying System Parameters 48
7.2.2 Providing Commands During Dictation 48
7.2.3 Supporting Dictation Macros and Templates 48
7.2.4 Enrolling . 49

7.3 User Interface Considerations . 49

8 Developing Enrollment Applications 51
8.1 Basic Enrollment Tasks . 51

8.1.1 Establishing An Enrollment Session 51
8.1.2 Defining and Enabling Grammar Vocabularies . . . 52
8.1.3 Processing the User’s Speech 53
8.1.4 Starting and Monitoring the Training Program . . . 54

9 Overview of the C Language SMAPI 55

10 Function Call Processing 57
10.1 Message Passing . 57
10.2 Synchronous Function Calls . 57
10.3 Asynchronous Function Calls . 58

10.3.1 Asynchronous Function Calls without Callbacks
. 59

10.3.2 Asynchronous Function Calls with Callbacks 61
10.4 Function Call Error Reporting . 63
10.5 Accessing Data Returned By Function Calls 64

10.5.1 Access Functions . 64
10.5.2 Function Calls . 64
10.5.3 Unsolicited Events . 65
10.5.4 Reply Access Functions . 65
10.5.5 Memory Handling . 65
10.5.6 Use of Reply Structure . 66

iii SMAPI Developer’s Guide

11 Session Sharing . 67
11.1 Examples of Session-Sharing Components 67
11.2 Speech Focus . 68

11.2.1 Requesting and Releasing Focus 68
11.2.2 Granting Focus . 68
11.2.3 Restrictions . 69
11.2.4 Requesting Next Word . 69
11.2.5 Guidelines for Handling Focus 69

11.3 Notification . 70
11.3.1 Requesting Notification . 70
11.3.2 Receiving Notification . 71

11.4 Navigator Session . 76
11.4.1 Exclusive Vocabularies . 77
11.4.2 Vocabulary Scope. 77
11.4.3 Reduced CPU Mode . 78

11.5 Related Functions . 78
11.5.1 Request Microphone On/Off 79
11.5.2 Default Values for Initialization 79
11.5.3 Querying and Setting Defaults 79
11.5.4 Query Sessions . 80
11.5.5 Detach Sessions . 80
11.5.6 Automatically Start and Stop the Speech Engine

. 81
11.6 Allowable API Calls . 81

11.6.1 Attribute Functions . 81
11.6.2 Callback and Dispatching Functions 81
11.6.3 Access Functions . 82
11.6.4 Connection Functions . 82
11.6.5 Session Functions . 82
11.6.6 Database Functions . 83
11.6.7 Vocabulary Functions . 84
11.6.8 Audio Functions . 85

12 Parallel Session API Calls 87

iv SMAPI Developer’s Guide

13 Programming Tasks. 89
13.1 Initialization Phase . 89

13.1.1 Verifying the SMAPI Version 89
13.1.2 Establishing a Speech Session 89

13.1.2.1 All Sessions: . 90
13.1.2.2 Database Sessions: 90
13.1.2.3 Enrollment Sessions: 90
13.1.2.4 Recognition Sessions: 90
13.1.2.5 Initializing . 91
13.1.2.6 Database Sessions . 91
13.1.2.7 Recognition Sessions 93

13.1.3 Changing Speech Sessions . 94
13.2 Recognition Phase . 95

13.2.1 Setting Up Vocabularies . 96
13.2.1.1 Setting Up a Command Vocabulary . . . 97
13.2.1.2 Setting Up a Grammar Vocabulary (FSG)

. 98
13.2.1.3 Setting Up a Grammar Vocabulary with

External Lists . 100
13.2.1.4 Setting Up a Dictation Vocabulary . . . 102

13.2.2 Processing Speech Input . 102
13.2.2.1 Vocabulary Processing 103
13.2.2.2 Handling Rejections 103
13.2.2.3 Command and Grammar Vocabulary

Processing . 104
13.2.2.4 Command Recognition Events 105
13.2.2.5 Dictation Vocabulary Processing 110
13.2.2.6 Dictation Recognition Events 110

13.2.3 Changing the Engine Decoding State 114
13.2.4 Setting/Querying Speech Engine Parameters . . . 115
13.2.5 Improving Recognition by Updating Personal Data

Files . 115
13.2.6 Processing Speech Engine Audio 116
13.2.7 Writing ViaVoice Applications to Save and Restore

Speech Sessions . 117
13.2.8 Handling Speech Engine Errors 118
13.2.9 Playing Audio through the Speakers 121

13.3 Termination Phase . 121
13.3.1 Disconnecting from the Speech Engine 122
13.3.2 Closing the Speech Session 122

14 Overview of the SMAPI Grammar Compiler
API . 123

v SMAPI Developer’s Guide

15 SMAPI Grammar Compiler Programming
Tasks . 125
15.1 Setting up SMAPI Grammar Compiler Argument Structures

. 125
15.2 Compiling Grammars . 125
15.3 Handling Compilation Errors. 125

16 Overview of the Custom Audio Library . . 127

17 Audio Library Functions 129
17.1 Required Functions . 129

17.1.1 AudioConnect . 130
17.1.2 AudioCreate . 131
17.1.3 AudioDestroy . 132
17.1.4 AudioDisconnect . 133
17.1.5 AudioGetPCM . 134
17.1.6 AudioPutPCM . 135
17.1.7 AudioStartPlayback . 136
17.1.8 AudioStartRecording . 137
17.1.9 AudioStopPlayback . 138
17.1.10 AudioStopRecording . 139

17.2 Optional Functions . 140
17.2.1 AudioGetHandle . 141
17.2.2 AudioQueryConfig . 142
17.2.3 AudioQueryDevices . 143
17.2.4 AudioQuerySource . 144
17.2.5 AudioSetDevice . 145
17.2.6 AudioSetInput . 146
17.2.7 AudioSetInputGain . 147
17.2.8 AudioSetOutput . 148
17.2.9 AudioSetOutputGain . 149
17.2.10 AudioSetSource . 150

Appendix A Notices . 151
A.1 Trademarks . 151

Appendix B Glossary . 153

Index . 159

vi SMAPI Developer’s Guide

About This Document

About This Document

This document provides detailed information on developing speech-aware applications using
the IBM ViaVoice(tm) Software Developer’s Kit (SDK) and the IBM Speech Manager API
(SMAPI) interface set.

Who Should Read This Document

Read this document if you are a programmer interested in writing speech-aware applications
that use ViaVoice for speech and are built using the IBM SMAPI interface set.

How This Document Is Organized

This document is divided into the following parts:
1. Introduction, describes speech-aware application programming using the ViaVoice

SDK, discusses how to design applications that use ViaVoice.
2. Developing Command and Control Applications, explains how to develop command and

control applications using the ViaVoice SDK. It covers identifying grammars, creating
grammar files, compiling grammars, building a dictionary, and testing grammars. It
also includes information on using dynamic command vocabularies as a method for
implementing command and control in an application.

3. Developing Dictation Applications, explains how to develop dictation applications us-
ing the ViaVoice SDK. It presents basic functions that dictation applications should
support. It also covers the steps involved in developing dictation macros and templates.

4. Speech Manager API (SMAPI), provides an overview of the Speech Manager APIs,
describes function call processing, and explains the tasks associated with each phase of
a speech-aware application session.

5. SMAPI Grammar Compiler API, provides an overview of the SMAPI Grammar Com-
piler APIs and explains the tasks involved in compiling grammars from within an
application.

6. Custom Audio DLLs, provides an overview of the Custom Audio DLLs and explains
the tasks involved with using multiple audio sources within an application.

7. Appendix A, Notices, describes copyright and trademark information for this publica-
tion.

8. Appendix B, Glossary, defines terms and abbreviations found in this publication.

Related Publications

Refer to the following publications included with this version for additional programming,
reference, and design information:
• SMAPI Reference
• SAPI Reference (Windows only)

1 SMAPI Developer’s Guide

About This Document

• ActiveX Developer’s Guide (Windows only)

Refer to the following sources for product updates and enhancements and additional pro-
gramming, reference, and design information:

IBM ViaVoice Developer’s Corner website at
ww.ibm.com/viavoice/dev home.html

IBM ViaVoice SDK Web Channel at:
ww.software.ibm.com/viavoice/subscribe.html

OLE Automation Reference from Microsoft
(Windows only)

2 SMAPI Developer’s Guide

Chapter 1: Introduction to SMAPI Developer’s Guide

1 Introduction to SMAPI Developer’s Guide

The IBM ViaVoice SDK for Windows 95/98, Windows NT and Linux provides programmers
with the necessary tools to develop applications that incorporate speech. It includes a robust
set of application programming interfaces (APIs) that allows an application to access speech
resources. It contains several utilities that enable developers to define and manage what the
user can say within an application. There are also several sample programs that can help
programmers as they develop their applications for speech. Finally, there are distributable
runtime elements that are included with an application that uses IBM ViaVoice.

1.1 IBM Native Architecture Overview

IBM SMAPI supports only speech recognition functions. The SMAPI interface set is the
native interface for the ViaVoice engine. This section contains a description of the overall
architecture of ViaVoice.

The heart of a speech recognition system is known as the speech recognition engine. The
speech recognition engine recognizes speech input and translates it into text that an appli-
cation understands. The application decides what to do with the recognized text. It can
transcribe it literally for dictation, or it can act on it for commands.

Applications can access the speech recognition engine through a speech recognition API.
For ViaVoice, this API is known as the Speech Manager API, or SMAPI, for short. SMAPI
is a conventional API. This means that the API is defined as part of the resource; in this
case, SMAPI is defined as part of the speech engine. With an API, speech becomes a
resource to all applications, just like any system resource (mouse, video, and so on). Any
of the ViaVoice SDK interfaces can be used in this manner, but SMAPI is the focus of the
material in this guide.

Windows developers note: The SMAPI interface set cannot be used in conjunction with
other speech interfaces, such as SAPI, from within the same source code.

1.1.1 Speech Resources

Before we can discuss the architecture of the speech recognition engine, we should first
tell you about the various resources with which the speech recognition engine works. The
speech recognition engine uses the following resources to process spoken words:

• User’s language of origin
• Domains

1.1.1.1 User’s Language of Origin

The language of origin is the language used by the speaker. ViaVoice on Windows supports
U.S. English, six European, and three Asian languages. The supported languages and their
associated language keys are:

3 SMAPI Developer’s Guide

Chapter 1: Introduction to SMAPI Developer’s Guide

Language Language Key

U.S. English En US
U.K. English En UK
French Fr FR
German Gr GR
Italian It IT
Spanish Es ES
Arabic Ar AR
Japanese Ja JP
Chinese (Simplified) Zh CN
Chinese (Traditional) Zh TW
Please note:

Currently only U.S. English is supported on Unix systems.
The speech recognition engine is language-neutral and data-driven. Applications can easily
be enabled to support multiple languages. In fact, multiple languages can be installed on
one system, and ViaVoice allows the user to switch between them as needed.

1.1.1.2 Domains

Each language can include several different domains. A domain is a set of vocabularies,
pronunciations, and word-usage models designed to support a specific application. The
vocabularies, pronunciations, and word-use models are used together by the speech engine
to decode speech for your application.
ViaVoice SDK, by default, runs with the general office domain in the language you selected
when you installed the tools. This general office domain contains 64,000 to 230,000 words
representative of the office environment. The number of words in the general office domain
depends on the language. The general office domains that are available for the ViaVoice
SDK are:

Language Domain Name

U.S. English cstartus
U.K. English cssv#uk *
French cssv#ft *
German cssv#gr *
Italian cssv#it *
Spanish cssv#es *
Arabic cssv1ar
Japanese cstartjp
Chinese (Simplified) ccsv1cn
Chinese (Traditional) cssv1tw
* The number symbol (#) in the domain name represents a version number which will
increase with each update.
For command and control applications, the ViaVoice SDK provides a set of tools for you to
create the vocabularies specific to your application. Your application-specific vocabulary,

4 SMAPI Developer’s Guide

Chapter 1: Introduction to SMAPI Developer’s Guide

word-usage models, and pronunciations will be distributed along with your application.
These application-specific objects, along with the predefined navigation domain supplied
with ViaVoice, comprise the domain for your command and control application.
For dictation applications, the ViaVoice SDK provides a predefined general office domain,
either isolated or continuous, for you to use when writing your application. For isolated
dictation, other domains (such as Radiology, Journalism, Legal, and Emergency Medical)
are also available. For continuous dictation, these other domains are not available currently.
However, they will become available in the near future for use with the next product release.

1.1.2 Speech Engine Architecture

The speech engine has a rather complex task to handle, that of taking the raw audio input
and translating it to recognized text that an application understands.
Please note:

The audio input source module encapsulates the methods used by the engine to retrieve
the audio input stream. By default, the engine retrieves its audio input from the standard
microphone input device in the system. A developer can write a custom audio library so
that the input of the engine would be a custom piece of hardware. For more information
on how to do this, see Chapter 16 [Overview of the Custom Audio Library], page 127.
The acoustic processor takes raw audio data and converts it to the appropriate format
for use. The acoustic processor consists of two components: the signal processor and the
labeler.
In the ViaVoice engine, audio input picked up by the microphone is analyzed by the signal
processor. This raw audio data is captured at 22 kHz by default, but 11 kHz and 8 kHz
sampling is also supported. It contains both speech data and background noise.

1.2 Application Programming Interfaces

ViaVoice SDK provides several programming interfaces that developers can use to incorpo-
rate speech into their applications. This guide describes the IBM SMAPI and Grammar
Compiler API.

Speech Manager APIs (SMAPI)
IBM speech recognition engine APIs.

SMAPI Grammar Compiler APIs
APIs used to compile grammars used by the speech recognition engine.

1.2.1 SMAPI

There is significantly more function in the ViaVoice engine beyond raw recognition of spo-
ken words, including dynamic vocabulary handling, database functions to query and select
installed users, languages, and domains, and the ability to add new words to the user’s
vocabulary. SMAPI supports:
• Verifying the API version

5 SMAPI Developer’s Guide

Chapter 1: Introduction to SMAPI Developer’s Guide

• Establishing a database session to query system parameters (language, domain, user,
etc.)

• Establishing a recognition session
• Setting up vocabularies
• Setting speech engine parameters
• Processing speech input
• Adding new words to the user’s vocabulary
• Handling errors
• Disconnecting from the speech engine
• Closing a speech session

The SMAPI is provided as a library, which is linked into an application. The engine is a
separate executable. The ViaVoice architecture supports many speech applications through
a single engine, connected to one microphone. SMAPI was derived from earlier IBM speech
products so that all functions used by IBM applications are available to the developer.
For more information about how to use SMAPI, refer to the following sections: See Chap-
ter 9 [Overview of the C Language SMAPI], page 55 for an overview of SMAPI. See Chap-
ter 10 [Function Call Processing], page 57 for information on coding SMAPI function calls.
See Chapter 11 [Session Sharing], page 67 for information on coexisting with other speech
enabled applications. See Chapter 12 [Parallel Session API Calls], page 87 for information
on implementing multiple connections with the speech engine from one application. See
Chapter 13 [Programming Tasks], page 89 for a description of various programming tasks.
The individual API calls are documented in the IBM SMAPI Reference.

1.2.2 DMAPI

Please note: The DMAPI is only available on Windows
The ViaVoice SDK also provides a Dictation Macro API (DMAPI) to access dictation
macros and templates. DMAPI supports:
• Initializing DMAPI
• Getting macro and template definitions
• Querying the current set of macros and templates
• Extracting information from macro actions and expansion text
• Updating the application’s copy of the macro database
• Handling errors
• Closing DMAPI

DMAPI is provided as a DLL, which is linked into an application. For more information
about how to use the DMAPI, refer to the DMAPI manual.

1.2.3 SMAPI Grammar Compiler API

The ViaVoice SDK provides the ability for developers to compile grammars programmati-
cally. This function is known as the SMAPI Grammar Compiler API and supports:

6 SMAPI Developer’s Guide

Chapter 1: Introduction to SMAPI Developer’s Guide

• Specifying parameters to the grammar compiler
• Compiling a grammar
• Obtaining error messages from the grammar compiler

The SMAPI Grammar Compiler APIs are provided as a library, which is linked into an
application. For more information on how to use the SMAPI Grammar Compiler APIs, see
Chapter 14 [Overview of the SMAPI Grammar Compiler API], page 123. The individual
SMAPI Grammar Compiler API calls are documented in the IBM SMAPI Reference.

7 SMAPI Developer’s Guide

Chapter 1: Introduction to SMAPI Developer’s Guide

8 SMAPI Developer’s Guide

Chapter 2: Introduction to SMAPI Programming

2 Introduction to SMAPI Programming

This chapter introduces SMAPI application programming using the ViaVoice SDK. The
process of developing an application that incorporates speech is different, depending on
whether you’re developing a command and control application, a dictation application, or
an application that uses both. This chapter describes the processes for all three of these
options.

2.1 Developing a Command and Control Application

1. Install the ViaVoice SDK.

2. Identify what the user can say to your application (the vocabulary).

3. Create a grammar file and/or define a dynamic command vocabulary to represent this
vocabulary.

4. Compile the grammar.

5. Build a dictionary of pronunciations for your vocabulary.

6. Test your vocabulary.

7. Write the application interface.

8. Build a distributable runtime for your application.

"Developing Command and Control Applications" section covers this process in detail.

2.1.1 Identifying What the User Can Say

The first step to incorporating command and control in your application is deciding what
the users will want to say. Are there different parts of the application where different things
will be said? Are there things they will always want to say, regardless of where they are in
the application? Do you want the users to be able to say the names of buttons and menu
items? Do you want to support synonyms - more than one way of saying a command?
Do you want to support a more natural way of saying something versus providing specific
command sequences (for example, "Can I see my mail" versus "Mail-open")? These are
just some of the considerations you should make when identifying what users will be able
to say to your application.

Each collection of words and phrases that a user can say is called a vocabulary. ViaVoice
allows you to have multiple vocabularies active at the same time. This helps you group and
combine things the user will say to your application. Your vocabulary can be as restrictive or
as flexible as your application needs to be. Of course, there is a trade-off of recognition speed
and accuracy versus the size of the vocabulary. You may want to experiment with different
vocabularies to validate a design that best matches the requirements and expectations of
your users.

9 SMAPI Developer’s Guide

Chapter 2: Introduction to SMAPI Programming

2.1.2 Creating a Vocabulary

You can specify the vocabulary in one of two ways: either as a structured grammar or as
a dynamic command vocabulary. A grammar defines the syntax, or set of rules, for the
words and phrases that a user can say. You use a plain text editor to create the grammar
file. The grammar is specified using a specialized speech recognition control language, or
SRCL. SRCL was developed as a joint effort between the SRAPI (Speech Recognition API)
Committee and ECTF (Enterprise Computer Telephony Forum). SRCL is a high-level
logic language that permits the use of repeated patterns and substitutable parameters to
define a syntax and set of valid phrases. For example, a symbol <digit> could be defined
as representing the words "zero" through "nine." Now, if a multiple-digit number is used
elsewhere in the grammar, it can be defined using the previously defined symbol <digit>.
That is, a three-digit number can be defined as <digit><digit><digit> rather than defining
all 1000 possible combinations. For more information about SRCL and defining grammars,
please see Chapter 4 [SMAPI Grammars], page 17.

Dynamic command vocabularies are lists of words and/or phrases that are defined at run-
time. Dynamic vocabularies are quite useful when you don’t know all of the words in the
vocabulary at the time you’re developing your grammar. For example, think of a telephone
dialer application, where you have a list of names that are not known to you when you
define your grammar. The names can be read from an address book at runtime, and be
added dynamically to your vocabulary using the appropriate SMAPI calls.

The key difference between grammar vocabularies and dynamic command vocabularies is
substitution and repetition operators. Grammar vocabularies support substitution, while
dynamic vocabularies do not. This makes grammar vocabularies suitable for more complex
vocabularies, and dynamic vocabularies suitable for simple voice commands.

2.1.3 Compiling the Grammar

The ViaVoice SDK SMAPI grammar compiler converts a grammar file defined in SRCL
syntax into a binary file that can be used by the speech engine (FSG). At application run
time, the speech engine uses the FSG file to determine the words and phrases that are
currently available for the user to say. You can compile multiple grammars for the same
application or share grammars across multiple applications.

For more information about using the SMAPI grammar compiler, see Chapter 14 [Overview
of the SMAPI Grammar Compiler API], page 123.

2.1.4 Refining the Grammar

Please note: The grammar test tools are only available on Windows.

Three new command line tools are provided to assist you as you design, test, and debug
grammars. These tools can be used in conjunction with the SMAPI Grammar Compiler,
Dictionary Builder, and SMAPI Grammar Test Tool to verify the behavior of your grammar.

For more information about using the grammar test tools, refer to "SMAPI Grammar
Development and Test Tools" in the Speech Developer’s Tools Guide.

10 SMAPI Developer’s Guide

Chapter 2: Introduction to SMAPI Programming

2.1.5 Building a Dictionary

Please note: The Dictionary Builder is only available on Windows.

Once you’ve created your grammar and/or dynamic vocabulary, you must ensure that Vi-
aVoice’s recognition engine will find pronunciations for every word used by your application.
ViaVoice already comes with a variety of pronunciations; however, your vocabulary may
contain words not yet stored in any of its pronunciation pools. For these words you must
create a new baseform pool. This pool, together with all other pools present, is used by the
recognition engine to tell it how the words it needs to recognize are pronounced.

Dictionary Builder provides for an integrated way to create this pronunciation pool by cap-
italizing on the reuse of existing baseforms and the ability to create new ones where needed.
It reads and extracts the words from the vocabulary and lets you attach pronunciations.
Dictionary Builder integrates various ways of creating such pronunciations, like retrieval
from existing pools, on-line acoustic creation of new baseforms or the interface to off-line
transcription programs. Through reuse and automatic baseform creation the amount of
work required to come up with a set of pronunciations is kept to a minimum. When all
pronunciations are in place, Dictionary Builder generates a new baseform pool for your ap-
plication. The new pronunciation pool is distributed with your application. For information
about creating and maintaining dictionary files, refer to "Dictionary Builder" in the Speech
Developer’s Tools Guide.

2.1.6 Testing the Vocabulary

Please note: The Grammar Test Tool is only available on Windows.

The ViaVoice SDK provides a SMAPI grammar test tool that allows you to test your
compiled grammars and your dynamic command vocabularies. Using the SMAPI grammar
test tool, you speak the words from your vocabulary into the microphone. If there are
any words that aren’t recognized, you will need to modify the grammar (BNF) file or the
command vocabulary, the system values, or re-train the word using the train word function
of the Dictionary Builder to resolve the problem. If you have more than one vocabulary,
you may want to test the vocabularies individually first, and then combined. You should
also test "out-of-vocabulary" phrases.

For more information about using the SMAPI grammar test tool to test your vocabularies,
refer to "SMAPI Grammar Test Tool" in the Speech Developer’s Tools Guide.

2.1.7 Writing the Application Interface

Using the SMAPI, your application can interact with the speech engine; for example, es-
tablishing a session with the speech engine or controlling when a grammar is activated.
The SMAPI is designed for use with the C language, but any language that supports C
Language calls can access the ViaVoice SDK library. While the calls are procedural C, the
headers are compatible with C++.

The SMAPI calls needed for command and control applications include establishing a con-
nection with the speech engine, directing the engine to start processing speech, setting up
grammars and dynamic command vocabularies and activating them, processing recognized

11 SMAPI Developer’s Guide

Chapter 2: Introduction to SMAPI Programming

speech, and disconnecting from the engine when you are done. Refer to "Speech Manager
API (SMAPI)" section for more details on speech-aware programming using the SMAPI.
Individual SMAPI calls are documented in the ViaVoice SDK SMAPI Reference. SMAPI
provides a robust set of APIs for interacting with the speech engine. However, you do not
need to learn or use all of these APIs to develop a command and control application. There
is a starter set of less than 20 APIs that you can use to take advantage of command and
control in your application. Starter Set APIs in the ViaVoice SDK API Reference describes
these APIs in more detail.

2.1.8 Building a Distributable Runtime for your Application

To distribute an application that uses ViaVoice for command and control, you will need to
include your compiled grammar (FSG) files and, if you are developing on Windows, your
dictionary file (PPL) along with your application. You must also include a redistributable
version of ViaVoice with your application, unless you require the user have a version of
ViaVoice 98 already on the client system.
The ViaVoice Run Time Kit includes tools for helping you prepare a distributable runtime
version of ViaVoice for your application if you require it. You must comply with the Terms
and Conditions of the IBM ViaVoice Run Time Kit Runtime License Agreement in order
to redistribute runtimes. The IBM ViaVoice Run Time Kit Runtime License Agreement is
available from your IBM sales representative.

2.2 Developing a Dictation Application

You will need to perform the following steps to develop a dictation application for ViaVoice:
1. Install the ViaVoice SDK.
2. Write the application interface.
3. Build a distributable runtime for your application.

For more details about this process see Chapter 7 [Developing Dictation Applications],
page 45.

2.2.1 Writing the Application Interface

Your application will need to use the SMAPI to interact with the speech engine to establish
a connection with the speech engine, to set up a dictation vocabulary, and to process
recognized text. Since the goal is to produce completely correct text, you will need to
handle error correction. This includes playing back what was spoken, displaying alternate
words, and updating the vocabulary. The SMAPI is designed for use with the C language,
but any language that supports C Language calls can access the ViaVoice SDK library.
The SMAPI calls needed for dictation applications include establishing a connection with the
speech engine, directing the engine to start processing speech, setting up dictation vocabu-
laries, processing speech input, playing back what was recognized, correcting misrecognized
words, and disconnecting from the engine when you are done. See Chapter 9 [Overview of

12 SMAPI Developer’s Guide

Chapter 2: Introduction to SMAPI Programming

the C Language SMAPI], page 55 for more details on speech-aware programming using the
SMAPI.

Individual SMAPI calls are documented in the ViaVoice SDK API Reference. SMAPI
provides a robust set of APIs for interacting with the speech engine. However, you do not
need to learn or use all of these APIs to develop a dictation application. There is a starter
set of around 25 APIs that you can use to take advantage of dictation in your application.
"Starter Set APIs" in the ViaVoice SDK API Reference describes these APIs in more detail.

If you are a Windows developer and your application supports dictation macros and tem-
plates, you will need to use DMAPI. With these calls, you can initialize DMAPI, get the
definitions of macros and templates, query the current set of macros and templates, and
refresh your application’s copy of the macro and template database. Refer to "Dictation
Macro API (DMAPI)" in the Speech Developer’s Tools Guide for more details on program-
ming using DMAPI.

If you are a Windows developer and you need additional dictation macros or templates for
your application, you create and export these macros and templates using the Dictation
Macro Editor. This produces a macro (DCT) file, which your users then import using the
Dictation Macro Editor. The Dictation Macro Editor is provided as part of the ViaVoice
Distribution Package.

2.2.2 Building a Distributable Runtime for your Application

Dictation applications use the selected domain that is supplied with ViaVoice Run Time Kit.
The ViaVoice Run Time Kit includes tools for helping you prepare a distributable runtime
version of ViaVoice for your application if you require it. You do not need to include any
special files with your dictation application that define the vocabulary or pronunciations for
your application. On Windows if your application provides additional dictation macros or
templates, you will need to include the DCT file for these macros and templates along with
your application. Alternatively, you can require the user to have ViaVoice as a pre-requisite.

You must comply with the Terms and Conditions of the IBM ViaVoice Run Time Kit
License Agreement in order to redistribute runtimes. The IBM ViaVoice Run Time Kit
License Agreement is available from your IBM sales representative.

2.3 Developing an Application for Both Command and
Control and Dictation

The process for developing an application that incorporates both command and control
and dictation is not that different from the processes described previously. The primary
consideration is the order in which you enable the command and control and dictation vo-
cabularies for your application. For the command and control portions of your application,
you will still need to define a grammar, compile it, build a dictionary of pronunciations for
your grammar, and test it. You will also need to write the appropriate application inter-
faces to the engine to support the command and control features. For the dictation portions
of your application, you will need to write the application interfaces to support dictation.

13 SMAPI Developer’s Guide

Chapter 2: Introduction to SMAPI Programming

For more information about handling both command and control vocabularies and dicta-
tion vocabularies within the same application, see Section 13.2.1 [Setting Up Vocabularies],
page 96.
If your application supports both command and control and dictation, you will need to
distribute your compiled grammar (FSG) files and dictionary (PPL) file along with your
application. If you are providing additional dictation macros and templates with your
application, you will need to include your macro (DCT) file as well. You must include
a redistributable version of ViaVoice with your application, unless a version of ViaVoice
already exists on the client system.
The ViaVoice Run Time Kit includes tools for helping you prepare a distributable runtime
version of ViaVoice for your application if you require it.
You must comply with the Terms and Conditions of the IBM ViaVoice Run Time Kit
License Agreement in order to redistribute runtimes. The IBM ViaVoice Run Time Kit
License Agreement is available from your IBM sales representative.

2.4 Speech Engine Runtime Limitations

For information about speech engine runtime maximum values and limitations, consult the
SMLIMITS.H file in the \Include directory where the ViaVoice SDK is installed.

14 SMAPI Developer’s Guide

Chapter 3: Dynamic Command Vocabularies

3 Dynamic Command Vocabularies

This chapter discusses the following topics:
• What is a dynamic command vocabulary?
• Why might you want to use one?
• Building pronunciations for a dynamic command vocabulary.
• Testing a dynamic command vocabulary.
• An example of a dynamic command vocabulary.

3.1 What is a Dynamic Command Vocabulary?

A dynamic command vocabulary is a vocabulary that is defined by your application at
run time, rather than pre-compiled. A dynamic command vocabulary contains simple,
enumerated words ("file") or phrases ("open the file"). It is defined through an API, not
through predefined grammar files. Substitutions of words within a phrase are not allowed,
although you can add words and phrases to the vocabulary and remove words and phrases
from the vocabulary as needed.
In a dynamic command vocabulary, words and phrases are decoded entirely based on their
pronunciations. That is, each word and phrase in a dynamic command vocabulary is equally
likely to occur.

3.2 When to Use a Dynamic Vocabulary

Dynamic command vocabularies serve two major purposes: to provide simple command
and control capability within applications, and to provide auxiliary vocabulary capability
in conjunction with grammar and dictation vocabularies.
Dynamic command vocabularies afford a quick and easy way to incorporate basic speech
recognition into your application. For example, you might want to allow your users to be
able to speak the words and phrases on menus and buttons. To provide this capability, you
can define these words and phrases within your application at run time. This is known as
defining a dynamic command vocabulary.
Dynamic command vocabularies can be quite useful in this way, since you reap many of the
benefits of speech recognition without the development overhead of defining and compiling
grammars. Keep in mind, though, that dynamic command vocabularies support a "what-
you-see-is-what-you-say" model (for example, if you defined "Open the mail" as a valid
phrase, the user must say "Open the mail," not "Open my mail," "Show me my mail," or
"Get my mail please").
Dynamic command vocabularies can be used in conjunction with grammar vocabularies.
This comes in quite handy when you don’t know all of the words in your vocabulary at
the time you’re defining your grammar. Consider a telephone dialer application, where you
have a list of names that aren’t known to you when you’re developing your grammar. These
names could be read from an address book at run time, and added dynamically to your
vocabulary with the appropriate API calls.

15 SMAPI Developer’s Guide

Chapter 3: Dynamic Command Vocabularies

Another particularly useful example for dynamic command vocabularies is in conjunction
with dictation. Dynamic command vocabularies allow you to provide support for commands
such as "stop dictation" during dictation. Both the dictation and the dynamic command
vocabulary can be active simultaneously.

3.3 Building Pronunciations for a Dynamic Command
Vocabulary

Please note: The Dictionary Builder tool is only available on Windows.
Even though the words and phrases in a dynamic vocabulary are defined within your ap-
plication, you must have pronunciations available for these words and phrases. Use the
Dictionary Builder to verify that pronunciations for the words and phrases in your vo-
cabulary are present in one of the system dictionary (pronunciation pool) files. For more
information about using the Dictionary Builder with dynamic command vocabularies, refer
to "Dictionary Builder" in the Speech Developer’s Tools Guide.

3.4 Testing a Dynamic Command Vocabulary

Please note: The Grammar Test Tool is only available on Windows.
You should also test your dynamic command vocabulary and its pronunciations. Use the
SMAPI Grammar Test utility to verify that the words and phrases in your vocabulary,
along with their associated pronunciations, can be recognized by ViaVoice. You can enter
the words and phrases dynamically as you run the SMAPI Grammar Test utility, or you
can provide a word list (WDL) file as input. For more information on using the SMAPI
Grammar Test utility to test a dynamic command vocabulary, refer to "SMAPI Grammar
Development and Test Tools" in the Speech Developer’s Tools Guide.

16 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

4 SMAPI Grammars

4.1 What is a Grammar?

Before defining the term "grammar" it is necessary to define the term "utterance." For our
purposes, we will define the term utterance to mean any stream of speech that represents
a complete command. With this in mind, we will now define grammar as a structured
collection of words and phrases bound together by rules that define the set of all utterances
that can be recognized by the speech recognition engine at a given point in time.

4.2 Why is a Grammar Necessary?

Grammars are an extension of the single words or simple phrases supported by dynamic
command vocabularies. Grammars support substitution and repetition, while dynamic
vocabularies do not. As a result, grammars support vocabularies that are more flexible and
more complex than do dynamic command vocabularies. Grammars formally define the set
of allowable phrases that can be recognized by the speech engine, such as:

"show me my mail"
"do I have any mail from <name>"
"send a note to <name>"

These phrases can be spoken continuously, without pausing between words. The grammar
provides a language model for the speech engine, constraining the valid set of words to be
considered, increasing recognition accuracy while minimizing computational requirements.
The trade-off for speed and accuracy, however, is that the user of the system is also con-
strained to producing commands that stay within the grammar definition. Larger grammars
can be more tolerant of user variation (for example, adding alternative commands such as
"is there mail from <name>"), but at the potential expense of command latency and reduced
accuracy.
There is also a trade-off with user expectations. Larger grammars might also set high user
expectations, since it may be perceived that they can say "just about anything." Without
real natural-language processing, the speech recognition system cannot anticipate all the
different ways a user will structure a command. Also, you don’t want to support so many
commands that the user can’t remember what to say.
Consideration of these inherent design trade-offs is fundamental to designing robust and
efficient command grammars.

4.2.1 Acceptance or Rejection of Utterances

Since the user may say commands that are not in the vocabulary, speak to others with the
microphone live, or be in an environment with background noise, the engine implements

17 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

accept/reject logic for grammars. Providing the logic in the engine simplifies application
development, and makes performance consistent across applications.

Not all utterances are accepted by the recognition engine. Acceptance or rejection is flagged
on each returned phrase. The engine will reject an utterance for these reasons:

• An incomplete path through the grammar is encountered, and the time-out is exceeded.
This happens if the user stops talking before completing a phrase, or if the engine
incorrectly goes down the wrong path. An application has control over this by setting
the incomplete time-out, which effectively determines the tolerance for pausing within
a grammar.

• The scores of the words are sufficiently low relative to the threshold setting. Again, the
application can control this through an API to set the rejection threshold. In ViaVoice
on Windows, this setting is available through Properties in Control Panel.

4.2.2 Handling Embedded Silence and Mumbles

Users may not always speak commands using exact continuous speech. For example, users
might pause briefly while speaking commands, or they might interject extraneous speech
into utterances (such as saying "open the...uh...file"). These occurrences are known as
embedded silences and mumbles, respectively. They can be handled transparently by the
engine, with optional notification to your application of where they occur in the word
sequence.

You can request that the engine handle embedded silences and mumbles for your grammar.
This information is passed back to your application. You can specify either or both of these
options at run time when you define your grammar using the SmDefineGrammar call. You
can also specify them when you compile your grammar. See Chapter 15 [SMAPI Grammar
Compiler Programming Tasks], page 125 for more details. Note that any flags set at run
time override those compiled into the FSG.

4.3 Introduction to SRCL Grammars

One way to represent a speech grammar is to use Backus-Naur Form, or BNF. This form of
grammar representation is used to describe the syntax of a given language and its notation.
These are generally understood and used throughout the world of formal language theory
and processing.

This section describes the syntax of a particular type of BNF grammar that has been
adapted to the task of speech recognition. It is called Speech Recognition Control Lan-
guage (abbreviated SRCL and pronounced "circle"). SRCL was developed jointly be-
tween the SRAPI (Speech Recognition API) Committee and ECTF (Enterprise Computer
Telephony Forum). IBM is a member of both organizations. Information on SRAPI
can be found at http://www.srapi.com; likewise, information on ECTF can be found at
http://www.ectf.org.

Grammars constructed using SRCL offer an organized view of the words and phrases that
are part of the speech grammar, since they define a notation for identifying common phrases,

18 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

optional phrases, and repeated phrases. Throughout this section, the terms BNF and SRCL
refer to the SRCL command language.
A speech grammar is defined by enumerating the valid words and phrases. The general
form of a SRCL grammar is as follows:

<rule> = sentences and phrases.

This general form is called a production rule. Every SRCL grammar must start with and
contain at least one production rule. The production rule has four parts:
• The left side (<rule>): This part of the production rule is required, although it is not

necessary to specify the string exactly as we have done. In general, any string may be
used as long as it is placed between angle brackets <>, and the string formed by the
angle brackets and the enclosed word is unique (that is, it is not used elsewhere in the
BNF). Hence, <rule> must not appear elsewhere in the grammar.

• The assignment operator (=): This part of the production rule is required and must
be written as shown.

• The right side (sentences and phrases): This part of the production rule defines all of
the sentences and phrases that are valid in the speech grammar. The exact structure
of these definitions is covered in the remaining parts of this section.

• The end-of-production delimiter (period): This part of the production rule is required
and must be specified as shown. Although it is not necessary to separate the period
from the sentences-and-phrases section of the rule, doing so often improves readability.

From looking at this definition, you might have noticed that the structure of the production
rule is much more complex than it need be for a language that is capable of having only one
such rule. In fact, a SRCL grammar can have an arbitrary number of such rules. Later in
this chapter, you will see how to define these grammars and how to relate their rules such
that the entire speech grammar fits together into a single sophisticated speech grammar.
For now, however, we will confine ourselves to those that contain only one rule.
The following is an example SRCL BNF grammar that defines menu selections for a win-
dowed application. This simple example is shown for educational purposes. If this was all
you wanted to do, it would be much easier to define a dynamic command vocabulary and
skip the compilation altogether.

<root> = FILE
| EDIT
| OPTIONS
| HELP.

Here is a slightly more complex example, involving two phrases:
<root> = hello world

| hello there.

The only symbol that we have not yet covered in these two examples is the vertical bar (|).
This operator is used to indicate mutually exclusive choices. Hence, in the first example
we can say any of the words listed. In the second example, we can say either "hello world"
or "hello there" just as in the original examples. Notice that we cannot say just the single
words "hello" or "world" or "there." In this case, the choices are for phrases, not just for
individual words.

19 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

4.3.1 Defining Common Words and Phrases with Nonterminal
Symbols

The sentences that you use in everyday life are composed of many hundreds of common
phrases and words. A SRCL grammar gives you a notation to define these common elements
and to use them throughout your speech grammars. In so doing, it allows you to create
sophisticated grammars out of a few sentence forms with many common words and phrases.

To see how the SRCL grammar syntax supports this, let’s return to our two-phrase grammar
above:

<root> = hello world
| hello there.

In the preceding discussions, the grammars have contained only terminal symbols. In our
two-phrase example, the words "hello," "world," and "there" are examples of terminal
symbols. Although there are numerous definitions of the term "terminal symbol" in the lin-
guistic and programming community, when we use the term in describing a SRCL grammar,
we mean words to be spoken. All of the grammars, so far, have contained only the words
to be spoken arranged into collections of individual words, phrases, or both, separated by
a vertical bar or "OR" symbol. However, everywhere that a terminal symbol can be used,
it is possible to use a nonterminal symbol instead. To define a nonterminal symbol, you
create a production rule of the form just described. In the preceding example, we could
define a nonterminal symbol as:

<root> = hello world
| hello there .

<object> = world
| there .

Now, we have defined a grammar with two nonterminal symbols, <root> and <object>.
The nonterminal symbol <root> is the special starting nonterminal and must be unique as
previously outlined. The nonterminal symbol <object> is a simple nonterminal. Like the
starting nonterminal symbol, it is a string of alphanumeric characters enclosed in angle
brackets. In order to use a nonterminal symbol, place it somewhere in the right side of the
production rule, either as a stand-alone word or in a phrase. Anywhere a terminal symbol
can be used, a nonterminal symbol can also be used.

One way to use the nonterminal symbol is:
<root> = hello <object>

| hello <object> .
<object> = world

| there .

Notice that by using the nonterminal symbol <object> we have created a grammar with two
identical clauses. Hence, we could rewrite the grammar without the redundant clause.

<root> = hello <object> .
<object> = world

| there .

Although this example is intentionally simple to allow each point to be explained easily, the
use of nonterminal symbols simplifies the writing and maintenance of production grammars
that might be both large and complex.

20 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

4.3.2 Defining Optional Words and Phrases

It is often desirable to define sentences that contain optional phrases. Many of these are
in the form of an imperative preceded by a noun or pronoun of address. For example
the command "May I see your passport?" might well be optionally preceded by "Sir,"
"Madam," or "Miss." One way to define this construct is:

<root = <command>
| <title> <command> .

<title> = sir | madam | miss .
<command> = may I see your passport .

Although this example is a perfectly reasonable way to define such constructs, they are so
common that SRCL provides the ? operator to define them. The above example is rewritten
below using the ? operator.

<root> = <title>? <command> .
<title> = sir | madam | miss .
<command> = may I see your passport .

When the ? operator appears it causes the symbol to its immediate left to be defined as
optional. If the symbol is a terminal symbol the operator causes it to be defined as an
optional word. If the symbol is a nonterminal symbol the operator causes all of the clauses
defined by that nonterminal symbol to be treated as optional. The ? operator cannot be
used on the left side of a production rule.

4.3.3 Defining Repeated Word and Phrases

Another commonly seen construct in speech grammars is that of the repeated word or
phrase. These are quite common in grammars that define arbitrarily long sequences of nat-
ural numbers. Phone numbers, credit card numbers, account numbers, and serial numbers
fall into this category. As in the preceding example, SRCL supports this special case with
a special purpose operator. We’ll use a digit string grammar as an example. This grammar
will cause the speech engine to recognize and accept as valid any number of digits zero
through nine in any order:

<numbers> = <digit>+ .
<digit> = zero

| one
| two
| three
| four
| five
| six
| seven
| eight
| nine .

When the + operator appears, it causes the symbol to its immediate left to be defined as
one or more of. Hence, in our example, the <numbers> production rule is read: "Numbers
is defined as one or more digit." The * operator is analogous to the + operator, except that
it defines zero or more of the symbols to its left. Grammars should be written with the

21 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

supported ?, +, and * operators, rather than with recursive rules. The use of recursion can
often result in larger and less efficient grammars than those written using the operators, and
these grammars can often produce unintended, yet legal, word sequences. The grammar
compiler, therefore, does not support recursive grammars.

4.3.4 Grammar Annotations–A Post Parsing Aid

The SRCL command language contains, in addition to the features that support defining
a command grammar, a feature that reduces the complexity of parsing command grammar
sentences. This feature, called grammar annotations or simply annotations, accomplishes
its goal by allowing key words and phrases to be marked or annotated when the grammar
is defined. Then, when the grammar is used in an application, and whenever an annotated
word is recognized, both the word and the annotation are returned to the application. By
choosing the annotations properly, you can simplify most parsing of command grammar
sentences. This also simplifies development of grammars for multiple languages. Careful
use of annotations can make the parsing independent of word order in a command, which
will vary from language to language (for example, "start <program>" in U.S. English versus
"<program> start" in German).

4.3.4.1 Defining Annotations

Here are some general rules for defining annotations and some general suggestions to help
you get started. In the following BNF fragment we see the two major ways to define an
annotation:

... tuesday:"Day_of_week"

... february:2

The first method allows a string to be used as an annotation. To use this form of annotation,
place a colon after the symbol to be annotated and follow it with a quoted string that
contains the data. The second method allows any decimal value in unsigned long to be
used as tags. To use this form, place a colon after the symbol to be annotated and follow
it with the number. Aside from their syntax, keep the following rules and suggestions in
mind when using annotations:

• Annotations can be attached to any terminal symbol.

• Annotations cannot be attached to a nonterminal symbol.

• Only one annotation per symbol is permitted.

4.4 The Kiosk Example

To illustrate the use of annotations, we will use a kiosk speech grammar. This is the
type of grammar that you might find in an information kiosk at either the Olympics or an
international pavilion in a major airport. The purpose of such a kiosk would be to provide
automated assistance to visitors on a variety of topics. Its SRCL grammar is as follows:

22 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

<kiosk> = <greeting1>? <greeting2>? <sentence1>
| <greeting1>? <sentence2> .

<greeting1> = hello | excuse me | excuse me but .
<greeting2> = can you tell me

| I need to know
| please tell me .

<sentence1> = where <destination1> is located
| where is <destination1>
| where am I
| when will <transportation> <destination2>? arrive
| when <transportation> <destination2>? will arrive
| what time it is
| the local time
| the phone number of <destination1>
| the cost of <transportation> <destination2>? .

<sentence2> = I am lost
| I need help
| please help me
| help
| help me
| help me please .

<destination1> = a restaurant
| the <RestaurantType> restaurant
| <BusinessType>? <BusinessName> .

<RestaurantType> = best | nearest | cheapest | fastest .
<BusinessType> = a | the nearest .
<BusinessName> = filling station

| public rest room
| police station .

<transportation> = the <TransportType>? <TransportName> .
<TransportType> = next | first |last .
<TransportName> = bus | train .
<destination2> = to metro central

| to union station
| to downtown
| to national airport .

Take a minute to examine this grammar and try to imagine how you might design an
application to process its requests. In case you are wondering, there are a possible 2664
sentences. Let’s list a few of them:

hello I need to know where the nearest police station is located
where is the nearest public rest room
please tell me the phone number of the nearest filling station
where am I
when will the next bus to union station arrive
excuse me but when will the next train to national airport arrive
help

23 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

I am lost

excuse me what time is it

This small grammar has the beginnings of a reasonable amount of flexibility. The sentences
generated by this grammar could also present something of a challenge to an application
parser. From a language processing perspective, the key to designing an efficient program is
to recognize that of the 2664 possible sentences, only six different categories of information
are requested:

1. A nonspecific request for assistance

2. A request for the local time of day

3. A request to locate a given landmark

4. A request for the phone number for a given business or facility

5. A request for information for public transportation

6. A request for fare information for public transportation

Providing such information, in and of itself, is not a difficult task, provided that the re-
quests for it are straightforward. The difficulty lies in the fact that the information is being
requested through a near-natural language interface. That interface, in order to be desir-
able and useful to speakers, must allow them to request information in a "natural" way.
Hence, the grammar must anticipate many of the common ways that users might pose their
questions and requests.

Fortunately, there is a way to almost totally eliminate the job of parsing. By attaching
annotations to key phrases it is possible, through a relatively simple set of post-processing
steps that involve only simple string manipulation, to quickly reduce the 2664 sentences to
the six forms in the list and to place those requests in an almost template-like form that
will be easy to process.

To illustrate how this is done, we will first rewrite the grammar to include the annotations.

24 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

<kiosk> = <greeting1>? <greeting2>? <sentence1>
| <greeting1>? <sentence2> .

<greeting1> = hello | excuse me | excuse me but .
<greeting2> = can you tell me

| I need to know
| please tell me .

<sentence1> = where:"op_locate" <destination1> is located
| where:"op_locate" is <destination1>
| where:"op_locate" am I
| when:"op_sched" will <transportation> <destination2>? arrive
| when:"op_sched" <transportation> <destination2>? will arrive
| what:"op_time_of_day" time it is
| the local:"op_time_of_day" time
| the phone:"op_phone" number of <destination1>
| the cost:"op_fare" of <transportation> <destination2>?

<sentence2> = I:"op_help" am lost
| I:"op_help" need help
| please:"op_help" help me
| help:"op_help"
| help:"op_help" me
| help:"op_help" me please .

<destination1> = a restaurant:"landmark"
| the <RestaurantType> restaurant:"landmark"
| <BusinessType>? <BusinessName> .

<RestaurantType> = best:"type"
| nearest:"type"
| cheapest:"type"
| fastest:"type" .

<BusinessType> = a:"type" | the nearest:"type" .
<BusinessName> = filling:"landmark" station:"landmark"

| public:"landmark" rest:"landmark" room:"landmark"
| police:"landmark" station:"landmark" .

<transportation> = the <TransportType>? <TransportName> .
<TransportType> = next:"type" | first:"type" |last:"type" .
<TransportName> = bus:"transport" | train:"transport" .
<destination2> = to metro:"dest" central:"dest"

| to union:"dest" station:"dest"
| to downtown:"dest"
| to national:"dest" airport:"dest" .

After adding the annotations, the sample sentences generated by our grammar look as
follows:

Please note: These sentence forms are conceptual. It will take programming logic to convert
the real output to this form.

1. hello I need to know where."op locate" the nearest."type" police."landmark" sta-
tion."landmark" is located

2. hello excuse me where."op locate" is the nearest."type" landmark" rest."landmark"
room."landmark"

25 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

3. please tell me the phone."op phone" number of the nearest."type" filling."landmark"
station."landmark"

4. where."op locate" am I

5. when."op sched" will the next."type" bus."transport" to union."dest" station."dest"
arrive

6. excuse me but when."op sched" will the next."type" train."transport" to national."dest"
airport."dest" arrive

7. help."op help"

8. I am lost."op help"

9. excuse me what time is it."op time of day"

Please note: Words and annotations are returned in parallel structures through SMAPI. As
such, they do not require additional tokenization or parsing, as in the previous examples.

With this set of sentences as input, the task of writing a parser becomes straightforward.
No longer is it a job of parsing, it is one of separating the annotated parts of the sentence,
which contain the information required by the application, from the non-annotated parts,
and placing them into a standard form for processing.

4.5 Dynamic Command Vocabularies

A dynamic command vocabulary is a set of words, phrases, or both, defined at run time. The
list might be created based on the user’s response or on the current state of the application.
Take a phone dialer application, for example. When you’re defining the grammar, you do
not know what names the user might want to call. So, at run time, your application reads
these names in from an address book as a dynamic command vocabulary. Now the names
will be available for the user to speak, along with the rest of the words and phrases in your
grammar.

Dynamic command vocabularies are specified as external lists in the grammar in the fol-
lowing manner:

EXTERN <list-name>

The dynamic command vocabulary must have the same name as the external non-terminal
symbol used in the grammar. For more information about how to define an external vocab-
ulary, refer to "Creating a Dynamic Vocabulary or External List" in the Speech Developer’s
Tools Guide.

Please note: In the current definition of SRCL, external lists have the following limitations:

• Annotations cannot be attached to an external list (since it is a nonterminal)

• Annotations cannot be attached to individual items in an external list, even though
these are terminals

26 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

4.6 Guidelines for Designing SMAPI Grammars

The following are suggestions for designing SMAPI Grammars:

• Use grammars with few phrases and a simple syntax to permit a faster and more
accurate speech recognition process.

• Limit the size of the grammar so that fewer words must be matched. Note that a
grammar cannot contain more than 65,000 words.

• Develop long and narrow grammars, rather than short and wide grammars, to limit
the number of legal possibilities at any given point in the grammar.

• Avoid using words that are very similar in pronunciation in the same portion of your
grammar. For example, if you are writing a child’s game, you would not want to define
a grammar "pick up the hat" and "pick up the cat." Instead, you could specify the
grammars as "pick up the blue hat" and "pick up the yellow cat."

• Allowing the user multiple ways of saying a particular command can enhance usability.
But, large grammars might also set user expectations unrealistically high; that is,
users might perceive that they can say almost anything, which, of course, is not true.
Recognition accuracy and speed can deteriorate as users speak more randomly based
on their expectations.

• Don’t support so many ways of saying commands that your users won’t remember what
to say. You should probably test your grammars with a number of potential users, and
support the phrases that are most intuitive and meaningful to them. You might also
want to provide a visual mechanism for reminding users what they can say at any given
point.

4.7 SRCL Syntax

This section sets forth the syntax for the Speech Recognition Command Language (SRCL).

SRCL is a language that is easy to implement and learn, with a minimum set of constructs to
implement a reasonable capability. We have avoided providing multiple ways to accomplish
the same thing. This has resulted in a small, consistent language definition that is easy to
learn.

The language elements addressed in the syntax are:

• Comment formats
• Terminals
• Nonterminals
• Grammar rules (productions)
• External lists
• Include declarations

These aspects are discussed in the following sections.

27 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

4.7.1 Language Definition

The following are general language considerations:
• Syntactically significant characters such as ", =, <, >, and . can be used to represent

words and annotations if they are preceded by a \ escape character.
• Blanks can be used within a quoted string or a quoted annotation. The characters "

and \ may be included within quoted strings and nonterminals if they are preceded by
a \ escape character (that is, \" and \\, respectively).

• The \ escape character may be used in a quoted terminal that is continued on the next
line, with white space on the next line being significant.

• The parser provides support for source level include files using the syntax:
INCLUDE "filespec"

• White space is not significant except within quoted terminal and variable definitions
and to separate unquoted words.

• SRCL is a case-sensitive language and its string-handling syntax is modeled after the
C language.

4.7.2 Language Elements

4.7.2.1 Comment Formats

SCRL accepts both the double-slash "//" and the semicolon ";" as comment markers, which
occur at the beginning of a line or within the line. All characters up to the next new line
are then taken as comment characters.

4.7.2.2 Terminals

For terminology we use "variable" and nonterminal as well as "word" and terminal for the
basic elements of the language in the following discussions. Terminals can be single spoken
units (such as "San Francisco") that are optionally enclosed in quotation marks.
This syntax implies that a production such as:

<var>=Name that Tune.
or
<var>="Name" "that" "Tune".

uses three separate words for name, that, and tune, and they are pronounced as "n ey m",
"th ae td", and "t uw n".
A production such as:

<var>="Name that Tune".

uses a single phrase for the three words that are pronounced "n ey m th ae td uw n" and
processed as a single word.
Please note:

Productions like "Name that Tune" should be used with caution. The primary intent
of "quoted phrases" in grammars is to override the space-delimited tokenization of spo-
ken words that include blanks, such as "West Palm Beach" or "Van Dyke." You can use

28 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

"quoted phrases," but understand that the user won’t be able to pause between the words
in the phrase, nor will the user be able to mumble between the words in the phrase. Also,
"name" "that" "tune" will be returned as a recognized phrase message and word struc-
tures, potentially with three different annotations. "Name that Tune" will be returned as
one SM WORD structure, with only one annotation.

4.7.2.3 Nonterminals

The definition of a nonterminal consists of a mandatory set of angle brackets enclosing an
unquoted word identifier, with case being significant. Nonterminals should not cross line
boundaries. Syntactically significant characters may be used in nonterminals without the \
escape character.

Examples of distinct nonterminals include:
<nonterminal>
<Nonterminal>
<this_is_a_nonterminal>

4.7.2.4 Grammar Rules (Productions)

The grammar rule format is given as follows:

1. A simple and consistent format for variables (nonterminals) of the form <id>, where
the "<" and ">" are mandatory, and id is in the format of an unquoted word identifier.

2. Tokens, or words, may be represented as identifier strings without the need for quota-
tion marks. It is sometimes necessary to delimit the words with quotation marks to
include imbedded blanks.

3. The "=" symbol to separate the left-hand side (lhs), and right-hand side (rhs) clauses
of grammar rules, rather than the classic BNF notation of ::=.

4. A repetition operator set to include:

• + for one or more occurrences of the preceding word or variable.

• * for zero or more occurrences of the preceding word or variable

• ? for zero or one occurrences of the preceding word or variable

Any repetition operator can follow either a word identifier or a variable identifier used
on the right-hand side of a rule. Repetition operators are not supported on the left-hand
side of the rules.

5. Annotations that can be represented as character strings in the form of word identifiers,
which would include decimal numbers or quoted strings like "this is an annotation" or
"this is another annotation." The form of the annotation is given as:

word identifier:annotation identifier

6. Variables can be defined only once. Multiple rules written with the same left-hand side
(lhs) cause an error.

7. The root production carries a special designator in that the left-hand side uses a double
bracket construct as follows:

29 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

<<root_name>>= a | | c |

The root production does not need to be the first production in a grammar file. Also,
you do not need to have a <<...>> root production. In this case, the first nonterminal
becomes the root production.

8. Each grammar rule must be terminated with a period ".".

An example grammar rule might be as follows:

<transaction>=Buy <amount> "of" <companies> "at market".

Please note: There must be a dictionary entry that provides a pronunciation for "at market"
or, for example, "Amalgamated Rhubarb," if that were a word defined in <companies>.

4.7.2.5 External Lists

External lists are indicated with the following syntax:

EXTERN <Variable> [, <variable 1> , ... <variable n>]

An external list is a list of words or phrases defined at run time as a dynamic vocabulary,
with the same name as the external nonterminal. Currently, they must be defined with
SmDefineVocab before the grammar is defined with SmDefineGrammar, but you can add
and remove items from the word list at any point using SmAddToVocab and SmRemove-
FromVocab.

Please note: External file names are case sensitive.

4.7.2.6 Include Declarations

External source files are included into grammar files with a directive having the following
syntax:

INCLUDE "filespec"

Please note: SRCL supports letters and digits and all national language characters in code
page 1252. SRCL also supports the following special characters:

~
‘ +
! =
@ {
}
$ [
%]
& |
* \
(,
) .

30 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

4.8 Using the Grammar Translation Facility

The translation facility enables the application developer to associate a translation with any
expression in the Extended BNF grammar. The grammar writer associates a translation
with a BNF expression by writing the symbol "->" followed by the translation after the
expression.
Consider for example the following rule:

<<start>> = my dog has fleas -> scratch.

This rule defines a grammar that accepts exactly one phrase, "my dog has fleas", and
produces the string "scratch" as a translation. A translation may be given any place where
a sequence of expressions is specified, including each alternative in a list of alternatives.
Consider for example the following rule:

<<start>> = my dog has fleas -> scratch
| my dog is happy -> wag.

This rule defines a grammar that accepts two phrases, each with a different translation
("scratch" and "wag" respectively).
In addition to literal strings, as in the preceding examples, the translation of a sequence of
BNF expressions may include the translations of the constituent expressions. This is done
by marking with braces "" the expressions in the sequence of expressions whose translations
are to contribute to the translation of the whole sequence, and referring in the translation to
the nth marked expression by using the string "n". So for example the following grammar

<pet> = dog | cat | fish.
<<start>> = my <pet> has fleas -> 1 scratches

| my <pet> is happy -> 1 wags.

defines a grammar that accepts six phrases; the input "my dog has fleas" produces the
translation "dog scratches", while the input "my fish is happy" produces the translation
"fish wags", and so on. The same grammar can be expressed more succinctly as:

<pet> = dog | cat | fish.
<state> = has fleas -> scratches | is happy -> wags.
<<start>> = my <pet> <state> -> 1 2.

4.8.1 Working with the Details

Every expression in the Extended BNF has a translation. Consider the following example:
<digit> = one -> 1 | two -> 2.
<<number>> = <digit> (hundred -> 00).

This grammar accepts the phrases "one hundred" and "two hundred" and produces the
translations "1 00" and "2 00", respectively, as per the following rules:
• The translation of a terminal is the terminal itself, although this may be overridden

by treating any given occurrence of the terminal as a sequence of length one and
specifying a translation using the "->" notation, as in "one -> 1" and "two -> 2" above.
If necessary, the expression can be enclosed in parentheses as in "(hundred -> 00)"
above.

31 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

• The translation of a list of alternatives is the particular alternative actually used in
parsing the input. Thus the translation of the expression "one -> 1 | two -> 2" in the
example above is "1" or "2" according to whether the first or second alternative is used
in parsing the input.

• The translation of a non-terminal is the translation of the expression on the right-hand
side of the BNF statement defining the non-terminal. Thus in the example above the
translation of <digit> is the translation of "one -> 1 | two -> 2".

• Finally, the default translation of a sequence of expressions is the concatenation of the
translations of the expressions in the sequence, separated by spaces. Thus the transla-
tion of <<number>> is either "1 00" or "2 00". This of course may be overridden by
explicitly specifying a translation as described previously. For example, if the definition
of <<number>> is changed as follows:

<digit> = one -> 1 | two -> 2.
<<number>> = <digit> hundred -> 00 -> 12.

then the translation of <<number>> becomes "100" or "200", because an explicit trans-
lation "12" is given which does not include a space.

4.8.2 Example

The following example is taken from a simple travel expense reporting application. The first
part of the example is a grammar for English numbers up to six digits. Each of the rules
<n-digit> specifies all way of saying numbers up to n digits, and produces as a translation
exactly n digits, using leading zeros if necessary. It is assumed that the application will
strip the leading zeros if desired.

32 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

<1-digit> = oh -> 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 .
<2-digit> = oh? <1-digit> -> 01 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 |
36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 |
62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 |
75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 |
88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 .

<3-digit>
= <1-digit> (hundred and?)? <2-digit> -> 12
| <1-digit> hundred -> 100
| <2-digit> -> 01
.

<6-digit>
= <3-digit> thousand <3-digit> -> 12
| <3-digit> thousand and <2-digit> -> 102
| <3-digit> thousand -> 1000
| <2-digit> (hundred and?)? <2-digit> -> 0012
| <2-digit> hundred -> 00100
| <2-digit> -> 00001
.

<number> = <6-digit>.

The following rule uses the number rules given above to specify amounts of U.S. currency.

<money>
= <number>
| <number> dollars and? <2-digit> cents? | "" -> 00 -> (1.2)
| <number> point? <2-digit> -> (1.2)
.

The following rules accept English dates and produce a translation in the form yy/mm/dd.
For purposes of illustration, the grammar accepts only a limited number of years, and
supplies 1996 as a default year.

33 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

<day> =
1st -> 01 | 2nd -> 02 | 3rd -> 03 | 4th -> 04 | 5th -> 05 |
6th -> 06 | 7th -> 07 | 8th -> 08 | 9th -> 09 | 10th -> 10 |
11th -> 11 | 12th -> 12 | 13th -> 13 | 14th -> 14 | 15th -> 15 |
16th -> 16 | 17th -> 17 | 18th -> 18 | 19th -> 19 | 20th -> 20 |
21st -> 21 | 22nd -> 22 | 23rd -> 23 | 24th -> 24 | 25th -> 25 |
26th -> 26 | 27th -> 27 | 28th -> 28 | 29th -> 29 | 30th -> 30 |
31st -> 31.

<month> =
January -> 01 | February -> 02 | March -> 03 | April -> 04 |
May -> 05 | June -> 06 | July -> 07 | August -> 08 |
September -> 09 | October -> 10 | November -> 11 | December -> 12.

<year> = 1994 -> 94 | 1995 -> 95 | 1996 -> 96 | 1997 -> 97.

<date>
= <month> <day> -> 96/1/2
| the <day> of <month> -> 96/2/1
| <month> <day> <year> -> 3/1/2
| the <day> of <month> <year> -> 3/2/1
.

The following section of the grammar uses the rules defined above to define a grammar
that accepts sentences concerning amounts and dates of expense items, and produces a
translation that is a JavaScript statement that will set the appropriated row and column
of the travel expense report to the stated dollar amount. The translations assume that
the application developer has defined two JavaScript functions: <tt>ondate(date)</tt> ac-
cepts a date and moves a cursor to the appropriate row in the table for that date; and
<tt>setnum(col, amount)</tt> that puts the specified amount in the specified column of
the table.

34 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

<item>
= hotel -> HotelCol
| lodging -> HotelCol
| air -> AirCol
| airplane -> AirCol
| food -> FoodCol
| meal -> FoodCol
| car -> CarCol
| automobile -> CarCol
.

<datespec> = on <date> -> (ondate(’1’)).

<itemspec> = <item> (is|was) <money> -> (setnum(1, CurrentRow, ’2’)).

<<command>>
= <itemspec> -> 1
| <datespec> -> 1
| <itemspec> <datespec> -> (2; 1)
| <datespec> <itemspec> -> (1; 2)
.

The following table lists some sample inputs accepted by the grammar and the resulting
translation specified by the grammar.
Input Translation

Air was 2 86 oh 5 on February 19th ondate(’96/02/19’); setnum(AirCol, Cur-
rentRow, ’000286.05’)

Lodging was 52 dollars 87 cents setnum(HotelCol, CurrentRow,
’000052.87’)

On June 8th 1995 ondate(’95/06/08’)

Air was 5 thousand 6 dollars and 32 cents setnum(AirCol, CurrentRow, ’005006.32’)
For information about translation parameters for the grammar compiler, see Section 5.2
[SMAPI Grammar Compiler Options], page 38.

35 SMAPI Developer’s Guide

Chapter 4: SMAPI Grammars

36 SMAPI Developer’s Guide

Chapter 5: SMAPI Grammar Compiler

5 SMAPI Grammar Compiler

Grammars specify the words and phrases that a user can say to your application. Grammars
are defined using SRCL syntax in plain-text BNF files. These BNF files must be compiled
into a format appropriate for use by the speech engine. The SMAPI Grammar Compiler
takes a plain-text grammar file (BNF) and compiles it into a finite state grammar file (FSG).
An FSG file is the binary representation of the BNF file. The FSG file is what the speech
engine uses at run time to determine which words and phrases are currently available for a
user to say to your application. Grammars can also be compiled programmatically at run
time.
This chapter describes how to use the SMAPI Grammar Compiler to create the FSG file(s)
for your application. It also describes the options that are available for use in the compilation
process.
Windows developers note: Do not use the SAPI Grammar Compiler for your SMAPI-
based applications. Use the SMAPI compiler only. Each compiler generates different target
behaviors.

5.1 Using the SMAPI Grammar Compiler

The syntax of the SMAPI Grammar Compiler is as follows:
VTBNFC [-tr] [-en] [-n] [-m | -m- | -m+] [-s | -s- | -s+] [-o outfile | -
d outdir] grammarfile

The parameters are:

-tr Generates an fsg file usable only by the translation API. This fsg file will not
be accepted by the engine. For more information about translation rules, see
Section 4.8 [Using the Grammar Translation Facility], page 31.

-en Generates an fsg file without translations for the engine.
If the grammar contains translations, you must specify either -tr or -en when
you compile the grammar. This means that you compile the grammar twice:
once with -tr, producing an fsg to be provided to the translation API (Vt-
LoadFSG), and once with -en, producing an fsg to be provided to the engine
(SmDefineGrammar). For more information about translation rules, see Sec-
tion 4.8 [Using the Grammar Translation Facility], page 31.

-n Causes the uniform probability computation to be turned off.

-m Instructs the compiler to enable mumble words. Use -m to tell the speech engine
to enable mumble words, but not to return the mumble text. Use -m+ to tell
the speech engine to enable mumble words and to return the mumble text. Use
-m- to disable mumble words. (This is the default).

-s Instructs the compiler to enable silence words. Use -s to tell the speech engine
to enable silences, but not to return silence words. (This is the default). Use

37 SMAPI Developer’s Guide

Chapter 5: SMAPI Grammar Compiler

-s+ to tell the speech engine to enable silences and to return silence words. Use
-s- to disable silence words.

-o outfile The name of the output FSG file. By default, the grammar compiler uses the
file name of the grammar file and adds an extension of .fsg.

-d outdir The name of the directory in which the compiler places multiple FSG files, one
for each root.

grammarfile
The name of the BNF grammar file to be compiled. The grammar file name
must be fully qualified if it does not reside in the current directory.
Windows developers note: The file extension does not have to be specified (it
defaults to .bnf). Also, if you write non-English grammars (for example, those
with accented characters or "umlaute"), the grammar file must be in code page
1252 so that the special characters are handled properly.

5.2 SMAPI Grammar Compiler Options

There are four options associated with the grammar compiler:

Non-uniform probability computation
By default, grammars are compiled with what is known as the uniform proba-
bility computation, which means that all words out of a given state are equally
likely. The non-uniform probability option enables the developer to turn the
uniform probability computation off.
The recognition performance differences between the two options is strongly
grammar dependent. An extreme example is:

<Number> = "point" <digit> | <digit>
<digit> = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The first word that can be spoken is "point" or a digit. With the uniform
probability computation, all initial words have probability 1/11. Without the
uniform probability computation, "point" has a probability of 0.5, while each
digit has a probability of only 0.05.
Without the uniform probability computation, language model probabilities are
assigned to be locally uniform for each production rule in the BNF file. Take
the following example:

<A> = <a1> | <a2>
<a1> = "West Palm Beach"
<a2> = "Bejing" | "Yorktown"

Without a uniform probability computation, <a1> and <a2> each get proba-
bility 0.5. <a1> expands to a single terminal, "West Palm Beach," which has
probability 0.5 x 1 or 0.5. Since <a2> expands to two terminals, which are
considered equally likely, "Bejing" and "Yorktown" each get probability 0.5 x
0.5 or 0.25. Consequently, "West Palm Beach" has twice the probability of the

38 SMAPI Developer’s Guide

Chapter 5: SMAPI Grammar Compiler

other alternative phrases. This allows an application developer the opportunity
to bias word probabilities, where they are known or where they make sense to
use.

If <A> were rewritten as:

<A> = "West Palm Beach" | "Bejing" | "Yorktown"

then all possibilities are equally likely. This is what the uniform probability
computation will generate, independent of how the rules are expressed in the
BNF file.

To be independent of rule construction in BNF files, most application developers
would likely want to keep the default; that is, they should use the uniform
probability computation.

Mumble words
Use this option to generate an FSG file that handles cases where the end user
injects mumbling or other non-speech noise while speaking. For example, in a
grammar with the following construct:

<rule> = open <program>

the user might say "uhm...open Lotus Notes" instead of "open Lotus Notes."
Specifying the mumble words option causes the speech engine to ignore any
speech that is not defined as valid by the BNF grammar.

You can also tell the speech engine to return the non-speech noise text back
to the application, along with the word or phrase that was recognized. A
mumble is flagged as an SM WORD with an empty spelling ("") in an
SM RECOGNIZED PHRASE message. Flag settings for mumble on a run-time
SmDefineGrammar call override the flags compiled into the FSG.

Silence words
Use this option to generate an FSG file that handles cases where the end user
pauses briefly while speaking a command. For example, in a grammar with the
following construct:

<rule> = open <program>

the user might say "open <pause> Lotus Notes" instead of "open Lotus Notes."
Specifying this option causes the speech engine to ignore any silence within an
utterance.

SMAPI treats silence similarly to mumbles. Silence is allowed within a phrase,
and is returned as an SM WORD with a spelling of "<silence>." As with the
mumble words option, flag settings for silence on a run-time SmDefineGrammar
call override the flags compiled into the FSG.

Multiple Roots
By default, if a BNF grammar file contains multiple roots marked by <<>>
notation, the grammar compiler will return an error. Use this option to enable
multiple roots to be specified in a single BNF file. For example, if the BNF file
contains:

39 SMAPI Developer’s Guide

Chapter 5: SMAPI Grammar Compiler

<1> = ...
<2> = ...
<3> = ...
<<a>> = <1> | <2>
<> = <1> | <3>
<<c>> = <2> | <3>

Using the multiple roots option, the compiler generates a.fsg, b.fsg, and c.fsg,
corresponding to the root rules <<a>>, <>, and <<c>>.
Please note: There are no restrictions on the ordering of multiple roots within
the BNF file.

5.3 Compiling a Grammar

To compile a grammar:
1. From a command prompt switch to the directory that contains the SMAPI Grammar

Compiler. If that directory is in your path, it is not necessary to switch to that directory
location.

2. Type VTBNFC followed by any optional parameters and the name of the grammar file
to be compiled. Press the Enter key.

3. If the syntax of the command has errors, command-line syntax help is displayed; oth-
erwise, the Grammar Compiler runs. If the grammar has errors, error messages are
displayed.

4. To redirect the compilation to an output log, add " > filename " to the end of the
command. For example,

vtbnfc active.bnf > active.log

The following example compiles the grammar file, ACTIVE.BNF, and enables mumble
words. The output file name is ACTIVE.FSG.

vtbnfc -m active.bnf

Please note: You can include compiler statements in your make file.

40 SMAPI Developer’s Guide

Chapter 6: Writing the Application Interface

6 Writing the Application Interface

All command and control applications need to perform certain functions. Writing the
application interface to perform these functions is relatively straightforward; in fact, with
less than 20 SMAPIs, you can implement command and control in your application. Plus,
the ViaVoice SDK includes many other SMAPIs that enable you to provide even more
capabilities than what are prescribed as the basics.
This chapter describes the basic functions that a command and control application should
support. It also suggests some optional features that developers of command and control
applications might want to consider.

6.1 Basic Command and Control Tasks

At a minimum, all command and control applications should handle the following tasks:
• Establishing a recognition session
• Defining and enabling vocabularies
• Directing the engine to process speech
• Processing recognized commands
• Interacting (coexisting) with other speech-aware applications
• Disconnecting from the engine

To communicate with the engine and to received decoded text, a command and control
application must first establish a recognition session. Next, the application must tell the
engine what words the user can say. This is done by defining and enabling vocabularies.
Once the vocabularies are known to the engine, the application must then tell the engine to
process speech. This is done by acquiring control of the microphone and requesting that the
engine begin recognizing speech on behalf of your application. As speech is recognized by
the engine and decoded into text, the application must process this information and decide
what to do with it. Finally, when your application is closing down, it must disconnect from
the speech recognition engine.
For a more detailed description of these tasks, see Chapter 13 [Programming Tasks], page 89.
The ViaVoice SDK SMAPI Reference documents all of the SMAPIs that are available to
develop command and control applications.

6.1.1 Enabling and Disabling Vocabularies

You can have multiple vocabularies active for your command and control application at any
time. However, to improve performance (both recognition and accuracy), your application
should narrow the possibilities by enabling and disabling vocabularies as they are needed.
The speech recognition engine stops decoding after it recognizes a word or phrase. This is
an opportune time for your application to change the active vocabularies for recognizing the
next command. (Of course, while the engine is halted, it is still capturing and processing
audio, so no words are lost.)

41 SMAPI Developer’s Guide

Chapter 6: Writing the Application Interface

6.1.2 Handling Speech Focus

ViaVoice allows multiple applications to connect to the speech recognition engine at the
same time. There is only one microphone, and the application with control of the micro-
phone is referred to as the application with speech focus. When an application has speech
focus, it receives decoded text from the speech recognition engine. For more information
on speech focus, see Section 11.2 [Speech Focus], page 68.
Be aware that other speech-aware applications can take speech focus away. When an appli-
cation requests speech focus, it gets it. Since there can be multiple speech-aware applications
connected to the engine at any time, speech focus can be taken away from your application.
The engine does not impose a speech focus model tied to window focus. It is up to the
application to implement, if desired.

6.1.3 Notification

Notification refers to the asynchronous status messages sent from the speech recognition
engine to interested speech-aware applications. An application can use notification messages
to display the following types of information sent from the engine:
• Microphone state (on/off)
• Focus state (release, pending, denied, granted)
• Speech engine state (normal/reduced CPU mode)
• Recognized command words
• Audio level

While notification messages primarily support the speech monitoring application, all speech-
aware applications can subscribe to notification groups. See Section 11.3 [Notification],
page 70 for more information.

6.2 Other Command and Control Tasks

This section describes some optional tasks that a command and control application might
choose to handle.

6.2.1 Querying System Parameters

An application can query the engine for several system parameters, including task (domain)
ID, user ID, and enroll ID. There are several reasons an application would want to do this,
including:
• A task-specific application should determine if the current task is the correct one for

the application. For example, a command and control application using German vo-
cabularies would need to query the engine for the active task. If German command and
control is not the active task, the application would need to change the task accordingly.

• A command and control application might want to indicate which user and enrollment
is being used (so that the user can change either, if necessary). The application queries

42 SMAPI Developer’s Guide

Chapter 6: Writing the Application Interface

the engine for this information, and can display it appropriately to the user. For
example, when the application starts, it might want to indicate that it is starting for
"User Eric with enrollment Office."

On Windows, system parameters such as these can be specified by the end user through
the Options program that is included with the ViaVoice Distribution Package.

6.2.2 Enrolling

Command and control application developers should ensure that their users understand
the benefit of enrollment, which is increased accuracy. ViaVoice is a speaker-independent
system, and most users will enjoy acceptable recognition accuracy without enrolling. You
might want to suggest to users that they enroll if their early attempts yield less than
desirable accuracy. Since untrained accuracy varies from user to user depending on voice
characteristics such as pitch or accent, enrollment can improve accuracy considerably for
certain users.

On Windows an enrollment application is included in the ViaVoice Distribution Package.
Note that no other speech-aware application can be running at the same time as enrollment.

6.2.3 Supporting Annotations

Using annotations in command and control grammars can make it easier to parse recognized
text and decide the appropriate course of action. With annotations, an application can base
its actions on the annotation rather than on the recognized text. As an example, consider
the following simple grammar defined using numeric annotations:

<color> = orange:1
| aqua:2
| blue:3
| gold:4
.

The developer could implement programming logic (using a switch statement, for example)
around the numeric annotation instead of the actual recognized text. In other words,
instead of taking some action based on the text "orange," the application would take some
action based on the integer 1. Using annotations in this way is especially helpful when
developing applications that support multiple languages. The application does not have to
change any logic based on the translation of the recognized text. For more information on
using annotations in grammars, refer to "Grammar Annotations–A Post Parsing Aid" in
Section 4.3 [Introduction to SRCL Grammars], page 18.

6.2.4 Supporting Dictation as well as Command and Control

Applications can support both command and control and dictation. Command and control
is implemented using grammars and/or dynamic command vocabularies; dictation is im-
plemented using the general office vocabulary provided with ViaVoice. Grammars and/or
dynamic command vocabularies can be used during dictation.

43 SMAPI Developer’s Guide

Chapter 6: Writing the Application Interface

6.3 User Interface Considerations

Applications need to provide user interface elements to support command and control.
These elements can be visual (graphical), audio, or some combination of both. Some tech-
niques include:
• All speech-aware applications should consider providing visual feedback to the user for

such information as microphone status, audio level, and connect status.
• If your application supports both command and control and dictation, you might want

to provide feedback to users so that they know which "mode" they are in.

44 SMAPI Developer’s Guide

Chapter 7: Developing Dictation Applications

7 Developing Dictation Applications

All dictation applications need to perform certain functions. Writing a dictation application
is not a difficult or complex undertaking; in fact, it is fairly straightforward. Using less than
25 APIs, developers can implement robust dictation applications for their users. Further-
more, ViaVoice SDK includes many other SMAPIs that enable developers to provide even
more capabilities than what are prescribed as the basics.
This chapter describes the basic functions that a dictation application should support. It
also suggests some optional features that developers of dictation applications might want
to consider.

7.1 Basic Dictation Tasks

At a minimum, all dictation applications should handle the following tasks:
• Establishing a recognition session
• Defining and enabling vocabularies
• Directing the engine to process speech
• Processing recognized text
• Correcting errors
• Interacting (coexisting) with other speech-aware applications
• Disconnecting from the engine

To communicate with the engine and to receive decoded text, a dictation application must
first establish a recognition session. Next, the application must tell the engine what words
the user can say. This is done by defining and enabling vocabularies. (For the general
office vocabulary for dictation, the application enables the "text" vocabulary.) Once the
vocabularies are known to the engine, the application must then tell the engine to process
speech. This is done by acquiring control of the microphone and requesting that the engine
begin recognizing speech on behalf of your application. As speech is recognized by the
engine and decoded into text, the application must process this information and decide
what to do with it. The application must also handle error correction; that is, the user
needs to be able to correct misrecognitions by the engine, which will result in improved
recognition accuracy. Finally, when your application is closing down, it must disconnect
from the speech recognition engine.
For a more detailed description of these tasks, see Chapter 13 [Programming Tasks], page 89.
The ViaVoice SDK SMAPI Reference documents all of the SMAPIs that are available to
develop dictation applications.

7.1.1 Correcting Errors

Error correction is an important task for a dictation application to handle because it enables
the user to improve recognition accuracy. Error correction improves accuracy in two ways:

45 SMAPI Developer’s Guide

Chapter 7: Developing Dictation Applications

By adding pronunciations that the engine does not know about, and by helping the engine
better understand the user’s style of speaking through the context of the words that were
spoken. If the user corrects a word, the next time the user says that word in the same
context, the engine has a better chance of getting it right. However, if the user corrects
all of his/her dictation errors by typing over the dictated text, recognition accuracy will
not improve - the engine has no way of knowing about its errors and "learning from its
mistakes."
Users can also improve recognition accuracy by training individual words. On Windows
this can be done using the Vocabulary Manager or Vocabulary Expander, which is included
in the ViaVoice Run Time Kit. This is not as effective as error correction. Since error cor-
rection provides the context of adjacent words and the Vocabulary Manager or Vocabulary
Expander does not, the user’s word-usage model can be further refined.
A dictation application must provide the user interface through which the user corrects
dictation errors. Developers can provide an interface that resembles the error correction
facility of IBM SpeakPad, or they can provide one that is consistent with their application
interface. Some of the features of an error correction user interface should include:
• Playing back what was said to the user
• Displaying the list of alternative words provided by the engine
• Allowing the user to type in the word if it is not available from the list of alternatives
• Allowing the user to add or change the pronunciation (If you are migrating from discrete

to continuous, there is a new return code to handle the re-recording of pronunciations
for correction.)

An application must save audio information as part of the correction process. Saved audio
is used to play back dictated words to the user. It also saves information required to provide
alternative word lists and to build new word pronunciation models during correction. For
more information, see Section 13.2.6 [Processing Speech Engine Audio], page 116.
Audio (along with other speech and application state data) must also be saved if the dictated
text is going to be corrected during another session or by another user. For details on what
your application must do to save and restore speech sessions, see Section 13.2.7 [Writing
ViaVoice Applications to Save and Restore Speech Sessions], page 117.

7.1.2 Processing Firm and Infirm Words

Firm words are those words which the engine has completed decoding. Once the engine has
declared a word "firm," it is finished processing that word. The application should display
all firm words to the user as they are recognized by the engine.
Infirm words, on the other had, are those that the engine is still decoding. One or more
infirm words might eventually become a single firm word, and a single infirm word might
result in one or more firm words. Earlier versions of the ViaVoice engine returned infirm
words along with firm words. Currently the engine only returns firm words, and does not
return any infirm words.
SmGetFirmWords is the API function that an application uses to acquire firm and words.
This call is an access function on the SM RECOGNIZED TEXT message. The SM WORD
structure contains the word’s spelling, size, tag, and the vocabulary in which the word was

46 SMAPI Developer’s Guide

Chapter 7: Developing Dictation Applications

found. The tag is a unique ID that the developer uses to refer to the word. Tags are used
by the engine to map dictated text to saved audio and to a list of alternative words.

7.1.3 Handling Speech Focus

ViaVoice allows multiple applications to connect to the speech recognition engine at the
same time. There is only one microphone, the application with control of the microphone is
referred to as the application with speech focus. When an application has speech focus, it
receives decoded text from the speech recognition engine. For more information on speech
focus, see Section 11.2 [Speech Focus], page 68.

Dictation applications need to have speech focus for the following tasks:

• To turn the microphone on and off

• To play back audio for corrections

• To correct errors

Be aware that other speech-aware applications can take speech focus away. When an appli-
cation requests speech focus, it gets it. Since there can be multiple speech-aware applications
connected to the engine at any time, speech focus can be taken away from your application.

The engine does not impose a speech focus model tied to window focus. It is up to the
application to implement, if desired. On Windows such a model is associated with SAPI
implementations by default.

7.1.4 Notification

Notification refers to the asynchronous status messages sent from the speech recognition
engine to interested speech-aware applications. An application can use notification messages
to display the following types of information sent from the engine:

• Microphone state (on/off)

• Focus state (release, pending, denied, granted)

• Speech engine state (normal/reduced CPU mode)

• Recognized command words

• Audio level

While notification messages primarily support the speech monitoring application, all speech-
aware applications can subscribe to notification groups. See Section 11.3 [Notification],
page 70 for more information.

7.2 Other Dictation Tasks

This section describes some optional tasks that a dictation application might choose to
handle:

47 SMAPI Developer’s Guide

Chapter 7: Developing Dictation Applications

7.2.1 Querying System Parameters

An application can query the engine for several system parameters, including task (domain)
ID, user ID, and enroll ID. There are several reasons an application would want to do this,
including:

• A task-specific application should determine if the current task is the correct one for
the application. For example, a radiology application should query the engine for the
active task. If radiology is not the active task, the application would need to change
the task.

• Dictation applications should ensure that the recognition session that is about to be
established is capable of doing what the application needs it to do. For example, it is
possible that only command and control is installed on the user’s system. A dictation
application could query the engine to determine if the general office vocabulary (or any
other dictation task) is available. If not, the application should instruct the user to
install dictation.

• A dictation application might want to indicate which user and enrollment is being
used (so that the user can change either, if necessary.) The application queries the
engine for this information, and can display it appropriately to the user. For example,
when the application starts, it might want to indicate that it is starting for "User Eric
with Enrollment Office." Or, while the user is dictating, the application might display
"Dictating for user Eric..."

On Windows system parameters such as these can be specified by the end user through the
Options program that is included with the ViaVoice Distribution Package.

7.2.2 Providing Commands During Dictation

Command and control is implemented using grammars and/or dynamic command vocabu-
laries. Both vocabulary types can be used during dictation.

7.2.3 Supporting Dictation Macros and Templates

Dictation macros and templates can enable rather powerful productivity and usability gains
for users. You may want to support macros and templates in your application. If you do,
keep the following considerations in mind:

• Macros are added to the dictation text vocabulary, while templates are added as a dy-
namic command vocabulary. This is because templates must be expanded immediately,
and dynamic command vocabularies are the only type of vocabulary to be immediately
firmed by the speech recognition engine. Normal vocabulary processing rules apply.
For more information, see Section 13.2.1 [Setting Up Vocabularies], page 96.

• The Dictation Macro Editor (available only on Windows) maintains a macro and tem-
plate database across all speech-aware applications running on the system. Macros can
be updated by the user at any time. You should update your application’s local copy of
the database each time you switch to dictation so that your application has the latest
definition of macros and templates available.

48 SMAPI Developer’s Guide

Chapter 7: Developing Dictation Applications

• Macros and templates, by their very nature, can be memory-intensive. You should be
careful to free these resources when they are no longer needed using the appropriate
DMAPI calls.

7.2.4 Enrolling

Dictation application developers should ensure that their users understand the benefit of
enrollment, which is increased accuracy. ViaVoice is a speaker-independent system, and
most users will enjoy acceptable recognition accuracy without enrolling. You might want
to suggest to users that they enroll if their early attempts at dictation yield less than
desirable accuracy. Since untrained accuracy varies from user to user depending on voice
characteristics such as pitch or accent, enrollment can improve accuracy considerably for
certain users.
On Windows an enrollment application is included in the ViaVoice Run Time Kit. Note
that no other speech-aware application can be running at the same time as enrollment.

7.3 User Interface Considerations

Applications need to provide user interface elements to support dictation. These elements
can be visual (graphical), audio, or some combination of both. Some techniques were de-
scribed earlier (correcting errors, displaying the active user and enrollment, providing "stop
dictation" as a command vocabulary during dictation, and enrollment.) Other considera-
tions include:
• All speech-aware applications should consider providing visual feedback to the user for

such information as microphone status, audio level, and connect status.
• You might want to provide a reminder to users to use isolated speech while dictating.
• In ViaVoice, when users begin to dictate, an audio waveform is played ("Dictation

started") and a visual cue ("Start dictating..." in reverse video) is displayed. When
users stop dictation, a corresponding waveform is played ("Dictation stopped".) You
might want to provide similar feedback.

49 SMAPI Developer’s Guide

Chapter 7: Developing Dictation Applications

50 SMAPI Developer’s Guide

Chapter 8: Developing Enrollment Applications

8 Developing Enrollment Applications

One of the features of the ViaVoice speech recognition system is the ability to train the
system for a particular speaker. The system comes with an acoustic model which can result
in accuracy of over 90% for the average speaker. A speaker with a heavy accent will not see
these results. Adapting the system for a specific speaker can greatly improve the accuracy
for that speaker. Even the average speaker can see accuracy improvements after adapting
the system.

In order to train the system a sample of acoustic data must be processed by the training
program which modifies the speaker independent acoustic model. The process of record-
ing this acoustic data is called enrollment. When performing what’s known as supervised
enrollment, an enrollment application interacts with the speech recognition engine to dis-
play sentences from a pre-defined script to the user. As the user reads the sentences the
speech recognition engine records the user’s voice, and saves this acoustic data in files while
performing speech recognition. The recognition results are returned to the enrollment ap-
plication which can reflect feedback to the user on the progress of the enrollment process.
Once the user has read a minimum number of sentences the enrollment application tells
the speech recognition engine to start the training program which will use the recorded
audio data to create a modified acoustic model. Other types of enrollment processes exist
such as batch enrollment and unsupervised enrollment. These are beyond the scope of this
document.

This chapter describes how to develop a basic supervised enrollment application. It also
suggests some optional features that developers of enrollment applications might want to
consider.

8.1 Basic Enrollment Tasks

At a minimum, all enrollment applications should handle the following tasks:

• Establishing an enrollment session

• Defining and enabling grammar vocabularies

• Processing the user’s speech

• Starting and monitoring the training program

8.1.1 Establishing An Enrollment Session

As in any other speech application, the enrollment application must first open a session with
the speech recognition engine using the SMAPI function SmOpen. Any callbacks for asyn-
chronous requests should be added using the SMAPI function SmAddCallback. Callbacks
should also be added for the recognized phrase and utterance complete messages which will
be sent to the application by the speech recognition engine during the enrollment process.
The arguments SmNrecognizedPhraseCallback and SmNutteranceCompletedCallback are
defined in smargs.h for this purpose.

51 SMAPI Developer’s Guide

Chapter 8: Developing Enrollment Applications

The enrollment application will then connect to the speech recognition engine as a database
session using the SMAPI function SmConnect. At this point a new userid and or enrollid
can be added to the system using the SMAPI functions SmAddUser and SmAddEnrollId.
A new enrollid can be created for an existing user or an existing enrollid can be trained.
Alternatively, at this point the database connection can change the default userid and or
enrollid. Also the list of available scripts can be queried using the SMAPI function Sm-
QueryScripts. Currently supervised enrollment can only be done using existing scripts
installed with the system. SmQueryScripts will also return the minimum number of cor-
rectly decoded sentences which should be read before the training program is started. The
access function SmGetIncrements can be used to retrieve this minimum number of sentences
from the SmQueryScripts reply.
Once the userid, enrollid, and script have been selected the database connection can be ter-
minated and the enrollment application can then connect to the speech recognition engine
as an enrollment session. The application will build an argument list using the SMAPI func-
tion SmSetArgs. This argument list will then be passed to the SMAPI function SmConnect,
similarly to when connecting to the speech recognition engine as a recognition session. The
following attributes must be specified when connecting for an enrollment session:
SmNenrollment Set to TRUE to specify enrollment session
SmNuserId Selected userid or default
SmNenrollId Selected enrollid or default
SmNenrollIdDescription Enrollid description (eg "First 22khz en-

rollment")
SmNscript Selected script
SmNaudioHost Audio source specification or default
SmNconnectionId Windows only: Identifies connection, re-

turned as WPARAM in async replies
Once the application has established an enrollment session with the engine it must tell the
engine to save the audio data which will be gathered during the enrollment process in the
correct form required by the training program. The SMAPI function SmSet should be used
for this purpose. The item argument should be set to SM SAVE AUDIO, with the value
argument set to SM SAVE AUDIO ADAPTATION. Example:

SM_MSG reply;
SmSet (SM_SAVE_AUDIO, SM_SAVE_AUDIO_ADAPTATION, &reply);

If the enrollment application is to support playback of the recorded audio for pro-
viding feedback to the user the value argument should be set to the logical OR of
SM SAVE AUDIO ADAPTATION and SM SAVE AUDIO PLAYBACK. Example:

SM_MSG reply;
SmSet (SM_SAVE_AUDIO,

SM_SAVE_AUDIO_ADAPTATION | SM_SAVE_AUDIO_PLAYBACK, &reply);

8.1.2 Defining and Enabling Grammar Vocabularies

Once the enrollment session has been established the application will request a sentence
of text from the script using the SMAPI function SmRequestScriptText. This text will
be used to define a grammar vocabulary using SmDefineVocabEx. The options flags

52 SMAPI Developer’s Guide

Chapter 8: Developing Enrollment Applications

SM VOCAB WORDS and SM VOCAB PHRASE must be set. The data parameter will
point to a string which is the concatenation of each spelling field from the array of
SM WORDs returned by SmRequestScriptText. The length parameter will be set to the
length of this string. Defining the grammar will limit the speech recognition engine’s choices
to the words in the grammar in the order in which they appear in the grammar. The text
returned by SmRequestScriptText will also be displayed to the user to read.

An alternative to the grammar vocabulary which has resulted in improved accuracy after
adaptation is the select vocabulary. The select vocabulary also limits the speech recognition
engine’s choices to the words in the vocabulary in the order in which they appear. But it does
not require the engine successfully recognize to the end of the sentence. With a grammar
vocabulary if any word in the phrase is misrecognized the entire utterance is rejected. With
a select vocabulary if a word is misrecognized, all previous words in the utterance can
be accepted. A new select vocabulary can be defined starting with the mis-recognized
word. The select vocabulary is defined using the SMAPI function SmDefineVocabEx. The
options flags SM VOCAB VOCWORDS and SM VOCAB SELECT must be set. The data
parameter will point to an array of SM VOCWORD structures. The spelling fields in
this array will be filled from the spelling fields in the array of SM WORDs returned by
SmRequestScriptText. The length parameter will be set to the number of elements in the
array of SM VOCWORD structures. The select vocabulary also allows the ability to mark
optional words which may or may not be spoken. Punctuation words, for example, can be
marked as optional, which allows the user to optionally skip these words when reading the
enrollment script. To mark a word as optional set the SM WORD RESERVED USER1
flag in the flags field of the SM VOCWORD structure.

The application must enable the grammar vocabulary using the SMAPI function SmEnable-
Vocab. The utterance number must also be set at this point using the SMAPI function
SmSetUtteranceNumber. Generally the utterance number is set to 1 for the first sentence
and incremented for each sentence.

8.1.3 Processing the User’s Speech

The application must provide some feedback to the user to indicate that the system is
now ready for the user to turn on the mic and begin reading. Now the microphone can
be turned on using the SMAPI function SmMicOn and the speech recognition engine can
be told to begin recognizing using the SMAPI function SmRecognizeNextWord. This is
similar to the processing done for a dictation session. As the speech recognition engine
performs recognition of the user’s speech it will return the decoded words in the form
of an asychronous SM RECOGNIZED PHRASE message. The application can use this
information to provide feedback to the user as sentences are decoded correctly or incorrectly.

When the speech recognition engine has completed decoding the sentence it will send an
asynchronous SM UTTERANCE COMPLETE message. When this message is received the
microphone can be turned off using the SMAPI function SmMicOff.

The access function SmGetPhraseState can be used to retreive the flags field from the
SM RECOGNIZED PHRASE message. If the sentence was decoded correctly the flag
SM PHRASE ACCEPTED will be set. In this case the next sentence of text can be dis-
played, read by the user and decoded using the process outlined above. If the sentence was

53 SMAPI Developer’s Guide

Chapter 8: Developing Enrollment Applications

not decoded correctly the flag SM PHRASE REJECTED will be set. In this case the appli-
cation may want to have the user try reading the sentence again. The audio data stored for
this utterance must first be deleted by calling the SMAPI function SmDiscardUtterance.

8.1.4 Starting and Monitoring the Training Program

Once the speech recognition engine has successfully decoded the required minimum number
of sentences the enrollment application can request the training program be started. This
is done by calling the SMAPI function SmDisconnect with the SmNcompleteEnrollment
attribute set to TRUE. The speech recognition engine will start the training program which
will modify the acoustic model using the data accumulated during the enrollment process.
It may be useful to add to the application the ability to suspend the enrollment. This allows
a user to stop reading before the minimum number of sentence has been successfully de-
coded. In this case the application can call SmDisconnect with the SmNsuspendEnrollment
attribute set to TRUE.
After the training program is started, he application must then connect to the speech
recognition engine as a database session is order to determine when the training program is
complete. By calling the SMAPI function SmQueryEnrollIds the application can monitor
the progress of the training program and provide feedback to the user. The access func-
tion SmGetEnrollIds will return an array of enrollids. The access function SmGetStates
will return an array of states. Use the index of the enrollid used for enrollment in the
enrollids array to find the status for that enrollid in the states array. When the status is
SM STAT ENROLLMENT COMPLETE the training program is complete. If the status
is SM STAT ENROLLMENT RUNNING the training program is still processing.
The access function SmGetPercentages will return an array of percentages. Use the index
of the enrollid used for enrollment in the enrollids array to find the percentage complete for
that enrollid in the percentages array. This percentage can be used by the application to
display a progress bar.
If the status is SM STAT ENROLLMENT FAILED the training program has failed for
some reason. Often the cause is insufficient disk space. The application should provide a
mechanism for the user, if possible, to correct the condition creating the problem and restart
the training program. The training program can be restarted by the application connecting
to the speech recognition engine as an enrollment session and then disconnecting with the
attribute SmNcompleteEnrollment set. The training program will start where the failure
occurred. It will not need to perform all of the processing again up to the point of failure.

54 SMAPI Developer’s Guide

Chapter 9: Overview of the C Language SMAPI

9 Overview of the C Language SMAPI

All speech engine functions can be accessed from the Speech Manager API, SMAPI. API
calls from the application to the engine can either by synchronous or asynchronous. For
synchronous calls, SMAPI blocks locally, waits for the engine to reply, and returns a mes-
sage through a function parameter. For asynchronous calls, SMAPI returns control to the
application, the engine puts the reply message into a shared memory buffer, and notifies
the application. On Windows, for instance, this notification is through a posted Windows
message. The application processes messages from the speech engine in a Windows proce-
dure tied to a window handle owned by the application. The window handle need not be
for any particular window in the application, and indeed may be for a dummy window that
is established for no other purpose than communication with the speech engine.
Calls from the speech engine to the application are only asynchronous, so the application
needs to establish a message-handling procedure for these. Some unsolicited events from
the engine are delivered and handled through the same mechanisms (case/callbacks) as
asynchronous replies to SMAPI function calls. One example of an unsolicited event from
the engine would be recognized words. These are inherently asynchronous, because they
depend on when the user speaks. The SmGet* data access functions are used to retrieve
data from reply messages or unsolicited messages.
Some operations take several seconds to complete (such as the first application to load and
initialize the speech engine). Synchronous calls can lock up an application. You can solve
this problem by using asynchronous calls.
SMAPI calls fall into three phases: initialization, recognition, and termination. In the
initialization phase, the application sets items that determine how recognition will be
performed, such as the user ID, the enrollment ID, and the speech domain. During the
recognition phase, the application interacts with the speech engine to set vocabularies and
grammars from which recognition takes place, processes recognized speech, controls the
microphone, and performs other tasks related to speech recognition itself. During the ter-
mination phase, the application makes sure that its session with the speech engine ends
properly.
The speech engine allows multiple concurrent connections to it, even from within the same
application. Two concurrent sessions from separate applications are referred to as shared
sessions, and two concurrent sessions within the same application are referred to as parallel
sessions. The API is not guaranteed to be thread-safe, so any individual session should be
restricted to a single thread. All SMAPI function calls for a session should be made from
the same thread.
Although SMAPI is a C language interface, it is written in an object-oriented style. For
example, the reply structure SmReply should be thought of as an object with SmGet* access
methods. Keeping this in mind should help you understand the API.

55 SMAPI Developer’s Guide

Chapter 9: Overview of the C Language SMAPI

56 SMAPI Developer’s Guide

Chapter 10: Function Call Processing

10 Function Call Processing

Function calls to the speech engine can be processed synchronously or asynchronously. For
synchronous calls, the application waits for the call to be completed and receives the result
of the call in a reply structure.
The engine is a separate process from the application. SMAPI either blocks waiting for
a return message (synchronous calls) or returns control to the application (asynchronous
calls).

10.1 Message Passing

The engine handles the synchronous and asynchronous calls issued by the application as
messages. Here is an example of the synchronous and asynchronous versions of a particular
message:

SmMicOn (&Reply); /* synchronous */

SmMicOn (SmAsynchronous); /* asynchronous */

The only difference between the two versions is that the synchronous version blocks locally in
the speech API waiting for the reply message from the engine, and the asynchronous version
returns control to the application immediately and the reply message is later dispatched
explicitly by the application or through a registered callback.
The last parameter of each synchronous call is a reply pointer that is set to the address
of the reply message. In the asynchronous call, the reply pointer is provided as the first
parameter to the callback function, or it is accessible through SmReceiveMsg. The last
parameter of an asynchronous call is the constant SmAsynchronous.
These reply message structures are transparent to the application; only the logical contents
of the message, such as the lists of user names or word spellings, are available through
the SmGet* data access functions. The application cannot directly access these fields in a
message through the reply pointer, because the detailed structures are not visible.

10.2 Synchronous Function Calls

Synchronous calls do not return control to the application until the call has been processed
or until a time-out waiting for the reply from the engine has been exceeded, which generates
an error condition.
A special parameter identifies whether a function call is synchronous. This parameter is
always the last parameter in the corresponding call and it points to a reply structure.
The following example shows the synchronous call format:

SM_MSG reply; /* reply message structure */
SmMicOn (&reply); /* synchronous */

57 SMAPI Developer’s Guide

Chapter 10: Function Call Processing

For more information about reply structures, refer to Section 10.5 [Accessing Data Returned
By Function Calls], page 64 and "Reply Message Structures Received from the Speech
Engine" in the API Reference.

The following code fragment contains a synchronous function call.

unsigned long nuserids;
char **userids;
SM_MSG reply;
int rc;

/*---*/
/* Synchronously query the users known to the speech engine */
/*---*/

rc = SmQueryUsers (&reply); // synchronous form

if (rc == SM_RC_OK) { // SmQueryUsers successful
/*---*/
/* Get the user IDs. */
/*---*/
rc = SmGetUserIds (reply, &nuserids, &userids);

if (rc == SM_RC_OK) { // SmGetUserIds successful
for (; nuserids-- > 0; userids++) {

/*---*/
/* Process the list of user IDs. */
/*---*/

}
}

}

10.3 Asynchronous Function Calls

Asynchronous calls return control to the application immediately after the function call has
been initiated successfully. Control returns to the application after a message is sent to the
engine. The application does not have to wait for the engine to finish processing before
continuing.

A special parameter identifies whether a function call is asynchronous. This parameter is
always the last parameter in the corresponding call and it is set to SmAsynchronous. The
following example shows the asynchronous call format:

SmMicOn (SmAsynchronous); /* asynchronous */

When an asynchronous call has been processed, the speech engine notifies the calling appli-
cation with a reply message. Message types are defined in SMCOMM.H with reply messages
identified by the suffix, REPLY).

58 SMAPI Developer’s Guide

Chapter 10: Function Call Processing

For more information about reply structures, refer to Section 10.5 [Accessing Data Returned
By Function Calls], page 64 and "Reply Message Structures Received from the Speech
Engine" in the API Reference.

There are two choices for handling asynchronous messages: through an explicit message
receive switch, or through preregistered callbacks. The decision to choose one method over
the other is a matter of programming style.

The following code fragment contains an asynchronous function call. This call is exactly the
same whether the reply is handled through callbacks or through explicit receive. Any errors
detected at this point would only be that the call exceeds parameter limits (for example,
sizes on strings) or there was a protocol error communicating with the engine.

char szErrMsg [50];
int rc;

/*--*/
/* Asynchronously query the users */
/*--*/
rc = SmQueryUsers (SmAsynchronous); /* asynchronous form */

if (rc != SM_RC_OK) {
/*--*/
/* Process error condition */
/*--*/

}

10.3.1 Asynchronous Function Calls without Callbacks

This section describes how a Windows application processes a reply message from the speech
engine without using callbacks. Non-windows applications can similarly dispatch their own
asynchronous replies from the speech engine.

To process a reply message from the engine without using callbacks, place the code in the
window procedure for the window handle passed to the engine in SmOpen. The application
can use a switch statement to explicitly process Windows messages from the engine after a
speech session has been established.

The engine sends a standard Windows WM COMMAND message to alert the application
to the presence of a speech message. The application issues SmReceiveMsg to receive the
message and SmGetMsgType to determine the message type. The application typically
uses a switch statement on the message type (see the following code segment) to process
the message.

Please note:

The message field of the Windows message returned by the engine is WM COMMAND. The
wParam field is set to an ID established with SmOpen (reference the connection ID specified
on SmConnect) and the lParam field determines the actual message from the engine.

The following code fragment contains processing of the associated message sent from the
speech engine:

59 SMAPI Developer’s Guide

Chapter 10: Function Call Processing

SM_MSG sm_msg;
int sm_msg_type;
int rc;
unsigned long nuserids;
char **userids;
switch (msg) {

...
case WM_COMMAND:

switch (wParam) {
/**
** CONNECT_ID is an application-defined value set
** when the current session was established using the
** following commands:
**
** SmSetArg (smArgs[smc],
** SmNconnectionId,
** CONNECT_ID);
** smc++;
**/

case CONNECT_ID:
SmReceiveMsg (lParam, &sm_msg);
SmGetMsgType (sm_msg, &sm_msg_type);
switch (sm_msg_type) {
...
case SM_QUERY_USERS_REPLY:

/*--*/
/* Check if SmQueryUsers was successful. */
/*--*/

SmGetRc (sm_msg, &rc);
if (rc == SM_RC_OK) // SmQueryUsers successful
{
/*---*/
/* Get the user IDs. */
/*---*/
rc = SmGetUserIds (sm_msg, &nuserids, &userids);
if (rc == SM_RC_OK) // SmGetUserIds successful
{

for (; nuserids-- > 0; userids++)
{

MessageBox((HWND) NULL,
*userids,
"User ID",
MB_OK |
MB_ICONEXCLAMATION);

}
}

}

60 SMAPI Developer’s Guide

Chapter 10: Function Call Processing

return 0;

...
default:
break;

}
break;

default:
break;

}
break;

default:
return (DefWindowProc (hwnd, msg, wParam, lParam));

}

10.3.2 Asynchronous Function Calls with Callbacks

The application can use callbacks to process messages sent by the speech engine after a
speech session has been established. To use this method, the application must register
callbacks prior to issuing the function call. The previously registered callbacks are auto-
matically dispatched when a message is sent by the engine. Multiple callbacks are permitted
for a given message. These callbacks are processed in the order that they were registered.

There are special speech API functions to add and remove functions from callback lists.
However, such lists must be defined carefully. Because the list of callbacks is processed
sequentially, the procedure sequence must guarantee proper processing so that changes of
state by early routines do not unintentionally disrupt processing by later routines in the
list. The functions include error checking for some conditions that could cause problems
in callback list processing; for example, if an SmClose call is detected in any procedure,
the remaining procedures in the callback list are not called, and callback-list processing is
stopped.

Callback procedures are defined as returning a particular data type and having the following
parameters:

SmHandler Callback_Handler (SM_MSG reply, void *client_data,
void *call_data);

reply The message to be received

client data
Data supplied by the speech-aware application when registering the callback

call data Dynamic data to be supplied

Callbacks are registered by using the SmAddCallback function, which specifies the type
of callback, the name of the callback routine, and any user data. The type of callback
is sometimes referred to as the attribute name for the callback. User data is application-
specific information that is passed along to the callback procedure when it is called. One
procedure can be registered per SmAddCallback function.

61 SMAPI Developer’s Guide

Chapter 10: Function Call Processing

The final link is how reply messages are routed to the different callback functions. This
is accomplished by issuing an SmDispatch call. The following code fragments contain an
asynchronous function call using a callback. For example, the prototype of the callback
routine is:

/*--*/
/* Callback prototype */
/*--*/
SmHandler QueryUsersCB (SM_MSG reply, void *client_data,

void *call_data);

The callback to the SmQueryUsers call is added as follows:
/*--*/
/* Register the callback for the SmQueryUser asynchronous event */
/*--*/
SmAddCallback (SmNqueryUsersCallback, QueryUsersCB, NULL);

The callback can take the following form:
/*--*/
/* QueryUsersCB */
/*--*/
SmHandler QueryUsersCB (SM_MSG reply, void *client_data,

void *call_data)
{
/*--*/
/* Internal variables */
/*--*/
int rc;
unsigned long nuserids;
char **userids;
/*--*/

/* Check if SmQueryUsers was successful */
/*--*/
SmGetRc (reply, &rc);

if (rc == SM_RC_OK) // SmQueryUsers successful
{
/*--*/
/* Get the user IDs. */
/*--*/
rc = SmGetUserIds (reply, &nuserids, &userids);

if (rc == SM_RC_OK) // SmGetUserIds successful
{

for (; nuserids-- > 0; userids++)
{
/*--*/
/* Process each userid. */
/*--*/

62 SMAPI Developer’s Guide

Chapter 10: Function Call Processing

}
}

}

return (SM_RC_OK);
}

The following code fragment contains processing of the associated message sent from the
speech engine on Windows:

switch (msg) {
...

case WM_COMMAND:
switch (wParam) {

/**
** CONNECT_ID is an application-defined value set
** when the current session was established using the
** following commands:
** SmSetArg (smArgs[smc],
** SmNconnectionId,
** CONNECT_ID);
** smc++;
**/
case CONNECT_ID:

//
// Get a reply message structure from
// speech engine and call previously registered callback,
// QueryUsersCB, to process it.
//

SmDispatch (lParam);
return 0;

default:
break;

}
break;

default:
return (DefWindowProc (hwnd, msg, wParam, lParam));

}

10.4 Function Call Error Reporting

The following information explains error reporting by function call type:

Synchronous function calls
The return code for synchronous function calls specifies whether the request
was successful.

63 SMAPI Developer’s Guide

Chapter 10: Function Call Processing

Asynchronous function calls
The return code for an asynchronous function call specifies only whether the call
is valid. When processing of the call is completed, the engine sends a message
data structure to the caller. To check for engine errors, use SmGetRc to extract
the return code from the returned reply message structure.

A SM RC OK (0) return code indicates success. For more information, see "SMAPI Return
Codes and Messages" in the API Reference.

10.5 Accessing Data Returned By Function Calls

The speech engine uses messages to interact with the application.

10.5.1 Access Functions

The application must use access functions to retrieve data from the reply messages. For
example, when the application makes an SmMicOn call, the utterance number is retrieved
from the reply structure sent by the engine, as follows:

SmGetUtteranceNumber (Reply, &UttNo);

This object-oriented approach has several advantages:
• Any changes to message structures in future releases of the API will not impact the

application because the SmGet functions access the data.
• The messages are typed internally; for example, compare an SM MIC ON REPLY mes-

sage with an SM RECOGNIZED WORD message. This allows strong type checking in
the access function. Applying a particular access function, such as SmGetFirmWords,
to a microphone-on reply message, will return an rc = SM RC SM EINVAL MSG TYPE.

Unsolicited speech events, such as recognized words, are also sent as messages from the
engine to the application and are handled through the same access functions.
For clarity, all of the data access functions have the SmGet or SmReturn prefix. These
functions do not interact with the engine; they simply provide local access to the logical
contents of a message that has already been received. Since these functions are working on
local data, they are all inherently synchronous calls.

10.5.2 Function Calls

The SmGet* functions return logical speech-related data, such as firm words, rather than
typed data, such as char arrays. For example, after the call:

SmQueryUsers (&Reply);

The reply message contains a list of user names, user IDs, and optional user descriptions.
It also contains the return code that indicates the success or failure of this call. Examples
of valid access calls follow:

SmGetRc (Reply, &Rc);
SmGetUsers (Reply, &NumUsers, &Users);

64 SMAPI Developer’s Guide

Chapter 10: Function Call Processing

SmGetUserIds (Reply, &NumUserIds, &UserIds);

SmGetDescriptions (Reply, &NumDescripts, &Descripts);

Refer to "Reply Message Structures and Callbacks" in the API Reference for the logical
content of the message and the valid access functions of each message.

10.5.3 Unsolicited Events

Some events from the engine are unsolicited (for example, recognized words). They are
delivered and handled through the same mechanisms as asynchronous replies to function
calls. These events are handled by unsolicited callbacks that are defined in "Reply Mes-
sage Structures and Callbacks" in the API Reference. For example, when the user turns the
microphone on and begins to dictate, asynchronous events such as SmNrecognizedTextCall-
back or SmNrecognizedWordCallback are generated as soon as words are spoken into the
microphone and decoded.

Applications need to handle unsolicited events, even if all function calls are made syn-
chronously.

10.5.4 Reply Access Functions

Because an SmGet* function provides access to logical data types, it can be valid for more
than one reply message type; the application can use the same SmGet* function for all
messages that contain the same logical data. For example, SmGetRc can be applied to any
reply pointer because all reply messages contain the return code field. SmGetDescriptions
can be used for all reply messages that return a list of descriptive strings, such as the
following:

SmQueryEnrollIds (UserId, EnrollId, Language, &Reply)

SmQueryTasks (Language, &Reply);

SmQueryUsers (&Reply);

Refer to "Data Access Functions" in the API Reference for a list of the SmGet* and
SmReturn* access functions.

10.5.5 Memory Handling

Pointers returned by SmGet* functions point to private speech API storage, such as point-
ers to a list of users or a list of enrollments. These pointers should not be freed by the
application. In addition, only the reply structure of the last received message is available
to process, regardless of whether the message was received through a direct synchronous
call, through a callback to an asynchronous call, or through a callback for an unsolicited
message.

For efficiency and simplicity of memory handling by the application, there is a single receive
buffer for each session (shared or parallel). If the application issues two synchronous Sm-
Query calls, even with different reply pointers, the receipt of the second message invalidates
the contents of the first.

65 SMAPI Developer’s Guide

Chapter 10: Function Call Processing

10.5.6 Use of Reply Structure

The API maintains only one static reply buffer per session. This implies that any SMAPI
call that returns a reply structure "invalidates" the data pointed to by the previous reply
pointer. To preserve data in a reply structure, code your application to remove the data
from the reply structure and store it in application memory. The following code fragment
illustrates the problem:

SM_MSG Reply1, Reply2;

// Get the list of defined vocabularies
SmQueryVocabs (&Reply1);

// Get the list of enabled vocabularies
SmQueryEnabledVocabs (&Reply2);

In this example, receipt of the second reply (Reply2) invalidates the data pointed to by the
first reply (Reply1).
When the application owns a version of the message contents, it must handle the freeing of
those private copies.

66 SMAPI Developer’s Guide

Chapter 11: Session Sharing

11 Session Sharing

The ViaVoice speech recognition engine supports shared sessions, which means that several
speech-aware applications can connect to a single speech recognition engine at the same
time. You might even want to have more than one connection open to the engine from
your application. This ability to have more than one connection to the engine from a single
application is known as a parallel session. This chapter describes the following session-
sharing concepts:

11.1 Examples of Session-Sharing Components

Session sharing supports a desktop speech environment that can consist of the following
logical components:

Speech Monitoring Application
Provides a single visual focal point for speech state, such as whether the mi-
crophone is on or off, audio level, focus control, engine status, and command
word history. It also provides common microphone control and recognition pa-
rameter control for all session-sharing applications. Please note: This typically
runs without acquiring the speech focus, but it requires notification of all recog-
nized command words across all speech sessions. See Section 11.3 [Notification],
page 70.

Navigator Application
Provides command support for speech-aware applications. To allow command
processing on behalf of a speech-aware application, even while that application
has the focus, the concept of a privileged navigation application has been added
(see Section 11.4 [Navigator Session], page 76). This application is permitted
to keep active vocabularies without having the speech focus.

Dictation Application
Provides a text entry and correction field.

Enrollment Application
Provides an interface to record user’s speech and to initiate and monitor training
status.

Speech-Aware Application
Provides other services offered by applications created with the ViaVoice SDK.
Window developers please note: Options (controls user settings) and Enroll-
ment are included in the ViaVoice Run Time Kit, as well as a Microphone Setup
utility and a Vocabulary Manager.

67 SMAPI Developer’s Guide

Chapter 11: Session Sharing

11.2 Speech Focus

Session-sharing allows the user to switch easily from one speech-aware application to an-
other. Multiplexed speech-aware applications cooperate for control of the microphone, or
speech focus, but only one application has speech focus at a time. To cooperatively share
the engine, speech-aware applications use the request to release focus (see the SMAPI Ref-
erence for more information). or the request from the speech monitoring application to
change the microphone state.

Speech focus works similarly to the way mouse/keyboard focus works. Just as there’s
one mouse that defines keyboard focus, there is one microphone that defines speech focus.
However, the engine doesn’t enforce any policy or model on tying keyboard and speech
focus–that’s left open to the application developer.

In a session sharing environment, after an application is asked to release the speech focus,
that application is permitted further interactions with the speech recognition engine to put
itself into a consistent state. This simplifies the amount of state information an application
needs to carry across focus loss or gain. For example, when the speech recognition engine
recognizes words from command vocabularies, the application can make multiple vocabulary
manipulation calls so that it is in a known and consistent state the next time speech focus
is restored.

11.2.1 Requesting and Releasing Focus

Notification of the loss of focus is delivered through an asynchronous, unsolicited SM FOCUS LOST
message. There is no need to acknowledge receipt of this message.

An application requests focus through the SmRequestFocus call, which follows the "event
notify" model; an immediate reply is generated indicating whether the request has been
accepted. If the request is accepted, an asynchronous SM FOCUS GRANTED notification
message is sent when focus has been granted (see "Granting Focus" below and Section 11.3
[Notification], page 70).

Applications can unilaterally release the speech focus without an explicit request through
the SmReleaseFocus call; for example, the request to release focus might be tied to the loss
of windowing system focus.

11.2.2 Granting Focus

Focus is automatically granted to the first speech-aware application that connects to the
speech recognition engine for recognition. Focus switches are granted based on user initia-
tion. Applications are notified with an asynchronous, unsolicited SM FOCUS GRANTED
message. Or, if a navigator application is present, it gets focus if another application re-
leases focus without a request pending. Otherwise, if no navigator application is present,
the microphone is turned off.

When the user initiates a focus switch, the requesting application signals the speech recog-
nition engine and the speech recognition engine sends a request to the application that

68 SMAPI Developer’s Guide

Chapter 11: Session Sharing

currently has the focus. While an application has the speech focus, all API interactions
with the engine continue as if the engine were completely dedicated to that application.
Other speech-aware applications are blocked from some interactions with the engine when
they do not have the speech focus (typically involving use of the audio input/output chan-
nel). However, application state is preserved across focus switches by the engine; when
speech focus is re-acquired, the engine automatically restores the speech state (defined and
enabled command and dictation vocabularies). The current microphone state is also pre-
served across focus switches; for example, if the microphone is on when focus is released,
then the microphone will be on when the next application receives focus. The intent is to
maintain a consistent state for the user.
The audio saving state is not preserved across focus switch. Audio saving is turned off when
focus changes. In order to restore it, the microphone must be turned off, turn on the audio
saving, and then turn the microphone back on.
When an explicit focus request is made through SmRequestFocus, the engine limits audio
processing for the current focused application. This limitation allows the application to
process all the currently queued audio. The process is identical to the processing of an
SM UTTERANCE COMPLETED message. The message arrives as an unsolicited indica-
tion that the audio stream has been processed.

11.2.3 Restrictions

Although each multiplexed speech-aware application has equal access to speech recognition
services, the following restrictions apply:
• Only a single speech-aware program is supported during an enrollment session. A

status indicator program, such as the speech monitoring application, can run with the
enrollment application, but the navigator application cannot. On Windows enrollment
is provided by IBM as part of the ViaVoice Run Time Kit.

• During a recognition session, only concurrent sessions for the same user ID, enroll ID,
task, and audio source are accepted.

11.2.4 Requesting Next Word

To guarantee ongoing processing of audio during command recognition, the application with
speech focus is responsible for always having an SmRecognizeNextWord request pending
while the microphone is on.

11.2.5 Guidelines for Handling Focus

The following guidelines show how the session-sharing components typically handle focus:

Speech Monitoring Application
The speech monitoring application never needs to request focus.

Navigator Application
The navigator application normally runs without acquiring focus; however; spe-
cific actions, such as removing pronunciations and going into reduced CPU

69 SMAPI Developer’s Guide

Chapter 11: Session Sharing

mode, require that the navigator application acquire focus (see Section 11.6
[Allowable API Calls], page 81 for other instances).

Dictation Application
The dictation application requests speech focus only when necessary, rather
than whenever it has keyboard focus; for example, the dictation application
requests focus when dictation starts.

Enrollment Application
The enrollment application, which always requests focus, coexists with the
speech monitoring application without conflict.

Speech-Aware Applications
A speech-aware application requests speech focus only when necessary, rather
than whenever it has keyboard focus.

11.3 Notification

Notification refers to the asynchronous status messages sent from the speech recognition
engine to interested speech-aware applications. An application can use notification messages
to display the following types of information sent from the engine:

• Microphone state (on/off)
• Focus state (release, pending, denied, granted)
• Speech engine state (normal/reduced CPU mode)
• Recognized command words
• Audio level

While notification messages primarily support the speech monitoring application, all speech-
aware applications can subscribe to notification groups (refer to "Requesting Notification"
below for more information).

11.3.1 Requesting Notification

An application does not automatically receive notification messages after connecting to the
speech recognition engine. Notification messages are enabled when an application joins a
notification group. A notification group describes the set of applications that subscribe to
one of the notification types.

To join a notification group, the application issues an SmSet call that specifies one of the
following flags and an associated value of TRUE:

SmSet/SmQuery Flags Notification Event
SM NOTIFY AUDIO LEVEL Requests audio level.
SM NOTIFY COMMAND WORD Requests recognized command words.
SM NOTIFY MIC STATE Requests changes to microphone state.
SM NOTIFY FOCUS STATE Requests changes to focus state.
SM NOTIFY ENGINE STATE Requests changes to engine state.

70 SMAPI Developer’s Guide

Chapter 11: Session Sharing

For example, an application interested in receiving microphone status messages issues one
of the following calls:

SmSet (SM_NOTIFY_MIC_STATE, TRUE, &reply); /* synchronous */

or
SmSet (SM_NOTIFY_MIC_STATE, TRUE, SmAsynchronous); /* asynchronous */

To determine current membership status within a notification group, an application can
issue an SmQuery function call, such as one of the following:

SmQuery (SM_NOTIFY_MIC_STATE, &reply); /* synchronous */

or
SmQuery (SM_NOTIFY_MIC_STATE, SmAsynchronous); /* asynchronous */

A return value of TRUE from SmGetItemValue (...) indicates that the application is a
member of the group. Flags for SmSet() and SmQuery() reside in SMCOMM.H.

11.3.2 Receiving Notification

Notification messages are sent as asynchronous, unsolicited events. Applications use explicit
message dispatching or registered callbacks to process these messages.
In general, the notification message is determined by the corresponding engine event; for
example, the engine sends a notification message when the microphone is turned on or
when a command word is recognized. However, a speech-aware application, can be started
at any time and then seek to display the current engine state. If notification messages
were sent only at discrete event times, the state would not be displayed properly until the
next change. To trigger an immediate notification message that reflects the current state,
enable a notification group that contains persistent state. Of the available notification
groups, microphone state, focus state, and engine state notification groups contain persistent
state and support immediate notification. Command word notification does not result in a
message until the next word is recognized.
The following information shows the notification messages, their descriptions, the access
functions they use to extract information, and the callbacks required to receive the notifi-
cation.

71 SMAPI Developer’s Guide

Chapter 11: Session Sharing

Message Type

SM AUDIO LEVEL - Contains audio level.

Access Functions

SmGetAudioLevel
Retrieves one volume level. The value will be in the range SM MIN AUDIO LEVEL
- SM MAX AUDIO LEVEL

SmGetTimes
Retrieves a timestamp which can be used to determine the amount of time in
milliseconds since the microphone was turned on.

Callback

SmNaudioLevelCallback

72 SMAPI Developer’s Guide

Chapter 11: Session Sharing

Message Type

SM COMMAND WORD - Contains the name of the application that currently has focus
and the last recognized word or phrase from a dynamic command vocabulary or grammar.

Access Functions

SmGetFirmWords
Retrieves the SM WORD structure associated with the recognized word or
phrase.

SmGetApplication
Retrieves the application name.

SmGetWordTimes
Retrieves timestamps associated with the start time of the first word and end
time of the last word. These timestamps can be used to determine the amount
of time in milliseconds since the microphone was turned on.

Callback

SmNcommandWordCallback

73 SMAPI Developer’s Guide

Chapter 11: Session Sharing

Message Type

SM MIC STATE - Indicates whether the microphone is on or off.

Access Functions

SmGetMicState
Retrieves the microphone state. Valid values are:

SM NOTIFY MIC ON
SM NOTIFY MIC OFF

SmGetTimes
Retrieves a timestamp associated with when the microphone is turned on or off.
This timestamp can be used to determine the amount of time in milliseconds
between various speech events. For instance, it can be used to determine the
amount of time between when the microphone was turned on and when a word
was spoken.

Callback

SmNmicStateCallback

74 SMAPI Developer’s Guide

Chapter 11: Session Sharing

Message Type

SM FOCUS STATE - Shows a change in focus status and includes the name of the associ-
ated application.

Access Functions

SmGetFocusState
Retrieves the focus state. Valid values:

SM NOTIFY FOCUS REQUESTED
SM NOTIFY FOCUS GRANTED
SM NOTIFY FOCUS DENIED
SM NOTIFY FOCUS RELEASED

SmGetApplication
Retrieves the application name.

SmGetFocusChangeReason
Retrieves one of the following reason codes on focus changes:

SM FOCUS CHANGE ON RELEASE - An application released the focus
SM FOCUS CHANGE ON REQUEST - An application requested the fo-
cus

Callback

SmNfocusStateCallback

75 SMAPI Developer’s Guide

Chapter 11: Session Sharing

Message Type

SM ENGINE STATE - Indicates current engine status.

Access Functions

SmGetEngineState
Retrieves the engine state. The engine state will be in the following set:

SM NOTIFY NAVIGATOR EXCLUSIVE
SM NOTIFY FOCUS APP EXCLUSIVE
SM NOTIFY NONE EXCLUSIVE
SM NOTIFY NORMAL CPU
SM NOTIFY REDUCED CPU
SM NOTIFY PRONUNCIATIONS ADDED
SM NOTIFY PRONUNCIATIONS DELETED
SM NOTIFY ENGINE SETTINGS CHANGED
SM NOTIFY APPLICATION CONNECTED
SM NOTIFY APPLICATION DISCONNECTED
SM NOTIFY SPEECH START
SM NOTIFY SPEECH STOP
SM NOTIFY SPEECH TOO HIGH
SM NOTIFY SPEECH TOO LOW
SM NOTIFY SPEECH TOO NOISY
SM NOTIFY RECOGNIZED SPEECH

SmGetTimes
Retrieves a timestamp which can be used to determine the amount of time in
milliseconds since the microphone was turned on when the engine state is either:

SM NOTIFY SPEECH START
SM NOTIFY SPEECH STOP.

Callback

SmNengineStateCallback

11.4 Navigator Session

The Navigator session is unique in that it is allowed to do command recognition without
requiring speech focus. This permits the navigator application to process commands while
speech-aware applications have the speech focus.

76 SMAPI Developer’s Guide

Chapter 11: Session Sharing

Command recognition API calls include those to define, enable, disable, add to, remove
from, and undefine dynamic vocabularies, to halt the recognizer, and to request recognition
of the next word.
Other calls that extend beyond support of command recognition, such as add-pronunciation,
require the navigator application to request and receive speech focus. This is consistent with
the model for all other speech-aware applications.
The navigator application receives the speech focus by default when no other speech-aware
application has the focus. This notification comes from the unsolicited SM FOCUS GRANTED
message.
The Navigator session is defined by an attribute on the SmOpen or SmConnect call, as
follows:

SmSetArg (smArgs[n], SmNnavigator, TRUE); n++;

Only one active Navigator session can be defined for an engine; if a second application asserts
the SmNnavigator field, the SmConnect call fails with a SM RC NAV ALREADY DEFINED
return code.

11.4.1 Exclusive Vocabularies

Command vocabularies defined by the navigator session are global in that they are active,
by default, in parallel with any additional vocabularies defined by the application with
speech focus. This allows the user to escape back to the navigator application by voice.
There are conditions when an application will want to exclude these global vocabularies,
and force the engine to perform recognition using only the vocabularies enabled by the
application. For example, a transcription application that does not want any possibility of
interruption of text transcription could disable all global command vocabularies and only
enable the text vocabulary.
The application with speech focus can enable exclusive access to vocabularies as follows:

SmSet(SM_ENABLE_EXCLUSIVE_VOCABS, TRUE, &Reply);

and disable it as follows:
SmSet(SM_ENABLE_EXCLUSIVE_VOCABS, FALSE, &Reply);

This SmSet always returns SM RC OK and generates SM ENGINE STATE notifications
with the flags SM NOTIFY NAVIGATOR EXCLUSIVE, SM NOTIFY FOCUS APP EXCLUSIVE,
and SM NOTIFY NONE EXCLUSIVE.

11.4.2 Vocabulary Scope

The following information describes the relationship between the application and various
types of vocabularies:
Predefined vocabularies are owned by the application that currently has focus. Dynamic
vocabularies are owned by the application that defines them; they cannot be manipulated
by other applications because they are not visible to other applications.
Applications without focus can manipulate their vocabularies, as well as their image of
the predefined vocabularies; these changes become visible the next time the application

77 SMAPI Developer’s Guide

Chapter 11: Session Sharing

receives focus. Recognized words are returned to the application that owns the vocabulary;
the vocabulary type (dynamic as compared to grammars or predefined dictation) deter-
mines whether the recognized words are returned with the SM RECOGNIZED WORD,
SM RECOGNIZED PHRASE, or SM RECOGNIZED TEXT message.

11.4.3 Reduced CPU Mode

In a navigation or command and control environment, the user will probably want to ask
the speech recognition engine to "stop listening" until it is "wakened" again–probably by
voice. The engine needs only to listen for the wake-up word (or a limited set of wake-up
words); therefore, the CPU resources consumed by the speech recognition engine could be
minimized; this is called reduced CPU or reduced power mode.

The application can make a call that explicitly reduces the engine’s CPU requirements;
however, this reduces accuracy. The call is independent of dictation and command recogni-
tion processing, and the size or number of active words. In the speech recognition engine,
reduced CPU mode is not explicitly tied to a limited number of active words. This provides
more flexibility for the developer.

Reduced CPU mode is initiated as follows:

SmSet (SM_REDUCED_CPU_MODE, TRUE, &Reply);

and terminated as follows:

SmSet (SM_REDUCED_CPU_MODE, FALSE, &Reply);

The current state can be queried as follows:

SmQuery (SM_REDUCED_CPU_MODE, &Reply);

The SM ENGINE STATE notification group reflects changes to this mode to interested
applications.

Although setting reduced CPU mode is not restricted to the navigator application, the
application that sets reduced CPU mode must have the focus. Reduced CPU mode is ter-
minated either through an explicit request from the application that set it, or when focus is
requested by another application. To receive notification when the mode changes, applica-
tions that set reduced CPU mode should register for the SM ENGINE STATE notification
messages.

In the reduced CPU mode, the engine implicitly disables the vocabularies of any other
active session. These vocabularies are re-enabled when the engine returns to normal CPU
mode. This disabling and reactivation of vocabularies is transparent to the application. The
application without focus never receives a recognized word while the engine is in reduced
CPU mode.

11.5 Related Functions

The following information explains how the API supports various aspects of the session-
sharing environment.

78 SMAPI Developer’s Guide

Chapter 11: Session Sharing

11.5.1 Request Microphone On/Off

To support a speech monitoring application that provides a single microphone control shared
by all speech-aware applications, there are functions that allow the speech monitoring ap-
plication to send microphone on/off requests to the application that currently has speech
focus:

SmRequestMicOn (&Reply);
SmRequestMicOff (&Reply);

If no application has focus, the request returns SM RC NO FOCUS APP. If the request
is sent to the application with focus, these calls return SM RC OK. There is no further
handshaking between applications. If the application with focus accepts the request and acts
on it, the corresponding change in microphone state can be tracked through the notification
group messages.

11.5.2 Default Values for Initialization

In a session-sharing environment, once the engine has been initialized for a particular user,
additional applications can connect without having to explicitly specify the user ID, enroll
ID, and task on the SmConnect call. This simplifies the bookkeeping required of speech-
aware applications, because this can be handled through the speech monitoring application.
To indicate this "don’t care" condition on the SmConnect, there is a SM USE CURRENT
argument flag, which is valid only during a recognition session. For example:

SmSetArg (smArgs [n], SmNuserId, SM_USE_CURRENT); n++
SmSetArg (smArgs [n], SmNenrollId, SM_USE_CURRENT); n++
SmSetArg (smArgs [n], SmNtask, SM_USE_CURRENT); n++

SM USE CURRENT is type-defined as an empty string, so that it can be used in place of
an actual user ID, enroll ID, or task string in an application’s resource file.
This flag is interpreted by the engine as follows:
• If the engine is not currently initialized, use the persistent default values that would

be returned by SmQueryDefaults.
• If the engine is already initialized, then use the current values.

The actual values used by the engine are returned on the SmConnect reply message and
can be retrieved through the following access functions:

SmGetUserId (Reply, &UserId);
SmGetEnrollId (Reply, &EnrollId);
SmGetTask (Reply, &Task);

This allows an application to specify initialization with default parameters, but display the
actual parameters for the user’s information.

11.5.3 Querying and Setting Defaults

The initial default values can be determined through the SmQueryDefault call:
SmQueryUserDefault (SM_DEFAULT_USERID, &Reply);
SmQueryUserDefault (SM_DEFAULT_ENROLLID, &Reply);

79 SMAPI Developer’s Guide

Chapter 11: Session Sharing

SmQueryUserDefault (SM_DEFAULT_TASK, &Reply);

The appropriate return values can be retrieved through the SmGetUserId, SmGetEnrollId,
and SmGetTask access functions.

The defaults are not changed by explicit initialization, that is, changing from user "sdg" to
user "eddie" on SmConnect does not change the default user ID. However, enrolling "eddie"
after "sdg" does change the default. The userid default values are maintained by SMAPI
and the enrollid, taskid, and topics are maintained by the engine on a per-user basis.

The default values can also be changed by an application through the SmSetUserDefault
call:

SmSetUserDefault (SM_DEFAULT_USERID, "sdg", &Reply);
SmSetUserDefault (SM_DEFAULT_ENROLLID, "ibmsdg1", &Reply);
SmSetUserDefault (SM_DEFAULT_TASK, "radio", &Reply);

11.5.4 Query Sessions

To assist with the management of multiple speech-aware applications, the following query
function has been provided to return the list of connected sessions:

SmQuerySessions (&Reply);

The associated access functions are SmGetUserIds, SmGetEnrollIds, SmGetTasks, and
SmGetApplication to get the name of the registered application. There are parallel lists of
user IDs, enroll IDs, tasks, and application names. The number of items in each list is the
same.

11.5.5 Detach Sessions

The engine does not support different user IDs, enroll IDs, or task IDs in multiple concurrent
sessions. Multiple sessions connected to the engine concurrently must use the same user
ID, enroll ID, and task ID. If a session needs to change the user ID, enroll ID, or task ID,
the session should call SmDetachSessions to request that all other sessions disconnect from
the speech recognition engine. Coupled with the SmQuerySessions call and engine state
notifications, an application can monitor all sessions that remain connected to the engine,
identify these applications to the user, and prompt the user to take the appropriate action.
The engine will not accept changes to the user ID, enroll ID, or task ID until only the
session requesting the changes remains connected to the engine.

SmDetachSessions sends a SM REQUEST DETACH message to all sessions. This message
is informational only. The engine does not force a session to disconnect, nor does it wait
for a reply to this request from each session. If a session wishes to comply with the request,
it should call SmDisconnect. Applications can close after disconnecting; however, if the
application remains up, it should provide feedback to the user to indicate that the applica-
tion does not have an active speech session. If an application has the ability to re-connect
to the engine, it will need to re-define and re-enable all vocabularies and grammars once
it re-connects to the engine. Re-connecting to the engine should occur based upon a user
request (either from a menu item or another defined event).

80 SMAPI Developer’s Guide

Chapter 11: Session Sharing

11.5.6 Automatically Start and Stop the Speech Engine

If an engine is not loaded, SmConnect will start the engine executable. When all applications
disconnect from the engine, the engine may start a countdown timer. The auto kill engine
tag accepts an integer value which is the number of seconds until the engine terminates.
A value of True defaults to a 10 second timeout. A value of False means never timeout.
Set these values in the defaults stanza of the ENGINE.CFG file in \ViaVoice\Bin. This
timeout length can also be set using the SMAPI function SmSet with the value of the item
argument set to SM DELAY EXIT.

11.6 Allowable API Calls

The tables in the remaining portion of this chapter define the allowable API calls in a
session-sharing environment. The tables use the following terminology:

Focus Application
Application that currently has speech focus.

Navigation Application
The navigator application when it does not have explicit speech focus. When the
navigator application has the speech focus, it has the same functions permitted
for the focus application.

No Focus The speech-aware application that does not currently have speech focus.

11.6.1 Attribute Functions

Attribute functions are implemented locally in the application’s address space by the SMAPI
layer, and they do not require any interaction with the speech recognition engine. Conse-
quently, they can be made at any appropriate time, independent of the speech focus.� �

Focus Navigation
API Call Application Application No Focus
SmSetArg X X X
 	
11.6.2 Callback and Dispatching Functions

Callback and dispatching functions are implemented locally in the application’s address
space by the SMAPI layer.� �

Focus Navigation
API Call Application Application No Focus
SmAddCallback X X X
SmRemoveCallback X X X
 	

81 SMAPI Developer’s Guide

Chapter 11: Session Sharing

11.6.3 Access Functions

Because access functions manipulate only received, application-side data, they are indepen-
dent of the speech focus.� �

Focus Navigation
API Call Application Application No Focus
SmGet* calls X X X
SmReturn* calls X X X
 	
11.6.4 Connection Functions

API functions that allow an application to connect or disconnect from the speech recognition
engine are permitted at all times.� �

Focus Navigation
API Call Application Application No Focus
SmApiVersionCheck X X X
SmClose X X X
SmConnect X X X
SmDisconnect X X X
SmOpen X X X
 	
11.6.5 Session Functions

Some calls related to session sharing are appropriate only when an application is in a
particular state (for example, releasing focus only makes sense if the application has the
focus). These calls will not be blocked, thereby simplifying application development. These
calls are denoted with a plus (+). Allowing other calls, such as requesting a change in
microphone state, even when the requesting application has the focus, might also simplify
application development.� �

Focus Navigation
API Call Application Application No Focus
SmDetachSessions X X X
SmReleaseFocus X X(+) X(+)
SmConnect X(+) X X
SmRequestFocus X X X
SmRequestMicOff X X X
SmRequestMicOn X X X
 	

Please note: (+) These calls are not applicable.

82 SMAPI Developer’s Guide

Chapter 11: Session Sharing

11.6.6 Database Functions

Database functions are primarily for database access and, other than diverting some engine
resource, do not interfere with the focus application’s view of the engine. Consequently, they
can be permitted without regard to the speech focus. Some of the returned information,
however, is kept on a per-session basis, or globally across all connected sessions. The
following table identifies database functions.� �

Focus Navigation No
API Call Application Application Focus State
SmQueryAddedWords X X X both(*)
SmQueryAddedWordsEx X X X both(*)
SmQueryAlternates X X X session
SmQueryDefaults X X X global
SmQueryEnabledVocabs X X X session
SmQueryEnrollIds X X X global
SmQueryLanguages X X X global
SmQueryPronunciation X X X global
SmQueryPronunciations X X X global
SmQueryPronunciationsEx X X X global
SmQuerySessions X X X global
SmQueryTasks X X X global
SmQueryTopics X X X global
SmQueryUserDefault X X X global
SmQueryUserInfo X X X global
SmQueryUsers X X X global
SmQueryVocabs X X X session
SmQueryWord X X X session
 	

Please note: (*) This depends on the scope of the associated vocabulary.

The following functions are primarily administrative and do not change the state of the
engine for the application with focus. Some state changes are not done right away (syn-
chronously); for example, changing the default user ID, enroll ID, and task requires three
interactions with the engine.� �

Focus Navigation
API Call Application Application No Focus State
SmSetDefault X X X global
SmSetUserInfo X X X global
 	

The parameters of the SmSet call need to be addressed individually. Changing of the audio
input mode can take effect only when the microphone is off; this changes the global state
of the engine. Other changes are kept on a per-session basis. Settings changes that are not
allowed are indicated by NA.

83 SMAPI Developer’s Guide

Chapter 11: Session Sharing� �
Focus Navigation No

SmSet Flag App. Application Focus State
SM COMPLETE COMMAND TIMEOUT X X X global
SM ENABLE EXCLUSIVE VOCABS X X+ X global
SM NOTIFY * X X X session
SM PARTIAL COMMAND TIMEOUT X X X global
SM REDUCED CPU MODE X NA NA global
SM REJECTION THRESHOLD X X X global
SM SAVE AUDIO X X X session
 	

Note: (+) These calls are not applicable.

The parameters to the SmQuery call are also handled globally or per session:� �
Focus Navigation No

SmQuery Flag App. Application Focus State
SM AUDIO INPUT MODE X X X global
SM AUDIO OUTPUT MODE X X+ X global
SM AUDIO DEVICE X X X global
SM AUDIO CONFIGURATION X X X global
SM COMPLETE COMMAND TIMEOUT X X X global
SM ENABLE EXCLUSIVE VOCABS X X X global
SM NOTIFY * X X X session
SM PARTIAL COMMAND TIMEOUT X X X global
SM RECOGNIZE MODE X X X session
SM REDUCED CPU MODE X X X global
SM REJECTION THRESHOLD X X X global
SM SAVE AUDIO X X X session
 	

11.6.7 Vocabulary Functions

These functions change the state of the active vocabularies, but all dynamically defined
vocabularies are handled independently per session by the engine; this is transparent to the
application.

84 SMAPI Developer’s Guide

Chapter 11: Session Sharing� �
Focus Navigation No

API Call Application Application Focus State
SmAddPronunciation X NA NA global
SmAddToVocab X X+ X session
SmCorrectText X X X global
SmCorrectTextCancel X X X global
SmDefineGrammar X X X session
SmDefineVocab X X X session
SmDisableVocab X X X session
SmDiscardData X X X session
SmEnableVocab X X X session
SmEventNotify X X NA session
SmHaltRecognizer X X X session
SmNewContext X NA NA session
SmRecognizeNextWord X X X global
SmRemoveFromVocab X X X global
SmRemovePronunciation X NA NA global
SmUndefineVocab X X X session
SmWordCorrection X NA NA global
 	
11.6.8 Audio Functions

These functions change the state of the audio system. Given a single audio source, this
would change the state seen by the application with focus; therefore, these functions are
allowed only by the application with focus.� �

Focus Navigation
API Call Application Application No Focus
SmCancelPlayback X NA NA
SmMicOn X NA NA
SmMicOff X NA NA
SmPlayMessage X NA NA
SmPlayUtterance X NA NA
SmPlayWords X NA NA
 	

85 SMAPI Developer’s Guide

Chapter 11: Session Sharing

86 SMAPI Developer’s Guide

Chapter 12: Parallel Session API Calls

12 Parallel Session API Calls

The shared-session API calls are all documented as SmXxxxx (SmDisconnect, for example).
These calls can be used with exactly these names if there is only one connection to the
engine from the application. If you want more than one connection from your application,
you must use the parallel session calls. (Remember the terminology. Shared sessions refers
to all concurrent sessions with the engine. Two sessions are said to be parallel if they are
both from the same application.)
The name of a parallel session call is the same as the regular call except for two things. First,
the name of the call has the characters "Ses" inserted after the "Sm." For example, the
parallel session disconnect call is SmSesDisconnect. Second, each parallel session call takes
one additional parameter, which is the session ID. This is always the first parameter. So,
for our disconnect example, the call would be SmSesDisconnect (hSession), where hSession
is the session ID. The session ID is returned in the first parameter of the SmSesOpen call.
Parallel sessions enable independent connections from within the same application. The
requirement for parallel sessions arises, for example, when a speech-aware library routine
is embedded in a speech-aware application. Each session has a full and complete connec-
tion to the engine, including separate shared memory segments for communication, and
is therefore relatively expensive with regard to resource use. As a result, parallel sessions
are not intended to be used casually within an application. In addition, parallel sessions
are completely independent, with each session requiring a unique window handle for engine
messages.
Improper use of parallel sessions (for example, to handle vocabulary management within
an application, where one session is used for grammars and another for dictation, or where
a different session is used for each field in a form) will result in larger memory overhead
and will not improve recognition performance. Also, the engine is a single executable,
sequentially processing a single audio stream. Parallel sessions cannot reduce recognition
latency for a given connection.

87 SMAPI Developer’s Guide

Chapter 12: Parallel Session API Calls

88 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

13 Programming Tasks

There are three phases of an application session: initialization, recognition, and termination.

13.1 Initialization Phase

During the initialization phase, the speech-aware application connects to the speech recog-
nition engine. The engine is a separate process. The first user of the engine causes the
SMAPI to start the engine, if it is not already running.
Many of the sample code fragments used in this chapter include asynchronous function calls.
For more information, see Chapter 10 [Function Call Processing], page 57.

13.1.1 Verifying the SMAPI Version

Begin by verifying that the ViaVoice SDK SMAPI version used to compile the speech-aware
application matches the version of the speech recognition engine currently installed on the
computer of the user of your application. ViaVoice 5.x is SMAPI-compatible, however,
ViaVoice 4.1 applications are not backward compatible to previous versions of VoiceType
runtimes.
You can use the following statements to verify the SMAPI version:

char *sm_version;
char szErrMsg [50];
int rc;

rc = SmApiVersionCheck(SM_API_VERSION_STRING, &sm_version);

if (rc == SM_RC_WRONG_SM_VERSION) {

// Error processing goes here

}

13.1.2 Establishing a Speech Session

A speech session is established when the speech function calls connect an application to
the speech recognition engine. SmOpen initializes a local structure that is updated when
the application calls SmConnect to connect to the speech recognition engine. The ViaVoice
SDK SMAPI supports the following session types:
• Database
• Enrollment
• Recognition

89 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

The speech attribute values used with SmOpen and SmConnect determine the session type.
Some attributes are common for all sessions and some are valid only for specific sessions:

13.1.2.1 All Sessions:

SmNapplicationName
The speech-aware application name.

SmNwindowHandle
The window handle to receive messages from the engine (both asynchronous
notifications and replies from asynchronous function calls).

SmNconnectionId
A number that uniquely identifies this connection within an application. All
messages sent to this application by the engine will be WM COMMAND mes-
sages with this number in the WPARAM value.

13.1.2.2 Database Sessions:

SmNdatabase
The type of session (set to TRUE for a database session).

13.1.2.3 Enrollment Sessions:

SmNenrollment
The type of session (set to TRUE for an enrollment session).

13.1.2.4 Recognition Sessions:

SmNrecognize
The type of session (set to TRUE for a recognition session).

SmNnavigator
Indicates that this recognition session is a special Navigator session. (Refer to
Section 11.4 [Navigator Session], page 76.)

SmNenrollId
The enrollment ID.

SmNtask The recognition domain.

SmNuserId
The user ID.

Note: SmNenrollID, SmNtask, and SmNuserID don’t need to be explicitly provided. If they
are not specified, the engine will use the current values.
SmOpen creates a shared memory segment and protocols for communicating with the en-
gine. Typically, SmOpen sets the attributes required for all sessions (SmNwindowHan-
dle, SmNconnectionId, and SmNapplicationName), and SmConnect sets all the remain-
ing session-specific attributes. The speech attributes are stored locally in the application

90 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

address space and are not communicated to the engine until the SmConnect call. Conse-
quently, after an attribute has been set, the change does not take effect until the application
issues the next SmConnect call.
The application can set speech attributes any time after an SmOpen function call. The
attributes can be specified in any order. Attribute names are case sensitive, but attribute
values are not.
Pass the session attributes to the SmOpen and SmConnect calls using an array of SmArg
structures. The last specified value for a speech attribute takes precedence over previously
set values. The arguments in an SmArg array are acted on sequentially, and the last specified
attribute takes precedence here as well. For example, the application can request only one
type of session at SmConnect, so the last session type specified is used.
The SmSetArg macro has been provided to assist with setting values into the array. The
following Windows code fragment illustrates the correct method of initializing your array
using SmSetArg, and passing the array to the SmOpen function call:

/*---*/
/* Establish a recognition session */
/*---*/
#define CONNECT_ID 100

int smc = 0;
SmArg smArgs[20];
HWND hWnd;

SmSetArg(smArgs[smc], SmNapplicationName, "SmSampleApp"); smc++;
SmSetArg(smArgs[smc], SmNwindowHandle, hWnd); smc++;
SmSetArg(smArgs[smc], SmNconnectionId, CONNECT_ID); smc++;

SmOpen(smc, SmArgs);

Please note: Do not place the statement to increment the counter ("smc++" in the previous
figure) within the SmSetArg macro. The macro actually makes two references to the first
argument, which results in the counter being incremented twice.

13.1.2.5 Initializing

The speech recognition engine runs as a separate process in support of a speech-aware
application. It is started when the SmConnect call is issued. Starting this process and
performing the initialization for the requested speaker is a time-consuming process. It is
suggested that this call be made asynchronously for applications that must be responsive to
user interaction. Connection time is significant only for the first application that starts and
initializes the engine; it is insignificant for others. However, there is no way to tell when an
application will be first.

13.1.2.6 Database Sessions

During a database session, the user can request status-related information and set various
engine and session attributes. The following functions are valid:

91 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

• Query and set information about the speech session and speech recognition engine

• SmQuery

• SmQueryDefault

• SmQuerySessions

• SmSet

• SmSetDefault

• Query and set information about users

• SmQueryUserInfo

• SmQueryUsers

• SmSetUserInfo

• Query information about the available languages and domains

• SmQueryLanguages

• SmQueryTasks

• Query information about the enrollments and their statuses

• SmQueryEnrollIds

• Request to change the microphone state

• SmRequestMicOff

• SmRequestMicOn

The following Windows code sample is an example of how to initialize a database session
with the speech engine:

92 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

#define CONNECT_ID 100

SmArg smArgs[10];
int smc;
int rc;
/*---*/
/* Set speech session attributes for SmOpen call. */
/*---*/
smc = 0;
SmSetArg(smArgs[smc], SmNapplicationName, "SmSampleApp"); smc++;
SmSetArg(smArgs[smc], SmNwindowHandle, hwnd); smc++;
SmSetArg(smArgs[smc], SmNconnectionId, CONNECT_ID); smc++;
rc = SmOpen(smc, // Number of attributes in array

smArgs); // Array of attributes
if (rc == SM_RC_OK) // SmOpen successful
{
/*---*/
/* Set speech session attributes for SmConnect call. */
/*---*/
smc = 0;
SmSetArg(smArgs[smc], SmNdatabase, TRUE); smc++;
// SmConnect is called asynchronously; therefore, the SM_CONNECT_REPLY
// message from the speech recognition engine must be processed to determine
// the success of this call.
//
rc = SmConnect(smc, // Number of attributes in array

smArgs, // Array of attributes
SmAsynchronous); // Call is asynchronous

if (rc != SM_RC_OK)
{

// Error processing goes here...
}

}

13.1.2.7 Recognition Sessions

In addition to all database functions, the following tasks characterize a recognition session:

• Defining and working with dynamic vocabularies
• Defining and working with grammars
• Speaking and working with the recognized words
• Playing back words or utterances
• Correcting misrecognized words to improve future recognition

Some of the SMAPI functions calls which are available from a recognition session have
certain restrictions based on the current state of the engine (for example, the engine must
be halted or the microphone must be off). For more detailed information, refer to the
SMAPI Reference.

93 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

For the engine to successfully initialize a session, the language associated with an enrollment
ID must match the domain language. For example, you can’t run a U.S. English enrollment
against a German domain.

The following Windows code sample is an example of how to initialize a recognition session
with the speech engine:

#define CONNECT_ID 100
SmArg smArgs[10];
int smc;
int rc;
/*---*/
/* Set speech session attributes for SmOpen call. */
/*---*/
smc = 0;
SmSetArg(smArgs[smc], SmNapplicationName, "SmSampleApp"); smc++;
SmSetArg(smArgs[smc], SmNwindowHandle, hwnd); smc++;
SmSetArg(smArgs[smc], SmNconnectionId, CONNECT_ID); smc++;
rc = SmOpen(smc, // Number of attributes in array

smArgs); // Array of attributes
if (rc == SM_RC_OK) // SmOpen successful
{
/*---*/
/* Set speech session attributes for SmConnect call. */
/*---*/
smc = 0;
SmSetArg(smArgs[smc], SmNrecognize, TRUE); smc++;
SmSetArg(smArgs[smc], SmNuserId, SM_USE_CURRENT); smc++;
SmSetArg(smArgs[smc], SmNtask, SM_USE_CURRENT); smc++;
SmSetArg(smArgs[smc], SmNenrollId, SM_USE_CURRENT); smc++;
// SmConnect is called asynchronously; therefore, the SM_CONNECT_REPLY
// message from the speech recognition engine must be processed to determine
// the success of this call.
rc = SmConnect(smc, // Number of attributes in array

smArgs, // Array of attributes
SmAsynchronous); // Call is asynchronous

if (rc != SM_RC_OK)
{

// Error processing goes here...
}

}

13.1.3 Changing Speech Sessions

In order to change a speech session, disconnect the current session, modify the session
attributes, then connect the new session. In this case, the new attribute values replace
the current values, and the values of attributes that are not passed to SmConnect remain

94 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

unchanged. The following code sample illustrates the steps required to change from a
database session to a recognition session.

SmArg smArgs[10];
SM_MSG reply;
int smc;
int rc;

/*--*/
/* Change from database session to recognition session. */
/*--*/

smc = 0;

rc = SmDisconnect(smc, // Number of attributes in array
smArgs, // Array of attributes
&reply); // Pointer to reply structure

if (rc == SM_RC_OK) // SmDisconnect successful
{

/*---*/
/* Set speech session attributes for SmConnect call. */
/*---*/
smc = 0;
SmSetArg(smArgs[smc], SmNrecognize, TRUE); smc++;
SmSetArg(smArgs[smc], SmNdatabase, FALSE); smc++;

// SmConnect is called asynchronously; therefore, the SM_CONNECT_REPLY
// message from the speech recognition engine must be processed to determine
// the success of this call.

rc = SmConnect(smc, // Number of attributes in array
smArgs, // Array of attributes
SmAsynchronous); // Call is asynchronous

if (rc != SM_RC_OK)
{

// Error processing goes here...
}

}

In order to completely refresh a session, use both SmDisconnect and SmClose to purge the
session data, then initialize a new session using SmOpen and SmConnect. Then, all of the
attributes from the previous session will be discarded and replaced by the new attributes
or defaults.

13.2 Recognition Phase

95 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

During the recognition phase, the speech-aware application controls and interacts with the
speech recognition engine, which converts speech input to text. This chapter explains how
to do the following related tasks:

Setting Up Vocabularies
Processing Speech Input
Changing The Engine Decoding State
Setting/Querying Speech Engine Parameters
Improving Recognition By Updating Personal Data
Processing Speech Engine Audio
Saving and Restoring Speech Sessions
Handling Speech Recognition Engine Errors
Playing Audio Through The Speakers

Many of the sample code fragments used in this chapter include asynchronous speech func-
tion calls. See Chapter 10 [Function Call Processing], page 57 for more information.

13.2.1 Setting Up Vocabularies

A vocabulary is a list of words the engine uses to match speech input and translate it into
text. An application specifies the set of active words by defining and enabling one or more
vocabularies.
The application must enable at least one vocabulary before the speech recognition engine
can process speech. The speech recognition engine uses the enabled vocabularies to find a
match to the incoming words, and the vocabulary that provides the match determines the
engine state (refer to Section 13.2.3 [Changing the Engine Decoding State], page 114 for
more information).
There are three types of vocabularies:
• Command vocabularies are used to recognize words from a list created dynamically by

the application in response to user input or the current state of the application. They
differ from dictation vocabularies in that the words are decoded based entirely on how
they sound. When processing a command vocabulary, the engine waits for an explicit
request before decoding and sending a recognized word to the application.

• Grammar vocabularies are used to recognize words and phrases contained in a compiled
BNF grammar (this compiled SMAPI grammar is known as a Finite State Grammar
(FSG) file). Grammar vocabularies are decoded based on the word-order syntax rules
specified in the BNF. When processing a grammar vocabulary, the engine waits for an
explicit request before decoding and sending a recognized phrase to the application.

• Dictation vocabularies are used for free-form speech-to-text translation. When decod-
ing words from a dictation vocabulary, the engine uses the sound of the words as well
as their context–the words preceding and following the current word– to determine
what the speaker said. When processing a dictation vocabulary, the engine decodes

96 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

and sends words to the application without waiting for an explicit request for the next
word.

To decode incoming words, the engine searches all the currently enabled vocabularies. Multi-
ple vocabularies can be enabled at one time. To improve performance (speed and accuracy),
the application should narrow the possibilities by enabling and disabling vocabularies as
needed based on its current state.

13.2.1.1 Setting Up a Command Vocabulary

Command vocabularies are used to recognize words from a list created dynamically by the
application in response to user input or the current state of the application. An application
defines a command vocabulary using the SmDefineVocabEx function call, passing a list
of the words which make up the vocabulary. This definition remains in effect for the
duration of a recognition session, or until the application explicitly removes it by calling
SmUndefineVocab. The words in a command vocabulary are assumed to already have
pronunciations in the domain or among the user’s personal vocabulary. If the engine does
not have the pronunciations required to recognize a word or words, then a list of those
words is returned to the application. In this case, the vocabulary is still defined, since the
words in a command vocabulary are independent of each other. The words for which the
engine does not have a pronunciation do not become part of this defined vocabulary.

The command vocabulary must be created and then enabled before the speech recognition
engine can use it to decode speech. Rather than defining and undefining a vocabulary
multiple times, it is more efficient to define a vocabulary once with SmDefineVocabEx and
then enable and disable the vocabulary as needed using SmEnableVocab and SmDisable-
Vocab. After a vocabulary has been defined, use SmAddToVocab, and SmRemoveFromVo-
cab to modify it. SmDefineVocabEx requires that a name be specified for the vocabu-
lary. This name is an alphanumeric character string defined by the application, and it is
used to identify the vocabulary in all subsequent vocabulary-related function calls and in
SM RECOGNIZED WORD messages sent by the engine.

Use the SM VOCWORD structure for all information pertinent to a vocabulary word when
performing such actions as defining the vocabulary, or adding, removing, or retrieving a
word from a vocabulary (refer to "Data Types" in the API Reference for a description of
the SM VOCWORD data structure).

The following code sample shows how to set up a dynamic command vocabulary:

97 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

char *apszCmds[] = "open","close","copy","move",
"delete","find","select";

int iNumWords = (sizeof(apszCmds)/sizeof(char *));
SM_VOCWORD **pVocPtrs; // Dynamic array of pointers to

// vocabulary structures.
SM_MSG reply;
int i, rc;

// Allocate array of pointer to the vocab word structs
pVocPtrs = malloc(sizeof(SM_VOCWORD *) * iNumWords);

// Allocate each vocabulary word structure, then fill it in.
for (i = 0; i < iNumWords; i++) {

pVocPtrs[i] = malloc(sizeof(SM_VOCWORD));
pVocPtrs[i]-> flags = 0; // Reserved value
pVocPtrs[i]->spelling_size = strlen(apszCmds[i])+1;
pVocPtrs[i]->spelling = apszCmds[i];

}

/*---*/
/* Define the "SampleCmds" command vocabulary. */
/*---*/
rc = SmDefineVocab("SampleCmds", // Name of vocabulary

iNumWords, // Number of words in vocabulary
pVocPtrs, // Array of word structures
&reply); // Synchronous call

if (rc == SM_RC_OK) {
rc = SmEnableVocab("SampleCmds", // Name of vocabulary

&reply); // Synchronous call
if (rc != SM_RC_OK) {

// Error processing goes here...
}

}

// Free the memory - once a vocabulary is defined to the engine,
// local storage can be freed, since the engine keeps its
// own copy
for(i = 0; i < iNumWords; i++) {

free(pVocPtrs[i]);
}

free (pVocPtrs);

13.2.1.2 Setting Up a Grammar Vocabulary (FSG)

Grammar vocabularies are used to recognize words and phrases contained in an FSG. An
application defines a grammar vocabulary using the SmDefineGrammar function call, pass-

98 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

ing the path name of the FSG file. This definition remains in effect for the duration of
a recognition session, or until the application explicitly removes it by calling SmUndefine-
Grammar.

The words in a grammar vocabulary are assumed to already have pronunciations in the
domain or among the user’s personal vocabulary. If the engine does not have the pronun-
ciations required to recognize a word or words, then the grammar is not defined, and the
engine returns a list of those words to the application. A grammar that contains words with
missing pronunciations would be unpredictable (for example, if the missing word was the
root to all possible sequences, nothing could be recognized). This is different from dynamic
command vocabularies, where all words and phrases are inherently independent. With dy-
namic command vocabularies, if pronunciations are missing, there is no coupling to other
words and phrases. The grammar effectively replaces the language model for dictation,
defining the order in which words are recognized.

The grammar vocabulary must be defined and then enabled before the speech recogni-
tion engine can use it to decode speech. Rather than defining and undefining a vocabu-
lary multiple times, it is more efficient to define a vocabulary once with SmDefineGram-
mar and then enable and disable the vocabulary as needed using SmEnableVocab and
SmDisableVocab. SmDefineGrammar requires that a name be specified for the vocabu-
lary. This name is an alphanumeric character string defined by the application, and it is
used to identify the vocabulary in all subsequent vocabulary-related function calls and in
SM RECOGNIZED PHRASE messages sent by the engine.

The following code sample shows how to set up a grammar vocabulary. Note that the full
path for "sample.fsg" file would normally be specified. It needs to be accessible to the
engine to extract the words and grammar network, and by the SMAPI library to extract
the annotation data. SMAPI makes a local copy of the annotation data; this storage is
freed when the function SmUndefineVocab is called.

SM_MSG reply;
int rc;

/*---*/
/* Define the "SampleGrammar" grammar vocabulary. */
/*---*/

rc = SmDefineGrammar("SampleGrammar", // Name of vocabulary
"sample.fsg", // FSG file name
0, // Vocabulary flags
&reply); // Synchronous call

if (rc == SM_RC_OK) {
rc = SmEnableVocab("SampleGrammar", // Name of vocabulary

&reply); // Synchronous call

if (rc != SM_RC_OK) {
// Error processing goes here...

}
}

99 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

13.2.1.3 Setting Up a Grammar Vocabulary with External Lists

Grammar vocabularies have a capability that allows some of the words to be defined at
runtime instead of being defined directly in the grammar itself. These additional words
make up an external list. One use for an external list could be in an application that needs
to read information from a database and still be able to recognize these words when the
user speaks them. For complete details about writing grammars that contain external lists,
refer to Chapter 4 [Grammars], page 17.

Defining and enabling a grammar vocabulary that contains an external list is essentially
a combination of the processes required to define and enable command and grammar vo-
cabularies. The first step is to define the list using SmDefineVocabEx. The vocabulary
name specified on the SmDefineVocabEx call must match the name used for the list in the
grammar itself. Once the list has been defined successfully, define and enable the grammar
vocabulary as usual by calling SmDefineGrammar and SmEnableVocab.

Please note: The external list vocabulary should NOT be explicitly enabled or disabled.
This is inherent in the enabling and disabling of the grammar containing the list. The
SmAddToVocab and SmRemoveFromVocab calls can be used to dynamically change the
content of the list.

The following is an example of defining an external list in a BNF:

<query> = Where is the nearest <food_type> restaurant
extern <food_type>

The code sample below illustrates the coding steps required to define and enable a grammar
vocabulary that uses an external list.

100 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

// Words to be used in food_type list
char *apszCmds[] = {"italian", "seafood","indian","american","barbeque","thai",

"fast food"};
int iNumWords = (sizeof(apszCmds)/sizeof(char *));
SM_VOCWORD **pVocPtrs; // Dynamic array of pointers to

// vocabulary structures.
SM_MSG reply;
int i, rc;
// Allocate array of pointer to the vocab word structs
pVocPtrs = malloc(sizeof(SM_VOCWORD *) * iNumWords);
// Allocate each vocabulary word structure, then fill it in.
for (i = 0; i < iNumWords; i++) {

pVocPtrs[i] = malloc(sizeof(SM_VOCWORD));
pVocPtrs[i]->flags = 0; // Reserved value
pVocPtrs[i]->spelling_size = strlen(apszCmds[i])+1;
pVocPtrs[i]->spelling = apszCmds[i];

}

/*---*/
/* Define the "food_type" external list. */
/*---*/
rc = SmDefineVocab("food_type", // Name of external list

iNumWords, // Number of words in vocabulary
pVocPtrs, // Array of word structures
&reply); // Synchronous call

if (rc == SM_RC_OK) {
// Define the grammar that uses the external list
rc = SmDefineGrammar("Restaurants", // Name of vocabulary

"resttype.fsg", // FSG file name
0, // Vocabulary flags
&reply); // Synchronous call

if (rc == SM_RC_OK) {
// Enable the grammar that uses the external list
rc = SmEnableVocab("Restaurants", // Name of vocabulary

&reply); // Synchronous call
if (rc != SM_RC_OK) {

// Error processing goes here...
}

}
}

// Free the memory for the food_type word list
for(i = 0; i < iNumWords; i++) {

free(pVocPtrs[i]);
}

free (pVocPtrs);

101 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

13.2.1.4 Setting Up a Dictation Vocabulary

The application must enable a predefined dictation vocabulary before the engine can use
it to decode dictated text. The SMAPI functions SmEnableVocab and SmDisableVocab
control which vocabularies can be used by the speech recognition engine.

The application can use SmWordCorrection or SmAddToVocab to include personal words in
a dictation vocabulary (refer to Section 13.2.5 [Improving Recognition by Updating Personal
Data Files], page 115). The personal extensions added with SmWordCorrection persist
across recognition sessions and can be removed with SmRemoveFromVocab.

The code sample below shows how to use SmEnableVocab to enable the ViaVoice predefined
dictation vocabulary, called "text". Since dictation vocabularies are all predefined, there is
no need for an explicit function call to define the vocabulary.

SM_MSG reply;
int rc;

/*--*/
/* Enable the predefined "text" vocabulary. */
/*--*/

rc = SmEnableVocab("text", // Name of vocabulary
&reply); // synchronous form

if (rc != SM_RC_OK) {
// Error processing goes here...

}

13.2.2 Processing Speech Input

The bulk of the work that a speech-aware application performs involves getting the recog-
nized text from the engine and determining what to do with it. The responsibilities of an
application in this area are:

• Ensuring that the application has speech focus when it needs it. If the application needs
to have speech focus whenever it has input focus, then it needs to call SmRequestFocus
when it receives notification from Windows that it has input focus. For a complete
discussion of issues related to speech focus, refer to "Speech Focus" on page 148.

• Managing and displaying current microphone state. Having a visual display that indi-
cates the current microphone state is a good idea, and it makes the application easier
to use. Also, a well-designed speech application responds to asynchronous requests to
turn the microphone on or off.

• Keeping audio processing moving by handling recognized text messages and en-
suring that an SmRecognizeNextWord call is pending while the engine decoder
is running. For command or grammar vocabulary processing, this means call-
ing SmRecognizeNextWord each time it receives an SM RECOGNIZED WORD or
SM RECOGNIZED PHRASE message from the engine.

102 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

13.2.2.1 Vocabulary Processing

The speech recognition engine processes words from command and grammar vocabularies
differently from the way it processes dictation vocabularies, and it sends the data to the
application in different messages. In all cases, however, the engine uses the SM WORD
structure to communicate relevant information about each word to the application (refer to
"Data Types" in the API Reference for a description of the SM WORD data type).

When the engine finds the best match for a spoken word in a command vocabulary, the
decoded word and the alternative choices made by the engine are stored in an array of
SM WORD structures and sent to the application in an SM RECOGNIZED WORD mes-
sage. After sending the SM RECOGNIZED WORD message, the engine stops decoding
until the application calls SmRecognizeNextWord. Use SmGetFirmWords to retrieve the
recognized text from the message.

When the engine finds the best match for a spoken word in a grammar vocabulary, it creates
an array of SM WORD structures containing the decoded word and alternative choices and
passes it to the application in an SM RECOGNIZED PHRASE message. After sending
the SM RECOGNIZED PHRASE message, the engine stops decoding until the application
calls SmRecognizeNextWord. Use SmGetFirmWords to retrieve the recognized text from
the message.

When the engine finds the best match for a spoken word in a dictation vocabulary, it
creates an array of SM WORD structures for the firm words, and returns this array in
an SM RECOGNIZED TEXT message. To improve accuracy during dictation, the en-
gine uses the neighboring words to help in its selection of the best decoded word. After
sending the SM RECOGNIZED TEXT message, the engine continues decoding, and sends
additional, asynchronous SM RECOGNIZED TEXT messages as subsequent words are rec-
ognized. Use SmGetFirmWords to retrieve the recognized text from the message.

If a recognized word occurs in two or more vocabularies enabled at the same time, the
engine selects the word from the more recently enabled command or grammar vocabulary.
Command vocabularies always override dictation vocabularies. When a recognized word
occurs in a command vocabulary and a dictation vocabulary that are enabled at the same
time, the engine selects the command vocabulary word. As a result, if a command vocab-
ulary with a single word (such as "Stop Dictation") is enabled during a dictation session,
the user can indicate the end of the session with a spoken command.

If a word from a command vocabulary follows words from a dictation vocabulary, the engine
sends an SM RECOGNIZED TEXT message before it sends the SM RECOGNIZED WORD
message.

13.2.2.2 Handling Rejections

Occasionally, the engine cannot adequately match an input sound against any word in
the defined vocabularies. This might be caused by an out-of-vocabulary command, or
by extraneous noise or speech. The engine returns an indication of these events to the
application, so that it can inform the user that some sound was processed, and it was
rejected.

103 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

The rejection is conveyed through an SM RECOGNIZED WORD message with an empty
word spelling string and an empty vocabulary name string. As with all the other
SM RECOGNIZED WORD messages, the engine then halts, waits for any vocabulary
state changes from the application, then continues on an SmRecognizeNextWord call.

Consequently, all applications need to define a handler for the SM RECOGNIZED WORD
message (or SmRecognizedWordCallback), even if no dynamic command vocabularies are
defined. This handler should, at a minimum, issue the SmRecognizeNextWord call when
processing a rejection.

13.2.2.3 Command and Grammar Vocabulary Processing

The engine decodes command and grammar vocabulary utterances one at a time without
using the context of surrounding words. The application explicitly controls speech recogni-
tion. It requests the next recognized word from the engine. The engine returns the word,
then halts and waits for further instructions from the application.

The following is a summary of the command and grammar vocabulary processing:

1. To receive recognition results, the application must have speech focus, so it calls Sm-
RequestFocus and waits for notification through an SM GRANTED FOCUS message,
which also indicates the current microphone state (on or off).

2. The application calls SmMicOn (if it is not already on), and the engine begins process-
ing audio data.

3. The application calls SmRecognizeNextWord.
4. The engine starts running, processing the audio stream until a word is recognized.
5. When the engine recognizes a word, it sends a message to the application. If the word

is in a command vocabulary, the message is SM RECOGNIZED WORD. If the word
is in a grammar vocabulary, the message is SM RECOGNIZED PHRASE.

6. The engine then stops decoding and waits for further instructions from the applica-
tion. While waiting for further instructions from the application, the engine continues
capturing audio.

7. The application extracts the recognized text from the message using SmGetFirmWords
and determines what to do next. For dynamic command vocabularies, alternatives are
provided along with the recognized word, and those alternatives can be extracted with
the SmGetAlternates function. For grammar vocabularies, SmGetAnnotations can be
used to extract annotation data for phrases.
At this point, the application can change the set of potentially recognizable words to fit
the current context by changing the currently enabled vocabularies. This is especially
useful when a user traverses different menus, changing the set of potentially recognizable
words with each menu command. The application can modify, enable, disable, define,
and undefine several different vocabularies at this time.

8. Repeat steps 3 through 7 as often as necessary based on the user’s actions.
9. When the application needs to stop recognition, it calls SmMicOff. The engine stops

reading new data from the audio source, but there could still be audio data remaining
to be processed. To ensure that it has handled all of the user’s spoken input, the

104 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

application should continue calling SmRecognizeNextWord and processing the returned
words.

10. When all the buffered audio data has been processed by the engine, it sends an
SM UTTERANCE COMPLETED message to the application. This message does not
change the engine state. Any pending SmRecognizeNextWord call is still valid after
an SM UTTERANCE COMPLETED has been received. For more information about
how the recognition engine processes audio input, refer to Section 13.2.6 [Processing
Speech Engine Audio], page 116.

13.2.2.4 Command Recognition Events

The following table presents an overview of the sequence of command recognition events.

105 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

User
Event Says Speech Application Speech Recognition Engine

0 Calls SmDefineVocabEx for
command vocabulary called
"People". Calls SmDefine-
Grammar for grammar vo-
cabulary called "Places".

Creates definition for the vocab-
ularies, and marks them "dis-
abled".

1 Calls SmEnableVocab for
"People".

Marks "People" vocabulary "en-
abled"

2 Calls SmRequestFocus
(synchronous).

3 Assigns speech focus to
application, and sends
SM FOCUS GRANTED mes-
sage.

4 Calls SmMicOn (synchronous). Starts capturing and buffering au-
dio input stream

5 "Smith"

6 "Miami"

7 Calls SmRecognizeNextWord
(synchronous).

Starts speech-to-text decoding of
audio input stream.

8 Recognizes "Smith". Sends
SM RECOGNIZED WORD re-
ply message loaded with "Smith"
to application. Stops speech-
to-text decoding of audio input
stream.

106 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

9 Calls SmGetFirmWords
to extract "Smith" from
SM RECOGNIZED WORD.
Determines that it needs
to switch active vocabular-
ies. Calls SmDisableVocab
(synchronous) for "People"
vocabulary.

Marks "People" vocabulary "dis-
abled".

10 Calls SmEnableVocab (syn-
chronous) for "Places"
vocabulary.

Marks "Places" vocabulary "en-
abled".

11 Calls SmRecognizeNextWord
(synchronous).

Starts speech-to-text decoding of
audio input stream from last rec-
ognized word.

12 Recognizes "Miami". Sends
SM RECOGNIZED PHRASE
message loaded with "Miami" to
the application. Stops speech-
to-text decoding of audio input
stream.

13 Calls SmGetFirmWords
to extract "Miami" from
SM RECOGNIZED PHRASE.

N Calls SmMicOff. Terminates capture of audio input
stream.

Last When the entire audio input
stream has been processed for
recognized words, sends an
SM UTTERANCE COMPLETED
message to the application. Pend-
ing SmRecognizeNextWord is still
valid.

Please note:

• The function calls are assumed to be successful.

• When function calls are made synchronously, the API waits until the associated reply
message has been received from the engine, then copies it to the reply message pointed
to by the last parameter of this call.

107 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

• N is a variable denoting the event number and it depends on whether the event is
synchronous or asynchronous.

The following code sample illustrates the code required to initiate command or grammar
recognition after vocabularies have been enabled.

SM_MSG reply;
int rc;

// Turn on microphone to capture audio input stream of user
rc = SmMicOn(&reply); // synchronous form

if (rc == SM_RC_OK) { // SmMicOn successful
/*--*/
/* Decode audio input stream for first recognized word */
/* Note: SmRecognizeNextWord must be called for each word */
/* in the audio input stream to be recognized */
/*--*/
rc = SmRecognizeNextWord(&reply); // synchronous form

if (rc != SM_RC_OK) {
// Error processing goes here...

}
}

The following code sample illustrates code on Windows to process messages from the speech
recognition engine.

108 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

SM_MSG sm_msg;
int sm_msg_type, rc, i;
ULONG num_firm_words;
SM_WORD *firm_p;
switch (msg) {
case WM_COMMAND:

switch (wParam) {
/** CONNECT_ID is an application-defined value set
** when the current session was established. **/
case CONNECT_ID:

SmReceiveMsg(lParam, &sm_msg);
SmGetMsgType (sm_msg, &sm_msg_type);
switch (sm_msg_type) {

case SM_RECOGNIZED_WORD:
SmGetRc(sm_msg, &rc); // verify no error
if (rc == SM_RC_OK) {

// retrieve the firm words
SmGetFirmWords(sm_msg, &num_firm_words, &firm_p);

}
return 0;

case SM_RECOGNIZED_PHRASE:
SmGetRc(sm_msg, &rc); // verify no error
if (rc == SM_RC_OK) {

// retrieve the firm words
SmGetFirmWords(sm_msg, &num_firm_words, &firm_p);
// for all the firm words in the list
for (; num_firm_words-- > 0; firm_p++) {

// Process firm words here...
}

}
return 0;

case SM_UTTERANCE_COMPLETED:
SmGetRc (sm_msg, &rc); // check for error
if (rc != SM_RC_OK) {

// Error processing goes here...
}
return 0;

default:
break;

}
break;

default:
break;

}
break;
default:
return (DefWindowProc(hwnd, msg, wParam, lParam));

}

109 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

13.2.2.5 Dictation Vocabulary Processing

When processing words from a dictation vocabulary, the engine uses a word-usage model,
merging a score based on the context of the surrounding words with an acoustic score.
The dictation recognition process can be summarized as follows:
1. Call SmEnableVocab to enable a dictation vocabulary.
2. Call SmDefineVocabEx and SmEnableVocab to set up a command vocabulary contain-

ing a word that will allow the user to stop dictation using a spoken command.
3. Call SmRequestFocus to secure speech focus.
4. Call SmMicOn to start audio processing.
5. Call SmRecognizeNextWord to start the engine running, looking for words to decode.
6. If the engine recognizes a word from a dictation vocabulary, the available decoded

words are sent to the application in a SM RECOGNIZED TEXT reply structure.
7. The SM RECOGNIZED TEXT reply structure provides a list of firm words.
8. Use the SmGetFirmWords reply structure access function to retrieve the list of words

from the SM RECOGNIZED TEXT reply structure.
9. The engine continues decoding words as they are spoken. Refer to "Dictation Recog-

nition Events" below for a "map" of the dictation decoding speech process.
If the engine recognizes a word from a command vocabulary, the word is sent to the
application in a SM RECOGNIZED WORD reply structure. The engine halts and
waits for further instructions from the application.

10. Sometime after an SmMicOff call, the engine sends an unsolicited SM UTTERANCE COMPLETED
message to indicate the audio stream has been processed. This message does not change
the engine’s state (running or halted). Any pending SmRecognizeNextWord call is still
valid after an SM UTTERANCE COMPLETED has been received.

For more details about audio, refer to Section 13.2.6 [Processing Speech Engine Audio],
page 116.

13.2.2.6 Dictation Recognition Events

The following table shows an overview of dictation recognition events:

110 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

User
Event Says Speech Application Speech Recognition Engine

1 Calls SmEnableVocab to en-
able the dictation vocab-
ulary called "text." Calls
SmEnableVocab to enable
the command vocabulary
containing "Stop Dictation."
Calls SmDefineVocab to de-
fine the command vocabulary
containing "Stop Dictation."

Halted

2 Calls SmRequestFocus to get
the speech focus.

3 Sends SM FOCUS GRANTED to
application.

4 Calls SmMicOn to begin au-
dio processing (synchronous).

Starts capturing audio input
stream.

5 Calls SmRecognizeNextWord
(synchronous).

Starts speech-to-text decoding of
audio input stream.

6 "sales"

7 "are"

8 "up"

9 Sends SM RECOGNIZED TEXT
reply message loaded with the
firm word "sales" to application.

10 Calls SmGetFirm-
Words to extract firm
word "sales" from the
SM RECOGNIZED TEXT
message.

111 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

11 "period"

12 "Stop
dictation"

13 Recognizes "StopDictation" from
command vocabulary. Sends
SM RECOGNIZED TEXT re-
ply message loaded with the
firm words "are", "up", and
"." to application. Sends
SM RECOGNIZED WORD re-
ply message loaded with the
"StopDictation" to application.
Speech-to-text decoding halts and
engine waits for further instruc-
tions.

14 Calls SmGetFirmWords to
extract firm words "are",
"up", and "." from the
SM RECOGNIZED TEXT
message. Calls SmGet-
FirmWords to extract the
command word "Stop-
Dictation" from the
SM RECOGNIZED WORD
message.

15 Calls SmMicOff (synchronous). Stops capturing audio input.

16 Calls SmRecognizeNextWord
(synchronous) repeatedly to
get all recognizable words
from remaining audio in-
put stream. Calls SmGet-
FirmWords to extract rec-
ognized words from each
SM RECOGNIZED WORD
message received.

Starts speech-to-text decoding
with last recognized word. Sends
SM RECOGNIZED WORD for
each word found.

112 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

Last The entire audio input stream
has been processed for recog-
nized words. Sends an unsolicited
SM UTTERANCE COMPLETED
reply message to the applica-
tion. Any pending SmRecog-
nizeNextWord is still valid.

Please notes:

• The function calls are assumed to be successful.

• When function calls are made synchronously, the API waits until the associated reply
message has been received from the engine, then copies it to the reply message pointed
to by the last parameter of this call.

• The precise sequence of events on this chart may not be reproducible.

The following code sample illustrates the statements required to initiate dictation recogni-
tion.

SM_MSG reply;
int rc;

/*--*/
/* Turn on microphone to capture audio input stream of user. */
/*--*/
rc = SmMicOn (&reply); // Synchronous form

if (rc == SM_RC_OK || rc == SM_RC_MIC_ALREADY_ON)
{

// Start decoding audio to get recognized words
rc = SmRecognizeNextWord(&reply); // Synchronous form

if (rc != SM_RC_OK)
{

// Error processing goes here...
}

}

The following code sample illustrates the code on Windows to handle messages from the
speech recognition engine.

113 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

SM_MSG sm_msg;
int sm_msg_type, rc, i;
ULONG num_firm_words;
SM_WORD *firm_p;
switch (msg) {
case WM_COMMAND:

switch (wParam) {
/** CONNECT_ID is an application-defined value set
** when the current session was established. **/
case CONNECT_ID:

SmReceiveMsg(lParam, &sm_msg);
SmGetMsgType(sm_msg, &sm_msg_type);
switch (sm_msg_type) {

case SM_RECOGNIZED_TEXT:
SmGetRc (sm_msg, &rc); // verify no error
if (rc == SM_RC_OK) {

// retrieve the firm words
SmGetFirmWords (sm_msg, &num_firm_words, &firm_p);
// for all the firm words in the list
for (; num_firm_words-- > 0; firm_p++) {

// Process firm word here...
}

}
return 0;

case SM_UTTERANCE_COMPLETED:
SmGetRc (sm_msg, &rc); // check for error
if (rc != SM_RC_OK) {

// Error processing here...
}
return 0;

default:
break;

}
break;

default:
break;

}
break;

default:
return (DefWindowProc (hwnd, msg, wParam, lParam));

}

13.2.3 Changing the Engine Decoding State

The engine is always in one of two decoding states:
1. When the engine is looking for words to decode, the decoding state is running.
2. When it is waiting for further instructions from the application it is halted.

114 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

The engine state changes from halted to running when the application calls SmRecog-
nizeNextWord. If the engine is already running when the application calls SmRecog-
nizeNextWord, it continues running.
The engine state changes from running to halted when any of the following events occurs:
• The application calls SmHaltRecognizer.
• The engine recognizes a word in a command or grammar vocabulary, and sends an

SM RECOGNIZED WORD or SM RECOGNIZED PHRASE message.
• The engine reaches an event synchronization point in the data stream and sends an

SM EVENT SYNCH message with the halt option to the application. The applica-
tion sets a halting event synchronization point by calling SmEventNotify with the
SM EVENT HALT RECOGNITION option.

Turning the microphone off does not change the engine state. The unsolicited SM UTTERANCE COMPLETED
sent to the application after an audio stream has been processed simply notifies the appli-
cation that the boundary has been crossed. If the engine was running when the microphone
was turned off, it continues decoding when the microphone is turned on again.

13.2.4 Setting/Querying Speech Engine Parameters

Use SmSet to set and fine-tune speech recognition engine and audio parameters (refer
to Section 13.2.6 [Processing Speech Engine Audio], page 116). For example, set the
SM REJECTION THRESHOLD parameter to achieve optimum recognition performance.
Use SmQuery to retrieve the current values for engine and audio parameters.
Refer to "SmSet" and "SmQuery" in the SMAPI Reference for a complete list of engine
parameters. On Windows the Properties program allows users to set various system pa-
rameters from Control Panel.

13.2.5 Improving Recognition by Updating Personal Data Files

Future recognition can be improved if the following personal data files are updated during
recognition:

Initial Personal Voice Model
A speaker-independent voice model is provided with ViaVoice. It can be up-
dated if the user completes the enrollment process.

Text Vocabulary User Extension
This file contains words that have been added to the dictation vocabulary of
a domain. It is updated during word correction and macro creation. Call
SmWordCorrection to update the vocabulary extension when the user corrects
an incorrectly recognized word.

Word-Usage Model User Extension
This file contains word-usage patterns derived from the user’s correctly dic-
tated text for the domain. It is updated when the user corrects a word. Call

115 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

SmWordCorrection to update the word-usage extension during a recognition
session. This is valid only for dictation vocabularies.

Pronunciation Pool User Extension
This file contains phonetic representations of the user’s personal vocabulary
for the appropriate language. It is updated during word correction and macro
creation. Call SmWordCorrection to update the pronunciation extension when
the user corrects an incorrectly recognized word. Call SmAddPronunciation
to update the pronunciation extension when the user wishes to create a new
pronunciation for a word.

Use these guidelines for updating a user’s personal voice model:

• Call SmQueryAlternates to provide alternative choices when incorrectly recognized
words are detected by the user during a recognition session.

Some notes about SmAddPronounciation:

• The SmAddPronunciation call requires an utterance. Create an utterance by turning
the microphone on, speaking the word, and then turning the microphone off. The
application must receive an SM UTTERANCE COMPLETED reply message before
making the call.

• This call takes an optional argument that holds a phonetic spelling for the word. This
argument indicates how the word is pronounced. Usually the phonetic (or "sounds-
like") spelling for a word can be determined from its actual spelling. For example,
"IBM" is pronounced "I B M" or "eye bee em". However, some words require that a
phonetic spelling be provided; for example, "NCAA" can be pronounced "N-C-double-
A". The engine might also need help with names such as "Gillian," which is pronounced
"jill-e-an", not "gill-e-an".

13.2.6 Processing Speech Engine Audio

This section summarizes the audio processing that occurs between calls to SmMicOn and
SmMicOff.

• Audio is sampled at 22 kHz and processed in real time.
• Up to 30 seconds of audio can be stored in an internal audio memory buffer.
• The audio saved to disk is used by the speech engine for playback and word correction.

It is not recommended that applications directly manipulate these audio files. If an
application has a requirement to use audio data captured during speech recognition it
can make use of the SMAPI function SmPlayWords which allows playback to an audio
file instead of an audio device. Refer to the SMAPI Reference for more information on
the SmPlayWords function.

• Audio is saved to disk at 11KB per second.
• The SmSet SM SAVE AUDIO parameter controls whether or not the audio is saved to

disk.
• Audio saved to disk can be freed with SmDiscardData.

116 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

While the SM SAVE AUDIO parameter specifies whether pulse code modulation (PCM)
audio is saved to disk, it also includes all of the data required to do correction. This data
includes tags and alternative words, as well as the processed audio data.
IMPORTANT:

SM SAVE AUDIO is false by default. The engine does not save session data by default
because it is processor and disk intensive. To save all session data, an application must first
call SmSet(SM SAVE AUDIO, TRUE, &reply). An application need not save all session
data. If an application requires playback but not word correction only the files required for
playback need to be saved. In this case the application calls SmSet (SM SAVE AUDIO,
SM SAVE AUDIO PLAYBACK, &reply). Refer to the SmSet function in the SMAPI
Reference for more information on various audio saving settings.
SM SAVE AUDIO takes effect only at microphone on/off boundaries, so the application
needs to toggle the microphone state appropriately. Note that all audio saving is turned off
when focus is lost, so an application will need to restore audio saving settings after regaining
focus.
These SmSet calls do not take effect until the next time the microphone is turned on, which
means that you must do the following to change the PCM saving state:
1. Set the desired PCM state.
2. If the microphone is on, turn it off.
3. Process SM RECOGNIZED WORD and SM RECOGNIZED TEXT messages until

SM UTTERANCE COMPLETED is received.
4. Turn the microphone on.

If the engine is running (meaning an SmRecognizeNextWord has been issued) and the micro-
phone is turned off, the engine will automatically continue decoding when the microphone
is turned on again (see also "Granting Focus" in Section 11.2 [Speech Focus], page 68).
Audio settings can be queried and set in all sessions.

13.2.7 Writing ViaVoice Applications to Save and Restore Speech
Sessions

Saving and restoring speech sessions is necessary to support certain functions. You must
save speech session data to support in-session correction (for example, tags must be saved if
you want to play back words for correction). Deferred and delegated correction also require
that speech session data be saved. In addition, the speech data must also be restored, since
these features allow for recognized text to be corrected at a later time or, perhaps, on a
different computer by a different user.
IBM SpeakPad is an example of an application that saves and restores speech data. It
creates a VPS file, which includes both engine and application state data. The Microsoft
Word dictation feature also saves application and engine state data in the DOC file normally
created by Word.
The ViaVoice SDK SMAPI includes SmSaveSpeechData and SmRestoreSpeechData. These
two SMAPI functions are used to save the audio (PCM) data required by the engine, along

117 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

with other ViaVoice engine state data required to restore the engine session. This other
data includes tags that provide an index into the PCM audio data, processed audio data,
and list(s) of alternative words. The processed audio data is used for adding words and is
stored to prevent the need to reprocess the PCM audio data.
SmSaveSpeechData and SmRestoreSpeechData should be called asynchronously, as they can
take a fairly long time to complete. The engine spawns a thread to handle the save/restore,
and will continue to service requests from other speech-aware applications. To avoid chang-
ing the engine state underneath the save/restore, though, any additional API calls from
the application session requesting the save/restore are blocked. They get a return code of
SM RC NOT VALID REQUEST.
If you are writing a ViaVoice application that implements any kind of correction on a saved
session, you must design and implement saving and restoring the application state yourself,
along with using the SmSaveSpeechData and SmRestoreSpeechData SMAPI functions for
the engine state. The items you must store yourself are:
• Recognized text
• Rich text data (such as font)
• User, enrollment, and task identification from SmConnect reply
• After an SmRecognizeNextWord call, word tags from SmGetFirmWords and most re-

cent utterance number from SmGetUtteranceNumber
• Anything else it takes to restore the application state

13.2.8 Handling Speech Engine Errors

The speech recognition engine uses the SM REPORT ENGINE ERROR reply message to
notify the application of errors. This reply structure includes error severity, which can
be extracted with SmGetSeverity, and a specific error code, which can be extracted with
SmGetRc. (For more information, refer to Chapter 11 [Session Sharing], page 67.) The
severity can be one of the following values:

SM ENGINE INFO
This is purely an informational message and can be safely ignored. Applications
that are logging information might want to add this to their log.

SM ENGINE WARNING
The engine has detected an error that did not cause it to shut down (for example,
input audio buffer overflow). Some of these errors cause the engine to turn off
the microphone, so the application might need to turn it back on.

SM ENGINE ERROR
The engine has detected a serious error and might not be able to resume normal
operation.

SM ENGINE TERMINAL ERROR
The engine has suffered an unrecoverable failure and has been shut down. The
application no longer has access to speech recognition, and must re-initialize its
connection to the engine.

118 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

The following code sample shows how to process engine errors on Windows.

119 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

SM_MSG sm_msg;
int sm_msg_type, rc;
unsigned long severity, micstate;
switch (msg) {
case WM_COMMAND:

switch (wParam) {
/** CONNECT_ID is an application-defined value set
** when the current session was established. **/
case CONNECT_ID:

SmReceiveMsg (lParam, &sm_msg);
SmGetMsgType (sm_msg, &sm_msg_type);
switch (sm_msg_type) {

// speech recognition engine error occurred
case SM_REPORT_ENGINE_ERROR:

// determine error severity
SmGetSeverity (sm_msg, &severity);
switch (severity) {

// The engine has detected a non-terminal error
// such as SM_RC_BAD_DECO or SM_RC_AUDIO_OVERRUN,
// and has returned the state of the microphone
case SM_ENGINE_WARNING:

// Check if microphone was forced off by engine
SmGetMicState (sm_msg, &micstate);
if (micstate == SM_ENGINE_MIC_OFF) {

// Turn the microphone back on...
}
return 0;

// The engine has terminated because of an unrecoverable
// error such as SM_RC_SERVER_TERMINATED
case SM_ENGINE_TERMINAL_ERROR:

// Error processing here...notify user.
return 0;

default: // Ignore other cases...
return 0;
break;

} // switch severity
break;

default:
break;

} // switch sm_msg_type
break;

default:
break;

} // switch wparam
break;

default:
return (DefWindowProc (hwnd, msg, wParam, lParam));

} // switch msg

120 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

13.2.9 Playing Audio through the Speakers

You can use the following SMAPI function calls to program your application to play audio
through the speakers:

SmPlayMessage
Plays a prerecorded audio file. This should be used sparingly. With multimedia
machines, new applications should use the facilities provided by the operating
system.

SmPlayUtterance
Plays back audio captured between SmMicOn and SmMicOff calls. Requires
SmSet(SM SAVE AUDIO, TRUE, &reply).

SmPlayWords
Plays back one or more spoken words. This is typically used for word correc-
tion during dictation or enrollment. It is done on a per-tag basis. Requires
SmSet(SM SAVE AUDIO, TRUE, &reply).

Please note:

The following restrictions apply to the SmPlay function calls:
• These calls can play only the audio files recorded by the recognition engine. They

cannot be used to play other audio files.
• The microphone must be off, since the engine assumes a half-duplex audio system. For

further information, refer to "SmMicOff" in the API Reference.
• The speech recognition engine must not be decoding speech to text. In other words, the

application must have received SM UTTERANCE COMPLETED from the engine.

All of the SmPlay functions work in a similar manner:
1. The application calls the SmPlay function.
2. When the file begins to play, the engine sends an SM PLAY ... STATUS message con-

taining a status value indicating that playback has begun successfully. Use SmGetSta-
tus to retrieve the status value from the message.

3. When the file finishes playing, the engine sends another SM PLAY ... STATUS message
indicating successful completion.

4. If there is an error at any time during this process, the engine sends an SM PLAY ... STATUS
message containing an error code.

5. There is a new function that allows you to play audio to a file in a standard audio
file format. Please refer to SmPlayWords in the SMAPI Reference Manual, for more
information.

13.3 Termination Phase

During the termination phase, the speech-aware application disconnects from the speech
recognition engine and closes the speech session.

121 SMAPI Developer’s Guide

Chapter 13: Programming Tasks

13.3.1 Disconnecting from the Speech Engine

SmDisconnect breaks the connection between the application and the speech recognition
engine. If SmClose has not been called, you can reconnect to the engine by calling SmCon-
nect. The speech attribute values passed to SmOpen are still valid, but the ones passed to
SmConnect are not. For information about how to set the speech attributes, see Section 13.1
[Initialization Phase], page 89.
When disconnecting from a recognition session, you can use speech attributes to specify
whether to do one of the following:
• Discard or save data accumulated during dictation. You can discard the data to free

disk space, or you can save the data to use for error reporting.
• Reset the user’s personal voice model to its previous state.

An application can disconnect from the speech recognition engine with the following code
fragment:

int rc;
SM_MSG reply;

/*--*/
/* Disconnect from the speech recognition engine. */
/*--*/

rc = SmDisconnect (0, NULL, &reply);
if (rc != SM_RC_OK) {

// Error processing goes here...
}

13.3.2 Closing the Speech Session

Use SmClose to end the speech session. An application can close the speech session with
the following code fragment. The internal connection structure, allocated and initialized
with SmOpen, is freed with SmClose, and all the speech session attributes are purged.

int rc;

/*--*/
/* Close the speech session */
/*--*/
rc = SmClose ();
if (rc != SM_RC_OK) {

// Error processing goes here...
}

122 SMAPI Developer’s Guide

Chapter 14: Overview of the SMAPI Grammar Compiler API

14 Overview of the SMAPI Grammar Compiler
API

The SMAPI Grammar Compiler API is a set of C-language functions that allows developers
to compile grammars from within their applications. The Compiler API is intended for use
in command and control applications written for ViaVoice. A good understanding of the
ViaVoice Speech Manager API (SMAPI) is assumed.
The Compiler API is provided as a separate library from SMAPI.
To compile applications that use the Compiler API, include the header file, VTBNFC.H,
which contains all of the necessary definitions. On Windows, be sure to include VTBNFC.H
after the standard Windows include files. Also, depending on your build environment,
you might need to set the INCLUDE environment variable to point to the path where
VTBNFC.H is located, or otherwise specify this path (such as on the compiler command
line.) Likewise, you will need to add VTBNFC31 to the link step of your product build.
If your application uses the Compiler APIs, you need to include the library with your
application. The ViaVoice Run Time Kit includes VTBNFC31.

123 SMAPI Developer’s Guide

Chapter 14: Overview of the SMAPI Grammar Compiler API

124 SMAPI Developer’s Guide

Chapter 15: SMAPI Grammar Compiler Programming Tasks

15 SMAPI Grammar Compiler Programming
Tasks

The Compiler API offers functions to perform the following tasks:
• Setting up Compiler argument structures
• Compiling SMAPI grammars
• Handling compilation errors

An application may need to compile a grammar programmatically if the grammar cannot be
determined completely when the application is developed (in other words, the grammar is
determined at run time.) Dynamic vocabularies provide a similar capability, but are much
less flexible than grammars compiled at run time.
For more information on the syntax and parameters of the individual Grammar Compiler
API calls, refer to "Grammar Compiler API Function Calls" in the IBM SMAPI Reference.

15.1 Setting up SMAPI Grammar Compiler Argument
Structures

The command-line version of the SMAPI Grammar Compiler supports several parameters.
These parameters are passed to the VtCompileGrammar call in an argument structure (of
type VtArg). Use VtAddArg and VtSetArg to set up the argument structure used by
VtCompileGrammar.
The argument structure specifies the input BNF file and, optionally:
• The output FSG file
• Whether the non-uniform probability computation is to be used for the grammar
• The output FSG directory, if multiple roots are supported in the grammar
• Whether embedded silences and mumbles are allowed within the words of phrases in

the grammar

For more information on Compiler parameters, refer to Chapter 5 [SMAPI Grammar Com-
piler], page 37.

15.2 Compiling Grammars

Use VtCompileGrammar to compile a grammar from within your application. VtCompi-
leGrammar converts a BNF file to an FSG using the options specified in the argument
structure.

15.3 Handling Compilation Errors

Use VtGetMessage whenever you receive a return code other than zero from VtCompi-
leGrammar. VtGetMessage provides error and warning information that can be used to
determine the cause of the error and also the appropriate action for your application to
take.
The information returned by VtGetMessage is the same information returned by the
command-line SMAPI Grammar Compiler.

125 SMAPI Developer’s Guide

Chapter 15: SMAPI Grammar Compiler Programming Tasks

126 SMAPI Developer’s Guide

Chapter 16: Overview of the Custom Audio Library

16 Overview of the Custom Audio Library

The audio library functions must be packaged as a library, On Windows this is a Dy-
namically Linked Library (DLL), on Unix based systems it is a shared library. The
implementation of the audio library functions are determined by the requirements of the
application developer. The audio library will be loaded by the engine upon the first client
connection. The engine will then resolve audio library exported function addresses. The
audio library will be unloaded by the engine when the last client disconnects and a new
client connects specifying a different userid, enrollid, taskid, or audio source specification
from that with which the engine is currently initialized. The engine will also unload the
audio library when the engine is terminating.
A client application sets the SmNaudioHost argument (using SmSetArg) before calling
SmConnect to specify the audio source. Note that the argument values for SmConnect are
preserved. This means after setting the Audio Host for a connection, all future connections
from the same client will use the previously set Audio Host. Therefore, if the client needs
to connect to the default audio library after connection to a custom Audio Host, the client
must set the SmNaudioHost argument to an empty string ("") to reset the Audio Host
argument to its default value.
The format for the audio source string is defined as:

type;dllname;key;init_str

This is a zero delimited string with semicolons separating the individual fields. The fields
are defined:

type The type of audio data. Current valid values are pcm, cep. If not specified,
default is pcm.

dllname The name of audio library to load. If not fully qualified, on Windows, the
engine will attempt to load the library from the directory specified by the value
of registry key

HKEY_LOCAL_MACHINE/SOFTWARE/IBM/VoiceType/Engine/Directories/Bin

(e.g., C:\ViaVoice\Bin). On Unix based systems the engine will load the audio
library from the directory specified by the SPCH BIN environment variable. If
no library name is specified, on Windows the default is audmme.dll, on Unix
based systems the default is audany.dll, except on Linux where the default is
audlinux.so.

key It is now possible for multiple speech recognition engines to run on the same
machine. This allows, for instance, one client application to connect to an
engine performing live audio speech recognition, while another client application
is connected to a different engine which gets audio data from a telephony card.
The key is used to specify whether to connect to an existing engine or autostart
another. The key must consist of alphanumeric characters and must not exceed
256 characters in length. If a key is not specified, the connect request will
be sent to a running engine which was started without a key (or one will be
autostarted if one is not running). If a key is specified, the connect request will
be sent to a running engine started with this key (or one will be autostarted).

127 SMAPI Developer’s Guide

Chapter 16: Overview of the Custom Audio Library

init str Application data sent to audio library in first argument of AudioConnect func-
tion.

If the SmNaudioHost argument is not set before connecting, the default behavior is for the
engine to process live pcm audio data.
Each buffer of audio data returned to the engine via the AudioGetPCM function must be
divided into blocks. Each block must have a block header at the beginning of the block of
length PCM HEADER LENGTH. Values for samples per block, block volume, total bytes
per block and data bytes per block must be in this header. See SMAUDIO.H for header
definitions.
The block headers should be created using these defines:

#define PCM_HEADER_LENGTH 26 /* Bytes in header,13 shorts */
#define PCM_HEADER_OFFSET_SAMPLES 2 /* Complete samples/block */
#define PCM_HEADER_OFFSET_VOLUME 3 /* Block volume */
#define PCM_HEADER_OFFSET_PCM_LENGTH 11 /* PCM bytes per block */
#define PCM_HEADER_OFFSET_DATA_LENGTH 12 /* Data bytes per block */

The header is PCM HEADER LENGTH bytes long, an array of 13 shorts. The other
defines are indexes into that array. The PCM HEADER OFFSET PCM LENGTH and
PCM HEADER OFFSET DATA LENGTH should hold the same values. This determines
the size of the block and should be one of the following depending on the sampling rate:

#define PCM_BLOCK_LENGTH8 2020 /* 8 khz block size */
#define PCM_BLOCK_LENGTH11 3030 /* 11 khz block size */
#define PCM_BLOCK_LENGTH22 6102 /* 22 khz block size */

The PCM HEADER OFFSET SAMPLES should then be the number of samples in a
block. With 16 bit pcm this would be PCM HEADER OFFSET PCM LENGTH / 2. The
PCM HEADER OFFSET VOLUME is the maximum absolute value of all pcm samples in
the block.

128 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17 Audio Library Functions

The following twenty functions, which are declared in SMAUDIO.H, define the interface
between the engine and audio library. The first ten are required. If any of them are not
resolvable after loading the audio library the connect request will fail with a return code
of SM RC BAD AUDIO. The other ten are optional. If any of them are not resolvable, a
default handler will be used in its place. If the default handler is called, it will log a warning
and return with a return code of SM RC NOT VALID REQUEST.
When developing an audio library in conjunction with an application it is strongly recom-
mended that the audio library implement all optional audio functions which will be called
as a result of SMAPI requests made by that application.
All return values must be defined in the SMRC.H file.

17.1 Required Functions

The following 10 functions must be implemented in an audio library.
AudioConnect Function
AudioCreate Function
AudioDestroy Function
AudioDisconnect Function
AudioGetPCM Function
AudioPutPCM Function
AudioStartPlayback Function
AudioStartRecording Function
AudioStopPlayback Function
AudioStopRecording Function

129 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.1.1 AudioConnect

Called as a result of an SmConnect SMAPI request. This function is used to establish a
connection between the engine and the audio source.

int AudioConnect (const char *source,
const char *client_name,
int *handle,
int sample_rate,
int file_format,
int *data_size,
int *byte_order,
const char **signature,
char *cepslan_data);

source Input - implementation dependent initialization data from init str field of audio
source string.

client name
Input - Reserved

handle Output - Reserved, must return -1.

sample rate
Input - Identifies sample rate determined by initialized domain.

file format
Input - Identifies cep or pcm file format. Derived from type field of audio source
string.

data size Output - Returns block data size. Must be greater than 28 and less than 30000.

byte order Output - Returns block byte order. Valid values are PCM BYTEORDER LOBYTE FIRST
and PCM BYTEORDER HIBYTE FIRST (see SMAUDIO.H).

signature Output - Returns audio format signature which will be written to file header
of output pcm files. Must be alphanumeric and no longer than 8 characters.

cepslan data
Input - Reserved

Any non-zero return code returned by this function will be mapped to SM RC BAD AUDIO
and returned via the SmConnect reply.

130 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.1.2 AudioCreate

Called as a result of an SmConnect SMAPI request. Used for initialization or instantiation
of audio class in an object design audio library. This function will be called before any other
audio library function.

int AudioCreate (const char *channel_name,
FILE *file_handle,
int audio_log_level);

channel name
Input - Reserved

file handle Input - File pointer to system log file.

audio log level
Input - Defines level of logging in audio library. Set with audio log level tag in
audio stanza of engine.cfg.

Return code is not passed back to application through SMAPI.

131 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.1.3 AudioDestroy

Called as a result of an SmDisconnect SMAPI request. Used for termination. Audio class
destructors can be invoked by this function in an object design audio library. No other
audio library functions will be called after this one until a new SmConnect request is made
and the AudioCreate function is called.

void AudioDestroy (void);

132 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.1.4 AudioDisconnect

Called as a result of an SmDisconnect SMAPI request. This function will break an estab-
lished connection between the engine and the audio source.

int AudioDisconnect (void);

Return code is not passed back to application through SMAPI.

133 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.1.5 AudioGetPCM

Called repeatedly as a result of an SmMicOn request. This function will return audio data
from the audio source to the engine.

int AudioGetPCM (char *block_buffer,
long max_bytes,
long *new_bytes,
int *end_of_pcm);

block buffer
Input - Points to buffer for audio data.

max bytes Input - Size of buffer for audio data.

new bytes Output - Number of bytes of data returned in buffer.

end of pcm
Output - Indicates if more data available. 0 = more data, 1 = no more data.

Return codes other than SM RC OK will be passed back to application via SM REPORT ENGINE ERROR
SMAPI message.

134 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.1.6 AudioPutPCM

Called repeatedly as a result of an SmPlayMessage, SmPlayUtterance, or SmPlayWords
SMAPI request. This function will send audio data from the engine to the audio sink.

int AudioPutPCM (char *block_buffer,
long number_of_bytes);

block buffer
Input - Points to buffer containing audio data.

number of bytes
Input - Specifies number of bytes of audio data.

Return code is not passed back to application through SMAPI.

135 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.1.7 AudioStartPlayback

Called as a result of an SmPlayMessage, SmPlayUtterance, or SmPlayWords SMAPI re-
quest. This function will begin the flow of audio data from the engine to the audio sink.

int AudioStartPlayback (void);

Return code is not passed back to application through SMAPI.

136 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.1.8 AudioStartRecording

Called as a result of an SmMicOn SMAPI request. This function will begin the flow of
audio data from the audio source to the engine.

int AudioStartRecording (unsigned long *time_zero,
int report_errors);

time zero Output - Returns timestamp indicating when pcm begins to flow. This wall
clock timestamp is the number of milliseconds since the operating system was
started.

report errors
Input - Indicates whether to report audio overruns.

Return code will be passed back to application via SmMicOn reply.

137 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.1.9 AudioStopPlayback

Called as a result of an SmCancelPlayback SMAPI request. This function will stop the flow
of audio data from the engine to the audio sink.

int AudioStopPlayback (int flush_output);

flush output
Input - Indicates whether to flush playback buffers in the audio library.

Return code is not passed back to application through SMAPI.

138 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.1.10 AudioStopRecording

Called as a result of an SmMicOff SMAPI request. This function will stop the flow of audio
data from the audio source to the engine.

int AudioStopRecording (void);

Return code is not passed back to application through SMAPI.

139 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.2 Optional Functions

The following ten functions are not required but are supported by the engine to allow
additional communication between an application (or the engine) and the audio library.

AudioGetHandle Function
AudioQueryConfig Function
AudioQueryDevices Function
AudioQuerySource Function
AudioSetDevice Function
AudioSetInput Function
AudioSetInputGain Function
AudioSetOutput Function
AudioSetOutputGain Function
AudioSetSource Function

140 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.2.1 AudioGetHandle

Called as a result of an SmConnect SMAPI request. This function is used to return an
audio device handle to the engine.

int AudioGetHandle (void);

returns audio handle via return value.
Return code is not passed back to application through SMAPI.

141 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.2.2 AudioQueryConfig

Called as a result of an SmQuery SMAPI request with an item value of SM AUDIO CONFIGURATION.
This function is used to return a bit map representing the current audio configuration. (ie
input mic/line, input gain, output speaker/line, output gain etc.)

int AudioQueryConfig (long *configuration);

configuration
Output - Returns bitmap of audio device configuration. Definition is imple-
mentation dependent and is not used by engine.

Return code will be passed back to application via SmQuery reply.

142 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.2.3 AudioQueryDevices

Called as a result of an SmQuery SMAPI request with an item value of SM AVAILABLE AUDIO DEVICES.
This function is used to return a bit map of available audio devices in the system.

int AudioQueryDevices (long *available_devices);

available devices
Output - Returns bitmap of available devices. Definition is implementation
dependent and is not used by engine.

Return code will be passed back to application via SmQuery reply.

143 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.2.4 AudioQuerySource

Called as a result of an SmQueryBinary SMAPI request with an item value of SM AUDIO SOURCE.
This function is used to query the value of data passed to the audio library via SMAPI. It
should return the value set via a call to AudioSetSource.

int AudioQuerySource (short *length,
void **value);

length Output - Returns length of data.

value Output - Returns audio source data.

Return code will be passed back to application via SmQueryBinary reply.

144 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.2.5 AudioSetDevice

Called as a result of an SmSet SMAPI request with an item value of SM AUDIO DEVICE.
This function is used to select an audio device for recording and playback.

int AudioSetDevice (long device);

device Input - Identifies audio device to use. Definition is implementation dependent
and is not used by engine.

Return code will be passed back to application via SmSet reply.

145 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.2.6 AudioSetInput

Called as a result of an SmSet SMAPI request with an item value of SM AUDIO INPUT MODE.
This function is used to specify how audio is input to the selected audio device.

int AudioSetInput (long input);

input Input - Identifies instance audio input (i.e., mic, line left, line right, etc).
Definition is implementation dependent and is not used by engine.

Return code will be passed back to application via SmSet reply.

146 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.2.7 AudioSetInputGain

Called as a result of an SmSet SMAPI request with an item value of SM AUDIO INPUT GAIN.
This function is used to set the input gain level.

int AudioSetInputGain (long gain);

gain Input - Identifies input gain. See smlimits.h for valid values.

Return code will be passed back to application via SmSet reply.

147 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.2.8 AudioSetOutput

Called as a result of an SmSet SMAPI request with an item value of SM AUDIO OUTPUT MODE.
This function is used to specify how audio is output from the selected audio device

int AudioSetOutput (long output);

output Input - Identifies audio output (i.e., speaker, line, etc)

Return code will be passed back to application via SmSet reply.

148 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.2.9 AudioSetOutputGain

Called as a result of an SmSet SMAPI request with an item value of SM AUDIO OUTPUT GAIN.
This function is used to set the output gain level.

int AudioSetOutputGain (long gain);

gain Input - Identifies output gain. See smlimits.h for valid values.

Return code will be passed back to application via SmSet reply.

149 SMAPI Developer’s Guide

Chapter 17: Audio Library Functions

17.2.10 AudioSetSource

Called as a result of an SmSetBinary SMAPI request with an item value of SM AUDIO SOURCE.
This function is used to pass data to the audio library from SMAPI. This function can be
used, for instance, to pass a file name to the audio library when performing file audio.

int AudioSetSource (short length,
void *value);

length Input - Specifies length of data.

value Input - Points to audio source data.

Return code will be passed back to application via SmSetBinary reply.

150 SMAPI Developer’s Guide

Appendix A: Notices

Appendix A Notices

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any reference
to an IBM product, program or service is not intended to state or imply that only that IBM
product, program, or service may be used.
Subject to IBM’s valid intellectual property or other legally protectable rights, any func-
tionally equivalent product, program, or service may be used instead of the IBM product,
program, or service.
The evaluation and verification of operation in conjunction with other products, except
those expressly designated by IBM, are the responsibility of the user.
IBM may have patents or pending patent applications covering subject matter in this docu-
ment. The furnishing of this document does not give you any license to these patents. You
can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armand, NY 10504-1785
USA

Asia-Pacific users can inquire, in writing, to the IBM Director of Intellectual Property and
Licensing, IBM World Trade Asia Corporation, 2-31 Roppongi 3-chome, Minato-ku, Tokyo
106, Japan.
Licensees of this program who wish to have information about it for the purpose of enabling:
(i) the exchange of information between independently created programs and other programs
(including this one) and (ii) the mutual use of the information which has been exchanged,
should contact IBM Corporation, Department T01B, 3039 Cornwallis, Research Triangle
Park, NC 27709-2195, USA. Such information may be available, subject to appropriate
terms and conditions, including in some cases, payment of a fee.

A.1 Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other
countries or both:

IBM
ViaVoice
VoiceType
Visual Age

Adobe Acrobat is a trademark or registered trademark of Adobe Systems Incorporated.
Intel and Pentium are trademarks or registered trademarks of Intel Corporation in the
United States and/or other countries.

151 SMAPI Developer’s Guide

Appendix A: Notices

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or registered
trademarks of Microsoft Corporation in the United States and/or other countries.
Other company, product, and service names may be trademarks or service marks of others.

152 SMAPI Developer’s Guide

Appendix B: Glossary

Appendix B Glossary

This glossary defines terms and abbreviations used in this publication. If you do not find
the term you are looking for, refer to the IBM Dictionary of Computing, SC20-1699.
This glossary includes terms and definitions from:
• The IBM Dictionary of Computing, New York: McGraw-Hill, copyright 1994 by Inter-

national Business Machines Corporation. Copies may be purchased from McGraw-Hill
or in bookstores.

• The American National Standard Dictionary for Information Systems, ANSI X3.172-
1990, copyright 1990 by the American National Standards Institute (ANSI). Copies
may be purchased from the American National Standards Institute, 1430 Broadway,
New York, New York 10018. Definitions are identified by the symbol (A) after the
definition.

• The Information Technology Vocabulary, developed by the Subcommittee 1, Joint Tech-
nical Committee 1, of the International Organization for Standardization and the Inter-
national Electrotechnical Commission (ISO/IEC JTC1/SC1). Definitions of published
parts of the vocabulary are identified by the symbol (I) after the definition; definitions
taken from draft international standards, committee drafts, and working papers being
developed by ISO/IEC JTC1/SC1 are identified by the symbol (T) after the definition,
indicating that final agreement has not yet been reached among participating National
Bodies of SC1.

A

API Application program interface.

application
1. A practical use for an information processing system, such as a payroll

application, an airline reservation application, or a network application.
2. A collection of software components used to perform specific types of work

on a computer.

application program
1. A program that is specific to the solution of an application problem. Syn-

onymous with "application software."(T)
2. A program written for or by a user that applies to the user’s work, such as

a program that does inventory control or payroll.
3. A program used to connect and communicate with stations in a network,

enabling users to perform application-oriented activities.

application programming interface (API)
1. A functional interface, supplied by the operating system or by a separately

licensed program, that allows an application program written in a high-
level language to use specific data or functions of the operating system or
the licensed program.

153 SMAPI Developer’s Guide

Appendix B: Glossary

2. The interface through which an application program interacts with an ac-
cess method.

C

coexistence
The ability of multiple speech-aware applications to interact with the speech
engine and the user on the same system.

command mode
The state of a speech-recognition system in which the user can speak commands.
The system interprets recognized words as voice commands. Contrast with
"dictation mode".

continuous speech
Speech spoken normally, during which the user does not pause between words,
but instead speaks words at a natural pace. Contrast with "isolated speech"
and "discrete speech".

customize To make a personal version of something, for example, a voice model.

D

dictation application
The window used to review and edit words recognized from dictation mode.
The words can be transferred to other applications. In ViaVoice, this is the
SpeakPad application.

dictation mode
The state of a speech-recognition system in which the user dictates text. The
system interprets all decoded words (except dictation voice commands) as text.
Contrast with "command mode".

discrete speech
Speech spoken with momentary pauses between words. Same as isolated speech.
Contrast with "continuous speech".

domain
1. In ViaVoice, an industry-specific set of vocabularies which have an as-

sociated set of pronunciations. When the term task is used in function,
attribute, and result code names, it is synonymous with domain.

2. A set of vocabularies and word-usage models designed to support a partic-
ular speech application. The ViaVoice product is shipped with a general
office domain for each language that ViaVoice supports; additional domains
are available.

domain ID
Domain identification. A short name (or identifier) that is uniquely associated
with a domain.

154 SMAPI Developer’s Guide

Appendix B: Glossary

dynamic vocabulary
In ViaVoice, a vocabulary created for the duration of the speech engine connec-
tion. The words in a dynamic vocabulary already have pronunciations either
in the domain or in the user’s personal vocabulary.

E

enrollment
The two-part process for identifying a person to the system. During the first
part, the person specifies an enrollment identifier and speaks a set of predefined
sentences into a microphone; these sentences are recorded. During the second
part, the speech engine analyzes the recorded sentences and creates a unique
personal voice model. This second part is also referred to as training.

enrollment ID
Enrollment identification. A unique name (or identifier) associated with a per-
son’s enrollment and to the speaker model created from it.

enrollment script
The set of predefined sentences that a person speaks into a microphone as part
of enrollment.

enrollment session
An invocation of the enrollment process, during which a user reads an enroll-
ment script and the speech system records it.

F

firm word A word definitely recognized during dictation and selected by the speech engine
as the best match for a spoken word. Contrast with "infirm word".

G

general office domain
A set of 20,000 to 30,000 words and their pronunciations, representative of
the office environment provided with ViaVoice. The general office domain is in-
tended for general dictation purposes. There is a general office domain provided
for each language supported by ViaVoice.

I

infirm word
A word that has been tentatively recognized during dictation and selected by
the speech engine as a preliminary match for a spoken word. The word could be
changed by the language model when subsequent words are recognized. Con-
trast with "firm word".

155 SMAPI Developer’s Guide

Appendix B: Glossary

isolated speech
A speech recognition method that requires the user to pause briefly between
each spoken word. Same as "discrete speech". Contrast with "continuous
speech".

M

macro A "voice" shortcut. For example, instead of saying each element of your home
address, you could define a dictation macro called "home-address" which, when
spoken, would display your home address. ViaVoice supports macros for both
command and control and dictation.

N

navigator session
Special command-recognition speech session that can operate without acquiring
speech focus. This permits the Navigator to handle commands for both speech-
enabled and speech-aware applications.

notification
Session-related (asynchronous) status messages generated by the speech engine
and sent to subscribing applications.

P

parallel sessions
A single speech-aware application has multiple connections to the speech engine.
See also "shared sessions".

personal voice model
The characteristics of an individual user’s speech patterns.

phoneme A unit of sound distinguished by linguists and also found in pronunciation
dictionaries. A phoneme has a variable duration of up to several seconds.

pronunciation
In ViaVoice, a possible phonetic representation of a word, stored in the speech
engine and referenced by one or more vocabulary words. A pronunciation is
a string of phonemes (units of sound) that represents how a given word is
pronounced. A word may have several pronunciations; for example, the word
"tomato" may have pronunciations "toe-MAH-toe" and "toe-MAY-toe".

R

recognition
In ViaVoice, when spoken words are understood by the speech system as text
or commands.

156 SMAPI Developer’s Guide

Appendix B: Glossary

S

shared sessions
When several speech-aware applications are connected to a single speech engine
at the same time. For example, shared sessions enable IBM’s navigator to work
on the desktop at the same time as your speech-aware application. See also
"parallel sessions".

speaker-dependent
A recognition technique in which the voice model is customized for a particular
user’s voice for best performance. Contrast with speaker-independent.

speaker-independent
A recognition technique in which the voice model is not customized for a par-
ticular user’s voice. Contrast with speaker-dependent.

speech-aware application
An application that has been designed or modified to respond to voice, such
as spoken commands or dictation. A speech-aware application directly accesses
the ViaVoice API to process speech. See also "speech-enabled application".

speech-enabled application
An application that relies on a separate speech-aware application to process its
speech input.

speech focus
In ViaVoice, the application that receives decoded audio from the engine.

speech engine
Part of ViaVoice; an application that performs all speech processing tasks and
maintains the acoustic and word-usage models.

T

template A type of dictation macro which can contain predefined fields into which a user
can dictate. Can be thought of as a form which can be filled in by speech.

training The second part of the enrollment process, during which the engine builds a
personal voice model using the voice data collected during the first part of
enrollment. See also "enrollment".

U

user ID User identification. A short name (or identifier) that is uniquely associated
with a user of ViaVoice.

user model
In ViaVoice, the word-usage- and user-dependent parameters created during an
enrollment session and used thereafter by the engine to recognize a user’s voice.

utterance In ViaVoice, any stream of speech between two periods of silence.

157 SMAPI Developer’s Guide

Appendix B: Glossary

V

vocabulary A set of words that can be made part of the active vocabulary. The words of a
vocabulary often share a common word-usage model.

voice model
A mathematical model that describes how phonetic units are pronounced. Used
by the recognition module of the speech engine. See also "speaker-dependent"
and "speaker-independent".

W

window
1. A portion of the display surface used to present images that pertain to a

particular application. Different applications can be displayed simultane-
ously in different windows.

2. An area of the screen, with visible boundaries, that displays information.
A window can be smaller than, or the same size as, the screen.

3. A division of the screen in which one of several programs being executed
concurrently can display information.

word-usage model
A database used by the speech engine to improve recognition performance dur-
ing dictation. A word-usage model is composed of word sequences that occur
with representative frequency in the written language. The speech engine uses
these word sequences during the process of matching sounds to the speaker’s
vocabulary to increase the probability that a word is correctly recognized within
the context of the dictation.

158 SMAPI Developer’s Guide

Index

Index

A
acceptance of utterances . 17

access functions, description 64, 81

access functions, notification messages 70

access functions, querying sessions 78

access functions, reply . 64

access functions, retrieving initialization values

. 78

access functions, SmGet* calls 81

access functions, SmReturn* calls 81

accessing data returned by function 64

acoustic processor . 3

active navigator session . 76

active vocabularies, changing state 81

active vocabulary, enabling 41

active words, specifying . 96

administrative functions . 81

allowable access functions . 81

allowable api calls . 81

allowable audio functions . 81

allowable callback functions. 81

allowable connection functions 81

allowable database functions 81

allowable dispatching functions 81

allowable session functions . 81

allowable vocabulary functions 81

annotations, defining . 18

annotations, supporting . 42

api calls, access functions . 81

api calls, allowable . 81

api calls, audio functions . 81

api calls, callback functions 81

api calls, connection functions 81

api calls, database functions 81

api calls, dispatching functions 81

api calls, parallel session . 87

api calls, session functions . 81

api calls, vocabulary functions 81

api version, verifying . 89

api, dictation macro . 5

application component, dictation 67, 68

application component, enrollment 67, 68

application interface, writing 9, 12

application programming interfaces 5

application, dictation, notification 45

application, focus . 81

application, navigation . 67

architecture of speech engine 3

asynchronous events . 55

asynchronous function calls with callbacks 58

asynchronous function calls without callbacks . . 58

asynchronous function calls, description 58

asynchronous status messages 41, 45

attribute functions . 81

attribute, SmSetArg function 81

audio configuration, current 142

audio data capture rates . 3

audio functions, description 81

audio input source module . 3

audio library entry point specifications 129

audio library functions, loading 127

audio, playing prerecorded file 121

audio, playing through speakers 121

audio, processing engine . 116

AudioConnect . 130

AudioCreate . 131

AudioDestroy . 132

AudioDisconnect . 133

AudioGetHandle . 141

AudioGetPCM . 134

AudioPutPCM . 135

AudioQueryConfig . 142

AudioQueryDevices . 143

AudioQuerySource . 144

AudioSetDevice . 145

AudioSetInput . 146

AudioSetInputGain . 147

AudioSetOutput . 148

AudioSetOutputGain . 149

AudioSetSource . 150

AudioStartPlayback . 136

AudioStartRecording. 137

AudioStopPlayback . 138

AudioStopRecording . 139

159 SMAPI Developer’s Guide

Index

B
Backus-Naur Form (BNF) syntax 18

basic command and control tasks 41

basic dictation tasks . 45

basic enrollment tasks . 51

BNF grammar file name . 37

building dictionary . 9

building distributable runtime 9, 12

C
call data parameter . 58

callback function, implementation 81

changing database to recognition session 94

changing engine decoding state 114

changing speech sessions. 94

client data parameter . 58

closing speech session . 121

command and control, supporting with dictation

. 42

command recognition events 102

command vocabulary processing 102

command, setting up vocabulary 96

comment formats, SRCL . 27

compilation errors, grammar compiler 125

compiling grammar description 9, 125

compiling grammar steps . 40

concurrent connections . 55

concurrent sessions . 78

connection functions, description 81

correcting errors . 45

cpu mode, reduced . 76

creating vocabularies . 9

current application focus,

SM COMMAND WORD 70

current audio configuration 142

current engine status, SM ENGINE STATE . . . 70

current notification group member status 70

current SM USE CURRENT argument flag 78

current speech session, disconnecting 94

current values, retrieving . 115

custom audio library dllname field 127

custom audio library init str field 127

custom audio library key field 127

custom audio library overview 127

custom audio library type field 127

D
d outdir parameter . 37

data files, initial personal voice model 115

data returned by function calls, accessing 64

database functions, description. 81

database sessions, description 89

database sessions, steps to initialize 89

deciding what user can say . 9

decoding state, changing engine 114

default audio capture rate . 3

default audio handler function 129

default audio library name 127

default audio type field . 127

default grammar compiler setting 38

default initialization values 78

default SM SAVE AUDIO setting 116

default, querying and setting 78

defining annotations . 18

defining common words and phrases 18

defining optional words and phrases 18

defining repeated words and phrases. 18

definition, dynamic command vocabularies 26

definition, firm words . 45

definition, speech recognition engine 3

definition, vocabulary . 96

description, grammar compiler api 5

description, initialization phase 89

description, speech resources 3

designing grammars, guidelines 27

detaching sessions. 78

determining what user can say 9

developing applications, command, control, and

dictation . 13

developing dictation application 12

dictation application component 67, 68

dictation application, developing 12

dictation macro api (DMAPI), introduction 5

dictation recognition events 102

dictation, commands during 47

dictation, processing vocabulary 102

dictation, setting up vocabulary 96

dictation, supporting macros and templates 47

dictionary, building . 9

160 SMAPI Developer’s Guide

Index

disabling vocabularies . 41

disconnecting changing speech sessions 94

disconnecting SmDetachSessions function 81

disconnecting SmDisconnect api function 81

disconnecting speech engine 121

disconnnecting AudioDestroy function 132

disconnnecting AudioDisconnect function 133

dispatching functions implementation 81

dispatching functions SmRemoveCallback 81

distributable runtime, building 9, 12

DMAPI . 5

domain definition . 3

domain, recognition . 89

domain, system parameter 42, 47

dynamic command vocabulary definition . . . 15, 26

dynamic command vocabulary testing 15

dynamic vocabulary, when to use 15

E
embedded silence, handling 17

en parameter . 37

enabling and disabling vocabularies 41

engine decoding state, changing 114

enrolling . 42, 47

enrollment application component 67

enrollment handling focus . 68

entry point specifications, audio library 129

error correction . 45

error in grammar . 40

error reporting, function call 63

error SM ENGINE ERROR 118

error SM REPORT ENGINE ERROR . . . 116, 118

error, grammar compilation 125

establishing a speech session 89

event asynchronous . 55

event notification . 70

event, command recognition 102

event, dictation recognition 102

event, engine halting . 114

exclusive vocabularies . 76

external list description . 27

external list, grammar vocabulary 96

extracting microphone state 70

F
firm words, definition . 45

firm words, processing . 45

focus application . 81

focus granting . 68

focus, guidelines for handling 68

focus, handling speech . 41, 45

focus, requesting and releasing 68

focus, speech . 68

FSG file, name of output . 37

function call, error reporting 63

function calls . 64

function calls, administrative 81

function calls, asynchronous 58

function calls, asynchronous, with callbacks 58

function calls, asynchronous, without callbacks

. 58

function calls, synchronous 57

G
general language considerations 27

grammar annotations . 18

grammar compiler api description 5

grammar compiler api overview 123

grammar compiler api programming tasks 125

grammar compiler compiling grammar. 125

grammar compiler handling compilation errors

. 125

grammar compiler options . 38

grammar compiler parameters 37

grammar compiler setting up arguments 125

grammar compiler syntax . 37

grammar compiling . 9, 40

grammar description . 9

grammar external lists . 96

grammar refining . 9

grammar rules (productions). 27

grammar SRCL, introduction 18

grammar vocabulary processing 102

grammar, guidelines for designing 27

grammarfile parameter . 37

granting focus, session sharing 68

guidelines designing grammars 27

guidelines handling focus, session sharing 68

161 SMAPI Developer’s Guide

Index

H
handler function, default audio 129

handler, defining for SM RECOGNIZED WORD

. 102

handling embedded silence and mumbles 17

handling rejections . 102

handling speech engine errors 118

handling speech focus . 41, 45

header file smaudio.h . 129

header file smcomm.h . 58, 70

header file smlimits.h . 14

header file smrc.h . 129

header file vtbnfc.h . 123

I
IBM native architecture . 3

identifying what user can say 9

include declarations, SRCL 27

infirm words, processing . 45

init str field, custom audio library 127

initial personal voice model data files 115

initialization phase, description 89

initialization, default values 78

initializing array of SmArg structures 89

initializing database session 89

initializing, programming task 89

input source module, audio . 3

introduction SMAPI programming 9

introduction SRCL grammars 18

introduction, IBM native architecture 3

K
key field, custom audio library 127

kiosk example . 22

L
language definition, SRCL . 27

language elements comment format, SRCL 27

language elements, external lists, SRCL 27

language elements, grammar rules, SRCL 27

language elements, include declarations, SRCL

. 27

language elements, nonterminals, SRCL 27

language elements, terminals, SRCL 27

language of origin, user’s . 3

loading audio library functions 127

M

m parameter . 37

memory handling . 64

message passing . 57

message, asynchronous status 41, 45

message, notification . 70

microphone, extracting state 70

microphone, requesting change of state 70

microphone, requesting on/off 78

module, audio input source . 3

multiple concurrent connections 55

multiple concurrent sessions 78

multiple roots . 38

mumble words . 38

mumbles, handling . 17

N

n parameter . 37

name BNF grammar file . 37

name FSG output file . 37

navigation application component 67

navigation application description 81

navigator application component 68

navigator session. 76

need for speech grammar . 17

no focus. 81

nonterminals . 27

notification . 41

notification event . 70

notification messages . 70

notification requesting . 70

notification session sharing 70

notification, current group member status 70

notification, dictation applications 45

162 SMAPI Developer’s Guide

Index

O
o outfile parameter . 37

optional words and phrases, defining 18

overview, grammar compiler api 123

overview, IBM native architecture 3

overview, speech manager api 55

P
parallel session api calls . 87

parameter, call data . 58

parameter, client data . 58

parameter, d outdir . 37

parameter, en . 37

parameter, grammarfile . 37

parameter, m . 37

parameter, n . 37

parameter, o outfile . 37

parameter, querying speech engine 115

parameter, reply . 58

parameter, s . 37

parameter, setting speech engine 115

parameter, system, querying 42

passing messages . 57

phrases, defining repeated . 18

playing audio data . 136

playing audio through speakers 121

playing captured audio . 121

playing prerecorded audio file 121

playing restrictions . 121

playing spoken words . 121

pools, pronunciation, user extension 115

post parsing aid . 18

prerecorded audio file, playing 121

processing command and grammar vocabulary

. 102

processing commands . 102

processing firm words . 45

processing grammar . 102

processing speech engine audio 116

processing speech input . 102

processing vocabulary . 102

programming application interfaces 5

programming tasks, grammar compiler 125

pronunciation pools, user extension 115

providing command during dictation 47

Q
query sessions . 78

querying defaults . 78

querying system parameters 42, 47

R
receiving notification . 70

receiving recognition results 102

recognition events, command 102

recognition events, dictation 102

recognition phase . 96

recognition results, receiving 102

recognition session . 89

reconnecting speech engine 121

reduced cpu mode . 76

refining the grammar . 9

rejection of utterances . 17

rejections, handling . 102

releasing focus . 68, 81

repeated phrases, defining . 18

repeated words, defining . 18

reply access functions . 64

reply parameter . 58

requesting focus . 68

requesting microphone on/off 78

requesting next word . 68

requesting notifications . 70

restrictions, recognition sessions 89

restrictions, session sharing 68

restrictions, SmPlay functions 121

results, receiving recognition 102

roots, multiple . 38

runtime limitations, speech engine 14

S
s parameter . 37

scope of vocabulary . 76

session functions . 81

session sharing examples . 67

session sharing granting focus 68

session sharing handling focus 68

163 SMAPI Developer’s Guide

Index

session sharing notification 70

session sharing requesting next word 68

session sharing requesting/releasing focus 68

session sharing restrictions . 68

session sharing speech focus 68

session, navigator . 76

setting defaults . 78

setting speech engine parameters 115

setting up command vocabulary 96

setting up dictation vocabulary 96

setting up grammar compiler arguments 125

setting up grammar vocabulary 96

setting up vocabularies . 96

setting values in SmArg array 89

silence words . 38

SM AUDIO CONFIGURATION parameter 81

SM AUDIO DEVICE parameter 81

SM AUDIO INPUT MODE parameter 81

SM AUDIO OUTPUT MODE parameter 81

SM COMPLETE COMMAND TIMEOUT

parameter . 81

SM ENABLE EXCLUSIVE VOCABS parameter

. 81

SM NOTIFY * parameter . 81

SM PARTIAL COMMAND TIMEOUT parameter

. 81

SM RECOGNIZE MODE parameter 81

SM REDUCED CPU MODE parameter 81

SM REJECTION THRESHOLD parameter . . . 81

SM SAVE AUDIO default value 116

SM SAVE AUDIO parameter 81

SmAddCallback function . 81

SmAddToVocab function . 81

SMAPI introduction . 5

SMAPI notification . 41

SMAPI programming, introduction 9

SmApiVersionCheck function 81

SmArg structure, initializing 89

smaudio.h file . 127

smaudio.h header file . 129

SmCancelPlayback function 81

SmClose function . 81

smcomm.h header file . 58, 70

SmConnect function . 81

SmCorrectText function . 81

SmDefineGrammar function 81

SmDefineVocab function . 81

SmDetachSessions function 81

SmDisableVocab function . 81

SmDiscardData function . 81

SmDisconnect function . 81

SmEnableVocab function . 81

SmEventNotify function . 81

SmGet* calls . 81

SmHaltRecognizer function 81

smlimits.h header file . 14

SmMicOff function . 81

SmMicOn function . 81

SmNapplicationName attribute 89

SmNconnectionId attribute 89

SmNdatabase attribute . 89

SmNenrollId attribute . 89

SmNewContext function. 81

SmNnavigator attribute . 89

SmNrecognize attribute . 89

SmNtask attribute . 89

SmNuserId attribute . 89

SmNwindowHandle attribute 89

SmOpen function . 81

SmPlayMessage function 81, 121

SmPlayUtterance function 81, 121

SmPlayWords function 81, 121

SmQueryAddedWords function 81

SmQueryAlternates function 81

SmQueryDefaults function . 81

SmQueryEnabledVocabs function 81

SmQueryEnrollIds function 81

SmQueryLanguages function 81

SmQueryPronunciation function 81

SmQueryPronunciations function 81

SmQuerySessions function . 81

SmQueryTasks function . 81

SmQueryUserInfo function 81

SmQueryUsers function . 81

SmQueryVocabs function . 81

SmQueryWord function . 81

smrc.h header file . 129

SmRecognizeNextWord function 81

SmReleaseFocus function . 81

SmRemoveCallback function 81

SmRemoveFromVocab function 81

SmRemovePronunciation function 81

164 SMAPI Developer’s Guide

Index

SmRequestFocus function . 81

SmRequestMicOff function 81

SmRequestMicOn function 81

SmReturn* calls . 81

SmSetArg macro . 81, 89

SmSetDefault function . 81

SmSetUserInfo function . 81

SmUndefineVocab function 81

SmWordCorrection function 81

speaker language of origin . 3

speakers, playing audio through 121

special characters support, SRCL 27

specifying active words . 96

specifying vocabulary . 9

speech engine architecture . 3

speech engine audio processing 116

speech engine disconnecting 121

speech engine handling errors 118

speech engine runtime limitations 14

speech engine setting parameters 115

speech engine starting and stopping 78

speech focus, handling . 41, 45

speech focus, session sharing 68

speech grammar definition . 17

speech grammar, why necessary 17

speech input, processing . 102

speech manager api overview 55

speech monitoring application component . . 67, 68

speech recognition command language syntax . . 27

speech recognition engine, definition 3

speech resources, description 3

speech resources, domains . 3

speech resources, user’s language of origin 3

speech session, changing . 94

speech session, closing . 121

speech session, establishing 89

speech-aware application component 67, 68

spoken words, playing . 121

SRCL syntax . 27

starting speech engine . 78

status messages, asynchronous 41, 45

stopping speech engine . 78

supporting annotations . 42

supporting dictation macros and templates 47

supporting dictation, command and control 42

synchronous function calls . 57

syntax speech recognition command language . . 27

syntax, Backus-Naur form (BNF) 18

syntax, external lists, SRCL 27

syntax, grammar compiler . 37

syntax, grammar rules . 9

syntax, include declarations, SRCL 27

system parameters, querying 42, 47

system parameters, setting 115

T
tasks, basic dictation . 45

tasks, grammar compiler programming 125

terminals . 27

termination phase . 121

testing dynamic command vocabulary 15

testing vocabularies . 9

text vocabulary user extension 115

tr parameter . 37

type field, custom audio library 127

U
uniform probability computation 38

unsolicited events . 64

user interface considerations 44, 49

utterances, acceptance or rejection 17

V
verifying api version . 89

vocabularies, enabling and disabling 41

vocabularies, exclusive . 76

vocabularies, setting up . 96

vocabulary definition . 9

vocabulary disabling . 41

vocabulary enabling . 41

vocabulary functions . 81

vocabulary processing . 102

vocabulary scope . 76

vocabulary testing . 9

vocabulary, creating . 9

vocabulary, dictation, processing 102

vocabulary, grammar with external lists 96

vocabulary, setting up command 96

vocabulary, setting up dictation 96

165 SMAPI Developer’s Guide

Index

vocabulary, setting up grammar 96

vtbnfc parameters d outdir 37

vtbnfc parameters en . 37

vtbnfc parameters grammarfile 37

vtbnfc parameters m . 37

vtbnfc parameters n . 37

vtbnfc parameters o outfile 37

vtbnfc parameters s . 37

vtbnfc parameters tr . 37

vtbnfc.h header file . 123

W

what user can say . 9

when to use dynamic vocabulary 15

word lists, external. 27

word usage model user extension 115

words, defining repeated . 18

writing application interface 9, 12

166 SMAPI Developer’s Guide

	About This Document
	Who Should Read This Document
	How This Document Is Organized
	Related Publications
	Introduction to SMAPI Developer's Guide
	IBM Native Architecture Overview
	Speech Resources
	User's Language of Origin
	Domains

	Speech Engine Architecture

	Application Programming Interfaces
	SMAPI
	DMAPI
	SMAPI Grammar Compiler API

	Introduction to SMAPI Programming
	Developing a Command and Control Application
	Identifying What the User Can Say
	Creating a Vocabulary
	Compiling the Grammar
	Refining the Grammar
	Building a Dictionary
	Testing the Vocabulary
	Writing the Application Interface
	Building a Distributable Runtime for your Application

	Developing a Dictation Application
	Writing the Application Interface
	Building a Distributable Runtime for your Application

	Developing an Application for Both Command and Control and Dictation
	Speech Engine Runtime Limitations

	Dynamic Command Vocabularies
	What is a Dynamic Command Vocabulary?
	When to Use a Dynamic Vocabulary
	Building Pronunciations for a Dynamic Command Vocabulary
	Testing a Dynamic Command Vocabulary

	SMAPI Grammars
	What is a Grammar?
	Why is a Grammar Necessary?
	Acceptance or Rejection of Utterances
	Handling Embedded Silence and Mumbles

	Introduction to SRCL Grammars
	Defining Common Words and Phrases with Nonterminal Symbols
	Defining Optional Words and Phrases
	Defining Repeated Word and Phrases
	Grammar Annotations--A Post Parsing Aid
	Defining Annotations

	The Kiosk Example
	Dynamic Command Vocabularies
	Guidelines for Designing SMAPI Grammars
	SRCL Syntax
	Language Definition
	Language Elements
	Comment Formats
	Terminals
	Nonterminals
	Grammar Rules (Productions)
	External Lists
	Include Declarations

	Using the Grammar Translation Facility
	Working with the Details
	Example

	SMAPI Grammar Compiler
	Using the SMAPI Grammar Compiler
	SMAPI Grammar Compiler Options
	Compiling a Grammar

	Writing the Application Interface
	Basic Command and Control Tasks
	Enabling and Disabling Vocabularies
	Handling Speech Focus
	Notification

	Other Command and Control Tasks
	Querying System Parameters
	Enrolling
	Supporting Annotations
	Supporting Dictation as well as Command and Control

	User Interface Considerations

	Developing Dictation Applications
	Basic Dictation Tasks
	Correcting Errors
	Processing Firm and Infirm Words
	Handling Speech Focus
	Notification

	Other Dictation Tasks
	Querying System Parameters
	Providing Commands During Dictation
	Supporting Dictation Macros and Templates
	Enrolling

	User Interface Considerations

	Developing Enrollment Applications
	Basic Enrollment Tasks
	Establishing An Enrollment Session
	Defining and Enabling Grammar Vocabularies
	Processing the User's Speech
	Starting and Monitoring the Training Program

	Overview of the C Language SMAPI
	Function Call Processing
	Message Passing
	Synchronous Function Calls
	Asynchronous Function Calls
	Asynchronous Function Calls without Callbacks
	Asynchronous Function Calls with Callbacks

	Function Call Error Reporting
	Accessing Data Returned By Function Calls
	Access Functions
	Function Calls
	Unsolicited Events
	Reply Access Functions
	Memory Handling
	Use of Reply Structure

	Session Sharing
	Examples of Session-Sharing Components
	Speech Focus
	Requesting and Releasing Focus
	Granting Focus
	Restrictions
	Requesting Next Word
	Guidelines for Handling Focus

	Notification
	Requesting Notification
	Receiving Notification

	Navigator Session
	Exclusive Vocabularies
	Vocabulary Scope
	Reduced CPU Mode

	Related Functions
	Request Microphone On/Off
	Default Values for Initialization
	Querying and Setting Defaults
	Query Sessions
	Detach Sessions
	Automatically Start and Stop the Speech Engine

	Allowable API Calls
	Attribute Functions
	Callback and Dispatching Functions
	Access Functions
	Connection Functions
	Session Functions
	Database Functions
	Vocabulary Functions
	Audio Functions

	Parallel Session API Calls
	Programming Tasks
	Initialization Phase
	Verifying the SMAPI Version
	Establishing a Speech Session
	All Sessions:
	Database Sessions:
	Enrollment Sessions:
	Recognition Sessions:
	Initializing
	Database Sessions
	Recognition Sessions

	Changing Speech Sessions

	Recognition Phase
	Setting Up Vocabularies
	Setting Up a Command Vocabulary
	Setting Up a Grammar Vocabulary (FSG)
	Setting Up a Grammar Vocabulary with External Lists
	Setting Up a Dictation Vocabulary

	Processing Speech Input
	Vocabulary Processing
	Handling Rejections
	Command and Grammar Vocabulary Processing
	Command Recognition Events
	Dictation Vocabulary Processing
	Dictation Recognition Events

	Changing the Engine Decoding State
	Setting/Querying Speech Engine Parameters
	Improving Recognition by Updating Personal Data Files
	Processing Speech Engine Audio
	Writing ViaVoice Applications to Save and Restore Speech Sessions
	Handling Speech Engine Errors
	Playing Audio through the Speakers

	Termination Phase
	Disconnecting from the Speech Engine
	Closing the Speech Session

	Overview of the SMAPI Grammar Compiler API
	SMAPI Grammar Compiler Programming Tasks
	Setting up SMAPI Grammar Compiler Argument Structures
	Compiling Grammars
	Handling Compilation Errors

	Overview of the Custom Audio Library
	Audio Library Functions
	Required Functions
	AudioConnect
	AudioCreate
	AudioDestroy
	AudioDisconnect
	AudioGetPCM
	AudioPutPCM
	AudioStartPlayback
	AudioStartRecording
	AudioStopPlayback
	AudioStopRecording

	Optional Functions
	AudioGetHandle
	AudioQueryConfig
	AudioQueryDevices
	AudioQuerySource
	AudioSetDevice
	AudioSetInput
	AudioSetInputGain
	AudioSetOutput
	AudioSetOutputGain
	AudioSetSource

	Notices
	Trademarks

	Glossary
	Index

