
ActiveX Developer’s Guide
IBM ViaVoice SDK for Windows

Version 1.7

Printed in the USA

Note:
Before using this information and the product it supports, be sure to read the general information under
Appendix A, "Notices."

First Edition (December 1999)

The following paragraph does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement may not apply to you. This publication could include
technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these
changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in
the product(s) and/or the program(s) described in this publication at any time.
It is possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM products, programming, or services in
your country. Requests f or technical information about IBM products should be made to your IBM reseller or
IBM marketing representative.

©Copyright International Business Machines Corporation 1999, 2000. All Rights Reserved.
Note to U.S. Government Users—Documentation related to restricted rights— Use, duplication or disclosure is
subject to restrictions set forth in GS ADP Schedule Contract with IBM Corp.

ActiveX Developer’s Guide iii

Contents

About this Book 17
Who Should Read This Book . 17

ViaVoice SDK Related Publications . 17

How This Book Is Organized . 18

Document Conventions . 18

Introduction to the Embedded Speech Reference 19
Installing the ViaVoice ActiveX Components . 19

ActiveX Controls . 19
Part 1: ViaVoice TextBox Control . 20
Part 2: ViaVoice RichEdit Control. 20
Part 3: ViaVoice Phrases Control. 20
Part 4: ViaVoice Grammar Control . 21
Part 5: ViaVoice Lite Controls. 21
Part 6: ViaVoice Engine Control . 21
Part 7: ViaVoice Error Correction Window Control 22
Part 8: ViaVoice User Interface Control . 22
Part 9: ViaVoice DictationManager Control . 23
Part 10: ViaVoice Dictation Control . 23
Part 11: Virtual Voices Control . 23
Part 12: ViaVoice Detective Control . 24

ViaVoice SDK Architecture. 25

Chapter 1 Introduction to the TextBox Control 27
VVTextBox Object Hierarchy . 27

Chapter 2 Getting Started with the TextBox Control 29
Creating an Instance of the Control . 29

Capturing Speech . 35

Contents

iv ActiveX Developer’s Guide

Capturing Commands . 36

Text Correction . 38

Summary . 39

Chapter 3 Properties, Methods, and Events 41
TextBox Control Properties . 41

AutoDictationWindow (Read/Write at Run Time Only) 42
AutoUI . 46
Commands . 49
CommandsEnabled . 52
DictationOn. 54
Engine . 56
LanguageUI . 58
ShowDictationIcon . 61

TextBox Control Methods . 63
ExecuteCommand. 64
Playback . 66
PlaybackEx . 67
PlaybackEx2 . 68

TextBox Control Events . 69
Command . 70
DictationStateChange . 73
Error . 76
MaxText . 80

Chapter 4 TextBox Control Frequently Asked Questions 83
Chapter 5 Introduction to the RichEdit Control 85

VVRichEdit Object Hierarchy. 85

Chapter 6 Getting Started with the RichEdit Control 87
Creating an Instance of the Control . 87

Capturing Speech. 93

Capturing Commands . 94

Text Correction . 97

Summary . 98

Chapter 7 Properties, Methods, and Events 99
RichEdit Control Properties. 99

ActiveX Developer’s Guide v

Contents

AutoDictationWindow (Read/Write at Run Time Only) 100
AudioSourceType . 103
AutoUI. 106
BulletIndentation . 109
Commands . 111
CommandsEnabled . 114
DictationOn . 116
Engine . 118
FileName . 120
hWnd (Read Only). 122
LanguageUI . 124
RightMargin. 127
SelAlignment (Read/Write at Run Time Only) . 129
SelBold (Read/Write at Run Time Only). 131
SelBullet . 133
SelCharOffset (Read/Write at Run Time Only). 135
SelColor (Read/Write at Run Time Only) . 137
SelFontName(Read/Write at Run Time Only) . 139
SelFontSize (Read/Write at Run Time Only) . 141
SelHangingIndent (Read/Write at Run Time Only) 143
SelIndent (Read/Write at Run Time Only) . 145
SelItalic (Read/Write at Run Time Only) . 147
SelLength (Read/Write at Run Time Only) . 149
SelProtected . 151
SelRightIndent (Read/Write at Run Time Only) 153
SelRTF (Read/Write at Run Time Only) . 155
SelStart (Read/Write at Run Time Only). 157
SelStrikeThru (Read/Write at Run Time Only) . 159
SelTabCount (Read/Write at Run Time Only). 161
SelTabs (Read/Write at Run Time Only). 163
SelText (Read/Write at Run Time Only) . 165
SelUnderline (Read/Write at Run Time Only) . 167
TextRTF . 169

RichEdit Control Methods . 171
ExecuteCommand . 172
LoadRTF . 174
LoadTextFile . 176
Playback. 178

Contents

vi ActiveX Developer’s Guide

PlaybackEx . 180
PlaybackEx2 . 182
SaveRTF . 184
SaveTextFile . 186
SelPrint . 188

RichEdit Control Events . 190
Command . 191
DictationStateChange . 193
Error . 195
MaxText . 199

Chapter 8 RichEdit Control Frequently Asked Questions 201
Chapter 9 Introduction to the Phrases Control 203

VVPhrases Object Hierarchy. 203

Chapter 10 Getting Started with the Phrases Control 205
Creating an Instance . 205

Drag-Drop-n-Go Support . 211

Adding Phrases . 212

Enabling/Disabling Phrases . 214

Working with the Custom Designer . 216

Object Hierarchy . 218

Chapter 11 Properties, Methods, and Events 221
VVPhrases Control . 221

VVPhrases Control Properties . 221
AutoConnect (VVPhrases) . 222
AutoUI (VVPhrases). 223
Enabled (VVPhrases) . 225
Engine (VVPhrases) . 227
Layout (VVPhrases) . 229
Phrases (VVPhrases). 231
VVPhrases Control Methods . 233
RefreshUIText (VVPhrases) . 236

VVPhrases Control Events . 239
BeginSpeechRecognition (VVPhrases) . 240
SpeechRecognized (VVPhrases) . 241
TrainingRequired (VVPhrases) . 243

ActiveX Developer’s Guide vii

Contents

VVPhraseColl Collection . 245
VVPhraseColl Collection Properties . 245
Count (VVPhraseColl) . 246
Enabled (VVPhraseColl) . 248
Item (Default Method - VVPhraseColl) . 250
VVPhraseColl Collection Methods . 252
Add (VVPhraseColl) . 253
Exists (VVPhraseColl) . 255
Remove (VVPhraseColl) . 257
RemoveAll (VVPhraseColl) . 259

VVPhrase Object . 260
VVPhrase Object Properties . 260
ActionDesc (VVPhrase) . 261
Description (VVPhrase) . 263
Enabled (VVPhrase) . 265
ID (VVPhrase). 267
ItemData (VVPhrase) . 269
Name (VVPhrase) . 271
Text (VVPhrase) . 273
VVPhrase Object Methods . 275
VVPhrase Object Events . 275

Chapter 12 Phrases Control Frequently Asked Questions 277
Chapter 13 Introduction to the Grammar Control 279

VVCFGram Object Hierarchy . 279

Chapter 14 Getting Started with the Grammar Control 281
Creating an Instance of the Control . 281

Drag-Drop-n-Go Support . 287

Loading a Grammar . 288

Enabling/Disabling a Grammar . 290

Using External Lists . 291

Chapter 15 Properties, Methods, and Events 295
Grammar Control Properties . 295

Alternates (VVCFGram) . 296
Annotations (VVCFGram) . 298
AutoConnect (VVCFGram) . 303

Contents

viii ActiveX Developer’s Guide

AutoLoad (VVCFGram). 305
AutoUI (VVCFGram). 307
Enabled (VVCFGram) . 309
Engine (VVCFGram) . 311
ExternLists (VVCFGram). 314
GrammarFormat (VVCFGram) . 317
GrammarSource (VVCFGram). 320
Rules (VVCFGram) . 322
SourceType (VVCFGram) . 324

Grammar Control Methods . 327
LoadFromSource (VVCFGram). 328
Refresh . 330
RefreshUIText (VVCFGram) . 331
ShowTrainDialog (VVCFGram) . 334

Grammar Control Events . 336
BeginSpeechRecognized (VVCFGram). 337
SpeechRecognized (VVCFGram). 339
TrainingRequired (VVCFGram). 342

VVPhraseCollGroup Object . 345
VVPhraseCollGroup Object Properties . 345
Count (VVPhraseCollGroup) . 346
Enabled (VVPhraseCollGroup) . 349
Item (VVPhraseCollGroup) . 352
VVPhraseCollGroup Object Methods . 354
Exists (VVPhraseCollGroup) . 355

Chapter 16 Grammar Control Frequently Asked Questions 359
Chapter 17 Introduction to the Lite Controls 361
Chapter 18 Getting Started with the Lite Controls 363

VVDictLite Control . 363
Using the Control . 363

VVGrammarLite Control . 368
Using the Control . 368

VVPhrasesLite Control . 374
Using the Control . 374

Summary . 380

ActiveX Developer’s Guide ix

Contents

Chapter 19 Properties, Methods, and Events 381
VVDictLite Control Properties. 381

Enabled (VVDictLite) . 382

VVDictLite Control Methods. 384

VVDictLite Control Events . 384
PhraseRecognized (VVDictLite) . 385
VUMeter (VVDictLite) . 387

VVGrammarLite Control Properties . 389
Enabled (VVGrammarLite). 390
GrammarSource (VVGrammarLite) . 392

VVGrammarLite Control Methods . 394

VVGrammarLite Control Events . 394
PhraseRecognized (VVGrammarLite) . 395
VUMeter (VVGrammarLite). 397

VVPhrasesLite Control Properties . 399
Enabled (VVPhrasesLite) . 400

VVPhrasesLite Control Methods . 402
AddPhrase (VVPhrasesLite) . 403
RemoveAll (VVPhrasesLite). 405

VVPhrasesLite Control Events. 407
PhraseRecognized (VVPhrasesLite) . 408
VUMeter (VVPhrasesLite) . 410

Chapter 20 Lite Controls Frequently Asked Questions 413
Chapter 21 Introduction to the ECWin Control 415
Chapter 22 Getting Started with the ECWin Control 417

Creating an Instance of the Control . 417

Initializing the Error Correction Window Control . 423

Handling Error Correction Window Control Events 426

Error Correction Window Control Voice Command Support 429

Chapter 23 Properties, Methods, and Events 431
Error Correction Window Control Properties . 431

AddPhraseChecked . 432
AddPhraseVisible . 435
Caption. 437

Contents

x ActiveX Developer’s Guide

ChildEnabled . 439
CommandsEnabled . 442
CorrectText . 444
Enabled . 446
Engine . 448
hWnd. 450
LanguageUI . 452
NumVisibleAlternates. 454
StatusBarVisible . 456
StatusText . 458

Error Correction Window Control Methods . 460
AddAlternate. 461
AddMenuItem. 464
GetWindowRect . 466
Hide. 468
Init . 470
IsVisible . 472
MoveWindow . 474
Reset . 477
Show . 479

Error Correction Window Control Events . 481
ButtonSelected . 482
Close . 485
ContextHelpRequest . 487
FocusChange. 489
MenuSelected . 491
WordSelected . 493

Chapter 24 ECWin Control Frequently Asked Questions 495
Chapter 25 Introduction to the User Interface Control 497
Chapter 26 Getting Started with the User Interface Control 499

Creating an Instance of the Control . 499

Initializing the UIClient. 506

Programming the ViaVoice User Interface . 513

Getting and Setting User Interface Characteristics 520

Creating Custom Menus . 523

Summary . 531

ActiveX Developer’s Guide xi

Contents

Chapter 27 Classes, Structures, and Enumerations 533
User Interface Control Classes . 534

vvUIMenuInfo (Class - Visual Basic and MFC Only) 534

User Interface Control Structures . 535
UIMenuItemInfo Structure (Custom Interface Only) 535

User Interface Control Constants . 537
Component Index Constants . 538
vvUIDockingAlgorithmConstants. 540
vvUIDockingStyleConstants . 542
vvUIEventCallbackFlags. 543
vvUIExtendedMenuFlags . 545
vvUIMaxConstants . 546
vvUIMenuItemConstants. 547
vvUIRemoveClientConstants . 550

User Interface Control Enumerations. 551
MICROPHONE_STATES (Enum) . 552
TCID (Enum). 554
TVIEWTYPE (Enum) . 555
UIEVENTRC (Enum) . 556
UIMENUGROUP (Enum) . 557
UIMENUTYPE (Enum) . 558
UIRC (Enum) . 559

Chapter 28 Properties, Methods, and Events 561
User Interface Control Properties . 561

LanguageUI . 562

User Interface Control Methods . 565
AddApplicationByName . 566
AddApplicationByWindow . 568
AppendMenuItem . 570
DeleteMenuItem . 574
GetMenuItemInfo . 577
GetNumberValue . 580
GetStringValue. 582
Initialize . 585
InsertMenuItem . 587
RemoveApplicationByName. 591
RemoveApplicationByWindow. 593

Contents

xii ActiveX Developer’s Guide

SetClientCallback (Custom Interface) . 595
SetClientCallbackFlags. 597
SetLanguageByID. 599
SetLanguageByString . 601
SetMenuItemInfo . 603
SetNumberValue . 606
SetStringValue. 609

User Interface Control Events . 611
EventActiveApplication . 612
EventButtonPressed . 615
EventComponentUpdated. 617
EventMenuItemSelected . 619
EventQueryViewFlags . 621
EventQueryViewMenuInfo. 624

Chapter 29 User Interface Control Frequently Asked Questions 629
Chapter 30 Introduction to the DictationMgr Control 631
Chapter 31 Getting Started with the DictationMgr Control 633

Creating an Instance of the Control . 633

Capturing Speech. 639

Summary . 640

Chapter 32 Properties, Methods, and Events 641
Dictation Manager Control Properties. 641

AutoDictationWindow (Run Time Only) . 642
CursorIndex . 645
DictationOn. 647
Engine (Run Time Only) . 649
ExpandMacros . 651
Locked . 653
ProcessingMacro (Run Time Only) . 655
UppercaseOn. 657

DictationMgr Control Methods . 659
Command . 660
Correct . 663
DeleteText . 666
GetAlternate . 668
GetText . 671

ActiveX Developer’s Guide xiii

Contents

GetWordInfo . 673
Playback. 676
PlaybackEx2 . 677
PutText. 678
SetSelection . 680

DictationMgr Control Events . 682
DeleteText . 683
DictationStateChange . 685
PutText. 687

Chapter 33 DictationMgr Control Frequently Asked Questions 691
Chapter 34 Getting Started with the Dictation Control 693
Chapter 35 Introduction to the Dictation Control 699
Chapter 36 Properties, Methods, and Events 701

Dictation Control Properties. 701
AutoDictationWindow. 702
DictationOn . 704
Engine . 706
ExpandMacros . 708
ProcessingMacro . 710

Dictation Control Methods . 712
Correct . 713
GetAlternatePhrase . 716
GetFlags. 719
GetWavData. 721
GetWordInfo . 723
MergeRecoPhrases . 725
SetBookMark. 727
SetContext . 729
SplitOutLeftWord . 731

Dictation Control Events . 734
DictationStateChange . 735
HitBookMark. 737
PhraseReco . 739
VVDictation Phrase Formatting Flags . 741

Contents

xiv ActiveX Developer’s Guide

Chapter 37 Dictation Control Frequently Asked Questions 743
Chapter 38 Getting Started with the Virtual Voices Control 745

Overview . 745

How the Virtual Voices Control Works . 747
Speak. 749
Paste . 750
Properties . 750
Programming Interfaces . 755

Chapter 39 Introduction to Virtual Voices Control 757
Files and Directories that Support Virtual Voices . 757

Chapter 40 Properties, Methods, and Events 759
Virtual Voices Control Properties . 759

ActorName . 760
Age (Read Only) . 761
AllowProperties . 762
BackColor . 763
Clipping . 764
DefaultExpression. 766
Expression. 767
Gender (Read Only) . 768
ModeGuid . 769
Pitch . 771
ShowMenu . 772
SpeakText . 773
Speed. 774
UseFace. 775
UseWave . 776
Volume . 777
WaveFileName . 778

ViaVoice Outloud (Text-To-Speech) Engine Attributes 779
Breathiness . 780
HeadSize . 781
PitchFluctuation . 782
Roughness. 783
Example - Setting a Property . 784
Other Useful Properties . 786

ActiveX Developer’s Guide xv

Contents

Virtual Voices Control Methods . 790
AboutBox. 791
Cancel . 792
DoProperties . 793
Pause . 794
Resume . 795
Speak . 796
Example - Using a Method . 797

Virtual Voices Control Events . 799
BookMark . 800
InitDone . 802
KeyPress . 804
Pause . 806
Reset . 807
Resume . 808
StartSpeaking. 809
StopSpeaking . 810
WordPosition . 811

Chapter 41 Programming Notes 813
Visual Basic Notes . 813

Visual C++ Notes . 813

Face Customization Notes . 814

Resources . 815
Bitmaps . 816
Face (.FAC) File . 824
Parameter (.PAR) File . 829
Registry Entry . 830

Testing Your Face . 831

Style Considerations. 833

Chapter 42 Virtual Voices Control Frequently Asked Questions 835
Appendix A Notices 837

Index 839

Contents

xvi ActiveX Developer’s Guide

ActiveX Developer’s Guide 17

About This Document

This book provides information on incorporating speech technology into applications using the IBM
ViaVoice ActiveX Controls. It describes the programming interfaces available for developers to take
advantage of these features within their applications. This book is prepared in Portable Document
Format (PDF) to provide the advantages of text search and cross-reference hyperlinking and is
viewable with the Adobe Acrobat Reader v.3.x. We recommend that you print all or part of this guide
for quick reference.

Who Should Read This Book
Read this book if you are a developer interested in writing Windows 95/98 or Windows NT 4.0
applications that use ViaVoice ActiveX technology controls.

ViaVoice SDK Related Publications
Programming, reference and design information needed to use this SDK is available in a variety of
sources:

• SAPI Reference

Refer to the following sources for additional programming, reference, and design information:

• Developer’s Corner Web Page for SDK downloads, updates, and other documentation at:
 http://www.ibm.com/ViaVoice/dev_home.html

• IBM ViaVoice SDK Web Channel at:
http://www.software.ibm.com/ViaVoice/subscribe.html

About This Document

18 ActiveX Developer’s Guide

How This Book Is Organized
The Introduction contains an overview of the ActiveX controls documented in this guide as well as
installation information. Chapter 1 through Chapter 4 contain information about the ViaVoice TextBox
Control. Chapter 5 through Chapter 8 describe the ViaVoice RichEdit ActiveX Control. Chapter 9
through Chapter 12 describe the ViaVoice Phrases ActiveX Control. Chapter 13 through Chapter 16
describe the ViaVoice Grammar ActiveX Control. Chapter 17 through Chapter 20 describe the
ViaVoice Lite ActiveX Controls. Chapter 21 through Chapter 24 describe the ViaVoice Error
Correction Window ActiveX Control. Chapter 25 through Chapter 29 discuss the ViaVoice User
Interface Control. Chapter 30 through Chapter 33 describe the ViaVoice Dictation Manager ActiveX
Control. Chapter 34 through Chapter 37 describe the ViaVoice Dictation ActiveX Control. Chapter 38
through 42 describe the Virtual Voices ActiveX Control. Finally, Appendix A contains notices and
trademark information.

Document Conventions
The following conventions are used to present information in this document:

Italic Used for emphasis and for references to other
documents.

Bold Represents a menu option or other user interface
control, such as command buttons.
Also represents the names of properties, methods, and
events.

Courier Regular Represents sample code.

Courier Bold Represents a new line of code in a code sample.

ActiveX Developer’s Guide 19

Introduction

The IBM ViaVoice ActiveX controls enable you to incorporate the power of IBM’s speech engines to
the applications you develop. This chapter contains information about installation and a general
description of the controls.

Installing the ViaVoice ActiveX Components
The setup program of the IBM ViaVoice SDK automatically installs the components you select. There
are sample programs that use different combinations of the controls. Refer to the ViaVoice SDK
README file for complete installation instructions and other important information.

ActiveX Controls
This guide documents the attributes of the ActiveX controls included in the SDK:

• ViaVoice TextBox Control

• ViaVoice RichEdit Control

• ViaVoice Phrases Control

• ViaVoice Grammar Control

• ViaVoice Lite Controls

• ViaVoice Engine Control (available as a separate RTF file)

• ViaVoice Error Correction Window Control

• ViaVoice User Interface Control

• ViaVoice Dictation Manager Control

• ViaVoice Dictation Control

• Virtual Voices Control

• ViaVoice Detective Control (available as a separate PDF file)

Introduction

20 ActiveX Developer’s Guide

Part 1: ViaVoice TextBox Control
The ViaVoice TextBox Control (VVTextBox) is an ActiveX control that can capture speech input and
turn it into text. It is an edit control similar to the Visual Basic native TextBox control. What separates
this control from other textboxes or edit controls in the market is that it enables users to not only type
information into text fields, but to also dictate their text through an audio input device (such as a
microphone). For more information about the VVTextBox control, refer to the following chapters:

• Chapter 1, “Introduction to the TextBox Control” on page 27

• Chapter 2, “Getting Started with the TextBox Control” on page 29

• Chapter 3, “Properties, Methods, and Events” on page 41

• Chapter 4, “TextBox Control Frequently Asked Questions” on page 83

Part 2: ViaVoice RichEdit Control
The ViaVoice RichEdit Control (VVRichEdit) can capture speech input and turn it into text. It is an
edit control similar to the Visual Basic native RichTextBox control or the Windows RichEdit control.
What separates this control from other textboxes or edit controls in the market is that it enables users to
not only type information into text fields, but to also dictate their text through an audio input device
(such as a microphone). For more information about the VVRichEdit control, refer to the following
chapters:

• Chapter 5, “Introduction to the RichEdit Control” on page 85

• Chapter 6, “Getting Started with the RichEdit Control” on page 87

• Chapter 7, “Properties, Methods, and Events” on page 99

• Chapter 8, “RichEdit Control Frequently Asked Questions” on page 201

Part 3: ViaVoice Phrases Control
The ViaVoice Phrases Control (VVPhrases) enables developers to add simple phrase command
recognition to their application. The main idea behind the control is to have the developer provide the
control with a list of phrases or commands, and the control will notify the developer when the user
speaks one of the phrases in the list. For more information about the VVPhrases control, refer to the
following chapters:

• Chapter 9, “Introduction to the Phrases Control” on page 203

ActiveX Developer’s Guide 21

ActiveX Controls

• Chapter 10, “Getting Started with the Phrases Control” on page 205

• Chapter 11, “Properties, Methods, and Events” on page 221

• Chapter 12, “Phrases Control Frequently Asked Questions” on page 277

Part 4: ViaVoice Grammar Control
The ViaVoice Grammar Control (VVCFGram) enables developers to use a context-free grammar file
to add robust command recognition to the application. The main idea behind the control is that
developers provide the control with a grammar file or source, and then the control will notify you when
the user speaks a command constructed from the grammar. For more information about the
VVGrammar control, refer to the following chapters:

• Chapter 13, “Introduction to the Grammar Control” on page 279

• Chapter 14, “Getting Started with the Grammar Control” on page 281

• Chapter 15, “Properties, Methods, and Events” on page 295

• Chapter 16, “Grammar Control Frequently Asked Questions” on page 359

Part 5: ViaVoice Lite Controls
The ViaVoice Lite Controls consist of three controls: Dictation Lite (VVDictLite), Grammar Lite
(VVGrammarLite), and Phrases Lite (VVPhrasesLite). Each of these controls is a reduced-feature
version of their counterparts optimized for the web. For more information about the VVLite controls,
refer to the following chapters:

• Chapter 17, “Introduction to the Lite Controls” on page 361

• Chapter 18, “Getting Started with the Lite Controls” on page 363

• Chapter 19, “Properties, Methods, and Events” on page 381

• Chapter 20, “Lite Controls Frequently Asked Questions” on page 413

Part 6: ViaVoice Engine Control
The ViaVoice Engine Control (VVEngine) is a drag-and-drop control that communicates with SAPI
compatible speech engines. This control enables developers to: specify a search criteria for finding
what speech engine to connect to; read properties from the speech engine, such as vendor name,

Introduction

22 ActiveX Developer’s Guide

language, dialect, etc.; and receive engine notifications, such as volume level, audio state changed, etc.
For more information about the VVEngine control, refer to the following chapters:

• Refer to the Engine Control Guide on the SDK “Documentation” menu.

Part 7: ViaVoice Error Correction Window Control
The ViaVoice Error Correction Window Control (VVECWin) is an ActiveX control that enables
developers to utilize a common error correction dialog allowing users to correct dictated text in an
application. It provides a common, familiar interface that users will quickly and easily become
accustomed to, enabling them to correct speech recognition errors and text formatting issues, by using
their keyboard, mouse or voice commands. For more information about the VVECWin control, refer
to the following chapters:

• Chapter 21, “Introduction to the ECWin Control” on page 415

• Chapter 22, “Getting Started with the ECWin Control” on page 417

• Chapter 23, “Properties, Methods, and Events” on page 431

• Chapter 24, “ECWin Control Frequently Asked Questions” on page 495

Part 8: ViaVoice User Interface Control
The ViaVoice User Interface Client Control (UIClient) provides a common interface for speech-
enabled applications for managing all aspects of Speech UI. It is capable of presenting speech-related
information in a number of ways, including a Taskbar View, a Docked View, a Minimal View, and an
Agent View. For more information about the User Interface control, refer to the following chapters:

• Chapter 25, “Introduction to the User Interface Control” on page 497

• Chapter 26, “Getting Started with the User Interface Control” on page 499

• Chapter 27, “Classes, Structures, and Enumerations” on page 533

• Chapter 28, “Properties, Methods, and Events” on page 561

• Chapter 29, “User Interface Control Frequently Asked Questions” on page 629

ActiveX Developer’s Guide 23

ActiveX Controls

Part 9: ViaVoice DictationManager Control
The ViaVoice DictationManager Control (VVDictationMgr) is a relatively high level control which
provides much of the functionality a client needs to add dictation to their application. However, in
order to use this control clients must be able to synchronize the VVDictationMgr with their
application user interface through zero (0) based character indices. VVDictationMgr is a full ActiveX
control, which means that it can be “dropped” onto a form and configured at “design-time” in most
high-level language environments. Using VVDictationMgr allows the user to manage both typed and
dictated text, get wave data for playback of dictated text, and perform correction of dictated text. For
more information about the VVDictationMgr control, refer to the following chapters:

• Chapter 30, “Introduction to the DictationMgr Control” on page 631

• Chapter 31, “Getting Started with the DictationMgr Control” on page 633

• Chapter 32, “Properties, Methods, and Events” on page 641

• Chapter 33, “DictationMgr Control Frequently Asked Questions” on page 691

Part 10: ViaVoice Dictation Control
The ViaVoice Dictation Control (VVDictation) is a low-level dictation object providing only the
basics necessary for dictation, correction and playback. This object is implemented as a simple COM
object rather than a full ActiveX control and can not be “dropped” into a form and configured at
design-time. For more information about the VVDictation control, refer to the following chapters:

• Chapter 35, “Introduction to the Dictation Control” on page 699

• Chapter 34, “Getting Started with the Dictation Control” on page 693

• Chapter 36, “Properties, Methods, and Events” on page 701

• Chapter 37, “Dictation Control Frequently Asked Questions” on page 743

Part 11: Virtual Voices Control
The ViaVoice Virtual Voices Control enables developers to incorporate personality into their
applications. A personality is represented through a voice (using text-to-speech or prerecorded audio
wave file) and an animated face. The voice and face become the spokesperson through which the user
interacts with the application. For more information about the Virtual Voices control, refer to the
following chapters:

Introduction

24 ActiveX Developer’s Guide

• Chapter 39, “Introduction to Virtual Voices Control” on page 757

• Chapter 38, “Getting Started with the Virtual Voices Control” on page 745

• Chapter 40, “Properties, Methods, and Events” on page 759

• Chapter 41, “Programming Notes” on page 813

• Chapter 42, “Virtual Voices Control Frequently Asked Questions” on page 835

Part 12: ViaVoice Detective Control
The ViaVoice Detective Control (VVDetective) enables developers to perform speaker recognition.
Speaker recognition is a biometric technology that uses voice patterns to recognize the speaker in
various modes. VVDetective supports two modes of speaker recognition: verification and
identification. For more information about the VVDetective control, refer to the following chapters:

• Refer to the Detective Control Guide on the SDK “Documentation” menu.

ActiveX Developer’s Guide 25

ViaVoice SDK Architecture

ViaVoice SDK Architecture
The following diagram shows the interaction of the components in the SDK.

Introduction

26 ActiveX Developer’s Guide

ActiveX Developer’s Guide 27

Chapter 1 Introduction to the TextBox Control

The ViaVoice TextBox Control (VVTextBox) is an ActiveX control that can capture speech input and
turn it into text. It is an edit control similar to the Visual Basic native TextBox control. What separates
this control from other textboxes or edit controls in the market is that it enables users to not only type
information into text fields, but also to dictate their text through an audio input device (such as a
microphone).

The VVTextBox control is also capable of understanding commands, which will enable the user to
navigate and manipulate the contents of the textbox with ease.

VVTextBox Object Hierarchy
The following diagram shows the object hierarchy for the VVTextBox.

Introduction to the TextBox Control

28 ActiveX Developer’s Guide

ActiveX Developer’s Guide 29

Chapter 2 Getting Started with the TextBox
Control

The following is a tutorial on how to incorporate the VVTextBox control into your Visual Basic or
Visual C++ applications. This tutorial is designed to present you with the most commonly used
properties and events in the VVTextBox control.

The following sections contain information to help you write code to create an instance of the TextBox
control, then to capture speech, capture commands and create the environment to allow text correction.

Creating an Instance of the Control
This section contains step-by-step instructions for using Visual Basic or Visual C++ (MFC) to create
an instance of the control.

In Visual Basic:
To add the VVTextBox control to your application, do the following:

1. From the Project menu, choose Components.
The Components dialog box, Figure 1, appears. The Components dialog lists all the ActiveX
Controls that you can use in your application.

Getting Started with the TextBox Control

30 ActiveX Developer’s Guide

Figure 1. Component Selection Dialog - Visual Basic

ActiveX Developer’s Guide 31

Creating an Instance of the Control

2. Select IBM ViaVoice TextBox Control from the list and click OK.
Visual Basic adds the control to your project, and adds a new icon to the toolbar (Figure 2).

Figure 2. VVTextBox Control Toolbar Icon

3. Add an instance of the VVTextBox control to your form.
The VVTextBox control looks and acts much like the Visual Basic native TextBox control.

In Visual C++ (MFC):
To add the VVTextBox to your MFC project, do the following:

1. From the Project menu, select Add To Project, then select Components and Controls.
The ‘Components and Controls Gallery’ dialog box, Figure 3, appears.

Getting Started with the TextBox Control

32 ActiveX Developer’s Guide

Figure 3. Insert ActiveX Control Dialog Box - Visual C++

2. Double-click the ‘Registered ActiveX Controls’ folder in the dialog box.

3. Select the IBM ViaVoice TextBox Control icon in the list of controls, then click Insert.

ActiveX Developer’s Guide 33

Creating an Instance of the Control

A confirmation message box appears, asking “Insert this component?”, just click OK.

4. Respond to the confirmation message box by clicking OK.
The ‘Confirm Classes’ dialog box, Figure 4, appears listing the Dual interface of the TextBox
control (CVVTextBox), along with the accompanying Engine (CVVEngine), PhraseColl
(CVVPhraseColl), Phrase (CVVPhrase), Font (COleFont), and Picture (CPicture) interfaces.

Figure 4. Confirm Classes Dialog Box

Getting Started with the TextBox Control

34 ActiveX Developer’s Guide

5. Click OK in the ‘Confirm Classes’ dialog box.

6. Close the ‘Components and Controls Gallery’ dialog box.
If you examine the Project Workspace window in the class view, you will notice six classes:
CVVTextBox, CVVEngine, CVVPhraseColl, CVVPhrase, COleFont, and CPicture (assuming you
accepted the default names for the class in the ‘Confirm Classes’ dialog box).

7. In the resource view of your Project Workspace window, double-click the dialog resource entry
where you wish to insert the VVTextBox control.
The VVTextBox icon, Figure 5, appears in the Controls toolbar.

Figure 5. VVTextBox Icon in the Controls Toolbar

8. Add an instance of the VVTextBox control to the dialog box.
After you add the VVTextBox control to your dialog you can invoke Class Wizard to create a
member variable for your class of type CVVTextBox. You might also decide to capture the events
in the control by adding Event handlers to your dialog class. To add Event handlers, you can use
the Class Wizard just like adding notification message handlers for a non-speech edit box.

ActiveX Developer’s Guide 35

Capturing Speech

Capturing Speech
The VVTextBox turns speech input into text; however, users of your application might not want every
word they speak to be transformed. For example, users might need to perform other speaking tasks,
such as answering the telephone or conversing with someone. By default, the VVTextBox operates in
what is known as modeless operation. This means that whenever the control has window focus, the
control will perform speech to text conversion, in the same way that it will accept keyboard input when
the window has focus. But, you can also control dictation explicitly by specifying a window (see
“AutoDictationWindow” on page 42) and setting the state of dictation (see “DictationOn” on page 54)
as needed to implement almost any dictation activation logic you choose.

For example, you could use your application's top-most window for the AutoDictationWindow, so
that dictation would automatically be disabled when your application is not the active application, and
use VVPhrases control (or you could leverage the VVTextBox Commands property provided for
extensibility) to add commands for “BEGIN-DICATION” and “STOP-DICTATION” which would
control the state of the DictationOn property. This example implements what is known as “modal
dictation”.

When the control enters or exits dictation mode, it fires the DictationStateChange event.

One thing to keep in mind when working with the VVTextBox control is that the TextBox treats text
from speech input the same as typed text. This means that properties like MaxLength, (which limits
the number of characters the user can type into the TextBox) are still enforced the same way when the
characters are generated from speech. Also, the control fires the Change event when the change occurs
from spoken text just as it does when the change comes from typing.

Getting Started with the TextBox Control

36 ActiveX Developer’s Guide

Capturing Commands
In addition to dictated speech, the VVTextBox can recognize spoken commands. By default, the
VVTextBox control listens for command speech when the control window has focus. If you specify an
AutoDictationWindow, then that window will also be used for command activation tracking so that,
by default, commands are always available when dictation is available. If you wish, you can achieve a
finer granularity of control by explicitly setting the CommandsEnabled property in much the same
way as using DictationOn to control dictation state.

The VVTextBox is capable of understanding eighteen command phrases. Refer to the following table
for a complete listing.

Table 1. VVTextBox Command Phrases

ID (Value) Command Phrase Description

vvTBCapitalizeThis (13) “CAPITALIZE-THIS” Capitalizes selected text or
word at the cursor.

vvTBCopyThis (8) “COPY-THIS” Copies selected text to the
clipboard.

vvTBCorrectThis (24) “CORRECT-THIS” Shows the error correction
window.

vvTBCutThis (7) “CUT-THIS” Cuts selected text to the
clipboard.

vvTBDeleteThis (10) “DELETE-THIS” Clears selected text or word at
the cursor.

vvTBHideEC (6) “HIDE-CORRECTION-WINDOW” Hides the error correction
window.

vvTBLowercaseThis (15) “LOWERCASE-THIS” Changes selected text or word
at the cursor to lowercase.

vvTBMoveBeginning
(22)

“MOVE-TO-BEGINNING-OF-
DOCUMENT”

Moves to the beginning of the
text.

vvTBMoveEnd (23) “MOVE-TO-END-OF-DOCUMENT” Moves to the end of the text.

vvTBNextWord (11) “NEXT-WORD” Places the cursor at the
beginning of the next word.

ActiveX Developer’s Guide 37

Capturing Commands

Whenever the user speaks one of the command phrases in the above list, the VVTextBox control
performs the corresponding action and fires the Command event indicating the ID of the command
and the textual representation of the command. You can also use the Commands property to extend
this list of commands and provide a more “natural language” type of control for the VVTextBox. To
do this simply use the Add method of the Commands property to add additional commands using the
same ID as the standard commands implementing the desired semantics. The VVTextBox will then
respond to those commands in the same way as the original commands. You can also use the same
Commands property to disable or remove any of the standard commands you choose.

vvTBPasteThis (9) “PASTE-THIS” Pastes text from the clipboard
onto the VVTextBox control.

vvTBPreviousWord (12) “PREVIOUS-WORD” Moves cursor to the beginning
of the previous word.

vvTBScratchThat (18) “SCRATCH-THAT” Deletes the last dictated
phrase.

vvTBSelectThis (20) “SELECT-THIS” Selects the text at the cursor.

vvTBShowEC (5) “SHOW-CORRECTION-WINDOW” Shows the error correction
window.

vvTBUppercaseOff (17) “UPPERCASE-OFF” Removes the “Dictation Caps
Lock” feature so all
subsequent text is lowercase.

vvTBUppercaseOn (16) “UPPERCASE-ON” Enables the “Dictation Caps
Lock” feature so all
subsequent dictated text is
uppercase.

vvTBUppercaseThis (14) “UPPERCASE-THIS” Changes selected text or word
at the cursor to uppercase.

Table 1. VVTextBox Command Phrases

ID (Value) Command Phrase Description

Getting Started with the TextBox Control

38 ActiveX Developer’s Guide

Text Correction
The user can use the ViaVoice TextBox control’s correction window to correct words that the engine
has interpreted incorrectly. By default there are two ways for the user to invoke the correction window.
If CommandsEnabled is true and the cursor is placed within the word to be corrected, the user can use
the voice command “CORRECT-THIS”or “SHOW-CORRECTION-WINDOW”. Or, the user can
“right-click” on the textbox and choose correction from the context menu. Either approach will display
the Error Correction window (see Figure 6) with the highlighted word/phrase or the word at the cursor
location. You may extend this by using the Commands method to add additional voice commands or
by using the ExecuteCommand method for programmatic invocation.

Figure 6. Error Correction Window

ActiveX Developer’s Guide 39

Summary

The error correction window shows a list of alternate words that the speech engine recognizes that are
close in pronunciation to the word the user dictated. The user can choose a word from the list by
clicking on it with the mouse and the word is replaced in the textbox control. Or the user can edit the
mis-spoken word in the edit field and click the checkmark button to replace the selected text in the
VVTextBox with whatever is in the edit field of the error correction window and apply the correction.
After the user corrects the word, the VVTextbox control updates the speech recognition engine, so that
the next time the user speaks the same word or phrase, the engine can interpret it correctly.

Summary
At this point, you should know how to do the following:

• How to incorporate the VVTextBox control into your project.

• How to control the activation of dictation.

• How to specify command words, and how to disable command capturing.

• How to correct dictated words using error correction.

The remainder of this documentation contains a reference for all the properties, methods, and events
for the VVTextBox control.

Getting Started with the TextBox Control

40 ActiveX Developer’s Guide

ActiveX Developer’s Guide 41

Chapter 3 Properties, Methods, and Events

TextBox Control Properties
The ViaVoice TextBox control supports the following properties:

Alignmenta

a. Represents standard properties in Visual Basic. For more information, refer to your Visual Basic
documentation.

hWnda

Appearancea LanguageUI

AutoDictationWindow Lockeda

AudioSourceType MaxLengtha

AutoUI MouseIcona

BackColora MousePointera

BorderStylea Multilinea

Commands PasswordChara

CommandsEnabled ScrollBarsa

DictationOn SelLengtha

Enableda SelStarta

Engine SelTexta

Fonta ShowDictationIcon

ForeColora Texta

HideSelectiona

Properties, Methods, and Events

42 ActiveX Developer’s Guide

AutoDictationWindow (Read/Write at Run Time Only)
The AutoDictationWindow property provides a means of controlling the scope in which dictation is
available. The default value of this property is the distinguished constant,
VV_HWND_AUTODICTATION (-1), which will map dictation availability to ViaVoice TextBox
window input focusa. It can also be set to VV_HWND_ALL (0), which will enable dication globally.
However, please note that there can only be one global dictation object active (DictationOn is True) at
any one time in the entire system (including other applications)! For this reason, it is strongly
suggested that you avoid global dictation objects if at all possible. Alternatively, you can set this
property to any valid "top-mostb" window handle, which maps dictation availability to that window’s
activation state (it or one of its children having focus).

 Finer granularity of control can always be achieved by changing the state of DictationOn
appropriately. When DictationOn is TRUE and the specified window is activated, the control will
receive dictation. If DictationOn is FALSE, the control will not receive any dictation regardless of the
value of this property.

Syntax

In Visual Basic:

In Visual C++ (MFC):

a. Dictation activation may potentially be modified by the state of the DictationOn property.

b. A “top-most” window is defined as any window without a parent. For more information on issues dealing with finding the
“top-most” window, see the Microsoft Knowledge Base article Q84190.

Property AutoDictationWindow As Long

long GetAutoDictationWindow();
void SetAutoDictationWindow(long nNewValue);

ActiveX Developer’s Guide 43

TextBox Control Properties

In Visual C++:

Parameters
??

Return Values
VV_HWND_AUTODICTATION

(Default) Dictation is available only when the VVTextBox control window has the focus.

Any valid “top-mosta” window handle
Dictation is available only when the indicated window is “active” as indicated by it, or one of its
children, having the focus. Note: There can only be one dictation object active for the same
window (DictationOn is True) at any one time

NULL
Dictation mode is always available and must be controlled manually by setting the DictationOn
property to True or False. Note: There can only be one global dictation object active (DictationOn
is True) at any one time!

Example

In Visual Basic:

HRESULT get_AutoDictationWindow(long * pVal);
HRESULT put_AutoDictationWindow(long newVal);

a. A “top-most” window is defined as any window without a parent. For more information on issues dealing with finding the
“top-most” window, see the Microsoft Knowledge Base article Q84190.

’Assumes this form is the top-most form!
VVTextBox1.AutoDictationWindow = hWnd

Properties, Methods, and Events

44 ActiveX Developer’s Guide

In Visual C++ (MFC):

In Visual C++:

Remarks
If this property is set to VV_HWND_ALL and DictationOn = TRUE, the control will receive
dictation. This enables an application to receive dictation when another application is active.
Remember, if you use VV_HWND_ALL, be aware that there can only be one global dictation object
active (DictationOn is True) at any one time. This includes your own or any other application running
on the system. For this reason, global dictation objects should be used with extreme care and should
probably be avoided unless absolutely necessary. Regardless of the value of this property, dictation
will always be off if the DictationOn property is set to FALSE.

// Makes no assumptions about m_hWnd
HWND Hwnd = m_hWnd;
// Due to the Win32 implementation of GetParent, this is necessary
// to find the "Foreground" window for SAPI grammar activation
// For more information see MS Knowledge Base article Q84190
while (::GetParent (hwnd) != NULL &&

! (::GetWindowLong(hwnd ,GWL_STYLE) & WS_POPUP))
{
hwnd = ::GetParent (hwnd);

}
m_VVTextBox.SetAutoDictationWindow ((long) hWnd);

// Makes no assumptions about m_hWnd
HWND Hwnd = m_hWnd;
// Due to the Win32 implementation of GetParent, this is necessary
// to find the "Foreground" window for SAPI grammar activation
// For more information see MS Knowledge Base article Q84190
while (::GetParent (hwnd) != NULL &&

! (::GetWindowLong(hwnd ,GWL_STYLE) & WS_POPUP))
{
hwnd = ::GetParent (hwnd);

}
HRESULT hr = S_OK;
hr = m_pIVVDictationMgr->put_AutoDictationWindow ((long)hWnd);

ActiveX Developer’s Guide 45

TextBox Control Properties

See Also
“DictationOn” on page 54
“DictationStateChange” on page 73

Properties, Methods, and Events

46 ActiveX Developer’s Guide

AutoUI
Controls whether ViaVoice TextBox displays and interacts with the ViaVoice User Interface Server.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

??

Return Values
TRUE

(Default) VVTextBox displays the User Interface Server and interacts with it automatically.

FALSE
VVTextBox does not display the User Interface Server. Also, it does not interact automatically
with it if another control displays the User Interface Server.

Property AutoUI As Boolean

BOOL GetAutoUI();
void SetAutoUI(BOOL fNewValue);

HRESULT get_AutoUI(VARIANT_BOOL * pVal);
HRESULT put_AutoUI(VARIANT_BOOL newVal);

ActiveX Developer’s Guide 47

TextBox Control Properties

Remarks
If multiple instances of the VVTextBox control have AutoUI set to True, the User Interface Server
only gets created once, and all the instances of the control interact with the same User Interface
Server. If you prefer not to display the User Interface Server or you do not want to have the
VVTextBox control interact with it automatically, set this property to False.

By setting it to True, you will not be able to interact with the UIServer on behalf of your application.
This means that even if you create an instance of the UIClient, you will never be able to control the
state of the UIServer.

When AutoUI is True, the VVTextBox automatically updates the following components:

• Microphone

• Word History

• Volume Level

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
Refer to the following chapters for more information about the ViaVoice User Interface Control:
Chapter 25, “Introduction to the User Interface Control” on page 497
Chapter 26, “Getting Started with the User Interface Control” on page 499
Chapter 27, “Classes, Structures, and Enumerations” on page 533

VVTextBox1.AutoUI = True

m_VVTextBox.SetAutoUI(TRUE);

HRESULT hr = m_pIVVTextBox->put_AutoUI(VARIANT_TRUE);

Properties, Methods, and Events

48 ActiveX Developer’s Guide

Chapter 28, “Properties, Methods, and Events” on page 561
Chapter 29, “User Interface Control Frequently Asked Questions” on page 629

ActiveX Developer’s Guide 49

TextBox Control Properties

Commands
Gets or sets the collection of commands used for voice control within the VVTextBox.

Syntax

In Visual Basic:

In Visual C++(MFC):

In Visual C++:

Settings
The Commands property settings for a ViaVoice TextBox control are:

Property Commands As IVVPhraseColl

CVVPhraseColl GetCommands();
void SetRefCommands(LPDISPATCH newValue);

HRESULT get_Commands(IVVPhraseColl ** pVal);
HRESULT putref_Commands(IVVPhraseColl * pVal);

Value Description

Default Commands (Default) The default commands used by the VVTextBox.

Any valid VVPhraseColl Custom set of commands to be used by the VVTextBox.

Properties, Methods, and Events

50 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Remarks
The TextBox can recognize command words while dictation is off or on (see “DictationOn” on
page 54) as long as speech input is available (see “AutoDictationWindow” on page 42). Finer
granularity of control for command availability is always available through use of the
CommandsEnabled property. Notice the distinction between the requested state and availability,
which is dependent on the AutoDictationWindow.

Also, the Commands property is actually the Phrases property of an implicitly created
VVPhrases control. For more information on VVPhrases see Chapter 9 “Introduction to the
Phrases Control”.

If you wish to change the phrase used to invoke a given command, you may simply change the
required command phrase as indicated in the VVPhrases documentation. If you wish to add

Set VVPhrases1.Phrases = VVTextBox1.Commands
AddCustomCommands (VVPhrases1)
Set VVTextBox2.Commands = VVPhrases1.Phrases

CVVPhraseColl Commands;
Commands = m_VVTextBox1.GetCommands ();
AddCustomCommands (Commands);
m_VVTextBox2.SetRefCommands (Commands);

IVVPhraseColl* pIVVPhraseColl;
HRESULT hr = m_pIVVTextBox->get_Commands(&pIVVPhraseColl);
AddCustomCommands(pIVVPhraseColl);
hr = m_pIVVTextBox->putref_Commands(pIVVPhraseColl);

ActiveX Developer’s Guide 51

TextBox Control Properties

additional commands for existing functionality, you must use the correct ID for the desired
functionality. For instance, if you wish to say either “NEXT-WORD” or “MOVE-NEXT” to move
the cursor to the next word, then you would jsut add “MOVE-NEXT” as a new phrase with the ID
of VVTBNextWord. Then, when the user speaks either command, the cursor will move to the next
word.

See Also
“AutoDictationWindow (Read/Write at Run Time Only)” on page 42

“Capturing Commands” on page 36

“CommandsEnabled” on page 52

“DictationOn” on page 54

Properties, Methods, and Events

52 ActiveX Developer’s Guide

CommandsEnabled
Returns or sets whether the ViaVoice TextBox control will recognize commands or not, when speech
input is available.

Syntax

In Visual Basic:

In Visual C++(MFC):

In Visual C++:

Settings
The CommandsEnabled property settings for a ViaVoice TextBox control are:

Property CommandsEnabled As Boolean

BOOL GetCommandsEnabled();
void SetCommandsEnabled(BOOL bNewValue);

HRESULT get_CommandsEnabled(VARIANT_BOOL * pVal)
HRESULT put_CommandsEnabled(VARIANT_BOOL newVal)

Value Description

True (Default) The ViaVoice Textbox recognizes commands, when available.

False Command words are ignored.

ActiveX Developer’s Guide 53

TextBox Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Remarks
The TextBox can recognize command words while dictation is off or on (see “DictationOn” on
page 54) as long as speech input is available (see “AutoDictationWindow” on page 42).
Conversely, command recognition will not be available if speech input is not available. Finer
granularity of control for command availability is always available through use of the
CommandsEnabled property.

See Also
“AutoDictationWindow (Read/Write at Run Time Only)” on page 42

“Capturing Commands” on page 36

“Commands” on page 49

“DictationOn” on page 54

VVTextBox1.CommandsEnabled = True

m_VVTextBox.SetCommandsEnabled(TRUE);

HRESULT hr = m_pIVVTextBox->put_CommandsEnabled(VARIANT_TRUE);

Properties, Methods, and Events

54 ActiveX Developer’s Guide

DictationOn
Returns or sets the desired state of the dictation mode. You can think of this property semantically as
“Client want's dictation on”. What this means is that if dictation is available (i.e. nothing is preventing
dictation), then the user will be able to dictate into the control. Some possible reasons why dictation
would be unavailable when DictationOn is True are: MaxLength has been reached, Locked is True,
Enabled is False, or the semantics of the AutoDictationWindow indicate that dictation is not
available.

Syntax

In Visual Basic:

In Visual C++(MFC):

In Visual C++:

Settings
The DictationOn property settings for a ViaVoice TextBox control are:

Property DictationOn As Boolean

BOOL GetDictationOn();
void SetDictationOn(BOOL bNewValue);

HRESULT get_DictationOn(VARIANT_BOOL * pVal);
HRESULT put_DictationOn(VARIANT_BOOL newVal)

Value Description

True The control can receive dictation input when dictation is available.

False The control ignores dictation input.

ActiveX Developer’s Guide 55

TextBox Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Remarks
When dictation is off (DictationOn = False) the user may still be able to issue commands. For
more information, refer to “CommandsEnabled” on page 52.

When the state of the dictation mode changes, the control fires the DictationStateChange event.
You should not set the value of this property in the DictationStateChange event, as this will cause
the event to trigger again.

See Also
“AutoDictationWindow (Read/Write at Run Time Only)” on page 42

“CommandsEnabled” on page 52

“DictationStateChange” on page 73

“Enabled” in Visual Basic Documentation

“Locked” in Visual Basic Documentation

“MaxLength” in Visual Basic Documentation

VVTextBox1.DictationOn = True

m_VVTextBox.SetDictationOn(TRUE);

HRESULT hr = m_pIVVTextBox->put_DictationOn(VARIANT_TRUE);

Properties, Methods, and Events

56 ActiveX Developer’s Guide

Engine
Contains a reference to the ViaVoice Engine control (VVEngine), which is used by the VVTextBox
control. For more information, see the Engine Control Guide on the SDK “Documentation” menu.

Syntax

In Visual Basic:

In Visual C++(MFC):

In Visual C++:

Example

In Visual Basic:

In Visual C++ (MFC):

Property Engine As IVVEngine

CVVEngine GetEngine();
void SetRefEngine(LPDISPATCH newValue);

HRESULT get_Engine(IVVEngine * * pVal);
HRESULT putref_Engine(IVVEngine * pVal);

VVTextBox1.Engine.AudioSourceType = vvstSAPICompliant

m_VVTextBox.GetEngine().SetAudioSourceType(vvstSAPICompliant);

ActiveX Developer’s Guide 57

TextBox Control Properties

In Visual C++:

Remarks
The Engine property is actually holding an implicitly created ActiveX control (VVEngine), which
can also be created separately. Inserting a VVEngine control in a project enables you to set the
engine properties on this control and assign the resulting engine to multiple ViaVoice ActiveX
controls.

See Also
Refer to the ViaVoice Engine Control Guide for more information.

IVVEngine* pIVVEngine = NULL;
HRESULT hr = m_pIVVTextBox->get_Engine (& pIVVEngine);
if (SUCCEEDED (hr))
 hr = pIVVEngine->put_AudioSourceType (vvstSAPICompliant);

Properties, Methods, and Events

58 ActiveX Developer’s Guide

LanguageUI
This property sets or gets the User Interface language used by the VVTextBox for this specific client.
The language affects any dialogs, menus, strings or ToolTips displayed by the control.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Settings
The LanguageUI property settings for a VVTextBox control are:

Property LanguageUI As String

CString GetLanguageUI();
void SetLanguageUI(LPCTSTR lpszNewValue);

HRESULT get_LanguageUI(BSTR * pVal);
HRESULT put_LanguageUI(BSTR newVal);

Language Property Value

U.S. English “EN_US”

U.K. English “EN_UK”

German “GR_GR”

Italian “IT_IT”

Spanish “ES_ES”

French “FR_FR”

Japanese “JA_JP”

ActiveX Developer’s Guide 59

TextBox Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Remarks
None.

’ Sets UI language to U.S. English
VVTextBox1.LanguageUI = "EN_US"
’ Gets UI language and displays it in a message box
MsgBox VVTextBox1.LanguageUI

// Sets UI language to U.S. English
m_VVTextBox.SetLanguageUI("EN_US");
CString sLangUI;
// Gets UI language and copies it into variable
sLangUI = m_VVTextBox.GetLanguageUI();

HRESULT hr;
BSTR bstrLangUI;

bstrLangUI = SysAllocString(OLESTR("EN_US"));
// Sets UI language to U.S. English
hr = pIVVTextBox->put_LanguageUI(bstrLangUI);
SysFreeString(bstrLangUI);

// Gets UI language into BSTR variable
hr = pIVVTextBox->get_LanguageUI(&bstrLangUI);
// Use language string now and when done free BSTR.
SysFreeString(bstrLangUI);

Properties, Methods, and Events

60 ActiveX Developer’s Guide

See Also
None.

ActiveX Developer’s Guide 61

TextBox Control Properties

ShowDictationIcon
Determines whether or not the VVTextBox displays a small “speech bubble” dictation icon indicating
that it is capable of accepting dictation at run time. This can be used to easily differentiate between
normal TextBox controls and VVTextBox controls, which can accept dictation.

Syntax

In Visual Basic:

In Visual C++(MFC):

In Visual C++:

Settings
The ShowDictationIcon property settings for a ViaVoice TextBox control are:

Property ShowDictationIcon As Boolean

BOOL GetShowDictationIcon();
void SetShowDictationIcon(BOOL bNewValue);

HRESULT get_ShowDictationIcon(VARIANT_BOOL * pVal);
HRESULT put_ShowDictationIcon(VARIANT_BOOL newVal);

Value Description

True VVTextBox displays a small dictation icon to indicate that it is capable of accepting
dictation.

False (Default) VVTextBox does not display the dictation icon.

Properties, Methods, and Events

62 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Remarks
The icon does not give any information about the current state or availability of dictation.

See Also
None.

VVTextBox1.ShowDictationIcon = True

m_VVTextBox.SetShowDictationIcon(TRUE);

HRESULT hr = m_pIVVTextBox->put_ShowDictationIcon (VARIANT_TRUE);

ActiveX Developer’s Guide 63

TextBox Control Methods

TextBox Control Methods
The ViaVoice TextBox control supports the following methods:

• Abouta

• ExecuteCommand

• Playback

• PlaybackEx

• PlaybackEx2

• Refresha

a. Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

Properties, Methods, and Events

64 ActiveX Developer’s Guide

ExecuteCommand
This method allows the client to invoke any of the “voice commands” (see ”Commands” property)
programmatically simply by passing the ID of the command desired. For a complete list of voice
commands and descriptions, see “Capturing Commands” on page 36. The primary use of this
functionality is to expose voice command functionality for invocation via mouse or keyboard input. It
can also be used to control actions based on voice commands in an external VVPhrases control. This
might be useful, for instance, if you need to have voice commands activated/available based on your
own logic using a different tracking window for the command phrases.

Syntax

In Visual Basic:

In Visual C++(MFC):

In Visual C++:

Example

In Visual Basic:

In Visual C++ (MFC):

Sub ExecuteCommand(lCommandID As Long)

void ExecuteCommand(long lCommandID);

HRESULT ExecuteCommand(long lCommandID);

VVTextBox1.ExecuteCommand vvTBCorrectThis

m_VVTextBox.ExecuteCommand (vvTBCorrectThis);

ActiveX Developer’s Guide 65

TextBox Control Methods

In Visual C++:

Remarks
The CommandsEnabled property has no effect on commands invoked through the
ExecuteCommand method.

See Also
“Capturing Commands” on page 36

“Commands” on page 49

“CommandsEnabled” on page 52

HRESULT hr = m_pIVVTextBox->ExecuteCommand(vvTBCorrectThis);

Properties, Methods, and Events

66 ActiveX Developer’s Guide

Playback

See Also
Chapter 7, “Playback” on page 178

ActiveX Developer’s Guide 67

TextBox Control Methods

PlaybackEx

See Also

Chapter 7, “PlaybackEx” on page 180

Properties, Methods, and Events

68 ActiveX Developer’s Guide

PlaybackEx2

See Also

Chapter 7, “PlaybackEx2” on page 182

ActiveX Developer’s Guide 69

TextBox Control Events

TextBox Control Events
The ViaVoice TextBox control supports the following events:

Changea

a. Represents a standard event in Visual Basic. For more information, refer to
your Visual Basic documentation.

KeyUpa

Clicka MaxText

Command MouseDowna

DblClicka MouseMovea

DictationStateChange MouseUpa

Error

KeyDowna

KeyPressa

Properties, Methods, and Events

70 ActiveX Developer’s Guide

Command
The control fires this event when the user speaks one of the command words the VVTextBox
recognizes. (To see a complete list of commands that the VVTextBox control recognizes, refer to
“Capturing Commands” on page 36.)

Syntax

In Visual Basic:

In Visual C++(MFC):

Parameters
CmdID

Long

A number that uniquely identifies the command the VVTextBox recognized. For a complete list,
refer to “Capturing Commands” on page 36.

strCommand
String

The actual command text the VVTextBox recognized. You should not write code that is dependent
on this value as the phrases are subject to change and vary with the language of the engine. Use the
CmdID parameter instead. It is recommended that you use the strCommand parameter for display
only. This will be an empty string if invoked through any means other than the speech commands.

Event Command(CmdID As Long, strCommand As String)

void OnCommand (long CmdID, LPCTSTR strCommand);

ActiveX Developer’s Guide 71

TextBox Control Events

Example

In Visual Basic:

In Visual C++ (MFC):

Remarks
This control recognizes commands only when CommandsEnabled is set to True and there are no
other limiting factors (see ”Commands” and ”CommandsEnabled” properties). Commands are
never recognized when CommandsEnabled is False.

Private Sub VVTextBox1_Command(ByVal CmdID As Long, _
 ByVal strCommand As String)
 Select Case CmdID
 Case vvTBShowEC
 ProcessTBShowEC
 . . .
 End Select

End Sub

void CTestDlg::OnCommand(long CmdID, LPCTSTR strCommand)
{
 switch (CmdID)
 {
 case vvTBShowEC
 ProcessTBShowEC();
 break;
 default:
 break
 }
}

Properties, Methods, and Events

72 ActiveX Developer’s Guide

See Also
“Capturing Commands” on page 36

“Commands” on page 49

“CommandsEnabled” on page 52

ActiveX Developer’s Guide 73

TextBox Control Events

DictationStateChange
The control fires this event when the control enters or exits dictation mode. There are several actions
that affect the state of dictation – see the remarks below for more information.

Syntax

In Visual Basic:

In Visual C++(MFC):

Parameters
DictationOn

Boolean

The current state of dictation mode. True means the control is ready to receive dictation speech and
turn it into text when speech input is available. False means that the control will ignore dictation
input. This event implies nothing to do with the control being able to understand voice commands.
For more information, refer to “CommandsEnabled” on page 52.

Example

In Visual Basic:

Event DictationStateChange(DictationOn As Boolean)

void OnDictationStateChangeVvtextbox1(BOOL DictationOn);

Private Sub VVTextBox1_DictationStateChange(ByVal DictationOn As
Boolean)

 ProcessDictationOnEvent DictationOn

End Sub

Properties, Methods, and Events

74 ActiveX Developer’s Guide

In Visual C++ (MFC):

Remarks
The following conditions can effect the state of dictation:

• The state of the DictationOn property is changed explicitly.

• Focus changes (see AutoDictationWindow on page 42).

• The state of the Locked property is changed explicitly.

• The state of the Enabled property is changed explicitly.

• The length of text reaches the max set in the MaxLength property.

A change indicated by the DictationStateChange event does not imply a change to the
DictationOn property. DictationOn is semantically equivalent to "user wants dictation on". If
dictation has been turned off in response to some action other than setting DictationOn to false
(e.g., Enabled was set false) then DictationOn can be true after a DictationStateChange event
indicates that dictation is "off".

Note:
If AutoDictationWindow is not set to VV_HWND_AUTODICTATION, then focus changes
will not trigger this event, even if dictation availability has changed. If you need this
information, then you must write code to track the window activation changes. This can be
done by subclassing the window set for the AutoDictationWindow .

See Also
“CommandsEnabled” on page 52

“DictationOn” on page 54

“AutoDictationWindow (Read/Write at Run Time Only)” on page 42

void CTestDlg::OnDictationStateChange(BOOL DictationOn)
{
 ProcessDictationOnEvent (DictationOn)

}

ActiveX Developer’s Guide 75

TextBox Control Events

“Enabled” in Visual Basic Documentation

“Locked” in Visual Basic Documentation

“MaxLength” in Visual Basic Documentation

Properties, Methods, and Events

76 ActiveX Developer’s Guide

Error
Event fired when the ViaVoice TextBox control reports an error.

Syntax

In Visual Basic:

In Visual C++(MFC):

Parameters
sErrorID

Integer. The error number. The error number can be one of the following values:

pstrDescription
String. The error description. The error message string is language-dependent and requires the use
of the appropriate language resource DLL. The control will use the language of the container

Event Error(sErrorID As Integer, _
pstrDescription As String, _
hresult As Long, _
strSource As String, _
strHelp As String, _
lHelpID As Long, _
bShow As Boolean)

void OnError (short sErrorID, BSTR FAR* pstrDescription,
long FAR* hresult, BSTR FAR* strSource,
BSTR FAR* strHelp, long FAR* lHelpID, BOOL FAR* fShow);

DICTERR_DICTATION_ACTIVATE 101 (Hex 65)

DICTERR_DICTATION_DEACTIVATE 102 (Hex 66)

DICTERR_COMMANDS_ACTIVATE 103 (Hex 67)

DICTERR_COMMANDS_DEACTIVATE 104 (Hex 68)

DICTERR_ENGINE_CONNECT 105 (Hex 69)

ActiveX Developer’s Guide 77

TextBox Control Events

application for error messages. If the control cannot find the appropriate language DLL, the error
message will be in US English.

hresult
Long. The error code.

strSource
String. This parameter contains the name of the module where the error occurred.

strHelp
String. The name and path of the help file (HLP file) containing information about the error.

lHelpID
Long. The context ID of the page in the help file that explains the error.

fShow
Boolean. Set to True by default, the ViaVoice TextBox control will automatically display an error
message dialog box when an error occurs. You can prevent the control from showing this dialog by
setting this parameter to False.

Return Values
TRUE

(Default) ViaVoice TextBox control will automatically display an error message dialog box when
an error occurs.

FALSE
The error message dialog will not display.

Remarks
The ViaVoice TextBox can report errors in one of two ways. If the error occurs from the setting of a
property or the issuing of a method incorrectly, the control generates a trappable error (returns an error
HRESULT). However, some errors can occur while the user is interacting with the control directly.
Whenever the control needs to report this type of error, it fires the Error event.

Properties, Methods, and Events

78 ActiveX Developer’s Guide

Example

In Visual Basic:

Private Sub VVTextBox1_Error(_
sErrorID As Integer, _
pstrDescription As String, _
hresult As Long, _
strSource As String, _
strHelp As String, _
lHelpID As Long, _
bShow As Boolean)

Select Case sErrorID
Case DICTERR_ENGINE_CONNECT
MsgBox "Fatal Error! Unable to connect to speech engine."
bShow = False

End Select

End Sub

ActiveX Developer’s Guide 79

TextBox Control Events

In Visual C++ (MFC):

See Also
None.

void CTestctrlDlg::OnError(
short sErrorID,
BSTR FAR* pstrDescription,
long hresult,
LPCTSTR strSource,
LPCTSTR strHelp,
long lHelpID,
BOOL FAR* bShow)

{
switch (sErrorID)
{
Case DICTERR_ENGINE_CONNECT
MsgBox "Fatal Error! Unable to connect to speech engine.", "Speech
Error", MB_OK);
*bShow = TRUE;

break;
}

}

Properties, Methods, and Events

80 ActiveX Developer’s Guide

MaxText
Event fired when the length of the text in the TextBox reaches the maximum number of characters
allowed in the control.

Syntax

In Visual Basic:

In Visual C++ (MFC):

Parameters
None.

Return Values
None.

Remarks
You can specify maximum number of characters through the MaxLength property. For more
information about the MaxLength property, refer to the Visual Basic documentation

Setting the MaxLength property to zero means that the control accepts the maximum of a standard
edit control, which is OS dependent. See Microsoft documentation for details.

Event MaxText()

void OnMaxText();

ActiveX Developer’s Guide 81

TextBox Control Events

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
“MaxLength” in Visual Basic Documentation.

Private Sub VVTextBox1_MaxText()
’AutoTab when all the information has been entered
SendKeys "{TAB}"

End Sub

void CTestDlg::MaxText()
{
//AutoTab when all the information has been entered
GetNextDlgTabItem(GetFocus())->SetFocus();

}

Properties, Methods, and Events

82 ActiveX Developer’s Guide

ActiveX Developer’s Guide 83

Chapter 4 TextBox Control Frequently Asked
Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice TextBox
Control.

How can I enter dictation mode automatically each time the VVTextBox gets focus?

Set the AutoDictationWindow property to VV_HWND_AUTODICTATION (-1) at run time (this
is the default). By setting this value for AutoDictationWindow and setting DictationOn to true,
the control will automatically enter dictation mode when it gets the focus, and exit dictation mode
when it loses focus. Setting DictationOn to false will still disable dictation regardless of window
focus.

How can I get more control in determining when dictation is available?

One way is to set the AutoDictationWindow property to NULL at design time to enable “global”
dictation. By setting this value, the control will always accept dictation when DictationOn is true
and will stop accepting dictation when DictationOn is false. There can only be one (1) global
dictation object active (DictationOn set to true) in the entire system at any one time.

Another option is to use some other window for implicit dictation control. To do this, simply find
the “top-most” window in the application of interest (your own or any other application) and
assign it to AutoDictationWindow before setting DictationOn to true. This has the effect of
enabling dictation any time that window, or any of its child widows, has focus. Using a window for
dictation tracking provides the benefit of greater control without the problems associated with a
“global” dictation object.

TextBox Control Frequently Asked Questions

84 ActiveX Developer’s Guide

ActiveX Developer’s Guide 85

Chapter 5 Introduction to the RichEdit
Control

The ViaVoice RichEdit Control (VVRichEdit) is an ActiveX control which allows programmers to
incorporate dictation-enabled word processing into their applications. The control contains many
methods and properties which allow the user to create rich text format (RTF) files like a Windows rich
edit control. What separates VVRichEdit from other rich edit controls is its ability to receivedictation
from an audio input device (such as a microphone). The dictation will be adorned with any rich text
formatting that would be required if the user was actually typing the text. The VVRichEdit control
also provides voice commands to allow the user to navigate and manipulate its contents.

VVRichEdit Object Hierarchy
VVRichEdit actually utilizes controls of the ViaVoice SDK for many aspects of its functionality. To
receive, synchronize, and correct dictation, it interacts with VVDictationMgr. For an error correction
user interface, the control uses VVECWin. Internally a VVPhrases control is used to notify
VVRichEdit if the user has uttered any voice commands.

The following diagram shows the object hierarchy for the VVRichEdit.

Introduction to the RichEdit Control

86 ActiveX Developer’s Guide

ActiveX Developer’s Guide 87

Chapter 6 Getting Started with the RichEdit
Control

The following is a tutorial on how to incorporate the VVRichEdit control into your Visual Basic or
Visual C++ applications. This tutorial is designed to present you with the most commonly used
properties and events in the VVRichEdit control.

The following sections contain information to help you write code to create an instance of the
RichEdit control, then to capture speech, capture commands and create the environment to allow text
correction.

Creating an Instance of the Control
This section contains step-by-step instructions for using Visual Basic or Visual C++ (MFC) to create
an instance of the control.

In Visual Basic:
To add the VVRichEdit control to your application, do the following:

1. From the Project menu, choose Components.
The ‘Components’ dialog box, Figure 7, appears. The ‘Components’ dialog lists all the ActiveX
Controls that you can use in your application.

Getting Started with the RichEdit Control

88 ActiveX Developer’s Guide

Figure 7. Component Selection Dialog - Visual Basic

ActiveX Developer’s Guide 89

Creating an Instance of the Control

2. Select IBM ViaVoice RichEdit Control from the list and click OK.
Visual Basic adds the control to your project, and adds a new icon to the toolbar (Figure 8).

Figure 8. VVRichEdit Control Toolbar Icon

3. Add an instance of the VVRichEdit control to your form.
The VVRichEdit control looks and acts much like the Visual Basic native RichTextBox control.

In Visual C++ (MFC):
To add the VVRichEdit to your MFC project, do the following:

1. From the Project menu, select Add To Project, then select Components and Controls.
The ‘Components and Controls Gallery’ dialog box, Figure 9, appears.

Getting Started with the RichEdit Control

90 ActiveX Developer’s Guide

Figure 9. Insert ActiveX Control Dialog Box - Visual C++

2. Double-click the ‘Registered ActiveX Controls’ folder in the dialog box.

3. Select the IBM ViaVoice RichEdit Control icon in the list of controls, then click Insert.

ActiveX Developer’s Guide 91

Creating an Instance of the Control

A confirmation message box appears, asking “Insert this component?”, just click OK.

4. Respond to the confirmation message box by clicking OK.
The ‘Confirm Classes’ dialog box, Figure 10, appears listing the Dual interface of the RichEdit
control (CVVRichEdit), along with the accompanying Engine (CVVEngine), Phrase
(CVVPhrase), PhraseColl (CVVPhraseColl), Font (COleFont), and Picture (CPicture) interfaces.

Figure 10. Confirm Classes Dialog Box

Getting Started with the RichEdit Control

92 ActiveX Developer’s Guide

5. Click OK in the ‘Confirm Classes’ dialog box.

6. Close the ‘Components and Controls Gallery’ dialog box.
If you examine the Project Workspace window in the class view, you will notice six classes:
CVVRichEdit, CVVEngine, CVVPhrase, CVVPhraseColl, COleFont, and CPicture (assuming
you accepted the default names for the class in the ‘Confirm Classes’ dialog box).

7. In the resource view of your Project Workspace window, double-click the dialog resource entry
where you wish to insert the VVRichEdit control.
The VVRichEdit icon, Figure 11, appears in the Controls toolbar.

Figure 11. VVRichEdit Icon in the Controls Toolbar

8. Add an instance of the VVRichEdit control to the dialog box.
After you add the VVRichEdit control to your dialog you can invoke Class Wizard to create a
member variable for your class of type CVVRichEdit. You might also decide to capture the events
in the control by adding Event handlers to your dialog class. To add Event handlers, you can use
the Class Wizard just like adding notification message handlers for a non-speech edit box.

ActiveX Developer’s Guide 93

Capturing Speech

Capturing Speech
The VVRichEdit turns speech input into text; however, users of your application might not want every
word they speak to be transformed into text. For example, users might need to perform other speaking
tasks, such as answering the telephone or conversing with someone. By default, the VVRichEdit
operates in what is known as modeless operation. This means that whenever the control has window
focus, the control will perform speech to text conversion, in the same way that it will accept keyboard
input when the window has focus. But, you can also control dictation explicitly by specifying a
window (see “AutoDictationWindow (Read/Write at Run Time Only)” on page 100) and setting the
state of dictation (see “DictationOn” on page 116) as needed to implement almost any dictation
activation logic you choose.

For example, you could use your application's top-most window for the AutoDictationWindow, so
that dictation would automatically be disabled when your application is not the active application, and
use VVPhrases control (or you could leverage the VVRichEdit Commands property provided for
extensibility) to add commands for "BEGIN-DICATION" and "STOP-DICTATION" which would
control the state of the DictationOn property. This example implements what is known as "modal
dictation".

When the control enters or exits dictation mode, it fires the DictationStateChange event.

One thing to keep in mind when working with the VVRichEdit control is that the VVRichEdit treats
text from speech input the same as typed text. This means that properties like MaxLength, (which
limits the number of characters the user can type into the TextBox) are still enforced the same way
when the characters are generated from speech. Also, the control fires the Change event when the
change occurs from spoken text just as it does when the change comes from typing.

Getting Started with the RichEdit Control

94 ActiveX Developer’s Guide

Capturing Commands
In addition to dictated speech, the VVRichEdit can recognize spoken commands. By default, the
VVRichEdit control listens for command speech when the control window has focus. If you specify
an AutoDictationWindow, then that window will also be used for command activation tracking so
that, by default, commands are always available when dictation is available. If you wish, you can
achieve a finer granularity of control by explicitly setting the CommandsEnabled property in much
the same way as using DictationOn to control dictation state.

The VVRichEdit is capable of understanding twenty command phrases. Refer to the following table
for a complete listing.

Table 2. VVRichEdit Command Phrases

ID (Value) Command Phrase Description

vvTBCapitalizeThis (13) “CAPITALIZE-THIS” Capitalizes selected text or
word at the cursor.

vvTBCopyThis (8) “COPY-THIS” Copies selected text to the
clipboard.

vvTBCorrectThis (24) “CORRECT-THIS” Shows the error correction
window.

vvTBCutThis (7) “CUT-THIS” Cuts selected text to the
clipboard.

vvTBDeleteThis (10) “DELETE-THIS” Clears selected text or word at
the cursor.

vvTBHideEC (6) “HIDE-CORRECTION-WINDOW” Hides the error correction
window.

vvTBLowercaseThis (15) “LOWERCASE-THIS” Changes selected text or word at
the cursor to lowercase.

vvTBMoveBeginning
(22)

“MOVE-TO-BEGINNING-OF-
DOCUMENT”

Moves the cursor to the
beginning of the text.

vvTBMoveEnd (23) “MOVE-TO-END-OF-
DOCUMENT”

Moves the cursor to the end of
the text.

ActiveX Developer’s Guide 95

Capturing Commands

Whenever the user speaks one of the command phrases in the above list, the VVRichEdit control
performs the corresponding action and fires the Command event indicating the ID of the command
and the textual representation of the command. The Commands property can be used to extend or
reduce this list of commands or provide a more “natural language” type of control for the
VVRichEdit. The Commands property is an IVVPhraseColl interface. Internally the VVRichEdit
uses the VVPhrases control and gets or sets the Phrases property on it. Any of the IVVPhraseColl
interface methods can be used to modify or enable the collection of phrases, which the VVRichEdit
uses to recognize commands.

The VVRichEdit will perform operations for events with the command IDs specified in
VVRICHEDIT.H file. To add a new command, use the Add method on the IVVPhrasesColl and

vvTBNextWord (11) “NEXT-WORD” Places the cursor at the
beginning of the next word.

vvTBPasteThis (9) “PASTE-THIS” Pastes text from the clipboard
onto the VVRichEdit control.

vvTBPreviousWord (12) “PREVIOUS-WORD” Moves cursor to the beginning
of the previous word.

vvTBScratchThat (18) “SCRATCH-THAT” Deletes the last dictated phrase.

vvTBSelectPhrase (27) “SELECT-%S” (%S represents any visible word
or phrase) Selects the text
specified.

vvTBSelectThis (20) “SELECT-THIS” Selects the text at the cursor.

vvTBShowEC (5) “SHOW-CORRECTION-
WINDOW”

Shows the error correction
window.

vvTBUppercaseOff (17) “UPPERCASE-OFF” Removes the “Dictation Caps
Lock” feature so all subsequent
text is lowercase.

vvTBUppercaseOn (16) “UPPERCASE-ON” Enables the “Dictation Caps
Lock” feature so all subsequent
dictated text is uppercase.

vvTBUppercaseThis (14) “UPPERCASE-THIS” Changes selected text or word at
the cursor to uppercase.

Table 2. VVRichEdit Command Phrases

ID (Value) Command Phrase Description

Getting Started with the RichEdit Control

96 ActiveX Developer’s Guide

specify a new command ID. VVRichEdit will not perform any specific functionality for the new
command, but it will fire the Command event when it is spoken. In the Command event handler of
the client application, add custom code for the command, which will be executed if the spoken
command ID is the same as the ID of the new command. Since you can execute any methods on the
IVVPhrasesColl and the VVPhrases contained within it, it is possible to disable or remove any of the
standard commands you choose.

ActiveX Developer’s Guide 97

Text Correction

Text Correction
The user can use the ViaVoice RichEdit control’s correction window to correct individual words that
the engine has interpreted incorrectly. By default there are two ways for the user to invoke the
correction window. If CommandsEnabled is true and the cursor is placed within the word to be
corrected, the user can use the voice command “CORRECT-THIS”or “SHOW-CORRECTION-
WINDOW”. Or, the user can “right-click” the textbox and choose correction from the context menu.
Either approach will display the Error Correction window (see Figure 12) with the highlighted word/
phrase or the word at the cursor location. You may extend this by using the Commands method to add
additional voice commands or by using the ExecuteCommand method for programmatic invocation.

Figure 12. Error Correction Window

Getting Started with the RichEdit Control

98 ActiveX Developer’s Guide

The error correction window shows a list of alternate words that the speech engine recognizes that are
close in pronunciation to the word the user dictated. The user can choose a word from the list by
clicking on it with the mouse and the word is replaced in the textbox control. Or, the user can edit the
mis-spoken word in the edit field and click the checkmark button to replace the selected text in the
VVRichEdit with whatever is in the edit field of the error correction window and apply the correction.
After the user corrects the word, the VVRichEdit control updates the speech recognition engine, so
that the next time the user speaks the same word or phrase, the engine can interpret it correctly.

Summary
At this point, you should know how to do the following:

• How to incorporate the VVRichEdit control into your project.

• How to control the activation of dictation.

• How to specify command words, and how to disable command capturing.

• How to correct dictated words using error correction.

The remainder of this documentation contains a reference for all the properties, methods, and events
for the VVRichEdit control.

ActiveX Developer’s Guide 99

Chapter 7 Properties, Methods, and Events

RichEdit Control Properties
The ViaVoice RichEdit control supports the following properties:

Appearancea

a. Represents standard properties in Visual Basic. For more information, refer to your Visual Basic
documentation.

LanguageUI SelItalic

AutoDictationWindow Lockeda SelLength

AudioSourceType MaxLengtha SelProtected

AutoUI MouseIcona SelRightIndentb

BackColora MousePointera SelRTF

BorderStylea Multilinea SelStart

BulletIndentationb

b. This property represents an amount of distance. It is entered as a string with the amount followed by one of
the abbreviations for supported units. Inches can be represented as quotes (“), in, inch, or inches.
Centimeters are specified by cm, point by pt, and pica by pi. If no units are specified, the property defaults
to twips.

RightMarginb SelStrikeThru

Commands ScrollBarsa SelTabCount

CommandsEnabled SelAlignment SelTabs

DictationOn SelBold SelTexta

Enableda SelBullet SelUnderline

Engine SelCharOffset Texta

FileName SelColor TextRTF

Fonta SelFontName

ForeColora SelFontSize

HideSelectiona SelHangingIndentb

hWnd SelIndentb

Properties, Methods, and Events

100 ActiveX Developer’s Guide

AutoDictationWindow (Read/Write at Run Time Only)
Controls the scope in which dictation is available.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Note:
[Valid “Top-Most” Window handle] can be replaced by VV_HWND_AUTODICTATION or
VV_HWND_ALL, as indicated above.

Parameters
VV_HWND_AUTODICATION

(Default) Dictation is available only when the VVRichEdit control window has the focus.

Return Values
??

[VVRichEditTextBox].AutoDictationWindow = [Valid "Top-Most" Window
handle]

[VVRichEdit].SetAutoDictationWindow (long);

HWND = (HWND) [VVRichEdit].GetAutoDictationWindow();

HRESULT [pIVVRichEdit]->get_AutoDictationWindow(long*);

HRESULT [pIVVRichEdit]->put_AutoDictationWindow(long);

ActiveX Developer’s Guide 101

RichEdit Control Properties

Remarks
The default value of this property is the distinguished constant, VV_HWND_AUTODICTATION (-1),
which will map dictation availability to ViaVoice RichEdit window input focusa. It can also be set to
VV_HWND_ALL (0), which will enable dication globally. However, please note that there can only
be one global dictation object active (DictationOn is True) at any one time in the entire system
(including other applications)! For this reason, it is strongly suggested that you avoid global dictation
objects if at all possible. Alternatively, you can set this property to any valid "top-mostb" window
handle, which maps dictation availability to that window’s activation state (it or one of its children
having focus).

Finer granularity of control can always be achieved by changing the state of DictationOn
appropriately. When DictationOn is TRUE and the specified window is activated, the control will
receive dictation. If DictationOn is FALSE, the control will not receive any dictation regardless of the
value of this property.

If this property is set to VV_HWND_ALL and DictationOn = TRUE, the control will receive
dictation. This enables an application to receive dictation when another application is active.
Remember, if you use VV_HWND_ALL, be aware that there can only be one global dictation object
active (DictationOn is True) at any one time. This includes your own or any other application running
on the system. For this reason, global dictation objects should be used with extreme care and should
probably be avoided unless absolutely necessary. Regardless of the value of this property, dictation
will always be off if the DictationOn property is set to FALSE.

a. Dictation activation may potentially be modified by the state of the DictationOn property.

b. A “top-most” window is defined as any window without a parent. For more information on issues dealing with finding the
“top-most” window, see the Microsoft Knowledge Base article Q84190.

Properties, Methods, and Events

102 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“DictationOn” on page 116
“DictationStateChange” on page 193

Private Sub Form_Load()
’Assumes this form is the top-most form!
VVRichEdit1.AutoDictationWindow = hWnd

End Sub

void CTestDlg::InitializeRichEdit()
{
// Makes no assumptions about m_hWnd
HWND hWnd = m_hWnd;
while (GetParent (hWnd) != NULL)
hWnd = GetParent (hWnd);

m_VVRichEdit.SetAutoDictationWindow((long) hWnd);
}

void CTestDlg::OnInitDialog()
{
// Makes no assumptions about m_hWnd
HWND hWnd = m_hWnd;
while (GetParent (hWnd) != NULL)
hWnd = GetParent (hWnd);

m_pIVVRichEdit->put_AutoDictationWindow((long) hWnd);

}

ActiveX Developer’s Guide 103

RichEdit Control Properties

AudioSourceType
AudioSourceType property to specify an alternative source containing spoken words and phrases.

This property only takes effect at design time.

This property takes one of the following enum values:

vvFixedAudio
- default values.

vvMultimediaDevice
- the default multimedia device on the system is used.

vvCustomCLSID
- Custom CLSID of a creatable object in a registered COM server which implements the SAPI
custom audio source specification.

vvWAVFile
- a wave file.

NOTE: This is a new property, which could break some legacy client applications.
If this happens, recompile the code after installation of SDK.

Properties, Methods, and Events

104 ActiveX Developer’s Guide

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
None.

Return Values
None.

Remarks
None.

[enum] = [VVRichEdit].AudioSourceType
[VVRichEdit].AudioSourceType = [enum]

SetAudioSourceType(VVAudioSourceConstants *pVal)
SetAudioSourceType(VVAudioSourceConstants newVal)

get_AudioSourceType(VVAudioSourceConstants *pVal)
put_AudioSourceType(VVAudioSourceConstants newVal)

ActiveX Developer’s Guide 105

RichEdit Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

VVRichEdit1.Engine.AudioSource="c:\\temp\\my.wav"
VVRichEdit1.Engine.AudioState=vvasStarted

void CTestRichEditDlg::WAVinput()
{
 pVVRichEdit->GetEngine()->SetAudioSource(L"c:\\temp\\my.wav");
 pVVRichEdit->GetEngine()->SetAudioState(vvasStarted);

void CTestRichEditDlg::WAVinput()
{
 IVVEngine * pVVEngine=NULL;
 m_pvvRichEdit->get_Engine(&pVVEngine);
 pVVEngine->put_AudioSource(L"c:\\temp\\my.wav");
 pVVEngine->put_AudioState(vvasStarted);

Properties, Methods, and Events

106 ActiveX Developer’s Guide

AutoUI
Controls whether VVRichEdit displays the User Interface Server and interacts with it automatically.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fnewValue

??

Return Values
TRUE

(Default) VVRichEdit displays the User Interface Server and interacts with it automatically.

FALSE
VVRichEdit does not display the User Interface Server. Also, it does not interact automatically
with it if another control displays the User Interface Server

VVRichEdit.AutoUI = [Boolean]

BOOL GetAutoUI();
void SetAutoUI(BOOL fNewValue);

get_AutoUI(VARIANT_BOOL *pVal)
put_AutoUI(VARIANT_BOOL newVal)

ActiveX Developer’s Guide 107

RichEdit Control Properties

Remarks
When AutoUI is True, the VVRichEdit automatically updates the following components:
Microphone, Word History, and Volume Level.

When this property is set to True, the ViaVoice RichEdit control automatically displays and interacts
with the ViaVoice User Interface Server. If multiple instances of the VVRichEdit control have
AutoUI set to True, the User Interface Server only gets created once, and all the instances of the
control interact with the same User Interface Server. If you prefer not to display the User Interface
Server or you do not want to have the VVRichEdit control interact with it automatically, set this
property to False. By setting it to True, you will not be able to interact with the UIServer on behalf of
your application. This means that even if you create an instance of the UIClient, you will never be able
to control the state of the UIServer.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
Refer to the following chapters for more information about the ViaVoice User Interface Control:

Chapter 25, “Introduction to the User Interface Control” on page 497

Chapter 26, “Getting Started with the User Interface Control” on page 499

Chapter 27, “Classes, Structures, and Enumerations” on page 533

Private Sub Form_Load()
VVRichEdit1.AutoUI = True

End Sub

m_RichEdit.SetAutoUI(TRUE);

HRESULT hr = m_pIVVRichEdit->put_AutoUI(VARIANT_TRUE);

Properties, Methods, and Events

108 ActiveX Developer’s Guide

Chapter 28, “Properties, Methods, and Events” on page 561

Chapter 29, “User Interface Control Frequently Asked Questions” on page 629

ActiveX Developer’s Guide 109

RichEdit Control Properties

BulletIndentation
Sets or gets the amount of space to indent.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
TRUE

Sets or gets the amount of space to indent.

FALSE
??

Remarks
This property represents an amount of distance. It is entered as a string with the amount followed by
one of the abbreviations for supported units. Inches can be represented as quotes (“), in, inch, or

VVRichEdit.BulletIndentation = [String]

CString GetBulletIndentation();
void SetBulletIndentation(LPCTSTR lpszNewValue);

HRESULT get_BulletIndentation(BSTR * pVal);
HRESULT put_BulletIndentation(BSTR newVal);

Properties, Methods, and Events

110 ActiveX Developer’s Guide

inches. Centimeters are specified by cm, point by pt, and pica by pi. If no units are specified, the
property defaults to twips.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

VVRichEdit1.BulletIndentation = "0.5in"

m_RichEdit.SetBulletIndentation(_T("0.5in"));

BSTR Indent = SysAllocString (OLESTR("0.5in"));
HRESULT hr = m_pIVVRichEdit->put_BulletIndentation(Indent);
SysFreeString(Indent);

ActiveX Developer’s Guide 111

RichEdit Control Properties

Commands
Gets or sets the IVVPhraseColl interface used by the internal VVPhrases object, used by VVRichEdit
to recgonize voice commands.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
The RichEdit can recognize command words while dictation is off or on as long as speech input is
available. Finer granularity of control for command availability is always available through use of the
CommandsEnabled property. Notice the distinction between the requested state and availability, which
is dependent on the AutoDictationWindow.

IVVPhraseColl = [VVRichEdit].Commands

CVVPhraseColl GetCommands();
void SetRefCommands(LPDISPATCH newValue);

HRESULT get_Commands(IVVPhraseColl ** pVal);
HRESULT put_Commands(IVVPhraseColl * pVal);

Properties, Methods, and Events

112 ActiveX Developer’s Guide

Also, the Commands property is actually the Phrases property of an implicitly created VVPhrases
control.

If you wish to change the phrase used to invoke a given command, you may simply change the
required command phrase as indicated in the VVPhrases documentation. If you wish to add additional
commands for existing functionality, you must use the correct ID for the desired functionality. For
instance, if you wish to say either “NEXT-WORD” or “MOVE-NEXT” to move the cursor to the next
word, then you would jsut add “MOVE-NEXT” as a new phrase with the ID of VVTBNextWord.
Then, when the user speaks either command, the cursor will move to the next word.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
For more information on VVPhrases see Chapter 9, “Introduction to the Phrases Control” on page
203.
“AutoDictationWindow (Read/Write at Run Time Only)” on page 100

Set VVPhrases1.Phrases = VVRichEdit1.Commands
AddCustomCommands (VVPhrases1)
Set VVRichEdit2.Commands = VVPhrases1.Phrases

CVVPhraseColl Commands;
Commands = m_VVRichEdit1.GetCommands ();
AddCustomCommands (Commands);
m_VVRichEdit2.SetRefCommands (Commands);

IVVPhraseColl* pIVVPhraseColl;
HRESULT hr = m_pIVVRichEdit->get_Commands(&pIVVPhraseColl);
AddCustomCommands(pIVVPhraseColl);
hr = m_pIVVRichEdit->putref_Commands(pIVVPhraseColl);

ActiveX Developer’s Guide 113

RichEdit Control Properties

“DictationOn” on page 116
“CommandsEnabled” on page 114
“VVPhraseColl Collection” on page 245

Properties, Methods, and Events

114 ActiveX Developer’s Guide

CommandsEnabled
Returns or sets whether the ViaVoice RichEdit control will recognize commands or not, when
available based on the AutoDictationWindow.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

??

Return Values
TRUE

(Default) The ViaVoice RichEdit recognizes commands, when available.

FALSE
Command words are ignored.

VVRichEdit.CommandsEnabled = [Boolean]

BOOL GetCommandsEnabled();
void SetCommandsEnabled(BOOL fNewValue);

HRESULT get_CommandsEnabled(VARIANT_BOOL * pVal)
HRESULT put_CommandsEnabled(VARIANT_BOOL newVal)

ActiveX Developer’s Guide 115

RichEdit Control Properties

Remarks
The property can be set at design time or runtime, although commands will never be enabled until
runtime. The RichEdit can recognize command words while dictation is off or on as long as speech
input is available. Command recognition will not be available if dictation is not available. Enabling or
disabling an individual command can be done through the IVVPhraseColl returned by the
Commands property. An individual phrase can be accessed through the collection and enabled or
disabled.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“AutoDictationWindow (Read/Write at Run Time Only)” on page 100
“DictationOn” on page 116
“VVPhraseColl Collection” on page 245

Private Sub Form_Load()
VVRichEdit1.CommandsEnabled = True

End Sub

m_RichEdit.SetCommandsEnabled(TRUE);

HRESULT hr = m_pIVVRichEdit->put_CommandsEnabled(VARIANT_TRUE);

Properties, Methods, and Events

116 ActiveX Developer’s Guide

DictationOn
Returns or sets the desired state of the dictation mode.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

??

Return Values
TRUE

The control can receive dictation input when dictation is available.

FALSE
The control ignores dictation input

Remarks
If this property is set to TRUE, it indicates that the programmer wants dictation to be on. What this
means is that if dictation is available (i.e. nothing is preventing dictation), then the user will be able to

VVRichEdit.DictationOn = [Boolean]

BOOL GetDictationOn();
void SetDictationOn(BOOL fNewValue);

HRESULT get_DictationOn(VARIANT_BOOL * pVal);
HRESULT put_DictationOn(VARIANT_BOOL newVal)

ActiveX Developer’s Guide 117

RichEdit Control Properties

dictate into the control. Some possible reasons why dictation would be unavailable when DictationOn
is True are: MaxLength has been reached, Locked is True, Enabled is False, or the semantics of the
AutoDictationWindow indicate that dictation is not available. If DictationOn = TRUE and these
conditions are alleviated, the control will automatically begin receiving dication. If the property is set
to FALSE, the user will never be able to dictate into the control.When dictation is off (DictationOn =
False) the user may still be able to issue commands.

When the state of the dictation mode changes, the control fires the DictationStateChange event. You
should not set the value of this property in the DictationStateChange event, as this will cause the
event to trigger again.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“AutoDictationWindow (Read/Write at Run Time Only)” on page 100
“CommandsEnabled” on page 114
“DictationStateChange” on page 193
“Enabled” in Visual Basic Documentation
“Locked” in Visual Basic Documentation
“MaxLength” in Visual Basic Documentation

Private Sub Form_Load()
VVRichEdit1.DictationOn = True

End Sub

m_VVRichEdit.SetDictationOn(TRUE);

HRESULT hr = m_pIVVRichEdit->put_DictationOn(VARIANT_TRUE);

Properties, Methods, and Events

118 ActiveX Developer’s Guide

Engine
Contains a reference to the ViaVoice Engine control (VVEngine), which is used by the VVRichEdit
control.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
The Engine property is actually holding an implicitly created ActiveX control (VVEngine), which can
also be created separately. Inserting a VVEngine control in a project enables you to set the engine
properties on this control, and then assign the resulting engine to multiple ViaVoice ActiveX controls.

VVRichEdit.Engine

CVVEngine GetEngine();
void SetRefEngine(LPDISPATCH newValue);

HRESULT get_Engine(IVVEngine * * pVal);
HRESULT putref_Engine(IVVEngine * pVal);

ActiveX Developer’s Guide 119

RichEdit Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
Refer to the Engine Control Guide on the SDK “Documentation” menu for more information. For
more information, see the Engine Control Guide.

VVRichEdit1.Engine.AudioSourceType = vvstSAPICompliant

m_VVRichEdit.GetEngine().SetAudioSourceType(vvstSAPICompliant);

IVVEngine* pIVVEngine = NULL;
HRESULT hr = m_pIVVRichEdit->get_Engine (& pIVVEngine);
if (SUCCEEDED (hr))
 hr = pIVVEngine->put_AudioSourceType (vvstSAPICompliant);

Properties, Methods, and Events

120 ActiveX Developer’s Guide

FileName
Loads a file into the VVRichEdit when the control is created.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
If the file extension is ".rtf", then it is loaded as a RTF file. Otherwise it is loaded as a text file. If the
filename is not valid at run time, the control will not contain any text.

VVRichEdit.FileName = [String]

CString GetFileName();
void SetFileName(LPCTSTR lpszNewValue);

HRESULT get_FileName(BSTR * pVal)
HRESULT put_FileName(BSTR newVal);

ActiveX Developer’s Guide 121

RichEdit Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

VVRichEdit1.filename = "test.rtf"

m_RichEdit.SetFileName(_T("test.rtf"));

BSTR File = SysAllocString (OLESTR ("test.rtf"));
HRESULT hr = m_pIVVRichEdit->put_FileName(File);
SysFreeString (File);

Properties, Methods, and Events

122 ActiveX Developer’s Guide

hWnd (Read Only)
Sets or gets window handle to the Windows rich edit common control used by the VVRichEdit
control.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
None.

VVRichEdit.hWnd

long GetHWnd();

HRESULT get_hWnd(long * pVal);

ActiveX Developer’s Guide 123

RichEdit Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

REWindowHandle = m_RichEdit.hWnd

HWND hWnd = m_RichEdit.GetHhWnd();

HWND hWnd = 0;
HRESULT hr = m_pIVVRichEdit->get_HWnd(& (long)hWnd);

Properties, Methods, and Events

124 ActiveX Developer’s Guide

LanguageUI
Sets or gets the language used by the VVRichEdit for this specific client.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
?? The LanguageUI property settings for a VVRichEdit control are:

[VVRichEdit].LanguageUI = [String]

CString GetLanguageUI();
void SetLanguageUI(LPCTSTR lpszNewValue);

HRESULT get_LanguageUI(BSTR * pVal);
HRESULT put_LanguageUI(BSTR newVal);

Language Property Value

U.S. English “EN_US”

U.K. English “EN_UK”

German “GR_GR”

Italian “IT_IT”

Spanish “ES_ES”

French “FR_FR”

Japanese “JA_JP”

ActiveX Developer’s Guide 125

RichEdit Control Properties

Return Values
??

Remarks
The language affects any dialogs, menus, strings or ToolTips displayed by the control.

Properties, Methods, and Events

126 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

’ Sets UI language to U.S. English
VVRichEdit1.LanguageUI = "EN_US"
’ Gets UI language and displays it in a message box
MsgBox VVRichEdit1.LanguageUI

// Sets UI language to U.S. English
m_VVRichEdit.SetLanguageUI("EN_US");
CString sLangUI;
// Gets UI language and copies it into variable
sLangUI = m_VVRichEdit.GetLanguageUI();

HRESULT hr;
BSTR bstrLangUI;

bstrLangUI = SysAllocString(OLESTR("EN_US"));
// Sets UI language to U.S. English
hr = pIVVRichEdit->put_LanguageUI(bstrLangUI);
SysFreeString(bstrLangUI);

// Gets UI language into BSTR variable
hr = pIVVRichEdit->get_LanguageUI(&bstrLangUI);
// Use language string now and when done free BSTR.
SysFreeString(bstrLangUI);

ActiveX Developer’s Guide 127

RichEdit Control Properties

RightMargin
(Not Yet Implemented) Sets or gets the amount the text is indented from the right margin.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
This property represents an amount of distance. It is entered as a string with the amount followed by
one of the abbreviations for supported units. Inches can be represented as quotes (“), in, inch, or
inches. Centimeters are specified by cm, point by pt, and pica by pi. If no units are specified, the
property defaults to twips.

VVRichEdit.RightMargin = [String]

CString GetRightMargin();
void SetRightMargin(LPCTSTR lpszNewValue);

HRESULT get_RightMargin(BSTR * pVal);
HRESULT put_RightMargin(BSTR newVal);

Properties, Methods, and Events

128 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
None.

VVRichEdit1.RightMargin = "0.5in"

m_RichEdit.SetRightMargin(_T("0.5in");

ActiveX Developer’s Guide 129

RichEdit Control Properties

SelAlignment (Read/Write at Run Time Only)
Sets or gets the alignment of the selected text.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
?? AlignLeft = 0

Aligns the selected text flush with the left margin.

AlignRight = 1
Aligns the selected text flush with the right margin.

AlignCenter = 2
Centers the selected text.

Return Values
??

VVRichEdit.SelAlignment = [Integer]

long GetSelAlignment();
void SetSelAlignment(long nNewValue);

HRESULT get_SelAlignment(enumParaAlignmentType * pVal);
HRESULT put_SelAlignment(enumParaAlignmentType newVal);

Properties, Methods, and Events

130 ActiveX Developer’s Guide

Remarks
None.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

Private Sub CenterText_Click()
VVRichEdit1.SelAlignment(AlignCenter)

End Sub

m_RichEdit.SetSelAlignment(2);

HRESULT hr = m_pIVVRichEdit->put_SelAlignment(AlignCenter);

ActiveX Developer’s Guide 131

RichEdit Control Properties

SelBold (Read/Write at Run Time Only)
Sets or gets the boldness of the selected text.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

??

Return Values
TRUE

The selected text is displayed in bold face.

FALSE
The selected text is displayed without bold face.

Remarks
None.

VVRichEdit.SelBold = [Boolean]

BOOL GetSelBold();
void SetSelBold(BOOL fNewValue);

HRESULT get_SelBold(VARIANT_BOOL * pVal);
HRESULT put_SelBold(VARIANT_BOOL newVal);

Properties, Methods, and Events

132 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

’cause the selected text to be displayed in bold face
VVRichEdit1.SelBold = True

m_RichEdit.SetSelBold(TRUE);

HRESULT hr = m_pIVVRichEdit->put_SelBold (VARIANT_TRUE);

ActiveX Developer’s Guide 133

RichEdit Control Properties

SelBullet
Sets or gets whether the selected text has a bullet.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

??

Return Values
TRUE

The selected text is displayed with a bullet and indented by the amount of the BulletIndentation
property.

FALSE
The selected text is not displayed with a bullet.

Remarks
None.

VVRichEdit.SelBullet = [Bool]

BOOL GetSelBullet();
void SetSelBullet(BOOL fNewValue);

HRESULT get_SelBullet(VARIANT_BOOL * pVal);
HRESULT put_SelBullet(VARIANT_BOOL newVal);

Properties, Methods, and Events

134 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

’Toggle whether the control has a bullet or not
VVRichEdit1.SelBullet = Not VVRichEdit1.SelBullet

m_RichEdit.SetSelBullet(TRUE);

HRESULT hr = m_pIVVRichEdit->put_SelBullet(VARIANT_TRUE);

ActiveX Developer’s Guide 135

RichEdit Control Properties

SelCharOffset (Read/Write at Run Time Only)
Sets or gets the offset of the selected character from the left margin in twips.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
None.

VVRichEdit.SelCharOffset = [Integer]

long GetSelCharOffset();
void SetSelCharOffset(long nNewValue);

HRESULT get_SelCharOffset(long * pVal);
HRESULT put_SelCharOffset(long newVal);

Properties, Methods, and Events

136 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

’offset the selected characters one inch from the left margin
VVRichEdit1.SelCharOffset = 720

// offset the selected characters one inch from the left margin
m_RichEdit.SetSelCharOffset(= 720);

HRESULT hr = m_pIVVRichEdit->put_SelCharOffset(720);

ActiveX Developer’s Guide 137

RichEdit Control Properties

SelColor (Read/Write at Run Time Only)
Sets or gets the color of the selected text.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
None.

VVRichEdit.SelColor = [Integer]

unsigned long GetSelColor();
void SetSelColor(unsigned long newValue);

HRESULT get_SelColor(OLE_COLOR * pVal);
HRESULT put_SelColor(OLE_COLOR newVal);

Properties, Methods, and Events

138 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

Private Sub ChangeSelColor_Click()
CommonDialog1.ShowColor
VVRichEdit.SelColor = CommonDialog1.Color

End Sub

OLE_COLOR color = GetColor();
m_RichEdit.SetSelColor((long)color);

OLE_COLOR color = GetColor();
HRESULT hr = m_pIVVRichEdit->put_SelColor (color);

ActiveX Developer’s Guide 139

RichEdit Control Properties

SelFontName(Read/Write at Run Time Only)
Sets or gets the font name of the selected text.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
None.

VVRichEdit.SelFontName = [String]

CString GetSelFontName();
void SetSelFontName(LPCTSTR lpszNewValue);

HRESULT get_SelFontName(BSTR* pVal);
HRESULT put_SelFontName(BSTR newVal);

Properties, Methods, and Events

140 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

’change the selected font to arial
m_RichEdit.SelFontName = "Arial"

// change the selected font to arial
m_RichEdit.SetSelFontName("Arial" strFontName);

HRESULT hr = m_pIVVRichEdit->put_SelFontName("Arial");

ActiveX Developer’s Guide 141

RichEdit Control Properties

SelFontSize (Read/Write at Run Time Only)
Sets or gets the size of the font of the selected text.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters

Return Values

Remarks
None.

VVRichEdit.SelFontSize = [Integer]

long GetSelFontSize();
void SetSelFontSize(long nNewValue);

HRESULT get_SelFontSize(long * pVal);
HRESULT put_SelFontSize(long newVal);

Properties, Methods, and Events

142 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

VVRichEdit1.SelFontSize = 12;

m_RichEdit.SetSelFontSize(12);

HRESULT hr = m_pIVVRichEdit->put_SelFontSize(12);

ActiveX Developer’s Guide 143

RichEdit Control Properties

SelHangingIndent (Read/Write at Run Time Only)
Sets or gets the amount to indent subsequent lines in a paragraph from the left edge of the first line in
the paragraph.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
This property represents an amount of distance. It is entered as a string with the amount followed by
one of the abbreviations for supported units. Inches can be represented as quotes (“), in, inch, or
inches. Centimeters are specified by cm, point by pt, and pica by pi. If no units are specified, the
property defaults to twips.

VVRichEdit.SelHangingIndent = [Integer]

CString GetSelHangingIndent();
void SetSelHangingIndent(LPCTSTR lpszNewValue);

HRESULT get_SelHangingIndent(BSTR * pVal);
HRESULT put_SelHangingIndent(BSTR newVal);

Properties, Methods, and Events

144 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

Private Sub SetSelHangingIndent()
’Indent the subsequent lines in a paragraph a half inch from
’from the first line
VVRichEdit1.SelHangingIndent = "0.5in"

End Sub

VVRichEdit1.SetSelHangingIndent(_T("0.5in"strIndent));

BSTR Indent = SysAllocSting (OLESTR ("0.5in"));
HRESULT hr = m_pIVVRichEdit->put_SelHangingIndent(Indent);
SysFreeString(Indent);

ActiveX Developer’s Guide 145

RichEdit Control Properties

SelIndent (Read/Write at Run Time Only)
Sets or gets the paragraph indentation of the selected text.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
This property represents an amount of distance. It is entered as a string with the amount followed by
one of the abbreviations for supported units. Inches can be represented as quotes (“), in, inch, or
inches. Centimeters are specified by cm, point by pt, and pica by pi. If no units are specified, the
property defaults to twips.

VVRichEdit.SelIndent = [String]

CString GetSelIndent();
void SetSelIndent(LPCTSTR lpszNewValue);

HRESULT get_SelIndent(BSTR * pVal);
HRESULT put_SelIndent(BSTR newVal);

Properties, Methods, and Events

146 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

’set the indentation of the current text to one inch
VVRichEdit1.SelIndent = "1in"1

SetSelIndent(_T("1in"));

BSTR Indent = SysAllocString (OLESTR("1in"));
HRESULT hr = put_SelIndent(Indent);
SysFreeString(Indent);

ActiveX Developer’s Guide 147

RichEdit Control Properties

SelItalic (Read/Write at Run Time Only)
Sets or gets the italicized nature of the selected text.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

??

Return Values
TRUE

The selected text is italicized.

FALSE
The selected text is not italicized.

Remarks
None.

VVRichEdit.SelItalic = [Bool]

BOOL GetSelItalic();
void SetSelItalic(BOOL fNewValue);

HRESULT get_SelItalic(VARIANT_BOOL * pVal);
HRESULT put_SelItalic(VARIANT_BOOL newVal);

Properties, Methods, and Events

148 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

’Turn on the Italics for the selected text
VVRichEdit1.SelItalic=True

// Turn off the Italics for the selected text
m_RichEdit.SetSelItalic(TRUE);

HRESULT hr = m_pIVVRichEdit->put_SelItalic(VARIANT_TRUE);

ActiveX Developer’s Guide 149

RichEdit Control Properties

SelLength (Read/Write at Run Time Only)
Sets or gets the number of characters that are selected.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
None.

VVRichEdit.SelLength = [Integer]

long GetSelLength();
void SetSelLength(long nNewValue);

HRESULT get_SelLength(long * pVal);
HRESULT put_SelLength(long newVal);

Properties, Methods, and Events

150 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

’Display a message box with the number of characters currently selected
MsgBox "Number of Characters Selected = " + CStr(VVRichEdit1.SelLength)

// Clear the selection
m_RichEdit.SetSelLength(0);

HRESULT hr = m_pIVVRichEdit->put_SelLength(0);

ActiveX Developer’s Guide 151

RichEdit Control Properties

SelProtected
(Not Yet Implemented) Sets or gets the value indicating whether the selected text is protected from
editing.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

??

Return Values
TRUE

The selected text is protected.

FALSE
The selected text is not protected.

Remarks
None.

VVRichEdit.SelProtected = [Bool]

BOOL GetSelProtected();
void SetSelProtected(BOOL fNewValue);

HRESULT get_SelProtected(VARIANT_BOOL * pVal);
HRESULT put_SelProtected(VARIANT_BOOL newVal);

Properties, Methods, and Events

152 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

’Protect the selected text
VVRichEdit1.SelProtected = True

CtestDlg::OnToggleProtectText()
m_RichEdit.SetSelProtected(True);

HRESULT hr = m_pIVVRichEdit->put_SelProtected(VARIANT_TRUE);

ActiveX Developer’s Guide 153

RichEdit Control Properties

SelRightIndent (Read/Write at Run Time Only)
Sets or gets the value indicating whether the selected text is protected from editing.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
This property represents an amount of distance. It is entered as a string with the amount followed by
one of the abbreviations for supported units. Inches can be represented as quotes (“), in, inch, or
inches. Centimeters are specified by cm, point by pt, and pica by pi. If no units are specified, the
property defaults to twips.

VVRichEdit.SelRightIndent = [String]

CString GetSelRightIndent();
void SetSelRightIndent(LPCTSTR lpszNewValue);

HRESULT get_SelRightIndent(BSTR * pVal);
HRESULT put_SelRightIndent(BSTR newVal);

Properties, Methods, and Events

154 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

’Indent the selected text one inch from the right margin
VVRichEdit1.SelRightIndent = "1in"

m_RichEdit.SetSelRightIndent("1in"strRightIndent);

BSTR Indent = SysAllocString (OLESTR ("1in"));
HRESULT hr = m_pIVVRichEdit->put_SelRightIndent(Indent);
SysFreeString(Indent);

ActiveX Developer’s Guide 155

RichEdit Control Properties

SelRTF (Read/Write at Run Time Only)
Sets or gets the selected text in RTF format.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
None.

VVRichEdit.SelRTF = [String]

CString GetSelRTF();
void SetSelRTF(LPCTSTR lpszNewValue);

HRESULT get_SelRTF(BSTR * pVal);
HRESULT put_SelRTF(BSTR newVal);

Properties, Methods, and Events

156 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

m_RichEdit.SetSelRTF(_Ts(""));

m_RichEdit.SetSelRTF(_Ts(""));

BSTR Empty = SysAllocString(OLESTR(""));
HRESULT hr = m_pIVVRichEdit->put_SelRTF(Empty);
SysFreeString(Empty);

ActiveX Developer’s Guide 157

RichEdit Control Properties

SelStart (Read/Write at Run Time Only)
Sets or gets the index in the control of the start of the selection.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
For more information about the MaxLength property, refer to the Visual Basic documentation.

VVRichEdit.SelStart = [Integer]

long GetSelStart();
void SetSelStart(long nNewValue);

HRESULT get_SelStart (long * pVal);
HRESULT put_SelStart (long newVal);

Properties, Methods, and Events

158 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

Private Sub Form_Load()
’set the start of the selected text to the first character in the
’control
VVRichEdit1.SelStart = 0

End Sub

m_RichEdit.SetSelStart(0);

HRESULT hr = m_pIVVRichEdit->put_SelStart(0);

ActiveX Developer’s Guide 159

RichEdit Control Properties

SelStrikeThru (Read/Write at Run Time Only)
Sets or gets a value indicating whether the selected text is displayed with a line crossing through it.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

??

Return Values
TRUE

The selected text is dicplayed with a line through it.

FALSE
The selected text is displayed without a line through it.

Remarks
None.

VVRichEdit.SelStrikeThru = [Bool]

BOOL GetSelStrikeThru();
void SetSelStrikeThru(BOOL fNewValue);

HRESULT get_SelStrikeThru(VARIANT_BOOL * pVal);
HRESULT put_SelStrikeThru(VARIANT_BOOL newVal);

Properties, Methods, and Events

160 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

Private Sub Form_Load
VVRichEdit1.SelStrikeThru = False

End Sub

m_RichEdit.SetSelStrikeThru(FALSE);

HRESULT hr = m_pIVVRichEdit->put_SelStrikeThru(VARIANT_FALSE);

ActiveX Developer’s Guide 161

RichEdit Control Properties

SelTabCount (Read/Write at Run Time Only)
Sets or gets the number of tabs in the control.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
This function is used in conjunction with the SelTabs property. Specifying an index higher than the
SelTabCount property will return an error from the control.

VVRichEdit.SelTabCount = [Integer]

short GetSelTabCount();
void SetSelTabCount(short nNewValue);

HRESULT get_SelTabCount(short * pVal);
HRESULT put_SelTabCount(short newVal);

Properties, Methods, and Events

162 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

Private Sub Form_Load
’ Set 3 TabStops at 0.5"intervals
VVRichEdit1.SelTabCount = 3
For I = 0 To VVRichEdit1.SelTabCount - 1
VVRichEdit1.SelTabs(I) = 720 * I

Next I
End Sub

m_RichEdit.SetSelTabCount(3);

HRESULT hr = m_pIVVRichEdit->put_SelTabCount(3);

ActiveX Developer’s Guide 163

RichEdit Control Properties

SelTabs (Read/Write at Run Time Only)
Sets or gets the position of a specified tabstop in twips.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
When specifying 0 for the index, the first tabstop is retrieved. This is a zero-based index.

VVRichEdit.SelTabs([Integer]) = [Integer]

long GetSelTabs(short sIndex);
void SetSelTabs(short sIndex, long nNewValue);

HRESULT get_SelTabs(short sIndex, long * pVal);
HRESULT put_SelTabs(short sIndex, long newVal);

Properties, Methods, and Events

164 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

Private Sub Form_Load()
’Set the third tab to one half inch past second tab
VVRichEdit1.SelTabs(2) = 720

End Sub

m_RichEdit.SetSelTabs(2, 720);

HRESULT hr = m_pIVVRichEdit->put_SelTabs(2, 720);

ActiveX Developer’s Guide 165

RichEdit Control Properties

SelText (Read/Write at Run Time Only)
Sets or gets the selected text without RTF formatting codes.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
None.

VVRichEdit.SelText = [String]

CString GetSelText();
void SetSelText(LPCTSTR lpszNewValue);

HRESULT get_SelText(BSTR * pVal);
HRESULT put_SetText(BSTR newVal);

Properties, Methods, and Events

166 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

’replace the selected text with a string
VVRichEdit1.SelText = "Test String"

m_RichEdit.SetSelText(_T("") strText);

BSTR Empty = SysAllocString(OLESTR(""));
HRESULT hr = m_pIVVRichEdit->put_SelText(Empty);
SysFreeString(Empty);

ActiveX Developer’s Guide 167

RichEdit Control Properties

SelUnderline (Read/Write at Run Time Only)
Sets or gets the value indicating whether the selected text is underlined or not.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

??

Return Values
TRUE

The selected text is underlined

FALSE
The selected text is not underlined

Remarks
None.

VVRichEdit.SelUnderline = [Bool]

BOOL GetSelUnderline();
void SetSelUnderline(BOOL fNewValue);

HRESULT get_SelUnderline(VARIANT_BOOL * pVal);
HRESULT put_SelUnderline(VARIANT_BOOL newVal);

Properties, Methods, and Events

168 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

’Turn on the Underline for the selected text
VVRichEdit1.SelUnderline=True

// Turn off the Underline for the selected text
CtestDlg::OnUnderlineOff()
{
m_RichEdit.SetSelUnderline(TRUE);

}

HRESULT hr = m_pIVVRichEdit->put_SelUnderline(VARIANT_TRUE);

ActiveX Developer’s Guide 169

RichEdit Control Properties

TextRTF
Sets or gets text for the entire control in RTF format.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
None.

VVRichEdit.TextRTF = [String]

CString GetTextRTF();
void SetTextRTF(LPCTSTR lpszNewValue);

HRESULT get_TextRTF(BSTR * pVal);
HRESULT put_TextRTF(BSTR newVal);

Properties, Methods, and Events

170 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

VVRichEdit1.TextRTF = ""

m_RichEdit.SetTextRTF(_T(""));

BSTR Empty = SysAllocString (OLESTR(""));
HRESULT hr = m_pIVVRichEdit->put_TextRTF(Empty);
SysFreeString (Empty);

ActiveX Developer’s Guide 171

RichEdit Control Methods

RichEdit Control Methods
The ViaVoice RichEdit control supports the following methods:

• Abouta

• ExecuteCommand

• LoadRTF

• LoadTextFile

• Playback

• PlaybackEx

• PlaybackEx2

• Refresha

• SaveFile

• SaveRTF

• SelPrint

a. Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

Properties, Methods, and Events

172 ActiveX Developer’s Guide

ExecuteCommand
Allows the client to invoke any of the “voice commands” (see ”Commands” property)
programmatically simply by passing the ID of the command desired.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
The primary use of this functionality is to expose voice command functionality for invocation via
mouse or keyboard input, although it can also be used to control actions based on voice commands in
an external VVPhrases control. This might be useful, for instance, if you need to have voice
commands activated/available based on your own logic using a different tracking window for the
command phrases.

Call VVRichEdit.ExecuteCommand (vvTBCommand)

void ExecuteCommand(long lCommandID);

HRESULT ExecuteCommand(long lCommandID);

ActiveX Developer’s Guide 173

RichEdit Control Methods

The CommandsEnabled property has no effect on commands invoked through the
ExecuteCommand method. In this version of the SDK, the ExecuteCommand method cannot be
used to invoke playback.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“Commands” on page 111
“CommandsEnabled” on page 114

Private Sub Correct_Click()
VVRichEdit1.ExecuteCommand vvTBCorrectThis

End Sub

m_RichEdit.ExecuteCommand(vvTBCorrectThis);

HRESULT hr = m_pIVVRichEdit->ExecuteCommand(vvTBCorrectThis);

Properties, Methods, and Events

174 ActiveX Developer’s Guide

LoadRTF
Loads an RTF file with the specified path name into the VVRichEdit control.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
None.

VVRichEdit.LoadRTF ([String])

void LoadRTF(LPCTSTR bstrFileName);

HRESULT LoadRTF(BSTR bstrFileName);

ActiveX Developer’s Guide 175

RichEdit Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

VVRichEdit1.LoadRTF "TestFile.rtf"

m_RichEdit.LoadRTF(_T("TestFile.rtf"));

BSTR File = SysAllocString (OLESTR ("TestFile.rtf"));
HRESULT hr = m_pIVVRichEdit->LoadRTF(File);
SysFreeString (File);

Properties, Methods, and Events

176 ActiveX Developer’s Guide

LoadTextFile
Loads a text file with the specified path name into the VVRichEdit control.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
None.

VVRichEdit.LoadTextFile ([String])

void LoadTextFile(LPCTSTR bstrFileName);

HRESULT LoadTextFile(BSTR bstrFileName);

ActiveX Developer’s Guide 177

RichEdit Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

Private Sub Form_Load()
VVRichEdit1.LoadTextFile ("c:\My Documents\TestFile.txt")

End Sub

VVRichEdit.LoadTextFile (_T("TestFile.txt" strTextFile));

BSTR File = SysAllocString (OLESTR ("TestFile.txt"));
HRESULT hr = m_pIVVRichEdit->LoadTextFile (File);
SysFreeString (File);

Properties, Methods, and Events

178 ActiveX Developer’s Guide

Playback
Play back voice data for the selected range of text.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
None.

Return Values
None.

Remarks
None.

 Playback

 void Playback();

 HRESULT Playback();

ActiveX Developer’s Guide 179

RichEdit Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

VVRichEdit1.Playback

void CTestRichEditDlg::OnPlayback()
{
 m_pvvRichEdit->Playback();
}

void CTestRichEditDlg::OnPlayback()
{
 m_pvvRichEdit->Playback();
}

Properties, Methods, and Events

180 ActiveX Developer’s Guide

PlaybackEx
Play back and/or retrieve the wav data for a range of text.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
StartIndex

Index of into text buffer of where to start playing the wav audio.

TextLength
The length of selected text. End offset is StartIndex + TextLength.

PlayAudio
TRUE - Playback Audio, FALSE - Play Audio to wave out.

WavData
Buffer to hold returned wave data if PlayAudio is FALSE.

Return Values
None.

PlaybackEx(StartIndex as long, TextLength as long, PlayAudio as BOOL,
WavData as string)

void PlaybackEx(long StartIndex, long TextLength, VARIANT_BOOL
PlayAudio, BSTR *ppWavData)

HRESULT PlaybackEx(long StartIndex, long TextLength, VARIANT_BOOL
PlayAudio, BSTR *ppWavData)

ActiveX Developer’s Guide 181

RichEdit Control Methods

Remarks
None.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

VVRichEdit1.PlaybackEx(StartIndex, TextLength, FALSE, strWavData)
VVRichEdit1.PlaybackEx(StartIndex, TextLength, TRUE, NULL)

void CTestRichEditDlg::OnPlaybackEx()
{
 CComBSTR bsWavData;
 pVVRichEdit->PlaybackEx(StartIndex, TextLength, VARIANT_FALSE,
&bsWavData);

 pVVRichEdit->PlaybackEx(StartIndex, TextLength, VARIANT_TRUE, NULL);
}

void CTestRichEditDlg::OnPlaybackEx()
{
 CComBSTR bsWavData;
 pVVRichEdit->PlaybackEx(StartIndex, TextLength, VARIANT_FALSE,
&bsWavData);
 pVVRichEdit->PlaybackEx(StartIndex, TextLength, VARIANT_TRUE, NULL);
}

Properties, Methods, and Events

182 ActiveX Developer’s Guide

PlaybackEx2
Retrieve WAV data for a range of text.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
StartIndex

Index of into text buffer of where to start playing the wav audio.

TextLength
The length of selected text. End offset is StartIndex + TextLength.

pszFile
Wave file name for output.

Return Values
None.

Remarks
None.

 PlaybackEx2(StartIndex as long, TextLength as long, pszFile as string)

 void PlaybackEx2(long StartIndex, long TextLength, LPCTSTR pszFile);

 HRESULT PlaybackEx2(long StartIndex, long TextLength, BSTR pszFile);

ActiveX Developer’s Guide 183

RichEdit Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

VVRichEdit1.PlaybackEx2(0, 0, "c:\temp\my.wav")

void CTestRichEditDlg::OnPlaybackEx2()
{
 m_pvvRichEdit->PlaybackEx2(0,0, L"c:\\temp\my.wav");
}

void CTestRichEditDlg::OnPlayback()
{
 m_pvvRichEdit->Playback();
}

void CTestRichEditDlg::OnPlaybackEx2()
{
 m_pvvRichEdit->PlaybackEx2(0,0, L"c:\\temp\my.wav");
}

void CTestRichEditDlg::OnPlayback()
{
 m_pvvRichEdit->Playback();
}

Properties, Methods, and Events

184 ActiveX Developer’s Guide

SaveRTF
Saves the contents of the VVRichEdit control as an RTF file to the specified path name.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
None.

VVRichEdit.SaveRTF ([String])

void SaveRTF(LPCTSTR FileName);

HRESULT SaveRTF(BSTR FileName);

ActiveX Developer’s Guide 185

RichEdit Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

VVRichEdit1.SaveRTF "TestFile.rtf"

m_RichEdit.SaveRTF(_T("TestFile.rtf"));

BSTR File = SysAllocString (OLESTR("TestFile.rtf"));
HRESULT hr = m_pIVVRichEdit->SaveRTF(File);
SysFreeString(File);

Properties, Methods, and Events

186 ActiveX Developer’s Guide

SaveTextFile
Saves the contents of the VVRichEdit control as a text file.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
None.

VVRichEdit.SaveTextFile ([PathName])

void SaveFile(LPCTSTR FileName);

HRESULT SaveFile(BSTR FileName);

ActiveX Developer’s Guide 187

RichEdit Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

Private Sub OnSave()
VVRichEdit1.SaveTextFile ("c:\My Documents\TestFile.txt")

End Sub

m_RichEdit.SaveTextFile (_T(Cstring("TestFile.txt"));

BSTR File = SysAllocString (OLESTR("TestFile.rtf"));
HRESULT hr = m_pIVVRichEdit->SaveFile(File);
SysFreeString(File);

Properties, Methods, and Events

188 ActiveX Developer’s Guide

SelPrint
Allows the client to invoke any of the “voice commands” programmatically simply by passing the ID
of the command desired.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
The primary use of this functionality is to expose voice command functionality for invocation via
mouse or keyboard input, although it can also be used to control actions based on voice commands in
an external VVPhrases control. This might be useful, for instance, if you need to have voice
commands activated/available based on your own logic using a different tracking window for the
command phrases.

VVRichEdit.SelPrint

void SelPrint(long lHDC);

HRESULT SelPrint(long lHDC);

ActiveX Developer’s Guide 189

RichEdit Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

Private Sub Form_Load()
VVRichEdit1.SelPrint

End Sub

m_RichEdit.SelPrint((long)hDC);

HRESULT hr = m_pIVVRichEdit->SelPrint((long)hDC);

Properties, Methods, and Events

190 ActiveX Developer’s Guide

RichEdit Control Events
The ViaVoice RichEdit control supports the following events:

Changea

a. Represents a standard event in Visual Basic. For more information, refer to your Visual
Basic documentation.

KeyPressa

Clicka KeyUpa

Command MaxText

DblClicka MouseDowna

DictationStateChange MouseMovea

Error MouseUpa

KeyDowna

ActiveX Developer’s Guide 191

RichEdit Control Events

Command
Event fired when the user speaks one of the command words the VVRichEdit recognizes.

Syntax

In Visual Basic:

In Visual C++ (MFC):

Parameters
CmdID

Long. A number that uniquely identifies the command the VVRichEdit recognized.

strCommand
String. The actual text selected that the VVRichEdit recognized. You should not write code that is
dependent on this value as the phrases are subject to change and vary with the language of the
engine. Use the CmdID parameter instead. It is recommended that you use the strCommand
parameter for the UIServer’s Word History display only. This will be an empty string if invoked
through any means other than the default speech commands.

Return Values
??

Remarks
This control recognizes commands from the default voice commands only when CommandsEnabled
is set to True and there are no other limiting factors (see ”Commands” and ”CommandsEnabled”
properties). Commands are never recognized when CommandsEnabled is False. Also, be aware that

Command (ByVal CmdID As Long, ByVal strCommand As String)

void OnCommand(long CmdID, LPCTSTR strCommand);

Properties, Methods, and Events

192 ActiveX Developer’s Guide

this event is called only for voice commands and not for commands invoked programmatically through
the ExecuteCommand method.

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
“Capturing Commands” on page 36
“Commands” on page 111
“CommandsEnabled” on page 114

Private Sub VVRichEdit1_Command(ByVal CmdID As Long, ByVal strCommand As
String)
Select Case CmdID
Case vvTBShowEC
ProcessTBShowEC

. . .
End Select

End Sub

void CTestDlg::OnCommand(long CmdID, LPCTSTR strCommand)
{
switch (CmdID)
{
case vvTBShowEC
ProcessTBShowEC();
break;

default:
break

}
}

ActiveX Developer’s Guide 193

RichEdit Control Events

DictationStateChange
Event fired when the control enters or exits dictation mode. There are several actions that affect the
state of dictation.

Syntax

In Visual Basic:

In Visual C++ (MFC):

Parameters
DictationOn

Boolean. The current state of dictation mode.

Return Values
TRUE

The control is ready to receive dictation speech and turn it into text.

FALSE
The control will ignore dictation input.

Remarks
This event implies nothing to do with the control being able to understand voice commands. The
following conditions can effect the state of dictation:

• The state of the DictationOn property is changed explicitly.

• The state of the Locked property is changed explicitly

• The state of the Enabled property is changed explicitly

• The length of text exceeds the max set in the MaxLength property.

DictationStateChange (ByVal DictationOn As Boolean)

void OnDictationStateChangeVvrichedit1(BOOL DictationOn);

Properties, Methods, and Events

194 ActiveX Developer’s Guide

Note:
If AutoDictationWindow is not set to VV_HWND_AUTODICTATION, then focus changes will
not trigger this event, even if dictation availability has changed. If you need this information, then
you must write code to track the focus changes.

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
“CommandsEnabled” on page 114
“DictationOn” on page 116
“AutoDictationWindow (Read/Write at Run Time Only)” on page 100
“Enabled” in Visual Basic Documentation
“Locked” in Visual Basic Documentation
“MaxLength” in Visual Basic Documentation

Private Sub VVRichEdit1_DictationStateChange(ByVal DictationOn As
Boolean)

’Handler Code Here

End Sub

void CTestDlg::OnDictationStateChange(BOOL DictationOn)
{

// Handler Code Here

}

ActiveX Developer’s Guide 195

RichEdit Control Events

Error
Reports an error.

Syntax

In Visual Basic:

In Visual C++ (MFC):

Parameters
sErrorID

Integer. The error number. The error number can be one of the following values:

pstrDescription
String. The error description. The error message string is language-dependent and requires the use
of the appropriate language resource DLL. The control will use the language of the container

Error (sErrorID As Integer, pstrDescription As String, hresult As Long,
strSource As String, strHelp As String, lHelpID As Long, fShow As
Boolean)

void OnError(short sErrorID,
BSTR FAR* pstrDescription,
long FAR* hresult,
BSTR FAR* strSource,
BSTR FAR* strHelp,
long FAR* lHelpID,
BOOL FAR* fShow)

DICTERR_DICTATION_ACTIVATE 101 (Hex 65)

DICTERR_DICTATION_DEACTIVATE 102 (Hex 66)

DICTERR_COMMANDS_ACTIVATE 103 (Hex 67)

DICTERR_COMMANDS_DEACTIVATE 104 (Hex 68)

DICTERR_ENGINE_CONNECT 105 (Hex 69)

Properties, Methods, and Events

196 ActiveX Developer’s Guide

application for error messages. If the control cannot find the appropriate language DLL, the error
message will be in US English.

hresult
Long. The COM-generated error code.

strSource
String. This parameter contains the name of the module where the error occurred.

strHelp
String. The name and path of the help file (HLP file) that the control will invoke when the user
clicks the help button in an error message dialog.

lHelpID
Long. The context ID of the page in the help file that explains the error.

fShow
Boolean.

Return Values
TRUE

Displays an error message dialog box when an error occurs.

FALSE
Prevents the control from showing this dialog

Remarks
The ViaVoice RichEdit control can report errors in one of two ways. If the error occurs from the
setting of a property or the issuing of a method incorrectly, the control generates a trappable error
(returns an error HRESULT). However, some errors can occur while the user is interacting with the
control directly. Whenever the control needs to report this type of error, it fires the Error event. After
the event fires and execution returns to the control, the control shows an error message dialog box.

ActiveX Developer’s Guide 197

RichEdit Control Events

Example

In Visual Basic:

Private Sub VVRichEdit1_Error(_
sErrorID As Integer, _
pstrDescription As String, _
hresult As Long, _
strSource As String, _
strHelp As String, _
lHelpID As Long, _
bShow As Boolean)

Select Case sErrorID
Case DICTERR_ENGINE_CONNECT
MsgBox "Unable to connect to a speech engine."
bShow = False

End Select

End Sub

Properties, Methods, and Events

198 ActiveX Developer’s Guide

In Visual C++ (MFC):

void CTestctrlDlg::OnError(
short sErrorID,
BSTR FAR* pstrDescription,
long hresult,
LPCTSTR strSource,
LPCTSTR strHelp,
long lHelpID,
BOOL FAR* bShow)

{
switch (sErrorID)
{
case DICTERR_ENGINE_CONNECT:
MessageBox ("Unable to connect to a speech engine.",

"Speech Error", MB_OK);
*bShow = FALSE;

break;
}

}

ActiveX Developer’s Guide 199

RichEdit Control Events

MaxText
Event fires when the length of the text in the RichEdit reaches the maximum number of characters
allowed in the control.

Syntax

In Visual Basic:

In Visual C++ (MFC):

Parameters
None.

Return Values
None.

Remarks
You can specify maximum number of characters through the MaxLength property. Setting the
MaxLength property to zero means that the control accepts the maximum of a standard edit control,
which is OS dependent. See Microsoft documentation for details.

MaxText()

void OnMaxText();

Properties, Methods, and Events

200 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
“MaxLength” in Visual Basic Documentation

Private Sub VVRichEdit1_MaxText()
’AutoTab to the next control on the form when all the

information has been entered
SendKeys "{TAB}"

End Sub

void CTestDlg::MaxText()
{
//AutoTab to the next control on the form when all the

information has been entered
GetNextDlgTabItem(GetFocus())->SetFocus();

}

ActiveX Developer’s Guide 201

Chapter 8 RichEdit Control Frequently Asked
Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice RichEdit
control.

How can I enter dictation mode automatically each time the VVRichEdit gets focus?

This is the default operation of the control. Set the AutoDictationWindow property to
VV_HWND_AUTODICTATION (-1) at run time (this is the default). By setting this value for
AutoDictationWindow and setting DictationOn to true, the control will automatically enter
dictation mode when it gets the focus, and exit dictation mode when it loses focus. Setting
DictationOn to false will still disable dictation regardless of window focus.

How can I get more control in determining when dictation is available?

One way is to set the AutoDictationWindow property to NULL at design time to enable “global”
dictation. By setting this value, the control will always accept dictation when DictationOn is true
and will stop accepting dictation when DictationOn is false. There can be only one (1) global
dictation object active (DictationOn set to true) in the entire system at any one time.

Another option is to use some other window for implicit dictation control. To do this, simply find
the “top-most” window in the application of interest (your own or any other application) and
assign it to AutoDictationWindow before setting DictationOn to true. This has the effect of
enabling dictation any time that window, or any of its child widows, has focus. Using a window for
dictation tracking provides the benefit of greater control without the problems associated with a
“global” dictation object.

If I have a project using the standard Visual Basic RichTextBox, can I use VVRichEdit without
changing any code?

The VVRichEdit control can be substituted in your project for the standard Visual Basic
RichTextBox with minimal code changes. In Visual Basic, the name of the VVRichEdit control
can be kept the same as the name of the original control. If this is done, most code will work
without changes. There are a few differences between the controls.

• VVRichEdit has two methods for loading files, LoadRTF and LoadTextFile. The
RichTextBox control has one method for both operations by passing a flag indicating what
kind of file to load.

RichEdit Control Frequently Asked Questions

202 ActiveX Developer’s Guide

• VVRichEdit allows the programmer to specify actual units in properties specifying a
distance rather than specifying TWIPS like the RichTextBox. If no units are specified for a
distance, the VVRichEdit control does not default to the units of the container. It defaults
to TWIPS.

• VVRichEdit does not make extensive use of the VARIANT data type for parameters like
the RichTextBox.

Why aren’t the methods prefixed with “SEL” shown in the Object Browser in Visual Basic?

Using these methods only makes sense at run time because they operate on the current selection of
text. At design time, the control doesn’t accept user input, so there is no valid selection.

When I invoke Correction, nothing shows up in the list box?

If the cursor is in a dictated word, invoking the VVRichEdit will get the alternate words from
VVDictationMgr and display them in the error correction window, VVECWin . If the cursor is
not in a word, or it is in typed text, the error correction window will be shown without any
alternates. This is because it is not currently possible to determine alternates for typed text.

I press the Correction button in the Error Correction window and it doesn't correct the text?

It is not currently possible to correct typed text.

Why can I only correct one word at a time?

In most cases, correcting one word at a time allows for better accuracy.

I can’t dictate into the edit field in the Error Correction Window?

It is more accurate to type the text you would like to replace the currently select word with, rather
than dictate it.

ActiveX Developer’s Guide 203

Chapter 9 Introduction to the Phrases Control

The IBM ViaVoice Phrases Control (VVPhrases) is an ActiveX control that enables developers to add
simple phrase command recognition to their applications. The main idea behind the control is that the
developer provides the control with a list of phrases or commands, and the control will notify the
developer when the user speaks one of the phrases in the list.

VVPhrases is one of two controls in the ViaVoice SDK capable of recognizing phrases and
commands. The second control is VVCFGram. VVCFGram uses compiled grammar files to
interpret user speech. A grammar is a script that defines the way that the user can construct sentences.
It, therefore, offers a more robust solution for command recognition than VVPhrases. However,
VVCFGram requires that you learn the grammar language, and that you compile the grammar script
beforehand. VVPhrases on the other hand offers a simple command and phrase recognition solution
that does not require knowledge of grammars.

VVPhrases Object Hierarchy
The following diagram shows the object hierarchy for VVPhrases.

Introduction to the Phrases Control

204 ActiveX Developer’s Guide

ActiveX Developer’s Guide 205

Chapter 10 Getting Started with the Phrases
Control

The following is a tutorial on how to incorporate the VVPhrases control into your Visual Basic or
Visual C++ applications. This tutorial is designed to present you with the most commonly used
properties and events in the VVPhrases control.

Creating an Instance

In Visual Basic:
To add the VVPhrases control to your application, do the following:

1. From the Project menu, choose Components.
The ‘Components’ dialog box, Figure 13, appears. The ‘Components’ dialog lists all the ActiveX
Controls that you can use in your application.

Getting Started with the Phrases Control

206 ActiveX Developer’s Guide

Figure 13. Component Selection Dialog - Visual Basic

ActiveX Developer’s Guide 207

Creating an Instance

2. Select IBM ViaVoice Phrases Control from the list and choose OK.
Visual Basic adds the control to your project, and adds a new icon to the toolbar (Figure 14).

Figure 14. VVPhrases Control Toolbar Icon

3. Add an instance of the VVPhrases control to your form.
The VVPhrases control is an invisible control at run time.

In Visual C++ (MFC):
To add the VVPhrases control to your MFC project do the following:

1. From the Project menu, select Add To Project, then select Components and Controls.

Getting Started with the Phrases Control

208 ActiveX Developer’s Guide

The Components and Controls Gallery dialog box, Figure 15, appears.

Figure 15. Insert ActiveX Control Dialog Box - Visual C++ (MFC)

2. Double-click the ‘Registered ActiveX Controls’ folder in the dialog box.

3. Select the IBM ViaVoice Phrases Control icon in the list of controls, then click Insert.
A confirmation message box appears, asking “Insert this component?”

ActiveX Developer’s Guide 209

Creating an Instance

4. Respond to the confirmation message box by choosing OK.
The ‘Confirm Classes’ dialog box, Figure 16, appears listing the components in the VVPhrases
control: CVVPhrases, CVVPhrase, CVVPhraseColl, CVVBookmarkColl, CVVBookmark, and
CVVEngine. (The CVVBookmarkColl and CVVBookmark will be implemented in the future.)

Figure 16. Confirm Classes Dialog Box

5. Click OK in the ‘Confirm Classes’ dialog box.

6. Close the ‘Components and Controls Gallery’ dialog box.

Getting Started with the Phrases Control

210 ActiveX Developer’s Guide

If you examine the Project Workspace window in the class view you will notice six new classes:
CVVPhrases, CVVPhrase, CVVPhraseColl, CVVBookmarkColl, CVVBookmark, and
CVVEngine (assuming you accepted the default names for the class in the Confirm Classes dialog
box).

7. In the resource view of your Project Workspace window double-click the dialog resource entry
where you wish to insert the VVPhrases control.
The VVPhrases icon, Figure 17, appears in the Controls toolbar.

Figure 17. VVPhrases Icon in the Controls Toolbar

8. Add an instance of the VVPhrases control to the dialog box.
After you add the VVPhrases control to your dialog you can invoke Class Wizard to create a
member variable for your CVVPhrases class. You might also decide to capture the events in the
control by adding Event handlers to your dialog class. To add Event handlers, click the
VVPhrases control with the right mouse button, then select Events from the pop-up menu.

ActiveX Developer’s Guide 211

Drag-Drop-n-Go Support

Drag-Drop-n-Go Support
The VVPhrases control fully incorporates IBM’s Drag-Drop-n-Go technology. With this technology
you can add the control to your application and use it without writing many lines of code.

The VVPhrases control has the following Drag-Drop-n-Go properties:

AutoConnect when set to True causes the control to automatically search for a speech recognition
engine at run time and connect to it. This is necessary before the control can recognize commands. If
you set this property to False you must connect manually by calling the Engine.Connect method of
the control.

AutoUI when set to True causes the VVPhrases control to display and manipulate the ViaVoice User
Interface Server. Refer to “Introduction to the User Interface Control” on page 497 for more
information.

By leaving the properties set to their default values you guarantee that the control will connect to the
speech recognition engine as well as display and control the IBM ViaVoice User Interface Server
automatically.

Property Type Default Value

AutoConnect Boolean True

AutoUI Boolean True

Getting Started with the Phrases Control

212 ActiveX Developer’s Guide

Adding Phrases
The first step in using the VVPhrases control is to specify the list of commands that you wish the
control to recognize. As soon as the control hears the user speak one of the command words, it triggers
the SpeechRecognized event. You can then write code in this event to handle the command in your
application.

The VVPhrases control stores the list of phrases in the phrases collection object – VVPhraseColl.
The VVPhraseColl object stores instances of the phrase object – VVPhrase. The phrase object stores
the actual command phrase text, as well as a programmer assigned ID for the command. (You will get
more information about the VVPhrase object later in this chapter).

You can access the VVPhraseColl object through the Phrases property in the control. To add a phrase
(command) to the collection simply use the VVPhraseColl’s Add method as follows:

In Visual Basic:

In Visual C++ (MFC):

The first parameter in the Add method is a programmer assigned unique name for the phrase. You can
use this name later in your code to access the phrase object within the collection. The second parameter
is a programmer assigned ID for the command. This ID enables you to write code to handle the
command without relying on the text. It also enables you to group commands by assigning to them the
same ID. The third parameter is the actual phrase or command the control will recognize. (The string is
not case-sensitive.) The fourth parameter is the Enabled property. If the phrase is enabled then the
control will recognize the phrase. Otherwise, the control will ignore the phrase. If you are using Visual
Basic, this parameter is optional and it will be defaulted to True.

The second step in using the control is to handle the SpeechRecognized event. The VVPhrases
control listens to the user. When the user speaks one of the phrases in the phrase collection, the control
fires the SpeechRecognized event to notify you. The following code segment shows how to handle
this event.

VVPhrases1.Phrases.Add “Hello”, 100, "Say Hello World"

m_VVPhrases.GetPhrases().Add(“Hello”, 100, “Say Hello World”, TRUE)

ActiveX Developer’s Guide 213

Adding Phrases

In Visual Basic:

In Visual C++ (MFC):

Private Sub VVPhrases1_SpeechRecognized(ByVal Name As String, ByVal ID As
Long, ByVal Phrase As String, UpdateUIText As Boolean, ByVal BegTime As
String, ByVal EndTime As String)

Select Case ID
Case 100
MsgBox "Hello Sue"

Case 101
MsgBox “Hello James”

End Select

End Sub

void CVVPhrtest::OnSpeechRecognized(LPCTSTR Name, long ID, BSTR FAR
*Phrase, BOOL FAR *UpdateUIText, LPCTSTR BegTime, LPCTSTR EndTime)

{

switch (ID)
{
case 100:

MessageBox (“Hello World” ,”VVPhrases”,MB_OK);
break;
default:
break;

}
}

Getting Started with the Phrases Control

214 ActiveX Developer’s Guide

Enabling/Disabling Phrases
During the execution of your application, it may be necessary at times to turn on or off speech
recognition for certain commands, or even for all the commands in the phrase collection.

The VVPhrase object, which encapsulates each individual phrase in the control’s phrase collection,
has an Enabled property. This property lets you turn on or off recognition for a single command. By
default, the control sets this property to True when the object is created. To turn off recognition for the
command, you first specify which item in the collection you wish to modify, then change the value of
the Enabled property to False as follows:

In Visual Basic:

In Visual C++ (MFC):

You may recall from our earlier discussion that the Phrases property in the control returns a
VVPhraseColl collection object. To find a phrase in the collection, issue the Item method passing the
phrase text in the first parameter. The Item method returns an instance of the Phrase object that
encapsulates the phrase. Once you have an instance of the Phrase object you can change its properties.
In the previous example, you saw how to enable and disable a phrase. You can also change the ID
number of the phrase, by changing the object’s ID property.

The VVPhraseColl object also has an Enabled property, which allows you to disable or enable all the
phrases without removing them from the collection. To disable all the phrases simply set the Enabled
property of this object to False, as follows:

VVPhrases1.Phrases("Hello").Enabled = False

VARIANT va;
VariantInit(&va);
va.vt = VT_BSTR;
va.bstrVal = SysAllocString(L“Hello”);
m_VVPhrases.GetPhrases().GetItem(va).SetEnabled(FALSE);

ActiveX Developer’s Guide 215

Enabling/Disabling Phrases

In Visual Basic:

In Visual C++ (MFC):

VVPhrases1.Phrases.Enabled = False

m_VVPhrases.GetPhrases().SetEnabled(FALSE);

Getting Started with the Phrases Control

216 ActiveX Developer’s Guide

Working with the Custom Designer
The VVPhrases control ships with a Custom Designer window that enables you to add Phrases at
design time. To invoke it simply click the ellipsis (…) next to the Custom property (see Figure 18).

Figure 18. The Custom Property

ActiveX Developer’s Guide 217

Working with the Custom Designer

This will bring up the Designer window, depicted in Figure 19.

Figure 19. The Designer Window

The Custom Designer allows you to add, remove, and modify phrases at design time. To add a phrase,
simply enter the necessary information to fill out a row in the layout grid.

1. Enter the name of the phrase item in the name field.

2. Enter an ID for the phrase. [Recommended but optional.]

3. Enter the phrase that you wish the control to recognize in the Phrase field. Do not use quotes around
strings in Phrase column.

4. Indicate whether the phrase should be initially enabled or not by typing "t" or "f" in the enabled
field which will then display "True" or "False" as appropriate.

Repeat these steps for each phrase you wish the control to recognize.

Getting Started with the Phrases Control

218 ActiveX Developer’s Guide

You can modify a previously entered phrase simply by selecting the desired field of an existing phrase
and changing it as necessary. You may also remove an entry completely by clicking on the "button" to
the left of the phrase to be deleted, which will highlight the entire row (as indicated in Figure 19). Then
click the Delete Row button to remove the phrase.

Object Hierarchy
The VVPhrases control defines the following object hierarchy:

Concept: Control → Phrases → Phrase

Object names: VVPhrases → VVPhraseColl → VVPhrase

The control (VVPhrases) contains a property called Phrases, (or GetPhrases, if using MFC) which
exposes a Phrases collection object (VVPhraseColl). Each member of the phrase collection is an
instance of a VVPhrase object.

Example
To change the properties in a phrase object:

In Visual Basic:

In Visual C++ (MFC):

In Visual Basic, using default properties that line can be shortened to the following:

VVPhrases1.Phrases.Item(“Hello”).Enabled = True

m_VVPhrases.GetPhrases().GetItem(va).SetEnabled(TRUE);

VVPhrases1.Phrases(“Hello”).Enabled = True

ActiveX Developer’s Guide 219

Object Hierarchy

Note:
The above line of code is possible because Item is the default property of VVPhraseColl. Because
the Phrases property is the default property of the VVPhrases control you can shrink the line of
code even further, as follows:

There is a macro definition for Visual C++ developers using MFC which simulates the default property
behavior in Visual Basic. The macro definition is the following:

Using this macro you can then convert the first example to the following:

VVPhrases1(“Hello”).Enabled = True

#define GetPhrases(a) GetPhrases().GetItem(a)

m_VVPhrase.GetPhrases(va).SetEnabled(TRUE);

Getting Started with the Phrases Control

220 ActiveX Developer’s Guide

ActiveX Developer’s Guide 221

Chapter 11 Properties, Methods, and Events

The following sections describe the properties, methods, and events for the VVPhrases Control,
VVPhraseColl Collection, and VVPhrase Object.

VVPhrases Control

VVPhrases Control Properties
The VVPhrases Control supports the following properties:

• AutoConnect

• AutoUI

• Enabled

• Engine

• Indexa

• Layout

• Phrases

a. Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

Properties, Methods, and Events

222 ActiveX Developer’s Guide

AutoConnect (VVPhrases)
Automatically connects to the speech recognition engine when created. Before the VVPhrases control
can recognize phrases it needs to connect to a speech engine. When this property is set to True the
control will try to connect to an engine with the following properties: IBM Manufacturer, continuous
speech, with dictation, limited domain grammar, and context free grammar support. If you wish to
override the default behavior, set this property to False, then at run time modify the properties in the
Engine object and call the Connect method.

Syntax
VVPhrases.AutoConnect = [Boolean]

Parameters
AutoConnect

??

Return Values
TRUE

(Default) The control automatically finds and connects to a speech engine.

FALSE
The control does not connect to a speech engine. You must issue the Connect method to cause the
control to connect to the engine

Remarks
Changing the value of this property at run time has no effect. This property is meant to be used only at
design time.

If AutoConnect is True, the control will connect to the speech engine before the Form_Load event
takes place in Visual Basic and before the InitDialog method gets executed in an MFC application.

ActiveX Developer’s Guide 223

VVPhrases Control

AutoUI (VVPhrases)
sets the VVPhrases control to automatically displays and interacts with the IBM ViaVoice User
Interface Server.

Syntax
VVPhrases.AutoUI = [Boolean]

Parameters
??

Return Values
TRUE

(Default) VVPhrases displays the User Interface Server and interacts with it automatically

FALSE
VVPhrases does not display the User Interface Server or interact automatically with it (if
another control has already displayed the User Interface Server, for example).

Remarks
When AutoUI is True, the VVPhrases automatically updates the following components in the User
Interface Control: Microphone, Word History, and Volume Level.

If multiple instances of the VVPhrases control have AutoUI set to True, the User Interface Server
only gets created once, and all the instances of the control interact with the same User Interface
Server. If you prefer not to display the User Interface Server, or not to have the VVPhrases control
interact with it automatically, set this property to False.

See Also
Chapter 25, “Introduction to the User Interface Control” on page 497
Chapter 26, “Getting Started with the User Interface Control” on page 499
Chapter 27, “Classes, Structures, and Enumerations” on page 533

Properties, Methods, and Events

224 ActiveX Developer’s Guide

Chapter 28, “Properties, Methods, and Events” on page 561
Chapter 29, “User Interface Control Frequently Asked Questions” on page 629

ActiveX Developer’s Guide 225

VVPhrases Control

Enabled (VVPhrases)
Enables/disables command recognition.

Syntax
[Control].Enabled = [Boolean]

Parameters
??

Return Values
TRUE

(Default) VVPhrases listens for commands.

FALSE
VVPhrases does not listen for commands.

Remarks
Changing the value of this property does not change the value of the Enabled property in the
collection object, or the value of the Enabled property in each of the Phrase objects in the collection.
It does, however, disable all commands in the control.

Properties, Methods, and Events

226 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
VVPhraseColl collection’s “Enabled (VVPhraseColl)” on page 248
VVPhrase object’s “Enabled (VVPhrase)” on page 265

Private Sub chkSpeechRecognition_Click()
VVPhrases1.Enabled = Not VVPhrases1.Enabled

End Sub

void SpeechEnabledToggle()
{
m_VVPhrases.SetEnabled(!m_VVPhrases.GetEnabled());

}

ActiveX Developer’s Guide 227

VVPhrases Control

Engine (VVPhrases)
Contains a reference to the ViaVoice Engine control (VVEngine). If AutoConnect is True, the engine
property will refer to a connected engine control at run-time; otherwise, the internal engine control is
disconnected. When AutoConnect is False, the desired properties of the engine can be set – for
instance the speaking style as discrete or continuous – and then Engine.Connect can be called to start
up a speech engine with the desired attributes.

Syntax
[Control].Engine

Parameters
None.

Return Values
None.

Remarks
The Engine property is actually holding an implicitly created ActiveX control (VVEngine), which can
also be created separately. Inserting a VVEngine control in a project enables you to set the engine
properties on this control, call connect, and then assign the resulting connected engine to multiple
VVPhrases, VVCFGram, and VVTextBox controls. The AutoConnect or AutoInit property in
VVTextBox control must be False for all controls besides the VVEngine control, however. Then the
VVEngine control can be assigned to the writable Engine property of VVPhrases, VVTextBox, and
VVCFGram.

Properties, Methods, and Events

228 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
Refer to the ViaVoice Engine Control Guide for more information.

Private Sub Form_Load()
VVPhrases1.Engine.SpeakingStyle = vvssContinuous
VPhrases1.Engine.AudioSourceType = vvstSAPICompliant
VPhrases1.Engine.Connect

End Sub

void StartEngine()
{
m_VVPhrases.GetEngine().SetSpeakingStyle(vvasContinuous);
m_VVPhrases.GetEngine().SetAudioSourceType(vvstSAPICompliant);
m_VVPhrases.GetEngine().Connect();

}

ActiveX Developer’s Guide 229

VVPhrases Control

Layout (VVPhrases)
Binary representation of the current state of the control. The Layout property allows the developer to
obtain a string of bytes encoding all currently loaded phrases in the VVPhraseColl collection, together
with the values of all other properties. The developer can then save this binary snapshot of the control
to a file or registry key and reload it to restore the exact state of the control.

Syntax
[Control].Layout = [String]

Parameters
??

Return Values
??

Remarks
None.

Properties, Methods, and Events

230 ActiveX Developer’s Guide

Example

In Visual Basic:

See Also
None.

Private Sub Form_Load()
Dim A As String

VVPhrases1.AddPhrase "yes", 100, "yes", True

Open "MyFile.dat" For Random As #1
Put #1, , (VVPhrases1.Layout)
Close #1

VVPhrases1.Phrases.RemoveAll

Open "MyFile.dat" For Random As #1
Get #1, , A
Close #1

VVPhrases1.Layout = A
End Sub

ActiveX Developer’s Guide 231

VVPhrases Control

Phrases (VVPhrases)
Returns a reference to the VVPhraseColl collection object. The VVPhrases contol stores phrases in
VVPhrase objects and then adds them to a collection. Through this collection you can add phrases,
remove phrases, and select phrases. You can also enable/disable all the phrases in the collection by
modifying the collection’s Enabled property.

Syntax
[Control].Phrases

Parameters
None.

Return Values
None.

Remarks
The Phrases property is the control’s default property. Because the Item property is the VVPhraseColl
collection’s default property, you can write the following:

VVPhrases1(“Save”).Enabled = True

Properties, Methods, and Events

232 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
“VVPhraseColl Collection” on page 245

VVPhrases1.Phrases("Hello").Enabled = False

VARIANT va;
VariantInit(&va);
va.vt = VT_BSTR;
va.bstrVal = SysAllocString(L“Hello”);
m_VVPhrases.GetPhrases().GetItem(va).SetEnabled(FALSE)

ActiveX Developer’s Guide 233

VVPhrases Control

VVPhrases Control Methods
The VVPhrases Control supports the following methods:

• Abouta

• AddPhrase

• Refresha

• RefreshUIText

a. Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

Properties, Methods, and Events

234 ActiveX Developer’s Guide

AddPhrase (VVPhrases)
Creates a new Phrase object and adds it to the collection.

Syntax
VVPhrase = [VVPhrases].AddPhrase(ByVal Name As String, ByVal ID As Long,
ByVal Phrase As String, Optional ByVal Enabled As Boolean)

Parameters
Name

String. A programmer assigned string name to identify the phrase object. You can use this name to
refer back to the object within the phrase collection.

ID
Long. A programmer assigned number. This parameter enables you to associate a command or
group of commands with a number.

Text
String. The actual phrase that the control will recognize (Example: “Save Record”). This
parameter is not case-sensitive.

Enabled
Boolean. Enables/Disables the phrase. In Visual Basic this parameter is optional and defaulted as
True.

Return Values
VVPhrase object

An instance of the newly created Phrase object that encapsulates the new phrase.

Remarks
By default the newly created phrase will become active immediately (if the Enabled parameter, the
VVPhrasesColl's Enabled property, and the control's Enabled property are set to True).

ActiveX Developer’s Guide 235

VVPhrases Control

The AddPhrase method serves as a shortcut for VVPhrase.Phrases.Add. Both methods are identical in
functionality.

You should not add two phrases with the same name. The Name serves a unique identifier for the
phrase object within the collection. However, you can add many phrases with the same ID number and
with the same Text.

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
“Remove (VVPhraseColl)” on page 257

’Add Commands
VVPhrases1.AddPhrase(“Begin”, 100, "Begin New Record")
VVPhrases1.AddPhrase(“Add”, 100, "Add New Record")
VVPhrases1.AddPhrase(“Edit”, 200, "Edit Record")
VVPhrases1.AddPhrase(“Delete”, 300, "Delete Record")
VVPhrases1.AddPhrase(“Trash”, 300, "Trash Record")

'Add Commands
m_VVPhrases1.AddPhrase(“Begin”,100,"Begin New Record",TRUE);
m_VVPhrases1.AddPhrase(“Add”, 100, "Add New Record",TRUE);
m_VVPhrases1.AddPhrase(“Edit”, 200, "Edit Record",TRUE);
m_VVPhrases1.AddPhrase(“Delete”, 300, "Delete Record", TRUE);
m_VVPhrases1.AddPhrase(“Trash”, 300, "Trash Record",TRUE);

Properties, Methods, and Events

236 ActiveX Developer’s Guide

RefreshUIText (VVPhrases)
Forces an update of the ViaVoice User Interface Server when AutoUI is True.

Syntax
[Control].RefreshUIText(Text As String)

Parameters
Text

Text to display in the UIServer.

Return Values
??

Remarks
Used primarily in the SpeechRecognized event together with the UpdateUIText parameter.

ActiveX Developer’s Guide 237

VVPhrases Control

Example

In Visual Basic:

In Visual C++ (MFC):

Private Sub VVPhrases1_SpeechRecognized(ByVal Name As String, ByVal ID As
Long, Phrase As String, UpdateUIText As Boolean, ByVal BegTime As String,
ByVal EndTime As String)
String WordHistoryText = Name

Select Case ID
Case 100 ‘ If user said “Open File”...

WordHistoryText = “Opening document...”
Case 110 ‘ If user said “Close File”...

WordHistoryText = “Closing document...”
Case 120 ‘ If user said “Close Window”...

WordHistoryText = “Goodbye!”
End Select

VVPhrases1.RefreshUIText WordHistoryText
End Sub

void CMyWnd::OnSpeechRecognized (LPCTSTR Name, long ID, BSTR FAR* Phrase,
BOOL FAR* UpdateUIText, LPCTSTR BegTime, LPCTSTR EndTime)
{

LPTSTR lpszWordHistoryText = Name;

switch (ID) {
// If user said “Open File”...
case 100: lpszWordHistoryText = “Opening document...” break;
// If user said “Close File”...
case 110: lpszWordHistoryText = “Closing document...” break;
// If user said “Close Window”...
case 120: lpszWordHistoryText = “Goodbye!” break;

}

m_VVPhrases1.RefreshUIText(lpszWordHistory);
}

Properties, Methods, and Events

238 ActiveX Developer’s Guide

See Also
“SpeechRecognized (VVPhrases)” on page 241

ActiveX Developer’s Guide 239

VVPhrases Control Events

VVPhrases Control Events
The VVPhrases Control supports the following events:

• BeginSpeechRecognition

• BookMarkReached (Not Supported)

• Paused (Not Supported)

• SpeechHypothesis (Not Supported)

• SpeechRecognized

• SpeechRejected (Not Supported)

• TrainingRequired

Properties, Methods, and Events

240 ActiveX Developer’s Guide

BeginSpeechRecognition (VVPhrases)
Event fired when the speech engine receives audio input it identifies as coming from user speech,
rather than background noise.

Syntax
BeginSpeechRecognition(ByVal BegTime As String)

Parameters
BegTime

Bookmark indicating the time when the user began to speak.

Return Values
??

Remarks
The event does not necessarily mean a specific phrase in the VVPhraseColl Collection has been
recognized; it simply indicates that the user has started speaking. If you are using the IBM Speech
Engine, then this event will fire at the same time as the SpeechRecognized event.

See Also
“SpeechRecognized (VVPhrases)” on page 241

ActiveX Developer’s Guide 241

VVPhrases Control Events

SpeechRecognized (VVPhrases)
Event fired by VVPhrases control when it recognizes one of the phrases in the Phrase collection
(VVPhraseColl).

Syntax
SpeechRecognized (ByVal Name As String, ByVal ID As Long, Phrase As
String, UpdateUIText As Boolean, ByVal BegTime As String, ByVal EndTime As
String)

Parameters
Name

The programmer assigned unique identifier for the phrase object.

ID
A programmer assigned numeric identifier for the item.

Phrase
The actual phrase text the user spoke.

UpdateUIText
When AutoUI is True, this parameter tells the VVPhrases control to use the Phrase text to update
the Word History component in the ViaVoice UIServer.

BegTime
A bookmark indicating the time when the user began to speak the phrase.

EndTime
A bookmark indicating the time the user finished speaking the phrase.

Return Values

Remarks

Handling this event is necessary when using the control.

Properties, Methods, and Events

242 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
“AddPhrase (VVPhrases)” on page 234.
Chapter 25, “Introduction to the User Interface Control” on page 497.

Private Sub VVPhrases1_SpeechRecognized(ByVal Name As String, ByVal ID As
Long, ByVal Phrase As String, UpdateUIText As Boolean, ByVal BegTime As
String, ByVal EndTime As String)

Select Case ID
Case 100
MsgBox "Hello Sue"

Case 101
MsgBox “Hello James”

End Select

End Sub

void CVVPhrtest::OnSpeechRecognized(LPCTSTR Name, long ID, BSTR FAR
*Phrase, BOOL FAR *UpdateUIText, LPCTSTR BegTime, LPCTSTR EndTime)
{

switch (ID)
{

case 100:
MessageBox (“Hello World” ,”VVPhrases”,MB_OK);
break;

default:
break;

}
}

ActiveX Developer’s Guide 243

VVPhrases Control Events

TrainingRequired (VVPhrases)
Notification from the engine that the currently active speech user needs to train the speech engine in
order to improve recognition.

Syntax
TrainingRequired (ByVal TrainingType As Long)

Parameters
TrainingType

One of the following SAPI training types (refer to the Microsoft SAPI documentation for further
information).

Return Values
??

Remarks
In the case of VVPhrases this means that the engine is using tentative pronunciations for some of the
phrases in the VVPhraseColl collection because it cannot find the words in its base vocabulary.

General (SRGNSTRAIN_GENERAL) 1

Grammar (SRGNSTRAIN_GRAMMAR) 2

Grammar (SRGNSTRAIN_GRAMMAR) 4

Properties, Methods, and Events

244 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
“Engine (VVPhrases)” on page 227

Private Sub VVPhrases1_TrainingRequired(ByVal TrainingType As Long)
Select Case TrainingType
Case 1:
Debug.Print "General training required"

Case 2:
Debug.Print "Vocabulary needs to be added"

Case 3:
Debug.Print "Microphone levels need to be changed"

End Select
End Sub

void CMyWnd::OnTrainingRequired(long TrainingType)
{
switch (TrainingType) {
default:
MessageBox("Training recommended.", "ViaVoice SDK", MB_OK);

}
}

ActiveX Developer’s Guide 245

VVPhraseColl Collection

VVPhraseColl Collection

VVPhraseColl Collection Properties
The VVPhraseColl (IVVPhraseColl) Collection supports the following properties:

• Count

• Enabled

• Item

Properties, Methods, and Events

246 ActiveX Developer’s Guide

Count (VVPhraseColl)
Returns the number of phrases in the collection.

Syntax
lValue = [VVPhrases.Phrases].Count

Parameters
None.

Return Values
Long

The number of items in the collection

Remarks
None.

Example

In Visual Basic:

’Get all the phrases
Dim sPhrase As String

For i = 1 To VVPhrases1.Phrases.Count
sPhrase = VVPhrases1.Phrases(i).Text
Next

ActiveX Developer’s Guide 247

VVPhraseColl Collection

In Visual C++ (MFC):

See Also
None.

//Get all phrases
CString sPhrase;

for (int i = 1; i <= VVPhrases1.GetPhrases().GetCount(); i++)
{
VARIANT va;
VariantInit(&va);
va.vt = VT_I2;
va.iVal = i;
sPhrase = VVPhrases1.GetPhrases().GetItem(va).GetText();
}

Properties, Methods, and Events

248 ActiveX Developer’s Guide

Enabled (VVPhraseColl)
Turns on/off command recognition for all the commands in the collection. When this property is False
the control ignores all the commands in the collection.

Syntax
[VVPhrases1.Phrases].Enabled = Boolean

Parameters
??

Return Values
TRUE

(Default) Activates command recognition for the collection.

FALSE
Turns off recognition for all the phrases in the collection.

Remarks
Changing the value of this property has no effect on the value of the Enabled property in each object
in the collection.

ActiveX Developer’s Guide 249

VVPhraseColl Collection

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
VVPhrases Control’s “Enabled (VVPhrases)” on page 225
VVPhrase Object’s “Enabled (VVPhrase)” on page 265

VVPhrases1.Phrases.Enabled = False
Call VVPhrases1.Phrases.Add(“Minimize”, 100, "Minimize Windows", TRUE)
Call VVPhrases1.Phrases.Add(“Maximize”, 200, "Maximize Windows", TRUE)
VVPhrases1.Phrases.Enabled = True

m_VVPhrases1.GetPhrases().SetEnabled(FALSE);
m_VVPhrases1.GetPhrases().Add(“Minimize”,100,"Minimize Windows", TRUE);
m_VVPhrases1.GetPhrases().Add(“Maximize”, 200, "Maximize Windows, TRUE);
m_VVPhrases1.GetPhrases().SetEnabled(TRUE);

Properties, Methods, and Events

250 ActiveX Developer’s Guide

Item (Default Method - VVPhraseColl)
Returns a VVPhrase object from the collection.

Syntax
VVPhrase = [VVPhrases1.Phrases].Item(ByVal Key As VARIANT)

Parameters
Key

VARIANT. The item identifier. This parameter can be numeric – indicating the ordinal position of
the item within the collection, or a string – indicating the text of the item.

Return Values
VVPhrase

The Phrase object that contains the command text.

Remarks
Whenever you add a phrase to the control, the control creates a VVPhrase object to encapsulate the
command text and adds it to the VVPhraseColl Collection. There are two ways to access a member of
the collection. One way is through the items command text. The other way is through the item's
position within the collection.

Because the Phrases property is the default property of the control, and the Item function is the default
method of the VVPhraseColl object, it is possible in Visual Basic to write:

VVPhrases1("Add ").ID = 100

ActiveX Developer’s Guide 251

VVPhraseColl Collection

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
None.

VVPhrases1.Phrases.Item("Add").ID = 100
Or
VVPhrases.Phrases(“Add“).ID = 100

VARIANT va;
VariantInit(&va);
va.bstrVal = SysAllocString(L”Add”);
va.vt = VT_BSTR

m_VVPhrases.GetPhrases().GetItem(va).SetID(100);

Properties, Methods, and Events

252 ActiveX Developer’s Guide

VVPhraseColl Collection Methods
The VVPhraseColl Collection supports the following methods:

• Add

• Exists

• Remove

• RemoveAll

ActiveX Developer’s Guide 253

VVPhraseColl Collection

Add (VVPhraseColl)
Creates a new phrase. By default the newly created phrase will become active immediately (if the
VVPhrasesColl’s Enabled property and the control’s Enabled property are set to True).

Syntax
VVPhrase = [VVPhrases.Phrases]Add(ByVal Name As String, ByVal ID As Long,
ByVal Phrase As String,Optional ByVal Enabled As Boolean)

Parameters
Name

String. A programmer assigned string name to identify the Phrase object. You can use this name to
refer back to the object within the Phrase collection.

ID
Long. A programmer assigned number. This parameter enables you to associate a command or
group of commands with a number.

Text
String. The actual phrase that the control will recognize (Example: “Save Record”). This
parameter is not case-sensitive.

Enabled
Boolean. Enables/Disables the phrase. In Visual Basic this parameter is optional and defaulted as
True.

Return Values
VVPhrase

An instance of the newly created Phrase object that encapsulates the command.

Remarks
You cannot add two phrases with the same Name. The Name serves a unique identifier for the phrase
object within the collection. However, you can add many phrases with the same ID number and with
the same Text.

Properties, Methods, and Events

254 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
“Remove (VVPhraseColl)” on page 257

’Add Commands
VVPhrases1.Phrases.Add(“Begin”, 100, "Begin New Record")
VVPhrases1.Phrases.Add(“Add”, 100, "Add New Record")
VVPhrases1.Phrases.Add(“Edit”, 200, "Edit Record")
VVPhrases1.Phrases.Add(“Delete”, 300, "Delete Record")
VVPhrases1.Phrases.Add(“Trash”, 300, "Trash Record")

'Add Commands
m_VVPhrases1.GetPhrases().Add(“Begin”,100,"Begin New Record",TRUE)
m_VVPhrases1.GetPhrases().Add(“Add”, 100, "Add New Record",TRUE)
m_VVPhrases1.GetPhrases().Add(“Edit”, 200, "Edit Record",TRUE)
m_VVPhrases1.GetPhrases().Add(“Delete”, 300, "Delete Record", TRUE)
m_VVPhrases1.GetPhrases().Add(“Trash”, 300, "Trash Record",TRUE)

ActiveX Developer’s Guide 255

VVPhraseColl Collection

Exists (VVPhraseColl)
Use this method to find out if a certain phrase is part of the collection.

Syntax
[Boolean] = [VVPhrases1.Phrases].Exists(ByVal Key As VARIANT)

Parameters
Key

VARIANT. The item identifier. This parameter can be numeric – indicating the ordinal position of
the item within the collection, or a string – indicating the text of the item.

Return Values
TRUE

The phrase exists in the collection;

FALSE
The phrase does not exist in the collection.

Remarks
None.

Properties, Methods, and Events

256 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
None.

If VVPhrases1.Phrases.Exists("Delete") = True Then
VVPhrases1.Phrases("Delete").Enabled = False

End If

VARIANT va;
VariantInit(&va);
va.bstrVal = SysAllocString(L”Delete”);
va.vt =VT_BSTR;

if (VVPhrases1.GetPhrases().Exists(va))
VVPhrases1.GetPhrases().GetItem(va).SetEnabled(FALSE);

ActiveX Developer’s Guide 257

VVPhraseColl Collection

Remove (VVPhraseColl)
Removes a Phrase object from the collection.

Syntax
[VVPhrases.Phrases].Remove(ByVal Key As Variant)

Parameters
Key

VARIANT. The item identifier. This parameter can be numeric – indicating the ordinal position of
the item within the collection, or a string – indicating the text of the item.

Return Values
None.

Remarks
Whenever you add a phrase to the control, the control creates a Phrase object to contain the command
text and adds it to the VVPhraseColl Collection. There are two ways to remove a member of the
collection. One way is through the items command text. The other way is through the item's position
within the collection.

Example

In Visual Basic:

If VVPhrases1.Phrases.Exists("Delete") = True Then
VVPhrases1.Phrases.Remove("Delete")

End If

Properties, Methods, and Events

258 ActiveX Developer’s Guide

In Visual C++ (MFC):

See Also
None.

VARIANT va;
VariantInit(&va);
va.bstrVal = SysAllocString(L”Add”);
va.vt = VT_BSTR;

If (VVPhrases1.GetPhrases().Exists(va) == TRUE)
VVPhrases1.GetPhrases().Remove(va);

ActiveX Developer’s Guide 259

VVPhraseColl Collection

RemoveAll (VVPhraseColl)
Removes all the VVPhrase objects from the collection.

Syntax
[VVPhrases.Phrases].RemoveAll

Parameters
None.

Returns
None.

Remarks
Removes and destroys all phrase objects in the collection. If you want to only temporarily disable
them, it is much faster to use the VVPhraseColl Collection’s Enabled property.

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
“Remove (VVPhraseColl)” on page 257

VVPhrases1.Phrases.RemoveAll

m_VVPhrases1.GetPhrases().RemoveAll();

Properties, Methods, and Events

260 ActiveX Developer’s Guide

VVPhrase Object

VVPhrase Object Properties
The VVPhrase object supports the following properties:

• ActionDesc

• Description

• Enabled

• ID

• ItemData

• Name

• Text

ActiveX Developer’s Guide 261

VVPhrase Object

ActionDesc (VVPhrase)
A programmer assigned description of the action that the program will take after the user speaks the
phrase. This property will be used later by other ViaVoice programs to give the user a list of commands
that your program will recognize.

Syntax
[Phrase].ActionDesc = [String]

Parameters
??

Return Values
String

Any string value.

Remarks
The ActionDesc property does not have any effect on the functionality of the phrase object at this time.
However, it is a good practice to set the value of this property in you programs since the future releases
of the SDK will contain programs that will display a list of all the commands in your application along
with the description, and the action description.

Properties, Methods, and Events

262 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
“Description (VVPhrase)” on page 263

VVPhrases1.Phrases(“Save”).ActionDesc = “Save Current Record”

VARIANT va;
VariantInit(&va);
va.vt = VT_BSTR;
va.bstrVal = SysAllocString(L“Save”);

VVPhrases1.GetPhrases().GetItem(va).SetActionDesc(“Writes the current
record to the database.”);

ActiveX Developer’s Guide 263

VVPhrase Object

Description (VVPhrase)
A programmer assigned description of the command. This property will be used later by other
ViaVoice programs to give the user a list of commands that your program will recognize.

Syntax
[Phrase].Description = [String]

Parameters
??

Return Values
String

Any string value.

Remarks
The Description property does not have any effect on the functionality of the Phrase object at this
time. However, it is a good practice to set the value of this property in you programs since the future
releases of the SDK will contain programs that will display a list of all the commands in your
application along with the description, and the action description.

Properties, Methods, and Events

264 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
“ActionDesc (VVPhrase)” on page 261

VVPhrases1.Phrases(“Save”).Description = “Save Current Record”

VARIANT va;
VariantInit(&va);
va.vt = VT_BSTR;
va.bstrVal = SysAllocString(L“Save”);

VVPhrases1.GetPhrases().GetItem(va).SetDescription(“Save Current
Record”);

ActiveX Developer’s Guide 265

VVPhrase Object

Enabled (VVPhrase)
Enables/disables speech recognition for a particular phrase.

Syntax
[Phrase].Enabled = [Boolean]

Parameters
??

Return Values
TRUE

(Default) Activates command recognition for a single phrase.

FALSE
Turns off recognition for a single phrase.

Remarks
If the user speaks the phrase and it is enabled, the VVPhrases control will fire the SpeechRecognized
event. If the phrase is disabled the control simply ignores the phrase.

Setting the collection’s Enabled property to True/False will not affect the value of the Enabled
property of each individual phrase. However, it will cause the control to ignore the command. In other
words, if the Phrase’s Enabled property is True, and then you set the Collection’s Enabled property to
False, the Phrase’s Enabled property will remain True but the control will not recognize it.

Properties, Methods, and Events

266 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
VVPhraseColl’s “Enabled (VVPhraseColl)” on page 248

VVPhrases1.Phrases(“Speak”).Enabled = False

VARIANT va;
VariantInit(&va);
va.bstrVal = SysAllocString(L”Speak”);
va.vt = VT_BSTR;

m_VVPhrases1.GetPhrases().GetItem(va).Enabled = False;

ActiveX Developer’s Guide 267

VVPhrase Object

ID (VVPhrase)
A programmer assigned identifier for the phrase.

Syntax
Phrase.ID = [long]

Parameters
??

Return Values
Long

Any long numeric value.

Remarks
The ID number does not have to be unique. It offers a more reliable way to refer to the command than
using the command text. For example, your program may have the same command in different
languages, but has the same ID for all versions of the item. The ID number also enables you to group
similar commands by functionality, such as “Say Hello World,” and “Hello World.”

Properties, Methods, and Events

268 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
None.

Private Sub VVPhrases1_SpeechRecognized(ByVal Name As String, ByVal ID As
Long, ByVal Phrase As String, UpdateUIText As Boolean, ByVal BegTime As
String, ByVal EndTime As String)

Select Case ID
Case 100
MsgBox "Hello Sue"

Case 101
MsgBox “Hello James”

End Select

End Sub

void CVVPhrtest::OnSpeechRecognized(LPCTSTR Name, long ID, BSTR FAR
*Phrase, BOOL FAR *UpdateUIText, LPCTSTR BegTime, LPCTSTR EndTime)
{

switch (ID)
{

case 100:
MessageBox (“Hello World” ,”VVPhrases”,MB_OK);
break;

default:
break;

}
}

ActiveX Developer’s Guide 269

VVPhrase Object

ItemData (VVPhrase)
Stores additional programmer-defined data with an individual phrase.

Syntax
[Phrase].ItemData = [Variant]

Parameters
??

Return Values
Variant

Any values or object reference.

Remarks
This data value is not used by the Phrases control at anytime. Instead, its meaning is only known by
the client application, which stores it.

Properties, Methods, and Events

270 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
None.

Set VVPhrases1.Phrases(“Save”).ItemData=VVTextBox1

CVVTextBox VVTextBox1;
...
VARIANT va1, va2;
VariantInit(&va1);
VariantInit(&va2);
va1.vt = VT_BSTR;
va2.vt = VT_BYREF | VT_DISPATCH;
va1.bstrVal = SysAllocString(L"Save");
VVTextBox1.AddRef();
va2.ppvUnknown = &VVTextBox1;

VVPhrases1.GetPhrases().GetItem(va1).SetItemData(va2);

ActiveX Developer’s Guide 271

VVPhrase Object

Name (VVPhrase)
A programmer-assigned string name for the Phrase object.

Syntax
[Phrase].Name = [String]

Parameters
??

Return Values
String

Any string value. The name property is not case sensitive.

Remarks
You can use this name later in your code to search for a particular Phrase object.

Although you can change the name of the Phrase object at any time, to find the object in the Phrase
Collection, you must use the name assigned at the time when the object was first created.

Properties, Methods, and Events

272 ActiveX Developer’s Guide

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
“Add (VVPhraseColl)” on page 253
“AddPhrase (VVPhrases)” on page 234

Dim Phrase As VVPhrase

VVPhrases1.AddPhrase “Hello”,100, “Say Hello World”, TRUE
VVPhrases1.AddPhrase “Goodbye”, 150, “Say Goodbye World”, TRUE
For Each Phrase In VVPhrases1.Phrases
 List1.AddItem Phrase.Name
Next

VARIANT va;
VariantInit (&va);
va.vt = VT_I4;
for (va.1Va1= 1; va.1Va1<=
m_VVPhrases.GetPhrases().GetCount();va.1Va1++)
{

TRACE(“%s\n”, m_VVPhrases.GetPhrases().GetItem(va).GetText());
}

ActiveX Developer’s Guide 273

VVPhrase Object

Text (VVPhrase)
Exact text of the user speech to be recognized.

Syntax
[Phrase].Text = [String]

Parameters
??

Return Values
??

Remarks
None.

Example

In Visual Basic:

In Visual C++ (MFC):

VVPhrase1.Phrases(“Save”).Text=”Save me now”

VARIANT va;
VariantInit(&va);
va.vt = VT_BSTR;
va.bstrVal = SysAllocString(L"Save");

VVPhrases1.GetPhrases().GetItem(va).SetText("Save me now");

Properties, Methods, and Events

274 ActiveX Developer’s Guide

See Also
None.

ActiveX Developer’s Guide 275

VVPhrase Object

VVPhrase Object Methods
There are no methods for this object.

VVPhrase Object Events
There are no events for this object.

Properties, Methods, and Events

276 ActiveX Developer’s Guide

ActiveX Developer’s Guide 277

Chapter 12 Phrases Control Frequently Asked
Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice Phrases
Control.

Can I put more than one phrase control on a form?

Yes. In fact it can be more efficient to group related phrases in separate controls.

What characters are permitted in a phrase?

The characters permitted in a phrase can vary depending on the SAPI speech engine you are using.
As a general rule, however, non-printing ASCII characters and punctuation marks could render a
phrase unrecognizable. In the case of the IBM speech engine, conventional punctuation marks
such as the comma, apostrophe, and exclamation point usually do not interfere with recognition
unless they are placed at or near the beginning of a word.

How can I improve load time when adding many phrases to a VVPhrases control?

When the Phrases collection of the control is enabled, each call to AddPhrase or Phrases.Add
updates the speech engine with the new phrase immediately. If you are adding many phrases to the
control at the same time it is more efficient to set Phrases.Enabled = False, perform all the
AddPhrase calls you desire, and set Phrases.Enabled = True when finished. The speech engine will
then be updated only once – after all the phrases have been added.

How can I improve phrase recognition?

The fewer phrases added to an enabled phrase control, the fewer possibilities the speech engine
has to sort through to find a match with the user’s speech. Also, the more distinct the phrases are in
sound and spelling the better the likelihood that the speech engine will not confuse them.

Phrases Control Frequently Asked Questions

278 ActiveX Developer’s Guide

ActiveX Developer’s Guide 279

Chapter 13 Introduction to the Grammar
Control

The ViaVoice Context-Free Grammar Control (VVCFGram) is an ActiveX control that enables
developers to use a compiled context-free grammar file to add robust command recognition to their
application. The main idea behind the control is that the developer provides the control with a
compiled grammar file, and the control will notify the developer when the user speaks a command
constructed from the grammar.

VVCFGram Object Hierarchy
The following diagram shows the components of the VVCFGram Control.

Introduction to the Grammar Control

280 ActiveX Developer’s Guide

ActiveX Developer’s Guide 281

Chapter 14 Getting Started with the Grammar
Control

The following is a tutorial on how to incorporate the VVCFGram control into your Visual Basic or
Visual C++ applications. This tutorial is designed to present you with the most commonly used
properties and events in the VVCFGram control.

Creating an Instance of the Control

In Visual Basic:
To add the VVCFGram control to your application, do the following:

1. From the Project menu, choose Components.
The Components dialog box, Figure 20, appears. The Components dialog lists all the ActiveX
Controls that you can use in your application.

Getting Started with the Grammar Control

282 ActiveX Developer’s Guide

Figure 20. Component Selection Dialog - Visual Basic

2. Select IBM ViaVoice Grammar Control from the list and choose OK.
Visual Basic adds the control to your project, and adds a new icon to the toolbar (Figure 21).

ActiveX Developer’s Guide 283

Creating an Instance of the Control

Figure 21. VVCFGram Control Toolbar Icon

3. Add an instance of the VVCFGram control to your form.
The VVCFGram control is an invisible control at run time.

In Visual C++ (MFC):
To add the VVCFGram control to your MFC project, do the following:

1. From the Project menu, select Add To Project, then select Components and Controls.
The Components and Controls Gallery dialog box, Figure 22, appears.

Getting Started with the Grammar Control

284 ActiveX Developer’s Guide

Figure 22. Insert ActiveX Control Dialog Box - Visual C++

2. Double-click the Registered ActiveX Controls folder in the dialog box.

3. Select the IBM ViaVoice Grammar Control icon in the list of controls, then click Insert.

ActiveX Developer’s Guide 285

Creating an Instance of the Control

A confirmation message box appears, asking “Insert this component?” A confirmation message
box appears, asking “Insert this component?”

4. Respond to the confirmation message box by choosing OK.
The Confirm Classes dialog box, Figure 23, appears listing the components in the VVCFGram
control: CVVCFGram, CVVAnnotation, CVVRule, CVVBookmarkColl, CVVBookmark,
CVVAnnotationColl, CVVEngine, and CVVRuleColl. (The CVVRule, CVVRuleColl,
CVVBookmarkColl, and CVVBookmark will be implemented in the future.)

Figure 23. Confirm Classes Dialog Box

Getting Started with the Grammar Control

286 ActiveX Developer’s Guide

5. Click OK in the Confirm Classes dialog box.

6. Close the “Components and Controls Gallery” dialog box.
If you examine the Project Workspace window in the class view you will notice eight new classes:
VVCFGram control: CVVCFGram, CVVAnnotation, CVVRule, CVVBookmarkColl,
CVVBookmark, CVVAnnotationColl, CVVEngine, and CVVRuleColl (assuming you accepted
the default names for the class in the Confirm Classes dialog box).

7. In the resource view of your Project Workspace window double-click the dialog resource entry
where you wish to insert the VVCFGram control.
The VVCFGram icon, Figure 24, appears in the Controls toolbar.

Figure 24. VVCFGram Icon in the Controls Toolbar

8. Add an instance of the VVCFGram control to the dialog box.
After you add the VVCFGram control to your dialog you can invoke Class Wizard to create a
member variable for you class of type CVVCFGram. You might also decide to capture the events
in the control by adding Event handlers to your dialog class. To add Event handlers, click the
VVCFGram control with the right mouse button, then select Events from the pop-up menu.

ActiveX Developer’s Guide 287

Drag-Drop-n-Go Support

Drag-Drop-n-Go Support
The VVCFGram control fully incorporates IBM’s Drag-Drop-n-Go technology. Through this
technology you can add the control to your application and use it without having to write many lines of
code.

The VVCFGram control has the following Drag-Drop-n-Go properties:

AutoConnect when set to True causes the control to automatically search for a speech recognition
engine at run time and connect to it. This is necessary before the control can recognize commands and
phrases. If you set this property to False, you must connect manually by calling the Event.Connect
method of the control.

AutoUI, when set to True, causes the VVCFGram control to display and manipulate the ViaVoice
User Interface Server. For more information on the ViaVoice User Interface Server, refer to the
ActiveX User Interface control documentation.

AutoLoad, when set to True, causes the control to automatically load a grammar file. Use the
GrammarSource property to specify the path to the grammar file. Setting this property to True is
equivalent to issuing the LoadFromSource method at run time.

By leaving the property values set to their default values you guarantee that the control will connect to
the speech recognition engine and display and interact with the IBM ViaVoice User Interface Server
automatically. Furthermore, if you specify a grammar file (by setting the GrammarSource property),
the control will automatically load the compiled grammar file and activate it.

Property Type Default Value

AutoConnect Boolean True

AutoUI Boolean True

AutoLoad Boolean True

Getting Started with the Grammar Control

288 ActiveX Developer’s Guide

Loading a Grammar
The first step in using the VVCFGram control is to specify the grammar source. In this release the
grammar source is a compiled grammar file, whether it uses IBM native grammar format, or SAPI 4.0
format. (For information on compiling grammars, see the SMAPI Reference or the SAPI Reference
included with this SDK). Guide Simply set the GrammarSource property to the path of the grammar
file.

If you set the AutoLoad property to True, the control will automatically load the grammar file and
activate it. Otherwise, you must issue the LoadFromSource method at run time, as seen below.

In Visual Basic:

In Visual C++ (MFC):

The control then is ready to interpret expressions from the grammar file. As soon as the control hears
the user speak one of the phrases defined in the grammar, it triggers the SpeechRecognized event. You
can then write code in this event to handle the command in your application.

VVCFGram1.GrammarSource = “C:\Grammars\sample.grm”
VVCFGram1.LoadFromSource

VVCFGram1.SetGrammarSource(“C:\\Grammars\\sample.grm”);
VVCFGram1.LoadFromSource();

ActiveX Developer’s Guide 289

Loading a Grammar

In Visual Basic:

In Visual C++ (MFC):

Private Sub VVCFGram1_SpeechRecognized(ByVal Name As String, _
ByVal ID As Long, ByVal Phrase As String, _
UpdateUIText As Boolean, ByVal BegTime As String, _
ByVal EndTime As String)

If Phrase="Exit Program" Then
Call CloseDatabase
Call ExitProgram

End If

End Sub

void CVVGramtest::OnSpeechRecognized(LPCTSTR Name,
long ID, BSTR FAR *Phrase, BOOL FAR *UpdateUIText,
LPCTSTR BegTime, LPCTSTR EndTime)

{

If (wcscmp (Phrase, L"Exit Program") ==0)
{
CloseDatabase();
ExitProgram();

}
}

Getting Started with the Grammar Control

290 ActiveX Developer’s Guide

Enabling/Disabling a Grammar
During the execution of your application, it may be necessary at times to turn on or off speech
recognition for a particular grammar.

The VVCFGram control has an Enabled property. This property lets you turn on or off speech
recognition for the current grammar.

ActiveX Developer’s Guide 291

Using External Lists

Using External Lists
It is possible to create a grammar that contains a placeholder for words that can only be resolved at run
time. For example, suppose that in your program you wish the user to issue the following verbal
commands: “Delete Files from Temp”, or “Copy Files From Temp to Download.” In these two
examples the user is able to copy files or delete files from any directory on his or her computer.
However, it is not possible to account for all the directory names the user might have at the time the
grammar is compiled (at design time). Instead, it is possible to create a grammar with a placeholder for
the directory name, then at run time after loading the grammar, your program can provide the engine
with a list of words to use in the directory placeholder. The source code for such a grammar might look
like the following:

In TXT format:

[Grammar]
langid=1033
type=cfg

[Lists]
=DirectoryA
=DirectoryB

[<Start>]
<Start> = Delete [opt] <object> from <DirectoryA>
<Start> = Copy [opt] <object> from <DirectoryB>

<object> = Files
<object> = All

Getting Started with the Grammar Control

292 ActiveX Developer’s Guide

In BNF format:

The placeholders in a grammar file are called External Lists. Each external list has a unique name. In
the example above, “DirectoryA” and “DirectoryB” are external lists. The grammar control has an
ExternLists property that enables you to manage the words in an external list.

The ExternLists property in the grammar control provides an instance of the Phrase Collection
Group Object (IVVPhraseCollGroup). Through this object you are able to enable, disable, and
enumerate external lists in your control. For example, to provide words for the “DirectoryA” and
“DirectoryB” external lists in the grammar example above, you would first load the grammar using the
LoadFromSource method as normally done. Then, add words to the two external lists as follows:

In Visual Basic:

EXTERN <DirectoryA>
EXTERN <DirectoryB>

<start> = <delete> | <copy>.

<delete>=Delete <object>? from <DirectoryA>.
<copy>=Copy <object>? from <DirectoryA> to <DirectoryB>.

<object> = FILES | ALL.

With VVCFGram1.ExternLists(“DirectoryA”)
 .Add “C:\Junk”, 100, “Junk”, True
 .Add “C:\Temp”, 200, “Temp”, True
End With

With VVCFGram1.ExternLists(“DirectoryB”)
 .Add “C:\Download”,100, “Download”, True
 .Add “C:\Temp”,200,”Temp”, True
 .Add “C:\Windows”,300, “Windows”, True
 .Add “C:\Windows\System”,300,”System”, True
End With

ActiveX Developer’s Guide 293

Using External Lists

In Visual C++ (MFC):

Adding words or phrases to each external list is identical to adding phrases to the phrases control (see
“Adding Phrases” on page 212 for more information). The first parameter in the Add command is the
unique name of the phrase item within the phrase collection. The second parameter is a numeric ID for
the phrase. (This number does not have to be unique.) The third parameter is the actual word or phrase
the user will speak to complete the command. In the example above, the statement. Add
“C:\Windows\System”, 300, “System”, True tells the grammar control that the user can speak the
phrase “Copy Files from Temp to System.” The fourth parameter tells the grammar control if the
phrase is enabled (True) or disabled (False).

You can enable or disable phrases within the external list at any time by changing the Enabled
property of the phrase item as follows:

CVVPhraseColl DirectoryA;
CVVPhraseColl DirectoryB;

VARIANT vaItemA
VariantInit(&vaitemA);
vaItemA.vt=VT_BSTR;
vaItemA.bstr.Val=SysAllocString(L “DirectoryA”);

DirectoryA = m_VVCFGram1.GetExternLists().GetItem(vaItemA);
DirectoryA.Add(L“C:\\Junk”, 100, L“Junk”, TRUE);
DirecotryA.Add(L“C:\\Temp”, 200, L“Temp”, TRUE);

VARIANT vaItemB;
VariantInit(&vaItemB);
vaItemB.vt=VT_BSTR;
vaItemB.bstrVal=SysAllocString(L“DirectoryB”);

DirectoryB = m_VVCFGram1.GetExternLists().GetItem(vaItemB);
DirectoryB.Add(L“C:\\Download”,100, L“Download”, TRUE);
DirectoryB.Add(L“C:\\Temp”,200,L“Temp”, TRUE);
DirectoryB.Add(L“C:\\Windows”,300, L“Windows”, TRUE);
DirectoryB.Add(L“C:\\Windows\\System”,300,L“System”, TRUE);

Getting Started with the Grammar Control

294 ActiveX Developer’s Guide

In Visual Basic:

In Visual C++ (MFC):

Changing the Enabled property for a phrase causes the grammar control to unload the external list that
contains that phrase and reload it without the disabled phrase. You can also disable the entire list by
issuing the following command:

In Visual Basic:

In Visual C++ (MFC):

VVCFGram1.ExternLists(“DirectoryB”)(“C:\Windows”).Enabled = False

VARIANT vaExtName;
VariantInit(&vaExtName);
vaExtName.vt = VT_BSTR;
vaExtName.bstrVal = SysAllocString(L“DirectoryB”);

VARIANT vaPhrase;
VariantInit(&vaPhrase);
vaPhrase.vt = VT_BSTR;
vaPhrase.bstrVal = SysAllocString(L“C:\Windows”);
m_VVCFGram1.GetExternLists().GetItem(vaExtName).GetItem(vaPhrase).SetEna
bled (FALSE);

VVCFGram1.ExternLists(“DirectoryB”).Enabled = False

VARIANT vaExtName;
VariantInit(&vaExtName);
vaExtName.vt = VT_BSTR;
vaExtName.bstrVal = SysAllocString(L“DirectoryB”);
m_VVCFGram1.GetExternLists(vaExtName).SetEnabled(FALSE);

IBM SDK for Windows 295

Chapter 15 Properties, Methods, and Events

The following is a list of properties, methods, and events pertaining to the VVCFGram Control.

Grammar Control Properties
The ViaVoice Grammar control supports the following properties:

• Alternates

• Annotations

• AutoConnect

• AutoLoad

• AutoUI

• Enabled

• Engine

• ExternLists

• GrammarFormat

• GrammarSource

• Refresh

• Rules

• SourceType

Properties, Methods, and Events

296 IBM SDK for Windows

Alternates (VVCFGram)
??

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks

IBM SDK for Windows 297

Grammar Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also

Properties, Methods, and Events

298 IBM SDK for Windows

Annotations (VVCFGram)

??

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
Grammars enable you to associate a word with a related piece of information. When the VVCFGram
control recognizes a phrase and fires the SpeechRecognized event, it also refreshes the Annotation
collection. This collection contains the annotations for each of the words in the phrase recognized. The
Annotations property returns an Annotation Collection object.

VVAnnotationColl = [VVCFGram].Annotations

CVVAnnotationColl AnnColl = [CVVCFGram].Annotations();

IVVAnnotationColl *pIAnnColl;
HRESULT hr = pVVCFGram -> get_Annotations(&pIAnnColl);

IBM SDK for Windows 299

Grammar Control Properties

The Annotation Collection contains instances of the Annotation object, and each of which contains a
word. The Annotation Collection object (VVAnnotationColl) has two methods for navigating
through its members: Count and Item. The following code shows you how to retrieve the annotations
in the SpeechRecognized event.

Although this property is available throughout the lifetime of the control, its value only makes sense
when SpeechRecognized event takes place.

Example

In Visual Basic:

Private Sub VVCFGram1_SpeechRecognized(ByVal Name As String, _
ByVal ID As Long, Phrase As String, _
UpdateUIText As Boolean, _
ByVal BegTime As String, ByVal EndTime As String)

Dim oAnnotation As VVAnnotation
Dim sAnnotation As String

If VVCFGram1.Annotations.Count > 0 Then

For Each oAnnotation In VVCFGram1.Annotations
sAnnotation = oAnnotation.Word

Next

End If

End Sub

Properties, Methods, and Events

300 IBM SDK for Windows

In Visual C++ (MFC):

void CVVPhrtest::OnSpeechRecognized(LPCTSTR Name, long ID,
BSTR FAR *Phrase, BOOL FAR *UpdateUIText,
LPCTSTR BegTime, LPCTSTR EndTime)

{

CString sAnnotation;

If (m_VVCFGram.GetAnnotations().GetCount > 0)
{
for (int i=1; i <= m_VVCFGram1.GetAnnotations().GetCount();

i++)
{
VARIANT va;
VariantInit(&va);
va.iVal = i;
va.vt = VT_I2;

m_VVCFGram1.GetAnnotations().GetItem(va).GetWord
(&sAnnotation);

}

}

}

IBM SDK for Windows 301

Grammar Control Properties

In Visual C++:

HRESULT SpeechRecognized (BSTR Name, long ID, BSTR *Phrase, VARIANT_BOOL
*UpdateUIText, BSTR BegTime, BSTR EndTime)
{
IVVAnnotationColl *pIAnnColl;
long lCount = 0;
HRESULT hr = S_OK;

hr = pVVCFGram->get_Annotations(&pIAnnColl);
if (FAILED(hr)) return hr;

hr = pIAnnColl->get_Count(&lCount);
if (FAILED(hr)) return hr;

if (lCount > 0)
{
for (long l=1; l <= lCount; l++)
{
VARIANT vaItem;
VariantInit(&vaItem);
va.vt = VT_I4;
va.lVal = l;

IVVAnnotation *pIAnn;
BSTR sAnnotation;

hr = pIAnnColl->get_Item(vaItem,&pIAnn);
if (FAILED(hr)) return hr;

pIAnn->get_Word(&sAnnotation);

//Place code to use annotation here
}

}

}

Properties, Methods, and Events

302 IBM SDK for Windows

See Also
“SpeechRecognized (VVCFGram)” on page 339

IBM SDK for Windows 303

Grammar Control Properties

AutoConnect (VVCFGram)
Automatically connects to the speech recognition engine when created.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
TRUE

(Default) The control automatically finds and connects to a speech engine.

FALSE
The control does not connect to a speech engine. You must issue the Connect method to cause the
control to connect to the engine.

Remarks
Before the VVCFGram control can recognize commands, it needs to connect to a speech engine.
When this property is set to True the control will try to connect to an engine with the following

[VVCFGram].AutoConnect = [Boolean]

VARIANT_BOOL = [CVVCFGram].GetAutoConnect()
[CVVCFGram].SetAutoConnect(VARIANT_BOOL)

HRESULT[pIVVCFGram] -> get_AutoConnct(VARIANT_BOOL *)
HRESULT[pIVVCFGram] -> put_AutoConnect(VARIANT_BOOL)

Properties, Methods, and Events

304 IBM SDK for Windows

properties: IBM Manufacturer, continuous speech engine, with dictation, limited domain grammar, and
context free grammar support. If you wish to override the default behavior, set this property to False;
then at run time modify the properties in the Engine object and call the Connect method.Changing the
value of this property at run time has no effect. This property is meant to be used only at design time.

If AutoConnect is True, the control will connect to the speech engine before the Form_Load event
takes place in Visual Basic and before the InitDialog method gets executed in an MFC application.

Examples
None.

See Also
“Engine (VVCFGram)” on page 311

IBM SDK for Windows 305

Grammar Control Properties

AutoLoad (VVCFGram)
Loads a binary grammar file at run time.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
TRUE

(Default) Automatically load a binary grammar file at run time. You must set the
GrammarSource property to the full path of the binary file.

FALSE
VVCFGram does not load the binary grammar file automatically at run time. To load the
grammar file you must issue the LoadFromSource method.

[VVCFGram].AutoLoad = [Boolean]

VARIANT_BOOL = [CVVCFGram].GetAutoLoad();
[CVVCFGram].SetAutoLoad(VARIANT_BOOL)

HRESULT [pIVVCFGram] ->get_AutoLoad(VARIANT_BOOL *)
HRESULT [pIVVCFGram] ->put_AutoLoad(VARIANT_BOOL)

Properties, Methods, and Events

306 IBM SDK for Windows

Remarks
You must specify the path to the grammar by setting the value of the GrammarSource property.
AutoLoad only happens once when the control is first created. Changing the GrammarSource after
AutoLoad has occurred does not automatically load the new file. To activate the new file, simply issue
the LoadFromSource method.

Examples
None.

See Also
“GrammarSource (VVCFGram)” on page 320

IBM SDK for Windows 307

Grammar Control Properties

AutoUI (VVCFGram)
Displays and interacts with the IBM ViaVoice User Interface Server.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
TRUE

(Default) VVCFGram displays the User Interface Server and interacts with it automatically.

FALSE
VVCFGram does not display the User Interface Server. It does not interact automatically with it
either (if another control displays the User Interface Server, for example).

Remarks
If multiple instances of the VVCFGram control have AutoUI set to True, the User Interface Server
only gets created once, and all the instances of the control interact with the same User Interface

[VVCFGram].AutoUI = [Boolean]

VARIANT_BOOL = [CVVCFGram].GetAutoUI()
[CVVCFGram].SetAutoUI(VARIANT_BOOL)

HRESULT[pIVVCFGram] ->Get_AutoUI(VARIANT_BOOL *)
HRESULT[pIVVCFGram] ->Put_AutoUI(VARIANT_BOOL)

Properties, Methods, and Events

308 IBM SDK for Windows

Server. If you prefer not to display the User Interface Server or not to have the VVCFGram control
interact with it automatically, set this property to False. When AutoUI is True, the VVCFGram
automatically updates the following components: Microphone, Word History, and Volume Level.

Examples
None.

See Also
Chapter 18, “Introduction to the User Interface Control” on page 319.
Refer to the following chapters for more information about ViaVoice User Interface Control:
Chapter 25, “Introduction to the User Interface Control” on page 497
Chapter 26, “Getting Started with the User Interface Control” on page 499
Chapter 27, “Classes, Structures, and Enumerations” on page 533
Chapter 28, “Properties, Methods, and Events” on page 561
Chapter 29, “User Interface Control Frequently Asked Questions” on page 629

IBM SDK for Windows 309

Grammar Control Properties

Enabled (VVCFGram)
Enables/Disables command recognition.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
TRUE

(Default) VVCFGram listens for commands.

FALSE
VVCFGram does not listen for commands.

Remarks
Changing the value of this property does not unload the grammar from memory, but only deactivates
it.

[VVCFGram].Enabled = [Boolean]

VARIANT_BOOL = [CVVCFGram].GetEnabled()
[CVVCFGram].SetEnabled (VARIANT_BOOL)

HRESULT [pIVVCFGram] ->get_Enabled(VARIANT_BOOL *)
HRESULT [pIVVCFGram] ->put_Enabled(VARIANT_BOOL)

Properties, Methods, and Events

310 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

Private Sub ToggleSpeech_Click ()
VVCFGram1.Enabled = Not VVCFGram1.Enabled

End Sub

void SpeechEnabledToggle()
{
m_VVCFGram.SetEnabled(!m_VVCFGram.GetEnabled());

}

void SpeechEnabledToggle()
{VARIANT_BOOL bVal;
pIVVCFGram ->get_Enabled(&BVal);
pIVVCFGram ->put_Enabled(bVal);

}

IBM SDK for Windows 311

Grammar Control Properties

Engine (VVCFGram)
Contains a reference to the ViaVoice Engine control (VVEngine).

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
None.

Remarks
If AutoConnect is True, the engine property will refer to a connected Engine object at run-time;
otherwise, the Engine object is disconnected. When AutoConnect is False, the desired properties of
the engine can be set – for instance the speaking style as discrete or continuous – and then
Engine.Connect can be called to start up a speech engine with the desired attributes.

[VVCFGram].Engine

CVVEngine = [CVVCFGram].GetEngine()
[CVVCFGram].SetEngine(CVVEngine)

HRESULT [pIVVCFGram] ->get_Engine(IVVEngine **)
HRESULT [pIVVCFGram] ->put_Engine(IVVEngine *)

Properties, Methods, and Events

312 IBM SDK for Windows

The Engine property is actually holding an implicitly created ActiveX control (VVEngine), which can
also be created separately. Inserting a VVEngine control in a project enables you to set the engine
properties on this control, call connect, and then assign the resulting connected engine to multiple
VVPhrases, VVCFGram, and VVTextBox controls. The AutoConnect or AutoInit property must
be False for all controls besides the VVEngine control, however. Then the VVEngine control can be
assigned to the writable engine property of VVPhrases, VVTextBox, and VVCFGram.

Example

In Visual Basic:

In Visual C++ (MFC):

Private Sub Form_Load()
VVCFGram1.Engine.NeedsDictation = True
VVCFGram1.Engine.AudioSourceType = vvFixedAudio
VVCFGram1.Engine.Connect
End Sub

void StartEngine()
{
m_VVCFGram.GetEngine().SetNeedsDictation (TRUE)
m_VVCFGram.GetEngine().SetAudioSourceType(vvFixedAudio);
m_VVCFGram.GetEngine().Connect();
}

IBM SDK for Windows 313

Grammar Control Properties

In Visual C++:

See Also
Refer to the ViaVoice Engine Control Guide for more information.

void StartEngine()
{
IVVEngine *pIVVEngine;
HRESULT hr;

hr = pIVVCFGram->get_Engine(&pIVVEngine);
if (FAILED(hr)) return hr;

pIVVEngine->put_NeedsDictation(VARIANT_TRUE);
pIVVEngine->put_AudioSourceType(vvFixedAudio);
pIVVEngine->Connect();

}

Properties, Methods, and Events

314 IBM SDK for Windows

ExternLists (VVCFGram)
Accesses the Phrase Collection Group object (IVVPhraseCollGroup) in the Grammar control.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
None.

Remarks
You can use this object to provide external lists for the control at run time. For a complete description
of this property and how to use external lists see the section titles “Using External Lists” in this
chapter. The IVVPhraseCollGroup exposed through this property is a group of Phrase Collections.
The Phrase Collection object is discussed in detail on “Adding Phrases” on page 212.

[VVCFGram].ExternLists

CVVPhraseCollGroup = [CVVCFGram].GetExternLists

HRESULT [pIVVCFGram] ->get_ExternLists(IVVPhraseCollGroup **)

IBM SDK for Windows 315

Grammar Control Properties

Example

In Visual Basic

In Visual C++ (MFC):

With VVCFGram1.ExternLists(“DirectoryA”)
.Add “C:\Junk”, 100, “Junk”, True
.Add “C:\Temp”, 200, “Temp”, True

End With

With VVCFGram1.ExternLists(“DirectoryB”)
.Add “C:\Download”,100, “Download”, True
.Add “C:\Temp”,200,”Temp”, True
.Add “C:\Windows”,300, “Windows”, True
.Add “C:\Windows\System”,300,”System”, True

End With

CVVPhraseColl DirectoryA;
CVVPhraseColl DirectoryB;

VARIANT vaItemA
VariantInit(&vaitemA);
vaItemA.vt=VT_BSTR;
vaItemA.bstr.Val=SysAllocString(L “DirectoryA”);

DirectoryA = m_VVCFGram1.GetExternLists().GetItem(vaItemA);
DirectoryA.Add(L“C:\Junk”, 100, L“Junk”, TRUE);
DirecotryA.Add(L“C:\Temp”, 200, L“Temp”, TRUE);

VARIANT vaItemB;
VariantInit(&vaItemB);
vaItemB.vt=VT_BSTR;
vaItemB.bstrVal=SysAllocString(L “DirectoryB”);

DirectoryB = m_VVCFGram1.GetExternLists().GetItem(vaItemB);
DirectoryB.Add(L“C:\Download”,100, L“Download”, TRUE);
DirectoryB.Add(L“C:\Temp”, 200, L”Temp”, TRUE);
DirectoryB.Add(L“C:\Windows”, 300, L“Windows”, TRUE);
DirectoryB.Add(L“C:\Windows\System”, 300, L”System”, TRUE);

Properties, Methods, and Events

316 IBM SDK for Windows

In Visual C++:

See Also
 Refer to the following chapters for more information about the ViaVoice Engine Control:
Chapter 14, “Using External Lists” on page 291

HRESULT hr;
IVVPhraseCollGroup *pExtLists;
hr = pIVVCFGram->get_ExternLists(&pExtLists);

if (FAILED(hr)) return hr;

VARIANT va;
VariantInit(&va);
va.vt = VT_BSTR;
va.bastrBal = SysAllocString(L"Directory1");

VARIANT_BOOL bExists;
hr = pExtLists->Exists(va,&bExists);

if (bExists == VARIANT_TRUE)
{
IVVPhraseColl *pList;
pExtLists->get_Item(va,&pList);
pList->put_Enabled(VARIANT_FALE);

}

IBM SDK for Windows 317

Grammar Control Properties

GrammarFormat (VVCFGram)
Specifies the format of the GrammarSource.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
None.

Remarks
This value tells the VVCFGram control how to load the GrammarSource. It tells the grammar
control if the GrammarSource represents a compiled grammar, or a grammar source, and whether it
uses IBM native grammar format, or SAPI 4.0 format. (For information on compiling grammars, see
the SMAPI Reference or the SAPI Reference included with this SDK) The VVCFGram control
supports the following formats:

[VVCFGram].GrammarFormat = [Enum VVFormatConstants]

Enum VVFormatConstants = [CVVCFGram].GetGrammarFormat()
[CVVCFGram].SetGrammarFormat(Enum VVFormatConstants)

HRESULT [pIVVCFGram] ->get_GrammarFormat(Enum VVFormatConstants *)
HRESULT [pIVVCFGram] ->put_GrammarFormat(Enum VVFormatConstants)

Properties, Methods, and Events

318 IBM SDK for Windows

0 - vvgfAuto: Automatically determines the format of the grammar source. This option can be more
time consuming than telling the control the format of the grammar prior to loading it.

1- vvgfNativeCompiled: The grammar is in IBM (.SAR) binary format.

2 - vvgfNativeSource: The grammar is in IBM (.BNF) source format.

3 - vvgfSAPICompiled: The grammar is in SAPI 4.0 (.GRM) binary format.

4 - vvgfSAPISource: The grammar is in SAPI 3.0 (.TXT) source format.

When using the vvgfAuto setting, in combination with vvstFile for the SourceType property, the
VVCFGram control looks at the file extension in order to determine the GrammarSource format.

Example

In Visual Basic:

In Visual C++ (MFC):

VVCFGram1.GrammarFormat = vvgfSAPICompiled
VVCFGram1.GrammarSource = "F:\Grammar\sample.grm"
VVCFGram1.LoadFromSource

m_VVCFGram1.SetGrammarFormat(vvgfSAPICompiled);

VARIANT vaSource
VariantInit(&vaSource)
vaSource.vt = VT_BSTR;
vaSource.bstrVal = SysAllocString (L "F:\\Grammar\\sample.grm")

m_VVCFGram1.SetGrammarFormat(vaSource)
m_VVCFGram1.LoadFromSource();

IBM SDK for Windows 319

Grammar Control Properties

In Visual C++:

See Also
“SourceType (VVCFGram)” on page 324

pIVVCFGram->put_GrammarFormat(vvgfSAPICompiled);

VARIANT vaSource
VariantInit(&vaSource);
VaSource.vt = VT_BSTR;
VaSource.bstrVal = SysAllocString(L "F:\\Grammar\\sample.grm");
pIVVCFGram->put_GrammarFormat(vaSource);
pIVVCFGram->LoadFromSource();

Properties, Methods, and Events

320 IBM SDK for Windows

GrammarSource (VVCFGram)
Sets/Gets the path to a binary grammar file.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
None.

Remarks
Use this property in conjunction with the LoadFromSource method to load a grammar file into
memory.

[VVCFGram].GrammarSource = String

BSTR = [CVVCFGram].SetGrammarSource()
[CVVCFGram].SetGrammarSource(BSTR)

HRESULT [pIVVCFGram] ->get_GrammarSource(BSTR *)
HRESULT [pIVVCFGram] ->put_GrammarSource(BSTR)

IBM SDK for Windows 321

Grammar Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“LoadFromSource (VVCFGram)” on page 328

VVCFGram1.GrammarSource = “F:\Grammar\sample.grm”
VVCFGram1.LoadFromSource

VARIANT vaSource
VariantInit(&vaSource)
vaSource.vt = VT_BSTR;
vaSource.bstrVal = SysAllocString (L “F:\\Grammar\\sample.grm”)

m_VVCFGram1.SetGrammarSource(vaSource)
m_VVCFGram1.LoadFromSource();

VARIANT vaSource
VariantInit(&vaSource);
VaSource.vt = VT_BSTR;
vaSource.bstrVal = SysAllocString(L “F:\\Grammar\\sample.grm”);
pIVVCFGram ->put_GrammarSource(vaSource);

Properties, Methods, and Events

322 IBM SDK for Windows

Rules (VVCFGram)
??

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

IBM SDK for Windows 323

Grammar Control Properties

Return Values
??

Remarks

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also

Properties, Methods, and Events

324 IBM SDK for Windows

SourceType (VVCFGram)
Tells the VVCFGram control whether the GrammarSource property specifies a path to a file or is a
grammar source string.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
None.

Remarks
The VVCFGram control supports the following settings:

10 - vvstFile: The GrammarSource property contains the path to a file.

50 - vvstString: The GrammarSource property contains a string that represents a grammar source.

[VVCFGram].SourceType = [Enum SourceTypeConstants]

Enum SourceTypeConstants = [CVVCFGram].SetSourceType()
[CVVCFGram].SetSourceType(Enum SourceTypeConstants)

HRESULT [pIVVCFGram] ->get_SourceType(Enum SourceTypeConstants *)
HRESULT [pIVVCFGram] ->put_SourceType(Enum SourceTypeConstants)

IBM SDK for Windows 325

Grammar Control Properties

The contents of GrammarSource are determined by the value of this property and the value of the
GrammarFormat property. The possible combinations are:

Example

In Visual Basic:

In Visual C++ (MFC):

Setting vvstFile vvstString

vvgfAuto X X

vvgfNativeCompiled X N/A

vvgfNativeSource X X

vvgfSAPICompiled X N/A

vvgfSAPISource X X

VVCFGram1.SourceType = vvstFile
VVCFGram1.GrammarSource = "F:\Grammar\sample.grm"
VVCFGram1.LoadFromSource

m_VVCFGram1.SourceType(vvstFile);

VARIANT vaSource
VariantInit(&vaSource)
vaSource.vt = VT_BSTR;
vaSource.bstrVal = SysAllocString (L "F:\\Grammar\\sample.grm")

m_VVCFGram1.SetGrammarFormat(vaSource)
m_VVCFGram1.LoadFromSource();

Properties, Methods, and Events

326 IBM SDK for Windows

In Visual C++:

See Also
“GrammarFormat (VVCFGram)” on page 317

pIVVCFGram->put_SourceType(vvstFile);

VARIANT vaSource
VariantInit(&vaSource);
VaSource.vt = VT_BSTR;
VaSource.bstrVal = SysAllocString(L "F:\\Grammar\\sample.grm");

pIVVCFGram->put_GrammarFormat(vaSource);
pIVVCFGram->LoadFromSource();

IBM SDK for Windows 327

Grammar Control Methods

Grammar Control Methods
The ViaVoice Grammar control supports the following methods:

• Abouta

• LoadFromSource

• RefreshUIText

• ShowTrainDialog

a. Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

Properties, Methods, and Events

328 IBM SDK for Windows

LoadFromSource (VVCFGram)
Manually loads a binary grammar file.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
None.

Return Values
None.

Remarks
There are two ways to load a grammar file, either manually using this method, or automatically, by
setting the AutoLoad property to True at design time. Before the control can load a grammar file you
must specify the path of the file to load by setting the value of the GrammarSource property.

If you wish to load a second grammar file into the same control make sure to set the Enabled property
in the control to False. This will ensure that the speech engine unloads the first grammar from memory.

[VVCFGram].LoadFromSource

[CVVCFGram].LoadFromSource()

HRESULT [pIVVCFGram] ->LoadFromSource()

IBM SDK for Windows 329

Grammar Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“AutoLoad (VVCFGram)” on page 305

VVCFGram1.GrammarSource = “F:\Grammar\sample.grm”
VVCFGram1.LoadFromSource

VARIANT vaSource
VariantInit(&vaSource)
vaSouve.vt = VT_BSTR;
vaSource.bstrVal = SysAllocString (L “F:\\Grammar\\sample.grm”)

m_VVCFGram1.SetGrammarSource(VaSource)
m_VVCFGram1.LoadFromSource();

VARIANT vaSource
VariantInit(&vaSource);
VaSource.vt = VT_BSTR;
vaSource.bstrVal = SysAllocString(L “F:\\Grammar\\sample.grm”);
pIVVCFGram ->put_GrammarSource(vaSource);

Properties, Methods, and Events

330 IBM SDK for Windows

Refresh
This method is exactly the same as LoadFromSource().

IBM SDK for Windows 331

Grammar Control Methods

RefreshUIText (VVCFGram)
Forces an update of the ViaVoice User Interface Server when AutoUI is True.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
Text

Text to display in the UIServer.

Return Values
??

Remarks
Used primarily in the SpeechRecognized event together with the UpdateUIText property.

[VVCFGram].RefreshUIText (Text As String)

[CVVCFGram].RefreshUIText (BSTR)

HRESULT [pIVVCFGram] ->RefreshUIText (BSTR)

Properties, Methods, and Events

332 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Private Sub VVCFGram1_SpeechRecognized(ByVal Name As String, ByVal ID As
Long, Phrase As String, UpdateUIText As Boolean, ByVal BegTime As String,
ByVal EndTime As String)

’ This will cause the control to update the word history component in
’ the UIServer immediately. Otherwise the text will be updated when
’ the function ends (if UpdateUIText is True).

VVCFGram1.RefreshUIText Phrase
Update UIText = False

End Sub

void CVVCFGramtest::OnSpeechRecognizedVvphrases1(LPCTSTR Name, long ID,
BSTR FAR* Phrase, BOOL FAR* UpdateUIText, LPCTSTR BegTime, LPCTSTR
EndTime)
{

//This will cause the control to update the word history component in
//the UIServer immediately. Otherwise the text will be updated when
//the function ends (if UpdateUIText is True).
m_VVCFGram1.RefreshUIText(*Phrase);
*UpdateUIText = VARIANT_FALSE;

}

HRESULT SpeechRecognized (BSTR Name, long ID, BSTR *Phrase, VARIANT_BOOL
*UpdateUIText, BSTR BegTime, BSTR EndTime)
{

//This will cause the control to update the word history component in
//the UIServer immediately. Otherwise the text will be updated when
//the function ends (if UpdateUIText is True).
pIVVCFGram->RefreshUIText(*Phrase);
*UpdateUIText = VARIANT_FALSE;

}

IBM SDK for Windows 333

Grammar Control Methods

See Also
“SpeechRecognized (VVCFGram)” on page 339

Properties, Methods, and Events

334 IBM SDK for Windows

ShowTrainDialog (VVCFGram)
Event fired if the VVCFGram control loads a grammar that contains a word that the speech engine
cannot recognize.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
In this event you can call the ShowTrainDialog method to invoke the speech engine’s training dialog.
This dialog enables the user to train words that are unrecognizable. You do not have to provide the
engine with a list of words - it automatically populates the dialog with the words that require
training.Example

[VVCFGram].ShowTrainDialog(ByVal Title As String, ByVal hWndParent As
Long)

[VVCFGram].ShowTrainDialog(CString Title, long hWndParent)

HRESULT ShowTrainDialog([in] BSTR Title, [in] long hwndParent);

IBM SDK for Windows 335

Grammar Control Methods

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

Properties, Methods, and Events

336 IBM SDK for Windows

Grammar Control Events
The ViaVoice Grammar control supports the following events:

• BeginSpeechRecognition

• Paused (Not Supported)

• SpeechRecognized (Not Supported)

• SpeechRejected

• TrainingRequired

IBM SDK for Windows 337

Grammar Control Events

BeginSpeechRecognized (VVCFGram)
Fired when the speech engine receives audio input; it identifies as coming from user speech, rather
than background noise. The event does not necessarily mean a specific expression in the
GrammarSource that has been recognized; it simply indicates that the user has starting speaking.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
BegTime

Bookmark indicating the time when the user began to speak.

Return Values
??

Remarks
None.

BeginSpeechRecognition(ByVal BegTime As String)

void OnBeginSpeechRecognition(LPCSTR BegTime)

HRESULT BeginSpeechRecognition(BSTR BegTime)

Properties, Methods, and Events

338 IBM SDK for Windows

Examples

See Also
“SpeechRecognized (VVCFGram)” on page 339

IBM SDK for Windows 339

Grammar Control Events

SpeechRecognized (VVCFGram)
Event fired when the VVCFGram control recognizes one of the phrases contained in the grammar.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
Name

The programmer assigned unique identifier for the phrase object.

ID
A programmer assigned numeric identifier for the item.

Phrase
The actual phrase text the user spoke.

UpdateUIText
When AutoUI is True, this parameter tells the VVCFGram control to use the Phrase text to
update the Word History component in the ViaVoice UIServer.

BegTime
A bookmark indicating the time when the user began to speak the phrase.

SpeechRecognized(ByVal Name As String, ByVal ID As Long, Phrase As
String, UpdateUIText As Boolean, ByVal BegTime As String, ByVal EndTime
As string)

OnSpeechRecognized(LPCTSTR Name, long ID, BSTR FAR *Phrase, BOOL FAR
*UpdateUIText, LPCTSTR BegTime, LPCTSTR EndTime)

HRESULT SpeechRecognized(BSTR Name, long ID, BSTR FAR *Phrase,
VARIANT_BOOL *UpdateUIText, BSTR BegTime, BSTR EndTime)

Properties, Methods, and Events

340 IBM SDK for Windows

EndTime
A bookmark indicating the time the user finished speaking the phrase.

Return Values
??

Remarks
Handling this event is necessary when using the VVCFGram control.

Example

In Visual Basic:

Private Sub VVCFGram1_SpeechRecognized(ByVal Name As String, _
ByVal ID As Long, ByVal Phrase As String, _

UpdateUIText As Boolean, ByVal BegTime As String,
ByVal EndTime As String)

Select Case ID
Case 100
MsgBox "Hello Sue"

Case 101
MsgBox “Hello James”

End Select

End Sub

IBM SDK for Windows 341

Grammar Control Events

In Visual C++ (MFC):

In Visual C++:

See Also
“GrammarSource (VVCFGram)” on page 320
“LoadFromSource (VVCFGram)” on page 328

void CVVCFGGramtest::OnSpeechRecognized(LPCTSTR Name, long ID,
BSTR FAR *Phrase, BOOL FAR *UpdateUIText,
LPCTSTR BegTime, LPCTSTR EndTime)

{

switch (ID)
{
case 100:

MessageBox (“Hello World” ,”VVCFGram”,MB_OK);
break;

default:
break;

}
}

HRESULT SpeechRecognized(BSTR Name, long ID, BSTR *Phrase, VARIANT_BOOL
UpdateUIText, BSTR BegTime, BSTR EndTime)
{

switch (ID)
{
case 100:

MessageBox ("Hello World", "VVCFGram", MB_OK);
break;

default:
break;

}

}

Properties, Methods, and Events

342 IBM SDK for Windows

TrainingRequired (VVCFGram)
Notification from the engine that the currently active speech user needs to train the speech engine in
order to improve recognition.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
TrainingType

One of the following SAPI training types (refer to the Microsoft SAPI documentation for further
description):

Return Values
??

TrainingRequired(ByVal TrainingType As Long)

void OnTrainingRequired(long TrainingType)

HRESULT TrainingRequired(long TrainingType)

General (SRGNSTRAIN_GENERAL) 1

Grammar (SRGNSTRAIN_GRAMMAR) 2

Microphone (SRGNSTRAIN_MICROPHONE) 4

IBM SDK for Windows 343

Grammar Control Events

Remarks
In the case of VVCFGram this means that the engine is using tentative pronunciations for some of the
phrases in the GrammarSource because it cannot find the words in its base vocabulary.

Example

In Visual Basic:

In Visual C++ (MFC):

Private Sub VVCFGram1_TrainingRequired(ByVal TrainingType As Long)
Call VVCFGram1.ShowTrainDialog(“Train Unrecognized Words. . .”,

m.hwnd)
End Sub

void CVVCFGramTest::OnTrainingRequired(long TrainingType)
{

m_VVCFGram.ShowTrainDialog(“Train Unrecognized Words. . .”,
m_hwnd)

}

Properties, Methods, and Events

344 IBM SDK for Windows

In Visual C++:

See Also
Microsoft SAPI documentation

HRESULT Training Required(long TrainingType)
{
pVVCFGram->ShowTrainDialog(L"Train Unrecognized Words...", hWnd);

}

Count
=====

//Get all external list names
IVVPhraseCollGroup *pExtLists;
pVVCFGram->get_ExtLists(&pExtLists);

long lCount;
pExtLists->get_Count(&lCount);

for (long l=1; l <= lCount; l++)
{
IVVPhraseColl *pList;
BSTR bstrListName;

VARIANT va;
VariantInit (&va);
va.vt = VT_I4;
va.lVal = l;

pExtList->get_Item(va,&pList);
pList->get_Name(&bstrListName);

}

IBM SDK for Windows 345

VVPhraseCollGroup Object

VVPhraseCollGroup Object

VVPhraseCollGroup Object Properties
The VVPhraseCollGroup (IVVPhraseCollGroup) Object has the following properties:

• Count

• Enabled

• Item

Properties, Methods, and Events

346 IBM SDK for Windows

Count (VVPhraseCollGroup)
Returns the number of external lists in the group.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
None.

Return Values
Long

The number of items in the collection.

Remarks
None.

lValue = [VVCFGram.ExternList].Count

long = [CVVPhraseCollGroup].GetCount()

HRESULT [pIVVPhraseCollGroup] ->get_Count(long *)

IBM SDK for Windows 347

VVPhraseCollGroup Object

Example

In Visual Basic:

In Visual C++ (MFC):

’Get all the external list names
Dim i As Integer
Dim sListName As String

For i = 1 To VVCFGram.ExternList.Count
sListName = VVCfGram1.ExternList(i).Name

Next

//Get all the external list names
CString sListName;

for (i = 1; i <= VVCFGram1.GetExternList().GetCount(); i++)
{
VARIANT va;
VariantInit(&va);
va.vt = VT_I2;
va.iVal = i;
sListName = VVCFGram1.GetExternList(va).GetName();
}

Properties, Methods, and Events

348 IBM SDK for Windows

In Visual C++:

See Also
None.

//Get all external list names
IVVPhraseCollGroup *pExtLists;
pVVCFGram->get_ExtLists(&pExtLists);

long lCount;
pExtLists ->get_Count(&lCount);

for (long l=1; l <= lCount; l++)
{
IVVPhraseColl *pList;
BSTR bstrListName;

VARIANT va;
VariantInit (&va);
va.vt = VT_I4;
va.lVal = l;

pExtList ->get_Item(va, &pList);
pList ->get_Name(&bstrListName);

}

IBM SDK for Windows 349

VVPhraseCollGroup Object

Enabled (VVPhraseCollGroup)
Enables/disables all the external lists within the group.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
TRUE

(Default) Enables all external lists in the control.

FALSE
Disables all external lists in the control.

Remarks
When an external list is disabled, the engine will not recognize commands in the grammar that use
external lists.

[VVCFGram.ExternList].Enabled = Boolean

VARIANT_BOOL = [CVVPhraseCollGroup].GetEnabled()
[CVVPhraseCollGroup].SetEnabled(VARIANT_BOOL)

HRESULT [pIVVPhraseCollGroup] ->get_Enabled(VARIANT_BOOL *)
HRESULT [pIVVPhraseCollGroup] ->put_Enabled(VARIANT_BOOL)

Properties, Methods, and Events

350 IBM SDK for Windows

Each time you add a phrase to an external list, the control unloads the existing external list and reloads
the new external list. If you disable the external list object, you can build external lists without having
the Grammar control unload and load the list for each item. You can then load the entire list at once
by setting this property to True.

Example

In Visual Basic:

In Visual C++ (MFC):

VVCFGram1.ExternList.Enabled = False

With VVCFGram1.ExternList(“DirectoryA”)
.Add “C:\Junk”, 100, “Junk”, True
.Add “C:\Temp”, 200, “Temp”, True

End With

VVCFGram1.ExternList.Enabled = True

m_VVCFGram1.GetExternList().SetEnabled(FALSE);
CVVPhraseColl DirectoryA;

DirectoryA = m_VVCFGram1.GetExternList().Add(L“DirectoryA”)
DirectoryA.Add(L“C:\Junk”, 100, L“Junk”, TRUE)
DirectoryA.Add(L“C:\Temp”, 200, L“Temp”, TRUE)

m_VVCFGrams1.GetExternLists().SetEnabled(TRUE);

IBM SDK for Windows 351

VVPhraseCollGroup Object

In Visual C++:

See Also
None.

IVVPhraseCollGroup *pExtLists;
pVVCFGram ->get_ExtLists(&pExtLists);

IVVPhraseColl *pList;

pExtList ->put_Enabled(VARIANT_FALSE);

VARIANT va;
VariantInit (&va);
va.vt = VT_BSTR;
va.bstrVal = SysAllocString(L"DirectoryA");
pExtList->get_Item(va,&pList);
pList ->Add(L"C:\\Windows",100,L"Windows", VARIANT_TRUE);
pList ->Add(L"C:\\Temp",200,L"Temp", VARIANT_TRUE);

pExtList->put_Enabled(VARIANT_TRUE);

Properties, Methods, and Events

352 IBM SDK for Windows

Item (VVPhraseCollGroup)
Returns an external list from the Phrase Collection Group (IVVPhraseCollGroup) Object.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
Key

VARIANT. The item identifier. This parameter can be numeric - indicating the ordinal position of
the item within the collection, or a string - indicating the text of the item.

Return Values
VVPhraseColl

The Phrase Collection object that contains the requested external list.

Remarks
The external list object is an instance of the Phrase Collection (IVVPhraseColl) Object. The
VVPhraseColl Object is explained in detail on page 345.

[VVPhraseColl] = [VVCFGram.ExternList].Item(ByVal Key As VARIANT)

CVVPhraseColl = [CVVPhraseCollGroup].GetItem(VARIANT Key)

HRESULT IVVPhraseCollGroup::get_Item(VARIANT Key, IVVPhraseCol
**pRetval)

IBM SDK for Windows 353

VVPhraseCollGroup Object

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

Call
VVCFGram1.ExternList.Item(“Directory1”).Add(“C:\Temp”, 100,“Temp”, True)
Or
VVCFGram1.ExternList(“Directory1”).Add(“C:\Temp”, 100, “Temp”, True)

VARIANT va;
VariantInit (&va);
va.bstrVal = SysAllocString(L“Directory1”);
va.vt = VT_BSTR

m_VVCFGram1.GetExternList().GetItem(va).Add(L“C:\Temp”, 100, L“Temp”,
TRUE);

IVVPhraseCollGroup *pExtLists;
pVVCFGram->get_ExtLists(&pExtLists);

IVVPhraseColl *pList;

VARIANT va;
VariantInit (&va);
va.vt = VT_BSTR;
va.bstrVal = SysAllocString(L"DirectoryA");
pExtList->get_Item(va,&pList);

Properties, Methods, and Events

354 IBM SDK for Windows

VVPhraseCollGroup Object Methods
The VVPhraseCollGroup (IVVPhraseCollGroup) Object supports the following methods:

• Exists

IBM SDK for Windows 355

VVPhraseCollGroup Object

Exists (VVPhraseCollGroup)
Use this method to find out if a certain external list is part of the external list VVPhraseCollGroup
Object.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
Key

VARIANT. The item identifier. This parameter can be numeric – indicating the ordinal position of
the item within the group, or a string – indicating the name of the item.

Returns
VARIANT_Bool

True if the external list exists in the group; False if it does not.

Remarks
The Exists function does not look at the grammar file to see if the grammar contains a certain external
list declaration. The purpose of this function is to find out if a certain external list has been added to the
Phrase Collection group.

[Boolean] = [VVCFGram.ExternList].Exists(ByVal Key As VARIANT)

VARIANT_BOOL = [CVVCFPhraseCollGroup].Exists(VARIANT Key)

HRESULT [pIVVPhraseCollGroup]->Exists (VARIANT Key, VARIANT_BOOL
*bExists)

Properties, Methods, and Events

356 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

If VVCFGram1.ExternLists.Exists ("Animals") Then
With VVCFGram1.ExternLists ("Animals")
:Add "Horse", 100, "Horse", True
:Add "Cat", 100, "Cat", True

End With
End If

VARIANT Va:
va.vt=VT_BSTR;
va.bstrVal=SysAllocString (L"Animals");
if (m_vVVCFGram1.GetExternLists().Exists(va)==TRUE)
{
CVVPhraseColl PhraseColl=m_VVCFGram1.GetExternLists().GetItem(va);
PhraseColl.Add(SysAllocString(L"Horse"), 100, SysAllocString

(L"Horse), TRUE);
PhraseColl.Add(SysAllocString(L"Cat"), 100, SysAllocString (L"Cat"),

TRUE);
}

IBM SDK for Windows 357

VVPhraseCollGroup Object

In Visual C++:

See Also
None.

VARIANT va;
va.vt=VT_BSTR;
va.bstrVal=SysAllocString (L"Animals");
IVVPhraseCollGroup *pIVVCollGroup=NULL;
pVVCFGram->get_ExternLists(&pIVVCollGroup);
VARIANT_BOOL bExists;
pIVVCollGroup->get_Exists(va,&bExists)
if (bExists==VARIANT_TRUE)
{
IVVPhraseColl *pIVVPhraseColl;
pIVVCollGroup->get_Item(va,&pIVVPhraseColl);
pIVVPhraseColl->Add (SysAllocString(L"Horse"), 100, SysAllocString

(L"Horse) VARIANT_TRUE);
pIVVPhraseColl->Add (SysAllocString(L"Cat"), 100, SysAllocString

(L"Cat"), VARIANT_TRUE);
}

Properties, Methods, and Events

358 IBM SDK for Windows

IBM SDK for Windows 359

Chapter 16 Grammar Control Frequently
Asked Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice Grammar
Control.

How do I create a compiled grammar file from a text-based grammar specification?

The IBM ViaVoice SDK allows you to compile a BNF grammar script into a grammar archive file.
Archive files have the extension “SAR”. The command-line executable VTSAPIC.EXE, located
in the ViaVoice SDK\Tools directory, creates SAR files. These can then be assigned to the
GrammarSource property of the VVCFGram control.

Where can I find more information about grammar file syntax?

The BNF grammar syntax, which the VTSAPIC utility compiles into binary SAR files, is
documented in the SMAPI Developer’s Guide, Part 2: SMAPI Grammars.

What kinds of grammars are supported?

The BNF grammar syntax, which generates native IBM engine SAPI archive grammar files (SAR
files), is supported. Additionally GRM files, which can be compiled using the Microsoft Speech
SDK, are assignable to the GrammarSource property of the VVGrammar control.

What is the purpose of annotations?

Annotations allow you to associate a phrase with data that is meaningful to your program. For
instance, in a grammar file you could link the word “red” with an RGB string “255,0,0”. Then
when the word “red” was recognized, you could retrieve this annotation and set the window color
to the RGB value instead of having to translate “red” into its other representation through
application code.

Grammar Control Frequently Asked Questions

360 IBM SDK for Windows

IBM SDK for Windows 361

Chapter 17 Introduction to the Lite Controls

When you install the IBM ViaVoice SDK, the setup program installs a set of Lite controls in addition
to the full-featured versions. The Lite controls are scaled-down versions of the full-featured controls.
The ViaVoice Lite controls include Dictation Lite (VVDictLite), Grammar Lite
(VVGrammarLite), and Phrases Lite (VVPhrasesLite) controls. The purpose of these controls is to
provide you with a set of small, simple controls that have few dependencies and can be used in Web
pages. The following sections explain how to use the ViaVoice Lite controls in HTML pages.

Note:
Although this document focuses on how to use the controls in HTML pages with Visual InterDev
1.0, the ViaVoice Lite controls can be used in Visual Basic, Visual C++ (with and without MFC),
Delphi, Borland C++ Builder, and Visual J++ as well.

Introduction to the Lite Controls

362 IBM SDK for Windows

IBM SDK for Windows 363

Chapter 18 Getting Started with the Lite
Controls

The following are tutorials on how to incorporate the VVDictLite, VVGrammarLite, and
VVPhrasesLite controls into your HTML page using the Visual InterDev application. These tutorials
are designed to present you with the most commonly used properties, methods, and events in these
Lite controls.

VVDictLite Control
The ViaVoice Dictation Lite (VVDictLite) control is an ActiveX control that enables you to capture
dictated speech from users. VVDictLite is invisible at run time. When a program creates an instance of
the VVDictLite control at run time, the control searches the client’s machine for a speech engine
capable of receiving dictation. If the control does not find an engine with this capability, then it simply
becomes inactive. This means that you can feel confident that your program will not crash in the
absence of a speech engine. If a speech engine is present and the control’s Enabled property is set to
True, then the control listens to the user. Whenever the user speaks, the VVDictLite control fires the
PhraseRecognized event for each word that it recognizes.

Using the Control
This section contains step-by-step instructions for using Visual InterDev when adding this control in
an HTML page.

In Visual InterDev:
To use the VVDictLite control, do the following:

1. Open the HTML page in which you wish to insert the ActiveX control.

2. From the Insert menu, choose Into HTML then choose ActiveX Control… menu item. You will
see the ‘Insert ActiveX Control’ dialog box as shown in Figure 25.

Getting Started with the Lite Controls

364 IBM SDK for Windows

Figure 25. Insert ActiveX Control Dialog Box - VVDictLite

IBM SDK for Windows 365

VVDictLite Control

3. Select IBM ViaVoice Dictation Lite Control from the list and click OK. You will see the ‘Proper-
ties’ dialog box with a ‘Control Designer Form’ as shown in Figure 26.

Figure 26. Control Designer Form - VVDictLite

When you are done customizing the control properties, close the control designer window. Visual
InterDev will insert the following code to your page:

This is all that is necessary to begin capturing dictation from your users. Each time the control
recognizes a dictated word it will fire the PhraseRecognized event. To enter code for this event, do the
following:

1. Choose Script Wizard from the View menu. You will see the ‘Script Wizard’ dialog box shown in
Figure 27.

<OBJECT ID="VVDictLite1" WIDTH=40 HEIGHT=40
 CLASSID="CLSID:5AF3ED20-6A8E-11D2-A42E-002035215001">
<PARAM NAME="Enabled" VALUE="1">

</OBJECT>

Getting Started with the Lite Controls

366 IBM SDK for Windows

Figure 27. Script Wizard Dialog Box - VVDictLite

2. Open the VVDictLite1 branch to display the events for the VVDictLite control, and click on the
PhraseRecognized event. For details on the PhraseRecognized event, see page 385. Then, enter
code to handle this event. For example, to display a message box with the word that was recognized
enter the following statement: MsgBox Word.

3. Click OK when done.

IBM SDK for Windows 367

VVDictLite Control

Visual InterDev will enter the following code into your HTML page:

To test the control, first save the HTML page, then right mouse click on the editor window and choose
the "Preview (DocumentName)…" from the popup menu. You should be able to dictate into your page
and each word the control recognizes will be displayed in a message box.

<SCRIPT LANGUAGE="VBScript">
<!--
Sub VVDictLite1_PhraseRecognized(Word, RawWord, Flags)
MsgBox Word
end sub
-->
 </SCRIPT>

Getting Started with the Lite Controls

368 IBM SDK for Windows

VVGrammarLite Control
The ViaVoice Grammar Lite (VVGrammarLite) control is an ActiveX control that can recognize
complex commands based on a SAPI 4.0 context-free grammar. First you supply the
VVGrammarLite control with a string representing a grammar definition. The control compiles this
grammar in memory, and listens to the user’s speech. When the user speaks one of the phrases defined
in the grammar, it fires the PhraseRecognized event. Like the VVDictLite control and the
VVPhrasesLite control, when a program creates an instance of the VVGrammarLite control at run
time, the control searches the client’s machine for a speech engine capable of performing context-free
command recognition. If the control does not find an engine with this capability, then it simply
becomes inactive.

Using the Control
This section contains step-by-step instructions for using Visual InterDev when adding this control in
an HTML page.

In Visual InterDev:
To use the VVGrammarLite control, do the following:

1. Open the HTML page in which you wish to insert the ActiveX control.

IBM SDK for Windows 369

VVGrammarLite Control

2. From the Insert menu, choose Into HTML then choose ActiveX Control… menu item. You will
see the ‘Insert ActiveX Control’ dialog box as shown in Figure 28.

Figure 28. Insert ActiveX Control Dialog Box - VVGramLite

Getting Started with the Lite Controls

370 IBM SDK for Windows

3. Select IBM ViaVoice Grammar Lite Control from the list and click OK. You will see the ‘Prop-
erties’ dialog box with a ‘Control Designer Form’ as shown in Figure 29.

Figure 29. Control Designer Form - VVGramLite

 When you are done customizing the control properties, close the control designer window. Visual
InterDev will insert the following code to your page:

<OBJECT ID="VVGrammarLite1" WIDTH=40 HEIGHT=40
 CLASSID="CLSID:5AF3ED27-6A8E-11D2-A42E-002035215001">
<PARAM NAME="Enabled" VALUE="1">
<PARAM NAME="GrammarSource" VALUE="">
</OBJECT>

IBM SDK for Windows 371

VVGrammarLite Control

The first step in using the control is to provide the control with a SAPI 4.0 grammar. To do this simply
set the control’s grammar source property to the grammar text, as shown below:

When the user speaks one of the commands in the grammar, the control will fire the
SpeechRecognized event. To write code to handle this event, do the following.

1. Choose Script Wizard from the View menu. You will see the ‘Script Wizard’ dialog box shown in
Figure 30.

<SCRIPT LANGUAGE="VBScript">
<!--
Sub window_onload
sGrammar = "[<Start>]" & Chr(13) & Chr(10)
sGrammar = sGrammar & "<Start>=This is a test"
VVGrammarLite1.GrammarSource = sGrammar
End Sub
-->
</SCRIPT>

Getting Started with the Lite Controls

372 IBM SDK for Windows

Figure 30. Script Wizard Dialog Box - VVGrammarLite

2. Open the VVGrammarLite1 branch to display the events for the VVGrammarLite control, and
click on the PhraseRecognized event. For details on the PhraseRecognized event, see page 395.
Then enter code to handle this event. For example, enter the following statement: MsgBox "The
user has issued the following command:" & Phrase

3. Click OK when done.

IBM SDK for Windows 373

VVGrammarLite Control

Visual InterDev will enter the following code into your HTML page:

To test the control first save the HTML page, then right mouse click on the editor window and choose
the Preview X… from the popup menu. You should be able to speak any of the phrases defined in the
grammar, and your page should respond with a message box displaying the phrase recognized.

<SCRIPT LANGUAGE="VBScript">
<!--
Sub VVGrammarLite1_PhraseRecognized(Phrase)
MsgBox "The user has issued the following command:" & Phrase
end sub-->
</SCRIPT>

Getting Started with the Lite Controls

374 IBM SDK for Windows

VVPhrasesLite Control
The ViaVoice Phrases Lite (VVPhrasesLite) control is an ActiveX control that enables you to create
a list of phrases for the control to monitor. When the user speaks one of the phrases in the list, the
VVPhrasesLite control fires the PhraseRecognized event. Like the VVDictLite control, when a
program creates an instance of the VVPhrasesLite control at run time, the control searches the client’s
machine for a speech engine capable of performing command recognition. If the control does not find
an engine with this capability, then it simply becomes inactive. Normally this control is used to
navigate through a page and to execute simple commands.

Using the Control
This section contains step-by-step instructions for using Visual InterDev when adding this control in
an HTML page.

In Visual InterDev:

To use the VVPhrasesLite control, do the following:

1. Open the HTML page in which you wish to insert the ActiveX control.

IBM SDK for Windows 375

VVPhrasesLite Control

2. From the Insert menu, choose Into HTML then choose ActiveX Control… menu item. You will
see the ‘Insert ActiveX Control’ dialog box as shown in Figure 31.

Figure 31. Insert ActiveX Control Dialog Box - VVPhrasesLite

Getting Started with the Lite Controls

376 IBM SDK for Windows

3. Select IBM ViaVoice Phrases Lite Control from the list and click OK. You will see the ‘Proper-
ties’ dialog box with a ‘Control Designer Form’ as shown in Figure 32.

Figure 32. Control Designer Form - VVPhrasesLite

When you are done customizing the control properties, close the control designer window. Visual
InterDev will insert the following code to your page:

<OBJECT ID="VVPhrasesLite1" WIDTH=40 HEIGHT=40
 CLASSID="CLSID:5AF3ED25-6A8E-11D2-A42E-002035215001">
<PARAM NAME="Enabled" VALUE="1">

</OBJECT>

IBM SDK for Windows 377

VVPhrasesLite Control

The first step in using the control is to create a list of phrases that the control will understand. To create
the list of phrases use the AddPhrase method. A good place to create this list is in the window_onload
event. For example, add the following code to your HTML page:

Each time the control recognizes one of the phrases in the list it will fire the PhraseRecognized event.
To enter code for this event, do the following:

1. Choose Script Wizard from the View menu. You will see the ‘Script Wizard’ dialog box shown in
Figure 33.

<SCRIPT LANGUAGE="VBScript">
<!--
Sub window_onload
Call VVPhrasesLite1.AddPhrase("Add Address",110)
Call VVPhrasesLite1.AddPhrase("Save Address",100)

End Sub
-->
</SCRIPT>

Getting Started with the Lite Controls

378 IBM SDK for Windows

Figure 33. Script Wizard Dialog Box - VVPhrasesLite

2. Open the VVPhrasesLite1 branch to display the events for the VVPhrasesLite control, and click on
the PhraseRecognized event. For details on the PhraseRecognized event, see page page 408.
Then enter code to handle this event. For example, enter the following statement: MsgBox "The
user has issued the following command:" & Phrase

3. Click OK when done.

IBM SDK for Windows 379

VVPhrasesLite Control

Visual InterDev will enter the following code into your HTML page:

To test the control, first save the HTML page, then right mouse click on the editor window and choose
the Preview (DocumentName)… from the popup menu. You should be able to speak any of the
phrases in the list, and your page should respond with a message box displaying the phrase recognized.

<SCRIPT LANGUAGE="VBScript">
<!--
Sub VVPhrasesLite1_PhraseRecognized(Phrase, ID)
MsgBox "The user has issued the following command:" & Phrase

end sub-->
</SCRIPT>

Getting Started with the Lite Controls

380 IBM SDK for Windows

Summary
At this point, you should know how to do the following:

• How to add the VVDictLite control into an HTML page.

• How to add the VVGrammarLite control into an HTML page.

• How to add the VVPhrasesLite control into an HTML page.

The remainder of this documentation contains a reference for all the properties, methods, and events
for the Lite controls.

IBM SDK for Windows 381

Chapter 19 Properties, Methods, and Events

The following sections describe the properties, methods, and events for the VVDictLite Control,
VVGrammarLite Control, and VVPhrasesLite Control.

VVDictLite Control Properties
The VVDictLite Control supports the following properties:

• Enabled

• Indexa

• Namea

• Objecta

• Parenta

• Taga

a. Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

Properties, Methods, and Events

382 IBM SDK for Windows

Enabled (VVDictLite)
Determines whether the VVDictLite control is listening or not.

Syntax

In Visual InterDev:

Parameters
??

Return Values
TRUE

The control is enabled and captures dictation speech.

FALSE
The control is disabled and does nothing.

Remarks
The Enabled property also reports if the VVDictLite control found a speech engine in the client’s
machine. When the control is first created at run time, it searches the client’s machine for a suitable
speech engine. If the control does not find a speech engine, then it automatically sets the Enabled
property to False.

[VVDictLite].Enabled = [Boolean]

IBM SDK for Windows 383

VVDictLite Control Properties

Example

In Visual InterDev:

See Also
None.

<SCRIPT LANGUAGE="VBScript">
<!--
Sub btnTurnOffDictation_Click()
’This line stops dictation
VVDictLite1.Enabled=False

End Sub
-->
</SCRIPT>

Properties, Methods, and Events

384 IBM SDK for Windows

VVDictLite Control Methods
There are no methods for this control.

VVDictLite Control Events
The VVDictLite Control supports the following events:

• PhraseRecognized

• VUMeter

IBM SDK for Windows 385

VVDictLite Control Events

PhraseRecognized (VVDictLite)
Event fired by the VVDictLite control when it recognizes speech from the user.

Syntax

In Visual InterDev:

Parameters
Word

The word that the user spoke. There are certain words, however, that the engine formats before
firing this event. For example, if the user says, "NEW-LINE". the word parameter will be the
Carriage Return and the Line Feed characters. These phrases are called macros. In this version, the
VVDictLite only supports the "NEW-LINE" and "NEW-PARAGRAPH" macros.

RawWord
RawWord is the unformatted word. If the user says, "NEW-LINE", the Word parameter will
contain the reformatted text. However, the RawWord parameter will contain the words "NEW-
LINE."

Flags
This parameter is available for future enhancements.

Return Values
??

Remarks
None.

PhraseRecognized (ByVal Word As String, ByVal RawWord As String, ByVal
Flags As Long)

Properties, Methods, and Events

386 IBM SDK for Windows

Example

In Visual InterDev:

See Also
None.

<SCRIPT LANGUAGE="VBScript">
<!--
Sub btnTurnOffDictation_Click()
’This line stops dictation
VVDictLite1.Enabled=False

End Sub
-->
</SCRIPT>

IBM SDK for Windows 387

VVDictLite Control Events

VUMeter (VVDictLite)
Event fired by the VVDictLite control when it detects a change in volume.

Syntax

In Visual InterDev:

Parameters
Level

The audio level as a percentage, where 0 is silence, and 100 is the loudest volume the engine can
support.

Return Values
??

Remarks
The VUMeter event returns the audio level as a percentage where 0 is silence, and 100 is the loudest
volume the engine can support. Use this event to give your users indication that the control is in fact
listening to their speech

VUMeter(ByVal Level As Long)

Properties, Methods, and Events

388 IBM SDK for Windows

Example

In Visual InterDev:

See Also
None.

<SCRIPT LANGUAGE = "VBScript">
<! --
Sub VVDictLite_VUMeter (ByVal Level As Long)
If Level < 10 Then
MsgBox "Please speak louder", VBOK , "Speaking too softly"

End If
End Sub
-- >
</SCRIPT>

IBM SDK for Windows 389

VVGrammarLite Control Properties

VVGrammarLite Control Properties
The VVGrammarLite Control supports the following properties:

• Enabled

• GrammarSource

• Indexa

• Namea

• Objecta

• Parenta

• Taga

a. Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

Properties, Methods, and Events

390 IBM SDK for Windows

Enabled (VVGrammarLite)
Determines whether the VVGrammarLite control is listening or not.

Syntax

In Visual InterDev:

Parameters
??

Return Values
TRUE

The VVGrammarLite control is Enabled and captures dictation speech.

FALSE
The control is disabled and does nothing.

Remarks
The Enabled property also reports if the VVGrammarLite control found a speech engine in the
client’s machine. When the control is first created at run time, it searches the client’s machine for a
suitable speech engine. If the control does not find a speech engine, then it automatically sets the
Enabled property to False.

[VVGrammarLite].Enabled = [Boolean]

IBM SDK for Windows 391

VVGrammarLite Control Properties

Example

In Visual InterDev:

See Also
None.

<SCRIPT LANGUAGE="VBScript">
<!--
Sub btnTurnOffCommand_Click()
’This line stops command recognition
VVGrammarLite1.Enabled=False

End Sub
-->
</SCRIPT>

Properties, Methods, and Events

392 IBM SDK for Windows

GrammarSource (VVGrammarLite)
Enables you to specify the grammar for the VVGrammarLite control.

Syntax

In Visual InterDev:

Parameters
??

Return Values
??

Remarks
None.

[VVGrammarLite].GrammarSource = [String]

IBM SDK for Windows 393

VVGrammarLite Control Properties

Example

In Visual InterDev:

See Also
None.

<SCRIPT LANGUAGE="VBScript">
<!--
Sub window_onload
sGrammar = "[<Start>]" & Chr(13) & Chr(10)
sGrammar = sGrammar & "<Start>=This is a test"
VVGrammarLite1.GrammarSource = sGrammar

End Sub
-->
</SCRIPT>

Properties, Methods, and Events

394 IBM SDK for Windows

VVGrammarLite Control Methods
There are no methods for this control.

VVGrammarLite Control Events
The VVGrammarLite Control supports the following events:

• PhraseRecognized

• VUMeter

IBM SDK for Windows 395

VVGrammarLite Control Events

PhraseRecognized (VVGrammarLite)
event fired by the VVGrammarLite control when the user speaks one of the phrases defined in the
control’s grammar.

Syntax

In Visual InterDev:

Parameters
Phrase

The phrase that the control recognized.

Return Values
??

Remarks
You can provide the grammar control with a SAPI 4.0 grammar source. The control automatically
compiles the grammar at run time.

PhraseRecognized(ByVal Phrase As String)

Properties, Methods, and Events

396 IBM SDK for Windows

Example

In Visual InterDev:

See Also
None.

<SCRIPT LANGUAGE="VBScript">
<!--
Sub VVGrammarLite1_PhraseRecognized(Phrase)
MsgBox "The user has issued the following command:" & Phrase

End Sub
-->
</SCRIPT>

IBM SDK for Windows 397

VVGrammarLite Control Events

VUMeter (VVGrammarLite)
Event fired by the VVGrammarLite control when it detects a change in volume.

Syntax

In Visual InterDev:

Parameters
Level

The audio level as a percentage, where 0 is silence, and 100 is the loudest volume the engine can
support.

Return Values
??

Remarks
The VUMeter event returns the audio level as a percentage where 0 is silence, and 100 is the loudest
volume the engine can support. Use this event to give your users indication that the control is in fact
listening to their speech.

VUMeter(ByVal Level As Long)

Properties, Methods, and Events

398 IBM SDK for Windows

Example

In Visual InterDev:

See Also
None.

<SCRIPT LANGUAGE = "VBScript">
<! --
Sub VVGrammarLite_VUMeter (ByVal Level As Long)
If Level < 10 Then
MsgBox "Please speak louder", VBOK , "Speaking too softly"

End If
End Sub
-->
</SCRIPT>

IBM SDK for Windows 399

VVPhrasesLite Control Properties

VVPhrasesLite Control Properties
The VVPhrasesLite Control supports the following properties:

• Enabled

• Indexa

• Namea

• Objecta

• Parenta

• Taga

a. Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

Properties, Methods, and Events

400 IBM SDK for Windows

Enabled (VVPhrasesLite)
Determines whether the VVPhrasesLite control is listening or not.

Syntax

In Visual InterDev:

Parameters
??

Return Values
TRUE

The VVPhrasesLite control is Enabled and listens for commands

FALSE
The control is disabled and does nothing.

Remarks
The Enabled property also reports if the VVDictLite control found a speech engine in the client’s
machine. When the control is first created at run time, it searches the client’s machine for a suitable
speech engine. If the control does not find a speech engine, then it automatically sets the Enabled
property to False.

[VVPhrasesLite].Enabled = [Boolean]

IBM SDK for Windows 401

VVPhrasesLite Control Properties

Example

In Visual InterDev:

See Also
None.

<SCRIPT LANGUAGE="VBScript">
<!--
Sub btnTurnOffCommand_Click()
’This line stops command recognition
VVDictLite1.Enabled=False

End Sub
-->
</SCRIPT>

Properties, Methods, and Events

402 IBM SDK for Windows

VVPhrasesLite Control Methods
The VVPhrasesLite Control supports the following methods:

• AddPhrase

• RemoveAll

IBM SDK for Windows 403

VVPhrasesLite Control Methods

AddPhrase (VVPhrasesLite)
This method enables you to add phrases to the list of phrases that the VVPhrasesLite control will
recognize.

Syntax

In Visual InterDev:

Parameters
Phrase

The phrase that the control will recognize.

ID
A user assigned numeric identifier for the phrase. This number does not have to be unique. You
can use this number to associate phrases with the same meaning.

Return Values
??

Remarks
You can add multiple phrases with the same meaning and assign them all the same ID number. Then in
the SpeechRecognized event take the same action for all of the phrases that have the same ID number.

AddPhrase(ByVal Phrase As String, ByVal ID As Long)

Properties, Methods, and Events

404 IBM SDK for Windows

Example

In Visual InterDev:

See Also
None.

<SCRIPT LANGUAGE="VBScript">
<!--
Sub window_onload
 Call VVPhrasesLite1.AddPhrase("Add Address",110)
 Call VVPhrasesLite1.AddPhrase("Save Address",100)

End Sub
-->
</SCRIPT>

IBM SDK for Windows 405

VVPhrasesLite Control Methods

RemoveAll (VVPhrasesLite)
Removes all the phrases from the control’s list of phrases.

Syntax

In Visual InterDev:

Parameters
None.

Return Values
??

Remarks
None.

RemoveAll()

Properties, Methods, and Events

406 IBM SDK for Windows

Example

In Visual InterDev:

See Also
None.

<SCRIPT LANGUAGE="VBScript">
<!--
Sub btnCancel_Click()
Call VVPhrasesLite1.RemoveAll()
Call VVPhrasesLite1.AddPhrase("Yes",110)

Call VVPhrasesLite1.AddPhrase("No",100)
rc = MsgBox("Are you sure you want to cancel this
order?","Cancel?",VBYesNo)

End Sub
-->
</SCRIPT>

IBM SDK for Windows 407

VVPhrasesLite Control Events

VVPhrasesLite Control Events
The VVGrammarLite Control supports the following events:

• PhraseRecognized

• VUMeter

Properties, Methods, and Events

408 IBM SDK for Windows

PhraseRecognized (VVPhrasesLite)
The VVPhrasesLite control fires this event when the user speaks one of the phrases in the control’s
phrase list. You build the list by calling the AddPhrase method.

Syntax

In Visual InterDev:

Parameters
Phrase

The phrase that the control recognized.

ID
A user assigned numeric identifier for the phrase. This number does not have to be unique. You
can use this number to associate phrases with the same meaning.

Return Values
??

Remarks
None.

PhraseRecognized(ByVal Phrase As String, ByVal ID As Long)

IBM SDK for Windows 409

VVPhrasesLite Control Events

Example

In Visual InterDev:

See Also
None.

<SCRIPT LANGUAGE = "VBScript">
<! --
Sub VVPhraseRecognized (ByVal Phrase As String, ByVal ID As Long)
If ID = 100 Then
MsgBox "Are you sure you want to exit", VBYESNO, "Exit Program"

End If
End Sub
-->
</SCRIPT>

Properties, Methods, and Events

410 IBM SDK for Windows

VUMeter (VVPhrasesLite)
Event fired when the VVPhrasesLite control detects a change in volume.

Syntax

In Visual InterDev:

Parameters
Level

The audio level as a percentage, where 0 is silence, and 100 is the loudest volume the engine can
support.

Return Values
??

Remarks
The VUMeter event returns the audio level as a percentage where 0 is silence, and 100 is the loudest
volume the engine can support. Use this event to give your users indication that the control is in fact
listening to their speech.

VUMeter(ByVal Level As Long)

IBM SDK for Windows 411

VVPhrasesLite Control Events

Example

In Visual InterDev:

See Also
None.

<SCRIPT LANGUAGE = "VBScript">
<! --
Sub VVPhrasesLite_VUMeter (ByVal Level As Long)
If Level < 10 Then
MsgBox "Please speak louder", VBOK , "Speaking too softly"

End If
End Sub
-->
</SCRIPT>

Properties, Methods, and Events

412 IBM SDK for Windows

IBM SDK for Windows 413

Chapter 20 Lite Controls Frequently Asked
Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice Lite controls.

How can I choose which speech engine the Lite Controls connect to?

Currently there is no way to specify the properties of the engine you wish to connect to. This
functionality is available only in the full-featured controls. More information is available in the
next question.

Will the Lite controls work with the other speech engines?

Yes. The Lite controls try to find the IBM ViaVoice speech engine first. If the this engine is not
present, then the Lite controls will use the first suitable speech engine in the system.

If I put the Lite controls in an HTML page and someone without a speech engine wants to view
the page, will they be able to?

Yes. If the Lite controls cannot find a speech engine, then they simply become inactive. The only
requirement is that the client is using a browser that supports ActiveX technology.

How do I know if the Lite controls found a speech engine and are active?

All of the Lite controls have an Enabled property. This property allows you to activate and
deactivate the Lite controls. However, it also notifies you if the Lite controls were successful in
connecting to a speech engine. If the Lite controls were not able to find a speech engine, then they
reset this property to False. So, a good way to test if there is a speech engine in the system is to set
Enabled to True, then test the value. If it remains True, then there is a speech engine, but if it is
False, then they system has no suitable speech engine.

Can I combine the Lite controls and the full-featured versions in the same application?

Yes. The Lite controls can be present in the same application as the full-featured versions.
However, you cannot use the Lite controls to replace the full-featured versions whenever a full-
featured version is expected. For example, you cannot use the VVPhrasesLite control to provide
the full-featured VVCFGram control with an external list. The full-featured controls can only use
other full-featured controls.

Lite Controls Frequently Asked Questions

414 IBM SDK for Windows

IBM SDK for Windows 415

Chapter 21 Introduction to the ECWin Control

The ViaVoice Error Correction Window Control (VVECWin) is an ActiveX control that enables
developers to utilize a common error correction dialog similar to that provided with the ViaVoice
product. It provides a common, familiar user interface that users will quickly and easily become
accustomed to, enabling them to correct speech recognition errors and text formatting issues, which
helps the speech recognition engine to enhance and improve its speech recognition ability. The Error
Correction Window control is also capable of understanding voice commands, which will enable the
user to navigate through the contents of the Error Correction Window control’s window with ease.

Developers will find that the Error Correction Window Control is easy to use and provides
functionality that would otherwise be cumbersome and difficult to implement. The Error Correction
Window control does not actually correct speech recognition errors. Instead, it provides a dialog that
the programmer initializes and the user interacts with in order to identify the correction. The Error
Correction Window informs the application through events what action the user has requested, and it
is up to the application to actually perform those services.

Introduction to the ECWin Control

416 IBM SDK for Windows

IBM SDK for Windows 417

Chapter 22 Getting Started with the ECWin
Control

The following is a tutorial on how to incorporate the VVECWin control into your Visual Basic or
Visual C++ applications. This tutorial is designed to present you with the most commonly used
properties and events in the VVECWin control.

Creating an Instance of the Control

In Visual Basic:
To add the VVECWin control to your application, do the following:

1. From the Project menu, choose Components.
The Components dialog box, Figure 34, appears. The Components dialog lists all the ActiveX
Controls that you can use in your application.

Getting Started with the ECWin Control

418 IBM SDK for Windows

Figure 34. Component Selection Dialog - Visual Basic

2. Select IBM ViaVoice Error Correction Control from the list and choose OK.
Visual Basic adds the control to your project, and adds a new icon to the toolbar (Figure 35).

IBM SDK for Windows 419

Creating an Instance of the Control

Figure 35. VVECWin Control Toolbar Icon

3. Add an instance of the VVECWin control to your form.
The VVECWin control is an invisible control at run time.

In Visual C++ (MFC):
To add the VVECWin control to your MFC project, do the following:

1. From the Project menu, select Add To Project, then select Components and Controls.
The Components and Controls Gallery dialog box, Figure 36, appears.

Getting Started with the ECWin Control

420 IBM SDK for Windows

Figure 36. Insert ActiveX Control Dialog Box - Visual C++

2. Double-click the Registered ActiveX Controls folder in the dialog box.

3. Select the IBM ViaVoice Error Correction Control icon in the list of controls, then click Insert.
A confirmation message box appears, asking “Insert this component?”

4. Respond to the confirmation message box by choosing OK.

IBM SDK for Windows 421

Creating an Instance of the Control

The Confirm Classes dialog box, Figure 37, appears listing the components in the VVECWin
control:

Figure 37. Confirm Classes Dialog Box

5. Click OK in the Confirm Classes dialog box.

6. Close the “Components and Controls Gallery” dialog box.
If you examine the Project Workspace window in the class view you will notice 2 new classes:
CVVECWin and CVVEngine (assuming you accepted the default names for the class in the
Confirm Classes dialog box).

Getting Started with the ECWin Control

422 IBM SDK for Windows

7. In the resource view of your Project Workspace window double-click the dialog resource entry
where you wish to insert the VVECWin control.
The VVECWin icon, Figure 38, appears in the Controls toolbar.

Figure 38. VVECWin Icon in the Controls Toolbar

8. Add an instance of the VVECWin control to the dialog box.
After you add the VVECWin control to your dialog you can invoke Class Wizard to create a
member variable for your class of type CVVECWin. You might also decide to capture the events
in the control by adding Event handlers to your dialog class. To add Event handlers, click the
VVECWin control with the right mouse button, then select Events from the pop-up menu.

IBM SDK for Windows 423

Initializing the Error Correction Window Control

Initializing the Error Correction Window
Control
The first step in using the Error Correction Window control is to initialize it. Typically an
application will follow these steps in order to initialize the control and display the Error Correction
Window.

1. · Initialize the control

2. · Set the text to be corrected

3. · Add alternate pronunciations from which the user can select

4. · Add custom menu items

5. · Display the window

To initialize the control, simply call the Init method giving the window handle of the parent window.

In Visual Basic:

In Visual C++ (MFC):

The next step is to set the text to be corrected. Typically this is the text returned from the speech
recognition engine which was incorrectly recognized, or text that has incorrect punctuation,
capitalization, etc. The CorrectText string will be displayed in the Error Correction Window’s edit
field. Set the CorrectText property as follows:

VVECWin.Init hWnd

CVVECWin.Init((long)m_hWnd);

Getting Started with the ECWin Control

424 IBM SDK for Windows

In Visual Basic:

In Visual C++ (MFC):

The next step is to add alternate pronunciation strings to the alternates listbox. This listbox is used to
show a list of alternate words that the speech engine recognizes that are close in pronunciation to the
word the user dictated. The user can use their mouse or voice commands to select one of these
alternates, or they can type their selection in the edit field.

The first parameter is the text spelling of the alternate word, which is displayed in the listbox and will
be returned to the application in the WordSelected event if the user selects that alternate. The second
parameter is an optional "Sounds Like" word, which is not displayed but will also be returned to the
application in the WordSelected event. The last parameter determines if the window is to be repainted
after adding the word, and should typically be FALSE on all additions except the last one. Alternates
are shown in the listbox with a one-based index value to the left of the alternate spelling.

In Visual Basic:

In Visual C++ (MFC):

The next step is to optionally add custom menu items and event IDs. By default the "Format" menu
button is not displayed, but will appear if one or more menu items have been added. Use a custom
menu for special formatting options such as capitalization and punctuation. The AddMenuItem
method takes two parameters, the text string to appear on the menu and a menu ID that will be passed
back to the application in the MenuSelected event. Your menu ID should be unique values that your
event handler will use to identify the menu item selected.

VVECWin.CorrectText = "bask"

CVVECWin.SetCorrectText("bask");

VVECWin.AddAlternate "task", "", False
VVECWin.AddAlternate "past", "", False
VVECWin.AddAlternate "ask", "", True

CVVECWin.AddAlternate("task", "", FALSE);
CVVECWin.AddAlternate("past", "", FALSE);
CVVECWin.AddAlternate("ask", "", TRUE);

IBM SDK for Windows 425

Initializing the Error Correction Window Control

In Visual Basic:

In Visual C++ (MFC):

Finally, to make the window visible, you will call the Show method as follows. The only parameter is
a boolean that controls whether or not the window should receive input focus when displayed.

In Visual Basic:

In Visual C++ (MFC):

VVECWin.AddMenuItem "&Capitalize", 100
VVECWin.AddMenuItem "&Lowercase", 200
VVECWin.AddMenuItem "&Uppercase", 300

CVVECWin.AddMenuItem("&Capitalize", 100);
CVVECWin.AddMenuItem("&Lowercase", 200);
CVVECWin.AddMenuItem("&Uppercase", 300);

VVECWin.Show True

CVVECWin.Show(TRUE);

Getting Started with the ECWin Control

426 IBM SDK for Windows

Handling Error Correction Window Control
Events
The Error Correction Window control can fire the following events to the calling application.

• ButtonSelected

• Close

• ContextHelpRequest

• FocusChange

• MenuSelected

• WordSelected

ButtonSelected
The ButtonSelected event is fired when the user selects one of the following buttons on the Error
Correction Window. The Button ID is passed as the only parameter, and can be one of the following:

Mnemonic ID Description

vvecUSER_BUTTON 2 User selected the "Format" button, which contains
menu items added through the AddMenuItem
method. The VVECWin control will also fire the
MenuSelected event with the selected menu ID.

vvecPLAY_BUTTON 3 User selected the "Play" button. The application will
typically respond to this event by playing back the
recorded wave file for the given "CorrectText"
word.

vvecDELETE_BUTTON 4 User selected the "Delete" button. The application
will typically respond to this event by deleting the
given "CorrectText" word from the application.

IBM SDK for Windows 427

Handling Error Correction Window Control Events

Close
The Close event is fired when the Error Correction Window is made invisible by a user action. This
could happen in response to a voice command or the user clicking the close button on the menu. The
event is not fired when application calls the Hide method. There are no parameters. The control
remains active and the window handle remains valid.

ContextHelpRequest
The ContextHelpRequest event is fired when the user presses the F1 key while the Error Correction
Window has focus. The Help ID is passed as the only parameter. The application can respond to this
event by displaying its help tool.

FocusChange
The FocusChange event is fired whenever the Error Correction Window gains or looses focus. The
only parameter is a boolean value that is TRUE if the window is gaining focus and FALSE if the
window is loosing focus. The application can respond to this event as appropriate, such as enabling/
disabling its voice command support.

vvecCORRECT_BUTTON 5 User selected the "Correct" button. The VVECWin
control will also fire the WordSelected event with
the desired spelling.

vvecADDPHRASE_BUTTON 6 User clicked the "Add words or phrases"
checkbox. When this checkbox is checked, the
application will typically respond by adding the text
as a single phrase. If the user spoke "New York" and
it was incorrectly recognized as "Newark", then the
user would open the Error Correction Window,
type "New York" in the edit field, check the "Add
words or phrases" checkbox, and click the
"Correct" button. The application would then know
to update the vocabulary with the complete phrase
"New York".

Getting Started with the ECWin Control

428 IBM SDK for Windows

MenuSelected
The MenuSelected event is fired when the user selects one of the custom menu options added through
the AddMenuItem method. The application specified menu ID, which was used to create the menu
entry, is passed as the only parameter. The application should respond by handling the menu item as
appropriate.

WordSe2224
The WordSelected event is fired when the user selects the word to be used as the corrected text. There
are three parameters, the selected spelling, an optional sounds-like spelling, and an index identifier.
The user can do this by clicking or using voice commands to select one of the alternate words in the
alternates listbox, or by typing a word in the edit field and selecting the "Correct" button. An index
value of -1 indicates that the user chose the correct text by entering it in the edit field and clicking the
"Correct" button, and values 0 and above are the zero based indices from words selected from the
alternates listbox.

IBM SDK for Windows 429

Error Correction Window Control Voice Command Support

Error Correction Window Control Voice
Command Support
The Error Correction Window Control VVECWin supports a number of voice commands, which are
active when the Error Correction Window has the input focus. Supported commands include the
following:

Voice Command Description

Pick [index number] Selects the alternate with the specified index. The
indices are displayed on the left side of each
listbox entry.

Hide Correction Window Hides the Error Correction Window.

[Added Menu Items] Selects the spoken menu item, valid only when the
menu is displayed.

Add words or phrases Sets input focus to the "Add words or phrases"
checkbox.

Format Selects the "Format" button.

Play Selects the "Play" button.

Delete Selects the "Delete" button.

Correct Selects the "Correct" button.

Alternate Word List Sets input focus to the alternate words listbox.

Edit Word Sets input focus to the edit field.

Getting Started with the ECWin Control

430 IBM SDK for Windows

IBM SDK for Windows 431

Chapter 23 Properties, Methods, and Events

The following is a list of properties, methods, and events pertaining to the Error Correction Window
Control.

Error Correction Window Control Properties
The VVECWin control supports the following properties:

• AddPhraseChecked

• AddPhraseVisible

• Caption

• ChildEnabled

• CommandsEnabled

• CorrectText

• Enabled

• Engine

• hWnd

• LanguageUI

• NumVisibleAlternates

• StatusBarVisible

• StatusText

Properties, Methods, and Events

432 IBM SDK for Windows

AddPhraseChecked
Returns/sets whether or not the ’Add words or phrases’ check box is checked when the Error
Correction Window is visible.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

??

Return Values
TRUE

Add the corrected text as a single phrase.

FALSE
Add the corrected text as single words.

[VVECWin].AddPhraseChecked = [Boolean]

BOOL [CVVECWin].GetAddPhraseChecked ();
Void [CVVECWin].SetAddPhraseChecked (BOOL fNewValue);

HRESULT [pIVVECWin]->get_AddPhraseChecked (VARIANT_BOOL * pbValue);
HRESULT [pIVVECWin]->put_AddPhraseChecked (VARIANT_BOOL fNewValue);

IBM SDK for Windows 433

Error Correction Window Control Properties

Remarks
You can change this property whether or not the Error Correction Window is actually visible. You
should first set the AddPhraseVisible property to TRUE to ensure that the checkbox is visible. Users
can only change the checkbox setting when it is enabled. When the user checks this checkbox
(AddPhraseChecked is TRUE), the application should add the specified correction text as a single
phrase.

Example

In Visual Basic:

In Visual C++ (MFC):

VVECWin.AddPhraseChecked = False

Dim CheckState As Boolean
CheckState = VVECWin.AddPhraseChecked

//Ensure checkbox is enabled and visible
m_CVVECWin.SetAddPhraseVisible(TRUE);
m_CVVECWin.SetChildEnabled(vvecADDPHRASE_BUTTON, TRUE);

//Ensure checkbox is not checked
m_CVVECWin.SetAddPhraseChecked(FALSE);
BOOL bValue = m_CVVECWin.GetAddPhraseChecked();

Properties, Methods, and Events

434 IBM SDK for Windows

In Visual C++:

See Also
“ChildEnabled” on page 439
“AddPhraseVisible” on page 435
“CommandsEnabled” on page 442
“Enabled” on page 446
“ButtonSelected” on page 482
“CorrectText” on page 444
“Reset” on page 477

//Ensure checkbox is enabled and visible
m_pIVVECWin->put_AddPhraseVisible(VARIANT_TRUE);
m_pIVVECWin->put_ChildEnabled(vvecADDPHRASE_BUTTON, VARIANT_TRUE);

//Ensure checkbox is not checked
m_pIVVECWin->put_AddPhraseChecked(VARIANT_FALSE);
VARIANT_BOOL bValue;
m_pIVVECWin->get_AddPhraseChecked(&bValue);

IBM SDK for Windows 435

Error Correction Window Control Properties

AddPhraseVisible
Returns/sets whether or not the “Add words or phrases” check box is visible when the Error
Correction Window is displayed

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

??

Return Values
TRUE

“Add words or phrases” check box is visible.

FALSE
“Add words or phrases” check box is not visible.

[VVECWin].AddPhraseVisible = [Boolean]

BOOL [CVVECWin].GetAddPhraseVisible();
void [CVVECWin].SetAddPhraseVisible(BOOL fNewValue);

HRESULT [pIVVECWin]->get_AddPhraseVisible(VARIANT_BOOL * pVal);
HRESULT [pIVVECWin]->put_AddPhraseVisible(VARIANT_BOOL newValue);

Properties, Methods, and Events

436 IBM SDK for Windows

Remarks
You can change this property whether or not the Error Correction Window is actually visible. It will
take effect when the window is shown. The check box is initially displayed unchecked. The text "Add
words or phrases" is displayed next to the checkbox when visible, in the language specified by the
LanguageUI property.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“AddPhraseChecked” on page 432
“ChildEnabled” on page 439
“CommandsEnabled” on page 442
“LanguageUI” on page 452
“Enabled” on page 446

VVECWin.AddPhraseVisible = True

m_CVVECWin.SetAddPhraseVisible(TRUE);

m_pIVVECWin->put_AddPhraseVisible(VARIANT_TRUE);
VARIANT_BOOL bValue;
m_pIVVECWin->get_AddPhraseVisible(&bValue);

IBM SDK for Windows 437

Error Correction Window Control Properties

Caption
Sets/gets the text that is displayed on the title bar of the Error Correction Window.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
None.

Return Values
None.

Remarks
By default the caption is set to "Error Correction", in the language specified by the LanguageUI
property.

[VVECWin].Caption = [String]

CString [CVVECWin].GetCaption();
Void [CVVECWin].SetCaption(LPCTSTR lpszNewValue);

HRESULT [pIVVECWin]->get_Caption(BSTR* pstrCaption);
HRESULT [pIVVECWin]->put_Caption(BSTR strCaption);

Properties, Methods, and Events

438 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“LanguageUI” on page 452

VVECWin.Caption = "Custom Error Correction"
VVECWin.Show True

m_CVVECWin.SetCaption("Custom Error Correction");
m_CVVECWin.Show(TRUE);

m_pIVVECWin->put_Caption(SysAllocString(L"Custom Error Correction"));
m_pIVVECWin->Show(VARIANT_TRUE);

IBM SDK for Windows 439

Error Correction Window Control Properties

ChildEnabled
Returns/sets the enabled state of the specified child control of the Error Correction Window.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

Boolean.

Return Values
TRUE

??

FALSE
??

[VVECWin].ChildEnabled([buttonID]) = [Boolean]
[Boolean] = [VVECWin].ChildEnabled([buttonID])

BOOL [CVVECWin].GetChildEnabled(long lButtonID);
void [CVVECWin].SetChildEnabled(long lButtonID, BOOL fNewValue);

HRESULT [pIVVECWin]->get_ChildEnabled(VVECButtonId lButtonID,
VARIANT_BOOL * pValue);

HRESULT [pIVVECWin]->put_ChildEnabled(VVECButtonId lButtonID,
VARIANT_BOOL fNewValue);

Properties, Methods, and Events

440 IBM SDK for Windows

Remarks
You can change this property whether or not the Error Correction Window is actually visible. You
should use the following values (available in the vvecwin.h file distributed as part of the SDK) to
specify which child control you are referring to. Disabled controls are typically grayed out and cannot
receive focus.

Example

In Visual Basic:

Mnemonic ID Description

vvecALTERNATES_LIST 0 Control ID for the Alternate Words listbox.

vvecRECO_EDIT 1 Control ID for the edit field.

vvecUSER_BUTTON 2 Control ID for the user-programmable button (the
"Format" button in Tool Tips).

vvecPLAY_BUTTON 3 Control ID for the "Play" button.

vvecDELETE_BUTTON 4 Control ID for the "Delete" button.

vvecCORRECT_BUTTON 5 Control ID for the "Correct" button.

vvecADDPHRASE_BUTTON 6 Control ID for the "Add words or phrases"
checkbox.

Dim bEna As Boolean
VVECWin.ChildEnabled(vvecPLAY_BUTTON) = False
BEna = VVECWin.ChildEnabled(vvecPLAY_BUTTON)

IBM SDK for Windows 441

Error Correction Window Control Properties

In Visual C++ (MFC):

In Visual C++:

See Also
“Init” on page 470
“Show” on page 479
“ButtonSelected” on page 482

//Include Enumerated type for button IDs
#include "..\ViaVoice SDK\Include\vvecwin.h"

//Ensure "Play" button is disabled
m_CVVECWin.SetChildEnabled(vvecPLAY_BUTTON, FALSE);
BOOL bValue = m_CVVECWin.GetChildEnabled(vvecPLAY_BUTTON);

//Ensure "Play" button is disabled

m_pIVVECWin->put_ChildEnabled(vvecPLAY_BUTTON, VARIANT_FALSE);
VARIANT_BOOL bValue;
m_pIVVECWin->get_ChildEnabled(vvecPLAY_BUTTON, &bValue);

Properties, Methods, and Events

442 IBM SDK for Windows

CommandsEnabled
Returns/sets whether or not the Error Correction Window should connect to an internal VVPhrase
control in order to provide voice navigation of the window with commands such as "Pick One" or
"Hide Correction Window."

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

Boolean.

Return Values
TRUE

??

FALSE
??

[VVECWin].CommandsEnabled = [Boolean]

BOOL [CVVECWin].GetCommandsEnabled();
void [CVVECWin].SetCommandsEnabled(BOOL fNewValue);

HRESULT [pIVVECWin]->get_CommandsEnabled(VARIANT_BOOL * pVal);
HRESULT [pIVVECWin]->put_CommandsEnabled(VARIANT_BOOL newVal);

IBM SDK for Windows 443

Error Correction Window Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“Error Correction Window Control Voice Command Support” on page 429.

VVECWin.CommandsEnabled = True

m_CVVECWin.SetCommandsEnabled(TRUE);
BOOL bEnabled = m_CVVECWin.GetCommandsEnabled();

m_pIVVECWin->put_CommandsEnabled(VARIANT_TRUE);
VARIANT_BOOL bValue;
m_pIVVECWin->get_CommandsEnabled(&bValue);

Properties, Methods, and Events

444 IBM SDK for Windows

CorrectText
Sets the text that the user wants to have corrected in the Error Correction Window.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
None.

Return Values
None.

Remarks
Returns the text the user has currently selected or typed as a replacement for the original text to be
corrected.

[VVECWin].CorrectText = [String]

CString [CVVECWin].GetCorrectText();
void [CVVECWin].SetCorrectText(LPCTSTR lpszNewValue);

HRESULT [pIVVECWin]->get_CorrectText(BSTR* pVal);
HRESULT [pIVVECWin]->put_CorrectText(BSTR newVal);

IBM SDK for Windows 445

Error Correction Window Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“WordSelected” on page 493
“AddPhraseVisible” on page 435
“AddPhraseChecked” on page 432

VVECWin.CorrectText = "word"
VVECWin.Show True
. . .
’after window closed
Debug.Print "User chose to replace ’word’ with " & _
VVECWin.CorrectText & "."

m_CVVECWin.SetCorrectText("word");
m_CVVECWin.Show(TRUE);
. . .
//after window closed
CString strResult = m_CVVECWin.GetCorrectText();
TRACE("The user chose to replace ’word’ with ’%s’", strResult);

m_pIVVECWin->put_CorrectText(SysAllocString(L"word"));
m_pIVVECWin->Show(VARIANT_TRUE);
. . .
//after window closed
BSTR bstrResult = NULL;
m_pIVVECWin->get_CorrectText(&bstrResult);
::MessageBoxW(NULL, bstrResult, L"Corrected Text:", MB_OK);

Properties, Methods, and Events

446 IBM SDK for Windows

Enabled
 Returns/sets whether or not the ViaVoice Error Correction Window appears enabled or disabled
(grayed).

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

Boolean.

Return Values
TRUE

??

FALSE
??

Remarks
None.

[VVECWin].Enabled = [Boolean]

[BOOL] = [CVVECWin].GetEnabled();
void [CVVECWin].SetEnabled(BOOL fNewValue);

HRESULT [pIVVECWin]->get_Enabled(VARIANT_BOOL * pbEnabled);
HRESULT [pIVVECWin]->put_Enabled(VARIANT_BOOL bEnabled);

IBM SDK for Windows 447

Error Correction Window Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“ChildEnabled” on page 439
“CommandsEnabled” on page 442
“Show” on page 479
“Hide” on page 468

VVECWin.Enabled = True

m_CVVECWin.SetEnabled(TRUE);
BOOL bEnabled = m_CVVECWin.GetEnabled();

m_pIVVECWin->put_Enabled(VARIANT_TRUE);
VARIANT_BOOL bEnabled;
m_pIVVECWin->get_Enabled(&bEnabled);

Properties, Methods, and Events

448 IBM SDK for Windows

Engine
Contains a reference to the ViaVoice Engine control (VVEngine), which is used by the Error
Correction Window control for voice navigation.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
None.

[VVEngine] = [VVECWin].Engine

[CVVEngine] = [CVVECWin].GetEngine();
void [CVVECWin].SetRefEngine(LPDISPATCH newValue);

HRESULT [pIVVECWin]->get_Engine(IVVEngine * * ppVal);
HRESULT [pIVVECWin]->putref_Engine(IVVEngine * pNewVal);

IBM SDK for Windows 449

Error Correction Window Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“CommandsEnabled” on page 442

’Get language used by engine
Dim EngineLanguage As String
EngineLanguage = VVECWin.Engine.Language

//Get language used by engine
CVVEngine CVVEng;
CVVEng = m_CVVECWin.GetEngine();
CString EngineLanguage = CVVEng.GetLanguage();

IVVEngine *pIVVEngine;
HRESULT hr;

hr = [pIVVECWin]->get_Engine(&pIVVEngine);
if (FAILED(hr))
return hr;

pIVVEngine->Connect();

Properties, Methods, and Events

450 IBM SDK for Windows

hWnd

Returns the hWnd of the Error Correction Window if the Error Correction Window has been
created (through a call to Init), this read-only property.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
None.

[long] = [VVECWin].hWnd

long [CVVECWin].GetHWnd();

HRESULT [pIVVECWin]->get_hWnd(long * phWnd);

IBM SDK for Windows 451

Error Correction Window Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“Init” on page 470
“Show” on page 479

Dim hWndEC As Long
VVECWin.Init hWnd
VVECWin.Show True
hWndEC = VVECWin.hWnd

m_CVVECWin.Init((long)m_hWnd);
m_CVVECWin.Show(TRUE);
long lhWndEC = m_CVVECWin.GetHWnd();

m_pIVVECWin->Init((long)m_hWnd);
m_pIVVECWin->Show(VARIANT_TRUE);
long lhWndEC;
m_pIVVECWin->get_hWnd(&lhWndEC);

Properties, Methods, and Events

452 IBM SDK for Windows

LanguageUI
Sets or gets the language used by the ViaVoice Error Correction Window for this specific client.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
The LanguageUI property settings for a ViaVoice Error Correction control are:

[VVECWin].LanguageUI = [String]

CString = [CVVECWin].GetLanguageUI();
void [CVVECWin].SetLanguageUI(LPCTSTR lpszNewValue);

HRESULT [pIVVECWin]->get_LanguageUI(BSTR* pVal);
HRESULT [pIVVECWin]->put_LanguageUI(BSTR newVal);

Value Description

"EN_US" U.S. English

"EN_UK" U.K. English

"GR_GR" German

"IT_IT" Italian

"ES_ES" Spanish

IBM SDK for Windows 453

Error Correction Window Control Properties

Remarks
The language affects any dialogs, menus, strings or ToolTips displayed by the control. Changing this
property affects the text strings that are displayed in the control, including the Caption, the text string
displayed on the "Add words or phrases" checkbox, and the tool tips displayed when the mouse moves
over the format, play, delete, and correct buttons. This property defaults to the language of the installed
speech recognition engine.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“Init” on page 470
“Show” on page 479

"FR_FR" French

"JA_JP" Japanese

VVECWin.LanguageUI = "EN_US"
VVECWin.Init hWnd
VVECWin.Show True

m_CVVECWin.SetLanguageUI("EN_US");
m_CVVECWin.Init((long)m_hWnd);
m_CVVECWin.Show(TRUE);

m_pIVVECWin->put_LanguageUI(SysAllocString(L"EN_US"));
m_pIVVECWin->Init((long)m_hWnd);
m_pIVVECWin->Show(VARIANT_TRUE);

Value Description

Properties, Methods, and Events

454 IBM SDK for Windows

NumVisibleAlternates
Returns or sets the number of alternates (alternative spellings of the word provided by the CorrectText
property) to initially make visible in the ViaVoice Error Correction Window.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

Return Values
??

Remarks
For this property to take effect it must be set before calling the Init method. By default this property is
set to five. Changing the default value affects the height of the listbox contained in the Error
Correction Window. More alternates can still be added, but the user will have to scroll through the
alternates list box or resize the Error Correction Window to view them.

[VVECWin].NumVisibleAlternates = [long]

long [CVVECWin].GetNumVisibleAlternates();
[CVVECWin].SetNumVisibleAlternates(long nNewValue);

HRESULT [pIVVECWin]->get_NumVisibleAlterantes(long * pVal);
HRESULT [pIVVECWin]->put_NumVisibleAlternates(long newVal);

IBM SDK for Windows 455

Error Correction Window Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“AddAlternate” on page 461
“MoveWindow” on page 474
“Init” on page 470

VVECWin.NumVisibleAlternates = 7
VVECWin.Init hWnd

m_CVVECWin.SetNumVisibleAlternates(7);
m_CVVECWin.Init((long)m_hWnd);

m_pIVVECWin->put_NumVisibleAlternates(7);
m_pIVVECWin->Init((long)m_hWnd);

Properties, Methods, and Events

456 IBM SDK for Windows

StatusBarVisible
Returns/sets whether or not the status bar at the bottom of the ViaVoice Error Correction Window is
displayed.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

Boolean.

Return Values
TRUE

FALSE

Remarks
None.

[VVECWin].StatusBarVisible = [Boolean]

BOOL [CVVECWin].GetStatusBarVisible();
void [CVVECWin].SetStatusBarVisible(BOOL fNewValue);

HRESULT [pIVVECWin]->get_StatusBarVisible(VARIANT_BOOL* pbVal);
HRESULT [pIVVECWin]->put_StatusBarVisible(VARIANT_BOOL fNewValue);

IBM SDK for Windows 457

Error Correction Window Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“StatusText” on page 458

VVECWin.Init hWnd
VVECWin.StatusBarVisible = True
VVECWin.StatusText = "Select correct spelling"
VVECWin.Show True

m_CVVECWin.Init((long)m_hWnd);
m_CVVECWin.SetStatusBarVisible(TRUE);
m_CVVECWin.SetStatusText("Select correct spelling");
m_CVVECWin.Show(TRUE);

M_pIVVECWin->Init((long)m_hWnd);
m_pIVVECWin->put_StatusBarVisible(VARIANT_TRUE);
m_pIVVECWin->put_StatusText(SysAllocString(L"Select correct spelling"));
m_pIVVECWin->Show(VARIANT_TRUE);

Properties, Methods, and Events

458 IBM SDK for Windows

StatusText
Returns/sets the text displayed in the status bar of the ViaVoice Error Correction Window.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
None.

Return Values
None.

Remarks
None.

[VVECWin].StatusText = [String]

CString = [VVECWin].GetStatusText();
void [VVECWin].SetStatusText(LPCTSTR lpszNewValue);

HRESULT [pIVVECWin]->get_StatusText(BSTR * pVal);
HRESULT [pIVVECWin]->put_StatusText(BSTR newVal);

IBM SDK for Windows 459

Error Correction Window Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“StatusBarVisible” on page 456

VVECWin.Init hWnd
VVECWin.StatusBarVisible = True
VVECWin.StatusText = "Select correct spelling"
VVECWin.Show True

m_CVVECWin.Init((long)m_hWnd);
m_CVVECWin.SetStatusBarVisible(TRUE);
m_CVVECWin.SetStatusText("Select correct spelling");
m_CVVECWin.Show(TRUE);

m_pIVVECWin->Init((long)m_hWnd);
m_pIVVECWin->put_StatusBarVisible(VARIANT_TRUE);
m_pIVVECWin->put_StatusText(SysAllocString(L"Select correct spelling"));
m_pIVVECWin->Show(VARIANT_TRUE);

Properties, Methods, and Events

460 IBM SDK for Windows

Error Correction Window Control Methods
The ViaVoice Error Correction Window control supports the following methods:

• AddAlternate

• AddMenuItem

• GetWindowRect

• Hide

• Init

• IsVisible

• MoveWindow

• Reset

• Show

IBM SDK for Windows 461

Error Correction Window Control Methods

AddAlternate
Adds an alternate word and an optional sounds-like word to the alternate-words listbox in the ViaVoice
Error Correction Window. Optionally redraws the window.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
AlternateWord

String. Word to be displayed in the alternate-word listbox.

SoundsLikeWord
String. Sounds-like word, which is not displayed but is returned in the WordSelected event. Can be
a NULL string.

Redraw
Boolean. Redraws window after adding new string. Typically set to False while adding all
alternates except the last.

[VVECWin].AddAlternate AlternateWord As String, SoundsLike As String,
Redraw As Boolean

void [CVVECWin].AddAlternate(LPCTSTR AlternateWord, LPCTSTR SoundsLike,
BOOL Redraw);

HRESULT [pIVVECWin]->AddAlternate(BSTR AlternateWord, BSTR SoundsLike,
VARIANT_BOOL Redraw);

Properties, Methods, and Events

462 IBM SDK for Windows

Return Values
TRUE

(On last item) Clears all items in the listbox.

FALSE
Adds another alternate word.

Remarks
The Init method must be called before AddAlternate can be used. Use the AddAlternate method to
populate the listbox with alternates that the user can select by clicking with the mouse or by voice
commands (i.e., saying "Pick 2"). The application is informed of the selected word through the
WordSelected event. The SoundsLike word is not displayed, but is internally saved in the control and
returned to the caller through the WordSelected event. Add all alternates except the last with Redraw
FALSE, and set Redraw TRUE on the final alternate. Clear all items in the listbox with the Reset
method.

IBM SDK for Windows 463

Error Correction Window Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“CommandsEnabled” on page 442
“CorrectText” on page 444
“NumVisibleAlternates” on page 454
“Init” on page 470
“Reset” on page 477
“WordSelected” on page 493

VVECWin.Init hWnd
VVECWin.CorrectText = "two"
VVECWin.AddAlternate "to", "two", False
VVECWin.AddAlternate "too", "", True
VVECWin.Show True

m_CVVECWin.Init((long)m_hWnd);
m_CVVECWin.SetCorrectText("two");
m_CVVECWin.AddAlternate("to", "two", FALSE);
m_CVVECWin.AddAlternate("too", "", TRUE);
m_CVVECWin.Show(TRUE);

m_pIVVECWin->Init((long)m_hWnd);
m_pIVVECWin->put_CorrectText(SysAllocString("two"));
m_pIVVECWin->AddAlternate(SysAllocString(L"to"), SysAllocString(L"two"),
VARIANT_FALSE);
m_pIVVECWin->AddAlternate(SysAllocString(L"too"), SysAllocString(L""),
VARIANT_TRUE);
m_pIVVECWin->Show(VARIANT_TRUE);

Properties, Methods, and Events

464 IBM SDK for Windows

AddMenuItem
Adds a custom menu item to the ViaVoice Error Correction Window’s Format button.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
MenuText

String. Text string to appear in custom menu, when user presses the Format button.

MenuID
Long. Value to be passed to application in MenuSelected event, when user selects a menu item.

Return Values
??

Remarks
Use this method to add custom items to the popup menu displayed when the user presses the ’Format’
button. The Format button is not displayed unless at least one menu item has been added. The
MenuSelected event is fired with the given MenuID when the user selects a custom menu item.

[VVECWin].AddMenuItem MenuText As String, MenuID As Long

void [CVVECWin].AddMenuItem(LPCTSTR MenuText, long MenuID);

HRESULT pIVVECWin->AddMenuItem(BSTR MenuText, long MenuID);

IBM SDK for Windows 465

Error Correction Window Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“ButtonSelected” on page 482
“MenuSelected” on page 491

VVECWin.AddMenuItem "&Capitalize", 100
VVECWin.AddMenuItem "&Lowercase’, 200
VVECWin.AddMenuItem "&Uppercase", 300

m_CVVECWin.AddMenuItem("&Capitalize", 100);
m_CVVECWin.AddMenuItem("&Lowercase’", 200);
m_CVVECWin.AddMenuItem("&Uppercase", 300);

m_pIVVECWin->AddMenuItem(SysAllocString(L"&Capitalize"), 100);
m_pIVVECWin->AddMenuItem(SysAllocString(L"&Lowercase’"), 200);
m_pIVVECWin->AddMenuItem(SysAllocString(L"&Uppercase’"), 300);

Properties, Methods, and Events

466 IBM SDK for Windows

GetWindowRect
Returns the origin and dimensions of the Error Correction Window if it has been displayed.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
px

Long. Pointer to variable to receive x coordinate.

py
Long. Pointer to variable to receive y coordinate.

pWidth
Long. Pointer to variable to receive window width.

pHeight
Long. Pointer to variable to receive window height.

Return Values
??

[VVECWin].GetWindowRect px As Long, py As Long, pWidth As Long, pHeight
As Long

void [CVVECWin].GetWindowRect(long* px, long* py, long* pWidth, long*
pHeight);

HRESULT [pIVVECWin]->GetWindowRect(long* px, long* py, long* pWidth,
long* pHeight);

IBM SDK for Windows 467

Error Correction Window Control Methods

Remarks
The dimensions are given in screen coordinates that are relative to the upper-left corner of the screen.
The Error Correction Window can be moved and resized with the MoveWindow method.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“IsVisible” on page 472
“MoveWindow” on page 474
“Show” on page 479

Dim x As Long
Dim y As Long
Dim Width As Long
Dim Height As Long
VVECWin.Init hWnd
VVECWin.Show True
VVECWin.GetWindowRect x,y,Width,Height

long x,y,Width,Height;
m_CVVECWin.Init((long)m_hWnd);
m_CVVECWin.Show(TRUE);
m_CVVECWin.GetWindowRect(&x, &y, &Width, &Height);

long x,y,Width,Height;
m_pIVVECWin->Init((long)m_hWnd);
m_pIVVECWin->Show(VARIANT_TRUE);
m_pIVVECWin->GetWindowRect(&x, &y, &Width, &Height);

Properties, Methods, and Events

468 IBM SDK for Windows

Hide
Hides the Error Correction Window, if it is currently visible.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
None.

Return Values
None.

Remarks
Hides the Error Correction Window. The window handle is still valid. This method will not cause
the Close event to be fired, since that event is meant to notify the application of a user-initiated clos

[VVECWin].Hide

Void [CVVECWin].Hide();

HRESULT [pIVVECWin]->Hide();

IBM SDK for Windows 469

Error Correction Window Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“IsVisible” on page 472
“Show” on page 479
“Close” on page 485
“FocusChange” on page 489

’first process word selected event
. . .
’Now hide Error Correction window until needed again
VVECWin.Hide

//First process word selected event
. . .
//Now hide Error Correction window until needed again
CVVECWin.Hide();

//First process word selected event
. . .
//Now hide Error Correction window until needed again
m_pIVVECWin->Hide();

Properties, Methods, and Events

470 IBM SDK for Windows

Init
Loads, but does not show, the ViaVoice Error Correction Window and performs other initialization
related functions.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
hWndParent

Long. Window handle to be used as parent.

Return Values
None.

Remarks
Init must be called before Show.

[VVECWin].Init(hWndParent As Long)

void [CVVECWin].Init(long hWndParent);

HRESULT [pIVVECWin]->Init(long hWndParent);

IBM SDK for Windows 471

Error Correction Window Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“Show” on page 479
“NumVisibleAlternates” on page 454

VVECWin.Init hWnd

CVVECWin.Init((long)m_hWnd);

m_pIVVECWin->Init((long)m_hWnd);

Properties, Methods, and Events

472 IBM SDK for Windows

IsVisible
Returns whether or not the ViaVoice Error Correction Window is currently visible.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
None.

Return Values
TRUE

Error Correction Window is currently visible.

FALSE
Error Correction Window is currently not visible.

Remarks
None.

[Boolean] = [VVECWin].IsVisible

BOOL [CVVECWin].IsVisible();

HRESULT [pIVVECWin]->IsVisible(VARIANT_BOOL * pVal);

IBM SDK for Windows 473

Error Correction Window Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“Show” on page 479
“Hide” on page 468
“Close” on page 485
“FocusChange” on page 489

Dim bVisible As Boolean
bVisible = VVECWin.IsVisible

BOOL bVisible;
bVisible = CVVECWin.IsVisible();

VARIANT_BOOL bVisible;
m_pIVVECWin->IsVisible(&bVisible);

Properties, Methods, and Events

474 IBM SDK for Windows

MoveWindow
Moves the Error Correction Window to the specified absolute location and gives it the specified
dimensions.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
x

Long. Window’s x coordinate.

y
Long. Window’s y coordinate.

Width
Long. Window’s width.

Height
Long. Window’s height.

AutoLocate
Boolean.

[VVECWin].MoveWindow x As Long, y As Long, Width As Long, Height As Long,
AutoLocate As Boolean

void [CVVECWin].MoveWindow(long x, long y, long Width, long Height, BOOL
AutoLocate);

HRESULT [pIVVECWin]->MoveWindow(long x, long y, long Width, long Height,
VARIANT_BOOL AutoLocate);

IBM SDK for Windows 475

Error Correction Window Control Methods

Return Values
TRUE

Window is located adjacent to an exclusion rectangle specified by the user.

FALSE
Window is to be moved to the specified absolute location.

Remarks
Moves the Error Correction Window to the given location, specified in screen coordinates. The
caller can alternately specify an "exclusion rectangle," and the window will be moved adjacent to that
rectangle.

Example

In Visual Basic:

In Visual C++ (MFC):

’Try to make the window bigger
Dim x As Long
Dim y As Long
Dim Width As Long
Dim Height As Long
VVECWin.GetWindowRect x, y, Width, Height
VVECWin.MoveWindow x, y, Width * 2, Height * 2, False

//Try to make the window bigger
long x,y,Width,Height;
CVVECWin.GetWindowRect(&x, &y, &Width, &Height);
CVVECWin.MoveWindow(x, y, Width*2, Height*2, FALSE);

Properties, Methods, and Events

476 IBM SDK for Windows

In Visual C++:

See Also
“GetWindowRect” on page 466
“Show” on page 479

//Try to make the window bigger
long x,y,Width,Height;
m_pIVVECWin->GetWindowRect(&x, &y, &Width, &Height);
m_pIVVECWin->MoveWindow(x, y, Width*2, Height*2, VARIANT_FALSE);

IBM SDK for Windows 477

Error Correction Window Control Methods

Reset
Clears the list of alternates and associated sounds-like spellings from the Error Correction Window’s
alternates listbox, the value stored in the CorrectText property, and unchecks the "Add words or
phrases" checkbox.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
Redraw

Boolean. Controls whether or not the control should be redrawn upon completion of the reset
activities.

Return Values
??

Remarks
None.

[VVECWin].Reset Redraw As Boolean = False

void [CVVECWin].Reset(BOOL Redraw = FALSE);

HRESULT [pIVVECWin]->Reset(VARIANT_BOOL Redraw);

Properties, Methods, and Events

478 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“AddAlternate” on page 461
“CorrectText” on page 444
“AddPhraseChecked” on page 432

VVECWin.Reset True

CVVECWin.Reset(TRUE);

m_pIVVECWin->Reset(VARIANT_TRUE);

IBM SDK for Windows 479

Error Correction Window Control Methods

Show
Makes the Error Correction Window visible, and optionally sets input focus to the Error
Correction Window.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
TakeFocus

Boolean. Optionally sets input focus to the Error Correction Window.

Return Values
TRUE

Input focus is given to the Error Correction Window’s edit field, with any text set as
CorrectText selected. (Default)

FALSE
Feature is disabled.

[VVECWin].Show TakeFocus As Boolean = True

void [CVVECWin].Show(BOOL TakeFocus = TRUE);

HRESULT [pIVVECWin]->Show(VARIANT_BOOL TakeFocus);

Properties, Methods, and Events

480 IBM SDK for Windows

Remarks
Activates the Error Correction Window and displays it in its current size and position. Init must
have been called prior to calling Show. If TakeFocus is TRUE, then the input focus is given to the
Error Correction Window’s edit field, with any text set as CorrectText selected.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“Hide” on page 468
“IsVisible” on page 472
“FocusChange” on page 489
“MoveWindow” on page 474

VVECWin.Init hWnd
VVECWin.Show True

CVVECWin.Init((long)m_hWnd);
CVVECWin.Show(TRUE);

m_pIVVECWin->Init((long)m_hWnd);
m_pIVVECWin->Show(VARIANT_TRUE);

IBM SDK for Windows 481

Error Correction Window Control Events

Error Correction Window Control Events
The ViaVoice Error Correction Window control supports the following events:

• ButtonSelected

• Close

• ContextHelpRequest

• FocusChange

• MenuSelected

• WordSelected

Properties, Methods, and Events

482 IBM SDK for Windows

ButtonSelected
Event fired by Error Correction Window control when the user selects a button on the Error
Correction window.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
lButtonId

Long. Button ID of the button that was selected:

Return Values
None.

ButtonSelected(ByVal lButtonID As Long)

void OnButtonSelectedVVECWin(long lButtonId);

HRESULT ButtonSelected(VVECButtonId lButtonID);

Value Description

vvecUSER_BUTTON User pressed Format button.

vvecPLAY_BUTTON User pressed Play button.

vvecDELETE_BUTTON User pressed Delete button.

vvecCORRECT_BUTTON User pressed Correct button.

vvecADDPHRASE_BUTTON User pressed Add Phrase checkbox.

IBM SDK for Windows 483

Error Correction Window Control Events

Remarks
The value for the button ID is passed as the only parameter. The values for the button ID’s can be
found in vvecwin.h located in the include directory of the ViaVoice SDK directory.

Example

In Visual Basic:

In Visual C++ (MFC):

Private Sub ButtonSelected(ByVal lButtonID As Long)
Select Case lButtonID
Case vvecUSER_BUTTON
ProcessUserButton()

. . .
End Sub

void CVCTestDlg::OnButtonSelectedVVECWin(long lButtonID)
{
switch (lButtonID)
{
case vvecUSER_BUTTON :
ProcessUSER_BUTTON();
break;

. . .
}

}

Properties, Methods, and Events

484 IBM SDK for Windows

In Visual C++:

See Also
“AddMenuItem” on page 464

STDMETHODIMP CTestDlgEvents::ButtonSelected(VVECButtonId lButtonID)
{
switch (lButtonID)
{
case vvecUSER_BUTTON :
ProcessUSER_BUTTON();
break;

. . .
}
return S_OK;

}

IBM SDK for Windows 485

Error Correction Window Control Events

Close
Event fired by the Error Correction Window control when the Error Correction Window is hidden
by a user action.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
None.

Return Values
None.

Remarks
This event is only fired when the user initiates the close, either by clicking the close button on the
menu or by the voice command.

Close()

void OnCloseVVECWin();

HRESULT Close();

Properties, Methods, and Events

486 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“Hide” on page 468
“Show” on page 479
“FocusChange” on page 489
“IsVisible” on page 472

Private Sub Close()
MsgBox "Closing VVECWin"

End Sub

void CVCTestDlg::OnCloseVVECWin()
{
::MessageBox(m_hWnd,"Closing", "VVECWin", MB_OK);

}

STDMETHODIMP CtestDlgEvents::Close()
{
::MessageBox(m_hWnd,"Closing", "VVECWin", MB_OK);
return S_OK;

}

IBM SDK for Windows 487

Error Correction Window Control Events

ContextHelpRequest
Event fired by the Error Correction Window control when the user requests context sensitive help.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
lHelpID

Long. Help ID.

Return Values
None.

Remarks
None.

ContextHelpRequest(ByVal lHelpID As Long)

void OnContextHelpRequestVVECWin(long lHelpID);

HRESULT ContextHelpRequest(long lHelpID);

Properties, Methods, and Events

488 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

Private Sub ContextHelpRequest(ByVal lHelpID As Long)
. . .
End Sub

Void CVCTestDlg::OnContextHelpRequestVVECWin(long lHelpID)
{
. . .

}

STDMETHODIMP CTestDlgEvents::ContextHelpRequest(long lHelpID)
{
. . .
return S_OK;

}

IBM SDK for Windows 489

Error Correction Window Control Events

FocusChange
Event fired by the Error Correction Window control when the Error Correction Window loses or
gains focus.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fHasFocus

Boolean.

Return Values
TRUE

The Error Correction Window is gaining focus.

FALSE
The window is not gaining focus.

Remarks
None.

FocusChange(ByVal fHasFocus As Boolean)

void OnFocusChangeVVECWin(BOOL fHasFocus);

HRESULT FocusChange(VARIANT_BOOL fHasFocus);

Properties, Methods, and Events

490 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“Show” on page 479
“Hide” on page 468
“IsVisible” on page 472

Private Sub FocusChange(ByVal bHasFocus As Boolean)
. . .

End Sub

void CVCTestDlg::OnFocusChangeVVECWin(BOOL bHasFocus)
{
. . .

}

STDMETHODIMP CTestDlgEvents::FocusChange(VARIANT_BOOL bHasFocus)
{
. . .
return S_OK;

}

IBM SDK for Windows 491

Error Correction Window Control Events

MenuSelected
The Error Correction Window control fires this event when the user selects a menu item on the Error
Correction Window’s custom menu.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
lMenuID

Long. ID of the menu item selected. This value was provided by the application when the menu
item was added with the AddMenuItem method.

Return Values
None.

Remarks
None.

MenuSelected(ByVal lMenuID As Long)

void OnMenuSelectedVVECWin(long lMenuID);

HRESULT MenuSelected(long lMenuID);

Properties, Methods, and Events

492 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“AddMenuItem” on page 464
“ButtonSelected” on page 482

Private Sub MenuSelected(ByVal lMenuID As Long)
. . .
End Sub

void CVCTestDlg::OnMenuSelectedVVECWin(long lMenuID)
{
. . .

}

STDMETHODIMP CTestDlgEvents::MenuSelected(long lMenuID)
{
. . .
return S_OK;

}

IBM SDK for Windows 493

Error Correction Window Control Events

WordSelected
The Error Correction Window control fires this event when the user chooses a word to correct their
current selection.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
SWord

String. Spelling of the selected word.

sSoundsLike
String. Spelling of the "Sounds Like" word, optionally added when application added the given
spelling with the AddAlternate method.

lIndex
Long. Zero-based index of the alternate word selected.

Return Values
None.

WordSelected(ByVal sWord As String, ByVal sSoundsLike As String, ByVal
lIndex As Long)

void OnWordSelectedVVECWin(LPCTSTR sWord, LPCTSTR sSoundsLikeWord, long
lIndex);

HRESULT WordSelected(BSTR sWord, BSTR sSoundsLikeWord, long lIndex);

Properties, Methods, and Events

494 IBM SDK for Windows

Remarks
None.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“AddAlternate” on page 461

Private Sub WordSelected(ByVal sWord As String, ByVal sSoundsLike As
String, ByVal lIndex As Long)
. . .

End Sub

void CVCTestDlg::OnWordSelectedVVECWin(LPCTSTR sWord, LPCTSTR
sSoundsLikeWord, long lIndex)
{
. . .

}

STDMETHODIMP CTestDlgEvents::WordSelected BSTR sWord, BSTR
sSoundsLikeWord, long lIndex)
{
. . .
return S_OK;

}

IBM SDK for Windows 495

Chapter 24 ECWin Control Frequently Asked
Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice Error
Correction Window Control.

Does the ViaVoice Error Correction Window Control correct errors?

No. The control is to be used by an application that actually performs the error correction. The
Error Correction Window control does not know enough about the application context to
interact with the speech recognition engine, or how to modify text in an application’s window. The
control is instead meant to provide an easy programming interface for an application, that users
can interact with in order to inform the application what the user wants. The control informs the
application through events and makes available through properties and methods the settings
chosen by the user.

When I invoke Correction, nothing shows up in the list box?

The application is responsible for populating the list box with alternate by calling the
AddAlternate method once for each item. Additionally, the alternates will not be visible until the
window is repainted. The application can force repainting once they have finished populating the
listbox by passing a value of TRUE for the "Repaint" parameter to AddAlternate.

I press the Correction button in the Error Correction Window and it doesn’t correct the text?

Pressing any of the buttons in the correction window causes a ButtonSelected event to be fired to
the application. It is the responsibility of the application to react to these events as appropriate.

Why can’t I dictate into the edit field in the Correction Window?

The Error Correction Window control does not allow dictation into the edit field. The most
likely reason for the user invoking the error correction dialog is that the engine misrecognized a
word or phrase, and dictating that same phrase to the correction control would most likely generate
the same misrecognition.

What is the purpose of the "Add Words or Phrases" checkbox?

When this checkbox is checked, the application will typically respond by adding the text as a
single phrase. If the user spoke "New York" and it was incorrectly recognized as "Newark", then
the user would open the error correction window, type "New York" in the edit field, check the Add

ECWin Control Frequently Asked Questions

496 IBM SDK for Windows

words or phrases" checkbox, and click the "Correct" button. The application would then update
the vocabulary with the complete phrase "New York".

What voice commands are supported by the Error Correction window?

Refer to the section entitled "Error Correction Control Voice Command support" in the chapter
entitled "Getting Started with the Error Correction Window Control."

Where can I find the ID values for the Error Correction buttons?

Refer to the file VVECWIN.H that was installed into the Include directory of the ViaVoice SDK
install directory.

Why isn’t the Close event fired when I hide the error correction window?

This event is meant to notify you only when the user closes the window with a voice command or
by selecting the Close button on the title bar. It is assumed that the application can call their
OnClose method when they programmatically close the window with the "Hide" method.

IBM SDK for Windows 497

Chapter 25 Introduction to the User Interface
Control

The ViaVoice User Interface Client Control (UIClient) is an ActiveX control that enables developers
to manipulate the IBM ViaVoice User Interface Server (UIServer). The UIServer provides a
common interface for speech-enabled applications using the IBM ViaVoice SDK. It is capable of
presenting speech-related information in a number of ways, including a Taskbar View, a Docked View,
a Minimal View and an Agent View. Figure 39 shows you how the UIServer appears in Taskbar View.

Figure 39. ViaVoice User Interface Server - Taskbar View

It is important to realize that the UIServer is used only to provide the user with visual information; it
does not directly control any functions in the speech recognition engine or in the text-to-speech engine.
For example, if you look at Figure 39, you will notice a button with a microphone icon. This button
reports the state of the speech input device (on, off, or asleep). However, the UIServer does not
automatically set the state of the device to on, off, or asleep when the user clicks the microphone
button, nor does it automatically read the state of the device directly from the engine in order to display
the appropriate icon. It merely provides a mechanism for you, the developer, to provide a visual
interface that is common among speech-enabled applications. It will notify you (through one of the
events in the UIClient control in Visual Basic or through a callback interface in Visual C++) when the
user clicks one of its buttons or selects one of its menu options. It is up to you to implement the user’s
request, as well as to set the state of the various elements in the UIServer.

Something else to keep in mind is that there may be a number of speech-enabled applications running
simultaneously, all sharing the same UIServer. Therefore, the UIClient control will never allow you
to take complete control over the UIServer. This means, for example, that the UIClient control will
not allow you to change the view of the UIServer, as this is set by the user.

Introduction to the User Interface Control

498 IBM SDK for Windows

The main benefit of using the UIClient control is that you can quickly incorporate the functionality of
the UIServer into your application, and make your application look and feel like other speech-enabled
applications in the market. This guide shows you how to display and manipulate the UIServer using
the UIClient control. It gives you a tutorial on how to use the UIClient control in your projects, and
then it will give you a complete reference of all the properties, methods, and events in the UIClient
control.

To completely speech-enable your application, you will also need to incorporate other controls in this
SDK. The ViaVoice User Interface Client control only provides you with a way to interact with your
users.

IBM SDK for Windows 499

Chapter 26 Getting Started with the User
Interface Control

The following is a tutorial on how to incorporate the UIClient control into your Visual Basic or Visual
C++ applications. This tutorial is designed to present you with the most commonly used methods in
the UIClient control, and the order in which you must execute them.

The following sections contain instructions to help you begin working with the User Interface
Control.

Creating an Instance of the Control
This section contains examples for using the UIClient control with Visual Basic and Visual C++.

In Visual Basic:
To add the UIClient control to your application, you can:

1. Choose Components from the Project menu.
The Components dialog box, Figure 20, appears.

Getting Started with the User Interface Control

500 IBM SDK for Windows

Figure 40. Component Selection Dialog Box - Visual Basic

The Components dialog box lists all the ActiveX Controls that you can use in your application.

IBM SDK for Windows 501

Creating an Instance of the Control

2. Select IBM ViaVoice User Interface Control from the list and click OK.
Visual Basic adds the control to your project and adds a new icon to the toolbar (Figure 41).

Figure 41. UIClient Control Toolbar Icon

3. Add an instance of the UIClient control to your form.
The UIClient control is designed to enable you to display and interact with the UIServer (Figure
40). However, the UIClient control itself is invisible at run time, and does not add any visual
enhancements to the Visual Basic form that contains it.

In Visual C++ (MFC):
There are various ways of using the UIClient in C++ programs. One way is to use it as an ActiveX
control in a dialog box in an MFC application.

To use the UIClient as an ActiveX control in an MFC application, do the following:

1. From the Project menu, select Add to Project, and then select Components and Controls from the
cascading menu.

Getting Started with the User Interface Control

502 IBM SDK for Windows

The Components and Controls Gallery dialog, Figure 22, appears.

Figure 42. Insert ActiveX Control Dialog Box - Visual C++

2. Double-click the Registered ActiveX Controls folder in the dialog box.

3. In the list of controls, select the IBM ViaVoice User Interface Control icon; then choose Insert.
A prompt appears asking if you want to insert this component.

IBM SDK for Windows 503

Creating an Instance of the Control

4. If you wish to insert the component, choose OK.
The Confirm Classes dialog box, Figure 43, appears listing the dual interface of the UIClient
control (CVVUIClientDual).

Figure 43. Confirm Classes Dialog

5. To confirm your selection, choose OK.

6. Close the Components and Controls Gallery dialog box.

Getting Started with the User Interface Control

504 IBM SDK for Windows

If you examine the Project Workspace window in the class view you will notice two new classes:
CVVUIClientDual and CVVUIMenuInfo (assuming you accepted the default names for the class
in the Confirm Classes Dialog).

7. In the resource view of your Project Workspace window double-click the dialog box resource entry
where you wish to insert the UIClient control.
The UIClient icon, Figure 44, appears in the Controls toolbar.

Figure 44. UIClient Icon in the Controls Toolbar

8. Add an instance of the UIClient control to the dialog box.
After you add the UIClient control to your dialog box you can invoke Class Wizard to create a
member variable for your class of type CVVUIClientDual.

You might also decide to capture the events in the control by adding Event handlers to your dialog
box class. This is done by clicking on the UIClient control with the right mouse button and
selecting Event from the popup menu.

The ViaVoice SDK ships with two Include files for Visual C++ users that provide constant declarations
as well as structure definitions. These files are:

• VVUITYPE.H

• VVUICNST.H

These two files are included automatically when you include the file VVUICTRL.H
(#include “vvuictrl.h”).

IBM SDK for Windows 505

Creating an Instance of the Control

In Visual C++ (Custom Interface):
Whether you are using MFC or not in your Visual C++ project you can use the functionality in the
UIClient control without using the VVUIClient dual interface (i.e. without having to insert an
instance of the control in your dialogs). The UIClient control provides two COM custom interfaces:
IVVUIClient and IVVUIEventSink. To use the custom interfaces make sure to include the files
VVUICTRL.H and VVUICTRL.C into your project. These files contain definitions for the interface,
IIDs and CLSIDs respectively.

To create an instance of the IVVUIClient interface, do the following:

1. Declare a variable of type IVVUIClient* as follows:
IVVUIClient* pIVVUIClient;

2. Make sure to initialize the COM libraries with the CoInitialize function.

Note:
Call the CoUninitialize function after releasing all COM interfaces and before exiting your
application.

3. Use the CoCreateInstance function, as shown below:

After this call, pIVVUIClient will point to an instance of the IVVUIClient interface.

CoCreateInstance(CLSID_VVUIClient,
NULL,
CLSCTX_ALL,
IID_IVVUIClient,
(void **)(& pIVVUIClient));

Getting Started with the User Interface Control

506 IBM SDK for Windows

Initializing the UIClient
The first step in using the control is to initialize it. The Initialize step causes the UIServer to become
visible. To initialize the control simply call the control’s Initialize method as shown in the code
segment below:

In Visual Basic:
Sub IntializeUIServer()
 On Error Resume Next
 Dim lRetVal As UIRC

lRetVal = VVUIClient1.Initialize

If Err.Number = 0 Then

If lRetVal <> UIAPIRC_OK Then
MsgBox "Initialization Failed"
Exit Sub

End If

Else
’Insert error code here!

End If

End Sub

IBM SDK for Windows 507

Initializing the UIClient

In Visual C++ (MFC):

void InitializeUIServer()
{
UIRC rc;

try
{
rc = (UIRC) m_vvuiMain.Initialize();

if (rc != UIAPIRC_OK)
{
MessageBox("Initialization Failed",

"VVUI Initialize",
MB_OK);

return;
}

}

catch (…)
{

//Insert exception fault code here
}

}

Getting Started with the User Interface Control

508 IBM SDK for Windows

In Visual C++ (Custom Interface):

The UIClient control (Custom Interface) does not have any custom properties, and all of its
functionality is accessed through methods. All of the methods in the control are functions that report
the success or failure of the method to execute. When you issue one of the methods in the control the
method returns an enumerated value. For a complete list of return code, refer to “UIRC (Enum)” on
page 559.

When you issue the Initialize method the UIServer displays the last view the user selected. The first
time the UIServer is initialized in the user’s machine, the UIServer displays its taskbar view by
default (See Figure 39 on page 497). If another speech-enabled application has already called the
Initialize method prior to your program issuing the method, your Initialize will have no visible
effects. Internally, the UIServer keeps a counter of all the applications that issued the Initialize
method. When all the applications that issued the Initialize method are closed, the UIServer
automatically disappears.

If you issue the Initialize method twice for the same control you will receive a trappable error in
Visual Basic: &H8000FFFF (ViaVoice UIClient is already Initialized). MFC throws an exception

void InitializeUIServer()
{
UIRC rc;
HRESULT hr;

hr = m_pIVVUIClient->Initialize(&rc);

if (SUCCEEDED(hr))
{
if (rc != UIAPIRC_OK)
{
MessageBox(NULL,

"Initialization Failed",
"VVUI Initialize",
MB_OK);

return;
}

}
}

IBM SDK for Windows 509

Initializing the UIClient

through the MFC wrappers and the custom interface returns an HRESULT of E_UNEXPECTED. You
must call the Initialize method for each instance of the control.

After the UIServer is visible you need to inform the server which language to use when displaying
menu options. To do this you must issue the SetLanguageByID method or the SetLanguageByString
method. The SetLanguageByID method accepts as a parameter, the language identifier (LangID), of
the language you wish the UIServer to use. The LangID is a unique number that Windows uses to
specify a foreign language and it is derived from a primary language ID and sublanguage ID. Use the
SetLanguageByString method instead of a string representation of the number. Table 3 contains a list
of possible LangID values and their string representations. In the User Interface Control (dual
interface) there is also a LanguageUI property that can be set/queried at design time or run time.

When using the SetLanguageByString method you can also use the last two characters of the LangID
string. For example, you can use SetLanguageByString(“US”).

The following code segment shows you how to use the SetLanguageByString method:

Table 3. LangID string names supported by UIServer and their corresponding values

“EN_US” 1033 (Hex 409) MAKELANGID(LANG_ENGLISH,SUBLANG_ENGLISH_US)

“EN_UK” 2057 (Hex 809) MAKELANGID(LANG_ENGLISH,SUBLANG_ENGLISH_UK)

“FR_FR” 1036 (Hex 40C) MAKELANGID(LANG_FRENCH,SUBLANG_FRENCH)

“GR_GR” 1031 (Hex 407) MAKELANGID(LANG_GERMAN,SUBLANG_GERMAN)

“IT_IT” 1040 (Hex 410) MAKELANGID(LANG_ITALIAN,SUBLANG_ITALIAN)

“ES_ES” 1034 (Hex 40A) MAKELANGID(LANG_SPANISH,SUBLANG_SPANISH)

“JA_JP” 1041 (Hex 411) MAKELANGID(LANG_JAPANESE,SUBLANG_DEFAULT)

Getting Started with the User Interface Control

510 IBM SDK for Windows

In Visual Basic:

Sub InitializeUIServer()
On Error Resume Next
Dim lRetVal As UIRC

’*************************
’Previous code goes here
’*************************

lRetVal = VVUIClient1.SetLanguageByString("EN_US")
If Err.Number = 0 Then
If lRetVal <> UIAPIRC_OK Then
MsgBox "Language not found"
Exit Sub

End If
Else
’Insert error code here!

End If
End Sub

IBM SDK for Windows 511

Initializing the UIClient

In Visual C++ (MFC):

void InitializeUIServer()
{
UIRC rc;
try
{

//*************************
//Previous code goes here
//*************************

rc = (UIRC)m_vvuiMain.SetLanguageByString("EN_US");
if (rc != UIAPIRC_OK)
{
MessageBox("Language not found",
"VVUI SetLanguageByString",
MB_OK);

return;
}

}
catch (…)
{

//Insert exception fault code here
}

}

Getting Started with the User Interface Control

512 IBM SDK for Windows

In Visual C++ (Custom Interface):

Entering an invalid Language name results in UIRC code UIAPIRC_ERROR_INVALIDPARAM.

void InitializeUIServer()
{
UIRC rc;
HRESULT hr;

//*************************
//Previous code goes here
//*************************

hr = pIVVUIClient->SetLanguageByString(“EN_US", &rc);

if (SUCCEEDED(hr))
{

if (rc != UIAPIRC_OK)
{

MessageBox(NULL,
"Language not found",
"VVUI SetLanguageByString",
MB_OK);

return;
}

}
}

IBM SDK for Windows 513

Programming the ViaVoice User Interface

Programming the ViaVoice User Interface
The UIClient control is able to communicate actions that occur in the UIServer to your program.
However, you must turn on this communication manually. You can use the SetClientCallbackFlags
method in Visual Basic or in Visual C++ (MFC) as follows:

In Visual Basic:

Sub InitializeUIServer()
On Error Resume Next
Dim lRetVal As UIRC
’************************
’Previous code goes here
’************************

lRetVal = VVUIClient1.SetClientCallbackFlags(vvUIEVENT_ALL)
If Err.Number = 0 Then

If lRetVal <> UIAPIRC_OK Then
MsgBox "Unable to turn on messaging"
Exit Sub

End If

Else
’Insert error code here!

End If

End Sub

Getting Started with the User Interface Control

514 IBM SDK for Windows

In Visual C++ (MFC):

The parameter in the SetClientCallbackFlags method informs the UIServer which messages you
wish to capture. To find all possible values for this parameter, refer to “SetClientCallbackFlags” on
page 597.

For example, you can issue the SetClientCallbackFlags method with UIEVENT_ALL to receive all
messages, or with UIEVENT_VIEW_QUERYFLAGS to receive the query view flags event (the
EventQueryViewFlags) that the control will fire when your application has the focus. If the user
changes the view of the UIServer from Taskbar to Docked (selecting Docked from the Appearance
menu) you must write code in this event to allow the UIServer to dock to your dialog box. Here is an
example:

void InitializeUIServer()
{
UIRC rc;
try
{

//*************************
//Previous code goes here
//*************************

rc = (UIRC)m_vvuiMain.SetClientCallbackFlags(UIEVENT_ALL);
if (rc != UIAPIRC_OK)
{
MessageBox("Unable to turn on messaging",

"VVUI SetClientCallbackFlags",
MB_OK);

return;
}

}
catch (…)
{

//Insert exception fault code here
}

}

IBM SDK for Windows 515

Programming the ViaVoice User Interface

In Visual Basic:

In Visual C++ (MFC):

If you are using the IVVUIClient custom interface, the procedure is slightly different. You must
implement the IVVUIEventSink event sink interface by creating a class inherited from the
IVVUIEventSink class; you can find example code to accomplish this in the \SAMPLES directory.
The following code shows how to capture messages from UIServer by assuming that your class name
is CVVUIClientEvents:

Private Sub VVUIClient1_EventQueryViewFlags (phwndWindow As Long,
pdwDockFlags As Long, pResult As VVUICtrlCtl.UIEVENTRC)
If phwndWindow = VVUIClient1.Parent.hwnd Then
pdwDockFlags = vvDVAF_ALLOW_TOPMOST_DOCK

’Inform the control that the message was processed.
pResult = UIEVENTRC_PROCESSED
End If

End Sub

void CTestDlg::OnEventQueryViewFlags(long FAR* phwndWindow, long FAR*
pdwDockFlags, long FAR* pResult)
{
if ((HWND)*phwndWindow == m_hWnd)
{
*pdwDockFlags = (long)(DVAF_ALLOW_TOPMOST_DOCK);
//Inform the control that the message was processed.
*pResult = (long)(UIEVENTRC_PROCESSED);

}
}

Getting Started with the User Interface Control

516 IBM SDK for Windows

In Visual C++ (Custom Interface):

Before you can receive messages, however, there is one more step you need to perform. The ViaVoice
SDK enables you to add user interface capabilities not only to your application but also to virtually any
application in the system, because the UIServer does not really belong to any one program. It
monitors user interaction and can broadcast messages to your application even if the interaction
occurred while the user was working with another application. For this reason you need to tell the
UIClient control which programs you wish to monitor events for by using either the
AddApplicationByWindow or the AddApplicationByName method. If you are adding the ViaVoice
User Interface support for your application you can pass the window handle of your dialog box or the

//Make sure to declare this variable prior to calling
//your procedure
CVVUIClientEvents m_IVVUIClientEventSink;

void InitializeUIServer()
{
UIRC rc;
HRESULT hr;
//*************************
//Previous code goes here
//*************************

hr = m_pIVVUIClient->SetClientCallback(IID_IVVUIEventSink,
&m_IVVUIClientEventSink,
UIEVENT_ALL,
&rc);

if (SUCCEEDED(hr))
{
if (rc != UIAPIRC_OK)
{
MessageBox(NULL,

"Unable to Set Callback methods",
"VVUI SetClientCallback",
MB_OK);

return;
}

}
}

IBM SDK for Windows 517

Programming the ViaVoice User Interface

name of your executable. You can also pass the window handle or executable name of another
application.

The following example shows you how to use the AddApplicationByWindow and the
AddApplicationByName methods:

In Visual Basic:

Sub InitializeUIServer()
On Error Resume Next
Dim lRetVal As UIRC
’************************
’Previous code goes here
’************************

lRetVal = VVUIClient1.AddApplicationByWindow(VVUIClient1.Parent.hWnd)
If Err.Number = 0 Then

If lRetVal <> UIAPIRC_OK Then
MsgBox "Unable to add application"
Exit Sub

End If
Else

’Insert error code here!
End If

End Sub

Getting Started with the User Interface Control

518 IBM SDK for Windows

In Visual C++ (MFC):

void InitializeUIServer()
{
UIRC rc;
try
{
//*************************
//Previous code goes here
//*************************

rc = (UIRC)m_vvuiMain.AddApplicationByWindow((long)m_hWnd);
if (rc != UIAPIRC_OK)
{
MessageBox("Unable to add application",

"VVUI AddApplicationByWindow",
MB_OK);

return;
}

}
catch (…)
{

//Insert exception fault code here
}

}

IBM SDK for Windows 519

Programming the ViaVoice User Interface

In Visual C++ (Custom Interface):

The next section contains other examples of handling the different events in the UIClient control.

//Make sure to declare this variable prior to calling
//your procedure
CVVUIClientEvents m_IVVUIClientEventSink;
void InitializeUIServer()
{
UIRC rc;
HRESULT hr;

//*************************
//Previous code goes here
//*************************

hr = m_pIVVUIClient->AddApplicationByWindow((HWND_t)hWndApp,&rc);
if (SUCCEEDED(hr))
{
if (rc != UIAPIRC_OK)
{
MessageBox(NULL,

"Unable to add application",
"VVUI AddApplicationByWindow",
MB_OK);

return;
}

}
}

Getting Started with the User Interface Control

520 IBM SDK for Windows

Getting and Setting User Interface
Characteristics
The UIServer contains five components that you can use to inform the user of the current speech state
of your application. The components are:

Microphone
Gets/Sets the state of the microphone component. When the UIServer is in Taskbar or Docked view,
this component corresponds to the appearance of the microphone button.

Volume
Gets/Sets the level of the volume level displayed on the UIServer. The level can be a number between
0 and 100 percent.

User Information
Gets/Sets the user name displayed on the UIServer, as well as the user’s full name, enrollment profile,
and current vocabulary file.

Word History
Gets/Sets the word history text (next to the Volume meter when the UIServer is in Taskbar or Docked
view.) This component usually provides the text representation of the last voice command issued. It
can also be used to display the status of the recognition engine.

Custom
Gets/Sets the state of buttons in the UIServer. When in Taskbar or Docked view, these buttons are
shortcuts to menu options.

You can set and get the characteristics of these components by using the SetNumberValue,
SetStringValue, GetNumberValue, GetStringValue functions. The reference section will discuss
these functions along with each component in detail. For now let’s take a look at the following lines of
code:

IBM SDK for Windows 521

Getting and Setting User Interface Characteristics

In Visual Basic:

In Visual C++ (MFC):

Dim NewValue As Long
Dim rc As UIRC

'Set the state of the microphone component to “ON” state
rc = m_VVUIClient.SetNumberValue(COMPID_MICROPHONE, vvUIMSF_ON)

'Get the state of the microphone component
rc = m_VVUIClient.GetNumberValue(COMPID_MICROPHONE, NewValue)

long NewValue;
UIRC rc;

//Set the state of the microphone component
rc = (UIRC)m_VVUIClient.SetNumberValue(COMPID_MICROPHONE,

UIMSF_ON,
UIMICINDEX_MICSTATE);

//Get the state of the microphone component
rc = (UIRC)m_VVUIClient.GetNumberValue(COMPID_MICROPHONE,

&NewValue,
UIMICINDEX_MICSTATE);

Getting Started with the User Interface Control

522 IBM SDK for Windows

In Visual C++ (Custom Interface):

The code segment above illustrates how to set and get the state of the microphone component in the
UIServer. The SetNumberValue method accepts a component ID as its first parameter, and a long
value specifying the value to which you wish to modify the component. As you will see in the
reference section, the SetNumberValue function (as well as its counterparts: SetStringValue,
GetNumberValue, and GetStringValue) has a third parameter (optional in Visual Basic). This third
parameter is used in some of the components to specify a specific value within the component.

To get the state of the microphone, use the GetNumberValue method. The GetNumberValue method
has the same parameter list as the SetNumberValue method, except that in the GetNumberValue the
second parameter is used to receive the property value from the object rather than to set the property
value as it occurs in the SetNumberValue method.

Since there might be multiple speech-enabled applications, which change the characteristics of the
various components individually, the UIClient control will fire events whenever a change to the
properties occurs. For example, in the above code segment, whenever the state of the microphone
changes, the UIClient control fires the EventComponentUpdated method. The first parameter in this
event, ciComponentID, specifies which component was changed. You will learn more about each
component in Chapter 28 “Properties, Methods, and Events” of this book.

UIRC rc;
HRESULT hr;
DWORD NewValue;

//Set the state of the microphone component
hr = pIVVUIClient->SetNumberValue(COMPID_MICROPHONE,

UIMSF_ON,
UIMICINDEX_MICSTATE,
&rc);

//Get the state of the microphone component
hr = pIVVUIClient->GetNumberValue(COMPID_MICROPHONE,

&NewValue,
UIMICINDEX_MICSTATE,
&rc);

IBM SDK for Windows 523

Creating Custom Menus

Creating Custom Menus
When using the ViaVoice UIServer it may be useful at times to customize the menu bar to provide
extra functionality or help for your users. The VVUIClient control enables you to customize the
ViaVoice UIServer’s menu in several ways:

• You can add an application menu group – a set of menu options that appears when your application
becomes active. These options appear between the Tools menu option and the Help menu option.

• You can add custom menu items to the Help menu.

• Or you can enable or disable various menu options in the main menu.

The UIClient control has several functions for adding, modifying, or removing custom menus:

• AppendMenuItem

• InsertMenuItem

• GetMenuItemInfo

• DeleteMenuItem

• SetMenuItemInfo

These functions enable you to create menu options and assign them a group name. After you add a
menu option, the option will not automatically appear in the ViaVoice UIServer menu; it is simply
saved to the registry. When the user clicks the ViaVoice menu button, the UIClient control fires the
event EventQueryViewMenuInfo just before the menu appears. This event enables the current client
to specify which menu group you wish to display to your users. The control then reads the menu
options from the registry and displays the options that belong to the group you specified.

The previous paragraph describes how to add dynamic menus to the UIServer’s menu. Dynamic
menus are the menus that change depending on the application that currently has the focus. However,
it is possible to add static menu options to the Help menu of the UIServer. These options will be
available regardless of the application that has the focus. For these options you must specify ahead of
time which help file and topic to display when the user selects the menu item. The UIServer will then
automatically invoke WinHelp with the appropriate file and topic.

Note:
Use static menu items only in rare occasions, and only if absolutely necessary. The application is
responsible for removing status menu items before being uninstalled.

Getting Started with the User Interface Control

524 IBM SDK for Windows

The following example code shows you how to add an application menu group to the ViaVoice main
menu.

In Visual Basic:

In Visual C++ (MFC):
If you have already added the VVUIClient control to your project and corresponding class wrappers
for the interfaces, you should already have a class wrapper for the IVVUIMenuInfo interface named
CVVUIMenuInfo (assuming you accepted the default values).

Prior to using the class wrapper, make sure to include VVUICTRL.H in your dialog box source file
(#include “vvuictrl.h”).

You can now create menu options as follows:

Dim lRetVal As UIRC
Dim oNewMenu As New VVUIMenuInfo

oNewMenu.Type = UIMFT_CLIENT
oNewMenu.ID = 100
oNewMenu.Enabled = True
oNewMenu.Visible = True
oNewMenu.Checked = False
oNewMenu.Caption = "Menu Item #1"

lRetVal = m_VVUIClient.AppendMenuItem(UIMFG_DYNAMIC_APPLICATION, _

App.EXEName, _
oNewMenu)

IBM SDK for Windows 525

Creating Custom Menus

The basic procedure implemented in the previous example creates a new instance of the
VVUIMenuInfo class. The purpose of the class is for you to set the characteristics of the menu option
you wish to add. Some of the settings in the VVUIMenuInfo class will be explained in more detail in
Chapter 27 “Classes, Structures, and Enumerations”. The most important members in the class are Id,
Caption, Enabled, Visible, and Checked.

You can add a separator bar menu option in Visual Basic and Visual C++ (MFC) by setting the Caption
member of the class to a dash (“-”).

After the VVUIMenuInfo class is populated, you must issue the AppendMenuItem method to save
the menu option to the registry. If you examine the line of code that follows you will notice that the
first parameter is used to specify where the menu option will appear.

“lRetval = m_VVUIClient.AppendMenuItem
(UIMFG_DYNAMIC_APPLICATION,App.ExeName,oNewMenu)”

In this case the menu will be added as an application menu. The second parameter is used to specify
the name of the group to which the menu option belongs. The third parameter is simply the instance of
the VVUIMenuInfo class that you created.

VVUIMenuInfo NewMenuItem;
NewMenuItem.CreateDispatch(CLSID_VVUIMenuInfo);
NewMenuItem.SetType(UIMFT_CLIENT);
NewMenuItem.SetID(100);
NewMenuItem.SetCaption(“Menu Item #1”);
NewMenuItem.SetEnabled(TRUE);
NewMenuItem.SetVisible(TRUE);
m_VVUIClient1.AppendMenuItem(UIMFG_DYNAMIC_APPLICATION,

AfxGetAppName(),
NewMenuItem);

Getting Started with the User Interface Control

526 IBM SDK for Windows

In Visual C++ (Custom Interface):

After adding the menu option, when the user clicks the ViaVoice UIServer menu button or clicks on
the UIServer tool tray icon, the UIClient control will fire the EventQueryViewMenuInfo event. The
following code shows you how to handle this event.

HRESULT hr;
UIRC rc;

UIMENUITEMINFO uimiiItem;

ZeroMemory(&uimiiItem,sizeof(uimiiItem));

uimiiItem.m_uType = UIMFT_CLIENT;
uimiiItem.m_dwID = m_uMenuID;
lstrcpy(uimiiItem.m_szText, “Menu Item #1”);
uimiiItem.m_uState=MFS_ENABLED;

hr = m_pIVVUIClient->AppendMenuItem(UIMFG_DYNAMIC_APPLICATION, _
"TestMenu",
&uimiiItem,
&rc);

IBM SDK for Windows 527

Creating Custom Menus

In Visual Basic:

In Visual C++ (MFC):

Private Sub VVUICLient1_EventQueryViewMenuInfo(_
vtViewType As TVIEWTYPE, _
hwndWindow As Long, _
ApplicationTitle As String, _
MainMenuName As String, _
ApplicationMenuName As String, _
HelpMenuName As String, _
pResult As UIEVENTRC)

ApplicationTitle = App.Title
ApplicationMenuName = App.EXEName
pResult = UIEVENTRC_PROCESSED

End Sub

void OnEventQueryViewMenuInfo(
long vtViewType,
long hwndWindow,
BSTR FAR* ApplicationTitle,
BSTR FAR* MainMenuName,
BSTR FAR* ApplicationMenuName,
BSTR FAR* HelpMenuName,
long FAR* pResult)

{
CString sAppName = AfxGetAppName();
*ApplicationTitle = sAppName.AllocSysString();
*MainMenuName = sAppName.AllocSysString();
*ApplicationMenuName = sAppName.AllocSysString();
*HelpMenuName = sAppName.AllocSysString();
*pResult = UIEVENTRC_PROCESSED;

}

Getting Started with the User Interface Control

528 IBM SDK for Windows

In Visual C++ (Custom Interface):

The parameters of this event will be explained in detail in Chapter 28 “Properties, Methods, and
Events”. For now it is sufficient to understand the purpose of two parameters: ApplicationTitle and
ApplicationMenuName. Remember that the intent of this event is to inform you that the user wishes
to see the main menu, and to request from you the name of the menu group you wish to display. The
parameter ApplicationTitle lets you specify a display name for the custom application menu group
(Figure 45).

STDMETHODIMP CVVUIClientEvents::EventQueryViewMenuInfo (
TVIEWTYPE vtViewType,
HWND_t hwndWindow,
LPSTR lpszApplicationTitle,
LPSTR lpszMainMenuName,
LPSTR lpszApplicationMenuName,
LPSTR lpszHelpMenuName,
UIEVENTRC * pResult)

(
char szAppName[256];
lstrcpy(szAppName, “MyAppName”);
lstrcpy(lpszApplicationTitle,”MyApplication”);
lstrcpy(lpszMainMenuName,szAppName);
lstrcpy(lpszApplicationMenuName,szAppName);
lstrcpy(lpszHelpMenuName,szAppName);
*pResult = UIEVENTRC_PROCESSED;
return S_OK;

)

IBM SDK for Windows 529

Creating Custom Menus

Figure 45. Application Menu Application Title

The parameter ApplicationMenuName enables you to specify the name of the group of menu options
you wish to display. In the previous code example the AppendMenuItem method used the
application’s EXE name as the group name. The ApplicationMenuName parameter needs to be set to
the same name in order to display the menu group previously created.

So far you have learned how to add custom menu options and how to ensure that the UIServer
displays them when your application has the focus, but how do you know when the user actually
selects the custom menu option? When the user clicks on one of the custom menu options the UIClient
control fires the EventMenuItemSelected event. This event has the following syntax:

Private Sub m_VVUIClient_EventMenuItemSelected(dwMenuItemId As Long,
hwndTarget As Long, pResult As UIEVENTRC)

Getting Started with the User Interface Control

530 IBM SDK for Windows

The first parameter will provide you with the ID number of the menu item the user selected. You can
use the same ID number for various menu items if you wish to handle the menu items in the same way.
For example, if you wish to add two menu options and both of them will bring up the same page in the
help file, you can assign the same ID number to both. Then, in the EventMenuItemSelected event you
would just implement one set of code for the particular ID number. However, if you decide to use the
same ID number for multiple menu options, you must realize that the GetMenuInfo method will
always return information for the first item with the specified ID.

IBM SDK for Windows 531

Summary

Summary
At this point you should know how to do the following:

• How to display the ViaVoice UIServer, and set its menu language.

• How to specify which messages you wish to capture from the UIServer.

• How to change the appearance of the buttons in the UIServer, and capture user interaction with
these buttons.

• How to create and monitor custom menu options.

The following chapters contain reference sections for all the properties, methods, and events for the
User Interface control.

Getting Started with the User Interface Control

532 IBM SDK for Windows

IBM SDK for Windows 533

Chapter 27 Classes, Structures, and
Enumerations

This chapter gives you detailed information about the ActiveX classes, structure, constants, and
enumerations included with the UIClient control. For more information about the properties, methods,
and events of the UIClient control, refer to “Properties, Methods, and Events” on page 561.

The ViaVoice UIClient control supports the following classes, structures, constants and enumerations:

• VVUIMenuInfo (Class)

• UIMENUITEMINFO (Structure)

• vvUIDockingAlgorithmConstants

• vvUIDockingStyleConstants

• vvUIEventCallbackFlags

• vvUIExtendedMenuFlags

• vvUIMaxConstants

• vvUIMenuItemConstants

• Component Index Constants

• vvUIRemoveClientConstants

• MICROPHONE_STATES (Enum)

• TCID (Enum)

• TVIEWTYPE (Enum)

• UIEVENTRC (Enum)

• UIMENUGROUP (Enum)

• UIMENUTYPE (Enum)

• UIRC (Enum)

Classes, Structures, and Enumerations

534 IBM SDK for Windows

User Interface Control Classes
The ViaVoice UIClient control supports the following class:

• VVUIMenuInfo

vvUIMenuInfo (Class - Visual Basic and MFC Only)
The purpose of the vvUIMenuInfo class (Visual Basic and MFC only) is to provide information about
custom menu options. Use this class when adding or modifying custom menu options.

Field Type Description

Type UIMENUTYPE Specifies the menu type. For more information, refer to
“UIMENUTYPE” page 558.

ID Integer Specifies the ID number of the menu option. You can use
this ID number to get information about the option with the
GetMenuItemInfo method. The control uses this ID
number to let you know which menu option the user
selected.
Note: The ID must be between 0-9,999 when adding
dynamic applications, dynamic help or static help menu
options. When adding dynamic main menu options, you
must use one of the constants in the
vvUIMenuItemConstants enumeration. For more
information, refer to “vvUIMenuItemConstants” on page
547.

Checked Boolean Indicates whether the menu option has a check mark (True)
or not (False).

Visible Boolean Indicates whether the menu option is visible (True) or
invisible (False).

Enabled Boolean Indicates whether the menu option is enabled (True) or
grayed (False).

Caption String The menu item text.

ExePathName String The path of the help file the UIServer will use when
invoking a static help menu option

IBM SDK for Windows 535

User Interface Control Structures

User Interface Control Structures
The ViaVoice UIClient control supports the following structure:

• UIMENUITEMINFO

UIMenuItemInfo Structure (Custom Interface Only)
The purpose of the UIMENUITEMINFO structure is to provide information about custom menu
options for the Custom Interface. Use this structure when adding or modifying custom menu options.

Field Type Description

m_uType UIMEN
UTYPE

Specifies the menu type. For more
information, refer to “UIMENUTYPE” page
558.

m_dwID DWORD Specifies the ID number of the menu option.
You can use this ID number to get information
about the option with the GetMenuItemInfo
method. The control uses his ID number to let
you know which menu option the user
selected.
Note: The ID must be between 0-9,999 when
adding dynamic applications, dynamic help or
static help menu options. When adding
dynamic main menu options, you must use
one of the constants in the
vvUIMenuItemConstants enumeration. For
more information, refer to
“vvUIMenuItemConstants” on page 547.

m_uState UINT Indicates the state of the menu item. This
member is identical to the fState member in
the WIN32 SDK MENUITEMINFO
structure. For more information, refer to the
WIN32 SDK documentation.

Classes, Structures, and Enumerations

536 IBM SDK for Windows

The UIMENUITEMINFO_EXE structure is similar to the parameters in the ShellExecute WIN32
SDK API function. For more information, refer to the WIN32 SDK documentation.

m_szText[MAX_MENU_STR
ING]

CHAR Menu item text.

m_exeItem struct
UIMEN
UITEMI
NFO_E
XE

The path of the help file the UIServer will use
when invoking a static help menu option. For
structure information, refer to Table 6 on page
539.

Field Type Description

m_szOperation
[MAX_MENU_OPERATION
]

CHAR Specifies the operation to perform (“open,”
“print,” “help” and so on).

m_dwOpData; DWORD Operation-specific data. For “open” and
“print” operations it is ignored. For “help”
operations, it is the topic ID to display.

m_szFile[_MAX_PATH] CHAR File to perform operation on (*.EXE, *.HLP,
and so on).

m_szParameters[_MAX_PAT
H]

CHAR File parameters (if any).

m_szWorkDirectory[_MAX_
PATH]

CHAR File working directory (if any)

m_nShowCmd INT Specifies how the application is to be shown.

Field Type Description

IBM SDK for Windows 537

User Interface Control Constants

User Interface Control Constants
The ViaVoice UIClient control supports the following constants:

• vvUIDockingAlgorithmConstants

• vvUIDockingStyleConstants

• vvUIEventCallbackFlags

• vvUIExtendedMenuFlags

• vvUIMaxConstants

• vvUIMenuItemConstants

• Component Index Constants

• vvUIRemoveClientConstants

Classes, Structures, and Enumerations

538 IBM SDK for Windows

Component Index Constants
Use Component Index constants when getting and setting the properties of a UIServer component by
calling the SetNumberValue, SetStringValue, GetNumberValue, or GetStringValue. The index
constants enable you to specify the property within the component that you wish to query or modify.

Component Index constants are specific to a particular component. The following list contains the
index constants for each component in the UIServer that you can query or modify.

Table 4. vvUIMICINDEX

Constant Name Value Description

vvUIMICINDEX_MICSTATE 0 The microphone state property.
For example, On or Off.

vvUIMICINDEX_WAITSTATE 1 The wait state property. You
can place the microphone
component in a wait state
regardless of the current
microphone state.

Table 5. vvUIUserInfoIndex (COMPID_USERINFORMATION)

Constant Name Value Description

vvUIUINFOINDEX_USERID 0
(default)

Specifies the User ID. ID name
of the speech engine’s current
user, which is usually the user’s
full name.

vvUIUINFOINDEX_ENROLLID 1 Specifies the Enrollment ID,
which specifies the language
the engine uses for the current
user.

vvUIUINFOINDEX_TASKID 2 Specifies the vocabulary the
speech engine uses for the
particular user.

vvUIUINFOINDEX_USER_DESCRIPTION 3 The current user’s description.

IBM SDK for Windows 539

User Interface Control Constants

vvUIUINFOINDEX_ENROLL_DESCRIPTIO
N

4 The complete description of the
enrollment ID.

vvUIUINFOINDEX_TASK_DESCRIPTION 5 The complete description of the
vocabulary ID.

Table 6. vvUIVolumeIndex (COMPID_VOLUME)

Constant Name Value Description

vvUIVOLINDEX_VOLLEVEL 0
(default)

The volume level. In taskbar
and docked mode, the
UIServer displays a volume
meter.

Table 7. vvUIWordHistoryIndex (COMPID_WORDHISTORY)

Constant Name Value Description

vvUIWHINDEX_TAGGEDTEXT 0
(default)

The word history text.
Applications use this text to
show users the last command
the engine recognized, or to
give users help information,
such as, a list of the commands
they can say in the current state.

Table 5. vvUIUserInfoIndex (COMPID_USERINFORMATION)

Constant Name Value Description

Classes, Structures, and Enumerations

540 IBM SDK for Windows

vvUIDockingAlgorithmConstants
You can use these constants when you write code to handle the EventQueryViewFlags event,
specifically to set the value of the pdwDockFlags parameter. The Control fires this event whenever the
user requests to change the view mode of the UIServer to “docked,” or when the view mode is already
docked, but another application has had the focus and your application is about to receive the focus.
These constants enable you to grant or deny the users’ request.

Table 8. vvUIDocking Algorithm Constants

Constant Name Value Description

vvDVAF_ALLOW_DOCK 33554432
(Hex 2000000)

Allows the UIServer to dock
to your window.

vvDVAF_ALLOW_TOPMOST_DOCK 67108864
(Hex 4000000)

Allows the UIServer to dock
to the top-most window in
this application.

vvDVAF_DEFAULT 67108864
(Hex 4000000)

Uses default.
Note: Although the default is
currently
vvDVAF_ALLOW_TOPMO
ST_DOCK, you should use
this constant instead of
vvDVAF_ALLOW_TOPMO
ST_DOCK when you want to
use the default. By using this
constant, you guarantee that
your program always uses the
default docking style, even if
the default changes in future
releases.

IBM SDK for Windows 541

User Interface Control Constants

vvDVAF_NEVER_DOCK 16777216
(Hex 1000000)

Prevents the UIServer from
docking to your window. If
the UIServer is unable to
dock to your window, it will
switch to a minimal mode
tray icon.

vvDVAF_STAY_DOCK_TO_PREVIOU
S

134217728
(Hex 8000000)

If the UIServer was
previously docked to another
window, and your application
receives the focus, this
constant tells the UIServer to
remain in the previous
application, and not to
attempt to switch to yours.

Table 8. vvUIDocking Algorithm Constants

Constant Name Value Description

Classes, Structures, and Enumerations

542 IBM SDK for Windows

vvUIDockingStyleConstants
These constants work in conjunction with vvUIDockingAlgorithmConstants. When you use the
vvDVAF_ALLOW_DOCK or the vvDVAF_ALLOW_TOPMOST_DOCK constants to grant
permission to the UIServer to dock to your window, you can set the style the UIServer uses to dock.
For more information about granting docking permissions, refer to “EventQueryViewFlags” on page
621.

Table 9. vvUIDocking Style Constants

Constant Name Value Description

vvDVSF_DEFAULT 0 Uses default.
Note: Although the default is
vvDVSF_NORMAL_BACKGROUN
D, you should use this constant
instead of
vvDVSF_NORMAL_BACKGROUN
D when you want to use the default.
By using this constant, you guarantee
that your program always uses the
default docking style, even if the
default changes in future releases.

vvDVSF_NORMAL_BACKGROUND 0 Uses the standard windows system
color for 3D objects as the
background color.

vvDVSF_TRANSPARENT_BACKGROUN
D

1 Uses a transparent background.

vvDVSF_ADJUST_ORIGIN 4 Adjusts the origin of the docked view
into the current window. For more
information, refer to the
VVUICNST.H file.

vvDVSF_ADJUST_WIDTH 8 Adjusts the width of the docked view
into the current window. For more
information, refer to the
VVUICNST.H file.

IBM SDK for Windows 543

User Interface Control Constants

vvUIEventCallbackFlags
These constants define the possible events that the UIClient control can receive from the UIServer.
Use these constants when using the SetClientCallbackFlags function.

Table 10. vvUIEventCallbackFlags

Constant Name Value Description

vvUIEVENT_ACTIVEAPP_CHANGED 16777220
(Hex 1000004)

Receives application changed
notifications. The UIClient
control fires this application if
one of the applications you
added with the
AddApplicationByName or
AddApplicationByWindow
command receives or loses
the focus.

vvUIEVENT_ALL 16711681
(Hex FFFFFFFF
)

Captures all events.

vvUIEVENT_BUTTON_PRESSED 33554448
(Hex 2000010)

Receives button pressed
notifications. This occurs
when the user clicks one of
the buttons in the UIServer.

vvUIEVENT_COMPONENT_UPDATE
D

134221824
(Hex 8001000)

Occurs when one of the
components is changed. For
more information, refer to
“SetNumberValue” on page
606 and “SetStringValue” on
page 609.

vvUIEVENT_MENUITEM_SELECTED 67109120
(Hex 4000100)

Occurs when the user selects
a custom menu option.

vvUIEVENT_NONE 0 Do not receive events. The
control will not fire any
events.

Classes, Structures, and Enumerations

544 IBM SDK for Windows

vvUIEVENT_VIEW_QUERYFLAGS 16777217
(Hex 1000001)

Occurs every few seconds
and asks the client for
permission to dock to the
application’s window.

vvUIEVENT_VIEW_QUERYMENUINF
O

16777218
(Hex 1000002)

Occurs just before the
UIServer displays the main
menu.

Table 10. vvUIEventCallbackFlags

Constant Name Value Description

IBM SDK for Windows 545

User Interface Control Constants

vvUIExtendedMenuFlags
The vvUIExtendedMenuFlags constant contains menu styles that complement the standard Win32
API MFS_* flags. Use these flags when you set the m_uState of the UIMENUITEMINFO structure.

Table 11. vvUIExtendedMenuFlags

Constant Name Value Description

vvVVUI_MFS_HIDDEN 16777216
(Hex 1000000)

Hides a menu item, but does
not physically remove it. The
menu item still exists, but it is
invisible. You can do
GetMenuItemInfo and
SetMenuItemInfo calls on
these hidden menus

Classes, Structures, and Enumerations

546 IBM SDK for Windows

vvUIMaxConstants
These constants define the maximum size for string value properties in various components in the
UIServer.

Table 12. vvUIMaxConstants

Constant Name Value Description

vvMAX_MENU_OPERATION 32 (Hex 20) The maximum number of characters
allowed in the m_szOperation
member of the
UIMENUITEMINFO_EXE
structure. For more information,
refer to
UIMENUITEMINFO_EXE.

vvMAX_MENU_STRING 64 (Hex 40) The maximum number of characters
the menu item caption (or text) can
be.

vvMAX_WORDHISTORY_TEXT 128 (Hex 80) The maximum number of characters
you use when getting/setting the
text in the word history component.

vvMAX_USERINFO_ID_LEN 32 (Hex 20) The maximum number of characters
you use when getting/setting the
text in the user information
component.

vvMAX_USERINFO_DESC_LEN 80 (Hex 50) The maximum number of characters
you can get/set from user
information components.

IBM SDK for Windows 547

User Interface Control Constants

vvUIMenuItemConstants
Each built-in menu option in the UIServer menu has a unique ID. For some of the items, you can use
this ID to turn on/off the menu option (with the AppendMenuItem or InsertMenuItem, and
DeleteMenuItem methods). Some menu options, such as Microphone On/Off, cannot be removed
except where noted. You can also use these constants when handling the EventMenuItemSelected
event - they indicate the ID of the menu item the user selected.

Table 13. vvUIMenuItemConstants

Constant Name Value Description

vvVIAVOICEUI_IDMENU_BEGIN_DICTATION 50200
(Hex C418
)

Begin Dictation
menu option. Users
normally select this
option when they
want to enter
dictation mode.

vvVIAVOICEUI_IDMENU_BEGIN_READING 50275
(Hex C463
)

Begin Reading
menu option. Users
normally select this
option when they
want the program to
turn selected text into
speech.

vvVIAVOICEUI_IDMENU_SHOW_CORRECTION_
WINDOW

50250
(Hex C44
A)

Show Correction
Window menu
option. Users
normally select this
option when they
want to correct a
word or phrase. The
application usually
responds by invoking
the correction dialog
box.

Classes, Structures, and Enumerations

548 IBM SDK for Windows

vvVIAVOICEUI_IDMENU_EXIT 50900
(Hex C6D
4)

Exit menu option.
Users select this
option when they
wish to “end speech
support” for the
current speech
application.

vvVIAVOICEUI_IDMENU_MICROPHONE 50025
(Hex C369
)

Microphone menu
option. You cannot
remove this menu
option and you will
receive notification
that the users
selected this option.

vvVIAVOICEUI_IDMENU_STOP_DICTATION 50225
(Hex C431
)

Stop Dictation menu
option. This menu
option is the opposite
of Begin Dictation.
Users select this
option when they
wish to exit dictation
mode.

Table 13. vvUIMenuItemConstants

Constant Name Value Description

IBM SDK for Windows 549

User Interface Control Constants

vvVIAVOICE_IDMENU_STOP_READING 50300
(14B4)

Stop Reading menu
option. This menu
option is the opposite
of Begin Reading.
Users select this
option when they
wish to stop the
reading mode.

vvVIAVOICEUI_IDMENU_WHAT_CAN_I_SAY 50500
(Hex C544
)

What Can I Say
menu option. You
will receive
notification that
users selected this
option; you can
remove, append or
modify this option.

Table 13. vvUIMenuItemConstants

Constant Name Value Description

Classes, Structures, and Enumerations

550 IBM SDK for Windows

vvUIRemoveClientConstants
Use these constants when issuing the RemoveClient method (only available for Visual C++ Custom
Interface users). These constants enable you to specify how the UIServer should respond to the client
shutting down.

Table 14. vvUIRemoveClientConstants

Constant Name Value Description

vvUIRCF_NO_CLOSE 0 Do not close the UIServer, even if it
is the last client to use it.

vvUIRCF_CLOSE 1 Closes the UIServer regardless of
what other clients may be using it.
Note: You should never use this
option unless it is absolutely
necessary.

vvUIRCF_CLOSE_IF_LAST_CLIENT 2 Closes the UIServer if this client is
the last client only.

vvUIRCF_DEFAULT 2 Uses the default option. Currently
the default is
vvUIRCF_CLOSE_IF_LAST_CLI
ENT. However, you should use the
vvUIRFC_DEFAULT flag instead
when you want to close the
UIServer in your program as this
constant might change in a future
release.

vvUIRCF_CLOSE_IF_LAST_CLIENT_
DELAY

4 In rare instances, the UIServer
cannot shut down before the client
application shuts down completely.
For those cases where you wish the
UIServer to shut down when your
client is the last one, but you would
like the client to have enough time
to shut down, use this constant. The
UIServer will wait a few seconds
after your program shuts down.

IBM SDK for Windows 551

User Interface Control Enumerations

User Interface Control Enumerations
The ViaVoice UIClient control supports the following enumerations:

• MICROPHONE_STATES (Enum)

• TCID (Enum)

• TVIEWTYPE (Enum)

• UIEVENTRC (Enum)

• UIMENUGROUP (Enum)

• UIMENUTYPE (Enum)

• UIRC (Enum)

Classes, Structures, and Enumerations

552 IBM SDK for Windows

MICROPHONE_STATES (Enum)

You can use these constants to set the state of the UIServer’s Microphone component. Use these
constants when using the SetNumberValue or GetNumberValue methods with the
COMPID_MICROPHONE object, as shown below.

SetNumberValue(COMPID_MICROPHONE, lSetValue, Index)

Keep in mind that setting the state of the microphone component has no direct effect on the state of the
system’s audio input device in the speech engine; it simply sets the appearance of the microphone
component.

When you use the following constants, you must set the Index parameter to
vvUIMICINDEX_MICSTATE (0) or UIMICINDEX_MICSTATE (Custom) as follows:

SetNumberValue (COMPID_MICROPHONE, UIMSF_ON, vvUIMICINDEX_MICSTATE)

(In Visual Basic, the Index parameter is optional and defaults to zero).

When using the following constants you must set the Index parameter to
vvUIMICINDEX_WAITSTATE as follows:

SetNumberValue(COMPID_MICROPHONE, UIMSF_ADDWAIT, vvUIMICINDEX_WAITSTATE)

Table 15. Microphone State Constants for the vvUIMICINDEX_MICSTATE

Constant Name Value Description

UIMSF_ON 1 Sets the state of the microphone object to
“on.”

UIMSF_OFF 2 Sets the state of the microphone object to
“off.”

UIMSF_SLEEP 3 Sets the state of the microphone object to
“asleep.”

UIMSF_DISABLED 4 Sets the state of the microphone object to
“disabled.”

UIMSF_ERROR 5 Sets the state of the microphone object to a
“no” sign.

IBM SDK for Windows 553

User Interface Control Enumerations

Table 16. Microphone State Constants for the vvUIMICSTATE_WAITSTATE

Constant Name Index Parameter Description

UIMSF_ADDWAIT 4096 (&H1000) Changes the state of the microphone object
to a wait state. Each time you call the
SetNumberValue method with this value
the UIServer increments a counter. To
return to a ready state you must call this
method with the UIMSF_REMOVEWAIT
flag the same number of times the
UIMSF_ADDWAIT flag was used. You
could also use the UIMSF_CLEARWAIT to
remove all instances of the wait state.

UIMSF_CLEARWAIT 4097 (&H1001) Removes all instances of the wait state from
the microphone object. See the description
on UIMSF_ADDWAIT for details.

UIMSF_REMOVEWAIT 4098 (&H1002) Removes one instance of the wait state. See
the description of the UIMSF_ADDWAIT
constant for details.

Classes, Structures, and Enumerations

554 IBM SDK for Windows

TCID (Enum)
TCID stands for component ID type. This enumerated type contains the ID numbers for each of the
components you can modify in the UIServer using the SetNumberValue or SetStringValue methods.
You can also use these constants when querying the state of one of the components in the UIServer by
using GetNumberValue or GetStringValue methods.

Table 17. Component ID Type Constants

Constant Name Value Description

COMPID_MICROPHONE 1 Gets/Sets the state of the microphone
component.

COMPID_VOLUME 2 Gets/Sets the level of the volume
component.

COMPID_WORDHISTORY 3 Gets/Sets the word history text. Word
history text appears in the center of the
UIServer when in Taskbar/Docked view.

COMPID_USERINFORMATION 4 Gets/Sets user information such as the
displayable user name.

COMPID_CUSTOM 5 Gets/Sets the state of toolbar buttons in
the UIServer.

COMPID_MAINMENU 6 Represents the main menu. You cannot
use this ID with SetNumberValue or
GetNumberValue; however, you may use
it when interpreting the ComponentID
parameter in the EventButtonPressed
event.

IBM SDK for Windows 555

User Interface Control Enumerations

TVIEWTYPE (Enum)
This enumerated type is issued when the UIClient control fires the EventQueryViewMenuInfo
event. The EventQueryViewMenuInfo event gets fired when the user requests to see the UIServer
menu, prior to the UIServer displaying the menu options. This enumerated type contains constants
that describe the current appearance of the UIServer.

Table 18. UI Server Type Constants

Constant Name Value Description

UIVIEW_SYSTRAY 1 Means that the UIServer appears as an
icon in the Windows tool tray or system
tray

UIVIEW_TASKBAR 2 Means that the UIServer is acting as a
taskbar similar to the Windows taskbar on
the desktop.

UIVIEW_DOCKED 3 Means that the UIServer is currently
docked to the application that has the
focus.

UIVIEW_AGENT 4 Means that the UIServer is currently
acting as an agent character.

Classes, Structures, and Enumerations

556 IBM SDK for Windows

UIEVENTRC (Enum)
If you study the events in the UIClient control you will find that the last parameter in each of the
events is pResult of type UIEVENTRC. The UIEventRC enumerated type is used to inform the
UIClient control of the action taken in one of its events.

Table 19. UIEVENTRC Type Constants

Constant Name Value Description

UIEVENTRC_PROCESSED 0 Notifies the UIClient control that your code
has processed the event, and it should not be
forwarded to other clients.

UIEVENTRC_NOTPROCESSED 1 Notifies the UIClient control that your code
has not processed the event, and it should be
forwarded to other clients.

IBM SDK for Windows 557

User Interface Control Enumerations

UIMENUGROUP (Enum)
UIMenuGroup specifies the location where you wish to add custom menu options to the ViaVoice
UIServer menu. The word Dynamic means that the menu option will change according to which
program has the focus, and Static means the options will not. The Static help menus remain even if the
application is shut down and restarted until they are explicitly removed by a call to DeleteMenu. The
UIClient control only informs you of interaction with Dynamic menu items.

Table 20. Dynamic Menu Group Constants

Constant Name Value Description

UIMFG_DYNAMIC_MAIN 1 Refers to menu options that appear in the
main menu. These options are:
Begin Dictation
Stop Dictation
Show Correction Window
Begin Reading
Stop Reading
What Can I Say?
Exit

UIMFG_DYNAMIC_APPLICATION 2 Refers to custom application menu
options.

UIMFG_DYNAMIC_HELP 3 Refers to custom help menu options.

UIMFG_STATIC_HELP 4 Refers to static help menu options, which
always appear regardless of which
application has the focus.

Classes, Structures, and Enumerations

558 IBM SDK for Windows

UIMENUTYPE (Enum)
The UIMENUTYPE enumeration specifies how the UIServer handles the menu option. It can either
notify the UIClient control or it can execute the menu option automatically.

Table 21. Dynamic Menu Type Constants

Constant Name Value Description

UIMFT_CLIENT 1 The menu option will be handled by the
UIClient.

UIMFT_EXECUTE 2 The menu option will be executed
automatically.

IBM SDK for Windows 559

User Interface Control Enumerations

UIRC (Enum)
All the methods in the UIClient control return error information due to logical errors through a return
code. (Critical errors are reported through trappable errors in Visual Basic or exception faults in Visual
C++ (MFC) or a non-successful HRESULT in Visual C++ (Custom).)

Table 22. UIRC Type Constants

Constant Name Value Description

UIAPIRC_OK 0 No Error. Call was successful.

UIAPIRC_ERROR_NOSERVER 1 The server was unable to initialize.

UIAPIRC_ERROR_SERVERBUSY 2 The server was unable to execute
your method within a certain
amount of time.

UIAPIRC_ERROR_OUTOFMEMORY 3 Not enough memory to complete
the call. You should terminate the
application.

UIAPIRC_ERROR_FAILED 4 General failure.

UIAPIRC_ERROR_INVALIDCLIENT 5 The UIClient control has become
unstable.

UIAPIRC_ERROR_INVALIDPARAM 7 This method had an invalid
parameter.

UIAPIRC_ERROR_ALREADYINITIALIZE
D

8 This result code occurs when
attempting to Initialize the
UIServer twice.

UIAPIRC_ERROR_NOTCURRENTCLIENT 9 This result code may occur when
attempting to change the state of a
component when your application is
not the current client.

Classes, Structures, and Enumerations

560 IBM SDK for Windows

IBM SDK for Windows 561

Chapter 28 Properties, Methods, and Events

User Interface Control Properties
The UIClient control, invisible at run time, does not have any custom properties, but has the following
standard properties in Visual Basic:

In Visual Basic:
The User Interface Client control supports the following standard properties:

• Indexa

• LanguageUI

• Left a

• Taga

• Topa

In Visual C++ (MFC):
• LanguageUI

In Visual C++ (Custom Interface):
There are no standard properties available.

a. Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

Properties, Methods, and Events

562 IBM SDK for Windows

LanguageUI
Sets or gets the language used by the UIServer for this specific client.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters

Return Values
The LanguageUI property settings for a ViaVoice User Interface control are:

[VVUIClient].LanguageUI = [String]

CString = [VVUIClient].GetLanguageUI()
[VVUIClient].SetLanguageUI(LPTSTR)

HRESULT [pIVVUIClient]->get_LanguageUI(BSTR *)
HRESULT [pIVVUIClient]->put_LanguageUI(BSTR)

Language Property Value

U.S. English “EN_US”

U.K. English “EN_UK”

German “GR_GR”

Italian “IT_IT”

Spanish “ES_ES”

French “FR_FR”

Japanese “JA_JP”

IBM SDK for Windows 563

User Interface Control Properties

Remarks
The language affects the menus, dialogs, and ToolTips displayed by the UIServer.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

’ Sets UI language to U.S. English
VVUIClient1.LanguageUI = "EN_US"
’ Gets UI language and displays it in a message box
MsgBox VVUIClient1.LanguageUI

// Sets UI language to U.S. English
m_VVUIClient.SetLanguageUI("EN_US");
CString sLangUI;
// Gets UI language and copies it into variable
sLangUI = m_VVUIClient.GetLanguageUI();

HRESULT hr;
BSTR bstrLangUI;

bstrLangUI = SysAllocString(OLESTR("EN_US"));
// Sets UI language to U.S. English
hr = pIVVUIClient->put_LanguageUI(bstrLangUI);
SysFreeString(bstrLangUI);

// Gets UI language into BSTR variable
hr = pIVVUIClient->get_LanguageUI(&bstrLangUI);
// Use language string now and when done free BSTR.
SysFreeString(bstrLangUI);

Properties, Methods, and Events

564 IBM SDK for Windows

See Also
“SetLanguageByID” on page 599
“SetLanguageByString” on page 601
Table 3 on page 509

IBM SDK for Windows 565

User Interface Control Methods

User Interface Control Methods
The User Interface Control supports the following methods:

• Abouta

• AddApplicationByName

• AddApplicationByWindow

• AppendMenuItem

• DeleteMenuItem

• GetMenuItemInfo

• GetNumberValue

• GetStringValue

• Initialize

• InsertMenuItem

• RemoveApplicationByName

• RemoveApplicationByWindow

• SetClientCallback

• SetClientCallbackFlags

• SetLanguageByID

• SetLanguageByString

• SetMenuItemInfo

• SetNumberValue

• SetStringValue

a. Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

Properties, Methods, and Events

566 IBM SDK for Windows

AddApplicationByName
The UIClient control enables you to interact with the ViaVoice UIServer; however, in order to get
messages from the UIServer, the UIServer needs to know which programs it is interacting with. To
specify a program by name, you can use the AddApplicationByName method.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom Interface):

Parameters
ApplicationName

String / LPSTR. The executable name of the application and its extension (for example,
CALC.EXE) or a fully qualified path plus the application name and its extension (for example,
C:\WINDOWS\NOTEPAD.EXE).

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Function AddApplicationByName(ApplicationName As String) As UIRC

long AddApplicationByName(LPCTSTR ApplicationName);

HRESULT AddApplicationByName(LPSTR lpszApplicationName, UIRC *pResult);

IBM SDK for Windows 567

User Interface Control Methods

Remarks
In Visual Basic the executable name is different at design time than it is at run time. It is recommended
that you use the AddApplicationByWindow method instead for adding your program, and use the
AddApplicationByName method when adding other programs.

The program added does not need to be running. The UIServer will simply not send any notifications
to the UIClient control until the application starts and is active.

This method will not work if you omit the “.EXE” extension from the name. Remember, to receive
events and interact with the UIServer when you are active, you must add your own application.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

See Also
“AddApplicationByWindow” on page 568
“RemoveApplicationByName” on page 591
“RemoveApplicationByWindow” on page 593

Dim rc As UIRC
rc = VVUIClient1.AddApplicationByName(‘NOTEPAD.EXE’)

UIRC rc = (UIRC) m_VVUIClient1.AddApplicationByName(“NOTEPAD.EXE”);

UIRC rc;
HRESULT hr = pIVVUIClient->AddApplicationByName(“NOTEPAD.EXE”,&rc);

Properties, Methods, and Events

568 IBM SDK for Windows

AddApplicationByWindow
The UIClient control enables you to interact with the UIServer; however, in order to get messages
from the UIServer, the UIServer needs to know which programs it is interacting with. To specify a
program by its window handle, you can use AddApplicationByWindow method.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
hwndApplication

Long / HWND_t. The window handle of the main form in the application.

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
In Visual Basic the executable name is different at design time that it is at run time. It is recommended
that you use the AddApplicationByWindow method instead for adding your program, and use the
AddApplicationByName method when adding other programs.

Function AddApplicationByWindow (hwndApplication As Long) As UIRC

long AddApplicationByWindow(long hwndApplication);

HRESULT AddApplicationByWindow(HWND_t hwndApplication, UIRC *pResult);

IBM SDK for Windows 569

User Interface Control Methods

Remember, to receive events and interact with the UIServer when you are active, you must add your
own application.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

See Also
“AddApplicationByWindow” on page 568
“RemoveApplicationByName” on page 591
“RemoveApplicationByWindow” on page 593

Dim rc As UIRC
rc = VVUIClient1.AddApplicationByWindow Me.hWnd)

UIRC rc = (UIRC)m_VVUIClient1.AddApplicationByWindow((long)m_hWnd);

UIRC rc;
HRESULT hr = pIVVUIClient->AddApplicationByWindow((HWND_t)hWnd,&rc);

Properties, Methods, and Events

570 IBM SDK for Windows

AppendMenuItem
Adds custom menu items in either of two ways: as an application-dependent menu group, or as a help
menu item.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
uUIMenuGroup

UIMENUGROUP. This parameter specifies the location where you wish to add the menu item. For
more information, refer to Chapter 27 “Classes, Structures, and Enumerations”.

MenuName
String / LPSTR. Use this parameter to specify the menu group name.

pIMenuInfo
VVUIMenuInfo / UIMENUITEMINFO. A menu information structure. For more information,
refer to “User Interface Control Structures” on page 535. This structure contains the characteristics
of the menu item.

Function AppendMenuItem(uUIMenuGroup As UIMENUGROUP, MenuName As String,
pIMenuInfo As VVUIMenuInfo) As UIRC

long AppendMenuItem(long uUIMenuGroup, LPCTSTR MenuName, LPDISPATCH
pIMenuInfo);

HRESULT AppendMenuItem(UIMENUGROUP uUIMenuGroup, LPSTR lpszMenuName,
UIMENUITEMINFO* lpuimiiItem, UIRC* pResult);

IBM SDK for Windows 571

User Interface Control Methods

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
You can also use this method to turn on main menu items such as “Begin Dictation” and “Show
Correction Window.”

The AppendMenuItem item is similar to the InsertMenuInfo item, except that AppendMenuItem
adds the menu item to the end of the menu list, while InsertMenuInfo enables you to specify the
location of the new menu item.

When adding a menu item you must specify an ID number for the item. You can do this by setting the
ID member of the VVUIMenuInfo structure.

When the user clicks on the custom menu item, the UIClient control will fire the
EventMenuItemSelected event. For more information, refer to “EventMenuItemSelected” on page
619.

If you use the AppendMenuInfo method multiple times with the same MenuID for the menu items,
the UIClient control will not generate an error – it will simply add the menu item multiple times. This
is useful if you wish to handle menu items with different text in the same way.

Properties, Methods, and Events

572 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

Dim 1RetVal As UIRC
Dim oNewMenu As New VVUIMenuInfo

oNewMenu.Type = UIMFT_CLIENT
oNewMenu.ID = 100
oNewMenu.Caption = “Menu Item #1”
oNewMenu.Checked = True

rc = VVUIClient1.AppendMenuItem(UIMEF_DYNAMIC_APPLICATION, _
App.EXEName, _
oNewMenu)

End Sub

CVVUIMenuInfo NewMenuItem;
NewMenuItem.CreateDispatch(CLSID_VVUIMenuInfo);
NewMenuItem.SetType(UIMFT_CLIENT);
NewMenuItem.SetID(100);
NewMenuItem.SetCaption(“Menu Item #1”);
NewMenuItem.SetChecked(TRUE);

m_VVUIClient1.AppendMenuItem(UIMFG_DYNAMIC_APPLICATION,
AfxGetAppName(),
NewMenuItem);

IBM SDK for Windows 573

User Interface Control Methods

In Visual C++ (Custom):

See Also
“InsertMenuItem” on page 587
“SetClientCallback (Custom Interface)” on page 595

UIRC rc;
UIMENUITEMINFO NewMenuItem;

ZeroMemory(&NewMenuItem, sizeof(NewMenuItem));
NewMenuItem.m_uType = UIMFT_CLIENT;
NewMenuItem.m_dwID = 100;
lstrcpy(NewMenuItem.m_szText, “Menu Item #1”);
NewMenuItem.m_uState = MFS_ENABLED |MFS_CHECKED;

HRESULT hr=pIVVUIClient->AppendMenuItem(UIMFG_DYNAMIC_APPLICATION,
“MyAppName”
&NewMenuItem,
&rc);

Properties, Methods, and Events

574 IBM SDK for Windows

DeleteMenuItem
Removes a custom menu entry added as an application menu item or as a help menu item.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
uUIMenuGroup

UIMENUGROUP. One of the menu group flags described in Chapter 27 “Classes, Structures, and
Enumerations”.

MenuName
String / LPSTR. The name of the menu group from which the menu item will be deleted.

uItem
Long / UINT. The menu item’s ID number, or the menu item’s position within the group. This
parameter changes meanings depending on the value of the fByPosition parameter. When the
fByPosition parameter is zero, then the uItem parameter indicates the menu ID number. If the
fByPosition parameter is set to one, then the uItem parameter indicates the 1-based position from
the top within the group of the menu item.

fByPosition

Function DeleteMenuItem(uUIMenuGroup As UIMENUGROUP, MenuName As String,
uItem As Long, fByPosition As Long) As UIRC

long DeleteMenuItem(long uUIMenuGroup, LPCTSTR MenuName, long uItem, long
fByPosition);

HRESULT DeleteMenuItem(UIMENUGROUP uUIMenuGroup, LPSTR lpszMenuName,
UIint uItem, BOOL fByPosition, UIRC* pResult);

IBM SDK for Windows 575

User Interface Control Methods

Long / BOOL. Set this parameter to zero to indicate the uItem parameter represents a menu ID
number. Set it to one to indicate that the uItem parameter represents a menu item’s position.

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
If you are unsure that the menu item exists, use the GetMenuInfo menu item prior to using this
method; otherwise the method will return an error HRESULT generating a trappable error in Visual
Basic and Visual C++ (MFC).

Example

In Visual Basic:

In Visual C++ (MFC):

Dim rc As UIRC
rc = VVUIClient1.DeleteMenuItem(UIMFG_DYNAMIC_APPLICATION, _
App.EXEName, _
100, _
False)

UIRC rc;
rc = (UIRC) m_VVUIClient1.DeleteMenuItem(UIMFG_DYNAMIC_APPLICATION,
AfxGetAppName(),
100,
FALSE);

Properties, Methods, and Events

576 IBM SDK for Windows

In Visual C++ (Custom):

See Also
“AppendMenuItem” on page 570
“InsertMenuItem” on page 587

UIRC rc;
HRESULT hr = pIVVUIClient->DeleteMenuItem(UIMFG_DYNAMIC_APPLICATION,

“MyAppName”,
100,
FALSE,
&rc);

IBM SDK for Windows 577

User Interface Control Methods

GetMenuItemInfo
Obtains information about a custom menu item, or about one of the main menu items.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
uUIMenuGroup

UIMENUGROUP. One of the UIMENUGROUP flags described in Chapter 27 “Classes,
Structures, and Enumerations”.

MenuName
String / LPSTR. The name of the menu group from which you are requesting information.

uItem
Long / UINT. The menu item’s ID number, or the menu item’s position within the group. This
parameter changes meanings depending on the value of the fByPosition parameter. When the
fByPosition parameter is zero then the uItem parameter indicates the menu ID number. If the
fByPosition parameter is set to one then the uItem parameter indicates the 1-based position from
the top within the group of the menu item.

fByPosition

Function GetMenuItemInfo(uUIMenuGroup As UIMENUGROUP, MenuName As
String, uItem As Long, fByPosition As Long, pIMenuInfo As VVUIMenuInfo)
As UIRC

long GetMenuItemInfo(long uUIMenuGroup, LPCTSTR MenuName, long uItem,
long fByPosition, LPDISPATCH pIMenuInfo);

HRESULT GetMenuItemInfo(UIMENUGROUP uUIMenuGroup, LPSTR lpszMenuName,
int uItem, BOOL fByPosition, UIMENUITEMINFO* lpuimiiItem, UIRC* pResult);

Properties, Methods, and Events

578 IBM SDK for Windows

Long / BOOL. Set this parameter to zero to indicate the uItem parameter represents a menu ID
number. Set it to one to indicate that the uItem parameter represents a menu item’s position.

pIMenuInfo
VVUIMenuInfo / UIMENUITEMINFO. An instance of the VVUIMenuInfo class or of the
UIMENUITEMINFO structure. You must declare a new instance of this class or of the structure
prior to calling the method.

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
The information is retrieved through the pIMenuInfo parameter. This parameter will contain an
instance of the VVUIMenuInfo class in Visual Basic and Visual C++ (MFC), or an instance of the
UIMENUITEMINFO structure in Visual C++ (Custom).

If you call the GetMenuItemInfo method with an invalid ID number the function will return UIRC
code UIAPIRC_ERROR_FAILED (4). To enumerate through all of the menu items, issue this method
using the “by position” flag until the method returns the failed error code.

Example

In Visual Basic:

Dim rc As UIRC
Dim oMenuInfo As New VVUIMenuInfo
rc = VVUIClient1.GetMenuItemInfo(UIMFG_DYNAMIC_APPLICATION, _
 sMenuGroup, _
 iCounter, _
 1, _
 oMenuInfo)

IBM SDK for Windows 579

User Interface Control Methods

In Visual C++ (MFC):

In Visual C++ (Custom):

See Also
“SetMenuItemInfo” on page 603
“vvUIMenuInfo (Class - Visual Basic and MFC Only)” on page 534
“User Interface Control Structures” on page 535.

CVVUIMenuInfo MenuItem;
MenuInfo.CreateDispatch(CLSID_VVUIMenuInfo);
UIRC rc = (UIRC)
m_vvUIClient1.GetMenuItemInfo(UIMFG_DYNAMIC_APPLICATION,

“MyAppName”,
iCounter,
TRUE,
MenuItem);

UIRC rc;
UIMENUITEMINFO MenuItem;

HRESULT hr=pIVVUIClient->GetMenuItemInfo(UIMFG_DYNAMIC_APPLICATION,
“MyAppName”,
iCounter,
TRUE,
&MenuItem,
&rc);

Properties, Methods, and Events

580 IBM SDK for Windows

GetNumberValue
Obtains numeric information on the state of a certain component in the UIServer (for example, the
microphone component, COMPID_MICROPHONE).

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
ciComponent

TCID. One of the UIServer’s object IDs. You will find a complete list of objects in Chapter 27
“Classes, Structures, and Enumerations”.

pdwValueData
Long / DWORD. The pdwValueData parameter will contain the numeric value after issuing the
method. In Visual Basic, you must declare a long variable for this parameter.

nIndex
Long (Optional) / int. This value enables you to access extended information about the object. Its
meaning changes depending on which object you request information from. For a description of
each of the possible values for this parameter, refer to “Component Index Constants” on page 538.

Function GetNumberValue(ciComponent As TCID, pdwValueData As Long,
[nIndex As Long]) As UIRC

long GetNumberValue(long ciComponent, long* pdwValueData, long nIndex);

HRESULT GetNumberValue(TCID ciComponent, DWORD* pdwValueData, int
nIndex, UIRC* pResult);

IBM SDK for Windows 581

User Interface Control Methods

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
If you call the GetMenuItemInfo method with an invalid ID number the function will return

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

See Also
“GetNumberValue” on page 580
“GetStringValue” on page 582
“SetNumberValue” on page 606

Dim rc As UIRC
Dim NewValue as Long
rc = VVUIClient1.GetNumberValue(COMPID_MICROPHONE, NewValue)

long NewValue;
UIRC rc = (UIRC) m_VVUIClient1.GetNumberValue(COMPID_MICROPHONE,
&NewValue,
UIMICINDEX_MICSTATE);

DWORD NewValue;
UIRC rc;
HRESULT hr = pVVUIClient->GetNumberValue(COMPID_MICROPHONE,
&NewValue,
UIMICINDEX_MICSTATE,
&rc);

Properties, Methods, and Events

582 IBM SDK for Windows

GetStringValue
Obtains string information on the state of a certain component in the UIServer (for example, the word
history component, COMPID_WORDHISTORY).

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
ciComponent

TCID. One of the UIServer’s object IDs. You will find a complete list of objects in Chapter 27
“Classes, Structures, and Enumerations”.

nDataSize (Visual C++ Custom Only)
Long / int. The int size of the string buffer that will hold the string value. The constant
MAX_WORDHISTORY_TEXT defines the maximum length of the word history string, and
MAX_USERINFO_ID_LEN/MAX_USERINFO_DESC_LEN defines the maximum lengths for
the user information strings.

ValueData
String / LPSTR. The pdwValueData parameter will contain the string value after issuing the
method. In Visual Basic, you must declare a string variable to use for this parameter.

nIndex

Function GetStringValue(ciComponent As TCID, ValueData As String, [nIndex
As Long]) As UIRC

long GetStringValue(long ciComponent, BSTR* ValueData, long nIndex);

HRESULT GetStringValue(TCID ciComponent, int nDataSize, LPSTR
lpszValueData, int nIndex, UIRC* pResult);

IBM SDK for Windows 583

User Interface Control Methods

Long (Optional) / int. This value enables you to access extended information about the object. Its
meaning changes depending on which object you request information from. For a detailed
description of each of the possible values for this parameter, refer to “Component Index
Constants” on page 538. For more information about this parameter, refer to the Remarks section
below.

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
In Visual Basic, the ValueData parameter can be a variable length string or a fixed-size string.

If using a fixed-size, use the MAX_* constants in Visual C++ (MFC or Custom) or vvMAX_*
constants in Visual Basic.

Example

In Visual Basic:

Dim rc As UIRC
Dim NewValue As String
rc = If VVUIClient1.GetStringValue(COMPID_WORDHISTORY, NewValue) =
UIAPIRC_OK Then

Properties, Methods, and Events

584 IBM SDK for Windows

In Visual C++ (MFC):

In Visual C++ (Custom):

See Also
“GetNumberValue” on page 580
“GetStringValue” on page 582
“SetNumberValue” on page 606

BSTR bstrNewValue=NULL;
UIRC rc = (UIRC) m_vvUIClient1.GetStringValue(COMPID_WORDHISTORY,
&bstrNewValue,
UIWHINDEX_TAGGEDTEXT);

SysFreeString(bstrNewValue);

UIRC rc;
char szNewValue[MAX_WORDHISTORY_TEXT];
HRESULT hr = pIVVUIClient->GetStringValue(COMPID_WORDHISTORY,
MAX_WORDHISTORY_TEXT,
szNewValue,
&rc,
UIWHINDEX_TAGGEDTEXT);

IBM SDK for Windows 585

User Interface Control Methods

Initialize
Causes the UIServer to initialize (if it is not already visible, it also causes the UIServer to appear).

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
None.

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
You cannot call this method twice for the same control. However, each instance of the control must call
this method. The UIServer keeps track of all the clients (controls) using it so that it can properly shut
down when there are no clients using it.

The UIServer’s menu will not function until you call the SetLanguageByString or the
SetLanguageByID method.

Function Initialize() As UIRC

long Initialize();

HRESULT Initialize(UIRC* pResult);

Properties, Methods, and Events

586 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

See Also
“SetLanguageByID” on page 599
“SetLanguageByString” on page 601

Dim rc As UIRC
rc = m_VVUIClient1.Initialize()

UIRC rc = (UIRC) m_VVUIClient1.Initialize();

UIRC rc;
HRESULT hr = pIVVUIClient->Initialize(&rc);

IBM SDK for Windows 587

User Interface Control Methods

InsertMenuItem
Adds custom menu entries in either of two ways: as an application-dependent menu group or as a help
menu item.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
uUIMenuGroup

UIMENUGROUP. This parameter specifies the location where you wish to add the menu item.

Valid values are: One of the UIMENUGROUP described in Chapter 27 “Classes, Structures, and
Enumerations”.

MenuName
String / LPSTR. Use this parameter to specify the menu group name.

uItem
Long / int. The menu item’s ID number, or the menu item’s position within the group. This
parameter changes meanings depending on the value of the fByPosition parameter. When the
fByPosition parameter is zero, then the uItem parameter indicates the menu ID number. If the

Function InsertMenuItem(uUIMenuGroup As UIMENUGROUP, MenuName As String,
uItem As Long, fByPosition As Long, pIMenuInfo As VVUIMenuInfo) As UIRC

long InsertMenuItem(long uUIMenuGroup, LPCTSTR MenuName, long uItem, long
fByPosition, LPDISPATCH pIMenuInfo);

HRESULT InsertMenuItem(UIMENUGROUP uUIMenuGroup, LPSTR lpszMenuName,
UINT uItem, BOOL fByPosition, UIMENUITEMINFO* lpuimiiItem, UIRC*
pResult);

Properties, Methods, and Events

588 IBM SDK for Windows

fByPosition parameter is set to one, then the uItem parameter indicates the 1-based position from
the top within the group of the menu item.

fByPosition
Long / BOOL. Set this parameter to zero to indicate the uItem parameter represents a menu ID
number. Set it to one to indicate that the uItem parameter represents a menu item’s position.

pIMenuInfo
VVUIMenuInfo / UIMENUITEMINFO. A menu information class or structure. For more
information, refer to “User Interface Control Structures” on page 535. This structure contains the
characteristics of the menu item.

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
You can also use this method to enable main menu items such as “Begin Dictation”, and “Show
Correction Window”. This method will position the new menu item before the item specified by the
uItem and fByPosition parameters.

IBM SDK for Windows 589

User Interface Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

Dim 1RetVal As UIRC
Dim oNewMenu As New VVUIMenuInfo

oNewMenu.Type = UIMFT_CLIENT
oNewMenu.ID = 150
oNewMenu.Caption = “Menu Item #1”
oNewMenu.Checked = True

1RetVal = VVUIClient1.InsertMenuItem(UIMFG_DYNAMIC_HELP,_
App.EXEName, _
200, _
False, _
oMenuInfo)

CVVUIMenuInfo NewMenuItem;
NewMenuItem.CreateDispatch(CLSID_VVUIMenuInfo);
NewMenuItem.SetType(UIMFT_CLIENT);
NewMenuItem.SetID(150);
NewMenuItem.SetCaption(“Menu Item #1”);
NewMenuItem.SetChecked(TRUE);

m_VVUIClient1.InsertMenuItem(UIMFG_DYNAMIC_APPLICATION,
AfxGetAppName(),
200,
FALSE,
NewMenuItem);

Properties, Methods, and Events

590 IBM SDK for Windows

In Visual C++ (Custom):

See Also
“AppendMenuItem” on page 570
“DeleteMenuItem” on page 574

UIRC rc;
UIMENUITEMINFO NewMenuItem;

ZeroMemory(&NewMenuItem, sizeof(NewMenuItem));
NewMenuItem.m_uType = UIMFT_CLIENT;
NewMenuItem.m_dwID = 150;
lstrcpy(NewMenuItem.m_szText, “Menu Item #1”);
NewMenuItem.m_uState = MFS_CHECKED: MFS_ENABLED;

HRESULT hr=pIVVUIClient->InsertMenuItem(UIMFG_DYNAMIC_APPLICATION,
“MyAppName”,
200,
FALSE,
&NewMenuItem,
&rc);

IBM SDK for Windows 591

User Interface Control Methods

RemoveApplicationByName
Removes a program from the list using its name.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
ApplicationName

String / LPSTR. The executable name of the application and its extension, for example,
CALC.EXE, or a fully qualified path plus the application.

Returns
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
The UIClient control enables you to interact with the UIServer; however, in order to get messages
from the UIServer, the UIServer needs to know which programs it is interacting with. To specify a
program by name, you can use the AddApplicationByName method. The
RemoveApplicationByName function enables you to remove a program from the list using its name.

Function RemoveApplicationByName(ApplicationName As String) As UIRC

long RemoveApplicationByName(LPCTSTR ApplicationName);

HRESULT RemoveApplicationByName(LPSTR lpszApplicationName, UIRC*
pResult);

Properties, Methods, and Events

592 IBM SDK for Windows

In Visual Basic the executable name is different at design time than it is at run time. It is recommended
that you use the RemoveApplicationByWindow method instead for removing your program by name,
and use the RemoveApplicationByName method when removing other programs.

This method will not work if you omit the “.EXE” extension from the name.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

See Also
“AddApplicationByName” on page 566
“AddApplicationByWindow” on page 568
“RemoveApplicationByWindow” on page 593

Dim rc As UIRC
rc = VVUIClient1.RemoveApplicationByName(“CALC.EXE”)

UIRC rc = (UIRC) m_VVUIClient1.RemoveApplicationByName(“CALC.EXE”);

UIRC rc;
HRESULT hr = pVVUIClient->RemoveApplicationByName(“CALC.EXE”, &rc);

IBM SDK for Windows 593

User Interface Control Methods

RemoveApplicationByWindow
Removes a program from the list using its window handle.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
hwndApplication

Long/ HWND_t. The window handle of the application you wish to remove from the list.

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
The UIClient control enables you to interact with the UIServer; however, in order to get messages
from the UIServer, the UIServer needs to know which programs it is interacting with. To specify a
program by name, you can use the AddApplicationByName method. The
RemoveApplicationByWindow function enables you to remove a program from the list using its
window handle.

Function RemoveApplicationByWindow(hwndApplication As Long) As UIRC

long RemoveApplicationByWindow(long hwndApplication);

HRESULT RemoveApplicationByWindow(HWND_t hwndApplication, UIRC*
pResult);

Properties, Methods, and Events

594 IBM SDK for Windows

In Visual Basic the executable name is different at design time that it is at run time. It is recommended
that you use the RemoveApplicationByWindow method instead for removing your program, and use
the RemoveApplicationByName method when removing other programs.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

See Also
“AddApplicationByName” on page 566
“AddApplicationByWindow” on page 568
“RemoveApplicationByName” on page 591

Dim rc As UIRC
rc = VVUIClient1.RemoveApplicationByWindow(VVUIClient1.Parent.hWnd)

UIRC rc = (UIRC) m_VVUIClient1.RemoveApplicationByWindow((long)m_hWnd);

UIRC rc;
HRESULT hr = pVVUIClient->RemoveApplicationByWindow((HWND_t)hWnd,&rc);

IBM SDK for Windows 595

User Interface Control Methods

SetClientCallback (Custom Interface)
Turns on communication actions that occur on the UIServer to a C++ program.

Syntax

In Visual C++ (Custom):

Parameters
riid

GUID. A pointer to the client’s implementation of the event sink to be used when handling
notifications from the UIServer.

pIClientEventSink
IUnkown. The Interface Id (IID) at the event interface implementation. At this time, the only valid
value is IID_IVVUIEventSink.

dwFlags
DWORD. The dwFlags parameter specifies the messages the UIClient control receives from the
UIServer. For more information about values, refer to “vvUIEventCallbackFlags” on page 543.

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
This method is also known as SetClientCallbackFlags in the Visual Basic and C++ (MFC).

The UIClient control is able to communicate actions that occur on the UIServer to your C++
program. However, you must turn on this communication manually. To do so, use the
SetClientCallback method.

HRESULT SetClientCallback(GUID* riid, IUnknown* pIClientEventSink, DWORD
dwFlags, UIRC* pResult);

Properties, Methods, and Events

596 IBM SDK for Windows

When the user interacts with the UIServer, the UIServer notifies the UIClient control which in turn
notifies your program by firing one of its events. However, each notification sent from the UIServer to
the control affects the performance of your program. For that reason only call this method when you
wish to receive messages from the UIServer.

Example

In Visual C++ (Custom):

See Also
None.

UIRC rc;
HRESULT hr = pIVVUIClient->SetClientCallback(IID_IVVUIEventSink,
&m_IVVUIClientEventSink,
UIEVENT_ALL,
&rc);

IBM SDK for Windows 597

User Interface Control Methods

SetClientCallbackFlags
Communicates actions that occur in the UIServer to a Visual Basic program.

Syntax

In Visual Basic:

In Visual C++ (MFC):

Parameters
dwFlags

Long / DWORD. The dwFlags parameter specifies the messages the UIClient control receives
from the UIServer. For more information about values, refer to “vvUIEventCallbackFlags” on
page 543.

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
This method is also known as SetClientCallback in the Custom interface.

The UIClient control is able to communicate actions that occur in the UIServer to your Visual Basic
program. However, you must turn on this communication manually. To do so, use the
SetClientCallbackFlags method.

When the user interacts with the UIServer, the UIServer notifies the UIClient control which in turn
notifies your program by firing one of its events. However, each notification sent from the UIServer to

Function SetClientCallbackFlags(dwFlags As Long) As UIRC

long SetClientCallbackFlags(long dwFlags);

Properties, Methods, and Events

598 IBM SDK for Windows

the control affects the performance of your program. For that reason only call this method when you
wish to receive messages from the UIServer.

Example

In Visual Basic:

In Visual C++ (MFC):

See Also
None.

Dim rc As UIRC
rc = VVUIClient1.SetClientCallbackFlags(vvUIEVENT_ALL)

UIRC rc = (UIRC)m_vvUIClient1.SetClientCallbackFlags(vvUIEVENT_ALL);

IBM SDK for Windows 599

User Interface Control Methods

SetLanguageByID
Specifies the language the UIServer will use for displaying its menu items.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
wLangID

Integer / WORD. The language ID according to Table 3, “LangID string names supported by
UIServer and their corresponding values,” on page 509.

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
Without calling this method the UIServer will not display a menu when the user clicks the ViaVoice
menu.

Function SetLanguageByID(wLangID As Integer) As UIRC

long SetLanguageByID(short wLangID);

HRESULT SetLanguageByID(LANGID wLangID, UIRC* pResult);

Properties, Methods, and Events

600 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

See Also
“MAKELANGID” in the Win32 SDK documentation.
“SetLanguageByString” on page 601

Dim rc As UIRC
rc = VVUIClient1.SetLanguageByID(1033) ’for US English

UIRC rc =
m_VVUIClient1.SetLanguageID(MAKELANGID(LANG_ENGLISH,SUBLANG_US)); //for
US English.

UIRC rc;
HRESULT hr = pVVUIClient-
>SetLanguageID(MAKELANGID(LANG_ENGLISH,SUBLANG_US),&rc);// for US
English

IBM SDK for Windows 601

User Interface Control Methods

SetLanguageByString
Specifies the language the UIServer will use for displaying its menu items.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
LangStr

String / LPSTR. A 2- or 5-character string representing the language that the UIServer will use
when displaying menu items according to Table 3 on page 509:

Returns
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
Without calling this method the UIServer will not display a menu when the user clicks the ViaVoice
menu.

Function SetLanguageByString(LangStr As String) As UIRC

long SetLanguageByString(LPCTSTR LangStr);

HRESULT SetLanguageByString(LPSTR lpszLangStr, UIRC* pResult);

Properties, Methods, and Events

602 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

See Also
“SetLanguageByID” on page 599

Dim rc As UIRC
rc = VVUIClient1.SetLanguageByString("EN_US")

UIRC rc = (UIRC) m_VVUIClient1.SetLanguageByString(“EN_US”);

UIRC rc;
HRESULT hr = pVVUIClient->SetLanguageByString(“EN_US”, &rc);

IBM SDK for Windows 603

User Interface Control Methods

SetMenuItemInfo
Sets the characteristics of a certain menu item.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
uUIMenuGroup

UIMENUGROUP. This parameter specifies the location where you wish to add the menu item.
Valid values are: One of the ”UIMENUGROUP (Enum)” flags described in Chapter 27 “Classes,
Structures, and Enumerations”.

MenuName
String / LPCTSTR. Use this parameter to specify the menu group name.

uItem
Long / UINT. The menu item’s ID number, or the menu item’s position within the group. This
parameter changes meanings depending on the value of the fByPosition parameter. When the
fByPosition parameter is zero then the uItem parameter indicates the menu ID number. If the
fByPosition parameter is set to one then the uItem parameter indicates the 1-based position from
the top within the group of the menu item.

Function SetMenuItemInfo(uUIMenuGroup As UIMENUGROUP, MenuName As
String, uItem As Long, fByPosition As Long, pIMenuInfo As VVUIMenuInfo)
As UIRC

long SetMenuItemInfo(long uUIMenuGroup, LPCTSTR MenuName, long uItem,
long fByPosition, LPDISPATCH pIMenuInfo);

HRESULT SetMenuItemInfo(UIMENUGROUP uUIMenuGroup, LPSTR lpszMenuName,
UINT uItem, BOOL fByPosition, UIMENUITEMINFO* lpuimiiItem, UIRC*
pResult);

Properties, Methods, and Events

604 IBM SDK for Windows

fByPosition
Long / BOOL. Set this parameter to zero to indicate the uItem parameter represents a menu ID
number. Set it to one to indicate that the uItem parameter represents a menu item’s position.

pIMenuInfo
VVUIMenuInfo / UIMENUITEMINFO. A menu information class in Visual Basic and Visual
C++ (MFC) or a structure in Visual C++ (Custom). For more information refer to “vvUIMenuInfo
(Class - Visual Basic and MFC Only)” on page 534 and “User Interface Control Structures” on
page 535, which contains the characteristics of the menu item.

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
You must add the menu item with the AppendMenuItem or InsertMenuItem prior to using this
method. If you attempt to modify a menu item that does not exist the method will return an error code
of UIAPIRC_ERROR_FAILED(4).

Example

In Visual Basic:

Dim rc As UIRC
Dim MenuInfo As New VVUIMenuInfo
MenuInfo.Checked = True
rc = VVUIClient1.SetMenuItemInfo(UIMFG_DYNAMIC_MAIN,
App.EXEName,
100,
False,
oNewMenuInfo)

IBM SDK for Windows 605

User Interface Control Methods

In Visual C++ (MFC)

In Visual C++ (Custom):

See Also
“GetMenuItemInfo” on page 577

CVVUIMenuInfo MenuInfo;
MenuInfo.CreateDispatch(CLSID_VVUIMenuInfo);
MenuInfo.SetChecked(TRUE);
UIRC rc = (UIRC) m_VVUIClient1.SetMenuItemInfo(UIMFG_DYNAMIC_MAIN,
AfxGetAppName(),
100,
FALSE,
MenuInfo);

UIRC rc;
UIMENUITEMINFO MenuInfo;

ZeroMemory(&NewMenuItem, sizeof(NewMenuItem));
HRESULT hr = pVVUIClient->GetMenuItemInfo(UIMFG_DYNAMIC_MAIN,

“MyAppName”,
100,
FALSE,
&MenuInfo,
&rc);

MenuInfo.m_uState = MFS_CHECKED| MFS_ENABLED;
HRESULT hr = pVVUIClient->SetMenuItemInfo(UIMFG_DYNAMIC_MAIN,

“MyAppName”,
100,
FALSE,
&MenuInfo,
&rc);

Properties, Methods, and Events

606 IBM SDK for Windows

SetNumberValue
Modifies the state of a certain component in the UIServer.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
ciComponent

TCID. One of the UIServer’s object IDs. You will find a complete list of objects in the Classes,
Structures, Enumerations part of this reference section.

dwValueData
Long / DWORD. The pdwValueData parameter will contain the numeric value that the control will
use to set the object’s characteristic.

nIndex
Long (Optional) / int. This value enables you to set extended information about the object. Its
meaning changes depending on which object you request information from. See the Remarks
section below for more information.

Function SetNumberValue(ciComponent As TCID, dwValueData As Long, [nIndex
As Long]) As UIRC

long SetNumberValue(long ciComponent, long dwValueData, long nIndex);

HRESULT SetNumberValue(TCID ciComponent, DWORD dwValueData, int nIndex,
UIRC* pResult);

IBM SDK for Windows 607

User Interface Control Methods

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
This method enables you to change characteristics represented with numeric values, such as the
volume level in the volume meter component (COMPID_VOLUME). In Visual Basic, the
dwValueData parameter must be a long value. You should convert all your values to be long with the
CLng() function prior to issuing this method.

Properties, Methods, and Events

608 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

See Also
“GetNumberValue” on page 580
“GetStringValue” on page 582
“SetNumberValue” on page 606

Dim lSetValue As Long
Dim lRetVal As UIRC

lSetValue = CLng(75)
lRetVal = VVUIClient1.SetNumberValue(COMPID_VOLUME, lSetValue)

UIRC rc = (UIRC) m_VVUIClient1.SetNumberValue(COMPID_VOLUME,
75,
UIVOLINDEX_VOLLEVEL);

UIRC rc;
HRESULT hr = pVVUIClient->SetNumberValue(COMPID_VOLUME,
75,
UIVOLINDEX_VOLLEVEL,
&rc);

IBM SDK for Windows 609

User Interface Control Methods

SetStringValue
Changes characteristics represented with string values, such as the text in the word history object
(COMPID_WORDHISTORY).

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
ciComponent

TCID. One of the UIServer’s object IDs. You will find a complete list of objects in the Classes,
Structures, Enumerations part of this reference section.

ValueData
String / LPSTR. The ValueData parameter will contain the numeric value that the control will use
to set the object’s characteristic.

nIndex
Long (Optional) / int. This value enables you to set extended information about the object. Its
meaning changes depending on which object you request information from. For more information,
refer to “Component Index Constants” on page 538.

Function SetStringValue(ciComponent As TCID, ValueData As String, [nIndex
As Long]) As UIRC

long SetStringValue(long ciComponent, LPCTSTR ValueData, long nIndex);

HRESULT SetStringValue(TCID ciComponent, LPSTR lpszValueData, int
nIndex, UIRC* pResult);

Properties, Methods, and Events

610 IBM SDK for Windows

Return Values
UIRC

For more information, refer to “UIRC (Enum)” on page 559.

Remarks
None.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

See Also
“GetNumberValue” on page 580
“GetStringValue” on page 582
“SetNumberValue” on page 606

Dim lRetVal As UIRC
lRetVal = VVUIClient1.SetStringValue(COMPID_WORDHISTORY, _

“Say ‘Stop Dictation’ to stop.”)

UIRC rc = (UIRC) m_VVUIClient1.SetStringValue(COMPID_WORDHISTORY,
“Say ‘Stop Dictation’ to stop.”,
UIWHINDEX_TAGGEDTEXT);

UIRC rc;
HRESULT hr = pVVUIClient->SetStringValue(COMPID_WORDHISTORY,

“Say ‘Stop Dictation’ to stop.”,
UIWHINDEX_TAGGEDTEXT,
&rc);

IBM SDK for Windows 611

User Interface Control Events

User Interface Control Events
The UIClient control triggers events when the user interacts with the UIServer, but only if you
specify that you wish the control to receive messages from the UIServer by issuing the
SetClientCallbackFlags or SetClientCallback methods.

All of the events in the control have a pResult parameter, which enables you to inform the control of
how you handled the event. This helps the control determine if it should communicate the event to
other clients or not. The User Interface Client control supports the following events:

• EventActiveApplication

• EventButtonPressed

• EventComponentUpdated

• EventMenuItemSelected

• EventQueryViewFlags

• EventQueryViewMenuInfo

Properties, Methods, and Events

612 IBM SDK for Windows

EventActiveApplication
Event fired by the UIClient control whenever the UIServer detects a change in registered application
activation.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
bActive

Boolean /BOOL. Flags indicating if the application has the focus (Active = True) or doesn’t
(Active = False).

hwndApplication
Long / HWND_t. The window handle of the application window that has gained focus or has lost
focus.

ApplicationName
String / LPSTR. The executable name of the application window that has gained or lost focus.

pResult
UIEVENTRC. The result code you wish to pass back to the control. The control uses this to
determine if the message should be passed on to other controls.

EventActiveApplication(bActive As Boolean, hwndApplication As Long,
ApplicationName As String, pResult As UIEVENTRC)

void OnEventActiveApplication(BOOL bActive, long hwndApplication, SPCSTR
lpszApplicationName, long FAR* pResult);

HRESULT EventActiveApplication(BOOL bActive, HWND_t hwndApplication,
LPSTR lpszApplicationName, UIEVENTRC* pResult);

IBM SDK for Windows 613

User Interface Control Events

Return Values
TRUE

Sets the state of the components.

FALSE
Saves the state.

Remarks
The control fires this event when one of the applications, added through the
AddApplicationByWindow or AddApplicationByName method, either gains or loses the UIServer
activation. Please note that since the UIServer has to detect the change in order to notify the client,
certain quick lose/gain/lose focus change scenarios might go unnoticed by the UIServer. This event is
useful for saving/restoring UIServer component states (i.e. Microphone state, custom buttons, etc.).

Since there may be other speech-enabled applications using the same UIServer, this event enables you
to reset the state of the various components in the UIServer whenever your application receives the
focus, and to save the state before it is changed by another application. Set the state of the components
when bActive=True and save the state when bActive=False.

Example

In Visual Basic:

EventActiveApplication(bActive As Boolean, hwndApplication As Long,
pResult As UIEVENTRC)
If bActive = True Then
lRetVal = VVUIClient1.SetNumberValue(COMPID_MICROPHONE, vvUIMSF_ON)

End If
pResult = UIEVENTRC_PROCESSED

End Sub

Properties, Methods, and Events

614 IBM SDK for Windows

In Visual C++ (MFC):

In Visual C++ (Custom):

See Also
None.

void CCVUICtrDlg::OnEventActiveApplication(BOOL bActive, long
hwndApplication, LPCTSTR pszApplicationName, long FAR* pResult)
{
if (bActive)
{
UIRC rc = (UIRC) m_vvUIClient1.SetNumberValue(COMPID_MICROPHONE,
UIMSF_ON,
UIMICINDEX_MICSTATE);

}
*pResult = UIEVENTRC_PROCESSED;

}

STDMETHODIMP CVVUIEvents::EventActiveApplication (
BOOL bActive,
HWND_t hwndApplication,
LPSTR lpszApplicationName,
UIEVENTRC * pResult)

{
if (bActive)
{
UIRC rc;
HRESULT hr = pvvUIClient->SetNumberValue(COMPID_MICROPHONE,
UIMSF_ON,
UIMICINDEX_MICSTATE,
&rc);

}
*pResult = UIEVENTRC_PROCESSED;
return S_OK;

}

IBM SDK for Windows 615

User Interface Control Events

EventButtonPressed
Event fired by the UIClient control whenever the user clicks one of the buttons in the UIServer.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
ciComponent

TCID. One of the UIServer’s component IDs (COMPID_*). You will find a complete list of
objects in the Classes, Structures, Enumerations part of this reference section.

hwndTarget
Long / HWND_t. The handle of the window that had the focus before the user clicked the button in
the UIServer.

pResult
UIEVENTRC. The result code you wish to pass back to the control. The control uses this to
determine if the message should be passed on to other controls.

Return Values
None.

EventButtonPressed(ComponentID As TCID, hwndTarget As Long, pResult As
UIEVENTRC)

void OnEventButtonPressed (long ComponentID, long hwndTarget, long FAR*
pResult)

HRESULT EventButtonPressed(TCID ciComponentID, HWND_t hwndTarget,
UIEVENTRC* pResult);

Properties, Methods, and Events

616 IBM SDK for Windows

Remarks
None.

Example
None.

See Also
None.

IBM SDK for Windows 617

User Interface Control Events

EventComponentUpdated
Event fired by the UIClient control whenever a client changes the characteristics of one of the
components in the UIServer.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
ciComponent

TCID. One of the UIServer’s component IDs (COMPID_*). You will find a complete list of
objects in Chapter 20, “Classes, Structures, and Enumerations” on page 533.

pResult
UIEVENTRC. The result code you wish to pass back to the control. The control uses this to
determine if the message should be passed on to other controls.

Return Values
None.

Remarks
This can be done with the SetNumberValue, or SetStringValue APIs.

EventComponentUpdated(ciComponentID As TCID, pResult As UIEVENTRC)

void OnEventComponentUpdated (long ciComponentID, long FAR* pResult)

HRESULT EventComponentUpdated(TCID ciComponentID, UIEVENTRC* pResult);

Properties, Methods, and Events

618 IBM SDK for Windows

Example
None.

See Also
None.

IBM SDK for Windows 619

User Interface Control Events

EventMenuItemSelected
Event fired by the UIClient control event whenever the user selects one of the following menu items
in the UIServer:

VIAVOICEUI_IDMENU_MICROPHONE

VIAVOICEUI_IDMENU_BEGIN_DICTATION

VIAVOICEUI_IDMENU_STOP_DICTATION

VIAVOICEUI_IDMENU_BEGIN_READING

VIAVOICEUI_IDMENU_STOP_READING

VIAVOICEUI_IDMENU_SHOW_CORRECTION_WINDOW

VIAVOICEUI_IDMENU_WHATCANISAY

VIAVOICEUI_IDMENU_EXIT

or application-defined dynamic menu item ID between 0 and 9,999.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
dwMenuItemId

Long / DWORD. The ID number of the menu item. This value depends on whether the menu item
is a built-in menu item (see VIAVOICEUI_IDMENU*) or an application-defined dynamic menu

EventMenuItemSelected(dwMenuItemId As Long, pResult As UIEVENTRC)

void OnEventMenuItemSelected (long dwMenuItemId, long hwndTarget, long
FAR* pResult);

HRESULT EventMenuItemSelected(DWORD dwMenuItemId, HWND_t hwndTarget,
UIEVENTRC* pResult);

Properties, Methods, and Events

620 IBM SDK for Windows

item ID (between 0-9,999). For more information, refer to “AppendMenuItem” on page 570 and
“InsertMenuItem” on page 587.

hwndTarget
Long / HWND_t. The handle of the window that had the focus before the user clicked the button in
the UIServer.

pResult
UIEVENTRC. The result code you wish to pass back to the control. The control uses this to
determine if the message should be passed on to other controls.

Return Values
None.

Remarks
None.

Example
None.

See Also
“AppendMenuItem” on page 570
“InsertMenuItem” on page 587

IBM SDK for Windows 621

User Interface Control Events

EventQueryViewFlags
Event fired by the UIClient control whenever the UIServer needs specific view information that can
be used with current appearance.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
phwndWindow

Long / HWND_t. The window that currently has focus. This parameter is changeable if you want
the UIServer to use a different window.

pdwDockFlags
Long / DWORD. A combined (OR’ed) value from the VVUIDockingAlgorithmConstants and
VVUIDockingStyleConstants. You must set this value to DVAF_ALLOW_TOPMOST_DOCK
(or DVAF_ALLOW_DOCK) if you wish to allow the UIServer to dock to one of the clients.

pResult
UIEVENTRC. The result code you wish to pass back to the control. The control uses this to
determine if the message should be passed on to other controls.

EventQueryViewFlags(phwndWindow As Long, pdwDockFlags As Long, pResult As
UIEVENTRC)

void OnEventQueryViewFlags(long FAR* phwndWindow, long FAR*
pdwDockFlags, long FAR* pResult);

HRESULT EventQueryViewFlags(HWND_t* phwndWindow, DWORD* pdwDockFlags,
UIEVENTRC* pResult);

Properties, Methods, and Events

622 IBM SDK for Windows

Return Values
None.

Remarks
None.

Example

In Visual Basic:

In Visual C++ (MFC):

Private Sub m_VVUIClient_EventQueryViewFlags(phwndWindow As Long,
pdwDockFlags As Long, pResult As VVUICtrlCtl.UIEVENTRC)

pdwDockFlags = vvDVAF_ALLOW_TOPMOST_DOCK
pResult = UIEVENTRC_PROCESSED

End Sub

void CVVUICtrlDlg::OnEventQueryViewFlags(long FAR* phwndWindow, long
FAR* pdwDockFlags, long FAR* pResult)
{
*pdwDockFlags = vvDVAF_ALLOW_TOPMOST_DOCK;
*pResult = UIEVENTRC_PROCESSED;

}

IBM SDK for Windows 623

User Interface Control Events

In Visual C++ (Custom):

See Also
“AppendMenuItem” on page 570
“InsertMenuItem” on page 587

STDMETHODIMP CVVUIClientEvents::EventQueryViewFlags (
HWND_t * phwndWindow,
DWORD * pdwDockFlags,
UIEVENTRC *pResult)

{
*pdwDockFlags = DVAF_ALLOW_TOPMOST_DOCK;
*pResult = UIEVENTRC_PROCESSED;
return S_OK;

}

Properties, Methods, and Events

624 IBM SDK for Windows

EventQueryViewMenuInfo
Event fired by the UIClient control whenever the user requests to view the UIServer’s menu, just
before it actually displays the menus.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ (Custom):

Parameters
vtViewType

TVIEWTYPE. The current view state of the UIServer.

hwndWindow
Long / HWND_t. The last window to have the focus before the user requested to view the menus.

ApplicationTitle
String / LPSTR. This parameter lets you specify the menu caption for a dynamic application menu
group.

MainMenuName

EventQueryViewMenuInfo(vtViewType As TVIEWTYPE, hwndWindow As Long,
ApplicationTitle As String, MainMenuName As String, ApplicationMenuName
As String, HelpMenuName As String, pResult As UIEVENTRC)

void OnEventQueryViewMenuInfo(long vtViewType, long hwndWindow, BSTR
FAR* ApplicationTitle, BSTR FAR* MainMenuName, BSTR FAR*
ApplicationMenuName, BSTR FAR* HelpMenuName, long FAR* pResult);

HRESULT EventQueryViewMenuInfo(TVIEWTYPE vtViewType, HWND_t hwndWindow,
LPSTR lpszApplicationTitle, LPSTR lpszMainMenuName, LPSTR
lpszApplicationMenuName, LPSTR lpszHelpMenuName, UIEVENTRC* pResult);

IBM SDK for Windows 625

User Interface Control Events

String / LPSTR. This parameter lets you specify the group name you wish to display for a dynamic
main menu

ApplicationMenuName
String / LPSTR. This parameter lets you specify the menu group you wish to use when displaying
dynamic application menus.

HelpMenuName
String / LPSTR. This parameter lets you specify the menu group you wish to use when displaying
dynamic help menus.

pResult
UIEVENTRC. The result code you wish to pass back to the control. The control uses this to
determine if the message should be passed on to other controls.

Return Values
None.

Remarks
The user does this by clicking the ViaVoice menu button when the UIServer is in Taskbar or Docked
views, or right-click the system tray icon.

It is not necessary to set the value of all the “menu name” parameters, only the ones that your
application uses. In other words, you do not have to set the HelpMenuName parameter if your
application does not use custom help menu items.

Properties, Methods, and Events

626 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

Private Sub m_VVUIClient_EventQueryViewMenuInfo(ByVal vtViewType As
VVUICtrlCtl.TVIEWTYPE, ByVal hwndWindow As Long, ApplicationTitle As
String, MainMenuName As String, ApplicationMenuName As String,
HelpMenuName As String, pResult As VVUICtrlCtl.UIEVENTRC)
Dim sAppName As String
sAppName = App.EXEName
ApplicationTitle = sAppName
MainMenuName = sAppName
ApplicationMenuName = sAppName
HelpMenuName = sAppName
pResult = UIEVENTRC_PROCESSED

End Sub

void CVVUICtrlDlg::OnEventQueryViewMenuInfo(long vtViewType, long
hwndWindow, BSTR FAR* ApplicationTitle, BSTR FAR* MainMenuName, BSTR
FAR* ApplicationMenuName, BSTR FAR* HelpMenuName, long FAR* pResult)
{
CString sAppName = AfxGetAppName();
*Application Title = sAppName.AllocSysString(),
*MainMenuName = sAppName.AllocSysString();
*ApplicationMenuName = sAppName.AllocSysString();
*HelpMenuName = sAppName.AllocSysString();
*pResult = UIEVENTRC_PROCESSED;

}

IBM SDK for Windows 627

User Interface Control Events

In Visual C++ (Custom):

See Also
“AddApplicationByName” on page 566
“AddApplicationByWindow” on page 568
“AppendMenuItem” on page 570
“InsertMenuItem” on page 587
“SetClientCallback (Custom Interface)” on page 595
“SetClientCallbackFlags” on page 597
“TVIEWTYPE (Enum)” on page 555.

STDMETHODIMP CVVUIClientEvents::EventQueryViewMenuInfo(
TVIEWTYPE vtViewType,
HWND_t * hwndWindow,
LPSTR lpszApplicationTitle,
LPSTR lpszMainMenuName,
LPSTR lpszApplicationMenuName,
LPSTR lpszHelpMenuName,
UIEVENTRC *pResult)

{
char sAppName[256];
lstrcpy(sAppName, “MyAppName”);
lstrcpy(lpszApplicationTitle, sAppName);
lstrcpy(lpszMainMenuName,sAppName);
lstrcpy(lpszApplicationMenuName, sAppName);
lstrcpy(lpszHelpMenuName, sAppName);
*pResult = UIEVENTRC_PROCESSED;
return S_OK;

}

Properties, Methods, and Events

628 IBM SDK for Windows

IBM SDK for Windows 629

Chapter 29 User Interface Control Frequently
Asked Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice User
Interface Control.

How can I make the ViaVoice UIServer appear in docked view when my application first
becomes visible?

You can’t. Your program cannot set the view appearance of the UIServer; only the user can
change the view by selecting the Appearance option from the ViaVoice menu. Your application,
however, can allow or deny the user’s request to dock the UIServer to your specific application.
See “Programming the ViaVoice User Interface” on page 513 of this manual for an example.

Why is the microphone button in the ViaVoice UIServer disabled?

The Microphone component is disabled as default. You can change the state of the microphone
component using the SetNumberValue method. See “Getting and Setting User Interface
Characteristics” on page 520 for details.

Why is the UIServer not displaying a menu when I click the ViaVoice button?

The most likely explanation is that you have not set the language of the UIServer. To set the
language use the SetLanguageByString or SetLanguageByID method. For more information,
refer to “Initializing the UIClient” on page 506.

Why is the UIClient control not firing events when an action occurs in the ViaVoice UIServer?

You need to turn on event messaging with the SetClientCallbackFlags or the SetClientCallback
(Custom Interface) method. Refer to “Programming the ViaVoice User Interface” on page 513 for
an example.

Why is the UIServer NOT docking to my application windows?

For the UIServer to dock to your application windows, you must:

1. Enable event firing in the UIClient control by calling SetClientCallbackFlags in Visual Basic or
Visual C++ (MFC) applications, or SetClientCallback in Visual C++ applications using the cus-
tom interface.

2. Add your application to the UIServer’s list of supported applications by calling AddApplication-
ByName or AddApplicationByWindow.

User Interface Control Frequently Asked Questions

630 IBM SDK for Windows

3. Write code to handle the EventQueryViewFlags event. Make sure to set the parameter pdwDock-
Flags to DVAF_ALLOW_TOPMOST_DOCK or DVAF_ALLOW_DOCK. Also, make sure to set
the parameter pResult to UIEVENTRC_PROCESSED to tell the control that you have processed
the event.

IBM SDK for Windows 631

Chapter 30 Introduction to the DictationMgr
Control

The ViaVoice Dictation Manager Control (VVDictationMgr) is a moderately high level control
which provides much of the functionality a client needs to add dictation to an application. However, in
order to use this control, clients must be able to synchronize the VVDictationMgr with their
application user interface through zero (0) based character indices. VVDictationMgr is a full ActiveX
Control, which means that it can be "dropped" onto a form and configured at "design-time" in most
high-level language environments. Using VVDictationMgr allows the user to manage both typed and
dictated text, get wave data for playback of dictated text, and perform correction of dictated text.

An application using VVDictationMgr will receive events when speech has been recognized
including the text of the recognition, the character index where the text should be placed, the character
index where the cursor should be after the replacement, and (potentially) the length of text to be
replaced. All this is necessary because VVDictationMgr keeps up with bookmarks and handles
advanced formatting features when running on the IBM engine. See the VVDictation documentation,
starting on page 699, for more information on bookmarks and advanced formatting features.

Introduction to the DictationMgr Control

632 IBM SDK for Windows

IBM SDK for Windows 633

Chapter 31 Getting Started with the
DictationMgr Control

The following is a tutorial on how to incorporate the VVDictationMgr control into your Visual Basic
or Visual C++ applications. This tutorial is designed to present you with the most commonly used
properties and events in the VVDictationMgr control.

The following sections contain information to help you write code to create an instance of the
DictationMgr Control, and capture speech.

Creating an Instance of the Control

This section contains step-by-step instructions for using Visual Basic or Visual C++ (MFC) to create
an instance of the control.

In Visual Basic:
To add the VVDictationMgr control to your application, do the following:

1. From the Project menu, choose Components.
The Components dialog box, Figure 46, appears. The Components dialog lists all the ActiveX
Controls that you can use in your application.

Getting Started with the DictationMgr Control

634 IBM SDK for Windows

Figure 46. Component Selection Dialog - Visual Basic

IBM SDK for Windows 635

Creating an Instance of the Control

2. Select IBM ViaVoice DictationMgr Control from the list and click OK.
Visual Basic adds the control to your project, and adds a new icon to the toolbar (Figure 47).

Figure 47. VVDictationMgr Control Toolbar Icon

3. Add an instance of the VVDictationMgr control to your form.
The VVDictationMgr control is invisible at run-time and uses an icon at design-time much like
the Visual Basic native Timer control.

It is also helpful to understand the way Visual Basic will respond to error codes returned from
ActiveX control methods. When an error code is returned, Visual Basic will convert it into a
"trappable" error which can be handled with the "On Error" syntax. If you do not use "On Error"
when invoking ActiveX control methods that happen to return an error code, such as
E_INVALIDARG, E_FAIL, E_OUTOFMEMORY, and others, then your application will exit with
the message about run time errors. This is probably not something you want your users to see.
Since these errors often happen at the most inconvenient time (i.e., during demos to your boss), it
is strongly advised that you provide "On Error" handling when making any calls to ActiveX
control methods.

Getting Started with the DictationMgr Control

636 IBM SDK for Windows

In Visual C++ (MFC):

To add the VVDictationMgr to your MFC project, do the following:

1. From the Project menu, select Add To Project, then select Components and Controls.
The ‘Components and Controls Gallery’ dialog box, Figure 48, appears.

Figure 48. Insert ActiveX Control Dialog Box - Visual C++

IBM SDK for Windows 637

Creating an Instance of the Control

2. Double-click the ‘Registered ActiveX Controls’ folder in the dialog box.

3. Select the IBM ViaVoice DictationMgr Class icon in the list of controls, then click Insert.
A confirmation message box appears, asking “Insert this component?”

4. Respond to the confirmation message box by clicking OK.
The ‘Confirm Classes’ dialog box, Figure 49, appears listing the Dual interface of the Dictation
Manager control (CVVDictationMgr) and the Engine (CVVEngine) interface.

Figure 49. Confirm Classes Dialog Box

5. Click OK in the ‘Confirm Classes’ dialog box.

Getting Started with the DictationMgr Control

638 IBM SDK for Windows

6. Close the ‘Components and Controls Gallery’ dialog box.
If you examine the Project Workspace window in the class view, you will notice four classes:
CVVDictationMgr and CVVEngine (assuming you accepted the default names for the class in
the ‘Confirm Classes’ dialog box).

7. In the resource view of your Project Workspace window, double-click the dialog resource entry
where you wish to insert the VVDictationMgr control.
The VVDictationMgr icon, Figure 50, appears in the Controls toolbar.

Figure 50. VVDictationMgr Icon in the Controls Toolbar

8. Add an instance of the VVDictationMgr control to the dialog box.
After you add the VVDictationMgr control to your dialog you can invoke Class Wizard to create
a member variable for your class of type CVVDictationMgr. You might also decide to capture the
events in the control by adding Event handlers to your dialog class. To add Event handlers, you can
use the Class Wizard just like adding notification message handlers for a non-speech controls.

You should also understand the way MFC wrappers respond to error codes returned from ActiveX
control methods. When an error code is returned, the MFC wrapper class will convert the error
HRESULT into a COleException or COleDispatchException and "throw" it. When an error code
such as E_INVALIDARG, E_FAIL, or E_OUTOFMEMORY is returned, your user may see an
MFC error message. Or, your application may even exit with a message about “unhandled
exceptions”, depending on where the failing call occurs. Probably not something you want your
users to see. Since these errors often happen at the most inconvenient time (i.e., during demos to
your boss for instance), it is strongly advised that you wrap all calls to MFC wrapped ActiveX
controls with exception handling.

IBM SDK for Windows 639

Capturing Speech

Capturing Speech
The VVDictationMgr object converts speech input into text using an internal VVDictation object
(see VVDictation documentation, starting on page 699, for more information). This text is formatted
and supplied to the client in the PutText event. This event will provide the text to display, the location
where the text should be placed, the cursor index after replacement occurs, and (potentially) the length
of text to be replaced at the insertion point. Handling this event is as simple as applying the presented
information to the client UI.

In order for DictationMgr to stay synchronized with the client UI it is the client’s responsibility to
inform DictationMgr of any changes to the UI state such as:

• The cursor is moved.

• A selection is made.

• Characters are inserted or removed (typed, pasted, or deleted)

By keeping this information updated as necessary, DictationMgr will be able to properly update the
client when speech is recognized. This includes support for many complex operations such as, setting
bookmarks to synchronize relatively real-time UI with latent speech recognition, updating engine
context as needed to improve recognition accuracy, and (when running on the IBM engine) multi-
phrase macro resolution including advanced numeric and date formatting. DictationMgr also provides
easy access to information necessary to provide other high-level operations such as speech playback
and correction.

Getting Started with the DictationMgr Control

640 IBM SDK for Windows

Summary
At this point, you should know how to do the following:

• How to incorporate the VVDictationMgr control into your project.

• How to receive speech input.

The remainder of this documentation contains a reference for all the properties, methods, and events in
the VVDictationMgr control.

IBM SDK for Windows 641

Chapter 32 Properties, Methods, and Events

Dictation Manager Control Properties
The ViaVoice DictationMgr control supports the following properties:

• AutoDictationWindow

• CursorIndex

• DictationOn

• Engine

• ExpandMacros

• Locked

• ProcessingMacro

• UppercaseOn

Properties, Methods, and Events

642 IBM SDK for Windows

AutoDictationWindow (Run Time Only)
Controls the scope in which dictation is available.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
nNewValue

??

Return Values

Any valid “top-mosta” window handle.
Dictation is available only when the indicated window is “active” as indicated by it, or one of its
children, having the focus. Note: There can only be one dictation object active for the same
window (DictationOn is True) at any one time.

Property AutoDictationWindow As Long

long GetAutoDictationWindow();
void SetAutoDictationWindow(long nNewValue);

HRESULT get_AutoDictationWindow(long * pVal);
HRESULT put_AutoDictationWindow(long newVal);

a. A “top-most” window is defined as any window without a parent. For more information on issues dealing with finding the
“top-most” window, see the Microsoft Knowledge Base article Q84190.

IBM SDK for Windows 643

Dictation Manager Control Properties

NULL
Dictation mode is always available and must be controlled manually by setting the DictationOn
property to True or False. Note: There can only be one global dictation object active (DictationOn
is True) at any one time!

Remarks
The default value of this property is NULL (0), which will enable dication globally. However, please
note that there can only be one global dictation object active (DictationOn is True) at any one time in
the entire system (including other applications)! For this reason, it is strongly suggested that you avoid
global dictation objects if at all possible. Alternatively, you can set this property to any valid "top-
mosta" window handle, which maps dictation availability to that window’s activation state (it or one of
its children having focus).

Remember, if you use NULL be aware that there can only be one global dictation object active
(DictationOn is True) at any one time. This includes your own or any other application running on the
system. For this reason, global dictation objects should be used with extreme care and should be
avoided, unless absolutely necessary. Regardless of the value of this property, finer granularity of
control can always be achieved by changing the state of DictationOn appropriately.

Example

In Visual Basic:

a.

‘Assumes this form is the top-most form!
VVDict.AutoDictationWindow = hWnd

Properties, Methods, and Events

644 IBM SDK for Windows

In Visual C++ (MFC):

In Visual C++:

See Also
“DictationOn” on page 647
“DictationStateChange” on page 685

// Makes no assumptions about m_hWnd
HWND Hwnd = m_hWnd;
// Due to the Win32 implementation of GetParent, this is necessary
// to find the "Foreground" window for SAPI grammar activation
// For more information see MS Knowledge Base article Q84190
while (::GetParent (hwnd) != NULL &&
! (::GetWindowLong(hwnd ,GWL_STYLE) & WS_POPUP))

{
 hwnd = ::GetParent (hwnd);

}
m_VVDictationMgr.SetAutoDictationWindow ((long)hWnd);

// Makes no assumptions about m_hWnd
HWND Hwnd = m_hWnd;
// Due to the Win32 implementation of GetParent, this is necessary
// to find the "Foreground" window for SAPI grammar activation
while (::GetParent (hwnd) != NULL &&
! (::GetWindowLong(hwnd ,GWL_STYLE) & WS_POPUP))

{
hwnd = ::GetParent (hwnd);

}
HRESULT hr = S_OK;
hr = m_pIVVDictationMgr->put_AutoDictationWindow ((long)hWnd);

IBM SDK for Windows 645

Dictation Manager Control Properties

CursorIndex

Indicates changes to the UI cursor location.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
nNewValue

??

Return Values
The CursorIndex is 0 based and can be set to any value greater than or equal to 0 but less than or
equal to the number of characters held by DictationMgr.

Remarks
In order for DictationMgr to correctly manage speech input it must know where to place new text in
the UI. To do this, the cursor index property of DictationMgr must be set appropriately any time there
are changes to the UI cursor location. This might be an explicit cursor location change (the user moves
the cursor with the mouse or keyboard) or an implicit change (characters inserted or deleted at or

Property CursorIndex As Long

long GetCursorIndex();
void SetCursorIndex(long nNewValue);

HRESULT get_CursorIndex(long * pVal);
HRESULT put_CursorIndex(long newVal);

Properties, Methods, and Events

646 IBM SDK for Windows

before the current cursor location). If an implicit change occurs due to speech input (see the PutText
event on page 687) it is not necessary to update the CursorIndex property of DictationMgr.

It is not necessary to update the DictationMgr cursor for actions such as typing (resulting in a call to
PutText method) and speech input (PutText events) since they implicitly update the cursor much like
text user interfaces do when typing. In fact, updating the cursor index arbitrarily in response to every
cursor change will ultimately lead to degraded performance since explicit cursor changes (arrow key
navigation, mouse clicks, etc.) require setting a bookmark (see VVDictation) in order to synchronize
the latent speech recognition with the relatively real-time UI update.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“PutText” on page 678
“PutText” on page 687

VVDictationMgr.CursorIndex = CurrentCursorIndex

m_VVDictationMgr.SetCursorIndex (CurrentCursorIndex);

HRESULT hr = S_OK;
hr = m_pIVVDictationMgr->put_CursorIndex (CurrentCursorIndex);

IBM SDK for Windows 647

Dictation Manager Control Properties

DictationOn
Returns or sets the desired state of the dictation mode.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

Boolean.

Return Values
TRUE

The control can receive dictation input when dictation is available, based on the
AutoDictationWindow.

FALSE
The control ignores dictation input that occurs after making this setting. Note that any speech input
which occurred before setting DictationOn false but which is not yet completed will still be
processed and passed to the client through the PhraseReco event.

Property DictationOn As Boolean

BOOL GetDictationOn();
void SetDictationOn(BOOL fNewValue);

HRESULT get_DictationOn(VARIANT_BOOL * pVal);
HRESULT put_DictationOn(VARIANT_BOOL newVal);

Properties, Methods, and Events

648 IBM SDK for Windows

Remarks
You can think of this property semantically as "Client want’s dictation on". What this means is that if
dictation is available (i.e. the AutoDictationWindow is active), then the user will be able to dictate
into the control.

When the state of the dictation mode changes, the control fires the DictationStateChange event. You
should not set the value of this property in the DictationStateChange event, as this will cause the
event to fire again.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“AutoDictationWindow (Run Time Only)” on page 642
“DictationStateChange” on page 685

VVDictationMgr.DictationOn = True

m_VVDictationMgr.SetDictationOn(TRUE);

HRESULT hr = S_OK;
hr = m_pIVVDictationMgr->put_DictationOn(VARIANT_TRUE);

IBM SDK for Windows 649

Dictation Manager Control Properties

Engine (Run Time Only)
Sets or gets a reference to the ViaVoice Engine control (VVEngine), which is used by the
VVDictationMgr control.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
None.

Return Values
None.

Remarks
The Engine property is actually holding an implicitly created ActiveX control (VVEngine), which can
also be created separately. Inserting a VVEngine control in a project enables you to set the engine
properties on this control, and then assign the engine to multiple ViaVoice ActiveX controls.

Property Engine As IVVEngine

LPDISPATCH GetEngine();
void SetRefEngine(LPDISPATCH newValue);

HRESULT get_Engine(IVVEngine * * pVal);
HRESULT putref_Engine(IVVEngine * newVal);

Properties, Methods, and Events

650 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
Refer to the ViaVoice Engine Control Guide for more information.

VVDictationMgr.Engine = VVEngine

m_VVDictationMgr->SetRefEngine(& m_pIVVEngineDispatch);

HRESULT hr = S_OK;
hr = m_VVDictationMgr->putref_Engine(& m_pIVVEngineDispatch);

IBM SDK for Windows 651

Dictation Manager Control Properties

ExpandMacros
Indicates whether the VVDictationMgr control should expand and format speech input when
possible.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

Boolean.

Return Values
TRUE

(Default) VVDictationMgr will expand macros and provide advanced, multi-phrase, number
formatting if running on the IBM engine.

FALSE
VVDictationMgr does not do any advanced formatting or macro expansion.

Property ExpandMacros As Boolean

BOOL GetExpandMacros();
void SetExpandMacros(BOOL fNewValue);

HRESULT get_ExpandMacros(VARIANT_BOOL * pVal);
HRESULT put_ExpandMacros(VARIANT_BOOL newVal);

Properties, Methods, and Events

652 IBM SDK for Windows

Remarks
This property affects dictation only when used with the IBM engine. The following examples show
how you might see the macros, however, this depends on regional settings:

If the value of this property is set to false you will get dictation exactly as interpreted by the engine. If
set to true, and running on the IBM engine, all dictation will be checked for possible macro expansion
(see Dictation Macro Editor application included with the SDK). This property also controls the
availability of IBM advanced, multi-phrase, numeric formatting. For instance, setting this property to
true would cause the following speech input to "expand" differently.

The setting of ExpandMacros has no effect if not running on the IBM engine.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

False True

"one thousand two hundred and thirty four" "1,234"

"January first two thousand" "January 1, 2000"

"my macro" <whatever "my macro" is defined as>

VVDictationMgr.ExpandMacros = True

m_VVDictationMgr.SetExpandMacros (TRUE);

HRESULT hr = S_OK;
hr = m_pIVVDictationMgr->put_ExpandMacros (VARIANT_TRUE);

IBM SDK for Windows 653

Dictation Manager Control Properties

Locked
Stops speech input immediately.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

Boolean.

Return Values
TRUE

All speech input will be disregarded.

FALSE
Speech input will be processed normally based on the setting of DictationOn.

Remarks
Because of the inherent latency of speech processing, setting DictationOn to false will not always
prevent further speech input from being provided. However, it is sometimes necessary for a UI to

Property Locked As Boolean

BOOL GetLocked();
void SetLocked(BOOL bFewValue);

HRESULT get_Locked(VARIANT_BOOL * pVal);
HRESULT put_Locked(VARIANT_BOOL newVal);

Properties, Methods, and Events

654 IBM SDK for Windows

instantaneously stop ALL input immediately (MaxText and the Locked property of standard edit
controls for instance). In order to facilitate this (and prevent the internal state of DicationMgr from
becoming inconsistent with the UI) the Locked property can be used to stop speech input immediately,
regardless of pending speech input.

Due to re-entrancy issues with COM STA controls, you should always set value of Locked to true
before setting DictationOn false if you want to guarantee that no further speech input will be
processed.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“DictationOn” on page 647

VVDictationMgr.Locked = True

m_VVDictationMgr.SetLocked(TRUE);

HRESULT hr = S_OK;
hr = m_pIVVDictationMgr->put_Locked(VARIANT_TRUE);

IBM SDK for Windows 655

Dictation Manager Control Properties

ProcessingMacro (Run Time Only)
Determines if the VVDictationMgr object is currently processing a multi-phrase macro expansion.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

Boolean.

Return Values
TRUE

VVDictationMgr displays is currently processing a multi-phrase macro. This property will never
be true unless running on the IBM engine. This value cannot be set.

FALSE
VVDictationMgr is not processing a multi-phrase macro. This value can be set to force
completion of multi-phrase macro processing.

Property ProcessingMacro As Boolean

BOOL GetProcessingMacro();
void SetProcessingMacro(BOOL fNewValue);

HRESULT get_ProcessingMacro(VARIANT_BOOL * pVal);
HRESULT put_ProcessingMacro(VARIANT_BOOL newVal);

Properties, Methods, and Events

656 IBM SDK for Windows

Remarks
If the value of ProcessingMacro is false, then all phrases are complete. If the value is true, then
VVDictationMgr is currently processing a multi-phrase macro. If the value is true and you set it to
false, all infirm phrases are then considered complete and any new speech input will be a "new"
phrase. You can never set the value of ProcessingMacro to true. For more information on infirm
phrases and multi-phrase macro expansion, see PhraseReco event on page page 739.

The value of the ProcessingMacro property will never be true when not using the IBM speech engine.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“PutText” on page 687

VVDictationMgr.ProcessingMacro = False

m_VVDictationMgr.SetProcessingMacro (FALSE);

HRESULT hr = S_OK;
hr = m_pIVVDictationMgr->put_ProcessingMacro (VARIANT_FALSE);

IBM SDK for Windows 657

Dictation Manager Control Properties

UppercaseOn
Locks the speech input in upper case.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
fNewValue

Boolean.

Return Values
TRUE

Speech input will be uppercase.

FALSE
Speech input will be cased normally.

Remarks
None.

Property UppercaseOn As Boolean

BOOL GetUppercaseOn();
void SetUppercaseOn(BOOL fNewValue);

HRESULT get_UppercaseOn(VARIANT_BOOL * pVal);
HRESULT put_UppercaseOn(VARIANT_BOOL newVal);

Properties, Methods, and Events

658 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

VVDictationMgr.UppercaseOn = True

m_VVDictationMgr.SetUppercaseOn (TRUE);

HRESULT hr = S_OK;
hr = m_pIVVDictationMgr->put_UppercaseOn (VARIANT_TRUE);

IBM SDK for Windows 659

DictationMgr Control Methods

DictationMgr Control Methods
The ViaVoice DictationMgr control supports the following methods:

• Abouta

• Command

• Correct

• DeleteText

• GetAlternate

• GetText

• GetWordInfo

• Playback

• PlaybackEx2

• PutText

• SetSelection

a. Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

Properties, Methods, and Events

660 IBM SDK for Windows

Command
Issues a variety of commands that modify internal text held by DictationMgr without lowering the
fidelity of information associated with the modified text.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
Command

VVDM_Command. An identifier indicating the command to be executed. They include the
following:

Sub Command(Command As VVDM_Command)

void Command(long Command);

HRESULT Command(VVDM_Command Command);

Constant Value Description

VVDM_Capitalize 0 Uppercase the first character of the selection. If there is no
selection this command will modify the word containing
the cursor.

VVDM_Uppercase 1 Uppercase the entire selection. If there is no selection this
command will modify the word containing the cursor.

IBM SDK for Windows 661

DictationMgr Control Methods

Return Values
??

Remarks
For instance, without this facility, capitalizing an existing word would require that the client delete the
existing word and then add it back in the modified form. If that word happened to be dictated then the
ability to correct or playback the word would be lost since it is now effectively typed text. These
commands allow the client to uppercase, lowercase, and capitalize existing words or to remove the last
dictated "phrase" recognized.

Altering the state of DictationMgr through any means other than speech input will eliminate the
possibility of using "ScratchThat."

VVDM_Lowercase 2 Lowercase the entire selection. If there is no selection this
command will modify the word containing the cursor.

VVDM_ScratchThat 3 Issuing this command will cause DictationMgr to "undo"
the last speech input "phrase" that was received. A
maximum of 10 phrases can be "undone" with
VVDM_ScratchThat.

Constant Value Description

Properties, Methods, and Events

662 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

VVDictationMgr.Command VVDM_Capitalize

m_VVDictationMgr.Command(VVDM_Capitalize);

HRESULT hr = S_OK;
hr = m_pIVVDictationMgr->Command(VVDM_Capitalize);

IBM SDK for Windows 663

DictationMgr Control Methods

Correct
Corrects any misrecognized dictated words.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
CorrectText

String. The correct interpretation of the indicated word.

SoundsLike

Sub Correct(CorrectText As String, _
SoundsLike As String,
AddAsSingleWord As Boolean, _
StartIndex As Long, _
IncorrectTextLength As Long)

void Correct(LPCTSTR CorrectText,
LPCTSTR SoundsLike,
BOOL AddAsSingleWord,
long StartIndex,
long IncorrectTextLength);

HRESULT Correct(BSTR CorrectText,
BSTR sSoundsLike,
VARIANT_BOOL AddAsSingleWord,
long StartIndex,
long IncorrectTextLength);

Properties, Methods, and Events

664 IBM SDK for Windows

String. The phonetic spelling of the word (necessary for some languages, most notably Asian
Pacific). An empty string ("") may be passed if no "sounds like" spelling is required.

AddAsSingleWord
Boolean. This parameter allows addition of multiple words to be corrected as a single phrase.

StartIndex
Long. This is the 0 based starting index of the word to be corrected. An error will be returned if the
start index is not on a word boundary. The starting index of a word can be determined using the
GetWordInfo method.

IncorrectTextLength
Long. This is the length of the misrecognized text to be corrected. An error will be returned if the
specified length does not end on a word boundary. The length of a word can be determined using
the GetWordInfo method.

Return Values
??

Remarks
By passing in the correct text, the 0 based starting index for the incorrect text, and the length of the
incorrect text, you will be able to update the engine in order to improve accuracy for the same word
when used in the future. Correcting VVDictationMgr will keep it synchronized with the UI and also
insure that information on the word provided by VVDictationMgr will be accurate (see GetWordInfo
method on page 673).

When calling the Correct method do not update the UI in the client. The PutText event will be fired
with the appropriate information when any and all formatting issues have been resolved.

IBM SDK for Windows 665

DictationMgr Control Methods

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“GetWordInfo” on page 673
“PutText” on page 687

VVDictationMgr.Correct CorrectText, "", False, _
StartIdx, IncorrectLen

m_VVDictationMgr.Correct(szCorrect, _T(""), FALSE,
StartIdx, IncorrectLen);

HRESULT hr = S_OK;
BSTR s = SysAllocString (OLESTR(""));
hr = m_pIVVDictationMgr->Correct(sCorrect, s, FALSE,
StartIdx, IncorrectLen);

SysFreeString (s);
s = NULL;

Properties, Methods, and Events

666 IBM SDK for Windows

DeleteText
Removse any or all of the text within VVDictationMgr.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
StartIndex

Long. The 0 based index of the first character to be deleted.

TextLength
Long. The number of characters to be deleted. If the sum of the StartIndex and TextLength are
greater than the number of characters stored in the DictationMgr an error (E_INVALIDARG) will
be returned.

Return Values
??

Remarks
Simply call DeleteText with the 0 based starting index of the text to be deleted and the length to delete.
Using a starting index of 0 and specifying the distinguished constant VV_EOT (-2) for the length will
remove all text from DictationMgr.

Sub DeleteText(StartIndex As Long, TextLength As Long)

void DeleteText(long StartIndex, long TextLength);

HRESULT DeleteText(long StartIndex, long TextLength);

IBM SDK for Windows 667

DictationMgr Control Methods

When it is necessary to delete text (delete key, backspace, replacing a selection, etc.) always remember
to update the UI before DictationMgr. This is necessary because deletion of text may change certain
formatting characteristics triggering a PutText event to update the UI. For instance, deleting a dictated
period may remove the capitalization from the following word if it is also dictated forcing an update of
the UI. If you have not yet updated the UI then the information in the PutText event will be incorrect.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“PutText” on page 687

VVDictationMgr.DeleteText TextStart, TextLength

m_VVDictationMgr.DeleteText (lTextStart, lTextLen);

HRESULT hr = S_OK;
hr = m_pIVVDictationMgr->DeleteText (lTextStart, lTextLen);

Properties, Methods, and Events

668 IBM SDK for Windows

GetAlternate
Gets alternative interpretations for dictation processed by the speech engine.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
TextLength ??

??

StartIndex
Long. The 0 based index of the first character of the word for which alternates are required.

Reserved
Long. This value is reserved for future use and must be 0.

Function GetAlternate(StartIndex As Long, _
TextLength As Long, _
Rank As Long, _
SoundsLike As String) As String

CString GetAlternate(long StartIndex,
long TextLength,
long Rank,
BSTR* SoundsLike);

HRESULT GetAlternate(long StartIndex,
long TextLength,
long Rank,
BSTR * SoundsLike,
BSTR * Alternate);

IBM SDK for Windows 669

DictationMgr Control Methods

Rank
Long. The 1 based rank of the desired alternate. A rank of 1 will provide the most likely alternative
to the original word presented in the PutText method or PutText events. A rank of 0 will provide
the most likely interpretation of the speech input and is the text that was used to construct the text
provided in PutText event.

SoundsLike
String. In some languages (most notably Asian Pacific) many words have the same spelling but
different pronunciations and meanings based on the context in which they are used. This is an
output parameter that provides information necessary for accurate correction in these languages. It
may also prove useful for getting the "spoken text" in other languages when acronyms and macros
are in use. This parameter can be NULL if "sounds like" spelling is not required.

Alternate
String. Output parameter (return value in VB and MFC wrappers) which contains the alternate
interpretation requested. If no alternate of the requested rank is available, this parameter will
contain an empty string ("").

Return Values
??

Remarks
When the speech engine analyzes audio input, there are many possible choices. Based on various
weighting algorithms, one possibility is chosen as most likely, and that "phrase" is given to the client.
Using GetAlternate will allow you to access each successively less likely choice in order by rank.

What this means is that if you request the alternate of "rank 1", you will receive the engine second best
choice (the original event gave you the best choice). You can continue asking for as many additional
alternates as you desire. Eventually, once the engine drops below an engine specific threshold, it will
no longer return any alternates of a higher rank. If you ask for an alternate which is not available you
will receive an empty string. For languages that can access the HRESULT return code, S_FALSE will
be returned when no alternate of the requested rank is available.

Alternates are usually presented to the user in the context of correction. Because these words are the
most likely alternatives to the originally presented text, the user often finds the correct interpretation

Properties, Methods, and Events

670 IBM SDK for Windows

within this list. Most error correction interfaces will allow the user to choose one of the alternatives or,
since it may not be in the list, type in the correction themselves.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ :

See Also
None.

Dim Alternate as String
Alternate = VVDictationMgr.GetAlternate (TextStart, _
0, _
CurRank, _
SoundsLike)

CString Alternate;
Alternate = m_VVDictationMgr.GetAlternate (TextStart,
0,
CurRank,
& bstrSoundsLike);

BSTR bstrAlternate = NULL;
HRESULT hr = S_OK;
hr = m_pIVVDictationMgr->GetAlternate (TextStart,
0,
CurRank,
& bstrSoundsLike,
& bstrAlternate);

IBM SDK for Windows 671

DictationMgr Control Methods

GetText
Retrieves a copy of any or all of the text held within DictationMgr.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
StartIndex

Long. The 0 based index of the first character required.

TextLength
Long. The length of text required. Use the distinguished constant VV_EOT (-2) to retrieve all text
from the start index to the end.

Text
String. Output parameter (return value in VB and MFC wrappers) which contains the text
requested.

Return Values
??

Function GetText(StartIndex As Long, TextLength As Long) As String

CString GetText(long StartIndex, long TextLength);

HRESULT GetText(long StartIndex,
long TextLength,
BSTR* Text);

Properties, Methods, and Events

672 IBM SDK for Windows

Remarks
The client need only specify the 0 based index of the first character and the length of text required. If a
start index of 0 and a length of VV_EOT (-1) are specified, the entire text contained in DictationMgr
can be retrieved.

One potential (and often valuable) use of this method occurs when debugging a potential index
synchronization problem. By extracting the text at critical points during debug sessions you can more
easily determine when, where, or if the cursor index has gotten out of sync.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++ :

See Also
None.

Dim CurText as String
CurText = VVDictationMgr.GetText(StartIndex, TextLength)

CString CurText;
CurText = m_VVDictationMgr.GetText(lStartIndex, lTextLength);

BSTR bstrCurText = NULL;
HRESULT hr = S_OK;
hr = m_pIVVDictationMgr->GetText(lStartIndex, lTextLength,
& bstrText);

IBM SDK for Windows 673

DictationMgr Control Methods

GetWordInfo
Determines information about the "word" at any valid character index.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
Index

Long. When the call is made, this parameter can be any valid 0 based index. If successful, this
parameter will hold the index of the first character of the word containing the input index on
return.

Length
Long. This parameter will hold the length of the word on return.

Flags

Sub GetWordInfo(Index As Long, _
Length As Long, _
Flags As Long, _
SoundsLike As String)

void GetWordInfo(long* Index,
long* Length,
long* Flags,
BSTR* SoundsLike);

HRESULT GetWordInfo(long * Index,
long * Length,
long * Flags,
BSTR * psSoundsLike);

Properties, Methods, and Events

674 IBM SDK for Windows

Long. These flags are a bit mask indicating how the word is combined with the words around it
and also whether or not it is an expanded macro. Valid values are found in “VVDictation Phrase
Formatting Flags” on page 741.

SoundsLike
String. On return this parameter will hold the "sounds like" spelling of the word. This is
particularly useful for Asian Pacific languages but may also be useful for retrieving the "spoken
text" when acronyms or macros are in use. This parameter can be NULL if the "sounds like"
spelling is not required.

Remarks
This information includes the index of the first character, the length of the "word", formatting flags,
and the "spoken text" or "sounds like text" for the word. This information can be used to implement
commands like "Select This", "Next Word", and "Previous Word". It can also be used to find the exact
word boundaries necessary for some of the other methods.

In many languages the "word length" will include the trailing space.

Example

In Visual Basic:

In Visual C++ (MFC):

VVDictationMgr.GetWordInfo Index , Length, Flags, 0

m_VVDictationMgr.GetWordInfo (& lIndex, & lLength, & lFlags, NULL);

IBM SDK for Windows 675

DictationMgr Control Methods

In Visual C++:

See Also
None.

HRESULT hr = S_OK;
hr = m_pIVVDictationMgr->GetWordInfo (& lIndex, & lLength, & lFlags,

NULL);

Properties, Methods, and Events

676 IBM SDK for Windows

Playback

See Also
Chapter 7, “Playback” on page 178

IBM SDK for Windows 677

DictationMgr Control Methods

PlaybackEx2

See Also
Chapter 7, “PlaybackEx2” on page 182

Properties, Methods, and Events

678 IBM SDK for Windows

PutText
Keeps DictationMgr synchronized with any non-dictated text in the UI.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
Text

String. The is the text to be added.

TextLength
Long. The length of the text to be added.

StartIndex
Long. The 0 based index where the text is to be placed. The default for this parameter (in
languages like VB that use defaults) is VV_USECURSOR (-1), which causes the text to be
inserted at the current cursor location.

Return Values
??

Sub PutText(Text As String, _
TextLength As Long, _
[StartIndex As Long = -1])

void PutText(LPCTSTR Text, long TextLength, long StartIndex);

HRESULT PutText(BSTR Text, long TextLength, long StartIndex);

IBM SDK for Windows 679

DictationMgr Control Methods

Remarks
For instance, text typed or pasted into the UI would need to be added to DictationMgr using PutText.
It is not necessary to update the CursorIndex after calling PutText since it implicitly updates the cursor
position to the index immediately after insertion. This is the same behavior seen when typing or
pasting into a typical text UI. Remember, arbitrarily setting the cursor index when not required will
degrade performance.

When it is necessary to insert text (keystroke, paste, etc.) always remember to update the UI before
DictationMgr. This is necessary because inserting text may change certain formatting characteristics
triggering a PutText event to update the UI. For instance, inserting text before the first word in a
sentence may remove the capitalization from the word that was the first word if it is also dictated
forcing an update of the UI. If you have not yet updated the UI then the information in the PutText
event will be incorrect.

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
None.

VVDictationMgr.PutText (CurTextStr, Len(CurTextStr))

m_VVDictationMgr.PutText (lpszCurText, strlen(lpszCurText), -1);

HRESULT hr = S_OK;
hr = m_pIVVDictationMgr.PutText (bstrCurText,

SysStringLen (bstrCurText),
VV_USECURSOR);

Properties, Methods, and Events

680 IBM SDK for Windows

SetSelection
Synchronizes selections made in the UI with DictationMgr.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
StartIndex

Long. The 0 based index of the first character selected.

SelectionLength
Long. The number of characters selected. VV_EOT (-2) may be used to select to the end of
existing text.

Return Values
None.

Remarks
This will allow the user to select text within the UI and then dictate a replacement in the same way that
they would when typing or pasting text for a replacement. If a selection has been set when dictation is
detected, the selection will be replaced in DictationMgr and the DeleteText event will be fired

Sub SetSelection (StartIndex As Long, SelectionLength As Long)

void SetSelection(long StartIndex, long SelectionLength);

HRESULT SetSelection (long StartIndex, long SelectionLength);

IBM SDK for Windows 681

DictationMgr Control Methods

directing the client to delete the selection. Setting the selection with a SelectionLength of 0 is
equivalent to setting the CursorIndex property.

Calling SetSelection will implicitly update the cursor location to the beginning of the selection. As a
result, calling SetSelection with a length of 0 is equivalent to setting the CursorIndex property. Like
the CursorIndex property, calling SetSelection arbitrarily can impose significant overhead and should
be used only when necessary. To do this effectively you must remain aware of which methods and
events (i.e., PutText) implicitly update the cursor.

Example

In Visual Basic

In Visual C++ (MFC):

In Visual C++:

See Also
“CursorIndex” on page 645
“PutText” on page 678
“PutText” on page 687

VVDictationMgr.SetSelection StartIndex, Length

m_VVDictationMgr.SetSelection (lStartIdx, lLength);

HRESULT hr = S_OK;
hr = m_pIVVDictationMgr->SetSelection (lStartIdx, lLength);

Properties, Methods, and Events

682 IBM SDK for Windows

DictationMgr Control Events
The ViaVoice DictationMgr control supports the following events:

• DeleteText

• DictationStateChange

• PutText

• QueryText

IBM SDK for Windows 683

DictationMgr Control Events

DeleteText
Event fired when client should delete the text indicated from the UI.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
StartIndex

Long. The 0 based index of the first character to be deleted.

TextLength
Long. The number of characters to be deleted.

Return Values
None.

Remarks
This event may be fired in response to dictation occurring after a selection is made or when the cursor
is located inside an existing word. It will also be fired when the Command method is called with the
"Scratch That" command.

Event DeleteText(StartIndex As Long, TextLength As Long

void OnDeleteText (long StartIndex, long TextLength);

HRESULT DeleteText (long StartIndex, long TextLength);

Properties, Methods, and Events

684 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“Command” on page 660
“SetSelection” on page 680

Private Sub VVDictationMgr_DeleteText(ByVal StartIndex As Long, ByVal _
TextLength As Long)

TextBox.SelStart = StartIndex
TextBox.SelLength = TextLength
TextBox.SelText = ""

End Sub

void [ClassName]::OnDeleteTextVVDictationMgr(long StartIndex,
long TextLength)

{
m_Edit.SetSel (StartIndex, TextLength);
m_Edit.ReplaceSel (_T(""));

}

HRESULT [ClassName]::DeleteText (long StartIndex, long TextLength)
{
SendMessage (m_hwndEdit, EM_SETSEL,

(WPARAM)StartIndex, (LPARAM)TextLength);
SendMessage (m_hwndEdit, EM_REPLACESEL,

FALSE, _T(""));
return S_OK;
}

IBM SDK for Windows 685

DictationMgr Control Events

DictationStateChange
Event fired any time there is a change in the state of dictation.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
DictationOn

Long. The current state of dictation.

Return Values
None.

Remarks
This might be in response to an explicit change in the value of the DictationOn property. Setting the
DictationOn property will not trigger this event if the new value is the same as the old value of the
property.

Event DictationStateChange(DictationOn As Boolean)

void OnDictationStateChange (BOOL DictationOn);

HRESULT DictationStateChange (VARIANT_BOOL DictationOn);

Properties, Methods, and Events

686 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also
“DictationOn” on page 647

Private Sub VVDictationMgr_DictationStateChange(_
ByVal DictationOn As Boolean)

DoSomethingUseful DictationOn
End Sub

void [ClassName]::OnDictationStateChangeVVDictationMgr(BOOL DictationOn)
{
DoSomethingUseful (DictationOn);

}

HRESULT [ClassName]::DictationStateChange(VARIANT_BOOL DictationOn)
{
return DoSomethingUseful (DictationOn);

}

IBM SDK for Windows 687

DictationMgr Control Events

PutText
Event fired to provide all the information necessary to merge dictated text into the UI interface.

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
Text

String. This is the text to be displayed.

StartIndex
Long. This is the 0 based index where the text should be inserted.

Event PutText(Text As String, _
StartIndex As Long, _
TextLength As Long, _
CursorIndex As Long, _
PhraseComplete As Boolean)

void OnPutText (LPCTSTR Text,
long StartIndex,
long TextLength,
long CursorIndex, BOOL PhraseComplete);

HRESULT PutText (BSTR Text,
long StartIndex,
long DeleteLength,
long CursorIdx,

VARIANT_BOOL PhraseComplete);

Properties, Methods, and Events

688 IBM SDK for Windows

DeleteLength
Long. This is the number of characters, beginning with the StartIndex, which need to be replaced.
If the DeleteLength is 0 then no existing text needs to be replaced.

CursorIndex
Long. This is the 0 based index where the cursor should be located after the new text has been
placed. It is necessary to explicitly set the UI cursor index in response to this event since the Text
parameter may include more than just the new dictated text.

PhraseComplete
Boolean. This parameter will be true only when DictationMgr thinks it may be processing a
multi-phrase macro. A multi-phrase macro is a macro which cannot be fully resolved within the
context of a single spoken phrase. For instance, if a user dictated "one thousand," paused, and then
dictated "five hundred," the ultimate result should be "1,500" not "1,000 500." The DictationMgr
will take care of proper formatting and replacement of text as necessary to support this
functionality without any interaction by the client. This information is provided only for clients
who wish to visually indicate the potential resolution of a multi-phrase macro visually in the UI. It
can also be used to allow the user to prevent multi-phrase macro resolution if the client application
provides a means for the user to stop expansion of multi-phrase macros in progress (see the
ProcessingMacro property on page page 655). In the previous example, this would allow the user
to dictate "1,000 500" as opposed to "1,500." Also note that if the user dictated "1,000," paused,
and then dictated something like "computers," the first phrase would have PhraseComplete false.
This is because DictationMgr has no way of knowing if the multi-phrase macro is complete until
it processes the next phrase.

Return Values
TRUE

??

FALSE
??

Remarks
The client will receive a PutText event when dictation is recognized. If the DictationMgr has been
kept correctly synchronized with the UI, this event provides all the information necessary to merge
dictated text into the UI interface.

IBM SDK for Windows 689

DictationMgr Control Events

Example

In Visual Basic:

In Visual C++ (MFC):

Private Sub VVDictationMgr_PutText(ByVal Text As String, _
ByVal StartIndex As Long, _
ByVal TextLength As Long, _
ByVal CursorIndex As Long, _
ByVal PhraseComplete As Boolean)

TextBox.SelStart = StartIndex
TextBox.SelLength = TextLength
TextBox.SelText = Text
TextBox.SelStart = CursorIndex

End Sub

void [ClassName]::OnPutTextVVDictationMgr(LPCTSTR Text,
long StartIndex,
long TextLength,
long CursorIndex,
BOOL PhraseComplete)

{
m_Edit.SetSel (StartIndex, TextLength);
m_Edit.ReplaceSel (Text);
m_Edit.SetSel (CursorIndex, 0);

}

Properties, Methods, and Events

690 IBM SDK for Windows

In Visual C++:

See Also
“ProcessingMacro (Run Time Only)” on page 655

void [ClassName]::PutText (LPCTSTR Text,
long StartIndex,
long TextLength,
long CursorIndex,
BOOL PhraseComplete)

{
SendMessage (m_hwndEdit, EM_SETSEL,
(WPARAM)StartIndex, (LPARAM)TextLength);

LPTSTR pszText = ConvertBSTR2LPTSTR (Text);
SendMessage (m_hwndEdit, EM_REPLACESEL,
FALSE, pszText);

delete[] pszText;
SendMessage (m_hwndEdit, EM_SETSEL,
(WPARAM)CursorIndex, (LPARAM)0);

return S_OK;
}

IBM SDK for Windows 691

Chapter 33 DictationMgr Control Frequently
Asked Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice
DictationMgr Control.

When should I use the DictationMgr control?

VVDictationMgr does almost everything you need to do normal document based dictation except
show it to the user. You only have to keep the user interface synchronized with VVDictationMgr
through character indices. If you are not voice enabling a word processor or memo type
application then this may well be more than you really need. VVDictationMgr will also not be
suitable for voice enabling applications where it is not possible to synchronize using character
indices.

When should I use the Dictation control?

VVDictation provides a simple means of just getting the text of what was said one phrase at a
time. What you do with that text is up to you. You may or may not care about getting audio later
and or doing correction in which case you could just destroy the RecoHandles provided and use
the text. However, if you have or are attempting to build a word processor which is speech enabled
on top of this object you will still have a great deal of work to do just to manage speech.

DictationMgr Control Frequently Asked Questions

692 IBM SDK for Windows

IBM SDK for Windows 693

Chapter 34 Getting Started with the Dictation
Control

The following is a tutorial on how to incorporate the VVDictation control into your Visual Basic or
Visual C++ applications. This tutorial is designed to present you with the most commonly used
properties and events in the VVDictation control.

The following sections contain information to help you write code to create an instance of the
Dictation Control and capture speech. You will also take steps to allow text correction and playback of
captured speech.

Creating an Instance of the Control
This section contains step-by-step instructions for using Visual Basic or Visual C++ to create an
instance of the control.

In Visual Basic:

To add the VVDictation control to your application, do the following:

1. From the Project menu, choose References.
The References dialog box, Figure 51, appears. The References dialog lists all the ActiveX
Controls and simple COM objects that you can use in your application.

Getting Started with the Dictation Control

694 IBM SDK for Windows

Figure 51. Reference Selection Dialog - Visual Basic

2. Select IBM ViaVoice Dictation Control from the list and click OK.
Visual Basic adds the control to your project, but does not add a new icon to the toolbar.

3. Add a global instance of the VVDictation control to your form code using the following syntax:

Dim WithEvents VVDict As VVDictation

IBM SDK for Windows 695

In Visual C++:

To add the VVDictation component to your C++ project, do the following:

1. Include the VVDICTATION.H. header file in any files that need access to the VVDictation compo-
nent.

2. Create a class derived from IVVDictationEventSink (defined in VVDICTATION.H) and implement
all methods appropriately including the methods of IUnknown. This is the class that will receive
notification events when speech input is processed. You can also derive your implementation class
from IVVDictationEventSink and implement the methods there.

3. Use CoCreateInstance to create an instance of the VVDictation component using the following
syntax:

4. Give your event sink implementation to the VVDictation instance you just created.

5. Turn dictation on whenever you would like to start processing dictation.

Note:

HRESULT hr = CoCreateInstance (CLSID_VVDictation,
 NULL,
 CLSCTX_INPROC_SERVER,
 IID_IVVDictation,
 (void**) & m_pIVVDictation);

IconnectionPointContainer* pCPC = NULL;
IconnectionPoint* pCP = NULL;
m_dwSinkCookie = 0;
HRESULT hr = m_pIVVDictation ->QueryInterface
 (IID_IConnectionPointContainer,
 (void**)&pCPC);
if (SUCCEEDED(hRes))
 hRes = pCPC->FindConnectionPoint(IVVDictationEventSink, &pCP);
if (SUCCEEDED(hRes))
 hRes = pCP->Advise(& m_VVDictationEventSink, & m_dwSinkCookie);
if (pCPC) pCPC->Release();
if (pCP) pCP->Release();

Getting Started with the Dictation Control

696 IBM SDK for Windows

Always check return codes from all method calls.

6. When you are done with VVDictation, you must disconnect the sink object and release VVDicta-
tion.

hr = m_pIVVDictation->put_DictationOn (VARIANT_TRUE);

IconnectionPointContainer* pCPC = NULL;
IconnectionPoint* pCP = NULL;
HRESULT hr = m_pIVVDictation ->QueryInterface
 (IID_IConnectionPointContainer,
 (void**)&pCPC);
if (SUCCEEDED(hRes))
 hRes = pCPC->FindConnectionPoint(IVVDictationEventSink, &pCP);
if (SUCCEEDED(hRes))
 hRes = pCP->Unadvise(m_dwSinkCookie);
if (pCPC) pCPC->Release();
if (pCP) pCP->Release();
m_pIVVDictation->Release();
m_pIVVDictation = NULL;

IBM SDK for Windows 697

Capturing Speech
The VVDictation object converts speech input into text suitable for display which is passed to the
client as one of the parameters of the PhraseReco event. This event also provides the client with a
RecoHandle and formatting flags relating to the particular phrase which is being presented. The
RecoHandle identifies a particular phrase event when interacting with the VVDictation object and the
flags provide information about how the current phrase should be combined with any existing or future
text arranged around the current phrase. For instance, if the current phrase contains only a period ("."),
you will receive flags indicating that it should merge flush with the phrase to the left (no white space
left before the period) and that the next word should be capitalized. (These flags are only available
when using the IBM ViaVoice runtime.) If you wish to be able to correct any misrecognized words, or
provide playback of the speech which generated the event, you must store the RecoHandle in some
way associated with the displayed text so that it can be retrieved when needed and given to
VVDictation for processing. It is not necessary to store the flags since you can retrieve them at any
time using the RecoHandle.

Summary

At this point, you should know how to do the following:

• How to incorporate the VVDictation control into your project.

• How to receive speech input.

The remainder of this documentation contains a reference for all the properties, methods, and events in
the VVDictation control.

Getting Started with the Dictation Control

698 IBM SDK for Windows

IBM SDK for Windows 699

Chapter 35 Introduction to the Dictation
Control

The ViaVoice Dictation Control (VVDictation) is a low-level dictation object providing only the
basics necessary for dictation, correction, and playback. This object is implemented as a simple COM
object rather than a full ActiveX control and can not be "dropped" into a form and configured at
design-time.

An application using VVDictation will receive PhraseReco events when speech has been recognized
including the text of the recognition, and a recognition "handle". The recognition "handle" should be
stored in some way associated with (i.e., mapped to) the displayed text of the recognition event. This
will be necessary in order to correct the engine in the case of a "misrecognition", to do playback of
dictated text.

If VVDictation is running on the IBM engine, the client will also be able to use the advanced
formatting features available only with the IBM engine. This advanced formatting is enabled by setting
ExpandMacros to true which will provide dates and numbers formatted according to system settings
as well as expansion of user defined macros. If the property ExpandMacros is set to false, macro
conversion and formatting is the responsibility of the client.

Because of the inherent latency of the Speech Engine audio resolution, Bookmarks must be used to
synchronize the relatively real-time GUI with the dictation provided from the Engine in the
PhraseReco events. The SetBookMark method can be used to set a bookmark with an ID at the
current location in the audio stream. (For example, in response to the user changing the cursor location
using the mouse, a bookmark would be set). When that bookmarked position in the audio stream is
processed, the HitBookMark event will be fired including a bookmark ID that matches the one set by
the call to SetBookMark.

Note:
When a HitBookMark event is received, this indicates to the client application that the current
recognition event, and all subsequent speech related events, occurred after the point in time that
the bookmark was set. For instance, when the above mentioned bookmark (set as a result of
changing the cursor position) is passed in a HitBookMark event the client knows that the current
and all subsequent speech input should be placed based on the new cursor position indicated by the
user’s mouse click.

Introduction to the Dictation Control

700 IBM SDK for Windows

IBM SDK for Windows 701

Chapter 36 Properties, Methods, and Events

Dictation Control Properties
The ViaVoice Dictation control supports the following properties:

• AutoDictationWindow

• DictationOn

• Engine

• ExpandMacros

• ProcessingMacro

Properties, Methods, and Events

702 IBM SDK for Windows

AutoDictationWindow
Controls the scope in which dictation is available.

Syntax

In Visual Basic:

In Visual C++:

Parameters
None.

Return Values
Any valid “top-most” window handle.

Dictation is available only when the indicated window is “active” as indicated by it, or one of its
children, having the focus. Note: There can only be one dictation object active for the same
window (DictationOn is True) at any one time!

NULL
Dictation mode is always available and must be controlled manually by setting the DictationOn
property to True or False. Note: There can only be one global dictation object active (DictationOn
is True) at any one time!

Remarks
The default value of this property is NULL (0), which will enable dication globally. However, please
note that there can only be one global dictation object active (DictationOn is True) at any one time in
the entire system, including other applications! For this reason, it is strongly suggested that you avoid

Property AutoDictationWindow As Long

HRESULT put_AutoDictationWindow (long hWnd);
HRESULT get_AutoDictationWindow (long * hWnd);

IBM SDK for Windows 703

Dictation Control Properties

global dictation objects, if possible. Alternatively, you can set this property to any valid "top-mosta"
window handle, which maps dictation availability to that window’s activation state (it or one of its
children having focus).

Remember, if you use NULL be aware that there can only be one global dictation object active
(DictationOn is True) at any one time. This includes your own or any other application running on the
system. For this reason, global dictation objects should be used with extreme care and should be
avoided, unless absolutely necessary. Regardless of the value of this property, finer granularity of
control can always be achieved by changing the state of DictationOn appropriately.

Example

In Visual Basic:

In Visual C++:

See Also
“DictationOn” on page 704, “DictationStateChange” on page 735

a. A “top-most” window is defined as any window without a parent. For more information on issues dealing with finding the
“top-most” window, see the Microsoft Knowledge Base article Q84190.

’Assumes this form is the top-most form!
VVDict.AutoDictationWindow = hWnd

// Makes no assumptions about m_hWnd
HWND Hwnd = m_hWnd;
// Due to the Win32 implementation of GetParent, this is necessary
// to find the "Foreground" window for SAPI grammar activation
// For more information see MS Knowledge Base article Q84190
while (::GetParent (hwnd) != NULL &&
! (::GetWindowLong(hwnd ,GWL_STYLE) & WS_POPUP))

{
hwnd = ::GetParent (hwnd);

}
m_pIVVDictation->put_AutoDictationWindow ((long)hWnd);

Properties, Methods, and Events

704 IBM SDK for Windows

DictationOn
Returns or sets the desired state of the dictation mode.

Syntax

In Visual Basic:

In Visual C++:

Parameters
DictationOn

Boolean.

Return Values
TRUE

The control can receive dictation input, when available.

FALSE
The control ignores dictation input that occurs after making this setting. Note that any speech input
which occurred before setting DictationOn false but which is not yet completed will still be
processed and passed to the client through the PhraseReco event.

Remarks
You can think of this property semantically as "Client want’s dictation on". What this means is that if
dictation is available (i.e. the AutoDictationWindow is active), then the user will be able to dictate into
the control.

Property DictationOn As Boolean

HRESULT get_DictationOn(VARIANT_BOOL * DictationOn)
HRESULT put_DictationOn(VARIANT_BOOL DictationOn)

IBM SDK for Windows 705

Dictation Control Properties

When the state of the dictation mode changes, the control fires the DictationStateChange event. You
should not set the value of this property in the DictationStateChange event, as this will cause the
event to fire again.

Example

In Visual Basic:

In Visual C++:

See Also
“AutoDictationWindow” on page 702
“DictationStateChange” on page 735

VVDict.DictationOn = True

m_pIVVDictation->put_DictationOn(VARIANT_TRUE);

Properties, Methods, and Events

706 IBM SDK for Windows

Engine
Sets or gets a reference to the ViaVoice Engine control (VVEngine), which is used by the
VVDictation control.

Syntax

In Visual Basic:

In Visual C++:

Parameters
None.

Return Values
None.

Remarks
The Engine property is actually holding an implicitly created ActiveX control (VVEngine), which can
also be created separately. Inserting a VVEngine control in a project enables you to set the engine
properties on this control, and then assign the engine to multiple ViaVoice ActiveX controls.

Property Engine As IVVEngine

HRESULT get_Engine(IVVEngine * * IVVEngine)
HRESULT putref_Engine(IVVEngine * IVVEngine)

IBM SDK for Windows 707

Dictation Control Properties

Example

In Visual Basic:

In Visual C++:

See Also
Refer to the ViaVoice Engine Control Guide for more information.

VVDict.Engine = VVEngine1

m_pIVVDictation->putref_Engine(m_pIVVEngine);

Properties, Methods, and Events

708 IBM SDK for Windows

ExpandMacros
Indicates whether the VVDictation control should expand and format speech input when possible.

Note:
This property affects dictation only when used with the IBM engine.

The following examples show how you might see the macros, however, this depends on regional
settings:

Syntax

In Visual Basic:

In Visual C++:

Parameters
ExpandMacros

Boolean.

False True

"one thousand two hundred and thirty four" "1,234"

"January first two thousand" "January 1, 2000"

"my macro" <whatever "my macro" is defined as> using
the Dictation Macro Editor

Property ExpandMacros As Boolean

HRESULT get_ExpandMacros(VARIANT_BOOL * ExpandMacros)
HRESULT put_ExpandMacros(VARIANT_BOOL ExpandMacros)

IBM SDK for Windows 709

Dictation Control Properties

Return Values
TRUE

(Default) VVDictation will expand macros and provide advanced, multi-phrase, number
formatting if running on the IBM engine.

FALSE
VVDictation does not do any advanced formatting or macro expansion.

Remarks
If the value of this property is set to false you will get dictation exactly as interpreted by the engine. If
set to true, and running on the IBM engine, all dictation will be checked for possible macro expansion
(see Dictation Macro Editor application, DME.EXE, included with the SDK Dictation Runtime). This
property also controls the availability of IBM advanced, multi-phrase, numeric formatting. For
instance, setting this property to true would cause the following speech input to "expand" differently.

The setting of ExpandMacros has no effect if not running on the IBM engine.

Example

In Visual Basic:

In Visual C++:

See Also
None.

VVDict.ExpandMacros = True

m_pIVVDictation->put_ExpandMacros (VARIANT_TRUE);

Properties, Methods, and Events

710 IBM SDK for Windows

ProcessingMacro
Determines if the VVDictation object is currently processing a multi-phrase macro expansion.

Syntax

In Visual Basic:

In Visual C++:

Parameters
??

Return Values
TRUE

VVDictation displays is currently processing a multi-phrase macro. This property will never be
true unless running on the IBM engine. This value can not be set.

FALSE
VVDictation is not processing a multi-phrase macro. This value can be set to force completion of
multi-phrase macro processing.

Remarks
If the value of ProcessingMacro is false, then all phrases are complete. If the value is true, then
VVDictation is currently processing a multi-phrase macro. If the value is true and you set it to false,
all infirm phrases are then considered complete and any new speech input will be a new phrase. You
can never set the value of ProcessingMacro to true. For more information on infirm phrases and
multi-phrase macro expansion, see PhraseReco event on page 739, which also indicates whether or
not VVDictation is processing a multi-phrase macro.

Property ProcessingMacro As Boolean

HRESULT get_ProcessingMacro(VARIANT_BOOL * ExpandMacros)
HRESULT put_ProcessingMacro(VARIANT_BOOL ExpandMacros)

IBM SDK for Windows 711

Dictation Control Properties

The value of the ProcessingMacro property will never be true when not using the IBM speech engine.

Example

In Visual Basic:

In Visual C++:

See Also
“PhraseReco” on page 739

VVDict.ProcessingMacro = False

m_pIVVDictation->put_ProcessingMacro (VARIANT_FALSE);

Properties, Methods, and Events

712 IBM SDK for Windows

Dictation Control Methods
The ViaVoice Dictation control supports the following methods:

• Correct

• Destroy

• GetAlternatePhrase

• GetFlags

• GetWavData

• GetWordInfo

• MergeRecoPhrases

• SetBookMark

• SetContext

• SplitOutLeftWord

IBM SDK for Windows 713

Dictation Control Methods

Correct
Corrects any misrecognized words provided by the PhraseReco event.

Syntax

In Visual Basic:

In Visual C++:

Parameters
RecoHandle

Long. A 32 bit value that uniquely identifies the phrase to be corrected. The RecoHandle for a
phrase is passed as one of the parameters of the PhraseReco event.

Index
Long. The index of the first character of the word to be corrected.

Reserved
Long. This parameter is reserved for future use and should always be set to 0.

Sub Correct(RecoHandle As Long, _
lIndex As Long, _
Reserved As Long, _
AddAsSingleWord As Boolean, _
CorrectText As String, _
SoundsLike As String, _
Phrase As String, _
Flags As Long)

HRESULT Correct (VV_RecoHandle RecoHandle,
long Index,
long Reserved,
VARIANT_BOOL AddAsSingleWord,
BSTR CorrectText,
BSTR SoundsLike,
BSTR* Phrase,
long* Flags);

Properties, Methods, and Events

714 IBM SDK for Windows

AddAsSingle
Boolean. This parameter allows addition of multiple words to be corrected as a single phrase.

CorrectText
String. A string indicating the "correct" interpretation for this particular speech input
(RecoHandle).

SoundsLike
String. A string indicating the "correct" interpretation for this particular speech input
(RecoHandle).

Phrase
String. The modified (corrected) phrase. This string is a replacement for the original string
provided in the PhraseReco event and should replace the original string in the UI.

Flags
Long. An output only parameter which will provide you the correct formatting flags based on the
corrected text. These flags should be applied in exactly the same manner as the original flags
received in the PhraseReco event. For instance, correct application of these flags will allow the
replacement of the word "period" with "." to remove white space from the left of the "." and
capitalize the following word.

Return Values
None.

Remarks
By passing in the RecoHandle for the phrase containing the word to be corrected, the character index
of the first character of the word to be corrected, and the corrected text, you will be able to update the
engine in order to improve accuracy for the same word when used in the future. Correcting
VVDictation will also insure that information on the word provided by VVDictation will be accurate
(see GetWordInfo method on page 723).

After correction, a corrected phrase and formatting flags will be returned to the caller using the
"Phrase" parameter. This corrected phrase should replace the original text provided in PhraseReco.

IBM SDK for Windows 715

Dictation Control Methods

Example

In Visual Basic:

In Visual C++:

See Also
“PhraseReco” on page 739
“VVDictation Phrase Formatting Flags” on page 741

VVDict.Correct (RecoHandle, WordIndex, 0, _
False, CorrectText, SoundsLike, _
NewPhrase, Flags)

m_pIVVDictation->Correct(hReco, lWordIdx, 0, VARIANT_FALSE,
bstrCorrectText, bstrSoundsLike,
&bstrNewPhrase, &lFlags);

Properties, Methods, and Events

716 IBM SDK for Windows

GetAlternatePhrase
Gets alternative interpretations of a particular speech input (represented by a RecoHandle).

Syntax

In Visual Basic:

In Visual C++:

Parameters
RecoHandle

Long. A 32-bit value that uniquely identifies the phrase (word) for which alternates are needed.
The RecoHandle for a phrase is passed as one of the parameter to the PhraseReco event or
returned from the SplitOutLeftWord or MergeRecoPhrases method.

Index
Long. The character index of the word for which an alternate is desired.

Reserved
Long. This parameter is reserved for future use.

Rank
Long. The rank of desired alternate.

Function GetAlternatePhrase (RecoHandle As Long, _
Index As Long, _
Reserved As Long, _
Rank As Long, _
SoundsLike As String) As String

HRESULT GetAlternatePhrase (VV_RecoHandle RecoHandle,
long Index,
long Reserved,
long Rank,
BSTR * SoundsLike,
BSTR * PhraseText)

IBM SDK for Windows 717

Dictation Control Methods

SoundsLike ??
??

PhraseText
String. The alternate of the indicated rank or an empty string if no alternate of the indicated rank
was available.

Return Values
??

Remarks
These alternatives are retrieved based on their rank, which represents the likelihood, according to the
engine, that the particular alternate is a correct interpretation of the speech input. Alternates are
typically presented to the user for selection in the context of a potential correction.

Ranks begin with 0 and the total number of alternatives available depends on the word and the
underlying speech engine. For any given speech input, the alternate of rank 0 is what the engine thinks
was said. This is the text originally provided by the PhraseReco event. An alternative of rank 1 is,
according to the engine, the most likely alternative to the text originally provided. Each succeeding
rank (higher numerically) alternate is correspondingly less likely. If an alternative of a given "rank" is
not available, an empty string will be returned. An empty string for a given rank also implies that no
alternates of higher rank are available.The number of alternates available for any speech input is
dependent both on the speech input itself and on the underlying speech engine implementation. The
recommended approach to retrieve all alternates for a given speech input is to use forward iteration,
beginning with rank 1, until an empty string is returned. In languages which give access to the actual
return code (HRESULT) the return code can be tested for S_FALSE to determine if no alternative was
available for the requested rank.

Properties, Methods, and Events

718 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++:

See Also
None.

VVDict.GetAlternatePhrase(RecoHandle, Index, 0, Rank, AlternateText)

m_pIVVDictation->GetAlternatePhrase(hReco, lIndex, 0, lRank,
&bstrAltText);

IBM SDK for Windows 719

Dictation Control Methods

GetFlags
Retrieves the formatting flags originally provided with speech input in the PhraseReco event.

Syntax

In Visual Basic:

In Visual C++:

Parameters
RecoHandle

Long. A 32 bit value that uniquely identifies the phrase for which flags are being requested. The
RecoHandle for a phrase is passed as one of the parameter to the PhraseReco event.

Flags
Long. Storage where the flags associated with the indicated RecoHandle will be placed.

Return Values
None.

Remarks
None.

Function GetFlags(RecoHandle As Long) As Long

HRESULT GetFlags(VV_RecoHandle RecoHandle, long * Flags)

Properties, Methods, and Events

720 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++:

See Also
“VVDictation Phrase Formatting Flags” on page 741

Flags = VVDict.GetFlags (RecoHandle)

m_pIVVDictation->GetFlags (hReco, &lFlags);

IBM SDK for Windows 721

Dictation Control Methods

GetWavData
Gets the actual audio associated with a given speech input packaged in a BSTR.

Syntax

In Visual Basic:

In Visual C++:

Parameters
RecoHandle

Long. A 32 bit value that uniquely identifies the phrase for which audio (WAV data) is being
requested. The RecoHandle for a phrase is passed as one of the parameter to the PhraseReco
event.

Index
Long. The character index of the word for which audio data is desired.

Reserved
Long. This parameter is reserved for future use and should always be 0.

PlaySound
Boolean. Indicates whether the caller would like VVDictation to play the sound or just return the
audio data. If this value is true, then VVDictation will play the audio. If false, the data will be
returned without playing.

Function GetWavData(RecoHandle As Long, _
Index As Long, _
Reserved As Long, _
PlaySound As Boolean) As String

HRESULT GetWavData(VV_RecoHandle RecoHandle,
long Index,
long Reserved,
VARIANT_BOOL PlaySound,
BSTR* WavData)

Properties, Methods, and Events

722 IBM SDK for Windows

WavData
String (BSTR). This is the actual audio data. If you do not wish to use the actual audio data
(perhaps when PlaySound is True) you may pass NULL for this parameter.

Remarks
The data is in standard RIFF WAV format and may be saved for playback in a *.wav file or sent
directly to any API (for example, sndPlaySound) capable of playing RIFF WAV audio. If PlaySound
is True, VVDictation can also play the audio for you.

While the BSTR type may seem a strange choice for transfer of audio data, it was chosen for its
relative ease of access and manipulation from all development environments. However, you must be
aware that some environments and frameworks (VB, MFC CString, etc.) will truncate a BSTR at the
first NULL when performing certain operations. If you have difficulties playing the resultant data,
please refer to the relevant documentation.

Example

In Visual Basic:

In Visual C++:

See Also
None.

WavString = VVDict.GetWavData (RecoHandle, 0, 0,True)

m_pIVVDictation->GetWavData (hReco, 0, 0, VARIANT_FALSE, &bstrWavData);

IBM SDK for Windows 723

Dictation Control Methods

GetWordInfo
Gets information on individual words within a phrase.

Syntax

In Visual Basic:

In Visual C++:

Parameters
RecoHandle

Long. A 32 bit value that uniquely identifies the phrase for which word information is being
requested. The RecoHandle for a phrase is passed as one of the parameter to the PhraseReco
event.

Index
Long. Input: A zero based character index into the phrase represented by the RecoHandle.

Output: A zero based index of the beginning of the word containing the input index.

Length
Long. The length of the word containing the input index.

Flags
Long. The flags associated with the word containing the input cursor.

Sub GetWordInfo(RecoHandle As Long, _
Index As Long, _
Length As Long, _
Flags As Long, _
SoundsLike As String)

HRESULT GetWordInfo (VV_RecoHandle RecoHandle,
long * Index,
long * Length,
long * Flags,
BSTR * SoundsLike)

Properties, Methods, and Events

724 IBM SDK for Windows

SoundsLike
String. The "sounds-like" spelling, if any, for the indicated word.

Example

In Visual Basic:

In Visual C++:

Remarks
By passing in a zero based character index and a RecoHandle, the client can get information regarding
the word containing the input index. This includes the starting index and length of the word, the flags
associated with the word, and the sounds-like text (if any) for the word.

See Also
“VVDictation Phrase Formatting Flags” on page 741

VVDict.GetWordInfo (RecoHandle, Index, Length, Flags, SoundsLikeText)

m_pIVVDictation->GetWordInfo (hReco, &lIndex, &lLength, &lFlags,
&bstrSoundsLike);

IBM SDK for Windows 725

Dictation Control Methods

MergeRecoPhrases
Merges any two adjacent phrases (represented by their RecoHandles) into a single phrase
(RecoHandle).

Syntax

In Visual Basic:

In Visual C++:

Parameters
LeftRecoHandle

Long. A 32 bit value that uniquely identifies the left phrase to be merged. If this method call is
successful, then this RecoHandle will represent the combined phrase. This RecoHandle MUST be
the RecoHandle from the last PhraseReco before the RightRecoHandle. That is, the left and right
RecoHandles MUST be both temporally adjacent and sequential. The RecoHandle for a phrase is
passed as one of the parameter to the PhraseReco event.

RightRecoHandle
Long. A 32 bit value that uniquely identifies the phrase to be corrected. The RecoHandle for a
phrase is passed as one of the parameter to the PhraseReco event. This RecoHandle is invalid
after a successful call.

MergedText
String. If the merge is successful, this parameter will hold the text that results from evaluating the
merged speech input.

Sub MergeRecoPhrases(LeftRecoHandle As Long, _
RightRecoHandle As Long, _
MergedText As String, _
Flags As Long)

HRESULT MergeRecoPhrases(VV_RecoHandle LeftRecoHandle,
VV_RecoHandle RightRecoHandle,
BSTR* MergedText,
long* Flags)

Properties, Methods, and Events

726 IBM SDK for Windows

Flags
Long. The flags associated with the merged phrase (RecoHandle).

Return Values
None.

Remarks
To merge a pair of phrases, they must be both temporally adjacent and sequential.

Example

In Visual Basic:

In Visual C++:

See Also
“VVDictation Phrase Formatting Flags” on page 741

VVDict.MergeRecoPhrases (LeftRecoHandle, RightRecoHandle, MergedText, _
Flags)

m_pIVVDictation->MergeRecoPhrases(hLeftReco, hRightReco,
&bstrMergedText, &lFlags);

IBM SDK for Windows 727

Dictation Control Methods

SetBookMark
Synchronizes the relatively "real-time" UI events with the inherent latency of speech recognition.

Syntax

In Visual Basic:

In Visual C++:

Parameters
BookMarkId

Long

A number that uniquely identifies the bookmark being set.

Remarks
This is done by passing in an identifying BookMarkId which will be used to identify the
synchronization point being set. When the speech engine begins processing the point in the audio
stream where the bookmark was set, VVDictation will fire the HitBookMark event with BookMarkId
which was passed into SetBookMark. All subsequent PhraseReco events will have occurred after the
point in time where the bookmark was set.

Sub SetBookMark(BookMarkId As Long)

HRESULT SetBookMark(long BookMark)

Properties, Methods, and Events

728 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++:

Remarks
As stated previously, bookmarks are used to synchronize UI events with speech input. An example
where this synchronization is needed would be the user changing the cursor location with the mouse
while the engine is still processing speech.

If the client does not use bookmarks, the speech input being processed (which occurred before the
cursor location changed) would be placed at the new cursor location--probably not what the user had in
mind. This confusion can be avoided by setting a bookmark when the cursor location changes and then
continuing to place speech input based on the previous cursor location until the HitBookMark event
(with the correct BookMarkId) is received.

If no there is no unresolved audio remaining to be processed, the HitBookMark event will fire
immediately with the indicated BookMarkId. In this example the client would also need to call
SetContext after receiving the HitBookMark event to prevent degradation of speech recognition
accuracy.

See Also
“HitBookMark” on page 737
“SetContext” on page 729

VVDict.SetBookMark (CurrentBookMarkId)

m_pIVVDictation->SetBookMark (m_lCurBookMarkId);

IBM SDK for Windows 729

Dictation Control Methods

SetContext
Sets the "context" in which the speech input is to be evaluated.

Syntax

In Visual Basic:

In Visual C++:

Parameters
LeftText

String. One or more words (if any) on the left side of the current speech input location. If there are
no words to the left, pass in an empty ("") string. For best results, pass in at least two words when
possible.

RightText
String. One or more words (if any) on the right side of the current speech input location. If there
are no words to the right, pass in an empty ("") string. For best results, pass in at least two words
when possible.

Return Values
None.

Remarks
This maximizes speech recognition accuracy. In this case the context we are referring to is the words
surrounding the current speech input location (usually one or more words, if any, on either side of the
cursor). This allows sentences such as "I have two pencils" and "I went to work" to be resolved
correctly.For maximum speech recognition accuracy the engine context must be updated when:

Sub SetContext(LeftText As String, RightText As String)

HRESULT SetContext(BSTR LeftText, BSTR RightText)

Properties, Methods, and Events

730 IBM SDK for Windows

• The cursor location changes.

• Existing text is deleted from the current document.

• New text is typed or pasted into the current document.

• When a new document is opened or made current.

No context update is necessary if cursor movement is a result of normal dictation speech input (i.e. the
cursor moves from n to n+5 when the word "test " is recognized and inserted). The number of words
which should be provided for optimal accuracy will vary depending on the underlying speech engine
installed. In most cases 2 words on either side will provide the necessary context, although, more may
be passed without problem. The engine will simply use what it can and discard the rest. However, you
must keep in mind that depending on engine implementation and configuration there may be
unacceptable memory and processing overhead associated with excessively large blocks of text used
for context.

Example

In Visual Basic:

In Visual C++:

See Also
“SetBookMark” on page 727

VVDict.SetContext (LeftText, RightText)

m_pIVVDictation->SetContext (LeftText, RightText);

IBM SDK for Windows 731

Dictation Control Methods

SplitOutLeftWord
Splits a phrase into its component words or to isolate a single word within a phrase (for deletion
perhaps).

Syntax

In Visual Basic:

In Visual C++:

Parameters
RecoHandle

Long. A 32 bit value that uniquely identifies the phrase to be manipulated. The RecoHandle for a
phrase is passed as one of the parameter to the PhraseReco event. This existing RecoHandle will
represent the right side of the phrase after a successful split occurs.

RightText
String. The text of the remaining portion of the phrase after the first word is removed.

RightFlags
Long. The formatting flags indicating how this phrase should be combined with any surrounding
text.

LeftRecoHandle

Sub SplitOutLeftWord(RecoHandle As Long,
RightText As String,
RightFlags As Long,
LeftRecoHandle As Long,
LeftText As String,
LeftFlags As Long)

HRESULT SplitOutLeftWord(VV_RecoHandle RecoHandle, BSTR* RightText,
long* RightFlags,
VV_RecoHandle* LeftRecoHandle,
BSTR* LeftText,
long* LeftFlags)

Properties, Methods, and Events

732 IBM SDK for Windows

Long. A 32 bit value that uniquely identifies the new phrase consisting of the left word of the
original phrase.

LeftText
String. The text of the new single word "phrase" (the left word of the original phrase).

LeftFlags
Long. The formatting flags indicating how this phrase should be combined with any surrounding
text.

Return Values
None.

Remarks
SplitOutLeftWord will allow you to take an existing phrase of more than one word and convert it into
two phrases. The "left phrase" will consist of the first word of the original phrase. The "right phrase"
will consist of the remainder of the original phrase.

If the original "phrase" consists of only a single word, the new LeftRecoHandle will be NULL and the
LeftText will be an empty string (""). For languages where the client can make use of the true
HRESULT return value, a value of S_FALSE will be returned.

Example

In Visual Basic:

In Visual C++:

VVDict.SplitOutLeftWord (OldRecoHandle, RightText, RightFlags, _
NewRecoHandle, LeftText, LeftFlags)

m_pIVVDictation->SplitOutLeftWord (hOld, &bstrRight, &lRightFlags,
HNew, &bstrLeft, &lLeftFlags);

IBM SDK for Windows 733

Dictation Control Methods

See Also
“VVDictation Phrase Formatting Flags” on page 741

Properties, Methods, and Events

734 IBM SDK for Windows

Dictation Control Events
The ViaVoice Dictation control supports the following events:

• DictationStateChange

• HitBookMark

• PhraseReco

IBM SDK for Windows 735

Dictation Control Events

DictationStateChange
Event fired when the ability to receive dictation input changes.

Syntax

In Visual Basic:

In Visual C++:

Parameters
DictationOn

Long. The current state of dictation.

Return Values
TRUE

The control is ready to receive speech input and turn it into text.

FALSE
The control is not able to receive speech input.

Remarks
You can explicitly change the state of dictation by setting the value of the DictationOn property in the
control. If the new state set is different from the previous state, the DictationStateChange event will
be fired upon successful transition to the new state. This does not imply anything about dictation
availability based on the AutoDictationWindow.

Event DictationStateChange(DictationOn As Boolean)

HRESULT DictationStateChange (VARIANT_BOOL DictationOn)

Properties, Methods, and Events

736 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++:

See Also
“AutoDictationWindow” on page 702
“DictationOn” on page 704

Private Sub VVDict_DictationStateChange(ByVal DictationOn As Boolean)
ProcessDictationStateChange (DictationOn)

End Sub

Void CVVDictEvents::DictationStateChange(VARIANT_BOOL DictationOn)
{
m_pClient->ProcessDictationStateChange (DictationOn);

}

IBM SDK for Windows 737

Dictation Control Events

HitBookMark
Event fired when the engine begins to process audio occurring after a bookmark was successfully set
using the SetBookMark method.

Syntax

In Visual Basic:

In Visual C++:

Parameters
BookMarkId

Long. The value which was passed as an argument to SetBookMark when the bookmark being
processed was set.

Return Values
None.

Remarks
In many cases the context will need updating when a bookmark is hit.

Event HitBookMark(BookMarkId As Long)

HRESULT HitBookMark (long BookMarkId)

Properties, Methods, and Events

738 IBM SDK for Windows

Example

In Visual Basic:

In Visual C++:

See Also
“SetBookMark” on page 727
“SetContext” on page 729

Private Sub VVDict_HitBookMark(BookMarkId As Long)
 ProcessBookMark (BookMarkId)

End Sub

void CVVDictEvents::HitBookMark(long BookMarkId)
{
 ProcessBookMark (BookMarkId);

}

IBM SDK for Windows 739

Dictation Control Events

PhraseReco
Event fired when dictation speech input is recognized to provide the client with the dictated text along
with flags indicating how this phrase should be combined with existing text.

Syntax

In Visual Basic:

In Visual C++:

Parameters
Text

Long. This is the text that was recognized.

RecoHandle
Long. A 32 bit value that uniquely identifies the current phrase. In most cases this "RecoHandle"
should be stored in some way mapped to the displayed text. This will allow you to ask
VVDictation to perform various manipulations of the current phrase in the future such as
correction and playback. For more information on how the RecoHandle is used by VVDictation
you see the VVDictation methods documentation.

RecoFlags
Long. Flags indicating how the current phrase should be combined with existing text.

Return Values
None.

Event PhraseReco(Text As String, RecoHandle As Long, RecoFlags As Long)

HRESULT PhraseReco (BSTR Text,
VV_RecoHandle RecoHandle,
VV_RecoFlags RecoFlags)

Properties, Methods, and Events

740 IBM SDK for Windows

Remarks

For instance, flags could indicate that the current text should replace the last "phrase". It might also
cause the next word to be capitalized if this phrase ends in a period.

Example

In Visual Basic:

In Visual C++:

See Also
“VVDictation Phrase Formatting Flags” on page 741

Private Sub VVDict_PhraseReco(ByVal Text As String, _
ByVal RecoHandle As Long, _
ByVal RecoFlags As Long)

’Do something useful
End Sub

void CVVDictEvents::PhraseReco(BSTR Text,
VV_RecoHandle RecoHandle,
VV_RecoFlags RecoFlags)

{
// Do something useful

}

IBM SDK for Windows 741

Dictation Control Events

VVDictation Phrase Formatting Flags
Phrase formatting flags indicated how a given phrase should be combined with existing text. This
might include replacing the previous phrase (if multi-phrase formatting is enabled) or capitalizing the
next word if the given phrase is the end of a sentence. Each of the phrase formatting flags is listed
below with a short description of their meaning and use.

• FF_EXPANDED_MACRO (0x00000001)
This phrase is not the actual text that was spoken. The spoken text has been replaced with text
specified in a macro or through advanced formatting. These services are available only with
the IBM speech recognition engine.

• FF_JOIN_LEFT (0x00000002)
This phrase should be merged flush against the word to the left with no white space separating
them. For instance this flag will be used if the current phrase is a period (". ").

• FF_JOIN_RIGHT (0x00000004)
This phrase should be merged flush against the word to the right with no white space
separating them.

• FF_CAPITALIZE_NEXT (0x00000008)
This flag indicates that the word following should be capitalized. For instance this flag will be
used if the current phrase is the end of a sentence.

• FF_INFIRM_PHRASE (0x00000010)
This flag is used only when advanced formatting is available (i.e. ExpandMacros is true AND
the IBM speech engine is being used). It indicates that the client may need to replace the
current phrase with the next and should store any information necessary to perform the
replacement as indicated by the flags of the next phrase. Each subsequent phrase that should
replace the "infirm" phrase will also include the FF_INFIRM_PHRASE flag but not the
FF_NEW_PHRASE flag. A phrase with the FF_NEW_PHRASE flag indicates that any
previous multi-phrase formatting is completed (i.e. a phrase with the FF_NEW_PHRASE flag
should not replace a previous phrase having the VV_INFIRM_PHRASE flag). The
FF_INFIRM_PHRASE flag may be combined with the FF_NEW_PHRASE flag if the current
phrase is both a new phrase in its own right AND an infirm phrase as well.

• FF_NEW_PHRASE (0x00000020)
This flag indicates the current phrase is an entirely new phrase and any previous "infirm"
phrases (having the FF_INFIRM_PHRASE flag) are now complete. This flag may be
combined with the FF_INFIRM_PHRASE flag if the current phrase is both a new phrase in its
own right AND an infirm phrase as well.

Properties, Methods, and Events

742 IBM SDK for Windows

• FF_UPPERCASE (0x00000040)
This flag indicates the word following this phrase should be displayed using all uppercase
characters.

• FF_LOWERCASE (0x00000080)
This flag indicates the word following this phrase should be displayed using all lowercase
characters.

IBM SDK for Windows 743

Chapter 37 Dictation Control Frequently Asked
Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice Dictation
Control.

When should I use the Dictation control?

VVDictation provides a simple means of just getting the text of what was said one phrase at a
time. What you do with that text is up to you. You may or may not care about getting audio later
and or doing correction in which case you could just destroy the RecoHandles provided and use
the text. However, if you have or are attempting to build a word processor which is speech enabled
on top of this object you will still have a great deal of work to do just to manage speech.

When should I use the DictationMgr control?

VVDictationMgr does almost everything you need to do normal document based dictation except
show it to the user. You only have to keep the user interface synchronized with VVDictationMgr
through character idices. If you are not voice enabling a word processor or memo type application
then this may well be more than you really need. VVDictationMgr will also not be suitable for
voice enabling applications where it is not possible to synchronize using character indices.

Dictation Control Frequently Asked Questions

744 IBM SDK for Windows

IBM SDK for Windows 745

Chapter 38 Getting Started with the Virtual
Voices Control

This chapter contains basic information to help you get started using the Virtual Voices ActiveX
control.

Overview
Virtual Voices is an ActiveX control that enables developers to incorporate personality into their
applications. A personality is represented through a voice (using text-to-speech or prerecorded audio
wave file) and an animated face. The voice and face become the spokesperson through which the user
interacts with the application.

The Virtual Voices Control can be used within applications to provide many useful functions as well
as to enhance the usability and overall appeal of the application. For example, an e-mail application
could use the Virtual Voices Control to read unopened mail to the user. In an Internet browser, the
Virtual Voices Control could read selected text. In a textbox, the Virtual Voices Control is used to
read back dictated text. What’s more, using speech recognition and text-to-speech, an application could
“talk” to the user in the context of an ongoing dialog.

Virtual Voices includes a text-to-speech engine, ViaVoice Outloud that converts plain text to audible
speech. Virtual Voices also includes an engine that animates the face. The animated face is
synchronized with the text-to-speech or audio output.

Note:
The animated face is optional.

The Virtual Voices Control is built on Microsoft's Speech Application Programming Interface (SAPI)
to provide text-to-speech within client applications. It runs with SAPI-compliant text-to-speech
engines, but hides this interface layer from the application developer. With the Virtual Voices Control,
developers have access to state-of-the-art text-to-speech capabilities without learning SAPI. They can
manipulate the Virtual Voices Control using either high-level or low-level tools, and they can use it in
Visual Basic, as well as in Visual C++ applications.

Getting Started with the Virtual Voices Control

746 IBM SDK for Windows

Since the Virtual Voices Control is an ActiveX control, it can, for example, be placed inside a Lotus
Notes document, a Word document, or an Excel spreadsheet. The user can drop some highlighted text
or audio on it, and the control will read it back to the user. Inserting the control into container
applications enables text-to-speech to be used without having the applications to be rewritten
specifically to handle text-to-speech.

As an example, to insert the Virtual Voices Control into a Lotus Note (you must have this version of
the ViaVoice SDK installed), you can:

Start Lotus Notes (Release 4 or higher) and create a new memo. Position the cursor within the body of
the memo.

• Select Create.

• Select Object.

• Select Virtual Voices Control and then click OK .
This procedure places the Virtual Voices Control in your memo at the current insertion point. You
can set its properties while editing the memo, then send it to a colleague (who must also have the
same version of the SDK installed on his or her machine). The person receiving the memo can hear
the control speak by double-clicking it.

IBM SDK for Windows 747

How the Virtual Voices Control Works

How the Virtual Voices Control Works
Since the Virtual Voices Control is an ActiveX control, it appears within a container (application)
window. It can take on any of three forms: an icon, a face, or neither (that is, it can be invisible). As an
icon, the Virtual Voices Control looks like this:

Figure 52. Virtual Voices as an Icon

Getting Started with the Virtual Voices Control

748 IBM SDK for Windows

Displayed as a face, the Virtual Voices Control looks like this:

Figure 53. Virtual Voices as a Face

IBM SDK for Windows 749

How the Virtual Voices Control Works

The face can also be clipped; that is, instead of appearing within a rectangular window, the window in
which the face is displayed is “clipped” to the actor shape. If the control is clipped, and made a child of
the desktop, it functions as a sprite. (A sprite is an animated, non-rectangular object that can be moved
around the desktop.)

Faces are implemented in two different styles: as vector drawings or as bitmaps. There are eight faces
provided with Virtual Voices. Four of them are implemented using vector drawings (Benny, Betty,
Charlie, and Woodrow); the other four are implemented as bitmaps (Computer, Curly, Kincaid, and
Kingsley).

To cause the Virtual Voices Control to speak, the user double-clicks the icon or the face. The control
will speak the text specified in the SpeakText property (if UseWave is set to False), or the wave file
specified in the WaveFileName property (if UseWave is set to True). The Control synchronizes the
face animation with the speech output. The user can drag-and-drop text or audio over the control to
cause it to speak.

The functions of the Virtual Voices Control are also available to the end user through a context menu.
When the user places the pointing device cursor over the control (over its icon or, if a face is selected,
over its face), and clicks the right mouse button, the context menu appears:

Figure 54. Virtual Voices Context Menu

The context menu contains three options: Speak, Paste, and Properties.

Speak
The first option, Speak, causes one of two things to happen: If the UseWave property is set to False,
then the text stored in the control is converted to wave audio and is played back through the default
wave audio device (usually, the system speaker). If the UseWave property is set to True, then the audio
wave file pointed to by the WaveFileName property in the control is played back through the default

Getting Started with the Virtual Voices Control

750 IBM SDK for Windows

wave audio device. In either case, if a face has been enabled for the control, then the face is animated
while speaking.

Paste
The second option, Paste, retrieves text or audio (if any) from the system clipboard, sets the
corresponding property, and speaks it.

The end user can also place text or audio in the control by dragging and dropping it on the control.
When text or audio is dropped on the control, it is spoken without further action required from the end
user.

Properties
The third option, Properties, displays the Virtual Voices Control Properties pages. If the Virtual
Voices Control property AllowProperties is set to False at design time, this option does not appear on
the context menu. If AllowProperties is set to True, the end user can set the properties of the Virtual
Voices Control through the property pages at run time. You can make the property pages appear in
your code by issuing the DoProperties method. For more information, refer to “DoProperties” on page
793.

There are three tabs in the Virtual Voices properties dialog box: Voice Models, Text, and Actor
Gallery.

Voice Models Page
Use the Voice Models page to select and configure the voice that will be used as shown below:

IBM SDK for Windows 751

How the Virtual Voices Control Works

Figure 55. Virtual Voices Properties - Voice Models Page

The available voices are listed in the Selected Speaker list box.

Note:
The Style, Age, and Gender characteristics of the voice are defined by the ViaVoice Outloud
(text-to-speech) engine and are provided for informational purposes only. They cannot be set by
the developer or the end user.

Click Sample Voice button to hear a short sample of the selected voice. To customize the
characteristics of the selected voice, click Advanced Voice Settings.

At design time, the Voice Models page also lets you set whether the Properties option will be available
from the context menu (Allow Property Settings) and whether the context menu will be shown at run
time (Show Context Menu).

Getting Started with the Virtual Voices Control

752 IBM SDK for Windows

Note:
 These options are not visible to the end user.

Text Page
Use the Text page to set the type of speech output used, either text-to-speech (Use Text) or audio wave
file (Use Wave). The two selections are mutually exclusive. You can set the text that will be spoken as
shown below:

Figure 56. Virtual Voices Properties - Text Page Selecting Text

Or, you can specify the name of an audio wave file to be played as shown below:

IBM SDK for Windows 753

How the Virtual Voices Control Works

Figure 57. Virtual Voices Properties - Text Page Selecting Wave File

Note:
The Virtual Voices Control uses the UseWave property to determine which type of speech output
to perform. If the UseWave property is set to True (that is, if it is selected), the control will play the
specified audio wave file, even if there is text in the Text-to-Be-Spoken text box. Conversely, if the
UseWave property is set to False (that is, if it is not selected), the control will convert the text (if
any) typed in the Text-to-Be-Spoken text box to audible speech, even if there is an audio wave file
specified in the wave file name text box.

Getting Started with the Virtual Voices Control

754 IBM SDK for Windows

Actor Gallery Page
Use the Actor Gallery page to select an actor face for the control as shown below:

Figure 58. Virtual Voices Properties - Actor Gallery Page

On this page, you can also set the default expression (that is, the expression that will be used when the
actor is not speaking). Note that the name cannot be set by the user or the developer.

To specify whether a face will be displayed, click Use Animated Face. If this box is not checked, the
Virtual Voices icon will be shown instead of a face.

IBM SDK for Windows 755

How the Virtual Voices Control Works

Programming Interfaces
The Virtual Voices Control provides a robust set of programming interfaces through which developers
can incorporate text-to-speech into their applications. Most of these interfaces are available in both
Visual C++ and Visual Basic.

There are three types of interfaces provided by the Virtual Voices Control:

• Methods to query and set Virtual Voices properties

• Methods to invoke Virtual Voices functions

• Events that signify relevant conditions have occurred in the Virtual Voices control

The following chapters describe these interfaces in detail and provide programming examples to
illustrate how they are used.

Getting Started with the Virtual Voices Control

756 IBM SDK for Windows

IBM SDK for Windows 757

Chapter 39 Introduction to Virtual Voices
Control

Files and Directories that Support Virtual
Voices
The files necessary to support the Virtual Voices Control are installed with this version of the
ViaVoice SDK. The following additional directories and files are included for Virtual Voices:

Bin This directory is created under the run time directory. It
includes the Virtual Voices Control and DLLs.

Data This directory is created under the run time directory. It
contains the data files used to define the actor faces.

Docs This directory is created under the SDK directory. The
documentation for this control is included in the ActiveX
Developer’s Guide.

Introduction to Virtual Voices Control

758 IBM SDK for Windows

IBM SDK for Windows 759

Chapter 40 Properties, Methods, and Events

Virtual Voices Control Properties
A Virtual Voices Control contains many properties through which the end user or the developer can
customize its appearance and behavior. All Virtual Voices properties can be queried using a “Get”
method. Properties that are not read-only can be set using a “Set” method. The following topics are
provided for each of the Virtual Voices property:

• How a developer can query and set a Virtual Voices property

• Sample codes that show how to set a Virtual Voices property

• Other properties inherent to Virtual Voices because it is an ActiveX control. These properties can
also be manipulated by the developer, causing interesting behaviors in the Virtual Voices Control.

The syntax for each property is offered for both Visual C++ and Visual Basic.

In Visual Basic:

The “Get” and “Set” methods for a property use the following format:

In Visual C++:
The “Get” and “Set” methods for a property use the following convention:

<property name> Returns the current value of the property

<property name>=value Sets the property to value

Get<property name> Returns the current value of the property

Set<property name>(value) Sets the property to value

Properties, Methods, and Events

760 IBM SDK for Windows

ActorName
Gets/Sets the ActorName property of the control (that is, it selects an actor by name.)

Syntax

In Visual Basic:

In Visual C++:

Remarks

Each actor (or face) has a name. The names are listed in the Actor Gallery page of the Virtual Voices
property pages. This method selects the actor by name.

Valid actor names are:

• Benny

• Betty

• Charlie

• Computer

• Curly

• Kincaid

• Kingsley

• Woodrow

ActorSvr1.ActorName="String of actor name"

void SetActorName(LPCTSTR)/LPCTSTR GetActorName(void)

IBM SDK for Windows 761

Virtual Voices Control Properties

Age (Read Only)
Returns a short Integer conforming to the TTSAGE_XXX attribute in the TTSMODEINFO structure
of the SAPI specification.

Syntax

In Visual Basic:

In Visual C++:

Remarks
The TTSAGE_XXX values are as follows (from the SAPI 3.0 include the SPEECH.H file):

For more information, please see “Implementing Text-to-Speech in Applications” in the Microsoft
Speech API Developer's Guide.

ActorSvr1.Age

short GetAge(void)

TTSAGE_BABY 1

TTSAGE_TODDLER 3

TTSAGE_CHILD 6

TTSAGE_ADOLESCENT 14

TTSAGE_ADULT 30

TTSAGE_ELDERLY 70

Properties, Methods, and Events

762 IBM SDK for Windows

AllowProperties
Sets or gets the AllowProperties property.

Syntax

In Visual Basic:

In Visual C++:

Parameters
AllowProperties

Boolean.

Return Values
TRUE

The end user can access the Virtual Voices property pages and change the properties of the
control. (The user accesses the property pages through the context menu, if it is enabled.)

FALSE
The end user can access the Virtual Voices property pages only if the container calls the
DoProperties method of the control.

Remarks
The developer can always access the Virtual Voices property pages.

ActorSvr1.AllowProperties=True

void SetAllowProperties(BOOL)/BOOL GetAllowProperties(void)

IBM SDK for Windows 763

Virtual Voices Control Properties

BackColor
Sets or gets the background color of the control.

Syntax

In Visual Basic:

In Visual C++:

Return Values
Returns the background color of the control.

Remarks
The animated faces are implemented in two different styles: as vector drawings or as bitmaps. Of the
eight faces provided with Virtual Voices, four of them are implemented using vector drawings (Benny,
Betty, Charlie, and Woodrow) and the others are implemented as bitmaps (Computer, Curly, Kincaid,
and Kingsley). Therefore, if the control has an animated face, and it uses a vector model to draw the
face (such as Woodrow), then the face background area adopts the background color. If the control
uses a bitmap face (such as Kincaid), or if it does not use a face at all, then setting the background
color has no visible effect.

Note:
The vector model face, by default, adopts the background color of the container in which it is
placed, even though it does not show at design time. If you want the control to show a different
color at run time, then use this property to set it.

OLE_COLOR is very similar to COLORREF, which is a 32-bit value of the form 0x00bbggrr. See the
Microsoft OLE Automation Reference for more detailed information.

ActorSvr1.BackColor=vbBlack

void SetBackColor(OLE_COLOR)

Properties, Methods, and Events

764 IBM SDK for Windows

Clipping
Sets or gets the value of the control’s Clipping property.

Syntax

In Visual Basic:

In Visual C++:

Parameters

Return Values
TRUE

FALSE

Remarks
This property specifies whether the actor appears within a rectangular window, or whether the window
is clipped to the actor shape.

The Clipping property interacts with the UseFace and ActorName properties. If Clipping is set to
FALSE (the default value for new instances of the control), the control appears within a window. When
visible, the control appears either as an actor or an icon within a borderless, rectangular window.

ActorSvr1.Clipping=True

void SetClipping(BOOL)/BOOL GetClipping(void)

IBM SDK for Windows 765

Virtual Voices Control Properties

If Clipping is set to TRUE, and UseFace is FALSE, it has no effect on the icon. If Clipping and
UseFace are both TRUE (and if the control is visible), the control’s window is clipped to the shape of
the actor. The clipping algorithm finds the transparent color at (0,0) within the actor dataset. It then
clips out, or makes invisible, all adjacent pixels with the same value. If a selectable object is “beneath”
the control's window, it is visible and selectable.

The Clipping property is made persistent by the container. Its value can be set by the developer at
design time and changed at run time through SetClipping(). The end user does not have access to the
Clipping property (that is, there is no property page control for it.)

Clipping can be set at any time. When the ActorName or UseFace properties are changed, the current
Clipping value is applied to the new face. For example, if one actor is being shown with clipping when
another actor is selected, the new actor is clipped. Clipping is supported in any screen color depth (8-,
16-, and 24-bit color) and display resolution.

Computer, Kincaid, and Kingsley do not support clipping.

Properties, Methods, and Events

766 IBM SDK for Windows

DefaultExpression
Sets or gets the DefaultExpression property.

Syntax

In Visual Basic:

In Visual C++:

Remarks
The default expression is shown whenever the control returns from its Speak method. The default
expression is a short Integer with the following values:

ActorSvr1.DefaultExpression=Integer

void SetDefaultExpression(short)/Short GetDefaultExpression(void)

Neutral 0

Happy 1

Thoughtful 2

Surprised 3

Asleep 4

IBM SDK for Windows 767

Virtual Voices Control Properties

Expression
Sets or gets the Expression property.

Syntax

In Visual Basic:

In Visual C++:

Remarks
If an animated face is visible at the time this method is called, the requested expression is shown. The
face continues to display this expression while the control is speaking. When the control finishes
speaking, it displays the DefaultExpression.

The expression is a short Integer with the following values:

ActorSvr1.Expression=Integer

void SetExpression(short)/short GetExpression(void)

Neutral 0

Happy 1

Thoughtful 2

Surprised 3

Asleep 4

Properties, Methods, and Events

768 IBM SDK for Windows

Gender (Read Only)
Returns a short Integer conforming to the GENDER_XXX attribute in the TTSMODEINFO structure
of the SAPI specification.

Syntax

In Visual Basic:

In Visual C++:

Remarks
The GENDER_XXX values are as follows (from the SAPI 3.0 include the SPEECH.H file):

For more information, please see “Implementing Text-to-Speech in Applications” in the Microsoft
Speech API Developer's Guide.

ActorSvr1.Gender

short GetGender(void)

GENDER_NEUTRAL 0

GENDER_FEMALE 1

GENDER_MALE 2

IBM SDK for Windows 769

Virtual Voices Control Properties

ModeGuid
Sets or gets the ModeGuid property in this instance of the control.

Syntax

In Visual Basic:

In Visual C++:

Remarks
A GUID is sometimes referred to as a CLSID. The definition of a GUID may be found in the
Microsoft OLE Automation Reference.

Under SAPI, text-to-speech engines identify each of their “voice modes” with a separate globally
unique identifier, or GUID. Each voice mode has different audible characteristics. (For instance, a
vendor might support separate voice modes and languages for male and female voices.)

A GUID is a 128-bit number. These methods require a string representation of that number. Note that
each GUID string begins and ends with curly brackets ({}). The following GUIDs are valid for the
control:

ActorSvr1.ModeGuid="A valid GUID string"

void SetModeGuid(LPCTSTR)/LPCTSTR GetModeGuid(void)

English-American: Wade (Adult Male) {BF5EAD40-9F65-11CF-8FC8-0020AF14F271}

English-American: Flo (Adult Female) {BF5EAD41-9F65-11CF-8FC8-0020AF14F271}

English-American: Grandpa (Elderly Male) {BF5EAD42-9F65-11CF-8FC8-0020AF14F271}

English-American: Grandma (Elderly
Female)

{BF5EAD43-9F65-11CF-8FC8-0020AF14F271}

English-American: Bobbie (Child) {BF5EAD44-9F65-11CF-8FC8-0020AF14F271}

Properties, Methods, and Events

770 IBM SDK for Windows

If the ModeGuid property is not set before the Speak method is called, the control uses the first voice
mode it finds on the end-user’s machine.

English-American: Wade-Tel (Adult Male
for Telephone)

{BF5EAD45-9F65-11CF-8FC8-0020AF14F271}

English-American: Flo-Tel (Adult Female
for Telephone)

{BF5EAD46-9F65-11CF-8FC8-0020AF14F271}

IBM SDK for Windows 771

Virtual Voices Control Properties

Pitch
Sets or gets the Pitch property.

Syntax

In Visual Basic:

In Visual C++:

Remarks
Sets the baseline frequency of the text-to-speech voice to the pitch, in Hertz, that you specify.
Allowable values for pitch are:

To determine the minimum pitch for a particular voice, set pitch to 0 and then query it. To find out the
maximum pitch for a particular voice, set pitch to 0xffff and then query it.

ActorSvr1.Pitch=Integer

void SetPitch(long)/long GetPitch(void)

Male 33 to 150 Hertz

Female 60 to 200 Hertz

Properties, Methods, and Events

772 IBM SDK for Windows

ShowMenu
Sets or gets the ShowMenu property for the control.

Syntax

In Visual Basic:

In Visual C++:

Remarks
If the ShowMenu property is set to TRUE, the end user can access the context menu by clicking the
alternate select button over the control. Otherwise, the context menu does not appear, and the
properties and behavior of the control maintain their design-time settings until they are changed by the
container application (by setting a property).

ActorSvr1.ShowMenu=True

void SetShowMenu(BOOL)/BOOL GetShowMenu(void)

IBM SDK for Windows 773

Virtual Voices Control Properties

SpeakText
Sets or gets the SpeakText property in this instance of the control.

Syntax

In Visual Basic:

In Visual C++:

Remarks
The LPCTSTR is a pointer to an array of characters that are “spoken” by the ViaVoice Outloud (text-
to-speech) engine when the Speak method is invoked or when the ActiveX verb “Edit” is invoked.

The SpeakText property is also set by dropping a text file on the control or by pasting text from the
clipboard using the context menu.

The default value is “I don't have anything to say.” The maximum length of the text string is 64K, or
65535 bytes.

ActorSvr1.SpeakText="text string"

void SetSpeakText(LPCTSTR)
LPCTSTR GetSpeakText(void)

Properties, Methods, and Events

774 IBM SDK for Windows

Speed
Sets or gets the Speed property.

Syntax

In Visual Basic:

In Visual C++:

Remarks
Sets the baseline average speed of the text-to-speech voice to the speed, in words per minute, that you
specify. Valid values for speed range from 30 to 300. To find the minimum speed for a particular voice,
set speed to 0 and then immediately query the speed. To determine the maximum speed for a voice, set
speed to 0xffffffff and then immediately query the speed.

ActorSvr1.Speed=Integer

void SetSpeed(long)/long GetSpeed(void)

IBM SDK for Windows 775

Virtual Voices Control Properties

UseFace
Sets and gets the UseFace property so that an animated face can be used.

Syntax

In Visual Basic:

In Visual C++:

Remarks
The Virtual Voices Control detects whether the text-to-speech engine supports the Visual method in the
ITTSNotify COM interface. If it does, and this property is TRUE, then the selected actor’s face is
animated when the control is speaking. If it does not, then the face is visible in the control, but is not
animated.

If this property is FALSE, then the control displays its icon.

The default value is FALSE.

ActorSvr1.UseFace=True

void SetUseFace(BOOL)
/BOOL GetUseFace(void)

Properties, Methods, and Events

776 IBM SDK for Windows

UseWave
Sets the type of speech output to be used by the control.

Syntax

In Visual Basic:

In Visual C++:

Remarks
If the UseWave property is set to TRUE, the control uses its wave audio when the Speak method is
called. Otherwise, it uses its text.

The default value is FALSE.

ActorSvr1.UseWave=True

void SetUseWave(BOOL) /BOOL GetUseWave(void)

IBM SDK for Windows 777

Virtual Voices Control Properties

Volume
Sets the Volume property.

Syntax

In Visual Basic:

In Visual C++:

Remarks
Sets the baseline speaking volume of the text-to-speech voice to the volume that you specify. The low-
order word is the left channel, and the high-order word is the right channel. Volume can range from 0
to 0xffff for each channel, left and right.

ActorSvr1.Volume=Integer

void SetVolume(long) /long GetVolume(void)

Properties, Methods, and Events

778 IBM SDK for Windows

WaveFileName
Sets or gets the name of the Virtual Voices Control audio wave file.

Syntax

In Visual Basic:

In Visual C++:

Remarks
The control does not “Speak” the wave audio unless its UseWave property is set to TRUE.

If the control can find and open the file, and if the file is a valid RIFF format wave file, it reads the
contents of this file and closes the file. The maximum size of the wave file is limited by the amount of
available memory, or DWORD, whichever is less.

The control makes no further use of this name. In particular, the control can be moved to other
machines where this wave file might not exist, since the control uses the stored audio wave file to
speak wave audio.

This property is also set when an audio wave file is dropped onto the control, or when a wave file name
is entered on the property page.

ActorSvr1.WaveFileName="file name"

void SetWaveFileName(LPCTSTR)
/ LPCTSTR GetWaveFileName(void)

IBM SDK for Windows 779

ViaVoice Outloud (Text-To-Speech) Engine Attributes

ViaVoice Outloud (Text-To-Speech) Engine
Attributes
Certain attributes of the ViaVoice Outloud (text-to-speech) engine are supported as persistent
properties of the Virtual Voices Control. When modified at design time in Visual Basic or Visual C++,
these attributes are stored with the application and restored at run time through property persistence.
The end user can change these properties through the Virtual Voices Properties pages, and the control
honors the new values if they are applied. The client application can also query and set these properties
as though they are Virtual Voices properties through “Get” and “Set” methods. The text-to-speech
attributes and their respective “Get” and “Set” methods are described in detail below.

The text-to-speech properties interact with the selected voice mode (ModeGuid property.) If the voice
mode is changed, whether through the SetModeGuid method or through the Virtual Voices Properties
pages, all the attributes of the new voice, including those of the ViaVoice Outloud engine-specific, are
read from the SAPI engine and applied to the control's properties.

Properties, Methods, and Events

780 IBM SDK for Windows

Breathiness
Sets or gets the Breathiness property of the IBM ViaVoice Outloud (text-to-speech) engine.

Syntax

In Visual Basic:

In Visual C++:

Remarks
This property controls the amount of breathiness in the voice. A low value produces a voice with no
breathiness. A high value adds significant breathiness. A value of 100 produces a whisper. If the
current voice mode is not one of the IBM ViaVoice Outloud (text-to-speech) engine modes, the
property is set, but has no effect.

Values range from 0 to 100, with 0 being minimum, and 100 being maximum, or a whisper.

ActorSvr1.Breathiness Integer

void SetBreathiness(short) /short GetBreathiness(void)

IBM SDK for Windows 781

ViaVoice Outloud (Text-To-Speech) Engine Attributes

HeadSize
Sets or gets the HeadSize property of the IBM text-to-speech engine.

Syntax

In Visual Basic:

In Visual C++:

Remarks
This property controls the size of the head for the speaker, changing the pitch and acoustics of the
voice. A large number indicates a large head and a deeper voice.

If the current voice mode is not one of the IBM ViaVoice Outloud (text-to-speech) engine modes, the
property is set, but has no effect.

Values range from 0 to 100, with larger values indicating a larger head and thus a deeper voice.

ActorSvr1.HeadSize=Integer

void SetHeadSize(short)/ short GetHeadSize(void)

Properties, Methods, and Events

782 IBM SDK for Windows

PitchFluctuation
Sets or gets the PitchFluctuation property of the IBM ViaVoice Outloud (text-to-speech) engine.
Syntax

In Visual Basic:

In Visual C++:

Remarks
This property controls the amount of pitch change in the voice. A value of zero produces a voice with
no pitch fluctuation, resulting in monotone speech. A high value produces a voice with large pitch
fluctuation, which is typical of excited speech.

If the current voice mode is not one of the IBM ViaVoice Outloud (text-to-speech) engine modes, the
property is set, but it has no effect.

Values range from 0 to 100, with 0 being minimum, or monotone, and 100 being maximum, or excited.
There is no direct correlation to Hertz.

ActorSvr1.PitchFluctuation=Integer

void SetPitchFluctuation(short)/ short GetPitchFluctuation(void)

IBM SDK for Windows 783

ViaVoice Outloud (Text-To-Speech) Engine Attributes

Roughness
Sets the Roughness property when running on the IBM ViaVoice Outloud (text-to-speech) engine.
Syntax

In Visual Basic:

In Visual C++:

Remarks
This property adds roughness to the voice, a quality of the vocal chords. A low value produces a
smooth voice, while a high value produces a rough, or scratchy, voice.

If the current voice mode is not one of the IBM ViaVoice Outloud (text-to-speech) engine modes, the
property is set, but has no effect.

Values range from 0 to 100, with 0 being minimum, or smooth, and 100 being maximum, or scratchy.

ActorSvr1.Roughness=Integer

void SetRoughness(short)

Properties, Methods, and Events

784 IBM SDK for Windows

Example - Setting a Property

In Visual Basic:
The following example illustrates setting the Expression property in Visual Basic. The actor’s
expression is set to surprised (3) when speaking is canceled.

Figure 59. Setting the Expression Property in Visual Basic

In Visual C++:
The following example illustrates setting the Expression property in Visual C++. In this example, the
actor’s expression is set to surprised (3) when speaking is interrupted, and to happy (1) when the actor
speaks.

Private Sub Command2_Click()

ActorSvr1.Cancel

ActorSvr1.Expression = 3

End Sub

IBM SDK for Windows 785

ViaVoice Outloud (Text-To-Speech) Engine Attributes

Figure 60. Setting the Expression Property in Visual C++

void CExample::OnSpeak()
{
// TODO: Add your control notification handler code here...
// When the Speak button is clicked, call the Virtual Voices
// Speak method

if (m_bIsSpeaking) // If busy speaking when clicked
{
switch (AfxMessageBox(LPCTSTR("Virtual Voices control is
busy speaking."), MB_ABORTRETRYIGNORE | MB_ICONSTOP))
{
case IDRETRY: // Try to speak again
OnSpeak();
break;

case IDIGNORE:
m_VVCtrl.SetExpression(3); // Surprised when
// interrupted

m_VVCtrl.Speak(); // Interrupt busy control
break;

} // Abort cancels request
}
else
{
m_VVCtrl.SetExpression(1): // Happy

m_VVCtrl.Speak(); // Control is not busy,
// so honor user’s
// request to speak

}
}

Properties, Methods, and Events

786 IBM SDK for Windows

Other Useful Properties
Because the Virtual Voices Control is an ActiveX control, you can manipulate some of the standard
properties for the control, which can result in some interesting and desirable behaviors. For example,
you might find it useful to set some of these properties for the Virtual Voices Control:

Visibility
By hiding the control’s window, you can provide speech output within your application without
displaying an additional interface element. The Virtual Voices Control can operate invisibly.

Note:
If the control is hidden when it comes up, the InitDone event is not triggered.

In Visual Basic:
Use the custom control Visible property:

Figure 61. Hiding and Showing the Virtual Voices Control Window in Visual Basic

In Visual C++:
Use the superclass method SetWindowPlacement as follows:

If ActorSvr1.Visible = False Then
ActorSvr1.Visible = True ‘show it

Else
ActorSvr1.Visible = False ‘ hide it

End If

IBM SDK for Windows 787

ViaVoice Outloud (Text-To-Speech) Engine Attributes

Figure 62. Hiding and Showing the Virtual Voices Control Window in Visual C++

Setting the Parent Window
The control’s parent window can be set by the client application. Because the control is a subclass of
CWnd, methods on the base class can be called by the client application. When the control is clipped
and made a child of the desktop, it functions as a sprite. (A sprite is an animated, non-rectangular
object that can be moved around the desktop.)

In Visual Basic:
To accomplish the same task in Visual Basic, you must first declare the following APIs:

GetDesktopWindow

GetFocus

SetParent

Then write the following:

WINDOWPLACEMENT wndpl;
static BOOL showState=TRUE;

showState = !showState;

if (m_VVCtrl.GetWindowPlacement(&wndpl))
{
if (showState)

wndpl.showCmd = SW_SHOW;
else

wndpl.showCmd = SW_HIDE;
if (!m_VVCtrl.SetWindowPlacement(&wndpl))

TRACE("Error showing/hiding VV window\n");
}

Properties, Methods, and Events

788 IBM SDK for Windows

Figure 63. Setting the Parent Window in Visual Basic

In Visual C++:
To set the parent of the control, write the code as shown below:

Figure 64. Setting the Parent Window in Visual C++

Moving the Control on the Desktop
The control can be moved around on the desktop. Because the control is a subclass of CWnd, methods
on the base class can be called by the client application.

In Visual Basic:
First declare the following:

MoveWindow

After you declare the API, write the following code:

Dim hwndActor As Long
ActorSvr1.SetFocus ‘ where ActorSvr1 is an instance of the actor control
lwndActor=GetFocus()
Call SetParent(hwndActor, GetDesktopWindow())

CActorSvr m_VVCtrl;
m_VVCtrl.SetParent(GetDesktopWindow()); // puts control on

// desktop
m_VVCtrl.SetParent(this); // returns control to

// client window

‘Add to the previous code segment
‘you must save the window handle of
‘the object before doing a SetParent, then:
Call MoveWindow(hwndActor,0,0,120,160,True)

IBM SDK for Windows 789

ViaVoice Outloud (Text-To-Speech) Engine Attributes

In Visual C++:
To move the control around on the desktop, call the superclass Move method:

Figure 65. Moving the Control in Visual C++

The only size supported for an actor is 120 by 160 pixels.

RECT rect;
rect.left = rect.top = 0;
rect.right = 120;
rect.bottom = 160;
m_VVCtrl.Move(&rect); // moves the control

Properties, Methods, and Events

790 IBM SDK for Windows

Virtual Voices Control Methods
The Virtual Voices Control encapsulates several functions that developers can use to incorporate text-
to-speech into their applications. These functions are invoked through methods called on the control
and are available in both Visual Basic and Visual C++.

The syntax of each method is represented using the following conventions:

In Visual Basic:
type <MethodName>(parameters)

In Visual C++:
<MethodName>

Example code in both Visual C++ and Visual Basic are provided at the end of the section to illustrate
how to call these methods from a client application.

IBM SDK for Windows 791

Virtual Voices Control Methods

AboutBox
Calls the AboutBox method in the control.

Syntax

In Visual Basic:

In Visual C++:

Remarks
This method causes the Virtual Voices Control “About” box to be shown.

type <MethodName>(parameters)

<MethodName>

Properties, Methods, and Events

792 IBM SDK for Windows

Cancel
Calls the Cancel method in the control.

Syntax

In Visual Basic:

In Visual C++:

Remarks
This method returns TRUE if the control was speaking at the time this method was called, and if the
speaking was successfully stopped. It also triggers the Reset event, and resets the control’s internal
Pause/Resume state. Otherwise, the Cancel method returns FALSE.

ActorSvr1.Cancel

BOOL Cancel(void)

IBM SDK for Windows 793

Virtual Voices Control Methods

DoProperties
Calls the DoProperties method in the control.

Syntax

In Visual Basic:

In Visual C++:

Remarks
This method causes the Virtual Voices properties dialog to appear, regardless of the values of
ShowMenu and AllowProperties. The end user can then interactively change the values of many of
the Virtual Voices properties.

ActorSvr1.DoProperties

void DoProperties(void)

Properties, Methods, and Events

794 IBM SDK for Windows

Pause
Calls the Pause method in the control.

Syntax

In Visual Basic:

In Visual C++:

Remarks
If the control was speaking either text-to-speech or wave audio, this method pauses playback and
returns TRUE. Otherwise, it returns FALSE.

Use the Resume method to continue.

ActorSvr1.Pause

BOOL Pause(void)

IBM SDK for Windows 795

Virtual Voices Control Methods

Resume
Calls the Resume method in the control.

Syntax

In Visual Basic:

In Visual C++:

Remarks
If the control was paused, this method resumes either text-to-speech or wave audio and returns TRUE.
Otherwise, it returns FALSE.

ActorSvr1.Resume

BOOL Resume(void)

Properties, Methods, and Events

796 IBM SDK for Windows

Speak
Calls the Speak method in the control.

Syntax

In Visual Basic:

In Visual C++:

Remarks
This method causes one of two things to occur: If the UseWave property is set to FALSE, the stored
text (if any) is converted to wave audio and played through the default system audio output device; if
the UseWave property is set to TRUE, the stored audio (if any) is played through the default system
audio output device.

Speak returns a Boolean value. TRUE indicates that the request was successful. FALSE indicates that
an error has occurred. If Speak is successful, the StartSpeaking and StopSpeaking events are
triggered.

Speak appends SpeakText to any outstanding speaking by the same instance of the Virtual Voices
Control. If another instance of the control is speaking, or if some other multimedia application is using
the audio output device, Speak causes a “busy” message to appear, and the application (or end user)
must retry the Speak request. In this case, Speak returns FALSE.

ActorSvr1.Speak

BOOL Speak(void)

IBM SDK for Windows 797

Virtual Voices Control Methods

Example - Using a Method

In Visual Basic:
The following example illustrates using the Pause and Resume methods in a Visual Basic program. In
this example, Command1 is a button object which, when clicked, alternatively pauses and resumes
speaking.

Figure 66. Calling the Pause and Resume methods in Visual Basic

In Visual C++:
Using the Speak method, write the following:

Private Sub Command1_Click()

If Paused Then
ActorSvr1.Resume

Else
ActorSvr1.Pause

End If

Paused = Not Paused
End Sub

Properties, Methods, and Events

798 IBM SDK for Windows

Figure 67. Calling the Speak() method in Visual C++

void CExample::OnSpeak()
{
// TODO: Add your control notification handler code here...
// When the "Speak" button is clicked, call the Virtual Voices
// Speak method

if (m_bIsSpeaking) // If busy speaking when clicked
{
switch (AfxMessageBox(LPCTSTR("Virtual Voices control is busy

speaking."), MB_ABORTRETRYIGNORE | MB_ICONSTOP))
{
case IDRETRY: // Try to speak again
OnSpeak();
break;

case IDIGNORE:
m_VVCtrl.Speak(); // Interrupt

break;
} // Abort cancels request

}
else
{
m_VVCtrl.Speak(); // Control is not busy, so honor

// user’s request to speak
}

}

IBM SDK for Windows 799

Virtual Voices Control Events

Virtual Voices Control Events
The Virtual Voices Control triggers events when certain conditions are detected. The developer can
implement event handlers for those events in which the application is interested.

A typical event handler sets a state variable to some value and returns. For instance, an event handler
for StartSpeaking might set a Boolean for “busy” to TRUE, and an event handler for StopSpeaking
might set the same variable to FALSE. The client application consults the value of this variable to
detect whether the control is busy speaking or not.

In general, the event handlers should not make calls back into the control, nor should they execute a lot
of time-consuming code.

This chapter describes the Virtual Voices events and includes examples illustrating how to handle
these events within a client application. The syntax for each event is offered for both Visual C++ and
Visual Basic. For Visual C++ developers, events take on the following format:

In Visual Basic:

In Visual C++:

Private Sub ActorSvr1_<EventName>(parameters)

type on<EventName>(parameters)

Properties, Methods, and Events

800 IBM SDK for Windows

BookMark
Notifies the client application that a bookmark has been encountered in the text to be spoken.

Syntax

In Visual Basic:

In Visual C++:

Remarks
You can embed bookmarks in the text to be spoken by following the SAPI rules for bookmark tags.
Reference the Microsoft SAPI Developer’s Guide for more information on bookmarks.

This event is generated only when speaking text, not wave audio.

Example

In Visual C++:
Handling the BookMark event in Visual C++, write the following:

Private Sub ActorSvr1_BookMark(ByVal dwMarkNum As Long)

void BookMark(long dwMarkNum)

IBM SDK for Windows 801

Virtual Voices Control Events

Figure 68. Handling the BookMark Event in Visual C++

// This example detects a bookmark in a text string and displays it // in
a message box. To run this example, first create an input // area on
your form. In the input area, type "This is the first // day of the rest
of \Mrk=9876\ your life." (You can use any number // for the bookmark).
// Select this sentence and copy it to the clipboard. Bring up the
// Virtual Voices context menu and select Paste. The sentence is
// spokenby the control, after which a message box displays the
// bookmark.
// Note: For this example, declare textstr in your object as
// protected, char textstr[100].
 void CExample::OnBookMark(long dwMarkNum)
{
// TODO: Add your control notification handler code here...
// Create a text string that displays the bookmark number
char myBuf[10];
itoa(dwMarkNum, myBuf, 10);
strcpy(textstr,"A bookmark has been encountered. It is ");
strcpy(textstr+strlen("A bookmark has been encountered. It is "),
myBuf);

strcpy(textstr+strlen("A bookmark has been encountered. It is ")
+strlen(myBuf),"\n");

}
 // OnStopSpeaking, show the text string using a message box
// with this code...
void CExample::OnStopSpeaking()

{
// TO DO: Add your control notification handler here...
// Display the text string if there is one
if (textstr != "")
{
MessageBox(textstr);
strcpy(textstr,"");

}
}

Properties, Methods, and Events

802 IBM SDK for Windows

InitDone
Notifies the container application.

Syntax

In Visual Basic:

In Visual C++:

Remarks
When the control has been initialized and is ready to speak, it uses the InitDone event to notify the
container application. Your application should wait for this event before calling the Speak method for
the first time.

This event is not triggered if the control is invisible when it comes up.

Example

In Visual C++:
Handling the InitDone event, write the following:

Private Sub ActorSvr1_InitDone()

void InitDone(void)

IBM SDK for Windows 803

Virtual Voices Control Events

Figure 69. Handling the InitDone Event in Visual C++

// This event is triggered by the Virtual Voices control, when it
// has completed its initialization and is ready to speak

void CExample::OnInitDone()
{
// TODO: Add your control notification handler code here...
CString lpszString;

// Get the text out of the edit box control
m_EditBox.GetWindowText(lpszString);

// Set the text into the Virtual Voice control’s speak text property
m_VVCtrl.SetSpeakText((LPCTSTR) lpszString.GetBuffer(0));

// Call the Virtual Voices Speak method
m_VVCtrl.Speak();

}

Properties, Methods, and Events

804 IBM SDK for Windows

KeyPress
Event fired when the user pauses or resumes speaking by pressing a key on the keyboard.

Syntax

In Visual Basic:

In Visual C++:

Remarks
If the control has the keyboard focus, the end user can pause and resume speaking by pressing a key on
the keyboard. If your application wants to be aware of such events, you can write a method that is fired
when this event occurs. Your method receives the ASCII value of the pressed key. If the end user
presses the Esc key when the control is speaking, speaking is aborted and the StopSpeaking event is
fired. KeyPress is not returned for system keys, such as the function keys.

Example

In Visual C++:
The following example illustrates how to handle the KeyPress event. To run this sample, highlight
some text and copy it to the clipboard. Bring up the Virtual Voices Control context menu and select
Paste. Press a key (other than Esc or a function key) while the control is speaking. The control says “A
key has just been pressed.”

Private Sub ActorSvr1_KeyPress(KeyAscii As Integer)

void KeyPress(short *KeyAscii)

IBM SDK for Windows 805

Virtual Voices Control Events

Figure 70. Handling the KeyPress Event in Visual C++

// This example causes the control to speak a message when a key has
// been pressed.

void CExample::OnKeyPress(short FAR* KeyAscii)
{
// TODO: Add your control notification handler code here...
m_VVCtrl.SetSpeakText("A key has just been pressed.");
m_VVCtrl.Speak();

}

Properties, Methods, and Events

806 IBM SDK for Windows

Pause
Notifies the client application that the control has just been paused.

Syntax

In Visual Basic:

In Visual C++:

Example

In Visual C++:
To handle the Pause event, write the following:

Figure 71. Handling the Pause Event in Visual C++

Private Sub ActorSvr1_Pause()

void Pause(void)

// This example displays a message box when the control is paused

void CExample::OnPause()
{
// TODO: Add your control notification handler code here...
MessageBox("The Virtual Voices control has been paused.");

}

IBM SDK for Windows 807

Virtual Voices Control Events

Reset
Notifies the client application that the control has just been reset.

Syntax

In Visual Basic:

In Visual C++:

Remarks
Reset is generated if the user presses the Esc key while the control is speaking, if the Properties dialog
is brought up when the control is speaking, whenever the SetUseFace property is set to TRUE, and
whenever speaking is interrupted for any reason.

Example

In Visual C++:
To handle the Reset event, write the following:

Figure 72. Handling the Reset Event in Visual C++

Private Sub ActorSvr1_Reset()

void Reset(void)

// This example displays a message box when the control is reset.

void CExample::OnReset()
{
// TO DO: Add your control notification handler here...
MessageBox("The Virtual Voices control has been reset.");

}

Properties, Methods, and Events

808 IBM SDK for Windows

Resume
Notifies the client application that the control has just been resumed.

Syntax

In Visual Basic:

In Visual C++:

Remarks
Resume works with longer text. If the control is paused while speaking and there is very little
remaining to be said, the ViaVoice Outloud (text-to-speech) engine does not resume.

Example

In Visual C++:

Figure 73. Handling the Resume Event in Visual C++

Private Sub ActorSvr1_Resume()

void Resume(void)

// This example displays a message box when the control is resumed.

void CExample::OnResume()
{
 // TO DO: Add your control notification handler here...
 MessageBox("The Virtual Voices control has been resumed.");

}

IBM SDK for Windows 809

Virtual Voices Control Events

StartSpeaking
Notifies the container application when the control starts speaking.

Syntax

In Visual Basic:

In Visual C++:

Remarks
Whenever the control starts speaking, it uses the StartSpeaking event to notify the container
application. It is recommended that you maintain a Boolean variable to indicate whether the control is
speaking. Your StartSpeaking method sets this variable to TRUE, while the StopSpeaking and Reset
methods set it to FALSE. Don’t forget to initialize it to FALSE.

Example

In Visual C++:

Figure 74. Handling the StartSpeaking Event in Visual C++

Private Sub ActorSvr1_StartSpeaking()

void StartSpeaking(void)

// This event is triggered by the Virtual Voices Control, when it
// starts to speak

void CExample::OnStartSpeaking()
{
// TODO: Add your control notification handler code here...
// Set the busy speaking flag
m_bIsSpeaking = TRUE;

}

Properties, Methods, and Events

810 IBM SDK for Windows

StopSpeaking
Notifies the container application when the control stops speaking.

Syntax

In Visual Basic:

In Visual C++:

Remarks
Whenever the control stops speaking, it uses the StopSpeaking event to notify the container
application. See the discussion of the StartSpeaking event for recommendations on how to use this
event in your application.

Example

In Visual C++:

Figure 75. Handling the StopSpeaking Event in Visual C++

Private Sub ActorSvr1_StopSpeaking()

void StopSpeaking(void)

// This event is triggered by the Virtual Voices Control, when it has
// stopped speaking

void CExample::OnStopSpeaking()
{
// TODO: Add your control notification handler code here...
// Set the (not) busy speaking flag
m_bIsSpeaking = FALSE;

}

IBM SDK for Windows 811

Virtual Voices Control Events

WordPosition
Notifies the client application that a byte offset has been reached in the text to be spoken.

Syntax

In Visual Basic:

In Visual C++:

Remarks
This event is generated only when speaking text, not wave audio.

Private Sub ActorSvr1_WordPosition(ByVal dwByteOffset As Long)

void WordPosition(long dwByteOffset)

Properties, Methods, and Events

812 IBM SDK for Windows

Example

In Visual C++:

Figure 76. Handling the WordPosition Event in Visual C++

// This example displays the index number of the first letter of the
// last word spoken. Note: For this example, declare textstr in your
// object as protected, char textstr[100] and wordindex as protected
// long.
void CExample::OnWordPosition(long dwByteOffset)

{
// TODO: Add your control notification handler code here...
// Store the index of the word spoken in wordindex
 wordindex=dwByteOffset;

}
 void CExample::OnStopSpeaking()

{
// TODO: Add your control notification handler code here...
// Display the index of the last word in a message box
char myBuf[20];
itoa(wordindex, myBuf,10);
strcpy(textstr,"The index of the last word said is ");
strcpy(textstr+strlen("The index of the last word said is "),
mybuf);

strcpy(textstr+strlen("The index of the last word said is ")
+strlen(myBuf), "\n");

MessageBox(textstr);
}

IBM SDK for Windows 813

Chapter 41 Programming Notes

Running multiple versions of the Virtual Voices Control at the same time is not supported. If you want
to try this, be aware that each control competes for the audio device when speaking. Also, multiple
instances of the control may interfere with the color palette when using animation and running in 256-
color mode. Three is the maximum number of actors allowed per application.

Visual Basic Notes
If you want to give keyboard control of the Virtual Voices Control to the end user, add the following
code to the click handler for the Speak button:

ActorSvr1.SetFocus

This directs keyboard focus to the control, even when it is animated.

Visual C++ Notes

If you use Class Wizard to produce a message map for Virtual Voices events, Class Wizard appends
the control’s ID to the default function names it generates. For example, if your control is identified as
IDC_VVCTRL1 and you map the InitDone event, the default function name generated by Class
Wizard is OnInitDoneVvctrl1(). You can change the function names if you don’t like the default names
generated by Class Wizard.

Programming Notes

814 IBM SDK for Windows

Face Customization Notes
The Virtual Voices Control enables developers to incorporate personality into their applications. A
personality is represented through a voice (using text-to-speech or prerecorded audio waveforms) and
an (optional) animated face. The voice and face become the spokesperson through which the user can
interact with the application or system.

Virtual Voices includes an engine that animates the face. The animated face can convey several
expressions and emotions, and it is synchronized with the text-to-speech or audio output.

Faces are implemented in two different styles: as vector drawings or as flip books. Eight faces are
provided with Virtual Voices. Four of the characters provided are implemented using vector drawings
(Benny, Betty, Charlie, and Woody); the other four characters are implemented using the flip-book
style (Computer, Curly, Kincaid, and Kingsley).

This document describes how to create additional flip-book style faces for Virtual Voices. First, some
background information on the flip-book style is in order.

A flip-book face is represented through a series of bitmaps. These bitmaps, when superimposed over
each other in particular sequences, convey the appearance of motion and thus, animation. Consider a
child’s picture book of individual, yet subtly distinct cartoon drawings. When you flip through the
pages quickly, the drawings, even though they are still, appear to animate. This same concept is used to
provide the animation for the flip-book, or bitmap, faces. The Virtual Voices animation engine
handles displaying (“flipping through”) the appropriate series of bitmaps to convey expression and
emotion as the face speaks. It also handles synchronizing the face with the spoken text.

IBM SDK for Windows 815

Resources

Resources
A flip-book face is represented through the following resources:

• A series of bitmap (.BMP) drawings

• A face (.FAC) file

• A parameter (.PAR) file

• An entry in the Windows 95 registry

As the creator of a new face, you must provide all of these resources so that Virtual Voices can
recognize and use your face.

To know how to test your new face, please see the “Testing Your Face” on page 831 and “Style
Considerations” on page 833.

Programming Notes

816 IBM SDK for Windows

Bitmaps
A face is represented as a series of Windows bitmap (.BMP) files, which must be 120 pixels wide by
160 pixels high and must be drawn using a 256-color palette. However, it does not mean that you need
to use all 256 colors in your bitmaps. In fact, you should not use more than 236 colors. (You should
ensure that the system colors occupy the upper and lower 10 palette positions.)

Note:
The fewer colors you actually use in your bitmap, the better it can adapt to the other color
applications on the desktop.

The animation engine uses double buffering to display the bitmaps for a face. It composes the next
image in an offscreen buffer, then moves it to the display. It first puts bitmaps at plane 0 into the buffer,
then bitmaps at plane 1, and so on. If images at different planes overlap, the one at the higher plane
number will obscure the image below it.

The bitmap at plane 0 is the base bitmap for the face. Typically, the base bitmap is a full-face drawing.
This bitmap is displayed unconditionally (always), and other bitmaps are superimposed over it to
create the animation.

Bitmap faces are not sizable; however, they can be displayed as a non-rectangular window by setting a
property in the Control at run time. If you choose to use the non-rectangular window feature, the
background around the face must be all the same color.

Each face is assumed to have eyes and a mouth, which, however is not required. You may design your
face to represent whatever you want: a car, a pet rock, or a rainbow. The position and shape of the eyes
and mouth are used to animate the face. Even if your character does not have eyes or a mouth, the
bitmaps you provide should include these parameters. The variation in the bitmaps (it could be a
change in color instead of a change in eye position) will convey the expression for your face. You may
want to review the resource files for the Computer chip face (ia01*.*) for an implementation of a face
without eyes or a mouth. Keep in mind, though, that the face is used to speak to the end user, and will
be more vivid and convincing if you give it eyes and a mouth.

Virtual Voices supports five expressions for each face: neutral, happy, surprised, thoughtful, and
asleep. You should develop bitmaps for all five expressions. For each expression, you can specify
several eye and mouth positions. For example, you can show the eyes looking straight ahead, as if
paying attention; you can show the eyes looking up and to the character’s right, as if thinking; and you
can show the eyes closed, as if blinking. You can show the mouth shaped as if to speak certain sounds,

IBM SDK for Windows 817

Resources

such as “oo,” “m,b,p” or “f,v,” or you can position it in several degrees of openness as well as closed.
These mouth positions add realism to the animation as the face is synchronized with its text-to-speech
or audio output.

You can provide as few bitmaps as you like. Do not provide more than 70 bitmaps for a single face. In
some cases, you may need to reuse the same eyes and mouths for more than one expression.

The more eye and mouth positions you support (that is, for which you provide bitmaps), the more
realistic and smooth the animation will appear (since the transition from one expression to another will
occur in smaller increments).

In summary, you should provide the following bitmaps for each face:

Full face (for use in the Actor Gallery and as the base face):

• Mouth making “oo” sound

• Mouth making “f,v” sound

• Mouth making “m,b,p” sound

For each expression:

• Eyes looking straight ahead

• Eyes looking up

• Eyes looking down

• Eyes looking left

• Eyes looking right

• Eyes 1/2 open

• Eyes 3/4 open

• Eyes closed

• Mouth full open

• Mouth 1/4 open

• Mouth 2/4 open

• Mouth 3/4 open

• Mouth closed

Programming Notes

818 IBM SDK for Windows

The only full-face bitmap you provide as a resource to Virtual Voices is the one to use at plane 0 (the
base face or background). The rest of the bitmaps are cutouts of the eyes and mouth. All of the cutouts
for the eyes should be in the same size (that is, they should have the same x, y, cx, and cy values), as
should all the cutouts for the mouth.

Note:
The mouth positions for “oo”, “m,b,p” and “f,v” are independent of expression. You need only
provide one bitmap for each of these sounds (for a total of 3 bitmaps).

An Example
Let's use one of the existing characters, Kincaid, as an example. First, your artist should create a full-
face drawing of your character. This is usually the face drawn with a neutral or happy expression. This
bitmap is used by Virtual Voices in the Actor Gallery (from the Properties dialog) where the user
selects your face. It can also be used as the base bitmap (at plane 0) for the animation engine. Working
with Kincaid, the bitmap displayed in the Actor Gallery is:

Your artist should develop full-face poses for all five expressions (neutral, happy, surprised,
thoughtful, and asleep). Each pose should be created in the same size using the same palette. In each
pose, the areas surrounding the eyes and mouth should be as small as possible (for better run-time
performance), and they should be in the same size and should cover the same area. After creating these
full-face drawings, the artist should cut out the areas around the eyes and mouth and save them as
separate bitmaps. For example, the following bitmaps for Kincaid represent the different cutouts of the
eyes for the thoughtful expression:

Eyes open looking straight ahead

Eyes open looking up

IBM SDK for Windows 819

Resources

Eyes open looking up

Eyes open looking left

Eyes open looking right

Eyes 1/2 open

Eyes 3/4 open

Eyes closed

Notice that the eyes are represented by the same basic expression (eye shape, arched eyebrows, and
scrunched forehead). The differences in each bitmap are reflected in the eye position.

The mouth positions for the thoughtful expression are also specified for Kincaid. These are
represented in the following bitmaps:

Mouth full open

Mouth 3/4 open

Programming Notes

820 IBM SDK for Windows

Mouth 1/2 open

Mouth 1/4 open

Mouth closed

Let’s look at the differences between expressions for a particular eye position. Your artist can depict the
expressions by varying such attributes as eye shape, eye size, eyebrow position and arch, forehead
scrunched, etc.

Eyes open looking straight ahead - Surprised

Eyes open looking straight ahead - Neutral

Eyes full open, looking straight ahead - Happy

Eyes open looking straight ahead - Thoughtful

Expressions can also be depicted by the position and shape of the mouth. For example, let’s look at the
full open mouth position across expressions for Kincaid.

Mouth full open - Neutral

IBM SDK for Windows 821

Resources

Mouth full open - Happy

Mouth full open - Thoughtful

Mouth full open - Surprised

For Kincaid, there are 62 bitmaps provided. The following tables illustrate how the bitmaps were
defined for this particular character. Notice how some bitmaps are used for more than one eye or
mouth position.

Table 23. General bitmaps (not related to specific expressions):

Character ID Ia02

Background Ia02-bas

“oo” Ia02mnoo

“f,v” Ia02mnf

“m,b,p” Ia02mnm

Programming Notes

822 IBM SDK for Windows

Table 24. Eye positions:

Table 25. Mouth positions:

You may want to use a similar set of tables to develop the bitmaps for your face.

Tips for the Artist
As you can see, creating all of the bitmaps for the face is a very elaborative and manual process. It is
worthy to invest the time and effort that can help you narrow down the possibilities. The face design
and creation process should be iterative and should involve customer feedback on an ongoing basis to
validate the design and acceptability of the face.

Neutral Happy Surprised Thoughtful

Straight
Ahead

Ia02enop Ia02enop Ia02ewop Ia02ecop

Up ie02endn ia02ehup ia02ewup ia02ecup

Down ie02endn ia02ehdn ia02ewdn ia02ecdn

Left ia02enlt ia02ehlt ia02ewlt ia02eclt

Right ia02enrt ia02ehrt ia02ewrt ia02ecrt

3/4 Open ia02en23 ia02eh23 ia02ew23 ia02ec23

1/2 Open ia02en12 ia02eh12 ia02ew12 ia02ec12

Close ia02encl ia02ehcl ia02ewcl ia02eccl

Neutral Happy Surprised Thoughtful

Full Open Ia02mn4 Ia02mh4 Ia02mw4 Ia02mc4

3/4 Open ie02mn3 ia02mh3 ia02mw3 ia02mc3

1/2 Open ie02mn2 ia02mh2 ia02mw2 ia02mc2

1/4 Open ia02mn1 ia02mh1 ia02mw1 ia02mc1

Close ia02mncl ia02mhcl ia02mw4cl ia02mccl

IBM SDK for Windows 823

Resources

First, create full-face drawings of many different characters or designs. You may want to provide faces
which vary in form (e.g., human/mechanical, male/female, and anthropomorphic) and style (e.g.,
cartoonish, photorealistic, and stylistic). These initial renderings can be brought to customers to
evaluate their acceptability.

When the set of faces is narrowed down to a few (from user testing and marketing evaluations), you
should create pose sheets for these faces. A pose sheet is a set of 5 full-face drawings, one for each
expression. Again, the pose sheets can be shown to customers to get feedback.

When you’ve decided which face you want to create, you can start creating the individual bitmaps. The
best way to do this is to work off copies of the base (full-face) bitmap. You can use a tool like
PhotoShop to make a copy of the base bitmap, and to make the appropriate changes to the copy (for
example, to create a happy face with eyes fully open and mouth fully open). When you’ve finished
with that bitmap, make another copy of the base bitmap, and start again making changes to the bitmap
for other expressions, and eye and mouth positions. If you work off copies of the base bitmap, you are
guaranteed that everything will be in the right position and be the right size.

Don’t cut out any of the eyes or mouths until you’re finished with all of your full-face bitmaps.

Once you have all of the bitmaps and cutouts, you are ready to create the face (.FAC) file, which tells
the Virtual Voices when and how each bitmap should be displayed.

Programming Notes

824 IBM SDK for Windows

Face (.FAC) File
Now that you have created your bitmaps, you need to tell Virtual Voices when to display each bitmap.
The face (.FAC) file provides the animation engine with this information. It specifies the bitmap file
name and the condition(s) under which the bitmap is to be displayed - for instance, the expression, eye,
or mouth position.

The face file is comprised of a series of text statements. The types of text statements within a face file
are:

• Comments

• Style definition (MUST BE THE FIRST NON-COMMENT STATEMENT)

• Number of image fragments (MUST BE THE SECOND NON-COMMENT STATEMENT)

• Image definition statements

• Condition definition statements

• Parameter file definition (MUST BE THE LAST NON-COMMENT STATEMENT)

Syntax for the statements in a face file is:

• Any line beginning with # is considered a comment.

• The first statement defines the style of the face and is specified as 2 integers (the first specifies flip
book or vector; the second specifies whether the bitmap contains scenery. For flip book faces, the
first integer should be 10, and the second integer should be 0.
Note: Scenery is not supported in the flip-book style.)

• The second statement defines the number of image fragments defined within the face file, and is
specified as a single integer.

• Image definition statements which identify the image to be displayed. These statements are of the
form:
x y w h p filename num
where:

x and y Integers which specify that the image is displayed at this offset from
the origin (lower left corner).

w and h Integers which specify the width and height of the image fragments
(Note: w must be a multiple of 4).

p An integer which specifies the image plane, or display priority (0 is
displayed first, or lowest).

IBM SDK for Windows 825

Resources

Note:
You must define at least one image as the base bitmap at plane 0. If only one base bitmap image is
defined (num is 0), it will be displayed unconditionally (always). You may want to define multiple
images to be displayed at plane 0 conditionally (for example, if there is a wide variance in eye and
mouth positions and sizes between expressions, you may want a full-face bitmap of each
expression displayed as the base bitmap for the expression.

• Condition definition statements specify the condition under which the image is displayed.
Conditions are specified in terms of the parameters that can be varied for each face (for example,
eye opening and mouth width, such as:
 i min max
 where:

Note:
The image is displayed if min < current value <= max for all conditions. (Multiple conditions are
logically AND’ed together.)

• The final command specifies the parameter (PAR) file to be used for this face.

Let’s take a look at the face file provided for Kincaid for more details:

filename A text filename of the .BMP file which contains the image data.

num An integer which specifies how many condition definition statements
follow for this image. These statements are logically AND’ed together
to comprise the condition under which the image is displayed.

i an integer which identifies the parameter (reference the PAR file)

min an integer which specifies the minimum value of this parameter
for which this image will be displayed

max an integer which specifies the maximum value of this parameter
for which this image will be displayed

Programming Notes

826 IBM SDK for Windows

Notes:
(1) This is the first statement that is not a comment. It specifies that this face file is being used for
a flip-book style face (10) and that no scenery is included in the bitmaps (0).
(2) This is the second statement that is not a comment. It specifies that there will be 70 image
fragments defined for this face.
(3) This statement defines the bitmap to be used at plane 0, which is the base bitmap. It is
positioned at 0,0 and is 120 pixels wide by 160 pixels high. For Kincaid, this bitmap is a full-face
with a smile.
(4) The next 69 sets of statements identify under which conditions a bitmap is displayed. This
particular set of statements is identifying how and when the bitmap IA02ewop.BMP is displayed.
The first line specifies that bitmap IA02ewop.BMP will be displayed at 0, 96 (offset from the
origin, which is the lower-left corner of the bitmap) and it is 120 pixels wide and 64 pixels high.
The 1 indicates that the bitmap is displayed at plane 1.
The 4 indicates that the next 4 statements identify the condition under which this bitmap is
displayed. In this case, the IA02ewop.BMP is displayed when the expression is surprised or
asleep (parameter 53 between 7 and 11) AND the eyes are full to exaggerated open (parameter 30
between 0.9 and 2.0) AND the eyes are looking left, straight ahead, or right (parameter 40 between
-1.0 and 1.0) AND the eyes are at a level gaze (parameter 41 between -0.8 and 0.15).

...
style 10 (flip book)
10 0(1)
number of image fragments
70(2)
...
0 0 120 160 0 IA02-BAS.BMP 0(3)
...
surprised or anything else(4)
eyes wide open ahead
0 96 120 64 1 IA02ewop.BMP 4
53 6.9 11.1
30 0.9 2.0
40 -1.0 1.0
41 -0.8 0.15
...
IA02.PAR(5)

IBM SDK for Windows 827

Resources

(5) This statement identifies the parameter (PAR) file for this face; in this case, IA02.PAR.

More about Conditions and Parameters
There are over 50 parameters you can use in your face file to tell the animation engine when to display
a bitmap. You will not need to use most of them (the defaults used by the engine will provide quite
acceptable animation.) The four flip-book faces included with Virtual Voices use the following
parameters to specify when individual bitmaps are displayed:

• Mouth shape (13)

• Jaw rotation (16)

• Mouth width (17)

• Eye opening (30)

• Eyes looking left or right (40)

• Level of gaze (41)

• Expression (53)

Recall that conditions are specified as a range of values for a parameter (that is, the bitmap is displayed
if the minimum value specified is less than the current value which is also less than or equal to the
maximum value specified (min < current <= max). So, you need to specify the condition as a range
rather than a distinct value. For example, if you want to specify that a bitmap is displayed when the
expression (53) is happy (1), you don’t just use the value for happy (1), such as:

53 1.0

You need to specify it as a range, such as:

53 0.9 1.1

This tells the engine to display a bitmap when the current value for expression is greater than 0.9 but
less than or equal to 1.1 (e.g., 1.0).

Following is a list of the parameters that are used in the face files for the character included with
Virtual Voices as well as example ranges used in the face file to trigger conditions. You may need to
finetune these to the behavior you experience with your face animated through Virtual Voices.

13 - Mouth shape [0..2]

Programming Notes

828 IBM SDK for Windows

-0.1 to 0.l -- Normal (0)

.9 to 1.1 -- “f,v” (1)

1.1 to 2.1 -- “m,b,p” (2)

16 - Jaw rotation [0..1]

-0.1 to .09 -- Closed

.11 to .3 - - 1/4 Open

.3 to .53 -- 1/2 Open

.53 to .83 -- 3/4 Open

.83 to 1.0 -- Full Open

17 - Mouth width [0..1]

-.01 to .79 -- “oo” sound

.8 to 2.0 -- All other sounds

30 - Eye opening [0..1.1]

.9 to 2.0 -- Full Open

.65 to .9 -- 3/4 Open

.2 to .65 -- 1/2 Open

-0.1 to .2 -- Closed

40 - Eyes looking left or right [-1..1]

-4.0 to -1.0 -- Left (-1)

0 -- Straight ahead (0)

1.0 to 4.0 -- Right (1)

41 - Level of gaze [-20..20]

-100 to -0.8 -- Down

-.8 to .15 -- Level

IBM SDK for Windows 829

Resources

.15 to 100 -- Up

53 - Expression [0..15]

-0.1 to .1 -- Neutral (0)

0.9 to 1.1 -- Happy (1)

5.9 to 6.1 -- Thoughtful (6)

8.9 to 9.1 -- Surprised (9)

10.9 to 11.1 -- Asleep (11)

Parameter (.PAR) File
The parameter (.PAR) file defines the default values of the various parameters that are used by the
animation engine to define and display a face. It also defines the default feature (eye, mouth, eyebrow,
etc.) positions to be used for each expression in the resting state.

After you create your bitmaps and face file, you should test your face using the default parameter file.
Copy one of the parameter files for the bitmap faces that were included with Virtual Voices, and use
this as your parameter file.

Programming Notes

830 IBM SDK for Windows

Registry Entry
Virtual Voices uses the Windows 95 registry to store information about each face. This information is
stored under the HKEY_LOCAL_MACHINE\SOFTWARE\IBM\VirtualVoices\3.5\Actors entry.
There is a unique entry for each character. The following information must be stored in the registry for
a face to be recognized and used by Virtual Voices:

• Path to the faces bitmap (usually ViaVoice\data)

• Long name of the character (for descriptive purposes only)

• Short name of the character (displayed in the Actor Gallery)

• A description of the character (for descriptive purposes only)

• Introductory message (the default text that is spoken by the character)

• Dataset (.FAC file)

• Bitmap (Bitmap file used in the Actor Gallery)

For example, the information registered for Kincaid is (your entry may vary):

[HKEY_LOCAL_MACHINE\SOFTWARE\IBM\VirtualVoices\3.5\Actors\Kincaid]:

Pathname=D:\Viavoice\data

LongName=Kincaid B. Funface

ShortName=Kincaid

Description=A bitmap face on a rough surface with big teeth. Male voice...

IntroMessage=I’m fun to work with! Call me Kincaid.

Dataset=IA02.FAC

Bitmap=IA02.BMP

IBM SDK for Windows 831

Testing Your Face

Testing Your Face
There are two types of testing you should conduct for your face: Functional and Usability/
Acceptability. For functional testing, the best approach is to use the Virtual Voices OCX as the test
vehicle. Here’s how:

• First, create all of the resources for your face (bitmaps, FAC file, PAR file).

• Edit the registry to include the appropriate information for your face.

• Run the Virtual Voices OCX. From the context menu, select Properties. On the Actor Gallery
page, your face should be included in the set of faces that are available. Select your face (you may
have to scroll through the list of available faces.)

• On the Voice Models page, make sure that the “Use Animated Face Engine” is selected. Click OK.
You should now see your face as the face of Virtual Voices.

• Test each expression by selecting it from the Properties page. Have the face speak text that is
representative of the expression (for example, a thoughtful expression might be used to ask
questions of the user. So, use a question as the text to speak for the thoughtful expression.) For
each expression, consider the following:

• Is the animation smooth?

• Were all of the bitmaps displayed?

• Does the expression convey the emotion you intended?

• When the face says a word with the “oo” sound, is the correct bitmap used? Same for “f,v” and
“m,b,p.”

• Others...

Your face should have potential users of your product to validate its acceptability and utility. You may
want to show users early renderings of face designs to narrow down possibilities and to identify
preferences and expectations. You should iterate customer feedback as the design evolves. You can
start with drawings on paper, but you should eventually show the face in action to your users, too (so
they can see it expressing emotion and hear it speaking text).

By getting feedback from actual users and potential customers of your product, you can evaluate and
validate your face on several dimensions that:

• The face is acceptable;

• The name is acceptable;

• The voice “matches” the face;

Programming Notes

832 IBM SDK for Windows

• The expressions are meaningful and recognizable; and

• Others...

IBM SDK for Windows 833

Style Considerations

Style Considerations
The type and style of faces and characters that can be used to personalize your application is virtually
limitless. However, there are some things that should be considered when designing a face for your
application:

• Understand the requirements of your audience (users). End users may prefer characters of different
styles than power users; children have different preferences than adults; some users prefer no face
at all. It is important to allow users to change the face (provide a library of faces and voices from
which they can choose). It is also very important to allow users to turn the face on and off as
desired.

• Consult marketing on the design of your face. The face should be consistent with the product
image and marketing strategy.

• Understand that photorealistic (human) faces imply intelligence, truthfully, is not here. Also, with
the current text-to-speech technology, the voice does not sound human yet, which can create
cognitive dissonance for the end user.

• Consider the appropriateness of the character for the environment in which it will be used (e.g.,
business, game, home, and education). A cartoonish character may be quite appropriate for a game
but may be too silly for business use.

Programming Notes

834 IBM SDK for Windows

IBM SDK for Windows 835

Chapter 42 Virtual Voices Control Frequently
Asked Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice Virtual
Voices Control.

Can I create my own actors?

Yes. More information is available in “Face Customization Notes” on page 814. However, IBM
does not support this.

I am using the Virtual Voices control and the VVTextBox control in the same form. When I click
the VVTextBox, I want Virtual Voices to speak the text in the VVTextBox. However, when I issue
the Speak command, I get an error: audio source busy. What am I doing wrong?

The VVTextBox control and the Virtual Voices control share the same audio source. Before you
issue the Speak command in the Virtual Voices control, you need to tell the VVTextBox control to
stop using the audio source. To accomplish this, set AutoDictation to False and
CommandEnabled to False. These settings will cause the VVTextBox to stop using the audio
source and allow Virtual Voices to use it.

I do not want my users to change actors or any other speech-related settings at run time. How do
I keep the properties menu option from appearing?

To keep the properties menu option from appearing, set the property AllowProperties to False.

Is it better to use bitmap-based actors or vector graphic actors?

Vector-based actors have the following benefits:

• Smaller source files. (This might be a consideration for downloading the files via the Internet.)

• More motion. Vector-based actors do not have pre-drawn expressions. As the character speaks, the
control reshapes the expression of the character at run time. Therefore, the control can match the
expression to the text with more accuracy.

Can I have more than one actor at the same time?

Yes, however, only one can speak at a time. There are no known problems with two characters
speaking if one Virtual Voices instance control instance waits for the other to finish before
speaking.

Virtual Voices Control Frequently Asked Questions

836 IBM SDK for Windows

IBM SDK for Windows 837

Appendix A Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product,
program or service is not intended to state or imply that only that IBM product, program, or service
may be used.

Subject to IBM’s valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product, program, or service.

The evaluation and verification of operation in conjunction with other products, except those expressly
designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

Asia-Pacific users can inquire, in writing, to the IBM Director of Intellectual Property and Licensing,
IBM World Trade Asia Corporation, 2-31 Roppongi 3-chome, Minato-ku, Tokyo 106, Japan.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact IBM
Corporation, Department T01B, 3039 Cornwallis, Research Triangle Park, NC 27709-2195, USA.
Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

Notices

838 IBM SDK for Windows

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or other countries or
both:

IBM

ViaVoice

VoiceType

Adobe Acrobat is a trademark or registered trademark of Adobe Systems Incorporated.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation in the United States
and/or other countries.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or registered trademarks
of Microsoft Corporation in the United States and/or other countries.

Other company, product, and service names may be trademarks or service marks of others.

IBM ViaVoice Outloud 839

Index

A
AboutBox method, 791
accessing

member of a collection, 250
object information, 580

action
control not firing events for, 629
description, 261
informing the UIClient about, 556

ActionDesc
property, 261

ActiveX components
installing, 19

Actor
controlling, 767
gender, 769
head size, 781
shape, 764

ActorName property, 760
Add method, 253
AddApplicationByName method, 566
AddApplicationByWindow method, 568
adding

command phrases, 212
custom menu options, 534, 535, 570, 587
DictLite to HTML document, 363
DictLite to HTML page, 363
Error Correction to application, 417
Grammar to application, 281
GrammarLite to HTML document, 368
GrammarLite to HTML page, 368
new phrase, 253
phrases at design time, 216
Phrases control to application, 205
phrases to a collection, 234
PhrasesLite to HTML document, 374
PhrasesLite to HTML page, 374
TextBox to application, 29

VVDictation to application, 693
VVDictationMgr to application, 633
VVPhrases control to application, 205
VVRichEdit to application, 87
VVTextBox to application, 31, 89

AddPhrase method, 234
adult voices, 769
Age property, 761
AllowProperties property, 762
Alternates property, 296
amount of space to indent, 109
animated face

controlling, 767
enabling, 775

Annotations property, 298
annotations, purpose of, 359
apostrophe, allowed in a phrase, 277
appearance of UIServer, constants that

describe, 555
AppendMenuItem method, 570
application

changes, UIClient event, 612
executable name, 566
menu group, adding menu option, 587
window handle parameter, 593

ApplicationMenuName parameter, 625
ApplicationName parameter, 566, 591, 612
ApplicationTitle parameter, 624
architecture, SDK, 25
associating

word with related information, 298
attributes

Classes, editing, 209
ViaVoice Outloud engine, 779

audio
wave, using, 776

AutoConnect property, 222, 303
AutoDictation property, 42, 46, 100, 104, 106

Index

840 IBM ViaVoice Outloud

AutoDictationWindow property, 642, 702
AutoLoad property, 305
automatic

connection to speech engine, 222, 303
connection to UIServer, 223
loading of a grammar file, 305
starting of dictation mode, 42, 46, 83, 100,

104, 106, 201, 642, 702
AutoUI property, 223, 307

B
BackColor property, 763
background color of the control, 763
bActive parameter, 612
baseline frequency, setting, 771
Begin Dictation, enabling in main menu,

587
beginning

speech recognition, 240
text, moving to, 36, 94

BeginSpeechRecognition event, 240
BeginSpeechRecognized

method, 337
BIN directory, 755
binary grammar file

getting/setting path, 317, 320
binary snapshot of a control, 229
BookMark event, 800
borderless,rectangular window, 764
Breathiness property, 780
bShow parameter, 77, 196
BulletIndentation property, 109
buttons

checkmark, 39, 98
EventButtonPressed event, 615
microphone, 497, 520, 629
Sample Voice, 751
toolbar, setting state of, 554

C
Cancel method, 792
capitalizing selected text, 36, 94
Caps Lock, turning off, 37, 95
Caption property, 534
capture

dictation speech, 382, 390, 400, 403, 405
capturing

commands, 36, 94
messages from the UIServer, 568
speech, 35, 93

VVDictation, 697
VVDictationMgr, 639

causing UIServer to appear, 585
changing

command words, 36, 94
selected text to lowercase, 36, 94
selected word to uppercase, 37, 95
state of UIServer component, 606

characters
LangID, using last two, 509
MAX_MENU_OPERATION limiting, 546
maximum allowed, 80, 199
MaxText event, 80, 199
menu, number allowed in, 546
non-printing ASCII, 277
permitted in a phrase, 277
vvMAX_MENU_STRING constant limiting,

546
check mark indicator for menu option, 534
Checked property, 534
checkmark button, error correction dialog

box, 39, 98
child’s voice, 769
ciComponent parameter, 580, 582, 606, 609,

615, 617
class

User Interface control, 534
Class Wizard, 34, 92, 638
Classes

wrappers, 524

IBM ViaVoice Outloud 841

Index

classes
Confirm Classes dialog box, 285, 421
editing attributes, 209
Index constants, 538
vvDVAF_ALLOW_DOCK, 540
vvUIDockingAlgorithmConstants, 540
vvUIDockingStyle, 542
vvUIEventCallbackFlags, 543
vvUIExtendedMenuFlags, 545
vvUIMaxConstants, 546
vvUIMenuInfo, 534
vvUIMenuItemConstants, 547
vvUIRemoveClientConstants, 550

client application, notifying, 806, 807
clipboard

cutting selected text to, 36, 94
pasting text from, 37, 95

Clipping property, 764
CmdID parameter, 70, 191
collection

accessing a member of, 250
accessing member of, 250
number of phrases in, 246
PhraseColl methods, 245, 252
removing a member, 257
removing all objects, 259

collection object, VVPhrasesColl, 214
collection of commands used, 49, 111
comma, allowed in a phrase, 277
Command event, 70, 191
Command method, 660
command phrases

enabling/disabling, 214
turning off recognition of, 214
vvTBCapitalizeThis, 36, 94
vvTBCopy, 36, 94
vvTBCorrectionThis, 36, 94
vvTBCut, 36, 94
vvTBDeleteThis, 36, 94
vvTBHideEC, 36, 94
vvTBLowercaseThis, 36, 94

vvTBMoveBeginning, 36, 94
vvTBMoveEnd, 36, 94
vvTBNextWord, 36, 95
vvTBPasteThis, 37, 95
vvTBPreviousWord, 37, 95
vvTBScratchThat, 37, 95
vvTBSelectText, 95
vvTBSelectThis, 37, 95
vvTBShowEC, 37, 95
vvTBUppercaseOff, 37, 95
vvTBUppercaseOn, 37, 95
vvTBUppercaseThis, 37, 95

command recognition
disabling, 309
enabling, 309
turning off, 248
turning on, 248

commands
, 387
adding phrases, 212
capturing, 36, 94
disabling recogntion, 225
enabling recognition, 225
programmer-assigned,descriptions of, 263
VVRichEdit recognition, 191
VVTextBox recognition, 70

Commands property, 49, 111
CommandsEnabled property, 52, 114
communicating

actions to UIServer, start, 597
COMPID_CUSTOM constant, 554
COMPID_MAINMENU constant, 554
COMPID_MICROPHONE constant, 554
COMPID_USERINFORMATION constant,

554
COMPID_VOLUME constant, 554
COMPID_WORDHISTORY constant, 554
Confirm Classes dialog box, 209, 285, 421
connecting

automatically, 222
speech engine automatically, 303

Index

842 IBM ViaVoice Outloud

constants, 546
COMPID_CUSTOM, 554
declared in VVUITYPE.h & VVUICNST.h,

504
Index, 538
UIAPIRC_ERROR_ALREADYINITIALIZE

D, 559
UIAPIRC_ERROR_FAILED, 559
UIAPIRC_ERROR_INVALIDCLIENT, 559
UIAPIRC_ERROR_INVALIDPARAM, 559
UIAPIRC_ERROR_NOSERVER, 559
UIAPIRC_ERROR_NOTCURRENTCLIEN

T, 559
UIAPIRC_ERROR_OUTOFMEMORY, 559
UIAPIRC_ERROR_SERVERBUSY, 559
UIAPIRC_OK, 559
UIMFG_DYNAMIC_APPLICATION, 557
UIMFG_DYNAMIC_HELP, 557
UIMFG_DYNAMIC_MAIN, 557
UIMFG_STATIC_HELP, 557
UIMFT_CLIENT, 558
UIMFT_EXECUTE, 558
UIMSF_ADDWAIT, 553
UIMSF_CLEARWAIT, 553
UIMSF_DISABLED, 552
UIMSF_ERROR, 552
UIMSF_OFF, 552
UIMSF_ON, 552
UIMSF_REMOVEWAIT, 553
UIMSF_SLEEP, 552
User Interface control, 537
vvDVAF_ALLOW_DOCK, 540
vvDVAF_ALLOW_TOPMOST_DOCK, 540
vvDVAF_DEFAULT, 540
vvDVAF_NEVER_DOCK, 541
vvDVAF_STAY_DOCK_TO_PREVIOUS,

541
vvDVSF_ADJUST WIDTH, 542
vvDVSF_ADJUST_ORIGIN, 542
vvDVSF_DEFAULT, 542
vvDVSF_NORMAL_BACKGROUND, 542

vvDVSF_TRANSPARENT_BACKGROUN
D, 542

vvMAX_MENU_OPERATION, 546
vvMAX_MENU_STRING, 546
vvMAX_USERINFO_ID_LEN, 546
vvMAX_WORDHISTORY_TEXT, 546
vvUIDockingStyle, 542
vvUIEVENT_ACTIVEAPP_CHANGED,

543
vvUIEVENT_ALL, 543
vvUIEVENT_BUTTON_PRESSED, 543
vvUIEVENT_COMPONENT_UPDATED,

543
vvUIEVENT_MENUITEM_SELECTED,

543
vvUIEVENT_NONE, 543
vvUIEVENT_VIEW_QUERYFLAGS, 544
vvUIEVENT_VIEW_QUERYMENUINFO,

544
vvUIEventCallbackFlags, 543
vvUIMaxConstants, 546
vvUIMenuItemConstants, 547
vvUIMICINDEX_MICSTATE, 538
vvUIMICINDEX_WAITSTATE, 538
vvUIRCF_CLOSE, 550
vvUIRCF_CLOSE_IF_LAST_CLIENT, 550
vvUIRCF_CLOSE_IF_LAST_CLIENT_DE

LAY, 550
vvUIRCF_DEFAULT, 550
vvUIRCF_NO_CLOSE, 550
vvUIRemoveClientConstants, 550
vvUIUIFOINDEX_ENROLLID, 538
vvUIUINFOINDEX_ENROLL_DESCRIPTI

ON, 539
vvUIUINFOINDEX_TASK_DESCRIPTION,

539
vvUIUINFOINDEX_TASKID, 538
vvUIUINFOINDEX_USER_DESCRIPTION,

538
vvUIUINFOINDEX_USERID, 538
vvUIVOLINDEX_VOLLEVEL, 539

IBM ViaVoice Outloud 843

Index

vvUIWHINDEX_TAGGEDTEXT, 539
context menu

enabling, 772
Virtual Voices, 749

context-free grammar file, using, 279
control

Dictation
events, 734
frequent questions about, 743
getting started, 693
introduction, 699
methods, 712
properties, 701

DictationMgr
events, 682
frequent questions about, 691
getting started, 633
introduction, 631
methods, 659
properties, 641

DictLite
events, 384
getting started, 363
introduction, 361
methods, 384
properties, 381

Error Correction
events, 481
frequent questions about, 495
getting started, 417
introduction, 415
methods, 460
properties, 431

Grammar
events, 336
frequent questions about, 359
getting started, 281
hierarchy, 279
introduction, 279
methods, 327
properties, 295

GrammarLite
events, 394
getting started, 363
introduction, 361
methods, 394
properties, 389

Lite
frequent questions about, 413
getting started, 363
introduction, 361
properties, 381

Phrases
events, 239
frequent questions about, 277
getting started, 205
hierarchy, 203
introduction, 203
methods, 233
properties, 221

PhrasesLite
events, 407
getting started, 363
introduction, 361
methods, 402
properties, 399

RichEdit
events, 190
frequent questions about, 201
getting started, 87
hierarchy, 85
introduction, 85
methods, 171
properties, 99

TextBox
events, 69
frequent questions about, 83
getting started, 29
hierarchy, 27
introduction, 27
methods, 63
properties, 41

Index

844 IBM ViaVoice Outloud

User Interface
class, 534
constants, 537
enumerations, 551
events, 611
frequent questions about, 629
getting started, 499
introduction, 497
methods, 565
properties, 561
structure, 535

Virtual Voices, 755
events, 799
face customization notes, 814
frequent questions about, 835
getting started, 745
introduction, 757
methods, 790
programming notes, 813
properties, 759
tts engine attributes, 779

controls
list, 19

copying selected text to the clipboard, 36,
94

Correct method, 663, 713
correcting

selected text, 36, 94
correction

text, 38, 97
Count property, 246, 346
creating

control
VVDictLite, 363
VVGrammarLite, 368
VVPhrasesLite, 374

custom menus, 523
instance of control, 499

Error Correction, 417
Grammar, 281
Phrases, 205

TextBox, 29
UIClient, 499
VVDictation, 693
VVDictationMgr, 633
VVRichEdit, 87
VVTextBox, 31, 89

member variable for a class, 34, 92, 638
new phrase, 253
new phrase object, 234

current state of UIServer, 624
cursor

moving to the previous word, 37, 95
placing at the beginning of the next word,

36, 95
selecting text at, 37, 95

CursorIndex property, 645
custom designer

VVPhrases control, 216
Custom Interface methods,

SetClientCallback, 597
custom menu options

adding, 534, 587
creating, 523
getting information about, 577
modifying, 534
providing information about, 535

cutting selected text to the clipboard, 36,
94

D
data

storing, 269
DATA directory, 755
DefaultExpression property, 766
defining maximum size for string value

properties, 546
DeleteMenuItem method, 574
DeleteText event, 683
DeleteText method, 666
deleting dictated text, 37, 95
description

IBM ViaVoice Outloud 845

Index

actions for program to take, 261
Description property, 263
Detective control

summary, 24
Dictation

phrase formatting flags, 741
summary, 23

dictation
display current state, 61
enable, 83, 201

Dictation control
capturing speech, 697
creating instance of, 693
events, 734
getting started, 693
introduction, 699
methods, 712
properties, 701
questions, 743
summary, 697

dictation mode
AutoDictation, 42, 46, 100, 104, 106
AutoDictationWindow, 642, 702
description, 35, 93, 639, 697
DictationStateChange, 73, 193, 685, 735
setting state, 54, 116, 647, 704
starting automatically, 42, 46, 100, 104, 106,

642, 702
DictationMgr control

capturing speech, 639
creating instance of, 633
events, 682
getting started, 633
introduction, 631
methods, 659
properties, 641
questions, 691
summary, 23, 640

DictationOn
parameter, 73, 193
property, 54, 116

DictationOn property, 647, 704
DictationStateChange event, 73, 193, 685, 735
DictLite control

events, 384
introduction, 361
methods, 384
properties, 381
using, 363

directory structure, 755
disabled microphone button, why?, 629
disabling

command recognition, 225
command recogntion, 309
grammar, 290
recognition

command phrases, 214
particular phrases, 265

displaying
UIServer, 568

displays
state of dictation, 61

docked, event to change view, 621
docking

preventing, 541
docking, view mode of UIServer, 540
DOCS directory, 755
DoProperties method, 793
Drag-Drop-n-Go

Grammar control, 287, 423, 426
support, 211

dwFlags parameter, 597
dwMenuItemId parameter, 619
dwValueData parameter, 606

E
editing Class attributes, 209
elderly voices, 769
embedding bookmarks, 800
EN_UK LangID string name, 509
EN_US LangID string name, 509
enable dictation, 83, 201

Index

846 IBM ViaVoice Outloud

Enabled property, 225, 248, 265, 349, 382, 390,
400, 403, 405, 534

VVCFGram, 290
enabling, 265

animated face, 775
Caps Lock, 37, 95
command recognition, 225, 309
context menu, 772
grammar, 290
main menu options, 587
recognition of command phrases, 214
recogntion of a particular phrase, 265

end-user
ability to change Virtual Voices Properties,

793
control via Virtual Voices context menu, 749
pausing and resuming speaking, 804

Engine
property, 56, 118

engine attributes, ViaVoice Outloud, 779
Engine control

summary, 21
Engine property, 227, 649, 706
entering dictation mode, 73, 83, 193, 201,

685, 735
enumerated types

microphone states, 552
taskbar component ID, 554
TVIEWTYPE, 555
UIEVENTRC, 556
UIMENUTYPE, 558
UIRC, 559

enumerations
MICROPHONE_STATES, 552
TCID, 554
TVIEWTYPE, 555
UIEVENTRC, 556
UIMenuGroup, 557
UIMENUTYPE, 558
User Interface control, 551

error

correction, hiding the dialog box, 36, 94
information, 559
message dialog box, controlling, 76, 195

Error Correction control
creating instance of control, 417
events, 481
getting started, 417
introduction, 415
questions frequently asked, 495
summary, 22

Error Correction dialog box
showing, 37, 95

error correction window, 38, 97
error description parameter,

pstrDescription, 76, 195
Error event, 76, 195
ES_ES LangId string name, 509
EventActiveApplication event, 612
EventButtonPressed event, 615
EventComponentUpdated event, 617
EventMenuItemSelected event, 619
EventQueryViewFlags

event description, 621
using to handle changing view mode of

UIServer, 540
EventQueryViewMenuInfo event, 624
events

BeginSpeechRecognition, 240
BookMark, 800
Command, 70, 191
DeleteText, 683
DictationStateChange, 73, 193, 685, 735
DictLite control, 384
Error, 76, 195
Error Correction control, 481
EventActiveApplication, 612
EventButtonPressed, 615
EventComponentUpdated, 617
EventMenuItemSelected, 619
EventQueryViewFlags, 621
EventQueryViewMenuInfo, 624

IBM ViaVoice Outloud 847

Index

Grammar control, 336
GrammarLite control, 394
HitBookMark, 737
InitDone, 802
KeyPress, 804
MaxText, 80, 199
Pause, 806
Phrase object, 275
PhraseReco, 739
PhraseRecognized, 385, 395, 408
Phrases control, 239
PhrasesLite control, 407
PutText, 687
Reset, 807
Resume, 808
SpeechRecognized, 212, 241
StartSpeaking, 809
StopSpeaking, 810
supported in Dictation control, 734
supported in DictationMgr control, 682
supported in RichEdit control, 190
supported in TextBox control, 69
TrainingRequired, 243, 342
User Interface control, 611
Virtual Voices, 799
VUMeter, 387, 397, 410
WordPosition, 811

exclamation point, allowed in a phrase, 277
ExecuteCommand, 172
ExecuteCommand method, 64
ExePathName property, 534
Exist method, 255, 355
exiting dictation mode, 73, 193, 685, 735
ExpandMacros property, 651, 708
Expression property, 767
ExtendedMenuFlags, 545
external lists

grammar, 291
number in a group, 346
returning, 352
turning off, 349

turning on, 349
ExternLists property, 314

F
face customization notes

Virtual Voices, 814
face, animated

controlling, 767
enabling, 775

fByPosition parameter, 574, 577, 588, 604
female gender, 769
file

grammar
setting path to, 317, 320

GrammarSource
setting path to, 324

finding out if external list is part of an
object, 355

finding out if phrase is part of a collection,
255

focus
using to start dictation mode, 42, 46, 100, 104,

106, 642, 702
format speech input, 651, 708
formatting flags, 741
FR_FR LangID string name, 509
frequently asked questions

Dictation control, 743
DictationMgr control, 691
Error Correction control, 495
Grammar control, 359
Lite controls, 413
Phrases control, 277
RichEdit control, 201
TextBox control, 83
User Interface control, 629
Virtual Voices, 835

functions
AboutBox, 791
Cancel, 792
DoProperties, 793

Index

848 IBM ViaVoice Outloud

Pause, 794
Resume, 795
Speak, 796

G
Gender property, 769
GetAlternate method, 668
GetFlags method, 719
GetMenuItemInfo method, 577
GetNumberValue method, 580
GetStringValue method, 582
GetText method, 671
getting

focus, UIClient event, 612
information about custom menu option, 577
numeric information about UIServer, 580
path to binary grammar file, 317, 320
properties of UIServer, and setting, 538
string information about the UIServer, 582
UI characteristics, 520

getting started
Dictation control, 693
DictationMgr control, 633
DictLite control, 363
Error Correction control, 417
Grammar control, 281
GrammarLite control, 363
Lite controls, 363
Phrases control, 205
PhrasesLite control, 363
RichEdit control, 87
TextBox control, 29
User Interface control, 499
Virtual Voices control, 745

GetWavData method, 721
GetWordInfo method, 673, 723
globally unique identifier, 769
Gr_GR LandID string name, 509
Grammar

loading, 288
grammar

enabling/disabling, 290
external lists, 291

Grammar control
Alternates, 296
Annotations, 298
AutoConnect, 303
AutoLoad, 305
AutoUI, 307
BeginSpeechRecognized, 337
Count, 346
creating instance of control, 281
displaying UIServer, 307
Drag-Drop-n-Go, 287, 423, 426
Enabled, 309, 349
Enabled property, 309
Engine, 311
Engine property, 311
events, 336
Exists, 355
ExternLists, 314
getting started, 281
GrammarSource, 317, 320
hierarchy, 279
interacting with UIServer, 307
introduction, 279
Item, 352
LoadFromSource, 328, 330
questions frequently asked, 359
RefreshUIText, 331
Rules, 322
ShowTrainDialog, 334
SourceType, 324
SpeechRecognized, 339
summary, 21
TrainingRequired, 342
VVPhraseCollGroup object, 345, 354

grammar file
compiled

how to create, 359
using, 279

loading automatically, 305

IBM ViaVoice Outloud 849

Index

loading manually, 328, 330
GrammarLite control

events, 394
introduction, 361
methods, 394
properties, 389
using, 368

grammars
enabling and disabling, 290
kinds supported, 359

GrammarSource property, 317, 320, 392
group

number of external lists in, 346

H
handling

BookMark event, 800
InitDone event, 802
KeyPress event, 804
Pause event, 806
Reset event, 807
Resume event, 808
SpeechRecognized event, 212
StartSpeaking event, 809
StopSpeaking event, 810
WordPosition event, 811

HeadSize property, 781
hearing a voice sample, 751
help menu option, adding, 587
HelpMenuName parameter, 625
hiding the error correction dialog, 36, 94
hiding the Virtual Voices control, 786
hierarchy

Grammar Control, 279
Phrases Control, 203
RichEdit control, 85
TextBox control, 27
VVPhrases, 218

hierarchy of objects for VVPhrases, 203
HitBookMark event, 737
hresult parameter, 77, 196

hwndApplication parameter, 568, 593, 612
hwndTarget parameter, 615, 620
hwndWindow parameter, 624

I
ID property, 267, 534
identifier for a phrase, programmer-

assigned, 267
ignoring

all commands in a collection, 248
all external lists in a group, 349
phrases, 265

improving recognition, TrainingRequired
event, 243

Include files, VVUICINST.h and
VVUITYPE.h, 504

Index constants
description, 538
vvUIUserInfoIndex

(COMPID_USERINFORMATION), 538
vvUIVolumendex

(COMPID_USERINFORMATION), 539
vvUIWordHistoryIndex

(COMPID_USERINFORMATION), 539
InitDone event, 802
Initialize method, 585
initializing UI client, 506
input index, 723
InsertMenuItem method, 587
installation notes, 755
installing

ViaVoice ActiveX components, 19
instance of control

creating, 29, 87, 499, 633, 693
UIClient, 499

instance of control, creating
Phrases, 205

interacting with UI server, 513
introduction

Dictation control, 699
DictationMgr control, 631

Index

850 IBM ViaVoice Outloud

DictLite control, 361
Error Correction control, 415
Grammar control, 279
GrammarLite control, 361
Lite controls, 361
Phrases control, 203
PhrasesLite control, 361
RichEdit control, 85
TextBox control, 27
User Interface control, 497
ViaVoice ActiveX controls, 19
Virtual Voices ActiveX control, 757

invisible operation, Virtual Voices
control, 786

invoke voice commands, 64
IT_IT LangID string name, 509
Item property, 250, 352
ItemData property, 269

K
keyboard control of Virtual Voices

control, 813
KeyPress event, 804
kinds of grammars supported, 359

L
Lang ID parameter, 509
LangStr parameter, 601
LanguageUI property, 58, 562
Layout property, 229
lHelpID parameter, 77, 196
list

ViaVoice ActiveX controls, 19
list of phrases stored by VVPhrases, 212
Lite controls

introduction, 361
properties, 381
questions, 413
summary, 21

LoadFromSource method, 328, 330

loading Grammar, 288
LoadRTF method, 174
LoadTextFile method, 176
location of a menu item, parameter for,

570
Locked property, 653
losing focus, UIClient event, 612
lowercase, changing selected text to, 36,

94

M
MainMenuName parameter, 624
making the Properties dialog appear, 793
male gender, 769
manual loading of a grammar file, 328, 330
maximum

number of characters allowed, 80, 199
size of UIServer string value properties, 546

MaxText event, 80, 199
member variable, creating for a class, 34,

92, 638
menu

creating custom, 523
custom, specifying location, 557
items, Custom Interface, 535
options, Custom Interface, 535
styles, setting, 545

menu group name parameter, 570
menu item caption, maximum number of

characters allowed, 546
menu items

constants, 547
parameter, 574
position, 574

menu option
check mark indicator, 534
constants, 557
Enabled indicator, 534
path of help file, 534
specifying ID numbers, 534
Text, 534

IBM ViaVoice Outloud 851

Index

Visible indicator, 534
MenuName parameter, 570, 574, 577, 587, 603
MergeRecoPhrases method, 725
methods

About, 63, 171
AboutBox, 791
Add, 253
AddApplicationByName, 566
AddApplicationByWindow, 568
AddPhrase, 234
AppendMenuItem, 570
BeginSpeechRecognized, 337
Cancel, 792
Command, 63, 171, 660
Correct, 663, 713
DeleteMenuItem, 574
DeleteText, 666
DictLite control, 384
DoProperties, 793
Drag, 63, 171
Error Correction control, 460
ExecuteCommand, 64
Exist, 255, 355
GetAlternate, 668
GetFlags, 719
GetMenuItemInfo, 577
GetNumberValue, 580
GetStringValue, 582
GetText, 671
GetWavData, 721
GetWordInfo, 673, 723
Grammar control, 327
GrammarLite control, 394
Initialize, 585
InsertMenuItem, 587
LoadFromSource, 328, 330
LoadRTF, 174
LoadTextFile, 176
MergeRecoPhrases, 725
Move, 63, 171
Pause, 794, 799

Phrase object, 275
PhraseColl collection, 252
PhraseCollGroup object, 354
Phrases control, 233
PhrasesLite control, 402
PutText, 678
Refresh, 63, 171
RefreshingUIText, 236
RefreshUIText, 331
Remove, 257
RemoveAll, 259
RemoveApplicationByName, 591
RemoveApplicationByWindow, 593
Resume, 795, 799
SaveTextFile, 186
SelPrint, 188
SetBookMark, 727
SetClientCallback, 597
SetClientCallbackFlags, 597
SetContext, 729
SetFocus, 63, 171
SetLanguageByID, 599
SetLanguageByString, 601
SetMenuItemInfo, 603
SetNumberValue, 606
SetSelection, 680
SetStringValue, 609
ShowTrainDialog, 334
ShowWhatsThis, 63, 171
Speak, 766, 796
SpeechRecognized, 339
SplitOutLeftWord, 731
supported in RichEdit control, 171
supported in TextBox control, 63
TrainingRequired, 342
User Interface control, 565
Virtual Voices, 790
VVDictation control, 712
VVDictationMgr control, 659
Z-Order, 63, 171

microphone

Index

852 IBM ViaVoice Outloud

button, 497, 520
button disabled, why?, 629
index constants

vvUIMICINDEX_MICSTATE, 538
vvUIMICINDEX_WAITSTATE, 538

state constants
UIMSF_DISABLED, 552
UIMSF_ERROR, 552
UIMSF_OFF, 552
UIMSF_ON, 552
UIMSF_SLEEP, 552

wait state constants
UIMSF_ADDWAIT, 553
UIMSF_CLEARWAIT, 553
UIMSF_REMOVEWAIT, 553

minimized, event to change view, 621
misrecognized words, 663, 713
ModeGuid property, 769
modifying

custom menu items, 535
custom menu options, 534, 535
state of UIServer component, 609
UIServer components, 538

mouse, EventButtonPressed, 615
moving the cursor, 36, 37, 94, 95

N
Name property, 271
nDataSize parameter, 582
neutral gender, 769
new phrase, adding, 253
nIndex parameter, 582, 606, 609
nIndexLong parameter, 580
notifying

client application
Pause, 806
Reset, 807
Resume, 808
WordPosition, 811

container application
event, 802

StartSpeaking, 809
StopSpeaking, 810

UIServer about application programs, 566
number of external lists in a group, 346
number of phrases in a collection, 246

O
object

Phrase events, 275
Phrase methods, 275
PhraseCollGroup methods, 354
PhraseCollGroup properties, 345

object hierarchy for VVPhrases, 203
objects

hierarchy
VVRichEdit control, 85
VVTextBox control, 27

information, accessing, 580
Phrase

properties, 260
removing all from a collection, 259
VVPhraseColl, 214
VVPhrases

hierarchy, 218
overview

Virtual Voices, 745

P
parameters

ApplicationMenuName, 625
ApplicationName, 566, 591, 612
ApplicationTitle, 624
bActive, 612
bShow, 77, 196
ciComponent, 582, 606, 609, 615, 617
CmdID, 70, 191
DictationOn, 73, 193
dwFlags, 597
dwMenuItemId, 619
dwValueData, 606

IBM ViaVoice Outloud 853

Index

fByPosition, 577, 588, 604
HelpMenuName, 625
hresult, 77, 196
hwndApplication, 568, 593, 612
hwndTarget, 615, 620
hwndWindow, 624
identifying commands, CmdID, 70, 191
IHelpID, 77, 196
LangID, 509
LangStr, 601
MainMenuName, 624
MenuName, 570, 574, 577, 587, 603
nDataSize, 582
nIndexLong, 580
pdwDockFlags, 621
pdwValueData, 580
phwndWindow, 621
pIMenuInfo, 578, 588, 604
pResult, 612, 615, 617, 620, 621, 625
pstrDescription, 76, 195
riid, 595
strCommand, 70, 191, 461, 464, 466
uItem, 574, 577, 587, 603
uUIMenuGroup, 570, 574, 577, 603
ValueData, 582, 609
VtViewType, 624
wLangID, 599

Paste, 750
pasting text from the clipboard, 37, 95
path of help file, 534
Pause

event, 806
example of using, 799
method, 794

pausing playback, 794
pdwDockFlags parameter, 621
pdwValueData parameter, 580
phrase formatting flags

dictation, 741
Phrase object

events, 275

methods, 275
properties, 260

phrase objects
creating new, 234
programmer-assigned name for, 271

phrase, characters permitted in, 277
PhraseColl Collection

methods, 252
properties, 245

PhraseReco event, 739
PhraseRecognized event, 385, 395, 408
phrases

adding, 212, 234
number in a collection, 246

Phrases control
creating an instance of, 205
events, 239
getting started, 205
hierarchy, 203
introduction, 203
methods, 233
properties, 221
questions, 277
summary, 20

Phrases property, 214, 231
PhrasesLite control

events, 407
introduction, 361
methods, 402
properties, 399
using, 374

phwndWindow parameter, 621
pIMenuInfo parameter, 578, 588, 604
Pitch property, 771
PitchFluctuation property, 782
placing the cursor at the beginning of the

next word, 36, 95
playback audio, 721
playback, pausing, 794
pResult parameter, 612, 615, 617, 620, 621, 625
preventing docking UIServer, 541

Index

854 IBM ViaVoice Outloud

previous word, moving the cursor to, 37,
95

ProcessingMacro property, 710
programming

interfaces, Virtual Voices control, 755
notes, Visual Basic, 813

programming notes
Virtual Voices, 813

properties
ActionDesc, 261
ActorName, 760
Age, 761
AllowProperties, 762
Alternates, 296
Annotations, 298
AutoConnect, 222, 303
AutoDictation, 42, 46, 100, 104, 106
AutoDictationWindow, 642, 702
AutoLoad, 305
AutoUI, 223, 307
BackColor, 763
Breathiness, 780
BulletIndentation, 109
Caption, 534
Checked, 534
Clipping, 764
Commands, 49, 111
CommandsEnabled, 52, 114
Count, 246, 346
CursorIndex, 645
DefaultExpression, 766
defining maximum size for string values, 546
Description, 263
DictationOn, 54, 116, 647, 704
DictLite control, 381
Enabled, 225, 248, 265, 309, 349, 382, 390, 400,

403, 405, 534
Engine, 56, 118, 227, 311, 649, 706
Error Correction control, 431
ExePathName, 534
ExpandMacros, 651, 708

Expression, 767
ExternLists, 314
Gender, 769
Grammar control, 295
GrammarLite control, 389
GrammarSource, 317, 320, 392
HeadSize, 781
ID, 267, 534
Item, 250, 352
ItemData, 269
LanguageUI, 58, 562
Layout, 229
Lite controls, 381
Locked, 653
ModeGuid, 769
Name, 271
Phrase object, 260
PhraseColl Collection, 245
PhraseCollGroup object, 345
Phrases, 214, 231
Phrases control, 221
PhrasesLite control, 399
Pitch, 771
PitchFluctuation, 782
ProcessingMacro, 710
RightMargin, 127
Roughness, 783
Rules, 322
SelAlignment, 129
SelBold, 131
SelBullet, 133
SelCharOffset, 135
SelColor, 137
SelFontName, 139
SelFontSize, 141
SelHangingIndent, 143
SelIndent, 145
SelIRightIndent, 153
SelItalic, 147
SelLength, 149
SelProtected, 151, 157

IBM ViaVoice Outloud 855

Index

SelRTF, 155
SelStrikeThru, 159
SelTabCount, 122, 161
SelTabs, 163
SelText, 165
SelUnderline, 167
ShowDictationIcon, 61
ShowMenu, 772
SourceType, 324
SpeakText, 773
Speed, 774
Text, 273
TextRTF, 169
UppercaseOn, 657
UseFace, 775
User Interface control, 561
UseWave, 776
Virtual Voices, 759
Visibility, 786
Visible, 534
VVDictation control, 701
VVDictationMgr control, 641
VVRichEdit control, 99
VVTextBox control, 41

Properties dialog, controlling when
appears, 793

properties page, Virtual Voices, 750
pstrDescription parameter, 76, 195
PutText event, 687
PutText method, 678

Q
querying

states of components in UI server, 554, 555
UIServer components, 538

questions, Virtual Voices, 835

R
recognition

commands, controlling, 52, 114

TrainingRequired event, 243
recognized speech input, 739
recognizing

speech, 241
text, 273

rectangular window, 764
reference

speech engine, 311
refreshing text, 236
RefreshUIText method, 236, 331
Remove method, 257
RemoveAll method, 259
RemoveApplicationByName method, 591
RemoveApplicationByWindow method, 593
RemoveClientConstants method, 550
removing

all objects from a collection, 259
custom menu items, 574
object from a collection, 257
phrase objects from a collection, 257
program from list of programs, 591, 593

reporting errors, 76, 195
Reset event, 807
Resume

event, 808
example of using, 799
method, 795

resuming after a pause, 795
retrieve formatting flags, 719
retruning

external lists, 352
returning from Speak method, 766
RichEdit control

creating instance of, 87
events, 190
introduction, 85
methods, 171
object hierarchy, 85
properties, 99
questions, 201
summary, 20

Index

856 IBM ViaVoice Outloud

RightMargin
property, 127

riid parameter, 595
Roughness property, 783
Rules property, 322

S
Sample Voice button, 751
SAMPLES directory, 755
SaveTextFile method, 186
SDK

architecture, 25
component installation, 19
list of controls, 19

SDK ActiveX
introduction, 19

SelAlignment
property, 129

SelBold
property, 131

SelBullet
property, 133

SelCharOffset
property, 135

SelColor
property, 137

SelFontName
property, 139

SelFontSize
property, 141

SelHangingIndent
property, 143

SelIndent
property, 145

SelItalic
property, 147

Sellength
property, 149

SelPrint method, 188
SelProtected

property, 151, 157

SelRightIndent
property, 153

SelRTF
property, 155

SelStrikeThru
property, 159

SelTabCount
property, 122, 161

SelTabs
property, 163

SelText
property, 165

SelUnderline
property, 167

sErrorID parameter, 76, 195
server, UI, interacting with, 513
SetBookMark method, 727
SetClientCallback method, 597
SetClientCallbackFlags method, 597
SetContext method, 729
SetLanguageByID method, 599
SetLanguageByString method, 601
SetMenuItemInfo method, 603
SetNumberValue method, 606
SetSelection method, 680
SetStringValue method, 609
setting

baseline frequency of text-to-speech voice,
771

maximum number of characters, 80, 199
menu item characteristics, 603
menu styles, 545
path for GrammarSource, 324
path to a grammar file, 317, 320
refer to engine object, 56, 118, 649, 706
state of dictation mode, 54, 116, 647, 704
text-to-speech voice speed, 774
UI characteristics, 520
UIServer properties, 538
voice smoothness or roughness, 783

ShowDictationIcon property, 61

IBM ViaVoice Outloud 857

Index

showing the error correction dialog, 37, 95
ShowMenu property, 772
ShowTrainDialog method, 334
single phrase, turning off recognition, 265
size of speaker’s head, controlling, 781
smooth voice, 783
snapshot of the control, 229
SourceType property, 324
Speak

method, 796
option, 749
UseWave property, 776

SpeakText property, 773
specifying

ID number of a menu option, 534
location of custom menu item, 557
UIServer components for query or

modification, 538
speech

capturing, 35, 93, 639, 697
recognizing, 241

speech engine
automatic connection to, 222
reference, 311

speech recognition
TrainingRequired event, 243
turning on and off, 290

SpeechRecognized
event handling, 212
events, 241

SpeechRecognized method, 339
Speed property, 774
SplitOutLeftWord method, 731
sprite, definition of, 787
StartSpeaking event, 796, 809
state of component, modifying, 606
state of dictation mode, setting, 54, 116, 647,

704
state of dictation, display, 61
state of UIServer, 624
StopSpeaking event, 796, 810

storing
additional data with a phrase, 269
data, 269
list of command phrases, 212

strCommand parameter, 70, 191, 461, 464, 466
strHelp parameter, 77, 196
string values, defining maximum size, 546
strSource parameter, 77, 196
structure

User Interface control, 535
structures, UIMenuItemInfo, 534
sublanguage ID, 509
summary

Detective control, 24
Dictation control, 23
DictationMgr control, 23
Engine control, 21
Error CorrectionTextBox control, 22
Grammar control, 21
Lite control, 21
Phrases control, 20
RichEdit control, 20
TextBox control, 20
User Interface control, 22
Virtual Voices control, 23
VVDictation, 697
VVDictationMgr, 640

support
Drag-Drop-n-Go, 211

synchronize events, 727

T
taskbar

component ID, 554
event to change view, 621

text
changing to lowercase, 36, 94
changing to uppercase, 37, 95
command to capitalize, 36, 94
copying to the clipboard, 36, 94
correcting selected, 36, 94

Index

858 IBM ViaVoice Outloud

correction, 38, 97
cutting to the clipboard, 36, 94
deleting dictated, 37, 95
disabling Caps Lock, 37, 95
enabling uppercase, 37, 95
moving the cursor, 36, 94
pasting from the clipboard, 37, 95
recognizing, 273
selecting at the cursor, 37, 95

Text property, 273
TextBox

language for specific client, 58
TextBox control

creating instance of, 29
events, 69
introduction, 27
methods, 63
object hierarchy, 27
properties, 41
questions, 83
recognizing commands, 52, 114
summary, 20

TextRTF
property, 169

text-to-speech
Engine attributes

Breathiness, 780
description, 779
HeadSize, 781
PitchFluctuation, 782
Roughness, 783

setting
baseline frequency, 771
voice speed, 774

SpeakText property, 773
toolbar buttons, setting state of, 554
TrainingRequired event, 243, 342
TrainingRequired method, 342
turning off

Caps Lock, 37, 95
command recognition, 248

external lists, 349
recognition of command phrases, 214
speech recognition, 290

turning on
Caps Lock, 37, 95
command recognition, 248
external lists, 349
recognition of command phrases, 214
speech recognition, 290

TVIEWTYPE, 555

U
UIAPIRC_ERROR_ALREADYINITIALI

ZED constant, 559
UIAPIRC_ERROR_FAILED constant, 559
UIAPIRC_ERROR_INVALIDCLIENT

constant, 559
UIAPIRC_ERROR_INVALIDPARAM

constant, 559
UIAPIRC_ERROR_NOSERVER

constant, 559
UIAPIRC_ERROR_NOTCURRENTCLIE

NTconstant, 559
UIAPIRC_ERROR_OUTOFMEMORY

constant, 559
UIAPIRC_ERROR_SERVERBUSY

constant, 559
UIAPIRC_OK constant, 559
UIClient

creating an instance of the control, 499
defining events received from UIServer, 543
informing about actions in events, 556
initializing, 506
noting change of focus, 612
possible events

vvUIEVENT_ACTIVEAPP_CHANGED,
543

vvUIEVENT_ALL, 543
vvUIEVENT_BUTTON_PRESSED, 543
vvUIEVENT_COMPONENT_UPDATED,

543

IBM ViaVoice Outloud 859

Index

vvUIEVENT_MENUITEM_SELECTED, 543
vvUIEVENT_NONE, 543
vvUIEVENT_VIEW_QUERYFLAGS, 544
vvUIEVENT_VIEW_QUERYMENUINFO,

544
return code, 559
shutting down, specifying UIServer response,

550
UIEVENTRC enumerated type, 556
UIEVENTRC_NOTPROCESSED constant,

556
UIEVENTRC_PROCESSED constant, 556
UIMenuGroup enumeration, 557
UIMenuItemInfo structure, 534, 535
UIMENUTYPE, 558
UIMFG_DYNAMIC_APPLICATION

constant, 557
UIMFG_DYNAMIC_HELP constant, 557
UIMFG_DYNAMIC_MAIN constant, 557
UIMFG_STATIC_HELP constant, 557
UIMFT_CLIENT constant, 558
UIMFT_EXECUTE constant, 558
UIMSF_ADDWAIT constant, 553
UIMSF_CLEARWAIT constant, 553
UIMSF_DISABLED constant, 552
UIMSF_ERROR constant, 552
UIMSF_OFF constant, 552
UIMSF_ON constant, 552
UIMSF_REMOVEWAIT constant, 553
UIMSF_SLEEP constant, 552
UIServer

button-clicking event, 615
causing to appear, 585
changing component characteristics, 617
components, maximum size for string value

properties, 546
connecting automatically, 223
current appearance, 555
current state, 624
docking constants

vvDVSF_ADJUST_ORIGIN, 542

vvDVSF_DEFAULT, 542
vvDVSF_NORMAL_BACKGROUND, 542
vvDVSF_TRANSPARENT_BACKGROUND

, 542
docking style constants, 542
docking view mode, 540
getting

numeric information about, 580
properties, 538
string information about, 582

handling menu options, 558
interacting with, 513
language for specific client, 562
microphone

object, 552
modifying

components, 554
state of component, 606, 609

notifying about applications, 566
object IDs

ciComponent, 580, 582, 609
preventing docking, 541
removing program from list, 591
setting properties, 538
specifying

language to use, 599, 601
response when UIClient shuts down, 550

string value sizes, 546
user

changing view of, 621
menu option selection event, 619
request to view menu, 624

uItem parameter, 574, 577, 587, 603
UIVIEW_AGENT constant, 555
UIVIEW_DOCKED constant, 555
UIVIEW_SYSTRAY constant, 555
UIVIEW_TASKBAR constant, 555
uppercase, changing selected word to, 37, 95
UppercaseOn property, 657
UseFace property, 775
user

Index

860 IBM ViaVoice Outloud

interface
getting and setting, 520

request to view UIServer menu, 624
starts speaking, event, 240

User Interface control
getting started, 499
questions, 629
summary, 22

UseWave property, 776
using

DictLite, 363
GrammarLite, 368
PhrasesLite, 374

using window handles, 568
uUIMenuGroup group, 587
uUIMenuGroup parameter, 570, 574, 577,

603

V
ValueData parameter, 582, 609
ViaVoice

component installation, 19
Error Correction control methods, 460
Error Correction Control properties, 431
Grammar Control methods, 327
Grammar Control properties, 295
SDK architecture, 25
User Interface class, 534
User Interface constants, 537
User Interface enumerations, 551
User Interface events, 611
User Interface introduction, 497
User Interface methods, 565
User Interface properties, 561
User Interface structure, 535
Virtual Voices events, 799
Virtual Voices face customization notes, 814
Virtual Voices methods, 790
Virtual Voices programming notes, 813
Virtual Voices properties, 759

ViaVoice ActiveX

controls included, 19
introduction, 19

ViaVoice Outloud engine attributes, 779
Virtual Voices

context menu, 749
control, 755
introduction, 757
keyboard control for Visual Basic, 813
overview, 745

Virtual Voices control
getting started, 745
summary, 23

Visibility property, 786
Visible property, 534
Visual Basic programming notes, 813
voice

setting speed, 774
smoothness or roughness, setting, 783
text-to-speech, setting baseline frequency,

771
voices, adult, elderly, and child, 769
VtViewType parameter, 624
VUMeter event, 387, 397, 410
VVCFGram control

getting started, 281
introduction, 279
using external lists, 291

VVDictation control
getting started, 693

VVDictationMgr control
getting started, 633

vvDVAF_ALLOW_DOCK constant, 540
vvDVAF_ALLOW_TOPMOST_DOCK

constant, 540
vvDVAF_DEFAULT constant, 540
vvDVAF_NEVER_DOCK constant, 541
vvDVAF_STAY_DOCK_TO_PREVIOU

S constant, 541
vvDVSF_ADJUST WIDTH constant, 542
vvDVSF_ADJUST_ORIGIN constant, 542
vvDVSF_DEFAULT constant, 542

IBM ViaVoice Outloud 861

Index

vvDVSF_NORMAL_BACKGROUND
constant, 542

vvDVSF_TRANSPARENT_BACKGROUN
D constant, 542

VVECWin control
getting started, 417
introduction, 415

vvMAX_MENU_OPERATION constant,
546

vvMAX_MENU_STRING constant, 546
vvMAX_USERINFO_DESC_LEN, 546
vvMAX_USERINFO_DESC_LEN

constant, 546
vvMAX_USERINFO_ID_LEN constant, 546
vvMAX_WORDHISTORY_TEXT

constant, 546
VVPhraseColl Collection

object, 214
VVPhraseCollGroup object

methods, 354
properties, 345

VVPhrases control
creating instance of, 205
custom designer, 216
Drag-Drop-n-Go, 211
object hierarchy, 203, 218

vvTBCapitalizeThis command phrase, 36, 94
vvTBCopy command phrase, 36, 94
vvTBCorrectionThis command phrase, 36,

94
vvTBCut command phrase, 36, 94
vvTBDeleteThis command phrase, 36, 94
vvTBHideEC command phrase, 36, 94
vvTBLowercaseThis command phrase, 36,

94
vvTBMoveBeginning command phrase, 36,

94
vvTBMoveEnd command phrase, 36, 94
vvTBNextWord command phrase, 36, 95
vvTBPasteThis command phrase, 37, 95
vvTBPreviousWord command phrase, 37, 95

vvTBScratchThat command phrase, 37, 95
vvTBSelectText command phrase, 95
vvTBSelectThis command phrase, 37, 95
vvTBShowEC command phrase, 37, 95
vvTBUppercaseOff command phrase, 37, 95
vvTBUppercaseOn command phrase, 37, 95
vvTBUppercaseThis command phrase, 37,

95
VVTextBox control

creating instance of, 31, 89
VVUICNST.h Include file, 504
vvUIDocking constants, 540
vvUIDockingStyle constants, 542
vvUIEVENT_ACTIVEAPP_CHANGED

constant, 543
vvUIEVENT_ALL constant, 543
vvUIEVENT_BUTTON_PRESSED

constant, 543
vvUIEVENT_COMPONENT_UPDATED

constant, 543
vvUIEVENT_MENUITEM_SELECTED

constant, 543
vvUIEVENT_NONE constant, 543
vvUIEVENT_VIEW_QUERYFLAGS

constant, 544
vvUIEVENT_VIEW_QUERYMENUINFO

constant, 544
vvUIEventCallbackFlags constants, 543
vvUIExtendedMenuFlags, 545
vvUIMaxConstants, 546
VVUIMenuInfo class, 534
vvUIMenuItemConstants, 547
vvUIMICINDEX_MICSTATE constant, 538
vvUIMICINDEX_WAITSTATE constant,

538
vvUIRCF_CLOSE constant, 550
vvUIRCF_CLOSE_IF_LAST_CLIENT

constant, 550
vvUIRCF_CLOSE_IF_LAST_CLIENT_DE

LAY constant, 550
vvUIRCF_DEFAULT constant, 550

Index

862 IBM ViaVoice Outloud

vvUIRCF_NO_CLOSE constant, 550
vvUIRemoveClientConstants, 550
VVUITYPE.h, Include file, 504
vvUIUINFOINDEX_ENROLL_DESCRIP

TION constant, 539
vvUIUINFOINDEX_ENROLLID

constant, 538
vvUIUINFOINDEX_TASK_DESCRIPTI

ON constant, 539
vvUIUINFOINDEX_TASKID constant,

538
vvUIUINFOINDEX_USER_DESCRIPTI

ON constant, 538
vvUIUINFOINDEX_USERID constant,

538
vvUIUserInfoIndex

(COMPID_USERINFORMATION), 538
vvUIVOLINDEX_VOLLEVEL constant,

539
vvUIVolumendex

(COMPID_USERINFORMATION), 539
vvUIWHINDEX_TAGGEDTEXT

constant, 539
vvUIWordHistoryIndex

(COMPID_USERINFORMATION), 539
vvVIAVOICE_IDMENU_STOP_READI

NG, 549
vvVIAVOICEUI_IDMENU_BEGIN_DIC

TATION constant, 547
vvVIAVOICEUI_IDMENU_BEGIN_RE

ADING constant, 547
vvVIAVOICEUI_IDMENU_CORRECT_

ERROR constant, 547
vvVIAVOICEUI_IDMENU_EXIT

constant, 548
vvVIAVOICEUI_IDMENU_MICROPHO

NE constant, 548
vvVIAVOICEUI_IDMENU_STOP_DICT

ATION constant, 548
vvVIAVOICEUI_IDMENU_WHAT_CA

N_I_SAY constant, 549

W
wave audio, using, 776
window borderless, rectangular, 764
window handle, 568, 593
Wizard, Class, 34, 92, 638
wLangID parameter, 599
WordPosition event, 811
words per minute speed, 774

	Contents
	Index 839
	About This Document
	Who Should Read This Book
	ViaVoice SDK Related Publications
	How This Book Is Organized
	Document Conventions

	Introduction
	Installing the ViaVoice ActiveX Components
	ActiveX Controls
	Part 1: ViaVoice TextBox Control
	Part 2: ViaVoice RichEdit Control
	Part 3: ViaVoice Phrases Control
	Part 4: ViaVoice Grammar Control
	Part 5: ViaVoice Lite Controls
	Part 6: ViaVoice Engine Control
	Part 7: ViaVoice Error Correction Window Control
	Part 8: ViaVoice User Interface Control
	Part 9: ViaVoice DictationManager Control
	Part 10: ViaVoice Dictation Control
	Part 11: Virtual Voices Control
	Part 12: ViaVoice Detective Control

	ViaVoice SDK Architecture

	Chapter 1 Introduction to the TextBox Control
	VVTextBox Object Hierarchy

	Chapter 2 Getting Started with the TextBox Control
	Creating an Instance of the Control
	Capturing Speech
	Capturing Commands
	Text Correction
	Summary

	Chapter 3 Properties, Methods, and Events
	TextBox Control Properties
	AutoDictationWindow (Read/Write at Run Time Only)
	AutoUI
	Commands
	CommandsEnabled
	DictationOn
	Engine
	LanguageUI
	ShowDictationIcon

	TextBox Control Methods
	ExecuteCommand
	Playback
	PlaybackEx
	PlaybackEx2

	TextBox Control Events
	Command
	DictationStateChange
	Error
	MaxText

	Chapter 4 TextBox Control Frequently Asked Questions
	Chapter 5 Introduction to the RichEdit Control
	VVRichEdit Object Hierarchy

	Chapter 6 Getting Started with the RichEdit Control
	Creating an Instance of the Control
	Capturing Speech
	Capturing Commands
	Text Correction
	Summary

	Chapter 7 Properties, Methods, and Events
	RichEdit Control Properties
	AutoDictationWindow (Read/Write at Run Time Only)
	AudioSourceType
	AutoUI
	BulletIndentation
	Commands
	CommandsEnabled
	DictationOn
	Engine
	FileName
	hWnd (Read Only)
	LanguageUI
	RightMargin
	SelAlignment (Read/Write at Run Time Only)
	SelBold (Read/Write at Run Time Only)
	SelBullet
	SelCharOffset (Read/Write at Run Time Only)
	SelColor (Read/Write at Run Time Only)
	SelFontName(Read/Write at Run Time Only)
	SelFontSize (Read/Write at Run Time Only)
	SelHangingIndent (Read/Write at Run Time Only)
	SelIndent (Read/Write at Run Time Only)
	SelItalic (Read/Write at Run Time Only)
	SelLength (Read/Write at Run Time Only)
	SelProtected
	SelRightIndent (Read/Write at Run Time Only)
	SelRTF (Read/Write at Run Time Only)
	SelStart (Read/Write at Run Time Only)
	SelStrikeThru (Read/Write at Run Time Only)
	SelTabCount (Read/Write at Run Time Only)
	SelTabs (Read/Write at Run Time Only)
	SelText (Read/Write at Run Time Only)
	SelUnderline (Read/Write at Run Time Only)
	TextRTF

	RichEdit Control Methods
	ExecuteCommand
	LoadRTF
	LoadTextFile
	Playback
	PlaybackEx
	PlaybackEx2
	SaveRTF
	SaveTextFile
	SelPrint

	RichEdit Control Events
	Command
	DictationStateChange
	Error
	MaxText

	Chapter 8 RichEdit Control Frequently Asked Questions
	Chapter 9 Introduction to the Phrases Control
	VVPhrases Object Hierarchy

	Chapter 10 Getting Started with the Phrases Control
	Creating an Instance
	Drag-Drop-n-Go Support
	Adding Phrases
	Enabling/Disabling Phrases
	Working with the Custom Designer
	Object Hierarchy

	Chapter 11 Properties, Methods, and Events
	VVPhrases Control
	VVPhrases Control Properties
	AutoConnect (VVPhrases)
	AutoUI (VVPhrases)
	Enabled (VVPhrases)
	Engine (VVPhrases)
	Layout (VVPhrases)
	Phrases (VVPhrases)
	VVPhrases Control Methods
	AddPhrase (VVPhrases)
	RefreshUIText (VVPhrases)

	VVPhrases Control Events
	BeginSpeechRecognition (VVPhrases)
	SpeechRecognized (VVPhrases)
	TrainingRequired (VVPhrases)

	VVPhraseColl Collection
	VVPhraseColl Collection Properties
	Count (VVPhraseColl)
	Enabled (VVPhraseColl)
	Item (Default Method - VVPhraseColl)
	VVPhraseColl Collection Methods
	Add (VVPhraseColl)
	Exists (VVPhraseColl)
	Remove (VVPhraseColl)
	RemoveAll (VVPhraseColl)

	VVPhrase Object
	VVPhrase Object Properties
	ActionDesc (VVPhrase)
	Description (VVPhrase)
	Enabled (VVPhrase)
	ID (VVPhrase)
	ItemData (VVPhrase)
	Name (VVPhrase)
	Text (VVPhrase)
	VVPhrase Object Methods
	VVPhrase Object Events

	Chapter 12 Phrases Control Frequently Asked Questions
	Chapter 13 Introduction to the Grammar Control
	VVCFGram Object Hierarchy

	Chapter 14 Getting Started with the Grammar Control
	Creating an Instance of the Control
	Drag-Drop-n-Go Support
	Loading a Grammar
	Enabling/Disabling a Grammar
	Using External Lists

	Chapter 15 Properties, Methods, and Events
	Grammar Control Properties
	Alternates (VVCFGram)
	Annotations (VVCFGram)
	AutoConnect (VVCFGram)
	AutoLoad (VVCFGram)
	AutoUI (VVCFGram)
	Enabled (VVCFGram)
	Engine (VVCFGram)
	ExternLists (VVCFGram)
	GrammarFormat (VVCFGram)
	GrammarSource (VVCFGram)
	Rules (VVCFGram)
	SourceType (VVCFGram)

	Grammar Control Methods
	LoadFromSource (VVCFGram)
	Refresh
	RefreshUIText (VVCFGram)
	ShowTrainDialog (VVCFGram)

	Grammar Control Events
	BeginSpeechRecognized (VVCFGram)
	SpeechRecognized (VVCFGram)
	TrainingRequired (VVCFGram)

	VVPhraseCollGroup Object
	VVPhraseCollGroup Object Properties
	Count (VVPhraseCollGroup)
	Enabled (VVPhraseCollGroup)
	Item (VVPhraseCollGroup)
	VVPhraseCollGroup Object Methods
	Exists (VVPhraseCollGroup)

	Chapter 16 Grammar Control Frequently Asked Questions
	Chapter 17 Introduction to the Lite Controls
	Chapter 18 Getting Started with the Lite Controls
	VVDictLite Control
	Using the Control

	VVGrammarLite Control
	Using the Control

	VVPhrasesLite Control
	Using the Control

	Summary

	Chapter 19 Properties, Methods, and Events
	VVDictLite Control Properties
	Enabled (VVDictLite)

	VVDictLite Control Methods
	VVDictLite Control Events
	PhraseRecognized (VVDictLite)
	VUMeter (VVDictLite)

	VVGrammarLite Control Properties
	Enabled (VVGrammarLite)
	GrammarSource (VVGrammarLite)

	VVGrammarLite Control Methods
	VVGrammarLite Control Events
	PhraseRecognized (VVGrammarLite)
	VUMeter (VVGrammarLite)

	VVPhrasesLite Control Properties
	Enabled (VVPhrasesLite)

	VVPhrasesLite Control Methods
	AddPhrase (VVPhrasesLite)
	RemoveAll (VVPhrasesLite)

	VVPhrasesLite Control Events
	PhraseRecognized (VVPhrasesLite)
	VUMeter (VVPhrasesLite)

	Chapter 20 Lite Controls Frequently Asked Questions
	Chapter 21 Introduction to the ECWin Control
	Chapter 22 Getting Started with the ECWin Control
	Creating an Instance of the Control
	Initializing the Error Correction Window Control
	Handling Error Correction Window Control Events
	Error Correction Window Control Voice Command Support

	Chapter 23 Properties, Methods, and Events
	Error Correction Window Control Properties
	AddPhraseChecked
	AddPhraseVisible
	Caption
	ChildEnabled
	CommandsEnabled
	CorrectText
	Enabled
	Engine
	hWnd
	LanguageUI
	NumVisibleAlternates
	StatusBarVisible
	StatusText

	Error Correction Window Control Methods
	AddAlternate
	AddMenuItem
	GetWindowRect
	Hide
	Init
	IsVisible
	MoveWindow
	Reset
	Show

	Error Correction Window Control Events
	ButtonSelected
	Close
	ContextHelpRequest
	FocusChange
	MenuSelected
	WordSelected

	Chapter 24 ECWin Control Frequently Asked Questions
	Chapter 25 Introduction to the User Interface Control
	Chapter 26 Getting Started with the User Interface Control
	Creating an Instance of the Control
	Initializing the UIClient
	Programming the ViaVoice User Interface
	Getting and Setting User Interface Characteristics
	Creating Custom Menus
	Summary

	Chapter 27 Classes, Structures, and Enumerations
	User Interface Control Classes
	vvUIMenuInfo (Class - Visual Basic and MFC Only)

	User Interface Control Structures
	UIMenuItemInfo Structure (Custom Interface Only)

	User Interface Control Constants
	Component Index Constants
	vvUIDockingAlgorithmConstants
	vvUIDockingStyleConstants
	vvUIEventCallbackFlags
	vvUIExtendedMenuFlags
	vvUIMaxConstants
	vvUIMenuItemConstants
	vvUIRemoveClientConstants

	User Interface Control Enumerations
	MICROPHONE_STATES (Enum)
	TCID (Enum)
	TVIEWTYPE (Enum)
	UIEVENTRC (Enum)
	UIMENUGROUP (Enum)
	UIMENUTYPE (Enum)
	UIRC (Enum)

	Chapter 28 Properties, Methods, and Events
	User Interface Control Properties
	LanguageUI

	User Interface Control Methods
	AddApplicationByName
	AddApplicationByWindow
	AppendMenuItem
	DeleteMenuItem
	GetMenuItemInfo
	GetNumberValue
	GetStringValue
	Initialize
	InsertMenuItem
	RemoveApplicationByName
	RemoveApplicationByWindow
	SetClientCallback (Custom Interface)
	SetClientCallbackFlags
	SetLanguageByID
	SetLanguageByString
	SetMenuItemInfo
	SetNumberValue
	SetStringValue

	User Interface Control Events
	EventActiveApplication
	EventButtonPressed
	EventComponentUpdated
	EventMenuItemSelected
	EventQueryViewFlags
	EventQueryViewMenuInfo

	Chapter 29 User Interface Control Frequently Asked Questions
	Chapter 30 Introduction to the DictationMgr Control
	Chapter 31 Getting Started with the DictationMgr Control
	Creating an Instance of the Control
	Capturing Speech
	Summary

	Chapter 32 Properties, Methods, and Events
	Dictation Manager Control Properties
	AutoDictationWindow (Run Time Only)
	CursorIndex
	DictationOn
	Engine (Run Time Only)
	ExpandMacros
	Locked
	ProcessingMacro (Run Time Only)
	UppercaseOn

	DictationMgr Control Methods
	Command
	Correct
	DeleteText
	GetAlternate
	GetText
	GetWordInfo
	Playback
	PlaybackEx2
	PutText
	SetSelection

	DictationMgr Control Events
	DeleteText
	DictationStateChange
	PutText

	Chapter 33 DictationMgr Control Frequently Asked Questions
	Chapter 34 Getting Started with the Dictation Control
	Creating an Instance of the Control
	Capturing Speech
	Summary

	Chapter 35 Introduction to the Dictation Control
	Chapter 36 Properties, Methods, and Events
	Dictation Control Properties
	AutoDictationWindow
	DictationOn
	Engine
	ExpandMacros
	ProcessingMacro

	Dictation Control Methods
	Correct
	GetAlternatePhrase
	GetFlags
	GetWavData
	GetWordInfo
	MergeRecoPhrases
	SetBookMark
	SetContext
	SplitOutLeftWord

	Dictation Control Events
	DictationStateChange
	HitBookMark
	PhraseReco
	VVDictation Phrase Formatting Flags

	Chapter 37 Dictation Control Frequently Asked Questions
	Chapter 38 Getting Started with the Virtual Voices Control
	Overview
	How the Virtual Voices Control Works
	Speak
	Paste
	Properties
	Programming Interfaces

	Chapter 39 Introduction to Virtual Voices Control
	Files and Directories that Support Virtual Voices

	Chapter 40 Properties, Methods, and Events
	Virtual Voices Control Properties
	ActorName
	Age (Read Only)
	AllowProperties
	BackColor
	Clipping
	DefaultExpression
	Expression
	Gender (Read Only)
	ModeGuid
	Pitch
	ShowMenu
	SpeakText
	Speed
	UseFace
	UseWave
	Volume
	WaveFileName

	ViaVoice Outloud (Text-To-Speech) Engine Attributes
	Breathiness
	HeadSize
	PitchFluctuation
	Roughness
	Example - Setting a Property
	Other Useful Properties

	Virtual Voices Control Methods
	AboutBox
	Cancel
	DoProperties
	Pause
	Resume
	Speak
	Example - Using a Method

	Virtual Voices Control Events
	BookMark
	InitDone
	KeyPress
	Pause
	Reset
	Resume
	StartSpeaking
	StopSpeaking
	WordPosition

	Chapter 41 Programming Notes
	Visual Basic Notes
	Visual C++ Notes
	Face Customization Notes
	Resources
	Bitmaps
	Face (.FAC) File
	Parameter (.PAR) File
	Registry Entry

	Testing Your Face
	Style Considerations

	Chapter 42 Virtual Voices Control Frequently Asked Questions
	Appendix A Notices
	Trademarks

	Index

