ActiveX" Developer’s Guide
|BM ViaVoice” SDK for Windows-

Version 1.7

Printed in the USA

Note:
Before using this information and the product it supports, be sure to read the general information under
Appendix A, "Notices."

First Edition (December 1999)

The following paragraph does not apply to the United Kingdom or any country where such provisions are
inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS1S" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement may not apply to you. This publication could include
technical inaccuracies or typographica errors. Changes are periodically made to the information herein; these
changeswill beincorporated in new editions of the publication. IBM may make improvements and/or changesin
the product(s) and/or the program(s) described in this publication at any time.

Itis possible that this publication may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM products, programming, or servicesin
your country. Requests f or technical information about IBM products should be made to your IBM reseller or
IBM marketing representative.

©Copyright International Business Machines Corporation 1999, 2000. All Rights Reserved.
Note to U.S. Government Users—Documentation related to restricted rights— Use, duplication or disclosure is
subject to restrictions set forth in GS ADP Schedule Contract with IBM Corp.

Contents

About this Book 17
Who Should Read ThisBooK.c. .. 17

ViaVvoice SDK Related Publications 17

How ThisBook IsOrganized. i 18

Document CoNVENtioNSot ittt et 18

Introduction to the Embedded Speech Reference 19
Installing the ViaVoice ActiveX Components.cvuvenn.. 19

ACtiVEX CONtrolS . . .ot 19

Part 1: Viavoice TextBox Control, 20

Part 2: Viavoice RichEdit Control., 20

Part 3: Viavoice PhrasesControl. 20

Part 4: Viavoice Grammar Controlo ... 21

Part 5: Viavoice LiteControls. 21

Part 6: Viavoice EngineControl ..., 21

Part 7: ViaVoice Error Correction Window Control 22

Part 8: Viavoice User InterfaceControl 22

Part 9: ViaVoice DictationManager Control 23

Part 10: ViaVoice DictationControl 23

Part 11: Virtual VoicesControl 23

Part 12: ViaVoice DetectiveControl, 24

Viavoice SDK Architecture.t 25

Chapter 1 Introduction to the TextBox Control 27
VVTextBox Object Hierarchy 27

Chapter 2 Getting Sarted with the TextBox Control 29
Creating an Instance of theControl, 29

Capturing SPEECho 35

ActiveX Developer’s Guide

Contents

Capturing Commandst 36

TeXt COIMECHIONot e 38

SUMMEY oottt e e e e e e 39

Chapter 3 Properties, Methods, and Events 41
TextBox Control Properties.o 41

AutoDictationWindow (Read/Writeat Run TimeOnly) 42

AUtoUl ... 46

COMMEANGSttt e 49

CommandsEnabled. 52

DiCtatioNON. . . .o\ttt 54

ENgine. ..o 56

LanguageUl 58

ShowDictationlcon. 61

TextBox Control Methods. 63

ExecuteCommand.o 64

Playback 66

PlaybackEXo 67

PlaybackEX2 68

TextBox Control EVents 69

Command 70

DictationStateChange.o 73

ErrOr . 76

MaxText . .. 80

Chapter 4 TextBox Control Frequently Asked Questions 83
Chapter 5 Introduction to the RichEdit Control 85
VVRIichEdit Object Hierarchy. i 85

Chapter 6 Getting Sarted with the RichEdit Control 87
Creating an Instance of theControl 87

Capturing SPEECh.o 93

Capturing Commandsttt 94

TeXt COIMECHIONot e 97

SUMMENY oottt e e e e e e 98

Chapter 7 Properties, M ethods, and Events 99
RichEdit Control Properties. 99

iv ActiveX Developer’s Guide

Contents

AutoDictationWindow (Read/Writeat Run Time Only). 100
AUdIOSOUICETYPE . . et et e e e e 103
AUtoUL. .. 106
Bulletindentation. 109
COMMANGS.ttt e 11
CommandsEnabled 114
DictationONot 116
ENgine . .o 118
FileName. 120
hWnd (Read Only).o e 122
LanguageUl 124
RightMargin. 127
SelAlignment (Read/Writeat Run TimeOnly).................... 129
SelBold (Read/Writeat Run Time Only)., 131
SelBUllEt ... 133
SelCharOffset (Read/Writeat Run TimeOnly). 135
SelColor (Read/Writeat Run TimeOnly)t 137
SelFontName(Read/Writeat Run TimeOnly) 139
SelFontSize (Read/Writeat Run TimeOnly) 141
SelHanginglndent (Read/Writeat Run TimeOnly) 143
SelIndent (Read/Writeat Run TimeOnly) 145
Selltalic (Read/Writeat Run Time Only)t 147
SelLength (Read/Writeat Run TimeOnly). 149
SelProtected. 151
SelRightIndent (Read/Writeat Run TimeOnly) 153
SelRTF (Read/Writeat Run TimeOnly)t .. 155
SelStart (Read/Writeat Run TimeOnly).t 157
SelStrikeThru (Read/Writeat Run TimeOnly). 159
Sel TabCount (Read/Writeat Run TimeOnly). 161
Sel Tabs (Read/Writeat Run TimeOnly).ttt 163
SelText (Read/Writeat Run Time Only)t 165
SelUnderline (Read/Writeat Run TimeOnly) 167
TeXtRT . 169
RichEdit Control Methods 171
ExecuteCommandt 172
LoadRTF . 174
LoadTextRile 176
Playback. 178

ActiveX Developer’s Guide

Contents

PlaybackEX 180

PlaybackEX2 182

SaVERTF . . 184

SaveTextRile. 186

SEl PN . 188

RichEdit Control Events e 190

Command 191

DictationStateChange. oo v 193

ErrOr . 195

MaxText 199

Chapter 8 RichEdit Control Frequently Asked Questions 201
Chapter 9 I ntroduction to the Phrases Control 203
VVPhrases Object Hierarchy.t 203

Chapter 10 Getting Started with the Phrases Control 205
Creating an INStanceot 205

Drag-Drop-n-GO SUPPOIto vv e 211

Adding Phrasest 212

Enabling/Disabling Phrases. 214

Working withthe Custom Designer ..., 216

Object Hierarchy e 218

Chapter 11 Properties, Methods, and Events 221
VVPhrasesControl 221

VVPhrases Control Properties, 221

AutoConnect (VVPhrases) 222

AUtOUL (VVPIrases).o v e 223

Enabled (VVPhrases) e 225

Engine (VVPhrases)t 227

Layout (VVPIrases)o e 229

Phrases (VVPhrases). 231

VVPhrasesControl Methods 233

RefreshUIText (VVPhrases). 236

VVPhrasesControl Events 239

BeginSpeechRecognition (VVPhrases) 240

SpeechRecognized (VVPhrases) ..., 241

TrainingRequired (VVPhrases) 243

Vi ActiveX Developer’s Guide

Contents

VVPhraseColl Collection. ... 245

VV PhraseColl Collection Properties., 245

Count (VVPhraseColl)ot 246

Enabled (VVPhraseColl). ...t 248

Item (Default Method - VVPhraseColl) ...t 250

VVPhraseColl Collection Methods.t 252

Add (VVPhraseColl)o 253

Exists (VVPhraseColl)o 255

Remove (VVPhraseColl). 257

RemoveAll (VVPhraseColl) ... 259

VVPhrase Object 260

VVPhrase Object Properties 260

ActionDesc (VVPhrase) ... 261

Description (VVPhrase) ...t 263

Enabled (VVPhrase) ... 265

ID (VVPHIESE). . . oo oo e e e e e 267

[temData (VVPhrase)t 269

Name (VVPhrase) 271

Text (VVPIrase)o 273

VVPhrase Object Methods 275

VVPhrase Object Events. oo 275

Chapter 12 Phrases Control Frequently Asked Questions 277
Chapter 13 Introduction to the Grammar Control 279
VVCFGram Object Hierarchy 279

Chapter 14 Getting Sarted with the Grammar Control 281
Creating an Instance of theControl 281

Drag-Drop-n-GO SUPPOItot eeeee 287

Loading aGrammarttt e e 288
Enabling/DisablingaGrammart 290

Using External ListS. 291

Chapter 15 Properties, M ethods, and Events 295
Grammar Control Propertiest 295

Alternates (VVCEGIam)o oot 296

Annotations (VVCEGIam) ve e 298

AutoConnect (VVCFGIam)oouiit i 303

ActiveX Developer’s Guide Vii

Contents

AutoLoad (VVCFGram). 305
AULOUL (VVCEGIamM). . o .ottt e e e e 307
Enabled (VVCFGram)oouii e 309
Engine (WVCFGIam) oot e 311
ExternLists (VVCFGram). 314
GrammarFormat (VVCFGram)couiiiiiin .. 317
GrammarSource (VVCFGram).oiii i 320
RUIES (VVCFGIamM) . .ot e et e 322
SourceType (VVCFGram) 324
Grammar Control Methods i 327
LoadFromSource (VVCFGram). 328
REfTESN L 330
RefreshUIText (VVCFGram)oooe i 331
ShowTrainDidog (VVCFGram) ..., 334
Grammar Control EVents.t 336
BeginSpeechRecognized (VVCFGram)., 337
SpeechRecognized (VVCFGram).ovviiiiiiii s 339
TrainingRequired (VVCFGram).t 342
VVPhraseCollGroup Object 345
VV PhraseCollGroup Object Propertiest 345
Count (VVPhraseCollGroup)o vt 346
Enabled (VVPhraseCollGroup)c.covvviiiii i 349
Item (VVPhraseCollGroup)ooviiiiiiii i 352
VV PhraseColGroup Object Methodso oot 354
Exists (VVPhraseCollGroup)« ooo v 355
Chapter 16 Grammar Control Frequently Asked Questions 359
Chapter 17 Introduction to the Lite Controls 361
Chapter 18 Getting Sarted with the Lite Controls 363
VVDictLiteControlo 363
UsingtheControl e 363
VVGrammarLiteControl 368
UsingtheControl e 368
VVPhrasesLiteControl 374
UsingtheControl 374
SUMMENY .« . oot e e e e e e e 380

viii ActiveX Developer’s Guide

Contents

Chapter 19

Chapter 20
Chapter 21
Chapter 22

Chapter 23

Properties, M ethods, and Events 381

VVDictLite Control Properties. 381
Enabled (VVDICLLItE) 382
VVDictLite Control Methods. i 384
VVDictLiteControl Events oo 384
PhraseRecognized (VVDictLite). 385
VUMeter (VVDICILItE) . .. oo 387
VVGrammarLite Control Properties, 389
Enabled (VVGrammarLite). 390
GrammarSource (VVGrammarLite) 392
VVGrammarLite Control Methods 394
VVGrammarLite Control Events. 394
PhraseRecognized (VVGrammarLite) 395
VUMeter (VVGrammarLite). 397
VVPhrasesLite Control Properties. ..., 399
Enabled (VVPhrasesLite)o i 400
VVPhrasesLite Control Methods. 402
AddPhrase (VVPhrasesLite) 403
RemoveAll (VVPhrasesLite). 405
VVPhrasesLiteControl Events. 407
PhraseRecognized (VVPhrasesLite), 408
VUMeter (VVPhrasesLite) 410

Lite Controls Frequently Asked Questions 413
Introduction to the ECWin Control 415
Getting Started with the ECWin Control 417

Creating an Instance of theControl 417
Initializing the Error Correction Window Control 423
Handling Error Correction Window Control Events 426
Error Correction Window Control Voice Command Support 429
Properties, Methods, and Events 431

Error Correction Window Control Properties 431
AddPhraseChecked 432
AddPhraseVisible 435
CaptioN. . . 437

ActiveX Developer’s Guide

Contents

ChildEnabled 439
CommandsEnabled. 442
COMECETEXE . .« o ettt 444
Enabled. 446
ENgine. ..o 448
hWNd. . . e 450
LanguageUl 452
NumVisibleAlternates. 454
StatusBarVisible. 456
StAIUSTEXE . . .ot 458
Error Correction Window Control Methods 460
AddAternate.o 461
AddMenultem. e 464
GetWIindowReCt 466
Hide. . o 468
NIt 470
ISVisible 472
MOVEWINAOWo 474
RESEt . . 477
SO . .o 479
Error Correction Window Control Events. 481
ButtonSelected 482
ClOSE. o 485
ContextHelpRequest 487
FOCUSChange.o 489
MenuSelected 491
WordSelected 493
Chapter 24 ECWin Control Frequently Asked Questions 495
Chapter 25 Introduction to the User Interface Control 497
Chapter 26 Getting Sarted with the User I nterface Control 499
Creating an Instance of theControl 499
Initidlizingthe UIClient. e 506
Programming the ViaVoice User Interface. 513
Getting and Setting User Interface Characteristics. 520
Creating CUStOM MENUSot 523
SUMMEY .« . oot e e e e e e e e e 531

X ActiveX Developer’s Guide

Contents

Chapter 27 Classes, Structures, and Enumerations 533
User Interface Control Classes. 534
vvUIMenulnfo (Class- Visua Basicand MFCOnly) 534
User Interface Control Structures. 535
UlMenultemlInfo Structure (Custom InterfaceOnly) 535
User Interface Control Constants. 537
Component Index Constantsiiii e 538
vvUIDockingAlgorithmConstants., 540
vvUIDockingStyleConstants. 542
vwUIEventCallbackFlags. 543
vUIEXtendedMenuFlags 545
VWUIMaXCoNSantso e 546
vvUIMenultemConstants.t 547
vvUIRemoveClientConstantscooiiniii i 550
User Interface Control Enumerations., 551
MICROPHONE_STATES (ENUM)ot 552
TCID (BNUM). . . oot 554
TVIEWTYPE (EnUM) . ..o e 555
UIEVENTRC (ENUM) . ..o e 556
UIMENUGROUP (ENUM)o 557
UIMENUTYPE (ENUM) 558
UIRC (BENUM) ... e e e 559
Chapter 28 Properties, M ethods, and Events 561
User Interface Control Properties. 561
LanguageUl 562
User Interface Control Methods. i, 565
AddApplicationByName.t 566
AddApplicationByWindow 568
AppendMenuitem 570
DeleteMenultem 574
GetMenultemInfo 577
GetNumberValue. 580
GetStringValue.o 582
Initidize. 585
InsertMenultem 587
RemoveApplicationByName. 591
RemoveApplicationByWindow., 593

ActiveX Developer’s Guide

Contents

SetClientCallback (Custom Interface) 595

SetClientCallbackFlags. 597

SetLanguageByID. 599

SetLanguageByString.o 601

SetMenultemInfo 603

SetNumberValue.o 606

SetStringValue. 609

User Interface Control Events. 611

EventActiveApplication. ... 612

EventButtonPressed 615

EventComponentUpdated. 617

EventMenultemSelected. 619

EventQueryViewH ags 621

EventQueryViewMenuInfo. 624

Chapter 29 User Interface Control Frequently Asked Questions 629
Chapter 30 Introduction to the DictationM gr Control 631
Chapter 31 Getting Sarted with the DictationM gr Control 633
Creating an Instance of theControl 633

Capturing SPeeCh.o 639

SUMMENY .« .ottt e e e e e e 640

Chapter 32 Properties, M ethods, and Events 641
Dictation Manager Control Properties., 641

AutoDictationWindow (Run TimeOnly)t 642

CUrsOrINdeX 645

DictationON. . . .o\t 647

Engine (RUNTIMeONIlY)o 649

EXpandMacroso 651

Locked 653

ProcessingMacro (Run TimeOnly) 655

UPPEICESEON. . . ottt et e e e e e 657

DictationMgr Control Methods. 659

Command 660

L0 > 0! 663

Dl T L. . ot 666

GetAlterNate 668

GOt . . .ottt 671

Xii ActiveX Developer’s Guide

Contents

GetWordInfoo 673

Playback. 676

PlaybackEX2 677

PULTEXE. . . 678

SELSEECtioN. . ..o 680

DictationMgr Control Events.t 682

Dl ETEXE . . et 683

DictationStateChangeo 685

PULTEXE. . . 687

Chapter 33 DictationM gr Control Frequently Asked Questions 691
Chapter 34 Getting Started with the Dictation Control 693
Chapter 35 Introduction to the Dictation Control 699
Chapter 36 Properties, Methods, and Events 701
Dictation Control Properties. 701

AutoDictationWindow. 702

DictationONot 704

ENgiNe . .. 706

EXPandMacros.o 708

ProcessingMaCroo vt 710

Dictation Control Methods. 712

L0 = 0! 713

GetAlternatePhrase 716

GEtFlagS. « oo 719

GetWavData.o 721

GetWordInfoo 723

MergeRecoPhrases 725

SetBookMark. 727

SECONEXE . . . et 729

SplitOutLeftWordo 731

Dictation Control EVeNntSt 734

DictationStateChangeo 735

HIitBoOKMark. 737

PhraseReco 739

VVDictation Phrase FormattingFlags 741

ActiveX Developer’s Guide Xiii

Contents

Chapter 37 Dictation Control Frequently Asked Questions 743
Chapter 38 Getting Sarted with the Virtual Voices Control 745
OVEIVIBIV © oottt e e e e e e e e e 745

How the Virtual VoicesControl Works 747

SPEAK . . ot 749

Paste . . . 750

Properties . .o 750

Programming Interfaces. 755

Chapter 39 Introduction to Virtual Voices Control 757
Files and Directories that Support Virtual Voices. 757

Chapter 40 Properties, M ethods, and Events 759
Virtual Voices Control Propertiest 759

ActorName 760

Age(Read Only). 761

AlIOWPIopertieso 762

BackColor. . .. 763

CliPPING .o 764

DefaUltEXPreSSION.ottt et 766

EXPrESSION. .« o ot 767

Gender (Read Only)ot 768

MoOdeGUId. 769

Pt L 771

ShOWMENU 772

SPEAKTEXL . . oo 773

SPEEA. . e 774

UseFace.o 775

UseWave. 776

VOIUME . 77

WaveFileName 778

Viavoice Outloud (Text-To-Speech) Engine Attributes. 779

Breathiness o 780

HeadSize. 781

PitchFluctuation 782

ROUGNNESS. . . o e 783

Example - SettingaProperty i 784

Other Useful Propertiest 786

Xiv ActiveX Developer’s Guide

Contents

Chapter 41

Chapter 42
Appendix A

Index

Virtual VoicesControl Methods 790
ABOUIBOX. . . oo 791
CanCe ... 792
DOPIOPErtieSot 793
Palse . .. 794
ResUME 795
S . v e 796
Example-UsingaMethod, 797

Virtual VoicesControl EVeNtS.t 799
BOOKMarKo 800
INItDONE. . . e 802
KeYPIESS . 804
Palse . .. 806
RESEL ..o 807
ResUME 808
StartSpeaking. 809
SOPSPEAKING. .« o o e 810
WOrdPOSItION. . ..o 811

Programming Notes 813

Visual BaSiCNOES oot e 813

Visual C++ NOtES. . ..o e 813

Face Customization NOtESt i e e e e 814

RESOUICES e 815
BItMaDS . . . 816
Face (FAC)File 824
Parameter (PAR) File 829
Registry Entryo 830

Testing YOUr Face 831

Style ConsSiderations.ot 833

Virtual Voices Control Frequently Asked Questions 835

Notices 837

839

ActiveX Developer’s Guide

XV

Contents

XVi ActiveX Developer’s Guide

About This Document

This book provides information on incorporating speech technology into applications using the IBM
ViaVoice ActiveX Controls. It describes the programming interfaces available for developersto take
advantage of these features within their applications. This book is prepared in Portable Document
Format (PDF) to provide the advantages of text search and cross-reference hyperlinking and is
viewable with the Adobe Acrobat Reader v.3.x. We recommend that you print all or part of this guide
for quick reference.

Who Should Read This Book

Read this book if you are a devel oper interested in writing Windows 95/98 or Windows NT 4.0
applications that use Viavoice ActiveX technology controls.

ViaVoice SDK Related Publications

Programming, reference and design information needed to use this SDK is available in avariety of
SOUrces:

* SAPI Reference

Refer to the following sources for additional programming, reference, and design information:
» Developer’s Corner Web Padier SDK downloads, updates, and other documentation at:
http://www.ibm.com/ViaVoice/dev_home.html

* IBM ViaVoice SDK Web Channel at:
http://www.software.ibm.com/ViaVoi ce/subscribe.html

ActiveX Developer’s Guide 17

About This Document

How ThisBook IsOrganized

The Introduction contains an overview of the ActiveX controls documented in this guide as well as
installation information. Chapter 1 through Chapter 4 contain information about the ViaVoice TextBox
Control. Chapter 5 through Chapter 8 describe the Viavoice RichEdit ActiveX Control. Chapter 9
through Chapter 12 describe the ViaVoice Phrases ActiveX Control. Chapter 13 through Chapter 16
describe the Viavoice Grammar ActiveX Control. Chapter 17 through Chapter 20 describe the
ViaVoice Lite ActiveX Controls. Chapter 21 through Chapter 24 describe the ViaVoice Error
Correction Window ActiveX Control. Chapter 25 through Chapter 29 discuss the ViaVoice User
Interface Control. Chapter 30 through Chapter 33 describe the ViaVoice Dictation Manager ActiveX
Control. Chapter 34 through Chapter 37 describe the ViaVoice Dictation ActiveX Control. Chapter 38
through 42 describe the Virtual Voices ActiveX Control. Finally, Appendix A contains notices and
trademark information.

Document Conventions

The following conventions are used to present information in this document:

Italic Used for emphasis and for references to other
documents.
Bold Represents a menu option or other user interface

control, such as command buttons.
Also represents the names of properties, methods, and
events.

Couri er Regul ar Represents sample code.
Courier Bold Represents anew line of code in a code sample.

18 ActiveX Developer’s Guide

Introduction

The IBM ViaVoice ActiveX controls enable you to incorporate the power of IBM’s speech engines to
the applications you develop. This chapter contains information about installation and a general
description of the controls.

|nstalling the ViaVoice ActiveX Components

The setup program of the IBM ViaVoice SDK automatically installs the components you select. There
are sample programs that use different combinations of the controls. Refer to the ViaVoice SDK
README file for complete installation instructions and other important information.

ActiveX Controls

This guide documents the attributes of the ActiveX controls included in the SDK:
» ViaVoice TextBox Control

» ViaVoice RichEdit Control

» ViaVoice Phrases Control

» ViaVoice Grammar Control

» ViaVoice Lite Controls

» ViaVoice Engine Control (available as a separate RTF file)

» ViaVoice Error Correction Window Control

» ViaVoice User Interface Control

» ViaVoice Dictation Manager Control

» ViaVoice Dictation Control

» Virtual Voices Control

» ViaVoice Detective Control (available as a separate PDF file)

ActiveX Developer’s Guide 19

Introduction

Part 1. ViaVoice TextBox Control

The ViaVoice TextBox Control (VVTextBox) isan ActiveX control that can capture speech input and
turn it into text. It is an edit control similar to the Visual Basic native TextBox control. What separates
this control from other textboxes or edit controls in the market is that it enables usersto not only type
information into text fields, but to also dictate their text through an audio input device (such as a
microphone). For more information about the VV TextBox control, refer to the following chapters:

» Chapter 1, “Introduction to the TextBox Control” on page 27

» Chapter 2, “Getting Started with the TextBox Control” on page 29

» Chapter 3, “Properties, Methods, and Events” on page 41

» Chapter 4, “TextBox Control Frequently Asked Questions” on page 83

Part 2: ViaVoice RichEdit Control

The ViaVoiceRichEdit Control ¢ VRichEdit) can capture speech input and turn it into text. It is an

edit control similar to the Visual Basic native RichTextBox control or the Windows RichEdit control.
What separates this control from other textboxes or edit controls in the market is that it enables users to
not only type information into text fields, but to also dictate their text through an audio input device
(such as a microphone). For more information abouVMRichEdit control, refer to the following
chapters:

» Chapter 5, “Introduction to the RichEdit Control” on page 85

» Chapter 6, “Getting Started with the RichEdit Control” on page 87

» Chapter 7, “Properties, Methods, and Events” on page 99

» Chapter 8, “RichEdit Control Frequently Asked Questions” on page 201

Part 3: ViaVoice Phrases Control

The ViaVoicePhrases Control {/VPhrases) enables developers to add simple phrase command
recognition to their application. The main idea behind the control is to have the developer provide the
control with a list of phrases or commands, and the control will notify the developer when the user
speaks one of the phrases in the list. For more information abovivtler ases control, refer to the
following chapters:

e Chapter 9, “Introduction to the Phrases Control” on page 203

20 ActiveX Developer’s Guide

ActiveX Controls

» Chapter 10, “Getting Started with the Phrases Control” on page 205
» Chapter 11, “Properties, Methods, and Events” on page 221
» Chapter 12, “Phrases Control Frequently Asked Questions” on page 277

Part 4: ViaVoice Grammar Control

The ViaVoiceGrammar Control /VVCFGram) enables developers to use a context-free grammar file
to add robust command recognition to the application. The main idea behind the control is that
developers provide the control with a grammar file or source, and then the control will notify you when
the user speaks a command constructed from the grammar. For more information about the
VVGrammar control, refer to the following chapters:

e Chapter 13, “Introduction to the Grammar Control” on page 279

» Chapter 14, “Getting Started with the Grammar Control” on page 281

» Chapter 15, “Properties, Methods, and Events” on page 295

e Chapter 16, “Grammar Control Frequently Asked Questions” on page 359

Part 5: ViaVoice Lite Controls

The ViaVoiceL ite Controls consist of three controBictation Lite (VVDictLite), Grammar Lite
(VVGrammarlLite), andPhrases Lite (VVPhrasesLite). Each of these controls is a reduced-feature
version of their counterparts optimized for the web. For more information abouvthige controls,
refer to the following chapters:

» Chapter 17, “Introduction to the Lite Controls” on page 361

» Chapter 18, “Getting Started with the Lite Controls” on page 363

» Chapter 19, “Properties, Methods, and Events” on page 381

» Chapter 20, “Lite Controls Frequently Asked Questions” on page 413

Part 6: ViaVoice Engine Control

The ViaVoiceEngine Control Y VEnNgine) is a drag-and-drop control that communicates with SAPI
compatible speech engines. This control enables developers to: specify a search criteria for finding
what speech engine to connect to; read properties from the speech engine, such as vendor name,

ActiveX Developer’s Guide 21

Introduction

language, dialect, etc.; and receive engine notifications, such asvolume level, audio state changed, etc.
For more information about the VVEngine control, refer to the following chapters:

» Refer to the Egine Control Guide on the SDK “Documentation” menu.

Part 7: ViaVoice Error Correction Window Control

The ViaVoiceError Correction Window Control Y VECWin) is an ActiveX control that enables
developers to utilize a common error@zion dialog allowing users to cect dictated text in an
application. It provides a common, familiar irfece that userwill quickly and easily become
accustomed to, enabling them to correct speech recogaitiors and text formang issues, by using
their keyboard, mouse or voice commands. For more information abouWVtEEWin control, efer
to the following chapters:

» Chapter 21, “Introduction to the ECWin Control” on page 415

» Chapter 22, “Getting Started with the ECWin Control” on page 417

» Chapter 23, “Properties, Methods, and Events” on page 431

» Chapter 24, “ECWin Control Frequently Asked Questions” on page 495

Part 8: ViaVoice User I nterface Control

The ViaVoiceUser Interface Client Control UIClient) provides a common interface for speech-

enabled applications for managing all aspects of Speech Ul. It is capable of presenting speech-related
information in a number of ways, including a Taskbar View, a Docked View, a Minimal View, and an
Agent View. For more information about thkser | nterface control, refer to the fbwing chapters:

» Chapter 25, “Introduction to the User Irfece ntrol” on page 497

» Chapter 26, “Getting Started with the User Interface Control” on page 499

» Chapter 27, “Classes, Structures, and Enumerations” on page 533

» Chapter 28, “Properties, Methods, and Events” on page 561

» Chapter 29, “User Interface Control Frequently Asked Questions” on page 629

22 ActiveX Developer’s Guide

ActiveX Controls

Part 9: ViaVoice DictationM anager Control

The ViaVoice DictationM anager Control (VVDictationMgr) isarelatively high level control which
provides much of the functionality a client needsto add dictation to their application. However, in

order to use this control clients must be able to synchronize the VVDictationM gr with their

application user interface through zero (0) based character indices. VV DictationM gr isafull ActiveX
control, which means that it can be “dropped” onto a form and configured at “design-time” in most
high-level language environments. UsMy DictationM gr allows the user to manage both typed and
dictated text, get wave data for playback of dictated text, and perform camrettictated text. For
more information about theéV DictationM gr control,refer to the folbwing chapters:

» Chapter 30, “Introduction to the DictationMgr Control” on page 631

» Chapter 31, “Getting Started with the DictationMgr Control” on page 633

» Chapter 32, “Properties, Methods, and Events” on page 641

e Chapter 33, “DictationMgr Control Frequently Asked Questions” on page 691

Part 10: ViaVoice Dictation Control

The ViaVoiceDictation Control /VDictation) is a low-level dictation object providing only the
basics necessary for dictationyaxion and playback. This object is implemented as a simple COM
object rather than a full ActiveX control and can not be “dropped” into a form and configured at
design-time. For more information about ¥¥Dictation control, refer to the following chapters:

» Chapter 35, “Introduction to the Dictation Control” on page 699

» Chapter 34, “Getting Started with the Dictation Control” on page 693

» Chapter 36, “Properties, Methods, and Events” on page 701

e Chapter 37, “Dictation Control Frequently Asked Questions” on page 743

Part 11: Virtual Voices Control

The ViaVoiceVirtual Voices Control enables developers to incorporate personality into their
applications. A personality is represented through a voice (using text-to-speech or prerecorded audic
wave file) and an animated face. TNwce and face become the spokesperson through which the user
interacts with the application. For more information aboutiréual Voices control,refer to the

following chapters:

ActiveX Developer’s Guide 23

Introduction

» Chapter 39, “Introduction to Virtual Voices Control” on page 757

» Chapter 38, “Getting Started with the Virtual Voices Control” on page 745

» Chapter 40, “Properties, Methods, and Events” on page 759

e Chapter 41, “Programming Notes” on page 813

» Chapter 42, “Virtual Voices Control Frequently Asked Questions” on page 835

Part 12: ViaVoice Detective Control

The ViaVoiceDetective Control VVDetective) enables developers to perform speaker recognition.
Speaker recognition is a biometric technology that uses voice patteat®tmize the speaker in
various modesVV Detective supports two modes of speaker recognition: verification and
identification. For more information about tk&/Detective control, refer to the ftowing chapters:

* Refer to the Detaive Control Guide on the SDK “Documentation” menu.

24 ActiveX Developer’s Guide

ViaVoice SDK Architecture

ViaVoice SDK Architecture

Thefollowing diagram shows the interaction of the components in the SDK.

SMAP S AP IBM “iavoice Activex Controls
Application Application | vPhrases WWRIichEdit
WWLFGram Wiy TextBox
YWWEngine Dictationhigr
Wirtualvoices Dictation
W UIClient
| . SAP| Objects :
1 ! v

SMAP Interf
merare IBM “iavaice Outloud Engine

Bt “iaWoice Engine (Text To Speech)
(=peech Reca)

ActiveX Developer’s Guide

25

Introduction

26

ActiveX Developer’s Guide

Chapter 1 |ntroduction to the TextBox Control

The ViaVoice TextBox Control (VVTextBox) isan ActiveX control that can capture speech input and
turn it into text. It is an edit control similar to the Visual Basic native TextBox control. What separates
this control from other textboxes or edit controls in the market is that it enables usersto not only type
information into text fields, but also to dictate their text through an audio input device (such as a
microphone).

The VV TextBox control is aso capable of understanding commands, which will enable the user to
navigate and manipulate the contents of the textbox with ease.

VVTextBox Object Hierarchy

The following diagram shows the object hierarchy for the VV TextBox.

Wi TextBox/RichEdit
M TextBox (C——
. . Wy/Dictationhdgr UISerer
IvEngine) YWEngine WWUICent M- Process
IvvPhraseColl () VVPhrases

ActiveX Developer’s Guide 27

Introduction to the TextBox Control

28

ActiveX Developer’s Guide

Chapter 2 Getting Sarted with the TextBox
Control

Thefollowing isatutorial on how to incorporate the VV TextBox control into your Visual Basic or
Visual C++ applications. Thistutoria is designed to present you with the most commonly used
properties and eventsin the VV TextBox control.

Thefollowing sections contain information to help you write code to create an instance of the TextBox
control, then to capture speech, capture commands and create the environment to allow text correction.

Creating an I nstance of the Control

This section contains step-by-step ingructions for using Visual Basic or Visual C++ (MFC) to create
an instance of the control.

In Visual Basic:

To add the VV TextBox control to your application, do the following:

1. From the Project menu, choose Components.
The Components dialog box, Figure 1, appears. The Components dialog lists all the ActiveX
Controlsthat you can use in your application.

ActiveX Developer’s Guide 29

Getting Started with the TextBox Control

Components

Cantrals l Designers] Inzertable Elbiec:ts]

IEM YiaWoice DickationMgr Conkrol ﬂ

IEM Wiak'oice Engine Conkrol

IEM YiaVoice Error Correction Conkrol

IEM ViaVoice Grarmar Conkrol J

IEM WiaWoice Like Controls - E: Boo

IEM YiaVoice Phrases Control | ==

IEM ViaWoice RichEdit Contraol = =
LaFIEM Viaioice TextBox Control

IEM WiaVoice User Interface Conkrol i E

IEM ViaWoice Yirtual Yoices Control

icmfilker 1.0 Tvpe Library

IE Popup Menu |

IE Super Label Jj Browse. ..
! | : [Selected Items Only

IEM YiaVoice TextBox Conkrol
Location: Cviavoice\Bini Wy Text dll

aFk. Cancel Apply

.................................

Figure 1. Component Selection Dialog - Visual Basic

30 ActiveX Developer’s Guide

Creating an Instance of the Control

2. Select IBM ViaVoice TextBox Control from thelist and click OK.
Visual Basic adds the control to your project, and adds a new icon to the toolbar (Figure 2).

General |

N =P NES
A~V = =B EE
ﬂuﬂEl[“_‘l

=

=

Figure2. VVTextBox Control Toolbar Icon

3. Add aninstance of the VVTextBox control to your form.
The VV TextBox control looks and acts much like the Visual Basic native TextBox control.

In Visual C++ (MFC):

To add the VV TextBox to your MFC project, do the following:

1. From the Project menu, select Add To Project, then select Componentsand Controls.
The ‘Components and Controls Gallery’ dialog box, Figure 3earg

ActiveX Developer’s Guide

31

Getting Started with the TextBox Control

Components and Controls Gallery il Bt

Chooge a component ta insert inko your project:

Look. ir: | | Reqistered Activer Controlz

s = d N ==

EIEM Viatoice TextBox Control
% B Viavoice Uzer Interface Contral
= B M VidVoice Virtual Voices Control
i8] InstallE ngineCtl O bject

[Label Object

i8] LM Funtime Control

4 _

M Lotus CheckBox

m Lotus ComboB ox

fH Latuz CommandB utton
5] Lotus Frame

AL Latuz HTML Checkbox
ALY Latus HTML Comboba:

2

File name: |IEM Wiatoice TextBox Control. Ink

[Fzert

[BM Yiavoice TextBox Contral

Fath to contral:

Cloge

le: \Wia oicebinywvtextbos, il

Figure3. Insert ActiveX Control Dialog Box - Visual C++

2. Double-click the ‘Registered ActiveX Controls’ folder in the dialog box.
3. Select thd BM ViaVoice TextBox Control icon in the list of controls, then clidksert.

32

ActiveX Developer’s Guide

Creating an Instance of the Control

A confirmation message box appears, asking “Insert this component?”, jusD&lick

4. Respond to the confirmation message box by clickikg
The ‘Confirm Classes’ dialog box, Figure 4, apys isting the Dual interface of tHEextBox
control (CVVTextBox), along with the accompanying Engine (CVVENgine), PhraseColl
(CVVPhraseColl), Phrase (CVVPhrase), Font (COleFont), and Picture (CPicture) interfaces.

Confirm Clazses ? i

The checked clasz(esz] will be generated from 0K
the Activex Cantral. Click on a class name ha
broveze or edit itz attrbutes.

Cancel

|5 T extBox
v| CWYE ngine
v VW Phrase
v W PhrazeColl
v|COleFont

v CPicture

Clazz name: Base clasz:
|0 T entE o Cwnd

Header file:
|WT extBowh

Irnplerentation file:
|WT extBow.cpp

Figure4. Confirm Classes Dialog Box

ActiveX Developer’s Guide 33

Getting Started with the TextBox Control

5. Click OK in the ‘Confirm Classes’ dialog box.

6. Close the ‘Components and Controls Gallery’ dialog box.
If you examine the Project Workspace window in the class view, you will notice six classes:
CVVTextBox, CVVENgine, CVVPhraseColl, CVVPhrase, COleFont, and CPicture (assuming you
accepted the default names for the class in the ‘Confirm Classes’ dialog box).

7. In the resource view of your Project Workspace window, double-click the dialog resource entry
where you wish to insert théV TextBox control.
TheVVTextBox icon, Figure 5, appears in the Cardrtoolbar.

Contos B
ITAEEMIE]D
® & EE EH @ [
$ m 4= B2 [[E
(9 H 2t © F

Figure5. VVTextBox I con in the Controls Toolbar

8. Add an instance of théV TextBox control to the dialog box.
After you add the/VTextBox control to your dialog you can invoke Class Wizard to create a
member variable for your class of type CVVTextBox. You might also decide to capture the events
in the control by adding Event handlers to your dialog class. To add Event handlers, you can use
the Class Wizard just like adding notification message handlers for a non-speech edit box.

34 ActiveX Developer’s Guide

Capturing Speech

Capturing Speech

The VVTextBox turns speech input into text; however, users of your application might not want every

word they speak to be transformed. For example, users might need to perform other speaking tasks,

such as answering the telephone or conversing with someone. By default, the VV TextBox operatesin

what is known as modeless operation. This means that whenever the control has window focus, the

control will perform speech to text conversion, in the same way that it will accept keyboard input when

the window has focus. But, you can also control dictation explicitly by specifying awindow (see
“AutoDictationWindow” on page 42) and setting the state of dictation (see “DictationOn” on page 54)
as needed to implement almost any dictation activation logic you choose.

For example, you could use your application's top-most window foktheDictationWindow, so

that dictation would automatically be disabled when your application is not the active application, anc
useVVPhrases control (or you could learage thé/VTextBox Commands property provided for
extensibility) to add commands for “BEGIN-DICATION” and “STOP-DICTATION” which would
control the state of thBictationOn property. This example implements what is known as “modal
dictation”.

When the control enters or exits dictation mode, it firedDdogationSateChange event.

One thing to keep in mind when working with t¥ TextBox control is that the TextBox treats text

from speech input the same as typed text. This means that propertisalkikength, (which limits

the number of characters the user can type into the TextBox) are still enforced the same way when tl
characters are generated from speech. Also, the control fir€h#mge event when the change occurs
from spoken text just as it does when the change comes from typing.

ActiveX Developer’s Guide 35

Getting Started with the TextBox Control

Capturing Commands

In addition to dictated speech, the VV TextBox can recognize spoken commands. By default, the
VVTextBox control listens for command speech when the control window has focus. If you specify an
AutoDictationWindow, then that window will also be used for command activation tracking so that,
by default, commands are always available when dictation is available. If you wish, you can achieve a
finer granularity of control by explicitly setting the CommandsEnabled property in much the same
way as using DictationOn to control dictation state.

The VV TextBox is capable of understanding eighteen command phrases. Refer to the following table

for acomplete listing.

Table 1. VVTextBox Command Phrases

ID (Value)

Command Phrase

Description

vwTBCapitalizeThis (13)
vwTBCopyThis (8)
vTBCorrecfThis (24)
vwTBCutThis (7)
vwTBDeleteThis (10)
vwTBHideEC (6)
vvTBLowercaseThis (15
vwTBMoveBeginning
(22)

vwwTBMoveEnd (23)
vwTBNextWord (11)

“CAPITALIZE-THIS”

“COPY-THIS”

“CORRECT-THIS”

“CUT-THIS"

“‘DELETE-THIS”

“HIDE-CORRECTION-WINDOW”

“LOWERCASE-THIS”

“MOVE-TO-BEGINNING-OF-

DOCUMENT”

“MOVE-TO-END-OF-DOCUMENT"
“NEXT-WORD”

Capitalizes selected text or
word at the cursor.

Copies selected text to the
clipboard.

Shows the error correction
window.

Cuts selected text to the
clipboard.

Clears selected text or word at
the cursor.

Hides the error correction
window.

Changes selected text or word
at the cursor to lowercase.

Moves to the beginning of the
text.

Moves to the end of the text.

Places the cursor at the
beginning of the next word.

36

ActiveX Developer’s Guide

Capturing Commands

Table 1. VVTextBox Command Phrases

ID (Value) Command Phrase Description

vvTBPasteThis (9) “PASTE-THIS” Pastes text from the clipboard
onto theVV TextBox control.

vwTBPreviousWord (12) | “PREVIOUS-WORD” Moves cursor to the beginning
of the previous word.

vwTBScratchThat (18) “SCRATCH-THAT" Deletes the last dictated
phrase.

vwTBSelectThis (20) “SELECT-THIS” Selects the text at the cursor.

vwWTBShowEC (5) “SHOW-CORRECTION-WINDOW?”| Shows the error correction
window.

vwwTBUppercaseOff (17) | “UPPERCASE-OFF” Removes the “Dictation Caps

Lock” feature so all
subsequent text is lowercase.

vwTBUppercaseOn (16) | “UPPERCASE-ON” Enables the “Dictation Caps
Lock” feature so all
subsequent dictated text is
uppercase.

vwTBUppercaseThis (14) “UPPERCASE-THIS” Changes selected text or word
at the cursor to uppercase.

Whenever the user speaks one of the command phrases in the abovellist, the VV TextBox control

performs the corresponding action and fires the Command event indicating the ID of the command

and the textual representation of the command. You can also use the Commands property to extend

this list of commands and provide a more “natural language” type of control foiMiiextBox. To

do this simply use thAdd method of theCommands property to add additional commands using the
same ID as the standard commands implementing the desired semanti¢¥. TexéBox will then

respond to those commands in the same way as the original commands. You can also use the same
Commands property to disable or remove any of the standard commands you choose.

ActiveX Developer’s Guide 37

Getting Started with the TextBox Control

Text Correction

The user can use the ViaVoice TextBox control’s correction window to correct words that the engine

has interpreted incorrectly. By default there are two ways for the user to invoke the correction window.

If CommandsEnabled istrue and the cursor is placed within the word to be corrected, the user can use

the voice command “CORRECT-THIS"or “SHOW-CORRECTION-WINDOW". Or, the user can
“right-click” on the textbox and chooserecion from the context menu. Either approach will display

the Error Correction window (see Figure 6) with the highlighted word/phrase or the word at the cursor
location. You may extend this by using tiemmands method to add additional voice commands or

by using theExecuteCommand method for programmatic invocation.

Credit
credits
cracked
Drata

e =

D Ll a—

[n1]
CL

| ¥ m| |

Figure6. Error Correction Window

38 ActiveX Developer’s Guide

Summary

The error correction window shows alist of alternate words that the speech engine recognizes that are
close in pronunciation to the word the user dictated. The user can choose aword from the list by
clicking on it with the mouse and the word is replaced in the textbox control. Or the user can edit the
mis-spoken word in the edit field and click the checkmark button to replace the selected text in the
VVTextBox with whatever isin the edit field of the error correction window and apply the correction.
After the user correctsthe word, the VV Textbox control updates the speech recognition engine, so that
the next time the user speaks the same word or phrase, the engine can interpret it correctly.

Summary

At this point, you should know how to do the following:

» How to incorporate the VVTextBox control into your project.

» How to contral the activation of dictation.

» How to specify command words, and how to disable command capturing.
» How to correct dictated words using error correction.

The remainder of this documentation contains a reference for all the properties, methods, and events
for the VVTextBox control.

ActiveX Developer’s Guide 39

Getting Started with the TextBox Control

40 ActiveX Developer’s Guide

Chapter 3

Properties, Methods, and Events

TextBox Control Properties

The ViaVoice TextBox control supports the following properties:

Alignmenta

Appearanced
AutoDictationWindow

AudioSourceType
AutoUl
BackColora

Border Sylea
Commands

CommandsEnabled
DictationOn
Enableda

Engine

Fonta

ForeColor2
HideSelection2

hwnda

L anguageUl

L ocked@

M axL engtha

M ousel con?

M ousePointera
Multiline2
PasswordChara
ScrollBar s2
SelL engtha
SelSarta
SelTexta
ShowDictationlcon

Texta

a. Represents standard properties in Visual Basic. For more information, refer to your Visua Basic

documentation.

ActiveX Developer’s Guide

41

Properties, Methods, and Events

AutoDictationWindow (Read/Writeat Run Time Only)

The AutoDictationWindow property provides a means of controlling the scopein which dictation is
available. The default value of this property is the distinguished constant,
VV_HWND_AUTODICTATION (-1), which will map dictation availability to ViaVoice TextBox
window input focus?. It can also be set to VV_HWND_ALL (0), which will enable dication globally.
However, please note that there can only be one global dictation object active (DictationOn is True) at
any one time in the entire system (including other applications)! For thisreason, it is strongly
suggested that you avoid global dictation objectsif at all possible. Alternatively, you can set this
property to any valid "top-mostP" window handle, which maps dictation availability to that window’s
activation state (it or one of its children having focus).

Finer granularity of control can always be achieved by changing the state of DictationOn
appropriately. When DictationOn is TRUE and the specified window is activated, the control will

receivedictation. If DictationOn is FAL SE, the control will not receive any dictation regardless of the
value of this property.

Syntax

In Visual Basic:

‘ Property AutoDi ctati onW ndow As Long

In Visual C++ (MFC):

| ong Get Aut oDi ct ati onW ndow() ;
voi d Set Aut oDi ct ati onW ndow(| ong nNewval ue) ;

a Dictation activation may potentially be modified by the state of the DictationOn property.

b. A *“top-most” window is defined as any window without a parent. For more information on issues dealing with finding the
“top-most” window, see the Microsoft Knowledge Base article Q84190.

42 ActiveX Developer’s Guide

TextBox Control Properties

In Visual C++:

HRESULT get _Aut oDi ctati onW ndow(|l ong * pVal);
HRESULT put _Aut oDi ct ati onW ndow(| ong newval) ;

Parameters
??

Return Values

VV_HWND_AUTODICTATION
(Default) Dictation is available only when the VV TextBox control window has the focus.

Any valid “top-mos#’ window handle
Dictation is available only when the indicated window is “active” as indicated by it, or one of its
children, having the focu$lote: There can only be one dictation object active for the same
window (DictationOn is True) at any one time

NULL
Dictation mode is always available and must be controlled manually by settiBgcthEonOn
property to True or Falsélote: There can only be one global dictation object aciietationOn
is True) at any one time!

Example

In Visual Basic:

"Assumes this formis the top-nost form
VWText Box1. Aut oDi ct ati onW ndow = hWhd

a A “top-most” window is defined as any window without a parent. For more information on issues dealing with finding the
“top-most” window, see the Microsoft Knowledge Base article Q84190.

ActiveX Developer’s Guide 43

Properties, Methods, and Events

In Visual C++ (MFC):

/1 Makes no assunptions about m hWhd
HWD Had = m hWhd;
/] Due to the Wn32 inplenentati on of GetParent, this is necessary
/1 to find the "Foreground" w ndow for SAPlI grammar activation
/1 For nore informati on see M5 Know edge Base article @4190
while (::GetParent (hwnd) !'= NULL &&

' (::GetWndowLong(hwnd ,GAL_STYLE) & W5_POPUP))

{

}
m_VVText Box. Set Aut oDi ct ati onW ndow ((long) hwhd);

hwnd = ::GetParent (hwnd);

In Visual C++:

/1 Makes no assunptions about m hWhd
HWD Had = m hWhd;
/] Due to the Wn32 inplenentati on of GetParent, this is necessary
/1 to find the "Foreground" w ndow for SAPlI gramrar activation
/1 For nore informati on see M5 Know edge Base article @4190
while (::GetParent (hwnd) !'= NULL &&

' (::GetWndowLong(hwnd ,GAL_STYLE) & W5_POPUP))

{

}
HRESULT hr = S_OK;

hr = m pl WDi ct ati onMyr - >put _Aut oDi ct ati onW ndow ((| ong) hWwd);

hwnd = ::GetParent (hwnd);

Remarks

If this property isset to VV_HWND_ALL and DictationOn = TRUE, the control will receive
dictation. This enables an application to receive dictation when another application is active.
Remember, if you use VV_HWND_ALL, be aware that there can only be one global dictation object
active (DictationOn is True) at any one time. Thisincludes your own or any other application running
on the system. For this reason, global dictation objects should be used with extreme care and should
probably be avoided unless absolutely necessary. Regardless of the value of this property, dictation
will always be off if the DictationOn property is set to FALSE.

44 ActiveX Developer’s Guide

TextBox Control Properties

See Also

“DictationOn” on page 54
“DictationStateChange” on page 73

ActiveX Developer’s Guide

45

Properties, Methods, and Events

AutoUl

Controls whether ViaVoice TextBox displays and interacts with the ViavVoice User Interface Server.

Syntax

In Visual Basic:

‘Property Aut oUl As Bool ean

In Visual C++ (MFC):

BOOL Get Aut oUl ();
voi d Set Aut oUl (BOOL f Newval ue) ;

In Visual C++:

HRESULT get _Aut oUl (VARI ANT_BOOL * pVal);
HRESULT put _Aut oUl (VARI ANT_BOOL newval) ;

Parameters

fNewValue
”

Return Values
TRUE
(Default) VVTextBox displaysthe User Interface Server and interacts with it automatically.

FALSE
VVTextBox does not display the User Interface Server. Also, it does not interact automatically
with it if another control displaysthe User Interface Server.

46 ActiveX Developer’s Guide

TextBox Control Properties

Remarks

If multiple instances of the VV TextBox control have AutoUl set to True, the User I nterface Server
only gets created once, and all the instances of the control interact with the same User Interface
Server. If you prefer not to display the User Interface Server or you do not want to have the
VVTextBox control interact with it automatically, set this property to False.

By setting it to True, you will not be able to interact with the Ul Server on behalf of your application.
This means that even if you create an instance of the Ul Client, you will never be able to control the
state of the Ul Server.

When AutoUl is True, the VVTextBox automatically updates the following components:

» Microphone
» Word History
* Volume Level

Example

In Visual Basic:
‘VV ext Box1. AutoU = True ‘

In Visual C++ (MFC):
| m WText Box. Set Aut oUl (TRUE) ; |

In Visual C++:
| HRESULT hr = m pl WText Box- >put _Aut oUl (VARI ANT_TRUE) ; |

See Also

Refer to the following chapters for more information about the ViaVoice User Interface Control:
Chapter 25, “Introduction to the User Interface Control” on page 497

Chapter 26, “Getting Started with the User ifaee Control” on page 499

Chapter 27, “Classes, Structures, and Enumerations” on page 533

ActiveX Developer’s Guide a7

Properties, Methods, and Events

Chapter 28, “Properties, Methods, and Events” on page 561
Chapter 29, “User Interface Control Frequently Asked Questions” on page 629

48 ActiveX Developer’s Guide

TextBox Control Properties

Commands

Gets or sets the collection of commands used for voice control within the VV TextBox.

Syntax

In Visual Basic:
‘Property Conmands As | VWPhr aseCol |

In Visual C++(MFC):

CVWVPhr aseCol | Get Conmmands() ;
voi d Set Ref Cormands(LPDI SPATCH newVal ue) ;

In Visual C++:

HRESULT get _Commands(| VWPhraseCol I ** pVal);
HRESULT putref _Conmands(| VWPhraseCol | * pVal);

Settings

The Commands property settings for a ViaVoice TextBox control are:

Value Description
Default Commands (Default) The default commands used by the V'V TextBox.
Any valid VVPhraseColl Custom set of commands to be used by the VV TextBox.

ActiveX Developer’s Guide 49

Properties, Methods, and Events

Example

In Visual Basic:

Set VVPhrasesl. Phrases = VWText Box1l. Conmands
AddCust omCommands (VVPhrasesl)
Set VVText Box2. Commands = VVPhrasesl. Phr ases

In Visual C++ (MFC):

CVwVPhr aseCol | Conmmands;

Conmands = m WWText Box1l. Get Cormands ();
AddCust omCommands (Conmands);

m_VVWText Box2. Set Ref Commands (Conmands);

In Visual C++:

| VWPhr aseCol | * pl VVPhraseCol | ;

HRESULT hr = m pl WText Box- >get _Comrands(&pl VVPhr aseCol |);
AddCust omCommands(pl VVPhraseCol |) ;

hr = m_pl VWText Box- >put r ef _Conmmands(pl VVPhr aseCol |);

Remarks

The TextBox can recognize command words while dictation is off or on (see “DictationOn” on
page 54) as long as speech input is available (see “AutoDictationWindow” on page 42). Finer
granularity of control for command availability is always available through use of the
CommandsEnabled property. Notice the distinction between the requested state and availability,
which is dependent on theutoDictationWindow.

Also, theCommands property is actually thehrases property of an implicitly created
VVPhrases control. For more information oWV Phrases see Chapter 9 “Introduction to the
Phrases Control”.

If you wish to change the phrase used to invoke a given command, you may simply change the
required command phrase as indicated inMi€hr ases documentation. If you wish to add

50 ActiveX Developer’s Guide

TextBox Control Properties

additional commands for existing functionality, you must use the correct ID for the desired

functionality. For instance, if you wish to say either “NEXT-WORD” or “MOVE-NEXT” to move

the cursor to the next word, then you would jsut add “MOVE-NEXT” as a new phrase with the ID
of VVTBNextWord. Then, when the user speaks either command, the cursor will move to the next

word.

See Also
“AutoDictationWindow (Read/Write at Run Time Only)” on page 42
“Capturing Commands” on page 36
“CommandsEnabled” on page 52

“DictationOn” on page 54

ActiveX Developer’s Guide 51

Properties, Methods, and Events

CommandsEnabled

Returns or sets whether the Viavoice TextBox control will recoghize commands or not, when speech
input is available.

Syntax

In Visual Basic:

‘Property ConmandsEnabl ed As Bool ean

In Visual C++(MFC):

BOOL Get CormandsEnabl ed() ;
voi d Set CommandsEnabl ed(BOOL bNewval ue);

In Visual C++:

HRESULT get _CommrandsEnabl ed(VARI ANT_BOOL * pVal)
HRESULT put _ComrandsEnabl ed(VARI ANT_BOOL newval)

Settings

The CommandsEnabled property settings for a ViaVoice TextBox control are:

Value Description
True (Default) The ViaVoice Textbox recognizes commands, when available.
False Command words are ignored.

52 ActiveX Developer’s Guide

TextBox Control Properties

Example

In Visual Basic:

‘VV ext Box1. CommandsEnabl ed = True

In Visual C++ (MFC):

‘ m_VVText Box. Set CommandsEnabl ed(TRUE) ;

In Visual C++:

‘ HRESULT hr = m pl WText Box- >put _ComrandsEnabl ed(VARl ANT_TRUE) ;

Remarks

The TextBox can recognize command words while dictation is off or on (see “DictationOn” on
page 54) as long as speech input is available (see “AutoDictationWindow” on page 42).
Conversely, command recognition will not be available if speech input is not available. Finer
granularity of control for command availability is always available through use of the
CommandsEnabled property.

See Also
“AutoDictationWindow (Read/Write at Run Time Only)” on page 42
“Capturing Commands” on page 36
“Commands” on page 49

“DictationOn” on page 54

ActiveX Developer’s Guide 53

Properties, Methods, and Events

DictationOn

Returns or sets the desired state of the dictation mode. You can think of this property semantically as

“Client want's dictation on”. What this means is that if dictation is available (i.e. nothing is preventing
dictation), then the user will be able to dictate into the control. Some possible reasons why dictation
would be unavailable whebictationOn is True are:MaxL ength has been reacheldocked is True,
Enabled is False, or the semantics of thatoDictationWindow indicate that dictation is not

available.

Syntax

In Visual Basic:
‘ Property DictationOn As Bool ean

In Visual C++(MFC):

BOOL GetDictationOn();
voi d SetDictati onOn(BOOL bNewval ue);

In Visual C++:

HRESULT get _Di ctati onOn(VARI ANT_BOOL * pVal);
HRESULT put _Di ctati onOn(VARl ANT_BOOL newval)

Settings

TheDictationOn property settings for a ViaVoiceextBox control are:

Value Description
True The control can receive dictation input when dictation is available.
False The control ignores dictation input.

54 ActiveX Developer’s Guide

TextBox Control Properties

Example

In Visual Basic:

‘VV ext Box1. Dictati onOn = True

In Visual C++ (MFC):

‘ m VVText Box. Set Di ct ati onOn(TRUE) ;

In Visual C++:

‘ HRESULT hr = m pl WText Box- >put _Di ct ati onOn(VARI ANT_TRUE) ;

Remarks

When dictation is off (DictationOn = False) the user may still be able to issue commands. For
more information, refer to “CommandsEnabled” on page 52.

When the state of the dictation mode changes, the control fir&s dtetionStateChange event.
You should not set the value of this property inBhetationSateChange event, as this will cause
the event to trigger again.

See Also
“AutoDictationWindow (Read/Write at Run Time Only)” on page 42
“CommandsEnabled” on page 52
“DictationStateChange” on page 73
“Enabled” in Visual Basic Documentation
“Locked” in Visual Basic Documentation

“MaxLength” in Visual Basic Documentation

ActiveX Developer’s Guide 55

Properties, Methods, and Events

Engine

Contains a reference to the ViaVoice Engine control (VVEnNgine), which is used by the VV TextBox
control. For more information, see the Engine Control Guide on the SDK “Documentation” menu.

Syntax

In Visual Basic:

‘ Property Engi ne As | VVEngi ne

In Visual C++(MFC):

CWVENgi ne Get Engi ne();
voi d Set Ref Engi ne(LPDI SPATCH newval ue) ;

In Visual C++:

HRESULT get _Engi ne(| VVEngi ne * * pVal);
HRESULT putref _Engi ne(l VWEngi ne * pVal);

Example

In Visual Basic:

‘VV ext Box1. Engi ne. Audi oSour ceType = vvst SAPI Conpl i ant

In Visual C++ (MFC):

‘ m VVText Box. Get Engi ne(). Set Audi oSour ceType(vvst SAPI Conpl i ant);

56 ActiveX Developer’s Guide

TextBox Control Properties

In Visual C++:

| VWEngi ne* pl VWEngi ne = NULL;
HRESULT hr = m pl WText Box- >get _Engi ne (& pl VVEngine);
if (SUCCEEDED (hr))
hr = pl VWEngi ne- >put _Audi oSour ceType (vvst SAPI Conpl i ant);

Remarks

The Engine property is actually holding an implicitly created ActiveX control (VVEnNgine), which
can also be created separately. Inserting a VVEngine control in a project enables you to set the
engine properties on this control and assign the resulting engine to multiple Viavoice ActiveX
controls.

See Also

Refer to the ViaVoice Engine Control Guide for more information.

ActiveX Developer’s Guide 57

Properties, Methods, and Events

L anguageUl

This property sets or gets the User Interface language used by the VV TextBox for this specific client.
The language affects any dialogs, menus, strings or Tool Tips displayed by the control.

Syntax

In Visual Basic:

‘Property LanguageU As String

In Visual C++ (MFC):

CString GetlLanguageUl ();

voi d SetLanguageUl (LPCTSTR | pszNewVal ue) ;

In Visual C++:

HRESULT get _LanguageUl (BSTR * pVal);
HRESULT put _LanguageUl (BSTR newval) ;

Settings

The LanguageUl property settings for aVV TextBox control are:

Language Property Value
U.S. English “EN_US”

U.K. English “EN_UK"
German “GR_GR”
Italian “4T_IT”
Spanish “ES_ES”
French “FR_FR”
Japanese “JA_JP”

58

ActiveX Developer’s Guide

TextBox Control Properties

Example

In Visual Basic:

Sets U language to U S. English
VWText Box1. LanguageU = "EN_US"

Gets U | anguage and displays it in a message box
MsgBox WWText Box1. LanguageUl

In Visual C++ (MFC):

/1 Sets U |anguage to U.S. English

m VVText Box. Set LanguageUl ("EN_US");

CString sLangU ;

/1 Gets U |anguage and copies it into variable
sLangU = m VWText Box. Get LanguageUl () ;

In Visual C++:

HRESULT hr;
BSTR bstrLangUl ;

bstrLangU = SysAllocString(OLESTR("EN_US"));
/1 Sets U I|anguage to U.S. English

hr = pl WText Box- >put _LanguageUl (bstrLangUl) ;
SysFreeString(bstrLangUl);

/1 Gets U |anguage into BSTR vari able

hr = pl WText Box- >get _LanguageUl (&bstrLangUl);

/1 Use | anguage string now and when done free BSTR
SysFreeString(bstrLangUl);

Remarks

None.

ActiveX Developer’s Guide

59

Properties, Methods, and Events

See Also

None.

60 ActiveX Developer’s Guide

TextBox Control Properties

ShowDictationl con

Determines whether or not the VV TextBox displays a small “speech bubble” dictation icon indicating
that it is capable of accepting dictation at run time. This can be used to effisigndiate between
normal TextBox controls andV TextBox controls, which canaept dictation.

Syntax

In Visual Basic:

‘ Property ShowDi ct ati onl con As Bool ean

In Visual C++(MFC):

BOOL Get Showbhi ctati onl con();
voi d Set ShowDi ct ati onl con(BOOL bNewVval ue) ;

In Visual C++:

HRESULT get _ShowDi ct ati onl con(VARI ANT_BOOL * pVal);
HRESULT put _ShowDi ct ati onl con(VARl ANT_BOOL newval) ;

Settings

The ShowDictationl con property settings for a ViaVoicBextBox control are:

Value Description

True VVTextBox displays a small dictation icon to indicate that it is capable of accepting
dictation.

False (DefaultyVTextBox does not display the dictation icon.

ActiveX Developer’s Guide 61

Properties, Methods, and Events

Example

In Visual Basic:

VWVWText Box1. ShowDi ct ati onl con = True

In Visual C++ (MFC):

m_VVText Box. Set ShowDi ct at i onl con(TRUE) ;

In Visual C++:

| HRESULT hr = m pl WText Box- >put _ShowDi ctati onl con (VARI ANT_TRUE); |

Remarks

Theicon does not give any information about the current state or availability of dictation.

See Also

None.

62 ActiveX Developer’s Guide

TextBox Control M ethods

TextBox Control Methods

The ViaVoice TextBox control supports the following methods:
» About2

» ExecuteCommand

» Playback

» PlaybackEx

» PlaybackEx2

* Refresh?

a Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

ActiveX Developer’s Guide

63

Properties, Methods, and Events

ExecuteCommand

This method allows the client to invoke any of the “voice commands” (see "Commands” property)
programmatically simply by passing the ID of the command desired. For a complete list of voice
commands and descriptions, see “Capturing Commands” on page 36. The primary use of this
functionality is to expose voice command functionality for invocation via mouse or keyboard input. It
can also be used to control actions based on voice commands in an &xtéPhahses control. This

might be useful, for instance, if you need to have voice commands activated/available based on your
own logic using a different tracking window for the command phrases.

Syntax

In Visual Basic:
‘Sub Execut eCommand(| Commandl D As Long) ‘

In Visual C++(MFC):
‘voi d Execut eCommand(| ong | Commandl D) ; ‘

In Visual C++:
‘ HRESULT Execut eCommand(| ong | Commandl D) ; ‘

Example

In Visual Basic:

VWText Box1. Execut eCommand vvTBCorrect This

In Visual C++ (MFC):

‘ m_VVText Box. Execut eCommand (vvTBCorrect This);

64 ActiveX Developer’s Guide

TextBox Control M ethods

In Visual C++:

‘ HRESULT hr = m pl WText Box- >Execut eConmand(vvTBCorrectThis);

Remarks

The CommandsEnabled property has no effect on commands invoked through the
ExecuteCommand method.

See Also
“Capturing Commands” on page 36
“Commands” on page 49

“CommandsEnabled” on page 52

ActiveX Developer’s Guide 65

Properties, Methods, and Events

Playback

See Also
Chapter 7, “Playback” on page 178

66 ActiveX Developer’s Guide

TextBox Control M ethods

Playback Ex

See Also

Chapter 7, “PlaybackEx" on page 180

ActiveX Developer’s Guide

67

Properties, Methods, and Events

Playback Ex2

See Also

Chapter 7, “PlaybackEx2” on page 182

68 ActiveX Developer’s Guide

TextBox Control Events

TextBox Control Events

The ViaVoice TextBox control supports the following events:

Change? KeyUpa
Clicka M axText
Command M ouseDown@
DbIClicka M ouseM ove?
DictationStateChange M ouseUp?a
Error

KeyDown?2

KeyPress?

a. Representsastandard event in Visual Basic. For moreinformation, refer to
your Visual Basic documentation.

ActiveX Developer’s Guide

69

Properties, Methods, and Events

Command

The control fires this event when the user speaks one of the command words the VV TextBox
recognizes. (To see acomplete list of commands that the VV TextBox control recognizes, refer to
“Capturing Commands” on page 36.)

Syntax

In Visual Basic:
‘ Event Command(Cndl D As Long, strComrand As String) ‘

In Visual C++(MFC):
‘voi d OnConmmand (1 ong Cndl D, LPCTSTR str Command); ‘

Parameters

CmdID
Long

A number that uniquely identifies the commandWé&TextBox recognized. For a complete list,
refer to “Capturing Commands” on page 36.

strCommand
String

The actual command text the/TextBox recognized. You should not write code that is dependent

on this value as the phrases are subject to change and vary with the language of the engine. Use the
CmdI D parameter instead. It is recommended that you use the strCommand parameter for display
only. This will be an empty string if invoked through any means other than the speech commands.

70 ActiveX Developer’s Guide

TextBox Control Events

Example

In Visual Basic:

Private Sub WWText Box1l Conmmand(ByVal Cndl D As Long, _
ByVal strComand As String)
Sel ect Case Cndl D
Case vvTBShoweC
Pr ocessTBShoweC

End Sel ect

End Sub

In Visual C++ (MFC):

voi d CTestDl g: : OnCommand(| ong Cndl D, LPCTSTR st r Conmand)
{
swi tch (Cmdl D)
{
case vvTBShowEeC
ProcessTBShowEC();
br eak;
defaul t:
br eak
}
}
Remarks

This control recognizes commands only when CommandsEnabled is set to True and there are no
other limiting factors (see "Commands” and "CommandsEnabled” properties). Commands are
never recognized whebommandsEnabled is False.

ActiveX Developer’s Guide 71

Properties, Methods, and Events

See Also
“Capturing Commands” on page 36
“Commands” on page 49

“CommandsEnabled” on page 52

72 ActiveX Developer’s Guide

TextBox Control Events

DictationSateChange

The control fires this event when the control enters or exits dictation mode. There are several actions
that affect the state of dictation — see the remarksabfr more information.

Syntax

In Visual Basic:
‘ Event DictationStateChange(Dictati onOn As Bool ean) ‘

In Visual C++(MFC):
‘ void OnDi ctationSt at eChangeWt ext box1(BOOL Di ctationOn); ‘

Parameters

DictationOn
Boolean

The current state of dictation mode. True means the control is ready to receive dictation speech al
turn it into text when speech input is available. False means that the control will ignore dictation
input. This event implies nothing to do with the control being able to understand voice commands
For more information, refer to “CommandsEnabled” on page 52.

Example

In Visual Basic:

Private Sub VWWText Box1 DictationStateChange(ByVal DictationOn As
Bool ean)

ProcessDi ct ati onOnEvent Dictati onOn

End Sub

ActiveX Developer’s Guide 73

Properties, Methods, and Events

In Visual C++ (MFC):

voi d CTestDl g: : OnDi ct ati onSt at eChange(BOCOL Di ct ati onOn)
{
ProcessDi ctati onOnEvent (DictationOn)
}
Remarks

Thefollowing conditions can effect the state of dictation:

The state of the DictationOn property is changed explicitly.

Focus changes (see AutoDictationWindow on page 42).

The state of the Locked property is changed explicitly.

The state of the Enabled property is changed explicitly.
Thelength of text reaches the max set in the MaxLength property.

A changeindicated by the DictationState Changeevent does not imply a change to the
DictationOn property. DictationOn is semantically equivalent to "user wants dictation on". If
dictation has been turned off in response to some action other than setting DictationOn to false
(e.g., Enabled was set false) then DictationOn can be true after a DictationState Changeevent
indicates that dictation is "off".

Note:

If AutoDictationWindow is not set to VV_HWND_AUTODICTATION, then focus changes
will not trigger this event, even if dictation availability has changed. If you need this
information, then you must write code to track the window activation changes. This can be
done by subclassing the window set for the AutoDictationWindow.

See Also

“CommandsEnabled” on page 52

“DictationOn” on page 54

“AutoDictationWindow (Read/Write at Run Time Only)” on page 42

74

ActiveX Developer’s Guide

TextBox Control Events

“Enabled” in Visual Basic Documentation
“Locked” in Visual Basic Documentation

“MaxLength” in Visual Basic Documentation

ActiveX Developer’s Guide

75

Properties, Methods, and Events

Error

Event fired when the ViaVoice TextBox control reports an error.

Syntax

In Visual Basic:

Event Error(sErrorlD As Integer,
pstrDescription As String,
hresult As Long, _
strSource As String,
strHelp As String,
| Hel pI D As Long, _
bShow As Bool ean)

In Visual C++(MFC):

void OnError (short sErrorl D, BSTR FAR* pstrDescription,
l ong FAR* hresult, BSTR FAR* str Source,
BSTR FAR* strHel p, long FAR* | Hel pIl D, BOOL FAR* f Show);

Parameters

sErrorID
Integer. The error number. The error number can be one of the following values:

DICTERR_DICTATION_ACTIVATE 101 (Hex 65)
DICTERR_DICTATION_DEACTIVATE 102 (Hex 66)
DICTERR_COMMANDS_ACTIVATE 103 (Hex 67)
DICTERR_COMMANDS DEACTIVATE 104 (Hex 68)
DICTERR_ENGINE_CONNECT 105 (Hex 69)

pstrDescription
String. The error description. The error message string is language-dependent and requires the use
of the appropriate language resource DLL. The control will use the language of the container

76 ActiveX Developer’s Guide

TextBox Control Events

application for error messages. If the control cannot find the appropriate language DLL, the error
message will bein US English.

hresult
Long. The error code.

strSource
String. This parameter contains the name of the module where the error occurred.

strHelp
String. The name and path of the help file (HLP file) containing information about the error.

IHelpID
Long. The context ID of the page in the help file that explains the error.

fShow
Boolean. Set to True by default, the ViaVoice TextBox control will automatically display an error
message dialog box when an error occurs. You can prevent the control from showing this dialog by
setting this parameter to False.

Return Values

TRUE
(Default) Viavoice TextBox control will automatically display an error message dialog box when
an error occurs.

FALSE
The error message dialog will not display.

Remarks

The ViaVoice TextBox can report errorsin one of two ways. If the error occurs from the setting of a
property or the issuing of a method incorrectly, the control generates atrappable error (returns an error
HRESULT). However, some errors can occur while the user is interacting with the control directly.
Whenever the control needs to report thistype of error, it firesthe Error event.

ActiveX Developer’s Guide 77

Properties, Methods, and Events

Example

In

Visual Basic:

Private Sub WWTextBox1l Error(_
sErrorI D As Integer, _
pstrDescription As String,
hresult As Long,
strSource As String,
strHelp As String,
| Hel pI D As Long, _
bShow As Bool ean)

Sel ect Case sErrorlD

Case DI CTERR_ENG NE_CONNECT
MsgBox "Fatal Error! Unable to connect to speech
bShow = Fal se

End Sel ect

End Sub

engi ne. "

78

ActiveX Developer’s Guide

TextBox Control Events

In Visual C++ (MFC):

voi d CTestctrl Dl g:: OnError(
short sErrorl D,
BSTR FAR* pstrDescription,
long hresult,
LPCTSTR str Sour ce,
LPCTSTR str Hel p,
[ong | Hel pl D,
BOOL FAR* bShow)
{

switch (sErrorlD)

{
Case DI CTERR_ENG NE_CONNECT

Error", MB_OK);
*phShow = TRUE;
break;
}
}

MsgBox "Fatal Error! Unable to connect to speech engine.", "Speech

See Also

None.

ActiveX Developer’s Guide

79

Properties, Methods, and Events

M axText

Event fired when the length of the text in the TextBox reaches the maximum number of characters
allowed in the control.

Syntax

In Visual Basic:
‘ Event MaxText () ‘

In Visual C++ (MFC):
‘voi d OnMaxText (); ‘

Parameters

None.

Return Values

None.

Remarks
You can specify maximum number of characters through the M axL ength property. For more
information about the M axL ength property, refer to the Visual Basic documentation

Setting the M axL ength property to zero means that the control accepts the maximum of a standard
edit control, which is OS dependent. See Microsoft documentation for details.

80 ActiveX Developer’s Guide

TextBox Control Events

Example

In Visual Basic:

Private Sub VVText Box1_MaxText ()
"Aut oTab when all the information has been entered
SendKeys "{TAB}"

End Sub

In Visual C++ (MFC):

voi d CTestDl g: : MaxText ()
{

// Aut oTab when all the information has been entered
Get Next DI gTabl t em(Get Focus()) - >Set Focus() ;

}

See Also

“MaxLength” in Visual Basic Documentation.

ActiveX Developer’s Guide

81

Properties, Methods, and Events

82 ActiveX Developer’s Guide

Chapter 4 TextBox Control Frequently Asked
Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice TextBox
Control.

How can | enter dictation mode automatically each time the VVTextBox gets focus?

Set the AutoDictationWindow property to VV_HWND_AUTODICTATION (-1) at run time (this
is the default). By setting this value for AutoDictationWindow and setting DictationOn to true,
the control will automatically enter dictation mode when it gets the focus, and exit dictation mode
when it loses focus. Setting DictationOn to false will still disable dictation regardless of window
focus.

How can | get more control in determining when dictation isavailable?

Oneway isto set the AutoDictationWindow property to NULL at design time to enable “global”
dictation. By setting this value, the control will always accept dictation WetationOn is true
and will stop accepting dictation whénctationOn is false. There can only be one (1) global
dictation object activel{ictationOn set to true) in the entire system at any one time.

Another option is to use some other window for implicit dictation control. To do this, simply find
the “top-most” window in the application of interest (your own or any other application) and
assign it toAutoDictationWindow before settindictationOn to true. This has the effect of
enabling dictation any time that window, or any of its child widows, has focus. Using a window for
dictation tracking provides the benefit of greater control without the problems associated with a
“global” dictation object.

ActiveX Developer’s Guide 83

TextBox Control Frequently Asked Questions

84 ActiveX Developer’s Guide

Chapter 5 | ntroduction to the RichEdit
Control

The ViaVoice RichEdit Control (VVRichEdit) isan ActiveX control which allows programmers to
incorporate dictation-enabled word processing into their applications. The control contains many
methods and properties which allow the user to create rich text format (RTF) files like aWindowsrich
edit control. What separates VV RichEdit from other rich edit controlsisits ability to receivedictation
from an audio input device (such as a microphone). The dictation will be adorned with any rich text
formatting that would be required if the user was actually typing the text. The VVRichEdit control
also provides voice commands to allow the user to navigate and manipul ate its contents.

VVRIichEdit Object Hierarchy

VVRichEdit actually utilizes controls of the ViaVoice SDK for many aspects of its functionality. To
receive, synchronize, and correct dictation, it interacts with VV DictationM gr. For an error correction
user interface, the control uses VVECWin. Internally a VV Phrases control is used to notify
VVRichEdit if the user has uttered any voice commands.

The following diagram shows the object hierarchy for the VV RichEdit.

WeTextBox/RichEdit

I TextBox 07
YW Dictationhdgr U= erver

IEngine () YWEngine Wi UIClient | Process

IvPhraseColl [} WvPhrases

ActiveX Developer’s Guide 85

Introduction to the RichEdit Control

86

ActiveX Developer’s Guide

Chapter 6 Gaﬂ ng S:a‘tw W| th the R|ChEd|t
Control

Thefollowing isatutorial on how to incorporate the VVRichEdit control into your Visual Basic or
Visual C++ applications. Thistutoria is designed to present you with the most commonly used
properties and events in the VVRichEdit control.

The following sections contain information to help you write code to create an instance of the
RichEdit control, then to capture speech, capture commands and create the environment to allow text
correction.

Creating an I nstance of the Control

This section contains step-by-step ingructions for using Visual Basic or Visual C++ (MFC) to create
an instance of the control.

In Visual Basic:

To add the VVRichEdit control to your application, do the following:

1. From the Prgject menu, choose Components.
The ‘Components’ dialog box, Figure 7, appears. The ‘Components’ dialog lists all the ActiveX
Controls that you can use in your application.

ActiveX Developer’s Guide 87

Getting Started with the RichEdit Control

Components

Cantrals l Designers] Inzertable Elbiec:ts]

DireckAnimation Library ﬂ

IEM Wiak'oice DickationMgr Conkrol

IEM Wiak'oice Engine Conkrol :

IEM YiaWoice Error Carrection Conkrol J — 4

IEM Wiavaice Grammar Control — | ooo
. . . m T;_.— o0

IEBM YiaWaice Lite Conkrols e

IBM Wiavoice Phrases Conkrol = EIEI.

B ENM Yiakoice RichEdit Contral
IEM YiaWoice TextBox Control i e
IBM WiaWoice User Interface Control

IEM WiaWoice Wirtual Vaices Conkral
icrfilker 1.0 Twpe Library |

IE Popup Menu * | Browse...
4] | ; [Selected Items Only

IBM ViaYoice RichEdit Contral

Location: e:lwiavoicelbinweerichedit, dll

aFk. Cancel Apply

Figure 7. Component Selection Dialog - Visual Basic

88 ActiveX Developer’s Guide

Creating an Instance of the Control

2. Select IBM ViaVoice RichEdit Control from thelist and click OK.
Visual Basic adds the control to your project, and adds a new icon to the toolbar (Figure 8).

Figure 8. VVRIichEdit Control Toolbar |con

3. Add aninstance of the VVRichEdit control to your form.
The VVRichEdit control looks and acts much like the Visual Basic native RichTextBox control.

In Visual C++ (MFC):

To add the VVRichEdit to your MFC project, do the following:

1. From the Project menu, select Add To Project, then select Componentsand Controls.
The ‘Components and Controls Gallery’ dialog box, Figure 9ears

ActiveX Developer’s Guide 89

Getting Started with the RichEdit Control

Components and Controls Gallery il Bt

Chooge a component ta insert inko your project:

Look. ir: | | Reqistered Activer Controlz ﬂ | E-ii | - e
ﬂ |EM Viz\oice Ermor Correction Control ﬁ IBM YizVoice TextBox |
fd |BM ViaVoice Grammar Control ﬁ IBM YiaVoice Uszer Inte
ﬂ |EM ViaVoice Grammar Like Contral Eﬁ IBEM ViaWoice Virtual Ve
'ﬂ |EM YiaVoice Phrases Contraol i InztallE ngineCt Object
ﬂ IEM ViaVoice Phrases Lite Control o Label Object

B Yigh'oice RichEdit Control] LM Runtime Control
4 1 il

File narne: |IEM Yiavoice RichE dit Control.Ink, Ingert

|BM “ia¥oice RichEdit Control Cloze

Fath to contral:

le: \Wia oicebinhwrichedit. dil

Figure9. Insert ActiveX Control Dialog Box - Visual C++

2. Double-click the ‘Registered ActiveX Controls’ folder in the dialog box.
3. Select thd BM ViaVoice RichEdit Control icon in the list of controls, then clidksert.

90 ActiveX Developer’s Guide

Creating an Instance of the Control

A confirmation message box appears, asking “Insert this component?”, jusD&lick

4. Respond to the confirmation message box by clickikg
The ‘Confirm Classes’ dialog box, Figure 10, appears listing the Duaface of th&RichEdit
control (CVVRIichEdit), along with the accompanying Engine (CVVENgine), Phrase
(CVVPhrase), PhraseColl (CVVPhraseColl), Font (COleFont), and Picture (CPicterédaet.

Conhirm Clazses ? i

The checked clags(esz) will be generated from 0K
the Activer Cantral. Click on a class name ta
browse or edit itz attnbutes.

Cancel

" RichE dit
v CWYE ngine
v OV Phrase
v W PhraseColl
v COleFont
v CPicture

Clasz name: Base class:
|CvRichE dit Cwind

Header file:
[\/RichE dit b

Irnplernentation file:
[\/RichE dit. cpp

Figure 10. Confirm Classes Dialog Box

ActiveX Developer’s Guide 91

Getting Started with the RichEdit Control

5. Click OK in the ‘Confirm Classes’ dialog box.

6. Close the ‘Components and Controls Gallery’ dialog box.
If you examine the Project Workspace window in the class view, you will notice six classes:
CVVRIichEdit, CVVEngine, CVVPhrase, CVVPhraseColl, COleFont, and CPicture (assuming
you accepted the default names for the class in the ‘Confirm Classes’ dialog box).

7. In the resource view of your Project Workspace window, double-click the dialog resource entry
where you wish to insert théV RichEdit control.
TheVVRichEdit icon, Figure 11, appears in the Controls toolbar.

Contos B
ITAEEMIE]D
® & EE EH @ [
$ m 4= B2 [[E
M H 26 € B

Figure 11. VVRIichEdit Icon in the Controls Toolbar

8. Add an instance of théVRichEdit control to the dialog box.
After you add the/VRichEdit control to your dialog you can invoke Class Wizardreate a
member variable for your class of type CVVRichEdit. You might also decide to capture the events
in the control by adding Event handlers to your dialog class. To add Event handlers, you can use
the Class Wizard just like adding notification message handlers for a non-speech edit box.

92 ActiveX Developer’s Guide

Capturing Speech

Capturing Speech

The VVRIichEdit turns speech input into text; however, users of your application might not want every
word they speak to be transformed into text. For example, users might need to perform other speaking
tasks, such as answering the telephone or conversing with someone. By default, the VVRichEdit
operates in what is known as modeless operation. This means that whenever the control has window
focus, the control will perform speech to text conversion, in the same way that it will accept keyboard
input when the window has focus. But, you can also control dictation explicitly by specifying a

window (see “AutoDictationWindow (Read/Write at Run Time Only)” on page 100) and setting the
state of dictation (see “DictationOn” on page 116) as needed to implement almost any dictation
activation logic you choose.

For example, you could use your application's top-most window foktheDictationWindow, so

that dictation would automatically be disabled when your application is not the active application, anc
useVVPhrases control (or you could learage thé/VRichEdit Commands property provided for
extensibility) to add commands for "BEGIN-DICATION" and "STOP-DICTATION" which would
control the state of thBictationOn property. This example implements what is known as "modal
dictation".

When the control enters or exits dictation mode, it firedDdotationSateChange event.

One thing to keep in mind when working with ¥ RichEdit control is that th&/VRichEdit treats

text from speech input the same as typed text. This means that propertMsotikength, (which

limits the number of characters the user can type into the TextBox) are still enforced the same way
when the characters are generated from speech. Also, the control fiedsatige event when the
change occurs from spoken text just as it does when the change comes from typing.

ActiveX Developer’s Guide 93

Getting Started with the RichEdit Control

Capturing Commands

In addition to dictated speech, the VVRichEdit can recognize spoken commands. By default, the
VVRichEdit control listens for command speech when the control window has focus. If you specify
an AutoDictationWindow, then that window will also be used for command activation tracking so
that, by default, commands are always available when dictation is available. If you wish, you can
achieve afiner granularity of control by explicitly setting the CommandsEnabled property in much
the same way as using DictationOn to control dictation state.

The VVRichEdit is capable of understanding twenty command phrases. Refer to the following table

for acomplete listing.

Table 2. VVRIichEdit Command Phrases

ID (Value)

Command Phrase

Description

vwTBCapitalizeThis (13)
vwTBCopyThis (8)
vTBCorrecfThis (24)
vTBCutThis (7)
vwTBDeleteThis (10)
vwTBHideEC (6)
vvTBLowercaseThis (15
vwTBMoveBeginning

(22)
vwwTBMoveEnd (23)

“CAPITALIZE-THIS”

“COPY-THIS”

“CORRECT-THIS”

“CUT-THIS"

‘DELETE-THIS”

“HIDE-CORRECTION-WINDOW”

“LOWERCASE-THIS”

“MOVE-TO-BEGINNING-OF-

DOCUMENT”

“MOVE-TO-END-OF-
DOCUMENT”

Capitalizes selected text or
word at the cursor.

Copies selected text to the
clipboard.

Shows the errormecion
window.

Cuts selected text to the
clipboard.

Clears selected text or word at
the cursor.

Hides therror correton
window.

Changes selected text or word at
the cursor to lowercase.

Moves the cursor to the
beginning of the text.

Moves the cursor to the end of
the text.

94

ActiveX Developer’s Guide

Capturing Commands

Table 2. VVRIichEdit Command Phrases

ID (Value)

Command Phrase

Description

vwTBNextWord (11)
vwTBPasteThis (9)
vwTBPreviousWord (12)
vwTBScratchThat (18)
vTBSelectPhrase (27)
vwTBSelectThis (20)

vwTBShowEC (5)

vwTBUppercaseOff (17)

vwTBUppercaseOn (16)

vwTBUppercaseThis (14

“NEXT-WORD”

“PASTE-THIS”

“PREVIOUS-WORD”

“SCRATCH-THAT”

“SELECT-%S”

“SELECT-THIS”

“SHOW-CORRECTION-
WINDOW”

“UPPERCASE-OFF”

“UPPERCASE-ON”

“UPPERCASE-THIS”

Places the cursor at the
beginning of the next word.

Pastes text from the clipboard
onto theVVRichEdit control.

Moves cursor to the beginning
of the previous word.

Deletes the last dictated phrase.

(%S represents any visible word
or phrase) Selects the text
specified.

Selects the text at the cursor.

Shows the error acoecion
window.

Removes the “Dictation Caps
Lock” feature so all subsequent
text is lowercase.

Enables the “Dictation Caps
Lock” feature so all subsequent
dictated text is uppercase.

Changes selected text or word at
the cursor to uppercase.

Whenever the user speaks one of the command phrases in the abovelist, the VVRichEdit control
performs the corresponding action and fires the Command event indicating the ID of the command
and the textual representation of the command. The Commands property can be used to extend or
reduce this list of commands or provide a more “natural language” type of control for the
VVRichEdit. TheCommands property is an IVVPhraseColl interface. Internally YHéRichEdit
uses th&/VPhrases control and gets or sets tRarases property on it. Any of the IVVPhraseColl
interface methods can be used to modify or enable the collection of phrases, whMetRitth Edit
uses to recognize commands.

The VVRichEdit will perform operations for events with the command IDs specified in
VVRICHEDIT.H file. To add a new command, use theéd method on the IVVPhrasesColl and

ActiveX Developer’s Guide

95

Getting Started with the RichEdit Control

specify anew command ID. VVRichEdit will not perform any specific functionality for the new
command, but it will fire the Command event when it is spoken. In the Command event handler of
the client application, add custom code for the command, which will be executed if the spoken
command ID isthe same asthe ID of the new command. Since you can execute any methods on the
IVV PhrasesColl and the VV Phrases contained withinit, it is possible to disable or remove any of the
standard commands you choose.

96 ActiveX Developer’s Guide

Text Correction

Text Correction

The user can use the ViaVoice RichEdit control’s correction window to correct individual words that
the engine has interpreted incorrectly. By default there are two ways for the user to invoke the
correction window. If CommandsEnabled istrue and the cursor is placed within the word to be
corrected, the user can use the voice command “CORRECT-THIS"or “SHOW-CORRECTION-
WINDOW?”. Or, the user can “right-click” the textbox and choose@cion from the context menu.
Either approach will display the Error @ecion window (see Figure 12) with the highlighted word/
phrase or the word at the cursor location. You may extend this by usi@giimaands method to add
additional voice commands or by using EeecuteCommand method for programmatic invocation.

im Aecorded Mezsage x| |
&3 Vi:Voice

1 Credt -
2 credits

3 cracked b
4 Data

5 added

[Aatbz ll
edi

| ¥ m| v

Figure 12. Error Correction Window

ActiveX Developer’s Guide 97

Getting Started with the RichEdit Control

The error correction window shows alist of alternate words that the speech engine recognizes that are
close in pronunciation to the word the user dictated. The user can choose aword from the list by
clicking on it with the mouse and the word is replaced in the textbox control. Or, the user can edit the
mis-spoken word in the edit field and click the checkmark button to replace the selected text in the
VVRichEdit with whatever isin the edit field of the error correction window and apply the correction.
After the user corrects the word, the VVRichEdit control updates the speech recognition engine, so
that the next time the user speaks the same word or phrase, the engine can interpret it correctly.

Summary

At this point, you should know how to do the following:

» How to incorporate the VVRIichEdit control into your project.

» How to contral the activation of dictation.

» How to specify command words, and how to disable command capturing.
» How to correct dictated words using error correction.

The remainder of this documentation contains a reference for all the properties, methods, and events
for the VVRIichEdit control.

98 ActiveX Developer’s Guide

Chapter 7 Properties, Methods, and Events

RichEdit Control Properties

The ViaVoice RichEdit control supports the following properties:

Appear anced L anguageUl Selltalic
AutoDictationWindow L ockeda SelLength
AudioSourceType M axL ength2 SelProtected
AutoUl M ousel con@ SelRightl ndentP
BackColora M ousePointera SelRTF
Border Stylea Multilinea SelSart
BulletlndentationP RightMarginb SelSrikeThru
Commands ScrollBar s2 SelTabCount
CommandsEnabled SelAlignment SelTabs
DictationOn SelBold Sl Texta
Enabled@ SelBullet SdUnderline
Engine SelChar Offset Textd
FileName SelColor TextRTF
Fonta SelFontName

ForeColora SelFontSize

HideSelectiona SelHangingl ndentb

hwnd Sellndentb

a. Represents standard propertiesin Visual Basic. For more information, refer to your Visual Basic
documentation.

b. This property represents an amount of distance. It is entered as a string with the amount followed by one of
the abbreviations for supported units. Inches can be represented as quotes (“), in, inch, or inches.
Centimeters are specified by cm, point by pt, and pica by pi. If no units are specified, the property defaults
to twips.

ActiveX Developer’s Guide

Properties, Methods, and Events

AutoDictationWindow (Read/Writeat Run Time Only)

Controls the scope in which dictation is available.

Syntax

In Visual Basic:

[WRi chEdi t Text Box] . Aut oDi ct ati onW ndow = [Valid "Top-Mst" W ndow
handl e]

In Visual C++ (MFC):
[WRi chEdi t]. Set Aut oDi ct ati onW ndow (| ong);

HWND = (HWND) [VVRi chEdit]. Get Aut oDi ct ati onW ndow() ;

In Visual C++:
HRESULT [pl WRi chEdi t]->get _Aut oDi ctati onW ndow | ong*);

HRESULT [pl WRi chEdi t] - >put _Aut oDi ctati onW ndow |ong);

Note:
[Valid “Top-Most” Window handle] can be replaced by VV_HWND_AUTODICTATION or
VV_HWND_ALL, as indicated above.

Parameters

VV_HWND_AUTODICATION
(Default) Dictation is available only when th&/RichEdit control window has the focus.

Return Values
?2?

100 ActiveX Developer’s Guide

RichEdit Control Properties

Remarks

The default value of this property isthe distinguished constant, VV_HWND_AUTODICTATION (-1),
which will map dictation availability to ViaVoice RichEdit window input focus?. It can also be set to
VV_HWND_ALL (0), which will enable dication globally. However, please note that there can only
be one global dictation object active (DictationOn is True) at any one time in the entire system
(including other applications)! For this reason, it is strongly suggested that you avoid global dictation
objectsif at all possible. Alternatively, you can set this property to any valid "top-mostP" window
handle, which maps dictation availability to that window’s activation state (it or one of its children
having focus).

Finer granularity of control can aways be achieved by changing the state of DictationOn
appropriately. When DictationOn is TRUE and the specified window is activated, the control will
receivedictation. If DictationOn is FAL SE, the control will not receive any dictation regardless of the
value of this property.

If this property isset to VV_HWND_ALL and DictationOn = TRUE, the control will receive
dictation. This enables an application to receive dictation when another application is active.
Remember, if you use VV_HWND_ALL, be aware that there can only be one global dictation object
active (DictationOn is True) at any one time. Thisincludes your own or any other application running
on the system. For this reason, global dictation objects should be used with extreme care and should
probably be avoided unless absolutely necessary. Regardless of the value of this property, dictation
will always be off if the DictationOn property is set to FALSE.

a Dictation activation may potentially be modified by the state of the DictationOn property.

b. A *“top-most” window is defined as any window without a parent. For more information on issues dealing with finding the
“top-most” window, see the Microsoft Knowledge Base article Q84190.

ActiveX Developer’s Guide 101

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub Form Load()
"Assumes this formis the top-nost form
VWRi chEdi t 1. Aut oDi ct ati onW ndow = hWhd
End Sub

In Visual C++ (MFC):
void CTestDig::InitializeRichEdit()

/1 Makes no assunptions about m hWhd
HWD hwhd = m _hWhd,;
while (GetParent (hWwhd) !'= NULL)
hWwhd = Get Parent (hWd);
m _VVRi chEdi t . Set Aut oDi ct ati onW ndow((| ong) hwhd);

}

In Visual C++:

voi d CTestDl g:: Onl ni tDi al og()
{

/1 Makes no assunptions about m hWhd

HWD hwhd = m _hWhd,;

while (GetParent (hWwhd) !'= NULL)
hWwhd = Get Parent (hWd);

m_pl VWRi chEdi t - >put _Aut oDi ct ati onW ndow((| ong) hwWhd);

See Also

“DictationOn” on page 116
“DictationStateChange” on page 193

102 ActiveX Developer’s Guide

RichEdit Control Properties

AudioSourceType

AudioSourceType property to specify an alternative source containing spoken words and phrases.
This property only takes effect at design time.

This property takes one of the following enum values:

wFixedAudio
- default values.

wMultimediaDevice
- the default multimedia device on the system is used.

wCustomCLS D
- Custom CL SID of acreatable object in aregistered COM server which implements the SAPI
custom audio source specification.

WWAVFile
-awavefile.

NOTE: Thisisa new property, which could break some legacy client applications.
If this happens, recompile the code after installation of SDK.

ActiveX Developer’s Guide 103

Properties, Methods, and Events

Syntax

In Visual Basic:

[enum = [VVRi chEdit]. Audi oSour ceType
[WRi chEdi t]. Audi oSour ceType = [enunj

In Visual C++ (MFC):

Set Audi oSour ceType(VWAudi oSour ceConst ants *pVal)
Set Audi oSour ceType(VWAudi oSour ceConst ant s newval)

In Visual C++:

get _Audi oSour ceType(VVAudi oSour ceConst ants *pVal)
put _Audi oSour ceType(VWAudi oSour ceConst ants newval)

Parameters

None.

Return Values

None.

Remarks

None.

104 ActiveX Developer’s Guide

RichEdit Control Properties

Example

In Visual Basic:

VVRi chEdi t 1. Engi ne. Audi oSour ce="c:\\tenp\\ ny. wav"
VVRi chEdi t 1. Engi ne. Audi oSt at e=vvasSt art ed

In Visual C++ (MFC):

voi d CTestRi chEdi t Dl g: : WAVI nput ()
{

pPVVRi chEdi t - >Get Engi ne() - >Set Audi oSour ce(L"c:\\tenp\\ ny. wav");
pPVVRi chEdi t - >Get Engi ne() - >Set Audi oSt at e(vvasSt arted);

In Visual C++:

voi d CTestRi chEdi t Dl g: : WAVI nput ()
{

| WENgi ne * pVVEngi ne=NULL;

m_pvvRi chEdi t - >get _Engi ne(& VVEngi ne) ;

pVVENgi ne- >put _Audi oSource(L"c:\\tenmp\\ ny. wav");
pVVENgi ne- >put _Audi oSt at e(vvasSt art ed);

See Also

None.

ActiveX Developer’s Guide 105

Properties, Methods, and Events

AutoUl

Controls whether VVRichEdit displaysthe User Interface Server and interacts with it automatically.

Syntax

In Visual Basic:
‘WRi chEdi t. Aut oU = [Bool ean]

In Visual C++ (MFC):

BOOL Get Aut oUl ();
voi d Set Aut oUl (BOOL f Newval ue) ;

In Visual C++:

get _Aut oUl (VARI ANT_BOOL *pVal)
put _Aut oUl (VARI ANT_BOOL newval)

Parameters

fnewValue
”

Return Values

TRUE
(Default) VVRIichEdit displays the User | nterface Server and interacts with it automatically.
FALSE

VVRichEdit does not display the User Interface Server. Also, it does not interact automatically
with it if another control displaysthe User Interface Server

106 ActiveX Developer’s Guide

RichEdit Control Properties

Remarks

When AutoUl is True, the VVRichEdit automatically updates the following components:
Microphone, Word History, and Volume Level.

When this property is set to True, the ViaVoice RichEdit control automatically displays and interacts
with the ViaVoice User | nterface Server. If multiple instances of the VVRichEdit control have
AutoUl set to True, the User Interface Server only gets created once, and all the instances of the
control interact with the same User | nterface Server. If you prefer not to display the User Interface
Server or you do not want to have the VVRichEdit control interact with it automatically, set this
property to False. By setting it to True, you will not be able to interact with the Ul Server on behalf of
your application. Thismeansthat even if you create an instance of the Ul Client, you will never be able
to control the state of the Ul Ser ver.

Example

In Visual Basic:

Private Sub Form Load()
VWRi chEdit1. AutoU = True
End Sub

In Visual C++ (M FC):
| m_Ri chEdi t . Set Aut oUl (TRUE) ; |

In Visual C++:
| HRESULT hr = m pl WRi chEdi t - >put _Aut oUl (VARI ANT_TRUE) ; |

See Also

Refer to the following chapters for more information about the ViaVoice User I nterface Control:
Chapter 25, “Introduction to the User Interface Control” on page 497

Chapter 26, “Getting Started with the User ifaee Control” on page 499

Chapter 27, “Classes, Structures, and Enumerations” on page 533

ActiveX Developer’s Guide 107

Properties, Methods, and Events

Chapter 28, “Properties, Methods, and Events” on page 561
Chapter 29, “User Interface Control Frequently Asked Questions” on page 629

108 ActiveX Developer’s Guide

RichEdit Control Properties

Bulletl ndentation

Sets or gets the amount of space to indent.

Syntax

In Visual Basic:
‘WRi chEdit.Bulletlndentation = [String]

In Visual C++ (MFC):

CString GetBulletlndentation();
voi d SetBul |l etlndentation(LPCTSTR | pszNewval ue);

In Visual C++:

HRESULT get_Bul |l et | ndentati on(BSTR * pVal);
HRESULT put _Bul | et | ndentati on(BSTR newval) ;

Parameters
”

Return Values

TRUE
Sets or gets the amount of space to indent.

FALSE
7?

Remarks

This property represents an amount of distance. It is entered as a string with the amount followed by
one of the abbreviations for supported units. Inches can be represented as quotes (“), in, inch, or

ActiveX Developer’s Guide 109

Properties, Methods, and Events

inches. Centimeters are specified by cm, point by pt, and pica by pi. If no units are specified, the
property defaults to twips.

Example

In Visual Basic:

‘WRi chEdit1.Bull etlndentation = "0.5in" ‘

In Visual C++ (MFC):

‘ m Ri chEdit. SetBul | etl ndentation(_T("0.5in")); ‘

In Visual C++:
BSTR I ndent = SysAllocString (OLESTR("O0.5in"));
HRESULT hr = m pl VWRi chEdi t->put _Bul | et | ndent ati on(I| ndent);

SysFreeString(lndent);

See Also

None.

110

ActiveX Developer’s Guide

RichEdit Control Properties

Commands

Getsor setsthe IVVPhraseColl interface used by the internal VV Phrases abject, used by VVRichEdit
to recgonize voice commands.

Syntax

In Visual Basic:
‘IWPhraseCoII = [VWRi chEdi t]. Commands

In Visual C++ (MFC):

CVWVPhr aseCol | Get Conmmands() ;
voi d Set Ref Cormands(LPDI SPATCH newVal ue) ;

In Visual C++:

HRESULT get _Commands(| VWPhraseCol I ** pVal);
HRESULT put _Commrands(| VWPhraseCol |l * pVal);

Parameters
??

Return Values
”

Remarks

The RichEdit can recognize command words while dictation is off or on aslong as speech input is
available. Finer granularity of control for command availability is always available through use of the
CommandsEnabled property. Notice the distinction between the requested state and availability, which
is dependent on the AutoDictationWindow.

ActiveX Developer’s Guide 111

Properties, Methods, and Events

Also, the Commands property is actually the Phrases property of an implicitly created VV Phrases
control.

If you wish to change the phrase used to invoke a given command, you may simply change the
required command phrase asindicated in the VV Phr ases documentation. |f you wish to add additional
commands for existing functionality, you must use the correct ID for the desired functionality. For

instance, if you wish to say either “NEXT-WORD" or “MOVE-NEXT” to move the cursor to the next
word, then you would jsut add “MOVE-NEXT” as a new phrase with the ID of VVTBNextWord.

Then, when the user speaks either command, the cursor will move to the next word.

Example

In Visual Basic:

Set VVPhrasesl. Phrases = VVRi chEdi t 1. Conmands
AddCust omCommands (VVPhrasesl)
Set VWWRi chEdit 2. Commands = VVPhrasesl. Phrases

In Visual C++ (MFC):

CVwVPhr aseCol | Conmands;

Commands = m WRi chEdit1l. Get Commands ();
AddCust omCommands (Conmands);

m _VVRi chEdi t 2. Set Ref Commands (Commands) ;

In Visual C++:

| VWPhr aseCol | * pl VVPhraseCol | ;

HRESULT hr = m pl VWRi chEdi t - >get _Commands(&l VWPhr aseCol |) ;
AddCust omCommands(pl VVPhraseCol |) ;

hr = m_pl VWRi chEdi t - >put r ef _Commands(pl VVPhraseCol |) ;

See Also

For more information oV Phrases see Chapter 9, “Introduction to the Phrases Control” on page

203.
“AutoDictationWindow (Read/Write at Run Time Only)” on page 100

112 ActiveX Developer’s Guide

RichEdit Control Properties

“DictationOn” on page 116
“CommandsEnabled” on page 114
“VVPhraseColl Collection” on page 245

ActiveX Developer’s Guide 113

Properties, Methods, and Events

CommandsEnabled

Returns or sets whether the ViaVoice RichEdit control will recognize commands or not, when
available based on the AutoDictationWindow.

Syntax

In Visual Basic:
‘WRi chEdi t . CormandsEnabl ed = [Bool ean]

In Visual C++ (MFC):

BOOL Get CormandsEnabl ed() ;
voi d Set CommandsEnabl ed(BOOL f Newval ue);

In Visual C++:

HRESULT get _CommrandsEnabl ed(VARI ANT_BOOL * pVal)
HRESULT put _ComrandsEnabl ed(VARI ANT_BOOL newval)

Parameters

fNewValue
”

Return Values

TRUE
(Default) The ViaVoice RichEdit recognizes commands, when available.

FALSE
Command words are ighored.

114 ActiveX Developer’s Guide

RichEdit Control Properties

Remarks

The property can be set at design time or runtime, although commands will never be enabled until
runtime. The RichEdit can recognize command words while dictation is off or on as long as speech
input is available. Command recognition will not be availableif dictation is not available. Enabling or
disabling an individual command can be done through the 1VV PhraseColl returned by the
Commands property. An individual phrase can be accessed through the collection and enabled or
disabled.

Example

In Visual Basic:

Private Sub Form Load()
VWRi chEdi t 1. CoomandsEnabl ed = True
End Sub

In Visual C++ (MFC):
‘ m_Ri chEdi t . Set CommandsEnabl ed(TRUE) ; ‘

In Visual C++:
| HRESULT hr = m pl WRi chEdi t - >put _CommandsEnabl ed(VARI ANT_TRUE) ; |

See Also

“AutoDictationWindow (Read/Write at Run Time Only)” on page 100
“DictationOn” on page 116
“VVPhraseColl Collection” on page 245

ActiveX Developer’s Guide 115

Properties, Methods, and Events

DictationOn

Returns or sets the desired state of the dictation mode.

Syntax

In Visual Basic:
\vvRi chEdit. Di ctati onOn = [Bool ean]

In Visual C++ (MFC):

BOOL GetDictationOn();
voi d SetDictati onOn(BOOL fNewval ue);

In Visual C++:

HRESULT get _Di ctati onOn(VARI ANT_BOOL * pVal);
HRESULT put _Di ctati onOn(VARl ANT_BOOL newVal)

Parameters

fNewValue
”

Return Values

TRUE
The control can receive dictation input when dictation is available.

FALSE
The control ignores dictation input

Remarks

If this property is set to TRUE, it indicates that the programmer wants dictation to be on. What this
meansisthat if dictation isavailable (i.e. nothing is preventing dictation), then the user will be ableto

116 ActiveX Developer’s Guide

RichEdit Control Properties

dictate into the control. Some possible reasons why dictation would be unavailable when DictationOn
is Trueares MaxLength has been reached, L ocked is True, Enabled is False, or the semantics of the
AutoDictationWindow indicate that dictation is not available. If DictationOn = TRUE and these
conditions are alleviated, the control will automatically begin receiving dication. If the property is set
to FALSE, the user will never be ableto dictate into the control.When dictation is off (DictationOn =
False) the user may still be able to issue commands.

When the state of the dictation mode changes, the control fires the DictationStateChange event. You
should not set the value of this property in the DictationSateChange event, as thiswill cause the
event to trigger again.

Example

In Visual Basic:

Private Sub Form Load()
VR chEdit1. Dictati onOn = True
End Sub

In Visual C++ (MFC):
‘ m VVRi chEdi t. Set Di ct ati onOn(TRUE) ; ‘

In Visual C++:
| HRESULT hr = m pl WRi chEdi t - >put _Di ct at i onOn(VARI ANT_TRUE) ; |

See Also

“AutoDictationWindow (Read/Write at Run Time Only)” on page 100
“CommandsEnabled” on page 114

“DictationStateChange” on page 193

“Enabled” in Visual Basic Documentation

“Locked” in Visual Basic Documentation

“MaxLength” in Visual Basic Documentation

ActiveX Developer’s Guide 117

Properties, Methods, and Events

Engine

Contains a reference to the ViaVoice Engine control (VVENgine), which is used by the VVRichEdit
control.

Syntax

In Visual Basic:
‘WRi chEdi t . Engi ne

In Visual C++ (MFC):

CWVENgi ne Get Engi ne();
voi d Set Ref Engi ne(LPDI SPATCH newval ue) ;

In Visual C++:

HRESULT get _Engi ne(| VVEngi ne * * pVal);
HRESULT putref _Engi ne(l VWEngi ne * pVal);

Parameters
”

Return Values
”

Remarks

The Engine property is actually holding animplicitly created ActiveX control (VVEnNgine), which can
also be created separately. Inserting a VV Engine control in a project enables you to set the engine
properties on this control, and then assign the resulting engine to multiple Viavoice ActiveX controls.

118 ActiveX Developer’s Guide

RichEdit Control Properties

Example

In Visual Basic:
‘WRi chEdi t 1. Engi ne. Audi oSour ceType = vvst SAPI Conpl i ant ‘

In Visual C++ (MFC):
‘ m VWRi chEdi t. Get Engi ne(). Set Audi oSour ceType(vvst SAPI Conpl i ant); ‘

In Visual C++:

| VWEngi ne* pl VWEngi ne = NULL;
HRESULT hr = m pl WRi chEdit - >get Engi ne (& pl VEngi ne);
if (SUCCEEDED (hr))
hr = pl VEngi ne- >put _Audi oSour ceType (vvst SAPI Conpl i ant);

See Also

Refer to theEngine Control Guide on the SDK “Documentation” menu for more information. For
more information, see the Engine Control Guide.

ActiveX Developer’s Guide 119

Properties, Methods, and Events

FileName

Loads afileinto the VVRichEdit when the control is created.

Syntax

In Visual Basic:
| WRi chEdi t. Fil eName = [String]

In Visual C++ (MFC):

CString GetFileNane();
voi d SetFil eNane(LPCTSTR | pszNewval ue) ;

In Visual C++:

HRESULT get _Fi | eName(BSTR * pVal)
HRESULT put _Fi | eName(BSTR newval) ;

Parameters
”

Return Values
”

Remarks

If the file extension is ".rtf", then it isloaded as a RTF file. Otherwiseit isloaded as atext file. If the
filenameis not valid at run time, the control will not contain any text.

120 ActiveX Developer’s Guide

RichEdit Control Properties

Example

In Visual Basic:
‘WRichEditl.fiIenama:"test.rtf" ‘

In Visual C++ (MFC):
‘m_Ri chEdit. SetFileName(_T("test.rtf")); ‘

In Visual C++:

BSTR File = SysAllocString (OLESTR ("test.rtf"));
HRESULT hr = m pl WRi chEdit->put _FileName(File);
SysFreeString (File);

See Also

None.

ActiveX Developer’s Guide 121

Properties, Methods, and Events

hWnd (Read Only)

Sets or gets window handle to the Windows rich edit common control used by the VVRichEdit

control.

Syntax

In Visual Basic:

\vvRi chEdi t . hwhd

In Visual C++ (MFC):

‘Iong Get HW() ;

In Visual C++:

‘ HRESULT get _hWhd(l ong * pVal);

Parameters
”

Return Values
”

Remarks

None.

122

ActiveX Developer’s Guide

RichEdit Control Properties

Example

In Visual Basic:

\REW ndowHandl e = m Ri chEdi t. hwd

In Visual C++ (MFC):

‘HV\ND hwid = m Ri chEdi t. Get HhWd() ;

In Visual C++:

HWND hwhd = O;

HRESULT hr = m pl WRi chEdit->get _HwWd(& (| ong)hwWhd);

See Also

None.

ActiveX Developer’s Guide

123

Properties, Methods, and Events

L anguageUl

Sets or gets the language used by the VVRichEdit for this specific client.

Syntax

In Visual Basic:

‘ [WRi chEdi t]. LanguageU = [String]

In Visual C++ (MFC):

CString GetlLanguageUl ();
voi d SetLanguageUl (LPCTSTR | pszNewVal ue) ;

In Visual C++:

HRESULT get _LanguageUl (BSTR * pVal);
HRESULT put _LanguageUl (BSTR newval) ;

Parameters
?? The LanguageUl property settings for aVV RichEdit control are:

L anguage Property Value
U.S. English “EN_US”
U.K. English “EN_UK”
German “GR_GR”
Italian “qT_IT"
Spanish “‘ES_ES”
French “FR_FR”
Japanese “JA_JP”
124 ActiveX Developer’s Guide

RichEdit Control Properties

Return Values
”

Remarks
The language affects any dialogs, menus, strings or Tool Tips displayed by the control.

ActiveX Developer’s Guide 125

Properties, Methods, and Events

Example

In Visual Basic:

Sets U language to U S. English
VWWRi chEdi t 1. LanguageUl = "EN_US"

Gets U Il anguage and displays it in a message box
MsgBox WWRi chEdit 1. LanguageUl

In Visual C++ (MFC):

/1 Sets U |anguage to U.S. English

m VVRi chEdi t . Set LanguageUl ("EN_US");

CString sLangU ;

/1 Gets U |anguage and copies it into variable
sLangUl = m VVRi chEdi t. Get LanguageUl () ;

In Visual C++:

HRESULT hr;
BSTR bstrLangUl ;

bstrLangU = SysAllocString(OLESTR("EN_US"));
/1 Sets U |anguage to U.S. English

hr = pl WRi chEdi t - >put _LanguageUl (bstrLangUl);
SysFreeString(bstrLangUl);

/1 Gets U |anguage into BSTR vari able

hr = pl WRi chEdi t - >get _LanguageUl (&bstrLangUl);

/1 Use | anguage string now and when done free BSTR
SysFreeString(bstrLangUl);

See Also

None.

126 ActiveX Developer’s Guide

RichEdit Control Properties

RightMargin

(Not Yet Implemented) Sets or gets the amount the text is indented from the right margin.

Syntax

In Visual Basic:
| WRi chEdi t. Ri ght Margin = [String]

In Visual C++ (MFC):

CString GetRi ght Margin();
voi d Set Ri ght Mar gi n(LPCTSTR | pszNewVal ue) ;

In Visual C++:

HRESULT get _Ri ght Mar gi n(BSTR * pVal);
HRESULT put _Ri ght Mar gi n(BSTR newval) ;

Parameters
”

Return Values
”

Remarks

This property represents an amount of distance. It is entered as a string with the amount followed by

one of the abbreviations for supported units. Inches can be represented a¢‘jjuofasch, or

inches. Centimeters are specified by cm, point by pt, and pica by pi. If no units are specified, the
property defaults to twips.

ActiveX Developer’s Guide 127

Properties, Methods, and Events

Example

In Visual Basic:
| WRi chEdi t 1. Ri ght Margin = "0. 5i n" |

In Visual C++ (MFC):
| m_Ri chEdi t. Set Ri ght Mar gi n(_T("0.5in"); |

See Also

None.

128 ActiveX Developer’s Guide

RichEdit Control Properties

SelAlignment (Read/Write at Run Time Only)

Sets or gets the alignment of the selected text.

Syntax

In Visual Basic:
‘WRi chEdit. Sel Alignnent = [Integer]

In Visual C++ (MFC):

l ong GetSel Al'i gnnent ();
voi d Set Sel Al'i gnment (1 ong nNewval ue) ;

In Visual C++:

HRESULT get _Sel Al i gnnent (enunPar aAl i gnment Type * pVal);
HRESULT put _Sel Al i gnnent (enunPar aAl i gnment Type newval) ;

Parameters

?? AlignLeft = 0
Alignsthe selected text flush with the left margin.

AlignRight = 1
Alignsthe selected text flush with the right margin.

AlignCenter = 2
Centers the selected text.

Return Values
”

ActiveX Developer’s Guide 129

Properties, Methods, and Events

Remarks

None.

Example

In Visual Basic:

Private Sub CenterText_Cick()
VVRi chEdi t 1. Sel Al i gnment (Al i gnCenter)
End Sub

In Visual C++ (MFC):

‘ m_Ri chEdit. Set Sel Al i gnment (2);

In Visual C++:

‘ HRESULT hr = m pl VWRi chEdit->put_Sel Ali gnnent(AlignCenter); ‘

See Also

None.

130

ActiveX Developer’s Guide

RichEdit Control Properties

SelBold (Read/Writeat Run Time Only)

Sets or gets the boldness of the selected text.

Syntax

In Visual Basic:

\vvRi chEdit. Sel Bol d = [Bool ean]

In Visual C++ (MFC):

BOOL Get Sel Bol d();
voi d Set Sel Bol d(BOOL f Newval ue);

In Visual C++:

HRESULT get _Sel Bol d(VARI ANT_BOOL * pVal);
HRESULT put _Sel Bol d(VARI ANT_BOOL newval) ;

Parameters

fNewValue
”

Return Values

TRUE
The selected text is displayed in bold face.

FALSE
The selected text is displayed without bold face.

Remarks

None.

ActiveX Developer’s Guide

131

Properties, Methods, and Events

Example

In Visual Basic:

"cause the selected text to be displayed in bold face
VWRi chEdi t 1. Sel Bol d = True

In Visual C++ (MFC):
[m_Ri chEdi t . Set Sel Bol d(TRUE); |

In Visual C++:
|HRESULT hr = m pl WRi chEdi t->put _Sel Bol d (VARI ANT_TRUE); |

See Also

None.

132 ActiveX Developer’s Guide

RichEdit Control Properties

SelBullet

Sets or gets whether the selected text has a bullet.

Syntax

In Visual Basic:
\vvRi chEdit. Sel Bul | et = [Bool]

In Visual C++ (MFC):

BOOL Get Sel Bull et ();
voi d Set Sel Bul | et (BOOL f Newval ue);

In Visual C++:

HRESULT get _Sel Bul | et (VARI ANT_BOOL * pVal);
HRESULT put _Sel Bul | et (VARI ANT_BOOL newval) ;

Parameters

fNewValue
”

Return Values

TRUE
The selected text is displayed with a bullet and indented by the amount of the Bulletlndentation

property.
FALSE
The selected text is not displayed with a bullet.

Remarks

None.

ActiveX Developer’s Guide 133

Properties, Methods, and Events

Example

In Visual Basic:

"Toggl e whet her the control has a bullet or not
VWRi chEdit 1. Sel Bul l et = Not VWVRi chEdit 1. Sel Bul | et

In Visual C++ (MFC):

| m_Ri chEdi t . Set Sel Bul | et (TRUE);

In Visual C++:

|HRESULT hr = m pl WRi chEdi t - >put _Sel Bul | et (VARI ANT_TRUE); |

See Also

None.

134

ActiveX Developer’s Guide

RichEdit Control Properties

SelChar Offset (Read/Writeat Run Time Only)

Sets or gets the offset of the selected character from the left margin in twips.

Syntax

In Visual Basic:
‘WRi chEdit. Sel CharOf fset = [Integer]

In Visual C++ (MFC):

| ong Get Sel Char Of fset () ;
voi d Set Sel Char Of f set (| ong nNewval ue) ;

In Visual C++:

HRESULT get _Sel CharOffset(long * pVal);
HRESULT put _Sel Char Of f set (1 ong newval) ;

Parameters
”

Return Values
”

Remarks

None.

ActiveX Developer’s Guide 135

Properties, Methods, and Events

Example

In Visual Basic:

"of fset the selected characters one inch fromthe left margin
VWRi chEdi t 1. Sel Char Of f set = 720

In Visual C++ (MFC):

/1 offset the selected characters one inch fromthe left margin
m Ri chEdi t. Set Sel Char O fset(= 720);

In Visual C++:
|HRESULT hr = m pl WRi chEdi t - >put _Sel Char Of f set (720) ;

See Also

None.

136 ActiveX Developer’s Guide

RichEdit Control Properties

SelColor (Read/Writeat Run Time Only)

Sets or gets the color of the selected text.

Syntax

In Visual Basic:
‘WRi chEdi t. Sel Col or = [I nteger]

In Visual C++ (MFC):

unsi gned | ong Get Sel Col or ();
voi d Set Sel Col or (unsi gned | ong newval ue) ;

In Visual C++:

HRESULT get _Sel Col or (OLE_COLOR * pVal);
HRESULT put _Sel Col or (OLE_COLOR newval) ;

Parameters
”

Return Values
”

Remarks

None.

ActiveX Developer’s Guide 137

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub ChangeSel Col or _Click()

ConmonDbi al ogl. ShowCol or

VWRi chEdi t. Sel Col or = ConmonDi al ogl. Col or
End Sub

In Visual C++ (MFC):

OLE_COLOR col or = GetColor();
m_Ri chEdi t . Set Sel Col or ((| ong) col or);

In Visual C++:

OLE_COLOR col or = GetColor();
HRESULT hr = m pl VRi chEdi t - >put _Sel Col or

(color);

See Also

None.

138

ActiveX Developer’s Guide

RichEdit Control Properties

SelFontName(Read/Write at Run Time Only)

Sets or gets the font name of the selected text.

Syntax

In Visual Basic:
‘WRi chEdi t. Sel Font Nane = [String]

In Visual C++ (MFC):

CString Get Sel Font Nane();
voi d Set Sel Font Name(LPCTSTR | pszNewVval ue) ;

In Visual C++:

HRESULT get _Sel Font Nane(BSTR* pVal);
HRESULT put _Sel Font Nane(BSTR newval) ;

Parameters
”

Return Values
”

Remarks

None.

ActiveX Developer’s Guide 139

Properties, Methods, and Events

Example

In Visual Basic:

'change the selected font to arial
m Ri chEdi t. Sel Font Nane = "Arial"

In Visual C++ (MFC):

/1 change the selected font to arial

m Ri chEdi t. Set Sel Font Name(" Ari al " strFont Nane) ;

In Visual C++:

‘ HRESULT hr = m pl VWRi chEdi t - >put _Sel Font Name(" Arial");

See Also

None.

140

ActiveX Developer’s Guide

RichEdit Control Properties

SelFontSize (Read/Write at Run Time Only)

Sets or getsthe size of the font of the selected text.

Syntax

In Visual Basic:

‘WRi chEdi t. Sel Font Si ze = [I nteger]

In Visual C++ (MFC):

| ong Get Sel Font Si ze();
voi d Set Sel Font Si ze(| ong nNewval ue) ;

In Visual C++:

HRESULT get _Sel Font Si ze(long * pVal);
HRESULT put _Sel Font Si ze(l ong newal) ;

Parameters

Return Values

Remarks

None.

ActiveX Developer’s Guide

141

Properties, Methods, and Events

Example

In Visual Basic:
‘WRi chEdit 1. Sel Font Si ze = 12; ‘

In Visual C++ (MFC):
‘ m_Ri chEdi t. Set Sel Font Si ze(12); ‘

In Visual C++:
‘ HRESULT hr = m pl VWRi chEdi t - >put _Sel Font Si ze(12); ‘

See Also

None.

142 ActiveX Developer’s Guide

RichEdit Control Properties

SelHanginglndent (Read/Write at Run Time Only)

Sets or gets the amount to indent subsequent linesin a paragraph from the left edge of the first linein
the paragraph.

Syntax

In Visual Basic:
‘WRi chEdi t. Sel Hangi ngl ndent = [Integer]

In Visual C++ (MFC):

CString Get Sel Hangi ngl ndent () ;
voi d Set Sel Hangi ngl ndent (LPCTSTR | pszNewal ue) ;

In Visual C++:

HRESULT get _Sel Hangi ngl ndent (BSTR * pVal);
HRESULT put _Sel Hangi ngl ndent (BSTR newval) ;

Parameters
”

Return Values
”

Remarks

This property represents an amount of distance. It is entered as a string with the amount followed by

one of the abbreviations for supported units. Inches can be represented as quotes (“), in, inch, or
inches. Centimeters are specified by cm, point by pt, and pica by pi. If no units are specified, the
property defaults to twips.

ActiveX Developer’s Guide 143

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub Set Sel Hangi ngl ndent ()
"I ndent the subsequent lines in a paragraph a half inch from
"fromthe first |line
VVRi chEdi t 1. Sel Hangi ngl ndent = "0.5i n"

End Sub

In Visual C++ (MFC):
VVRi chEdi t 1. Set Sel Hangi ngl ndent (_T(" 0. 5i n"strlndent));

In Visual C++:

BSTR I ndent = SysAllocSting (OLESTR ("0.5in"));
HRESULT hr = m pl VWRi chEdi t - >put _Sel Hangi ngl ndent (| ndent);
SysFreeString(lndent);

See Also

None.

144 ActiveX Developer’s Guide

RichEdit Control Properties

Sellndent (Read/Write at Run Time Only)

Sets or gets the paragraph indentation of the selected text.

Syntax

In Visual Basic:
| WRi chEdi t. Sel Indent = [String]

In Visual C++ (MFC):

CString GetSellndent();
voi d Set Sel | ndent (LPCTSTR | pszNewVal ue) ;

In Visual C++:

HRESULT get _Sel | ndent (BSTR * pVal);
HRESULT put _Sel | ndent (BSTR newval) ;

Parameters
”

Return Values
”

Remarks

This property represents an amount of distance. It is entered as a string with the amount followed by

one of the abbreviations for supported units. Inches can be represented as quotes (“), in, inch, or
inches. Centimeters are specified by cm, point by pt, and pica by pi. If no units are specified, the
property defaults to twips.

ActiveX Developer’s Guide 145

Properties, Methods, and Events

Example

In Visual Basic:

"set the indentation of the current text to one inch
VWWRi chEdit 1. Sel I ndent = "1in"1

In Visual C++ (MFC):
Set Sel I ndent (_T("1in"));

In Visual C++:

BSTR I ndent = SysAllocString (OLESTR("1in"));
HRESULT hr = put_Sel I ndent (I ndent);
SysFreeString(l ndent);

See Also

None.

146 ActiveX Developer’s Guide

RichEdit Control Properties

Selltalic (Read/Writeat Run Time Only)

Sets or getstheitalicized nature of the selected text.

Syntax

In Visual Basic:
\vvRi chEdit.Sel Italic = [Bool]

In Visual C++ (MFC):

BOOL GetSelltalic();
void SetSelltalic(BOOL fNewal ue);

In Visual C++:

HRESULT get_Sel Italic(VAR ANT_BOOL * pVal);
HRESULT put _Sel I talic(VARI ANT_BOOL newval) ;

Parameters

fNewValue
”

Return Values

TRUE
The selected text isitalicized.

FALSE
The selected text is not italicized.

Remarks

None.

ActiveX Developer’s Guide 147

Properties, Methods, and Events

Example

In Visual Basic:

"Turn on the Italics for the sel ected text
VWRi chEdit 1. Sel ltalic=True

In Visual C++ (MFC):

// Turn off the Italics for the selected text
m Ri chEdit. Set Sel Ital i c(TRUE);

In Visual C++:
‘ HRESULT hr = m pl VWRi chEdit->put_Sel Italic(VARI ANT_TRUE) ;

See Also

None.

148 ActiveX Developer’s Guide

RichEdit Control Properties

SelLength (Read/Writeat Run Time Only)

Sets or gets the number of characters that are sel ected.

Syntax

In Visual Basic:
‘WRi chEdit. Sel Length = [Integer]

In Visual C++ (MFC):

l ong Get Sel Length();
voi d Set Sel Lengt h(l ong nNewVval ue) ;

In Visual C++:

HRESULT get_Sel Length(long * pVal);
HRESULT put _Sel Lengt h(1 ong newval) ;

Parameters
”

Return Values
”

Remarks

None.

ActiveX Developer’s Guide 149

Properties, Methods, and Events

Example

In Visual Basic:

"Di splay a nessage box with the nunber of characters currently sel ected
MsgBox "Number of Characters Selected = " + CStr(VVRi chEdit1. Sel Lengt h)

In Visual C++ (MFC):

/1 Clear the selection
m_Ri chEdit. Set Sel Lengt h(0);

In Visual C++:
‘ HRESULT hr = m pl WRi chEdi t - >put _Sel Lengt h(0);

See Also

None.

150 ActiveX Developer’s Guide

RichEdit Control Properties

SelProtected

(Not Yet Implemented) Sets or gets the value indicating whether the selected text is protected from
editing.

Syntax

In Visual Basic:
‘WRi chEdit. Sel Protected = [Bool]

InVisual C++ (MFC):

BOOL Get Sel Protected();
voi d Set Sel Prot ect ed(BOOL f Newval ue);

In Visual C++:

HRESULT get _Sel Prot ect ed(VARI ANT_BOCL * pVal);
HRESULT put _Sel Prot ect ed(VARI ANT_BOCL newval) ;

Parameters

fNewValue
”

Return Values

TRUE
The selected text is protected.

FALSE
The selected text is not protected.

Remarks

None.

ActiveX Developer’s Guide 151

Properties, Methods, and Events

Example

In Visual Basic:

"Protect the sel ected text
VWRi chEdi t 1. Sel Protected = True

In Visual C++ (MFC):

CtestDl g: : OnToggl ePr ot ect Text ()
m_Ri chEdi t. Set Sel Prot ect ed(True);

In Visual C++:
‘ HRESULT hr = m pl VR chEdi t - >put _Sel Pr ot ect ed(VARl ANT_TRUE) ;

See Also

None.

152 ActiveX Developer’s Guide

RichEdit Control Properties

SelRightIndent (Read/Writeat Run Time Only)

Sets or gets the value indicating whether the selected text is protected from editing.

Syntax

In Visual Basic:
| WRi chEdi t . Sel Ri ght I ndent = [String]

In Visual C++ (MFC):

CString GetSel Ri ghtlndent();
voi d Set Sel Ri ght| ndent (LPCTSTR | pszNewval ue) ;

In Visual C++:

HRESULT get _Sel Ri ghtlndent(BSTR * pVval);
HRESULT put _Sel Ri ghtlndent (BSTR newal);

Parameters
”

Return Values
”

Remarks

This property represents an amount of distance. It is entered as a string with the amount followed by

one of the abbreviations for supported units. Inches can be represented as quotes (“), in, inch, or
inches. Centimeters are specified by cm, point by pt, and pica by pi. If no units are specified, the
property defaults to twips.

ActiveX Developer’s Guide 153

Properties, Methods, and Events

Example

In Visual Basic:

"I ndent the selected text one inch fromthe right margin
VWWRi chEdi t 1. Sel Ri ght | ndent = "1in"

In Visual C++ (MFC):
m Ri chEdi t. Set Sel Ri ght | ndent (" 1i n"strRi ght| ndent);

In Visual C++:

BSTR I ndent = SysAllocString (OLESTR ("1in"));
HRESULT hr = m pl VR chEdi t - >put _Sel Ri ght I ndent (I ndent);
SysFreeString(l ndent);

See Also

None.

154 ActiveX Developer’s Guide

RichEdit Control Properties

SelRTF (Read/Writeat Run Time Only)

Sets or gets the selected text in RTF format.

Syntax

In Visual Basic:
| WRi chEdi t . Sel RTF = [String]

In Visual C++ (MFC):

CString GetSel RTF();
voi d Set Sel RTF(LPCTSTR | pszNewVal ue) ;

In Visual C++:

HRESULT get_Sel RTF(BSTR * pVval);
HRESULT put_Sel RTF(BSTR newal);

Parameters
”

Return Values
”

Remarks

None.

ActiveX Developer’s Guide 155

Properties, Methods, and Events

Example

In Visual Basic:

| m_Ri chEdi t. Set Sel RTF(_Ts(""));

In Visual C++ (MFC):

| m_Ri chEdi t . Set Sel RTF(_Ts(""));

In Visual C++:

BSTR Enpty = SysAllocString(OLESTR(""));

SysFreeString(Enpty);

HRESULT hr = m pl VWRi chEdi t - >put _Sel RTF(Enpt y) ;

See Also

None.

156

ActiveX Developer’s Guide

RichEdit Control Properties

SelSart (Read/Write at Run Time Only)

Sets or getsthe index in the control of the start of the selection.

Syntax

In Visual Basic:
‘WRi chEdit. Sel Start = [|nteger]

In Visual C++ (MFC):

long GetSel Start();
void SetSel Start (I ong nNewval ue) ;

In Visual C++:

HRESULT get_Sel Start (long * pval);
HRESULT put_Sel Start (| ong newal);

Parameters
”

Return Values
”

Remarks

For more information about the M axL ength property, refer to the Visual Basic documentation.

ActiveX Developer’s Guide 157

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub Form Load()
"set the start of the selected text to the first character in the
"control
VWRi chEdit1. Sel Start = 0

End Sub

In Visual C++ (MFC):
| m_Ri chEdi t . Set Sel Start(0); |

In Visual C++:
|HRESULT hr = m pl WRi chEdi t - >put _Sel Start (0); |

See Also

None.

158 ActiveX Developer’s Guide

RichEdit Control Properties

SelSrikeThru (Read/Writeat Run Time Only)

Sets or gets a value indicating whether the selected text is displayed with aline crossing through it.

Syntax

In Visual Basic:
\vvRi chEdit. Sel StrikeThru = [Bool]

In Visual C++ (MFC):

BOOL Get Sel StrikeThru();
voi d SetSel StrikeThru(BOOL f Newval ue);

In Visual C++:

HRESULT get _Sel Stri keThru(VARI ANT_BOOL * pVal);
HRESULT put _Sel Stri keThru(VARl ANT_BOOL newval) ;

Parameters

fNewValue
”

Return Values

TRUE
The selected text is dicplayed with aline through it.

FALSE
The selected text is displayed without aline through it.

Remarks

None.

ActiveX Developer’s Guide 159

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub Form Load
VWRi chEdit1. Sel Stri keThru = Fal se
End Sub

In Visual C++ (MFC):

| m_Ri chEdi t . Set Sel Stri keThr u(FALSE) ;

In Visual C++:

| HRESULT hr = m pl WRi chEdi t->put _Sel StrikeThru(VAR ANT_FALSE) ; |

See Also

None.

160

ActiveX Developer’s Guide

RichEdit Control Properties

SelTabCount (Read/Write at Run Time Only)

Sets or gets the number of tabs in the control.

Syntax

In Visual Basic:
‘WRi chEdi t. Sel TabCount = [I nteger]

In Visual C++ (MFC):

short Get Sel TabCount () ;
voi d Set Sel TabCount (short nNewval ue);

In Visual C++:

HRESULT get _Sel TabCount (short * pVal);
HRESULT put _Sel TabCount (short newval);

Parameters
”

Return Values
”

Remarks

This function is used in conjunction with the Sel Tabs property. Specifying an index higher than the
SelTabCount property will return an error from the control.

ActiveX Developer’s Guide 161

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub Form Load
Set 3 TabStops at 0.5"intervals
VWRi chEdi t 1. Sel TabCount = 3

For | = 0 To VVRi chEdit1. Sel TabCount - 1
VWRi chEdi t 1. Sel Tabs(l) = 720 * |
Next |
End Sub

In Visual C++ (MFC):

‘nLRichEdit.SetSeITabCount(S);

In Visual C++:

| HRESULT hr = m pl WRi chEdi t - >put _Sel TabCount (3);

See Also

None.

162

ActiveX Developer’s Guide

RichEdit Control Properties

SelTabs (Read/Write at Run Time Only)

Sets or gets the position of a specified tabstop in twips.

Syntax

In Visual Basic:
‘WRi chEdit. Sel Tabs([Integer]) = [Integer]

In Visual C++ (MFC):

| ong Get Sel Tabs(short sl ndex);
voi d Set Sel Tabs(short sl ndex, |ong nNewval ue);

In Visual C++:

HRESULT get _Sel Tabs(short slndex, long * pVal);
HRESULT put _Sel Tabs(short slndex, |ong newval);

Parameters

7

Return Values

7

Remarks
When specifying 0 for the index, the first tabstop isretrieved. This is a zero-based index.

ActiveX Developer’s Guide 163

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub Form Load()
"Set the third tab to one half inch past second tab
VWRi chEdi t 1. Sel Tabs(2) = 720

End Sub

In Visual C++ (MFC):
[m_Ri chEdi t . Set Sel Tabs(2, 720); |

In Visual C++:
|HRESULT hr = m pl WRi chEdi t - >put _Sel Tabs(2, 720); |

See Also

None.

164 ActiveX Developer’s Guide

RichEdit Control Properties

SelText (Read/Write at Run Time Only)

Sets or gets the selected text without RTF formatting codes.

Syntax

In Visual Basic:
| WRi chEdit. Sel Text = [String]

In Visual C++ (MFC):

CString GetSel Text();
voi d Set Sel Text (LPCTSTR | pszNewval ue) ;

In Visual C++:

HRESULT get_Sel Text(BSTR * pVal);
HRESULT put _Set Text (BSTR newval);

Parameters
”

Return Values
”

Remarks

None.

ActiveX Developer’s Guide 165

Properties, Methods, and Events

Example

In Visual Basic:

"replace the selected text with a string
VWRi chEdi t 1. Sel Text = "Test String"

In Visual C++ (MFC):

m Ri chEdit. Set Sel Text (_T("") strText);

In Visual C++:
BSTR Enpty = SysAllocString(OLESTR(""));
HRESULT hr = m pl VWRi chEdi t - >put _Sel Text (Enpty);

SysFreeString(Enpty);

See Also

None.

166

ActiveX Developer’s Guide

RichEdit Control Properties

SelUnderline (Read/Writeat Run Time Only)

Sets or gets the val ue indicating whether the selected text is underlined or not.

Syntax

In Visual Basic:
\vvRi chEdi t . Sel Under | i ne = [Bool]

In Visual C++ (MFC):

BOOL Get Sel Underline();
voi d Set Sel Under | i ne(BOOL f NewVval ue);

In Visual C++:

HRESULT get _Sel Under | i ne(VARI ANT_BOCL * pVal);
HRESULT put _Sel Under | i ne(VARI ANT_BOCL newval) ;

Parameters

fNewValue
”

Return Values

TRUE
The selected text is underlined

FALSE
The selected text is not underlined

Remarks

None.

ActiveX Developer’s Guide 167

Properties, Methods, and Events

Example

In Visual Basic:

"Turn on the Underline for the sel ected text
VWRi chEdi t 1. Sel Under | i ne=Tr ue

In Visual C++ (MFC):

/] Turn off the Underline for the sel ected text
CtestDl g:: OnUnder | i neOF f ()

{
}

m_Ri chEdi t. Set Sel Under | i ne(TRUE) ;

In Visual C++:
‘ HRESULT hr = m pl VWRi chEdi t - >put _Sel Under | i ne(VARl ANT_TRUE) ;

See Also

None.

168 ActiveX Developer’s Guide

RichEdit Control Properties

TextRTF

Sets or getstext for the entire control in RTF format.

Syntax

In Visual Basic:

| WRi chEdi t. Text RTF = [String]

In Visual C++ (MFC):

CString Get Text RTF();

voi d Set Text RTF(LPCTSTR | pszNewVal ue) ;

In Visual C++:

HRESULT get_Text RTF(BSTR * pVal);
HRESULT put_Text RTF(BSTR newval);

Parameters
”

Return Values
”

Remarks

None.

ActiveX Developer’s Guide

169

Properties, Methods, and Events

Example

In Visual Basic:
[VR chEdi t 1. Text RTF = "" ‘

In Visual C++ (MFC):
‘ m Ri chEdi t. Set Text RTF(_T("")); ‘

In Visual C++:
BSTR Enpty = SysAllocString (OLESTR(""));
HRESULT hr = m pl VWRi chEdi t - >put _Text RTF(Enpty) ;

SysFreeString (Empty);

See Also

None.

170 ActiveX Developer’s Guide

RichEdit Control Methods

RichEdit Control Methods

The ViaVoice RichEdit control supports the following methods:
* About2

» ExecuteCommand
* LoadRTF

» LoadTextFile

* Playback

» PlaybackEx

» PlaybackEx2

* Refresh?

» SaveFile

» SaveRTF

* SelPrint

a Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

ActiveX Developer’s Guide 171

Properties, Methods, and Events

ExecuteCommand

Allows the client to invoke any of the “voice commands” (see "Commands” property)
programmatically simply by passing the ID of the command desired.

Syntax

In Visual Basic:
‘Cal | VR chEdit. Execut eCommand (vvTBCommand) ‘

In Visual C++ (M FC):
‘voi d Execut eCommand(l ong | Commandl D) ; ‘

In Visual C++:
‘ HRESULT Execut eCommand(| ong | Commandl D) ; ‘

Parameters
27

Return Values
?2?

Remarks

The primary use of this functionality is to expose voice command functionality for invocation via
mouse or keyboard input, although it can also be used to control actions based on voice commands in
an externaVVPhrases control. This might be useful, for instance, if you need to have voice

commands activated/available based on your own logic using a different tracking window for the
command phrases.

172 ActiveX Developer’s Guide

RichEdit Control Methods

The CommandsEnabled property has no effect on commands invoked through the
ExecuteCommand method. In this version of the SDK, the ExecuteCommand method cannot be
used to invoke playback.

Example

In Visual Basic:

Private Sub Correct_dick()
VWRi chEdi t 1. Execut eCommand vvTBCorrect Thi s
End Sub

In Visual C++ (MFC):
‘ m_Ri chEdi t . Execut eCommand(vvTBCorrect This); ‘

In Visual C++:
‘ HRESULT hr = m pl WRi chEdi t - >Execut eCommand(vvTBCorrect This); ‘

See Also

“Commands” on page 111
“CommandsEnabled” on page 114

ActiveX Developer’s Guide 173

Properties, Methods, and Events

LoadRTF

Loads an RTF file with the specified path name into the VVRichEdit control.

Syntax

In Visual Basic:

| WRi chEdi t . LoadRTF ([String])

In Visual C++ (MFC):

|voi d LoadRTF(LPCTSTR bst rFi | eNane) ;

In Visual C++:

‘ HRESULT LoadRTF(BSTR bstrFil eNane);

Parameters
”

Return Values
”

Remarks

None.

174

ActiveX Developer’s Guide

RichEdit Control Methods

Example

In Visual Basic:
‘WRi chEdit1l. LoadRTF "TestFile.rtf" ‘

In Visual C++ (MFC):
| m_Ri chEdi t. LoadRTF(_T("TestFile.rtf")); |

In Visual C++:

BSTR File = SysAllocString (OLESTR ("TestFile.rtf"));
HRESULT hr = m pl VWRi chEdit->LoadRTF(Fil e);
SysFreeString (File);

See Also

None.

ActiveX Developer’s Guide 175

Properties, Methods, and Events

L oadTextFile

Loads atext file with the specified path name into the VVRichEdit control.

Syntax

In Visual Basic:
| WRi chEdi t. LoadTextFile ([String]) |

In Visual C++ (MFC):
‘voi d LoadText Fi |l e(LPCTSTR bstrFi |l eNane); ‘

In Visual C++:
‘ HRESULT LoadText Fi | e(BSTR bstrFi |l eNane) ; ‘

Parameters
”

Return Values
”

Remarks

None.

176 ActiveX Developer’s Guide

RichEdit Control Methods

Example

In Visual Basic:

Private Sub Form Load()
VWRi chEdit 1. LoadTextFile ("c:\My Docunments\TestFile.txt")
End Sub

In Visual C++ (MFC):
‘WRi chEdit. LoadTextFile (_T("TestFile.txt" strTextFile));

In Visual C++:

BSTR File = SysAllocString (OLESTR ("TestFile.txt"));
HRESULT hr = m pl WRi chEdit->LoadTextFile (File);
SysFreeString (File);

See Also

None.

ActiveX Developer’s Guide 177

Properties, Methods, and Events

Playback

Play back voice data for the selected range of text.

Syntax

In Visual Basic:

‘ Pl ayback

In Visual C++ (MFC):

‘ voi d Pl ayback();

In Visual C++:

\ HRESULT Pl ayback():

Parameters

None.

Return Values

None.

Remarks

None.

178

ActiveX Developer’s Guide

RichEdit Control Methods

Example

In Visual Basic:
| WRi chEdi t 1. Pl ayback

In Visual C++ (MFC):

voi d CTestRi chEdi t Dl g: : OnPl ayback()
{

}

m pvVvRi chEdi t - >Pl ayback();

In Visual C++:

voi d CTestRi chEdi t Dl g: : OnPl ayback()
{

}

m pvVvRi chEdi t - >Pl ayback();

See Also

None.

ActiveX Developer’s Guide 179

Properties, Methods, and Events

Playback Ex

Play back and/or retrieve the wav data for a range of text.

Syntax

In Visual Basic:

Pl aybackEx(Startlndex as |ong, TextLength as |ong, PlayAudi o as BOOL,
WavData as string)

In Visual C++ (MFC):

voi d Pl aybackEx(long Startlndex, |ong TextLength, VARl ANT_BOCL
Pl ayAudi o, BSTR *ppWavDat a)

In Visual C++:

HRESULT Pl aybackEx(long Startlndex, |ong TextLength, VAR ANT_BOOL
Pl ayAudi o, BSTR *ppWavDat a)

Parameters

Sartindex
Index of into text buffer of where to start playing the wav audio.

TextLength
Thelength of selected text. End offset is Startindex + TextL ength.

PlayAudio
TRUE - Playback Audio, FALSE - Play Audio to wave out.

WavData
Buffer to hold returned wave dataif PlayAudio is FALSE.

Return Values

None.

180 ActiveX Developer’s Guide

RichEdit Control Methods

Remarks

None.

Example

In Visual Basic:

VVRi chEdi t 1. Pl aybackEx(Start| ndex, TextLength,
VWWRi chEdi t 1. Pl aybackEx(Start| ndex, TextLength, TRUE, NULL)

FALSE, strWavDat a)

In Visual C++ (MFC):

voi d CTest Ri chEdit Dl g: : OnPl aybackEx()
{
CConBSTR bsWavDat a;
pVVRi chEdi t - >Pl aybackEx(St art | ndex,
&bsWavDat a) ;

pVVRi chEdi t - >Pl aybackEx(St art | ndex,
}

Text Lengt h,

Text Lengt h,

VARI ANT_FALSE,

VARI ANT_TRUE, NULL);

In Visual C++:

voi d CTestRi chEdi t Dl g: : OnPl aybackEx()
{

CConBSTR bsWavDat a;

pPVVRi chEdi t - >Pl aybackEx(St art | ndex,
&bsWavDat a) ;

pVVRi chEdi t - >Pl aybackEx(St art | ndex,

}

Text Lengt h,

Text Lengt h,

VARI ANT_FALSE,

VARI ANT_TRUE, NULL);

See Also

None.

ActiveX Developer’s Guide

181

Properties, Methods, and Events

Playback Ex2

Retrieve WAV data for arange of text.

Syntax

In Visual Basic:

‘ Pl aybackEx2(Startlndex as |ong, TextLength as |ong, pszFile as string) ‘

In Visual C++ (MFC):
‘ voi d Pl aybackEx2(long Startlndex, |ong TextLength, LPCTSTR pszFile); ‘

In Visual C++:
‘ HRESULT Pl aybackEx2(1ong Startl!ndex, |ong TextLength, BSTR pszFile); ‘

Parameters

Sartindex
Index of into text buffer of where to start playing the wav audio.

TextLength
Thelength of selected text. End offset is Startindex + TextL ength.

pszFile
Wave file name for output.

Return Values

None.

Remarks

None.

182 ActiveX Developer’s Guide

RichEdit Control Methods

Example

In Visual Basic:
| WRi chEdi t 1. Pl aybackEx2(0, 0, "c:\tenp\ny.wav")

In Visual C++ (MFC):

voi d CTestRi chEdit Dl g:: OnPl aybackEx2()
{

}

voi d CTestRi chEdi t Dl g: : OnPl ayback()
{

}

m pvvRi chEdi t - >Pl aybackEx2(0,0, L"c:\\tenp\ny.wav");

m pvVvRi chEdi t - >Pl ayback();

In Visual C++:

voi d CTestRi chEdi t Dl g: : OnPl aybackEx2()
{

}

voi d CTestRi chEdi t Dl g: : OnPl ayback()
{

}

m pvvRi chEdi t - >Pl aybackEx2(0,0, L"c:\\tenp\ny.wav");

m pvVvRi chEdi t - >Pl ayback();

See Also

None.

ActiveX Developer’s Guide 183

Properties, Methods, and Events

SaveRTF

Saves the contents of the VVRichEdit control as an RTF file to the specified path name.

Syntax

In Visual Basic:
| WRi chEdi t . SaveRTF ([String]) |

In Visual C++ (MFC):
‘voi d SaveRTF(LPCTSTR Fi |l eNan®) ; ‘

In Visual C++:
‘ HRESULT SaveRTF(BSTR Fi | eNane) ; \

Parameters
”

Return Values
”

Remarks

None.

184 ActiveX Developer’s Guide

RichEdit Control Methods

Example

In Visual Basic:
‘WRi chEdit1l. SaveRTF "TestFile.rtf" ‘

In Visual C++ (MFC):
‘ m Ri chEdi t. SaveRTF(_T("TestFile.rtf")); ‘

In Visual C++:

BSTR File = SysAllocString (OLESTR("TestFile.rtf"));
HRESULT hr = m pl VWRi chEdit->SaveRTF(Fil e);
SysFreeString(File);

See Also

None.

ActiveX Developer’s Guide 185

Properties, Methods, and Events

SaveTextFile

Saves the contents of the VVRichEdit control as atext file.

Syntax

In Visual Basic:

\vvRi chEdit. SaveTextFile ([PathName])

In Visual C++ (MFC):

‘voi d SaveFil e(LPCTSTR Fi | eNane);

In Visual C++:

\ HRESULT SaveFil e(BSTR Fil eNane) ;

Parameters
”

Return Values
”

Remarks

None.

186

ActiveX Developer’s Guide

RichEdit Control Methods

Example

In Visual Basic:

Private Sub OnSave()
VWRi chEdit 1. SaveTextFile ("c:\My Docunments\TestFile.txt")
End Sub

In Visual C++ (MFC):
‘ m Ri chEdit. SaveTextFile (_T(Cstring("TestFile.txt"));

In Visual C++:

BSTR File = SysAllocString (OLESTR("TestFile.rtf"));
HRESULT hr = m pl VWRi chEdit->SaveFile(File);
SysFreeString(File);

See Also

None.

ActiveX Developer’s Guide 187

Properties, Methods, and Events

SalPrint

Allows the client to invoke any of the “voice commands” programmatically simply by passing the ID
of the command desired.

Syntax

In Visual Basic:
\vvRi chEdit. Sel Print \

In Visual C++ (M FC):
\void Sel Print (1 ong | HDC); \

In Visual C++:
| HRESULT Sel Print (1 ong | HDC); |

Parameters
27

Return Values
?2?

Remarks

The primary use of this functionality is to expose voice command functionality for invocation via
mouse or keyboard input, although it can also be used to control actions based on voice commands in
an externaVVPhrases control. This might be useful, for instance, if you need to have voice

commands activated/available based on your own logic using a different tracking window for the
command phrases.

188 ActiveX Developer’s Guide

RichEdit Control Methods

Example

In Visual Basic:

Private Sub Form Load()
VWRi chEdi t 1. Sel Pri nt
End Sub

In Visual C++ (MFC):
| m_Ri chEdi t. Sel Print((I ong)hDC); |

In Visual C++:
‘ HRESULT hr = m pl WRi chEdit->Sel Print((long)hDC); ‘

See Also

None.

ActiveX Developer’s Guide 189

Properties, Methods, and Events

RichEdit Control Events

The ViaVoice RichEdit control supports the following events:

Change? K eyPress?
Clicka KeyUpa
Command M axText
DblClicka M ouseDown?
DictationSateChange M ouseM ove?d
Error M ouseUp?@
KeyDown2

a. Represents a standard event in Visual Basic. For more information, refer to your Visual
Basic documentation.

190 ActiveX Developer’s Guide

RichEdit Control Events

Command

Event fired when the user speaks one of the command words the VV RichEdit recognizes.

Syntax

In Visual Basic:
‘Corrmand (ByvVal Cmdl D As Long, ByVal strCommand As String) ‘

In Visual C++ (MFC):
‘voi d OnConmand(l ong Cndl D, LPCTSTR str Comrand) ; ‘

Parameters

CmdID
Long. A number that uniquely identifies the command the VVRichEdit recognized.

strCommand
String. The actual text selected that the VV RichEdit recognized. You should not write code that is
dependent on this value as the phrases are subject to change and vary with the language of the
engine. Usethe Cmdl D parameter instead. It is recommended that you use the strCommand
parameter for the UlServer’'s Word History display only. This will be an empty string if invoked
through any means other than the default speech commands.

Return Values
?2?

Remarks

This control recognizes commands from the default voice commands onlyGehenandsEnabled
is set to True and there are ather limiting factors (see "Commands” and "CommandsEnabled”
properties). Commands are never recognized vtmnmandsEnabled is False. Also, be aware that

ActiveX Developer’s Guide 191

Properties, Methods, and Events

thisevent is called only for voice commands and not for commandsinvoked programmatically through

the ExecuteCommand method.

Example

In Visual Basic:

Private Sub VVR chEdit1_Conmand(ByVal
String)
Sel ect Case Cndl D
Case vvTBShoweC
Pr ocessTBShoweC

End Sel ect

End Sub

Cmdl D As Long, ByVal strCommand As

In Visual C++ (MFC):

switch (Cmdl D)
{
case vvTBShoweC
Pr ocessTBShoweC() ;
break;
defaul t:
br eak

voi d CTestDl g: : OnCommand(| ong Cndl D, LPCTSTR st r Conmand)

See Also

“Capturing Commands” on page 36
“Commands” on page 111
“CommandsEnabled” on page 114

192

ActiveX Developer’s Guide

RichEdit Control Events

DictationSateChange

Event fired when the control enters or exits dictation mode. There are severa actions that affect the
state of dictation.

Syntax

In Visual Basic:
‘ Di ctati onSt at eChange (ByVal DictationOn As Bool ean) ‘

In Visual C++ (MFC):
‘ void OnDictationStateChangeWrichedit1(BOOL DictationOn); ‘

Parameters

DictationOn
Boolean. The current state of dictation mode.

Return Values

TRUE
The control is ready to receive dictation speech and turn it into text.

FALSE
The control will ignore dictation input.

Remarks

This event implies nothing to do with the control being able to understand voice commands. The
following conditions can effect the state of dictation:

» The state of the DictationOn property is changed explicitly.

» The state of the L ocked property is changed explicitly

» The gtate of the Enabled property is changed explicitly

» Thelength of text exceeds the max set in the MaxL ength property.

ActiveX Developer’s Guide 193

Properties, Methods, and Events

Note:
If AutoDictationWindow isnot setto VV_HWND_AUTODICTATION, then focus changes will
not trigger this event, even if dictation availability has changed. If you need this information, then
you must write code to track the focus changes.

Example

In Visual Basic:

Private Sub WRichEdit1l DictationStateChange(ByVal DictationOn As
Bool ean)

" Handl er Code Here

End Sub

In Visual C++ (MFC):

voi d CTestDl g: : OnDi ctati onSt at eChange(BOCOL Di ct ati onOn)
{

// Handl er Code Here

}

See Also

“CommandsEnabled” on page 114

“DictationOn” on page 116

“AutoDictationWindow (Read/Write at Run Time Only)” on page 100
“Enabled” in Visual Basic Documentation

“Locked” in Visual Basic Documentation

“MaxLength” in Visual Basic Documentation

194 ActiveX Developer’s Guide

RichEdit Control Events

Error

Reports an error.

Syntax

In Visual Basic:

Error (sErrorlD As Integer, pstrDescription As String, hresult As Long,
strSource As String, strHelp As String, |Helpl D As Long, fShow As
Bool ean)

n Visual C++ (MFC):

void OnError(short sErrorlD,
BSTR FAR* pstrDescription,
| ong FAR* hresult,
BSTR FAR* str Source,
BSTR FAR* strHel p,
| ong FAR* [Hel pl D,
BOOL FAR* f Show)

Parameters
sErrorID
Integer. The error number. The error number can be one of the following values:

DICTERR_DICTATION_ACTIVATE 101 (Hex 65)
DICTERR_DICTATION_DEACTIVATE 102 (Hex 66)
DICTERR_COMMANDS ACTIVATE 103 (Hex 67)
DICTERR_COMMANDS DEACTIVATE 104 (Hex 68)
DICTERR_ENGINE_CONNECT 105 (Hex 69)

pstrDescription
String. The error description. The error message string is language-dependent and requires the use
of the appropriate language resource DLL. The control will use the language of the container

ActiveX Developer’s Guide 195

Properties, Methods, and Events

application for error messages. If the control cannot find the appropriate language DLL, the error
message will bein US English.

hresult
Long. The COM-generated error code.

strSource
String. This parameter contains the name of the module where the error occurred.

strHelp
String. The name and path of the help file (HLP file) that the control will invoke when the user
clicks the help button in an error message dialog.

IHelpID
Long. The context ID of the page in the help file that explains the error.

fShow
Boolean.

Return Values

TRUE
Displays an error message dialog box when an error occurs.

FALSE
Prevents the control from showing thisdialog

Remarks

The ViaVoice RichEdit control can report errors in one of two ways. If the error occurs from the
setting of a property or the issuing of a method incorrectly, the control generates a trappable error
(returns an error HRESULT). However, some errors can occur while the user isinteracting with the
control directly. Whenever the control needsto report thistype of error, it firesthe Error event. After
the event fires and execution returns to the control, the control shows an error message dialog box.

196 ActiveX Developer’s Guide

RichEdit Control Events

Example

In Visual Basic:

Private Sub VWRichEditl_Error(_
sErrorI D As Integer, _
pstrDescription As String,
hresult As Long, _
strSource As String,
strHelp As String,
| Hel pI D As Long, _
bShow As Bool ean)

Sel ect Case sErrorlD
Case DI CTERR_ENG NE_CONNECT
MsgBox "Unable to connect to a speech engine."
bShow = Fal se
End Sel ect

End Sub

ActiveX Developer’s Guide 197

Properties, Methods, and Events

In Visual C++ (MFC):

voi d CTestctrl Dl g:: OnError(
short sErrorl D,
BSTR FAR* pstrDescription,
long hresult,
LPCTSTR st r Sour ce,
LPCTSTR str Hel p,
 ong | Hel pl D,
BOOL FAR* bShow)

{

switch (sErrorlD)
{
case DI CTERR_ENG NE_CONNECT:
MessageBox ("Unable to connect to a speech engine.",
"Speech Error", MB_OK);
*bShow = FALSE;
br eak;

}

}

198 ActiveX Developer’s Guide

RichEdit Control Events

M axText

Event fires when the length of the text in the RichEdit reaches the maximum number of characters
allowed in the control.

Syntax

In Visual Basic:
‘ MaxText () ‘

In Visual C++ (MFC):
‘voi d OnMaxText () ; ‘

Parameters

None.

Return Values

None.

Remarks

You can specify maximum number of characters through the M axL ength property. Setting the
MaxL ength property to zero means that the control accepts the maximum of a standard edit control,
which is OS dependent. See Microsoft documentation for details.

ActiveX Developer’s Guide 199

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub VVRi chEdit1l_MaxText ()
"Aut oTab to the next control on the formwhen all the
i nformati on has been entered
SendKeys "{TAB}"
End Sub

In Visual C++ (MFC):

voi d CTestDl g: : MaxText ()
{

/] AutoTab to the next control on the formwhen all the
i nformati on has been entered
Get Next DI gTabl t em(Get Focus()) - >Set Focus() ;

}

See Also

“MaxLength” in Visual Basic Documentation

200 ActiveX Developer’s Guide

Chapter 8 RichEdit Control Frequently Asked
Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice RichEdit
control.

How can | enter dictation mode automatically each time the VVRichEdit getsfocus?

Thisis the default operation of the control. Set the AutoDictationWindow property to
VV_HWND_AUTODICTATION (-1) at run time (thisis the default). By setting this value for
AutoDictationWindow and setting DictationOn to true, the control will automatically enter
dictation mode when it gets the focus, and exit dictation mode when it loses focus. Setting
DictationOn to false will still disable dictation regardless of window focus.

How can | get more control in determining when dictation isavailable?

Oneway isto set the AutoDictationWindow property to NULL at design time to enable “global”
dictation. By setting this value, the control will always accept dictation WetationOn is true
and will stop accepting dictation whénctationOn is false. There can be only one (1) global
dictation object active{ictationOn set to true) in the entire system at any one time.

Another option is to use some other window for implicit dictation control. To do this, simply find
the “top-most” window in the application of interest (your own or any other application) and
assign it toAutoDictationWindow before settindictationOn to true. This has the effect of
enabling dictation any time that window, or any of its child widows, has focus. Using a window for
dictation tracking provides the benefit of greater control without the problems associated with a
“global” dictation object.

If 1 have a project using the standar d Visual Basic RichTextBox, can | use VVRichEdit without
changing any code?

TheVVRichEdit control can be substituted in your project for the standard Visual Basic
RichTextBox with minimal code changes. In Visual Basic, the name af\tiRichEdit control

can be kept the same as the name of the original control. If this is done, most code will work
without changes. There are a fevfeliences between theuwtrols.

* VVRIichEdit hastwo methods for loading files, LoadRTF and L oadTextFile. The
RichTextBox control has one method for both operations by passing aflag indicating what
kind of file to load.

ActiveX Developer’s Guide 201

RichEdit Control Frequently Asked Questions

* VVRIichEdit allowsthe programmer to specify actual unitsin properties specifying a
distance rather than specifying TWIPS like the RichTextBox. If no units are specified for a
distance, the VVRichEdit control does not default to the units of the container. It defaults
to TWIPS.

* VVRIichEdit doesnot make extensive use of the VARIANT data type for parameterslike
the RichTextBox.

Why aren’t the methods prefixed with “SEL” shown in the Object Browser in Visual Basic?
Using these methods only makes sense at run time because they operate on the current selection of
text. At design time, the control doesn't accept user input, so there is no valid selection.

When | invoke Correction, nothing shows up in the list box?

If the cursor isin adictated word, invoking the VVRichEdit will get the alternate words from
VVDictationMgr and display them in the error correction window, VVECWin . If the cursor is
not in aword, or itisin typed text, the error correction window will be shown without any
alternates. Thisis because it isnot currently possible to determine alternates for typed text.

| press the Correction button in the Error Correction window and it doesn't correct the text?

It is not currently possible to correct typed text.

Why can | only correct oneword at atime?

In most cases, correcting one word at atime allows for better accuracy.

| can't dictateinto the edit field in the Error Correction Window?

It is more accurate to type the text you would like to replace the currently select word with, rather
than dictateiit.

202 ActiveX Developer’s Guide

Chapter | ntroduction to the Phrases Control

ThelBM ViaVoice Phrases Control (VVPhrases) isan ActiveX control that enables devel opersto add
simple phrase command recognition to their applications. The main idea behind the control isthat the
developer provides the control with alist of phrases or commands, and the control will notify the
developer when the user speaks one of the phrasesin the list.

VVPhrasesisone of two controls in the ViaVoice SDK capable of recognizing phrases and
commands. The second control isVVCFGram. VVCFGram uses compiled grammar filesto
interpret user speech. A grammar is a script that defines the way that the user can construct sentences.
It, therefore, offers amore robust solution for command recognition than VV Phr ases. However,
VVCFGram requires that you learn the grammar language, and that you compile the grammar script
beforehand. VV Phrases on the other hand offers a simple command and phrase recognition solution
that does not require knowledge of grammars.

VVPhrases Object Hierarchy

The following diagram shows the object hierarchy for VV Phrases.

O_ WwPhrases
Phrases AU lient
() WwWEngine
MYEngine Phrasze I"“Fhrase
D D USerer
Process
O YWPhrase » %“Phrase [w 2
FhraseColl
WPhraseColl

ActiveX Developer’s Guide 203

Introduction to the Phrases Control

204 ActiveX Developer’s Guide

Chapter 10 Getting Sarted with the Phrases
Control

Thefollowing isatutorial on how to incorporate the VV Phrases control into your Visual Basic or
Visual C++ applications. Thistutoria is designed to present you with the most commonly used
properties and events in the VV Phr ases control.

Creating an I nstance

In Visual Basic:
To add the VVPhr ases control to your application, do the following:

1. From the Project menu, choose Components.
The ‘Components’ dialog box, Figure 13, appears. The ‘Components’ dialog lists all the ActiveX
Controls that you can use in your application.

ActiveX Developer’s Guide 205

Getting Started with the Phrases Control

Controls l DEEigﬂE[S] Inzertable I:Il:uiec:tS]

IEM WiaWoice Engine Conkrol ﬂ
IEM YiaWoice Grammar Conkrol

C4FIEM Yiaoice Phrases Control
IEM WiaWoice TextBox Control
IEM YiaVoice User Inkerface Contral —
icrfilker 1.0 Twpe Library k‘
icwhelp 1.0 Type Library = E;,
IE Popup Menu
IE Super Label i [a]
IE Timer
Tkonic Bukton Conkrol module
Kodak Image Admin Control |

kadak Image Edit Contral Jﬂ Browse, ..
J | : [Selected Ikems Only

IBM YiaYoice Phrases Conkral
Location: CAWIAYOICE\BIMYYYPHRASES, DLL

aF. Cancel Apply

Figure 13. Component Selection Dialog - Visual Basic

206 ActiveX Developer’s Guide

Creating an I nstance

2. Select IBM ViaVoice Phrases Control from the list and choose OK .
Visual Basic adds the control to your project, and adds a new icon to the toolbar (Figure 14).

General |

53 A [al [

»

AV = =B EE
ﬂuﬂEl[“_‘l

Figure 14. VVPhrases Control Toolbar 1con

3. Add aninstance of the VVPhrases control to your form.
The VVPhrases control is an invisible control at run time.

In Visual C++ (MFC):

To add the VVPhr ases control to your MFC project do the following:
1. From the Project menu, select Add To Project, then select Componentsand Controls.

ActiveX Developer’s Guide 207

Getting Started with the Phrases Control

The Components and Controls Gallery dialog box, Figure 15, appears.

Components and Controls Gallery ? X

Chooge a component ko insert into pour project:

Look. ir: | | Registered Activer Controlz ﬂ | ﬂi | e ==
(5 HHLCHl Object 4= |BM Vigvaice User Inte
il [IEM Medzpeak Activex Control [MAL) 5l [kanic Button Contral

2 konic Menu Contral
2] ImageHelper Contral
%] Infobus Control

o] InfoBusProsy

i

File name: |IEM Viavoice Phrazes Control Inzert

IBM ViaWoice Phrazes Control Cloze

Path to contral;
|I:HF'F|DEFI.-‘3.M FILES'WIaWOICESBIMYWPHRASES.DLL

Figure 15. Insert ActiveX Control Dialog Box - Visual C++ (MFC)

2. Double-click the ‘Registered ActiveX Controls’ folder in the dialog box.

3. Select thd BM ViaVoice Phrases Control icon in the list of controls, then clidkisert.
A confirmation message box appears, asking “Insert this component?”

208 ActiveX Developer’s Guide

Creating an I nstance

4. Respond to the confirmation message box by choosing OK.
The ‘Confirm Classes’ dialog box, Figure 16, appears listing the componentsvi Bie ases
control: CVVPhrases, CVVPhrase, CVVPhraseColl, CVVBookmarkColl, CVVBookmark, and
CVVEngine. (The CVVBookmarkColl and CVVBookmark will be implemented in the future.)

Confirm Clazses E E |

The checked clazz(ez] will be generated from 0K
the ActiveX Contral. Click an a clazz name ta
browsze or edit itz attributes.

Cancel

v CYEngine
[CWWPhrasze
[T PhraseColl
[CWWB ook arkCall
CWB cokM ark,

Clazz name: Baze class:
CWvPhrazes Ci'nd

Header file:
Yi'Phrazes.h

Implementation file:

Yi'Phrazesz.cpp

Figure 16. Confirm Classes Dialog Box

5. Click OK in the ‘Confirm Classes’ dialog box.
6. Close the ‘Components and Controls Gallery’ dialog box.

ActiveX Developer’s Guide 209

Getting Started with the Phrases Control

If you examine the Project Workspace window in the class view you will notice six new classes:
CVVPhrases, CVVPhrase, CVVPhraseColl, CVVBookmarkColl, CVVBookmark, and
CVVENgine (assuming you accepted the default names for the classin the Confirm Classes dialog
box).

7. Intheresource view of your Project Workspace window double-click the dialog resource entry
where you wish to insert the VV Phr ases control.
The VVPhrasesicon, Figure 17, appears in the Controls toolbar.

B - |
ITAEEMIE]D
® & EE EH @ [
$ - EF] [E
(9 H a6 € %

Figure 17. VVPhrases|con in the Controls Toolbar

8. Add aninstance of the VVPhrases contral to the dialog box.
After you add the V'V Phrases control to your dialog you can invoke Class Wizard to create a
member variable for your CVV Phrases class. You might also decide to capture the eventsin the
control by adding Event handlers to your dialog class. To add Event handlers, click the
VVPhrases control with the right mouse button, then select Events from the pop-up menu.

210 ActiveX Developer’s Guide

Drag-Drop-n-Go Support

Drag-Drop-n-Go Support

The VVPhrases control fully incorporates IBM’s Drag-Drop-n-Go technology. With this technology
you can add the control to your application and use it without writing many lines of code.

The VVPhrases control has the following Drag-Drop-n-Go properties:

Property Type Default Value
AutoConnect Boolean True
AutoUI Boolean True

AutoConnect when set to True causes the control to automatically search for a speech recognition
engine at run time and connect to it. This is necessary before the control can recognize commands. |f
you set this property to False you must connect manually by calling the Engine.Connect method of
the control.

AutoUIl when set to True causes the VV Phrases control to display and manipulate the Viavoice User
Interface Server. Refer to “Introduction to the User letrface @ntrol” on page 497 for more
information.

By leaving the properties set to their default values you guarantee that the control will connect to the
speech recognition engine as well as display and control the IBM ViaMsd nter face Server
automatically.

ActiveX Developer’s Guide 211

Getting Started with the Phrases Control

Adding Phrases

Thefirst step in using the VV Phrases control isto specify the list of commands that you wish the
control to recognize. As soon as the control hears the user speak one of the command words, it triggers
the SpeechRecognized event. You can then write code in this event to handle the command in your
application.

The VVPhrases control stores the list of phrases in the phrases collection obje¢PhraseCoall.
TheVVPhraseColl object stores instances of the phrase obj&¥Phrase. The phrase object stores

the actual command phrase text, as well as a programmer assigned ID for the command. (You will get
more information about théV Phrase object later in this chapter).

You can access théVPhraseColl object through th@hrases property in the control. To add a phrase
(command) to the collection simply use the VVPhraseCallld method as follows:

In Visual Basic:
‘ VVPhrasesl.Phrases.Add “Hello”, 100, "Say Hello World" ‘

In Visual C++ (MFC):
‘ m_VVPhrases.GetPhrases().Add(“Hello”, 100, “Say Hello World”, TRUE) ‘

The first parameter in th&dd method is a programmer assigned unique name for the phrase. You can
use this name later in your code to access the phrase object within the collection. The second parameter
is a programmer assigned ID for the command. This ID enables you to write code to handle the
command without relying on the text. It also enables you to group commands by assigning to them the
same ID. The third parameter is the actual phrase or command the control will recognize. (The string is
not case-sensitive.) The fourth parameter isghabled property. If the phrase is enabled then the

control will recognize the phrase. Otherwise, the control will ignore the phrase.adfgasing Visual

Basic, this parameter is optional and it will kefailted to True.

The second step in using the control is to handl&peechRecognized event. The/VPhrases

control listens to the user. When the user speaks one of the phrases in the phrase collection, the control
fires theSpeechRecognized event to notify you. The following code segment shows how to handle

this event.

212 ActiveX Developer’s Guide

Adding Phrases

In Visual Basic:

Private Sub VVPhrasesl SpeechRecogni zed(ByVal Nane As String, ByVal ID As
Long, ByVal Phrase As String, UpdateU Text As Bool ean, ByVal BegTinme As
String, ByVal EndTime As String)

Sel ect Case ID
Case 100
MsgBox "Hell o Sue"
Case 101
MsgBox “Hello James”
End Select

End Sub

n Visual C++ (MFC):

void CVVPhrtest::OnSpeechRecognized(LPCTSTR Name, long ID, BSTR FAR
*Phrase, BOOL FAR *UpdateUIText, LPCTSTR BegTime, LPCTSTR EndTime)

{

switch (ID)
{
case 100:
MessageBox (“Hello World” ,"VVPhrases”,MB_OK);
break;
default:
break;

}

}

ActiveX Developer’s Guide

213

Getting Started with the Phrases Control

Enabling/Disabling Phrases

During the execution of your application, it may be necessary at times to turn on or off speech
recognition for certain commands, or even for al the commands in the phrase collection.

The VVPhrase object, which encapsul ates each individual phrase in the control’s phrase collection,
has an Enabled property. This property lets you turn on or off recognition for a single command. By
default, the control setsthis property to True when the object is created. To turn off recognition for the
command, you first specify which item in the collection you wish to modify, then change the value of
the Enabled property to False as follows:

In Visual Basic:
VWPhrasesl. Phrases("Hel |l 0"). Enabl ed = Fal se

In Visual C++ (MFC):

VARI ANT va,

Variantlnit(&va);

va.vt = VI_BSTR

va.bstrVal = SysAllocString(L“Hello”);
m_VVPhrases.GetPhrases().Getltem(va).SetEnabled(FALSE);

You may recall from our earlier discussion that the Phr ases property in the control returns a
VVPhraseColl collection object. To find a phrase in the collection, issue the | tem method passing the
phrase text in the first parameter. The Item method returns an instance of the Phr ase object that
encapsulates the phrase. Once you have an instance of the Phr ase object you can change its properties.
In the previous example, you saw how to enable and disable a phrase. You can also change the ID
number of the phrase, by changing the object’s ID property.

The VVPhraseColl object also has an Enabled property, which allows you to disable or enable al the
phrases without removing them from the collection. To disable all the phrases simply set the Enabled
property of this object to False, as follows:

214 ActiveX Developer’s Guide

Enabling/Disabling Phrases

In Visual Basic:
‘WPhrasesl. Phr ases. Enabl ed = Fal se ‘

In Visual C++ (MFC):
‘ m_VVPhr ases. Get Phrases() . Set Enabl ed(FALSE) ; ‘

ActiveX Developer’s Guide 215

Getting Started with the Phrases Control

Wor king with the Custom Designer

The VVPhrases control ships with a Custom Designer window that enables you to add Phrases at
design time. To invoke it simply click the ellipsis (...) next to Ghestom property (see Figure 18).

Properties - WWPhrases]

|'|||"|||'Phrasesl WWPhrases ;I
Alphabetic Categnrizedl

{ About) _I
(Mame) WwPhrases1
AutaConnect True
Autall] True
[Enabled True
Index
[Left 1320
Tag
Top 1560
{Custom)

method Phrases

Figure 18. The Custom Property

216 ActiveX Developer’s Guide

Working with the Custom Designer

This will bring up the Designer window, depicted in Figure 19.

Property Pages

General Layout l

M ame [ID |Phraze |Enabled
ShowFiles 1 Show Filez True
3 2 |HideFiles

* |

Warning: Do not uge quates around strings in Phrase
colurnn,

ak. Cancel

Figure 19. The Designer Window

The Custom Designer allows you to add, remove, and modify phrases at design time. To add a phrase,

simply enter the necessary information to fill out arow in the layout grid.

1. Enter the name of the phrase item in the namefield.

2. Enter an ID for the phrase. [Recommended but optional.]

3. Enter the phrase that you wish the control to recognize in the Phrase field. Do not use quotes around
strings in Phrase column.

4. Indicate whether the phrase should beinitially enabled or not by typing "t" or "f" in the enabled
field which will then display "True" or "False" as appropriate.

Repeat these steps for each phrase you wish the control to recognize.

ActiveX Developer’s Guide 217

Getting Started with the Phrases Control

You can modify a previously entered phrase simply by selecting the desired field of an existing phrase
and changing it as necessary. You may also remove an entry completely by clicking on the "button" to
the left of the phrase to be deleted, which will highlight the entirerow (asindicated in Figure 19). Then
click the Delete Row button to remove the phrase.

Object Hierarchy

The VVPhrases control defines the following object hierarchy:

Concept: Control - Phrases - Phrase

Object names: VVPhrases - VVPhraseColl - VVPhrase

The control (VVPhrases) contains a property called Phrases, (or GetPhrases, if using MFC) which

exposes a Phr ases collection object (VV PhraseColl). Each member of the phrase collection isan
instance of a VVPhrase object.

Example

To change the properties in a phrase object:

In Visual Basic:

‘ VVPhrasesl.Phrases.ltem(“Hello”).Enabled = True ‘

In Visual C++ (MFC):
‘ m_VVPhrases.GetPhrases().Getltem(va).SetEnabled(TRUE); ‘

In Visual Basic, using default properties that line can be shortened to the following:

‘ VVPhrasesl.Phrases(“Hello").Enabled = True ‘

218 ActiveX Developer’s Guide

Object Hierarchy

Note:
The aboveline of codeis possible because Item isthe default property of VVPhraseColl. Because

the Phrases property is the default property of the VV Phrases control you can shrink the line of
code even further, as follows:

‘ VVPhrases1(“Hello”).Enabled = True ‘

Thereisamacro definition for Visual C++ developers using M FC which simul ates the default property
behavior in Visual Basic. The macro definition is the following:

‘ #define GetPhrases(a) GetPhrases().Getltem(a) ‘

Using this macro you can then convert the first example to the following:

‘ m_VVPhrase.GetPhrases(va).SetEnabled(TRUE); ‘

ActiveX Developer’s Guide 219

Getting Started with the Phrases Control

220 ActiveX Developer’s Guide

Chapter 11 F)fopa‘t'%, MdhOdS, Eﬂd EVGIT[S

The following sections describe the properties, methods, and events for the V'V Phrases Control,
VVPhraseColl Collection, and VV Phrase Object.

V'V Phrases Control

VVPhrases Control Properties

The VVPhrases Control supports the following properties:
* AutoConnect

* AutoUl

» Enabled

* Engine

* Indexa

e Layout

» Phrases

a Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

ActiveX Developer’s Guide 221

Properties, Methods, and Events

AutoConnect (VVPhrases)

Automatically connects to the speech recognition engine when created. Before the V'V Phr ases control
can recognize phrases it needs to connect to a speech engine. When this property is set to True the
control will try to connect to an engine with the following properties: IBM Manufacturer, continuous
speech, with dictation, limited domain grammar, and context free grammar support. If you wish to
override the default behavior, set this property to False, then at run time modify the properties in the
Engine object and call the Connect method.

Syntax

VWPhr ases. Aut oConnect = [Bool ean]

Parameters

AutoConnect
L

Return Values

TRUE
(Default) The control automatically finds and connects to a speech engine.

FALSE
The control does not connect to a speech engine. You must issue the Connect method to cause the
control to connect to the engine

Remarks
Changing the value of this property at run time has no effect. This property is meant to be used only at
design time.

If AutoConnect is True, the control will connect to the speech engine before the Form_L oad event
takes placein Visual Basic and before the I nitDialog method gets executed in an MFC application.

222 ActiveX Developer’s Guide

V'V Phrases Control

AutoUl (VVPhrases)

sets the VV Phrases control to automatically displays and interacts with the IBM ViaVoice User
I nterface Server.

Syntax

VVPhr ases. Aut oUl = [Bool ean]

Parameters
”

Return Values

TRUE
(Default) VVPhrases displays the User | nterface Server and interacts with it automatically

FALSE
VVPhrases does not display the User I nterface Server or interact automatically with it (if
another control has already displayed the User Interface Server, for example).

Remarks

When AutoUl is True, the VV Phrases automatically updates the following components in the User
I nterface Control: Microphone, Word History, and Volume Level.

If multiple instances of the VV Phrases control have AutoUI set to True, the User I nterface Server
only gets created once, and all the instances of the control interact with the same User Interface
Server. If you prefer not to display the User Interface Server, or not to have the VVPhr ases control
interact with it automatically, set this property to False.

See Also

Chapter 25, “Introduction to the User Interface Control” on page 497
Chapter 26, “Getting Started with the User tfaee Control” on page 499
Chapter 27, “Classes, Structures, and Enumerations” on page 533

ActiveX Developer’s Guide 223

Properties, Methods, and Events

Chapter 28, “Properties, Methods, and Events” on page 561
Chapter 29, “User Interface Control Frequently Asked Questions” on page 629

224 ActiveX Developer’s Guide

V'V Phrases Control

Enabled (VVPhrases)

Enables/disables command recognition.

Syntax

[Control].Enabl ed = [Bool ean]
Parameters

7

Return Values

TRUE
(Default) VVPhrases listens for commands.

FALSE
V'V Phr ases does not listen for commands.

Remarks

Changing the value of this property does not change the value of the Enabled property in the
collection object, or the value of the Enabled property in each of the Phrase objects in the collection.
It does, however, disable all commands in the control.

ActiveX Developer’s Guide 225

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub chkSpeechRecognition_Cick()
VWPhr asesl. Enabl ed = Not VVPhrasesl. Enabl ed
End Sub

In Visual C++ (MFC):

voi d SpeechEnabl edToggl e()
{

}

m_VVPhr ases. Set Enabl ed(! m VWPhr ases. Get Enabl ed()) ;

See Also

VVPhraseColl collection’s “Enabled (VVPhraseColl)” on page 248
VVPhrase object’s “Enabled (VVPhrase)” on page 265

226

ActiveX Developer’s Guide

V'V Phrases Control

Engine (VVPhrases)

Contains areferenceto the Viavoice Engine control (VVENgine). If AutoConnect is True, the engine
property will refer to a connected engine control at run-time; otherwise, the internal engine control is
disconnected. When AutoConnect is False, the desired properties of the engine can be set — for
instance the speaking style as discrete or continuous — and then Engine.Connect can be called to st
up a speech engine with the desired attributes.

Syntax
[Control]. Engine

Parameters

None.

Return Values

None.

Remarks

TheEngine property is actually holding an implicitly created ActiveX contkéVEngine), which can
also be created separately. Inserting\BEngine control in a project enables you to set the engine
properties on this control, call connect, and then assign the resulting connected engine to multiple
VVPhrases, VVCFGram, andVVTextBox controls. TheAutoConnect or Autol nit property in
VVTextBox control must be False for all controls besidesviéEngine control, however. Then the
VVEngine control can be assigned to the writaBlegine property ofVVPhrases, VVTextBox, and
VVCFGram.

ActiveX Developer’s Guide 227

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub Form Load()
VVPhr asesl. Engi ne. Speaki ngStyl e = vvssConti nuous
VPhr asesl. Engi ne. Audi oSour ceType = vvst SAPI Conpl i ant
VPhr asesl1. Engi ne. Connect

End Sub

In Visual C++ (MFC):

void Start Engi ne()
{

m_VVPhr ases. Get Engi ne() . Set Speaki ngSt yl e(vvasConti nuous);
m _VVPhr ases. Get Engi ne() . Set Audi oSour ceType(vvst SAPI Conpl i ant);
m _VVPhr ases. Get Engi ne() . Connect () ;

}

See Also

Refer to the ViaVoice Engine Control Guide for more information.

228 ActiveX Developer’s Guide

V'V Phrases Control

L ayout (VVPhrases)

Binary representation of the current state of the control. The L ayout property allows the devel oper to
obtain astring of bytes encoding all currently loaded phrasesinthe VVPhraseColl collection, together
with the values of al other properties. The developer can then save this binary snapshot of the control
to afile or registry key and reload it to restore the exact state of the control.

Syntax
[Control].Layout = [String]

Parameters
”

Return Values

7

Remarks

None.

ActiveX Developer’s Guide 229

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub Form Load()
DimA As String

VWPhr asesl. AddPhrase "yes", 100, "yes", True

Open "MyFile.dat" For Random As #1
Put #1, , (VVPhrasesl. Layout)
Cl ose #1

VVPhr asesl. Phr ases. RenpoveAl |

Open "MyFile.dat" For Random As #1
Get #1, , A

Cl ose #1

VVPhrasesl. Layout = A
End Sub

See Also

None.

230 ActiveX Developer’s Guide

V'V Phrases Control

Phrases (VVPhrases)

Returns areference to the VV PhraseColl collection object. The VV Phrases contol stores phrasesin
V'V Phrase objects and then adds them to a collection. Through this collection you can add phrases,
remove phrases, and select phrases. You can also enable/disable all the phrases in the collection by
modifying the collection’€nabled property.

Syntax

[Control]. Phrases

Parameters

None.

Return Values

None.

Remarks

The Phrases property is the control's default property. Because the Item property is the VVPhraseCc
collection’s default property, you can write the following:
VVPhrases1(“Save”).Enabled = True

ActiveX Developer’s Guide 231

Properties, Methods, and Events

Example

In Visual Basic:

‘WPhrasesl. Phrases("Hel | 0"). Enabl ed = Fal se

In Visual C++ (MFC):

VARI ANT va,

Variantlnit(&va);

va.vt = VI_BSTR

va.bstrVal = SysAllocString(L“Hello”);
m_VVPhrases.GetPhrases().Getltem(va).SetEnabled(FALSE)

See Also
“VVPhraseColl Collection” on page 245

232

ActiveX Developer’s Guide

V'V Phrases Control

VVPhrases Control Methods

The VVPhrases Control supports the following methods:
* About2

» AddPhrase

* Refresh?

» RefreshUl Text

a Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

ActiveX Developer’s Guide 233

Properties, Methods, and Events

AddPhrase (VVPhrases)

Creates anew Phrase object and adds it to the collection.

Syntax

VVPhrase = [VVWPhrases]. AddPhrase(ByVal Nane As String, ByVal |ID As Long,
ByVal Phrase As String, Optional ByVal Enabled As Bool ean)

Parameters

Name
String. A programmer assigned string name to identify the phrase object. You can use this name to
refer back to the object within the phrase collection.

ID
Long. A programmer assighed number. This parameter enables you to associate a command or
group of commands with a number.

Text
String. The actual phrase that the control will recognize (Example: “Save Record”). This
parameter is not case-sensitive.

Enabled
Boolean. Enables/Disables the phrase. In Visual Basic this parameter is optional and defaulted as
True.

Return Values

VVPhrase object
An instance of the newly creat@thrase object that encapsulates the new phrase.

Remarks

By default the newly created phrase will become active immediately ([Erihabled parameter, the
VVPhrasesColl'€nabled property, and the controlBnabled property are set to True).

234 ActiveX Developer’s Guide

V'V Phrases Control

The AddPhr ase method serves as a shortcut for V'V Phrase.Phrases.Add. Both methods are identical in

functionality.

You should not add two phrases with the same name. The Name serves a unique identifier for the

phrase object within the collection. However, you can add many phrases with the same ID number and

with the same Text.

Example

In Visual Basic:

" Add Commands

VVPhrasesl.AddPhrase(“Begin”, 100, "Begin New Record")
VVPhrasesl.AddPhrase(*Add”, 100, "Add New Record")
VVPhrasesl.AddPhrase(“Edit”, 200, "Edit Record")
VVPhrasesl.AddPhrase(“Delete”, 300, "Delete Record")
VVPhrasesl.AddPhrase(“Trash”, 300, "Trash Record")

n Visual C++ (MFC):

‘Add Commands

m_VVPhrasesl.AddPhrase(“Begin”,100,"Begin New Record",TRUE);
m_VVPhrasesl.AddPhrase(“Add”, 100, "Add New Record", TRUE);
m_VVPhrasesl.AddPhrase(“Edit”, 200, "Edit Record", TRUE);
m_VVPhrasesl.AddPhrase(“Delete”, 300, "Delete Record", TRUE);
m_VVPhrasesl.AddPhrase(“Trash”, 300, "Trash Record", TRUE);

See Also
“Remove (VVPhraseColl)” on page 257

ActiveX Developer’s Guide

235

Properties, Methods, and Events

RefreshUI Text (VV Phrases)

Forces an update of the ViaVoice User Interface Server when AutoUl is True.

Syntax
[Control]. RefreshUl Text (Text As String)

Parameters

Text
Text to display in the Ul Server.

Return Values
”

Remarks
Used primarily in the SpeechRecognized event together with the UpdateUl Text parameter.

236 ActiveX Developer’s Guide

V'V Phrases Control

Example

In Visual Basic:

Private Sub VVPhrasesl SpeechRecogni zed(ByVal Nane As String, ByVal ID As
Long, Phrase As String, UpdateUl Text As Bool ean, ByVal BegTime As String,
ByVal EndTime As String)

String WordHi storyText = Nane

Sel ect Case ID
Case 100 * If user said “Open File"...
WordHistoryText = “Opening document...”
Case 110 ‘ If user said “Close File”...
WordHistoryText = “Closing document...”
Case 120 * If user said “Close Window"...
WordHistoryText = “Goodbye!”
End Select

VVPhrasesl.RefreshUIText WordHistoryText
End Sub

In Visual C++ (MFC):

void CMyWnd::OnSpeechRecognized (LPCTSTR Name, long ID, BSTR FAR* Phrase,
BOOL FAR* UpdateUIText, LPCTSTR BegTime, LPCTSTR EndTime)

{
LPTSTR IpszWordHistoryText = Name;

switch (ID) {
/'If user said “Open File”...
case 100: IpszWordHistoryText = “Opening document...” break;
/'If user said “Close File”...
case 110: IpszWordHistoryText = “Closing document...” break;
I If user said “Close Window"...
case 120: IpszWordHistoryText = “Goodbye!” break;

}

m_VVPhrasesl.RefreshUIText(IpszWordHistory);

}

ActiveX Developer’s Guide

237

Properties, Methods, and Events

See Also
“SpeechRecognized (VVPhrases)” on page 241

238 ActiveX Developer’s Guide

VVPhrases Control Events

VVPhrases Control Events

The VVPhrases Control supports the following events:

BeginSpeechRecognition

BookM ar kReached (Not Supported)
Paused (Not Supported)
SpeechHypothesis (Not Supported)
SpeechRecognized

SpeechRejected (Not Supported)
TrainingRequired

ActiveX Developer’s Guide

239

Properties, Methods, and Events

BeginSpeechRecognition (VVPhrases)

Event fired when the speech engine receives audio input it identifies as coming from user speech,
rather than background noise.

Syntax
Begi nSpeechRecogni ti on(ByVal BegTinme As String)

Parameters

BegTime
Bookmark indicating the time when the user began to speak.

Return Values
”

Remarks

The event does not necessarily mean a specific phrase in the VVPhraseColl Collection has been
recognized; it simply indicates that the user has started speaking. If you are using the IBM Speech
Engine, then this event will fire at the same time as the SpeechRecognized event.

See Also
“SpeechRecognized (VVPhrases)” on page 241

240 ActiveX Developer’s Guide

VVPhrases Control Events

SpeechRecognized (VVPhrases)

Event fired by VVPhrases control when it recognizes one of the phrases in the Phrase collection
(VVPhraseCall).

Syntax

SpeechRecogni zed (ByVal Nane As String, ByVal ID As Long, Phrase As
String, UpdateUl Text As Bool ean, ByVal BegTinme As String, ByVal EndTinme As
String)

Parameters

Name
The programmer assigned unique identifier for the phrase object.

ID
A programmer assigned numeric identifier for the item.

Phrase
The actual phrase text the user spoke.

UpdateUl Text
When AutoUl is True, this parameter tellsthe V'V Phrases control to use the Phrase text to update
the Word History component in the ViaVoice Ul Server.

BegTime
A bookmark indicating the time when the user began to speak the phrase.

EndTime
A bookmark indicating the time the user finished speaking the phrase.

Return Values

Remarks

Handling this event is necessary when using the control.

ActiveX Developer’s Guide 241

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub VVPhrasesl SpeechRecogni zed(ByVal Nane As String, ByVal ID As
Long, ByVal Phrase As String, UpdateU Text As Bool ean, ByVal BegTi nme As
String, ByVal EndTime As String)

Sel ect Case ID
Case 100

MsgBox "Hel |l o Sue"
Case 101

MsgBox “Hello James”
End Select

End Sub

In Visual C++ (MFC):

void CVVPhrtest::OnSpeechRecognized(LPCTSTR Name, long ID, BSTR FAR
*Phrase, BOOL FAR *UpdateUIText, LPCTSTR BegTime, LPCTSTR EndTime)

switch (ID)
{
case 100:
MessageBox (“Hello World” ,"VVPhrases”,MB_OK);
break;
default:
break;

}

}

See Also

“AddPhrase (VVPhrases)” on page 234.
Chapter 25, “Introduction to the User Interface Control” on page 497.

242 ActiveX Developer’s Guide

VVPhrases Control Events

TrainingRequired (VVPhr ases)

Notification from the engine that the currently active speech user needs to train the speech enginein
order to improve recognition.

Syntax
Trai ni ngRequi red (ByVal Traini ngType As Long)

Parameters

TrainingType
One of the following SAPI training types (refer to the Microsoft SAPI documentation for further

information).
Genera (SRGNSTRAIN_GENERAL) 1
Grammar (SRGNSTRAIN_GRAMMAR)
Grammar (SRGNSTRAIN_GRAMMAR) 4

Return Values
”

Remarks

In the case of VV Phrases this means that the engine is using tentative pronunciations for some of the
phrasesin the VVPhraseColl collection because it cannot find the words in its base vocabulary.

ActiveX Developer’s Guide 243

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub VWPhrasesl Traini ngRequired(ByVal TrainingType As Long)
Sel ect Case Trai ni ngType
Case 1:
Debug. Print "General training required"
Case 2:
Debug. Print "Vocabul ary needs to be added"
Case 3:
Debug. Print "M crophone | evels need to be changed"
End Sel ect
End Sub

In Visual C++ (MFC):
void CWWhd: : OnTr ai ni ngRequi red(l ong Trai ni ngType)

{
switch (TrainingType) {
def aul t:
MessageBox (" Trai ni ng recommended. ", "ViaVoice SDK', MB_OK);
}
}
See Also

“Engine (VVPhrases)” on page 227

244 ActiveX Developer’s Guide

VVPhraseColl Collection

VVPhraseColl Collection

VVPhraseColl Collection Properties

The VVPhraseColl (IVVPhraseColl) Collection supports the following properties:
* Count

» Enabled

o Item

ActiveX Developer’s Guide 245

Properties, Methods, and Events

Count (VVPhraseColl)

Returns the number of phrases in the collection.

Syntax
| Val ue = [VWPhrases. Phrases]. Count

Parameters

None.

Return Values

Long
The number of itemsin the collection

Remarks

None.

Example

In Visual Basic:

"Get all the phrases
Di m sPhrase As String

For i =1 To VWPhrasesl. Phrases. Count
sPhrase = VVWPhrasesl. Phrases(i). Text
Next
246 ActiveX Developer’s Guide

VVPhraseColl Collection

In Visual C++ (MFC):

/1 Get all phrases
CString sPhrase;
= [

for (int i

{
VARI ANT va,

Variantlnit(&va);

va.vt = VT_I2;

va.ival =1i;

sPhrase = VVPhrasesl. Get Phrases(). Cetltem(va). Get Text ();
}

];

<= WWPhrasesl. GCet Phrases(). Get Count () ;

i ++)

See Also

None.

ActiveX Developer’s Guide

247

Properties, Methods, and Events

Enabled (VVPhraseColl)

Turns on/off command recognition for all the commands in the collection. When this property is False
the control ignores all the commands in the collection.

Syntax

[WPhr asesl. Phrases] . Enabl ed = Bool ean

Parameters
7

Return Values

TRUE
(Default) Activates command recognition for the collection.

FALSE
Turns off recognition for all the phrases in the collection.

Remarks

Changing the value of this property has no effect on the value of the Enabled property in each object
in the collection.

248 ActiveX Developer’s Guide

VVPhraseColl Collection

Example

In Visual Basic:

VVPhr asesl. Phrases. Enabl ed = Fal se

Call VVPhrasesl.Phrases.Add(“Minimize”, 100, "Minimize Windows", TRUE)
Call VVPhrasesl.Phrases.Add(“Maximize”, 200, "Maximize Windows", TRUE)
VVPhrasesl.Phrases.Enabled = True

In Visual C++ (MFC):

m_VVPhrasesl.GetPhrases().SetEnabled(FALSE);
m_VVPhrasesl.GetPhrases().Add(“Minimize”,100,"Minimize Windows", TRUE);

m_VVPhrasesl.GetPhrases().SetEnabled(TRUE);

m_VVPhrasesl.GetPhrases().Add(“Maximize”, 200, "Maximize Windows, TRUE);

See Also

VVPhrases Control's “Enabled (VVPhrases)” on page 225
VVPhrase Object’s “Enabled (VVPhrase)” on page 265

ActiveX Developer’s Guide

249

Properties, Methods, and Events

Item (Default Method - VVPhraseCoall)

Returns a V'V Phrase object from the collection.

Syntax
VVPhrase = [VVPhrasesl. Phrases].|tem ByVal Key As VARl ANT)

Parameters

Key
VARIANT. The item identifier. This parameter can be numeric — indicating the ordinal position of
the item within the collection, or a string — indicating the text of the item.

Return Values

VVPhrase
ThePhrase object that contains the command text.

Remarks

Whenever you add a phrase to the control, the comeates &/VPhrase object to encapsulate the
command text and adds it to & PhraseColl Collection. There are two ways to access a member of
the collection. One way is through the items command text. The other way is through the item's
position within the collection.

Because the Phrases property is the default property of the control, and the Item function is the default
method of the/VPhraseColl object, it is possible in Visual Basic to write:

VVPhrases1("Add ").ID = 100

250 ActiveX Developer’s Guide

VVPhraseColl Collection

Example

In Visual Basic:

VWPhrasesl. Phrases.Iten("Add").ID = 100
O
VVPhrases.Phrases(*Add").ID = 100

n Visual C++ (MFC):

VARIANT va,

VariantInit(&va);

va.bstrVal = SysAllocString(L"Add");
va.vt =VT_BSTR

m_VVPhrases.GetPhrases().Getltem(va).SetID(100);

See Also

None.

ActiveX Developer’s Guide 251

Properties, Methods, and Events

VVPhraseColl Collection M ethods

The VVPhraseColl Collection supports the following methods:
* Add

» Exists

* Remove

* RemoveAll

252 ActiveX Developer’s Guide

VVPhraseColl Collection

Add (VVPhraseCoall)

Creates a new phrase. By default the newly created phrase will become active immediately (if the
V'V PhrasesColl’'s Enabled property and the control’s Enabled property are set to True).

Syntax

VVPhrase = [VVPhrases. Phrases] Add(ByVal Nane As String, ByVal ID As Long,
ByVal Phrase As String, Opti onal ByVal Enabl ed As Bool ean)

Parameters

Name
String. A programmer assigned string nameto identify the Phrase object. You can use this nameto
refer back to the object within the Phr ase collection.

ID
Long. A programmer assighed number. This parameter enables you to associate a command or
group of commands with a number.

Text
String. The actual phrase that the control will recognize (Example: “Save Record”). This
parameter is not case-sensitive.

Enabled
Boolean. Enables/Disables the phrase. In Visual Basic this parameter is optional and defaulted a
True.

Return Values

VVPhrase
An instance of the newly created Phrase object that encapsulates the command.

Remarks

You cannot add two phrases with the same Name. The Name serves a unique identifier for the phras
object within the collection. However, you can add many phrases with the same ID number and with
the same Text.

ActiveX Developer’s Guide 253

Properties, Methods, and Events

Example

In Visual Basic:

" Add Commands

VVPhrasesl.Phrases.Add(“Begin”, 100, "Begin New Record")
VVPhrasesl.Phrases.Add(*Add”, 100, "Add New Record")
VVPhrasesl.Phrases.Add(“Edit”, 200, "Edit Record")
VVPhrasesl.Phrases.Add(“Delete”, 300, "Delete Record")
VVPhrasesl.Phrases.Add(“Trash”, 300, "Trash Record")

In Visual C++ (MFC):

‘Add Commands

m_VVPhrasesl.GetPhrases().Add(“Begin”,100,"Begin New Record",TRUE)
m_VVPhrasesl.GetPhrases().Add(“Add”, 100, "Add New Record", TRUE)
m_VVPhrasesl.GetPhrases().Add(“Edit”", 200, "Edit Record", TRUE)
m_VVPhrasesl.GetPhrases().Add(“Delete”, 300, "Delete Record", TRUE)
m_VVPhrasesl.GetPhrases().Add(“Trash”, 300, "Trash Record", TRUE)

See Also
“Remove (VVPhraseColl)" on page 257

254 ActiveX Developer’s Guide

VVPhraseColl Collection

Exists (VVPhraseColl)

Use this method to find out if a certain phrase is part of the collection.

Syntax

[Bool ean] = [VVPhrasesl. Phrases]. Exi sts(ByVal Key As VARl ANT)

Parameters

Key
VARIANT. The item identifier. This parameter can be numeric — indicating the ordinal position of
the item within the collection, or a string — indicating the text of the item.

Return Values

TRUE
The phrase exists in the collection;

FALSE
The phrase does not exist in the collection.

Remarks

None.

ActiveX Developer’s Guide 255

Properties, Methods, and Events

Example

In Visual Basic:

I f VWPhrasesl. Phrases. Exi sts("Del ete")
VWPhr asesl1. Phrases("Del et e"). Enabl ed
End If

True Then
Fal se

In Visual C++ (MFC):

VARI ANT va;

Variantlnit(&va);

va.bstrVal = SysAllocString(L"Delete”);
va.vt =VT_BSTR,;

if (VVPhrasesl.GetPhrases().Exists(va))
VVPhrasesl.GetPhrases().Getltem(va).SetEnabled(FALSE);

See Also

None.

256 ActiveX Developer’s Guide

VVPhraseColl Collection

Remove (VVPhraseColl)

Removes a Phr ase object from the collection.

Syntax

[WPhr ases. Phrases] . Renove(ByVal Key As Vari ant)

Parameters

Key
VARIANT. The item identifier. This parameter can be numeric — indicating the ordinal position of
the item within the collection, or a string — indicating the text of the item.

Return Values

None.

Remarks

Whenever you add a phrase to the control, the control creBtesse object to contain the command

text and adds it to théVPhraseColl Collection. There are two ways to remove a member of the
collection. One way is through the items command text. The other way is through the item's position
within the collection.

Example

In Visual Basic:

I f VWPhrasesl. Phrases. Exi sts("Del ete") = True Then
VVPhr asesl. Phrases. Renove(" Del ete")
End I f

ActiveX Developer’s Guide 257

Properties, Methods, and Events

In Visual C++ (MFC):

VARI ANT va,;
Variantlnit(&va);

va.bstrVal = SysAllocString(L"Add");
va.vt = VT_BSTR;

If (VVPhrasesl.GetPhrases().Exists(va) == TRUE)
VVPhrasesl.GetPhrases().Remove(va);

See Also

None.

258 ActiveX Developer’s Guide

VVPhraseColl Collection

RemoveAll (VVPhraseColl)

Removes al the VV Phrase objects from the collection.

Syntax
[VWPhr ases. Phrases] . RenoveAl |

Parameters

None.

Returns

None.

Remarks

Removes and destroys all phrase objectsin the collection. If you want to only temporarily disable
them, it is much faster to use the VVPhraseColl Collection’sEnabled property.

Example

In Visual Basic:

‘WPhrasesl. Phr ases. RenmoveAl | ‘

In Visual C++ (MFC):
‘ m_VVPhr asesl. Get Phrases(). RemoveAl | (); ‘

See Also
“Remove (VVPhraseColl)” on page 257

ActiveX Developer’s Guide 259

Properties, Methods, and Events

VVPhrase Object

VVPhrase Object Properties

The VVPhrase object supports the following properties:
» ActionDesc

» Description

» Enabled

« ID

* ItemData

* Name

* Text

260 ActiveX Developer’s Guide

V'V Phrase Object

ActionDesc (VVPhrase)

A programmer assigned description of the action that the program will take after the user speaks the
phrase. This property will be used later by other ViaVoice programsto give the user alist of commands
that your program will recognize.

Syntax
[Phrase] . ActionDesc = [String]

Parameters

7

Return Values

String
Any string value.

Remarks

The ActionDesc property does not have any effect on the functionality of the phrase object at thistime.
However, it isagood practice to set the value of this property in you programs since the future releases
of the SDK will contain programsthat will display alist of al the commandsin your application along
with the description, and the action description.

ActiveX Developer’s Guide 261

Properties, Methods, and Events

Example

In Visual Basic:

‘ VVPhrasesl.Phrases(“Save”).ActionDesc = “Save Current Record”

In Visual C++ (MFC):

VARIANT va,

VariantInit(&va);

va.vt = VT_BSTR;

va.bstrVal = SysAllocString(L“Save”);

VVPhrasesl.GetPhrases().Getltem(va).SetActionDesc(“Writes the current
record to the database.”);

See Also
“Description (VVPhrase)” on page 263

262 ActiveX Developer’s Guide

V'V Phrase Object

Description (VVPhrase)

A programmer assigned description of the command. This property will be used later by other
ViaVoice programs to give the user alist of commands that your program will recognize.

Syntax
[Phrase] . Description = [String]

Parameters
7

Return Values

String
Any string value.

Remarks

The Description property does not have any effect on the functionality of the Phrase object at this
time. However, it isagood practice to set the value of this property in you programs since the future
releases of the SDK will contain programs that will display alist of al the commandsin your
application along with the description, and the action description.

ActiveX Developer’s Guide 263

Properties, Methods, and Events

Example

In Visual Basic:

‘ VVPhrasesl.Phrases(“Save”).Description = “Save Current Record”

In Visual C++ (MFC):

VARIANT va,

VariantInit(&va);

va.vt = VT_BSTR;

va.bstrVal = SysAllocString(L“Save”);

VVPhrasesl.GetPhrases().Getltem(va).SetDescription(“Save Current
Record”);

See Also
“ActionDesc (VVPhrase)” on page 261

264 ActiveX Developer’s Guide

V'V Phrase Object

Enabled (VVPhrase)

Enables/disabl es speech recognition for a particular phrase.

Syntax

[Phrase] . Enabl ed = [Bool ean]
Parameters

”

Return Values

TRUE
(Default) Activates command recognition for a single phrase.

FALSE
Turns off recognition for a single phrase.

Remarks

If the user speaks the phrase and it is enabled, the VV Phrases control will fire the SpeechRecognized
event. If the phrase is disabled the control simply ignores the phrase.

Setting the collection’&nabled property to True/False will naiffect the value of thEnabled

property of each individual phrase. However, it will cause the control to ignore the command. In othel
words, if the PhraseBnabled property is True, and then you set the Collecti@mabled property to

False, the PhraseBnabled property will remain True but the control will not recognize it.

ActiveX Developer’s Guide 265

Properties, Methods, and Events

Example

In Visual Basic:

‘ VVPhrasesl.Phrases(“Speak”).Enabled = False

In Visual C++ (MFC):

VARIANT va,

VariantInit(&va);

va.bstrVal = SysAllocString(L"Speak”);
va.vt = VT_BSTR;

m_VVPhrasesl.GetPhrases().Getltem(va).Enabled = False;

See Also
VVPhraseColl's “Enabled (VVPhraseColl)” on page 248

266

ActiveX Developer’s Guide

V'V Phrase Object

ID (VVPhrase)

A programmer assigned identifier for the phrase.

Syntax

Phrase. ID = [| ong]
Parameters
Yds

Return Values

Long
Any long numeric value.

Remarks

The I D number does not have to be unique. It offers a more reliable way to refer to the command than
using the command text. For example, your program may have the same command in different
languages, but hasthe same I D for all versions of theitem. The | D number also enables you to group
similar commands by functionality, such as “Say Hello World,” and “Hello World.”

ActiveX Developer’s Guide 267

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub VVPhrasesl SpeechRecogni zed(ByVal Nane As String, ByVal ID As
Long, ByVal Phrase As String, UpdateU Text As Bool ean, ByVal BegTinme As
String, ByVal EndTime As String)

Sel ect Case ID
Case 100

MsgBox "Hel |l o Sue"
Case 101

MsgBox “Hello James”
End Select

End Sub

In Visual C++ (MFC):

void CVVPhrtest::OnSpeechRecognized(LPCTSTR Name, long ID, BSTR FAR
*Phrase, BOOL FAR *UpdateUIText, LPCTSTR BegTime, LPCTSTR EndTime)

{

switch (ID)
{
case 100:
MessageBox (“Hello World” ,"VVPhrases”,MB_OK);
break;
default:
break;

See Also

None.

268 ActiveX Developer’s Guide

V'V Phrase Object

|temData (VVPhrase)

Stores additional programmer-defined datawith an individual phrase.

Syntax
[Phrase].ltemData = [Variant]

Parameters
”

Return Values

Variant
Any values or object reference.

Remarks

This data value is not used by the Phr ases control at anytime. Instead, its meaning is only known by
the client application, which storesiit.

ActiveX Developer’s Guide 269

Properties, Methods, and Events

Example

In Visual Basic:
‘ Set VVPhrasesl.Phrases(“Save”).ltemData=VVTextBox1

In Visual C++ (MFC):
CVVTextBox VVTextBox1;

VARIANT val, va2;

VariantInit(&val);

VariantInit(&va2);

val.vt = VT_BSTR,;

va2.vt =VT_BYREF | VT_DISPATCH,;
val.bstrVal = SysAllocString(L"Save");
VVTextBox1.AddRef();
va2.ppvUnknown = &VVTextBox1,;

VVPhrasesl.GetPhrases().Getltem(val).SetltemData(va2);

See Also

None.

270 ActiveX Developer’s Guide

V'V Phrase Object

Name (VVPhrase)

A programmer-assigned string name for the Phrase object.
Syntax

[Phrase] . Name = [String]

Parameters

”

Return Values

String
Any string value. The name property is not case sensitive.

Remarks
You can use this name later in your code to search for a particular Phr ase object.

Although you can change the name of the Phrase object at any time, to find the object in the Phrase
Collection, you must use the name assigned at the time when the object was first created.

ActiveX Developer’s Guide 271

Properties, Methods, and Events

Example

In Visual Basic:
Di m Phrase As VWPhr ase

VVPhrasesl.AddPhrase “Hello”,100, “Say Hello World”, TRUE
VVPhrasesl.AddPhrase “Goodbye”, 150, “Say Goodbye World”, TRUE
For Each Phrase In VVPhrasesl.Phrases

Listl.Addltem Phrase.Name
Next

n Visual C++ (MFC):

VARIANT va,

VariantInit (&va);

va.vt = VT_l4;

for (va.lVal=1; va.1lVal<=
m_VVPhrases.GetPhrases().GetCount();va.1Val++)

{
}

TRACE("%s\n”, m_VVPhrases.GetPhrases().Getltem(va).GetText());

See Also

“Add (VVPhraseColl)” on page 253
“AddPhrase (VVPhrases)” on page 234

272 ActiveX Developer’s Guide

V'V Phrase Object

Text (VVPhrase)

Exact text of the user speech to be recognized.

Syntax
[Phrase] . Text = [String]

Parameters

7

Return Values

7

Remarks

None.

Example

In Visual Basic:

‘ VVPhrasel.Phrases(“Save”).Text="Save me now”

In Visual C++ (MFC):

VARIANT va,

VariantInit(&va);

va.vt = VT_BSTR;

va.bstrVal = SysAllocString(L"Save");

VVPhrasesl.GetPhrases().Getltem(va).SetText("Save me now");

ActiveX Developer’s Guide

273

Properties, Methods, and Events

See Also
None.

274 ActiveX Developer’s Guide

V'V Phrase Object

VVPhrase Object Methods

There are no methods for this object.

VVPhrase Object Events

There are no events for this object.

ActiveX Developer’s Guide 275

Properties, Methods, and Events

276 ActiveX Developer’s Guide

Chapter 12 Phrases Control Frequently Asked
Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice Phr ases
Control.

Can | put more than one phrase control on a form?

Yes. Infact it can be more efficient to group related phrases in separate controls.

What char actersare permitted in a phrase?

The characters permitted in a phrase can vary depending on the SAPI speech engine you are using.
Asageneral rule, however, non-printing ASCII characters and punctuation marks could render a
phrase unrecognizable. In the case of the IBM speech engine, conventional punctuation marks
such as the comma, apostrophe, and exclamation point usually do not interfere with recognition
unless they are placed at or near the beginning of aword.

How can | improve load time when adding many phrasesto a VVPhrases control?

When the Phr ases collection of the control is enabled, each call to AddPhrase or Phrases.Add
updates the speech engine with the new phrase immediately. If you are adding many phrasesto the
control at the sametime it is more efficient to set Phrases.Enabled = False, perform all the
AddPhrase callsyou desire, and set Phrases.Enabled = True when finished. The speech engine will
then be updated only once — after all the phrases have been added.

How can | improve phrase recognition?

The fewer phrases added to an enabled phrase control, the fewer possibilities the speech engine
has to sort through to find a match with the user’s speech. Also, the more distinct the phrases are
sound and spelling the better the likelihood that the speech engine will not confuse them.

ActiveX Developer’s Guide 277

Phrases Control Frequently Asked Questions

278 ActiveX Developer’s Guide

Chapter 13 | ntroduction to the Grammar

Control

The ViaVoice Context-Free Grammar Control (VVCFGram) isan ActiveX control that enables
developers to use a compiled context-free grammar file to add robust command recognition to their
application. The main idea behind the control is that the devel oper provides the control with a
compiled grammar file, and the control will notify the developer when the user speaks a command

constructed from the grammar.

VVCFGram Object Hierarchy

Thefollowing diagram shows the components of the VVCFGram Control.

() W CF Gram
CF Grarn _
. W UIClient
() WWEngine
“Engine
W Annotation FAnnotation
UlServer
? glj Frocess
O WAAnnotation # W ANnotation I 8
ActiveX Developer’s Guide 279

Introduction to the Grammar Control

280 ActiveX Developer’s Guide

Chapter 14 Getting Started with the Grammar
Control

Thefollowing isatutorial on how to incorporate the VV CFGram control into your Visual Basic or
Visual C++ applications. Thistutoria is designed to present you with the most commonly used
properties and events in the VVCFGram control.

Creating an I nstance of the Control

In Visual Basic:
To add the VVCFGram control to your application, do the following:

1. From the Project menu, choose Components.
The Components dialog box, Figure 20, appears. The Components dialog lists all the ActiveX
Controls that you can use in your application.

ActiveX Developer’s Guide 281

Getting Started with the Grammar Control

Components

Controls l Designers] Inzertable I:Il:uiectsl

IEM Viak'nice Engine Control ﬂ
| IEM YiaVoice Grammar Contral

IEM YiaVoice Phrases Conkrol

IEM YiaVoice TextBox Control

IEM YiaVoice User Interface Control E

icmfilker 1.0 Twpe Library

icwhelp 1.0 Tyvpe Library = E:,

IE Popup Menu

IE Super Label i]

IE Timer

Ikonic Button Control module

kodak Image Admin Conkrol |

kKodak Image Edit Control Jﬂ Erowse...
J | : [Selected Items Only

IBM YiaYoice Grammar Conkral
Location: C:WIAYVOICE\BIMIWWGRAMMAR, DLL

] Cancel

Figure 20. Component Selection Dialog - Visual Basic

2. Select IBM ViaVoice Grammar Control from the list and choose OK.
Visual Basic adds the control to your project, and adds a new icon to the toolbar (Figure 21).

282 ActiveX Developer’s Guide

Creating an Instance of the Control

Figure21. VVCFGram Control Toolbar Icon

3. Add aninstance of the VVCFGram control to your form.
The VVCFGram control is an invisible control at run time.

In Visual C++ (MFC):
To add the VVCFGram control to your MFC project, do the following:

1. From the Project menu, select Add To Project, then select Componentsand Controls.
The Components and Controls Gallery dialog box, Figure 22, appears.

ActiveX Developer’s Guide 283

Getting Started with the Grammar Control

Components and Controlz Gallery E

Chooge a component ta insert into your project:

Look. ir: |_~JHegi3terEd.&ctive}{ Contraols ﬂ | |=_*-fi| poo- E=S

i |EM Vigvoice Enor Correction Contral ﬁ |EM ViaYoice TextBox |

g% EBM Yiaoice Grammar Control ﬁ IBEM ViaWoice Uszer Inte
|EM ViaVoice Grammar Lite Contral Eﬁ |EM Viat oice Virtual We

'ﬂ |EM YiaVoice Phrazes Contral cf| InztallE ngineCH Object
ﬂ IEM ViaVoice Phrases Lite Control o Label Object
Eﬁ |BM ViaVoice RichEdit Contral x| LM Runtime Contral
4 [2
File narne: |IEM Yiavoice Grarmar Control. lnk Inzert

IBM iaVoice Grammar Control Cloze

Fath to contral:

|e: \Wia cicebinkswwararnrnar. dl

Figure 22. Insert ActiveX Control Dialog Box - Visual C++

2. Double-click the Registered ActiveX Controlsfolder in the dialog box.
3. Select the IBM ViaVoice Grammar Control icon in the list of controls, then click I nsert.

284 ActiveX Developer’s Guide

Creating an Instance of the Control

A confirmation message box appears, asking “Insert this component?” A confirmation message
box appears, asking “Insert this component?”

4. Respond to the confirmation message box by chod3ig
The Confirm Classes dialog box, Figure 23, appears listing the component¥/M@kesGr am
control: CVVCFGram, CVVAnnotation, CVVRule, CVVBookmarkColl, CVVBookmark,
CVVAnnotationColl, CVVEnNgine, and CVVRuleColl. (The CVVRule, CVVRuleCall,
CVVBookmarkColl, and CVVBookmark will be implemented in the future.)

Confirm Clazses K E3

The checked clazz(ez] will be generated from 0K
the ActiveX Contral. Click an a clazz name ta
browsze or edit itz attributes.

Cancel

v CYEngine
[w] CWd ot ation

[CWWRule

[CWWB ook arkCall
CWB cokM ark, |
[w] CWdnnatationCall

WICYYRuleCal hd

Clazz name: Baze class:
CWCFGram Ci'nd

Header file:
WiCFGram. h

Implementation file:
YWiCFGram.cpp

Figure 23. Confirm Classes Dialog Box

ActiveX Developer’s Guide 285

Getting Started with the Grammar Control

5. Click OK inthe Confirm Classes dialog box.

6. Close the “Components and Controls Gallery” dialog box.
If you examine the Project Workspace window in the class view you will notice eight new classes:
VVCFGram control: CVVCFGram, CVVAnnotation, CVVRule, CVVBookmarkColl,
CVVBookmark, CVVAnnotationColl, CVVEnNgine, and CVVRuleColl (assuming you accepted
the default names for the class in the Confirm Classes dialog box).

7. In the resource view of your Project Workspace window double-click the dialog resource entry
where you wish to insert théV CFGram control.

TheVVCFGram icon, Figure 24, appears in the Controls toolbar.

B - |
ITAHEMIE]D
X @ EEER @ F
$ - EF] [E
S H 26 € &

Figure24. VVCFGram I con in the Controls Toolbar

8. Add an instance of théVCFGram control to the dialog box.
After you add the/VVCFGram control to your dialog you can invoke Class Wizard to create a
member variable for you class of type CVVCFGram. You might also decide to capture the events
in the control by adding Event handlers to your dialog class. To add Event handlers, click the
VVCFGram control with the right mouse button, then seleeents from the pop-up menu.

286 ActiveX Developer’s Guide

Drag-Drop-n-Go Support

Drag-Drop-n-Go Support
The VVCFGram control fully incorporates IBM’s Drag-Drop-n-Go technology. Through this
technology you can add the control to your application and use it without having to write many lines of

code.

The VVCFGram control has the following Drag-Drop-n-Go properties:

Property Type Default Value
AutoConnect | Boolean | True
AutoUl Boolean | True
AutolL oad Boolean | True

AutoConnect when set to True causes the control to automatically search for a speech recognition
engine at run time and connect to it. Thisis necessary before the control can recognize commands and
phrases. If you set this property to False, you must connect manually by calling the Event.Connect
method of the control.

AutoUl, when set to True, causes the VVCFGram control to display and manipulate the ViaVoice
User Interface Server. For more information on the Viavoice User | nterface Server, refer to the
ActiveX User |nterface control documentation.

AutolL oad, when set to True, causes the control to automatically load a grammar file. Use the
Grammar Sour ce property to specify the path to the grammar file. Setting this property to Trueis
equivalent to issuing the L oadFromSource method at run time.

By leaving the property values set to their default values you guarantee that the control will connect to
the speech recognition engine and display and interact with the IBM ViaVoice User I nterface Server
automatically. Furthermore, if you specify agrammar file (by setting the Grammar Sour ce property),
the control will automatically load the compiled grammar file and activate it.

ActiveX Developer’s Guide 287

Getting Started with the Grammar Control

L oading a Grammar

Thefirst step in using the VV CFGram control is to specify the grammar source. In thisrelease the
grammar source is a compiled grammar file, whether it uses IBM native grammar format, or SAPI 4.0
format. (For information on compiling grammars, see the SMAPI Reference or the SAPI Reference
included with this SDK). Guide Simply set the Grammar Sour ce property to the path of the grammar
file.

If you set the AutoL oad property to True, the control will automatically load the grammar file and
activate it. Otherwise, you must issue the L oadFromSour ce method at run time, as seen below.

In Visual Basic:

VVCFGraml.GrammarSource = “C:\Grammars\sample.grm”
VVCFGraml.LoadFromSource

In Visual C++ (MFC):

VVCFGraml.SetGrammarSource(“C:\\Grammars\\sample.grm”);
VVCFGraml.LoadFromSource();

The control then is ready to interpret expressions from the grammar file. As soon as the control hears
the user speak one of the phrases defined in the grammar, it triggers the SpeechRecognized event. You
can then write code in this event to handle the command in your application.

288 ActiveX Developer’s Guide

Loading a Grammar

In Visual Basic:

ByvVal 1D As Long, ByVal Phrase As String, _
Updat eUl Text As Bool ean, ByVal BegTine As String,
ByVal EndTime As String)

I f Phrase="Exit Program Then
Cal | Cl oseDat abase
Cal | ExitProgram

End |f

End Sub

Private Sub WCFG anl_SpeechRecogni zed(ByVal Nane As String,

In Visual C++ (MFC):

voi d CVWG ant est: : OnSpeechRecogni zed(LPCTSTR Nane,

LPCTSTR BegTi me, LPCTSTR EndTi ne)
{

If (wescnp (Phrase, L"Exit Prograni) ==0)

Cl oseDat abase() ;
Exi t Program();
}
}

long I D, BSTR FAR *Phrase, BOOL FAR *Updat eUl Text,

ActiveX Developer’s Guide

289

Getting Started with the Grammar Control

Enabling/Disabling a Grammar

During the execution of your application, it may be necessary at times to turn on or off speech
recognition for a particular grammar.

The VVCFGram control has an Enabled property. This property lets you turn on or off speech
recognition for the current grammar.

290 ActiveX Developer’s Guide

Using External Lists

Using External Lists

It ispossible to create agrammar that contains a placeholder for words that can only be resolved at run

time. For example, suppose that in your program you wish the user to issue the following verbal

commands: “Delete Files from Temp”, or “Copy Files From Temp to Download.” In these two
examples the user is able to copy files or delete files from any directory on his or her computer.
However, it is not possible to account for all the directory names the user might have at the time the
grammar is compiled (at design time). Instead, it is possible to create a grammar with a placeholder fi
the directory name, then at run time after loading the grammar, your program can provide the engine
with a list of words to use in the directory placeholder. The source code for such a grammar might loo
like the following:

In TXT format;

[Gramar]

| angi d=1033

type=cfg

[Lists]

=Di rect oryA

=DirectoryB

[<Start>]

<Start> = Delete [opt] <object> from <DirectoryA>
<Start> = Copy [opt] <object> from <DirectoryB>
<object> = Files

<object> = Al'l

ActiveX Developer’s Guide 291

Getting Started with the Grammar Control

In BNF format:

EXTERN <Di r ect or yA>
EXTERN <Di r ect or yB>

<start> = <del ete> | <copy>.

<del et e>=Del et e <obj ect>? from <Di rect oryA>.
<copy>=Copy <object>? from <DirectoryA> to <DirectoryB>.

<object> = FILES | ALL.

The placeholdersin agrammar file are called External Lists. Each external list has a unique name. In
the example above, “DirectoryA” and “DirectoryB” are external lists. The grammar control has an
ExternLists property that enables you to manage the words in an external list.

The ExternLists property in the grammar control provides an instance dPiinase Collection

Group Object (VVPhraseCollGroup). Through this object you are able to enable, disable, and
enumerate external lists in your control. For example, to provide words for the “DirectoryA” and
“DirectoryB” external lists in the grammar example above, you would first load the grammar using the
L oadFromSource method as normally done. Then, add words to the two external lists as follows:

In Visual Basic:

With VVCFGraml.ExternLists(“DirectoryA”)
Add “C:\Junk”, 100, “Junk”, True
Add “C:\Temp”, 200, “Temp”, True

End With

With VVCFGraml.ExternLists(“DirectoryB”)
Add “C:\Download”,100, “Download”, True
Add “C:\Temp”,200,"Temp”, True
Add “C:\Windows",300, “Windows”, True
Add “C:\Windows\System”,300,"System”, True
End With

292 ActiveX Developer’s Guide

Using External Lists

In Visual C++ (MFC):

CWWPhr aseCol | DirectoryA
CWWPhr aseCol | DirectoryBb;

VARI ANT val t emA
Variantlnit(&vaitemd);

val temA vt =VT_BSTR,;
valtemA.bstr.Val=SysAllocString(L “DirectoryA”);

DirectoryA = m_VVCFGram1.GetExternLists().Getltem(valtemA);
DirectoryA.Add(L“C:\\Junk”, 100, L“Junk”, TRUE);
DirecotryA.Add(L“C:\\Temp”, 200, L“Temp”, TRUE);

VARIANT valtemB;

VariantInit(&valtemB);

valtemB.vti=VT_BSTR,;
valtemB.bstrVal=SysAllocString(L“DirectoryB”);

DirectoryB = m_VVCFGram1.GetExternLists().Getltem(valtemB);
DirectoryB.Add(L“C:\\Download”,100, L“Download”, TRUE);
DirectoryB.Add(L“C:\\Temp”,200,L“Temp”, TRUE);
DirectoryB.Add(L“C:\\Windows”,300, L“Windows”, TRUE);
DirectoryB.Add(L“C:\\Windows\\System”,300,L“System”, TRUE);

Adding words or phrases to each external list isidentical to adding phrases to the phrases control (see
“Adding Phrases” on page 212 for more information). The first parameter Adtheommand is the
unique name of the phrase item within the phrase collection. The second parameter is a numeric ID f
the phrase. (This number does not have to be unique.) The third parameter is the actual word or phre
the user will speak to complete the command. In the example above, the statement. Add
“C:\Windows\System”, 300, “System”, True tells the grammar control that the user can speak the
phrase “Copy Files from Temp to System.” The fourth parameter tells the grammtar & the

phrase is enabled (True) or disabled (False).

You can enable or disable phrases within the external list at any time by chandtmaibied
property of the phrase item as follows:

ActiveX Developer’s Guide 293

Getting Started with the Grammar Control

In Visual Basic:
‘ VVCFGraml.ExternLists(“DirectoryB”)(“C:\Windows").Enabled = False

In Visual C++ (MFC):

VARIANT vaExtName;

VariantInit(&vaExtName);

vaExtName.vt = VT_BSTR;

vaExtName.bstrVal = SysAllocString(L“DirectoryB”);

VARIANT vaPhrase;

VariantInit(&vaPhrase);

vaPhrase.vt = VT_BSTR;

vaPhrase.bstrVal = SysAllocString(L“C:\Windows");
m_VVCFGraml.GetExternLists().Getltem(vaExtName).Getltem(vaPhrase).SetEna
bled (FALSE);

Changing the Enabled property for a phrase causes the grammar control to unload the external list that
contains that phrase and reload it without the disabled phrase. You can also disable the entire list by
issuing the following command:

In Visual Basic:
VVCFGraml.ExternLists(“DirectoryB”).Enabled = False

In Visual C++ (MFC):

VARIANT vaExtName,

VariantInit(&vaExtName);

vaExtName.vt = VT_BSTR;

vaExtName.bstrVal = SysAllocString(L“DirectoryB”);
m_VVCFGraml.GetExternLists(vaExtName).SetEnabled(FALSE);

294 ActiveX Developer’s Guide

Chapter 15

Thefollowingisalist of properties, methods, and events pertaining to the VVCFGram Control.

Properties, Methods, and Events

Grammar Control Properties

The ViaVoice Grammar control supports the following properties:

Alternates
Annotations
AutoConnect
AutoLoad
AutoUI

Enabled

Engine
ExternLists
GrammarFormat
GrammarSource
Refresh

Rules
SourceType

IBM SDK for Windows

295

Properties, Methods, and Events

Alternates (VVCFGram)

7

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
7

Return Values
”

Remarks

296

IBM SDK for Windows

Grammar Control Properties

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also

IBM SDK for Windows

297

Properties, Methods, and Events

Annotations (VVCFGram)

7

Syntax

In Visual Basic:
‘ VVAnnot ati onCol | = [WCFG anj . Annot ati ons ‘

In Visual C++ (MFC):
‘ CWAnnot ati onCol I AnnCol |l = [CVWCFG anj . Annot ations(); ‘

In Visual C++:

| VWAnnot ati onCol | *pl AnnCol | ;
HRESULT hr = pWCFG am -> get _Annot ati ons(&pl AnnCol |);

Parameters
”

Return Values
”

Remarks

Grammars enable you to associate a word with a related piece of information. When the VVCFGram
control recognizes a phrase and fires the SpeechRecognized event, it also refreshes the Annotation
collection. This collection contains the annotations for each of the words in the phrase recognized. The
Annotations property returns an Annotation Collection object.

298 IBM SDK for Windows

Grammar Control Properties

The Annotation Collection containsinstances of the Annotation object, and each of which containsa
word. The Annotation Collection object (VVAnnotationColl) has two methods for navigating
through its members: Count and Item. The following code shows you how to retrieve the annotations
in the SpeechRecognized event.

Although this property is available throughout the lifetime of the control, its value only makes sense
when SpeechRecognized event takes place.

Example

In Visual Basic:

Private Sub WCFG anl_SpeechRecogni zed(ByVal Nane As String,
ByVal | D As Long, Phrase As String,
Updat eUl Text As Bool ean, _
ByVal BegTime As String, ByVal EndTine As String)

Di m oAnnot ati on As VVAnnot ati on
Di m sAnnotation As String

I f VWCFG aml. Annot ati ons. Count > 0 Then
For Each oAnnotation In VWCFG aml. Annot ati ons
sAnnot ati on = oAnnot ati on. Word

Next

End | f

End Sub

IBM SDK for Windows 299

Properties, Methods, and Events

In Visual C++ (MFC):

BSTR FAR *Phrase, BOOL FAR *Updat eUl Text,
LPCTSTR BegTi me, LPCTSTR EndTi ne)
{

CString sAnnotation;

I f (m VWCFG am Get Annot ati ons() . Get Count > 0)

voi d CVWPhrtest:: OnSpeechRecogni zed(LPCTSTR Nane, |ong |D,

{
for (int i=1; i <= m VWCFG anl. Get Annot ati ons(). Get Count ();
i ++)
{
VARI ANT va;
Variantlnit(&va);
va.iVal =1i;
va.vt = VT_I2;
m VWCFGr aml. Get Annotations(). Getltem(va). Get Wrd
(&sAnnot ati on);
}
}
}
300 IBM SDK for Windows

Grammar Control Properties

In Visual C++:

*Updat eU Text, BSTR BegTi ne, BSTR EndTi ne)

{
| VWWAnnot at i onCol | *pl AnnCol | ;

| ong | Count = 0;
HRESULT hr = S_CK;

if (FAILED(hr)) return hr;

hr = pl AnnCol | - >get _Count (& Count) ;
if (FAILED(hr)) return hr;

if (ICount > 0)
{
for (long I=1; | <= 1Count; |++)

{
VARI ANT val t em

Variantlnit(&valten);

va.vt = VT_I4,

va.lval =1;

| VWAnnot at i on *pl Ann;

BSTR sAnnot ati on;
if (FAILED(hr)) return hr;

pl Ann- >get _Wor d(&sAnnot ati on);

//Place code to use annotati on here

HRESULT SpeechRecogni zed (BSTR Name, |ong I D, BSTR *Phrase, VAR ANT_BOOL

hr = pWCFG am >get _Annot ati ons(&pl AnnCol |);

hr = pl AnnCol | - >get _Item(val t em &pl Ann);

IBM SDK for Windows

301

Properties, Methods, and Events

See Also
“SpeechRecognized (VVCFGram)” on page 339

302 IBM SDK for Windows

Grammar Control Properties

AutoConnect (VVCFGram)

Automatically connects to the speech recognition engine when created.

Syntax

In Visual Basic:
‘ [WCFGrani . Aut oConnect = [Bool ean]

In Visual C++ (MFC):

VARI ANT_BOOL = [CWCFG ani . Get Aut oConnect ()
[CWCFGr anj . Set Aut oConnect (VARI ANT_BOQOL)

In Visual C++:

HRESULT[pl WCFGram] -> get _Aut oConnct (VARI ANT_BOOL *)
HRESULT[pl WCFGr am] -> put _Aut oConnect (VARI ANT_BOQOL)

Parameters
”

Return Values
TRUE
(Default) The control automatically finds and connects to a speech engine.

FALSE
The control does not connect to a speech engine. You must issue the Connect method to cause the
control to connect to the engine.

Remarks

Before the VVCFGram control can recognize commands, it needs to connect to a speech engine.
When this property is set to True the control will try to connect to an engine with the following

IBM SDK for Windows 303

Properties, Methods, and Events

properties: IBM Manufacturer, continuous speech engine, with dictation, limited domain grammar, and
context free grammar support. If you wish to override the default behavior, set this property to False;
then at run time modify the propertiesin the Engine object and call the Connect method.Changing the
value of this property at run time has no effect. This property is meant to be used only at design time.

If AutoConnect is True, the control will connect to the speech engine before the Form_L oad event
takes placein Visual Basic and before the I nitDialog method gets executed in an MFC application.

Examples

None.

See Also
“Engine (VVCFGram)” on page 311

304 IBM SDK for Windows

Grammar Control Properties

AutoL oad (VVCFGram)

Loads a binary grammar file at run time.

Syntax

In Visual Basic:
‘ [WCFGran] . Aut oLoad = [Bool ean]

In Visual C++ (MFC):

VARI ANT_BOOL = [CWCFGr am . Get Aut oLoad();
[CWCFGr anj . Set Aut oLoad(VARI ANT_BOQOL)

In Visual C++:

HRESULT [pl WCFGran] ->get _Aut oLoad(VARI ANT_BOOL *)
HRESULT [pl WCFGr an] ->put _Aut oLoad(VARI ANT_BOOL)

Parameters
”

Return Values

TRUE
(Default) Automatically load abinary grammar file at run time. You must set the
Grammar Sour ce property to the full path of the binary file.

FALSE
VVCFGram does not load the binary grammar file automatically at run time. To load the
grammar file you must issue the L oadFromSour ce method.

IBM SDK for Windows 305

Properties, Methods, and Events

Remarks

You must specify the path to the grammar by setting the value of the Grammar Sour ce property.
AutoL oad only happens once when the control isfirst created. Changing the Grammar Sour ce after
AutoL oad has occurred does not automatically load the new file. To activate the new file, smply issue
the L oadFromSour ce method.

Examples

None.

See Also
“GrammarSource (VVCFGram)” on page 320

306 IBM SDK for Windows

Grammar Control Properties

AutoUl (VVCFGram)

Displays and interacts with the IBM ViaVoice User | nterface Server.

Syntax

In Visual Basic:
‘ [WCFGrani . Aut oUl = [Bool ean]

In Visual C++ (MFC):

VARI ANT_BOOL = [CWCFGr anj . Get Aut oUl ()
[CWCFG an . Set Aut oUl (VARI ANT_BOOL)

In Visual C++:

HRESULT[pl WCFGr anj - >Get _Aut oUl (VARI ANT_BOOL *)
HRESULT[pl WCFGr ani - >Put _Aut oUl (VARI ANT_BOOL)

Parameters
”

Return Values

TRUE
(Default) VVCFGram displaysthe User Interface Server and interacts with it automatically.

FALSE
VVCFGram does not display the User I nterface Server. It does not interact automatically with it
either (if another control displaysthe User | nterface Server, for example).

Remarks

If multiple instances of the VVCFGram control have AutoUl set to True, the User I nterface Server
only gets created once, and all the instances of the control interact with the same User Interface

IBM SDK for Windows 307

Properties, Methods, and Events

Server. If you prefer not to display the User I nterface Server or not to have the VVCFGram control
interact with it automatically, set this property to False. When AutoUl is True, the VVCFGram
automatically updates the following components: Microphone, Word History, and Volume Level.

Examples

None.

See Also

Chapter 18, “Introduction to the User Interface Control” on page 319.

Refer to the flowing chapters for more information about ViaVoldeer | nterface Control:
Chapter 25, “Introduction to the User Interface Control” on page 497

Chapter 26, “Getting Started with the User Interface Control” on page 499

Chapter 27, “Classes, Structures, and Enumerations” on page 533

Chapter 28, “Properties, Methods, and Events” on page 561

Chapter 29, “User Interface Control Frequently Asked Questions” on page 629

308 IBM SDK for Windows

Grammar Control Properties

Enabled (VVCFGram)

Enables/Disables command recognition.

Syntax

In Visual Basic:
‘ [WCFGrani . Enabl ed = [Bool ean]

In Visual C++ (MFC):

VARI ANT_BOOL = [CWCFG am . Get Enabl ed()
[CWCFG anj . Set Enabl ed (VARI ANT_BOQL)

In Visual C++:

HRESULT [pl WCFGranm] - >get_Enabl ed(VARl ANT_BOOL *)
HRESULT [pl WCFG an] ->put _Enabl ed(VARl ANT_BOQL)

Parameters
”

Return Values

TRUE
(Default) VVCFGram listens for commands.

FALSE
VVCFGram does not listen for commands.

Remarks

Changing the value of this property does not unload the grammar from memory, but only deactivates
it.

IBM SDK for Windows 309

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub Toggl eSpeech_Click ()
VWCFG aml. Enabl ed = Not VVCFG aml. Enabl ed
End Sub

In Visual C++ (MFC):

voi d SpeechEnabl edToggl e()
{

}

m VWCFGr am Set Enabl ed(! m VWCFG am Get Enabl ed()) ;

In Visual C++:

voi d SpeechEnabl edToggl e()

{ VARI ANT_BOOL bVval ;
pl WCFG am - >get _Enabl ed(&BVal) ;
pl WCFG am - >put _Enabl ed(bVal);

}

See Also

None.

310

IBM SDK for Windows

Grammar Control Properties

Engine (VVCFGram)

Contains a reference to the ViaVoice Engine control (VVEnNgine).

Syntax

In Visual Basic:
‘ [WCFG anm . Engi ne

In Visual C++ (MFC):

CWENgi ne = [CWCFG anj . Get Engi ne()
[CWCFG ani . Set Engi ne(CYVENngi ne)

In Visual C++:

HRESULT [pl WCFGran] ->get _Engi ne(l VWEngi ne **)
HRESULT [pl WCFGran] ->put _Engi ne(l VWEngi ne *)

Parameters

7

Return Values

None.

Remarks

If AutoConnect is True, the engine property will refer to a connected Engine object at run-time;
otherwise, the Engine object is disconnected. When AutoConnect is False, the desired properties of
the engine can be set — for instance the speaking style as discrete or continuous — and then
Engine.Connect can be called to start up a speech engine with the desired attributes.

IBM SDK for Windows 311

Properties, Methods, and Events

The Engine property is actually holding animplicitly created ActiveX control (VVEnNgine), which can
also be created separately. Inserting aVV Engine control in a project enables you to set the engine
properties on this control, call connect, and then assign the resulting connected engine to multiple
VVPhrases, VVCFGram, and VVTextBox controls. The AutoConnect or Autol nit property must
be False for all controls besides the VV Engine control, however. Then the VVEngine control can be
assigned to the writable engine property of VVPhrases, VVTextBox, and VVCFGram.

Example

In Visual Basic:

Private Sub Form Load()

VWVCFG anil. Engi ne. NeedsDi ctation = True

VWCFGr aml. Engi ne. Audi oSour ceType = vvFi xedAudi o
VWWCFG anl. Engi ne. Connect

End Sub

In Visual C++ (MFC):

void Start Engi ne()
{
m WCFGr am Get Engi ne() . Set NeedsDi ct ati on (TRUE)

m_VVCFGr am Get Engi ne() . Set Audi oSour ceType(vvFi xedAudi o) ;
m VWCFGram Get Engi ne() . Connect () ;

}

312 IBM SDK for Windows

Grammar Control Properties

In Visual C++:

voi d Start Engi ne()
{

| VENgi ne *pl VWEnNQi ne;
HRESULT hr;

hr = pl WCFG am >get _Engi ne(&pl VVEngi ne) ;
if (FAILED(hr)) return hr;

pl VWENngi ne- >put _NeedsDi ct ati on(VARl ANT_TRUE) ;
pl VWEngi ne- >put _Audi oSour ceType(vvFi xedAudi 0) ;
pl VWEngi ne- >Connect () ;

See Also

Refer to the ViaVoice Engine Control Guide for more information.

IBM SDK for Windows 313

Properties, Methods, and Events

ExternLists (VVCFGram)

Accesses the Phrase Collection Group object (1 VVPhraseCollGroup) inthe Grammar control.

Syntax

In Visual Basic:
‘[WCFGran‘].ExternLists ‘

In Visual C++ (MFC):
‘ CVWWPhr aseCol | Group = [CWCFGram . Get Ext ernLi sts ‘

In Visual C++:
‘ HRESULT [pl WCFGran] ->get _ExternLists(lVVPhraseColl G oup **) ‘

Parameters

7

Return Values

None.

Remarks

You can use this object to provide external lists for the control at run time. For a complete description
of this property and how to use external lists see the section titles “Using External Lists” in this
chapter. ThéVVVPhraseCollGroup exposed through this property is a groufPlofase Collections.
The Phrase Collection object is discussed in detail on “Adding Phrases” on page 212.

314 IBM SDK for Windows

Grammar Control Properties

Example

In Visual Basic

With VVCFGraml.ExternLists(“DirectoryA”)
Add “C:\Junk”, 100, “Junk”, True
Add “C:\Temp”, 200, “Temp”, True

End With

With VVCFGraml.ExternLists(“DirectoryB”)
Add “C:\Download”,100, “Download”, True
Add “C:\Temp”,200,"Temp”, True
Add “C:\Windows”,300, “Windows”, True
Add “C:\Windows\System”,300,"System”, True
End With

n Visual C++ (MFC):

CVVPhraseColl DirectoryA,;
CVVPhraseColl DirectoryB;

VARIANT valtemA

VariantInit(&vaitemA);

valtemA.vti=VT_BSTR,;
valtemA.bstr.Val=SysAllocString(L “DirectoryA”);

DirectoryA = m_VVCFGraml.GetExternLists().Getltem(valtemA);
DirectoryA.Add(L“C:\Junk”, 100, L“Junk”, TRUE);
DirecotryA.Add(L“C:\Temp”, 200, L“Temp”, TRUE);

VARIANT valtemB;

Variantlnit(&valtemB);

valtemB.vti=VT_BSTR,;
valtemB.bstrVal=SysAllocString(L “DirectoryB”);

DirectoryB = m_VVCFGraml.GetExternLists().Getltem(valtemB);
DirectoryB.Add(L“C:\Download”,100, L“Download”, TRUE);
DirectoryB.Add(L“C:\Temp”, 200, L"Temp”, TRUE);
DirectoryB.Add(L“C:\Windows”, 300, L“Windows", TRUE);
DirectoryB.Add(L“C:\Windows\System”, 300, L"System”, TRUE);

IBM SDK for Windows

315

Properties, Methods, and Events

In Visual C++:

HRESULT hr;
| VWPhr aseCol | Group *pExtLi sts;
hr = pl WCFG am >get _Ext er nLi st s(& Ext Li sts);

if (FAILED(hr)) return hr;

VARI ANT va;

Variantlnit(&va);

va.vt = VI_BSTR

va. bastrBal = SysAllocString(L"Directoryl");

VARI ANT_BOOL bExi st s;
hr = pExtLists->Exists(va, &Exi sts);

if (bExists == VARI ANT_TRUE)
{
| VWPhr aseCol | *plLi st;
pExtLi sts->get_Item(va, &Li st);
pLi st ->put _Enabl ed(VARI ANT_FALE) ;

}

See Also

Refer to the following chapters for more information about the ViaVoice Engine Control:
Chapter 14, “Using External Lists” on page 291

316 IBM SDK for Windows

Grammar Control Properties

Grammar Format (VVCFGram)

Specifies the format of the Grammar Sour ce.

Syntax

In Visual Basic:
‘ [WCFG am . Grammar For mat = [Enum VVFor mat Const ant s]

In Visual C++ (MFC):

Enum VWVFor mat Const ants = [CWCFGr anj . Get G- amar For mat ()
[CWCFGr an . Set Gr ammmar For mat (Enum VVFor mat Const ant s)

In Visual C++:

HRESULT [pl WCFGr am - >get _Gr anmar For mat (Enum VWVFor nat Const ants *)
HRESULT [pl WCFG am] - >put _Granmmar For mat (Enum VVFor mat Const ant s)

Parameters
”

Return Values

None.

Remarks

This value tdllsthe VV CFGram control how to load the Grammar Sour ce. It tells the grammar
control if the Grammar Sour ce represents a compiled grammar, or a grammar source, and whether it
uses |IBM native grammar format, or SAPI 4.0 format. (For information on compiling grammars, see
the SMAPI Reference or the SAPI Reference included with this SDK) The VVCFGram control
supports the following formats:

IBM SDK for Windows 317

Properties, Methods, and Events

0 - vvgfAuto: Automatically determines the format of the grammar source. This option can be more
time consuming than telling the control the format of the grammar prior to loading it.

1- vwgfNativeCompiled: The grammar isin IBM (.SAR) binary format.

2 - vvgfNativeSource: The grammar isin IBM (.BNF) source format.

3 - vwgfSAPICompiled: The grammar isin SAPI 4.0 (.GRM) binary format.
4 - ywwgfSAPISource: The grammar isin SAPI 3.0 (.TXT) source format.

When using the vvgfA uto setting, in combination with vvstFile for the SourceType property, the
VVCFGram control looks at the file extension in order to determine the Grammar Sour ce format.

Example

In Visual Basic:

WCFG anl. G anmar For mat
WCFG anil. Gr ammar Sour ce
VWCFG amil. LoadFr onSour ce

vvgf SAPI Conpi | ed
"F:\ Granmar\ sanpl e. gr nf'

In Visual C++ (MFC):

m VWCFGraml. Set G ammar For mat (vvgf SAPI Conpi | ed) ;

VARI ANT vaSource

Vari ant | nit (&vaSource)

vaSource.vt = VT_BSTR;

vaSource. bstrVal = SysAllocString (L "F:\\G anmar\\sanpl e. grn')

m_VWCFGr aml. Set Gr ammar For mat (vaSour ce)
m VWCFGr aml. LoadFr onSour ce() ;

318 IBM SDK for Windows

Grammar Control Properties

In Visual C++:
pl WCFGr am >put _Gr anmar For mat (vvgf SAPI Conpi | ed) ;

VARI ANT vaSour ce

Variant|nit(&aSource);

VaSour ce.vt = VT_BSTR;

VaSource. bstrVal = SysAllocString(L "F:\\G amuar\\sanpl e.grn');
pl VWCFGr am >put _Gr anmar For mat (vaSour ce) ;

pl WCFG am >LoadFr onSour ce() ;

See Also
“SourceType (VVCFGram)” on page 324

IBM SDK for Windows 319

Properties, Methods, and Events

Grammar Source (VVCFGram)

Setg/Gets the path to a binary grammar file.

Syntax

In Visual Basic:
‘[WCFGran'].GrarrmarSource = String

In Visual C++ (MFC):

BSTR = [CWCFG ani . Set Gr anmar Sour ce()
[CWCFG an] . Set Gr ammar Sour ce(BSTR)

In Visual C++:

HRESULT [pl WCFG am - >get _Grammar Sour ce(BSTR *)
HRESULT [pl WCFG am - >put _Gr ammar Sour ce(BSTR)

Parameters
”

Return Values

None.

Remarks

Use this property in conjunction with the L oadFromSour ce method to load a grammar file into
memory.

320 IBM SDK for Windows

Grammar Control Properties

Example

In Visual Basic:

VVCFGraml.GrammarSource = “F:\Grammar\sample.grm”
VVCFGraml.LoadFromSource

In Visual C++ (MFC):

VARIANT vaSource

VariantInit(&vaSource)

vaSource.vt = VT_BSTR;

vaSource.bstrVal = SysAllocString (L “F:\Grammar\\sample.grm”)

m_VVCFGraml.SetGrammarSource(vaSource)
m_VVCFGraml.LoadFromSource();

In Visual C++:

VARIANT vaSource

VariantInit(&vaSource);

VaSource.vt = VT_BSTR,;

vaSource.bstrVal = SysAllocString(L “F:\\Grammar\\sample.grm”);
pIVVCFGram ->put_GrammarSource(vaSource);

See Also
“LoadFromSource (VVCFGram)” on page 328

IBM SDK for Windows 321

Properties, Methods, and Events

Rules (VVCFGram)

7

Syntax

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

Parameters
??

322

IBM SDK for Windows

Grammar Control Properties

Return Values
”

Remarks

Example

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also

IBM SDK for Windows 323

Properties, Methods, and Events

SourceType (VVCFGram)

Tells the VVCFGram control whether the Grammar Sour ce property specifiesapath to afileor isa
grammar source string.

Syntax

In Visual Basic:
‘ [WCFGran] . Sour ceType = [Enum Sour ceTypeConst ant s]

In Visual C++ (MFC):

Enum Sour ceTypeConst ants = [CVWCFG am . Set Sour ceType()
[CWCFGr anj . Set Sour ceType(Enum Sour ceTypeConst ant s)

In Visual C++:

HRESULT [pl WCFGram] ->get _Sour ceType(Enum Sour ceTypeConstants *)
HRESULT [pl WCFG am - >put _Sour ceType(Enum Sour ceTypeConst ant s)

Parameters
”

Return Values

None.

Remarks
The VVCFGram control supports the following settings.
10 - vvstFile The Grammar Sour ce property contains the path to afile.
50 - vvstString: The Grammar Sour ce property contains a string that represents a grammar source.

324 IBM SDK for Windows

Grammar Control Properties

The contents of GrammarSource are determined by the value of this property and the value of the
GrammarFormat property. The possible combinations are:

Setting vvstFile vvstString

vvgfAuto X X

vvgfNativeCompiled X N/A

vvgfNativeSource X X

vvgf SAPICompiled X N/A

vvgfSAPISource X X
Example

In Visual Basic:

VWCFGr aml. SourceType = vvstFile
WCFG anll. Grammar Sour ce = "F:\ Grammar\ sanpl e. gr nf
VWCFG anll. LoadFr omfSour ce

In Visual C++ (MFC):
m VWCFGraml. Sour ceType(vvstFile);

VARI ANT vaSource

Vari ant | nit(&vaSource)

vaSource.vt = VT_BSTR;

vaSource. bstrVal = SysAllocString (L "F:\\G anmar\\sanpl e. grn')

m_VWCFGraml. Set Gr ammar For mat (vaSour ce)
m VWCFGraml. LoadFr onSour ce() ;

IBM SDK for Windows 325

Properties, Methods, and Events

In Visual C++:
pl VWCFG am >put _Sour ceType(vvstFile);

VARI ANT vaSource

Variantlnit(&aSource);

VaSour ce. vt = VT_BSTR;

VaSource. bstrVal = SysAllocString(L "F:\\G amuar\\sanpl e.grn');

pl WCFGr am >put _Gr anmar For mat (vaSour ce) ;
pl WCFG am >LoadFr onSour ce() ;

See Also
“GrammarFormat (VVCFGram)” on page 317

326 IBM SDK for Windows

Grammar Control Methods

Grammar Control Methods

The ViaVoice Grammar control supports the following methods:
» About2

* LoadFromSource

* RefreshUIText

» ShowTrainDialog

a Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

IBM SDK for Windows 327

Properties, Methods, and Events

L oadFromSource (VVCFGram)

Manually loads a binary grammar file.

Syntax

In Visual Basic:
‘ [WCFG am . LoadFr onSour ce ‘

In Visual C++ (MFC):
‘ [CWCFG an] . LoadFr onSour ce() ‘

In Visual C++:
‘ HRESULT [pl WCFG am - >LoadFr onSour ce() ‘

Parameters

None.

Return Values

None.

Remarks

There aretwo ways to load a grammear file, either manually using this method, or automatically, by
setting the AutoL oad property to True at design time. Before the control can load a grammar file you
must specify the path of the file to load by setting the value of the Grammar Sour ce property.

If you wish to load a second grammar file into the same control make sure to set the Enabled property
in the control to False. Thiswill ensure that the speech engine unloads the first grammar from memory.

328 IBM SDK for Windows

Grammar Control Methods

Example

In Visual Basic:

VVCFGraml.GrammarSource = “F:\Grammar\sample.grm”
VVCFGraml.LoadFromSource

In Visual C++ (MFC):

VARIANT vaSource

VariantInit(&vaSource)

vaSouve.vt = VT_BSTR,;

vaSource.bstrVal = SysAllocString (L “F:\Grammar\\sample.grm”)

m_VVCFGraml.SetGrammarSource(VaSource)
m_VVCFGraml.LoadFromSource();

In Visual C++:

VARIANT vaSource

VariantInit(&vaSource);

VaSource.vt = VT_BSTR,;

vaSource.bstrVal = SysAllocString(L “F:\\Grammar\\sample.grm”);
pIVVCFGram ->put_GrammarSource(vaSource);

See Also
“AutoLoad (VVCFGram)” on page 305

IBM SDK for Windows 329

Properties, Methods, and Events

Refresh

This method is exactly the same as LoadFromSource().

330 IBM SDK for Windows

Grammar Control Methods

RefreshUI Text (VVCFGram)

Forces an update of the ViaVoice User Interface Server when AutoUl is True.

Syntax

In Visual Basic:
‘ [WCFG am . Ref reshUl Text (Text As String) ‘

In Visual C++ (MFC):
| [CWCFG anj . Ref reshuUl Text (BSTR) |

In Visual C++:
‘ HRESULT [pl WCFGran] ->RefreshUl Text (BSTR) ‘

Parameters

Text
Text to display in the Ul Server.

Return Values
”

Remarks
Used primarily in the SpeechRecognized event together with the UpdateUl Text property.

IBM SDK for Windows 331

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub VWWCFG aml_SpeechRecogni zed(ByVal Name As String, ByVal |ID As
Long, Phrase As String, UpdateUl Text As Bool ean, ByVal BegTime As String,
ByVal EndTime As String)
' This will cause the control to update the word history component in
' the UlServer immediately. Otherwise the text will be updated when
' the function ends (if UpdateUIText is True).
VVCFGraml.RefreshUIText Phrase
Update UlText = False
End Sub

In Visual C++ (MFC):

void CVVCFGramtest::OnSpeechRecognizedVvphrases1(LPCTSTR Name, long ID,
BSTR FAR* Phrase, BOOL FAR* UpdateUIText, LPCTSTR BegTime, LPCTSTR
EndTime)

{

/[This will cause the control to update the word history component in
/lthe UlServer immediately. Otherwise the text will be updated when
/lthe function ends (if UpdateUIText is True).
m_VVCFGraml.RefreshUIText(*Phrase);

*UpdateUIText = VARIANT_FALSE;

In Visual C++:

HRESULT SpeechRecognized (BSTR Name, long ID, BSTR *Phrase, VARIANT_BOOL
*UpdateUIText, BSTR BegTime, BSTR EndTime)

{

/IThis will cause the control to update the word history component in
/lthe UlServer immediately. Otherwise the text will be updated when
/lthe function ends (if UpdateUIText is True).
plVVCFGram->RefreshUIText(*Phrase);

*UpdateUIText = VARIANT_FALSE;

332 IBM SDK for Windows

Grammar Control Methods

See Also
“SpeechRecognized (VVCFGram)” on page 339

IBM SDK for Windows 333

Properties, Methods, and Events

ShowTrainDialog (VVCFGram)

Event fired if the VVCFGram control loads a grammar that contains a word that the speech engine
cannot recognize.

Syntax

In Visual Basic:

[WCFG am . ShowTr ai nDi al og(ByVal Title As String, ByVal hwWhdParent As
Long)

In Visual C++ (MFC):
‘ [WCFG am . ShowTrai nDi al og(CString Title, |ong hWhdParent) ‘

In Visual C++:
‘ HRESULT ShowTrai nDi al og([in] BSTR Title, [in] |ong hwndParent); ‘

Parameters
”

Return Values
”

Remarks

In this event you can call the ShowTrainDialog method to invoke the speech engine's training dialog.
This dialog enables the user to train words that are unrecognizable. You do not have to provide the
engine with alist of words - it automatically populates the dialog with the words that require
training.Example

334 IBM SDK for Windows

Grammar Control Methods

In Visual Basic:

In Visual C++ (MFC):

In Visual C++:

See Also

None.

IBM SDK for Windows

335

Properties, Methods, and Events

Grammar Control Events

The ViaVoice Grammar control supports the following events:

BeginSpeechRecognition
Paused(Not Supported)
SpeechRecognize@ot Supported)
SpeechRejected
TrainingRequired

336

IBM SDK for Windows

Grammar Control Events

BeginSpeechRecognized (VVCFGram)

Fired when the speech engine receives audio input; it identifies as coming from user speech, rather
than background noise. The event does not necessarily mean a specific expression in the
Grammar Sour ce that has been recognized; it simply indicates that the user has starting speaking.

Syntax

In Visual Basic:

‘BeginSpeechRecognition(ByVaI BegTi ne As String) ‘

In Visual C++ (MFC):
‘voi d OnBegi nSpeechRecogni ti on(LPCSTR BegTi ne) ‘

In Visual C++:
‘HRESULT Begi nSpeechRecogni ti on(BSTR BegTi nre) ‘

Parameters

BegTime
Bookmark indicating the time when the user began to speak.

Return Values
”

Remarks

None.

IBM SDK for Windows 337

Properties, Methods, and Events

Examples

See Also
“SpeechRecognized (VVCFGram)” on page 339

338 IBM SDK for Windows

Grammar Control Events

SpeechRecognized (VVCFGram)

Event fired when the VVCFGram control recognizes one of the phrases contained in the grammar.

Syntax

In Visual Basic:

SpeechRecogni zed(ByVal Nane As String, ByVal ID As Long, Phrase As
String, UpdateU Text As Bool ean, ByVal BegTine As String, ByVal EndTine
As string)

n Visual C++ (MFC):

OnSpeechRecogni zed(LPCTSTR Name, |ong | D, BSTR FAR *Phrase, BOOL FAR
*Updat eUl Text, LPCTSTR BegTi me, LPCTSTR EndTi ne)

In Visual C++:

HRESULT SpeechRecogni zed(BSTR Nane, |long | D, BSTR FAR *Phrase,
VARI ANT_BOOL *Updat eUl Text, BSTR BegTi ne, BSTR EndTi ne)

Parameters

Name
The programmer assigned unique identifier for the phrase object.

ID
A programmer assigned numeric identifier for the item.

Phrase
The actual phrase text the user spoke.

UpdateU| Text
When AutoUl is True, this parameter tells the VVCFGram control to use the Phrase text to
update the Word History component in the ViaVoice Ul Server.

BegTime
A bookmark indicating the time when the user began to speak the phrase.

IBM SDK for Windows 339

Properties, Methods, and Events

EndTime
A bookmark indicating the time the user finished speaking the phrase.

Return Values
”

Remarks

Handling this event is necessary when using the VVCFGram control.

Example

In Visual Basic:

Private Sub WCFG anl_SpeechRecogni zed(ByVal Nane As String,
ByVal I D As Long, ByVal Phrase As String, _
Updat eUl Text As Bool ean, ByVal BegTine As String,
ByVal EndTime As String)

Sel ect Case ID
Case 100

MsgBox "Hel |l o Sue"
Case 101

MsgBox “Hello James”
End Select

End Sub

340 IBM SDK for Windows

Grammar Control Events

In Visual C++ (MFC):

voi d CVWCFGGr ant est: : OnSpeechRecogni zed(LPCTSTR Nane, |ong | D,
BSTR FAR *Phrase, BOOL FAR *Updat eUl Text,
LPCTSTR BegTi ne, LPCTSTR EndTi nme)

switch (1D

{

case 100:
MessageBox (“Hello World” ,"VVCFGram”,MB_OK));
break;

default:
break;

}

}

In Visual C++:

HRESULT SpeechRecognized(BSTR Name, long ID, BSTR *Phrase, VARIANT_BOOL
UpdateUIText, BSTR BegTime, BSTR EndTime)
{
switch (ID)
{
case 100:
MessageBox ("Hello World", "VVCFGram", MB_OK);
break;
default:
break;

}

See Also

“GrammarSource (VVCFGram)” on page 320
“LoadFromSource (VVCFGram)” on page 328

IBM SDK for Windows

341

Properties, Methods, and Events

TrainingRequired (VVCFGram)

Notification from the engine that the currently active speech user needs to train the speech enginein
order to improve recognition.

Syntax

In Visual Basic:

‘Tr ai ni ngRequi red(ByVal TrainingType As Long) ‘

In Visual C++ (MFC):
‘voi d OnTrai ni ngRequi red(1 ong Traini ngType) ‘

In Visual C++:
‘ HRESULT Tr ai ni ngRequi red(l ong Trai ni ngType) ‘

Parameters

TrainingType
One of the following SAPI training types (refer to the Microsoft SAPI documentation for further
description):

Genera (SRGNSTRAIN_GENERAL) 1
Grammar (SRGNSTRAIN_GRAMMAR)
Microphone (SRGNSTRAIN_MICROPHONE) 4

Return Values
”

342 IBM SDK for Windows

Grammar Control Events

Remarks

In the case of VVCFGram this means that the engine is using tentative pronunciations for some of the
phrasesin the Grammar Sour ce because it cannot find the words in its base vocabul ary.

Example

In Visual Basic:

Private Sub WCFG anil_Trai ni ngRequi red(ByVal Trai ni ngType As Long)
Call VVCFGraml.ShowTrainDialog(“Train Unrecognized Words. . .”,
m.hwnd)
End Sub

In Visual C++ (MFC):

void CVVCFGramTest::OnTrainingRequired(long TrainingType)
{

m_VVCFGram.ShowTrainDialog(“Train Unrecognized Words. . .”,
m_hwnd)

IBM SDK for Windows 343

Properties, Methods, and Events

In Visual C++:
HRESULT Trai ni ng Requi red(long TrainingType)
{
pWWCFG am >ShowTr ai nDi al og(L" Trai n Unrecogni zed Wrds...", hWd);
}
Count
/1 Get all external |ist names

| VWPhr aseCol | Group *pExtLi sts;
pWCFG am >get _Ext Li st s(&pExt Li sts);

 ong | Count;
pExt Li sts->get _Count (& Count);

for (long I=1; | <= 1Count; |++)

{
| VWPhr aseCol | *plLi st;
BSTR bstrLi st Nane;

VARI ANT va;
Variantlnit (&va);
va.vt = VT_I|4;
va.lval =1;

pExtLi st->get _|tem(va, &Li st);
pLi st - >get _Name(&strLi st Nane) ;

See Also

Microsoft SAPI documentation

344 IBM SDK for Windows

VVPhraseCollGroup Object

VVPhraseCollGroup Object

VVPhraseCollGroup Object Properties

The VVPhraseCollGroup (IVVPhraseCollGroup) Object has the following properties:
* Count

» Enabled

e ltem

IBM SDK for Windows 345

Properties, Methods, and Events

Count (VVPhraseCollGroup)

Returns the number of external listsin the group.

Syntax

In Visual Basic:
‘IVaI ue = [WCFG am Ext ernLi st]. Count ‘

In Visual C++ (MFC):
‘ | ong = [CWPhr aseCol | Group] . Get Count () ‘

In Visual C++:
‘ HRESULT [pl VWPhr aseCol | Group] ->get_Count (Il ong *) ‘

Parameters

None.

Return Values

Long
The number of itemsin the collection.

Remarks

None.

346 IBM SDK for Windows

VVPhraseCollGroup Object

Example

In Visual Basic:

"Get all the external |ist nanes
Dimi As Integer
Di m sLi st Name As String

For i = 1 To WCFG am Ext er nLi st. Count
sLi st Name = VWWCf Granil. Ext ernLi st (i) . Nane
Next

n Visual C++ (MFC):

/1 Get all the external |ist nanmes
CString sLi st Nane;

for (i =1; i <= WCFG antl. Get Ext ernLi st (). Get Count ()
{
VARI ANT va,;
Variantlnit(&va);
va.vt = VT | 2;

va.iVal = i_;
sLi st Name = VWWCFG aml. Get Ext er nLi st (va). Get Name() ;
}

i ++)

IBM SDK for Windows

347

Properties, Methods, and Events

In Visual C++:

/1 CGet all external |ist names
| VWPhr aseCol | Group *pExtLi sts;
pWCFG am >get _Ext Li st s(&pExt Li sts);

| ong | Count;
pExtLi sts ->get_Count (& Count);

for (long I=1; | <= 1Count; |++)

{
| VWPhr aseCol | *plLi st;
BSTR bstrLi st Nane;

VARI ANT va;
Variantlnit (&va);
va.vt = VT_I|4;
va.lval =1;

pExtLi st ->get_Item(va, &pList);
pLi st ->get_Nanme(&bstrListNane);

See Also

None.

348 IBM SDK for Windows

VVPhraseCollGroup Object

Enabled (VVPhraseCollGroup)

Enables/disables all the external lists within the group.

Syntax

In Visual Basic:
‘ [WCFG am Ext ernLi st]. Enabl ed = Bool ean

In Visual C++ (MFC):

VARI ANT_BOOL = [CVVPhraseCol | G oup] . Get Enabl ed()
[CWWPhr aseCol | Group] . Set Enabl ed(VARI ANT_BQOQOL)

In Visual C++:

HRESULT [pl VWPhr aseCol | Group] ->get_Enabl ed(VARI ANT_BOCOL *)
HRESULT [pl VWPhr aseCol | Group] ->put_Enabl ed(VARI ANT_BOOL)

Parameters
”

Return Values

TRUE
(Default) Enables all external lists in the control.

FALSE
Disables all external listsin the control.

Remarks

When an external list is disabled, the engine will not recognize commands in the grammar that use
external lists.

IBM SDK for Windows 349

Properties, Methods, and Events

Each time you add a phrase to an externa list, the control unloads the existing external list and rel oads
the new external list. If you disable the external list object, you can build external lists without having
the Grammar control unload and load the list for each item. You can then load the entirelist at once

by setting this property to True.

Example

n Visual Basic:

VWCFG anll. Ext er nLi st. Enabl ed = Fal se

With VVCFGraml.ExternList(“DirectoryA”)
Add “C:\Junk”, 100, “Junk”, True
Add “C:\Temp”, 200, “Temp”, True

End With

VVCFGraml.ExternList.Enabled = True

n Visual C++ (MFC):

m_VVCFGraml.GetExternList(). SetEnabled(FALSE);
CVVPhraseColl DirectoryA,;

DirectoryA = m_VVCFGram1.GetExternList().Add(L“DirectoryA”)
DirectoryA.Add(L“C:\Junk”, 100, L*Junk”, TRUE)
DirectoryA.Add(L“C:\Temp”, 200, L“Temp”, TRUE)

m_VVCFGramsl.GetExternLists().SetEnabled(TRUE);

350

IBM SDK for Windows

VVPhraseCollGroup Object

In Visual C++:

| VWPhr aseCol | Group *pExtLi sts;
pVWVCFG am - >get _Ext Li st s(&pExt Li st s);

| VWPhr aseCol | *plLi st;

VARI ANT va;

Variantlnit (&va);

va.vt = VI_BSTR

pExtLi st->get _Iten(va, &pLi st);

pLi st ->Add(L"C:\\Tenmp", 200, L" Tenp",

pExt Li st->put _Enabl ed(VARI ANT_TRUE) ;

pExt Li st ->put _Enabl ed(VARl ANT_FALSE) ;

va. bstrVal = SysAllocString(L"DirectoryA");

pLi st ->Add(L"C:\\ W ndows", 100, L" W ndows", VARl ANT_TRUE);

VARl ANT_TRUE) ;

See Also

None.

IBM SDK for Windows

351

Properties, Methods, and Events

Item (VVPhraseCollGroup)

Returns an external list from the Phrase Collection Group (1 VVPhraseCollGroup) Object.

Syntax

In Visual Basic:
|[WPhraseCol I] = [WCFG am ExternList].|tem ByVal Key As VARI ANT) |

In Visual C++ (MFC):
‘ CWPhr aseCol | = [CVWWPhraseCol | Group] . Get | t em{ VARI ANT Key) ‘

In Visual C++:

HRESULT | VWPhr aseCol | Group: : get _It em(VARI ANT Key, | VWPhraseCol
**pRet val)

Parameters

Key
VARIANT. The item identifier. This parameter can be numeric - indicating the ordinal position of
the item within the collection, or a string - indicating the text of the item.

Return Values

V'V PhraseColl
The Phrase Collection object that contains the requested external list.

Remarks

The external list object isan instance of the Phrase Collection (1VVPhraseColl) Object. The
VVPhraseColl Object is explained in detail on page 345.

352 IBM SDK for Windows

VVPhraseCollGroup Object

Example

In Visual Basic:

Cal |

VVCFGraml.ExternList.Item(“Directoryl”).Add(“C:\Temp”, 100,“Temp”, True)
Or

VVCFGraml.ExternList(“Directoryl”).Add(“C:\Temp”, 100, “Temp”, True)

In Visual C++ (MFC):

VARIANT va,

VariantInit (&va);

va.bstrVal = SysAllocString(L“Directory1”);
va.vt =VT_BSTR

m_VVCFGraml.GetExternList().Getltem(va).Add(L“C:\Temp”, 100, L“Temp”,
TRUE);

In Visual C++:

IVVPhraseCollGroup *pExtLists;
pVVCFGram->get ExtLists(&pExtLists);

IVVPhraseColl *pList;

VARIANT va,

VariantInit (&va);

va.vt = VT_BSTR;

va.bstrVal = SysAllocString(L"DirectoryA");
pExtList->get_Item(va,&pList);

See Also

None.

IBM SDK for Windows

353

Properties, Methods, and Events

VVPhraseCollGroup Object M ethods

The VVPhraseCollGroup (IVVPhraseCollGroup) Object supports the following methods:
e Exists

354 IBM SDK for Windows

VVPhraseCollGroup Object

Exists (VVPhraseCollGroup)

Use this method to find out if a certain external list is part of the external list VVPhraseCollGroup
Object.

Syntax

In Visual Basic:
‘ [Bool ean] = [WCFG am ExternList]. Exi sts(ByVal Key As VARI ANT) ‘

In Visual C++ (MFC):
‘VARI ANT_BOOL = [CWCFPhraseCol | Group] . Exi st s(VARI ANT Key) ‘

In Visual C++:

HRESULT [pl VWPhraseCol | Group] - >Exi sts (VARI ANT Key, VARI ANT_BOOL
*bEXi st s)

Parameters

Key
VARIANT. The item identifier. This parameter can be numeric — indicating the ordinal position of
the item within the group, or a string — indicating the name of the item.

Returns

VARIANT_Bool
True if the external list exists in the group; False if it does not.

Remarks

TheExists function does not look at the grammatr file to see if the grammar contains a certain externa
list declaration. The purpose of this function is to find out if a certain external list has been added to th
Phrase Collection group.

IBM SDK for Windows 355

Properties, Methods, and Events

Example

In Visual Basic:

I f WCFG anl. Ext ernLi sts. Exi sts ("Ani mal s") Then
Wth WCFG anl. Ext ernLi sts ("Ani nal s")
: Add "Horse", 100, "Horse", True
:Add "Cat", 100, "Cat", True
End Wth
End |f

In Visual C++ (MFC):

VARI ANT Va:

va. vt =VT_BSTR,

va. bstrVal =SysAl l ocString (L"Ani mals");

if (MvVWCFG aml. Get Ext er nLi st s() . Exi st s(va) ==TRUE)
{

CWPhr aseCol | PhraseCol | =m WCFG antl. Get Ext er nLi sts(). Cetltemva);

PhraseCol | . Add(SysAl l ocString(L"Horse"), 100, SysAllocString
(L"Horse), TRUE);

PhraseCol | . Add(SysAl l ocString(L"Cat"), 100, SysAllocString (L"Cat"),
TRUE) ;

356 IBM SDK for Windows

VVPhraseCollGroup Object

In Visual C++:

VARI ANT va;

va. vt =VT_BSTR,

va. bstrVal =SysAl l ocString (L"Animal s");

| VWPhr aseCol | Group *pl VWCol | Group=NULL;
pVVCFG am >get _Ext er nLi st s(&l WCol | G- oup) ;
VARI ANT_BOOL bExi st s;

pl WCol | Gr oup- >get _Exi st s(va, &Exi st's)

i f (bExi st s==VARI ANT_TRUE)

{

| VWPhr aseCol | *pl VWPhraseCol | ;

pl WCol | G- oup- >get _Item(va, &l VWPhraseCol |) ;

pl VWPhr aseCol | - >Add (SysAllocString(L"Horse"), 100, SysAllocString
(L"Horse) VARI ANT_TRUE);

pl VWPhr aseCol | - >Add (SysAllocString(L"Cat"), 100, SysAllocString
(L"Cat"), VARIANT_TRUE);

See Also

None.

IBM SDK for Windows 357

Properties, Methods, and Events

358 IBM SDK for Windows

Chapter 16 Grammar Control Frequently
Asked Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice Grammar
Control.

How do | create a compiled grammar file from a text-based grammar specification?

ThelBM ViaVoice SDK allows you to compile a BNF grammar script into agrammar archivefile.
Archive files have the extension “SAR”". The command-line executable VTSAPIC.EXE, located
in the ViaVoice SDK\Tools directory, creates SAR files. These can then be assigned to the
Grammar Source property of the/VCFGram control.

Wherecan | find moreinformation about grammar file syntax?

The BNF grammar syntax, which the VTSAPIC utility compiles into binary SAR files, is
documented in the SMAPI Developer’s Guide, Part 2: SMAPI Grammars.

What kinds of grammars are supported?

The BNF grammar syntax, which generates native IBM engine SAPI archive grammar files (SAR
files), is supported. Additionally GRM files, which can be compiled using the Microsoft Speech
SDK, are assignable to tii& ammar Sour ce property of the/VGrammar control.

What isthe purpose of annotations?

Annotations allow you to associate a phrase with data that is meaningful to your program. For
instance, in a grammar file you could link the wtneld” with an RGB string “255,0,0”. Then

when the word “red” was recognized, you could retrieve this annotation and set the window color
to the RGB value instead of having to translate “red” into its other representation through
application code.

IBM SDK for Windows 359

Grammar Control Freguently Asked Questions

360 IBM SDK for Windows

Chapter 17 |ntroduction to the Lite Controls

When you install the IBM ViaVoice SDK, the setup program installs a set of Lite controlsin addition
to the full-featured versions. The Lite controls are scaled-down versions of the full-featured controls.
The ViaVoice Lite controlsinclude Dictation Lite (VVDictLite), Grammar Lite
(VVGrammarlLite), and Phrases Lite (VVPhrasesLite) controls. The purpose of these controlsisto
provide you with a set of small, simple controls that have few dependencies and can be used in Web
pages. The following sections explain how to use the Viavoice Lite controlsin HTML pages.

Note:

Although this document focuses on how to use the controlsin HTML pages with Visual InterDev
1.0, the ViaVoice L ite controls can be used in Visual Basic, Visual C++ (with and without MFC),
Delphi, Borland C++ Builder, and Visual J++ aswell.

IBM SDK for Windows 361

Introduction tothe Lite Controls

362 IBM SDK for Windows

Chapter 18 Gaﬂ ng S:a‘tw W| th the L|te
Controls

Thefollowing are tutorials on how to incorporate the VVDictL ite, VVGrammarL ite, and
VVPhrasesLite controlsinto your HTML page using the Visual InterDev application. These tutorials
are designed to present you with the most commonly used properties, methods, and eventsin these
Lite controls.

VVDictLite Control

The ViaVoice Dictation Lite (VVDictLite) control isan ActiveX control that enablesyou to capture
dictated speech from users. VVDictLiteisinvisible at runtime. When a program creates an instance of
the VVDictL ite control at run time, the control searches the client's machine for a speech engine
capable of receiving dictation. If the control does not find an engine with this capability, then it smply
becomes inactive. This meansthat you can feel confident that your program will not crash in the
absence of a speech engine. If a speech engine is present and the control’s Enabled property is set to
True, then the control listens to the user. Whenever the user speaks, the VVDictL ite contral firesthe
PhraseRecognized event for each word that it recognizes.

Using the Controal

This section contains step-by-step ingtructions for using Visual InterDev when adding this control in
an HTML page.

In Visual InterDev:

To usethe VVDictL ite control, do the following:
1. Open the HTML page in which you wish to insert the ActiveX control.

2. From the Insert menu, choose Into HTML then choose ActiveX Control... menu item. You will
see the ‘Insert ActiveX Control’ dialog box as shown in Figure 25.

IBM SDK for Windows 363

Getting Started with the Lite Controls

Inzert ActiveX Control

Controls | Desigr-time I

Hhopen Caontral

[BM Yiatoice Detective Contral
: -2 Dictation Lite Cantral
B Viavoice Dictationbdar Contral
[BM Viavoice Engine Contral

B YiaWoice Ermor Comrection Control
B YiaWoice Grammar Contral

B iaWoice Grammar Lite Contral
B YiaWoice Phrases Control

B YiaWnice Phrases Lite Contral

| |

k.

Cancel

Figure 25. Insert ActiveX Control Dialog Box - VVDictLite

364

IBM SDK for Windows

VVDictLite Control

3. Select IBM ViaVoice Dictation Lite Control fromthelist and click OK. You will see the ‘Proper-
ties’ dialog box with a ‘Control Designer Form’ as shown in Figure 26.

Properties

o ® 4]

Property | W alue I

Enabled True
Height 30

] W DictLited
Left 15

Top 15

Wwidth a0

Figure 26. Control Designer Form - VVDictL ite

When you are done customizing the control properties, close the control designer window. Visual
InterDev will insert the following code to your page:

<OBJECT | D="VVDictLitel" WDTH=40 HEI GHT=40
CLASSI D=" CLSI D: 5AF3ED20- 6A8E- 11D2- A42E- 002035215001" >
<PARAM NAME="Enabl ed" VALUE="1">

</ OBJECT>

This is all that is necessary to begin capturing dictation from your users. Each time the control
recognizes a dictated word it will fire ti¥ar aseRecognized event. To enter code for this event, do the
following:

1. ChooseScript Wizard from theView menu. You will see the ‘Script Wizard’ dialog box shown in
Figure 27.

IBM SDK for Windows 365

Getting Started with the Lite Controls

% Scrpt Wizard - Pagel_htm [VBS5cnpt)

1. Select an Event: 2. Inzert Actions:

= & YWhictLitel -1 GoToPage...
S i a:zeF ecognized 8 GlobalVariables
gy WU Meter - & Procedures

- & WhictLite?

Sub VWWhictLitel PhraseRecoghized (Word, RawWord, Flags)

M=gBox Word :I
il _'*I_I
o L Qe T 0K [E— | Hels |

Figure27. Script Wizard Dialog Box - VVDictLite

2. Open the VVDictLitel branch to display the events for the VVDictL ite control, and click on the
PhraseRecognized event. For details on the PhraseRecognized event, see page 385. Then, enter
code to handle this event. For example, to display a message box with the word that was recognized
enter the following statement: MsgBox Word.

3. Click OK when done.

366 IBM SDK for Windows

VVDictLite Control

Visual InterDev will enter the following code into your HTML page:

<SCRI PT LANGUAGE="VBScri pt" >
<I--
Sub WWDictLitel PhraseRecogni zed(Word, Rawwmérd, Fl ags)
MsgBox Word
end sub
-->
</ SCRI PT>

To test the control, first save the HTML page, then right mouse click on the editor window and choose
the "Preview (DocumentName)..." from the popup menu. You should be able to dictate into your page
and each word the control recognizes will be displayed in a message box.

IBM SDK for Windows 367

Getting Started with the Lite Controls

VVGrammarLite Control

The Viavoice Grammar Lite (VVGrammarLite) control isan ActiveX control that can recognize
complex commands based on a SAPI 4.0 context-free grammar. First you supply the
VVGrammarLite control with a string representing agrammar definition. The control compiles this
grammar in memory, and listens to the user’s speech. When the user speaks one of the phrases defined
in the grammar, it fires the PhraseRecognized event. Like the VVDictLite control and the
VVPhrasesL ite control, when a program creates an instance of the VV GrammarL ite control at run
time, the control searches the client’'s machine for a speech engine capable of performing context-free
command recognition. If the control does not find an engine with this capability, then it simply
becomes inactive.

Using the Controal

This section contains step-by-step ingtructions for using Visual InterDev when adding this control in
an HTML page.

In Visual InterDev:

To usethe VVGrammar L ite control, do the following:
1. Open the HTML page in which you wish to insert the ActiveX control.

368 IBM SDK for Windows

VVGrammarLite Control

2. From the I nsert menu, choose Into HTML then choose ActiveX Control...
see the ‘Insert ActiveX Control’ dialog box as shown in Figure 28.

Inzert Active Control

Controls | Desigr-time I

[BM Wiawoice Detective Contral

B iawoice Dictation Lite Contral
B Viavoice Dictationbdar Contral
[BM Viavoice Engine Contral

B YiaWoice Ermor Comrection Control
[B b YiaWoice Grammar Contral

B M ViaYoice Grammar Like Conbrol
B YiaWoice Phrases Control

B YiaWnice Phrases Lite Contral
B Wiavoice RichE dit Contral

I B

k.

Cancel

Figure 28. Insert ActiveX Control Dialog Box - VVGramLite

menu item. You will

IBM SDK for Windows

369

Getting Started with the Lite Controls

3. Select IBM ViaVoice Grammar Lite Control from the list and click OK. You will see the ‘Prop-
erties’ dialog box with a ‘Control Designer Form’ as shown in Figure 29.

Properties
22 Al
Property Y alue I
Enabled True
Height a0
ID W arammarlite
Left 15
Top 15
‘wiidth 0

Figure 29. Control Designer Form - VVGramLite

When you are done customizing the control properties, close the control designer window. Visual
InterDev will insert the following code to your page:

<OBJECT | D="WG ammar Litel" W DTH=40 HEIl GHT=40
CLASSI D="CLSI D: 5AF3ED27- 6 A8E- 11D2- A42E- 002035215001" >
<PARAM NAME="Enabl ed" VALUE="1">
<PARAM NAME=" Gr ammar Sour ce" VALUE="">
</ OBJECT>

370 IBM SDK for Windows

VVGrammarLite Control

Thefirst step in using the control isto provide the control with a SAPI 4.0 grammar. To do thissimply
set the control’s grammar source property to the grammar text, as shown below:

<SCRI PT LANGUAGE="VBScri pt" >

<l--

Sub wi ndow_onl oad

sGrammar = "[<Start>]" & Chr(13) & Chr(10)
sGammar = sGammar & "<Start>=This is a test"
WG ammar Lit el. Granmmar Source = sGranmar

End Sub

-->

</ SCRI PT>

When the user speaks one of the commands in the grammar, the control will firethe
SpeechRecognized event. To write code to handle this event, do the following.

1. Choose Script Wizard from the View menu. You will see the ‘Script Wizard’ dialog box shown in
Figure 30.

IBM SDK for Windows 371

Getting Started with the Lite Controls

% Script Wizard - [VBScript]

1. Select an Event: 2. [nzert Actions:

= @ YWhrammarLitel -1 GoToPage...
&> PhrazeRecognized 8 GlobalVariables
g WUMeter @ Procedures

& ""Grammarlitel

Sub VWirammarLitel PhraseRecognized (Phrase]

u o

ak. Cancel | Help |

™ List View

Figure 30. Script Wizard Dialog Box - VVGrammarLite

2. Open the VVGrammarLitel branch to display the events for the VV Grammar L ite control, and
click on the PhraseRecognized event. For details on the PhraseRecognized event, see page 395.
Then enter code to handle this event. For example, enter the following statement: MsgBox "The
user hasissued the following command:" & Phrase

3. Click OK when done.

372 IBM SDK for Windows

VVGrammarLite Control

Visual InterDev will enter the following code into your HTML page:

<SCRI PT LANGUAGE="VBScri pt" >

<l--

Sub WG amarLitel PhraseRecogni zed(Phrase)

MsgBox "The user has issued the follow ng conmand:" & Phrase
end sub-->

</ SCRI PT>

To test the control first save the HTML page, then right mouse click on the editor window and choose
the Preview X... from the popup menu. You should be able to speak any of the phrases defined in the
grammar, and your page should respond with a message box displaying the phrase recognized.

IBM SDK for Windows 373

Getting Started with the Lite Controls

VVPhrasesLite Control

The ViaVoice Phrases Lite (VVPhrasesLite) control isan ActiveX control that enables you to create
alist of phrasesfor the control to monitor. When the user speaks one of the phrases in the list, the
VVPhrasesL ite control fires the PhraseRecognized event. Like the VVDictL ite control, when a
program creates an instance of the VV PhrasesL ite control at run time, the control searchesthe client's
machine for a speech engine capable of performing command recognition. If the control does not find
an engine with this capability, then it simply becomes inactive. Normally this control is used to
navigate through a page and to execute simple commands.

Using the Controal

This section contains step-by-step ingtructions for using Visual InterDev when adding this control in
an HTML page.

In Visual InterDev:

To use the VVPhrasesL ite control, do the following:
1. Open the HTML page in which you wish to insert the ActiveX control.

374 IBM SDK for Windows

VVPhrasesLite Control

2. From the Insert menu, choose Into HTML then choose ActiveX Control... menu item. You will
see the ‘Insert ActiveX Control’ dialog box as shown in Figure 31.

Inzert ActiveX Control X |

Controls | Desigr-time I

[BM Wiawoice Detective Contral

B iawoice Dictation Lite Contral
B Viavoice Dictationbdar Contral
[BM Viavoice Engine Contral

B YiaWoice Ermor Comrection Control
B YiaWoice Grammar Contral

B iaWoice Grammar Lite Contral
B Yiatoice Phrases Control
BM Viavoice Phrazes Lite Control
IBEM ViaVoice RichEdit Contral ;I

I B

] Cancel

Figure 31. Insert ActiveX Control Dialog Box - VVPhrasesL ite

IBM SDK for Windows 375

Getting Started with the Lite Controls

3. Select IBM ViaVoice Phrases Lite Control from the list and click OK. You will see the ‘Proper-
ties’ dialog box with a ‘Control Designer Form’ as shown in Figure 32.

Properties
o2
Property Y alue I
Enabled True
Height a0
ID WPhrazesLitel
Left 15
Top 15
‘wiidth 0

Figure 32. Control Designer Form - VVPhrasesL ite

When you are done customizing the control properties, close the control designer window. Visual
InterDev will insert the following code to your page:

<OBJECT | D="VVPhrasesLitel" W DTH=40 HEl GHT=40
CLASSI D=" CLSI D: 5AF3ED25- 6A8E- 11D2- A42E- 002035215001" >
<PARAM NAME="Enabl ed" VALUE="1">

</ OBJECT>

376 IBM SDK for Windows

VVPhrasesLite Control

Thefirst step in using the control isto create alist of phrasesthat the control will understand. To create
the list of phrases use the AddPhrase method. A good placeto create thislist isin the window_onload
event. For example, add the following code to your HTML page:

<SCRI PT LANGUAGE="VBScri pt" >

<I--

Sub wi ndow_onl oad
Cal | VVPhrasesLitel. AddPhrase("Add Address", 110)
Cal |l WWPhrasesLitel. AddPhrase(" Save Address", 100)

End Sub

-->

</ SCRI PT>

Each time the control recognizes one of the phrasesin thelist it will fire the PhraseRecognized event.
To enter code for this event, do the following:

1. Choose Script Wizard from the View menu. You will see the ‘Script Wizard’ dialog box shown in
Figure 33.

IBM SDK for Windows 377

Getting Started with the Lite Controls

% Script Wizard - [VBScript)

1. Select an Event: 2. [nzert Actions:

= & VWPhrazesLitel -1 GoToPage...
VR i 5:eF ecognized @ GlobalVariables
gy WU Meter @ Procedures

-8 VWPhrasesLitel

sub VWPhraseslLitel PhraseRecognized (FPhrase, ID)

[

u o

o L Qe T 0K [E— | Hels |

Figure 33. Script Wizard Dialog Box - VVPhrasesL ite

2. OpentheVVPhrasesLitel branch to display the eventsfor the VVPhrasesL ite control, and click on
the PhraseRecognized event. For details on the Phr aseRecognized event, see page page 408.
Then enter code to handle this event. For example, enter the following statement: MsgBox "The
user hasissued the following command:" & Phrase

3. Click OK when done.

378 IBM SDK for Windows

VVPhrasesLite Control

Visual InterDev will enter the following code into your HTML page:

<SCRI PT LANGUAGE="VBScri pt" >
<l--
Sub VVPhrasesLitel_PhraseRecogni zed(Phrase, |D)
MsgBox "The user has issued the followi ng conmand:" & Phrase
end sub-->
</ SCRI PT>

To test the control, first savethe HTML page, then right mouse click on the editor window and choose
the Preview (DocumentName).. from the popup menu. You should be able to speak any of the
phrasesin thelist, and your page should respond with a message box displaying the phrase recognized.

IBM SDK for Windows 379

Getting Started with the Lite Controls

Summary

At this point, you should know how to do the following:

» How to add the VVDictLite control into an HTML page.

* How to add the VVGrammarLite control into an HTML page.
* How to add the VVPhrasesLite ontrol into an HTML page.

The remainder of this documentation contains a reference for all the properties, methods, and events
for the Lite controls.

380 IBM SDK for Windows

Chapter 19 Properties, Methods, and Events

The following sections describe the properties, methods, and events for the VVDictLite Control,
VVGrammarLite Control, and VVPhrasesL ite Control.

VVDictLite Control Properties

The VVDictLite Control supports the following properties:
» Enabled

* Indexa

* Name?

e Object?

* Parent?

« Tag?

a Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

IBM SDK for Windows

381

Properties, Methods, and Events

Enabled (VVDictLite)

Determines whether the VVDictL ite control islistening or not.

Syntax

In Visual InterDev:
|[WDi ctLite]. Enabl ed = [Bool ean]

Parameters
”

Return Values

TRUE
The control is enabled and captures dictation speech.

FALSE
The control is disabled and does nothing.

Remarks

The Enabled property also reportsif the VVDictL ite control found a speech engine in the client’s
machine. When the control isfirst created at run time, it searches the client’s machine for a suitable
speech engine. If the control does not find a speech engine, then it automatically setsthe Enabled
property to False.

382 IBM SDK for Windows

VVDictLite Control Properties

Example

In Visual InterDev:

<SCRI PT LANGUAGE="VBScri pt" >

<l--

Sub bt nTurnCf f Di ctation_Click()
"This line stops dictation
VWDi ct Li tel. Enabl ed=Fal se

End Sub

-->

</ SCRI PT>

See Also

None.

IBM SDK for Windows 383

Properties, Methods, and Events

VVDictLite Control Methods

There are no methods for this control.

VVDictLite Control Events

The VVDictLite Control supports the following events:
» PhraseRecognized
* VUMeter

384

IBM SDK for Windows

VVDictLite Control Events

PhraseRecognized (VVDictL ite)

Event fired by the VVDictL ite control when it recognizes speech from the user.

Syntax

In Visual InterDev:

Phr aseRecogni zed (ByVal Wrd As String, ByVal RawWord As String, ByVal
Fl ags As Long)

Parameters

Word
Theword that the user spoke. There are certain words, however, that the engine formats before
firing this event. For example, if the user says, "NEW-LINE". the word parameter will be the
Carriage Return and the Line Feed characters. These phrases are called macros. In thisversion, the
VVDictLite only supportsthe "NEW-LINE" and "NEW-PARAGRAPH" macros.

RawwWbrd
RawWord is the unformatted word. If the user says, "NEW-LINE", the Word parameter will
contain the reformatted text. However, the RawWord parameter will contain the words "NEW-
LINE."

Flags
This parameter is available for future enhancements.

Return Values
”

Remarks

None.

IBM SDK for Windows 385

Properties, Methods, and Events

Example

In Visual InterDev:

<SCRI PT LANGUAGE="VBScri pt" >

<I--

Sub bt nTurnCf f Di ctation_Click()
"This line stops dictation
VWDi ct Li tel. Enabl ed=Fal se

End Sub

-->

</ SCRI PT>

See Also

None.

386 IBM SDK for Windows

VVDictLite Control Events

VUMeter (VVDictLite)

Event fired by the VVDictL ite control when it detects a change in volume.

Syntax

In Visual InterDev:

‘VUI\/Eter(ByVaI Level As Long)

Parameters

Level
Theaudio level as apercentage, where 0 is silence, and 100 is the loudest volume the engine can
support.

Return Values
”

Remarks

The VUM eter event returns the audio level as a percentage where 0 is silence, and 100 is the loudest
volume the engine can support. Use this event to give your users indication that the control isin fact
listening to their speech

IBM SDK for Windows 387

Properties, Methods, and Events

Example

In Visual InterDev:

<SCRI PT LANGUAGE = "VBScri pt">
<l --

End If
End Sub
- >
</ SCRI PT>

Sub VVDictLite_VUMeter (ByVal Level As Long)
If Level < 10 Then
MsgBox "Pl ease speak |ouder", VBOK , "Speaking too softly"

See Also

None.

388

IBM SDK for Windows

VVGrammarLite Control Properties

VVGrammarLite Control Properties

The VV Grammar Lite Control supports the following properties:
» Enabled

* GrammarSource

* Indexa

* Name?

* Object?

* Parent?

e Tag?

a Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

IBM SDK for Windows 389

Properties, Methods, and Events

Enabled (VVGrammarLite)

Determines whether the VV Grammar L ite control islistening or not.

Syntax

In Visual InterDev:
‘ [WG anmar Li t e] . Enabl ed = [Bool ean]

Parameters
”

Return Values

TRUE
The VVGrammar Lite control is Enabled and captures dictation speech.

FALSE
The control is disabled and does nothing.

Remarks

The Enabled property also reportsif the VV GrammarL ite control found a speech enginein the
client's machine. When the control isfirst created at run time, it searches the client’s machine for a
suitable speech engine. If the control does not find a speech engine, then it automatically setsthe
Enabled property to False.

390 IBM SDK for Windows

VVGrammarLite Control Properties

Example

In Visual InterDev:

<SCRI PT LANGUAGE="VBScri pt" >

<I--

Sub bt nTur nOf f Conmand_Cl i ck()
"This line stops command recognition
VWG ammar Li t el. Enabl ed=Fal se

End Sub

-->

</ SCRI PT>

See Also

None.

IBM SDK for Windows 391

Properties, Methods, and Events

Grammar Source (VVGrammarLite)

Enables you to specify the grammar for the VV Grammar Lite control.

Syntax

In Visual InterDev:

‘[WG’arrrrarLite].GarrrrarSource = [String]

Parameters
”

Return Values
”

Remarks

None.

392 IBM SDK for Windows

VVGrammarLite Control Properties

Example

In Visual InterDev:

<SCRI PT LANGUAGE="VBScri pt" >

<I--

Sub wi ndow_onl oad
sGrammar = "[<Start>]" & Chr(13) & Chr(10)
sGammar = sGamar & "<Start>=This is a test”
WG ammar Li t el. Grammar Sour ce = sGr anmar

End Sub

-->

</ SCRI PT>

See Also

None.

IBM SDK for Windows 393

Properties, Methods, and Events

VVGrammarLite Control Methods

There are no methods for this control.

VVGrammarLite Control Events

The VVGrammar Lite Control supports the following events:
» PhraseRecognized
* VUMeter

394

IBM SDK for Windows

VV GrammarLite Control Events

PhraseRecognized (VVGrammarlLite)

event fired by the VVGrammarL ite control when the user speaks one of the phrases defined in the
control’s grammar.

Syntax

In Visual I nterDev:
‘ Phr aseRecogni zed(ByVal Phrase As String)

Parameters

Phrase
The phrase that the control recognized.

Return Values
”

Remarks

You can provide the grammar control with a SAPI 4.0 grammar source. The control automatically
compiles the grammar at run time.

IBM SDK for Windows 395

Properties, Methods, and Events

Example

In Visual InterDev:

<SCRI PT LANGUAGE="VBScri pt" >
<I--
Sub WG amarLitel PhraseRecogni zed(Phrase)
MsgBox "The user has issued the followi ng conmand:" & Phrase
End Sub
-->
</ SCRI PT>

See Also

None.

396 IBM SDK for Windows

VV GrammarLite Control Events

VUMeter (VVGrammarLite)

Event fired by the VV Grammar L ite control when it detects a change in volume.

Syntax

In Visual InterDev:
‘VUI\/Eter(ByVaI Level As Long)

Parameters

Level
Theaudio level as apercentage, where 0 is silence, and 100 is the loudest volume the engine can
support.

Return Values
”

Remarks

The VUM eter event returns the audio level as a percentage where 0 is silence, and 100 is the loudest
volume the engine can support. Use this event to give your users indication that the control isin fact
listening to their speech.

IBM SDK for Windows 397

Properties, Methods, and Events

Example

In Visual InterDev:

<SCRI PT LANGUAGE = "VBScript">

<l --

Sub WG ammar Li t e_VUMet er
If Level < 10 Then

MsgBox "Pl ease speak | ouder",

End If

End Sub

-->

</ SCRI PT>

(ByVval

Level

VB ,

As Long)

" Speaki ng too softly"

See Also

None.

398

IBM SDK for Windows

VVPhrasesL ite Control Properties

VVPhrasesL ite Control Properties

The VVPhrasesL ite Control supports the following properties:
e Enabled

e Indexa
¢ Name2
e Objecta
* Parentd
« Tagd

a Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

IBM SDK for Windows 399

Properties, Methods, and Events

Enabled (VVPhrasesL ite)

Determines whether the VV PhrasesL ite control is listening or not.

Syntax

In Visual InterDev:
‘ [WPhr asesLite]. Enabl ed = [Bool ean]

Parameters
”

Return Values

TRUE
The VVPhrasesL ite control is Enabled and listens for commands

FALSE
The control is disabled and does nothing.

Remarks

The Enabled property also reportsif the VVDictL ite control found a speech engine in the client’s
machine. When the control isfirst created at run time, it searches the client’s machine for a suitable
speech engine. If the control does not find a speech engine, then it automatically setsthe Enabled
property to False.

400 IBM SDK for Windows

VVPhrasesL ite Control Properties

Example

In Visual InterDev:

<SCRI PT LANGUAGE="VBScri pt" >

<I--

Sub bt nTur nOf f Conmand_Cl i ck()
"This line stops command recognition
WD ct Li t el. Enabl ed=Fal se

End Sub

-->

</ SCRI PT>

See Also

None.

IBM SDK for Windows 401

Properties, Methods, and Events

VVPhrasesLite Control Methods

The VVPhrasesL ite Control supports the following methods:
» AddPhrase
* RemoveAll

402 IBM SDK for Windows

VVPhrasesLite Control Methods

AddPhrase (VVPhrasesL ite)

This method enables you to add phrases to the list of phrases that the VVPhrasesL ite control will
recognize.

Syntax

In Visual InterDev:
‘AddPhrase(ByVaI Phrase As String, ByVal /D As Long)

Parameters

Phrase
The phrase that the control will recognize.

ID

A user assigned numeric identifier for the phrase. This number does not have to be unigue. You
can use this number to associate phrases with the same meaning.

Return Values
”

Remarks

You can add multiple phrases with the same meaning and assign them all the same D number. Thenin
the SpeechRecognized event take the same action for al of the phrases that have the same ID number.

IBM SDK for Windows 403

Properties, Methods, and Events

Example

In Visual InterDev:

<SCRI PT LANGUAGE="VBScri pt" >

<l--

Sub wi ndow_onl oad
Cal | VVPhrasesLitel. AddPhrase("Add Address", 110)
Cal |l WWPhrasesLitel. AddPhrase(" Save Address", 100)

End Sub

-->

</ SCRI PT>

See Also

None.

404 IBM SDK for Windows

VVPhrasesLite Control Methods

RemoveAll (VVPhrasesLite)

Removes al the phrases from the control’s list of phrases.

Syntax

In Visual InterDev:
| RemoveAl | ()

Parameters

None.

Return Values
”

Remarks

None.

IBM SDK for Windows 405

Properties, Methods, and Events

Example

In Visual InterDev:

<SCRI PT LANGUAGE="VBScri pt" >
<I--
Sub btnCancel _C i ck()
Cal | VVPhrasesLitel. RemoveAl | ()
Cal | VVPhrasesLitel. AddPhrase("Yes", 110)
Cal | WWPhrasesLitel. AddPhrase(" No", 100)
rc = MsgBox("Are you sure you want to cancel
order?", " Cancel ?", VBYesNo)
End Sub
-->
</ SCRI PT>

this

See Also

None.

406

IBM SDK for Windows

VVPhrasesLite Control Events

VVPhrasesLite Control Events

The VVGrammar Lite Control supports the following events:
» PhraseRecognized
* VUMeter

IBM SDK for Windows 407

Properties, Methods, and Events

PhraseRecognized (VVPhrasesLite)

The VVPhrasesL ite control fires this event when the user speaks one of the phrasesin the control’s
phrase list. You build the list by calling the AddPhr ase method.

Syntax

In Visual InterDev:

‘PhraseRecogni zed(ByVal Phrase As String, ByVal I D As Long)

Parameters

Phrase
The phrase that the control recognized.

ID
A user assigned numeric identifier for the phrase. This number does not have to be unique. You
can use this number to associate phrases with the same meaning.

Return Values
”

Remarks

None.

408 IBM SDK for Windows

VVPhrasesLite Control Events

Example

In Visual InterDev:

<SCRI PT LANGUA! = "VBScript">

<l --

Sub VVPhraseRecogni zed (ByVal Phrase As String, ByVal |ID As Long)
If 1D = 100 Then

MsgBox "Are you sure you want to exit", VBYESNO, "Exit Progrant

End If

End Sub

-

</ SCRI PT>

See Also

None.

IBM SDK for Windows 409

Properties, Methods, and Events

VUMeter (VVPhrasesLite)

Event fired when the VV PhrasesL ite control detects achangein volume.

Syntax

In Visual InterDev:
‘VUI\/Eter(ByVaI Level As Long)

Parameters

Level
Theaudio level as apercentage, where 0 is silence, and 100 is the loudest volume the engine can
support.

Return Values
”

Remarks

The VUM eter event returns the audio level as a percentage where 0 is silence, and 100 is the loudest
volume the engine can support. Use this event to give your users indication that the control isin fact
listening to their speech.

410 IBM SDK for Windows

VVPhrasesLite Control Events

Example

In Visual InterDev:

<SCRI PT LANGUAGE = "VBScri pt">

<l --

Sub VWWPhrasesLite_VUMet er
If Level < 10 Then

MsgBox "Pl ease speak | ouder",

End If

End Sub

-->

</ SCRI PT>

(ByVval

Level

VB ,

As Long)

" Speaki ng too softly"

See Also

None.

IBM SDK for Windows

411

Properties, Methods, and Events

412 IBM SDK for Windows

Chapter 20 Lite Controls Frequently Asked
Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice L ite controls.

How can | choose which speech enginethe Lite Controls connect to?

Currently there is no way to specify the properties of the engine you wish to connect to. This
functionality is available only in the full-featured controls. More information is available in the
next question.

Will the Lite controlswork with the other speech engines?

Yes. The Lite controlstry to find the IBM ViaVoice speech engine first. If the thisengine is not
present, then the Lite controls will use the first suitable speech engine in the system.

If 1 put the Lite controlsin an HTML page and someone without a speech engine wantsto view
the page, will they be able to?

Yes. If the Lite controls cannot find a speech engine, then they simply become inactive. The only
requirement is that the client is using a browser that supports ActiveX technology.

How do | know if the Lite controls found a speech engine and are active?

All of the Lite controls have an Enabled property. This property allows you to activate and
deactivate the Lite controls. However, it aso notifies you if the Lite controls were successful in
connecting to a speech engine. If the Lite controls were not able to find a speech engine, then they
reset this property to False. So, agood way to test if thereis aspeech enginein the systemisto set
Enabled to True, then test the value. If it remains True, then there is a speech engine, but if it is
False, then they system has no suitable speech engine.

Can | combinethe Lite controls and the full-featured versionsin the same application?

Yes. The Lite controls can be present in the same application as the full-featured versions.
However, you cannot use the L ite controls to replace the full-featured versions whenever a full-
featured version is expected. For example, you cannot use the VV PhrasesL ite control to provide

the full-featured VV CFGram control with an external list. The full-featured controls can only use
other full-featured controls.

IBM SDK for Windows 413

Lite Controls Frequently Asked Questions

414 IBM SDK for Windows

Chapter 21 | ntroduction to the ECWin Control

The ViaVoice Error Correction Window Control (VVECWIin) isan ActiveX control that enables
developers to utilize acommon error correction dialog similar to that provided with the Viavoice
product. It provides a common, familiar user interface that users will quickly and easily become
accustomed to, enabling them to correct speech recognition errors and text formatting issues, which
hel ps the speech recognition engine to enhance and improve its speech recognition ability. The Error
Correction Window control is also capable of understanding voice commands, which will enable the
user to navigate through the contents of the Error Correction Window control’s window with ease.

Developers will find that the Error Correction Window Control is easy to use and provides
functionality that would otherwise be cumbersome and difficult to implement. The Error Correction
Window control does not actually correct speech recognition errors. Instead, it provides a dialog that
the programmer initializes and the user interacts with in order to identify the correction. The Error
Correction Window informs the application through events what action the user has requested, and it
is up to the application to actually perform those services.

IBM SDK for Windows 415

Introduction tothe ECWin Control

416 IBM SDK for Windows

Chapter 22 Gaﬂ ng S:a‘tw W| th the EC\M N
Control

Thefollowing isatutorial on how to incorporate the VVECW:in control into your Visual Basic or
Visual C++ applications. Thistutoria is designed to present you with the most commonly used
properties and eventsin the VVECW:in control.

Creating an I nstance of the Control

In Visual Basic:

To add the VVECW:in control to your application, do the following:

1. From the Prgject menu, choose Components.
The Components dialog box, Figure 34, appears. The Components dialog lists all the ActiveX
Controls that you can use in your application.

IBM SDK for Windows

417

Getting Started with the ECWin Control

Components

Controls l Designers] Inzertable I:Il:uiectsl

Direckanimation Library
IEM YiaVoice Detective Control
IEM Wiakoice DickationMgr Control
IEM Viak'nice Engine Control

LAFLEM Yiaoice Error Correction Control
IEM YiaVoice Grammar Contral

B N

IBM YiaVoice Lite Contraols = e B
IBM ViaYoice Phrases Conkral
IEM Yiavoice RichEdit Contral i [

IBM ViaYoice TextBox Conkral
IBM WiaYoice User Interface Control
IBM ViaYoice Virtual Maices Contral |

icfilker 1.0 Type Library Jﬂ Browse. ..
J ir [Selected Items Only

IBM ViaYoice Errar Correction Conkrol

Location: e:lviavoiceibinlwwecwin, dll

] Cancel Apply

Figure 34. Component Selection Dialog - Visual Basic

2. Select IBM ViaVoice Error Correction Control from the list and choose OK .
Visual Basic adds the control to your project, and adds a new icon to the toolbar (Figure 35).

418 IBM SDK for Windows

Creating an Instance of the Control

Figure 35. VVECW:in Control Toolbar |con

3. Add aninstance of the VVECW:in control to your form.
The VVECWin control isan invisible control at run time.

In Visual C++ (MFC):
To add the VVECW:in control to your MFC project, do the following:

1. From the Project menu, select Add To Project, then select Componentsand Controls.

The Components and Controls Gallery dialog box, Figure 36, appears.

IBM SDK for Windows

419

Getting Started with the ECWin Control

Components and Controls Gallery

Chooge a component o inzert inta your project;

Look, i | 3 Reqgistered Active Contrals ﬂ ﬁi|

+ %|BM Viavoice Enor Comection Control
eiE4 |BM Visvoice Grammar Control

ﬂ |BEM ViaVoice Grammar Lite Control
'ﬂ IBEM Viavoice Phrazes Control

% IBM Wiz oice Phrases Lite Control

o [EM ViaVoice RichEdit Control

Kl |

|t g oice TextBiox |
o |BM Visvoice User Inte
B BM Vigvaice Vittual Ve
c#] InztallEngineCt Object

o Label Object

] LM Runtime Control

i

File name: |IEM Wiatoice Error Carrection Cantral Ink

[nzert

[BM Yiavoice Errar Carrection Window

Fath ta contral:

Cloze

|e: \Wiav nicesbintwvecwin, di

Figure 36. Insert ActiveX Control Dialog Box - Visual C++

2. Double-click the Registered ActiveX Controlsfolder in the dialog box.

3. Selectthe IBM ViaVoice Error Correction Control iconinthelist of controls, then click I nsert.
A confirmation message box appears, asking “Insert this component?”

4. Respond to the confirmation message box by chodkg

420

IBM SDK for Windows

Creating an Instance of the Control

The Confirm Classes dialog box, Figure 37, appears listing the components in the VVECWin
control:

Confirm Clazses 7|

The checked clazz(ez] will be generated from 0K
the Activer Contral. Click an a clazz name ta
browze or edit itz attributes.

Cancel
v E ngine
Clazz name: Baze class:
|CE i Cind
Header file:
[WWE Cdin b

Implementation file:
[\VE Cwdin.cpp

Figure 37. Confirm Classes Dialog Box

5. Click OK inthe Confirm Classes dialog box.

6. Close the “Components and Controls Gallery” dialog box.
If you examine the Project Workspace window in the class view you will notice 2 new classes:
CVVECWIin andCVVEnNgine (assuming you accepted the default names for the class in the
Confirm Classes dialog box).

IBM SDK for Windows 421

Getting Started with the ECWin Control

7. Intheresource view of your Project Workspace window double-click the dialog resource entry
where you wish to insert the VVECWin control.

The VVECWin icon, Figure 38, appears in the Controls toolbar.

B |
ITAHHMBD
x @ EEEE @m F
$ m - B2 [[E
6 H 2 € 3

Figure 38. VVECW:in Icon in the Controls Toolbar

8. Add aninstance of the VVECW:in control to the dialog box.
After you add the VVECWin control to your dialog you can invoke Class Wizard to create a
member variable for your class of type CVVECW:in. You might also decide to capture the events
in the control by adding Event handlersto your dialog class. To add Event handlers, click the
VVECW:in control with the right mouse button, then select Events from the pop-up menu.

422 IBM SDK for Windows

Initializing the Error Correction Window Control

Initializing the Error Correction Window
Control

Thefirst step inusing the Error Correction Window control isto initialize it. Typically an
application will follow these stepsin order to initialize the control and display the Error Correction
Window.

- Initialize the control

- Set the text to be corrected

- Add alternate pronunciations from which the user can select
- Add custom menu items

- Display the window

a s~ D

To initialize the control, simply call tHait method giving the window handle of the parent window.

In Visual Basic:
‘WECWn.Init hwd \

In Visual C++ (M FC):
‘CVVECWn.Init((I ong) m hwad); ‘

The next step is to set the text to be correctgpic@lly this is the text returned from the speech
recognition engine which was incorrectly recognized, or text that has incorrect punctuation,
capitalization, etc. Th€orrectText string will be displayed in thError Correction Window’s edit
field. Set theCorrectText property as follows:

IBM SDK for Windows 423

Getting Started with the ECWin Control

In Visual Basic:
‘ VWECW n. Corr ect Text = "bask" ‘

In Visual C++ (M FC):
‘ CVWWECW n. Set Correct Text ("bask"); ‘

The next step isto add alternate pronunciation strings to the alternates listbox. Thislistbox is used to
show alist of aternate words that the speech engine recognizes that are close in pronunciation to the
word the user dictated. The user can use their mouse or voice commands to select one of these
alternates, or they can type their selection in the edit field.

Thefirst parameter isthe text spelling of the alternate word, which is displayed in the listbox and will
be returned to the application in the Wor dSelected event if the user selectsthat alternate. The second
parameter is an optional "Sounds Like" word, which is not displayed but will aso be returned to the
application in the Wor dSelected event. The last parameter determinesif the window isto be repainted
after adding the word, and should typically be FALSE on all additions except the last one. Alternates
are shown in the listbox with a one-based index value to the left of the alternate spelling.

In Visual Basic:

VWECW n. AddAl ternate "task", "", False
VWECW n. AddAl ternate "past", "", False
VWECW n. AddAl t ernate "ask", "", True

n Visual C++ (MFC):

CWECW n. AddAl ternate("task", "", FALSE);
CWECW n. AddAl ternate("past", "", FALSE);
CWECW n. AddAl ternate("ask", "", TRUE);

The next step isto optionally add custom menu items and event IDs. By default the "Format" menu
button is not displayed, but will appear if one or more menu items have been added. Use a custom
menu for special formatting options such as capitalization and punctuation. The AddM enultem
method takes two parameters, the text string to appear on the menu and a menu ID that will be passed
back to the application in the M enuSelected event. Your menu I1D should be unique values that your
event handler will use to identify the menu item selected.

424 IBM SDK for Windows

Initializing the Error Correction Window Control

In Visual Basic:

VWECW n. AddMenul tem " &Capi tal i ze", 100
VWECW n. AddMenul t em " &Lower case", 200
VWECW n. AddMenul t em " &Upper case", 300

In Visual C++ (MFC):

CVVECW n. AddMenul tem(" &Capi tal i ze", 100);
CVWECW n. AddMenul t en(" &Lower case", 200);
CVWECW n. AddMenul t em(" &Upper case", 300);

Finally, to make the window visible, you will call the Show method as follows. The only parameter is
a boolean that controls whether or not the window should receive input focus when displayed.

In Visual Basic:
‘ VWECW n. Show True ‘

In Visual C++ (MFC):
| CWECW n. Show(TRUE) ; |

IBM SDK for Windows 425

Getting Started with the ECWin Control

Handling Error Correction Window Control
Events

The Error Correction Window control can fire the following events to the calling application.
» ButtonSelected

* Close

» ContextHelpRequest

* FocusChange

* MenuSelected

» WordSelected

ButtonSelected

The ButtonSelectedevent is fired when the user selects one of the following buttons on the Error
Correction Window. The Button ID is passed as the only parameter, and can be one of the following:

Mnemonic ID Description

vvecUSER _BUTTON 2 User selected the "Format" button, which contains
menu items added through the AddMenultem
method. The VVECWin control will also fire the
MenuSelectedevent with the selected menu ID.

vvecPLAY_BUTTON 3 User selected the "Play" button. The application will
typically respond to this event by playing back the
recorded wave file for the given "CorrectText"
word.

vvecDELETE_BUTTON 4 User selected the "Deleté' button. The application
will typically respond to this event by deleting the
given "CorrectText" word from the application.

426 IBM SDK for Windows

Handling Error Correction Window Control Events

vvecCORRECT _BUTTON 5 User selected the "Correct” button. The VVECWin
control will also fire the Wor dSelected event with
the desired spelling.

vvec ADDPHRASE BUTTON 6 User clicked the "Add wor ds or phrases"
checkbox. When this checkbox is checked, the
application will typically respond by adding the text
asasingle phrase. If the user spoke "New York" and
it was incorrectly recognized as "Newark", then the
user would open the Error Correction Window,
type "New York" in the edit field, check the "Add
wordsor phrases' checkbox, and click the
"Correct" button. The application would then know
to update the vocabulary with the complete phrase
"New York".

Close

The Close event is fired when the Error Correction Window is made invisible by a user action. This
could happen in response to a voice command or the user clicking the close button on the menu. The
event is not fired when application calls the Hide method. There are no parameters. The control
remains active and the window handle remains valid.

ContextHelpRequest

The ContextHelpRequest event is fired when the user pressesthe F1 key whilethe Error Correction
Window hasfocus. The Help ID is passed as the only parameter. The application can respond to this
event by displaying its help tool.

FocusChange

The FocusChange event is fired whenever the Error Correction Window gains or looses focus. The
only parameter is a boolean value that is TRUE if the window is gaining focus and FAL SE if the
window is loosing focus. The application can respond to this event as appropriate, such as enabling/
disabling its voice command support.

IBM SDK for Windows 427

Getting Started with the ECWin Control

M enuSelected

The M enuSelected event isfired when the user selects one of the custom menu options added through
the AddM enultem method. The application specified menu 1D, which was used to create the menu
entry, is passed as the only parameter. The application should respond by handling the menu item as
appropriate.

WordSe2224

The WordSelected event isfired when the user selects the word to be used as the corrected text. There
are three parameters, the selected spelling, an optional sounds-like spelling, and an index identifier.
The user can do this by clicking or using voice commands to select one of the alternate wordsin the
alternates listbox, or by typing aword in the edit field and selecting the "Cor rect" button. An index
value of -1 indicates that the user chose the correct text by entering it in the edit field and clicking the
"Correct" button, and values 0 and above are the zero based indices from words selected from the
alternates listbox.

428 IBM SDK for Windows

Error Correction Window Control Voice Command Support

Error Correction Window Control Voice
Command Support

The Error Correction Window Control VVECWin supports a number of voice commands, which are
active when the Error Correction Window has the input focus. Supported commands include the

following:

Voice Command

Description

Pick [index number]

Selects the alternate with the specified index. The
indices are displayed on the |eft side of each
listbox entry.

Hide Correction Window

Hides the Error Correction Window.

[Added Menu Items]

Selects the spoken menu item, valid only when the
menu is displayed.

Add words or phrases

Sets input focusto the "Add words or phrases’
checkbox.

Format Selects the "For mat" button.

Play Selectsthe "Play" button.

Delete Selectsthe "Delete” button.

Correct Selectsthe "Correct" button.

Alternate Word List Sets input focus to the alternate words listbox.
Edit Word Sets input focus to the edit field.

IBM SDK for Windows

429

Getting Started with the ECWin Control

430 IBM SDK for Windows

Chapter 23

Properties, Methods, and Events

Thefollowing isalist of properties, methods, and events pertaining to the Error Correction Window
Control.

Error Correction Window Control Properties

The VVECW:in control supports the following properties:

AddPhraseChecked
AddPhraseVisible
Caption
ChildEnabled
CommandsEnabled
CorrectText
Enabled

Engine

hWwnd

LanguageUl
NumVisibleAlternates
StatusBarVisible
StatusText

IBM SDK for Windows

431

Properties, Methods, and Events

AddPhraseChecked

Returns/sets whether or not the 'Add words or phrases' check box is checked when the Error
Correction Window isvisible.

Syntax

In Visual Basic:
‘ [WECW n] . AddPhr aseChecked = [Bool ean]

In Visual C++ (MFC):

BOOL [CWECW n] . Get AddPhr aseChecked ();
Voi d [CWECW n] . Set AddPhr aseChecked (BOOL f Newval ue);

In Visual C++:

HRESULT [pl VWECW n] - >get _AddPhr aseChecked (VARI ANT_BOOL * pbVal ue);
HRESULT [pl VWECW n] - >put _AddPhr aseChecked (VARI ANT_BOOL f Newval ue);

Parameters

fNewValue
”

Return Values

TRUE
Add the corrected text as a single phrase.

FALSE
Add the corrected text as single words.

432 IBM SDK for Windows

Error Correction Window Control Properties

Remarks

You can change this property whether or not the Error Correction Window is actually visible. You
should first set the AddPhraseVisible property to TRUE to ensure that the checkbox is visible. Users
can only change the checkbox setting when it is enabled. When the user checks this checkbox
(AddPhraseChecked is TRUE), the application should add the specified correction text asasingle
phrase.

Example

In Visual Basic:
VWECW n. AddPhr aseChecked = Fal se

Di m CheckSt at e As Bool ean
CheckSt at e = VWECW n. AddPhr aseChecked

n Visual C++ (MFC):

/I Ensure checkbox is enabled and visible
m_CVVECW n. Set AddPhr aseVi si bl e(TRUE) ;
m_CVVECW n. Set Chi | dEnabl ed(vvec ADDPHRASE_BUTTON, TRUE);

/I Ensure checkbox is not checked
m_CVVECW n. Set AddPhr aseChecked(FALSE) ;
BOOL bVal ue = m CVWWECW n. Get AddPhr aseChecked();

IBM SDK for Windows 433

Properties, Methods, and Events

In Visual C++:

/I Ensure checkbox is enabled and visible
m_pl VWECW n- >put _AddPhr aseVi si bl e(VARI ANT_TRUE) ;
m_pl VWECW n- >put _Chi | dEnabl ed(vvecADDPHRASE_BUTTON, VARI ANT_TRUE);

/I Ensure checkbox is not checked

m_pl VWECW n- >put _AddPhr aseChecked(VARl ANT_FALSE);
VARI ANT_BOOL bVal ue;

m_pl VWECW n- >get _AddPhr aseChecked(&bVal ue);

See Also

“ChildEnabled” on page 439
“AddPhraseVisible” on page 435
“CommandsEnabled” on page 442
“Enabled” on page 446
“ButtonSelected” on page 482
“CorrectText” on page 444
“Reset” on page 477

434 IBM SDK for Windows

Error Correction Window Control Properties

AddPhraseVisble

Returns/sets whether or not the “Add words or phrases” check box is visible wHamn ohe
Correction Window is displayed

Syntax

In Visual Basic:
| [WECW n] . AddPhr aseVi si bl e = [Bool ean]

In Visual C++ (MFC):

BOOL [CWECW n] . Get AddPhr aseVi si bl e();
voi d [CWECW n] . Set AddPhr aseVi si bl e(BOOL f NewVal ue) ;

In Visual C++:

HRESULT [pl VWECW n] - >get _AddPhr aseVi si bl e(VAR ANT_BOOL * pVal);
HRESULT [pl VWECW n] - >put _AddPhr aseVi si bl e(VARl ANT_BOOL newVal ue);

Parameters

fNewValue
?2?

Return Values

TRUE
“Add words or phrases” check box is visible.

FALSE
“Add words or phrases” check box is not visible.

IBM SDK for Windows 435

Properties, Methods, and Events

Remarks

You can change this property whether or not the Error Correction Window is actually visible. It will
take effect when the window is shown. The check box isinitially displayed unchecked. The text "Add
words or phrases’ is displayed next to the checkbox when visible, in the language specified by the

LanguageUl property.

Example

In Visual Basic:

‘WECW n. AddPhr aseVi si bl e = True

In Visual C++ (MFC):

‘ m_CVVECW n. Set AddPhr aseVi si bl e(TRUE) ;

In Visual C++:

VARI ANT_BOOL bVal ue;
m_pl VWECW n- >get _AddPhr aseVi si bl e(&bVal ue);

m_pl VWECW n- >put _AddPhr aseVi si bl e(VARl ANT_TRUE) ;

See Also

“AddPhraseChecked” on page 432
“ChildEnabled” on page 439
“CommandsEnabled” on page 442
“LanguageUl” on page 452
“Enabled” on page 446

436

IBM SDK for Windows

Error Correction Window Control Properties

Caption

Sets/gets the text that is displayed on the title bar of the Error Correction Window.

Syntax

In Visual Basic:
‘[WECWn].Caption = [String]

In Visual C++ (MFC):

CString [CWECW n] . CGet Caption();
Voi d [CWECW n] . Set Capti on(LPCTSTR | pszNewval ue) ;

In Visual C++:

HRESULT [pl VWECW n] - >get _Capti on(BSTR* pstr Capti on);
HRESULT [pl VWECW n] - >put _Capti on(BSTR strCapti on);

Parameters

None.

Return Values

None.

Remarks

By default the caption is set to "Error Correction", in the language specified by the L anguageUl
property.

IBM SDK for Windows 437

Properties, Methods, and Events

Example

In Visual Basic:

VWECW n. Caption = "Custom Error Correction"”
VWECW n. Show True

In Visual C++ (MFC):

m CVVECW n. Set Capti on(" Custom Error Correction");
m_CVVECW n. Show(TRUE) ;

In Visual C++:

m_pl VWECW n- >put _Capti on(SysAl |l ocString(L"Custom Error Correction"));
m_pl VWECW n- >Show(VARI ANT_TRUE) ;

See Also
“LanguageUl” on page 452

438 IBM SDK for Windows

Error Correction Window Control Properties

ChildEnabled

Returns/sets the enabled state of the specified child control of the Error Correction Window.

Syntax

In Visual Basic:

[WECW n] . Chi | dEnabl ed([buttonl D]) = [Bool ean]
[Bool ean] = [VWECW n]. Chil dEnabl ed([buttonl D)

In Visual C++ (MFC):

BOOL [CWECW n] . Cet Chi | dEnabl ed(l ong | Buttonl D);
voi d [CWECW n] . Set Chi | dEnabl ed(1 ong | Buttonl D, BOOL f Newval ue);

In Visual C++:

HRESULT [pl VWECW n] - >get _Chi | dEnabl ed(VWECButtonl d | Buttonl D,
VARI ANT_BOOL * pVal ue);

HRESULT [pl VWECW n] - >put _Chi | dEnabl ed(VWECButt onl d | Buttonl D,
VARI ANT_BOOL f NewVal ue);

Parameters

fNewValue
Boolean.

Return Values

TRUE
7?

FALSE
7?

IBM SDK for Windows 439

Properties, Methods, and Events

Remarks

You can change this property whether or not the Error Correction Window is actually visible. You
should use the following values (available in the vvecwin.h file distributed as part of the SDK) to
specify which child control you are referring to. Disabled controls are typically grayed out and cannot
receive focus.

Mnemonic ID Description

VvVecALTERNATES LI ST 0 Control ID for the Alternate Words listbox.

vvecRECO EDI T 1 Control ID for the edit field.

vvecUSER_BUTTON 2 Control 1D for the user-programmable button (the
"Format" button in Tool Tips).

vvecPLAY_BUTTON 3 Contral ID for the "Play" button.

vvecDELETE BUTTON 4 Control ID for the "Delete" button.

vvecCORRECT BUTTON 5 Control ID for the "Correct" button.

vvec ADDPHRASE BUTTON 6 Contral ID for the "Add words or phrases’

checkbox.

Example

In Visual Basic:

Di m bEna As Bool ean
VVECW n. Chi | dEnabl ed(vvecPLAY_BUTTON) = Fal se
BEna = WECW n. Chi | dEnabl ed(vvecPLAY_BUTTON)

440 IBM SDK for Windows

Error Correction Window Control Properties

In Visual C++ (MFC):

/11 nclude Enunerated type for button IDs
#include "..\ViaVoi ce SDK\I ncl ude\vvecw n. h"

/1 Ensure "Play" button is disabled
m_CVVECW n. Set Chi | dEnabl ed(vvecPLAY_BUTTON, FALSE);
BOOL bVal ue = m CVWECW n. Get Chi | dEnabl ed(vvecPLAY_BUTTON);

In Visual C++:

/1 Ensure "Play" button is disabled

m_pl VWECW n- >put _Chi | dEnabl ed(vvecPLAY_BUTTON, VARI ANT_FALSE);
VARI ANT_BOOL bVal ue;
m_pl VWECW n- >get _Chi | dEnabl ed(vvecPLAY_BUTTQON, &bVal ue);

See Also

“Init” on page 470
“Show” on page 479
“ButtonSelected” on page 482

IBM SDK for Windows 441

Properties, Methods, and Events

CommandsEnabled

Returns/sets whether or not the Error Correction Window should connect to an internal VVPhrase
control in order to provide voice navigation of the window with commands such as"Pick One" or
"Hide Correction Window."

Syntax

In Visual Basic:
‘ [WECW n] . CommandsEnabl ed = [Bool ean]

In Visual C++ (MFC):

BOOL [CWECW n] . Get CommandsEnabl ed() ;
voi d [CWECW n] . Set ConmandsEnabl ed(BOOL f NewVal ue);

In Visual C++:

HRESULT [pl VWECW n] - >get _ConmandsEnabl ed(VARI ANT_BOOL * pVal);
HRESULT [pl VECW n] - >put _ConmandsEnabl ed(VARI ANT_BOOL newval) ;

Parameters

fNewValue
Boolean.

Return Values

TRUE
7?

FALSE
7?

442 IBM SDK for Windows

Error Correction Window Control Properties

Example

In Visual Basic:

‘WECW n. CommandsEnabl ed = True

In Visual C++ (MFC):

m_CVVECW n. Set CommandsEnabl ed(TRUE) ;
BOOL bEnabl ed = m CVVECW n. Get ConmandsEnabl ed() ;

In Visual C++:

m_pl VWECW n- >put _CommuandsEnabl ed(VARI ANT_TRUE) ;
VARI ANT_BOOL bVal ue;
m_pl VWECW n- >get _CommrandsEnabl ed(&bVal ue);

See Also

“Error Correcton Window Control Voice Command Support” on page 429.

IBM SDK for Windows

443

Properties, Methods, and Events

CorrectText

Sets the text that the user wants to have corrected in the Error Correction Window.

Syntax

In Visual Basic:
‘[WECWn].CorrectText = [String]

In Visual C++ (MFC):

CString [CVWECW n] . CGet Correct Text ();
voi d [CWECW n] . Set Correct Text (LPCTSTR | pszNewVval ue) ;

In Visual C++:

HRESULT [pl VWECW n] - >get _Correct Text (BSTR* pVal);
HRESULT [pl VWECW n] - >put _Cor r ect Text (BSTR newval) ;

Parameters

None.

Return Values

None.

Remarks

Returns the text the user has currently selected or typed as areplacement for the original text to be
corrected.

444 IBM SDK for Windows

Error Correction Window Control Properties

Example

In Visual Basic:

VWECW n. Correct Text = "word"
VWECW n. Show True

"after w ndow cl osed
Debug. Print "User chose to replace "word” with " & _
VWECW n. Correct Text & "

In Visual C++ (MFC):

m_CVVECW n. Set Cor r ect Text ("word");
m_CVVECW n. Show(TRUE) ;

[l after w ndow cl osed
CString strResult = m CVYWECW n. Cet Correct Text ();

TRACE(" The user chose to replace "word’ with '%’'", strResult);

In Visual C++:

m_pl VWECW n- >put _Correct Text (SysAl l ocString(L"word"));
m_pl VWECW n- >Show(VARI ANT_TRUE) ;

[l after w ndow cl osed

BSTR bstrResult = NULL;

m_pl VWECW n- >get _Corr ect Text (&bstrResul t);

:: MessageBoxW NULL, bstrResult, L"Corrected Text:", MB_OK);

See Also

“WordSelected” on page 493
“AddPhraseVisible” on page 435
“AddPhraseChecked” on page 432

IBM SDK for Windows

445

Properties, Methods, and Events

Enabled

Returns/sets whether or not the ViaVoice Error Correction Window appears enabled or disabled
(grayed).

Syntax

In Visual Basic:
| [WECW n] . Enabl ed = [Bool ean]

In Visual C++ (MFC):

[BOOL] = [CWECW n] . Cet Enabl ed() ;
voi d [CWECW n] . Set Enabl ed(BOOL f NewVal ue) ;

In Visual C++:

HRESULT [pl VWECW n] - >get _Enabl ed(VARI ANT_BOCL * pbEnabl ed);
HRESULT [pl VWECW n] - >put _Enabl ed(VARI ANT_BOCL bEnabl ed) ;

Parameters

fNewValue
Boolean.

Return Values

TRUE
7?

FALSE
7?

Remarks

None.

446 IBM SDK for Windows

Error Correction Window Control Properties

Example

In Visual Basic:

‘WECW n. Enabl ed = True

In Visual C++ (MFC):

m_CVVECW n. Set Enabl ed(TRUE) ;
BOOL bEnabl ed =

m_CVVECW n. Get Enabl ed();

In Visual C++:

m_pl VWECW n- >put _Enabl ed(VARI ANT_TRUE) ;
VARI ANT_BOOL bEnabl ed;
m_pl VWECW n- >get _Enabl ed(&bEnabl ed);

See Also

“ChildEnabled” on page 439
“CommandsEnabled” on page 442
“Show” on page 479

“Hide” on page 468

IBM SDK for Windows

447

Properties, Methods, and Events

Engine

Contains a reference to the ViaVoice Engine control (VVEnNgine), which isused by the Error
Correction Window control for voice navigation.

Syntax

In Visual Basic:
‘ [WENgi ne] = [WECW n] . Engi ne

In Visual C++ (MFC):

[CWENgi ne] = [CVWWECW n] . Get Engi ne();
voi d [CWECW n] . Set Ref Engi ne(LPDI SPATCH newVal ue) ;

In Visual C++:

HRESULT [pl VWECW n] - >get _Engi ne(1 VWEngi ne * * ppVal);
HRESULT [pl WECW n] - >put r ef _Engi ne(| VVEngi ne * pNewval) ;

Parameters
”

Return Values
”

Remarks

None.

448 IBM SDK for Windows

Error Correction Window Control Properties

Example

In Visual Basic:

' Get | anguage used by engine
Di m Engi neLanguage As String
Engi neLanguage = VVECW n. Engi ne. Language

n Visual C++ (MFC):

/] Get | anguage used by engine

CWVENgi ne CVVENg;

CWENg = m CVVECW n. Get Engi ne();

CsString Engi neLanguage = CVVENng. Get Language();

In Visual C++:

| VENgi ne *pl VENgi ne;
HRESULT hr;

hr = [pl VWECW n] - >get _Engi ne(&pl VVENngi ne) ;
i f (FAILED(hr))

return hr;
pl VWEngi ne- >Connect () ;

See Also

“CommandsEnabled” on page 442

IBM SDK for Windows 449

Properties, Methods, and Events

hWnd

Returns the hWnd of the Error Correction Window if the Error Correction Window has been

created (through a call to I nit), this read-only property.

Syntax

In Visual Basic:

[[1ong] = [VWECW n] . hwd

In Visual C++ (MFC):

\|ong [CWECW n] . Get HWd() ;

In Visual C++:

| HRESULT [pl WECW n] - >get _hwd(l ong * phwWd);

Parameters
7

Return Values
”

Remarks

None.

450

IBM SDK for Windows

Error Correction Window Control Properties

Example

In Visual Basic:

Di m hWhdEC As Long
VWECW n. I nit hWhd
VVECW n. Show Tr ue
hWhdEC = VWECW n. hWhd

In Visual C++ (MFC):

m CVWECWnNn. I nit((Il ong) mhwd);
m_CVVECW n. Show(TRUE);

[ong | hWwAdEC = m CVVECW n. Get HWhd() ;

n Visual C++:

m pl WECW n->Init((long)mhWwd);
m pl VWWECW n- >Show(VARI ANT_TRUE) ;

[ong | hWhdEC;

m _pl VWECW n- >get _hWhd(& hWhdEC);

See Also

Init” on page 470

“Show” on page 479

BM SDK for Windows

451

Properties, Methods, and Events

L anguageUl

Sets or gets the language used by the ViaVoice Error Correction Window for this specific client.

Syntax

In Visual Basic:

‘ [WECW n] . LanguageU = [String]

In Visual C++ (MFC):

CString = [CWECW n] . Get LanguageUl () ;

voi d [CWECW n] . Set LanguageUl (LPCTSTR | pszNewval ue) ;

In Visual C++:

HRESULT [pl VWECW n] - >get _LanguageUl (BSTR* pVal);
HRESULT [pl VWECW n] - >put _LanguageUl (BSTR newval) ;

Parameters
”

Return Values

The LanguageUl property settings for aViavoice Error Correction control are:

Value Description
"EN_US' U.S. English
"EN_UK" U.K. English
"GR_GR" German
"IT_IT" Italian
"ES ES" Spanish
452 IBM SDK for Windows

Error Correction Window Control Properties

Value Description

"FR_FR" French

"JA_JP" Japanese
Remarks

The language affects any dialogs, menus, strings or Tool Tips displayed by the control. Changing this
property affects the text strings that are displayed in the control, including the Caption, the text string
displayed on the " Add words or phrases" checkbox, and the tool tips displayed when the mouse moves
over the format, play, delete, and correct buttons. This property defaults to the language of the installed
speech recognition engine.

Example

In Visual Basic:

VVECW n. LanguageUl = "EN_US"
VWECW n. | nit hWhd
VVECW n. Show True

n Visual C++ (MFC):

m_CVVECW n. Set LanguageUl ("EN_US");
m CVWECW n. I nit ((I ong) m hWhd) ;
m_CVVECW n. Show(TRUE) ;

In Visual C++:

m_pl VWECW n- >put _LanguageUl (SysAl l ocString(L"EN_US"));
m pl WECW n->Init((long)mhWd);

m_pl VWWECW n- >Show(VARI ANT_TRUE) ;

See Also

“Init” on page 470
“Show” on page 479

IBM SDK for Windows 453

Properties, Methods, and Events

NumVisibleAlternates

Returns or setsthe number of alternates (alternative spellings of the word provided by the CorrectText
property) to initially make visible in the ViaVoice Error Correction Window.

Syntax

In Visual Basic:
‘ [WECW n] . NumVi si bl eAl ternates = [| ong]

In Visual C++ (MFC):

l ong [CWECW n] . Get NunVi si bl eAl ternates();
[CWWECW n] . Set NunVi si bl eAl t er nat es(| ong nNewval ue) ;

In Visual C++:

HRESULT [pl VWECW n] - >get _NunVi si bl eAlterantes(long * pVal);
HRESULT [pl VWECW n] - >put _NumVi si bl eAl t er nat es(l ong newval) ;

Parameters
”

Return Values
”

Remarks

For this property to take effect it must be set before calling the I nit method. By default this property is
set to five. Changing the default value affects the height of the listbox contained in the Error
Correction Window. More aternates can still be added, but the user will have to scroll through the
alternates list box or resize the Error Correction Window to view them.

454 IBM SDK for Windows

Error Correction Window Control Properties

Example

In Visual Basic:

VWECW n. NunVi si bl eAlternates = 7
VWECW n. I nit hwWwhd

In Visual C++ (MFC):

m_CVVECW n. Set NunVi si bl eAl ternates(7);
m CVWECWnn. I nit((Il ong) mhwd);

In Visual C++:

m pl WECW n->Init((long)mhWwd);

m_pl VWECW n- >put _NunVi si bl eAl t ernat es(7);

See Also

“AddAlternate” on page 461
“MoveWindow” on page 474
“Init” on page 470

IBM SDK for Windows

455

Properties, Methods, and Events

SatusBarVisble

Returns/sets whether or not the status bar at the bottom of the Viavoice Error Correction Window is
displayed.

Syntax

In Visual Basic:
‘ [WECW n] . St at usBar Vi si bl e = [Bool ean]

In Visual C++ (MFC):

BOOL [CWECW n] . CGet St at usBar Vi si bl e();
voi d [CWECW n] . Set St at usBar Vi si bl e(BOOL f Newval ue) ;

In Visual C++:

HRESULT [pl VWECW n] - >get _St at usBar Vi si bl e(VARl ANT_BOOL* pbVal);
HRESULT [pl VWECW n] - >put _St at usBar Vi si bl e(VARl ANT_BOOL f NewVal ue) ;

Parameters

fNewValue
Boolean.

Return Values
TRUE

FALSE

Remarks

None.

456 IBM SDK for Windows

Error Correction Window Control Properties

Example

In Visual Basic:

VWECW n. | nit hWhd

VVECW n. St at usBar Vi si bl e = True

VVECW n. St at usText = "Sel ect correct spelling"
VVECW n. Show True

In Visual C++ (MFC):

m CVWECWnNn. I nit((Il ong) mhwd);

m_CVVECW n. Set St at usBar Vi si bl e(TRUE) ;

m CVVECW n. Set St at usText (" Sel ect correct spelling");
m_CVVECW n. Show(TRUE) ;

In Visual C++:

M pl WECW n->Init((long)mhWwd);

m_pl VWECW n- >put _St at usBar Vi si bl e(VARI ANT_TRUE) ;

m_pl VWECW n- >put _St at usText (SysAl l ocString(L"Sel ect correct spelling"));
m_pl VWECW n- >Show(VARI ANT_TRUE) ;

See Also
“StatusText” on page 458

IBM SDK for Windows 457

Properties, Methods, and Events

SatusText

Returns/sets the text displayed in the status bar of the Viavoice Error Correction Window.

Syntax

In Visual Basic:
‘ [WECW n] . StatusText = [String]

In Visual C++ (MFC):

CString = [VECW n] . Get St atusText ();
voi d [VWECW n] . Set St at usText (LPCTSTR | pszNewVal ue) ;

In Visual C++:

HRESULT [pl VWECW n] - >get _St at usText (BSTR * pVal);
HRESULT [pl VWECW n] - >put _St at usText (BSTR newval) ;

Parameters

None.

Return Values

None.

Remarks

None.

458 IBM SDK for Windows

Error Correction Window Control Properties

Example

In Visual Basic:

VWECW n. | nit hWhd

VVECW n. St at usBar Vi si bl e = True

VVECW n. St at usText = "Sel ect correct spelling"
VVECW n. Show True

In Visual C++ (MFC):

m CVWECWnNn. I nit((Il ong) mhwd);

m_CVVECW n. Set St at usBar Vi si bl e(TRUE) ;

m CVVECW n. Set St at usText (" Sel ect correct spelling");
m_CVVECW n. Show(TRUE) ;

In Visual C++:

m pl WECW n->Init((long)mhWd);

m_pl VWECW n- >put _St at usBar Vi si bl e(VARI ANT_TRUE) ;

m_pl VWECW n- >put _St at usText (SysAl l ocString(L"Sel ect correct spelling"));
m_pl VWECW n- >Show(VARI ANT_TRUE) ;

See Also
“StatusBarVisible” on page 456

IBM SDK for Windows 459

Properties, Methods, and Events

Error Correction Window Control M ethods

The ViaVoice Error Correction Window control supports the following methods:
» AddAlternate

e AddMenultem

* GetWindowRect

+ Hide

e Init

» IsVisible

* MoveWindow

* Reset

* Show

460 IBM SDK for Windows

Error Correction Window Control M ethods

AddAlternate

Adds an alternate word and an optional sounds-like word to the alternate-words listbox in the Viavoice
Error Correction Window. Optionally redraws the window.

Syntax

In Visual Basic:

[WECW n] . AddAl ternate AlternateWrd As String, SoundsLike As String,
Redraw As Bool ean

n Visual C++ (MFC):

voi d [CWECW n] . AddAl t er nat e(LPCTSTR Al t er nat eWrd, LPCTSTR SoundsLi ke,
BOOL Redraw);

In Visual C++:

HRESULT [pl VWECW n] - >AddAl t er nat e(BSTR Al t er nat eWrd, BSTR SoundsLi ke,
VARI ANT_BOOL Redr aw) ;

Parameters

AlternateWord
String. Word to be displayed in the alternate-word listbox.

SoundsLikeword
String. Sounds-like word, which is not displayed but is returned in the WordSelected event. Can be
aNULL string.

Redraw
Boolean. Redraws window after adding new string. Typically set to False while adding all
alternates except the last.

IBM SDK for Windows 461

Properties, Methods, and Events

Return Values

TRUE
(On last item) Clearsall itemsin the listbox.

FALSE
Adds another alternate word.

Remarks

The I nit method must be called before AddAlter nate can be used. Use the AddAlter nate method to
populate the listbox with alternates that the user can select by clicking with the mouse or by voice
commands (i.e., saying "Pick 2"). The application isinformed of the selected word through the
WordSelected event. The SoundsLike word is hot displayed, but isinternally saved in the control and
returned to the caller through the Wor dSelected event. Add all alternates except the last with Redraw
FALSE, and set Redraw TRUE on the final alternate. Clear al itemsin the listbox with the Reset
method.

462 IBM SDK for Windows

Error Correction Window Control M ethods

Example

In Visual Basic:
VWECW n. I nit hWhd

VVECW n. Correct Text = "two"
VWECW n. AddAl ternate "to", "two", Fal se
VWVECW n. AddAl ternate "too", "", True

VWECW n. Show True

n Visual C++ (MFC):

m CVWECW n. | nit ((I ong) m hWhd) ;

m_CVVECW n. Set Cor r ect Text ("two");

m CVWECW n. AddAl ternate("to", "two", FALSE);
m CVVECW n. AddAl ternate("too", "", TRUE);
m_CVVECW n. Show(TRUE) ;

In Visual C++:

m pl WECW n->Init((long)mhWd);

m_pl VWECW n- >put _Correct Text (SysAl l ocString("two"));

m_pl VWECW n- >AddAl t er nat e(SysAl l ocString(L"to"), SysAllocString(L"two"),
VARI ANT_FALSE) ;

m_pl VWECW n- >AddAl t er nat e(SysAl |l ocString(L"too"), SysAllocString(L""),
VARI ANT_TRUE) ;

m pl VWECW n- >Show(VARI ANT_TRUE);

See Also

“CommandsEnabled” on page 442
“CorrectText” on page 444
“NumVisibleAlternates” on page 454
“Init” on page 470

“Reset” on page 477
“WordSelected” on page 493

IBM SDK for Windows 463

Properties, Methods, and Events

AddM enultem

Adds a custom menu item to the ViaVoice Error Correction Window's Format button.

Syntax

In Visual Basic:
‘ [WECW n] . AddMenul tem MenuText As String, MenulD As Long ‘

In Visual C++ (MFC):
‘ voi d [CWECW n] . AddMenul t em(LPCTSTR MenuText, |ong Menul D) ; ‘

In Visual C++:
| HRESULT pl WECW n- >AddMenul t em{ BSTR MenuText, |ong Menul D); |

Parameters

MenuText
String. Text string to appear in custom menu, when user presses the Format button.

MenulD
Long. Value to be passed to application in MenuSe ected event, when user selects a menu item.

Return Values
”

Remarks

Use this method to add custom items to the popup menu displayed when the user presses the 'Format’
button. The Format button is not displayed unless at |east one menu item has been added. The
MenuSelected event is fired with the given M enul D when the user selects a custom menu item.

464 IBM SDK for Windows

Error Correction Window Control M ethods

Example

In Visual Basic:

VWECW n. AddMenul tem " &Capi talize", 100
VWECW n. AddMenul tem " &Lower case’, 200
VWECW n. AddMenul t em " &Upper case", 300

n Visual C++ (MFC):

m_CVVECW n. AddMenul t en{ " &UJpper case", 300);

m_CVVECW n. AddMenul t en{ " &Capi t al i ze", 100);
m_CVVECW n. AddMenul t en{ " &L ower case’ ", 200);

In Visual C++:

m_pl VWECW n- >AddMenul t em(SysAl |l ocString(L"&Capitalize"), 100);
m_pl VWECW n- >AddMenul t em(SysAl |l ocString(L" & owercase’"), 200);
m_pl VWECW n- >AddMenul t em(SysAl |l ocString(L"&Uppercase’"), 300);

See Also

“ButtonSelected” on page 482
“MenuSelected” on page 491

IBM SDK for Windows

465

Properties, Methods, and Events

GetWindowRect

Returns the origin and dimensions of the Error Correction Window if it has been displayed.

Syntax

In Visual Basic:

[WECW n] . Get W ndowRect px As Long, py As Long, pWdth As Long, pHeight
As Long

In Visual C++ (MFC):

voi d [CWECW n] . Get W ndowRect (I ong* px, long* py, |ong* pWdth, |ong*
pHei ght) ;

In Visual C++:

HRESULT [pl VWECW n] - >Get W ndowRect (| ong* px, |ong* py, |ong* pWdth,
| ong* pHei ght);

Parameters

pX
Long. Pointer to variable to receive x coordinate.

py
Long. Pointer to variable to receive y coordinate.

pWdth
Long. Pointer to variable to receive window width.

pHeight
Long. Pointer to variable to receive window height.

Return Values
”

466 IBM SDK for Windows

Error Correction Window Control M ethods

Remarks

The dimensions are given in screen coordinates that are relative to the upper-left corner of the screen.

The Error Correction Window can be moved and resized with the M oveWindow method.

Example

In Visual Basic:

Dim x As Long

Dimy As Long

Dim Wdth As Long

Di m Hei ght As Long

VWECW n. | nit hWhd

VVECW n. Show True

VVECW n. Get W ndowRect X, y, W dt h, Hei ght

In Visual C++ (MFC):

l ong X,y, Wdth, Hei ght;

m CVWECWnNn. I nit((Il ong) mhwd);

m_CVVECW n. Show(TRUE) ;

m_CVVECW n. Get W ndowRect (&, &y, &Wdth, &Hei ght);

In Visual C++:

long Xx,y,Wdth, Hei ght;
m pl WECW n->Init((long)mhWwd);
m_pl VWECW n- >Show(VARI ANT_TRUE);

m _pl VWECW n- >Get W ndowRect (&, &y, &W dth, &Height);

See Also

“IsVisible” on page 472
“MoveWindow” on page 474
“Show” on page 479

IBM SDK for Windows

467

Properties, Methods, and Events

Hide

Hidesthe Error Correction Window, if it is currently visible.

Syntax

In Visual Basic:
| [WECW n] . Hi de |

In Visual C++ (MFC):
| Voi d [CWECW n] . Hi de() ; |

In Visual C++:
[HRESULT [pl VWECW n] - >Hi de() ; |

Parameters

None.

Return Values

None.

Remarks

Hidesthe Error Correction Window. The window handleis still valid. This method will not cause
the Close event to be fired, since that event is meant to notify the application of a user-initiated clos

468 IBM SDK for Windows

Error Correction Window Control M ethods

Example

In Visual Basic:

"first process word sel ected event

"Now hide Error Correction wi ndow until needed again
VWECW n. Hi de

In Visual C++ (MFC):

/I First process word sel ected event

/I Now hide Error Correction w ndow until needed again
CVWVECW n. Hi de() ;

In Visual C++:

/I First process word sel ected event

/I Now hide Error Correction wi ndow until needed again
m_pl VWECW n- >Hi de() ;

See Also

“IsVisible” on page 472
“Show” on page 479

“Close” on page 485
“FocusChange” on page 489

IBM SDK for Windows

469

Properties, Methods, and Events

I nit

Loads, but does not show, the ViaVoice Error Correction Window and performs other initialization

related functions.

Syntax

In Visual Basic:

‘ [WECW n] . I nit (hWidPar ent As Long)

In Visual C++ (MFC):

‘voi d [CWECWn].Init(long hWidParent);

In Visual C++:

| HRESULT [pl WECW n] - >I ni t (1 ong hWidParent) ;

Parameters

hwndParent
Long. Window handle to be used as parent.

Return Values

None.

Remarks
I nit must be called before Show.

470

IBM SDK for Windows

Error Correction Window Control M ethods

Example

In Visual Basic:

‘WECWn.Init hwhd

In Visual C++ (MFC):

| CWECW n. Ini t ((1 ong) m hwd) ;

In Visual C++:

| m_pl WECW n->Ini t ((I ong)mhwd);

See Also

“Show” on page 479
“NumVisibleAlternates” on page 454

IBM SDK for Windows

471

Properties, Methods, and Events

IsVisible

Returns whether or not the ViavVoice Error Correction Window is currently visible.

Syntax

In Visual Basic:

| [Bool ean] = [WECOWn].1sVisible

In Visual C++ (MFC):

| BOOL [CWECW n] . I'sVisi bl e();

In Visual C++:

‘ HRESULT [pl VWVECW n] - >1 sVi si bl e(VARI ANT_BOOL * pVal);

Parameters
None.

Return Values

TRUE
Error Correction Window iscurrently visible.

FALSE
Error Correction Window iscurrently not visible.

Remarks

None.

472

IBM SDK for Windows

Error Correction Window Control M ethods

Example

In Visual Basic:

Di m bVi si bl e As Bool ean
bVisible = WECWN.|sVisible

In Visual C++ (MFC):

BOOL bVisi bl e;
bVi si bl e = CYWECW n. | sVi si bl e();

In Visual C++:

VARI ANT_BOOL bVi si bl e;
m_pl VWECW n- >l sVi si bl e(&Visible);

See Also

“Show” on page 479

“Hide” on page 468

“Close” on page 485
“FocusChange” on page 489

IBM SDK for Windows

473

Properties, Methods, and Events

M oveWindow

Movesthe Error Correction Window to the specified absolute location and givesit the specified

dimensions.

Syntax

In Visual Basic:

Aut oLocat e As Bool ean

[WECW n] . MoveW ndow x As Long, y As Long, Wdth As Long, Height As Long,

In Visual C++ (MFC):

Aut oLocat e) ;

voi d [CWECW n] . MoveW ndow(| ong X,

long y, long Wdth, |ong Height, BOOL

In Visual C++:

VARI ANT_BOOL Autolocate);

HRESULT [pl VWECW n] - >MoveW ndow(| ong x, |ong Vy,

long Wdth, |ong Height,

Parameters

X

Long. Window’s x coordinate.

y

Long. Window’s y coordinate.

Width

Long. Window's width.
Height

Long. Window’s height.

AutolLocate
Boolean.

474

IBM SDK for Windows

Error Correction Window Control M ethods

Return Values

TRUE
Window is located adjacent to an exclusion rectangle specified by the user.

FALSE
Window isto be moved to the specified absolute location.

Remarks

Movesthe Error Correction Window to the given location, specified in screen coordinates. The
caller can alternately specify an "exclusion rectangle," and the window will be moved adjacent to that
rectangle.

Example

In Visual Basic:

"Try to nmake the w ndow bi gger

Dim x As Long

Dimy As Long

Dim Wdth As Long

Di m Hei ght As Long

VVECW n. Get W ndowRect x, y, Wdth, Height
VVECW n. MoveW ndow x, y, Wdth * 2, Height * 2, False

In Visual C++ (MFC):

[/ Try to nmake the w ndow bi gger

l ong X,y, Wdth, Hei ght;

CVVECW n. Get W ndowRect (&, &y, &Wdth, &Hei ght);
CWECW n. MoveW ndow(x, y, Wdth*2, Height*2, FALSE);

IBM SDK for Windows 475

Properties, Methods, and Events

In Visual C++:

[/ Try to nake the w ndow bi gger

l ong X,y, Wdth, Hei ght;

m _pl VWECW n- >Get W ndowRect (&x, &y, &Wdth, &Height);

m pl VWECW n- >MoveW ndow(x, y, Wdth*2, Height*2, VARI ANT_FALSE);

See Also

“GetWindowRect” on page 466
“Show” on page 479

476 IBM SDK for Windows

Error Correction Window Control M ethods

Reset

Clearsthelist of alternates and associated sounds-like spellings from the Error Correction Window's
alternates listbox, the value stored in the Correct Text property, and unchecks the "Add words or
phrases" checkbox.

Syntax

In Visual Basic:
‘ [WECW n] . Reset Redraw As Bool ean = Fal se ‘

In Visual C++ (MFC):
‘voi d [CWECW n] . Reset (BOOL Redraw = FALSE) ; ‘

In Visual C++:
\ HRESULT [p! WECW n] - >Reset (VARI ANT_BOOL Redr aw) ; \

Parameters

Redraw
Boolean. Controls whether or not the control should be redrawn upon completion of the reset
activities.

Return Values
”

Remarks

None.

IBM SDK for Windows 477

Properties, Methods, and Events

Example

In Visual Basic:
‘WECW n. Reset True ‘

In Visual C++ (MFC):
\ CVWECW n. Reset (TRUE) ; ‘

In Visual C++:
| m_pl VWECW n- >Reset (VARI ANT_TRUE) ; |

See Also

“AddAlternate” on page 461
“CorrectText” on page 444
“AddPhraseChecked” on page 432

478 IBM SDK for Windows

Error Correction Window Control M ethods

Show

Makesthe Error Correction Window visible, and optionally sets input focus to the Error
Correction Window.

Syntax

In Visual Basic:
‘[WECW n] . Show TakeFocus As Bool ean = True ‘

In Visual C++ (MFC):
‘voi d [CVWECW n] . Show(BOOL TakeFocus = TRUE); ‘

In Visual C++:
‘ HRESULT [p! WECW n] - >Show(VARI ANT_BOOL TakeFocus) ; \

Parameters

TakeFocus
Boolean. Optionally sets input focusto the Error Correction Window.

Return Values

TRUE
Input focusis given to the Error Correction Window’s edit field, with any text set as
CorrectText selected. (Default)

FALSE
Featureis disabled.

IBM SDK for Windows 479

Properties, Methods, and Events

Remarks

Activatesthe Error Correction Window and displaysit in its current size and position. | nit must
have been called prior to calling Show. If TakeFocusis TRUE, then the input focusis given to the
Error Correction Window's edit field, with any text set as CorrectText selected.

Example

In Visual Basic:

VWECW n. I nit hwWwhd
VWECW n. Show True

n Visual C++ (MFC):

CWECWnN. Init((long)mhwd);
CVVECW n. Show(TRUE);

In Visual C++:

m pl WECW n->Init((long)mhWd);
m_pl VWECW n- >Show(VARI ANT_TRUE);

See Also

“Hide” on page 468
“IsVisible” on page 472
“FocusChange” on page 489
“MoveWindow” on page 474

480

IBM SDK for Windows

Error Correction Window Control Events

Error Correction Window Control Events

The ViaVoice Error Correction Window control supports the following events.
» ButtonSelected

* Close

» ContextHelpRequest

* FocusChange

* MenuSelected

» WordSelected

IBM SDK for Windows 481

Properties, Methods, and Events

ButtonSelected

Event fired by Error Correction Window control when the user selects a button on the Error

Correction window.

Syntax

In Visual Basic:

‘ Butt onSel ect ed(ByVal [Buttonl D As Long)

In Visual C++ (MFC):

‘voi d OnButtonSel ect edVWECW n(l ong [/ Buttonld);

In Visual C++:

‘ HRESULT ButtonSel ect ed(VVECButtonld / ButtonlD;

Parameters
IButtonld
Long. Button ID of the button that was sel ected:
Value Description
vvecUSER_BUTTON User pressed Format button.
vvecPLAY_BUTTON User pressed Play button.

vvecDELETE BUTTON

User pressed Delete button.

vvecCORRECT _BUTTON

User pressed Correct button.

vvecADDPHRASE BUTTON

User pressed Add Phrase checkbox.

Return Values

None.

482

IBM SDK for Windows

Error Correction Window Control Events

Remarks

The value for the button ID is passed as the oahlameter. The values for thatton ID’s can be
found in vvecwin.h located in the include directory of the ViaVoice SDK directory.

Example

In Visual Basic:

Private Sub ButtonSel ected(ByVal |ButtonlD As Long)
Sel ect Case | ButtonlD
Case vvecUSER BUTTON
ProcessUserButton()

End Sub

In Visual C++ (MFC):

voi d CVCTest Dl g: : OnButt onSel ect edVVECW n(| ong | Butt onl D)
{

switch (I Buttonl D)
{
case vvecUSER _BUTTON :
ProcessUSER_BUTTON() ;
br eak;

IBM SDK for Windows 483

Properties, Methods, and Events

In Visual C++:

STDMETHODI MP CTest Dl gEvent s: : Butt onSel ect ed(VWECBuUttonl d | Buttonl D)
{

switch (I Buttonl D)
{
case vvecUSER _BUTTON :
ProcessUSER_BUTTON() ;
br eak;
}
return S_OK;

}

See Also
“AddMenultem” on page 464

484 IBM SDK for Windows

Error Correction Window Control Events

Close

Event fired by the Error Correction Window control when the Error Correction Window is hidden
by a user action.

Syntax

In Visual Basic:
‘CI ose() ‘

In Visual C++ (MFC):
‘voi d Ond oseVWECW n(); ‘

In Visual C++:
[HRESULT Ol ose(); |

Parameters

None.

Return Values

None.

Remarks

This event isonly fired when the user initiates the close, either by clicking the close button on the
menu or by the voice command.

IBM SDK for Windows 485

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub C ose()
MsgBox "Cl osing VVECW n"
End Sub

In Visual C++ (MFC):

voi d CVCTest Dl g: : OnCl 0seVVECW n()
{

: : MessageBox(m _hWhd, "Cl osi ng", "VWWECWn", MB_OK);
}
In Visual C++:
STDMETHODI MP Ct est Dl gEvent s: : Cl ose()
{
: : MessageBox(m _hWhd, "Cl osi ng", "VWWECWn", MB_OK);
return S_OK;
}
See Also

“Hide” on page 468

“Show” on page 479
“FocusChange” on page 489
“IsVisible” on page 472

486

IBM SDK for Windows

Error Correction Window Control Events

ContextHelpRequest

Event fired by the Error Correction Window control when the user requests context sensitive help.

Syntax

In Visual Basic:
‘ Cont ext Hel pRequest (ByVal [Hel p/ D As Long) ‘

In Visual C++ (MFC):
‘ voi d OnCont ext Hel pRequest VWECW n(| ong / Hel pl D ; ‘

In Visual C++:
‘ HRESULT Cont ext Hel pRequest (1 ong | Hel pl D) ; ‘

Parameters

IHelpID
Long. Help ID.

Return Values

None.

Remarks

None.

IBM SDK for Windows 487

Properties, Methods, and Events

Example

In Visual Basic:
Private Sub ContextHel pRequest (ByVal | Hel pl D As Long)

End Sub

In Visual C++ (MFC):

Voi d CVCTest Dl g: : OnCont ext Hel pRequest VWVECW n(| ong | Hel pl D)
{

} :

In Visual C++:

STDMETHODI MP CTest DI gEvent s: : Cont ext Hel pRequest (1 ong | Hel pl D)
{

return S_OK;
}

See Also

None.

488 IBM SDK for Windows

Error Correction Window Control Events

FocusChange

Event fired by the Error Correction Window control when the Error Correction Window |oses or
gainsfocus.

Syntax

In Visual Basic:
‘FocusChange(ByVaI f HasFocus As Bool ean) ‘

In Visual C++ (MFC):
‘voi d OnFocusChangeVVECW n(BOOL f HasFocus); ‘

In Visual C++:
| HRESULT FocusChange(VARI ANT_BOOL f HasFocus) ; |

Parameters

fHasFocus
Boolean.

Return Values

TRUE
The Error Correction Window is gaining focus.

FALSE
Thewindow is not gaining focus.

Remarks

None.

IBM SDK for Windows 489

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub FocusChange(ByVal bHasFocus As Bool ean)

End Sub

In Visual C++ (MFC):

voi d CVCTest Dl g: : OnFocusChangeVVECW n(BOOL bHasFocus)
{

} :

In Visual C++:

{

return S_OK;
}

STDMETHODI MP CTest DI gEvent s: : FocusChange(VARI ANT_BOOL bHasFocus)

See Also

“Show” on page 479
“Hide” on page 468
“IsVisible” on page 472

490

IBM SDK for Windows

Error Correction Window Control Events

M enuSed ected

The Error Correction Window control firesthis event when the user selects amenu item on the Error
Correction Window’s custom menu.

Syntax

In Visual Basic:
‘ MenuSel ect ed(ByVal [Menul D As Long) ‘

In Visual C++ (MFC):
‘voi d OnMenuSel ect edVWECW n(l ong / Menul D ; ‘

In Visual C++:
‘ HRESULT MenuSel ected(long / Menul D) ; ‘

Parameters

IMenulD
Long. ID of the menu item selected. This value was provided by the application when the menu
item was added with the AddM enultem method.

Return Values

None.

Remarks

None.

IBM SDK for Windows 491

Properties, Methods, and Events

Example

In Visual Basic:
Private Sub MenuSel ect ed(ByVal | Menul D As Long)

End Sub

In Visual C++ (MFC):

voi d CVCTest Dl g: : OnMenuSel ect edVWECW n(| ong | Menul D)
{

} :

In Visual C++:

STDMETHODI MP CTest Dl gEvent s: : MenuSel ect ed(| ong | Menul D)
{

return S_OK;
}

See Also

“AddMenultem” on page 464
“ButtonSelected” on page 482

492 IBM SDK for Windows

Error Correction Window Control Events

Wor dSdected

The Error Correction Window control fires this event when the user chooses a word to correct their
current selection.

Syntax

In Visual Basic:

Wor dSel ected(ByVal sWrd As String, ByVal sSoundsLike As String, ByVal
I I ndex As Long)

n Visual C++ (MFC):

voi d OnWor dSel ect edVWECW n(LPCTSTR sWrd, LPCTSTR sSoundsLi keWrd, |ong
I I ndex) ;

In Visual C++:
| HRESULT Vir dSel ect ed(BSTR sWbrd, BSTR sSoundsLi keVérd, |ong /I ndex); |

Parameters

Sword
String. Spelling of the selected word.

sSoundsLike
String. Spelling of the "Sounds Like" word, optionally added when application added the given
spelling with the AddAlter nate method.

[Index
Long. Zero-based index of the alternate word sel ected.

Return Values

None.

IBM SDK for Windows 493

Properties, Methods, and Events

Remarks

None.

Example

In Visual Basic:

Private Sub WrdSel ect ed(ByVal
String, ByVal |Index As Long)

End Sub

sWwrd As String, ByVal

sSoundsLi ke As

n Visual C++ (MFC):

sSoundsLi keWr d,
{

} :

[ong || ndex)

voi d CVCTest Dl g: : OnWor dSel ect edVWECW n(LPCTSTR sWor d,

LPCTSTR

In Visual C++:

sSoundsLi keWr d,
{

[ong || ndex)

return S_OK;

}

STDMETHODI MP CTest Dl gEvent s: : Wor dSel ect ed BSTR sWrd, BSTR

See Also
“AddAlternate” on page 461

494

IBM SDK for Windows

Chapter 24 ECWin Control Frequently Asked
Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice Error
Correction Window Control.

Doesthe ViaVoice Error Correction Window Control correct errors?

No. The control isto be used by an application that actually performs the error correction. The
Error Correction Window control does not know enough about the application context to
interact with the speech recognition engine, or how to modify text in an application’swindow. The
control isinstead meant to provide an easy programming interface for an application, that users
can interact with in order to inform the application what the user wants. The control informs the
application through events and makes available through properties and methods the settings
chosen by the user.

When | invoke Correction, nothing showsup in thelist box?

The application is responsible for populating the list box with alternate by calling the

AddAlter nate method once for each item. Additionally, the alternates will not be visible until the
window is repainted. The application can force repainting once they have finished populating the
listbox by passing a value of TRUE for the "Repaint" parameter to AddAlter nate.

| pressthe Correction button in the Error Correction Window and it doesn’t correct thetext?
Pressing any of the buttons in the correction window causes a ButtonSelected event to be fired to
the application. It isthe responsibility of the application to react to these events as appropriate.

Why can’t | dictateinto the edit field in the Correction Window?

TheError Correction Window control does not allow dictation into the edit field. The most
likely reason for the user invoking the error correction dialog is that the engine misrecognized a
word or phrase, and dictating that same phrase to the correction control would most likely generate
the same misrecognition.

What isthe purpose of the" Add Wordsor Phrases' checkbox?

When this checkbox is checked, the application will typically respond by adding the text asa
single phrase. If the user spoke "New York" and it was incorrectly recognized as "Newark", then
the user would open the error correction window, type "New York" in the edit field, check the Add

IBM SDK for Windows 495

ECWin Control Freguently Asked Questions

words or phrases" checkbox, and click the "Correct" button. The application would then update
the vocabulary with the complete phrase "New York".

What voice commands are supported by the Error Correction window?
Refer to the section entitled "Error Correction Control Voice Command support” in the chapter
entitled "Getting Started with the Error Correction Window Control."

Wherecan | find the D valuesfor the Error Correction buttons?
Refer to thefile VVECWIN.H that was installed into the Include directory of the ViaVoice SDK
install directory.

Why isn't the Close event fired when | hidethe error correction window?

This event is meant to notify you only when the user closes the window with a voice command or
by selecting the Close button on the title bar. It is assumed that the application can call their
OnClose method when they programmatically close the window with the "Hide" method.

496 IBM SDK for Windows

Chapter 25 |ntroduction to the Usr Interface
Control

The ViaVoice User Interface Client Control (Ul Client) isan ActiveX control that enables developers
to manipulate the IBM ViaVoice User I nterface Server (Ul Server). The Ul Server provides a
common interface for speech-enabled applications using the IBM ViaVoice SDK. It is capable of
presenting speech-related information in anumber of ways, including a Taskbar View, a Docked View,
aMinimal View and an Agent View. Figure 39 shows you how the Ul Server appearsin Taskbar View.

€5 Vi Voice |

by Computer
Figure 39. ViaVoice User | nterface Server - Taskbar View

It isimportant to realize that the Ul Server is used only to provide the user with visual information; it
does not directly control any functionsin the speech recognition engine or in the text-to-speech engine.
For example, if you look at Figure 39, you will notice a button with a microphone icon. This button
reports the state of the speech input device (on, off, or asleep). However, the Ul Server does not
automatically set the state of the device to on, off, or asleep when the user clicks the microphone
button, nor does it automatically read the state of the device directly from the engine in order to display
the appropriate icon. It merely provides a mechanism for you, the devel oper, to provide a visual
interface that is common among speech-enabled applications. It will notify you (through one of the
eventsin the UIClient control in Visual Basic or through a callback interface in Visual C++) when the
user clicks one of its buttons or selects one of its menu options. It is up to you to implement the user
request, as well as to set the state of the various elementduhSéever.

Something else to keep in mind is that there may be a number of speech-epplitatiens running
simultaneously, all sharing the saildEServer. Therefore, th&JI Client control will never allow you
to take complete control over thH Server. This means, for example, that tdeClient control will
not allow you to change the view of thkkServer, as this is set by the user.

IBM SDK for Windows 497

Introduction to the User Interface Control

The main benefit of using the Ul Client control isthat you can quickly incorporate the functionality of
the Ul Server into your application, and make your application look and feel like other speech-enabled
applications in the market. This guide shows you how to display and manipulate the Ul Server using
the Ul Client control. It givesyou atutorial on how to use the Ul Client control in your projects, and
then it will give you a complete reference of all the properties, methods, and eventsin the Ul Client
control.

To completely speech-enable your application, you will also need to incorporate other controlsin this
SDK. The ViaVoice User | nterface Client control only provides you with away to interact with your
users.

498 IBM SDK for Windows

Chapter 26 Gaﬂ ng S:a‘tw W| th the Ug
| nterface Control

Thefollowing isatutorial on how to incorporate the Ul Client control into your Visual Basic or Visual
C++ applications. Thistutoria is designed to present you with the most commonly used methods in
the Ul Client control, and the order in which you must execute them.

The following sections contain instructions to help you begin working with the User I nterface
Control.

Creating an I nstance of the Control

This section contains examples for using the Ul Client control with Visual Basic and Visual C++.

In Visual Basic:

To add the Ul Client control to your application, you can:

1. Choose Components from the Project menu.
The Components dialog box, Figure 20, appears.

IBM SDK for Windows 499

Getting Started with the User Interface Control

Components

Cantrals l Designers] Inzertable Elbiec:ts]

IEM ViaWaice TextBaox Cankral ﬂ
BB Wialoice User Interface Control

icmfilker 1.0 Tvpe Library

IE Popup Menu J
IE Super Label E
IE Timer
Tkonic Butkon Contral rnodule i =
LM Library

Mabry Internet Time Control 5.0 i E
Marquee Conkrol Library

MCIvndy Conkrol

Mediaview 1.41 Conkrol |

MFCTab Active Cantrol module Jﬂ Browse. ..
d | : [Selected Items Only

IBM YiaVoice User Interface Control

Location: Civiavoicel Bin'wuickel, dll

Ok Cancel Apply

Figure 40. Component Selection Dialog Box - Visual Basic

The Components dialog box lists all the ActiveX Controls that you can use in your application.

500 IBM SDK for Windows

Creating an Instance of the Control

2. Select IBM ViaVoice User Interface Control from the list and click OK.
Visual Basic adds the control to your project and adds a new icon to the toolbar (Figure 41).

General |

Figure41. UlClient Control Toolbar Icon

3. Add an instance of the Ul Client control to your form.

The Ul Client control is designed to enable you to display and interact with the Ul Server (Figure
40). However, the Ul Client control itself isinvisible at run time, and does not add any visual
enhancements to the Visual Basic form that containsit.

In Visual C++ (MFC):

There are various ways of using the UIClient in C++ programs. One way isto useit as an ActiveX
control in adialog box in an MFC application.
To use the Ul Client as an ActiveX control in an MFC application, do the following:

1. From the Project menu, select Add to Project, and then select Componentsand Controlsfrom the
cascading menu.

IBM SDK for Windows 501

Getting Started with the User Interface Control

The Components and Controls Gallery dialog, Figure 22, appears.

Components and Controls Gallery ? X

Chooge a component ko insert into pour project:

Look. ir: |] Registered Activer Controlz ﬂ | ﬂi | -i- ==
Eﬁ Calendar Control 8.0 IE'- Label Object
Fhe e B M Wizt oice Grammar Cantral %] LM Runtime Control

E M arqueeCtl Object

'j_i Microzoft Actirees Hot =
3!?] Microzoft Actives [mag
o Microsoft Activel | plo:

i

File name: |IEM Viavoice User Interface Control 1.0.Ink, Ingert
|BM Wigvoice User Interface Control Cloze
Mare Info

Path to contral;
|E:"~F'F|EIGFI.-'3.M FILES'WIaWOICESBIMNSALICTRL.DLL

Figure42. Insert ActiveX Control Dialog Box - Visual C++

2. Double-click the Registered ActiveX Controlsfolder in the dialog box.

3. Inthelist of controls, select the IBM ViaVoice User | nterface Control icon; then choose I nsert.
A prompt appears asking if you want to insert this component.

502 IBM SDK for Windows

Creating an Instance of the Control

4. If you wish to insert the component, choose OK .
The Confirm Classes dialog box, Figure 43, appears listing the dual interface of the Ul Client
control (CVVUIClientDual).

Confirm Clazzes K

The checked class(es) will be generated from | 0K
the Activer Cantral. Click on a class name ta L
browse or edit itz attnbutes.

Cancel

WU ClientDiual
WO UM enulnfo

Clasz name: Baze class:
CW U ClhentDual Cwind

Header file:
WU CliertDual b

Irmplementation file:
W'l ClhentDual. cpp

Figure 43. Confirm Classes Dialog

5. To confirm your selection, choose OK .
6. Close the Components and Controls Gallery dialog box.

IBM SDK for Windows 503

Getting Started with the User Interface Control

If you examine the Project Workspace window in the class view you will notice two new classes:
CVVUIClientDua and CVVUIMenulnfo (assuming you accepted the default names for the class
in the Confirm Classes Dialog).

7. Intheresource view of your Project Workspace window double-click the dialog box resource entry
where you wish to insert the Ul Client control.
The Ul Client icon, Figure 44, appears in the Controls tool bar.

IT Aa abl

Figure 44. UlClient Icon in the Controls Toolbar

8. Add an instance of the Ul Client control to the dialog box.
After you add the Ul Client control to your dialog box you can invoke Class Wizard to create a
member variable for your class of type CVVUIClientDual.

You might also decide to capture the events in the control by adding Event handlersto your dialog
box class. Thisis done by clicking on the Ul Client control with the right mouse button and
selecting Event from the popup menu.

The ViaVoice SDK shipswith two Includefilesfor Visual C++ usersthat provide constant declarations
aswell as structure definitions. Thesefiles are:

* VVUITYPE.H

* VVUICNST.H

These two files are included automatically when you include the file VVUICTRL.H
(#include “vvuictrl.h”).

504 IBM SDK for Windows

Creating an Instance of the Control

In Visual C++ (Custom Interface):

Whether you are using MFC or not in your Visual C++ project you can use the functionality in the
Ul Client control without using the VVUIClient dual interface (i.e. without having to insert an
instance of the control in your dialogs). The Ul Client control providestwo COM custom interfaces:
IVVUIClient and | VVUIEventSink. To use the custom interfaces make sure to include the files
VVUICTRL.H and VVUICTRL.C into your project. These files contain definitions for the interface,
[1Ds and CLSIDs respectively.

To create an instance of the IVVUIClient interface, do the following:

1. Declare avariable of type I VVUIClient* as follows:
WU Client* plWU dient;

2. Make sureto initialize the COM libraries with the Col nitialize function.

Note:

Call the CoUninitialize function after releasing all COM interfaces and before exiting your
application.

3. Usethe CoCreatel nstance function, as shown below:

CoCreat el nstance(CLSID WUI O i ent,
NULL,
CLSCTX_ALL,
1D IwUdient,
(void **)(& plwuU dient));

After thiscall, plVVUIClient will point to an instance of the IVVUIClient interface.

IBM SDK for Windows 505

Getting Started with the User Interface Control

Initializing the Ul Client

Thefirst step in using the control isto initialize it. The I nitialize step causes the Ul Ser ver to become
visible. To initialize the control simply call the controlisitialize method as shown in the code

segment below:

In Visual Basic;

Sub IntializeUl Server ()
On Error Resune Next
Dim | RetVal As U RC

If Err.Nunber = 0 Then

If I RetVal <> Ul API RC_OK Then

Exit Sub
End | f
El se
"Insert error code here!
End | f
End Sub

|RetVal = WUIClientl.Initialize

MsgBox "Initialization Failed"

506

IBM SDK for Windows

Initializing the Ul Client

In Visual C++ (MFC):

void InitializeUl Server()
{
U RC rc;
try
{
rc = (URC) muvvui Main.Initialize();
if (rc !'= U API RC_OK)
{
MessageBox("Initialization Failed",
"WUI Initialize",
MB_COK) ;
return;
}
}
catch (...)
{
/llInsert exception fault code here
}
}

IBM SDK for Windows

507

Getting Started with the User Interface Control

In Visual C++ (Custom Interface):

void InitializeUl Server()

{
U RC rc;
HRESULT hr;

hr = mplWU dient->lnitialize(&rc);

i f (SUCCEEDED(hr))
{
if (rc !'= U API RC_K)
{
MessageBox(NULL,
"Initialization Fail ed",
"WUI Initialize",
MB_OK) ;
return;
}
}

}

The Ul Client control (Custom Interface) does not have any custom properties, and all of its
functionality is accessed through methods. All of the methods in the control are functions that report
the success or failure of the method to execute. When you issue one of the methods in the control the
method returns an enumerated value. For a complete list of return code, refer to “UIRC (Enum)” on
page 559.

When you issue thimitialize method theJl Server displays the last view the user selected. The first
time theUl Server is initialized in the user’s machine, tbéServer displays its taskbar view by

default (See Figure 39 on page 497). If another speech-enabled application has already called the
I nitialize method prior to your program issuing the method, yaitialize will have no visible

effects. Internally, th&Jl Server keeps a counter of all the applications that issuednitialize

method. When all the applications that issued ttigalize methodare ¢osed, theJl Server

automatically disappears.

If you issue thenitialize method twice for the same control you will receive a trappable error in
Visual Basic: &H8000FFFF (ViaVoicHl Client is already Initialized). MFC throws an exception

508 IBM SDK for Windows

Initializing the Ul Client

through the MFC wrappers and the custom interface returns an HRESULT of E_UNEXPECTED. You
must call the I nitialize method for each instance of the control.

After the Ul Server isvisible you need to inform the server which language to use when displaying
menu options. To do this you must issue the SetL anguageByl D method or the SetL anguageByString
method. The SetL anguageByl D method accepts as a parameter, the language identifier (Langl D), of
the language you wish the Ul Server to use. The LanglD isa unique number that Windows uses to
specify aforeign language and it is derived from a primary language ID and sublanguage ID. Use the
SetlL anguageByString method instead of a string representation of the number. Table 3 contains a list
of possible Langl D values and their string representations. In the User I nterface Control (dual
interface) thereis also a L anguageUl property that can be set/queried at design time or run time.

Table3. LanglD string names supported by Ul Server and their corresponding values
“EN_US” 1033 (Hex 409) MAKELANGID(LANG_ENGLISH,SUBLANG_ENGLISH_US)
“EN_UK” 2057 (Hex 809) MAKELANGID(LANG_ENGLISH,SUBLANG_ENGLISH_UK)
“FR_FR” 1036 (Hex 40C) MAKELANGID(LANG_FRENCH,SUBLANG_FRENCH)
“GR_GR” 1031 (Hex 407) MAKELANGID(LANG_GERMAN,SUBLANG_GERMAN)
“IT_IT” 1040 (Hex 410) MAKELANGID(LANG_ITALIAN,SUBLANG_ITALIAN)
“ES_ES” 1034 (Hex 40A) MAKELANGID(LANG_SPANISH,SUBLANG_SPANISH)
“JA_JP” 1041 (Hex 411) MAKELANGID(LANG_JAPANESE,SUBLANG_DEFAULT)

When using the SetL anguageByString method you can also use the last two characters of the LanglD
string. For example, you can use SetL anguageByString(“US™).

The following code segment shows you how to useSdieanguageByString method:

IBM SDK for Windows 509

Getting Started with the User Interface Control

In Visual Basic;

Sub InitializeUl Server ()
On Error Resune Next
Dim | RetVal As U RC

T hhkkkhkhkhkhkhkhkkkhkhkhkhkhkhkxkkhhxkkkx*k

"Previous code goes here

T hhkkkhkhkhkhkhkhkkkhkhkhkhkhkhkxkkhkhhkkhx*k

| RetVal = WUIClientl. Set LanguageByString("EN_US")
[f Err.Nunber = 0 Then
If I RetVal <> Ul API RC_OK Then
MsgBox "Language not found"

Exit Sub
End If
El se
"Insert error code here!
End If
End Sub

510

IBM SDK for Windows

Initializing the Ul Client

In Visual C++ (MFC):

{

}

void InitializeUl Server()

U RC rc;

try

{
//*************************
/I Previous code goes here
//*************************
rc = (U RC) m vvui Mai n. Set LanguageByString("EN_US");
if (rc !'= U API RC_OK)
{

MessageBox (" Language not found",
"WWUl Set LanguageByString",
MB_CK) ;

return;

}
}
catch (...)
{
/lInsert exception fault code here
}

IBM SDK for Windows

511

Getting Started with the User Interface Control

In Visual C++ (Custom Interface):

void InitializeUl Server()

{
U RC rc;
HRESULT hr;

//*************************

/1 Previous code goes here

//*************************

hr = pIVVUIClient->SetLanguageByString(“EN_US", &rc);

if (SUCCEEDED(hr))
{

if (rc '= UIAPIRC_OK)
{
MessageBox(NULL,
“Language not found",
"VVUI SetLanguageByString",
MB_OK);
return;
}
}

}

Entering an invalid Language name results in UIRC code UIAPIRC_ERROR_INVALIDPARAM.

512 IBM SDK for Windows

Programming the ViaVoice User Interface

Programming the ViavVoice User Interface

The Ul Client control is able to communicate actions that occur in the Ul Server to your program.

However, you must turn on this communication manually. You can use the SetClientCallbackFlags

method in Visual Basic or in Visual C++ (MFC) as follows:

In Visual Basic:

Sub InitializeUl Server ()
On Error Resune Next
Dim | RetVal As U RC

Thhkkkhkhkhkkhkhkkkhkdkhkkhkhkxkhkhkkkkkx

"Previous code goes here

T hhkkkhkhkhkkhkhkkkhkdkhkkhkhkxkhkhkkkkkx

| RetVal = WUI Clientl. SetClientcCallbackFl ags(vvU EVENT_ALL)
[f Err.Nunber = O Then

If I RetVal <> Ul API RC_OK Then
MsgBox "Unable to turn on nessagi ng"

Exit Sub
End | f
El se
"Insert error code here!
End | f
End Sub

IBM SDK for Windows

513

Getting Started with the User Interface Control

In Visual C++ (MFC):

void InitializeUl Server()
{
U RC rc;
try
{

//-k************************

/I Previous code goes here

//-k************************

rc = (U RC)m.vvui Mai n. Set C i ent Cal | backFl ags(Ul EVENT_ALL) ;
if (rc !'= U API RC_K)
{
MessageBox("Unable to turn on messagi ng",
"WUl SetdientcCall backFl ags",
MB_CK) ;
return;
}
}
catch (...)

{

/lInsert exception fault code here

}
}

The parameter in the SetClientCallback Flags method informs the Ul Server which messages you
wish to capture. To find al possible values for this parameter, refer to “SetClientCallbackFlags” on
page 597.

For example, you can issue tBetClientCallback Flags method withUIEVENT_ALL to receive all
messages, or witdl EVENT_VIEW_QUERYFLAGS to receive the query view flags event (the
EventQueryViewFlags) that the control will fire when your application has the focus. If the user
changes the view of tHél Server from Taskbar to Docked (selectibpcked from theAppearance
menu) you must write code in this event to allowth&erver to dock to your dialog box. Here is an
example:

514 IBM SDK for Windows

Programming the ViaVoice User Interface

In Visual Basic:

Private Sub VWU Cient1l_Event QueryVi ewrl ags (phwndW ndow As Long,
pdwDockFl ags As Long, pResult As WUICtrl Ctl. U EVENTRC)

I f phwndW ndow = WUI Clientl. Parent. hwnd Then

pdwDockFl ags = vvDVAF_ALLOW TOPMOST_DOCK

"Informthe control that the nmessage was processed.

pResult = Ul EVENTRC PROCESSED

End If
End Sub

In Visual C++ (MFC):

voi d CTestDl g: : OnEvent Quer yVi ewrl ags(l ong FAR* phwndW ndow, | ong FAR*
pdwDockFl ags, | ong FAR* pResult)

{
if ((HWD)*phwndW ndow == m _hWhd)

*pdwDockFl ags = (| ong) (DVAF_ALLOW TOPMOST_DQOCK) ;
/lInformthe control that the nessage was processed.
*pResult = (| ong) (U EVENTRC_PROCESSED) ;

}

}

If you are using the IVVUI Client custom interface, the procedureis slightly different. You must
implement the | VVUI EventSink event sink interface by creating a class inherited from the
IVVUIEventSink class; you can find example code to accomplish thisin the \SAMPLES directory.
The following code shows how to capture messages from Ul Server by assuming that your class name
is CVVUIClientEvents:

IBM SDK for Windows 515

Getting Started with the User Interface Control

In Visual C++ (Custom Interface):

/1 Make sure to declare this variable prior to calling
//'your procedure
CwuUl ClientEvents mI VWU ClientEventSink;

void InitializeUl Server()

{
U RC rc;
HRESULT hr;

//*************************

/I Previous code goes here

//*************************

hr = mplWU dient->SetClientCallback(llD_|IVVU EventSink,
&m | VWUI C i ent Event Si nk,
Ul EVENT_ALL,
&rc);
i f (SUCCEEDED(hr))
{
if (rc !'= U API RC_X)
{
MessageBox(NULL,
"Unabl e to Set Call back nethods",
"WUl SetdientCallback",
MB_CK) ;
return;
}
}
}

Before you can receive messages, however, there is one more step you need to perform. The Viavoice
SDK enablesyou to add user interface capabilities not only to your application but also to virtually any
application in the system, because the Ul Server does not really belong to any one program. It
monitors user interaction and can broadcast messages to your application even if the interaction
occurred while the user was working with another application. For this reason you need to tell the

Ul Client control which programs you wish to monitor events for by using either the
AddApplicationByWindow or the AddApplicationByName method. If you are adding the ViaVoice
User Interface support for your application you can pass the window handle of your dialog box or the

516 IBM SDK for Windows

Programming the ViaVoice User Interface

name of your executable. You can also pass the window handle or executable name of another
application.

The following example shows you how to use the AddApplicationByWindow and the
AddApplicationByName methods:

In Visual Basic:

Sub InitializeUl Server()
On Error Resune Next
Dim | RetVal As U RC

T hhkkkhkhkkhkhkkkhkdkhkkhkhkxkhkxkkhx

"Previous code goes here

Thhkkkhkhkhkkhkhkkkhkdkhkkhkhkxkhkhkkkx

| Ret Val = WUI dientl. AddApplicati onByW ndow(VWUI Cl i ent 1. Par ent . h\Whd)
[f Err.Nunber = O Then
If I RetVal <> U API RC_OK Then
MsgBox "Unable to add application”

Exit Sub
End If
El se
"I nsert error code here!
End If
End Sub

IBM SDK for Windows

517

Getting Started with the User Interface Control

In Visual C++ (MFC):

void InitializeUl Server()

{
U RC rc;
try
{

//-k************************

/I Previous code goes here

//-k************************

rc = (U RC) m vvui Mai n. AddAppl i cati onByW ndow((1 ong) m_hWhd) ;
if (rc !'= U API RC_K)
{

MessageBox("Unabl e to add application",
"WWUl AddApplicati onByW ndow",
MB_CK) ;

return;

}
}
catch (...)
{

/lInsert exception fault code here

}

}

518 IBM SDK for Windows

Programming the ViaVoice User Interface

In Visual C++ (Custom Interface):

/1 Make sure to declare this variable prior to calling

//'your procedure

CwuU CientEvents mlI WU ClientEventSink;

void InitializeUl Server()

{
U RC rc;
HRESULT hr;

//*************************

/I Previous code goes here

//*************************

hr = m pl WU Cl i ent->AddAppl i cati onByW ndow((HAND_t) hWwhdApp, &r c) ;
i f (SUCCEEDED(hr))

{
if (rc != U APIRC_OK)
{
MessageBox(NULL,
"“Unabl e to add application",
"WWUl AddApplicationByW ndow",
MB_CK) ;
return;
}
}

}

The next section contains other examples of handling the different eventsin the Ul Client control.

IBM SDK for Windows

519

Getting Started with the User Interface Control

Getting and Setting User Interface
Characteristics

The Ul Server contains five components that you can use to inform the user of the current speech state
of your application. The components are:

Microphone

Gets/Sets the state of the microphone component. When the Ul Server isin Taskbar or Docked view,
this component corresponds to the appearance of the microphone button.

Volume

Gets/Setsthe level of the volume level displayed on the Ul Server. Thelevel can be a number between
0 and 100 percent.

User Information

Gets/Sets the user name displayed on the Ul Server, as well as the user’s full name, enrollment profile,
and current vocabulary file.

Word History

Gets/Sets the word history text (next to the Volume meter whedli®Ba ver is in Taskbar or Docked
view.) This component usually provides the text representation of the last voice command issued. It
can also be used to display the status of the recognition engine.

Custom

Gets/Sets the state of buttons in tHé&erver. When in Taskbar or Docked view, these buttons are
shortcuts to menu options.

You can set and get the characteristics of thesgonants by using thBetNumber Value,

SetSringValue, GetNumber Value, GetStringValue functions. Theeference seiin will discuss

these functions along with each component in detail. For now let's take a look at the following lines of
code:

520 IBM SDK for Windows

Getting and Setting User Interface Characteristics

In Visual Basic:

Di m Newval ue As Long
Dmrc As URC

'Set the state of the microphone component to “ON” state
rc = m_VVUIClient.SetNumberValue(COMPID_MICROPHONE, vwUIMSF_ON)

'‘Get the state of the microphone component
rc = m_VVUIClient.GetNumberValue(COMPID_MICROPHONE, NewValue)

In Visual C++ (MFC):

long NewValue;
UIRC rc;

//Set the state of the microphone component

rc = (UIRC)m_VVUIClient.SetNumberValue(COMPID_MICROPHONE,
UIMSF_ON,
UIMICINDEX_MICSTATE);

/IGet the state of the microphone component

rc = (UIRC)m_VVUIClient.GetNumberValue(COMPID_MICROPHONE,
&NewValue,
UIMICINDEX_MICSTATE);

IBM SDK for Windows 521

Getting Started with the User Interface Control

In Visual C++ (Custom Interface):

U RC rc;
HRESULT hr ;
DWORD NewVal ue;

//Set the state of the m crophone conponent

hr = pl WUI d i ent - >Set Nunmber Val ue(COMPI D_M CROPHONE,
Ul MSF_ON,
U M CI NDEX_M CSTATE,
&rc);

/1 Get the state of the m crophone conponent

hr = pl WUI d i ent - >Get Nunmber Val ue(COMPI D_M CROPHONE,
&NewVal ue,
U M CI NDEX_M CSTATE,
&rc);

The code segment above illustrates how to set and get the state of the microphone component in the
Ul Server. The SetNumber Value method accepts a component ID as itsfirst parameter, and along
value specifying the value to which you wish to modify the component. As you will seein the
reference section, the SetNumber Value function (as well as its counterparts: SetStringValue,
GetNumberValue, and GetStringValue) has athird parameter (optional in Visual Basic). This third
parameter is used in some of the components to specify a specific value within the component.

To get the state of the microphone, use the GetNumber Value method. The GetNumber Value method
has the same parameter list as the SetNumber Value method, except that in the GetNumber Value the
second parameter is used to receive the property value from the object rather than to set the property
value asit occursin the SetNumber Value method.

Since there might be multiple speech-enabled applications, which change the characteristics of the
various components individually, the Ul Client control will fire events whenever a change to the
properties occurs. For example, in the above code segment, whenever the state of the microphone
changes, the Ul Client control firesthe EventComponentUpdated method. Thefirst parameter in this
event, ciComponentl| D, specifies which component was changed. You will learn more about each
component in Chapter 28 “Properties, Methods, and Events” of this book.

522 IBM SDK for Windows

Creating Custom Menus

Creating Custom Menus

When using the ViaVoice Ul Server it may be useful at times to customize the menu bar to provide
extrafunctionality or help for your users. The VV UI Client control enables you to customize the
ViaVoice UlServer’s menu in several ways:

* You can add an application menu group — a set of menu options that appears when your applicatic
becomes active. These options appear between the Tools menu option and the Help menu option
* You can add custom menu items to the Help menu.

» Or you can enable or disable various menu options in the main menu.

The UIClient control has several functions for adding, modifying, or removing custom menus.

* AppendMenultem
* InsertMenultem

» GetMenultemlinfo
* DeleteMenultem
e SetMenulteminfo

These functions enable you to create menu options and assign them a group name. After you add a
menu option, the option will not automatically appear in the Viavoice UlServer menu; it issimply
saved to the registry. When the user clicks the Viavoice menu button, the UIClient control fires the
event EventQueryViewMenulnfo just before the menu appears. This event enables the current client
to specify which menu group you wish to display to your users. The control then reads the menu
options from the registry and displays the options that belong to the group you specified.

The previous paragraph describes how to add dynamic menus to the UlServer’s menu. Dynamic
menus are the menus that change depending on the application thatlychas the focus. However,

it is possible to add static menu options to the Help menu &fltBerver. These options will be

available regardless of the application that has the focus. For these options you must specify ahead
time which help file and topic to display when the user selects the menu itenull Séreer will then
automatically invoke WinHelp with the appropriate file and topic.

Note:
Use static menu items only in rare occasions, and only if absolutely necessary. The application is
responsible for removing status menu items before being uninstalled.

IBM SDK for Windows 523

Getting Started with the User Interface Control

The following example code shows you how to add an application menu group to the ViaVoice main
menul.

In Visual Basic;

DimI| RetVal As U RC
Di m oNewivenu As New VWUl Menul nf o

oNewiMenu. Type = Ul MFT_CLI ENT
oNewienu. I D = 100

oNewiMenu. Enabl ed = True
oNewMenu. Vi si bl e = True
oNewienu. Checked = Fal se

oNewMenu. Capti on "Menu |tem #1"

| Ret Val = m VWU Cient. AppendMenul t em{ U MFG_DYNAM C_APPLI CATI ON,
App. EXENane,
oNewMENnU)

In Visual C++ (MFC):

If you have already added the VV UI Client control to your project and corresponding class wrappers
for the interfaces, you should already have a class wrapper for the | VVUI M enul nfo interface named
CVVUIM enulnfo (assuming you accepted the default values).

Prior to using the class wrapper, make sure to include VVUICTRL.H in your dialog box source file
(#include “vvuictrl.h™).

You can now create menu options as follows:

524 IBM SDK for Windows

Creating Custom Menus

VWUl Menul nf o Newivenul t em
NewMenul t em Cr eat eDi spat ch(CLSI D_VVUI Menul nf 0) ;
NewMenul t em Set Type(Ul MFT_CLI ENT) ;
NewiMenul t em Set | D(100) ;
NewMenultem.SetCaption(“Menu Item #1");
NewMenultem.SetEnabled(TRUE);
NewMenultem.SetVisible(TRUE);
m_VVUIClientl.AppendMenultem(UIMFG_DYNAMIC_APPLICATION,
AfxGetAppName(),
NewMenultem);

The basic procedure implemented in the previous example creates a new instance of the

VVUIMenulnfo class. The purpose of the classisfor you to set the characteristics of the menu option

you wish to add. Some of the settings in the VV UIM enul nfo class will be explained in more detail in
Chapter 27 “Classes, Structures, and Eerations”. The most important members in the class are Id,
Caption, Enabled, Visible, and Checked.

You can add a separator bar menu option in Visual Basic and Visual C++ (MFC) by setting the Captiol
member of the class to a dash (“-").

After theVVUIMenulnfo class is populated, you must issue AlppendM enultem method to save
the menu option to the registry. If you examine the line of code that follows you will notice that the
first parameter is used to specify where the menu option will appear.

“IRetval = m_VVUIClient. AppendMenultem
(UIMFG_DYNAMIC_APPLICATION,App.ExeName,oNewMenu)”

In this case the menu will be added as an application menu. The second parameter is used to specify
the name of the group to which the menu option belongs. The third parameter is simply the instance of
the VVUIMenul nfo class that you created.

IBM SDK for Windows 525

Getting Started with the User Interface Control

In Visual C++ (Custom Interface):

HRESULT hr ;
U RC rc;

U MENUI TEM NFO uimiltem
ZeroMenory(&uimiltemsizeof (uiniltem);

uinmiltem muType = U MT_CLIENT,;
uimiltemmdw D = muMenul D,
Istrcpy(uimiiltem.m_szText, “Menu Item #1");
uimiiltem.m_uState=MFS_ENABLED,;

hr = m_plVVUIClient->AppendMenultem(UIMFG_DYNAMIC_APPLICATION, _
"TestMenu",
&uimiiltem,
&rc);

After adding the menu option, when the user clicks the ViaVoice Ul Server menu button or clicks on
the Ul Server toal tray icon, the Ul Client control will firethe EventQueryViewM enulnfo event. The
following code shows you how to handle this event.

526 IBM SDK for Windows

Creating Custom Menus

In Visual Basic:

Private Sub WU CLi ent 1_Event QueryVi ewMenul nfo(_
vt Vi ewType As TVI EWTIYPE,
hwndW ndow As Long, _
ApplicationTitle As String,
Mai nMenuName As String, _

Appl i cati onMenuNane As String,
Hel pMenuName As String,
pResul t As Ul EVENTRC)
ApplicationTitle = App.Title
Appl i cati onMenuNanme = App. EXENanme
pResult = U EVENTRC PROCESSED
End Sub

In Visual C++ (MFC):

voi d OnEvent QueryVi ewenul nf o(
l ong vt Vi ewType,
| ong hwndW ndow,
BSTR FAR* ApplicationTitle,
BSTR FAR* Mai nMenuNane,
BSTR FAR* Appl i cati onMenuNane,
BSTR FAR* Hel pMenuNare,
l ong FAR* pResult)

CString sAppNanme = Af xGet AppNane();
*ApplicationTitl e = sAppNane. Al | ocSysString();
*Mai nMenuName = sAppNane. Al | ocSysString();

*Appl i cati onMenuNane = sAppNane. Al | ocSysString();
*Hel pMenuNane = sAppNane. Al | ocSysString();
*pResult = Ul EVENTRC_PROCESSED,;

IBM SDK for Windows 527

Getting Started with the User Interface Control

In Visual C++ (Custom Interface):

STDMETHODI MP CWUI Ol i ent Event s: : Event Quer yVi ewMenul nfo (
TVI EWTYPE vt Vi ewType,
HWAD_t hwndW ndow,
LPSTR | pszApplicationTitle,
LPSTR | pszMai nMenuNane,
LPSTR | pszAppl i cati onMenuNane,
LPSTR | pszHel pMenuNarre,
U EVENTRC * pResul t)

char szAppNane[256] ;

Istrcpy(szAppName, “MyAppName”);
Istrcpy(IpszApplicationTitle,”MyApplication”);
Istrcpy(IpszMainMenuName,szAppName);
Istrcpy(IpszApplicationMenuName,szAppName);
Istrcpy(IpszHelpMenuName,szAppName);
*pResult = UIEVENTRC_PROCESSED;

return S_OK;

)

The parameters of this event will be explained in detail in Chapter 28 “Properties, Methods, and

Events”. For now it is sufficient to understand the purpose of two param&pmacationTitle and
ApplicationMenuName. Remember that the intent of this event is to inform you that the user wishes
to see the main menu, and to request from you the name of the menu group you wish to display. The
parameteApplicationTitle lets you specify a display name for the custom application menu group

(Figure 45).

528 IBM SDK for Windows

Creating Custom Menus

I@Yi Voice

f bdicraphone Off

tenu tem #1

Figure 45. Application Menu Application Title

The parameter ApplicationM enuName enables you to specify the name of the group of menu options
you wish to display. In the previous code example the AppendM enultem method used the

application’s EXE name as the group name. ApplicationM enuName parameter needs to be set to
the same name in order to display the menu group previously created.

So far you have learndbw to add custom menu options and how to ensure thatl ®eever

displays them when your application has the focus, but how do you know when the user actually
selects the custom menu option? When the user clicks on one of the custom menu opticbBahe
control fires theEventM enultemSelected event. This event has the following syntax:

Private Sub m WU Client_Event Menul t enBSel ect ed(dwienul tem d As Long,
hwndTarget As Long, pResult As Ul EVENTRC)

IBM SDK for Windows 529

Getting Started with the User Interface Control

Thefirst parameter will provide you with the ID number of the menu item the user selected. You can
use the same ID number for various menu itemsif you wish to handle the menu itemsin the same way.
For example, if you wish to add two menu options and both of them will bring up the same page in the
help file, you can assign the same ID number to both. Then, in the EventM enultemSelected event you
would just implement one set of code for the particular ID number. However, if you decide to use the
same | D number for multiple menu options, you must realize that the GetM enul nfo method will
always return information for the first item with the specified ID.

530 IBM SDK for Windows

Summary

Summary

At this point you should know how to do the following:
» How to display the ViaVoice UlServer, and set its menu language.
» How to specify which messages you wish to capture from the UlServer.

» How to change the appearance of the buttons in the UlServer, and capture user interaction with
these buttons.

* How to create and monitor custom menu options.

The following chapters contain reference sections for al the properties, methods, and events for the
User Interface control.

IBM SDK for Windows 531

Getting Started with the User Interface Control

532 IBM SDK for Windows

Chapter 27 Classss, Structures, and
Enumeraions

This chapter gives you detailed information about the ActiveX classes, structure, constants, and
enumerationsincluded with the Ul Client control. For more information about the properties, methods,
and events of the Ul Client control, refer to “Properties, Methods, and Events” on page 561.

The ViaVoiceUl Client control supports the following classes, structures, constants and enumerations

* VVUIMenulnfo (Class)
 UIMENUITEMINFO (Structure)
» vvUIDockingAlgorithmConstants
» vvUIDockingStyleConstants

» vvUIEventCallbackFlags

» vwUIExtendedMenuFlags

* vvUIMaxConstants

¢ vvUIMenultemConstants

e Componentindex Constants

* vUIRemoveClientConstants

* MICROPHONE_STATES (Enum)
 TCID (Enum)

 TVIEWTYPE (Enum)

* UIEVENTRC (Enum)
 UIMENUGROUP (Enum)
 UIMENUTYPE (Enum)

* UIRC (Enum)

IBM SDK for Windows 533

Classes, Sructures, and Enumerations

User I nterface Control Classes

The ViaVoice Ul Client control supports the following class:
e VVUIMenulnfo

vvUIMenulnfo (Class - Visual Basicand MFC Only)

The purpose of the vwUIMenulnfo class (Visual Basic and MFC only) isto provide information about
custom menu options. Use this class when adding or modifying custom menu options.

Field Type Description

Type UIMENUTYPE | Specifiesthe menu type. For more information, refer to
“UIMENUTYPE” page 558.

ID Integer Specifies the ID number of the menu option. You can yse

this ID number to get information about the option with the
GetM enultemlnfo method. The control uses this ID
number to let you know which menu option the user
selected.

Note: The ID must be between 0-9,999 when adding
dynamic applications, dynamic help or static help meny
options. When adding dynamic main menu options, yoy
must use one of the constants in the
vwUIMenultemConstants enumeration. For more
information, refer to ¥vUIMenultemConstants” on page

547.

Checked Boolean Indicates whether the menu option has a check mark (True)
or not (False).

Visible Boolean Indicates whether the menu option is visible (True) or
invisible (False).

Enabled Boolean Indicates whether the menu option is enabled (True) or
grayed (False).

Caption String The menu item text.

ExePathName | String The path of the help file thél Server will use when

invoking a static help menu option

534 IBM SDK for Windows

User Interface Control Structures

User Interface Control Sructures

The ViaVoice Ul Client control supports the following structure:

* UIMENUITEMINFO

UIMenultemlnfo Structure (Custom Interface Only)

The purpose of the UIMENUITEMINFO structure is to provide information about custom menu
options for the Custom Interface. Use this structure when adding or modifying custom menu options.

Field

Type

Description

m_uType

UIMEN
UTYPE

Specifies the menu type. For more
information, refer to “UIMENUTYPE" page
558.

m_dwlID

DWORD

Specifies the ID number of the menu option.
You can use this ID number to get information

about the option with th&etM enultemlnfo
method. The control uses his ID number to
you know which menu option the user
selected.

Note: The ID must be between 0-9,999 whe
adding dynamic applications, dynamic help
static help menu options. When adding
dynamic main menu options, you must use
one of the constants in the

vwUIM enultemConstants enumeration. For
more information, refer to
“vwvUIMenultemConstants” on page 547.

let

()]

r

m_uSate

UINT

Indicates the state of the menu item. This
member is identical to the fState member in
the WIN32 SDKMENUITEMINFO
structure. For more information, refer to the

1}

WIN32 SDK documentation.

IBM SDK for Windows

535

Classes, Sructures, and Enumerations

Field Type Description

m_szTextftMAX_MENU_STR | CHAR Menu item text.

ING]

m_exeltem struct The path of the help filethe Ul Server will use

UIMEN | wheninvoking astatic help menu option. For
UITEMI | structureinformation, refer to Table 6 on page
NFO_E | 539.

XE

The UUMENUITEMINFO_EXE structure is similar to the parameters in the ShellExecute WIN32
SDK API function. For more information, refer to the WIN32 SDK documentation.

Field Type Description

m_szOperation CHAR Specifies the operation to perform (“open,”
[MAX_MENU_OPERATION “print,” “help” and so on).

]

m_dwOpData; DWORD | Operation-specific data. For “open” and

“print” operations it is ignored. For “help”
operations, it is the topic ID to display.

m_szFilel_MAX_PATH] CHAR File to perform operation on (*.EXE, *.HLP,
and so on).

m_szParameter_MAX_PAT | CHAR File parameters (if any).

H]

m_szWorkDirectory[MAX_ | CHAR File working directory (if any)
PATH]

m_nShowCmd INT Specifies how the application is to be shown.

536 IBM SDK for Windows

User Interface Control Constants

User Interface Control Constants

The ViaVoice Ul Client control supports the following constants:

vvUIDockingAlgorithmConstants
vvUIDockingStyleConstants
vvUIEventCallbackFlags
vwUIExtendedMenuFlags
vvUIMaxConstants
vvUIMenultemConstants
Component Index Constants
vvUIRemoveClientConstants

IBM SDK for Windows

537

Classes, Sructures, and Enumerations

Component Index Constants

Use Component | ndex constants when getting and setting the properties of aUl Server component by
calling the SetNumber Value, SetSringValue, GetNumberValue, or GetSringValue. The index
constants enable you to specify the property within the component that you wish to query or modify.

Component Index constants are specific to a particular component. The following list contains the
index constants for each component in the Ul Server that you can query or modify.

Table4. vwUIMICINDEX

Constant Name Value Description

wWUIMICINDEX_MICSTATE 0 The microphone state property.
For example, On or Off.

wWUIMICINDEX_WAITSTATE 1 The wait state property. You

can place the microphone
component in await state
regardless of the current
microphone state.

Table5. vwUlUserInfolndex (COMPID_USERINFORMATION)

[

Constant Name Value Description
vwUIUINFOINDEX_USERID 0 Specifies the User ID. ID name
(default) | of the speech engine’sicant
user, which is usually the user
full name.
vWUIUINFOINDEX_ENROLLID 1 Specifies the Enrollment ID,
which specifies the language
the engine uses for the current
user.
vUIUINFOINDEX_TASKID 2 Specifies the vocabulary the
speech engine uses for the
particular user.
vwWUIUINFOINDEX_USER_DESCRIPTION 3 The current user’s description

538

IBM SDK for Windows

User Interface Control Constants

Table5. vwUlUserInfolndex (COMPID_USERINFORMATION)

Constant Name Value Description

vUIUINFOINDEX_ENROLL_DESCRIPTIO | 4 The compl ete description of the

N enrollment ID.

vUIUINFOINDEX_TASK_DESCRIPTION 5 The compl ete description of the
vocabulary ID.

Table 6. vwUI Volumel ndex (COMPID_VOLUME)

Constant Name Value Description

vwUIVOLINDEX_VOLLEVEL 0 The volume level. In taskbar

(default) | and docked mode, the

Ul Server displays avolume
meter.

Table 7. vwUIWordHistorylndex (COMPID_WORDHISTORY)

Constant Name Value Description
vwWUIWHINDEX_TAGGEDTEXT 0 The word history text.
(default) | Applications use thistext to

show users the last command
the engine recognized, or to
give users help information,
such as, alist of the commands
they can say in the current state.

IBM SDK for Windows

539

Classes, Sructures, and Enumerations

vvUI DockingAlgorithmConstants

You can use these constants when you write code to handle the EventQueryViewFlags event,
specifically to set the val ue of the pdwDockFlags parameter. The Controal firesthisevent whenever the

user requests to change the view mode of the Ul Server to “docked,” or when the view mode is already
docked, but another application has had the focus and your application is about to receive the focus.

These constants enable you to grant or deny the users’ request.

Table 8. vwUIDocking Algorithm Constants

Constant Name Value Description
VwWDVAF_ALLOW_DOCK 33554432 Allows theUl Server to dock
(Hex 2000000) | to your window.
vwWDVAF_ALLOW_TOPMOST_DOCK 67108864 Allows theUl Server to dock
(Hex 4000000) | to the top-most window in
this application.
vwDVAF_DEFAULT 67108864 Uses default.
(Hex 4000000) | Note: Although the default is

currently
vwDVAF_ALLOW_TOPMO
ST _DOCK, you should use
this constant instead of
vwDVAF_ALLOW_TOPMO
ST_DOCK when you want tq
use the default. By using this
constant, you guarantee that
your program always uses the
default docking style, even if
the default changes in future
releases.

540

IBM SDK for Windows

User Interface Control Constants

Table 8. vwUIDocking Algorithm Constants

Constant Name Value Description

vwDVAF_NEVER_DOCK 16777216 Preventsthe Ul Ser ver from
(Hex 1000000) docking to your window. |f
the Ul Server isunable to
dock to your window, it will
switch to aminimal mode

tray icon.
VwWDVAF_STAY _DOCK _TO_PREVIOU | 134217728 If the Ul Server was
S (Hex 8000000) previously docked to another

window, and your application
receives the focus, this
constant tellsthe Ul Server to
remain in the previous
application, and not to
attempt to switch to yours.

IBM SDK for Windows 541

Classes, Sructures, and Enumerations

vvUI DockingStyleConstants

These constants work in conjunction with vwUI DockingAlgorithmConstants. When you use the
vwDVAF ALLOW_DOCK or thevwDVAF ALLOW_TOPMOST_DOCK constants to grant
permission to the Ul Server to dock to your window, you can set the style the Ul Server uses to dock.
For more information about granting docking permissions, refer to “EventQueryViewFlags” on page

621.

Table 9. vwUIDocking Style Constants

Constant Name

Value

Description

vwDVSF_DEFAULT

Uses default.

Note: Although the default is
vwDVSF_NORMAL_BACKGROUN
D, you should use this constant
instead of
vwDVSF_NORMAL_BACKGROUN
D when you want to use the default.
By using this constant, you guarante
that your program always uses the
default docking style, even if the
default changes in future releases.

2

vwDVSF_NORMAL_BACKGROUND

Uses the standard windows system
color for 3D objects as the
background color.

vwDVSF_TRANSPARENT_BACKGROUN
D

Uses a transparent background.

vwDVSF_ADJUST_ORIGIN

Adjusts the origin of the docked viey
into the current window. For more
information, refer to the
VVUICNST.H file.

vwDVSF_ADJUST_WIDTH

Adjusts the width of the docked viey
into the current window. For more
information, refer to the
VVUICNST.H file.

=

542

IBM SDK for Windows

User Interface Control Constants

vvUIEventCallbackFlags

These constants define the possible events that the Ul Client control can receive from the Ul Ser ver.
Use these constants when using the SetClientCallbackFlags function.

Table 10. vwUI EventCallback Flags

Constant Name

Value

Description

VWUIEVENT_ACTIVEAPP_CHANGED

16777220
(Hex 1000004)

Receives application changed
notifications. The UIClient
control firesthisapplication if
one of the applications you
added with the
AddApplicationByName or
AddApplicationByWindow
command receives or loses
the focus.

VWUIEVENT_ALL

16711681
(Hex FFFFFFFF

)

Captures all events.

[%2)

VwWUIEVENT_BUTTON_PRESSED 33554448 Receives button pressed
(Hex 2000010) notifications. This occurs
when the user clicks one of
the buttons in the Ul Server.
VwWUIEVENT_COMPONENT_UPDATE 134221824 Occurs when one of the
D (Hex 8001000) componentsis changed. For
more information, refer to
“SetNumberValue” on page
606 and “SetStringValue” on
page 609.
wWUIEVENT_MENUITEM_SELECTED | 67109120 Occurs when the user select
(Hex 4000100) | a custom menu option.
VwWUIEVENT_NONE 0 Do not receive events. The

control will not fire any
events.

IBM SDK for Windows

543

Classes, Sructures, and Enumerations

Table 10. vwUI EventCallback Flags

Constant Name Value Description
WUIEVENT_VIEW_QUERYFLAGS 16777217 Occurs every few seconds
(Hex 1000001) and asksthe client for
permission to dock to the
application’s window.
WUIEVENT_VIEW_QUERYMENUINF | 16777218 Ocecurs just before the
0] (Hex 1000002) | Ul Server displays the main

menu.

544

IBM SDK for Windows

User Interface Control Constants

vvUI ExtendedM enuFlags

The vvUI ExtendedM enuFlags constant contains menu styles that complement the standard Win32
APl MFS_* flags. Use these flags when you set the m_uState of the UUMENUITEMINFO structure.

Table 11. vwwUI ExtendedM enuFlags

Constant Name Value Description

wVVUI_MFS HIDDEN 16777216 Hides a menu item, but does
(Hex 1000000) not physically removeit. The
menu item still exists, but it is
invisible. You can do
GetMenultemlnfo and
SetM enultemlnfo callson
these hidden menus

IBM SDK for Windows 545

Classes, Sructures, and Enumerations

vvUI M axConstants

These constants define the maximum size for string value properties in various components in the
Ul Server.

Table 12. vwUIMaxConstants

Constant Name Value Description

VwWMAX_MENU_OPERATION 32 (Hex 20) Themaximum number of characters
allowed in the m_szOperation
member of the
UIMENUITEMINFO_EXE
structure. For more information,
refer to
UIMENUITEMINFO_EXE.

VWMAX_MENU_STRING 64 (Hex 40) Themaximum number of characters
the menu item caption (or text) can
be.

VWMAX_WORDHISTORY_TEXT | 128 (Hex 80) Themaximum number of characters
you use when getting/setting the
text in the word history component.

VwWMAX_USERINFO_ID_LEN 32 (Hex 20) Themaximum number of characters
you use when getting/setting the
text in the user information
component.

VWMAX_USERINFO_DESC _LEN 80 (Hex 50) Themaximum number of characters
you can get/set from user
information components.

546 IBM SDK for Windows

User Interface Control Constants

vvUIM enultemConstants

Each built-in menu option in the Ul Server menu has aunique ID. For some of the items, you can use
this ID to turn on/off the menu option (with the AppendM enultem or InsertM enultem, and
DeleteM enul tem methods). Some menu options, such as Microphone On/Off, cannot be removed
except where noted. You can also use these constants when handling the EventM enultemSelected
event - they indicate the ID of the menu item the user selected.

Table 13. vwUIMenultemConstants

Constant Name Value Description

vwWVIAVOICEUI IDMENU_BEGIN_DICTATION 50200 Begin Dictation
(Hex C418 | menu option. Users
) normally select this

option when they
want to enter
dictation mode.

wWVIAVOICEUI IDMENU_BEGIN_READING 50275 Begin Reading
(Hex C463 | menu option. Users
) normally select this

option when they
want the program to
turn selected textinto

speech.
vwWVIAVOICEUI_IDMENU_SHOW_CORRECTION_ 50250 Show Correction
WINDOW (Hex C44 | Window menu
A) option. Users

normally select this
option when they
want to correct a
word or phrase. The
application usually
respondsby invoking
the correction dialog
box.

IBM SDK for Windows 547

Classes, Sructures, and Enumerations

Table 13. vwUIMenultemConstants

Constant Name Value Description
vWVIAVOICEUI_IDMENU_EXIT 50900 Exit menu option.
(Hex C6D | Usersselect this
4) option when they
wish to “end speech
support” for the
current speech
application.
wWVIAVOICEUI IDMENU_MICROPHONE 50025 Microphone menu
(Hex C369| option. You cannot
) remove this menu
option and you will
receive notification
that the users
selected this option.
vwWVIAVOICEUI IDMENU_STOP_DICTATION 50225 Sop Dictation menu
(Hex C431| option. This menu

)

option is the opposite
of Begin Dictation.
Users select this
option when they
wish to exit dictation
mode.

548

IBM SDK for Windows

User Interface Control Constants

Table 13. vwUIMenultemConstants

Constant Name Value Description
VWVIAVOICE_IDMENU_STOP_READING 50300 Sop Reading menu
(14B4) option. This menu
optionisthe opposite
of Begin Reading.

Users select this
option when they
wish to stop the

reading mode.
WVIAVOICEUI _IDMENU_WHAT_CAN_|_SAY 50500 What Can | Say
(Hex C544 | menu option. You
) will receive
notification that
users selected this

option; you can
remove, append or
modify this option.

IBM SDK for Windows 549

Classes, Sructures, and Enumerations

vwUIRemoveClientConstants

Use these constants when issuing the RemoveClient method (only available for Visual C++ Custom
Interface users). These constants enable you to specify how the Ul Server should respond to the client
shutting down.

Table 14. vwUIRemoveClientConstants

Constant Name Value | Description

wWUIRCF_NO_CLOSE 0 Do not closethe Ul Server, evenif it
isthe last client to useit.

wWUIRCF_CLOSE 1 Closesthe Ul Server regardless of

what other clients may be using it.
Note: You should never use this
option unless it is absolutely

necessary.
VWUIRCF_CLOSE_IF_LAST_CLIENT 2 Closesthe Ul Server if thisclient is
the last client only.
vUIRCF_DEFAULT 2 Uses the default option. Currently
the default is

VWUIRCF_CLOSE_IF_LAST_CLI
ENT. However, you should use the
vUIRFC_DEFAULT flag instead
when you want to close the

Ul Server in your program as this
constant might change in afuture

release.
WUIRCF_CLOSE_IF_LAST_CLIENT_ | 4 In rareinstances, the Ul Ser ver
DELAY cannot shut down before the client

application shuts down completely.
For those cases where you wish the
Ul Server to shut down when your
client isthe last one, but you would
like the client to have enough time
to shut down, use this constant. The
Ul Server will wait afew seconds
after your program shuts down.

550 IBM SDK for Windows

User Interface Control Enumerations

User Interface Control Enumerations

The ViaVoice UIClient control supports the following enumerations:
* MICROPHONE_STATES (Enum)

 TCID (Enum)

 TVIEWTYPE (Enum)

* UIEVENTRC (Enum)

 UIMENUGROUP (Enum)

 UIMENUTYPE (Enum)

* UIRC (Enum)

IBM SDK for Windows 551

Classes, Sructures, and Enumerations

MICROPHONE_STATES (Enum)

You can use these constants to set the state of the UlServer’s Microphone component. Use these
constants when using tisetNumberValue or GetNumber Value methods with the
COMPID_MICROPHONE object, as shown below.

Set Nunber Val ue(COMPI D_M CROPHONE, | Set Val ue, | ndex)
Keep in mind that setting the state of the microphone component has no direct effect on the state of the
system’s audio input device in the speech engine; it simply sets the appearance of the microphone
component.

When you use the following constants, you must set the Index parameter to
vUIMICINDEX_MICSTATE (0) or UIMICINDEX_MICSTATE (Custom) as follows:

Set Nunber Val ue (COVPI D_M CROPHONE, U MSF_ON, vvUl M Cl NDEX_M CSTATE)

(In Visual Basic, the Index parameter is optional and defaults to zero).

Table 15. Microphone Sate Constantsfor the vwwUIMICINDEX_MICSTATE

Constant Name Value Description

UIMSF ON 1 Sets the state of the microphone object to
“on.”

UIMSF OFF 2 Sets the state of the microphone object to
“off.”

UIMSF SLEEP 3 Sets the state of the microphone object to
“asleep.”

UIMSF DISABLED 4 Sets the state of the microphone object to
“disabled.”

UIMSF_ ERROR 5 Sets the state of the microphone object to a
“no” sign.

When using the following constants you must set the Index parameter to
WUIMICINDEX_WAITSTATE as follows:

Set Nunber Val ue(COMPI D_M CROPHONE, Ul MSF_ADDWAI T, vvUl M Cl NDEX_WAI TSTATE)

552 IBM SDK for Windows

User Interface Control Enumerations

Table 16. Microphone Sate Constantsfor the wwUIMICSTATE_WAITSTATE

Constant Name Index Par ameter Description

UIMSF_ADDWAIT 4096 (& H1000) Changes the state of the microphone object
to await state. Each time you call the
SetNumber Value method with this value
the Ul Server increments a counter. To
return to aready state you must call this
method with the UIMSF_ REMOVEWAIT
flag the same number of timesthe
UIMSF_ADDWAIT flag was used. You
could also usethe UIMSF_CLEARWAIT to
remove al instances of the wait state.

UIMSF_CLEARWAIT 4097 (&H1001) Removesall instances of the wait state from
the microphone object. See the description
on UIMSF_ADDWAIT for details.

UIMSF_REMOVEWAIT | 4098 (&H1002) Removes one instance of the wait state. See
the description of the UIMSF_ADDWAIT
constant for details.

IBM SDK for Windows 553

Classes, Sructures, and Enumerations

TCID (Enum)

TCID stands for component ID type. This enumerated type contains the ID numbers for each of the
components you can modify in the Ul Server using the SetNumber Value or SetStringValue methods.
You can also use these constants when querying the state of one of the componentsin the Ul Server by
using GetNumber Value or GetSringValue methods.

Table 17. Component I D Type Constants

Constant Name Value Description

COMPID_MICROPHONE 1 Gets/Sets the state of the microphone
component.

COMPID_VOLUME 2 Gets/Sets the level of the volume
component.

COMPID_WORDHISTORY 3 Gets/Sets the word history text. Word

history text appearsin the center of the
Ul Server when in Taskbar/Docked view.

COMPID_USERINFORMATION | 4 Gets/Sets user information such as the
displayable user name.

COMPID_CUSTOM 5 Gets/Sets the state of toolbar buttonsin
the Ul Ser ver.

COMPID_MAINMENU 6 Represents the main menu. You cannot

use this ID with SetNumberValue or
GetNumberValue; however, you may use
it when interpreting the ComponentI D
parameter in the EventButtonPressed
event.

554 IBM SDK for Windows

User Interface Control Enumerations

TVIEWTYPE (Enum)

This enumerated type is issued when the Ul Client control fires the EventQueryViewM enul nfo
event. The EventQueryViewM enul nfo event gets fired when the user requests to see the Ul Ser ver
menu, prior to the Ul Server displaying the menu options. This enumerated type contains constants

that describe the current appearance of the Ul Server.

Table 18. Ul Server Type Constants

Constant Name Value Description

UIVIEW_SYSTRAY 1 Means that the Ul Ser ver appears as an
icon in the Windows tool tray or system
tray

UIVIEW_TASKBAR 2 Means that the Ul Server isacting asa
taskbar similar to the Windows taskbar on
the desktop.

UIVIEW_DOCKED 3 Means that the Ul Server is currently
docked to the application that has the
focus.

UIVIEW_AGENT 4 Means that the Ul Server is currently

acting as an agent character.

IBM SDK for Windows

555

Classes, Sructures, and Enumerations

UIEVENTRC (Enum)

If you study the eventsin the Ul Client control you will find that the last parameter in each of the
events is pResult of type UIEVENTRC. The UIEventRC enumerated type is used to inform the
UIClient control of the action taken in one of its events.

Table19. UIEVENTRC Type Constants

Constant Name Value | Description

UIEVENTRC_PROCESSED 0 Notifies the Ul Client control that your code
has processed the event, and it should not be
forwarded to other clients.

UIEVENTRC_NOTPROCESSED 1 Notifies the Ul Client control that your code

has not processed the event, and it should be
forwarded to other clients.

556

IBM SDK for Windows

User Interface Control Enumerations

UIMENUGROUP (Enum)

UIMenuGroup specifies the location where you wish to add custom menu options to the ViaVoice
Ul Server menu. The word Dynamic means that the menu option will change according to which
program has the focus, and Static means the options will not. The Static help menus remain even if the
application is shut down and restarted until they are explicitly removed by acall to DeleteM enu. The
Ul Client control only informs you of interaction with Dynamic menu items.

Table 20. Dynamic Menu Group Constants

Constant Name

Value

Description

UIMFG_DYNAMIC_MAIN

Refers to menu options that appear in the
main menu. These options are:

Begin Dictation

Stop Dictation

Show Correction Window

Begin Reading

Stop Reading

What Can | Say?

Exit

UIMFG_DYNAMIC_APPLICATION

Refersto custom application menu
options.

UIMFG_DYNAMIC_HELP

Refers to custom help menu options.

UIMFG_STATIC_HELP

Refersto static help menu options, which
always appear regardless of which
application has the focus.

IBM SDK for Windows

557

Classes, Sructures, and Enumerations

UIMENUTY PE (Enum)

The UIMENUTY PE enumeration specifies how the Ul Server handles the menu option. It can either
notify the Ul Client control or it can execute the menu option automatically.

Table 21. Dynamic Menu Type Constants

Constant Name Value Description

UIMFT_CLIENT 1 The menu option will be handled by the
UlClient.

UIMFT_EXECUTE 2 The menu option will be executed

automatically.

558

IBM SDK for Windows

User Interface Control Enumerations

UIRC (Enum)

All the methods in the Ul Client control return error information due to logical errors through a return
code. (Critical errors are reported through trappable errorsin Visual Basic or exception faultsin Visual
C++ (MFC) or anon-successful HRESULT in Visual C++ (Custom).)

Table 22. UIRC Type Constants

Constant Name Value | Description

UIAPIRC_OK 0 No Error. Call was successful.
UIAPIRC_ERROR_NOSERVER 1 The server was unableto initialize.
UIAPIRC_ERROR_SERVERBUSY 2 The server was unable to execute

your method within a certain
amount of time.

UIAPIRC_ERROR_OUTOFMEMORY 3 Not enough memory to complete
the call. You should terminate the
application.

UIAPIRC_ERROR_FAILED 4 General failure.

UIAPIRC_ERROR_INVALIDCLIENT 5 The Ul Client control has become
unstable.

UIAPIRC_ERROR_INVALIDPARAM 7 This method had an invalid
parameter.

UIAPIRC_ERROR_ALREADYINITIALIZE | 8 This result code occurs when

D attempting to I nitialize the
Ul Server twice.

UIAPIRC_ERROR_NOTCURRENTCLIENT | 9 Thisresult code may occur when

attempting to change the state of a
component when your applicationis
not the current client.

IBM SDK for Windows 559

Classes, Sructures, and Enumerations

560 IBM SDK for Windows

Chapter 28 Properties, Methods, and Events

User Interface Control Properties

The Ul Client control, invisible at run time, does not have any custom properties, but has the following
standard propertiesin Visual Basic:

In Visual Basic:

The User Interface Client control supports the following standard properties:
* Indexa

* LanguageUl

o Lefta

e Tag?

e Top2

In Visual C++ (MFC):
* LanguageUl

In Visual C++ (Custom Interface):

There are no standard properties available.

a Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

IBM SDK for Windows 561

Properties, Methods, and Events

L anguageUl

Sets or gets the language used by the Ul Server for this specific client.

Syntax

In Visual Basic:

‘ [WUIdient].LanguageU = [String]

In Visual C++ (MFC):

CString = [WU dient]. GetLanguageUl ()
[WUIdient]. SetLanguageUl (LPTSTR)

In Visual C++:

HRESULT [pl VWUI Cl i ent]->get _LanguageUl (BSTR *)
HRESULT [pl VWUI d i ent] - >put _LanguageUl (BSTR)

Parameters

Return Values

The LanguageUl property settings for aViaVoice User Inter face control are:

L anguage Property Value
U.S. English “EN_US”

U.K. English “EN_UK”
German “GR_GR”
Italian “4T_IT”
Spanish “‘ES_ES”
French “FR_FR”
Japanese “JA_JP”

562

IBM SDK for Windows

User Interface Control Properties

Remarks

The language affects the menus, dialogs, and Tool Tips displayed by the Ul Server.

Example

In Visual Basic:

Sets U language to U S. English
WUl Cl i ent 1. LanguageUl = "EN_US"

Gets U Il anguage and displays it in a message box
MsgBox WUl Cli ent 1. LanguageUl

In Visual C++ (MFC):

/1 Sets U |anguage to U.S. English

m WUl C i ent. Set LanguageUl ("EN_US");

CString sLangU ;

/1 Gets U |anguage and copies it into variable
sLangUl = m WUI Qi ent. Get LanguageUl ();

In Visual C++:

HRESULT hr;
BSTR bstrLangUl ;

bstrLangU = SysAllocString(OLESTR("EN_US"));
/1 Sets U I|anguage to U.S. English

hr = pl WUI d i ent->put _LanguageUl (bstrLangUl);
SysFreeString(bstrLangUl);

/1 Gets U |anguage into BSTR vari able

hr = pl WUI C i ent->get _LanguageUl (&bstrLangUl);

/1 Use |l anguage string now and when done free BSTR
SysFreeString(bstrLangUl);

IBM SDK for Windows

563

Properties, Methods, and Events

See Also

“SetLanguageByID” on page 599
“SetLanguageByString” on page 601
Table 3 on page 509

564

IBM SDK for Windows

User Interface Control Methods

User Interface Control Methods

The User Interface Control supports the following methods:

About2
AddApplicationByName
AddApplicationByWindow
AppendMenultem
DeleteMenultem
GetMenulteminfo
GetNumberValue
GetStringValue

Initialize

InsertMenultem
RemoveApplicationByName
RemoveApplicationByWindow
SetClientCallback
SetClientCallbackFlags
SetLanguageByID
SetLanguageByString
SetMenulteminfo
SetNumberValue
SetStringValue

a Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

IBM SDK for Windows

565

Properties, Methods, and Events

AddApplicationByName

The Ul Client control enables you to interact with the ViaVoice Ul Server; however, in order to get
messages from the Ul Server, the Ul Server needs to know which programsit isinteracting with. To
specify a program by name, you can use the AddA pplicationByName method.

Syntax

In Visual Basic:
‘ Functi on AddApplicati onByName(ApplicationName As String) As U RC ‘

In Visual C++ (MFC):
‘ | ong AddAppl i cati onByName(LPCTSTR Applicati onNane); ‘

In Visual C++ (Custom I nterface):
‘ HRESULT AddAppl i cati onByName(LPSTR | pszApplicationNane, U RC *pResult); ‘

Parameters

ApplicationName
String / LPSTR. The executable name of the application and its extension (for example,
CALC.EXE) or afully qualified path plus the application name and its extension (for example,
CAWINDOWS\NOTEPAD.EXE).

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

566 IBM SDK for Windows

User Interface Control Methods

Remarks

In Visual Basic the executable nameisdifferent at design timethanitisat runtime. It isrecommended
that you use the AddApplicationByWindow method instead for adding your program, and use the
AddApplicationByName method when adding other programs.

The program added does not need to be running. The Ul Ser ver will simply not send any notifications
to the Ul Client control until the application starts and is active.

This method will not work if you omit the “.EXE” extension from the name. Remember, to receive
events and interact with thél Server when you are active, you must add your own application.

Example

In Visual Basic:

Dmrc As URC
rc = VVUIClientl.AddApplicationByName(‘NOTEPAD.EXE’)

In Visual C++ (MFC):
‘ UIRC rc = (UIRC) m_VVUIClientl.AddApplicationByName(“NOTEPAD.EXE");

In Visual C++ (Custom):

UIRC rc;
HRESULT hr = plVVUIClient->AddApplicationByName(“NOTEPAD.EXE",&rc);

See Also

“AddApplicationByWindow” on page 568
“RemoveApplicationByName” on page 591
“RemoveApplicationByWindow” on page 593

IBM SDK for Windows 567

Properties, Methods, and Events

AddApplicationByWindow

The Ul Client control enables you to interact with the Ul Server; however, in order to get messages
from the Ul Ser ver, the Ul Server needsto know which programsit is interacting with. To specify a
program by its window handle, you can use AddApplicationByWindow method.

Syntax

In Visual Basic:
‘ Functi on AddApplicati onByW ndow (hwndApplication As Long) As U RC ‘

In Visual C++ (MFC):
‘ | ong AddApplicati onByW ndow(| ong hwndAppl i cation); ‘

In Visual C++ (Custom):
‘ HRESULT AddAppl i cati onByW ndow(HWND_t hundApp! i cation, U RC *pResult); ‘

Parameters

hwndApplication
Long / HWND _t. The window handle of the main form in the application.

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

In Visual Basic the executable name is different atgfetime that it is at run time. It is recommended
that you use thA&ddApplicationByWindow method instead for adding your program, and use the
AddApplicationByName method when adding other programs.

568 IBM SDK for Windows

User Interface Control Methods

Remember, to receive events and interact with the Ul Server when you are active, you must add your

own application.

Example

In Visual Basic:

Dmrc As URC
rc = WU Cientl. AddAppl i cati onByW ndow Me. hWd)

In Visual C++ (MFC):

‘ URCrc = (UROmWUI Cientl. AddAppli cati onByW ndow((| ong) m hwd) ;

In Visual C++ (Custom):

U RC rc;
HRESULT hr = pl WUl d i ent->AddAppl i cati onByW ndow((HWND_t) hWhd, &r c);

See Also

“AddApplicationByWindow” on page 568
“RemoveApplicationByName” on page 591
“RemoveApplicationByWindow” on page 593

IBM SDK for Windows

569

Properties, Methods, and Events

AppendMenultem

Adds custom menu items in either of two ways: as an application-dependent menu group, or as a help
menu item.

Syntax

In Visual Basic:

Function AppendMenul t em{ uUl MenuG oup As U MENUGROUP, MenuName As String,
pl Menul nfo As WUl Menul nfo) As U RC

In Visual C++ (MFC):

 ong AppendMenul tem(l ong uU MenuG oup, LPCTSTR MenuNarme, LPDI SPATCH
pl Menul nf o) ;

n Visual C++ (Custom):

HRESULT AppendMenul t en{ Ul MENUGROUP uU MenuG oup, LPSTR | pszMenuNane,
U MENUl TEM NFO* | puimiltem U RC* pResult);

Parameters

uUIMenuGroup
UIMENUGROUP. This parameter specifies the location where you wish to add the menu item. For
more information, refer to Chapter 27 “Classes, Structures, and Enumerations”.

MenuName
String / LPSTR. Use this parameter to specify the menu group name.

plMenulnfo
VVUIMenulnfo / UIMENUITEMINFO. A menu information structure. For more information,
refer to “User Interface Control Structures” on p&86. This structure contains the cheterstics
of the menu item.

570 IBM SDK for Windows

User Interface Control Methods

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

You can also use this method to turn on main menu items such as “Begin Dictation” and “Show
Correction Window.”

TheAppendMenultem item is similar to thénsertM enul nfo item, except tha#AppendM enultem
adds the menu item to the end of the menu list, whidertM enul nfo enables you to specify the
location of the new menu item.

When adding a menu item you must specify an ID number for the item. You can do this by setting the
ID member of the/VUIM enul nfo structure.

When the user clicks on the custom menu item{JHglient control will fire the
EventMenultemSelected event. For more information, refer to “EventMenultemSelected” on page
619.

If you use theAppendM enul nfo method multiple times with the same MenulD for the menu items,
the Ul Client control will not generate an error — it will simply add the menu item multiple times. This
is useful if you wish to handle menu items witffefient text in the same way.

IBM SDK for Windows 571

Properties, Methods, and Events

Example

In Visual Basic:

Dim 1RetVal As U RC
Di m oNewivenu As New VWUl Menul nf o

oNewienu. Type = Ul MFT_CLI ENT
oNewienu. I D = 100
oNewMenu.Caption = “Menu Item #1”
oNewMenu.Checked = True

rc = VVUIClientl.AppendMenultem(UIMEF_DYNAMIC_APPLICATION, _
App.EXEName, _
oNewMenu)

End Sub

In Visual C++ (MFC):

CVVUIMenulnfo NewMenultem;
NewMenultem.CreateDispatch(CLSID_VVUIMenulnfo);
NewMenultem.SetType(UIMFT_CLIENT);
NewMenultem.SetID(100);
NewMenultem.SetCaption(“Menu Item #1");
NewMenultem.SetChecked(TRUE);

m_VVUIClientl.AppendMenultem(UIMFG_DYNAMIC_APPLICATION,
AfxGetAppName(),
NewMenultem);

572

IBM SDK for Windows

User Interface Control Methods

In Visual C++ (Custom):

U RC rc;
U MENUI TEM NFO Newivenul t em

Zer oMenor y(&Newienul t em si zeof (NewMenul tem)) ;
Newienul tem m uType = U MFT_CLI ENT;

Newienult em m dwi D = 100;
Istrcpy(NewMenultem.m_szText, “Menu ltem #1");
NewMenultem.m_uState = MFS_ENABLED |MFS_CHECKED,;

HRESULT hr=plVVUIClient->AppendMenultem(UIMFG_DYNAMIC_APPLICATION,
“MyAppName”
&NewMenultem,
&rc);

See Also

“InsertMenultem” on page 587
“SetClientCallback (Custom Interface)” on page 595

IBM SDK for Windows 573

Properties, Methods, and Events

DeleteM enultem

Removes a custom menu entry added as an application menu item or as a help menu item.

Syntax

In Visual Basic:

Function Del et eMenul t em{ uUl MenuGroup As U MENUGROUP, MenuName As String,
ultem As Long, fByPosition As Long) As U RC

In Visual C++ (MFC):

| ong Del et eMenul ten(| ong uU MenuG oup, LPCTSTR MenuNane, |ong ultem | ong
f ByPosi tion);

In Visual C++ (Custom):

HRESULT Del et eMenul t en{ Ul MENUGROUP uUl MenuGr oup, LPSTR | pszMenuNane,
Uint ultem BOOL fByPosition, U RC* pResult);

Parameters
uUIMenuGroup

UIMENUGROUP. One of the menu group flags described in Chapter 27 “Classes, Structures, and

Enumerations”.

MenuName
String / LPSTR. The name of the menu group from which the menu item will be deleted.

ultem

Long / UINT. The menu item’s ID number, or the menu item’s position within the group. This
parameter changes meanings depending on the value of the fByPosition parameter. When the
fByPosition parameter is zero, then the ultem parameter indicates the menu ID number. If the
fByPosition parameter is set to one, then the ultarampeteindicates the 1-based position from

the top within the group of the menu item.
fByPosition

574 IBM SDK for Windows

User Interface Control Methods

Long/ BOOL. Set this parameter to zero to indicate the ultem parameter represents a menu 1D
number. Set it to one to indicate that the ultem parameter regsesenenu item'’s position.

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

If you are unsure that the menu item exists, us&#i# enul nfo menu item prior to using this
method; otherwise the method will return an error HRESULT generating a trappable error in Visual
Basic and Visual C++ (MFC).

Example

In Visual Basic:

Dmrc As URC

rc = WU Cientl. Del et eMenul t em(U MFG_DYNAM C_APPLI CATI ON,
App. EXENane,
100, _
Fal se)

In Visual C++ (MFC):

U RC rc;

rc = (URC) mWU dientl. Del eteMenul t em(U MFG_DYNAM C_APPL| CATI ON,
Af xGet AppNane(),
100,
FALSE) ;

IBM SDK for Windows 575

Properties, Methods, and Events

In Visual C++ (Custom):

U RC rc;
HRESULT hr = pl WU Cient->Del et eMenul t em(Ul MFG_DYNAM C_APPLI CATI ON,
“MyAppName”,
100,
FALSE,
&rc);

See Also

“AppendMenultem” on page 570
“InsertMenultem” on page 587

576 IBM SDK for Windows

User Interface Control Methods

GetM enultemlnfo

Obtains information about a custom menu item, or about one of the main menu items.

Syntax

In Visual Basic:

Function Get Menultenm nfo(uU MenuG oup As U MENUGROUP, MenuNane As
String, ultemAs Long, fByPosition As Long, plMenulnfo As VWU Menul nf o)
As U RC

n Visual C++ (MFC):

| ong Get Menul tem nfo(long uU MenuG oup, LPCTSTR MenuNanme, |ong ultem
| ong fByPosition, LPDI SPATCH pl Menul nfo);

In Visual C++ (Custom):

HRESULT Get Menul t en nf o(Ul MENUGROUP uUl MenuG oup, LPSTR | pszMenuNane,
int ultem BOOL fByPosition, U MENU TEM NFO* |puimiltem U RC* pResult);

Parameters

uUIMenuGroup
UIMENUGROUP. One of the UIMENUGROUP flags described in Chapter 27 “Classes,
Structures, and Enumerations”.

MenuName
String / LPSTR. The name of the menu group from which you are requesting information.

ultem
Long / UINT. The menu item’s ID number, or the menu item’s position within the group. This
parameter changes meanings depending on the value of the fByPosition parameter. When the
fByPosition parameter is zero then the ultem parameter indicates the menu ID number. If the
fByPosition parameter is set to one then the ultem parameter indicates the 1-based position from
the top within the group of the menu item.

fByPosition

IBM SDK for Windows 577

Properties, Methods, and Events

Long/ BOOL. Set this parameter to zero to indicate the ultem parameter represents a menu 1D
number. Set it to one to indicate that the ultearameter represts a menu item'’s position.

plMenulnfo
VVUIMenulnfo / UIMENUITEMINFO. An instance of th& VUI M enul nfo class or of the
UIMENUITEMINFO structure. You must declare a new instance of this class or of the structure
prior to calling the method.

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

The information is retrieved through tpeM enul nfo parameter. This parameter will contain an
instance of th&/VUIMenulnfo class in Visual Basic and Visual C++ (MFC), or an instance of the
UIMENUITEM INFO structure in Visual C++ (Custom).

If you call theGetM enultemInfo method with an invalid ID number the function will return UIRC
code UIAPIRC_ERROR_FAILED (4). To enwrate though all of the menu items, issue this method
using the “by position” flag until the method returns the failed error code.

Example

In Visual Basic:

Dmrc As U RC
Di m oMenul nfo As New VWUl Menul nf o
rc = WU Cdientl. Get Menul t e nf o(U MFG_DYNAM C_APPLI| CATI ON,
sMenuG oup,
i Count er,
1, _
oMenul nf o)

578 IBM SDK for Windows

User Interface Control Methods

In Visual C++ (MFC):

CwUl Menul nfo Menul tem
Menul nf o. Cr eat eDi spat ch(CLSI D_VVUI Menul nf 0) ;
URCrc = (URQ
m vvUl Cient 1. Get Menul t em nf o(U MFG_DYNAM C_APPLI CATI ON,
“MyAppName”,
iCounter,
TRUE,
Menultem);

n Visual C++ (Custom):

UIRC rc;
UIMENUITEMINFO Menultem;

“MyAppName”,
iCounter,
TRUE,
&Menultem,
&rc);

HRESULT hr=plVVUIClient->GetMenultemInfo(UIMFG_DYNAMIC_APPLICATION,

See Also

“SetMenultemInfo” on page 603
“vwvUIMenulnfo (Class - Visual Basic and MFC Only)” on page 534
“User Interface Control Structures” on page 535.

IBM SDK for Windows

579

Properties, Methods, and Events

GetNumberValue

Obtains numeric information on the state of a certain component in the Ul Server (for example, the
microphone component, COMPID_MICROPHONE).

Syntax

In Visual Basic:

Functi on Get Number Val ue(ci Conponent As TClI D, pdwval ueData As Long,
[nIndex As Long]) As U RC

In Visual C++ (MFC):
‘ | ong Get Number Val ue(l ong ci Conponent, |ong* pdwval ueData, |ong nlndex); ‘

In Visual C++ (Custom):

HRESULT Get Nunber Val ue(TCI D ci Conponent, DWORD* pdwVal ueData, int
nl ndex, U RC* pResult);

Parameters

ciComponent
TCID. One of the UlServer’s object IDs. You will find a complete list of objects in Chapter 27
“Classes, Structures, and Enumerations”.

pdw\ValueData
Long / DWORD. The pdwValueData parameter will contain the numeric value after issuing the
method. In Visual Basic, you must declare a long variable for this parameter.

nlndex
Long (Optional) / int. This value enables you to access extended information about the object. Its
meaning changes depending on which object you request information from. For a description of
each of the possible values for this paramegéer to “Conponent Index Constants” on page 538.

580 IBM SDK for Windows

User Interface Control Methods

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

If you call theGetM enultemlnfo method with an invalid ID number the function will return

Example

In Visual Basic:

Dmrc As U RC
Di m Newval ue as Long
rc = VWU Cientl. Get Nunber Val ue(COVPI D_M CROPHONE, NewVal ue)

In Visual C++ (MFC):

| ong Newval ue;

URCrc = (URC) mWU dientl. Get Number Val ue(COVPlI D_M CROPHONE,
&NewVal ue,
U M Cl NDEX_M CSTATE) ;

In Visual C++ (Custom):

DWORD NewVval ue;

U RC rc;

HRESULT hr = pWUI C i ent - >Get Nurber Val ue(COMPI D_M CROPHONE,
&Newval ue,
U M Cl NDEX_M CSTATE,
&rc);

See Also

“GetNumberValue” on page 580
“GetStringValue” on page 582
“SetNumberValue” on page 606

IBM SDK for Windows

581

Properties, Methods, and Events

GetSringValue

Obtains string information on the state of a certain component in the Ul Server (for example, the word
history component, COMPID_WORDHISTORY).

Syntax

In Visual Basic:

Function Get StringVal ue(ci Conponent As TCI D, Val ueData As String, [nlndex
As Long]) As U RC

In Visual C++ (MFC):
‘ l ong GetStringVal ue(long ci Conponent, BSTR* Val ueData, |ong nlndex); ‘

In Visual C++ (Custom):

HRESULT Cet StringVal ue(TClI D c¢i Conponent, int nDataSize, LPSTR
| pszVal ueDat a, int nlndex, U RC* pResult);

Parameters

ciComponent
TCID. One of the UlServer’s object IDs. You will find a complete list of objects in Chapter 27
“Classes, Structures, and Enumerations”.

nDataSze (Misual C++ Custom Only)
Long / int. The int size of the string buffer that will hold the string value. The constant
MAX_WORDHISTORY_TEXT defines the maximum length of the word history string, and
MAX_USERINFO_ID_LEN/MAX_USERINFO_DESC_LEN defines the maximum lengths for
the user information strings.

ValueData
String / LPSTR. The pdwValueData parameter will contain the string value after issuing the
method. In Visual Basic, you must declare a string variable to use for this parameter.

nindex

582 IBM SDK for Windows

User Interface Control Methods

Long (Optional) / int. This value enables you to access extended information about the object. Its
meaning changes depending on which object you request information from. For a detailed
description of each of the possible values for this parameter, refer to “Component Index
Constants” on page 538. For more information about trarpeter, refer to the Remarks satt
below.

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

In Visual Basic, the ValueData parameter can be a variaidghestring or a fixed-size string.

If using a fixed-size, use the MAX_* constants in Visual C++ (MFC or Custom) or vwMAX_*
constants in Visual Basic.

Example

In Visual Basic:

Dmrc As URC

Di m Newwal ue As String

rc = If WU ientl. GetStringVal ue(COVPI D_WORDHI STORY, Newval ue) =
Ul APl RC_OK Then

IBM SDK for Windows 583

Properties, Methods, and Events

In Visual C++ (MFC):

BSTR bstr NewVal ue=NULL;

URCrc = (URC) mvvU dientl. GetStringVal ue(COWPI D_WORDHI STORY,
&bst r NewVal ue,
Ul WHI NDEX_TAGGEDTEXT) ;

SysFreeString(bstrNewval ue);

In Visual C++ (Custom):

U RC rc;
char szNewal ue[MAX_WORDHI STORY_TEXT] ;
HRESULT hr = pl WUl dient->Get StringVal ue(COWI D_WORDHI STORY,
MAX_WORDHI STORY_TEXT,
szNewval ue,
&rc,
Ul WHI NDEX_TAGGEDTEXT) ;

See Also

“GetNumberValue” on page 580
“GetStringValue” on page 582
“SetNumberValue” on page 606

584 IBM SDK for Windows

User Interface Control Methods

I nitialize

Causes the Ul Server toinitialize (if it isnot already visible, it also causes the Ul Server to appear).

Syntax

In Visual Basic:
‘Functionlnitialize()AsUIRC ‘

In Visual C++ (MFC):

‘Ionglnitialize(); ‘

In Visual C++ (Custom):
| HRESULT Ini tialize(U RC* pResult); |

Parameters

None.

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

You cannot call this method twice for the same control. However, each instance of the control must ca
this method. Th&JI Server keeps track of all the cligs (controls) using it so that it can properly shut
down when there are no clients using it.

The UlServer’'s menu will not function until you call t8etL anguageByString or the
SetlL anguageByID method.

IBM SDK for Windows 585

Properties, Methods, and Events

Example

In Visual Basic:

Dmrc As URC
rc = mWU dientl. Initialize()

In Visual C++ (MFC):

URCrc = (URC) mWU dientl.Initialize();

In Visual C++ (Custom):

U RC rc;
HRESULT hr = plWUI Client->Initialize(&c);

See Also

“SetLanguageBylID” on page 599
“SetLanguageByString” on page 601

586

IBM SDK for Windows

User Interface Control Methods

| nsertM enultem

Adds custom menu entries in either of two ways: as an application-dependent menu group or as a help
menu item.

Syntax

In Visual Basic:

Function I nsertMenultem(uU MenuG oup As U MENUGROUP, MenuName As String,
ultem As Long, fByPosition As Long, pl/Menulnfo As WU Menul nfo) As U RC

In Visual C++ (MFC):

l ong I nsert Menul ten(l ong uU MenuG oup, LPCTSTR MenuNane, | ong ultem | ong
fByPosi tion, LPDI SPATCH p/ Menul nfo);

n Visual C++ (Custom):

HRESULT I nsert Menul t en{ U MENUGROUP uU MenuG oup, LPSTR | pszMenuNane,
U NT ultem BOOL fByPosition, U MENUI TEM NFO* |puiniiltem Ul RC
pResul t);

Parameters

uUIMenuGroup
UIMENUGROUP This parameter specifies the location where you wish to add the menu item.

Valid values are: One of the UIMENUGROUP described in Chapter 27 “Classes, Structures, and
Enumerations”.

MenuName
String / LPSTR. Use this parameter to specify the menu group name.

ultem
Long / int. The menu item’s ID number, or the menu item’s position within the group. This
parameter changes meanings depending on the value of the fByPosition parameter. When the
fByPosition parameter is zero, then the ultem parameter indicates the menu ID number. If the

IBM SDK for Windows 587

Properties, Methods, and Events

fByPosition parameter is set to one, then the ultem parameter indicates the 1-based position from
the top within the group of the menu item.

fByPosition
Long/ BOOL. Set this parameter to zero to indicate the ultem parameter represents a menu 1D
number. Set it to one to indicate that the ultearameter represts a menu item'’s position.

plMenulnfo
VVUIMenulnfo / UIMENUITEMINFO. A menu information class or structure. For more
information, refer to “User Interface Control Structures” on page 535. This structure contains the
characteristics of the menu item.

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

You can also use this method to enable main menu items such as “Begin Dictation”, and “Show
Correction Window”. This method will position the new menu item before the item specified by the
ultem and fByPosition parameters.

588 IBM SDK for Windows

User Interface Control Methods

Example

In Visual Basic:

Dim 1RetVal As U RC
Di m oNewivenu As New VWUl Menul nf o

oNewiMenu. Type = Ul MFT_CLI ENT
oNewienu. I D = 150
oNewMenu.Caption = “Menu Item #1”
oNewMenu.Checked = True

1RetVal = VVUIClientl.InsertMenultem(UIMFG_DYNAMIC_HELP,_
App.EXEName, _
200, _
False, _
oMenulnfo)

n Visual C++ (MFC):

CVVUIMenulnfo NewMenultem;
NewMenultem.CreateDispatch(CLSID_VVUIMenulnfo);
NewMenultem.SetType(UIMFT_CLIENT);
NewMenultem.SetID(150);
NewMenultem.SetCaption(“Menu Item #1");
NewMenultem.SetChecked(TRUE);

m_VVUIClientl.InsertMenultem(UIMFG_DYNAMIC_APPLICATION,
AfxGetAppName(),
200,
FALSE,
NewMenultem);

IBM SDK for Windows 589

Properties, Methods, and Events

In Visual C++ (Custom):

U RC rc;
Ul MENUI TEM NFO Newienul t em

Zer oMenor y(&Newienul t em si zeof (NewMenul tem)) ;
NewMenul tem m uType = U MFT_CLI ENT;

Newienult em m dwi D = 150;
Istrcpy(NewMenultem.m_szText, “Menu ltem #1");
NewMenultem.m_uState = MFS_CHECKED: MFS_ENABLED;

HRESULT hr=plVVUIClient->InsertMenultem(UIMFG_DYNAMIC_APPLICATION,
“MyAppName”,
200,
FALSE,
&NewMenultem,
&rc);

See Also

“AppendMenultem” on page 570
“DeleteMenultem” on page 574

590 IBM SDK for Windows

User Interface Control Methods

RemoveApplicationByName

Removes a program from the list using its name.

Syntax

In Visual Basic:

‘ Functi on RenoveApplicati onByName(ApplicationName As String) As U RC ‘

In Visual C++ (MFC):
‘ | ong RenoveApplicati onByName(LPCTSTR Appl i cationNane); ‘

In Visual C++ (Custom):

HRESULT RemoveAppl i cati onByNanme(LPSTR | pszApp! i cati onName, Ul RC
pResul t);

Parameters

ApplicationName
String / LPSTR. The executable name of the application and its extension, for example,
CALC.EXE, or afully qualified path plus the application.

Returns

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

The Ul Client control enables you to ietact with théJl Server; however, in order to get messages
from theUl Server, theUl Server needs to know which programs it is irteting with. To specify a
program by name, you can use thadA pplicationByName method. The

RemoveA pplicationByName function enables you to remove a program from the list using its name.

IBM SDK for Windows 591

Properties, Methods, and Events

In Visual Basic the executable nameisdifferent at design timethanitisat runtime. It isrecommended
that you use the RemoveApplicationByWindow method instead for removing your program by name,
and use the RemoveApplicationByName method when removing other programs.

This method will not work if you omit the “.EXE” extension from the name.

Example

In Visual Basic:

Dmrc As URC
rc = VVUIClientl.RemoveApplicationByName(“CALC.EXE")

In Visual C++ (MFC):
UIRC rc = (UIRC) m_VVUIClientl.RemoveApplicationByName(“CALC.EXE");

In Visual C++ (Custom):

UIRC rc;
HRESULT hr = pVVUIClient->RemoveApplicationByName(“CALC.EXE", &rc);

See Also

“AddApplicationByName” on page 566
“AddApplicationByWindow” on page 568
“RemoveApplicationByWindow” on page 593

592 IBM SDK for Windows

User Interface Control Methods

RemoveApplicationByWindow

Removes a program from the list using its window handle.

Syntax

In Visual Basic:
‘ Functi on RenoveAppl i cati onByW ndow(hwndAppl i cation As Long) As U RC ‘

In Visual C++ (MFC):
‘ | ong RenoveApplicati onByW ndow(| ong hwndAppl i cation); ‘

In Visual C++ (Custom):

HRESULT RenoveAppl i cati onByW ndow(HWND_t hwndAppl i cati on, Ul RC
pResul t);

Parameters

hwndApplication
Long/ HWND _t. The window handle of the application you wish to remove from the list.

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

The Ul Client control enables you to ietact with théJl Server; however, in order to get messages
from theUl Server, theUl Server needs to know which programs it is irteting with. To specify a
program by name, you can use thadA pplicationByName method. The
RemoveApplicationByWindow function enables you to remove a program from the list using its
window handle.

IBM SDK for Windows 593

Properties, Methods, and Events

In Visual Basic the executable nameis different at design timethat it is at run time. It is recommended
that you use the RemoveApplicationByWindow method instead for removing your program, and use
the RemoveApplicationByName method when removing other programs.

Example

In Visual Basic:

Dmrc As URC
rc = WU Cientl. RenoveAppl i cati onByW ndow(VWUl Cl i ent 1. Par ent . hWhd)

In Visual C++ (MFC):
URCrc = (URC) mWU dientl. RenoveApplicati onByW ndow((| ong) m_ hwhd) ; ‘

In Visual C++ (Custom):

U RC rc;
HRESULT hr = pWWUI d i ent - >RenpveAppl i cati onByW ndow((HWND_t) hWhd, &r c) ;

See Also

“AddApplicationByName” on page 566
“AddApplicationByWindow” on page 568
“RemoveApplicationByName” on page 591

594 IBM SDK for Windows

User Interface Control Methods

SetClientCallback (Custom Interface)

Turns on communication actions that occur on the Ul Server to a C++ program.

Syntax

In Visual C++ (Custom):

HRESULT Set Client Cal | back(GUI D* riid, |Unknown* pldientEventSink, DWORD
dwfFl ags, U RC* pResult);

Parameters

riid
GUID. A pointer to the client’s implementation of the event sink to be used when handling
notifications from theJl Server.

plClientEventSink
IUnkown. The Inteface Id (IID) at the event interface implemeidat At this time, the only valid
value is IID_IVVUIEventSink.

dwFlags
DWORD. The dwFlags parameter specifies the messagéf @ieent control receives from the
Ul Server. For more information about values, refer to “vvUIEventCallbackFlags” on page 543.

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks
This method is also known &stClientCallbackFlags in the Visual Basic and C++ (MFC).
TheUlClient control is able to communicate actions that occur ottig8erver to your C++

program. However, you must turn on this communication manually. To do so, use the
SetClientCallback method.

IBM SDK for Windows 595

Properties, Methods, and Events

When the user interacts with the Ul Server, the Ul Server notifies the Ul Client control which in turn
notifies your program by firing one of its events. However, each notification sent from the Ul Server to
the control affects the performance of your program. For that reason only call this method when you
wish to receive messages from the Ul Server.

Example

In Visual C++ (Custom):

U RC rc;

HRESULT hr = plWUI Cient->SetCientCallback(l!D_|I VWU Event Si nk,
&m | VWUI C i ent Event Si nk,
U EVENT_ALL,
&rc);

See Also

None.

596 IBM SDK for Windows

User Interface Control Methods

SetClientCallbackFlags

Communicates actions that occur in the Ul Server to a Visual Basic program.

Syntax

In Visual Basic:
‘ Function SetC i entCal | backFl ags(dwFl ags As Long) As U RC ‘

In Visual C++ (MFC):
‘ l ong SetdientCall backFl ags(l ong dwFl ags); ‘

Parameters

dwFlags
Long / DWORD. The dwFlags parameter specifies the messages the Ul Client control receives
from the Ul Ser ver. For more information about values, refer to “vvUIEventCallbackFlags” on
page 543.

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks
This method is also known &stClientCallback in the Custom interface.
TheUlClient control is able to communicate actions that occur irUdfger ver to your Visual Basic

program. However, you must turn on this communication manually. To do so, use the
SetClientCallback Flags method.

When the user interacts with thiServer, theUIl Server notifies theUl Client control which in turn
notifies your program by firing one of its events. However, each notification sent frash$hever to

IBM SDK for Windows 597

Properties, Methods, and Events

the control affects the performance of your program. For that reason only call this method when you
wish to receive messages from the Ul Server.

Example

In Visual Basic:

Dmrc As URC
rc = WU CCientl. SetdientCall backFl ags(vvU EVENT_ALL)

In Visual C++ (MFC):
‘ URCrc = (UROmvvU Cientl. SetCientCallbackFl ags(vvU EVENT_ALL); ‘

See Also

None.

598 IBM SDK for Windows

User Interface Control Methods

SetL anguageByI D

Specifies the language the Ul Server will use for displaying its menu items.

Syntax

In Visual Basic:
‘ Functi on Set LanguageByl D(wiang!/ D As I nteger) As U RC ‘

In Visual C++ (MFC):
‘ | ong Set LanguageByl D(short wlLang! D) ; ‘

In Visual C++ (Custom):
‘HRESULT Set LanguageBy| D(LANG D wiangl/ D, U RC* pResul t): \

Parameters

wLanglD
Integer / WORD. Thelanguage ID according to Table 3, “LangID string names supported by
UlServer and their corresponding values,” on page 509.

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

Without calling this method thidl Server will not display a menu when the user clicks the ViaVoice
menu.

IBM SDK for Windows 599

Properties, Methods, and Events

Example

In Visual Basic:

Dmrc As URC
rc = VWU Cdientl. Set LanguageByl D(1033) ’'for US English

In Visual C++ (MFC):

URCrc =
m VWUl C i ent 1. Set Languagel D{ MAKELANG D{ LANG_ENGLI SH, SUBLANG _US)); //for
US Engl i sh.

In Visual C++ (Custom):

U RC rc;

HRESULT hr = pwWuUIdient-

>Set Languagel D{ MAKELANG D({ LANG_ENGLI SH, SUBLANG US), &rc);// for US
Engl i sh

See Also

“MAKELANGID” in the Win32 SDK documentation.
“SetLanguageByString” on page 601

600 IBM SDK for Windows

User Interface Control Methods

SetL anguageBy3tring

Specifies the language the Ul Server will use for displaying its menu items.

Syntax

In Visual Basic:
‘ Functi on Set LanguageByString(LangStr As String) As U RC ‘

In Visual C++ (MFC):
‘ | ong Set LanguageByString(LPCTSTR LangStr); ‘

In Visual C++ (Custom):
‘ HRESULT Set LanguageByStri ng(LPSTR | pszLangStr, U RC* pResult); ‘

Parameters

Lang3ar
String / LPSTR. A 2- or 5-character string representing the language that the Ul Server will use
when displaying menu items according to Table 3 on page 509:

Returns

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

Without calling this method thidl Server will not display a menu when the user clicks the ViaVoice
menu.

IBM SDK for Windows 601

Properties, Methods, and Events

Example

In Visual Basic:

Dmrc As URC
rc = WU Cientl. Set LanguageByString("EN_US")

In Visual C++ (MFC):
UIRC rc = (UIRC) m_VVUIClientl.SetLanguageByString(“EN_US");

In Visual C++ (Custom):

UIRC rc;
HRESULT hr = pVVUIClient->SetLanguageByString(“"EN_US", &rc);

See Also
“SetLanguageBylID” on page 599

602 IBM SDK for Windows

User Interface Control Methods

SetM enultemInfo

Sets the characteristics of a certain menu item.

Syntax

In Visual Basic:

Function Set Menultem nfo(uU MenuG oup As U MENUGROUP, MenuNane As
String, ultemAs Long, fByPosition As Long, plMenulnfo As VWU Menul nf o)
As U RC

In Visual C++ (MFC):

| ong Set Menultem nfo(long uU MenuG oup, LPCTSTR MenuNanme, |ong ultem
| ong fByPosition, LPDI SPATCH pl Menul nfo);

n Visual C++ (Custom):

HRESULT Set Menul t em nf o(Ul MENUGROUP uUl MenuG oup, LPSTR | pszMenuNane,
U NT ultem BOOL fByPosition, U MENUI TEM NFO* |puiniiltem Ul RC
pResul t);

Parameters

uUIMenuGroup
UIMENUGROUP This parameter specifies the location where you wish to add the menu item.
Valid vaues are: One of the "UIMENUGROUP (Enum)” flags described in Chapter 27 “Classes,
Structures, and Enumerations”.

MenuName
String / LPCTSTR. Use this parameter to specify the menu group name.

ultem
Long / UINT. The menu item’s ID number, or the menu item’s position within the group. This
parameter changes meanings depending on the value of the fByPosition parameter. When the
fByPosition parameter is zero then the ultem parameter indicates the menu ID number. If the
fByPosition parameter is set to one then the ultem parameter indicates the 1-based position from
the top within the group of the menu item.

IBM SDK for Windows 603

Properties, Methods, and Events

fByPosition
Long/ BOOL. Set this parameter to zero to indicate the ultem parameter represents a menu 1D
number. Set it to one to indicate that the ultearameter represts a menu item'’s position.

plMenulnfo
VVUIMenulnfo / UIMENUITEMINFO. A menu information class in Visual Basic and Visual
C++ (MFC) or a structure in Visual C++ (Custom). For more information refer to “vvUIMenulnfo
(Class - Visual Basic and MFC Only)” on page 534 and “User Interface Control Structures” on
page 535, which contains the characteristics of the menu item.

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

You must add the menu item with tA@pendM enultem orInsertMenultem prior to using this
method. If you attempt to modify a menu item that does not exist the method will reemoroode
of UIAPIRC_ERROR_FAILED(4).

Example

In Visual Basic:

Dmrc As U RC
Di m Menul nfo As New VWUl Menul nfo
Menul nf 0. Checked = True
rc = VWU dientl. Set Menul t em nf o(Ul MFG_DYNAM C_MAI N,
App. EXENane,
100,
Fal se,
oNewienul nf o)

604 IBM SDK for Windows

User Interface Control Methods

In Visual C++ (MFC)

CwUl Menul nf o Menul nf o;
Menul nf 0. Cr eat eDi spat ch(CLSI D_VVUI Menul nf 0) ;
Menul nf 0. Set Checked(TRUE) ;
URCrc = (URC) mWU Cdientl. Set Menul t em nf o(U MFG_DYNAM C_MNAI N,
Af xGet AppNane(),
100,
FALSE,
Menul nf o) ;

n Visual C++ (Custom):

U RC rc;
Ul MENUI TEM NFO Menul nf o;

Zer oMenor y(&Newienul t em si zeof (NewMenul tem)) ;
HRESULT hr = pWUI Qi ent->Get Menul t em nf o(U MFG_DYNAM C_MAI N,
“MyAppName”,
100,
FALSE,
&Menulnfo,
&rc);

Menulnfo.m_uState = MFS_CHECKED| MFS_ENABLED;
HRESULT hr = pVVUIClient->SetMenultemInfo(UIMFG_DYNAMIC_MAIN,
“MyAppName”,
100,
FALSE,
&Menulnfo,
&rc);

See Also
“GetMenultemInfo” on page 577

IBM SDK for Windows 605

Properties, Methods, and Events

SetNumberValue

Modifies the state of a certain component in the Ul Server.

Syntax

In Visual Basic:

Functi on Set Nunber Val ue(ci Conponent As TClI D, dwval ueData As Long, [nlndex
As Long]) As U RC

In Visual C++ (MFC):
‘ | ong Set Number Val ue(l ong ci Conponent, |ong dwval ueData, |ong nlndex); ‘

In Visual C++ (Custom):

HRESULT Set Nunber Val ue(TCl D c¢i Conponent, DWORD dwVval ueDat a, int nlndex,
U RC* pResult);

Parameters

ciComponent
TCID. One of the UlServer’s object IDs. You will find a complete list of objects in the Classes,
Structures, Enumerations part of thiference section.

dwValueData
Long / DWORD. The pdwValueData parameter will contain the numeric value that the control will
use to set the object’s characteristic.

nlndex
Long (Optional) / int. This value enables you to set extended information about the object. Its
meaning changes depending on which object you request information from. See the Remarks
section below for more information.

606 IBM SDK for Windows

User Interface Control Methods

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

This method enables you to changareitteristics representadth numeric values, such as the

volume level in the volume meter component (COMPID_VOLUME). In Visual Basic, the
dwValueData parameter must be a long value. You should convert all your values to be long with the
CLng() function prior to issuing this method.

IBM SDK for Windows 607

Properties, Methods, and Events

Example

In Visual Basic:

Di m | SetVal ue As Long
Dim | RetVal As U RC

| Set Val ue = CLng(75)
| RetVal = WUIClient1. Set Nunber Val ue(COVWPI D_VOLUVME, | Set Val ue)

In Visual C++ (MFC):

URCrc = (URC) mWU Cientl. Set Number Val ue(COVPI D_VOLUNVE,
75,
Ul VOLI NDEX_VOLLEVEL) ;

In Visual C++ (Custom):

U RC rc;

HRESULT hr = pWWUI O i ent - >Set Nurber Val ue(COVPI D_VOLUNME,
75,
Ul VOLI NDEX_VOLLEVEL,
&rc);

See Also

“GetNumberValue” on page 580
“GetStringValue” on page 582
“SetNumberValue” on page 606

608 IBM SDK for Windows

User Interface Control Methods

SetSringValue

Changes characteristics represented with string values, such as the text in the word history object
(COMPID_WORDHISTORY).

Syntax

In Visual Basic:

Function Set StringVal ue(ci Conponent As TCI D, Val ueData As String, [nlndex
As Long]) As U RC

In Visual C++ (MFC):
‘ | ong Set StringVal ue(l ong ci Conponent, LPCTSTR Val ueData, |ong nlndex); ‘

In Visual C++ (Custom):

HRESULT Set StringVal ue(TCl D c¢i Conponent, LPSTR | pszVal ueData, int
nl ndex, U RC* pResult);

Parameters

ciComponent
TCID. One of the UlServer’s object IDs. You will find a complete list of objects in the Classes,
Structures, Enumerations part of thiference section.

ValueData
String / LPSTR. The ValueData parameter will contain the numeric value that the control will use
to set the object’s characteristic.

nlndex
Long (Optional) / int. This value enables you to set extended information about the object. Its
meaning changes depending on which object you request information from. For more information
refer to “Component Index Constants” on page 538.

IBM SDK for Windows 609

Properties, Methods, and Events

Return Values

UIRC
For more information, refer to “UIRC (Enum)” on page 559.

Remarks

None.

Example

In Visual Basic:

Dim | RetVal As U RC
| RetVal = WUICientl. SetStringVal ue(COMPI D_WORDHI STORY,
“Say ‘Stop Dictation’ to stop.”)

In Visual C++ (MFC):

“Say ‘Stop Dictation’ to stop.”,
UIWHINDEX_TAGGEDTEXT);

UIRC rc = (UIRC) m_VVUIClientl.SetStringValue(COMPID_WORDHISTORY,

In Visual C++ (Custom):

UIRC rc;

HRESULT hr = pVVUIClient->SetStringValue(COMPID_WORDHISTORY,
“Say ‘Stop Dictation’ to stop.”,
UIWHINDEX_TAGGEDTEXT,
&rc);

See Also

“GetNumberValue” on page 580
“GetStringValue” on page 582
“SetNumberValue” on page 606

610

IBM SDK for Windows

User Interface Control Events

User Interface Control Events

The Ul Client control triggers events when the user interacts with the Ul Server, but only if you
specify that you wish the control to receive messages from the Ul Server by issuing the
SetClientCallbackFlags or SetClientCallback methods.

All of the eventsin the control have a pResult parameter, which enables you to inform the control of
how you handled the event. This helps the control determineif it should communicate the event to
other clients or not. The User Interface Client control supports the following events:

» EventActiveApplication

» EventButtonPressed

» EventComponentUpdated

» EventMenultemSelected

» EventQueryViewFlags

» EventQueryViewMenulnfo

IBM SDK for Windows 611

Properties, Methods, and Events

EventActiveApplication

Event fired by the Ul Client control whenever the Ul Server detects a changein registered application
activation.

Syntax

In Visual Basic:

Event Acti veAppl i cati on(bActive As Bool ean, hwndApplication As Long,
Appl i cationName As String, pResult As U EVENTRC)

In Visual C++ (MFC):

voi d OnEvent Acti veAppl i cation(BOOL bActive, | ong hwndApplication, SPCSTR
| pszApplicationNane, |ong FAR* pResult);

n Visual C++ (Custom):

HRESULT Event Acti veApplication(BOOL bActive, HWND_t hwndApplicati on,
LPSTR | pszAppl i cati onNane, U EVENTRC* pResult);

Parameters

bActive
Boolean /BOOL. Flags indicating if the application has the focus (Active = True) or doesn't
(Active= False).

hwndApplication
Long / HWND _t. The window handle of the application window that has gained focus or has lost
focus.

ApplicationName
String / LPSTR. The executable name of the application window that has gained or lost focus.

pResult
UIEVENTRC. The result code you wish to pass back to the control. The control uses thisto
determineif the message should be passed on to other controls.

612 IBM SDK for Windows

User Interface Control Events

Return Values

TRUE
Sets the state of the components.

FALSE
Saves the state.

Remarks

The control fires this event when one of the applications, added through the
AddApplicationByWindow or AddApplicationByName method, either gains or loses the Ul Server
activation. Please note that since the Ul Server has to detect the change in order to notify the client,
certain quick lose/gain/lose focus change scenarios might go unnoticed by the Ul Server. Thisevent is
useful for saving/restoring Ul Server component states (i.e. Microphone state, custom buttons, etc.).

Since there may be other speech-enabled applications using the same Ul Server, this event enables you
to reset the state of the various components in the Ul Ser ver whenever your application receives the
focus, and to save the state before it is changed by another application. Set the state of the components
when bA ctive=True and save the state when bActive=False.

Example

In Visual Basic:

Event Acti veAppl i cation(bActive As Bool ean, hwndApplication As Long,
pResul t As Ul EVENTRC)
If bActive = True Then
| RetVal = WUl Client1. Set Nunber Val ue(COVWPI D_M CROPHONE, vvUl MSF_ON)
End |f
pResul t = U EVENTRC_PROCESSED
End Sub

IBM SDK for Windows 613

Properties, Methods, and Events

In Visual C++ (MFC):

void CCVUI CirDl g:: OnEvent Acti veApplication(BOOL bActive, |ong
hwndAppl i cation, LPCTSTR pszApplicationName, |ong FAR* pResult)
{

i f (bActive)
{
URCrc = (URC) mvvU dientl. Set Number Val ue(COVPlI D_M CROPHONE,
Ul MSF_ON,
U M Cl NDEX_M CSTATE) ;
}

*pResult = Ul EVENTRC_PROCESSED,;

}

In Visual C++ (Custom):

STDMETHODI MP CWUI Event s: : Event Acti veApplication (
BOOL bActi ve,
HWND_t hwndAppl i cati on,
LPSTR | pszAppl i cati onNane,
U EVENTRC * pResult)
{
if (bActive)
{
U RC rc;
HRESULT hr = pvvUl C i ent->Set Number Val ue(COMPI D_M CROPHONE,
Ul MSF_ON,
U M Cl NDEX_M CSTATE,
&rc);
}
*pResult = U EVENTRC_PROCESSED,;
return S_OK;
}
See Also
None.

614 IBM SDK for Windows

User Interface Control Events

EventButtonPressed

Event fired by the Ul Client control whenever the user clicks one of the buttonsin the Ul Server.

Syntax

In Visual Basic:

Event Butt onPressed(Conponent | D As TClI D, hwndTarget As Long, pResult As
Ul EVENTRC)

In Visual C++ (MFC):

voi d OnEvent ButtonPressed (1 ong Conponent! D, |ong hwndTarget, |ong FAR*
pResul t)

In Visual C++ (Custom):

HRESULT Event ButtonPressed(TCl D ci Conponent!| D, HMD_t hwndTar get,
U EVENTRC* pResult);

Parameters

ciComponent
TCID. One of the UlServer’s component IDs (COMPID_*). You will find a complete list of
objects in the Classes, Structures, Enumerations part of this reference section.

hwndTarget
Long / HWND _t. The handle of the window that had the focus before the user clicked the button in
the Ul Server.

pResult
UIEVENTRC. The result code you wish to pass back to the control. The control uses this to
determine if the message should be passed on to other controls.

Return Values

None.

IBM SDK for Windows 615

Properties, Methods, and Events

Remarks

None.

Example

None.

See Also

None.

616 IBM SDK for Windows

User Interface Control Events

EventComponentUpdated

Event fired by the Ul Client control whenever a client changes the characteristics of one of the
componentsin the Ul Server.

Syntax

In Visual Basic:
| Event Conponent Updat ed(ci Conponent I D As TCI D, pResult As U EVENTRC) |

In Visual C++ (MFC):
‘voi d OnEvent Conponent Updated (| ong ci Conponent! D, |ong FAR* pResult) ‘

In Visual C++ (Custom):
‘ HRESULT Event Conponent Updat ed(TCI D ci Conponent | D, Ul EVENTRC* pResult); ‘

Parameters

ciComponent
TCID. One of the UlServer’s component IDs (COMPID_*). You will find a complete list of
objects in Chapter 20, “Classes, Structures, and Enumerations” on page 533.

pResult
UIEVENTRC. The result code you wish to pass back to the control. The control uses this to
determine if the message should be passed on to other controls.

Return Values

None.

Remarks
This can be done with tHaetNumber Value, or SetStringValue APls.

IBM SDK for Windows 617

Properties, Methods, and Events

Example

None.

See Also

None.

618 IBM SDK for Windows

User Interface Control Events

EventM enultemSel ected

Event fired by the Ul Client control event whenever the user selects one of the following menu items
in the Ul Server:

VIAVOICEUI_IDMENU_MICROPHONE
VIAVOICEUI_IDMENU_BEGIN_DICTATION

VIAVOICEUI _IDMENU_STOP _DICTATION

VIAVOICEUI _IDMENU_BEGIN_READING
VIAVOICEUI_IDMENU_STOP_READING
VIAVOICEUI_IDMENU_SHOW_CORRECTION_WINDOW
VIAVOICEUI_IDMENU WHATCANISAY
VIAVOICEUI_IDMENU_EXIT

or application-defined dynamic menu item ID between 0 and 9,999.

Syntax

In Visual Basic:
‘ Event Menul t enSel ect ed(dwMenul tem d As Long, pResult As U EVENTRC)

In Visual C++ (MFC):

voi d OnEvent Menul tenSel ected (I ong dwMenultem d, | ong hwndTarget, |ong
FAR* pResult);

In Visual C++ (Custom):

HRESULT Event Menul t enfSel ect ed(DWORD dwienul tem d, HWND_t hwndTar get,
U EVENTRC* pResult);

Parameters

dwMenultemld
Long/ DWORD. The ID number of the menu item. Thisvalue depends on whether the menu item
is abuilt-in menu item (see VIAVOICEUI_IDMENU*) or an application-defined dynamic menu

IBM SDK for Windows 619

Properties, Methods, and Events

item ID (between 0-9,999). For more information, refer to “AppendMenultem” on page 570 and
“InsertMenultem” on page 587.

hwndTarget
Long / HWND _t. The handle of the window that had the focus before the user clicked the button in
the Ul Server.

pResult
UIEVENTRC. The result code you wish to pass back to the control. The control uses this to
determine if the message should be passed on to other controls.

Return Values

None.

Remarks

None.

Example

None.

See Also

“AppendMenultem” on page 570
“InsertMenultem” on page 587

620 IBM SDK for Windows

User Interface Control Events

EventQueryViewFlags

Event fired by the Ul Client control whenever the Ul Server needs specific view information that can
be used with current appearance.

Syntax

In Visual Basic:

Event Quer yVi ewrl ags(phundW ndow As Long, pdwbDockFl ags As Long, pResult As
Ul EVENTRC)

n Visual C++ (MFC):

voi d OnEvent QueryVi ewFl ags(1 ong FAR* phwndW ndow, | ong FAR*
pdwDockFl ags, |ong FAR* pResult);

In Visual C++ (Custom):

HRESULT Event QueryVi ewFl ags(HWND_t * phundW ndow, DWORD* pdwDockFl ags,
U EVENTRC* pResult);

Parameters

phwndW ndow
Long / HWND _t. The window that currently has focus. This parameter is changeable if you want
the Ul Server to use adifferent window.

pdwDockFlags
Long / DWORD. A combined (OR’ed) value from th& Ul DockingAlgorithmConstants and
VVUIDockingSyleConstants. You must set this value to DVAF_ALLOW_TOPMOST_DOCK
(or DVAF_ALLOW_DOCK) if you wish to allow théJI Server to dock to one of the clients.

pResult
UIEVENTRC. The result code you wish to pass back to the control. The control uses this to
determine if the message should be passed on to other controls.

IBM SDK for Windows 621

Properties, Methods, and Events

Return Values

None.

Remarks

None.

Example

In Visual Basic:

Private Sub m WU O ient_Event QueryVi ewrl ags(phwndW ndow As Long,
pdwDockFl ags As Long, pResult As WUICtrl Ctl. U EVENTRC)

pdwbDockFl ags = vvDVAF_ALLOW TOPMOST_DOCK
pResult = U EVENTRC PROCESSED

End Sub

In Visual C++ (MFC):

void CVWUICtrl Dl g: : OnEvent Quer yVi ewrl ags(l ong FAR* phwndW ndow, | ong
FAR* pdwDockFl ags, |ong FAR* pResult)

{

*pdwDockFl ags = vvDVAF_ALLOW TOPMOST_DOCK;
*pResult = Ul EVENTRC_PROCESSED,;

}

622 IBM SDK for Windows

User Interface Control Events

In Visual C++ (Custom):

STDMETHODI MP CWUI Cl i ent Event s: : Event Quer yVi ewFl ags
HWND_t * phwndW ndow,

DWORD * pdwDockFl ags,
U EVENTRC *pResul t)

{
*pdwDockFl ags = DVAF_ALLOW TOPMOST_DOCK;
*pResult = Ul EVENTRC_PROCESSED,;
return S_OK;

}

See Also

“AppendMenultem” on page 570
“InsertMenultem” on page 587

IBM SDK for Windows

623

Properties, Methods, and Events

EventQueryViewM enulnfo

Event fired by the Ul Client control whenever the user requests to view the UlServer’s menu, just
before it actually displays the menus.

Syntax

In Visual Basic:

Event Quer yVi ewMenul nf o(vt Vi ewType As TVI EWMYPE, hwndW ndow As Long,
ApplicationTitle As String, MinMenuName As String, ApplicationMenuNane
As String, Hel pMenuNanme As String, pResult As Ul EVENTRC)

In Visual C++ (MFC):

voi d OnEvent QueryVi ewMenul nfo(l ong vt Vi ewType, | ong hwndW ndow, BSTR
FAR* ApplicationTitle, BSTR FAR* Mai nMenuName, BSTR FAR*
Appl i cati onMenuName, BSTR FAR* Hel pMenuNane, | ong FAR* pResult);

n Visual C++ (Custom):

HRESULT Event QueryVi ewMenul nf o(TVI EWTYPE vt Vi ewType, HWND_t hwndW ndow,
LPSTR | pszAppl i cationTitle, LPSTR | pszMainMenuName, LPSTR
| pszAppl i cati onMenuNanme, LPSTR | pszHel pMenuNane, Ul EVENTRC* pResult);

Parameters

viViewType
TVIEWTY PE. The current view state of the Ul Server.

hwndWindow
Long / HWND _t. The last window to have the focus before the user requested to view the menus.

ApplicationTitle
String / LPSTR. This parameter lets you specify the menu caption for a dynamic application menu
group.

MainMenuName

624 IBM SDK for Windows

User Interface Control Events

String / LPSTR. This parameter | ets you specify the group name you wish to display for adynamic
main menu

ApplicationMenuName
String / LPSTR. This parameter lets you specify the menu group you wish to use when displaying
dynamic application menus.

HelpMenuName
String / LPSTR. This parameter lets you specify the menu group you wish to use when displaying
dynamic help menus.

pResult
UIEVENTRC. The result code you wish to pass back to the control. The control uses thisto
determineif the message should be passed on to other controls.

Return Values

None.

Remarks

The user does this by clicking the ViaVoice menu button when the Ul Server isin Taskbar or Docked
views, or right-click the system tray icon.

It is not necessary to set the value of all the “menu name” parameters, only the ones that your
application uses. In other words, you do not have to set the HelpMenuaameeper if your
application does not use custom help menu items.

IBM SDK for Windows 625

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub m VWU dient_Event QueryVi ewMenul nfo(ByVal vtVi ewType As
wul arlCl.TVIEWYPE, ByVal hwndW ndow As Long, ApplicationTitle As
String, MiinMenuName As String, ApplicationMenuName As String,
Hel pMenuName As String, pResult As WUICtrl Ctl. U EVENTRC)

Di m sAppNanme As String

sAppNanme = App. EXENamne

ApplicationTitl e = sAppNane

Mai nMenuNane = sAppNane

Appl i cati onMenuNane = sAppNane

Hel pMenuNane = sAppNane

pResult = Ul EVENTRC PROCESSED
End Sub

InVisual C++ (MFC):

void CWUICtrl Dl g: : OnEvent Quer yVi ewenul nfo(l ong vt ViewType, |ong
hwndW ndow, BSTR FAR* ApplicationTitle, BSTR FAR* Mai nMenuNane, BSTR
FAR* Applicati onMenuNanme, BSTR FAR* Hel pMenuNane, | ong FAR* pResult)

{

CString sAppNanme = Af xGet AppNane();

*Application Title = sAppName. Al l ocSysString(),
*Mai nMenuName = sAppNane. Al | ocSysString();

*Appl i cati onMenuNane = sAppNane. Al | ocSysString();
*Hel pMenuName = sAppNane. Al | ocSysString();
*pResult = Ul EVENTRC_PROCESSED,;

626 IBM SDK for Windows

User Interface Control Events

In Visual C++ (Custom):

STDMETHODI MP CWUI O i ent Event s: : Event Quer yVi ewvenul nf o(
TVI EWTYPE vt Vi ewType,
HWD t * hwndW ndow,
LPSTR | pszApplicationTitle,
LPSTR | pszMai nMenuNane,
LPSTR | pszAppl i cati onMenuNane,
LPSTR | pszHel pMenuNarre,
Ul EVENTRC *pResul t)

char sAppNane[256] ;

Istrcpy(sAppName, “MyAppName”);
Istrcpy(IpszApplicationTitle, sSAppName);
Istrcpy(IpszMainMenuName,sAppName);
Istrcpy(IpszApplicationMenuName, sAppName);
Istrcpy(IpszHelpMenuName, sAppName);
*pResult = UIEVENTRC_PROCESSED;

return S_OK;

See Also

“AddApplicationByName” on page 566
“AddApplicationByWindow” on page 568
“AppendMenultem” on page 570

“InsertMenultem” on page 587

“SetClientCallback (Custom Interface)” on page 595
“SetClientCallbackFlags” on page 597
“TVIEWTYPE (Enum)” on page 555.

IBM SDK for Windows 627

Properties, Methods, and Events

628 IBM SDK for Windows

Chapter 29 User Interface Control Frequently
Asked Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice User
I nterface Control.

How can | makethe ViaVoice Ul Server appear in docked view when my application first
becomesvisible?

You can't. Your program cannot set the view app@ce of thé&Jl Server; only the user can
change the view by selecting tA@pearance option from the ViaVoice menu. Your application,
however, can allow or deny the user’s request to dockltBerver to your specific application.
See “Programming the ViaVoice User Interface” on page 518isfitanual for an example.

Why isthe microphone button in the ViaVoice Ul Server disabled?

The Microphone component is disabled as default. You can change the state of the microphone
component using th8etNumber Value method. See “Getting and Setting User Interface
Charactestics” on page 520 for details.

Why isthe Ul Server not displaying a menu when | click the ViaVoice button?

The most likely explanation is that you have not set the language 0f 8eever. To set the
language use th&etL anguageBySring or SetL anguageByl D method. For more information,
refer to “Initializing the UIClient” on page 506.

Why isthe Ul Client control not firing eventswhen an action occursin the ViaVoice Ul Server ?

You need to turn on event messaging with$aeClientCallbackFlags or theSetClientCallback
(Custom Interface) method. Refer to “Programming the ViaVoice User Interface” on page 513 for
an example.

Why isthe Ul Server NOT docking to my application windows?
For theUl Server to dock to your application windows, you must:

1. Enable event firing in the)l Client control by callingSetClientCallbackFlags in Visual Basic or
Visual C++ (MFC) applications, @etClientCallback in Visual C++ applications using the cus-
tom interface.

2. Add your application to the UlServer’s list of supported applications by callddApplication-
ByName or AddApplicationByWindow.

IBM SDK for Windows 629

User Interface Control Frequently Asked Questions

3. Write code to handle the EventQueryViewFlags event. Make sure to set the parameter pdwDock-
Flagsto DVAF_ALLOW_TOPMOST_DOCK or DVAF_ALLOW_DOCK. Also, make sure to set
the parameter pResult to UIEVENTRC_PROCESSED to tell the control that you have processed
the event.

630 IBM SDK for Windows

Chapter 30 |ntroduction to the DictationMgr
Control

The ViaVoice Dictation Manager Control (VVDictationMgr) isamoderately high level control
which provides much of the functionality a client needsto add dictation to an application. However, in
order to use this control, clients must be able to synchronize the VV DictationM gr with their
application user interface through zero (0) based character indices. VV DictationM gr isafull ActiveX
Control, which means that it can be "dropped" onto aform and configured at "design-time" in most
high-level language environments. Using VV DictationM gr allows the user to manage both typed and
dictated text, get wave data for playback of dictated text, and perform correction of dictated text.

An application using VVDictationM gr will receive events when speech has been recognized
including the text of the recognition, the character index where the text should be placed, the character
index where the cursor should be after the replacement, and (potentially) the length of text to be
replaced. All thisis necessary because VVDictationM gr keeps up with bookmarks and handles
advanced formatting features when running on the IBM engine. See the VV Dictation documentation,
starting on page 699, for more information on bookmarks and advanced formatting features.

IBM SDK for Windows 631

Introduction to the DictationM gr Control

632 IBM SDK for Windows

Chapter 31 Gaﬂ ng S:a‘tw W| th the
DictationMgr Control

Thefollowing is atutorial on how to incorporate the VVDictationM gr control into your Visual Basic
or Visua C++ applications. Thistutorial is designed to present you with the most commonly used
properties and eventsin the VVDictationM gr control.

The following sections contain information to help you write code to create an instance of the
DictationM gr Control, and capture speech.

Creating an I nstance of the Control

This section contains step-by-step ingructions for using Visual Basic or Visual C++ (MFC) to create
an instance of the control.

In Visual Basic:

To add the VVVDictationM gr control to your application, do the following:

1. From the Prgject menu, choose Components.
The Components dialog box, Figure 46, appears. The Components dialog lists all the ActiveX
Controls that you can use in your application.

IBM SDK for Windows 633

Getting Started with the DictationM gr Control

Components

Controls l Designers] Inzertable I:Il:uiectsl

IEM YiaVoice Detective Control
LB Wiatoice DickationMgr Control

IEM Viak'nice Engine Control

IEM YiaVoice Error Correction Control

B N
i

E

|

IEM Wiakoice Grammar Conkrol - E: 252
IEM YiaVoice Lite Controls — ==
IBM VYiaYoice Phrases Conkrol = e
IEM YiaVoice RichEdit Control

IEM ViaVoice TextBox Control i]

IBM WiaYoice User Interface Control
IBM ViaYoice Virtual Maices Contral
icmfilker 1.0 Twpe Library |

IE Popup Menu Jj Browse, .,
‘| ir [Selected Items Only

IEM Wiakoice DickationMgr Control

Location: e:viavoice\binhwwdickationmgr, dll

] Cancel Apply

Figure 46. Component Selection Dialog - Visual Basic

634 IBM SDK for Windows

Creating an Instance of the Control

2. Select IBM ViaVoice DictationM gr Control from thelist and click OK.
Visual Basic adds the control to your project, and adds a new icon to the toolbar (Figure 47).

| General |
N =P e
AV = =B EE
R lEl[:l

=

=

Figure 47. VVDictationMgr Control Toolbar Icon

3. Add aninstance of the VVDictationMgr control to your form.
The VVDictationMgr control isinvisible at run-time and uses an icon at design-time much like
the Visual Basic native Timer control.

It is also helpful to understand the way Visual Basic will respond to error codes returned from
ActiveX control methods. When an error code is returned, Visual Basic will convert it into a
"trappable” error which can be handled with the "On Error" syntax. If you do not use "On Error"
when invoking ActiveX control methods that happen to return an error code, such as
E_INVALIDARG, E_FAIL, E_OUTOFMEMORY, and others, then your application will exit with
the message about run time errors. This is probably not something you want your usersto see.
Since these errors often happen at the most inconvenient time (i.e., during demos to your boss), it
is strongly advised that you provide "On Error" handling when making any callsto ActiveX
control methods.

IBM SDK for Windows 635

Getting Started with the DictationM gr Control

In Visual C++ (MFC):

To add the VVDictationM gr to your MFC project, do the following:

1. From the Project menu, select Add To Project, then select Components and Controls.
The ‘Components and Controls Gallery’ dialog box, Figure 48, appears.

Components and Controls Gallery EEq

Chooge a component o inzert inta your project;

Look in: |_-]Flegi3tered.ﬁ.ctive}{ Contralz ﬂ ﬂ

' DirectS5 Class ﬁ |BM Viavoice Errar Com
i HHCHl Object =24 |BM VisVoice Grammar
g [BM ViaWoice Detective Control ﬂ |BM ViaVoice Grammar
gl IBM ViaWoice Dictation Lite Contral ﬂ IBM ViaVoice Phrazes [
3 IEM Vigvaice Phrases |

B Vidvoice Dictationtdgr Contral

4 |BM ViaWoice Engine Control E& |BEM ViaVoice RichEdit
| 2
File narne: |IEM Yiavoice Dictationtgr Contral. Ink, Ingert
|BM Wiavoice Dictationtdar Contral Claze
Mare Info

Fath ta contral:

|e: \Wiav nice’sbintwvdictationmar. di

Figure48. Insert ActiveX Control Dialog Box - Visual C++

636 IBM SDK for Windows

Creating an Instance of the Control

2. Double-click the ‘Registered ActiveX Controls’ folder in the dialog box.

3. Select thd BM ViaVoice DictationMgr Classicon in the list of controls, then clidksert.
A confirmation message box appears, asking “Insert this component?”

4. Respond to the confirmation message box by clicklikg
The ‘Confirm Classes’ dialog box, Figure 49, appears listing the Duaface of the Dictation
Manager control (CVVDictationMgr) and the Engine (CVVENgine) interface.

Confirm Clazses 7|

The checked clazz(ez] will be generated from 0K
the Activer Contral. Click an a clazz name ta
browze or edit itz attributes.

Cancel

MY Clickationkd gr
v|CWWE ngine
Clazz name: Baze class:
|CvDictationMar Cind
Header file:
|WDin:tatin:unM ar.h

Implementation file:

|WDin:tatin:unM qr.cpp

Figure 49. Confirm Classes Dialog Box

5. Click OK in the ‘Confirm Classes’ dialog box.

IBM SDK for Windows 637

Getting Started with the DictationMgr Control

6. Close the ‘Components and Controls Gallery’ dialog box.
If you examine the Project Workspace window in the class view, you will notice four classes:
CVVDictationM gr andCVVEnNgine (assuming you accepted the default names for the class in
the ‘Confirm Classes’ dialog box).

7. In the resource view of your Project Workspace window, double-click the dialog resource entry
where you wish to insert théVDictationM gr control.
TheVVDictationMgr icon, Figure 50, appears in the Controls toolbar.

Contrals A
ITAHHMBD
 m B EE @m B
$ m - B2 [[E
(9 H 20 € 7

Figure 50. VVDictationMgr Icon in the Controls Toolbar

8. Add an instance of théVDictationMgr control to the dialog box.
After you add the/VDictationMgr control to your dialog you can invoke Class Wizard to create
a member variable for your class of typ¥VDictationM gr. You might also decide to capture the

events in the control by adding Event handlers to your dialog class. To add Event handlers, you can

use the Class Wizard just like adding notification message handlers for a non-speech controls.

You should also understand the way MFC wrappers respond to error codes returned from ActiveX

control methods. When an error code is returned, the MFC wrapper class will convert the error
HRESULT into a COleException or COleDispatchException and "throw" it. When an error code
such as E_INVALIDARG, E_FAIL, or E_OUTOFMEMORY is returned, your user may see an
MFC error message. Or, your application may even exit with a message about “unhandled
exceptions”, depending on where the failing call occurs. Probably not something you want your

users to see. Since these errors often happen at the most inconvenient time (i.e., during demos to

your boss for instance), it is strongly advised that you wrap all calls to MFC wrapped ActiveX
controls with exception handling.

638 IBM SDK for Windows

Capturing Speech

Capturing Speech

The VVDictationM gr object converts speech input into text using an internal VV Dictation object
(see VVDictation documentation, starting on page 699, for more information). This text is formatted
and supplied to the client in the Put Text event. This event will provide the text to display, the location
where the text should be placed, the cursor index after replacement occurs, and (potentialy) the length
of text to be replaced at the insertion point. Handling this event is as simple as applying the presented
information to the client UI.

In order for DictationMgr to stay synchronized with the client Ul it is the client’s responsibility to
inform DictationM gr of any changesto the Ul state such as:

e Thecursor is moved.
» A sclection is made.
e Characters are inserted or removed (typed, pasted, or deleted)

By keeping this information updated as necessary, DictationMgr will be ableto properly update the
client when speech is recognized. Thisincludes support for many complex operations such as, setting
bookmarks to synchronize relatively real-time Ul with latent speech recognition, updating engine
context as needed to improve recognition accuracy, and (when running on the IBM engine) multi-
phrase macro resolution including advanced numeric and date formatting. DictationMgr also provides
easy access to information necessary to provide other high-level operations such as speech playback
and correction.

IBM SDK for Windows 639

Getting Started with the DictationMgr Control

Summary

At this point, you should know how to do the following:
* How to incorporate the VVDictationMgr control into your project.
» How to receive speech input.

The remainder of this documentation contains areference for al the properties, methods, and eventsin
the VVDictationMgr control.

640 IBM SDK for Windows

Chapter 32 Properties, Methods, and Events

Dictation Manager Control Properties

The ViaVoice DictationM gr control supports the following properties:
» AutoDictationWindow

e Cursorindex

» DictationOn

* Engine

» ExpandMacros

» Locked

* ProcessingMacro

e UppercaseOn

IBM SDK for Windows 641

Properties, Methods, and Events

AutoDictationWindow (Run Time Only)

Controls the scope in which dictation is available.

Syntax

In Visual Basic:

‘ Property AutoDi ctati onW ndow As Long

In Visual C++ (MFC):

| ong Get Aut oDi ct ati onW ndow() ;
voi d Set Aut oDi ct ati onW ndow(| ong nNewval ue) ;

In Visual C++:

HRESULT get _Aut oDi ctati onW ndow(|l ong * pVal);
HRESULT put _Aut oDi ct ati onW ndow(| ong newval) ;

Parameters

nNewValue
”

Return Values

Any valid “top-mos#’ window handle.
Dictation is available only when the indicated window is “active” as indicated by it, or one of its
children, having the focudlote: There can only be one dictation object active for the same
window (DictationOn is True) at any one time.

a A “top-most” window is defined as any window without a parent. For more information on issues dealing with finding the
“top-most” window, see the Microsoft Knowledge Base article Q84190.

642 IBM SDK for Windows

Dictation Manager Control Properties

NULL
Dictation mode is always available and must be controlled manually by setting the DictationOn
property to True or False. Note: There can only be one global dictation object active (DictationOn
is True) at any one time!

Remarks

The default value of this property is NULL (0), which will enable dication globally. However, please
note that there can only be one global dictation object active (DictationOn is True) at any onetimein
the entire system (including other applications)! For thisreason, it is strongly suggested that you avoid
global dictation objectsif at all possible. Alternatively, you can set this property to any valid "top-
mosta" window handle, which maps dictation availability to that window’s activation state (it or one of
its children having focus).

Remember, if you use NULL be aware that there can only be one global dictation object active
(DictationOn is True) at any onetime. Thisincludes your own or any other application running on the
system. For this reason, global dictation objects should be used with extreme care and should be
avoided, unless absolutely necessary. Regardless of the value of this property, finer granularity of
control can always be achieved by changing the state of DictationOn appropriately.

Example

In Visual Basic:

‘Assumes this form is the top-most form!
VVDict.AutoDictationWindow = hwnd

IBM SDK for Windows 643

Properties, Methods, and Events

InVisual C++ (MFC):

/1 Makes no assunptions about m hWhd
HWD Had = m hWhd;
/] Due to the Wn32 inplenentati on of GetParent, this is necessary
/1 to find the "Foreground" w ndow for SAPlI grammar activation
/1 For nore informati on see M5 Know edge Base article @4190
while (::GetParent (hwnd) !'= NULL &&
' (::GetWndowLong(hwnd , GAL_STYLE) & W5 _POPUP))
{

}
m_VVDi ct ati onMgr . Set Aut oDi ct ati onW ndow ((I ong) hwhd) ;

hwnd = ::GetParent (hwnd);

In Visual C++:

/1 Makes no assunptions about m hWhd
HWD Had = m hWhd;
/] Due to the Wn32 inplenentati on of GetParent, this is necessary
/1 to find the "Foreground" w ndow for SAPlI gramrar activation
while (::GetParent (hwnd) !'= NULL &&

' (::GetWndowLong(hwnd , GAL_STYLE) & W5 _POPUP))
{

}
HRESULT hr = S_OK;

hr = m pl WDi ct ati onMyr - >put _Aut oDi ct ati onW ndow ((| ong) hWwhd);

hwnd = ::GetParent (hwnd);

See Also

“DictationOn” on page 647
“DictationStateChange” on page 685

644 IBM SDK for Windows

Dictation Manager Control Properties

CursorIndex

Indicates changesto the Ul cursor location.

Syntax

In Visual Basic:

‘Property Cursorlndex As Long

In Visual C++ (MFC):

| ong Get Cursorl ndex();
voi d Set Cursorl ndex(l ong nNewval ue) ;

In Visual C++:

HRESULT get _Cursorlndex(long * pVal);
HRESULT put _Cursorl ndex(l ong newal);

Parameters

nNewValue
”

Return Values

The Cursorlndex is 0 based and can be set to any value greater than or equal to O but less than or

equal to the number of characters held by DictationMgr.

Remarks

In order for DictationMgr to correctly manage speech input it must know where to place new text in
the Ul. To do this, the cursor index property of DictationM gr must be set appropriately any time there
are changesto the Ul cursor location. This might be an explicit cursor location change (the user moves
the cursor with the mouse or keyboard) or an implicit change (characters inserted or deleted at or

IBM SDK for Windows

645

Properties, Methods, and Events

before the current cursor location). If an implicit change occurs due to speech input (see the PutText
event on page 687) it is not necessary to update the Cur sor | ndex property of DictationMgr.

It is not necessary to update the DictationM gr cursor for actions such as typing (resulting in acall to
PutText method) and speech input (PutText events) since they implicitly update the cursor much like
text user interfaces do when typing. In fact, updating the cursor index arbitrarily in response to every
cursor change will ultimately lead to degraded performance since explicit cursor changes (arrow key
navigation, mouse clicks, etc.) require setting abookmark (see VVDictation) in order to synchronize
the latent speech recognition with the relatively real-time Ul update.

Example

In Visual Basic:
‘WDi ctationMgr. Cursorlndex = CurrentCursorl ndex ‘

In Visual C++ (MFC):
‘ m_VVDi ct ati onMgr . Set Cur sor I ndex (Current Cursorlndex); ‘

In Visual C++:

HRESULT hr = S OK;
hr = m_ pl WDi ct ati onMgr - >put _Cur sor | ndex (Current Cursorlndex);

See Also

“PutText” on page 678
“PutText” on page 687

646 IBM SDK for Windows

Dictation Manager Control Properties

DictationOn

Returns or sets the desired state of the dictation mode.

Syntax

In Visual Basic:
‘ Property DictationOn As Bool ean

In Visual C++ (MFC):

BOOL GetDictationOn();
voi d SetDictati onOn(BOOL fNewVal ue);

In Visual C++:

HRESULT get _Di ctati onOn(VARI ANT_BOOL * pVal);
HRESULT put _Di ctati onOn(VARI ANT_BOOL newval) ;

Parameters

fNewValue
Boolean.

Return Values

TRUE
The control can receive dictation input when dictation is available, based on the
AutoDictationWindow.

FALSE
The control ignores dictation input that occurs after making this setting. Note that any speech input
which occurred before setting DictationOn false but which is not yet completed will still be
processed and passed to the client through the PhraseReco event.

IBM SDK for Windows 647

Properties, Methods, and Events

Remarks

You can think of this property semantically as"Client want’s dictation on". What this meansisthat if
dictation is available (i.e. the AutoDictationWindow is active), then the user will be able to dictate
into the control.

When the state of the dictation mode changes, the control fires the DictationStateChange event. You

should not set the value of this property in the DictationSateChange event, as thiswill cause the
event to fire again.

Example

In Visual Basic:
‘WDictationl\/gr.DictationOw:True ‘

In Visual C++ (MFC):
‘ m VVDi ctati onMyr. Set Di ctati onOn(TRUE); ‘

In Visual C++:

HRESULT hr = S_CK;
hr = m_ pl WDi ctationMr->put_Di ctati onOn(VAR ANT_TRUE) ;

See Also

“AutoDictationWindow (Run Time Only)” on page 642
“DictationStateChange” on page 685

648 IBM SDK for Windows

Dictation Manager Control Properties

Engine (Run Time Only)

Sets or gets areference to the Viavoice Engine control (VVENgine), which is used by the
VVDictationM gr control.

Syntax

In Visual Basic:
‘ Property Engi ne As | VVEngi ne

In Visual C++ (MFC):

LPDI SPATCH Get Engi ne();
voi d Set Ref Engi ne(LPDI SPATCH newVal ue) ;

In Visual C++:

HRESULT get _Engi ne(| VVEngi ne * * pVal);
HRESULT putref _Engi ne(l VWEngi ne * newval) ;

Parameters

None.

Return Values

None.

Remarks

The Engine property is actually holding animplicitly created ActiveX control (VVEnNgine), which can
also be created separately. Inserting aVV Engine control in a project enables you to set the engine
properties on this control, and then assign the engine to multiple ViaVoice ActiveX controls.

IBM SDK for Windows 649

Properties, Methods, and Events

Example

In Visual Basic:
‘WDi ctationMyr. Engi ne = VWEngi ne ‘

In Visual C++ (MFC):
‘ m VVDi ct ati onMyr - >Set Ref Engi ne(& m _pl VWENgi neDi spatch); ‘

In Visual C++:

HRESULT hr = S_CK;
hr = m WODi ctati onMgr->put ref _Engi ne(& m pl VWEngi neDi spatch);

See Also

Refer to the ViaVoice Engine Control Guide for more information.

650 IBM SDK for Windows

Dictation Manager Control Properties

ExpandM acr os

Indicates whether the VVDictationM gr control should expand and format speech input when
possible.

Syntax

In Visual Basic:

‘Property ExpandMacr os As Bool ean

In Visual C++ (MFC):

BOOL Get ExpandMacros();
voi d Set ExpandMacr os(BOOL f NewVval ue);

In Visual C++:

HRESULT get _ExpandMacr os(VARI ANT_BOCL * pVal);
HRESULT put _ExpandMacr os(VARI ANT_BOOL newval) ;

Parameters

fNewValue
Boolean.

Return Values

TRUE
(Default) VVDictationM gr will expand macros and provide advanced, multi-phrase, number
formatting if running on the IBM engine.

FALSE
VVDictationM gr does not do any advanced formatting or macro expansion.

IBM SDK for Windows 651

Properties, Methods, and Events

Remarks

This property affects dictation only when used with the IBM engine. The following examples show
how you might see the macros, however, this depends on regional settings:

False True

"one thousand two hundred and thirty four" "1,234"

"January first two thousand" "January 1, 2000"

"my macro" <whatever "my macro" is defined as>

If the value of this property is set to false you will get dictation exactly as interpreted by the engine. If
set to true, and running on the IBM engine, all dictation will be checked for possible macro expansion
(see Dictation Macro Editor application included with the SDK). This property also controls the
availability of IBM advanced, multi-phrase, numeric formatting. For instance, setting this property to
true would cause the following speech input to "expand" differently.

The setting of ExpandM acros has no effect if not running on the IBM engine.

Example

In Visual Basic:
‘WDi ctati onMgr. ExpandMacros = True ‘

In Visual C++ (MFC):
‘ m VVDi ct ati onMyr . Set ExpandMacros (TRUE); ‘

In Visual C++:

HRESULT hr = S_CK;
hr = m_pl WDi ct ati onMyr - >put _ExpandMacros (VARI ANT_TRUE);

See Also

None.

652 IBM SDK for Windows

Dictation Manager Control Properties

L ocked

Stops speech input immediately.

Syntax

In Visual Basic:
‘Property Locked As Bool ean

In Visual C++ (MFC):

BOOL Get Locked();
voi d SetlLocked(BOOL bFewVal ue);

In Visual C++:

HRESULT get _Locked(VARI ANT_BOOL * pVal);
HRESULT put _Locked(VARI ANT_BOOL newval) ;

Parameters

fNewValue
Boolean.

Return Values

TRUE
All speech input will be disregarded.

FALSE
Speech input will be processed normally based on the setting of DictationOn.

Remarks

Because of the inherent latency of speech processing, setting DictationOn to false will not always
prevent further speech input from being provided. However, it is sometimes necessary for aUl to

IBM SDK for Windows 653

Properties, Methods, and Events

instantaneously stop ALL input immediately (M axText and the L ocked property of standard edit
controls for instance). In order to facilitate this (and prevent the internal state of DicationM gr from
becoming inconsistent with the Ul) the Locked property can be used to stop speech input immediately,
regardless of pending speech input.

Dueto re-entrancy issues with COM STA controls, you should always set value of L ocked to true

before setting DictationOn false if you want to guarantee that no further speech input will be
processed.

Example

In Visual Basic:
‘WDi ctationMyr. Locked = True ‘

In Visual C++ (MFC):
‘ m _VVDi ct ati onMyr . Set Locked(TRUE); ‘

In Visual C++:

HRESULT hr = S OK;
hr = m_ pl VWDi ctati onMgr - >put _Locked(VARI ANT_TRUE);

See Also
“DictationOn” on page 647

654 IBM SDK for Windows

Dictation Manager Control Properties

ProcessingM acro (Run Time Only)

Determinesif the VVDictationM gr object is currently processing a multi-phrase macro expansion.

Syntax

In Visual Basic:

‘Property Processi ngMacro As Bool ean

In Visual C++ (MFC):

BOOL Get Processi nghacro();
voi d Set Processi ngMacro(BOOL fNewVval ue);

In Visual C++:

HRESULT get _Processi ngMacr o(VARI ANT_BOOL * pVal);
HRESULT put _Processi ngMacr o(VARI ANT_BOOL newval) ;

Parameters

fNewValue
Boolean.

Return Values

TRUE
VVDictationM gr displaysis currently processing a multi-phrase macro. This property will never
be true unless running on the IBM engine. Thisvalue cannot be set.

FALSE
VVDictationM gr is not processing a multi-phrase macro. This value can be set to force
completion of multi-phrase macro processing.

IBM SDK for Windows 655

Properties, Methods, and Events

Remarks

If the value of ProcessingM acro is false, then all phrases are complete. If the value is true, then
VVDictationM gr is currently processing a multi-phrase macro. If the value is true and you set it to
false, all infirm phrases are then considered complete and any new speech input will be a"new"
phrase. You can never set the value of ProcessingM acro to true. For moreinformation on infirm
phrases and multi-phrase macro expansion, see PhraseReco event on page page 739.

The value of the ProcessingM acr o property will never be true when not using the IBM speech engine.

Example

In Visual Basic:
‘WDi ctationMgr. Processi ngMacro = Fal se ‘

In Visual C++ (MFC):
‘ m VVDi ct ati onMyr . Set Processi ngMacro (FALSE); ‘

In Visual C++:

HRESULT hr = S_CK;
hr = m_pl WDi ct ati onMyr - >put _Processi ngMacro (VARI ANT_FALSE);

See Also
“PutText” on page 687

656 IBM SDK for Windows

Dictation Manager Control Properties

UppercaseOn

L ocks the speech input in upper case.

Syntax

In Visual Basic:

‘Property Upper caseOn As Bool ean

In Visual C++ (MFC):

BOOL Get UppercaseOn();
voi d Set UppercaseOn(BOOL fNewval ue) ;

In Visual C++:

HRESULT get _UppercaseOn(VARI ANT_BOOL * pVal);
HRESULT put _Upper caseOn(VARI ANT_BOOL newval) ;

Parameters

fNewValue
Boolean.

Return Values

TRUE
Speech input will be uppercase.

FALSE
Speech input will be cased normally.

Remarks

None.

IBM SDK for Windows

657

Properties, Methods, and Events

Example

In Visual Basic:

‘WDi ctati onMgr. UppercaseOn = True

In Visual C++ (MFC):

‘ m_VVDi ct ati onMyr . Set UppercaseOn (TRUE);

In Visual C++:

HRESULT hr = S_OK

hr = m_pl WDi ct ati onMyr - >put _UppercaseOn (VARI ANT_TRUE);

See Also

None.

658

IBM SDK for Windows

DictationM gr Control Methods

DictationM gr Control Methods

The ViaVoice DictationM gr control supports the following methods:
» About2

e+ Command

» Correct

» DeleteText

» GetAlternate
* GetText

» GetWordInfo
» Playback

» PlaybackEx2
* PutText

» SetSelection

a Represents a standard method in Visual Basic. For more information, refer to your Visual Basic documentation.

IBM SDK for Windows 659

Properties, Methods, and Events

Command

Issues a variety of commands that modify internal text held by DictationM gr without lowering the
fidelity of information associated with the modified text.

Syntax

In Visual Basic:
‘Sub Conmand(Command As VVDM Conmand) ‘

In Visual C++ (M FC):
‘voi d Command(| ong Command) ; ‘

In Visual C++:
| HRESULT Conmand(VVDM Conmand Command) ; |

Parameters

Command
VVDM_Command. An identifier indicating the command to be executed. They include the
following:

Constant Value | Description

VVDM_Capitalize 0 Uppercase the firgt character of the selection. If thereisno
selection this command will modify the word containing
the cursor.

VVDM_Uppercase 1 Uppercase the entire selection. If thereis no selection this
command will modify the word containing the cursor.

660 IBM SDK for Windows

DictationM gr Control Methods

Constant Value | Description

VVDM_Lowercase 2 L owercase the entire selection. If there is no selection this
command will modify the word containing the cursor.

VVDM_ScratchThat 3 Issuing this command will cause DictationM gr to "undo”

the last speech input "phrase” that was received. A
maximum of 10 phrases can be "undone" with
VVDM_ ScratchThat.

Return Values

7

Remarks

For instance, without thisfacility, capitalizing an existing word would require that the client delete the
existing word and then add it back in the modified form. If that word happened to be dictated then the
ability to correct or playback the word would be lost since it is now effectively typed text. These

commands allow the client to uppercase, lowercase, and capitalize existing words or to remove the last

dictated "phrase" recognized.

Altering the state of DictationM gr through any means other than speech input will eliminate the
possihility of using "ScratchThat."

IBM SDK for Windows

661

Properties, Methods, and Events

Example

In Visual Basic:
‘WDi ctati onMgr. Command VVDM Capitalize ‘

In Visual C++ (MFC):
‘ m VWDi ct ati onMyr . Command(VVDM Capitalize); ‘

In Visual C++:

HRESULT hr = S_CK;
hr = m_pl WDi ct ati onMgr - >Conmmand(VVDM Capitalize);

See Also

None.

662 IBM SDK for Windows

DictationM gr Control Methods

Correct

Corrects any misrecognized dictated words.

Syntax

In Visual Basic:

Sub Correct(Correct Text As String,
SoundsLi ke As String,
AddAsSi ngl eVord As Bool ean,
Startlndex As Long, _
I ncorrect Text Length As Long)

n Visual C++ (MFC):

void Correct(LPCTSTR Correct Text,
LPCTSTR SoundsLi ke,
BOOL AddAsSi ngl eVior d,
| ong Start!l ndex,
| ong I ncorrect Text Lengt h);

In Visual C++:

HRESULT Correct(BSTR Correct Text,
BSTR sSoundsLi ke,
VARI ANT_BOOL AddAsSi ngl eWor d,
| ong Startl ndex,
| ong I ncorrect TextLength);

Parameters

CorrectText
String. The correct interpretation of the indicated word.

SoundsLike

IBM SDK for Windows 663

Properties, Methods, and Events

String. The phonetic spelling of the word (necessary for some languages, most notably Asian
Pacific). Anempty string (*") may be passed if no "sounds like" spelling is required.

AddAsS ngleWbord
Boolean. This parameter allows addition of multiple words to be corrected as a single phrase.

Sartindex
Long. Thisisthe 0 based starting index of the word to be corrected. An error will be returned if the
start index is not on aword boundary. The starting index of aword can be determined using the
GetWordl nfo method.

IncorrectTextLength
Long. Thisisthe length of the misrecognized text to be corrected. An error will be returned if the
specified length does not end on aword boundary. The length of aword can be determined using
the GetWor dl nfo method.

Return Values
”

Remarks

By passing in the correct text, the 0 based starting index for the incorrect text, and the length of the
incorrect text, you will be able to update the engine in order to improve accuracy for the same word
when used in the future. Correcting VVDictationM gr will keep it synchronized with the Ul and also
insure that information on the word provided by VV DictationM gr will be accurate (see GetWordInfo
method on page 673).

When calling the Correct method do not update the Ul in the client. The PutText event will be fired
with the appropriate information when any and all formatting issues have been resolved.

664 IBM SDK for Windows

DictationM gr Control Methods

Example

In Visual Basic:

VWDi ctati onMgr. Correct CorrectText, "", False,
Startldx, IncorrectlLen

In Visual C++ (MFC):

m VVDi ctati onMyr. Correct(szCorrect, _T(""), FALSE,
Startldx, IncorrectlLen);

In Visual C++:

HRESULT hr = S_CK;
BSTR s = SysAllocString (OLESTR(""));

Startldx, IncorrectlLen);
SysFreeString (s);
s = NULL;

hr = m pl WDi ctationMr->Correct(sCorrect, s, FALSE,

See Also

“GetWordInfo” on page 673
“PutText” on page 687

IBM SDK for Windows

665

Properties, Methods, and Events

DeleteText

Removse any or all of the text within VVDictationMgr.

Syntax

In Visual Basic:
‘Sub Del et eText (St art/ndex As Long, TextLength As Long) ‘

In Visual C++ (MFC):
‘voi d Del eteText(long Startl!ndex, |ong TextLength); ‘

In Visual C++:
‘ HRESULT Del eteText (1 ong Start/ndex, |ong TextLength); ‘

Parameters

Sartindex
Long. The 0 based index of the first character to be deleted.

TextLength
Long. The number of charactersto be deleted. If the sum of the Startindex and TextLength are
greater than the number of characters stored in the DictationM gr an error (E_INVALIDARG) will
be returned.

Return Values
”

Remarks

Simply call DeleteText with the 0 based starting index of the text to be deleted and the length to del ete.
Using a starting index of 0 and specifying the distinguished constant VV_EOT (-2) for the length will
remove all text from DictationM gr.

666 IBM SDK for Windows

DictationM gr Control Methods

When it is necessary to delete text (del ete key, backspace, replacing a selection, etc.) always remember
to update the Ul before DictationM gr. Thisis necessary because deletion of text may change certain

formatting characteristics triggering a Put Text event to update the Ul. For instance, deleting a dictated
period may remove the capitalization from the following word if it is also dictated forcing an update of
the Ul. If you have not yet updated the Ul then the information in the PutText event will be incorrect.

Example

In Visual Basic:
‘ VWD ct ati onMgr . Del et eText Text Start, TextLength ‘

In Visual C++ (MFC):
‘ m VVDi ctati onMyr. Del eteText (| TextStart, | TextLen); ‘

In Visual C++:

HRESULT hr = S_CK;
hr = m_ pl WDictationMr->Del eteText (| TextStart, |TextLen);

See Also
“PutText” on page 687

IBM SDK for Windows 667

Properties, Methods, and Events

GetAlternate

Gets aternative interpretations for dictation processed by the speech engine.

Syntax

In Visual Basic:

Function GetAlternate(Start/ndex As Long,
Text Length As Long,
Rank As Long, _
SoundsLi ke As String) As String

In Visual C++ (MFC):

CsString GetAlternate(long Start! ndex,
| ong Text Lengt h,
| ong Rank,
BSTR* SoundsLi ke);

In Visual C++:

HRESULT Cet Alternate(|ong Start! ndex,
| ong Text Lengt h,
| ong Rank,
BSTR * SoundsLi ke,
BSTR * Alternate);

Parameters

TextLength ??
”

Sartindex
Long. The 0 based index of the first character of the word for which aternates are required.

Reserved
Long. Thisvalueis reserved for future use and must be 0.

668 IBM SDK for Windows

DictationM gr Control Methods

Rank
Long. The 1 based rank of the desired alternate. A rank of 1 will provide the most likely alternative
to the original word presented in the PutText method or PutText events. A rank of O will provide
the most likely interpretation of the speech input and is the text that was used to construct the text
provided in PutText event.

SoundsLike
String. In some languages (most notably Asian Pacific) many words have the same spelling but
different pronunciations and meanings based on the context in which they are used. Thisisan
output parameter that provides information necessary for accurate correction in these languages. It
may also prove useful for getting the "spoken text" in other languages when acronyms and macros
arein use. This parameter can be NULL if "sounds like" spelling is not required.

Alternate
String. Output parameter (return valuein VB and MFC wrappers) which contains the alternate
interpretation requested. If no alternate of the requested rank is available, this parameter will
contain an empty string ("").

Return Values
”

Remarks

When the speech engine analyzes audio input, there are many possible choices. Based on various
weighting algorithms, one possibility is chosen as most likely, and that "phrase" is given to the client.
Using GetAlternate will allow you to access each successively less likely choice in order by rank.

What this meansisthat if you request the alternate of "rank 1", you will receive the engine second best
choice (the original event gave you the best choice). You can continue asking for as many additional
alternates as you desire. Eventually, once the engine drops below an engine specific threshold, it will
no longer return any alternates of a higher rank. If you ask for an alternate which is not available you
will receive an empty string. For languages that can access the HRESULT return code, S FALSE will
be returned when no alternate of the requested rank is available.

Alternates are usually presented to the user in the context of correction. Because these words are the
most likely alternativesto the originally presented text, the user often finds the correct interpretation

IBM SDK for Windows 669

Properties, Methods, and Events

within thislist. Most error correction interfaces will allow the user to choose one of the alternatives or,

since it may not be in the list, type in the correction themsel ves.

Example

In Visual Basic:

Dim Alternate as String

Al'ternate = VWWDictationMgr. GetAlternate (TextStart,
0, _
Cur Rank, _
SoundsLi ke)

In Visual C++ (MFC):

CString Alternate;

0,
Cur Rank,
& bstrSoundsLi ke) ;

Al'ternate = m VVDictationMyr. CetAlternate (TextStart,

In Visual C++:

BSTR bstrAl ternate = NULL;
HRESULT hr = S OK;
hr = m pl VWDictationMyr->GetAlternate (TextStart,
0,
Cur Rank,
& bstrSoundsLi ke,
& bstrAlternate);

See Also

None.

670

IBM SDK for Windows

DictationM gr Control Methods

GetText

Retrieves a copy of any or al of the text held within DictationM gr.

Syntax

In Visual Basic:
‘Functi on CetText(Startlndex As Long, TextLength As Long) As String ‘

In Visual C++ (MFC):
‘CSt ring GetText(long Start!/ndex, |ong TextLength); ‘

In Visual C++:

HRESULT Cet Text (|l ong Start! ndex,
| ong Text Lengt h,
BSTR* Text);

Parameters

Sartindex
Long. The 0 based index of the first character required.

TextLength
Long. The length of text required. Use the distinguished constant VV_EOT (-2) to retrieve all text
from the gtart index to the end.

Text
String. Output parameter (return valuein VB and MFC wrappers) which contains the text
requested.

Return Values
”

IBM SDK for Windows 671

Properties, Methods, and Events

Remarks

The client need only specify the 0 based index of the first character and the length of text required. If a
start index of 0 and alength of VV_EOT (-1) are specified, the entire text contained in DictationM gr

can beretrieved.

One potentia (and often valuable) use of this method occurs when debugging a potential index
synchronization problem. By extracting the text at critical points during debug sessions you can more
easily determine when, where, or if the cursor index has gotten out of sync.

Example

In Visual Basic:

Di m Cur Text as String
Cur Text = VWVDi ctati onMgr. Get Text (Startl ndex,

Text Length)

In Visual C++ (MFC):

CString CurText;

CurText = m VVDictationMyr. Cet Text(| Startlndex, | TextLength);
In Visual C++:
BSTR bstrCur Text = NULL;
HRESULT hr = S_CK;
hr = m_ pl WDi ct ati onMyr - >Get Text (| Startlndex, | TextLength,
& bstrText);

See Also

None.

672

IBM SDK for Windows

DictationM gr Control Methods

GetWordInfo

Determines information about the "word" at any valid character index.

Syntax

In Visual Basic:

Sub Get Wr dl nfo(/ndex As Long,
Length As Long,
Fl ags As Long, _
SoundsLi ke As String)

In Visual C++ (MFC):

voi d GetWordl nfo(l ong* [ndex,
| ong* Lengt h,
| ong* Fl ags,
BSTR* SoundsLi ke);

In Visual C++:

HRESULT CetWordl nfo(long * I ndex,
long * Lengt h,
long * Fl ags,
BSTR * psSoundsLi ke) ;

Parameters

Index

Long. When the call is made, this parameter can be any valid 0 based index. If successful, this
parameter will hold the index of the first character of the word containing the input index on

return.

Length
Long. This parameter will hold the length of the word on return.

Flags

IBM SDK for Windows

673

Properties, Methods, and Events

Long. These flags are a hit mask indicating how the word is combined with the words around it
and also whether or not it is an expanded macro. Valid values are found in “VVDictation Phrase
Formatting Flags” on page 741.

SoundsLike
String. On return this parameter will hold the "sounds like" spelling of the word. This is
particularly useful for Asian Pacific languages but may also be useful for retrieving the "spoken
text" when acronyms or macros are in use. This parameter can be NULL if the "sounds like"
spelling is not required.

Remarks

This information includes the index of the first character, the length of the "word", formatting flags,
and the "spoken text" or "sounds like text" for the word. This information can be used to implement
commands like "Select This", "Next Word", and "Previous Word". It can also be used to find the exact
word boundaries necessary for some of the other methods.

In many languages the "word length" will include the trailing space.

Example

In Visual Basic:

‘WDi ctati onMgr. Get Wrdinfo Index , Length, Flags, O ‘

InVisual C++ (MFC):
‘m_WDi ctati onMgr. GetWordlinfo (& I Index, & ILength, & I Flags, NULL); ‘

674 IBM SDK for Windows

DictationM gr Control Methods

In Visual C++:

HRESULT hr = S_CK;
hr = m pl VWDictati onMyr->GetWrdinfo (& Il ndex, & |Length, & |Flags,
NULL);

See Also

None.

IBM SDK for Windows 675

Properties, Methods, and Events

Playback

See Also
Chapter 7, “Playback” on page 178

676 IBM SDK for Windows

DictationM gr Control Methods

Playback Ex2

See Also
Chapter 7, “PlaybackEx2” on page 182

IBM SDK for Windows 677

Properties, Methods, and Events

PutText

Keeps DictationM gr synchronized with any non-dictated text in the Ul.

Syntax

In Visual Basic:

Sub Put Text (Text As String,
Text Length As Long, _
[Startlndex As Long = -1])

In Visual C++ (MFC):
‘voi d Put Text (LPCTSTR Text, |ong TextLength, |ong Startl!ndex); ‘

In Visual C++:
‘HRESULT Put Text (BSTR Text, |ong TextLength, |ong Startlndex); ‘

Parameters

Text
String. Theisthe text to be added.

TextLength
Long. The length of the text to be added.

Sartindex
Long. The 0 based index where the text is to be placed. The default for this parameter (in
languages like VB that use defaults) is VV_USECURSOR (-1), which causes the text to be
inserted at the current cursor location.

Return Values
”

678 IBM SDK for Windows

DictationM gr Control Methods

Remarks

For instance, text typed or pasted into the Ul would need to be added to DictationM gr using PutText.
It is not necessary to update the Cursorlndex after calling PutText sinceit implicitly updates the cursor
position to the index immediately after insertion. Thisis the same behavior seen when typing or
pasting into atypical text Ul. Remember, arbitrarily setting the cursor index when not required will
degrade performance.

When it is necessary to insert text (keystroke, paste, etc.) always remember to update the Ul before
DictationM gr. Thisis necessary because inserting text may change certain formatting characteristics
triggering a PutText event to update the Ul. For instance, inserting text before the first word in a
sentence may remove the capitalization from the word that was the first word if it is also dictated
forcing an update of the Ul. If you have not yet updated the Ul then the information in the PutText
event will be incorrect.

Example

In Visual Basic:
‘WDi ctationMgr. Put Text (CurTextStr, Len(CurTextStr)) ‘

In Visual C++ (MFC):
‘ m VVDi ctati onMyr. Put Text (| pszCurText, strlen(lpszCurText), -1); ‘

In Visual C++:

HRESULT hr = S_CK;

hr = m pl WDi ctationMyr. Put Text (bstrCur Text,
SysStringLen (bstrCurText),
VV_USECURSCR) ;

See Also

None.

IBM SDK for Windows 679

Properties, Methods, and Events

SetSelection

Synchronizes selections made in the Ul with DictationMgr.

Syntax

In Visual Basic:
‘Sub Set Sel ection (Startlndex As Long, SelectionLength As Long) ‘

In Visual C++ (MFC):

‘voi d SetSel ection(long Startlndex, |ong Sel ectionLength); ‘

In Visual C++:
‘ HRESULT Set Sel ection (long Startl/ndex, |ong Sel ectionLength); ‘

Parameters

Sartindex
Long. The 0 based index of the first character selected.

SelectionLength
Long. The number of characters selected. VV_EOT (-2) may be used to select to the end of
existing text.

Return Values

None.

Remarks

Thiswill allow the user to select text within the Ul and then dictate areplacement in the same way that
they would when typing or pasting text for areplacement. If a selection has been set when dictation is
detected, the selection will be replaced in DictationM gr and the DeleteText event will be fired

680 IBM SDK for Windows

DictationM gr Control Methods

directing the client to delete the selection. Setting the selection with a SelectionLength of Ois
equivalent to setting the Cur sor I ndex property.

Calling SetSelection will implicitly update the cursor location to the beginning of the selection. As a
result, calling SetSelection with a length of 0 is equivalent to setting the Cur sor I ndex property. Like
the Cursor I ndex property, calling SetSelection arbitrarily can impose significant overhead and should
be used only when necessary. To do this effectively you must remain aware of which methods and
events (i.e., PutText) implicitly update the cursor.

Example

In Visual Basic
‘ VWD ct ati onMgr. Set Sel ection Startlndex, Length ‘

In Visual C++ (MFC):
‘ m VVDi ctati onMyr. Set Sel ection (| Startldx, |Length); ‘

In Visual C++:

HRESULT hr = S OK;
hr = m_ pl VWDi ctationMr->SetSelection (| Startldx, |Length);

See Also

“Cursorindex” on page 645
“PutText” on page 678
“PutText” on page 687

IBM SDK for Windows 681

Properties, Methods, and Events

DictationM gr Control Events

The ViaVoice DictationM gr control supports the following events:
» DeleteText

» DictationStateChange

* PutText

e QueryText

682 IBM SDK for Windows

DictationMgr Control Events

DeleteText

Event fired when client should del ete the text indicated from the Ul.

Syntax

In Visual Basic:
‘Event Del et eText (Start/ndex As Long, TextlLength As Long ‘

In Visual C++ (MFC):
‘voi d OnDel eteText (long Startlndex, |ong TextLength); ‘

In Visual C++:
‘HRESULT Del eteText (long Startl/ndex, |ong TextLength); ‘

Parameters

Sartindex
Long. The 0 based index of the first character to be deleted.

TextLength
Long. The number of charactersto be deleted.

Return Values

None.

Remarks

This event may be fired in response to dictation occurring after a selection is made or when the cursor
is located inside an existing word. It will also be fired when the Command method is called with the
"Scratch That" command.

IBM SDK for Windows 683

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub VVDi ctationMr_Del et eText (ByVal
Text Length As Long)
Text Box. Sel Start = Startl ndex
Text Box. Sel Length = Text Length
Text Box. Sel Text = ""
End Sub

Startlndex As Long, ByVal

In Visual C++ (MFC):

| ong Text Lengt h)

{
m _Edi t . Set Sel

m _Edi t . Repl aceSel

(Startlndex, TextlLength);
} ¢ _T(""))

voi d [Cl assNane] : : OnDel et eText VDI ct ati onMyr (

long Startl ndex,

In Visual C++:

HRESULT [Cl assNane] :: Del et eText (
{
SendMessage (m hwndEdit,

(WPARAM) St ar t | ndex,
SendMessage (m hwndEdit,
FALSE, _T("")):
return S_OK;

}

EM SETSEL,

EM_REPLACESEL,

long Startl ndex,

(LPARAM) Text Lengt h);

| ong TextLength)

See Also

“Command” on page 660
“SetSelection” on page 680

684

IBM SDK for Windows

DictationMgr Control Events

DictationSateChange

Event fired any time there is a change in the state of dictation.

Syntax

In Visual Basic:
‘ Event DictationStateChange(DictationOn As Bool ean) ‘

In Visual C++ (MFC):
‘voi d OnDi ctationStateChange (BOOL Dictationn); ‘

In Visual C++:
‘ HRESULT Di ctati onSt ateChange (VARI ANT_BOOL DictationOn); ‘

Parameters

DictationOn
Long. The current state of dictation.

Return Values

None.

Remarks

This might be in response to an explicit change in the value of the DictationOn property. Setting the
DictationOn property will not trigger this event if the new value is the same as the old value of the

property.

IBM SDK for Windows 685

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub VWWDictationMyr_DictationStateChange(_
ByVal DictationOn As Bool ean)
DoSorret hi ngUseful Dictati onOn
End Sub

In Visual C++ (MFC):

voi d [Cl assNane] : : OnDi ct ati onSt at eChangeVVDi ct ati onMgr (BOOL Di ct ati onOn)
{

}

DoSonet hi ngUseful (DictationOn);

In Visual C++:

HRESULT [Cl assNan®e] :: Di ct ati onSt at eChange(VARI ANT_BOOL DictationOn)
{

}

return DoSonet hi ngUseful (DictationOn);

See Also
“DictationOn” on page 647

686 IBM SDK for Windows

DictationMgr Control Events

PutText

Event fired to provide all the information necessary to merge dictated text into the Ul interface.

Syntax

In Visual Basic:

Event Put Text(Text As String,
Startlndex As Long,
Text Length As Long,
Cursorlndex As Long, _
PhraseConpl et e As Bool ean)

n Visual C++ (MFC):

voi d OnPut Text (LPCTSTR Text,
| ong Startl ndex,
| ong Text Lengt h,
| ong Cursorlndex, BOOL PhraseConpl ete);

In Visual C++:

HRESULT Put Text (BSTR Text,
| ong Startl ndex,
| ong Del et eLengt h,
l ong Cursorl dx,
VARI ANT_BOOL PhraseConpl ete);

Parameters

Text
String. Thisis the text to be displayed.

Sartindex
Long. Thisisthe 0 based index where the text should be inserted.

IBM SDK for Windows 687

Properties, Methods, and Events

Deletel ength
Long. Thisisthe number of characters, beginning with the Startindex, which need to be replaced.
If the Deletelength is O then no existing text needs to be replaced.

Cursorlndex
Long. Thisisthe 0 based index where the cursor should be located after the new text has been
placed. It is necessary to explicitly set the Ul cursor index in response to this event since the Text
parameter may include more than just the new dictated text.

PhraseComplete
Boolean. This parameter will be true only when DictationM gr thinks it may be processing a
multi-phrase macro. A multi-phrase macro is a macro which cannot be fully resolved within the
context of asingle spoken phrase. For instance, if auser dictated "one thousand," paused, and then
dictated "five hundred," the ultimate result should be "1,500" not "1,000 500." The DictationM gr
will take care of proper formatting and replacement of text as necessary to support this
functionality without any interaction by the client. Thisinformation is provided only for clients
who wish to visually indicate the potential resolution of a multi-phrase macro visually inthe Ul. It
can also be used to allow the user to prevent multi-phrase macro resolution if the client application
provides a means for the user to stop expansion of multi-phrase macrosin progress (see the
ProcessingM acr o property on page page 655). In the previous example, thiswould allow the user
to dictate "1,000 500" as opposed to "1,500." Also notethat if the user dictated "1,000," paused,
and then dictated something like "computers," the first phrase would have PhraseComplete false.
This is because DictationM gr has no way of knowing if the multi-phrase macro is complete until
it processes the next phrase.

Return Values

TRUE
7?

FALSE
7?

Remarks

The client will receive a PutText event when dictation is recognized. If the DictationM gr has been
kept correctly synchronized with the Ul, this event provides all the information necessary to merge
dictated text into the Ul interface.

688 IBM SDK for Windows

DictationMgr Control Events

Example

In Visual Basic:

Private Sub VVDi ctationMyr_Put Text (ByVal Text As String,
ByVal Startlndex As Long,
ByVal TextLength As Long, _
ByVal Cursorlndex As Long, _
ByVal PhraseConpl ete As Bool ean)
Text Box. Sel Start = Start| ndex
Text Box. Sel Length = Text Length
Text Box. Sel Text = Text
Text Box. Sel Start = Cursor | ndex
End Sub

In Visual C++ (MFC):

voi d [Cl assNane] : : OnPut Text VWDi ct ati onMgr (LPCTSTR Text ,
long Startl ndex,
| ong Text Lengt h,
| ong Cursorl ndex,
BOOL PhraseConpl et e)

{
m Edit. SetSel (Startlndex, TextLength);

m Edi t. Repl aceSel (Text);
m Edit. Set Sel (Cursorlndex, 0);

}

IBM SDK for Windows 689

Properties, Methods, and Events

In Visual C++:

void [ClassNane]:: Put Text (LPCTSTR Text,
long Startl ndex,
| ong Text Lengt h,
| ong Cursorl ndex,
BOOL PhraseConpl et e)

SendMessage (m hwndEdit, EM SETSEL,

(WPARAM) St art | ndex, (LPARAM Text Length);
LPTSTR pszText = ConvertBSTR2LPTSTR (Text);
SendMessage (m hwndEdit, EM REPLACESEL,

FALSE, pszText);
del ete[] pszText;

SendMessage (m hwndEdit, EM SETSEL,

(WPARAM) Cur sor | ndex, (LPARAMO);

return S_OK;

See Also

“ProcessingMacro (Run Time Only)” on page 655

690

IBM SDK for Windows

Chapter 33 DictationMgr Control Frequently
Asked Questions

This chapter contains answers to the most frequently asked questions about the Viavoice
DictationM gr Control.

When should | usethe DictationMgr control?

VVDictationM gr does almost everything you need to do normal document based dictation except
show it to the user. You only have to keep the user interface synchronized with VVDictationM gr
through character indices. If you are not voice enabling a word processor or memo type
application then this may well be more than you really need. VVDictationM gr will also not be
suitable for voice enabling applications where it is not possible to synchronize using character
indices.

When should | usethe Dictation control?

VVDictation provides a simple means of just getting the text of what was said one phrase at a
time. What you do with that text is up to you. You may or may not care about getting audio later
and or doing correction in which case you could just destroy the RecoHandles provided and use
the text. However, if you have or are attempting to build aword processor which is speech enabled
on top of this object you will still have a great deal of work to do just to manage speech.

IBM SDK for Windows 691

DictationM gr Control Frequently Asked Questions

692 IBM SDK for Windows

Chapter 34 Gaﬂ ng S:a‘tw W| th the D|Cta'.| on
Control

Thefollowing isatutorial on how to incorporate the VVDictation control into your Visua Basic or
Visual C++ applications. Thistutoria is designed to present you with the most commonly used
properties and eventsin the VVDictation control.

The following sections contain information to help you write code to create an instance of the
Dictation Control and capture speech. You will also take stepsto allow text correction and playback of
captured speech.

Creating an I nstance of the Control

This section contains step-by-step instructions for using Visual Basic or Visual C++ to create an
instance of the control.

In Visual Basic:

To add the VVVDictation control to your application, do the following:

1. From the Project menu, choose Refer ences.
The References dialog box, Figure 51, appears. The References dialog lists all the ActiveX
Controls and simple COM objects that you can use in your application.

IBM SDK for Windows 693

Getting Started with the Dictation Control

References - Project] =

fvailable References:] .4

Effect Library ﬂ Cancel
HHCtrl 4.0 Twpe Library
J Browse, .,

IBM ViaVoice Detective Control
REEM ViaVoice Dickation Conkrol
IEM Wiakoice DickationMgr Control

IBM YiaW'oice Engine Cantral +

IBM Viavoice Error Correction Conkrol -

IBM YiaWaoice Grammar Conkraol Priariky

IBM YiaVaice Lite Contrals Help
IEM YiaWaoice Phrases Control +*

IEM WiaWoice RichEdit Conkrol —

IEM YWiavoice TextBox

IBM Wiavoice User Interface Conkral
[IEM YWiommon 1.0 Tvoe Library |4|ﬂ
4 k

IEM YiaYoice Dickation Conkral

Location: e:lViavoice\bin\wwedickation. dll

Language: Standard

Figure 51. Reference Selection Dialog - Visual Basic

2. Select IBM ViaVoice Dictation Control from the list and click OK.
Visual Basic adds the control to your project, but does not add a new icon to the tool bar.

3. Add aglobal instance of the VVDictation control to your form code using the following syntax:
|Dim WthEvents WDict As WDictation |

694 IBM SDK for Windows

In Visual C++:

To add the VVVDictation component to your C++ project, do the following:

1. Includethe VVDICTATION.H. header filein any filesthat need accessto the VV Dictation compo-
nent.

2. Createaclassderived from IVVDictationEventSink (defined in VVDICTATION.H) and implement
all methods appropriately including the methods of |Unknown. This is the class that will receive
notification events when speech input is processed. You can also derive your implementation class
from 1V DictationEventSink and implement the methods there.

3. Use CoCreatel nstance to create an instance of the VV Dictation component using the following

syntax:

HRESULT hr = CoCreatelnstance (CLSID_VVDictation,

NULL,
CLSCTX_INPROC_SERVER,
[ID_IVVDictation,

(void**) & m_plVVDictation);

4. Giveyour event sink implementation to the V'V Dictation instance you just created.

| connecti onPoi nt Cont ai ner* pCPC = NULL;

| connecti onPoi nt* pCP = NULL;

m_dwSi nkCooki e = 0;

HRESULT hr = m pl WDictation ->Querylnterface
(11 D_I Connecti onPoi nt Cont ai ner,
(voi d**) & CPC) ;

i f (SUCCEEDED(hRes))
hRes = pCPC- >Fi ndConnecti onPoi nt (1 VWDi ct ati onEvent Si nk, &pCP);

i f (SUCCEEDED(hRes))

hRes = pCP->Advi se(& m VVDi ctati onEvent Si nk, & m dwSi nkCooki €);
if (pCPC) pCPC >Rel ease();
if (pCP) pCP->Rel ease();

5. Turn dictation on whenever you would like to start processing dictation.

Note:

IBM SDK for Windows 695

Getting Started with the Dictation Control

Always check return codes from all method calls.
|hr = m_pl WDi ctation->put_Dictati onOn (VAR ANT_TRUE);

6. When you are done with VV Dictation, you must disconnect the sink object and release V'V Dicta-
tion.

| connecti onPoi nt Cont ai ner* pCPC = NULL;

| connecti onPoi nt* pCP = NULL;

HRESULT hr = m pl WDictation ->Querylnterface
(11 D_I Connecti onPoi nt Cont ai ner,
(voi d**) & CPC) ;

i f (SUCCEEDED(hRes))
hRes = pCPC- >Fi ndConnecti onPoi nt (1 VWDi ct ati onEvent Si nk, &pCP);
i f (SUCCEEDED(hRes))
hRes = pCP->Unadvi se(m dwSi nkCooki e) ;
if (pCPC) pCPC >Rel ease();
if (pCP) pCP->Rel ease();
m_pl VWDi ct at i on- >Rel ease();
m pl WDi ct ati on = NULL;

696 IBM SDK for Windows

Capturing Speech

The VVDictation object converts speech input into text suitable for display which is passed to the
client as one of the parameters of the PhraseReco event. This event also provides the client with a
RecoHandle and formatting flags relating to the particular phrase which is being presented. The
RecoHandle identifies a particular phrase event when interacting with the VV Dictation object and the
flags provide information about how the current phrase should be combined with any existing or future
text arranged around the current phrase. For instance, if the current phrase contains only a period ("."),
you will receive flags indicating that it should merge flush with the phrase to the left (no white space
left before the period) and that the next word should be capitalized. (These flags are only available
when using the IBM ViaVoice runtime.) If you wish to be able to correct any misrecognized words, or
provide playback of the speech which generated the event, you must store the RecoHandle in some
way associated with the displayed text so that it can be retrieved when needed and given to
VVDictation for processing. It is not necessary to store the flags since you can retrieve them at any
time using the RecoHandle.

Summary

At this point, you should know how to do the following:

» How to incorporate the VVDictation control into your project.
» How to receive speech input.

The remainder of this documentation contains areference for al the properties, methods, and eventsin
the VVDictation control.

IBM SDK for Windows 697

Getting Started with the Dictation Control

698 IBM SDK for Windows

Chapter 35 | ntroduction to the Dictation
Control

The ViaVoice Dictation Control (VVDictation) is alow-level dictation object providing only the
basics necessary for dictation, correction, and playback. This object is implemented as a ssimple COM
object rather than afull ActiveX control and can not be "dropped" into aform and configured at
design-time.

An application using VVDictation will receive PhraseReco events when speech has been recognized
including the text of the recognition, and arecognition "handle". The recognition "handle" should be
stored in some way associated with (i.e., mapped to) the displayed text of the recognition event. This
will be necessary in order to correct the engine in the case of a"misrecognition”, to do playback of
dictated text.

If VVDictation isrunning on the IBM engine, the client will also be able to use the advanced
formatting features available only with the IBM engine. Thisadvanced formatting is enabled by setting
ExpandM acros to true which will provide dates and numbers formatted according to system settings
as well as expansion of user defined macros. If the property ExpandM acrosis set to false, macro
conversion and formatting is the responsibility of the client.

Because of the inherent latency of the Speech Engine audio resolution, Bookmarks must be used to
synchronize the relatively real-time GUI with the dictation provided from the Engine in the
PhraseReco events. The SetBookM ar k method can be used to set a bookmark with an ID at the
current location in the audio stream. (For example, in response to the user changing the cursor location
using the mouse, a bookmark would be set). When that bookmarked position in the audio stream is
processed, the HitBookMar k event will be fired including a bookmark 1D that matches the one set by
the call to SetBookMark.

Note:
When aHitBookMark event is received, thisindicates to the client application that the current
recognition event, and all subsequent speech related events, occurred after the point in time that
the bookmark was set. For instance, when the above mentioned bookmark (set as aresult of
changing the cursor position) is passed in aHitBookM ark event the client knows that the current
and all subsequent speech input should be placed based on the new cursor position indicated by the
user's mouse click.

IBM SDK for Windows 699

Introduction to the Dictation Control

700 IBM SDK for Windows

Chapter 36 Properties, Methods, and Events

Dictation Control Properties

The ViaVoice Dictation control supports the following properties:
» AutoDictationWindow

» DictationOn

* Engine

» ExpandMacros

* ProcessingMacro

IBM SDK for Windows 701

Properties, Methods, and Events

AutoDictationWindow

Controls the scope in which dictation is available.

Syntax

In Visual Basic:

‘ Property AutoDi ctati onW ndow As Long

In Visual C++:

HRESULT put _Aut oDi ctati onW ndow (| ong hWwd);
HRESULT get _Aut oDi ctati onW ndow (| ong * hWhd);

Parameters

None.

Return Values

Any valid “top-most” window handle.
Dictation is available only when the indicated window is “active” as indicated by it, or one of its
children, having the focudlote: There can only be one dictation object active for the same
window (DictationOn is True) at any one time!

NULL
Dictation mode is always available and must be controlled manually by settiBgctEonOn
property to True or Falsélote: There can only be one global dictation object aciietationOn
is True) at any one time!

Remarks

The default value of this property is NULL (0), which will enable dication globally. However, please
note that there can only be one global dictation object active (DictationOn is True) at any onetimein
the entire system, including other applications! For this reason, it is strongly suggested that you avoid

702 IBM SDK for Windows

Dictation Control Properties

global dictation objects, if possible. Alternatively, you can set this property to any valid "top-most&"
window handle, which maps dictation availability to that window’s activation state (it or one of its
children having focus).

Remember, if you use NULL be aware that there can only be one global dictation object active
(DictationOn is True) at any onetime. Thisincludes your own or any other application running on the
system. For this reason, global dictation objects should be used with extreme care and should be
avoided, unless absolutely necessary. Regardless of the value of this property, finer granularity of
control can always be achieved by changing the state of DictationOn appropriately.

Example

In Visual Basic:

"Assumes this formis the top-nost form
VWWDi ct . Aut oDi ct ati onW ndow = hWhd

In Visual C++:

/1 Makes no assunptions about m hWhd
HWD Had = m _hWhd;
/] Due to the Wn32 inplenentation of GetParent, this is necessary
/1 to find the "Foreground" wi ndow for SAPI grammar activation
/1 For nmore information see M5 Knowl edge Base article @4190
while (::GetParent (hwnd) != NULL &&
' (::GetWndowLong(hwnd ,GAL_STYLE) & W5_POPUP))
{
hwnd = :: GetParent (hwnd);

}
m _pl VWDi ct ati on- >put _Aut oDi ctati onW ndow ((Il ong) hwd);

See Also
“DictationOn” on page 704, “DictationStateChange” on page 735

a A “top-most” window is defined as any window without a parent. For more information on issues dealing with finding the
“top-most” window, see the Microsoft Knowledge Base article Q84190.

IBM SDK for Windows 703

Properties, Methods, and Events

DictationOn

Returns or sets the desired state of the dictation mode.

Syntax

In Visual Basic:
‘ Property DictationOn As Bool ean

In Visual C++:

HRESULT get Dictati onOn(VARI ANT_BOOL * Dictationn)
HRESULT put _Di ctati onOn(VARl ANT_BOOL Dictationn)

Parameters

DictationOn
Boolean.

Return Values

TRUE
The control can receive dictation input, when available.

FALSE
The control ignores dictation input that occurs after making this setting. Note that any speech input
which occurred before setting DictationOn false but which is not yet completed will still be
processed and passed to the client through the PhraseReco event.

Remarks

You can think of this property semantically as"Client want’s dictation on". What this meansisthat if
dictation isavailable (i.e. the AutoDictationWindow is active), then the user will be able to dictate into
the control.

704 IBM SDK for Windows

Dictation Control Properties

When the state of the dictation mode changes, the control fires the DictationStateChange event. You
should not set the value of this property in the DictationSateChange event, as thiswill cause the
event to fire again.

Example

In Visual Basic:
‘WDict.DictationCh:True ‘

In Visual C++:
‘ m pl VWDi ct ati on->put _Di ctati onOn(VARI ANT_TRUE) ; ‘

See Also

“AutoDictationWindow” on page 702
“DictationStateChange” on page 735

IBM SDK for Windows 705

Properties, Methods, and Events

Engine

Sets or gets areference to the Viavoice Engine control (VVENgineg), which is used by the
VVDictation control.

Syntax

In Visual Basic:

‘ Property Engi ne As | VVEngi ne

In Visual C++:

HRESULT get _Engi ne(| VEngi ne * * | VWEngi ne)
HRESULT putref_Engi ne(| VWEngi ne * | VVEngi ne)

Parameters

None.

Return Values

None.

Remarks

The Engine property is actually holding animplicitly created ActiveX control (VVEnNgine), which can
also be created separately. Inserting a VV Engine control in a project enables you to set the engine
properties on this control, and then assign the engine to multiple ViaVoice ActiveX controls.

706 IBM SDK for Windows

Dictation Control Properties

Example

In Visual Basic:
‘WDi ct. Engi ne = VVEngi nel ‘

In Visual C++:
‘ m pl WDi ct ati on->putref_Engi ne(m pl VEngi ne); ‘

See Also

Refer to the ViaVoice Engine Control Guide for more information.

IBM SDK for Windows 707

Properties, Methods, and Events

ExpandM acr os

Indicates whether the VV Dictation control should expand and format speech input when possible.

Note:
This property affects dictation only when used with the IBM engine.

The following examples show how you might see the macros, however, this depends on regional
settings:

False True

"one thousand two hundred and thirty four" "1,234"

"January first two thousand" "January 1, 2000"

"my macro" <whatever "my macro" isdefined as> using
the Dictation Macro Editor

Syntax

In Visual Basic:
‘Property ExpandMacros As Bool ean

In Visual C++:

HRESULT get _ExpandMacros(VARI ANT_BOOL * ExpandMacros)
HRESULT put _ExpandMacros(VARI ANT_BOOL ExpandMacros)

Parameters

ExpandMacros
Boolean.

708 IBM SDK for Windows

Dictation Control Properties

Return Values

TRUE
(Default) VVDictation will expand macros and provide advanced, multi-phrase, number
formatting if running on the IBM engine.

FALSE
VVDictation does not do any advanced formatting or macro expansion.

Remarks

If the value of this property is set to false you will get dictation exactly as interpreted by the engine. If
set to true, and running on the IBM engine, all dictation will be checked for possible macro expansion
(see Dictation Macro Editor application, DME.EXE, included with the SDK Dictation Runtime). This
property also controls the availability of IBM advanced, multi-phrase, numeric formatting. For
instance, setting this property to true would cause the following speech input to "expand" differently.

The setting of ExpandM acros has no effect if not running on the IBM engine.

Example

In Visual Basic:
‘WDi ct. ExpandMacros = True ‘

In Visual C++:
| m_pl WDi ct at i on- >put _ExpandMacr os (VAR ANT_TRUE) ; |

See Also

None.

IBM SDK for Windows 709

Properties, Methods, and Events

ProcessingM acro

Determinesif the VVDictation object is currently processing a multi-phrase macro expansion.

Syntax

In Visual Basic:

‘Property Processi ngMacro As Bool ean

In Visual C++:

HRESULT get Processi ngMacr o(VARI ANT_BOCOL * ExpandMacros)
HRESULT put _Processi ngMacr o(VARI ANT_BOOL ExpandMacros)

Parameters
??

Return Values

TRUE
VVDictation displaysis currently processing a multi-phrase macro. This property will never be
true unless running on the IBM engine. This value can not be set.

FALSE
VVDictation is not processing a multi-phrase macro. This value can be set to force completion of
multi-phrase macro processing.

Remarks

If the value of ProcessingM acro is false, then all phrases are complete. If the value is true, then
VVDictation is currently processing a multi-phrase macro. If the value is true and you set it to false,
all infirm phrases are then considered complete and any new speech input will be a new phrase. You
can never set the value of ProcessingM acro to true. For more information on infirm phrases and
multi-phrase macro expansion, see PhraseReco event on page 739, which also indicates whether or
not VVDictation is processing a multi-phrase macro.

710 IBM SDK for Windows

Dictation Control Properties

The value of the ProcessingM acr o property will never be true when not using the IBM speech engine.

Example

In Visual Basic:

‘WDi ct.Processi ngvacro = Fal se ‘

In Visual C++:
‘ m pl WDi ct ati on->put _Processi ngMacro (VARI ANT_FALSE); ‘

See Also

“PhraseReco” on page 739

IBM SDK for Windows 711

Properties, Methods, and Events

Dictation Control M ethods

The ViaVoice Dictation control supports the following methods:
» Correct

» Destroy

» GetAlternatePhrase
» GetFlags

* GetWavData

» GetWordInfo

» MergeRecoPhrases
» SetBookMark

» SetContext

e SplitOutLeftWord

712

IBM SDK for Windows

Dictation Control Methods

Correct

Corrects any misrecognized words provided by the PhraseReco event.

Syntax

In Visual Basic:

Sub Correct (RecoHandl e As Long,
I I ndex As Long, _
Reserved As Long, _
AddAsSi ngl eVord As Bool ean,
Correct Text As String,
SoundsLi ke As String,
Phrase As String,
Fl ags As Long)

In Visual C++:

HRESULT Correct (VV_RecoHandl e RecoHand! e,
| ong I ndex,
| ong Reserved,
VARI ANT_BOOL AddAsSi ngl eWor d,
BSTR Correct Text,
BSTR SoundslLi ke,
BSTR* Phrase,
| ong* Fl ags);

Parameters

RecoHandle

Long. A 32 bit value that uniquely identifies the phrase to be corrected. The RecoHandle for a

phrase is passed as one of the parameters of the PhraseReco event.
Index

Long. The index of the first character of the word to be corrected.

Reserved

Long. This parameter is reserved for future use and should always be set to 0.

IBM SDK for Windows

713

Properties, Methods, and Events

AddAsSingle
Boolean. This parameter allows addition of multiple words to be corrected as a single phrase.

CorrectText
String. A string indicating the "correct” interpretation for this particular speech input
(RecoHandle).

SoundsLike
String. A string indicating the "correct” interpretation for this particular speech input
(RecoHandle).

Phrase
String. The modified (corrected) phrase. Thisstring is areplacement for the original string
provided in the PhraseReco event and should replace the original string in the Ul.

Flags
Long. An output only parameter which will provide you the correct formatting flags based on the
corrected text. These flags should be applied in exactly the same manner as the original flags
received in the PhraseReco event. For instance, correct application of these flags will alow the

replacement of the word "period" with "." to remove white space from the left of the"." and
capitalize the following word.

Return Values

None.

Remarks

By passing in the RecoHandle for the phrase containing the word to be corrected, the character index
of the first character of the word to be corrected, and the corrected text, you will be able to update the
engine in order to improve accuracy for the same word when used in the future. Correcting
VVDictation will also insure that information on the word provided by VVDictation will be accurate
(see GetWor dl nfo method on page 723).

After correction, a corrected phrase and formatting flags will be returned to the caller using the
"Phrase" parameter. This corrected phrase should replace the original text provided in PhraseReco.

714 IBM SDK for Windows

Dictation Control Methods

Example

In Visual Basic:

VWWDi ct. Correct (RecoHandl e, Wordlndex, O,
Fal se, CorrectText, SoundslLike,
NewPhr ase, Fl ags)
In Visual C++:

m_pl VWDi ct ati on- >Cor rect (hReco, | Wordl dx,
bstr Correct Text, bstrSoundsLi ke,
&bst r NewPhr ase, &l Fl ags);

0, VARI ANT_FALSE,

See Also

“PhraseReco” on page 739
“VVDictation Phrase Formatting Flags” on page 741

IBM SDK for Windows

715

Properties, Methods, and Events

GetAlter natePhr ase

Gets dternative interpretations of a particular speech input (represented by a RecoHandle).

Syntax

In Visual Basic:

Functi on Get Al'ter nat ePhrase (RecoHandl e As Long,
I ndex As Long, _
Reserved As Long,
Rank As Long, _
SoundsLi ke As String) As String

In Visual C++:

HRESULT Get Al t er nat ePhrase (VV_RecoHandl e RecoHandl e,
| ong I ndex,
| ong Reserved,
| ong Rank,
BSTR * SoundsLi ke,
BSTR * PhraseText)

Parameters

RecoHandle
Long. A 32-hit value that uniquely identifies the phrase (word) for which alternates are needed.
The RecoHandle for a phrase is passed as one of the parameter to the PhraseReco event or
returned from the SplitOutL eftWord or M er geRecoPhr ases method.

Index
Long. The character index of the word for which an aternate is desired.

Reserved
Long. This parameter is reserved for future use.

Rank
Long. The rank of desired aternate.

716 IBM SDK for Windows

Dictation Control Methods

SoundsLike ??
”

PhraseText
String. The alternate of the indicated rank or an empty string if no alternate of the indicated rank
was available.

Return Values
”

Remarks

These aternatives are retrieved based on their rank, which represents the likelihood, according to the
engine, that the particular alternate is a correct interpretation of the speech input. Alternates are
typically presented to the user for selection in the context of apotential correction.

Ranks begin with 0 and the total number of alternatives avail able depends on the word and the
underlying speech engine. For any given speech input, the alternate of rank 0 iswhat the engine thinks
was said. Thisisthe text originally provided by the PhraseReco event. An aternative of rank 1is,
according to the engine, the most likely alternative to the text originally provided. Each succeeding
rank (higher numerically) alternate is correspondingly less likely. If an alternative of agiven "rank" is
not available, an empty string will be returned. An empty string for agiven rank also implies that no
alternates of higher rank are available.The number of aternates available for any speech input is
dependent both on the speech input itself and on the underlying speech engine implementation. The
recommended approach to retrieve all alternates for a given speech input is to use forward iteration,
beginning with rank 1, until an empty string is returned. In languages which give access to the actual
return code (HRESULT) the return code can betested for S FALSE to determine if no alternative was
available for the requested rank.

IBM SDK for Windows 717

Properties, Methods, and Events

Example

In Visual Basic:
‘WDi ct.CGet Al ter nat ePhrase(RecoHandl e, Index, 0, Rank, AlternateText) ‘

In Visual C++:

m pl VWDi ct ati on- >CGet Al t er nat ePhrase(hReco, |Index, 0, |Rank,
&bstr Al t Text);

See Also

None.

718 IBM SDK for Windows

Dictation Control Methods

GetFlags

Retrieves the formatting flags originally provided with speech input in the PhraseReco event.

Syntax

In Visual Basic:
‘ Functi on Get Fl ags(RecoHandl e As Long) As Long ‘

In Visual C++:
‘ HRESULT GCet Fl ags(VV_RecoHandl e RecoHandl e, | ong * Fl ags) ‘

Parameters

RecoHandle
Long. A 32 bit value that uniquely identifies the phrase for which flags are being requested. The
RecoHandle for a phrase is passed as one of the parameter to the PhraseReco event.

Flags
Long. Storage where the flags associated with the indicated RecoHandle will be placed.

Return Values

None.

Remarks

None.

IBM SDK for Windows 719

Properties, Methods, and Events

Example

In Visual Basic:
‘ Fl ags = VVDi ct. Get Fl ags (RecoHandl e) ‘

In Visual C++:
‘ m pl VWDi ctati on->Get Fl ags (hReco, & Flags); ‘

See Also
“VVDictation Phrase Formatting Flags” on page 741

720 IBM SDK for Windows

Dictation Control Methods

GetWavData

Getsthe actual audio associated with a given speech input packaged in aBSTR.

Syntax

In Visual Basic:

Functi on Get WavDat a(RecoHandl e As Long,
I ndex As Long, _
Reserved As Long, _
Pl aySound As Bool ean) As String

In Visual C++:

HRESULT Cet WavDat a(VV_RecoHandl e RecoHandl e,
| ong I ndex,
| ong Reserved,
VARI ANT_BOOL Pl aySound,
BSTR* WavDat a)

Parameters

RecoHandle
Long. A 32 bit value that uniquely identifies the phrase for which audio (WAV data) is being
requested. The RecoHandle for a phrase is passed as one of the parameter to the PhraseReco
event.

Index
Long. The character index of the word for which audio datais desired.

Reserved
Long. This parameter is reserved for future use and should always be O.

PlaySound
Boolean. Indicates whether the caller would like VVDictation to play the sound or just return the
audio data. If thisvalue istrue, then VVDictation will play the audio. If false, the data will be
returned without playing.

IBM SDK for Windows 721

Properties, Methods, and Events

WavData
String (BSTR). Thisisthe actual audio data. If you do not wish to use the actual audio data
(perhaps when PlaySound is True) you may pass NULL for this parameter.

Remarks

Thedataisin standard RIFF WAV format and may be saved for playback in a*.wav file or sent
directly to any API (for example, sndPlaySound) capable of playing RIFF WAV audio. If PlaySound
is True, VVDictation can also play the audio for you.

While the BSTR type may seem a strange choice for transfer of audio data, it was chosen for its
relative ease of access and manipulation from all development environments. However, you must be
aware that some environments and frameworks (VB, MFC CString, etc.) will truncateaBSTR at the
first NULL when performing certain operations. If you have difficulties playing the resultant data,
please refer to the relevant documentation.

Example

In Visual Basic:
‘V\avStri ng = VVDict. GetWavData (RecoHandl e, 0, 0, True) ‘

In Visual C++:
| m_pl WDi ctat i on- >Get WavData (hReco, 0, 0, VARIANT_FALSE, &bstr\avData); |

See Also

None.

722 IBM SDK for Windows

Dictation Control Methods

GetWordInfo

Getsinformation on individual words within a phrase.

Syntax

In Visual Basic:

Sub Get Wr dI nf o(RecoHandl e As Long,
I ndex As Long, _
Length As Long,
Fl ags As Long, _
SoundsLi ke As String)

In Visual C++:

HRESULT Get Wrdlnfo (W_RecoHandl e RecoHandl e,
long * [ndex,
long * Lengt h,
long * Fl ags,
BSTR * SoundsLi ke)

Parameters

RecoHandle
Long. A 32 bit value that uniquely identifies the phrase for which word information is being
requested. The RecoHandle for a phrase is passed as one of the parameter to the PhraseReco
event.

Index
Long. Input: A zero based character index into the phrase represented by the RecoHandle.

Output: A zero based index of the beginning of the word containing the input index.

Length
Long. The length of the word containing the input index.

Flags
Long. The flags associated with the word containing the input cursor.

IBM SDK for Windows 723

Properties, Methods, and Events

SoundsLike
String. The "sounds-like" spelling, if any, for the indicated word.

Example

In Visual Basic:
‘WDi ct.CGetWordinfo (RecoHandl e, |ndex, Length, Flags, SoundsLikeText) ‘

In Visual C++:

m _pl VWhDi ctati on->Get Wrdlnfo (hReco, & Index, & Length, & Flags,
&bst r SoundsLi ke);

Remarks

By passing in a zero based character index and a RecoHandle, the client can get information regarding
the word containing the input index. This includes the starting index and length of the word, the flags
associated with the word, and the sounds-like text (if any) for the word.

See Also
“VVDictation Phrase Formatting Flags” on page 741

724 IBM SDK for Windows

Dictation Control Methods

M er geRecoPhrases

Merges any two adjacent phrases (represented by their RecoHandles) into a single phrase
(RecoHandle).

Syntax

In Visual Basic:

Sub MergeRecoPhrases(Left RecoHandl e As Long,
Ri ght RecoHandl e As Long,
MergedText As String,
Fl ags As Long)

In Visual C++:

HRESULT Mer geRecoPhrases(VW_RecoHandl e Left RecoHandl e,
VW_RecoHandl e Ri ght RecoHand| e,
BSTR* MergedText,
 ong* Fl ags)

Parameters

LeftRecoHandle
Long. A 32 bit value that uniquely identifies the left phrase to be merged. If this method call is
successful, then this RecoHandle will represent the combined phrase. This RecoHandle MUST be
the RecoHandle from the last PhraseReco before the RightRecoHandle. That is, the left and right
RecoHandles MUST be both temporally adjacent and sequential. The RecoHandle for aphraseis
passed as one of the parameter to the PhraseReco event.

RightRecoHandle
Long. A 32 bit value that uniquely identifies the phrase to be corrected. The RecoHandle for a
phrase is passed as one of the parameter to the PhraseReco event. This RecoHandleisinvalid
after a successful call.

MergedText
String. If the merge is successful, this parameter will hold the text that results from evaluating the

merged speech input.

IBM SDK for Windows 725

Properties, Methods, and Events

Flags
Long. The flags associated with the merged phrase (RecoHandle).

Return Values

None.

Remarks
To merge a pair of phrases, they must be both temporally adjacent and sequential.

Example

In Visual Basic:

VWWDi ct . Mer geRecoPhrases (Left RecoHandl e, Ri ght RecoHandl e, MergedText,
Fl ags)

In Visual C++:

m_pl VWDi ct at i on- >Mer geRecoPhrases(hLeft Reco, hRi ght Reco,
&bstr MergedText, &l Fl ags);

See Also
“VVDictation Phrase Formatting Flags” on page 741

726 IBM SDK for Windows

Dictation Control Methods

SetBookM ar k

Synchronizes the relatively "real-time" Ul events with the inherent latency of speech recognition.

Syntax

In Visual Basic:
‘Sub Set BookMar k(BookMar kl d As Long) ‘

In Visual C++:
‘ HRESULT Set BookMar k(| ong BookMar k) ‘

Parameters

BookMar ki d
Long

A number that uniquely identifies the bookmark being set.

Remarks

This is done by passing in an identifying BookMarkld which will be used to identify the
synchronization point being set. When the speech engine begins processing the point in the audio
stream where the bookmark was set, VV Dictation will fire the HitBookM ark event with BookMarkld
which was passed into SetBookM ar k. All subsequent PhraseReco events will have occurred after the
point in time where the bookmark was set.

IBM SDK for Windows 727

Properties, Methods, and Events

Example

In Visual Basic:
‘WDi ct. Set BookMark (Current BookMarkld) ‘

In Visual C++:
‘ m pl VWDi ct ati on- >Set BookMark (m_| Cur BookMarkld); ‘

Remarks

As stated previously, bookmarks are used to synchronize Ul events with speech input. An example
where this synchronization is needed would be the user changing the cursor location with the mouse
while the engine is still processing speech.

If the client does not use bookmarks, the speech input being processed (which occurred before the
cursor location changed) would be placed at the new cursor |ocation--probably not what the user had in
mind. This confusion can be avoided by setting a bookmark when the cursor location changes and then
continuing to place speech input based on the previous cursor location until the HitBookM ark event
(with the correct BookMarkld) is received.

If no there is no unresolved audio remaining to be processed, the HitBookM ark event will fire
immediately with the indicated BookMarkld. In this example the client would also need to call
SetContext after receiving the HitBookM ar k event to prevent degradation of speech recognition
accuracy.

See Also

“HitBookMark” on page 737
“SetContext” on page 729

728 IBM SDK for Windows

Dictation Control Methods

SetContext

Sets the "context" in which the speech input is to be eval uated.

Syntax

In Visual Basic:
‘Sub Set Context (Left Text As String, R ghtText As String) ‘

In Visual C++:
‘ HRESULT Set Cont ext (BSTR Left Text, BSTR Ri ght Text) ‘

Parameters

LeftText
String. One or more words (if any) on the left side of the current speech input location. If there are
no words to the left, passin an empty (") string. For best results, passin at |east two words when
possible.

RightText
String. One or more words (if any) on the right side of the current speech input location. If there
are no words to the right, pass in an empty ("") string. For best results, passin at least two words
when possible.

Return Values

None.

Remarks

This maximizes speech recognition accuracy. In this case the context we are referring to is the words
surrounding the current speech input location (usually one or more words, if any, on either side of the
cursor). This allows sentences such as"| have two pencils' and "l went to work" to be resolved
correctly.For maximum speech recognition accuracy the engine context must be updated when:

IBM SDK for Windows 729

Properties, Methods, and Events

» The cursor location changes.

» Exigting text is deleted from the current document.

* New text istyped or pasted into the current document.
* When anew document is opened or made current.

No context update is necessary if cursor movement isaresult of normal dictation speech input (i.e. the
cursor moves from n to n+5 when the word "test " is recognized and inserted). The number of words
which should be provided for optimal accuracy will vary depending on the underlying speech engine
installed. In most cases 2 words on either side will provide the necessary context, although, more may
be passed without problem. The engine will simply use what it can and discard the rest. However, you
must keep in mind that depending on engine implementation and configuration there may be
unacceptable memory and processing overhead associated with excessively large blocks of text used
for context.

Example

In Visual Basic:
‘WDi ct.Set Context (LeftText, RightText) ‘

In Visual C++:
‘ m pl VWDi ct ati on->Set Cont ext (LeftText, RightText); ‘

See Also
“SetBookMark” on page 727

730 IBM SDK for Windows

Dictation Control Methods

SplitOutL eftWord

Splits a phrase into its component words or to isolate a single word within a phrase (for deletion
perhaps).

Syntax

In Visual Basic:

Sub SplitQutLeftWrd(RecoHandl e As Long,
RightText As Stri ng,
Ri ght Fl ags As Long,
Left RecoHandl e As Long,
Left Text As String,
Left Fl ags As Long)

In Visual C++:

HRESULT SplitQutLeftWrd(VV_RecoHandl e RecoHandl e, BSTR* Ri ght Text,
| ong* Ri ght Fl ags,
VW_RecoHandl e* Left RecoHandl e,
BSTR* Left Text,
| ong* LeftFl ags)

Parameters

RecoHandle
Long. A 32 bit value that uniquely identifies the phrase to be manipulated. The RecoHandle for a
phrase is passed as one of the parameter to the PhraseReco event. This existing RecoHandle will
represent the right side of the phrase after a successful split occurs.

RightText
String. Thetext of the remaining portion of the phrase after the first word is removed.

RightFlags
Long. The formatting flags indicating how this phrase should be combined with any surrounding
text.

LeftRecoHandle

IBM SDK for Windows 731

Properties, Methods, and Events

Long. A 32 bit value that uniquely identifies the new phrase consisting of the left word of the
origina phrase.

LeftText
String. Thetext of the new single word "phrase” (the left word of the original phrase).

LeftFlags
Long. The formatting flags indicating how this phrase should be combined with any surrounding
text.

Return Values

None.

Remarks

SplitOutL eftWord will allow you to take an existing phrase of more than oneword and convert it into
two phrases. The "left phrase” will consist of the first word of the original phrase. The "right phrase"
will consist of the remainder of the original phrase.

If the original "phrase” consists of only a single word, the new LeftRecoHandle will be NULL and the
LeftText will be an empty string (""). For languages where the client can make use of the true
HRESULT return value, avalue of S FALSE will be returned.

Example

In Visual Basic:

VWDi ct. SplitQutLeftWwrd (O dRecoHandl e, Ri ght Text, Ri ghtFl ags,
NewRecoHandl e, LeftText, LeftFlags)

In Visual C++:

m pl VWDictation->SplitQutLeftWwrd (hdd, &bstrRight, & Ri ghtFlags,
HNew, &bstrlLeft, & LeftFl ags);

732 IBM SDK for Windows

Dictation Control Methods

See Also
“VVDictation Phrase Formatting Flags” on page 741

IBM SDK for Windows 733

Properties, Methods, and Events

Dictation Control Events

The ViaVoice Dictation control supports the following events:
» DictationStateChange

» HitBookMark

» PhraseReco

734 IBM SDK for Windows

Dictation Control Events

DictationSateChange

Event fired when the ability to receive dictation input changes.

Syntax

In Visual Basic:
‘ Event DictationStateChange(DictationOn As Bool ean) ‘

In Visual C++:
‘ HRESULT Di ctati onSt ateChange (VARI ANT_BOOL DictationOn) ‘

Parameters

DictationOn
Long. The current state of dictation.

Return Values

TRUE
The control is ready to receive speech input and turn it into text.

FALSE
The control is not able to receive speech input.

Remarks

You can explicitly change the state of dictation by setting the value of the DictationOn property in the
control. If the new state set is different from the previous state, the DictationStateChange event will
be fired upon successful transition to the new state. This does not imply anything about dictation
availability based on the AutoDictationWindow.

IBM SDK for Windows 735

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub WWDict_DictationStateChange(ByVal DictationOn As Bool ean)
ProcessDi ctati onSt at eChange (DictationOn)
End Sub

In Visual C++:

Voi d CVWDi ct Events: : DictationStateChange(VAR ANT_BOOL DictationOn)
{

}

m_pCl i ent - >ProcessDi ct ati onSt at eChange (Di ctati onOn);

See Also

“AutoDictationWindow” on page 702
“DictationOn” on page 704

736 IBM SDK for Windows

Dictation Control Events

HitBookM ar k

Event fired when the engine begins to process audio occurring after a bookmark was successfully set
using the SetBookM ar k method.

Syntax

In Visual Basic:
‘ Event Hit BookMar k(BookMar ki d As Long) ‘

In Visual C++:
| HRESULT Hi t BookMark (| ong BookMarkld) |

Parameters

BookMarkld
Long. The value which was passed as an argument to SetBook M ark when the bookmark being
processed was set.

Return Values

None.

Remarks

In many cases the context will need updating when a bookmark is hit.

IBM SDK for Windows 737

Properties, Methods, and Events

Example

In Visual Basic:

Private Sub VVDi ct_Hi t BookMar k(BookMarkld As Long)
ProcessBookMark (BookMarkld)

End Sub
In Visual C++:
voi d CVVDi ct Events: : Hi t BookMark(| ong BookMarkld)
{
ProcessBookMar k (BookMarkld);
}
See Also

“SetBookMark” on page 727
“SetContext” on page 729

738 IBM SDK for Windows

Dictation Control Events

PhraseReco

Event fired when dictation speech input isrecognized to provide the client with the dictated text along
with flags indicating how this phrase should be combined with existing text.

Syntax

In Visual Basic:
‘Event PhraseReco(Text As String, RecoHandl e As Long, RecoFlags As Long) ‘

In Visual C++:

HRESULT PhraseReco (BSTR Text,
VW_RecoHandl e RecoHand! e,
VW_RecoFl ags RecoFl ags)

Parameters

Text
Long. Thisisthetext that was recognized.

RecoHandle
Long. A 32 bit value that uniquely identifies the current phrase. In most cases this "RecoHandle"
should be stored in some way mapped to the displayed text. Thiswill allow you to ask
VVDictation to perform various manipulations of the current phrase in the future such as
correction and playback. For more information on how the RecoHandle is used by VVDictation
you see the VV Dictation methods documentation.

RecoFlags
Long. Flags indicating how the current phrase should be combined with existing text.

Return Values

None.

IBM SDK for Windows 739

Properties, Methods, and Events

Remarks

For instance, flags could indicate that the current text should replace the last "phrase”. It might also
cause the next word to be capitalized if this phrase endsin a period.

Example

In Visual Basic:

Private Sub VWD ct _PhraseReco(ByVval Text As String,
ByVal RecoHandl e As Long,
ByVal RecoFl ags As Long)
' Do sonet hing useful
End Sub

In Visual C++:

voi d CVVDi ct Events: : PhraseReco(BSTR Text,
VW_RecoHandl e RecoHandl e,
VWW_RecoFl ags RecoFl ags)

{
}

/1 Do sonething useful

See Also
“VVDictation Phrase Formatting Flags” on page 741

740 IBM SDK for Windows

Dictation Control Events

VVDictation Phrase Formatting Flags

Phrase formatting flags indicated how a given phrase should be combined with existing text. This
might include replacing the previous phrase (if multi-phrase formatting is enabled) or capitalizing the
next word if the given phrase isthe end of a sentence. Each of the phrase formatting flagsislisted
below with a short description of their meaning and use.

FF_EXPANDED_MACRO (0x00000001)

This phrase is not the actual text that was spoken. The spoken text has been replaced with text
specified in amacro or through advanced formatting. These services are available only with
the IBM speech recognition engine.

FF_JOIN_LEFT (0x00000002)
This phrase should be merged flush against the word to the left with no white space separating
them. For instance this flag will be used if the current phraseisaperiod (". ").

FF_JOIN_RIGHT (0x00000004)
This phrase should be merged flush against the word to the right with no white space
separating them.

FF_CAPITALIZE_NEXT (0x00000008)
This flag indicates that the word following should be capitalized. For instance this flag will be
used if the current phrase is the end of a sentence.

FF_INFIRM_PHRASE (0x00000010)

Thisflag is used only when advanced formatting is available (i.e. ExpandMacrosistrue AND
the IBM speech engine is being used). It indicates that the client may need to replace the
current phrase with the next and should store any information necessary to perform the
replacement as indicated by the flags of the next phrase. Each subseguent phrase that should
replace the "infirm" phrase will also include the FF_INFIRM_PHRASE flag but not the
FF_NEW_PHRASE flag. A phrase with the FF_NEW_PHRASE flag indicates that any
previous multi-phrase formatting is completed (i.e. a phrase with the FF_NEW_PHRASE flag
should not replace a previous phrase having the VV_INFIRM_PHRASE flag). The
FF_INFIRM_PHRASE flag may be combined with the FF_NEW_PHRA SE flag if the current
phraseis both anew phrase in its own right AND an infirm phrase as well.

FF_NEW_PHRASE (0x00000020)

This flag indicates the current phrase is an entirely new phrase and any previous "infirm"
phrases (having the FF_INFIRM_PHRASE flag) are now complete. This flag may be
combined with the FF_INFIRM_PHRASE flag if the current phraseis both anew phraseinits
own right AND an infirm phrase as well.

IBM SDK for Windows 741

Properties, Methods, and Events

* FF_UPPERCA SE (0x00000040)
This flag indicates the word following this phrase should be displayed using all uppercase
characters.

 FF_LOWERCA SE (0x00000080)
This flag indicates the word following this phrase should be displayed using all lowercase
characters.

742 IBM SDK for Windows

Chapter 37 Dictation Control Frequently Asked
Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice Dictation
Control.

When should | usethe Dictation control?

VVDictation provides a simple means of just getting the text of what was said one phrase at a
time. What you do with that text is up to you. You may or may not care about getting audio later
and or doing correction in which case you could just destroy the RecoHandles provided and use
the text. However, if you have or are attempting to build aword processor which is speech enabled
on top of this object you will still have a great deal of work to do just to manage speech.

When should | usethe DictationMgr control?

VVDictationM gr does almost everything you need to do normal document based di ctation except
show it to the user. You only have to keep the user interface synchronized with VV DictationM gr
through character idices. If you are not voice enabling aword processor or memo type application
then this may well be more than you really need. VVDictationM gr will also not be suitable for
voice enabling applications where it is not possible to synchronize using character indices.

IBM SDK for Windows 743

Dictation Control Frequently Asked Questions

744 IBM SDK for Windows

Chapter 38 Gaﬂ ng S:a‘tw W| th the V| rtUd
Voices Control

This chapter contains basic information to help you get started using the Virtual Voices ActiveX
control.

Overview

Virtual Voicesisan ActiveX control that enables devel opers to incorporate personality into their
applications. A personality is represented through avoice (using text-to-speech or prerecorded audio
wave file) and an animated face. The voice and face become the spokesperson through which the user
interacts with the application.

The Virtual Voices Control can be used within applications to provide many useful functions as well
as to enhance the usability and overall appeal of the application. For example, an e-mail application
could usethe Virtual Voices Control to read unopened mail to the user. In an Internet browser, the
Virtual Voices Control could read selected text. In atextbox, the Virtual Voices Control is used to
read back dictated text. What's more, using speech recognition and text-to-speech, an application could
“talk” to the user in the context of an ongoing dialog.

Virtual Voices includes a text-to-speech engilvéaVoice Outloud that converts plain text to audible
speechVirtual Voices also includes an engine that animates the face. The animated face is
synchronized with the text-to-speech or audio output.

Note:
The animated face is optional.

TheVirtual Voices Control is built on Microsoft's Speech Application Programmingrfate (SAPI)

to provide text-to-speech within client applications. It runs with SAPI-compliant text-to-speech
engines, but hides this imface layer from the gghication developer. With th€irtual Voices Control,
developers have access to state-of-the-art text-to-speech capabilities without learning SAPI. They ce
manipulate th&/irtual Voices Control using either high-level or low-level tools, and they can use it in
Visual Basic, as well as in Visual C++ applications.

IBM SDK for Windows 745

Getting Started with the Virtual Voices Control

Since the Virtual Voices Control isan ActiveX control, it can, for example, be placed inside a L otus
Notes document, a Word document, or an Excel spreadsheet. The user can drop some highlighted text
or audio on it, and the control will read it back to the user. Inserting the control into container
applications enabl es text-to-speech to be used without having the applications to be rewritten
specifically to handle text-to-speech.

Asan example, to insert the Virtual Voices Control into a Lotus Note (you must have this version of
the Viavoice SDK installed), you can:

Start Lotus Notes (Release 4 or higher) and create anew memo. Position the cursor within the body of
the memo.

» Select Create.
» Select Object.

» Select Virtual Voices Control and then click OK.
This procedure places the Virtual Voices Control in your memo at the current insertion point. You
can set its properties while editing the memo, then send it to a colleague (who must also have the
same version of the SDK installed on his or her machine). The person receiving the memo can hear
the control speak by double-clicking it.

746 IBM SDK for Windows

How the Virtual Voices Control Works

How the Virtual Voices Control Works

Since the Virtual Voices Control isan ActiveX control, it appears within a container (application)
window. It can take on any of three forms: an icon, aface, or neither (that is, it can beinvisible). Asan
icon, the Virtual Voices Control lookslikethis:

a4 DigDemo
Move O, O setParent Clip ‘
howe 100, 100 ShowHide FPausume ‘

Wirtual “oices Control

1'@ This I1s a demonstration of

=] the Virtual Vaices OCH
Highlight some text in
another application and
copy it to the clipboard.
Then, click the right mouse
button over the “irtual
“olces icon to bring up its
context menu and select
Faste.’

Speak | Exit

Figure52. Virtual Voicesasan I con

IBM SDK for Windows 747

Getting Started with the Virtual Voices Control

Displayed as aface, the Virtual Voices Control looks like this:

2.1 DlgD emo b

Move O, O metParent Clip ‘

Bowe 100, 100 show/Hide Fausume ‘

“Yirtual Yoices Control

This is a demonstration of
~ the “irual Yoices OCK,
i Highlight some text in
another application and
}.____-/’ copy 1t to the clipboard.
Then, click the right mouse
button over the “irual
“olces icon to bring up its
context menu and select
Paste.’

b)Y

Speak | Exit

Figure53. Virtual Voicesasa Face

748 IBM SDK for Windows

How the Virtual Voices Control Works

The face can also be clipped; that is, instead of appearing within a rectangular window, the window in

which the face is displayed is “clipped” to the actor shape. If the control is clipped, and made a child o
the desktop, it functions as a sprite. (A sprite is an animated, non-rectangular object that can be mov:
around the desktop.)

Faces are implemented in two different styles: as vector drawings or as bitmaps. There are eight fac
provided withVirtual Voices. Four of them are implemented using vector drawings (Benny, Betty,
Charlie, and Woodrow); the other four are implemented as bitmaps (Computer, Curly, Kincaid, and
Kingsley).

To cause th&irtual Voices Control to speak, the user double-clicks the icon or the face. The control
will speak the text specified in tt@peak Text property (ifUseWave is set to False), or the wave file
specified in thaVaveFileName property (ifUseWave is set to True). The Control synchronizes the
face animation with the speech output. The user can drag-and-drop text or audio over the control to
cause it to speak.

The functions of th&irtual Voices Control are also available to the end user through a context menu.
When the user places the pointing device cursor over the control (over its icon or, if a face is selecte
over its face), and clicks thaght mouse button, the context menu appears:

Spealk
Paste
Froperties. ..

Figure 54. Virtual Voices Context Menu

The context menu contains three options: Speak, Paste, and Properties.

Speak

The first option,Speak, causes one of two things to happen: IftlseWave property is set to False,

then the text stored in the control is converted to wave audio and is played back through the default
wave audio device (usually, the system speaker). If/da¥Vave property is set to True, then the audio
wave file pointed to by th&/aveFileName property in the control is played back through the default

IBM SDK for Windows 749

Getting Started with the Virtual Voices Control

wave audio device. In either case, if aface has been enabled for the control, then the face is animated
while speaking.

Paste

The second option, Paste, retrievestext or audio (if any) from the system clipboard, sets the
corresponding property, and speaks it.

The end user can aso place text or audio in the control by dragging and dropping it on the control.
When text or audio is dropped on the control, it is spoken without further action required from the end
user.

Properties

Thethird option, Properties, displaysthe Virtual Voices Control Properties pages. If the Virtual
Voices Control property AllowPropertiesis set to False at design time, this option does not appear on
the context menu. If AllowPropertiesis set to True, the end user can set the properties of the Virtual
Voices Control through the property pages at run time. You can make the property pages appear in

your code by issuing the DoProperties method. For more information, refer to “DoProperties” on page
793.

There are three tabs in tértual Voices properties dialog box: Voice Models, Text, and Actor
Gallery.

Voice M odels Page

Use the Voice Models page to select and configure the voice that will be used as shown below:

750 IBM SDK for Windows

How the Virtual Voices Control Works

Yirtual Yoices Control Properties =

oice Models l T et] Actar Gallery]

Selected Speaker:

E niglish-Airnenican: W

Style:; Mormal

Age: Adulk
Gender: Male

Sample Woice | Advanced YWoice Settings. .. |

aF. Cancel | Apply | Help

Figure55. Virtual Voices Properties- Voice M odels Page

The available voices are listed in the Selected Speaker list box.

Note:
The Style, Age, and Gender characteristics of the voice are defined by the ViaVoice Outloud
(text-to-speech) engine and are provided for informational purposes only. They cannot be set by
the developer or the end user.

Click Sample Voice button to hear a short sample of the selected voice. To customize the
characteristics of the selected voice, click Advanced Voice Settings.

At design time, the Voice Models page also lets you set whether the Properties option will be available
from the context menu (Allow Property Settings) and whether the context menu will be shown at run
time (Show Context Menu).

IBM SDK for Windows 751

Getting Started with the Virtual Voices Control

Note:
These options are not visible to the end user.

Text Page

Usethe Text page to set the type of speech output used, either text-to-speech (Use Text) or audio wave
file (Use Wave). The two selections are mutually exclusive. You can set the text that will be spoken as
shown below:

Yirtual Yoices Control Properties

Vioice Models Tent I Actor Gallery I

Text to be gpoken:

This iz a demanstration of the ViaVoice Outloud.

% |se Text
Wave file name:
i~ seWave
Eraivge., |
aF. I Cancel | Apply Help

Figure56. Virtual Voices Properties - Text Page Selecting Text

Or, you can specify the name of an audio wave file to be played as shown below:

752 IBM SDK for Windows

How the Virtual Voices Control Works

Yirtual Yoices Control Properties

Vioice Models Tent I Actor Gallery I

Text to be gpoken:

it b the clipboard. Then, click the nght mouse ﬂ
€ Use Text buttor over the Virtual Woices icon to bring up itz
context menu and select 'Paste.” j

Wiave file name;

% |Jse'Wave

Browwze. .. |

aF. I Cancel | Apply Help

Figure57. Virtual Voices Properties- Text Page Selecting Wave File

Note:

The Virtual Voices Control uses the UseWave property to determine which type of speech output
to perform. If the UseWave property is set to True (that is, if it is selected), the control will play the
specified audio wavefile, evenif thereistext in the Text-to-Be-Spoken text box. Conversely, if the
UseWave property is set to False (that is, if it is not selected), the control will convert the text (if
any) typed in the Text-to-Be-Spoken text box to audible speech, even if thereis an audio wavefile
specified in the wave file name text box.

IBM SDK for Windows 753

Getting Started with the Virtual Voices Control

Actor Gallery Page
Use the Actor Gallery page to select an actor face for the control as shown below:
Yirtual Yoices Control Properties

Yoice Models I Temt Actor Gallery |

i

J M arne: Kincaid

Default Expreszsion:

IBE Metral j

aF. I Cancel | Apply Help

Figure58. Virtual Voices Properties- Actor Gallery Page

On this page, you can aso set the default expression (that is, the expression that will be used when the
actor is not speaking). Note that the name cannot be set by the user or the developer.

To specify whether a face will be displayed, click Use Animated Face. If this box is not checked, the
Virtual Voicesicon will be shown instead of aface.

754 IBM SDK for Windows

How the Virtual Voices Control Works

Programming | nterfaces

The Virtual Voices Control provides arobust set of programming interfaces through which devel opers
can incorporate text-to-speech into their applications. Most of these interfaces are available in both
Visual C++ and Visua Basic.

There are three types of interfaces provided by the Virtual Voices Control:

» Methods to query and set Virtual Voices properties
» Methods to invoke Virtual Voices functions
» Eventsthat signify relevant conditions have occurred in the Virtual Voices control

Thefollowing chapters describe these interfaces in detail and provide programming examples to
illustrate how they are used.

IBM SDK for Windows 755

Getting Started with the Virtual Voices Control

756 IBM SDK for Windows

Chapter 39 |ntroduction to Virtud Voices
Control

Filesand Directoriesthat Support Virtual
Voices

Thefiles necessary to support the Virtual Voices Control areinstalled with this version of the
ViaVoice SDK. The following additional directories and files are included for Virtual Voices:

Bin This directory is created under the run time directory. It
includesthe Virtual Voices Control and DLLs.

Data This directory is created under the run time directory. It
contains the data files used to define the actor faces.

Docs This directory is created under the SDK directory. The
documentation for this control isincluded in the ActiveX
Developer’s Guide.

IBM SDK for Windows

757

Introduction to Virtual Voices Control

758 IBM SDK for Windows

Chapter 40 Properties, Methods, and Events

Virtual Voices Control Properties

A Virtual Voices Control contains many properties through which the end user or the developer can
customize its appearance and behavior. All Virtual Voices properties can be queried using a “Get”
method. Properties that are not read-only can be set using a “Set” method. The following topics are
provided for each of theirtual VVoices property:

* How adeveloper can query and set a Virtual Voices property
» Sample codes that show how to set a Virtual Voices property

» Other propertiesinherent to Virtual Voices becauseit isan ActiveX control. These properties can
also be manipulated by the developer, causing interesting behaviorsin the Virtual Voices Contral.

The syntax for each property is offered for both Visual C++ and Visual Basic.

In Visual Basic:

The “Get” and “Set” methods for a property use the following format:

<property name> Returns the current value of the property
<property hame>=value Sets the property to value
In Visual C++:

The “Get” and “Set” methods for a property use the following convention:

Get<property name> Returns the current value of the property

Set<property name>(value) Sets the property to value

IBM SDK for Windows 759

Properties, Methods, and Events

Actor Name

Gets/Sets the Actor Name property of the control (that is, it selects an actor by name.)

Syntax

In Visual Basic:

‘ActorSvrl.ActorNarre:" String of actor nane"

In Visual C++:
‘voi d Set Act or Name(LPCTSTR) / LPCTSTR Get Act or Nane(voi d)

Remarks

Each actor (or face) has a name. The names are listed in the Actor Gallery page of the Virtual Voices

property pages. This method selects the actor by name.

Valid actor names are:

Benny
Betty
Charlie
Computer
Curly
Kincaid
Kingsey
Woodrow

760

IBM SDK for Windows

Virtual Voices Control Properties

Age (Read Only)

Returns a short Integer conforming to the TTSAGE_XXX attributein the TTSMODEINFO structure
of the SAPI specification.

Syntax

In Visual Basic:
‘ActorSvrl.Age ‘

In Visual C++:
‘short Get Age(voi d) ‘

Remarks
The TTSAGE_XXX values are as follows (from the SAPI 3.0 include the SPEECH.H file):
TTSAGE_BABY 1

TTSAGE_TODDLER 3
TTSAGE_CHI LD 6
TTSAGE_ADOLESCENT 14
TTSAGE_ADULT 30
TTSAGE_ELDERLY 70

For more information, please see “Implementing Text-to-Speech in Applications” in the Microsoft
Speech API Developer's Guide.

IBM SDK for Windows 761

Properties, Methods, and Events

AllowProperties

Sets or getsthe AllowPr operties property.

Syntax

In Visual Basic:
‘ActorSvrl.AI | owPr operti es=True ‘

In Visual C++:
‘voi d Set Al | owProperties(BOOL)/BOOL Get Al | owPr operties(void) ‘

Parameters

AllowProperties
Boolean.

Return Values

TRUE
The end user can access the Virtual Voices property pages and change the properties of the
control. (The user accesses the property pages through the context menu, if it is enabled.)

FALSE
The end user can access the Virtual Voices property pages only if the container callsthe
DoProperties method of the control.

Remarks

The developer can always access the Virtual Voices property pages.

762 IBM SDK for Windows

Virtual Voices Control Properties

BackColor

Sets or gets the background color of the control.

Syntax

In Visual Basic:
‘Act or Svr 1. BackCol or =vbBIl ack ‘

InVisual C++:
| voi d Set BackCol or (OLE_COLOR) |

Return Values

Returns the background color of the control.

Remarks

The animated faces are implemented in two different styles: as vector drawings or as bitmaps. Of the
eight faces provided with Virtual Voices, four of them areimplemented using vector drawings (Benny,
Betty, Charlie, and Woodrow) and the others are implemented as bitmaps (Computer, Curly, Kincaid,
and Kingsley). Therefore, if the control has an animated face, and it uses a vector model to draw the
face (such as Woodrow), then the face background area adopts the background color. If the control
uses a hitmap face (such as Kincaid), or if it does not use a face at all, then setting the background
color has no visible effect.

Note:
The vector model face, by default, adopts the background color of the container in whichiitis
placed, even though it does not show at design time. If you want the control to show a different
color at run time, then use this property to set it.

OLE_COLOR isvery similar to COLORREF, which is a 32-bit value of the form 0x00bbggrr. See the
Microsoft OLE Automation Reference for more detailed information.

IBM SDK for Windows 763

Properties, Methods, and Events

Clipping

Sets or gets the value of the control’s Clipping property.

Syntax

In Visual Basic:
‘Act orSvrl. dippi ng=True ‘

In Visual C++:
|voi d Setdl i ppi ng(BOOL)/ BOOL Get O i ppi ng(voi d) |

Parameters

Return Values
TRUE

FALSE

Remarks

This property specifies whether the actor appears within a rectangul ar window, or whether the window
is clipped to the actor shape.

The Clipping property interacts with the UseFace and Actor Name properties. If Clipping is set to
FALSE (the default value for new instances of the control), the control appears within awindow. When
visible, the control appears either as an actor or an icon within a borderless, rectangular window.

764 IBM SDK for Windows

Virtual Voices Control Properties

If Clipping is set to TRUE, and UseFace is FALSE, it has no effect on theicon. If Clipping and

UseFace are both TRUE (and if the control isvisible), the control's window is clipped to the shape of

the actor. The clipping algorithm finds the transparent color at (0,0) within the actor dataset. It then

clips out, or makes invisible, all adjacent pixels with the same value. If a selectable object is “beneath
the control's window, it is visible and selectable.

The Clipping property is made persistent by the container. Its value can be set by the developer at
design time and changed at run time through SetClipping(). The end user does not have access to tt
Clipping property (that is, there is no property page control for it.)

Clipping can be set at any time. When thetor Name or UseFace properties are changed, the current
Clipping value is applied to the new face. For example, if one actor is being shown with clipping when
another actor is selected, the new actor is clipBégping is supported in any screen color depth (8-,
16-, and 24-bit color) and display resolution.

Computer, Kincaid, and Kingsley do not support clipping.

IBM SDK for Windows 765

Properties, Methods, and Events

DefaultExpression

Sets or gets the DefaultExpr ession property.

Syntax

In Visual Basic:
‘ActorSvrl. Def aul t Expr essi on=I nt eger ‘

In Visual C++:
‘voi d Set Def aul t Expressi on(short)/ Short Get Def aul t Expressi on(voi d) ‘

Remarks

The default expression is shown whenever the control returns from its Speak method. The default
expression is ashort Integer with the following values:

Neutral

Happy
Thoughtful

Surprised
Asleep

A W N P O

766 IBM SDK for Windows

Virtual Voices Control Properties

EXpression
Sets or getsthe Expression property.

Syntax

In Visual Basic:
‘ Act or Svr 1. Expr essi on=I nt eger ‘

In Visual C++:
‘voi d Set Expression(short)/short GetExpression(void) ‘

Remarks

If an animated face isvisible at the time this method is called, the requested expression is shown. The
face continues to display this expression while the contral is speaking. When the control finishes
speaking, it displays the DefaultExpression.

The expression is a short Integer with the following val ues:

Neutral

Happy
Thoughtful

Surprised
Asleep

A WO N L O

IBM SDK for Windows 767

Properties, Methods, and Events

Gender (Read Only)

Returns a short Integer conforming to the GENDER_X XX attribute in the TTSM ODEINFO structure
of the SAPI specification.

Syntax

In Visual Basic:
‘ActorSvrl. CGender ‘

In Visual C++:
‘short Get Gender (voi d) ‘

Remarks

The GENDER_XXX values are as follows (from the SAPI 3.0 include the SPEECH.H file):
GENDER _NEUTRAL 0
GENDER_FEMALE 1
GENDER_MALE 2

For more information, please see “Implementing Text-to-Speech in Applications” in the Microsoft
Speech API Developer's Guide.

768 IBM SDK for Windows

Virtual Voices Control Properties

M odeGuid

Sets or gets the M odeGuid property in this instance of the control.

Syntax

In Visual Basic:
‘Act or Svrl. ModeCui d="A valid GUI D string" ‘

InVisual C++:
|voi d Set ModeGui d(LPCTSTR) / LPCTSTR Get NodeGui d(voi d) |

Remarks

A GUID is sometimes referred to asa CLSID. The definition of a GUID may be found in the
Microsoft OLE Automation Reference.

Under SAPI, text-to-speech engines identify each of their “voice modes” with a separate globally

unique identifier, or GUID. Each voice mode has differertilale characteristics. (For instance, a
vendor might support separate voice modes and languages for male and female voices.)

A GUID is a 128-bit number. These methods require a string representation of that number. Note tha
each GUID string begins and ends with curly brackets ({}). The following GUIDs are valid for the

control:
English-American: Wade (Adult Male) {BF5EAD40-9F65-11CF-8FC8-0020AF14F2Y1}
English-American: Flo (Adult Female) {BF5EAD41-9F65-11CF-8FC8-0020AF14F2)1}

English-American: Grandpa (Elderly Male {BF5EAD42-9F65-11CF-8FC8-0020AF14F2

Female)

IBM SDK for Windows 769

English-American: Grandma (Elderly {BF5EADA43-9F65-11CF-8FC8-0020AF14F271}

71}

English-American: Bobbie (Child) {BF5EAD44-9F65-11CF-8FC8-0020AF14F271}

Properties, Methods, and Events

English-American: Wade-Tel (Adult Male { BF5EAD45-9F65-11CF-8FC8-0020A F14F271}
for Telephone)
English-American: Flo-Tel (Adult Female { BF5EAD46-9F65-11CF-8FC8-0020A F14F271}

for Telephone)

If the ModeGuid property is not set before the Speak method is called, the control uses the first voice
mode it finds on the end-user's machine.

770 IBM SDK for Windows

Virtual Voices Control Properties

Pitch

Sets or getsthe Pitch property.

Syntax

In Visual Basic:

‘ Act or Svr 1. Pi t ch=I nt eger

In Visual C++:

‘voi d SetPitch(long)/long GetPitch(void)

Remarks

Sets the baseline frequency of the text-to-speech voice to the pitch, in Hertz, that you specify.
Allowable valuesfor pitch are:

Male

33to 150 Hertz

Female

60 to 200 Hertz

To determine the minimum pitch for a particular voice, set pitch to 0 and then query it. To find out the
maximum pitch for aparticular voice, set pitch to Oxffff and then query it.

IBM SDK for Windows

771

Properties, Methods, and Events

ShowM enu

Sets or gets the ShowM enu property for the control.

Syntax

In Visual Basic:
‘Act or Svr 1. Showvenu=Tr ue ‘

In Visual C++:
‘voi d Set Showivenu(BOOL)/BOOL Get ShowMenu(voi d) ‘

Remarks

If the ShowM enu property is set to TRUE, the end user can access the context menu by clicking the
alternate select button over the control. Otherwise, the context menu does not appear, and the
properties and behavior of the control maintain their design-time settings until they are changed by the
container application (by setting a property).

772 IBM SDK for Windows

Virtual Voices Control Properties

Speak Text

Sets or getsthe Speak Text property in this instance of the control.

Syntax

In Visual Basic:
‘ Act or Svr1. SpeakText ="text string"

In Visual C++:

voi d Set SpeakText (LPCTSTR)
LPCTSTR Get SpeakText (voi d)

Remarks
The LPCTSTR is a pointer to array of characters that arsgoken” by thé/iaVoice Outloud (text-
to-speech) engine when tBpeak method is invoked or when the ActiveX verb “Edit” is invoked.

The SpeakText property is also set by dropping a text file on the control or by pasting text from the
clipboard using the context menu.

The default value is “I don't have anything to say.” The maximum length of the text string is 64K, or
65535 bytes.

IBM SDK for Windows 773

Properties, Methods, and Events

Speed

Sets or gets the Speed property.

Syntax

In Visual Basic:
‘Act or Svr 1. Speed=I nt eger ‘

In Visual C++:
‘voi d Set Speed(! ong)/1 ong Get Speed(voi d) ‘

Remarks

Sets the baseline average speed of the text-to-speech voice to the speed, in words per minute, that you
specify. Valid values for speed range from 30 to 300. To find the minimum speed for a particular voice,
set speed to 0 and then immediately query the speed. To determine the maximum speed for avoice, set
speed to Oxffffffff and then immediately query the speed.

774 IBM SDK for Windows

Virtual Voices Control Properties

UseFace

Sets and gets the UseFace property so that an animated face can be used.

Syntax

In Visual Basic:
‘Act orSvrl. UseFace=Tr ue

In Visual C++:

voi d Set UseFace(BOOL)
/ BOOL Get UseFace(voi d)

Remarks

The Virtual Voices Control detects whether the text-to-speech engine supportsthe Visual method in the
ITTSNotify COM interface. If it does, and this property is TRUE, then the selected actor’'sfaceis
animated when the control is speaking. If it does not, then the face is visible in the control, but is not
animated.

If this property is FAL SE, then the control displays itsicon.

The default value is FALSE.

IBM SDK for Windows 775

Properties, Methods, and Events

UseWave

Sets the type of speech output to be used by the control.

Syntax

In Visual Basic:
‘Act orSvrl. UseWave=Tr ue ‘

In Visual C++:
‘voi d SetUseWave(BOOL) /BOOL Get UseWave(voi d) ‘

Remarks

If the UseWave property is set to TRUE, the control uses its wave audio when the Speak method is
caled. Otherwise, it usesitstext.

The default value is FALSE.

776 IBM SDK for Windows

Virtual Voices Control Properties

Volume

Sets the Volume property.

Syntax

In Visual Basic:

‘ActorSvrl.VoI ume=l nt eger ‘

In Visual C++:
‘voi d SetVol ume(l ong) /1 ong Get Vol une(voi d) ‘

Remarks

Sets the baseline speaking volume of the text-to-speech voice to the volume that you specify. The low-
order word is the left channel, and the high-order word is the right channel. Volume can range from 0
to Oxffff for each channel, left and right.

IBM SDK for Windows 777

Properties, Methods, and Events

WaveFileName

Sets or gets the name of the Virtual Voices Control audio wavefile.

Syntax

In Visual Basic:

‘Act or Svr 1. WaveFi | eNane="fil e nane"

In Visual C++:

voi d SetWaveFi | eNane(LPCTSTR)
/ LPCTSTR Get WAaveFi | eNanme(voi d)

Remarks

The control does not “Speak” the wave audio unleddsgsVave property is set to TRUE.

If the control can find and open the file, and if the file is a valid RIFF format wave file, it reads the
contents of this file and closes the file. The maximum size of the wave file is limited by the amount of
available memory, or DWORD, whichever is less.

The control makes no further use of this name. In particular, the control can be moved to other
machines where this wave file might not exist, since the control uses the stored audio wave file to
speak wave audio.

This property is also set when an audio wave file is dropped onto the control, or when a wave file name
is entered on the property page.

778 IBM SDK for Windows

ViaVoice Outloud (Text-To-Speech) Engine Attributes

ViaVoice Outloud (Text-To-Speech) Engine
Attributes

Certain attributes of the ViaVoice Outloud (text-to-speech) engine are supported as persistent
properties of the Virtual Voices Control. When modified at design time in Visual Basic or Visual C++,
these attributes are stored with the application and restored at run time through property persistence.
The end user can change these properties through the Virtual Voices Properties pages, and the control
honorsthe new values if they are applied. The client application can also query and set these properties
asthough they are Virtual Voices properties through “Get” and “Set” methods. The text-to-speech
attributes and their respective “Get” and “Set” methods are described in detail below.

The text-to-speech properties interact with the selected voice mbmeGuid property.) If the voice
mode is changed, whether through 8eeM odeGuid method or through theirtual Voices Properties
pages, all the attributes of the new voice, including those &fitidéoice Outloud engine-specific, are
read from the SAPI engine and applied to the control's properties.

IBM SDK for Windows 779

Properties, Methods, and Events

Breathiness

Sets or getsthe Breathiness property of the IBM ViaVoice Outloud (text-to-speech) engine.

Syntax

In Visual Basic:

‘ Act or Svr 1. Breat hi ness | nt eger ‘

In Visual C++:
‘voi d SetBreat hi ness(short) /short GCetBreathiness(void) ‘

Remarks

This property controls the amount of breathinessin the voice. A low value produces a voice with no
breathiness. A high value adds significant breathiness. A value of 100 produces a whisper. If the
current voice mode is not one of the IBM ViaVoice Outloud (text-to-speech) engine modes, the
property is set, but has no effect.

Values range from 0 to 100, with 0 being minimum, and 100 being maximum, or a whisper.

780 IBM SDK for Windows

ViaVoice Outloud (Text-To-Speech) Engine Attributes

HeadSize

Sets or gets the HeadSize property of the IBM text-to-speech engine.

Syntax

In Visual Basic:
‘ Act or Svr 1. HeadSi ze=I nt eger ‘

In Visual C++:
‘voi d Set HeadSi ze(short)/ short GetHeadSi ze(voi d) ‘

Remarks

This property controls the size of the head for the speaker, changing the pitch and acoustics of the
voice. A large number indicates a large head and a deeper voice.

If the current voice mode is not one of the IBM ViaVoice Outloud (text-to-speech) engine modes, the
property is set, but has no effect.

Values range from 0 to 100, with larger valuesindicating a larger head and thus a deeper voice.

IBM SDK for Windows 781

Properties, Methods, and Events

PitchFluctuation

Sets or getsthe PitchFluctuation property of the IBM ViaVoice Outloud (text-to-speech) engine.
Syntax

In Visual Basic:

‘ActorSvrl. Pi t chFl uct uat i on=I nt eger ‘

In Visual C++:
‘voi d SetPitchFl uctuation(short)/ short GetPitchFluctuation(void) ‘

Remarks

This property controls the amount of pitch change in the voice. A value of zero produces a voice with
no pitch fluctuation, resulting in monotone speech. A high value produces a voice with large pitch
fluctuation, which istypical of excited speech.

If the current voice mode is not one of the IBM ViaVoice Outloud (text-to-speech) engine modes, the
property is set, but it has no effect.

Values range from 0 to 100, with 0 being minimum, or monotone, and 100 being maximum, or excited.
Thereisno direct correlation to Hertz.

782 IBM SDK for Windows

ViaVoice Outloud (Text-To-Speech) Engine Attributes

Roughness

Sets the Roughness property when running on the IBM ViaVoice Outloud (text-to-speech) engine.

Syntax

In Visual Basic:
‘ActorSvrl. Roughness=I nt eger ‘

In Visual C++:
‘voi d Set Roughness(short) ‘

Remarks

This property adds roughness to the voice, a quality of the vocal chords. A low value produces a
smooth voice, while a high value produces a rough, or scratchy, voice.

If the current voice mode is not one of the IBM ViaVoice Outloud (text-to-speech) engine modes, the
property is set, but has no effect.

Values range from 0 to 100, with 0 being minimum, or smooth, and 100 being maximum, or scratchy.

IBM SDK for Windows 783

Properties, Methods, and Events

Example - Setting a Property

In Visual Basic;

The following exampleillustrates setting the Expression property in Visua Basic. The actor’s
expression is set to surprised (3) when speaking is cancel ed.

Private Sub Command2_Cl i ck()
Act or Svr 1. Cancel

Actor Svr 1. Expression = 3

End Sub
Figure59. Settingthe Expression Property in Visual Basic

In Visual C++:

The following exampleillustrates setting the Expression property in Visual C++. In this example, the
actor's expression is set to surprised (3) when speaking is interrupted, and to happy (1) when the actor
speaks.

784 IBM SDK for Windows

ViaVoice Outloud (Text-To-Speech) Engine Attributes

voi d CExanpl e: : OnSpeak()

{
/] TODO Add your control notification handler code here...
/1 When the Speak button is clicked, call the Virtual Voices
/'l Speak nethod

if (mblsSpeaking) // 1f busy speaki ng when clicked
{
swi tch (Af xMessageBox(LPCTSTR("Virtual Voices control is
busy speaking."), MB_ABORTRETRYI GNORE | MB_| CONSTOP))
{
case | DRETRY: /1 Try to speak again
OnSpeak();
br eak;
case | DI GNORE:
m WCtrl . Set Expression(3); // Surprised when
/1 interrupted
m WoCtrl . Speak(); // Interrupt busy control
br eak;
} /1 Abort cancels request
}
el se
{
m WCtrl . Set Expression(1): /1 Happy
m WCtrl. Speak(); // Control is not busy,
/1 so honor user’s
/'l request to speak

}

Figure 60. Settingthe Expression Property in Visual C++

IBM SDK for Windows

785

Properties, Methods, and Events

Other Useful Properties

Because the Virtual Voices Control isan ActiveX control, you can manipul ate some of the standard
properties for the control, which can result in some interesting and desirable behaviors. For example,
you might find it useful to set some of these properties for the Virtual Voices Control:

Visibility
By hiding the control’s window, you can provide speech output within your application without
displaying an additional interface element. The Virtual Voices Control can operate invisibly.

Note:
If the control is hidden when it comes up, the | nitDone event is not triggered.

In Visual Basic:
Use the custom control Visible property:

If ActorSvrl.Visible = Fal se Then
ActorSvrl.Visible = True ‘show it
Else
ActorSvrl.Visible = False ‘hide it
End If

Figure61. Hiding and Showing the Virtual Voices Control Window in Visual Basic

In Visual C++:
Use the superclass method SetWindowPlacement as follows:

786 IBM SDK for Windows

ViaVoice Outloud (Text-To-Speech) Engine Attributes

W NDOWPLACEMENT wndpl ;
stati c BOOL showSt at e=TRUE;

showSt ate = ! showSt at e;

if (mWCtrl.Get WndowPl acenent (&wndpl))
{
if (showState)
wndpl . showCnd = SW SHOW
el se
wndpl . showCmd = SW HI DE;
if (!'mWCrl.SetWndowPl acement (&wndpl))
TRACE("Error showi ng/ hiding VW wi ndown");

}

Figure62. Hiding and Showing the Virtual Voices Control Window in Visual C++

Setting the Parent Window

The control’s parent window can be set by the client application. Because the control is a subclass of

CWhnd, methods on the base class can be called by the client application. When the control is clipped
and made a child of the desktop, it functions as a sprite. (A sprite is an animated, non-rectangular

object that can be moved around the desktop.)

In Visual Basic:
To accomplish the same task in Visual Basic, you must first declare the following APIs:

GetDesktopWindow
GetFocus
SetParent

Then write the following:

IBM SDK for Windows 787

Properties, Methods, and Events

Di m hwndAct or As Long

ActorSvrl.SetFocus ‘ where ActorSvrl is an instance of the actor control
lwndActor=GetFocus()

Call SetParent(hwndActor, GetDesktopWindow())

Figure 63. Setting the Parent Window in Visual Basic

In Visual C++:
To set the parent of the control, write the code as shown below:

CActorSvr m_VVCitrl;

m_VVCtrl.SetParent(GetDesktopWindow()); // puts control on
/I desktop

m_VVCtrl.SetParent(this); // returns control to
/I client window

Figure 64. Settingthe Parent Window in Visual C++

Moving the Control on the Desktop

The control can be moved around on the desktop. Because the control is a subclass of CWnd, methods
on the base class can be called by the client application.

In Visual Basic:
First declare the following:
MovewWindow

After you declare the API, write the following code:

‘Add to the previous code segment

‘you must save the window handle of

‘the object before doing a SetParent, then:

Call MoveWindow(hwndActor,0,0,120,160,True)

788 IBM SDK for Windows

ViaVoice Outloud (Text-To-Speech) Engine Attributes

In Visual C++:
To move the control around on the desktop, call the superclass M ove method:

RECT rect;

rect.left = rect.top = 0;

rect.right = 120;

rect.bottom = 160;

mWoCtrl.Mve(&ect); // moves the control

Figure 65. Movingthe Control in Visual C++

The only size supported for an actor is 120 by 160 pixels.

IBM SDK for Windows 789

Properties, Methods, and Events

Virtual Voices Control M ethods

The Virtual Voices Control encapsulates several functions that developers can use to incorporate text-
to-speech into their applications. These functions are invoked through methods called on the control
and are availablein both Visual Basic and Visual C++.

The syntax of each method is represented using the following conventions:

In Visual Basic:
type <M ethodName>(parameters)

In Visual C++;
<MethodName>

Example code in both Visual C++ and Visual Basic are provided at the end of the section to illustrate
how to call these methods from a client application.

790 IBM SDK for Windows

Virtual Voices Control Methods

AboutBox

Callsthe AboutBox method in the control.

Syntax

In Visual Basic:

‘ type <Met hodName>(par anet ers) ‘

In Visual C++:
‘ <Met hodName> ‘

Remarks

This method causes the Virtual Voices Control “About” box to be shown.

IBM SDK for Windows 791

Properties, Methods, and Events

Cancel

Callsthe Cancel method in the control.

Syntax

In Visual Basic:
‘ActorSvrl. Cancel ‘

In Visual C++:
‘ BOOL Cancel (voi d) ‘

Remarks

This method returns TRUE if the control was speaking at the time this method was called, and if the
speaking was successfully stopped. It also triggers the Reset event, and resets the control’s internal
Pause/Resume state. Otherwise, the Cancel method returns FALSE.

792 IBM SDK for Windows

Virtual Voices Control Methods

DoProperties

Callsthe DoProperties method in the control.

Syntax

In Visual Basic:
‘ActorSvrl. DoProperties ‘

In Visual C++:
‘voi d DoProperties(void) ‘

Remarks

This method causes the Virtual Voices properties dialog to appear, regardless of the values of
ShowM enu and AllowProperties. The end user can then interactively change the values of many of
the Virtual Voices properties.

IBM SDK for Windows 793

Properties, Methods, and Events

Pause

Calls the Pause method in the control.

Syntax

In Visual Basic:
‘ActorSvrl. Pause ‘

In Visual C++:
‘ BOOL Pause(voi d) ‘

Remarks

If the control was speaking either text-to-speech or wave audio, this method pauses playback and
returns TRUE. Otherwise, it returns FAL SE.

Use the Resume method to continue.

794 IBM SDK for Windows

Virtual Voices Control Methods

Resume

Callsthe Resume method in the control .

Syntax

In Visual Basic:

‘ActorSvrl. Resune

In Visual C++:

‘ BOOL Resume(voi d)

Remarks

If the control was paused, this method resumes either text-to-speech or wave audio and returns TRUE.

Otherwise, it returns FALSE.

IBM SDK for Windows

795

Properties, Methods, and Events

Speak

Callsthe Speak method in the control.

Syntax

In Visual Basic:
‘ActorSvrl. Speak ‘

In Visual C++:
‘ BOOL Speak(voi d) ‘

Remarks

This method causes one of two thingsto occur: If the UseWave property is set to FAL SE, the stored
text (if any) is converted to wave audio and played through the default system audio output device; if
the UseWave property is set to TRUE, the stored audio (if any) is played through the default system
audio output device.

Speak returns aBoolean value. TRUE indicates that the request was successful. FAL SE indicates that
an error has occurred. If Speak is successful, the StartSpeaking and SopSpeaking events are
triggered.

Speak appends Speak Text to any outstanding speaking by the same instance of the Virtual Voices

Contral. If another instance of the control is speaking, or if some other multimedia applicationisusing

the audio output device, Speak causes a “busy” message to appear, and the application (or end user)
must retry theSpeak request. In this case, Speak returns FALSE.

796 IBM SDK for Windows

Virtual Voices Control Methods

Example - Using a Method

In Visual Basic:

Thefollowing example illustrates using the Pause and Resume methods in a Visual Basic program. In

this example, Command1 is a button object which, when clicked, alternatively pauses and resumes
speaking.

Private Sub Commandl_Click()

I f Paused Then
Act or Svr 1. Resune
El se
Act or Svr 1. Pause
End If

Paused = Not Paused
End Sub

Figure 66. Calling the Pause and Resume methodsin Visual Basic

In Visual C++:
Using the Speak method, write the following:

IBM SDK for Windows

797

Properties, Methods, and Events

voi d CExanpl e: : OnSpeak()
{
/] TODO Add your control notification handler code here...
/1 \When the "Speak" button is clicked, call the Virtual Voices
/'l Speak nethod

if (mblsSpeaking) // 1f busy speaki ng when clicked
{
switch (Af xMessageBox(LPCTSTR("Virtual Voices control is busy
speaking. "), MB_ABORTRETRYI GNORE | MB_I| CONSTOP))
{
case | DRETRY: // Try to speak again
OnSpeak();
br eak;
case | DI GNORE:
m WoCtrl . Speak(); // Interrupt
br eak;
} // Abort cancels request

}

el se

{

m WCtrl . Speak(); /1 Control is not busy, so honor
/] user’s request to speak

}

}

Figure 67. Calling the Speak() method in Visual C++

798 IBM SDK for Windows

Virtual Voices Control Events

Virtual Voices Control Events

The Virtual Voices Control triggers events when certain conditions are detected. The developer can
implement event handlers for those eventsin which the application is interested.

A typical event handler sets a state variable to some value and returns. For instance, an event handler

for SartSpeaking might set a Boolean for “busy” to TRUE, and an event handletémSpeaking
might set the same variable to FALSE. The client application consults the value of this variable to
detect whether the control is busy speaking or not.

In general, the event handlers should not make calls back into the control, nor should they execute a |
of time-consuming code.

This chapter describes thgértual Voices events and includes examples illustrating how to handle

these events within a client application. The syntax for each event is offered for both Visual C++ and
Visual Basic. For Visual C++ developers, events take on the following format:

In Visual Basic:

‘Pri vate Sub ActorSvrl_ <Event Name>(parameters) ‘

In Visual C++:

‘type on<Event Name>(paraneters) ‘

IBM SDK for Windows 799

Properties, Methods, and Events

BookM ar k

Notifies the client application that a bookmark has been encountered in the text to be spoken.

Syntax

In Visual Basic:

Private Sub ActorSvr1l_BookMark(ByVal dwvarkNum As Long)

In Visual C++:

‘voi d BookMar k(| ong dwivar kNum

Remarks

You can embed bookmarks in the text to be spoken by following the SAPI rules for bookmark tags.
Reference the Microsoft SAPI Developer’s Guide for more information on bookmarks.

This event is generated only when speaking text, not wave audio.

Example

In Visual C++:
Handling the BookM ark event in Visual C++, write the following:

800 IBM SDK for Windows

Virtual Voices Control Events

/1 This exanpl e detects a booknmark in a text string and displays it // in
a nessage box. To run this exanple, first create an input /] area on

your form In the input area, type "This is the first /'l day of the rest
of \ M k=9876\ your life." (You can use any nunber // for the booknark).

/1 Select this sentence and copy it to the clipboard. Bring up the

/1 Virtual Voices context nenu and sel ect Paste. The sentence is

/'l spokenby the control, after which a message box displays the

/' bookmar k.

/1 Note: For this exanple, declare textstr in your object as

/] protected, char textstr[100].

voi d CExanpl e:: OnBookMar k(|1 ong dwivar KNum

{

/] TODO Add your control notification handler code here...

/] Create a text string that displays the bookmark nunber

char nyBuf[10];

i t oa(dwiar kNum myBuf, 10);

strcpy(textstr,"A bookmark has been encountered. It is ");

strcpy(textstr+strlen("A bookmark has been encountered. It is "),
myBuf) ;

strcpy(textstr+strlen("A bookmark has been encountered. It is ")
+strlen(nyBuf),"\n");

}

/1 OnStopSpeaki ng, show the text string using a message box
/1 with this code...

voi d CExanpl e:: OnSt opSpeaki ng()
{

/1 TO DO Add your control notification handler here...
/1 Display the text string if there is one
if (textstr !="")
{
MessageBox(textstr);
strcpy(textstr,"");
}
}

Figure 68. Handling the BookM ark Event in Visual C++

IBM SDK for Windows 801

Properties, Methods, and Events

|nitDone

Notifies the container application.

Syntax

In Visual Basic:
‘ Private Sub ActorSvr1_InitDone() ‘

In Visual C++:
‘voi d I nitDone(void) ‘

Remarks

When the control has been initialized and is ready to speak, it usesthe I nitDone event to notify the
container application. Your application should wait for this event before calling the Speak method for
thefirst time.

This event is not triggered if the control is invisible when it comes up.

Example

In Visual C++:
Handling the I nitDone event, write the following:

802 IBM SDK for Windows

Virtual Voices Control Events

/1 This event is triggered by the Virtual Voices control, when it
/1 has conpleted its initialization and is ready to speak

voi d CExanpl e: : Onl ni t Done()
{

/] TODO Add your control notification handler code here...
CString | pszString;

/1 Get the text out of the edit box control
m_Edi t Box. Get W ndowText (| pszString);

/1 Set the text into the Virtual Voice control’s speak text property
m WCtr| . Set SpeakText ((LPCTSTR) | pszString. GetBuffer(0));

/1 Call the Virtual Voices Speak nethod
m WCtrl . Speak();

}

Figure 69. Handling the InitDone Event in Visual C++

IBM SDK for Windows 803

Properties, Methods, and Events

KeyPress

Event fired when the user pauses or resumes speaking by pressing akey on the keyboard.

Syntax

In Visual Basic:
‘ Private Sub ActorSvrl_KeyPress(KeyAscii As |nteger) ‘

In Visual C++:
‘voi d KeyPress(short *KeyAscii) ‘

Remarks

If the control has the keyboard focus, the end user can pause and resume speaking by pressing akey on
the keyboard. If your application wantsto be aware of such events, you can write amethod that is fired
when this event occurs. Your method receives the ASCI| value of the pressed key. If the end user
presses the Esc key when the control is speaking, speaking is aborted and the SopSpeaking event is
fired. KeyPressis not returned for system keys, such as the function keys.

Example

In Visual C++:

The following exampleillustrates how to handle the K eyPress event. To run this sample, highlight

some text and copy it to the clipboard. Bring up the Virtual Voices Control context menu and select

Paste. Press a key (other than Esc or a function key) while the control is speaking. The control says “A
key has just been pressed.”

804 IBM SDK for Windows

Virtual Voices Control Events

/1 This exanple causes the control
/1 been pressed.

voi d CExanpl e: : OnKeyPress(short

{
/] TODO Add your control
m WCtr| . Set SpeakText ("A key has just
m WCtrl . Speak();

}

to speak a nessage when a key has

FAR* KeyAscii)

notification handl er code here. ..

been pressed.");

Figure 70. Handling the KeyPress Event in Visual C++

IBM SDK for Windows

805

Properties, Methods, and Events

Pause

Notifies the client application that the control has just been paused.

Syntax

In Visual Basic:
‘Pri vate Sub ActorSvr1l_Pause() ‘

In Visual C++:

‘voi d Pause(void) ‘

Example

In Visual C++:
To handle the Pause event, write the foll owing:

/1 This exanple displays a nessage box when the control is paused

voi d CExanpl e: : OnPause()
{

/] TODO Add your control notification handler code here...
MessageBox (" The Virtual Voices control has been paused.");

}

Figure71. Handling the Pause Event in Visual C++

806 IBM SDK for Windows

Virtual Voices Control Events

Reset

Notifies the client application that the control has just been reset.

Syntax

In Visual Basic:
‘ Private Sub ActorSvrl_Reset () ‘

In Visual C++:

‘voi d Reset (void) ‘

Remarks

Reset isgenerated if the user pressesthe Esc key while the contral is speaking, if the Properties dialog
is brought up when the control is speaking, whenever the SetUseFace property is set to TRUE, and
whenever speaking isinterrupted for any reason.

Example

In Visual C++:
To handle the Reset event, write the following:

/1 This exanple displays a nessage box when the control is reset.

voi d CExanpl e:: OnReset ()

{
/1 TO DO Add your control notification handler here...

MessageBox(" The Virtual Voices control has been reset.");

}

Figure 72. Handling the Reset Event in Visual C++

IBM SDK for Windows 807

Properties, Methods, and Events

Resume

Notifies the client application that the control has just been resumed.

Syntax

In Visual Basic:
‘Pri vate Sub ActorSvr1l_ Resune() ‘

In Visual C++:

‘voi d Resume(voi d) ‘

Remarks

Resume works with longer text. If the control is paused while speaking and there is very little
remaining to be said, the ViaVoice Outloud (text-to-speech) engine does not resume.

Example

In Visual C++:

/1 This exanple displays a nessage box when the control is resuned.

voi d CExanpl e: : OnResune()

{
/1 TO DO Add your control notification handl er here...

MessageBox(" The Virtual Voices control has been resuned.");

}

Figure 73. Handling the Resume Event in Visual C++

808 IBM SDK for Windows

Virtual Voices Control Events

SartSpeaking

Notifies the container application when the control starts speaking.

Syntax

In Visual Basic:
‘ Private Sub ActorSvrl_Start Speaki ng() ‘

In Visual C++:
‘voi d Start Speaki ng(void) ‘

Remarks

Whenever the control starts speaking, it uses the StartSpeaking event to notify the container
application. It is recommended that you maintain a Boolean variable to indicate whether the control is
speaking. Your Star tSpeaking method setsthis variable to TRUE, while the StopSpeaking and Reset
methods set it to FALSE. Don't forget to initialize it to FAL SE.

Example

In Visual C++:

/1 This event is triggered by the Virtual Voices Control, when it
/] starts to speak

voi d CExanpl e:: OnSt art Speaki ng()
{
/] TODO Add your control notification handler code here...
/1 Set the busy speaking flag
m_bl sSpeaki ng = TRUE;

}

Figure 74. Handling the StartSpeaking Event in Visual C++

IBM SDK for Windows 809

Properties, Methods, and Events

SopSpeaking

Notifies the container application when the control stops speaking.

Syntax

In Visual Basic:
‘ Private Sub ActorSvr1_StopSpeaki ng() ‘

In Visual C++:
‘voi d St opSpeaki ng(voi d) ‘

Remarks

Whenever the control stops speaking, it uses the SopSpeaking event to notify the container
application. See the discussion of the StartSpeaking event for recommendations on how to use this
event in your application.

Example

In Visual C++:

/1 This event is triggered by the Virtual Voices Control, when it has
/'l stopped speaking

voi d CExanpl e: : OnSt opSpeaki ng()
{
/] TODO Add your control notification handler code here...
/1 Set the (not) busy speaking flag
m_ bl sSpeaki ng = FALSE;

}

Figure 75. Handling the StopSpeaking Event in Visual C++

810 IBM SDK for Windows

Virtual Voices Control Events

WordPosition

Notifies the client application that a byte offset has been reached in the text to be spoken.

Syntax

In Visual Basic:

‘ Private Sub ActorSvr1_WordPosition(ByVal dwByteOfset As Long) ‘

In Visual C++:
‘voi d WordPosition(l ong dwByteOf fset) ‘

Remarks

This event is generated only when speaking text, not wave audio.

IBM SDK for Windows 811

Properties, Methods, and Events

Example

In Visual C++:

/1 This exanple displays the index nunber of the first letter of the
/1 last word spoken. Note: For this exanple, declare textstr in your
/1 object as protected, char textstr[100] and wordi ndex as protected
/1 1ong.

voi d CeExanpl e: : OnWor dPosi ti on(l ong dwByt eOf f set)
{

/] TODO Add your control notification handler code here...
/1 Store the index of the word spoken in wordindex
wor di ndex=dwByt eX f set ;

}
{

voi d CExanpl e: : OnSt opSpeaki ng()

/] TODO Add your control notification handler code here...

/1 Display the index of the last word in a nmessage box

char myBuf[20];

i t oa(wordi ndex, nyBuf, 10);

strcpy(textstr,"The i ndex of the last word said is ");

strcpy(textstr+strlen("The index of the last word said is "),
mybuf) ;

strcpy(textstr+strlen("The index of the last word said is ")
+strlen(nyBuf), "\n");

MessageBox(textstr);

}

Figure 76. Handling the WordPosition Event in Visual C++

812 IBM SDK for Windows

Chapter 41 Programming Notes

Running multiple versions of the Virtual Voices Control at the ssmetimeis not supported. If you want
to try this, be aware that each control competes for the audio device when speaking. Also, multiple
instances of the control may interfere with the color palette when using animation and running in 256-
color mode. Three is the maximum number of actors allowed per application.

Visual Basic Notes

If you want to give keyboard control of the Virtual Voices Control to the end user, add the following
code to the click handler for the Speak button:
Act or Svr 1. Set Focus

This directs keyboard focus to the control, even when it is animated.

Visual C++ Notes

If you use Class Wizard to produce a message map for Virtual Voices events, Class Wizard appends
the control’s ID to the default function names it generates. For example, if your control isidentified as
IDC_VVCTRL1 and you map the I nitDone event, the default function name generated by Class
Wizard is OnlnitDoneVvctrl1(). You can change the function namesif you don't like the default names
generated by Class Wizard.

IBM SDK for Windows 813

Programming Notes

Face Customization Notes

The Virtual Voices Control enables developers to incorporate personality into their applications. A
personality is represented through a voice (using text-to-speech or prerecorded audio waveforms) and
an (optional) animated face. The voice and face become the spokesperson through which the user can
interact with the application or system.

Virtual Voicesincludes an engine that animates the face. The animated face can convey several
expressions and emotions, and it is synchronized with the text-to-speech or audio output.

Faces are implemented in two different styles: as vector drawings or as flip books. Eight faces are
provided with Virtual Voices. Four of the characters provided are implemented using vector drawings
(Benny, Betty, Charlie, and Woody); the other four characters are implemented using the flip-book
style (Computer, Curly, Kincaid, and Kingsley).

This document describes how to create additional flip-book style facesfor Virtual Voices. First, some
background information on the flip-book styleisin order.

A flip-book face is represented through a series of bitmaps. These bitmaps, when superimposed over

each other in particular sequences, convey the appearance of motion and thus, animation. Consider a
child’s picture book of individual, yet subtly distinct cartoon drawings. When you flip through the

pages quickly, the drawings, even though they are still, appear to animate. This same concept isused to
provide the animation for the flip-book, or bitmap, faces. The Virtual Voices animation engine

handles displaying (“flipping through”) the appropriate series of bitmaps to convey expression and
emotion as the face speaks. It also handles synchronizing the face with the spoken text.

814 IBM SDK for Windows

Resour ces

Resour ces

A flip-book face is represented through the following resources:
» A seriesof bitmap (.BMP) drawings

» A face (FAC)file

» A parameter (.PAR) file

e Anentry in the Windows 95 registry

Asthe creator of anew face, you must provide al of these resources so that Virtual Voices can
recognize and use your face.

To know how to test your new face, please see the “Testing Your Face” on page 831 and “Style
Considerations” on page 833.

IBM SDK for Windows 815

Programming Notes

Bitmaps

A faceisrepresented as a series of Windows bitmap (.BMP) files, which must be 120 pixels wide by
160 pixels high and must be drawn using a 256-color palette. However, it does not mean that you need
to use all 256 colorsin your bitmaps. In fact, you should not use more than 236 colors. (You should
ensure that the system colors occupy the upper and lower 10 palette positions.)

Note:
The fewer colors you actually usein your bitmap, the better it can adapt to the other color
applications on the desktop.

The animation engine uses doubl e buffering to display the bitmaps for aface. It composes the next
image in an offscreen buffer, then movesit to the display. It first puts bitmaps at plane 0 into the buffer,
then bitmaps at plane 1, and so on. If images at different planes overlap, the one at the higher plane
number will obscure the image below it.

The bitmap at plane 0 is the base bitmap for the face. Typically, the base bitmap is afull-face drawing.
This bitmap is displayed unconditionally (always), and other bitmaps are superimposed over it to
create the animation.

Bitmap faces are not sizable; however, they can be displayed as anon-rectangular window by setting a
property in the Control at run time. If you choose to use the non-rectangular window feature, the
background around the face must be all the same color.

Each face is assumed to have eyes and a mouth, which, however is not required. You may design your
faceto represent whatever you want: a car, apet rock, or arainbow. The position and shape of the eyes
and mouth are used to animate the face. Even if your character does not have eyes or a mouth, the
bitmaps you provide should include these parameters. The variation in the bitmaps (it could be a
changein color instead of achangein eye position) will convey the expression for your face. You may
want to review the resource files for the Computer chip face (ia01*.*) for an implementation of aface
without eyes or a mouth. Keep in mind, though, that the faceis used to speak to the end user, and will
be more vivid and convincing if you give it eyes and a mouth.

Virtual Voices supports five expressions for each face: neutral, happy, surprised, thoughtful, and
asleep. You should develop bitmaps for al five expressions. For each expression, you can specify
several eye and mouth positions. For example, you can show the eyes|ooking straight ahead, as if
paying attention; you can show the eyes looking up and to the character’s right, asif thinking; and you
can show the eyes closed, asif blinking. You can show the mouth shaped as if to speak certain sounds,

816 IBM SDK for Windows

Resour ces

such as “00,” “m,b,p” or “f,v,” or you can position it in several degrees of openness as well as closed
These mouth positions add realism to the animation as the face is synchronized with its text-to-spee
or audio output.

You can provide as few bitmaps as you like. Do not provide more than 70 bitmaps for a single face. |
some cases, you may need to reuse the same eyes and mouths for more than one expression.

The more eye and mouth positions you support (that is, for which you provide bitmaps), the more
realistic and smooth the animation will appear (since the transition from one expression to another wi
occur in smaller increments).

In summary, you should provide the following bitmaps for each face:

Full face (for use in the Actor Gallery and as the base face):

e Mouth making “00” sound
» Mouth making “f,v” sound
* Mouth making “m,b,p” sound

For each expression:
» Eyeslooking straight ahead
» Eyeslooking up

» Eyeslooking down
» Eyeslooking left

» Eyeslooking right

» Eyesi/,open

» Eyes3/, open

e Eyesclosed

e Mouth full open

e Mouth v/, open

* Mouth 2/, open

e Mouth 3/, open

* Mouth closed

IBM SDK for Windows 817

Programming Notes

The only full-face bitmap you provide as a resource to Virtual Voicesisthe one to use a plane O (the
base face or background). The rest of the bitmaps are cutouts of the eyes and mouth. All of the cutouts
for the eyes should be in the same size (that is, they should have the same x, y, ¢cx, and cy values), as
should all the cutouts for the mouth.

Note:
The mouth positions for “00”, “m,b,p” and “f,v” are independent of expression. You need only
provide one bitmap for each of these sounds (for a total of 3 bitmaps).

An Example

Let's use one of the existing characters, Kincaid, as an example. First, your artist should create a full-
face drawing of your character. This is usually the face drawn with a neutral or happy expression. This
bitmap is used by Virtual Voices in the Actor Gallery (from the Properties dialog) where the user
selects your face. It can also be used as the base bitmap (at plane 0) for the animation engine. Working
with Kincaid, the bitmap displayed in the Actor Gallery is:

e ol

ol

Your artist should develop full-face poses for all five expressions (neutral, happy, surprised,

thoughtful, and asleep). Each pose should be created in the same size using the same palette. In each
pose, the areas surrounding the eyes and mouth should be as small as possible (for better run-time
performance), and theshould be in the same size and should cover the same area. After creating these
full-face drawngs, the artist should cut out the areas around the eyes and mouth and save them as
separate bitmaps. For example, the following bitmaps for Kincaid representfénerdicutaits of the

eyes for the thoughtful expression:

Eyes open looking straight ahead

Eyes open looking up

818 IBM SDK for Windows

Resour ces

b= -

Eyes open looking up

Eyes open looking left

Eyes open looking right

Eyes1/, open

Eyess/, open

Eyes closed

Notice that the eyes are represented by the same basic expression (eye shape, arched eyebrows, and

scrunched forehead). The differencesin each bitmap are reflected in the eye position.

The mouth positions for the thoughtful expression are also specified for Kincaid. These are
represented in the following bitmaps:

e

g

Mouth full open

Mouth 3/, open

IBM SDK for Windows

819

Programming Notes

o

Mouth 1/, open
2

Mouth 1/, open
0

M outh closed

Let’slook at the differences between expressions for a particul ar eye position. Your artist can depict the
expressions by varying such attributes as eye shape, eye size, eyebrow position and arch, forehead
scrunched, etc.

ot
Eyes open looking straight ahead - Surprised
;__i.
Eyes open looking straight ahead - Neutral
Eyes full open, looking straight ahead - Happy
£E

Eyes open looking straight ahead - Thoughtful

Expressions can also be depicted by the position and shape of the mouth. For example, let'slook at the
full open mouth position across expressions for Kincaid.

===

Mouth full open - Neutral

820 IBM SDK for Windows

Resour ces

-

Mouth full open - Happy

e

Mouth full open - Thoughtful

e

Mouth full open - Surprised

For Kincaid, there are 62 bitmaps provided. The following tables illustrate how the bitmaps were
defined for this particular character. Notice how some bitmaps are used for more than one eye or

mouth position.

Table 23. General bitmaps (not related to specific expressions):

Character 1D la02
Background 1a02-bas
“00” la0Zmnoo
“fv" la02mnf
“m,b,p” [a02mnm

IBM SDK for Windows

821

Programming Notes

Table 24. Eye positions:

Neutral Happy Surprised | Thoughtful
Straight la02enop la02enop la02ewop la02ecop
Ahead
Up ie02endn ia02ehup ia02ewup ia02ecup
Down ie02endn ia02ehdn ia02ewdn ia02ecdn
L eft ia02enit ia02ehlt ia02ewlt ia02eclt
Right ia02enrt ia02ehrt ia02ewrt ia02ecrt
3/, Open ia02en23 ia02eh23 ia02ew23 ia02ec23
1/, Open ia02en12 ia02eh12 ia02ew12 ia02ec12
Close ia02encl ia02ehcl ia02ewcl ia02eccl
Table 25. Mouth positions:

Neutral Happy Surprised Thoughtful
Full Open [a02mn4 la02mh4 [a02mw4 [a02mc4
3/, Open ie02mn3 ia02mh3 ia02mw3 ia02mc3
1/, Open ie02mn2 ia02mh2 ia02mw2 iad2mc2
1/, Open ia02mnl ia02mhl ia02mwl ia02mcl
Close ia02mncl ia02mhcl ia02mwAcl ia02mccl

You may want to use asimilar set of tables to develop the bitmaps for your face.

Tipsfor the Artist

Asyou can see, creating all of the bitmaps for the face is avery elaborative and manual process. It is
worthy to invest the time and effort that can help you narrow down the possibilities. The face design
and creation process should be iterative and should involve customer feedback on an ongoing basisto
validate the design and acceptability of the face.

822 IBM SDK for Windows

Resour ces

First, create full-face drawings of many different characters or designs. You may want to provide faces
which vary in form (e.g., human/mechanical, male/female, and anthropomorphic) and style (e.g.,
cartoonish, photorealistic, and stylistic). Theseinitial renderings can be brought to customersto
evaluate their acceptability.

When the set of facesis narrowed down to afew (from user testing and marketing evaluations), you
should create pose sheets for these faces. A pose sheet isa set of 5 full-face drawings, one for each
expression. Again, the pose sheets can be shown to customers to get feedback.

When you've decided which face you want to create, you can start creating the individual bitmaps. The
best way to do thisis to work off copies of the base (full-face) bitmap. You can use atool like
PhotoShop to make a copy of the base bitmap, and to make the appropriate changes to the copy (for
example, to create a happy face with eyes fully open and mouth fully open). When you've finished
with that bitmap, make another copy of the base bitmap, and start again making changes to the bitmap
for other expressions, and eye and mouth positions. If you work off copies of the base bitmap, you are
guaranteed that everything will be in the right position and be the right size.

Don't cut out any of the eyes or mouths until you're finished with al of your full-face bitmaps.

Once you have al of the bitmaps and cutouts, you are ready to create the face (.FAC) file, which tells
the Virtual Voices when and how each bitmap should be displayed.

IBM SDK for Windows 823

Programming Notes

Face (.FAC) File

Now that you have created your bitmaps, you need to tell Virtual Voices when to display each bitmap.
The face (.FAC) file provides the animation engine with this information. It specifies the bitmap file
name and the condition(s) under which the bitmap isto be displayed - for instance, the expression, eye,
or mouth position.

Thefacefileiscomprised of aseries of text statements. Thetypes of text statements within afacefile
are:

Comments

Style definition (MUST BE THE FIRST NON-COMMENT STATEMENT)

Number of image fragments (MUST BE THE SECOND NON-COMMENT STATEMENT)
Image definition statements

Condition definition statements

Parameter file definition (MUST BE THE LAST NON-COMMENT STATEMENT)

Syntax for the statementsin afacefileis:

Any line beginning with # is considered a comment.

The first statement defines the style of the face and is specified as 2 integers (the first specifies flip
book or vector; the second specifies whether the bitmap contains scenery. For flip book faces, the
first integer should be 10, and the second integer should be 0.

Note: Scenery is not supported in the flip-book style.)

The second statement defines the number of image fragments defined within the face file, and is
specified as a single integer.
Image definition statements which identify the image to be displayed. These statements are of the

form:
Xy wh p filename num

where:
x andy Integers which specify that the image is displayed at this offset from
the origin (lower left corner).
w and h Integers which specify the width and height of the image fragments
(Note: w must be a multiple of 4).
p An integer which specifies the image plane, or display priority (Ois
displayed first, or lowest).

824 IBM SDK for Windows

Resour ces

filename A text filename of the .BMP file which contains the image data.

num An integer which specifies how many condition definition statements
follow for thisimage. These statements are logically AND’ed together
to comprise the condition under which the image is displayed.

Note:
You must define at |east one image as the base bitmap at plane 0. If only one base bitmap imageis
defined (num is0), it will be displayed unconditionally (always). You may want to define multiple
imagesto be displayed at plane O conditionally (for example, if thereisawide variancein eye and
mouth positions and sizes between expressions, you may want a full-face bitmap of each
expression displayed as the base bitmap for the expression.

» Condition definition statements specify the condition under which the image is displayed.
Conditions are specified in terms of the parameters that can be varied for each face (for example,
eye opening and mouth width, such as:

i mn mx
where:

[an integer which identifies the parameter (reference the PAR file)

min an integer which specifies the minimum value of this parameter
for which this image will be displayed

max an integer which specifies the maximum value of this parameter
for which this image will be displayed

Note:

Theimage is displayed if min < current value <= max for all conditions. (Multiple conditions are
logically AND’ed together.)

» Thefinal command specifies the parameter (PAR) file to be used for this face.

Let'stake alook at the face file provided for Kincaid for more details:

IBM SDK for Windows 825

Programming Notes

style 10 (flip book)

10 0(1)

nunber of image fragnents
70(2)

0 0 120 160 O | A02- BAS. BMP 0(3)

surprised or anything el se(4)
eyes w de open ahead

0 96 120 64 1 | AO02ewop. BMVP 4
53 6.9 11.1

30 0.9 2.0

40 -1.0 1.0

41 -0.8 0.15

| AO2. PAR(5)

Notes:
(1) Thisisthefirst statement that is not acomment. It specifiesthat thisfacefile is being used for
aflip-book style face (10) and that no scenery isincluded in the bitmaps (0).
(2) Thisisthe second statement that is hot acomment. It specifiesthat therewill be 70 image
fragments defined for this face.
(3) This statement defines the bitmap to be used at plane 0, which is the base bitmap. Itis
positioned at 0,0 and is 120 pixelswide by 160 pixels high. For Kincaid, this bitmap isafull-face
with asmile.
(4) The next 69 sets of statements identify under which conditions abitmap is displayed. This
particular set of statementsisidentifying how and when the bitmap |1A02ewop.BMP is displayed.
Thefirst line specifies that bitmap | A02ewop.BMP will be displayed at 0, 96 (offset from the
origin, which isthe lower-left corner of the bitmap) and it is 120 pixels wide and 64 pixels high.
The 1 indicates that the bitmap is displayed at plane 1.
The 4 indicates that the next 4 statements identify the condition under which this bitmap is
displayed. Inthis case, the IAO2ewop.BMP is displayed when the expression is surprised or
asleep (parameter 53 between 7 and 11) AND the eyes are full to exaggerated open (parameter 30
between 0.9 and 2.0) AND the eyes are looking left, straight ahead, or right (parameter 40 between
-1.0 and 1.0) AND the eyes are at alevel gaze (parameter 41 between -0.8 and 0.15).

826 IBM SDK for Windows

Resour ces

(5) This statement identifies the parameter (PAR) file for thisface; in this case, IA02.PAR.

M ore about Conditions and Parameters

There are over 50 parameters you can use in your facefile to tell the animation engine when to display
a bitmap. You will not need to use most of them (the defaults used by the engine will provide quite
acceptable animation.) The four flip-book faces included with Virtual Voices use the following
parameters to specify when individual bitmaps are displayed:

* Mouth shape (13)

« Jaw rotation (16)

* Mouth width (17)

» Eyeopening (30)

» Eyeslooking left or right (40)
* Level of gaze (41)

» Expression (53)

Recall that conditions are specified as arange of valuesfor a parameter (that is, the bitmap is displayed
if the minimum value specified isless than the current value which is also lessthan or equal to the
maximum value specified (min < current <= max). S0, you need to specify the condition as arange
rather than adigtinct value. For example, if you want to specify that abitmap is displayed when the
expression (53) is happy (1), you don't just use the value for happy (1), such as:

53 1.0
You need to specify it as arange, such as:
53 09 11

This tells the engine to display a bitmap when the current value for expression is greater than 0.9 but
less than or equal to 1.1 (e.g., 1.0).

Following isalist of the parameters that are used in the face files for the character included with
Virtual Voices aswell as example ranges used in the face file to trigger conditions. You may need to
finetune these to the behavior you experience with your face animated through Virtual Voices.

13 - Mouth shape [0..2]

IBM SDK for Windows 827

Programming Notes

-0.1to 0.l -- Normal (0)
9to 1.1--“fv" (1)
1.1t0 2.1 -- “m,b,p" (2)

16 - Jaw rotation [0..1]
-0.1 to .09 -- Closed
.11 to .3--1/, Open
.31t0 .53 -4/, Open
.531t0.83 -3/, Open
.83t0 1.0 -- Full Open

17 - Mouth width [0..1]
-.01 to .79 -- “00” sound

.8 t0 2.0 -- All other sounds

30 - Eye opening [0..1.1]
.9to0 2.0 -- Full Open
.65 to .9 -3/, Open
.2 to .65 -4/,0pen
-0.1to .2 -- Closed

40 - Eyes looking left or right [-1..1]
-4.0t0 -1.0 -- Left (-1)
0 -- Straight ahead (0)
1.0 to 4.0 -- Right (1)

41 - Level of gaze [-20..20]
-100 to -0.8 -- Down
-.81t0.15 -- Level

828 IBM SDK for Windows

Resour ces

1510100 -- Up

53 - Expression [0..15]
-0.1to .1 -- Neutral (0)
0.9to 1.1 -- Happy (1)
5.91t0 6.1 -- Thoughtful (6)
8.9t09.1 -- Surprised (9)
10.9t0 11.1 -- Asleep (11)

Parameter (.PAR) File

The parameter (.PAR) file defines the default values of the various parameters that are used by the
animation engine to define and display aface. It also defines the default feature (eye, mouth, eyebrow,
etc.) positions to be used for each expression in the resting state.

After you create your bitmaps and face file, you should test your face using the default parameter file.
Copy one of the parameter files for the bitmap faces that were included with Virtual Voices, and use
this as your parameter file.

IBM SDK for Windows 829

Programming Notes

Registry Entry

Virtual Voices uses the Windows 95 registry to store information about each face. Thisinformationis
stored under the HKEY _LOCAL_MACHINE\SOFTWARE\IBM\Virtual Voices\3.5\Actors entry.
Thereisaunique entry for each character. The following information must be stored in theregistry for
aface to be recognized and used by Virtual Voices:

Path to the faces bitmap (usually ViaVoice\data)

L ong name of the character (for descriptive purposes only)

Short name of the character (displayed in the Actor Gallery)

A description of the character (for descriptive purposes only)
Introductory message (the default text that is spoken by the character)
Dataset (.FAC file)

Bitmap (Bitmap file used in the Actor Gallery)

For example, the information registered for Kincaid is (your entry may vary):

[HKEY_LOCAL_MACHINE\SOFTWARE\IBM\VirtualVoices\3.5\Actors\Kincaid]:
Pathname=D:\Viavoice\data

LongName=Kincaid B. Funface

ShortName=Kincaid

Description=A bitmap face on arough surface with big teeth. Malevoice...
IntroMessage=I'm fun to work with! Call me Kincaid.

Dataset=1A02.FAC

Bitmap=IA02.BMP

830 IBM SDK for Windows

Testing Your Face

Testing Your Face

There are two types of testing you should conduct for your face: Functional and Usability/
Acceptability. For functional testing, the best approach isto use the Virtual Voices OCX asthe test
vehicle. Here's how:

» First, create all of the resources for your face (bitmaps, FAC file, PAR file).
» Edit the registry to include the appropriate information for your face.

* Run the Virtual Voices OCX. From the context menu, select Properties. On the Actor Gallery
page, your face should be included in the set of facesthat are available. Select your face (you may
have to scroll through thelist of available faces.)

» On the Voice Models page, make sure that the “Use Animated Face Engine” is selecte@KClick
You should now see your face as the fac¥iofual Voices.

» Test each expression by selecting it from the Properties page. Have the face speak text that is
representative of the expression (for example, a thoughtful expression might be used to ask
questions of the user. So, use a question as the text to speak for the thoughtful expression.) For
each expression, consider the following:

e Istheanimation smooth?
Wereall of the bitmaps displayed?
» Doesthe expression convey the emotion you intended?

* When the face says a word with the “00” sound, is the correct bitmap used? Same for “f,v" and
“m,b,p."

. Others...

Your face should have potential users of your product to validate its acceptability and utility. You may
want to show users early renderings of face designs to narrow down possibilities and to identify
preferences and expectations. You should iterate customer feedback as the design evolves. You can
start with drawings on paper, but you should eventually show the face in action to your users, too (so
they can see it expressing emotion and hear it speaking text).

By getting feedback from actual users and potential customers of your product, you can evaluate and
validate your face on several dimensions that:

» Thefaceisacceptable;

e Thenameis acceptable;

» The voice “matches” the face;

IBM SDK for Windows 831

Programming Notes

» The expressions are meaningful and recognizable; and
e Others...

832 IBM SDK for Windows

Syle Considerations

Syle Considerations

Thetype and style of faces and characters that can be used to personalize your application is virtually
limitless. However, there are some things that should be considered when designing a face for your
application:

Understand the requirements of your audience (users). End users may prefer characters of different
styles than power users; children have different preferences than adults; some users prefer no face
at all. It isimportant to allow usersto change the face (provide a library of faces and voices from
which they can choose). It is aso very important to allow usersto turn the face on and off as
desired.

Consult marketing on the design of your face. The face should be consistent with the product
image and marketing strategy.

Understand that photorealistic (human) faces imply intelligence, truthfully, is not here. Also, with
the current text-to-speech technology, the voice does not sound human yet, which can create
cognitive dissonance for the end user.

Consider the appropriateness of the character for the environment in which it will be used (e.g.,
business, game, home, and education). A cartoonish character may be quite appropriate for a game
but may be too silly for business use.

IBM SDK for Windows 833

Programming Notes

834 IBM SDK for Windows

Chapter 42 Virtua Voices Control Frequently
Asked Questions

This chapter contains answers to the most frequently asked questions about the ViaVoice Virtual
Voices Control.

Can | create my own actors?

Yes. More information is available in “Face Customization Notes” on page 814. However, IBM
does not support this.

| am using the Virtual Voices control and the VV TextBox control in the sameform. When | click
the VVTextBox, | want Virtual Voicesto speak thetext in the VVTextBox. However, when | issue
the Speak command, | get an error: audio source busy. What am | doing wrong?

TheVVTextBox control and thé&/irtual Voices control share the same audio source. Before you
issue theSpeak command in the Virtual Voices control, you need to telMhTextBox control to
stop using the audio source. To accomplish thisAsebDictation to False and

CommandEnabled to False. These settings will cause WéTextBox to stop using the audio
source and allowirtual Voicesto use it.

| do not want my usersto changeactor sor any other speech-related settingsat run time. How do
| keep the properties menu option from appearing?

To keep the properties menu option from appearing, set the prédértyPropertiesto False.

Isit better to use bitmap-based actors or vector graphic actors?
Vector-based actors have the following benefits:

» Smaller source files. (This might be a consideration for downloading the files via the Internet.)

» More mation. Vector-based actors do not have pre-drawn expressions. As the character speaks, the
control reshapes the expression of the character at run time. Therefore, the control can match the
expression to the text with more accuracy.

Can | have more than one actor at the same time?

Yes, however, only one can speak at atime. There are no known problems with two characters
speaking if one Virtual Voices instance control instance waits for the other to finish before
speaking.

IBM SDK for Windows 835

Virtual Voices Control Frequently Asked Questions

836 IBM SDK for Windows

Appendix A NOUC%

Referencesin this publication to IBM products, programs, or services do not imply that IBM intendsto
make these available in al countriesin which IBM operates. Any reference to an IBM product,
program or service is not intended to state or imply that only that IBM product, program, or service
may be used.

Subject to IBM’s valid intellectual property or other legally protectable rights, any functionally
equivalent product, program, or service may be used instead of the IBM product, program, or service.

The evaluation and verification of operation in conjunction with other products, except those expressly
designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

Asia-Pacific users can inquire, in writing, to the IBM Director of Intellectual Property and Licensing,
IBM World Trade Asia Corporation, 2-31 Roppongi 3-chome, Minato-ku, Tokyo 106, Japan.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact IBM
Corporation, Department TO1B, 3039 Cornwallis, Research Triangle Park, NC 27709-2195, USA.
Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of afee.

IBM SDK for Windows 837

Notices

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or
both:
IBM

ViaVoice

VoiceType
Adobe Acrobat is atrademark or registered trademark of Adobe Systems Incorporated.

Intel and Pentium are trademarks or registered trademarks of Intel Corporation in the United States
and/or other countries.

Microsoft, Windows, Windows NT, and the Windows 95 logo are trademarks or registered trademarks
of Microsoft Corporation in the United States and/or other countries.

Other company, product, and service names may be trademarks or service marks of others.

838 IBM SDK for Windows

| ndex

A
AboutBox method, 791
accessing
member of a collection, 250
object information, 580
action
control not firing events for, 629
description, 261
informing the UIClient about, 556
ActionDesc
property, 261
ActiveX components
installing, 19
Actor
controlling, 767
gender, 769
head size, 781
shape, 764
ActorName property, 760
Add method, 253
AddApplicationByName method, 566
AddApplicationByWindow method, 568
adding
command phrases, 212
custom menu options, 534, 535, 570, 587
DictLite to HTML document, 363
DictLiteto HTML page, 363
Error Correction to application, 417
Grammar to application, 281
GrammarLite to HTML document, 368
GrammarLite to HTML page, 368
new phrase, 253
phrases at design time, 216
Phrases control to application, 205
phrases to a collection, 234
PhrasesLite to HTML document, 374
PhrasesLite to HTML page, 374
TextBox to application, 29

VVDictation to application, 693

VVDictationMgr to application, 633

V'V Phrases control to application, 205

VVRichEdit to application, 87

VVTextBox to application, 31, 89
AddPhrase method, 234
adult voices, 769
Age property, 761
AllowProperties property, 762
Alternates property, 296
amount of space to indent, 109
animated face

controlling, 767

enabling, 775
Annotations property, 298
annotations, purpose of, 359
apostrophe, allowed in a phrase, 277
appearance of Ul Server, constants that

describe, 555

AppendM enultem method, 570
application

changes, UIClient event, 612

executable name, 566

menu group, adding menu option, 587

window handle parameter, 593
ApplicationM enuName parameter, 625
ApplicationName parameter, 566, 591, 612
ApplicationTitle parameter, 624
architecture, SDK, 25
associating

word with related information, 298
attributes

Classes, editing, 209

ViaVoice Outloud engine, 779
audio

wave, using, 776
AutoConnect property, 222, 303
AutoDictation property, 42, 46, 100, 104, 106

IBM ViaVoice Outloud

839

Index

AutoDictationWindow property, 642, 702
AutoL oad property, 305
automatic
connection to speech engine, 222, 303
connection to Ul Server, 223
loading of a grammar file, 305
starting of dictation mode, 42, 46, 83, 100,
104, 106, 201, 642, 702
AutoUl property, 223, 307

B
BackColor property, 763
background color of the control, 763
bActive parameter, 612
baseline frequency, setting, 771
Begin Dictation, enabling in main menu,
587

beginning

speech recognition, 240

text, moving to, 36, 94
BeginSpeechRecognition event, 240
BeginSpeechRecognized

method, 337
BIN directory, 755
binary grammar file

getting/setting path, 317, 320
binary snapshot of a control, 229
BookMark event, 800
borderless,rectangular window, 764
Breathiness property, 780
bShow parameter, 77, 196
Bulletlndentation property, 109
buttons

checkmark, 39, 98

EventButtonPressed event, 615

microphone, 497, 520, 629

Sample Voice, 751

toolbar, setting state of, 554

C
Cancel method, 792
capitalizing selected text, 36, 94
Caps Lock, turning off, 37, 95
Caption property, 534
capture
dictation speech, 382, 390, 400, 403, 405
capturing
commands, 36, 94
messages from the Ul Server, 568
speech, 35, 93
VVDictation, 697
VVDictationMgr, 639
causing Ul Server to appear, 585
changing
command words, 36, 94
selected text to lowercase, 36, 94
selected word to uppercase, 37, 95
state of UlServer component, 606
characters
LanglD, using last two, 509
MAX_MENU_OPERATION limiting, 546
maximum allowed, 80, 199
MaxText event, 80, 199
menu, number allowed in, 546
non-printing ASCII, 277
permitted in a phrase, 277
VWMAX_MENU_STRING constant limiting,
546
check mark indicator for menu option, 534
Checked property, 534
checkmark button, error correction dialog
box, 39, 98
child’s voice 769
ciComponent parametesso, 582, 606, 609,
615, 617
class
User Interface control, 534
Class Wizards4, 92, 638
Classes
wrappers, 524

840

IBM ViaVoice Outloud

Index

classes
Confirm Classes dialog box, 285, 421
editing attributes, 209
Index constants, 538
VWDVAF_ALLOW_DOCK, 540
vvUIDockingAlgorithmConstants, 540
vvUIDockingStyle, 542
vvUIEventCallbackFlags, 543
vvUI ExtendedM enuFlags, 545
vvUIMaxConstants, 546
vvUIMenulnfo, 534
vvUIMenultemConstants, 547
vvUIRemoveClientConstants, 550
client application, notifying, 806, 807
clipboard
cutting selected text to, 36, 94
pasting text from, 37, 95
Clipping property, 764
CmdID parameter, 70, 191
collection
accessing a member of, 250
accessing member of, 250
number of phrasesin, 246
PhraseColl methods, 245, 252
removing a member, 257
removing all objects, 259

collection object, VV PhrasesColl, 214

collection of commands used, 49, 111
comma, allowed in a phrase, 277
Command event, 70, 191
Command method, 660
command phrases
enabling/disabling, 214
turning off recognition of, 214
vvTBCapitalizeThis, 36, 94
vvTBCopy, 36, 94
vvTBCorrectionThis, 36, 94
vvTBCut, 36, 94
vvTBDeleteThis, 36, 94
vvTBHideEC, 36, 94
vvTBLowercaseThis, 36, 94

vvTBMoveBeginning, 36, 94

vvTBMoveEnd, 36, 94

vvTBNextWord, 36, 95

vvTBPasteThis, 37, 95

vvTBPreviousWord, 37, 95

vvTBScratchThat, 37, 95

vvTBSelectText, 95

vvTBSelectThis, 37, 95

vvTBShowEC, 37, 95

vvTBUppercaseOff, 37, 95

vvTBUppercaseOn, 37, 95

vvTBUppercaseThis, 37, 95
command recognition

disabling, 309

enabling, 309

turning off, 248

turning on, 248
commands

, 387

adding phrases, 212

capturing, 36, 94

disabling recogntion, 225

enabling recognition, 225

programmer-assigned,descriptions of, 263

VVRichEdit recognition, 191

VVTextBox recognition, 70
Commands property, 49, 111
CommandsEnabled property, 52, 114
communicating

actions to Ul Server, start, 597
COMPID_CUSTOM constant, 554
COMPID_MAINMENU constant, 554
COMPID_MICROPHONE constant, 554
COMPID_USERINFORMATION constant,

554

COMPID_VOLUME constant, 554
COMPID_WORDHISTORY constant, 554
Confirm Classes dialog box, 209, 285, 421
connecting

automatically, 222

speech engine automatically, 303

IBM ViaVoice Outloud

841

Index

constants, 546

COMPID_CUSTOM, 554

declared in VVUITYPE.h & VVUICNST.h,
504

Index, 538

UIAPIRC_ERROR_ALREADYINITIALIZE
D, 559

UIAPIRC_ERROR_FAILED, 559

UIAPIRC_ERROR_INVALIDCLIENT, 559

UIAPIRC_ERROR_INVALIDPARAM, 559

UIAPIRC_ERROR_NOSERVER, 559

UIAPIRC_ERROR_NOTCURRENTCLIEN
T, 559

UIAPIRC_ERROR_OUTOFMEMORY, 559

UIAPIRC_ERROR_SERVERBUSY, 559

UIAPIRC_OK, 559

UIMFG_DYNAMIC_APPLICATION, 557

UIMFG_DYNAMIC_ HELP, 557

UIMFG_DYNAMIC_MAIN, 557

UIMFG_STATIC_HELP, 557

UIMFT_CLIENT, 558

UIMFT_EXECUTE, 558

UIMSF_ADDWAIT, 553

UIMSF_CLEARWAIT, 553

UIMSF_DISABLED, 552

UIMSF_ERROR, 552

UIMSF_OFF, 552

UIMSF_ON, 552

UIMSF_REMOVEWAIT, 553

UIMSF_SLEEP, 552

User Interface control, 537

vVDVAF _ALLOW_DOCK, 540

vVDVAF_ALLOW_TOPMOST_DOCK, 540

vvDVAF _DEFAULT, 540

vvDVAF_NEVER_DOCK, 541

vVDVAF_STAY_DOCK_TO_PREVIOUS,
541

vvDVSF _ADJUST WIDTH, 542

vvDVSF _ADJUST_ORIGIN, 542

vvDVSF DEFAULT, 542

vvDVSF_NORMAL BACKGROUND, 542

vvDVSF_TRANSPARENT_BACKGROUN
D, 542

vWMAX_ MENU_OPERATION, 546

VWMAX_ MENU_STRING, 546

VWMAX_ USERINFO_ID_LEN, 546

VWMAX_ WORDHISTORY TEXT, 546

vvUIDockingStyle, 542

VVUIEVENT_ACTIVEAPP_CHANGED,
543

VVUIEVENT_ALL, 543

VVUIEVENT _BUTTON_PRESSED, 543

VVUIEVENT_COMPONENT_UPDATED,
543

VVUIEVENT_MENUITEM_SELECTED,
543

VVUIEVENT_NONE, 543

VVUIEVENT _VIEW_QUERYFLAGS, 544

VVUIEVENT_VIEW_QUERYMENUINFO,
544

vvUIEventCallbackFlags, 543

vvUIMaxConstants, 546

vvUIMenultemConstants, 547

VVUIMICINDEX_ MICSTATE, 538

vVUIMICINDEX_ WAITSTATE, 538

VvVUIRCF_CLOSE, 550

VVUIRCF_CLOSE _IF_LAST_CLIENT, 550

VVUIRCF _CLOSE _IF_LAST_CLIENT_DE
LAY, 550

vVUIRCF _DEFAULT, 550

VVUIRCF_NO_CLOSE, 550

vvUIRemoveClientConstants, 550

vvUIUIFOINDEX_ ENROLLID, 538

VVUIUINFOINDEX ENROLL_DESCRIPTI
ON, 539

VVUIUINFOINDEX TASK_DESCRIPTION,
539

VVUIUINFOINDEX TASKID, 538

VVUIUINFOINDEX USER_DESCRIPTION,
538

vVUIUINFOINDEX_USERID, 538

vVUIVOLINDEX VOLLEVEL, 539

842

IBM ViaVoice Outloud

Index

vVVUIWHINDEX_ TAGGEDTEXT, 539
context menu
enabling, 772
Virtual Voices, 749
context-free grammar file, using, 279
control
Dictation
events, 734
frequent questions about, 743
getting started, 693
introduction, 699
methods, 712
properties, 701
DictationMgr
events, 682
frequent questions about, 691
getting started, 633
introduction, 631
methods, 659
properties, 641
DictLite
events, 384
getting started, 363
introduction, 361
methods, 384
properties, 381
Error Correction
events, 481
frequent questions about, 495
getting started, 417
introduction, 415
methods, 460
properties, 431
Grammar
events, 336
frequent questions about, 359
getting started, 281
hierarchy, 279
introduction, 279
methods, 327
properties, 295

GrammarLite
events, 394
getting started, 363
introduction, 361
methods, 394
properties, 389
Lite
frequent questions about, 413
getting started, 363
introduction, 361
properties, 381
Phrases
events, 239
frequent questions about, 277
getting started, 205
hierarchy, 203
introduction, 203
methods, 233
properties, 221
PhrasesLite
events, 407
getting started, 363
introduction, 361
methods, 402
properties, 399
RichEdit
events, 190
frequent questions about, 201
getting started, 87
hierarchy, 85
introduction, 85
methods, 171
properties, 99

TextBox

events, 69

frequent questions about, 83
getting started, 29
hierarchy, 27

introduction, 27

methods, 63

properties, 41

IBM ViaVoice Outloud

843

Index

User Interface
class, 534
constants, 537
enumerations, 551
events, 611
frequent questions about, 629
getting started, 499
introduction, 497
methods, 565
properties, 561
structure, 535
Virtual Voices, 755
events, 799
face customization notes, 814
frequent questions about, 835
getting started, 745
introduction, 757
methods, 790
programming notes, 813
properties, 759
tts engine attributes, 779
controls
list, 19
copying selected text to the clipboard, 36,
94
Correct method, 663, 713
correcting
selected text, 36, 94
correction
text, 38, 97
Count property, 246, 346
creating
control
VVDictLite, 363
VVGrammarlLite, 368
VVPhrasesLite, 374
custom menus, 523
instance of control, 499
Error Correction, 417
Grammar, 281
Phrases, 205

TextBox, 29
UlClient, 499
VVDictation, 693
VVDictationMgr, 633
VVRichEdit, 87
VVTextBox, 31, 89
member variable for a class, 34, 92, 638
new phrase, 253
new phrase object, 234
current state of UlServer, 624
cursor
moving to the previous word, 37, 95
placing at the beginning of the next word,
36, 95
selecting text at, 37, 95
Cursorindex property, 645
custom designer
V'V Phrases control, 216
Custom I nterface methods,
SetClientCallback, 597
custom menu options
adding, 534, 587
creating, 523
getting information about, 577
modifying, 534
providing information about, 535
cutting selected text to the clipboard, 3s,
94

D
data

storing, 269
DATA directory, 755
DefaultExpression property, 766
defining maximum size for string value

properties, 546

DeleteM enultem method, 574
DeleteText event, 683
DeleteText method, 666
deleting dictated text, 37, 95
description

844

IBM ViaVoice Outloud

Index

actions for program to take, 261
Description property, 263

Detective control
summary, 24
Dictation

phrase formatting flags, 741

summary, 23
dictation
display current state, 61
enable, 83, 201
Dictation control
capturing speech, 697
creating instance of, 693
events, 734
getting started, 693
introduction, 699
methods, 712
properties, 701
questions, 743
summary, 697
dictation mode

AutoDictation, 42, 46, 100, 104, 106
AutoDictationWindow, 642, 702
description, 35, 93, 639, 697
DictationStateChange, 73, 193, 685, 735
setting state, 54, 116, 647, 704

starting automatically, 42, 46, 100, 104, 106,

642, 702
DictationMgr control
capturing speech, 639
creating instance of, 633
events, 682
getting started, 633
introduction, 631
methods, 659
properties, 641
questions, 691
summary, 23, 640
DictationOn
parameter, 73, 193
property, 54, 116

DictationOn property, 647, 704

DictationStateChange event, 73, 193, 685, 735

DictLite control
events, 384
introduction, 361
methods, 384
properties, 381
using, 363

directory structure, 755

disabled microphone button, why?, 629

disabling

command recognition, 225
command recogntion, 309

grammar, 290
recognition
command phrases, 214
particular phrases, 265
displaying
Ul Server, 568
displays
state of dictation, 61

docked, event to change view, 621

docking
preventing, 541

docking, view mode of UlServer, 540

DOCS directory, 755

DoProperties method, 793

Drag-Drop-n-Go

Grammar control, 287, 423, 426

support, 211
dwFlags parameter, 597

dwM enultemld parameter, 619
dwV alueData parameter, 606

E

editing Class attributes, 209

elderly voices, 769

embedding bookmarks, 800
EN_UK LanglD string name, 509
EN_US LangID string name, 509

enable dictation, 83, 201

IBM ViaVoice Outloud

845

Index

Enabled property, 225, 248, 265, 349, 382, 390, correction, hiding the dialog box, 36, 94
400, 403, 405, 534 information, 559
VVCFGram, 290 message dialog box, controlling, 76, 195
enabling, 265 Error Correction control
animated face, 775 creating instance of control, 417
Caps Lock, 37, 95 events, 481
command recognition, 225, 309 getting started, 417
context menu, 772 introduction, 415
grammar, 290 questions frequently asked, 495
main menu options, 587 summary, 22
recognition of command phrases, 214 Error Correction dialog box
recogntion of a particular phrase, 265 showing, 37, 95
end-user error correction window, 38, 97
ability to change Virtual Voices Properties, error description parameter,
793 pstrDescription, 76, 195
control via Virtual Voices context menu, 749 Error event, 76, 195
pausing and resuming speaking, 804 ES ES Langld string name, 509
Engine EventActiveApplication event, 612
property, 56, 118 EventButtonPressed event, 615
engine attributes, ViaVoice Outloud, 779 EventComponentUpdated event, 617
Engine control EventMenultemSelected event, 619
summary, 21 EventQueryViewFlags
Engine property, 227, 649, 706 event description, 621
entering dictation mode, 73, 83, 193, 201, using to handle changing view mode of
685, 735 Ul Server, 540
enumerated types EventQueryViewMenulnfo event, 624
microphone states, 552 events
taskbar component 1D, 554 BeginSpeechRecognition, 240
TVIEWTY PE, 555 BookMark, 800
UIEVENTRC, 556 Command, 70, 191
UIMENUTY PE, 558 DeleteText, 683
UIRC, 559 DictationStateChange, 73, 193, 685, 735
enumerations DictLite control, 384
MICROPHONE_STATES, 552 Error, 76, 195
TCID, 554 Error Correction control, 481
TVIEWTY PE, 555 EventActiveApplication, 612
UIEVENTRC, 556 EventButtonPressed, 615
UlMenuGroup, 557 EventComponentUpdated, 617
UIMENUTY PE, 558 EventMenultemSel ected, 619
User Interface control, 551 EventQueryViewFlags, 621
error EventQueryViewMenulnfo, 624

846 IBM ViaVoice Outloud

Index

Grammar control, 336

GrammarLite control, 394

HitBookMark, 737

InitDone, 802

KeyPress, 804

MaxText, 80, 199

Pause, 806

Phrase object, 275

PhraseReco, 739

PhraseRecognized, 385, 395, 408

Phrases control, 239

PhrasesL ite control, 407

PutText, 687

Reset, 807

Resume, 808

SpeechRecognized, 212, 241

StartSpeaking, 809

StopSpeaking, 810

supported in Dictation control, 734

supported in DictationMgr control, 682

supported in RichEdit control, 190

supported in TextBox control, 69

TrainingRequired, 243, 342

User Interface control, 611

Virtual Voices, 799

VUMeter, 387, 397, 410

WordPosition, 811
exclamation point, allowed in a phrase, 277
ExecuteCommand, 172
ExecuteCommand method, 64
ExePathName property, 534
Exist method, 255, 355
exiting dictation mode, 73, 193, 685, 735
ExpandM acros property, 651, 708
Expression property, 767
ExtendedM enuFlags, 545
external lists

grammar, 291

number in a group, 346

returning, 352

turning off, 349

turning on, 349
ExternLists property, 314

F
face customization notes
Virtual Voices, 814
face, animated
controlling, 767
enabling, 775
fByPosition parameter, 574, 577, 588, 604
female gender, 769
file
grammar
setting path to, 317, 320
GrammarSource
setting path to, 324
finding out if external list is part of an
object, 355
finding out if phrase is part of a collection,
255
focus
using to start dictation mode, 42, 46, 100, 104,
106, 642, 702
format speech input, 651, 708
formatting flags, 741
FR_FR LanglID string name, 509
frequently asked questions
Dictation control, 743
DictationMgr control, 691
Error Correction control, 495
Grammar control, 359
Lite controls, 413
Phrases control, 277
RichEdit control, 201
TextBox control, 83
User Interface control, 629
Virtual Voices, 835
functions
AboutBox, 791
Cancel, 792
DoProperties, 793

IBM ViaVoice Outloud

847

Index

Pause, 794 enabling/disabling, 290
Resume, 795 external lists, 291
Speak, 796 Grammar control
Alternates, 296
G Annotations, 298

AutoConnect, 303

Gender property, 769
property AutoL oad, 305

GetAlternate method, 668

GetFlags method, 719 AutoUl, 307 .
GetMenultemlInfo method, 577 BeginSpeechRecognized, 337
GetNumberV alue method, 580 Count, 346

GetStringV alue method, 582 creatlng instance of control, 281
GetText method, 671 displaying UlServer, 307
getting Drag-Drop-n-Go, 287, 423, 426

Enabled, 309, 349

focus, UIClient event, 612
Enabled property, 309

information about custom menu option, 577

numeric information about Ul Server, 580 Engine, 311
path to binary grammar file, 317, 320 Engine property, 311
properties of UlServer, and setting, 538 events, 336

Exists, 355

string information about the Ul Server, 582
Ul characteristics, 520
getting started

ExternLists, 314
getting started, 281

Dictation control. 693 GrammarSource, 317, 320

DictationMgr control, 633 hierarchy, 279

DictLite control. 363 interacting with UlServer, 307
introduction, 279

Error Correction control, 417

Grammar control, 281 Item, 352
GrammarLite control, 363 L oadFromSource, 328, 330
Lite controls. 363 questions frequently asked, 359
Phrases Contr0| 205 RefreshUITeXt, 331
PhrasesLite control, 363 Rules, 322
RichEdit control, 87 ShowTrainDialog, 334
TextBox control, 29 SourceType, 324
User Interface control, 499 SpeechRecognized, 339
Virtual Voices control, 745 summary, 21
GetWavData method, 721 TrainingRequired, 342
GetWordlnfo method. 673. 723 V'V PhraseCollGroup object, 345, 354
globally unique identifier, 769 grammlar file
Gr_GR LandID string name, 509 compiled
Grammar how to create, 359
loading, 288 using, 279
grammar loading automatically, 305

848 IBM ViaVoice Outloud

Index

loading manually, 328, 330
GrammarLite control

events, 394

introduction, 361

methods, 394

properties, 389

using, 368
grammars

enabling and disabling, 290

kinds supported, 359
GrammarSource property, 317, 320, 392

group
number of external listsin, 346

H
handling

BookMark event, 800

InitDone event, 802

KeyPress event, 804

Pause event, 806

Reset event, 807

Resume event, 808

SpeechRecognized event, 212

StartSpeaking event, 809

StopSpeaking event, 810

WordPosition event, 811
HeadSize property, 781
hearing a voice sample, 751
help menu option, adding, 587
HelpMenuName parameter, 625
hiding the error correction dialog, 36, 94
hiding the Virtual Voices control, 786
hierarchy

Grammar Control, 279

Phrases Control, 203

RichEdit control, 85

TextBox control, 27

VVPhrases, 218
hierarchy of objects for VV Phrases, 203
HitBookMark event, 737
hresult parameter, 77, 196

hwndA pplication parameter, 568, 593, 612
hwndTarget parameter, 615, 620
hwndWindow parameter, 624

I

ID property, 267, 534

identifier for a phrase, programmer-

assigned, 267

ignoring
all commands in a collection, 248
all external listsin a group, 349
phrases, 265

improving recognition, TrainingRequired

event, 243
Include files, VVUICINST.h and
VVUITY PE.h, 504
Index constants
description, 538
vvUIlUserlnfolndex
(COMPID_USERINFORMATION), 538
vvUIVolumendex
(COMPID_USERINFORMATION), 539
vvUIWordHistorylndex
(COMPID_USERINFORMATION), 539
InitDone event, 802
Initialize method, 585
initializing Ul client, 506
input index, 723
InsertM enultem method, 587
installation notes, 755
installing
ViaVoice ActiveX components, 19
instance of control
creating, 29, 87, 499, 633, 693
UlIClient, 499
instance of control, creating
Phrases, 205
interacting with Ul server, 513
introduction
Dictation control, 699
DictationMgr control, 631

IBM ViaVoice Outloud

849

Index

DictLite control, 361
Error Correction control, 415
Grammar control, 279
GrammarLite control, 361
Lite controls, 361
Phrases control, 203
PhrasesL ite control, 361
RichEdit control, 85
TextBox control, 27
User Interface control, 497
ViaVoice ActiveX controls, 19
Virtual Voices ActiveX control, 757
invisible operation, Virtual Voices
control, 786
invoke voice commands, 64
IT_IT LanglD string name, 509
Item property, 250, 352
ItemData property, 269

K

keyboard control of Virtual Voices
control, 813

KeyPress event, 804

kinds of grammars supported, 359

L
Lang ID parameter, 509
LangStr parameter, 601
LanguageUl property, 58, 562
Layout property, 229
IHelplD parameter, 77, 196
list
ViaVoice ActiveX controls, 19
list of phrases stored by VV Phrases, 212
Lite controls
introduction, 361
properties, 381
questions, 413
summary, 21
L oadFromSource method, 328, 330

loading Grammar, 288

LoadRTF method, 174

LoadTextFile method, 176

location of a menu item, parameter for,
570

L ocked property, 653

losing focus, UlClient event, 612

lowercase, changing selected text to, 36,
94

M
MainMenuName parameter, 624
making the Properties dialog appear, 793
mal e gender, 769
manual loading of a grammar file, 328, 330
maximum
number of characters allowed, 80, 199
size of UlServer string value properties, 546
MaxText event, 80, 199
member variable, creating for a class, 34,
92, 638
menu
creating custom, 523
custom, specifying location, 557
items, Custom Interface, 535
options, Custom Interface, 535
styles, setting, 545
menu group name parameter, 570
menu item caption, maximum number of
characters allowed, 546
menu items
constants, 547
parameter, 574
position, 574
menu option
check mark indicator, 534
constants, 557
Enabled indicator, 534
path of help file, 534
specifying ID numbers, 534
Text, 534

850

IBM ViaVoice Outloud

Index

Visible indicator, 534
MenuName parameter, 570, 574, 577, 587, 603
M ergeRecoPhrases method, 725
methods

About, 63, 171

AboutBox, 791

Add, 253

AddApplicationByName, 566

AddApplicationByWindow, 568

AddPhrase, 234

AppendMenultem, 570

BeginSpeechRecognized, 337

Cancel, 792

Command, 63, 171, 660

Correct, 663, 713

DeleteMenultem, 574

DeleteText, 666

DictLite control, 384

DoProperties, 793

Drag, 63, 171

Error Correction control, 460

ExecuteCommand, 64

Exist, 255, 355

GetAlternate, 668

GetFlags, 719

GetMenultemlnfo, 577

GetNumberValue, 580

GetStringValue, 582

GetText, 671

GetWavData, 721

GetWordInfo, 673, 723

Grammar control, 327

GrammarLite control, 394

Initialize, 585

InsertMenultem, 587

LoadFromSource, 328, 330

LoadRTF, 174

LoadTextFile, 176

M ergeRecoPhrases, 725

Move, 63, 171

Pause, 794, 799

Phrase object, 275
PhraseColl collection, 252
PhraseCollGroup object, 354
Phrases control, 233
PhrasesL ite control, 402
PutText, 678
Refresh, 63, 171
RefreshingUIText, 236
RefreshUl Text, 331
Remove, 257
RemoveAll, 259
RemoveApplicationByName, 591
RemoveA pplicationByWindow, 593
Resume, 795, 799
SaveTextFile, 186
SelPrint, 188
SetBookMark, 727
SetClientCallback, 597
SetClientCallbackFlags, 597
SetContext, 729
SetFocus, 63, 171
SetL anguageByID, 599
SetL anguageByString, 601
SetMenultemlInfo, 603
SetNumberValue, 606
SetSel ection, 680
SetStringValue, 609
ShowTrainDialog, 334
ShowWhatsThis, 63, 171
Speak, 766, 796
SpeechRecognized, 339
SplitOutL eftWord, 731
supported in RichEdit control, 171
supported in TextBox control, 63
TrainingRequired, 342
User Interface control, 565
Virtual Voices, 790
VVDictation control, 712
VVDictationMgr control, 659
Z-Order, 63, 171
microphone

IBM ViaVoice Outloud

851

Index

button, 497, 520
button disabled, why?, 629
index constants
vVUIMICINDEX _MICSTATE, 538
vVUIMICINDEX _WAITSTATE, 538
state constants
UIMSF_DISABLED, 552
UIMSF_ERROR, 552
UIMSF_OFF, 552
UIMSF_ON, 552
UIMSF_SLEEP, 552
wait state constants
UIMSF_ADDWAIT, 553
UIMSF_CLEARWAIT, 553
UIMSF_REMOVEWAIT, 553
minimized, event to change view, 621
misrecognized words, 663, 713
ModeGuid property, 769
modifying
custom menu items, 535
custom menu options, 534, 535
state of UlServer component, 609
Ul Server components, 538
mouse, EventButtonPressed, 615
moving the cursor, 36, 37, 94, 95

N
Name property, 271
nDataSize parameter, 582
neutral gender, 769
new phrase, adding, 253
nindex parameter, 582, 606, 609
nindexLong parameter, 580
notifying
client application
Pause, 806
Reset, 807
Resume, 808
WordPosition, 811
container application
event, 802

StartSpeaking, 809
StopSpeaking, 810
UlServer about application programs, 566
number of external listsin a group, 346
number of phrases in a collection, 246

@)
object
Phrase events, 275
Phrase methods, 275
PhraseColl Group methods, 354
PhraseColl Group properties, 345
object hierarchy for VV Phrases, 203
objects
hierarchy
VVRichEdit control, 85
VVTextBox control, 27
information, accessing, 580
Phrase
properties, 260
removing all from a collection, 259
VVPhraseColl, 214
VVPhrases
hierarchy, 218
overview
Virtual Voices, 745

P
parameters
ApplicationM enuName, 625
ApplicationName, 566, 591, 612
ApplicationTitle, 624
bActive, 612
bShow, 77, 196
ciComponent, 582, 606, 609, 615, 617
CmdID, 70, 191
DictationOn, 73, 193
dwFlags, 597
dwMenultemld, 619
dwValueData, 606

852

IBM ViaVoice Outloud

Index

fByPosition, 577, 588, 604
HelpMenuName, 625
hresult, 77, 196
hwndApplication, 568, 593, 612
hwndTarget, 615, 620
hwndWindow, 624
identifying commands, CmdID, 70, 191
IHelpID, 77, 196
LanglD, 509
LangStr, 601
MainMenuName, 624
MenuName, 570, 574, 577, 587, 603
nDataSize, 582
nindexLong, 580
pdwDockFlags, 621
pdwValueData, 580
phwndWindow, 621
plMenulnfo, 578, 588, 604
pResult, 612, 615, 617, 620, 621, 625
pstrDescription, 76, 195
riid, 595
strCommand, 70, 191, 461, 464, 466
ultem, 574, 577, 587, 603
uUlMenuGroup, 570, 574, 577, 603
ValueData, 582, 609
VtViewType, 624
wlLanglD, 599
Paste, 750
pasting text from the clipboard, 37, 95
path of help file, 534
Pause
event, 806
example of using, 799
method, 794
pausing playback, 794
pdwDockFlags parameter, 621
pdwV alueData parameter, 580
phrase formatting flags
dictation, 741
Phrase object
events, 275

methods, 275

properties, 260
phrase objects

creating new, 234

programmer-assigned name for, 271
phrase, characters permitted in, 277
PhraseColl Collection

methods, 252

properties, 245
PhraseReco event, 739
PhraseRecognized event, 385, 395, 408
phrases

adding, 212, 234

number in a collection, 246
Phrases control

creating an instance of, 205

events, 239

getting started, 205

hierarchy, 203

introduction, 203

methods, 233

properties, 221

questions, 277

summary, 20
Phrases property, 214, 231
PhrasesL ite control

events, 407

introduction, 361

methods, 402

properties, 399

using, 374
phwndWindow parameter, 621
plMenulnfo parameter, 578, 588, 604
Pitch property, 771
PitchFluctuation property, 782
placing the cursor at the beginning of the

next word, 36, 95

playback audio, 721
playback, pausing, 794
pResult parameter, 612, 615, 617, 620, 621, 625
preventing docking Ul Server, 541

IBM ViaVoice Outloud

853

Index

previous word, moving the cursor to, 37,
95
ProcessingM acro property, 710
programming
interfaces, Virtual Voices control, 755
notes, Visual Basic, 813
programming notes
Virtual Voices, 813
properties
ActionDesc, 261
ActorName, 760
Age, 761
AllowProperties, 762
Alternates, 296
Annotations, 298
AutoConnect, 222, 303
AutoDictation, 42, 46, 100, 104, 106
AutoDictationWindow, 642, 702
AutoL oad, 305
AutoUl, 223, 307
BackColor, 763
Breathiness, 780
Bulletlndentation, 109
Caption, 534
Checked, 534
Clipping, 764
Commands, 49, 111
CommandsEnabled, 52, 114
Count, 246, 346
Cursorlndex, 645
DefaultExpression, 766
defining maximum size for string values, 546
Description, 263
DictationOn, 54, 116, 647, 704
DictLite control, 381
Enabled, 225, 248, 265, 309, 349, 382, 390, 400,
403, 405, 534
Engine, 56, 118, 227, 311, 649, 706
Error Correction control, 431
ExePathName, 534
ExpandM acros, 651, 708

Expression, 767
ExternLists, 314
Gender, 769

Grammar control, 295
GrammarLite control, 389
GrammarSource, 317, 320, 392
HeadSize, 781

ID, 267, 534

Item, 250, 352

ItemData, 269
LanguageUl, 58, 562
Layout, 229

Lite controls, 381
Locked, 653

M odeGuid, 769

Name, 271

Phrase object, 260
PhraseColl Collection, 245
PhraseCollGroup object, 345
Phrases, 214, 231
Phrases control, 221
PhrasesL ite control, 399
Pitch, 771
PitchFluctuation, 782
ProcessingMacro, 710
RightMargin, 127
Roughness, 783

Rules, 322
SelAlignment, 129
SelBold, 131

SelBullet, 133
SelCharOffset, 135
SelColor, 137
SelFontName, 139
SelFontSize, 141
SelHanginglndent, 143
Sellndent, 145
SellRightlndent, 153
Selltalic, 147
SelLength, 149

Sel Protected, 151, 157

854

IBM ViaVoice Outloud

Index

SelRTF, 155
SelStrikeThru, 159
SelTabCount, 122, 161
SelTabs, 163
SelText, 165
SelUnderline, 167
ShowDictationlcon, 61
ShowMenu, 772
SourceType, 324
SpeakText, 773
Speed, 774
Text, 273
TextRTF, 169
UppercaseOn, 657
UseFace, 775
User Interface control, 561
UseWave, 776
Virtual Voices, 759
Visibility, 786
Visible, 534
VVDictation control, 701
VVDictationMgr control, 641
VVRichEdit control, 99
VVTextBox control, 41
Properties dialog, controlling when
appears, 793
properties page, Virtual Voices, 750
pstrDescription parameter, 76, 195
PutText event, 687
PutText method, 678

Q
querying

states of components in Ul server, 554, 555

Ul Server components, 538
guestions, Virtual Voices, 835

R
recognition
commands, controlling, 52, 114

TrainingRequired event, 243
recognized speech input, 739
recognizing

speech, 241

text, 273
rectangular window, 764
reference

speech engine, 311
refreshing text, 236
RefreshUl Text method, 236, 331
Remove method, 257
RemoveAll method, 259
RemoveA pplicationByName method, 591
RemoveA pplicationByWindow method, 593
RemoveClientConstants method, 550
removing

all objects from a collection, 259

custom menu items, 574

object from a collection, 257

phrase objects from a collection, 257

program from list of programs, 591, 593
reporting errors, 76, 195
Reset event, 807
Resume

event, 808

example of using, 799

method, 795
resuming after a pause, 795
retrieve formatting flags, 719
retruning

external lists, 352
returning from Speak method, 766
RichEdit control

creating instance of, 87

events, 190

introduction, 85

methods, 171

object hierarchy, 85

properties, 99

questions, 201

summary, 20

IBM ViaVoice Outloud

855

Index

RightMargin SelRightlndent
property, 127 property, 153

riid parameter, 595 SelRTF

Roughness property, 783 property, 155

Rules property, 322 SelStrikeThru

property, 159

S Sel TabCount

Sample Voice button, 751 property, 122, 161

SAMPLES directory, 755 SelTabs

SaveTextFile method, 186 property, 163

SDK
architecture, 25

component installation, 19

list of controls, 19
SDK ActiveX
introduction, 19
SelAlignment
property, 129
SelBold
property, 131
SelBullet
property, 133
SelCharOffset
property, 135
SelColor
property, 137
SelFontName
property, 139
SelFontSize
property, 141
SelHanginglndent
property, 143
Sellndent
property, 145
Selltalic
property, 147
Sellength
property, 149
Sel Print method, 188
Sel Protected
property, 151, 157

Sel Text

property, 165
SelUnderline

property, 167
sErrorID parameter, 76, 195
server, Ul, interacting with, 513
SetBookMark method, 727
SetClientCallback method, 597
SetClientCallbackFlags method, 597
SetContext method, 729
SetLanguageByID method, 599
SetLanguageBy String method, 601
SetMenultemlnfo method, 603
SetNumberValue method, 606
SetSelection method, 680
SetStringV alue method, 609
setting

baseline frequency of text-to-speech voice,

771

maximum number of characters, 80, 199

menu item characteristics, 603

menu styles, 545

path for GrammarSource, 324

path to a grammar file, 317, 320

refer to engine object, 56, 118, 649, 706

state of dictation mode, 54, 116, 647, 704

text-to-speech voice speed, 774

Ul characteristics, 520

Ul Server properties, 538

voice smoothness or roughness, 783
ShowDictationlcon property, 61

IBM ViaVoice Outloud

Index

showing the error correction dialog, 37, 95
ShowMenu property, 772
ShowTrainDialog method, 334
single phrase, turning off recognition, 265
size of speaker’s head, controllirmg1
smooth voice783
snapshot of the contrad29
SourceType properip24
Speak
method, 796
option, 749
UseWave property, 776
SpeakText property73
specifying
ID number of a menu option, 534
location of custom menu item, 557
UlServer components for query or
modification, 538
speech
capturing, 35, 93, 639, 697
recognizing, 241
speech engine
automatic connection to, 222
reference, 311
speech recognition
TrainingRequired event, 243
turning on and off, 290
SpeechRecognized
event handling, 212
events, 241
SpeechRecognized methado
Speed propertyr74
SplitOutLeftWord methodr31
sprite, definition of787
StartSpeaking eventgs, 809
state of component, modifyingoé
state of dictation mode, settings, 116, 647,
704
state of dictation, displagi
state of UlServers24
StopSpeaking eventgs, 810

storing

additional data with a phrase, 269

data, 269

list of command phrases, 212
strCommand parameteno, 191, 461, 464, 466
strHelp parameter7, 196
string values, defining maximum siz#e6
strSource parameter7, 196
structure

User Interface control, 535
structures, UIMenultemInf®34
sublanguage 1D509
summary

Detective control, 24

Dictation control, 23

DictationMgr control, 23

Engine control, 21

Error CorrectionTextBox control, 22

Grammar control, 21

Lite control, 21

Phrases control, 20

RichEdit control, 20

TextBox control, 20

User Interface control, 22

Virtual Voices control, 23

VVDictation, 697

VVDictationMgr, 640
support

Drag-Drop-n-Go, 211
synchronize even{g27

T
taskbar
component ID, 554
event to change view, 621
text
changing to lowercase, 36, 94
changing to uppercase, 37, 95
command to capitalize, 36, 94
copying to the clipboard, 36, 94
correcting selected, 36, 94

IBM ViaVoice Outloud

857

Index

correction, 38, 97

cutting to the clipboard, 36, 94
deleting dictated, 37, 95
disabling Caps Lock, 37, 95
enabling uppercase, 37, 95
moving the cursor, 36, 94

pasting from the clipboard, 37, 95
recognizing, 273

selecting at the cursor, 37, 95

external lists, 349
recognition of command phrases, 214
speech recognition, 290
turning on
Caps Lock, 37, 95
command recognition, 248
external lists, 349
recognition of command phrases, 214
speech recognition, 290

Text property, 273
TextBox

language for specific client, 58 U
TextBox control

TVIEWTY PE, 555

creating instance of, 29

events, 69

introduction, 27

methods, 63

object hierarchy, 27

properties, 41

questions, 83

recognizing commands, 52, 114

summary, 20

TextRTF

property, 169

text-to-speech

Engine attributes
Breathiness, 780
description, 779
HeadSize, 781
PitchFluctuation, 782
Roughness, 783

setting
baseline frequency, 771
voice speed, 774

SpeakText property, 773

UIAPIRC_ERROR_ALREADYINITIALI
ZED constant, 559
UIAPIRC_ERROR_FAILED constant, 559
UIAPIRC_ERROR_INVALIDCLIENT
constant, 559
UIAPIRC_ERROR_INVALIDPARAM
constant, 559
UIAPIRC_ERROR_NOSERVER
constant, 559
UIAPIRC_ERROR_NOTCURRENTCLIE
NTconstant, 559
UIAPIRC_ERROR_OUTOFMEMORY
constant, 559
UIAPIRC_ERROR_SERVERBUSY
constant, 559
UIAPIRC_OK constant, 559
UlClient
creating an instance of the control, 499
defining events received from Ul Server, 543
informing about actions in events, 556
initializing, 506
noting change of focus, 612
possible events

toolbar buttons, Setting State Of, 554 vwUIEVENT ACTIVEAPP CHANGED

TrainingRequired event, 243, 342 543

TrainingRequired method, 342 VWUIEVENT ALL 543

turning off VUIEVENT_BUTTON_PRESSED, 543
Caps Lock, 37,95 VUIEVENT _COMPONENT _UPDATED,
command recognition, 248 543

858 IBM ViaVoice Outloud

Index

VVUIEVENT_MENUITEM_SELECTED, 543
VVUIEVENT_NONE, 543
VUIEVENT_VIEW_QUERYFLAGS, 544
VVUIEVENT_VIEW_QUERYMENUINFO,
544
return code, 559
shutting down, specifying Ul Server response,
550
UIEVENTRC enumerated type, 556
UIEVENTRC_NOTPROCESSED constant,
556
UIEVENTRC_PROCESSED constant, 556
UIMenuGroup enumeration, 557
UlMenultemInfo structure, 534, 535
UIMENUTY PE, 558
UIMFG_DYNAMIC_APPLICATION
constant, 557
UIMFG_DYNAMIC_HELP constant, 557
UIMFG_DYNAMIC_MAIN constant, 557
UIMFG_STATIC_HELP constant, 557
UIMFT_CLIENT constant, 558
UIMFT_EXECUTE constant, 558
UIMSF_ADDWAIT constant, 553
UIMSF_CLEARWAIT constant, 553
UIMSF_DISABLED constant, 552
UIMSF_ERROR constant, 552
UIMSF_OFF constant, 552
UIMSF_ON constant, 552
UIMSF_REMOVEWAIT constant, 553
UIMSF_SLEEP constant, 552
Ul Server
button-clicking event, 615
causing to appear, 585
changing component characteristics, 617
components, maximum size for string value
properties, 546
connecting automatically, 223
current appearance, 555
current state, 624
docking constants
vwDVSF_ADJUST_ORIGIN, 542

vvDVSF_DEFAULT, 542
vvDVSF_NORMAL_BACKGROUND, 542
vvDVSF_TRANSPARENT_BACKGROUND
, 542
docking style constants, 542
docking view mode, 540
getting
numeric information about, 580
properties, 538
string information about, 582
handling menu options, 558
interacting with, 513
language for specific client, 562
microphone
object, 552
modifying
components, 554
state of component, 606, 609
notifying about applications, 566
object IDs
ciComponent, 580, 582, 609
preventing docking, 541
removing program from list, 591
setting properties, 538
specifying
language to use, 599, 601
response when Ul Client shuts down, 550
string value sizes, 546
user
changing view of, 621
menu option selection event, 619
request to view menu, 624
ultem parameter, 574, 577, 587, 603
UIVIEW_AGENT constant, 555
UIVIEW_DOCKED constant, 555
UIVIEW_SY STRAY constant, 555
UIVIEW_TASKBAR constant, 555
uppercase, changing selected word to, 37, 95
UppercaseOn property, 657
UseFace property, 775
user

IBM ViaVoice Outloud

859

Index

interface
getting and setting, 520
request to view Ul Server menu, 624
starts speaking, event, 240
User Interface control
getting started, 499
questions, 629
summary, 22
UseWave property, 776
using
DictLite, 363
GrammarLite, 368
PhrasesL ite, 374
using window handles, 568
uUIMenuGroup group, 587

uUIMenuGroup parameter, 570, 574, 577,

603

V
ValueData parameter, 582, 609
ViaVoice

component installation, 19

Error Correction control methods, 460

Error Correction Control properties, 431

Grammar Control methods, 327
Grammar Control properties, 295
SDK architecture, 25

User Interface class, 534

User Interface constants, 537
User Interface enumerations, 551
User Interface events, 611

User Interface introduction, 497
User Interface methods, 565
User Interface properties, 561
User Interface structure, 535
Virtual Voices events, 799

Virtual Voices face customization notes, 814

Virtual Voices methods, 790

Virtual Voices programming notes, 813

Virtual Voices properties, 759
ViaVoice ActiveX

controls included, 19
introduction, 19
ViaVoice Outloud engine attributes, 779
Virtual Voices
context menu, 749
control, 755
introduction, 757
keyboard control for Visual Basic, 813
overview, 745
Virtual Voices control
getting started, 745
summary, 23
Visibility property, 786
Visible property, 534
Visual Basic programming notes, 813
voice
setting speed, 774
smoothness or roughness, setting, 783
text-to-speech, setting baseline frequency,
771
voices, adult, elderly, and child, 769
VtViewType parameter, 624
VUMeter event, 387, 397, 410
VV CFGram control
getting started, 281
introduction, 279
using external lists, 291
VVDictation control
getting started, 693
VVDictationMgr control
getting started, 633
vVVDVAF_ALLOW_DOCK constant, 540
vvDVAF_ALLOW_TOPMOST_DOCK
constant, 540
vvDVAF_DEFAULT constant, 540
vVvDVAF_NEVER_DOCK constant, 541
vVDVAF_STAY_DOCK_TO_PREVIOU
S constant, 541
vvDVSF_ADJUST WIDTH constant, 542
vvDVSF_ADJUST_ORIGIN constant, 542
vvDVSF_DEFAULT constant, 542

860

IBM ViaVoice Outloud

Index

vwvDVSF_NORMAL_BACKGROUND
constant, 542
vvDV SF_TRANSPARENT_BACKGROUN
D constant, 542
VVECWin control
getting started, 417
introduction, 415
VWMAX_MENU_OPERATION constant,
546
VWMAX_MENU_STRING constant, 546
VWMAX_USERINFO_DESC_LEN, 546
VWMAX_USERINFO_DESC_LEN
constant, 546
VVWMAX_USERINFO_ID_LEN constant, 546
VWMAX_WORDHISTORY_TEXT
constant, 546
VVPhraseColl Collection
object, 214
V'V PhraseCollGroup object
methods, 354
properties, 345
V'V Phrases control
creating instance of, 205
custom designer, 216
Drag-Drop-n-Go, 211
object hierarchy, 203, 218
vvTBCapitalizeThis command phrase, 36, 94
vvTBCopy command phrase, 36, 94
vvTBCorrectionThis command phrase, 36,
94
vvTBCut command phrase, 36, 94
vvTBDeleteThis command phrase, 36, 94
vvTBHideEC command phrase, 36, 94
vvTBLowercaseThis command phrase, 36,
94
vvTBMoveBeginning command phrase, 36,
94
vvTBMoveEnd command phrase, 36, 94
vwvTBNextWord command phrase, 36, 95
vvTBPasteThis command phrase, 37, 95
vvTBPreviousWord command phrase, 37, 95

vvTBScratchThat command phrase, 37, 95

vvTBSelectText command phrase, 95

vvTBSelectThis command phrase, 37, 95

vvTBShowEC command phrase, 37, 95

vvTBU ppercaseOff command phrase, 37, 95

vvTBU ppercaseOn command phrase, 37, 95

vvTBUppercaseThis command phrase, 37,
95

VV TextBox control

creating instance of, 31, 89

VVUICNST.h Include file, 504

vvUIDocking constants, 540

vvUIDockingStyle constants, 542

vUIEVENT_ACTIVEAPP_CHANGED
constant, 543

VVUIEVENT_ALL constant, 543

vWUIEVENT_BUTTON_PRESSED
constant, 543

VWUIEVENT_COMPONENT_UPDATED
constant, 543

vUIEVENT_MENUITEM_SELECTED
constant, 543

VVUIEVENT_NONE constant, 543

VUIEVENT_VIEW_QUERYFLAGS
constant, 544

vUIEVENT_VIEW_QUERYMENUINFO
constant, 544

vvUIEventCallbackFlags constants, 543

vvUIExtendedM enuFlags, 545

vvUIM axConstants, 546

VVUIMenulnfo class, 534

vvUIM enultemConstants, 547

vwUIMICINDEX_MICSTATE constant, 538

vWUIMICINDEX_WAITSTATE constant,
538

vVUIRCF_CLOSE constant, 550

VWUIRCF_CLOSE_IF_LAST_CLIENT
constant, 550

VWUIRCF_CLOSE_IF_LAST_CLIENT_DE
LAY constant, 550

VVUIRCF_DEFAULT constant, 550

IBM ViaVoice Outloud

861

Index

VVUIRCF_NO_CL OSE constant, 550

vvUIRemoveClientConstants, 550

VVUITYPE.h, Include file, 504

vVUIUINFOINDEX _ENROLL_DESCRIP
TION constant, 539

VVUIUINFOINDEX_ ENROLLID
constant, 538

VVUIUINFOINDEX TASK_DESCRIPTI
ON constant, 539

VVUIUINFOINDEX_TASKID constant,
538

VVUIUINFOINDEX _USER_DESCRIPTI
ON constant, 538

VVUIUINFOINDEX_USERID constant,
538

vvUIlUserInfol ndex
(COMPID_USERINFORMATION), 538

VVUIVOLINDEX_VOLLEVEL constant,
539

vvUIVolumendex
(COMPID_USERINFORMATION), 539

VVUIWHINDEX _TAGGEDTEXT
constant, 539

vvUIWordHistorylndex
(COMPID_USERINFORMATION), 539

vvVIAVOICE_IDMENU_STOP_READI
NG, 549

vvVIAVOICEUI IDMENU_BEGIN_DIC
TATION constant, 547

vvVIAVOICEUI IDMENU_BEGIN_RE
ADING constant, 547

vvVIAVOICEUI IDMENU_CORRECT _
ERROR constant, 547

vvVIAVOICEUI IDMENU_EXIT
constant, 548

vvVIAVOICEUI IDMENU_MICROPHO
NE constant, 548

vvVIAVOICEUI _IDMENU_STOP_DICT
ATION constant, 548

vvVIAVOICEUI IDMENU_ WHAT_CA
N_I_SAY constant, 549

W

wave audio, using, 776

window borderless, rectangular, 764
window handle, 568, 593

Wizard, Class, 34, 92, 638

wLanglD parameter, 599
WordPosition event, 811

words per minute speed, 774

862

IBM ViaVoice Outloud

	Contents
	Index 839
	About This Document
	Who Should Read This Book
	ViaVoice SDK Related Publications
	How This Book Is Organized
	Document Conventions

	Introduction
	Installing the ViaVoice ActiveX Components
	ActiveX Controls
	Part 1: ViaVoice TextBox Control
	Part 2: ViaVoice RichEdit Control
	Part 3: ViaVoice Phrases Control
	Part 4: ViaVoice Grammar Control
	Part 5: ViaVoice Lite Controls
	Part 6: ViaVoice Engine Control
	Part 7: ViaVoice Error Correction Window Control
	Part 8: ViaVoice User Interface Control
	Part 9: ViaVoice DictationManager Control
	Part 10: ViaVoice Dictation Control
	Part 11: Virtual Voices Control
	Part 12: ViaVoice Detective Control

	ViaVoice SDK Architecture

	Chapter 1 Introduction to the TextBox Control
	VVTextBox Object Hierarchy

	Chapter 2 Getting Started with the TextBox Control
	Creating an Instance of the Control
	Capturing Speech
	Capturing Commands
	Text Correction
	Summary

	Chapter 3 Properties, Methods, and Events
	TextBox Control Properties
	AutoDictationWindow (Read/Write at Run Time Only)
	AutoUI
	Commands
	CommandsEnabled
	DictationOn
	Engine
	LanguageUI
	ShowDictationIcon

	TextBox Control Methods
	ExecuteCommand
	Playback
	PlaybackEx
	PlaybackEx2

	TextBox Control Events
	Command
	DictationStateChange
	Error
	MaxText

	Chapter 4 TextBox Control Frequently Asked Questions
	Chapter 5 Introduction to the RichEdit Control
	VVRichEdit Object Hierarchy

	Chapter 6 Getting Started with the RichEdit Control
	Creating an Instance of the Control
	Capturing Speech
	Capturing Commands
	Text Correction
	Summary

	Chapter 7 Properties, Methods, and Events
	RichEdit Control Properties
	AutoDictationWindow (Read/Write at Run Time Only)
	AudioSourceType
	AutoUI
	BulletIndentation
	Commands
	CommandsEnabled
	DictationOn
	Engine
	FileName
	hWnd (Read Only)
	LanguageUI
	RightMargin
	SelAlignment (Read/Write at Run Time Only)
	SelBold (Read/Write at Run Time Only)
	SelBullet
	SelCharOffset (Read/Write at Run Time Only)
	SelColor (Read/Write at Run Time Only)
	SelFontName(Read/Write at Run Time Only)
	SelFontSize (Read/Write at Run Time Only)
	SelHangingIndent (Read/Write at Run Time Only)
	SelIndent (Read/Write at Run Time Only)
	SelItalic (Read/Write at Run Time Only)
	SelLength (Read/Write at Run Time Only)
	SelProtected
	SelRightIndent (Read/Write at Run Time Only)
	SelRTF (Read/Write at Run Time Only)
	SelStart (Read/Write at Run Time Only)
	SelStrikeThru (Read/Write at Run Time Only)
	SelTabCount (Read/Write at Run Time Only)
	SelTabs (Read/Write at Run Time Only)
	SelText (Read/Write at Run Time Only)
	SelUnderline (Read/Write at Run Time Only)
	TextRTF

	RichEdit Control Methods
	ExecuteCommand
	LoadRTF
	LoadTextFile
	Playback
	PlaybackEx
	PlaybackEx2
	SaveRTF
	SaveTextFile
	SelPrint

	RichEdit Control Events
	Command
	DictationStateChange
	Error
	MaxText

	Chapter 8 RichEdit Control Frequently Asked Questions
	Chapter 9 Introduction to the Phrases Control
	VVPhrases Object Hierarchy

	Chapter 10 Getting Started with the Phrases Control
	Creating an Instance
	Drag-Drop-n-Go Support
	Adding Phrases
	Enabling/Disabling Phrases
	Working with the Custom Designer
	Object Hierarchy

	Chapter 11 Properties, Methods, and Events
	VVPhrases Control
	VVPhrases Control Properties
	AutoConnect (VVPhrases)
	AutoUI (VVPhrases)
	Enabled (VVPhrases)
	Engine (VVPhrases)
	Layout (VVPhrases)
	Phrases (VVPhrases)
	VVPhrases Control Methods
	AddPhrase (VVPhrases)
	RefreshUIText (VVPhrases)

	VVPhrases Control Events
	BeginSpeechRecognition (VVPhrases)
	SpeechRecognized (VVPhrases)
	TrainingRequired (VVPhrases)

	VVPhraseColl Collection
	VVPhraseColl Collection Properties
	Count (VVPhraseColl)
	Enabled (VVPhraseColl)
	Item (Default Method - VVPhraseColl)
	VVPhraseColl Collection Methods
	Add (VVPhraseColl)
	Exists (VVPhraseColl)
	Remove (VVPhraseColl)
	RemoveAll (VVPhraseColl)

	VVPhrase Object
	VVPhrase Object Properties
	ActionDesc (VVPhrase)
	Description (VVPhrase)
	Enabled (VVPhrase)
	ID (VVPhrase)
	ItemData (VVPhrase)
	Name (VVPhrase)
	Text (VVPhrase)
	VVPhrase Object Methods
	VVPhrase Object Events

	Chapter 12 Phrases Control Frequently Asked Questions
	Chapter 13 Introduction to the Grammar Control
	VVCFGram Object Hierarchy

	Chapter 14 Getting Started with the Grammar Control
	Creating an Instance of the Control
	Drag-Drop-n-Go Support
	Loading a Grammar
	Enabling/Disabling a Grammar
	Using External Lists

	Chapter 15 Properties, Methods, and Events
	Grammar Control Properties
	Alternates (VVCFGram)
	Annotations (VVCFGram)
	AutoConnect (VVCFGram)
	AutoLoad (VVCFGram)
	AutoUI (VVCFGram)
	Enabled (VVCFGram)
	Engine (VVCFGram)
	ExternLists (VVCFGram)
	GrammarFormat (VVCFGram)
	GrammarSource (VVCFGram)
	Rules (VVCFGram)
	SourceType (VVCFGram)

	Grammar Control Methods
	LoadFromSource (VVCFGram)
	Refresh
	RefreshUIText (VVCFGram)
	ShowTrainDialog (VVCFGram)

	Grammar Control Events
	BeginSpeechRecognized (VVCFGram)
	SpeechRecognized (VVCFGram)
	TrainingRequired (VVCFGram)

	VVPhraseCollGroup Object
	VVPhraseCollGroup Object Properties
	Count (VVPhraseCollGroup)
	Enabled (VVPhraseCollGroup)
	Item (VVPhraseCollGroup)
	VVPhraseCollGroup Object Methods
	Exists (VVPhraseCollGroup)

	Chapter 16 Grammar Control Frequently Asked Questions
	Chapter 17 Introduction to the Lite Controls
	Chapter 18 Getting Started with the Lite Controls
	VVDictLite Control
	Using the Control

	VVGrammarLite Control
	Using the Control

	VVPhrasesLite Control
	Using the Control

	Summary

	Chapter 19 Properties, Methods, and Events
	VVDictLite Control Properties
	Enabled (VVDictLite)

	VVDictLite Control Methods
	VVDictLite Control Events
	PhraseRecognized (VVDictLite)
	VUMeter (VVDictLite)

	VVGrammarLite Control Properties
	Enabled (VVGrammarLite)
	GrammarSource (VVGrammarLite)

	VVGrammarLite Control Methods
	VVGrammarLite Control Events
	PhraseRecognized (VVGrammarLite)
	VUMeter (VVGrammarLite)

	VVPhrasesLite Control Properties
	Enabled (VVPhrasesLite)

	VVPhrasesLite Control Methods
	AddPhrase (VVPhrasesLite)
	RemoveAll (VVPhrasesLite)

	VVPhrasesLite Control Events
	PhraseRecognized (VVPhrasesLite)
	VUMeter (VVPhrasesLite)

	Chapter 20 Lite Controls Frequently Asked Questions
	Chapter 21 Introduction to the ECWin Control
	Chapter 22 Getting Started with the ECWin Control
	Creating an Instance of the Control
	Initializing the Error Correction Window Control
	Handling Error Correction Window Control Events
	Error Correction Window Control Voice Command Support

	Chapter 23 Properties, Methods, and Events
	Error Correction Window Control Properties
	AddPhraseChecked
	AddPhraseVisible
	Caption
	ChildEnabled
	CommandsEnabled
	CorrectText
	Enabled
	Engine
	hWnd
	LanguageUI
	NumVisibleAlternates
	StatusBarVisible
	StatusText

	Error Correction Window Control Methods
	AddAlternate
	AddMenuItem
	GetWindowRect
	Hide
	Init
	IsVisible
	MoveWindow
	Reset
	Show

	Error Correction Window Control Events
	ButtonSelected
	Close
	ContextHelpRequest
	FocusChange
	MenuSelected
	WordSelected

	Chapter 24 ECWin Control Frequently Asked Questions
	Chapter 25 Introduction to the User Interface Control
	Chapter 26 Getting Started with the User Interface Control
	Creating an Instance of the Control
	Initializing the UIClient
	Programming the ViaVoice User Interface
	Getting and Setting User Interface Characteristics
	Creating Custom Menus
	Summary

	Chapter 27 Classes, Structures, and Enumerations
	User Interface Control Classes
	vvUIMenuInfo (Class - Visual Basic and MFC Only)

	User Interface Control Structures
	UIMenuItemInfo Structure (Custom Interface Only)

	User Interface Control Constants
	Component Index Constants
	vvUIDockingAlgorithmConstants
	vvUIDockingStyleConstants
	vvUIEventCallbackFlags
	vvUIExtendedMenuFlags
	vvUIMaxConstants
	vvUIMenuItemConstants
	vvUIRemoveClientConstants

	User Interface Control Enumerations
	MICROPHONE_STATES (Enum)
	TCID (Enum)
	TVIEWTYPE (Enum)
	UIEVENTRC (Enum)
	UIMENUGROUP (Enum)
	UIMENUTYPE (Enum)
	UIRC (Enum)

	Chapter 28 Properties, Methods, and Events
	User Interface Control Properties
	LanguageUI

	User Interface Control Methods
	AddApplicationByName
	AddApplicationByWindow
	AppendMenuItem
	DeleteMenuItem
	GetMenuItemInfo
	GetNumberValue
	GetStringValue
	Initialize
	InsertMenuItem
	RemoveApplicationByName
	RemoveApplicationByWindow
	SetClientCallback (Custom Interface)
	SetClientCallbackFlags
	SetLanguageByID
	SetLanguageByString
	SetMenuItemInfo
	SetNumberValue
	SetStringValue

	User Interface Control Events
	EventActiveApplication
	EventButtonPressed
	EventComponentUpdated
	EventMenuItemSelected
	EventQueryViewFlags
	EventQueryViewMenuInfo

	Chapter 29 User Interface Control Frequently Asked Questions
	Chapter 30 Introduction to the DictationMgr Control
	Chapter 31 Getting Started with the DictationMgr Control
	Creating an Instance of the Control
	Capturing Speech
	Summary

	Chapter 32 Properties, Methods, and Events
	Dictation Manager Control Properties
	AutoDictationWindow (Run Time Only)
	CursorIndex
	DictationOn
	Engine (Run Time Only)
	ExpandMacros
	Locked
	ProcessingMacro (Run Time Only)
	UppercaseOn

	DictationMgr Control Methods
	Command
	Correct
	DeleteText
	GetAlternate
	GetText
	GetWordInfo
	Playback
	PlaybackEx2
	PutText
	SetSelection

	DictationMgr Control Events
	DeleteText
	DictationStateChange
	PutText

	Chapter 33 DictationMgr Control Frequently Asked Questions
	Chapter 34 Getting Started with the Dictation Control
	Creating an Instance of the Control
	Capturing Speech
	Summary

	Chapter 35 Introduction to the Dictation Control
	Chapter 36 Properties, Methods, and Events
	Dictation Control Properties
	AutoDictationWindow
	DictationOn
	Engine
	ExpandMacros
	ProcessingMacro

	Dictation Control Methods
	Correct
	GetAlternatePhrase
	GetFlags
	GetWavData
	GetWordInfo
	MergeRecoPhrases
	SetBookMark
	SetContext
	SplitOutLeftWord

	Dictation Control Events
	DictationStateChange
	HitBookMark
	PhraseReco
	VVDictation Phrase Formatting Flags

	Chapter 37 Dictation Control Frequently Asked Questions
	Chapter 38 Getting Started with the Virtual Voices Control
	Overview
	How the Virtual Voices Control Works
	Speak
	Paste
	Properties
	Programming Interfaces

	Chapter 39 Introduction to Virtual Voices Control
	Files and Directories that Support Virtual Voices

	Chapter 40 Properties, Methods, and Events
	Virtual Voices Control Properties
	ActorName
	Age (Read Only)
	AllowProperties
	BackColor
	Clipping
	DefaultExpression
	Expression
	Gender (Read Only)
	ModeGuid
	Pitch
	ShowMenu
	SpeakText
	Speed
	UseFace
	UseWave
	Volume
	WaveFileName

	ViaVoice Outloud (Text-To-Speech) Engine Attributes
	Breathiness
	HeadSize
	PitchFluctuation
	Roughness
	Example - Setting a Property
	Other Useful Properties

	Virtual Voices Control Methods
	AboutBox
	Cancel
	DoProperties
	Pause
	Resume
	Speak
	Example - Using a Method

	Virtual Voices Control Events
	BookMark
	InitDone
	KeyPress
	Pause
	Reset
	Resume
	StartSpeaking
	StopSpeaking
	WordPosition

	Chapter 41 Programming Notes
	Visual Basic Notes
	Visual C++ Notes
	Face Customization Notes
	Resources
	Bitmaps
	Face (.FAC) File
	Parameter (.PAR) File
	Registry Entry

	Testing Your Face
	Style Considerations

	Chapter 42 Virtual Voices Control Frequently Asked Questions
	Appendix A Notices
	Trademarks

	Index

