
VisualAge Pacbase

STRUCTURED CODE
Version 3.0

���

Note

Before using this document, read the general information under “Notices” on page v.

First Edition (November 2001)

This edition applies to the following licensed programs:
v VisualAge Pacbase Version 3.0

Comments on publications (including document reference number) should be sent electronically through the
Support Center Web site at: http://www.ibm.com/software/ad/vapacbase/support.htm or to the following postal
address:

IBM Paris Laboratory
1, place Jean–Baptiste Clément
93881 Noisy-le-Grand, France.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983,2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices v

Trademarks. vii

Chapter 1. Introduction 1
Purpose of the Manual 1
Description Principles 1
Introduction to Structured Code 1
Managed Entities/Associated Screens 3

Chapter 2. Parameterized
Macro-Structures 5
Overview 5
The Program Entity 9
Call of Parameterized Macro-Structures (-CP) . . . 17
X-References to Programs/Screens (-XP/-XO) . . . 21

Chapter 3. Modifying the
Identification/Environment Div. (-B) . . 27

Chapter 4. Modifying the Working
Storage/Linkage Section 31
Data Structure Calls (-CD) 31
Work Areas Screen (-W) 49

Work Areas Formatted Line 55

Chapter 5. Modifying the Procedure
Division 63
Introduction 63
Procedural Code Screen (-P) 63
Programmer Flags and Variables 86
Titles and Conditions Screen (-TC). 91

Chapter 6. Access Commands 103
On-Line Access Commands 103
On-Line Display Options 104
On-Line Action Codes 105
Generation and/or Printing 106

Chapter 7. Example of a Generated
Program 109
Introduction 109
Environment Division 109
Working-Storage Section: Beginning 110
Working-Storage Section: End 112
Procedure Division 113

Chapter 8. Appendix: Pure Cobol
Source Code (-9) 119

© Copyright IBM Corp. 1983,2001 iii

iv VisualAge Pacbase: STRUCTURED CODE

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM’s valid intellectual property or other legally protectable rights, any
functionally equivalent product, program, or service may be used instead of the
IBM product, program, or service. The evaluation and verification of operation in
conjunction with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk NY 10504–1785, U.S.A.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Paris Laboratory, SMC
Department, 1 place J.B.Clument, 93881 Noisy-Le-Grand Cedex. Such information
may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM may change this publication, the product described herein, or both.

© Copyright IBM Corp. 1983,2001 v

vi VisualAge Pacbase: STRUCTURED CODE

Trademarks

IBM is a trademark of International Business Machines Corporation, Inc. AIX,
AS/400, CICS, CICS/MVS, CICS/VSE, COBOL/2, DB2, IMS, MQSeries, OS/2,
PACBASE, RACF, RS/6000, SQL/DS, TeamConnection, and VisualAge are
trademarks of International Business Machines Corporation, Inc. in the United
States and/or other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States and/or other countries.i

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

All other company, product, and service names may be trademarks of their
respective owners.

© Copyright IBM Corp. 1983,2001 vii

viii VisualAge Pacbase: STRUCTURED CODE

Chapter 1. Introduction

Purpose of the Manual
This manual describes the specifications of the Structured Code function which
may be used independently from the complementary functions: the Pacbench C/S,
the On-Line Systems Development (OLSD) and the Batch Systems Development
(BSD) functions.

Some information concerning these functions is also related to the Structured Code
function. There are instances where the descriptions are entered in this manual
only in order to avoid redundancy.

PREREQUISITES

In order to understand the content of this manual, you should have taken the
VisualAge Pacbase Concepts and Facilities course and have an understanding of
Structured Code concepts.

Also, you are expected to have thoroughly read the following manuals:

. The ’Character Mode User Interface’ guide,

. The ’Data Dictionary’ manual.

Description Principles
In this manual, the entities and screens managed by VisualAge Pacbase are
described in two parts:
v An introductory comment explaining the purpose and the general

characteristics of the entity or screen,
v A detailed description of each screen, including the input fields for on-line

screens data entry into the Database.
For the description of batch input, refer to the ’Developer’s Procedures’ manual.

All on-line fields described in this manual are assigned an order number. These
numbers are printed in bold italics on the screen examples which appear before the
input field descriptions and allow for easy identification of a given field.

NOTE: If you use the VisualAge Pacbase WorkStation, refer to the ’WorkStation
User Interface’ guide which documents the corresponding windows.

Introduction to Structured Code
The Structured Code allows programmation teams to realize management
programs. Linked with the Specifications Dictionary, it offers the following
possibilities:
v Definition of Programs, using a Definition screen which contains the general

characteristics of a Program (Program name, type, explicit keywords, etc.),
v Calling Data Structures already described in the Specifications Dictionary. They

can be called as many times as necessary in one or several Programs.

© Copyright IBM Corp. 1983,2001 1

v Description of work areas, either by calling existing Data Structures or
describing Data Structures specific to the Program.

v Description of procedures for a given Program.
v Definition of Macro-Structures, a Macro-Structure being a parameterizable set of

Structured Code lines that can be called in different Programs.
v Calling Macro-Structures in a Program. The same Macro-Structure may be

invoked several times by the same Program.

WRITING PROCEDURAL CODE

Automatic functions generated for a Dialogue give standard solutions to standard
problems, but do not always respond to all of the processing needs.

You can determine, at the development stage of an application, the way in which
you wish to solve the problem. It is recommended to use the standard solutions
provided by automatic functions as often as possible.

However, it is not recommended to try to fit a very complex procedure into the
automatic functions if it is going to complicate the clear structure of the program.
It is very important to completely think through the specifics of the required
procedures when a program is being developed.

If you have special needs, you may complete or partially replace standard
procedures using procedural code.

The Procedural Code (-P) is used to enter detailed specific procedures. Its use
ensures the structuring of procedures, as well as the readability and convertibility
of programs.

ADVANTAGES OF USING THE PROCEDURAL CODE

The procedural code is a high-level language used by programming teams in order
to develop and implement any business-oriented programs. Procedural Code,
which must be used in conjunction with the Specifications Dictionary, presents the
following advantages:
v Improved conciseness compared to COBOL, due to the simplification of COBOL

commands and syntax;
v Hierarchical organization of procedures, which does not exist in COBOL;
v Structured programming using the following types of structures: BLOCK (BL),

IF THEN (IT), ELSE (EL), DO WHILE (DW), DO UNTIL (DU), CASE OF (CO),
etc.

v Improved portability due to independence from any specific hardware, and the
ability to generate in a COBOL code adapted to each computer system.

CROSS-REFERENCES

Since the Structured Code must be used in conjunction with the Specifications
Dictionary, all the facilities of the Specifications Dictionary function are available.

Specifically, the user can establish cross-references between Data Elements, Data
Structures and Programs written with the Structured Code function.

2 VisualAge Pacbase: STRUCTURED CODE

These cross-references, which are extremely useful during program development,
become a valuable tool during program maintenance since they allow the user to
immediately evaluate the consequences of any changes made.

TYPES OF PROGRAMS THAT CAN BE DEVELOPED

Both batch and on-line programs can be written in Structured Code using the
various features offered by parameterized Macro-Structures, i.e, technical
procedures associated with on-line Programs or Database Management Systems.

The Structured Code function does not allow for the automatic Description of
Screens used in on-line Programs.

It does, however, provide the following:
v The generation of the COBOL source code, ready to be compiled and adapted

to the operating system.
v Improved portability. Input in a single field enables the user to specify to which

operating system a program should be adapted.
v Consistency between the described data and the generated COBOL code. Both

originate from one common source: the Database.
v Customizing the automatically generated functions provided via the Batch or

On-Line Systems Development functions.

Managed Entities/Associated Screens
The Structured Code function manages a single entity, the Program entity, which is
defined and described on the following screens:
v Program Definition
v Call of Parameterized Macro-Structures (-CP),
v Call of Data Structures (-CD),
v Beginning Insertions (-B),
v Work Areas (-W),
v Procedural Code (-P).

The Program Definition (-P) screen is used to define the Program code, the
Program name, and its general characteristics.

The Call of P.M.S.’s (-CP) screen is used to include lines described in other
programs. This is done by replacing the parameters indicated with specific values.

The Data Structures (-CD) screen is used to get the description of I/O fields from
the Program.

The Beginning Insertions (-B) screen is used to modify the ENVIRONMENT
DIVISION statements that are generated automatically as a result of Data Structure
calls.

The Work Areas (-W) screen is used to modify fy the WORKING-STORAGE
and/or LINKAGE SECTIONs, supplementing the descriptions obtained
automatically.

The Procedural Code (-P) screen is used to write sequences of instructions in a
portable, structured, and hierarchical format.

Chapter 1. Introduction 3

&2NOTE& For information on Batch access lines, refer to the ’Developer’s
Procedures’ manual.

As all entities, programs can be documented by Comment lines, by text assignment
(see the ’Data Dictionary’ manual).

REVERSE ENGINEERED PROGRAMS

Programs that have been ″reverse engineered″ include only the following:
v Work Area (-W) lines,
v Source Code (-SC) lines (COBOL source code).

It is possible to add Structured Code (-W and -P lines) and Calls of
Marcro-Structures (-CP lines) to these programs, and then regenerate them. Call of
Data Structures (-CD) and Beginning Insertions (-B) lines are ignored.

4 VisualAge Pacbase: STRUCTURED CODE

Chapter 2. Parameterized Macro-Structures

Overview
INTRODUCTION

The purpose of a Parameterized Macro-Structure is to standardize sequences of
procedural code, with possible variations, in order to use them:
v One or more times in one program,
v In several different programs.

DEFINITION

A Parameterized Macro-Structure (P.M.S) is defined on a Program Definition (P)
screen. It is a set of Beginning Insertions (-B), Work Areas (-W) and Procedural
code (-P) lines which produces one or more sequences of statements which can be
used in one or more programs.

A P.M.S. is not a sub-program. A sub-program can only contain consecutive
statements. A P.M.S. can contain non-consecutive statements. It is possible,
however, to call a sub-program from a P.M.S.

A PMS can also be defined from a program imported via the Reverse Engineering
function. It would contain ’-W’, ’-SC’ (Source Code lines from the ″reversed″
program), and ’-P’ lines (if ″reversed″ program’s PROCEDURE DIVISION has been
modified). In this case, this PMS in only taken into account in ″reversed″ programs
(TYPE AND STRUCTURE OF PROGRAM = ’S’).

PRINCIPLES

When a P.M.S. is called into a Program, the request for a cription of the Program
(DCP, DCO) and for its generation (GCP, GCO) will produce the Macro-Structure(s)
interspersed within the Program according to the key (Function/Sub-Function code
etc.). Parameters (if any) are resolved.

As a result, P.M.S. instructions are part of the Program.

TYPES OF MACRO-STRUCTURES

Generally speaking, Parameterized Macro-Structures are used to describe functions
that are common to several Programs, or to several procedures of the same
Program.

There are six basic types of Macro-Structures:
v A ’general program outline type’ used to give a Program a standard structure

which takes into account all the Program development standard followed at the
user site. This type of PMS is also used to describe a body of technical
(system-oriented) procedures that are linked to the use of a TP Monitor or a
DBMS;

v A ’technical (system-oriented) functions type’ used to standardize specific
commands, such as the input/output procedures of a DBMS (Read, Modify,
Suppress, etc.);

© Copyright IBM Corp. 1983,2001 5

v A ’complex technical functions type’ used to resolve all the complicated
procedures involved in a DBMS, whether or not in an on-line environment, such
as validation management, the sequential read of a file, the complete technical
procedures for Database update, the particular access path used in a Database,
etc. In general, this type is a combination of elementary technical functions that
the user has to rewrite in order to minimize the task of connecting elementary
P.M.S.’s to one another;

v A ’general function type’ used to resolve certain procedures that are common to
a set of applications, such as date validation, date transformation, or ″shop″
standards for on-line error message handling. The user should keep in mind that
this type of PMS is independent of the computer system, the TP Monitor and the
DBMS used;

v A ’specific function type’ used to ’harmonize’ the development of programs that
make up a system. For example, to standardize the presentation of certain
reports or screens by using common procedures defined in a P.M.S.

v A type used to create cross-references; for example, if a P.M.S. calls a
sub-program, you can automatically find out what Programs use that
sub-program.

DIFFERENCE BETWEEN P.M.S.’S AND SUB-PROGRAMS

The user must often decide whether to use a sub-program or P.M.S. to consolidate
all the procedures that are common to several Programs. In order to find the
answer, the user must ask several questions:

. Are the common procedures consecutive?

. Is the position of these procedures defined?

. Is the number of parameters used important?

. Are these procedures executed as a general rule?

Answers to these questions will help determine which procedures should be
executed in a sub-program and which should be executed in a P.M.S.
v If they are not consecutive ==> P.M.S.
v If the position is already defined ==> P.M.S.
v If the number of parameters is important ==> SP.
v If the procedures are not executed as a general rule ==> SP.

PARAMETERIZING A PROCEDURAL CODE (-P) SCREEN KEY

The System allows the user to parameterize the major part of the Procedural Code
(-P) screen keys (Function code, sub-Function code, and the first two characters of
the LINE NUMBER). As a recommendation, before writing a Macro-Structure, try
to structure the procedure to be written. Try to minimize the number of parameters
in the key, so as to:

. Facilitate usage of the P.M.S.,

. Obtain Programs with a homogenous structure.

. Minimize the resolution time of a P.M.S.

6 VisualAge Pacbase: STRUCTURED CODE

As a general rule, it is not recommended to use a P.M.S. instead of a simple line or
two of Procedural Code. The latter solution may be more efficient with respect to
performance at generation time and also to limit the number of necessary P.M.S.
calls.

DOCUMENTATION OF A P.M.S.

Good documentation of a P.M.S. is important. It gives the user the information
needed to use the P.M.S. properly: what each parameter means, which functions
and/or sub-functions are used, etc.

A P.M.S. can be documented in two different ways:
v In the same way as any program, via the Comments (-GC) screen,
v On the P.M.S.’s X-Reference to Programs (-XP) or to On-Line screens (-XO)

screen.

Note that Comment lines entered on the General Documentation screen will not
appear in sub-reports of a Program Description (DCP, GCP; DCO, GCO) whereas
the cross-reference lines will. This may be the most effective way to document the
meaning of the parameters, however, since the lines will reappear each time the
Macro is called, brevity is advisable.

OVERRIDE OF A P.M.S. LINE

Given the same key, Procedural Code (-P), Work Areas (-W) and Beginning
Insertions (-B) lines of a Program override PMS lines. It is better to design
Parameterized Macro-Structures so that as few lines as possible will be overridden
by the Programs.

Each overridden P.M.S. line will appear in the Program Description (DCP, GCP;
DCO, GCO) preceded by an asterisk. This can make a Program harder to read. It is
preferable to include as few lines of this type as possible in a P.M.S.

If there is a Macro-Structure line key with a matching key in another
Macro-Structure called into the same Program, neither of the lines are considered
for processing. These lines will be identified with an asterisk in the Program
Description.

In cases where the identical key appears several times, the maximum number of
comment lines (with an asterisk) that will appear in the Program Description is
ten. These lines will not appear in the generated code.

CONSISTENCY OF PARAMETERS

It happens frequently that one Program calls several P.M.S.’s. The user should
check that the parameters are used consistently. For example, if two different
P.M.S.’s are called into the same Program, and both use a Data Structure code as a
parameter, both P.M.S.’s would ideally have that code in the same position. This
has a twofold advantage of being easier for the programmer, and of presenting the
same type of information in the same order in a Program.

While this is not always possible, it would be wise to consider the placement of
parameters in existing P.M.S.’s prior to designing a P.M.S.

Chapter 2. Parameterized Macro-Structures 7

NOTE: Any Program already defined in the Database can be used as a
non-Parameterized Macro-Structure as long as its code is lower (in
EBCDIC order) than the Program calling it.

REMINDERS

The purpose of a Parameterized Macro-Structure (P.M.S.) is to standardize
functions common to several Programs. A called P.M.S. is a complement to the
generation possibilities of the System.

Usually, a P.M.S. appears in a Program Description as if its lines had been directly
entered by a programmer.

PURPOSE OF NON-EXPANDED MACRO-STRUCTURES

Non-expanded P.M.S.’s are reserved for batch Programs only.

Some P.M.S.’s are called many times in several Programs, and the programmer
considers them as part of his/her own standard environment. In this case, there is
no need to see the actual lines of these P.M.S.’s in the Program Description.

However, these lines are taken into account when the Program is being generated.

ADVANTAGES AND DISADVANTAGES

When a P.M.S. is called in a Program, an index, called an ’Expansion Index,’ is
created for each P.M.S. description line.

The system creates these indexes in order to display P.M.S. lines in the description
of the calling Program.

A P.M.S. call in a Program may have the following disadvantages:
v Slow response time during update of the P.M.S. to be expanded for all users

(serialization of updates);
v Disorganization of the Index File (AN) by mass insertion of keys that are often

contiguous;
v Large increase in the number of records in the Index File, thus lengthening

execution time of the batch save, restore and reorganization procedures.

Using non-expanded P.M.S.’s can make improvements in these three areas
provided the user does not need to view the P.M.S. to update it on-line. Response
time is thus improved because non-expanded P.M.S.’s do not create extra records
in the Index File (AN).

However, using non-expanded P.M.S.’s may have the following disadvantages:
v For a non-expanded P.M.S. which is not displayed on-line, writing and

maintaining the Program may be more difficult;
v For a P.M.S. expansion which occurs during a Program extraction for generation

and printing, the execution time of the GPRT utility procedure is increased.

On the Call of P.M.S.’s screen (-CP), non-expanded P.M.S.’s are indicated with an
’N’ in the Expansion (’E’) field.

8 VisualAge Pacbase: STRUCTURED CODE

The Program Entity
The purpose of the Program entity with respect to the Structured Code function is
to define Parameterized Macro-Structures.

GENERAL CHARACTERISTICS

Although the primary focus in this manual is to provide the Structured Code
meaning of the Program entity screens and their fields, Descriptions have been
included in their entirety. This is due to the fact that the Program entity is also
used to write batch programs. This means that the user may easily convert a
suitable Program into a Macro.

NOTE: Macro-Structures do not take Call of Data Structures lines into account, but
Programs do.

The Program entity contains:
v A required Definition screen (P), giving general characteristics (Program code,

keywords, etc.),
v Comment lines entered on the General Documentation screen or X-reference to

Programs / On-line screens, to provide useful and/or necessary information,
v Several types of description lines:

– Beginning Insertions (-B) lines which enable the user to modify the
IDENTIFICATION DIVISION, and the ENVIRONMENT DIVISION that is
generated, up to and including the ’DATA DIVISION’ and ’FILE SECTION’
statements.

– Work Areas (-W) lines supplement the DATA DIVISION in the generated
Program,

– Procedural Code (-P) lines customize the PROCEDURE DIVISION in the
generated Program,

– Source Code (-SC) lines (″reversed″ program only).

INPUT SPECIFICATIONS

The program classification code of a non-expanded P.M.S. is ’N’ (instead of ’M’ for
a regular P.M.S.) and is entered in the PROGRAM CLASSIFICATION CODE field
on the Definition screen (P) of the P.M.S. (This code has a documentary value in
the sense that it does not affect the generated code).

The TYPE OF COBOL TO GENERATE for a Macro is normally ’N’ so that the
variant is determined by defaulting to the variant selected by the batch or on-line
Program to which the Macro is attached. (This also improves portability).

PROGRAM STRUCTURE

Every program is organized as a set of successive processing steps that are
performed either as a loop (in batch) or in an execution (on-line). These processing
steps include:
v getting the data,
v checks,
v updates,
v printings,
v returning the output.

Chapter 2. Parameterized Macro-Structures 9

Each one these processing steps consists of a group of homogeneous sequences of
instructions called ″functions.″

The Program is structured by two supplementary principles:
v Linear linking of functions in the logical order of their execution, with each

executing a functional or technological task in the Program. Each function is
identified by a code from 0A to 99.

v Hierarchical structuring of the processing steps in each function. A function can
be broken down into sub-functions, which, in turn, can be further broken down
into sub-functions, and so on.

Functions and sub-functions follow one another in the order of their codes, as
determined by the EBCDIC collating sequence, with letters preceding numbers,
regardless of the sorting sequence in effect for the hardware being used.

PRINCIPLES OF GENERATING A COBOL PROGRAM

Programs developed under VisualAge Pacbase are generated upon request in the
COBOL variant that corresponds to the hardware and the compiler for which they
are intended.

The IDENTIFICATION DIVISION of the COBOL Program is generated from the
Program Definition line. This line can be modified (’-B’).

The ENVIRONMENT DIVISION and the FILE SECTION are generated from Data
Structure calls in the Program (’-CD’). They can be completed or modified (’-B’).

The other sections of the DATA DIVISION are generated from Data Structure calls.
They can be completed or modified (’-W’).

The PROCEDURE DIVISION is generated from Data Structure or Segment calls
and from processing descriptions in Procedural code (’-P’).

Macro-structure call lines are used to call all the other pre-described Procedural
code lines (see the chapter ’Macro-Structures’).

CONSTANTS OF PROGRAMS

In the WORKING-STORAGE SECTION of all Programs, the System generates a
PAC-CONSTANTS field in which the following are defined:
v the generation session number of the Program,
v the code of the Library in which the Program is defined,
v the generation date of the Program,
v the code of the Program,
v the code of the user who requested the generation,
v the generation time of the Program,
v the external name of the Program,
v the code of the Database,
v the generation date with century.

These fields can be used in the Program execution report. They are preceded by
the literal ’WORKING’, which can serve as a marker in a dump in the event of an
execution problem.

10 VisualAge Pacbase: STRUCTURED CODE

DEFINITION

A Program is defined on the Program Definition (P) screen. The user enters a code,
a name and the main characteristics of the Program. It is accessed by entering the
following input in the CHOICE field:

CH: P......

Chapter 2. Parameterized Macro-Structures 11

--
! PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 !
! !
! PROGRAM CODE PO0001 1 !
! !
! PROGRAM NAME.......................: VENDOR 2EPORTS !
! !
! CODE FOR SEQUENCE OF GENERATION....: PO0001 3 !
! !
! TYPE OF CODE TO GENERATE...........: 0 4 !
! COBOL NUMBERING AND ALIGNMENT OPT..: 5 !
! CONTROL CARDS IN FRONT OF PROGRAM..: B 6 !
! CONTROL CARDS IN BACK OF PROGRAM...: B 7 !
! COBOL PROGRAM-ID...................: PO0001 8 !
! MODE OF PROGRAMMING................: P 9 !
! TYPE AND STRUCTURE OF PROGRAM......: B 10 !
! PROGRAM CLASSIFICATION CODE........: P PRO11AM !
! TYPE OF PRESENCE VALIDATION........: 12 !
! SQL INDICATORS GENERATION WITH '-' : 13 !
! !
! EXPLICIT KEYWORDS..: 14 !
! !
! UPDATED BY.........: XXXX ON: 06/10/2001 AT: 18:59:31 LIB: CIV !
! !
! SESSION NUMBER.....: 0059 LIBRARY......: CIV LOCK....: !
! O: C1 CH: Ppo0001 ACTION: !
--

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

1 6 PROGRAM CODE (REQUIRED)

Code identifying the program in the library.

2 30 PROGRAM NAME (REQUIRED IN CREAT)

It must be as explicit as possible since the implicit keywords are
created from this name.

3 6 CODE FOR SEQUENCE OF GENERATION

Default option: PROGRAM CODE in the VisualAge Pacbase
Library.

Programs are sorted on this code in the generated program
stream.

4 1 TYPE OF COBOL TO GENERATE

Specifies the COBOL variant for the generated Program.

The default value at creation is the value of the GENERATED
LANGUAGE field in the Library Definition.

Compatibility of Programs generated with Cobol 85, Cobol II,
Cobol/370, Cobol OS/390 operates according to the value of
the GENERATED LANGUAGE in the Library.

N No adaptation to a language variant.

It is used to prevent program generation.

0 Adaptation to ANSI COBOL: IBM MVS

1 Adaptation to ANSI COBOL: IBM DOS

3 Adaptation to COBOL: MICROFOCUS, IBM AIX-OS/2-
Windows/NT

4 Adaptation to COBOL: BULL Gcos7

5 Adaptation to ANSI COBOL: BULL Gcos8

12 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

7 Adaptation to COBOL: HP-3000

8 Adaptation to ANSI COBOL: UNISYS A Series

C Extraction of COBOL Source Code.

(Refer to chapter ’Appendix: Pure COBOL Source Code’ in the
’Structured Code’ manual).

F Adaptation to COBOL: TANDEM

I Adaptation to COBOL: DEC/VAX VMS

K Adaptation to ANSI COBOL: ICL 2900

M Adaptation to COBOL: BULL Gcos6

O Adaptation to COBOL: IBM AS 400

R Adaptation to COBOL: TUXEDO

U Adaptation to ANSI COBOL: UNISYS 2200 Series

X Adaptation to ANSI COBOL: IBM MVS VS

5 1 COBOL NUMBERING AND ALIGNMENT OPTION

This option can be used to suppress numbering or the
identification of a program or to modify the justification of the
generated program lines.

blank Numbering, justification and identification of program in
accordance with the standard COBOL line (default value).

1 Suppression of numbering.

2 Suppression of numbering and justification of statements
(columns 8 to 71 inclusive) in column 1.

3 Standard numbering and justification, suppression of program
identification.

4 Suppression of numbering and program identification.

5 Suppression of numbering and of program identification
justification of instructions (columns 8 to 71 inclusive) in
column 1.

6 1 CONTROL CARDS IN FRONT OF PROGRAMS

Enter the one-character code that identifies the job card to be
inserted before the generated program.

Default: Code entered on the Library Definition Screen

NOTE: This value may be overridden on the relevant entities’
Definition screens. It may also be overridden at generation time.

7 1 CONTROL CARDS IN BACK OF PROGRAMS

Enter the one-character code that identifies the job card to be
inserted after the generated program.

Default: Code entered on the Library Definition Screen

NOTE: This value may be overridden on the relevant entities’
definitions screens. It may also be overridden at generation
time.

8 8 COBOL PROGRAM-ID

(Default value at generation: CODE FOR SEQUENCE OF
GENERATION.)

Chapter 2. Parameterized Macro-Structures 13

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

This code identifies the generated program:

.in the IDENTIFICATION DIVISION,

.in a source module library,

.in the library of executable modules.

This code intervenes (totally or partially) in the job control
language lines generated before or after the program.

9 1 MODE OF PROGRAMMING

P Default value when creating a Library. Programming in
Structured Code on ’-P’ lines (Procedural Code).

S Cobol generator (in conjunction with the Reverse Engineering
function)

Specific procedures composed of Source Code (-SC) and
Procedural Code (-P).

With this value, the Type ans structure of Program field must
also be ’S’.

8 Programming with ’-8’ type of lines.

Used only to maintain applications written with former
VisualAge Pacbase versions.

The value entered on the Definition line of the Library is
channeled down by default to the Definition line of a Program
when it is created.

At the Program level, the programmation type can be modified.

The combination of ’-P’ and ’-8’ lines called in the same
Program, either directly, or via Macro-structures, is rejected.

10 1 TYPE AND STRUCTURE OF PROGRAM

This identifies the structure of the generated Program or the
type of the Program in the Library.

B Structure of a batch Program (default option).

It provides the general structure of an iterative program:

.beginning of the loop (F05),

.end of run (F20),

.end of the loop (F9099. GO TO F05).

S Suppress automatic structure generation

STRUCTURED CODE FUNCTION

This type can be used to describe the TDS ’system generation’,
the IDS II ’schema’, ...

.suppression of COBOL divisions,

.the program is made up of Beginning Insertions

(-B), Work Areas (-W) and Call of Data Structures (-CD) lines.

COBOL GENERATOR FUNCTION

.the program is made up of ’-W’, -P’, ’-SC’ and ’-CP’ lines.

T On-line Program structure.

Suppression of the loop, i.e:

14 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

.no beginning of loop (F05),

.no end of run (F20),

.no end of loop (F9099. GO TO F05).

C C.I.C.S. on-line Program structure.

Suppression of the loop, i.e:

.no beginning of loop (F05),

.no end of run (F20),

.no end of loop (F9099. GO TO F05).

Same as ’T’ but also with:

.generation, at the beginning of the PROCEDURE DIVISION, of
the line: MOVE CSACDTA TO TCACBAR,

.generation in F9099 of: DFHPC TYPE=RETURN,

.no line numbering in the generated program.

M Parameterized Macro-Structure type. (For documentation
purposes only).

This is used for programs to be inserted into other programs.
This type of program cannot be generated alone.

F Program composed of Call of Data Structures (-CD) and Pure
COBOL Source Code (-9) lines.

This option permits the manipulation of the Pure COBOL
Source Code(-9) lines that invoke the structural description of
the automatically generated D.S.’s, according to the
characteristics assigned to that D.S. on the Call of Data
Structures (-CD) screen.

For more information see chapter ’Appendix: Pure COBOL
Source Code’ in the ’Structured Code’ Manual.

D Program composed of Call of Data Structures (-CD), Beginning
Insertions (-B), Work Areas (-W) and Pure COBOL Source Code
(-9) lines. This option provides the automatic generation of the
IDENTIFICATION, ENVIRONMENT and DATA DIVISIONS.

The PROCEDURE DIVISION is written entirely on Pure
COBOL Source Code (-9) lines.

P Program composed of Call of Data Structures (-CD), Beginning
Insertions (-B), Work Areas (-W) and Procedural Code (-P) lines.
This option provides the automatic generation of the
IDENTIFICATION, ENVIRONMENT and DATA DIVISIONS.
The PROCEDURE DIVISION is entirely written in Structured
Code.

Y Program written in C LANGUAGE and composed of Work
Areas (-W), Source Code (-SC) and Call of P.M.S.’s (-CP) lines.

11 1 PROGRAM CLASSIFICATION CODE

This value is used primarily for documentation purposes. The
label corresponding to the selected code will be displayed on
Reports and Screens.

It is also used to select the non-expansion option for
Macro-Structures.

A TP System

Chapter 2. Parameterized Macro-Structures 15

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

D Sub-program

G Screen map

M Macro-structure

N Non-expanded Macro-Structure

P Program

S Schema

T On-line Program (Screen)

U Utility

V Sub-schema

12 1 TYPE OF PRESENCE VALIDATION

In validation Programs, the presence of numeric Data Element
will be determined according to this code:

For numeric fields:

blank Field present if not blank (default value).

0 Field present if not zero.

For alphabetic and numeric fields:

L Field present if not low-value.

13 1 SQL INDICATORS GENERATION WITH ’-’

Cross-references available for the use of SQL indicators in
Structured Language.

BLANK SQL indicators generated in the format: VXXNNCORUB:

- SQL indicators generated in the format: V-XXNN-CORUB.

14 55 EXPLICIT KEYWORDS

This field allows you to enter additional (explicit) keywords. By
default, keywords are generated from the instance’s name
(implicit keywords).

Keywords must be separated by at least one space. Keywords
have a maximum length of 13 characters which must be
alphanumeric. However, ’=’ and ’*’ are reserved for special
usage, and are therefore ignored in keywords.

Keywords are not case-sensitive: uppercase and lower- case
letters are equivalent.

NOTE: Characters bearing an accent and special characters can
be declared as equivalent to an internal value in order to
optimize the search of instances by keywords.

You do that in the Administrator workbench, Users browser,
Special Characters tab of the Parameters Specific
Authorizations.

A maximum of ten explicit keywords can be assigned to one
entity.

For more details, refer to the ’Character Mode User Interface’
guide, chapter ’Search for Instances’, subchapter ’Searching by
Keywords’.

16 VisualAge Pacbase: STRUCTURED CODE

Call of Parameterized Macro-Structures (-CP)
The Call of PMS’s (-CP) screen is used to call a previously defined Macro-Structure
into a Program (batch or on-line), and to specify values to use for resolving
parameters (if any).

PARAMETERIZING

Up to 20 parameters can be used in a PMS. A parameter is specified by ’$n’
(n=1,2,...,9,0) for the first 10 parameters; the next 10 (n=A,B,...J) have to appear on a
″continuation″ line with the same number as the preceding one.

Alphabetical values cannot be used to parameterize the Macro-Structure line
indicatives.

Line indicatives are: Function or Sub-Function codes or line numbers.

The user supplies the replacement values of the respective parameters in the
PARAMETER VALUES field in the form of character strings (with delimiters). Each
occurrence of the parameter in the original PMS is then replaced by the value
entered for this particular Program.

All parameter values (including delimiters) must be written on a maximum of two
lines.

The number of characters used for each parameter value must correspond directly
to the appropriate field length for the entity being parameterized. For example, if
$1 is being used as a Function code, the value must be two characters.

ENTITY INSTANCES USED AS PARAMETERS

You can use instances of the Data Element, Data Structure and Segment entities as
parameters.

When such an instance is called via a parameter, no cross-reference is created if the
instance code is declared as a simple character string.

This type of cross-reference is established by specifying that the parameter’s value
is a Data Element, Data Structure or Segment code. This is done by keying in:

/E=DELCO/ or /D=DD/ or /S=SEGT/

At the time of transformation, the parameter is replaced by DELCO, DD or SEGT
and cross-references are set up.

NON-EXPANDED MACRO-STRUCTURES

An ’N’ in the Expansion (’E’) field indicates a non-expanded PMS.

ENTERING COMMENTS

Comment lines entered on the -CP screen are displayed only from the calling
program.

The number of the line from which the display must begin can be entered after the
Macro-Structure code.

Chapter 2. Parameterized Macro-Structures 17

When comments are entered on the -XP screen of the PMS, they are displayed
when the PMS is called on this screen.

Entering comments on the -XP screen makes it easier to enter parameters on PMS
calls.

18 VisualAge Pacbase: STRUCTURED CODE

--
! PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 !
! !
! PROGRAM CALL OF P.M.S............: 1 VRPREP VENDOR RATING PREPARATION !
! !
! 2 3 4 5 6 7 !
! A MACRO LN C : COMMENTS OR PARAMETER VALUES D E !
! AADA30 : !
! AASO30 : CO/SO/ !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! !
! O: C1 CH: -CP !
--

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

1 6 PROGRAM CODE OR SCREEN CODE (REQUIRED)

This field contains the six-character program or on- line screen
code.

2 1 ACTION CODE

C Creation of the line

M Modification of the line

D Deletion of the line

A Deletion of the line

T Transfer of the line

B Beginning of multiple deletion

G Multiple transfer

? Request for HELP documentation

E or - Inhibit implicit update

X Implicit update without upper/lowercase processing (on certain
lines only)

On the GP-C4 screen (JCL command lines), upper/lowercase
processing.

On the GP-C1 screen, upper/lowercase processing on
continuation lines only.

3 6 MACRO-STRUCTURE CODE (REQUIRED)

A Macro-Structure is a set of Beginning Insertions (-B), Work
Areas (-W’), Procedural Code (-P) or Source Code (from
Reverse Engineering) lines.

Chapter 2. Parameterized Macro-Structures 19

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

It is not a sub-program but a sequence of procedural code
inserted in the programs before generation. During the
insertion, if a line of the Macro-Structure has the same key as a
line of the program, it will not be taken into account and will
be identified in the calling Program by the ’*’character in the
ACTION CODE field.

If lines of two Macro-Structures have the same key, they will
both be ignored during the generation of the calling Program.

The lines of the Macro-Structure replaced by lines of the
Program with the same key are considered as comments; they
appear (10 maximum) in the Description of the calling Program.

A non-Parameterized Macro-Structure can contain Data
Structures call lines (not inserted in the Programs).

The code of the Macro-Structure cannot be greater than the
code of the Program that calls it (in EBCDIC order).

The call line is associated with the Macro-Structure: the deletion
of the Macro-Structure triggers the deletion of the call line, the
deletion of the Program does not trigger the deletion of the call
lines that concern it.

4 2 LINE NUMBER

PURE NUMERIC FIELD BLANKS EQUIVALENT TO ZERO

0-99 This is used to define several documentation lines for one
macro-structure or, when a macro-structure is parameterized,
this can be used to call it into the same program several times.

5 1 CONTINUATION

* The asterisk creates a continuation line

6 50 PARAMETER VALUES

Call of P.M.S.’s (-CP): If the line contains the ’/’ character, the
values are those of the parameters for a P.M.S. Otherwise, they
are comments on the Macro-Structure call.

X-References to Programs/Screens (-XP/-XO): On lines with
CALL TYPE = ’O’ or ’P’: values of the parameters for a P.M.S.

On lines with CALL TYPE = ’C’: comments on the
Macro-Structure.

The values for the parameters must be indicated one after the
other, each one ending with a delimiter. The values are entered
in the sequence of the assigned parameter number.

The maximum number of parameters is 20, but limited to 10
per line. The values indicated on the first line correspond to the
parameters $1 to $0, and those on the second line correspond to
parameters $A to $J.

The parameterization of the placement of the P.M.S. in the
program, such as the (sub-)function code, line number, or WSS
prefix, must be specified on the first line only.

In order to nullify the value of a parameter, the following
technique can be used:

For the first parameter, enter the delimiter in the first column of
this field.

20 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

For subsequent parameters, the system will understand two
consecutive delimiter characters to mean ignore the next
sequential parameter.

For example, using ’/’ as the delimiter, /BB/CC/ will resolve
parameters $2 and $3 with BB and CC respectively. XX//ZZ/
will resolve $1 with XX, and $3 with ZZ.

To specify a blank as a parameter value, enter it between the
delimiters as with any other value.

In order to establish cross-references when a Data Element, a
Data Structure or a Segment is used as a parameter, the value
should be respectively coded:

/E=DELCO/ (DELCO = Data Element code),

or /D=DD/ (DD = Data Structure code),

or /S=SEGT/ (SEGT = Segment code).

The parameter is then replaced by the DELCO, DD or SEGT
value and cross-references to the Data Element, Data Structure
or Segment are established.

7 1 DELIMITER OF PARAMETERIZED VALUES

/ This character is used to separate the different parameter
values. Default value.

X-References to Programs/Screens (-XP/-XO)
The X-References to Programs (-XP) and On-Line Screens (-XO) screens are used
for entering comments the user wants to appear in the sub-reports that are
produced with the Generation and Print Commands ’DCP’, ’GCP’, ’DCO’ and
’GCO’ (GPRT Procedure).

These comments may be assigned by entering ’C’ for the CALL TYPE, a LINE
NUMBER value, and the comment desired.

It is also possible to use these lines to specify parameter values, as on the Call of
P.M.S.’s (-CP) screen.

A line number may be entered after the code of the screen or program that will
begin the display. This line number corresponds to the macro-structure call.

RECOMMENDATION

Since these lines reappear for each call of the Macro, and since Macros may be
called many times into the same Program, it is suggested that these comments be
brief and contain only essential information, like the meaning of the parameters.

Chapter 2. Parameterized Macro-Structures 21

--
! PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 !
!
! PROGRAM CROSS-REFERENCES 1 AASO30 SORT INPUT PROCEDURE !
! 2 3 4 5 6 7 > 8
! A T PG/SC LN C : COMMENTS OR PARAMETER VALUES D E !
! P VRPREP : CO/SO/ !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! !
! O: C1 CH: Paaso30XP !
--

22 VisualAge Pacbase: STRUCTURED CODE

--
! PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 !
! !
! PROGRAM CROSS-REFERENCES 1 AAPOJ1 SORT INPUT PROCEDURE !
! 2 3 4 5 6 7 8 !
! A T PG/SC LN C : COMMENTS OR PARAMETER VALUES D E !
! O POJB01 : 020/A/ !
! O POJB02 : 050/A/ !
! O POJB03 : 100/A/ !
! O POJC10 : 010/A/ !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! : !
! !
! O: C1 CH: Paapoj1XO !
--

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

1 6 MACRO-STRUCTURE CODE

A Macro-Structure is a set of Beginning Insertions (-B), Work
Areas (-W’), Procedural Code (-P) or Source Code (from
Reverse Engineering) lines.

It is not a sub-program but a sequence of procedural code
inserted in the programs before generation. During the
insertion, if a line of the Macro-Structure has the same key as a
line of the program, it will not be taken into account and will
be identified in the calling Program by the ’*’character in the
ACTION CODE field.

If lines of two Macro-Structures have the same key, they will
both be ignored during the generation of the calling Program.

The lines of the Macro-Structure replaced by lines of the
Program with the same key are considered as comments; they
appear (10 maximum) in the Description of the calling Program.

A non-Parameterized Macro-Structure can contain Data
Structures call lines (not inserted in the Programs).

The code of the Macro-Structure cannot be greater than the
code of the Program that calls it (in EBCDIC order).

The call line is associated with the Macro-Structure: the deletion
of the Macro-Structure triggers the deletion of the call line, the
deletion of the Program does not trigger the deletion of the call
lines that concern it.

2 1 ACTION CODE

C Creation of the line

M Modification of the line

D Deletion of the line

Chapter 2. Parameterized Macro-Structures 23

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

A Deletion of the line

T Transfer of the line

B Beginning of multiple deletion

G Multiple transfer

? Request for HELP documentation

E or - Inhibit implicit update

X Implicit update without upper/lowercase processing (on certain
lines only)

On the GP-C4 screen (JCL command lines), upper/lowercase
processing.

On the GP-C1 screen, upper/lowercase processing on
continuation lines only.

3 1 CALL TYPE

This field contains the type of call used for each line. The
values are as follows:

C Comments on the macro-structure.

O Call of the macro-structure in a screen.

P Call of the macro-structure in a program.

4 6 PROGRAM CODE OR SCREEN CODE

This field contains the six-character program or on- line screen
code.

5 2 LINE NUMBER

PURE NUMERIC FIELD BLANKS EQUIVALENT TO ZERO

0-99 This is used to define several documentation lines for one
macro-structure or, when a macro-structure is parameterized,
this can be used to call it into the same program several times.

6 1 CONTINUATION

* The asterisk creates a continuation line

7 50 PARAMETER VALUES

Call of P.M.S.’s (-CP): If the line contains the ’/’ character, the
values are those of the parameters for a P.M.S. Otherwise, they
are comments on the Macro-Structure call.

X-References to Programs/Screens (-XP/-XO): On lines with
CALL TYPE = ’O’ or ’P’: values of the parameters for a P.M.S.

On lines with CALL TYPE = ’C’: comments on the
Macro-Structure.

The values for the parameters must be indicated one after the
other, each one ending with a delimiter. The values are entered
in the sequence of the assigned parameter number.

The maximum number of parameters is 20, but limited to 10
per line. The values indicated on the first line correspond to the
parameters $1 to $0, and those on the second line correspond to
parameters $A to $J.

The parameterization of the placement of the P.M.S. in the
program, such as the (sub-)function code, line number, or WSS
prefix, must be specified on the first line only.

24 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

In order to nullify the value of a parameter, the following
technique can be used:

For the first parameter, enter the delimiter in the first column of
this field.

For subsequent parameters, the system will understand two
consecutive delimiter characters to mean ignore the next
sequential parameter.

For example, using ’/’ as the delimiter, /BB/CC/ will resolve
parameters $2 and $3 with BB and CC respectively. XX//ZZ/
will resolve $1 with XX, and $3 with ZZ.

To specify a blank as a parameter value, enter it between the
delimiters as with any other value.

In order to establish cross-references when a Data Element, a
Data Structure or a Segment is used as a parameter, the value
should be respectively coded:

/E=DELCO/ (DELCO = Data Element code),

or /D=DD/ (DD = Data Structure code),

or /S=SEGT/ (SEGT = Segment code).

The parameter is then replaced by the DELCO, DD or SEGT
value and cross-references to the Data Element, Data Structure
or Segment are established.

8 1 DELIMITER OF PARAMETERIZED VALUES

/ This character is used to separate the different parameter
values. Default value.

Chapter 2. Parameterized Macro-Structures 25

26 VisualAge Pacbase: STRUCTURED CODE

Chapter 3. Modifying the Identification/Environment Div. (-B)

You can complete or modify the beginning of the generated Program with the
Beginning Insertions (-B) screen. This applies to the IDENTIFICATION DIVISION,
the ENVIRONMENT DIVISION, and also the ’DATA DIVISION’ and ’FILE
SECTION’ statements.

GENERAL CHARACTERISTICS

The use of the Beginning Insertions (-B) screen is exceptional with most hardware
types.

Examples of its usage are:
v For the SELECT clause for relative access files,
v Bull Gcos7 case: COPY SELECT and COPY FD clauses in a TPR TDS.

SUPPRESSION OF GENERATED LINES

If the program includes Beginning Insertions (-B) lines containing the code of a
single section or paragraph, then automatically generated lines for this section or
paragraph will be suppressed.

’-B’ lines are ignored in a ″reversed″ Program.

TRANSFER OF LINES TO ANOTHER ENTITY

Lines from one entity may be copied directly to another entity. At the top of the
screen, an ENTITY TYPE field with a value of ’O’ or ’P’, followed by the
appropriate PROGRAM CODE OR SCREEN CODE, allows the user to take the
lines already entered on a screen and attached to one entity, copy them, and attach
them to another entity. This is not a MOVE. A duplicate set of lines is created in
another entity.

EXAMPLE:

In order to copy entity lines from screen ’SCREE1’ into program ’PGM001’, ’O’ and
’SCREE1’ should be overtyped with:

’P’ and ’PGM001’ respectively.

© Copyright IBM Corp. 1983,2001 27

--
! PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 !
! !
! PROGRAM BEGINNING INSERTIONS : P TES001 TEST FOR POJ !
! 1 2 !
! !
! 3 4 5 6 7 !
! A SE PA LIN INSTRUCTION TO BE INSERTED !
! * 60 000 DATA DIVISION !
! * 70 000 SUB SCHEMA SECTION !
! * 80 000 FILE SECTION !
! * 99 99 000 SUPPRESSED !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! O: C1 CH: -B !
--

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

1 1 ENTITY TYPE

This field is used to identify the entity to which these lines are
attached:

O On-line Screen

P Program

The user may keyboard this field in order to copy lines
attached to a Screen into a Program and vice-versa.

2 6 PROGRAM CODE OR SCREEN CODE

This field contains the six-character program or on- line screen
code.

3 1 ACTION CODE

C Creation of the line

M Modification of the line

D Deletion of the line

A Deletion of the line

T Transfer of the line

B Beginning of multiple deletion

G Multiple transfer

? Request for HELP documentation

E or - Inhibit implicit update

X Implicit update without upper/lowercase processing (on certain
lines only)

On the GP-C4 screen (JCL command lines), upper/lowercase
processing.

28 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

On the GP-C1 screen, upper/lowercase processing on
continuation lines only.

4 2 SECTION TO GENERATE

The following section codes may be used in combination with
the values entered in the PARAGRAPH TO GENERATE field:

blank IDENTIFICATION DIVISION.

00 CONFIGURATION SECTION.

01 INPUT-OUTPUT SECTION. FILE CONTROL. With
PARAGRAPH TO GENERATE specifying a DATA STRUCTURE
CODE, the INSTRUCTION TO BE INSERTED lines will appear
after the FILE CONTROL statement.

With PARAGRAPH TO GENERATE = blank, the data entered
in the INSTRUCTION TO BE INSERTED field will override
both the INPUT-OUTPUT SECTION and the FILE CONTROL
statements.

60 Is reserved for the DATA DIVISION.

99 Is reserved for the FILE SECTION.

$n In a macro-structure, the SECTION TO GENERATE can be
parameterized.

9* With PARAGRAPH TO GENERATE = ’ FF’: Rewriting of FD
clause for FF file.

5 2 PARAGRAPH TO GENERATE

The following codes are used to identify the COBOL statements
listed below.

With SECTION TO GENERATE = blank:

05 PAF comments.

10 PROGRAM-ID.

20 AUTHOR.

30 DATE-COMPILED.

40 ENVIRONMENT DIVISION.

With SECTION TO GENERATE = ’00’:

00 SOURCE-COMPUTER.

10 OBJECT-COMPUTER.

20 SPECIAL-NAMES.

With SECTION TO GENERATE = ’01’:

FF SELECT FF-FILE

00 I-O-CONTROL.

This paragraph is not automatically generated, except in certain
cases; with COBOL variant 6: BULL H66 BCD.

90 With SECTION TO GENERATE = ’99’: RECEIVE-CONTROL
(TANDEM).

99 FILE SECTION.

$n In a Macro-Structure, the PARAGRAPH TO GENERATE can be
parameterized.

Chapter 3. Modifying the Identification/Environment Div. (-B) 29

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

With SECTION TO GENERATE = ’01’:

6 3 LINE NUMBER

PARAMETERIZABLE NUMERIC FIELD

0-999 As a recommendation, number the lines starting with 10 by
intervals of 10, thus facilitating future insertion insertions.

$n0 to $n9 In a Macro-Structure, only the first two characters of the LINE
NUMBER can be parameterized.

7 66 INSTRUCTION TO BE INSERTED

If the INSTRUCTION TO BE INSERTED should be in Margin A
of the COBOL program, begin it in the second column of this
field. If it should be in Margin B, begin it in the sixth column of
this field.

Otherwise, the INSTRUCTION TO BE INSERTED will be
justified in column 7 (continuation/comments) of the generated
COBOL program.

S (or any word beginning with an ’S’) The value ’S’ in the first
column of this field causes the suppression of the section or
paragraph generated.

$n In a macro-structure, this field can be parameterized.

30 VisualAge Pacbase: STRUCTURED CODE

Chapter 4. Modifying the Working Storage/Linkage Section

Data Structure Calls (-CD)
The purpose of the Call of Data Structures is to identify all Data Structures used in
a Program, specifying their physical characteristics as well as the way these files
are to be used in the Program.

The Call of Data Structures screen is accessed by entering ’-CD’ in the CHOICE
field from any screen within the Program entity’s network.

GENERAL CHARACTERISTICS

Each Data Structure may be described on as many continuation lines as needed.
Certain information must be entered on the first line of the call, as opposed to
being entered on a continuation line, and vice versa.

The system assigns default values to required information areas of the Data
Structure call line. By default, a Data Structure will look like a sequential file with
fixed-length records. The Data Structure Description will contain all of the Data
Structure records, with the Data Elements in internal format, without the optional
Data Elements.

ORGANIZATION

Data Structures are ’organized’ into three basic types:

. Standard Files,

. Database Blocks,

. Work Areas or Linkage Areas.

The descriptions of the latter category may involve specifying Data Structures
and/or Data Elements.

It is preferable to define the WORK or LINKAGE fields on the screen provided for
this purpose (-W). If the Program is a Macro-Structure (P.M.S.), the ’-W’ is
generated in the calling Program, not the ’-CD’.

NOTE: A Data Structure call in the -W screen does not allow for the creation of
continuation lines (which limits the number of Segment selections to four
Segments, for example).

Also, utilization, control breaks, and file matching cannot be specified on -W lines.

COMPOSITE DATA STRUCTURES

It is possible at the Program level to build a Data Structure with Segments
belonging to different Data Structures.

© Copyright IBM Corp. 1983,2001 31

This is accomplished by assigning the same DATA STRUCTURE CODE IN THE
PROGRAM to different Data Structures, and selecting the desired Segments from
each.

The common part will be made of the code of the Data Structure called on the first
line.

In order to call in a Program Data Structure two or more Segments which have the
same two-character SEGMENT CODE or the same LAST CHARACTER OF THE
REPORT CODE, but are extracted from different Data Structures in the Library, it
is necessary to change the code of one of them in the Program, in the SELECTION
field.

32 VisualAge Pacbase: STRUCTURED CODE

--
! PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 !
! !
! DATA STRUCTURES USED IN PROGRAM : 1 VRPREP VENDOR RATING PREPARATION !
! !
! 2 3 4 5 6 7 9 11 13 14 16 18 19 21 23 25 27!
! 8 10 12 15 17 20 22 24 26 !
! A DP CO : DL EXTERN OARFU BLOCK T B M U RE SE L UNIT C SELECTION F E R L PL!
! CO : CO PMSCO SSFOU 0 R D I 1 !
! : STAT.FLD: 28 ACC. KEY: 29 RECTYPEL 30 !
! OI : OI PMSPOF VSFID 0 R 1 C I 1 !
! : STAT.FLD: ACC. KEY: POKEY RECTYPEL !
! SO : CO SORT SSFTU 0 R D I 1 !
! : STAT.FLD: ACC. KEY: RECTYPEL !
! WO : CO WORK. WSFOU 0 R D I 1 !
! : STAT.FLD: ACC. KEY: RECTYPEL !
! : !
! : STAT.FLD: ACC. KEY: RECTYPEL !
! : !
! : STAT.FLD: ACC. KEY: RECTYPEL !
! : !
! : STAT.FLD: ACC. KEY: RECTYPEL !
! : !
! : STAT.FLD: ACC. KEY: RECTYPEL !
! !
! O: C1 CH: -CD !
--

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

1 6 PROGRAM CODE (REQUIRED)

Code identifying the program in the library.

2 1 ACTION CODE

C Creation of the line

M Modification of the line

D Deletion of the line

A Deletion of the line

T Transfer of the line

B Beginning of multiple deletion

G Multiple transfer

? Request for HELP documentation

E or - Inhibit implicit update

X Implicit update without upper/lowercase processing (on certain
lines only)

On the GP-C4 screen (JCL command lines), upper/lowercase
processing.

On the GP-C1 screen, upper/lowercase processing on
continuation lines only.

3 2 ALPHA. DATA STRUCTURE CODE IN THE PROGRAM (REQUIRED)

This code establishes the sequence in which the Data Structure
will be processed in the Program.

It must be alphabetic.

Chapter 4. Modifying the Working Storage/Linkage Section 33

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

It is recommended to keep the same DATA STRUCTURE CODE
IN THE PROGRAM and IN THE LIBRARY when the Data
Structure described in the Library is used only once in the
Program.

4 2 ALPHA. Continuation of D.S. Description

blank First line of a Data Structure description. This line must contain
all information defining the input-output characteristics, all
technical characteristics and the description of the Data
Structure.

Two-letter code indicating a continuation line.

The continuation lines are used to select the records of the
different Data Structures in the Library and to request their
description in a specified position.

5 2 DATA STRUCTURE CODE

This code is made up of two alphanumeric characters. This is a
logical code internal to the Database and therefore independent
of the names used in Database Blocks and Programs.

6 6 EXTERNAL NAME OF THE FILE

(Default option: DATA STRUCTURE CODE IN THE
PROGRAM.)

(NOTE: In this discussion, the term ’COBOL Variant’ = the
value in the TYPE OF COBOL TO GENERATE field)

FOR ’Y’ ORGANIZATION:

This field must contain the VisualAge Pacbase code of the
server which accesses the Logical View. For more details, refer
to the ’Pacbench C/S - Business Logic’ manual in the eBusiness
series.

FOR SQL ORGANIZATIONS:

This field must contain the VisualAge Pacbase code of the SQL
block.

For explanations, refer to the ’Structured Code’

manual, chapter ’Modifying the Procedure Division’, subchapter
’Procedural Code Screen (-P)’, and to the ’SQL Databases’
manual, chapter ’SQL Accesses’, Sub-chapter ’Customized SQL
Accesses’.

FOR ALL THE OTHER ORGANIZATIONS:

IBM OS/390 (variant X): DDNAME in 1 to 6 positions.

COBOL II IBM VS2 (Variant X): The ASSIGN clause (for
sequential files, ’S’ organization) with SYSnnn as external name
is generated in the following form:

SYSnnn-UT-....-S-SYSnnn

IBM DOS (COBOL Variant 1), three forms:

.SYSnnn Symbolic unit name.

.xxxnnn Specifies at the same time the symbolic unit name and
the external name of the Data Structure.

34 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

.xxxxxx External name. The symbolic unit is generated with
SYSnnn, nnn being incremented by one for each Data Structure
starting with SYS010.

BULL Gcos7 (COBOL Variant 4):

.INTERNAL-FILE-NAME in 1 to 6 position.

BULL Gcos8 (COBOL Variant 5):

.File code (2 characters). UNISYS A Series (COBOL Variant 8):

.nnppp numeric, generate AREA nn, AREASIZE pppp.

CDC (Variants D and E): Indicate output for a printer.

Otherwise, external name in 1 to 6 positions.

BULL MINI 6 (Variant M): 2 alphabetic characters.

TANDEM (Variant F): external name in 1 to 6 positions.

DEC/VMS (COBOL Variant I): external name in 1 to 6
positions.

PHYSICAL CHARACTERISTICS OF FILE

7 1 ORGANIZATION

S Sequential (Default value).

I Indexed sequential (ISP for Gcos8 BCD).

An ISP file with ’LE’-code will be generated in 3 work areas:
LE-FILE, LE-DATA and INVKEY.

LE-DATA will have the external file name as a value which
must be the file code in the preceding $ DATA line. In the job
control lines, the ISP lines give the physical characteristics of
the file.

V VSAM (IBM), UFAS (BULL), etc.

Generates the STATUS KEY IS clause and the corresponding
field is declared in the STATUS FIELD: VSAM FILE
INDICATOR field.

The file is considered sequential if the name of the key in the
record is absent; it is considered indexed if the key name is
entered.

W File descriptions are generated in WORKING-STORAGE before
the constant ’WSS-BEGIN’.

A Data Structure thus described will be used like a work area
or processed through a function of a generalized management
system (Database in particular).

L Identical to ’W’ except that the user may choose the description
location (See CODE FOR COBOL PLACEMENT).

X Data Structure used as a comment, not used for generation.

G Table description.

Generates the communication area with the access module. See
the ’Pactables Access Facility’ manual.

Y Call of the CLAUSE COPY which corresponds to the
communication area between the client and the server.

For details, refer to the ’Pacbench C/S - Business Logic’
manual.

Chapter 4. Modifying the Working Storage/Linkage Section 35

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

DATABASES

The values of the following codes are reserved for Database
Descriptions when the Database Description function is not
used. These values are taken into account by application
programs.

D Reserved for the Description of Segments or records of the
different Databases, IMS (DL/1), IDS I, IDS II, (according to the
TYPE OF COBOL TO GENERATE selected), in the generation of
DBD, SYSGEN, schemas or application Programs (according to
the TYPE AND STRUCTURE OF PROGRAM selected).

B Reserved for the description of records for an IDMS Database in
the sub-schemas or application programs.

A Reserved for an ADABAS file description in the definition
programs or usage programs of the Database.

T Reserved for the description of ’TOTAL’ files in the definition
programs or the usage programs of the Database.

Q Reserved for the description of SQL/DS, DB2/2 or DB2/6000
Databases (IBM), or

ALLBASE/SQL Databases (HP3000), or

DB2/2 or DB2/600 Databases (MICROFOCUS).

2 Generation-Description of a DB2 or VAX/SQL Segment. Only
physical accesses are not generated. The structure of variable
indicators corresponding to the columns of the DB2 or
VAX/SQL table is always generated.

C Reserved for the description of an INTEREL RDBC, RFM
Database Structure.

O Reserved for the description of an ORACLE (< V6) Database
Structure.

P Reserved for the description of an ORACLE (V6 and V7)
Database Structure.

R Reserved for the description of an RDMS Database Structure.

4 Reserved for the description of a DB2/400 Database Structure.

N Reserved for the description of a NONSTOP SQL Database
Structure.

M Reserved for the description of a DATACOM DB Database
Structure.

9 Reserved for the description of an INFORMIX, SYBASE,
INGRES/SQL, and SQL SERVER Database Structure.

The use of the System with the different DBMS’s is documented
in specific ’Database Description’ manuals.

8 1 ACCESS MODE

S Sequential (default option).

R Random - Direct (indexed sequential organization only).

Note: With random access input files, the READ is not
generated automatically.

D Dynamic (VSAM files only - ORGANIZATION = ’V’)

9 1 RECORDING MODE

36 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

C For ’P’-type organizations (Oracle V6 and V7) and ’9’-type
organizations (Sybase): Automatic generation of CONNECT AT
Database, DECLARE Database and access SQL AT Database.

F Fixed (default option).

At generation time, the lengths of the different records are
aligned with the length of the longest record.

V Variable.

U Undefined.

S Spanned (Reserved for IBM MVS and DOS variants).

10 1 FILE TYPE - INPUT / OUTPUT

I Input file - Default option with the following values of USAGE
OF DATA STRUCTURE: ’C’, ’T’, ’X’, ’M’, ’N’ ’P’. This value is
prohibited with all other USAGEs.

O Output file - Default option with the following values of
USAGE OF DATA STRUCTURE: ’D’, ’S’, ’R’, ’E’, ’I’ and ’J’. This
value is prohibited for all other USAGEs.

E Output file. Generation of an OPEN EXTEND clause (only with
the following values of COBOL TO GENERATE: ’2’, ’4’, ’5’, ’6’,
’D’, ’E’, ’F’, ’G’, ’H’, ’I’, ’J’, ’K’ ’Q’, ’S’, ’U’, ’W’, ’X’, ’Y’).

T Sort (on Input or Output, depending on the USAGE OF DATA
STRUCTURE value).

R Input-Output (direct access Data Structures only).

11 1 UNIT TYPE

U Magnetic storage with sequential access.

Default value.

D Magnetic memory with selective access.

Direct access device.

R Slow peripherals (Card punch reader, printer).

This parameter is important for the TYPEs OF COBOL TO
GENERATE variant for which the ″ASSIGN″ clause, the FD
level or the WRITE statements depend on the UNIT TYPE.

12 5 NUMER. BLOCK SIZE SPACES AND ZEROES ARE EQUIVALENT

PURE NUMERIC FIELD

(Note: In this discussion the term ’COBOL Variant’ = the value
in the TYPE OF COBOL TO GENERATE field)

0 Default value.

2 The blocking factor can be zero in the following cases:

. IBM OS (COBOL variant 0) except for indexed organisazion
files.

. IBM MVS. The BLOCK CONTAINS clause is generated for a
VSAM file only if the library is in COBOL II.

The corresponding COBOL clause (BLOCK CONTAINS) is not
generated in the following cases:

.sort file,

Chapter 4. Modifying the Working Storage/Linkage Section 37

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

.disk Data Structure (file stored on a disk) if no number is
mentioned,

.file with UNIT TYPE = ’R’ in IBM DOS (COBOL variant 1)

.Block 0 for UNISYS A Series (COBOL Variant 8) and AS 400
(COBOL Variant O).

.Block 0 for IBM VSE COBOL II and file with UNIT TYPE =
’N’.

13 1 BLOCK SIZE UNIT TYPE

R Records (default value).

C Characters.

N The BLOCK CONTAINS clause is not generated.

14 1 NUMER. NUMBER OF CONTROL BREAKS

(BATCH SYSTEMS DEVELOPMENT Function) All spaces are
replaced with zeroes.

For sequentially accessed, sorted files: Enter the number of
Elements (elementary or group) on which there is to be control
break processing for the Data Structure.

0 Default.

1 to 9 1 to 9 levels, according to the number of Elements to be used
for control break processing. These Elements are identified as
the SORT KEYs for this Data Structure.

When there is control break processing on one or more Data
Structures, two indicators keep track of the status of the records
being processed:

Note: The term ’nth key Data Element’ includes all key Data
Elements up to and including the nth level.

.dd-IBn = ’1’: the nth key Data Element of the current record of
Data Structure dd contains a new value,

.dd-FBn = ’1’: the nth key Data Element of the current record of
Data Structure dd contains the last occurrence of the present
value.

When these files are synchronized with others, (see FILE
MATCHING LEVEL NUMBER) the control breaks are kept
synchronized via two additional switches:

.ITBn = ’1’: a new value in the nth key Data Element has been
detected. This signals beginning processing on all synchronized
D.S’s.

.FTBn = ’1’: the present value of the nth key Data is occurring
for the last time. This signals end processing for the records in
this iteration for all synchronized D.S’s.

For output files (USAGE OF DATA STRUCTURE value ’D’):

A non-zero value will create a duplicate file layout to be
generated in the WORKING-STORAGE area identifiable by a
prefix of ’1-’.

Note however a preferable procedure to accomplish this is via
the Work Areas (-W) Screen.

15 1 NUMER. FILE MATCHING LEVEL NUMBER

38 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

BLANKS REPLACED BY ZEROES.

For sequentially accessed files:

Used to establish the synchronization of two or more files.

0 Default.

1 to 9 Enter the number of Elements (Elementary or Group) on which
file matching is to be synchronized for this Data Structure. This
number identifies the number of the key fields (identified in the
SORT KEY/ field) that are involved in the synchronization.

For an automatic file matching, the following conditions must
be met:

. The Data Structure control break level must be equal to the
file matching level - 1, except for a transaction Data Structure,
whose control break level must be equal or superior to the file
matching level.

. The Data Element(s) which constitute(s) the sort keys of a
Data Structure must be sorted in ascending order.

. The Data Element(s) which constitute(s) the sort keys of a
Data Structure must have the same length for the same level.

. These Data Elements must have a display format (if they are
numeric, they must be whole numbers and unsigned).

Switches generated to control the file matching are:

.dd-CFn: which indicates whether a file should be processed or
bypassed in this iteration, (’1’ = process, ’0’ = bypass).

.dd-OCn: which indicates the status of processing on a record of
a principal file (USAGE OF DATA STRUCTURE = ’P’).

For sequentially accessed files:

’1’ = WRITE to the principal file

’0’ = do not WRITE.

For direct access files:

’1’ = CREATE or REWRITE

’0’ = DELETE

16 1 USAGE OF DATA STRUCTURE

This code defines the role of the Data Structure in the Program
and determines the generated functions.

C Consult

Any input file (Data Structure).

D Direct

Any output file (default).

T Table

A file to be fully stored in memory. The table is generated
according to the number of repetitions indicated on each
Segment Definition. (See OCCURRENCES OF SEGMENT IN
TABLE).

The maximum number of selected Segments per D.S. = 50.

X Table

Chapter 4. Modifying the Working Storage/Linkage Section 39

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

A file to be partially stored in memory. Only Data Elements
other than FILLER are loaded.

Elementary Data Elements other than FILLER are limited to 10
(in addition to the RECORD TYPE ELEMENT) for the ’00’
Segment and to 29 for each specific non-00 Segment.

S Selected

Output file extracted from another file.

It differs from USAGE value ’D’ since the generated description
in the output area is not detailed. For Data Elements with an
’OCCURS DEPENDING ON’ clause, the USAGE OF DATA
STRUCTURE must be ’D’.

The following values are specific to the Batch Systems
Development function:

P Principal

Input file, likely to be updated (by a transaction file - usage
value ’M’ or ’N’).

R Result

Updated principal file in sequential access mode. (When the
Data Structure contains an ’OCCURS DEPENDING ON’ clause,
the output/result D.S must be declared as ’D’).

M Transactions to be validated:

Input file to be validated which may update other file(s). The
generated functions range from 30 to 76.

Note: Only one ’M’ or ’N’ Data Structure is allowed per
Program.

N Transactions not to be validated:

Input file which can update other files.

The generated functions are: 30, 33, 39, 70 to 76.

Note: Only one ’M’ or ’N’ D.S. is allowed per Program.

E Transaction file with errors detected:

Output transaction file containing a field identifying records
with errors. The system will generate the field(s) to track the
erroneous Elements, erroneous Segments and user defined
errors using the reserved Data Elements ENPR, GRPR and
ERUT. (The option is selected in the RESERVED ERROR
CODES IN TRANS. FILE field). Selected or not, the descriptions
of these Elements are generated (using the Data Elements
DE-ERR and ER-PRR).

These descriptions precede the descriptions of the Elements.

I Direct printing (or by SYSOUT in IBM MVS)

At the generation level, the lines with STRUCTURE NUMBER
value of ’00’ will be ignored.

J Indirect printing to be processed by a spool Program.

Fields required for identifying the lines, line skips, etc. are
defined in Report STRUCTURE NUMBER value 00.

17 2 RESULTING FILE DATA STRUCTURE CODE

40 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

With USAGE OF DATA STRUCTURE value ’P’, indicate the
DATA STRUCTURE CODE IN THE PROGRAM of the resultant
output D.S.

For an output type USAGE OF DATA STRUCTURE (value ’R’
or ’D’), indicate the DATA STRUCTURE CODE IN THE
PROGRAM of the input principal D.S.

18 2 SOURCE OR ERROR DATA STRUCTURE CODE

For a transaction file (USAGE OF DATA STRUCTURE = ’M’ or
’N’), enter the DATA STRUCTURE CODE IN THE PROGRAM
of the transaction file containing the error fields (USAGE OF
DATA STRUCTURE = ’E’) if one has been called.

For a transaction file with the error field (USAGE OF DATA
STRUCTUREE’), enter the DATA STRUCTURE CODE IN THE
PROGRAM of the corresponding transaction file (USAGE OF
DATA STRUCTURE = ’M’ or ’N’).

For a selected file (USAGE OF DATA STRUCTURE = ’S’), enter
the DATA STRUCTURE CODE IN THE PROGRAM of the input
source with the corresponding Data Structure code of the
selected file on the line where the source file is being called.

19 1 TRANSACTION CONTROL BREAK LEVEL

ALL SPACES REPLACED BY ZEROS.

Default option: NUMBER OF CONTROL BREAKS

In a transaction file, enter the position within the SORT KEY/
of the ACTION CODE ELEMENT. For example, if the SORT
KEY/ value is ABCDE and the ACTION CODE ELEMENT is
’D’, enter ’4’ here.

This element is the minor-most key of the sort key and the one
used to differentiate one type of transaction from another of the
same principal file. Duplicates are detected if any key elements
below this one are found to match.

20 4 PHYSICAL UNIT TYPE

NOTE: The term ’COBOL Variant’ = the value in the TYPE OF
COBOL TO GENERATE field) generates the following in the
SELECT clause of some COBOL variants:

IBM DOS (COBOL Variant 1):

Enter the model type (examples: 2314, 3330, 2400).

MICROFOCUS, COBOL II, IBM VISUAL SET (COBOL Variant
3)

EXT Generation of the EXTERNAL clause at the file FD level

LS Generation of the LINE SEQUENTIAL clause

EXLS Generation of the LINE SEQUENTIAL clause and of the
EXTERNAL clause at the file FD level

Gcos7 (COBOL Variant 4):

SSF Option WITH SSF in the SELECT clause

OUT Option -SYSOUT suffix after the filename in the SELECT clause
(WITH SSF is generated).

Gcos8 ASCII (COBOL Variant 5):

Chapter 4. Modifying the Working Storage/Linkage Section 41

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

PT Printer.

CR Card reader.

SSF ORGANIZATION IS GFRC SEQUENTIAL SSF CODE SET IS IS
GBCD.

IBM ORGANIZATION IS IBM-OS SEQUENTIAL.

xxx WITH xxx.

...V A ’V’ in the 4th position generates the clause ’VALUE OF
FILE-ID is 3-FF00-IDENT’ (FF is the program Data Structure
code being called).

The field 3-FF00-IDENT must be defined in -W by the user.

BURROUGHS large system (COBOL Variant 8) UNISYS A
Series:

DK or

blank Disk.

DKS Sort Disk (with T opening).

DKM Merge Disk (with T opening).

RD Reader.

PT Printer.

PO File.

TP Tape.

For the 2-character codes, a third character can specify a
particular final disposition:

..P Purge.

..R Release.

..L Lock.

..S Save.

...V A ’V’ in the 4th position generates the clause ’VALUE OF D.S.
NAME IS 3-FF00-IDENT’.

UNISYS 2200 (COBOL Variant U):

CR Card reader.

CP Card punch.

UN Uniservo.

TP Tape.

PN Printer with external name. If the COMPLEMENTARY
PHYSICAL UNIT TAPE field contains input, the RECORDING
clause is also generated.

PT Printer without external name.

PF Printer with external name and:

VALUE OF PRINTER-FORMS 3-FF00-FORMS

LINAGE IS 3-FF00-LINES

TOP IS 3-FF00-TOP

BOTTOM IS 3-FF00-BOTTOM

42 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

These 4 data-names are to be declared in Work Areas (-W) lines
with their appropriate values.

AS 400 (COBOL Variant O):

DB Database.

RD Reader.

CP Card Punch.

PT Printer.

TP Tape.

DK or

blank Disk.

21 1 COMPLEMENTARY PHYSICAL UNIT TYPE

NOTE: The term ’COBOL Variant’ = the value in the TYPE OF
COBOL TO GENERATE field.

IBM DOS (COBOL Variant 1):

R Reader.

P Punch.

IBM 3/15D (COBOL Variant 3):

S EBCDIC Tape.

C ASCII Tape.

BULL Gcos8 ASCII (COBOL Variant 5):

S EBCDIC Set code.

C ASCII Set code.

CDC COBOL 68 (COBOL Variant E):

S Recording mode is EBCDIC.

UNISYS 2200 (variant U):

S Recording followed by lock mode.

BULL Gcos7 (COBOL Variant 4) and Gcos8 (COBOL Variant 6)

O If the value ’O’ is entered in this field, the OPTIONAL option is
not generated.

Otherwise, the OPTIONAL option is generated by default.

DEC VAX VMS (COBOL Variant I)

A File opening with option ALLOWING ALL and sequential
reading with option REGARDLESS.

IBM MVS :

F OPTIONAL parameter generated in the SELECT clause of a
VSAM file.

22 9 SELECTION

This field has three mutually exclusive uses:

1. Composition of the sort key

Chapter 4. Modifying the Working Storage/Linkage Section 43

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

This is the group of Data Elements making up the sort key for
control break processing. They are identified by the value
entered in the KEY INDICATOR FOR ACCESS OR SORT field
on the Segment Call of Elements (-CE) screen.

The order of sorting these key Data Elements may be entered
here using the values assigned on the Call of Elements (-CE)
screen in the desired order of major to minor - left to right. If
no explicit entry is made here, Elements coded with value 1 to
9 will be taken as the default.

The Data specifying the sort order must be entered on first line
of the Data Structure call. (That is on the line where the
CONTINUATION OF D.S. DESCRIPTION field remains blank.)

Note: for transaction files, include the ACTION CODE and
RECORD TYPE ELEMENTs as a part of the key. The order in
which these Elements are sorted will determine the sequence in
which the transactions update the principal file, and the policy
for duplicate record detection.

2. Selection of Segments in a Data Structure

Rather than having all of the Segments belonging to a Data
Structure described, the user may select the ones that are
needed, thus avoiding unnecessary description lines and wasted
work area space. This may be significant for tables (USAGE OF
DATA STRUCTURE = ’T’).

This is done by entering an ’*’ in the first column of this field
followed by a maximum of 4 SEGMENT CODES, in addition to
the common part. The Segments may come from different
D.S.’s, but in this case, it is better to call these Segments into
another Segment.

When the user wishes to re-create the file matching key and
select records, he/she must indicate the file matching on the
first Segment Call line, and the selected records on continuation
lines.

When Segments come from different D.S.’s Descriptions, the
common part of the first D.S. called is considered to be the
resulting file common part. The other D.S.’s must not have a
common part.

3. Report selection: To select a particular Report, the third
character in the Report code must be entered in the field. To
select all Reports with the same prefix, you must leave the field
blank.

Generally, continuation lines are created if more than four
Segments or nine Reports are selected.

It is possible to rename a SEGMENT CODE or LAST
CHARACTER OF REPORT CODE: one line per Segment or
Report to be renamed is created. Enter the LAST CHARACTER
OF REPORT CODE as known in the Library, followed by the
desired code for the Program separated an ″=″ sign.

Follow the same procedure to rename the SEGMENT CODE,
but precede the old Segment code with an asterisk.

EXAMPLE:

1=2 Rename report code 1 report code 2

44 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

*01=02 Rename segment code 01 segment code 02.

23 1 NON-PRINTING DATA STRUCTURE FORMAT

This option is reserved for Data Structures with a USAGE OF
DATA STRUCTURE other than ’I’ or ’J’.

E Input format. (Default option with USAGE OF D.S. = ’M’, ’N’
or ’E’).

I Internal format (Default with USAGE OF D.S. NOT= ’M’, ’N’ or
’E’).

S Output format.

Note: the Elements making up the Segments must not exceed
999 characters.

24 1 RESERVED ERROR CODES IN TRANS. FILE

Indicates if reserved Data Elements (ENPR, GRPR, ERUT)
contained in the Data Structure Description are to be described.

blank The Description is not generated.

V The Descriptions are generated for all of these Data Elements.

W Same as ’V’, but the Data Element ENPR represents the error
vector. (Reserved for USAGE OF D.S. = ’M’, ’N’ or ’E’.)

E Only the ’ENPR’ and ’GRPR’ Descriptions are generated.

U Only the ’ERUT’ Description is generated.

In a transaction file (USAGE OF D.S.= ’M’, ’N’ or E’), these
Data Elements must appear at the beginning of the Description
and are used to carry results of validations to the update.

.ENPR: n+1 positions for values ’V’ or ’E’ and m+1 positions
for value ’W’, where:

n = number of elementary Data Elements in the Data Structure
description.

m = greatest number of elementary Elements in the file : that is,
those in the common part Segment plus the largest non-00
Segment. The extra position is the identification error.

It initializes the DE-ERR vector.

.GRPR: 1 position per record + 1 for group error.

It initializes the SE-ERR vector.

When these Elements are used in a file other than a
transaction-type file, the placement and format is at the option
of the user.

1..9,0 With the Pactables function, it specifies the number of
sub-schemas desired. Refer to the ’Pactables’ Reference manual.

With an SQL utilization file, it specifies the number of the
sub-schemas desired (selection of a Column in a Table).

25 1 RECORD TYPE / USE WITHIN D.S.

This option is used to select the type of record description to be
used in the COBOL Program to allow different uses of the
Segment Description stored in the Library.

blank Redefined records (Default option). No VALUE clause is
generated.

Chapter 4. Modifying the Working Storage/Linkage Section 45

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

1 A record set without initial values or repetitions of records.
These records are presented with the Segment common part
followed by the different specific parts.

If the Data Structure Description appears in the COBOL FILE
SECTION, the LEVEL NUMBER (COBOL) OF THE RECORD
must be 2. With this value, the specific Segments are described
without redefines, at the COBOL 02 level. Several Segment
Descriptions are grouped together under the same I/O area.

2 A record set with the specific initial values of the Data Element
of the Segment as defined on the Call of Elements or Data
Element Description screen. These values may also default to
blank or zero depending on the format.

This type of description cannot be used for a Data Structure
having a number of repetitions in the common part Definition.
(Use ORGANIZATION = ’W’ or ’L’).

3 A record set which incorporates the number of repetitions
specified in OCCURRENCES OF SEGMENT IN TABLE on the
Segment Definition Screen. No VALUE clause will be generated.

If the description of the Data Structure appears in the COBOL
FILE SECTION, the LEVEL NUMBER (COBOL) OF THE
RECORD must be ’2’.

4 A record set which incorporates the number of repetitions
specified in the OCCURRENCES OF SEGMENT IN TABLE on
the Segment Definition Screen.

The associated LEVEL NUMBER (COBOL) OF THE RECORD
must be ’3’.

Comment specific to the OLSD function: For a description type
of ’4’ and a COBOL 03 level, the index is not generated.

A COBOL 02 level is used to access the table made up of
repetitions of the same record (ddssT).

A COBOL 01 level is used to group the whole Data Structure
together - common or specific parts, whether repeated or not.

A group level field that incorporates all occurrences is
generated.

For Data Structures that do not have a value specified for the
OCCURRENCES OF SEGMENT IN TABLE, use
ORGANIZATION = ’W’ with USAGE OF Data Structure = ’T’.

6 To be used only with the GIP interface. The number of levels
are the same as the one of the record type 4.

26 1 LEVEL NUMBER (COBOL) OF THE RECORD

This option, used in conjunction with the RECORD TYPE /USE
WITHIN D.S. field, defines the COBOL level number for the
descriptions of Data Structures, Segments and Elements.

In the following descriptions, the term ’D.S. Area’ is meant as
the area ’dd00’ (possibly 1-dd00, 2-dd00).

1 COBOL 01 level for D.S. Area and Segments. (Default value).

If the Data Structure Description appears in the COBOL FILE
SECTION, the Segments must be redefined.

46 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

If a Data Structure has no common part with a non- redefined
Description, the D.S. Area will only appear when the RECORD
TYPE / USE WITHIN D.S. = blank.

2 COBOL 01 level for D.S. Area and Segments at 02 level.

If the RECORD TYPE / USE WITHIN D.S. = blank, both the DS
Area and the Segments will be described at the 02 level. (To
define the 01 level, use ORGANIZATION = ’L’ and Work Areas
(-W) lines.)

3 Reserved for D.S. with an ORGANIZATION = ’W’ or ’L’.

COBOL 02 level for the D.S. Area and Segments at 03 level
when associated with RECORD TYPE / USE WITHIN D.S. = 1,
2, or 3.

01 level for the D.S. Area and Segments at 03 level when
associated with RECORD TYPE / USE WITHIN D.S.= 4.

03 level for both the D.S. Area and the Segments when
associated with RECORD TYPE / USE WITHIN D.S. = blank.

4 Reserved for Data Structures with an ’L’ ORGANIZATION and
USAGE OF DATA STRUCTURE = ’D’. The 01 level is to be
defined via the Work Areas Screen (-W).

COBOL 02 level for group Data Elements or elementary
Elements that are not part of a group.

Elementary Elements that are part of a group appear. The D.S.
Area and Segment levels disappear.

5 Reserved for Data Structures in ORGANIZATION ’L’ or ’W’
and with a USAGE OF DATA STRUCTURE = ’D’.

COBOL 01 level for group Data Elements or elementary
Elements that are not part of a group.

Elementary Elements that are part of a group appear. The D.S.
Area and Segment levels disappear.

6 Reserved for Data Structures with an ’L’ ORGANIZATION and
USAGE OF DATA STRUCTURE = ’D’. The 01 level is to be
defined via the Work Areas Screen (-W).

COBOL 02 level for group Data Elements or elementary
Elements that are not part of a group.

Elementary Elements that are part of a group disappear as well
as D.S. Area and Segment levels.

For standard OLSD Screens only.

7 Reserved for Data Structures in ORGANIZATION ’L’ or ’W’
and with a USAGE OF DATA STRUCTURE = ’D’.

COBOL 01 level for group Data Elements or elementary
Elements that are not part of a group.

Elementary Elements that are part of a group disappear as well
as D.S. Area and Segment levels.

For standard OLSD Screens only.

27 2 CODE FOR COBOL PLACEMENT

PSEUDO-NUMERIC FIELD, blanks replaced by zeros.

Chapter 4. Modifying the Working Storage/Linkage Section 47

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

This field concerns only the principal Description of a D.S.
(ddss) and not the Descriptions preceded by a prefix (1-ddss or
2-ddss).

This field is used to obtain a Description of a D.S. in a
particular area (COMMUNICATION area with DBMS’s or the
LINKAGE SECTION which the user must define by a Work
Areas (-W) line), or at the beginning of the
WORKING-STORAGE SECTION.

This field is reserved for D.S.’s with an ’L’,’D’ or ’W’
ORGANIZATION, in order to place the I/O area in WORKING
STORAGE.

To have a Data Structure described in WORKING-STORAGE it
is preferable to use the Work Areas (-W) lines.

00 The Description of the D.S. is inserted after all the Work Areas
(-W) lines. (Default value).

alphabet. The Description of the D.S. is inserted after all the Work Areas
(-W) lines whose 5-digit line number begins with this value.

The Description and Work Areas (-W) lines are found at the
beginning of the generated Program WORKING-STORAGE
SECTION. These lines appear both before Data Structures with
ORGANIZATION = ’W’ and before those whose DATA
STRUCTURE CODE IN THE PROGRAM is greater than this
alphabetic code.

(Do not use this field with a Data Structure whose
ORGANIZATION = ’W’.)

alphanum. The Description of the D.S. is inserted after all the Work Areas
(-W) lines whose 5-digit line number begins with this value.
The Work Areas (-W) lines and the Description can be found in
the generated Program, at the end of the WORKING-STORAGE
SECTION among the user areas.

The location is indicated on the first line of the D.S. call
(CONTINUATION OF DS DESCRIPTION field = blank), and is
repeated (by default) on all of its continuation lines.

However, it is possible to attribute different locations to each
record description of D.S. in a Program. This is done by
entering several call lines for this D.S., specifying a record
selection and a location foreach one.

Therefore, the Data Structure must have an unpacked
description, whether implicit or explicit.

WARNING: with ORACLE, you must use numeric values so
that the DECLARE SECTION will be correctly generated (with
data fields and indicators included in it).

28 10 STATUS FIELD - FILE INDICATOR

(Note: In this discussion, the term ’COBOL Variant’ = the value
in the TYPE OF COBOL TO GENERATE field)

Enter the DATA STRUCTURE, SEGMENT and DATA
ELEMENT CODEs in the following format:

ddsseeeeee

(Recommendation: ss = 00).

This field is used in one of three ways:

48 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

For VSAM files

.The FILE STATUS IS clause is generated using 1-ddss-eeeeee
(declared as a two byte field).

For hardware other than Gcos8 BCD and non-VSAM files

.The NOMINAL, SYMBOLIC or ACTUAL KEY depending on
the COBOL Variant.

The user must define the corresponding work area:
1-ddss-eeeeee.

The positioning of this key as well as the read of the D.S. must
be programmed by using Procedural Code (-P).

For Gcos8 BCD (COBOL Variant 6)

.Identification of the Data Structure.

.The corresponding ’VALUE OF’ clause will be generated only
if it’s filled in.

.The return-code area of the input-output operations

.The corresponding ’FILE STATUS IS’ clause will be generated
only if it’s filled in.

29 6 INDEXED DATA STRUCTURE ACCESS KEY

Required for indexed Data Structures: Enter the DATA
ELEMENT CODE of the access key Element.

30 6 CODE OF RECORD TYPE ELEMENT

Enter the code of the Data Element whose values define
different record types of a Data Structure.

Note: Must be in the common part (00 Segment).

This code can also be specified on the Segment Definition
Screen for the 00 Segment in the CODE OF RECORD TYPE
ELEMENT field, and is then used as a default value at
generation level.

Work Areas Screen (-W)
The Work Areas (-W) screen completes the WORKING-STORAGE SECTION,
LINKAGE SECTION, and the other supplementary sections that constitute the
Work Areas of the DATA DIVISION.

This screen is used to accomplish the following:
v Call in Data Structures that already exist in the Dictionary;
v Call in Data Elements that already exist in the Dictionary (with or without a

Segment), in the desired format;
v Declare Data Elements that do not exist in the Dictionary;
v Write in Source languages other than COBOL, in free structure Programs

(PROGRAM TYPE = ’S’);
v Name additional COBOL sections.

NOTE: This should be limited to the declaration of clauses that are not
automatically generated by VisualAge Pacbase, such as ’LINKAGE
SECTION’ in a batch Program.

Chapter 4. Modifying the Working Storage/Linkage Section 49

v Generate the indexes used in a table search (with the ’SCH’ OPERATOR). This
is done by associating a TABLE SIZE (OCCURS CLAUSE) value to the DATA
STRUCTURE and SEGMENT CODE in the WORK AREA DESCRIPTION field.

RECOMMENDATIONS

The Data Structure (-CD) call screen defines resources that are external to the
Program (file, Databases, etc.). WORKING-STORAGE SECTION and LINKAGE
SECTION fields are grouped together in the ’-W’ screen, which makes it easy to
organize them.

Furthermore, it is the ’-W’ lines of a Macro-Structure that are incorporated into
calling Programs, and not Data Structure (-CD) calls. Be sure that the
Macro-Structure ’-W’ keys do not conflict with those of the calling Program or of
other Macro-Structures.

CALLING DATA STRUCTURES

Data Structures are called by using ’F’-type lines. An input guide is used to enter
the attributes of the Data Structure. (See the TYPE OF LINE or DATA ELEMENT
FORMAT’ field in the Screen Description.)

50 VisualAge Pacbase: STRUCTURED CODE

--
! PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 !
! !
! WORK AREAS..........ENTITY TYPE O SA0010 *** REQUEST INPUT *** !
! 1 2 !
! CODE FOR PLACEMENT..: 3 AB !
! 4 5 6 7 8 9 !
! A LIN T LEVEL OR SECTION WORK AREA DESCRIPTION OCCURS !
! * 010 * --> MESSAGE BEFORE PROVOKED ABEND <---
! * 100 01 ABEND-MESS. !
! * 120 05 FILLER PIC X(24) VALUE !
! * 130 'TRANSACTION TERMINATION '. !
! * 150 05 ABEND-TRANS PIC X(4). !
! * 170 05 FILLER PIC X(11) VALUE !
! * 180 ' : FILE '. !
! * 200 05 ABEND-DDNAME PIC X(8). !
! * 220 05 FILLER PIC X VALUE SPACE. !
! * 240 05 ABEND-RMESS PIC X(8). !
! * 260 05 FILLER PIC X(23) VALUE !
! * 270 '. CALL EXTENSION 345.'. !
! !
! !
! !
! !
! !
! O: C1 CH: -W !
--

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

1 1 ENTITY TYPE

This field is used to identify the entity to which these lines are
attached:

O On-line Screen

P Program

The user may keyboard this field in order to copy lines
attached to a Screen into a Program and vice-versa.

2 6 PROGRAM CODE OR SCREEN CODE (REQUIRED)

This field contains the six-character program or on- line screen
code.

3 2 CODE FOR COBOL PLACEMENT (REQUIRED)

PSEUDO-NUMERIC FIELD

Valid values for this field are alphabetic characters, (blanks
replaced by zeros), numeric characters, and $n for a
parameterized value in a P.M.S. This value is used to determine
the placement and the sequence in which data entered on this
screen will be generated in the DATA DIVISION. These
characters form the first two digits of a sequencing number,
with the value in the LINE NUMBER field as the last three.

For Batch programs:

AA to ZZ 0A
to 0Z

A CODE FOR COBOL PLACEMENT smaller than ’00’ causes
the data entered on this screen to be generated at the beginning
of the WORKING-STORAGE SECTION. Relatively to Data
Structures called via the Call of Data Structures (-CD) screen,
these data will be generated as follows:

Chapter 4. Modifying the Working Storage/Linkage Section 51

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

.before the description of Data Structures with
ORGANIZATION = ’W’ and whose DATA STRUCTURE CODE
IN THE PROGRAM matches this prefix or is greater than it,

.before the description of Data Structures with
ORGANIZATION = ’L’ or ’D’ and whose CODE FOR COBOL
PLACEMENT (on -CD screen) matches this prefix or is greater
than it.

00 to 09 1A to
19 ... 9A to 99

A CODE FOR COBOL PLACEMENT greater than ’00’ causes
the data entered on this screen to be generated in the
WORKING-STORAGE SECTION, after all Data Structures
whose CODE FOR COBOL PLACEMENT (on -CD screen) is
smaller than this prefix.

For On-Line Programs:

AA to 0Z If this value is less than ’00’ (from ’AA’ to ’0Z’), the description
is generated in the WORKING-STORAGE SECTION.

00 to 99 Otherwise, it is generated in the LINKAGE SECTION.

AA This value is used by the system for data generated
automatically.

00 This value is used by the system for data generated
automatically.

Other codes may be reserved for special usage depending upon
the TP monitor type chosen for generation.

99 With LINE NUMBER = ’999’: This value is used by the system
for the ’PROCEDURE DIVISION’ statement. Therefore, you
may use it to create a line with a sequencing number ’99999’,
which will replace the generated statement.

$n In a Parameterized Macro-Structure, this value may be
parameterized.

4 1 ACTION CODE

C Creation of the line

M Modification of the line

D Deletion of the line

A Deletion of the line

T Transfer of the line

B Beginning of multiple deletion

G Multiple transfer

? Request for HELP documentation

E or - Inhibit implicit update

X Implicit update without upper/lowercase processing (on certain
lines only)

On the GP-C4 screen (JCL command lines), upper/lowercase
processing.

On the GP-C1 screen, upper/lowercase processing on
continuation lines only.

5 3 LINE NUMBER

BLANKS REPLACED BY ZEROS

52 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

0-999 As a recommendation, number the lines starting with 10 by
intervals of 10, thus facilitating future insertions.

$n0 to $n9 In a Macro-Structure, only the first two characters of the LINE
NUMBER can be parameterized.

6 1 TYPE OF LINE OR DATA ELEMENT FORMAT

TYPE OF LINE values:

blank Data entered in the LEVEL AND SECTION and WORK AREA
DESCRIPTION fields are to be generated as entered.

- Continuation character for a literal.

* Comment. Data entered in the LEVEL AND SECTION and
WORK AREA DESCRIPTION fields contain comments to be
inserted into the generated Program (ANSI COBOL only).

$ This value appears in column 7 of the generated COBOL and
the other Elements of the WORKING line appear as it is.

F Call of a Data Structure.

When ’F’ is entered, the system responds with a formatted line
which is used to facilitate data entry. The fields are the same as
those used on the Call of Data Structures (-CD) screen for D.S.
with ORGANIZATION = ’W’ or ’L’.

.DATA STRUCTURE CODE IN THE PROGRAM.

.DATA STRUCTURE CODE IN THE LIBRARY.

.SEGMENT SELECTION (enter the SEGMENT CODE without
an asterisk).

(A segment code can only be renamed in batch).

.NON-PRINTING DATA STRUCTURE FORMAT (1 to 8).

.RECORD TYPE / USE WITHIN D.S. (I, E or S).

.LEVEL NUMBER (COBOL) OF THE RECORD (1 to 5).

.ORGANIZATION.

.SUB-SCHEMA NUMBER.

.LINE SEQUENCE.

Type ’F’ ’-W’ lines are processed as Data Structure call lines
(-CD) only for batch.

If two Type ’F’ ’-W’ lines referring to the same Data Structure
(same DATA STRUCTURE CODE IN THE PROGRAM) are
separated, they will nevertheless be generated one after the
other.

ELEMENT FORMAT values:

E Use of the INPUT FORMAT of a Data Element.

I Use of the INTERNAL FORMAT of a Data Element.

S Use of the OUTPUT FORMAT of a Data Element.

For these format types, the presence of the Data Element in the
Specifications Dictionary is checked. A cross-reference is
established, which prohibits the deletion of the Data Element
whenever the lines in which it is called have not been deleted
themselves.

Chapter 4. Modifying the Working Storage/Linkage Section 53

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

If the Element does not exist in the Specifications Dictionary,
the System sends a warning.

When a global replacement is required (.C2), the Element is not
checked but the cross-references will still be created.

For these three format types, the data-name entered in the
WORK AREA DESCRIPTION must therefore have the following
format:

W-DDSS-EEEEEE where:

W = a working-storage prefix,

DDSS = a given DATA STRUCTURE and SEGMENT CODE,

EEEEEE = a DATA ELEMENT CODE which exists in the
Specifications Dictionary.

The corresponding format is automatically attributed by the
System.

For IMS sub-monitors:

M Sub-monitor; enter the code of the sub-monitor in the LEVEL
OR SECTION field.

C Call of a screen into the sub-monitor named above.

Enter the SCREEN CODE of the screen belonging to the
sub-monitor in the LEVEL OR SECTION field, followed by a
space and a ’D’ for Dynamic call or ’S’ for Static.

Example: C OOSCRN D

Note: Enter one SCREEN CODE per ’C’-type line.

7 17 LEVEL OR SECTION

Enter a COBOL Level Number (example: 01, 05,....) or a section
name (example: LINKAGE SECTION).

$n In a macro-structure, this value can be parameterized.

8 48 WORK AREA DESCRIPTION

The user should always use data-names that conform to the
standards recognized by the System.

The structure of these names is ’w-ddss-eeeeee’, where:

. w = Working-storage prefix (alpha or numeric),

. dd = DATA STRUCTURE CODE, including the work area,

. ss = SEGMENT CODE,

. eeeeee = DATA ELEMENT CODE.

If this standard is followed, the Data Element/Program
cross-references will be established automatically.

Values entered in this field appear on the same line in the
generated code, as the value entered in the LEVEL OR
SECTION field.

When used in combination with the TABLE SIZE (OCCURS
CLAUSE) field, the value entered in this field must be
left-justified. The prefix (’w-’) may be omitted, however, two
spaces must then be entered to replace them.

$n In a Macro-Structure, the WORK AREA DESCRIPTION value
can be parameterized.

54 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

NOTES: The period is not automatically generated after
’PICTURE’, enabling the user to enter a COBOL clause (like
VALUE, JUSTIFIED, etc.), which must be entered on the
following line.

The period must be explicitly indicated at the end of a
declaration.

When a Data Element is called into a WORKING STORAGE or
LINKAGE SECTION field, if the Data Element code exists in
the Dictionary, the data name must be entered in this field.
Otherwise, the generated code must be in the following format:

03 DDSS-DELCO PICTURE X.

9 5 TABLE SIZE (OCCURS CLAUSE)

PURE NUMERIC FIELD

Enter the maximum number of occurrences for the table.

An entry in this field causes the generation of the three indices:
IddssM, IddssL and IddssR.

.IddssM: initialized to the value entered.

.IddssL: initialized to zero.

This index may be used to load the table. It keeps track of the
actual table size.

.IddssR: initialized to zero.

This index may be used for table searches.

The DATA STRUCTURE and SEGMENT CODEs are entered,
prefixed with some work area prefix code in the standard VA
Pac format: ’w-ddss’ or ’w-ddss-eeeeee’. This value MUST be
left-justified in the WORK AREAS DESCRIPTION field. The
prefix may be replaced by spaces.

Note: This can be done on a comment line (’*’ as the TYPE OF
LINE value).

$n In a Macro-Structure, this value may be parameterized.

This field is not taken into account when used in a formatted
line.

Work Areas Formatted Line
When a Data Structure that was previously defined is to be used as a work file, the
user may call this Data Structure into the WORKING-STORAGE (or LINKAGE)
SECTION by requesting a Formatted Line. This is done by entering ’F’ in the TYPE
OF LINE field (a LINE NUMBER value is also required). The system will respond
with a line containing screen labels for input fields.

INPUT FIELDS

Only the fields that pertain to the formatted line will be described in this
subchapter. The fields that pertain to the Work Areas (-W) screen as a whole are
described in the previous subchapter.

Chapter 4. Modifying the Working Storage/Linkage Section 55

The formatted line fields for the most part are a subset of the fields that appear on
the Call of Data Structures (-CD) screen, and are used in a similar fashion. The
exceptions to this rule are:
v The SEGMENT SELECTION field is used to select Segments within a Data

Structure to be described. On the Call of Data Structures screen, the user would
need to enter an asterisk prior to the SEGMENT CODE. On the Work Areas
screen, no asterisk is to be entered. For on-line Programs, the common part
Segment (00) must be explicitly entered. With batch Programs, it is implicitly
selected (if it exists).

v The SUB-SCHEMA NUMBER field is used with the Pactables function, and is
used to specify which sub-schema is to be described.

v The LINE SEQUENCE field does not have a screen label. Its physical location
on this line is the column directly to the right of the SUB-SCHEMA NUMBER
field. This field is used only for upward compatibility, if needed.

GENERAL INFORMATION

Segments generated as a result of data entered on the formatted line are named
according to the following standard: ddss.

Data elements are named: ddss-eeeeee.

56 VisualAge Pacbase: STRUCTURED CODE

--
! PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 !
! !
! WORK AREAS..........ENTITY TYPE P TES001 TEST FOR POJ !
! !
! !
! CODE FOR PLACEMENT..: BB !
! !
! A LIN T LEVEL OR SECTION WORK AREA DESCRIPTION OCCURS!
! * 020 F DP: XW DL: XW SEL: 02______ PICT: I DESC: 2 LEV: 1 ORG: _ SS: _ !
! * 030 F DP: XW DL: XW SEL: 04______ PICT: I DESC: 2 LEV: 1 ORG: _ SS: _ !
! 1 2 3 4 5 6 7 8 9 10 11 !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! O: C1 CH: -W !
--

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

1 3 LINE NUMBER

BLANKS REPLACED BY ZEROS

0-999 As a recommendation, number the lines starting with 10 by
intervals of 10, thus facilitating future insertions.

$n0 to $n9 In a Macro-Structure, only the first two characters of the LINE
NUMBER can be parameterized.

2 1 TYPE OF LINE

F When ’F’ is entered, the system responds with a formatted line
which is used to facilitate data entry.

The fields here, for the most part, are the same as those on the
Call of Data Structures (-CD) screen for data structures with
ORGANIZATION = ’W’, ’L’ or ’D’.

.DATA STRUCTURE CODE IN THE PROGRAM.

.DATA STRUCTURE CODE IN THE LIBRARY.

.SEGMENT SELECTION.

.NON-PRINTING DATA STRUCTURE FORMAT.

.RECORD TYPE / USE WITHIN D.S.

.LEVEL NUMBER (COBOL) OF THE RECORD.

.ORGANIZATION.

.SUB-SCHEMA NUMBER.

.LINE SEQUENCE. (Note: This field has no label on the screen).

Chapter 4. Modifying the Working Storage/Linkage Section 57

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

Type ’F’ ’-W’ lines are processed as Data Structure call lines
(-CD). If two Type ’F’ ’-W’ lines referring to the same D.S.
(same DATA STRUCTURE CODE IN THE PROGRAM) are
separated, they will nevertheless be generated one after the
other.

3 2 DATA STRUCTURE CODE IN THE PROGRAM

This code establishes the sequence in which the Data Structure
will be processed in the Program.

It must be alphabetic.

It is recommended to keep the same DATA STRUCTURE CODE
IN THE PROGRAM and IN THE LIBRARY when the Data
Structure described in the Library is used only once in the
Program.

4 2 DATA STRUCTURE CODE

This code is made up of two alphanumeric characters. This is a
logical code internal to the Database and therefore independent
of the names used in Database Blocks and Programs.

5 8 SEGMENT SELECTION

Rather than describing all of the Segments belonging to a Data
Structure, the user may select the ones that are needed, thus
avoiding unnecessary description lines and wasted work area
space.

Enter the SEGMENT CODE (up to four are allowed) for the
Segments to be described. Do not enter spaces between these
codes.

6 1 NON-PRINTING DATA STRUCTURE FORMAT

This option is reserved for Data Structures with a USAGE OF
DATA STRUCTURE other than ’I’ or ’J’.

E Input format. (Default option with USAGE OF D.S. = ’M’, ’N’
or ’E’).

I Internal format (Default with USAGE OF D.S. NOT= ’M’, ’N’ or
’E’).

S Output format.

Note: the Elements making up the Segments must not exceed
999 characters.

7 1 RECORD TYPE / USE WITHIN D.S.

This option is used to select the type of record description to be
used in the COBOL Program to allow different uses of the
Segment Description stored in the Library.

blank Redefined records (Default option). No VALUE clause is
generated.

1 A record set without initial values or repetitions of records.
These records are presented with the Segment common part
followed by the different specific parts.

If the Data Structure Description appears in the COBOL FILE
SECTION, the LEVEL NUMBER (COBOL) OF THE RECORD
must be 2. With this value, the specific Segments are described
without redefines, at the COBOL 02 level. Several Segment
Descriptions are grouped together under the same I/O area.

58 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

2 A record set with the specific initial values of the Data Element
of the Segment as defined on the Call of Elements or Data
Element Description screen. These values may also default to
blank or zero depending on the format.

This type of description cannot be used for a Data Structure
having a number of repetitions in the common part Definition.
(Use ORGANIZATION = ’W’ or ’L’).

3 A record set which incorporates the number of repetitions
specified in OCCURRENCES OF SEGMENT IN TABLE on the
Segment Definition Screen. No VALUE clause will be generated.

If the description of the Data Structure appears in the COBOL
FILE SECTION, the LEVEL NUMBER (COBOL) OF THE
RECORD must be ’2’.

4 A record set which incorporates the number of repetitions
specified in the OCCURRENCES OF SEGMENT IN TABLE on
the Segment Definition Screen.

The associated LEVEL NUMBER (COBOL) OF THE RECORD
must be ’3’.

Comment specific to the OLSD function: For a description type
of ’4’ and a COBOL 03 level, the index is not generated.

A COBOL 02 level is used to access the table made up of
repetitions of the same record (ddssT).

A COBOL 01 level is used to group the whole Data Structure
together - common or specific parts, whether repeated or not.

A group level field that incorporates all occurrences is
generated.

For Data Structures that do not have a value specified for the
OCCURRENCES OF SEGMENT IN TABLE, use
ORGANIZATION = ’W’ with USAGE OF Data Structure = ’T’.

6 To be used only with the GIP interface. The number of levels
are the same as the one of the record type 4.

8 1 LEVEL NUMBER (COBOL) OF THE RECORD

This option, used in conjunction with the RECORD TYPE /USE
WITHIN D.S. field, defines the COBOL level number for the
descriptions of Data Structures, Segments and Elements.

In the following descriptions, the term ’D.S. Area’ is meant as
the area ’dd00’ (possibly 1-dd00, 2-dd00).

1 COBOL 01 level for D.S. Area and Segments. (Default value).

If the Data Structure Description appears in the COBOL FILE
SECTION, the Segments must be redefined.

If a Data Structure has no common part with a non- redefined
Description, the D.S. Area will only appear when the RECORD
TYPE / USE WITHIN D.S. = blank.

2 COBOL 01 level for D.S. Area and Segments at 02 level.

If the RECORD TYPE / USE WITHIN D.S. = blank, both the DS
Area and the Segments will be described at the 02 level. (To
define the 01 level, use ORGANIZATION = ’L’ and Work Areas
(-W) lines.)

3 Reserved for D.S. with an ORGANIZATION = ’W’ or ’L’.

Chapter 4. Modifying the Working Storage/Linkage Section 59

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

COBOL 02 level for the D.S. Area and Segments at 03 level
when associated with RECORD TYPE / USE WITHIN D.S. = 1,
2, or 3.

01 level for the D.S. Area and Segments at 03 level when
associated with RECORD TYPE / USE WITHIN D.S.= 4.

03 level for both the D.S. Area and the Segments when
associated with RECORD TYPE / USE WITHIN D.S. = blank.

4 Reserved for Data Structures with an ’L’ ORGANIZATION and
USAGE OF DATA STRUCTURE = ’D’. The 01 level is to be
defined via the Work Areas Screen (-W).

COBOL 02 level for group Data Elements or elementary
Elements that are not part of a group.

Elementary Elements that are part of a group appear. The D.S.
Area and Segment levels disappear.

5 Reserved for Data Structures in ORGANIZATION ’L’ or ’W’
and with a USAGE OF DATA STRUCTURE = ’D’.

COBOL 01 level for group Data Elements or elementary
Elements that are not part of a group.

Elementary Elements that are part of a group appear. The D.S.
Area and Segment levels disappear.

6 Reserved for Data Structures with an ’L’ ORGANIZATION and
USAGE OF DATA STRUCTURE = ’D’. The 01 level is to be
defined via the Work Areas Screen (-W).

COBOL 02 level for group Data Elements or elementary
Elements that are not part of a group.

Elementary Elements that are part of a group disappear as well
as D.S. Area and Segment levels.

For standard OLSD Screens only.

7 Reserved for Data Structures in ORGANIZATION ’L’ or ’W’
and with a USAGE OF DATA STRUCTURE = ’D’.

COBOL 01 level for group Data Elements or elementary
Elements that are not part of a group.

Elementary Elements that are part of a group disappear as well
as D.S. Area and Segment levels.

For standard OLSD Screens only.

9 1 ORGANIZATION

G Table description (Pactables).

Causes the communication area with the access module to be
generated. See the ’Pactables’ Reference manual.

D Reserved for the Description of Segments or records of the
different Databases, IMS (DL/1), IDS I, IDS II, (according to the
TYPE OF COBOL TO GENERATE selected), in the generation of
DBD, SYSGEN, schemas or application Programs (according to
the TYPE AND STRUCTURE OF PROGRAM selected).

blank Defaults to ORGANIZATION of ’L’ or ’W’ depending on the
value of the CODE FOR COBOL PLACEMENT.

A Reserved for an ADABAS file description in the definition
Programs or usage Programs of the Database.

60 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

T Reserved for the description of ’TOTAL’ files in the Definition
Programs or the usage Programs of the Database.

Q Reserved for the Description of SQL/DS, DB2/2 or DB2/6000
Databases (IBM), or ALLBASE/SQL Databases (HP3000), or
DB2/2 or DB2/600 Databases(MICROFOCUS).

2 Generation-Description of a DB2 or VAX/SQL Segment.

Only physical accesses are not generated. The structure of
variable indicators corresponding to to the columns of the DB2
or VAX/SQL table is always generated.

C Reserved for the Description of an INTEREL RDBC, RFM
Database Structure.

O Reserved for the Description of an ORACLE (< V6) Database
Structure.

P Reserved for the Description of an ORACLE (V6 and V7)
Database Structure.

R Reserved for the Description of an RDMS Database Structure.

4 Reserved for the Description of a DB2/400 Database Structure.

N Reserved for the Description of a NONSTOP SQL Database
Structure.

M Reserved for the Description of a DATACOM DB Database
Structure.

9 Reserved for the Description of an INFORMIX, SYBASE,
INGRES/SQL, and SQL SERVER Database Structure.

The use of the System with the different DBMS’s is documented
in specific ’Databases’ manuals.

10 1 SUB-SCHEMA NUMBER

0 to 9 Indicates the sub-schema to be selected. (The value ’0’
corresponds to sub-schema 10.)

11 1 LINE SEQUENCE

* This value is used to generate segments from Formatted Work
Areas lines according to a generation method which should
NOT be used currently. The purpose of this specification is to
facilitate the maintenance of programs generated with this
method, i.e., before the sub-release of VisualAge Pacbase 7.1.
This field has no screen label. The field is directly to the right of
the SUB-SCHEMA NUMBER field.

Chapter 4. Modifying the Working Storage/Linkage Section 61

62 VisualAge Pacbase: STRUCTURED CODE

Chapter 5. Modifying the Procedure Division

Introduction
ORGANIZATION OF THE CHAPTER

This chapter contains a discussion of the concepts of Procedural code, as well as
the Preview Facility. Since the Procedures Generated (-PG) screen is closely related
to the Procedural Code (-P) screen, these two will be documented in the same
subchapter. The Titles Only (-TO) screen is mentioned in the ’Titles and Conditions
Screen (-TC)’ subchapter.

MODIFICATION OF THE PROCEDURE DIVISION

This Chapter discusses modifications to the PROCEDURE DIVISION of a program
through the use of Procedural Code (-P) lines attached directly to a batch or
on-line Program. The user can also use the VisualAge Pacbase Preview Facility,
which includes the Procedures Generated (-PG) screen, the Titles and Conditions
(-TC) screen and the Titles Only (-TO) screen.
v

The Procedures Generated (-PG) screen allows the user to write specific
procedures and, at the same time, view the titles of automatically generated
procedures.

v The Titles and Conditions (-TC) screen allows the user to view the general
structure (titles and conditions of all procedures) of a batch or on-line Program.

v The Titles Only (-TO) screen lets the user view the hierarchical organization of
program functions.

TRANSFER OF PROCEDURAL CODE (-P) LINES TO ANOTHER ENTITY

Procedural Code (-P) lines may be copied directly to another entity. See paragraph
’Transfer of lines to another entity in chapter ’Modifying the Identification /
Environment Division’.

Procedural Code Screen (-P)
The Procedural Code (-P) screen is used to write all Program procedures.

These Program procedures are structured into functions and sub-functions, with
each function or sub-function identified as a condition or structure type. They are
hierarchically set up by level. Program procedures are described using operators
followed by operands.

LEVEL OF SUB-FUNCTIONS

Functions are always an 05 level. Sub-functions have a 10 level by default.
However, they can be an 06 level to a 98 level.

Within a given function, a 15-level sub-function is part of the 06- to 14-level
sub-functions which precede it. In other words, a sub-function of a logically lower
level will have a level number that is greater (ex: a 15-level sub-function is
logically dependent on, or inferior to, a 14-level sub-function).

© Copyright IBM Corp. 1983,2001 63

In this way, a sub-function dependent on another sub-function (i.e., a 15-level
sub-function included in a 14-level sub-function), is only executed under the
conditions of execution of the logically higher level sub-function (14-level in this
case).

ELEMENTARY PROCEDURES

An elementary procedure is a series of condition lines.

The ’99’ level is reserved for elementary procedures. It is used to write a condition
without changing the sub-function code. This condition applies until the next
occurrence of a ’99’ level or until the end of the sub-function.

A ’99’ level procedure is limited to 75 lines. A sub-function can contain a maximum
of 98 ’99’ levels.

A sub-function with no title line (N in the OPERATOR field) is assumed to be an
elementary procedure and automatically assigned a ’99’ level.

CONDITION TYPE OR S.F. STRUCTURE

A function can be only an ’IT’ (IF THEN) type if its execution depends on a
condition. Otherwise, it must be a ’BL’ (BLOCK) type. This is indicated in the
CONDITION TYPE OR S.F. STRUCTURE field on the first line of the procedure.

If the CONDITION TYPE OR S.F. STRUCTURE is not indicated, the default
assumed for any one of these options is selected according to what has been
entered in the CONDITION FOR EXECUTION field. If an execution condition is
entered, the System defaults to the ’IF THEN’ structure; if an execution condition is
not entered, it defaults to the ’BLOCK’ structure.

For the sub-functions and the elementary procedures, the default options are the
same. However, the user can also indicate more complex types of structures.

IF THEN (’IT’) & ELSE (’EL’)

The sub-function type ’IT’ (IF THEN) can be followed by an ’EL’ (ELSE) type
sub-function of the same level.

The ’ELSE’ sub-function will be executed if the ’IF THEN’ sub-function condition
has not been met. The ’ELSE’ must directly follow the ’IF THEN’ sub-function.

CASE OF (’CO’)

The name of the variable which conditions the different procedures following the
’CASE OF’ must be included in the ’CASE OF’ statement.

The ’CASE OF’ structure is followed by sub-functions of the ’IT’ type (IF THEN) at
the next logically lower level. The variable value corresponding to the condition
for execution of the sub-function is specified each time.

The ’IF THEN’ (’IT’) sub-functions that depend on a ’CASE OF’ sub-function must
all be on the same level. They can be broken down into logically lower level
sub-functions.

64 VisualAge Pacbase: STRUCTURED CODE

The last sub-function which depends on the ’CASE OF’ sub-function can be a
’BLOCK’ (’BL’) type sub-function (non-conditioned). This last sub-function must be
on the same level as the ’IF THEN’ sub-functions. It will be executed when none of
the ’IF THEN’ conditions have been met.

If the last sub-function is not a ’BLOCK’ type and none of the ’IF THEN’
conditions are met within the ’CO’ structure type, processing continues with the
first sub-function at a higher logical level than the ’IT’ sub-functions.

15 CO ddss-eeeeee

16 IT value1

16 IT value2

16 IT value3

16 BL

LOOPS

There are three types of ’LOOP’ structures:

DO WHILE (’DW’), DO UNTIL (’DU’) and DO (’DO’).

A ’DW’ (’DO WHILE’) sub-function is only executed ’while’ the indicated
condition is true.

A ’DU’ (’DO UNTIL’) sub-function is executed at least once and ’until’ the
indicated condition is met.

A ’DO’ (’DO’) sub-function is executed as many times as indicated in the
condition.

The user must be careful to correctly specify the conditions to be met in the first
two types of sub-functions in order to avoid an infinite loop.

’WARNING’ TYPE ERROR MESSAGE

When a ’WARNING’ type error message is displayed, the character ’W’ appears in
the ACTION CODE field. The user can ignore the message by pressing Enter
again.

CONDITION FOR EXECUTION

The construction of the lines of the Procedural Code (-P) screen separates the
CONDITION FOR EXECUTION of a procedure from the procedure itself. That is,
the left part of the screen (the OPERAND FIELD) is used for the statement and the
right part for the CONDITION FOR EXECUTION, if any.

Writing a CONDITION FOR EXECUTION of a function or sub-function begins on
the first line of that function or sub-function and continues onto as many lines as
necessary, up to a limit of 24 lines (23 lines in case of ’Do Until’).

These lines may or may not include processing statements.

However, they will be executed under the global conditions set.

Note on DATE PROCESSING OPERATORS of the On-Line Systems Development
function:

Chapter 5. Modifying the Procedure Division 65

When the condition is entered on several lines, the continuation lines may not
contain operands. The operands must be entered before the condition continuation.

In order to facilitate the writing of a condition, the CONDITION TYPE OR S.F.
STRUCTURE field must be used to indicate the ’AN’ (AND) and/or ’OR’ (OR)
relationships within these conditions.

Parentheses, if needed, must be indicated.

PROCEDURES - OPERATORS AND OPERANDS

Procedures written in Procedural Code are written with OPERATORS followed by
OPERANDS.

This makes programs easy to read by isolating the ’verbs’ from the manipulated
data.

OPERATORS are translated into COBOL and take into account the information
provided for the different files and the features of each compiler.

An OPERATOR is indicated only once, even if the OPERANDS continue onto
several lines. The one exception to this rule is the ’*’ (comments) OPERATOR,
which must be repeated on each comment line.

TRANSFER ’GO-TO’ TYPE BRANCHING

The structure of a program must remain linear. Skipping from one function to
another can only be done in sequence.

Branching from one function or sub-function to a preceding function or
sub-function breaks the linear flow and is not permitted.

Thus, the only legitimate TRANSFER ’GO TO’ TYPE branch is one which branches
to the end of the current (sub-)function.

Specific OPERATORS are used for all of the TRANSFER ’GO TO’ TYPE branches.

Some OPERATORS and types of functions can be used only with the On-Line
Systems Development function (see the OPERATORS field).

NON-STANDARD OPERATORS

The user may specify a paragraph label and a PERFORM instruction for a
user-defined function F80. This is done by using the ’Yaa’ and ’Xaa’ OPERATORs
(the ’aa’ to be replaced by the user). When this occurs, the system will display a
warning message at the bottom of the screen to inform the user that this is a
non-standard operator. The letter ’W’ will appear in the ACTION CODE field. If
the user presses the ENTER key, the system will accept the operator.

FIELD ALIGNMENT

In a release prior to VisualAge Pacbase, the OPERANDS and CONDITION FOR
EXECUTION fields were larger and not completely displayed on-line. This no
longer applies to the current release (see the JUSTIFICATION OF OPERANDS and
the JUSTIFICATION OF CONDITION FIELD fields).

66 VisualAge Pacbase: STRUCTURED CODE

ON-LINE PREVIEW OF THE PROCEDURES

The user can preview a program, via the Procedures Generated (-PG) screen, to see
how Procedural Code is integrated with automatically generated functions.

USE OF THE PROCEDURES GENERATED (-PG) SCREEN

The Procedures Generated (-PG) screen allows the user to write specific procedures
and visualize simultaneously the titles of generated procedures.

The Procedures Generated (-PG) screen is accessed by entering the following in the
CHOICE field:

CH: PppppppPG

Specific procedures written on the Procedures Generated (-PG) screen are described
according to the same rules which apply to the Procedural Code (-P) screen.

Chapter 5. Modifying the Procedure Division 67

--
! PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 !
! !
! PROCEDURAL CODE P PO0001 VENDOR REPORTS FUNCTION: 02 !
! 1 2 3 !
! !
! 6 7 8 9 10 11 12 13 !
! A SF LIN OPE OPERANDS 4 LVTY CONDITION 5 !
! AA N GET CURRENT DATE 10BL !
! AA 10 ADT DATOR !
! - -- --- --- -------------------------------- ---- --------------------------!
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! *** END *** !
! O: C1 CH: -P !
--

68 VisualAge Pacbase: STRUCTURED CODE

--
! PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 !
! !
! PROCEDURAL CODE P BBINIT GENERAL PROCESSING FUNCTION: 02 !
! 2 3 !
! !
! 6 7 8 9 10 11 12 13 !
! A SF LIN OPE OPERANDS LVTY CONDITION !
! BB N MONITOR INITIALIZATION 10BL !
! BB 100 M PROGE K-S$1-PROGE
! - -- --- --- -------------------------------- ---- --------------------------!
! CC N DISPLAY FIRST RUN 10IT ICF = ZERO !
! - -- --- --- -------------------------------- ---- --------------------------!
! DD N ACQUIRING DATE OF THE DAY 10BL !
! DD 100 AD8 !
! - -- --- --- -------------------------------- ---- --------------------------!
! !
! !
! !
! !
! !
! !
! !
! !
! THIS SCREEN DISPLAYS GENERATED FUNCTIONS !
! O: C1 CH: -PG !
--

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

1 1 ENTITY TYPE

This field is used to identify the entity to which these lines are
attached:

O On-line Screen

P Program

The user may keyboard this field in order to copy lines
attached to a Screen into a Program and vice-versa.

2 6 PROGRAM CODE OR SCREEN CODE

This field contains the six-character program or on- line screen
code.

3 2 FUNCTION CODE (REQUIRED)

AA to 99 This code determines the placement of the Procedural Code
lines in the sequence of functions. This is particularly important
when used with the On-Line and Batch Systems Development
functions in which automatic functions have pre-determined
codes.

$n In a Macro-Structure, the FUNCTION CODE can be
parameterized.

4 1 JUSTIFICATION OF OPERANDS

This field has been maintained for a prior release of VisualAge
Pacbase.

If you are using release 7.0 or later, this field is not used.

Used to left-justify the operands. In other words, to display on
the screen the right-hand part of the operands.

blank Left-justification of the operands field.

n (Any value other than blank):

Chapter 5. Modifying the Procedure Division 69

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

Right-justification of the operands field.

This option prohibits all updates.

5 1 JUSTIFICATION OF CONDITION FIELD

This field has been maintained for a prior release of VisualAge
Pacbases. If you are using release 7.0 or later, this field is not
used.

Used to left-justify the condition. In other words, to display on
the screen the right-hand part of the CONDITION FOR
EXECUTION.

blank Left-justification of the condition field.

n (Any value other than blank): Right-justification of the
condition field. This option prohibits all updates.

6 1 ACTION CODE

C Creation of the line

M Modification of the line

D Deletion of the line

A Deletion of the line

T Transfer of the line

B Beginning of multiple deletion

G Multiple transfer

? Request for HELP documentation

E or - Inhibit implicit update

X Implicit update without upper/lowercase processing (on certain
lines only)

On the GP-C4 screen (JCL command lines), upper/lowercase
processing.

On the GP-C1 screen, upper/lowercase processing on
continuation lines only.

7 2 SUB-FUNCTION CODE

Made up of numeric or alphabetic characters.

This code determines the placement of the Procedural Code
within the function.

$n In a macro-structure, the SUB-FUNCTION CODE can be
parameterized.

8 3 LINE NUMBER

PARAMETERIZABLE NUMERIC FIELD

0-999 As a recommendation, number the lines starting with 10 by
intervals of 10, thus facilitating future insertion insertions.

$n0 to $n9 In a Macro-Structure, only the first two characters of the LINE
NUMBER can be parameterized.

PROCEDURE

Procedures are written in the format of an operator followed by
corresponding operands.

70 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

Operands may be continued onto several lines. When this
occurs, the OPERATOR is entered once only: on the first line.

Normally, VisualAge Pacbase manages the punctuation. This is
done according to the hierarchical relationship between the
functions and sub-functions. The user can customize the
punctuation as needed.

$n In a parameterized Macro-Structure, the OPERATOR can be
parameterized.

9 3 OPERATORS

STANDARD PROCESSING OPERATORS

N Title of function or sub-function (required). The title is to be
entered on the first line of a function or sub-function, on a
single line.

Depending on whether or not an entry is made in the
CONDITION FOR EXECUTION field, and whether it is a
function or a sub-function, the system can assign the default
values for LEVEL NUMBER and CONDITION TYPE OR S.F.
STRUCTURE. (These may be modified in the normal way by
the user.)

* Comment line. This operator must be repeated for each line of
comments.

See also the COMMENTS INSERTION OPTION field in the
Library Definition screen.

M MOVE

.The first operand is the source of the MOVE; subsequent
operands are the targets.

MA MOVE ALL

.The first operand is the source, followed by the target
operands.

P PERFORM

.Branch to the function or sub-function indicated as the first
operand, and return to sequence after executing the
(sub-)function ’EXIT’.

.If a second operand is entered, return to the quence following
the paragraph indicated. se(Example: PERFORM F23BB THRU
F24CC-FN.)

C COMPUTE

.Calculation. The result field must be entered as the first
operand, followed by an equal sign (’=’). The fields to be
computed must be separated by the necessary arithmetic
operators and necessary parentheses.

A ADD

.Addition of the first operand to the following operand(s).

S SUBTRACT

.The first operand is subtracted from the second.

MP MULTIPLY

.Multiplication of the first operand by the second.

Chapter 5. Modifying the Procedure Division 71

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

DV DIVIDE

.Division of the second operand by the first.

MES DISPLAY

.Display constants or parameters defined in operands.

ACC ACCEPT

.Accept and transfer parameters or constants in the field
defined in the operands.

CAL CALL

.Call of the Program or sub-Program defined in the operands.
The USING clause must be explicitly written out if it is to be
used.

Branch type operators:

GT GO TO

.Branch to the end of the (sub-)function to which the statement
belongs. The level of the (sub-)function must be indicated by
two numeric characters in the OPERAND field.

If the (sub)-function type is ’IT’ and if it used with an ’EL’ type
of (sub)-function at the same level, the GT operator, used at this
level, branches to the beginning of the ’EL’ (sub)-function.

GFT Go to the end of the iteration.

When this command is entered from a sub-function with a
hierarchically inferior LEVEL NUMBER, the branch is to the
end of the processing loop for the sub-function with the
controlling level number.

.On-Line Programs: Branch to the end of the category
processing.

.Batch Programs: Branch to the end-of-run function (F20) and
set the end-of-file processing switches.

GDI Go to the beginning of the iteration. When this

When this command is entered from a sub-function with a
hierarchically inferior LEVEL NUMBER, the branch is to the top
of the processing loop for the sub-function with the controlling
level number.

.On-Line Programs: Branch to the next occurrence of the current
category or to the next category.

.Batch Programs: Branch to the top of the iteration loop (F05).

GB GO TO Ffusf-900

.This operator branches to the paragraph that immediately
precedes the ’EXIT’ for the (sub-) function whose LEVEL
NUMBER is entered in the OPERAND field.

This causes a return to the top of the loop of the (hierarchically)
next higher level. If the (sub)-function type is ’IT’ and if it used
with an ’EL’ type of (sub)-function at the same level, the GB
operator, used at this level, branches to the end of the ’EL’
(sub)-function.

For all branch type operators, the generated instruction is
always followed by a period (’.’).

72 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

EXA Generates the COBOL ’EXAMINE’ command from the field
entered as the Operand, possibly followed by complementary
clauses (TALLYING, etc.); refer to the COBOL syntax.

Note: for a COBOL II generation, use the INS operator instead.

INS Generates the COBOL ’INSPECT’ command from the field
entered as the Operand, possibly followed by complementary
clauses (TALLYING, etc.); refer to the COBOL syntax.

COB Pure COBOL: justified at the B margin of the generated
program.

COA Pure COBOL: justified at the A margin of the generated
program.

U07 Pure COBOL: justified on column 7 of the generated program.

SUP Suppresses the generation of the automatic function or
sub-function with the same code as the line with this operator.

Note: In the case of the Batch Module, enter the SUP value on
the first line of the sub-function in order to delete it.

SCH Search. Table Search in the table indicated as the first operand,
for the search argument indicated as the second operand. The
search assumes a sorted file and starts at the beginning of the
table.

The code of this table must include the work area prefix, if it
exists (EX : 1-ddss, or 1-ddss-eeeeee if the table’s data element
code differs from the code of the search argument). The search
argument must be coded according to the System’s standards.

This operator must be used in an elementary structure whose
CONDITION TYPE OR S.F. STRUCTURE = ’BL’. (This may be
implicit).

The search is done using the standard indexes (IddssM, IddssR
and IddssL). If no match is found, IddssR will be greater than
IddssL. See TABLE SIZE (OCCURS CLAUSE) on the Work
Areas (-W) screen.

SCB Search in sorted table. As opposed to the ’SCH’ operator, the
search stops as soon as the table argument is greater than the
search argument.

COBOL II PROCESSING OPERATORS

CON Generates the COBOL ’CONTINUE’ command (no Operand)

EVA Generates the COBOL ’EVALUATE’ command of the condition
the Operand expresses

EVT Generates the COBOL ’EVALUATE TRUE’ command (generally,
there is no Operand)

EVF Generates the COBOL ’EVALUATE FALSE’ command
(generally, there is no Operand)

EEV Generates the COBOL ’END-EVALUATE’ command (no
Operand)

EIF Generates the COBOL ’END-IF’ command (no Operand)

EPE Generates the COBOL ’END-PERFORM’ command (no
Operand)

ESE Generates the COBOL ’END-SEARCH’ command (no Operand)

Chapter 5. Modifying the Procedure Division 73

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

INI Generates the COBOL ’INITIALIZE’ command from the field
entered as the Operand

SEA Generates the COBOL ’SEARCH’ command from the field
entered as the Operand

GOB Generates the COBOL ’GO-BACK’ command from the field
entered as the Operand

STR Generates the COBOL ’STRING’ command before the
parameters entered in the Operand field

UNS Generates the COBOL ’UNSTRING’ command before the
parameters entered in the Operand field

PACBENCH C/S AND OLSD OPERATORS

OPERATORS FOR END-OF-PROCESSING:

GF Branch to the end of the automatic sub-function where the line
is inserted.

NOTE FOR C/S SCREEN:

Used only in functions F20, F25, F35 and F60.

NOTE FOR BUSINESS COMPONENT:

With ENDV in the OPERANDS field, end of Logical View
processing.

GFR Reception End Processing (branch to ’END-OF-RECEPTION’
paragraph).

GFA End of display processing (branch to ’END-OF-DISPLAY’
paragraph).

GDB Return to the beginning of current iteration.

NOTE: For all operators for end-of-processing, the generated
instruction is always followed by a period (’.’). This means that
no ’EL’ (ELSE type of conditioning should be used on a line
using an operator for end-of-processing, as the generated
COBOL would then be erroneous.

CALL OF PROCEDURES (Specific BUSINESS COMPONENT)

XT Call of an elementary procedure on Logical View or Segment.

Refer to the ’Pacbench C/S - Business Logic & TUI Clients’
manual, chapter ’Business Component’, subchapter ’Writing
Procedural Code’, section ’Operators used by Pacbench
Client/Server’.

CALL (Specific C/S Screen and SCREEN)

OTP Immediate call of the screen (external name indicated as the
OPERAND). The transfer occurs without delay - processing of
the loop may not have completed.

OSC Call of the screen (code) indicated as the OPERAND.

OSD Call of the screen (code) indicated as the OPERAND (deferred
to the end of reception processing).

OPERATORS FOR ACCESSING SEGMENTS

XR Read of the Segment indicated in the OPERAND.

74 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

XP Read of the first record by Dynamic Access. Whatever the
system, this OPERATOR always brings up a record. The
Segment code is indicated in the OPERAND.

XRN Sequential Read of the Segment indicated in the OPERAND
(Dynamic Access).

XRU Read for update of the Segment indicated in the OPERAND

XW Write of the Segment indicated in the OPERAND.

XRW Rewrite of the Segment indicated in the OPERAND.

XD Deletion of the Segment indicated in the OPERAND.

XUN Unlocking of the Segment indicated in the OPERAND (except
for DL1).

NOTE FOR OLSD FUNCTION

By using these operators, the corresponding access function can
be generated. When the indicated Segment is a table or an SQL
view, make sure the Segment is defined in the screen with
either a reception or a display use. The XP and XRN operators
are reserved for Segments defined in a repetitive category with
a display use.

OPERATORS FOR ERROR POSITIONING

ERU Error positioning on the screen.

In the OPERAND field, enter in positions:

. 1 to 4: error code (managed by the user)

. 5: blank

. 6: DATA ELEMENT CODE (optional) of the erroneous Data
Element.

The error message corresponding to the error code is specified
on the Error Messages-Help’ screen of the Dialogue. This
message will be displayed on the error message line (ERMSG),
and if the DATA ELEMENT CODE has been entered, the cursor
will be positioned on the Data Element, and error attributes
will apply.

This OPERATOR cannot be used on a repetitive Data Element.

ERR ’Manual’ Data Element error.

In the OPERAND field, enter in positions:

. 1: error code (alphanumeric character except for ’0’ or ’1’,
which are reserved for the coding of documentary messages)

. 2: blank

. 3: code (six positions) of the variable Data Element with which
the error code is associated. The cursor is positioned and the
Data Element takes on the attributes defined for the Data
Elements in error. In the case of a repetitive Data Element, its
code is indicated, followed by the sequence number of the Data
Element instance.

The use of error messages with the On-Line Systems
Development function is detailed in the corresponding
Reference Manual.

NON-STANDARD OPERATORS

Chapter 5. Modifying the Procedure Division 75

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

Yaa Generates a COBOL paragraph label for Function F80. Followed
by a Segment code (ddss) in the OPERAND field, will generate
a ’F80-ddss-aa’ COBOL paragraph label.

Y Operator specific to the Business Component Generation of the
automatic function label where this latter has been replaced by
the insertion of specific code (*R).

Xaa With ’Yaa’, will generate a PERFORM of paragraph
’F80-ddss-aa’.

ERL Specific to the Business Component associated with a graphic
application (Folder or single-view development).

This operator is used to position an error on a(n)
LOCK/UNLOCK request made by a graphic Client on an
occurrence already locked or not, respectively.

For more details, refer to the ’Pacbench C/S - ’Business Logic’
manual.

The use of error messages with the Structured Code function is
detailed in the corresponding Reference Manual.

BATCH PROCESSING OPERATORS

These operators cannot be used with the OLSD function.

The OPE, CLO, R, RN, W and RW commands ensure the
opening, closing, read, write and rewrite of files with sequential
or indexed-sequential organizations.

The statements generated are adapted to the specifications
indicated on the Call of Data Structure (-CD) screen, for D.S.’s
entered on the first 23 line and to the appropriate COBOL
variant, as selected.

Thus, a same ’READ’ operator can generate: a READ AT END,
a READ INVALID KEY, a CALL GETSEQ or GETRAN, or a
RETURN AT END.

With the exception of the OPEN and CLOSE of a file, these
operators will call for the intervention of the ’IK’ variable which
will take on a value other than zero if there is an abnormal
execution of the generated instruction (End of File, Error on
Key, etc.).

You must determine the action to take, according to the value
of the ’IK’ variable.

With the following Operators, enter the DATA STRUCTURE
CODE IN THE PROGRAM (2 characters) as the only
OPERAND.

The OPERAND must be on the same line as the OPERATOR. If
it is on a continuation line (’blank’ in OPERATOR field), it will
be generated in the ’INVALID KEY’ clause.

OPE OPEN

CLO CLOSE

R READ

RN READ NEXT

DEL DELETE

76 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

With the following operators, enter the SEGMENT CODE as the
Operand. Other options may follow, such as FROM or AFTER.

W WRITE

RW REWRITE

SRT SORT.

The operands are the parameters following the SORT
command.

STA START

For START, the D.S. CODE IN THE PROGRAM is entered,
followed by the setting of the key:

EXAMPLE: STA FF NOT < FF00-START generates:

MOVE 0 TO IK START FF-FILE KEY IS NOT < FF00-START
INVALID KEY MOVE 1 TO IK.

E User defined Error Message.

The OPERAND field is coded as follows:

Column 1: A User Error Code character.

Note: Avoid values ’0 to 5’ inclusive, as they have predefined
meanings.

Recommendation: Use ’6’ since this is the value used in
standard macros.

Column 2 to 4: Enter a unique identifying number for this
message.

Column 5: Gravity of the error

Column 6: Begin your error message.

Note: The message may be continued in the CONDITION FOR
EXECUTION field.

DATE AND TIME PROCESSING OPERATORS

DATE PROCESSING OPERATORS

ADT Call of the System Date.

The date obtained will have the format YYMMDD in the
’DATOR’ constant and in the Data Element indicated in the
OPERAND field.

For IBM hardware:

An inversion option may be used to indicate the position of the
day and month in the system date according to the value
entered in the SYSTEM DATE FORMAT INDICATOR field on
the Library Defenition screen.

ADC System date with century: CCYYMMDD (CC = century).

Note: in COBOL II and COBOL 85, if the year is less than ’61’,
the century is automatically set to ’20’.

Date formatting.

AD A date may be formatted in different ways.

When the condition is entered on several lines, the operands
must be entered before the condition continuation lines (either
on lines without operand or on comment lines).

Chapter 5. Modifying the Procedure Division 77

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

The OPERANDS are ’XY DELCO1 DELCO2’, where X and Y
are each replaced by the value of one of the following codes:

Code: I

Generated format: ’Internal’ - YYMMDD

Code: D

Generated format: ’Display’ - MMDDYY or DDMMYY

according to the value entered in the DATE FORMAT IN
GENERATED PROGRAMS field on the Library Definition
screen.

Code: E

Generated format: ’Extended’ - MM/DD/YY or DD/MM/YY

according to the value entered in the DATE FORMAT IN
GENERATED PROGRAMS field on the Library Definition
screen.

Code: S

Generated format: ’Internal’ - CCYYMMDD

Code: C

Generated format: ’Display’ - DDMMCCYY or MMDDCCYY

according to the value entered in the DATE FORMAT IN
GENERATED PROGRAMS field on the Library Definition
screen.

Code: M

Generated format: ’Extended’ - DD/MM/CCYY

according to the value entered in the DATE FORMAT IN
GENERATED PROGRAMS field on the Library Definition
screen.

Code: G

Generated format: ’Extended’ - CCYY/MM/DD

EXAMPLE

In order to change an ’I’-formatted date into a ’D’- formatted
date, ’AD’ should be entered in the OPERATOR field and ’ID
DELCO1 DELCO2’ in the OPERAND field: DELCO1 is the Data
Element containing a YY/MM/DD date format (it is possible to
use the DATOR constant) and DELCO2 is the data element
containing the changed date format: DD/MM/YY or
MM/DD/YY.

A SF LIN OPE OPERAND LVTY CONDITION

BB 100 AD ID DELCO1 DELCO2

BATCH FUNCTION: the date processing function is generated
in F9520. You may change this by coding, in an ’O’-type line of
the Program’s -GO, the DATPRO = ffss parameter, where ffss is
the specified function-subfunction code.

AD0 Century positioned from DAT-CTY field initialized to ’19’ and it
can be modified by the user.

AD1 Century set to ’19’ if System year is less than the value in
DAT-CTYT field (Default=’61’),’20’ otherwise

78 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

AD2 Century set to ’20’ if System year is less than the value in
DAT-CTYT field (Default=’61’), ’19’ otherwise

DATE PROCESSING OPERATORS (OLSD)

AD6 Equivalent to ADT + ADI (See below).

Transforms the system date into a 6-character date format of
MMDDYY or DDMMYY depending on the value in the DATE
FORMAT IN GENERATED PROGRAMS field on the Library
Definition screen. The transformed date is moved into the Data
Element indicated in the OPERAND field.

AD8 Transforms the system date into an 8-character date with
slashes, MM/DD/YY or DD/MM/YY depending on the value
in the DATE FORMAT IN GENERATED PROGRAMS field on
the Library Definition screen. The transformed date is moved
into the Data Element indicated in the OPERAND field.

DATE PROCESSING OPERATORS (BATCH)

ADI Date inversion.

The first two characters are replaced by the last two characters
and vice-versa.

Both OPERANDS must have a length of 6 characters.

The second OPERAND is optional. If absent, the modified date
will be moved back into the first OPERAND.

ADS Reversal of date with century.

Both OPERANDS must have a length of 8 characters. The
second OPERAND is optional. If absent, the modified date will
be moved back into the first OPERAND.

ADE Insertion of slashes in a date.

The first OPERAND must be the field which contains the
original six-character date, and the second must contain an
eight-character field which will receive the reformatted date.

ADM Insertion of slashes in a date with century.

TIME PROCESSING OPERATORS

TIM Hour display in ’HHMMSS’ format from the EIBTIME field in
CICS; from the TIME field with other hardware.

EXAMPLE:

A SF LIN OPE OPERAND LVTY CONDITION

BB 100 TIM DELCO1

TIF ’HHMMSS’ format changed into ’HH:MM:SS’.

EXAMPLE:

A SF LIN OPE OPERAND LVTY CONDITION

BB 100 TIF DELCO1 DELCO2

COMMUNICATION OPERATORS

NOTE: Non operational with the OLSD Function.

These OPERATORS ensure the liaison between a COBOL
program and the ’Communication Units’ in use:

ENA ENABLE Connecting the Unit.

Chapter 5. Modifying the Procedure Division 79

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

DSB DISABLE Disconnecting the Unit.

RE RECEIVE Receiving a Message.

SD SEND Sending a Message.

DBMS OPERATORS

B.. CODASYL OPERATORS

The Codasyl OPERATORS are coded with a ’B’ as the first
character, followed by the two-character codes defined below:

RY READY

FH FINISH

FD FIND

G GET

ER ERASE

DT DISCONNECT______FROM______

CT CONNECT______TO______

MD MODIFY

ST STORE

TP MONITOR OPERATORS

These OPERATORS cannot be used for the screen processing
descriptions with the On-Line Systems Development function.

CICS MACRO LEVEL OPERATORS

D.. These OPERATORS are coded with a ’D’ as the first character,
followed by the specific two-character code of the CICS Macro.

XX DFHXX TYPE =

BM DFHBMS TYPE =

All OPERATORS must be left justified.

The continuation character in column 72 of the generated
program and the justification of the continuation lines is
automatically managed.

CICS COMMAND LEVEL OPERATORS

EXC EXEC CICS operands END-EXEC.

PAF OPERATOR

EXP This OPERATOR is used to activate a VA Pac Database access
request via the Pacbase Access Facility (PAF). It generates PAF
or DAF modules.

EXEC PAF (...request...)

END-EXEC.

For more detailed information, refer to the ’PAF’ or ’DAF’
manuals (Pacbase / DSMS Access Facility’).

SQL OPERATORS

SQL operators are documented in the manual dedicated to ’SQL
Databases’ in the Developer’s Documentation, chapter ″SQL
Accesses″.

SCC CONNECT order or its equivalent.

80 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

SDC DISCONNECT order or its equivalent.

SCO COMMIT order.

SRO ROLLBACK order.

SWH WHENEVER order.

The SQL operators should be used with the following syntax:

- SCC cccccc d

- SDC cccccc d r

- SCO cccccc d

- SRO cccccc d

- SWH instruction

cccccc = VA Pac code of the Block (6 characters long).

d = value 2 if distributed base (ex: Oracle Sybase).

r = value R to select DISCONNECT order with ROLLBACK
order.

Rules:

- d and r indicators can be reversed.

- Each order can be completed on continuation lines (with no
operator). You can specify, for example, the FORCE option in a
COMMIT order for ORACLE.

Generation:

- On the Segment Calls (-CS or -CD), if you enter an SQL
organization (ORGANIZATION field) and so a Block code
(EXTERNAL NAME field), this organization has priority on the
Block type indicated on the Block Definition.

- If the block is indicated in the Segment Calls as being
distributed, the orders linked to this block will be generated
″distributed″.

- Unrecognized SQL orders are ignored.

The END-EXEC is automatically generated and, with the batch
generator, it is is always followed by a period.

SQL For batch only, the generated SQL order is standard and can be
modified in the Segment’s -GG screen.

The customization of SQL accesses is documented in the ’SQL
Databases’ manual.

In order to take these modifications into account, the Program
-CD must contain a Block code in the EXTERNAL NAME field
and an organization in the ORGANIZATION FIELD.

The SQL operator should be used with the following syntax:

OPE I OPERANDS

SQL I FFSS FLSS SO PO (1st format)

SQL I FFSS SO PO (2nd format)

FFSS : file-segment code in the Program

FLSS : file-segment code in the Library

Chapter 5. Modifying the Procedure Division 81

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

SO : type of the standard order (two characters) or specific
order described in S FLSS GG.

PO : particular order identifier in S FLSS GG.

The 1st format should be used if the code of the program is
different from the one of the library.

The particular order code is optional, it modifies the description
resulting of the standard order.

The implemented SQL organizations are the following:

C (Interel)

M (Datacom)

N (Nonstop)

O and P (Oracle)

Q (SQL-DS ALLbase)

2 (DB2)

3 (SQL SERVER)

4 (DB2/400)

9 (Informix Ingres and SYBASE)

H (General SQL organization)

For a number of these organizations, the reference of the Block
type is required (H and 9 for exemple).

Restrictions:

- the RDMS orders’ syntax is not implemented (’R’
organization)

- The prefixing rule is not applied. The table name is not
modified, the dot is removed if there is one.

NOTE:

In the case of Program-Macro and Macro-Macro lines with same
indicators, information entered in the S FFSS GG screen are
generated although not needed.

Relational operator:

EXQ EXEC SQL operands END-EXEC.

10 32 OPERANDS

This field contains the OPERANDS required by the preceding
OPERATOR to complete the procedural instruction.

The first OPERAND must be placed on the same line as the
OPERATOR.

When an OPERATOR calls for several OPERANDS, they must
be indicated one after the other in a continuous sequence,
separated by at least one blank.

The Qualification of Names using ’OF’ is acceptable if the ’OF’
of the first OPERAND is on the same line as the OPERATOR.

When the first OPERAND is an alphanumeric literal that does
not completely fit on one line, the continuation of the literal can
be indicated between quotes on the following line. The System
ensures continuity for the literal at the generation level.

82 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

STRUCTURE

The structure of a function or sub-function is defined by a
LEVEL NUMBER and a CONDITION TYPE OR S.F.
STRUCTURE, with which a condition, variable or a value can
be associated, if necessary.

Structures with levels other than 99 must be defined on the first
line of a (sub-)function, while conditioning can continue onto
several lines.

Default values for level and type are taken from the title line of
the (sub-)function.

Functions are the highest level (05) structures.

11 2 LEVEL NUMBER

PARAMETERIZABLE NUMERIC FIELD

The LEVEL NUMBER is indicated only on the first line of a
Structure.

The CONDITION FOR EXECUTION of a Structure at a given
level applies to all the logically lower level Structures which
follow the initial Structure, until the next logically higher level
Structure is encountered.

05 This level is always assigned to functions. It is also the default
level of the first line of a function Structure.

10 This is the default level of the first line of a sub-function
Structure.

06 to 98 Possible levels for a sub-function.

99 Defines an elementary procedure in a function or sub-function.
(Maximum number of ’99’ levels ina sub-function = 98).

$n In a Macro-Structure the LEVEL NUMBER can be
parameterized.

12 2 CONDITION TYPE OR S.F. STRUCTURE

On the first line of a function or sub-function, the CONDITION
TYPE OR S.F. STRUCTURE value indicates the ’Structure type’
processing to be executed.

In a Macro-Structure the CONDITION TYPE OR S.F.
STRUCTURE cannot be parameterized.

A (sub-)function constitutes a block of processing or structure.
It’s also possible to define, within a (sub-)function, elementary
Structures characterized by a ’99’ level.

BL ’Block’ type Structure.

Default value for all non-conditioned Structures.

IT ’IF THEN’ type structure.

Default value for all conditioned Structures. Executed if the
condition is satisfied.

EL ’ELSE’ type Structure.

Prohibited at the function level.

Executed if the preceding Structure at the same level (which
must be an ’IF THEN’) was not executed. An ’ELSE’ Structure
cannot have its own condition.

Chapter 5. Modifying the Procedure Division 83

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

CO ’CASE OF’ type Structure.

Prohibited at the ’05’ function level and at the ’99’ level.

A ’CO’ Structure is used for procedures that are exclusive of
each other, and that are executed depending on the possible
values of a variable.

In a ’CASE OF’ Structure only the name of the variable is
defined (in the condition field and on a single line). The
possible values of this variable are specified in the Structures at
the next lower, non-elementary, hierarchical level. In a Dialog
screen, nesting of ’CASE OF’ loops is not authorized within
another ’CASE OF’ loop.

DW ’DO WHILE’ Structure.

Prohibited at the ’05’ function level and at the ’99’ level.

This Structure is executed repeatedly, as long as its condition is
satisfied.

DU ’DO UNTIL’ Structure.

Prohibited at the ’05’ function level and at the ’99’ level.

This Structure is executed repeatedly until its condition is
satisfied. Thus, it is executed at least one time.

For the ’DW’ and ’DU’ type Structures, the user must set up the
condition status (incrementation of an index, for example).

DO ’DO’ Structure (’loop’ Structure).

Cannot be used at an ’05’ function level or the ’99’ level.

The ’DO’ Structure is executed in a repetitive way depending
upon the conditioning of three variables: the first variable being
the iteration number where the processing should start; the
second one, the iteration number where the processing should
stop, the third being the incrementing interval.

All three variables may be either numbers or Data Elements.
The increment variable is optional and its default value is ’1’. (If
indicated, its value must be positive.) Both iteration variables
must be entered on the first line of the sub-function, separated
by a space.

The parameters must be entered in the following order: starting
limit (positive), ending limit and increment interval.

DO calls for 3 parameters, of which the first 2 are required. All
3 must appear on the first line.

The System automatically generates an index: JfusfR, ’fu’
standing for the FUNCTION CODE, and ’sf’ standing for the
SUB-FUNCTION CODE.

OR Continuation of the condition associated with the preceding
lines by a logical ’OR’.

AN Continuation of the condition associated with the preceding
lines by a logical ’AND’.

NOTE: The parentheses which group the terms of a condition
must be indicated in the text of the condition.

In a Macro-Structure, the type of structure or condition cannot
be parameterized.

84 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

WH You can use COBOL commands after an EVA or SEA command.
Each of these commands indicates one processing to be
performed according to the fulfilled condition. In the example
below, processing1 will be performed when condition1 is
fulfilled.

EVA condition

---processing1--- 99WH ---condition1---

---processing2--- 99WH ---condition2---

---processing1--- 99WH ---condition2---

---processing3--- 99WH ---condition3---

ON-LINE SYSTEMS DEVELOPMENT

The following values, in the CONDITION TYPE OR S.F.
STRUCTURE field, are used for relative positioning with the
On-Line Systems Development function and Pacbench C/S.

*A Insertion of a sub-function before an automatic sub-function
identified by the data element or the Segment it processes.

*P Insertion of a sub-function after an automatic sub-function
identified by the Data Element or the Segment it processes.

(The CONDITION FOR EXECUTION of the automatic
sub-function applies to the inserted sub-function if the LEVEL
NUMBER of the inserted sub-function is greater than that of the
automatic sub-function.)

*R Replacement of an automatic sub-function identified by the
Data Element or the Segment it processes. (The CONDITION
FOR EXECUTION of the automatic sub-function does not apply
to the replaced sub-function.)

For more information, see chapter ’Use of Structured code’,
subchapter ’Specific Procedures’ in the ’On-Line Systems’
manual.

The two following values are used for the relative positioning
with Pacbench C/S (server components only):

*C Insertion or replacement of the processing on the server or the
Logical View.

*B Insertion in the elementary processing called by PERFORM.

For more information, see chapter ’Use of Structured code’,
subchapter ’Specific Procedures’ in the ’On-Line Systems’
manual.

13 28 CONDITION FOR EXECUTION

The CONDITION FOR EXECUTION statement is coded
without using ’IF’, ’AND’, ’OR’, ’GO TO’, or a period (.).

The first line must be associated with an explicit or implicit
LEVEL NUMBER (’05’ for a function; ’06’ to ’98’ for a
sub-function; ’99’ for an elementary procedure within a function
or sub-function). The LEVEL NUMBER need not be specified
on continuation lines.

For a ’CASE OF’ type structure, the name of the variable
(which may have alternative values) must be indicated on the
first line.

Chapter 5. Modifying the Procedure Division 85

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

For structures dependent on a ’CASE OF’, the CONDITION
FOR EXECUTION indicates the possible value of the ’CO’
variable.

$n In a Macro-Structure, the CONDITION FOR EXECUTION can
be parameterized.

Programmer Flags and Variables
The purpose of this subchapter is to present the programmer with a list of flags,
variables, counters and indices generated by the System and which are commonly
used in Procedural Code.

The subchapter is divided into two parts, the first pertaining to batch Programs,
the second to on-line Programs.

The chart below lists only those variables recommended for use by programmers.

BATCH PROGRAM VARIABLES

These symbols are used:
cc = (report) CATEGORY CODE

dd = DATA STRUCTURE CODE

eeeeee = DATA ELEMENT CODE

r = LAST CHARACTER OF REPORT CODE

ss = SEGMENT CODE

st = (report) STRUCTURE NUMBER

--
! DATA NAME ! FORMAT ! MOST COMMON USAGE !
--
!ddss-eeeeee ! ! !
!IK ! X ! file access error ind.:'1'= error!
!DATCE ! X(8) ! (group) dates with century !
!CENTUR ! XX ! century !
!DATOR ! X(6) ! (group) !
!DATOA ! XX ! year !
!DATOM ! XX ! month !
!DATOJ ! XX ! day !
!DAT6 ! X(6) ! (group) !
!DAT61 ! XX ! !
!DAT62 ! XX ! !
!DAT63 ! XX ! !
!DAT8 ! X(8) ! (group) dates with slashes !
!DAT81 ! XX ! (no century) !
!DAT8S1 ! X ! slash !
!DAT82 ! XX ! !
!DAT8S2 ! X ! slash !
!DAT83 ! XX ! !

! DATA NAME ! FORMAT ! MOST COMMON USAGE !

!DAT8E ! ! (redefines DAT8) !
!DAT81E ! X(4) ! century/year !
!DAT82E ! XX ! !
!DAT83E ! XX ! !
!DAT6C ! X(8) ! (group) !

86 VisualAge Pacbase: STRUCTURED CODE

!DAT61C ! XX ! !
!DAT62C ! XX ! !
!DAT63C ! X(4) ! century/year !
!DAT8C ! X(10) ! (group) dates with slashes and !
!DAT81C ! XX ! century !
!DAT82C ! XX ! (slashes via filler) !
!DAT83C ! X(4) ! century/year !
!FTBn ! X ! final total break '1'= yes!
!FBL ! 9 !current final brk lev: rarely used!
!IBL ! 9 !current init. brk lev: rarely used!
!ITBn ! X ! initial total break '1'= yes!
!dd-FBn ! X ! final break indicator: '1'= yes!
!dd-IBn ! X ! initial break indicator: '1'= yes!
!dd-CFn ! X ! record to be processed: '1'= yes!
!dd-OCn ! X ! write file: '1' or delete it: '0'!
!FT ! ! = ALL '1' !
!dd-FT ! X ! EOF indicator: '1'= yes!
!dd-FI ! X !ctl brk: last rec. indic. '1'= yes!
!I01 ! S9(4) !which rec. type is being processed!
!I02 ! S9(4) !which action is being processed !
!I03 ! S9(4) !stores a pointer (rank) to the !
! ! !first element of the specific !
! ! !part Segment being processed !
!I04 ! S9(4) !stores a pointer to the last Data !
! ! !Element of the specific part !
! ! !Segment being processed only in !
!I06 ! S9(4) !in functions not autom. generated !
!I50 ! S9(4) !stores the rank of the first Data !
! ! !Element of the common part !
!I51 ! S9(4) !stores the number of record types !
!IddssL ! S9(4) ! subscript for loading tables !
!IddssR ! S9(4) ! subscript for searching tables !
!IddssM ! S9(4) ! maximum positions in a table !
!J00 ! S9(4) ! looks-up for the category table !
!J01 ! S9(4) ! looks-up for the 3-D table !
!J05, J06, J07! S9(4) ! accumulators !
!Jddrcc ! S9(4) !report repetitive category !
!JddrccM ! S9(4) !report repetitive category !
!IND ! S9(4) !stores the major-most key level of!
! ! !input data structures to be !
! ! !matched !
!ddIND ! S9(4) !stores the current value off the !
! ! !key of the record on data !
! ! !structure dd !
!5-dd00-RECCNT! S(9)9 ! record counter !
!ID-ER ! X !error rec. type or action; '0'= ok!
!ER-ss-eeeeee ! X !0-5: (in)valid pres/abs/cont/class!
!DEL-ER ! X ! performed validations !
!ER-PR(n) ! ! !
!TR-ER ! X !any errors on transaction: '1'= no!
!SEG-ER ! X ! !
!GR-ER ! X !errors on group of transactions to!
!LE-FIENR ! X(4) !hold the VA Pac code of the !
! ! ! Segment currently being processed!
!UT-ERUT ! ! errors detected by user valid.'s!
!UT-UPR(n) ! X ! user error messages !
--

--
! DATA NAME ! FORMAT ! MOST COMMON USAGE !
--
!Trst-eeeeee ! ! totaling !
!Grst-eeeeee ! ! grand totals !
!5-dd00-rLCM ! S999 ! report line count maximum !
!5-dd00-rLC ! S999 ! report line count !
!5-dd00-rPC ! S9(7) ! page count !
!LSKP ! 99 ! line skips (user spooling) !
!NUPOL ! X ! laser printer !

Chapter 5. Modifying the Procedure Division 87

!CATX ! XX ! category of report being printed !
!6-dd00 ! ! !
!6-dd00-r ! ! rarely used !
!1-ddss ! ! read area - control break files !
!1-ddss-eeeeee! ! !
!2-ddss ! ! update area !
!2-ddss-eeeeee! ! !
!1-dd-TABLE ! ! USAGE OF D.S. = 'T' (Table) !
!1-ddssT ! ! (group) !
!1-ddss(n) ! ! !
!1-ddss-eeeeee(n) !For instance 1-ddss-eeeeee(IddssR)!

--

ON-LINE PROGRAM VARIABLES

These symbols are used:
dd = DATA STRUCTURE CODE

ss = SEGMENT CODE

eeeeee = DATA ELEMENT CODE

scrn = SCREEN CODE

--
!DATA NAME ! FORMAT! MOST COMMON USAGE !
--
!IK ! X ! File access error indicator !
! ! ! '0' = successful access;'1'= error!
! ! ! (set after every file access) !
!OPER ! X ! Internal Operation Code !
! ! ! Useful to specify conditions for !
! ! ! Update, Scrolling, etc. (e.g. F06)!
!OPERD ! X ! Deferred Operation Code; used !
! ! ! by OSD operator !
!CATX ! X ! Identifies category being executed!
! ! ! Useful to condition logic in loops!
! ! ! (e.g. F21, F31, F66, etc.) !
!CATM ! X ! Internal Transaction code !
! ! ! governs file access for update !
! ! ! Useful when update rules are !
! ! ! complex (e.g. F16) !
!ICATR ! 99 ! Number of line item currently !
! ! ! being processed !
!SCR-ER ! X ! Error on screen: !
! ! ! '1' - no error; '4' - error !
!FT ! X ! 'End-of-file' on read for display !
! ! ! in repetitive category !
! ! ! (either control break or true eof)!
! ! ! Useful to condition structured !
! ! ! code for Repetitive display !
! ! ! (e.g., CATX = 'R' and FT = '0' !
! ! ! and ICATR not > IRR is the !
! ! ! best way to condition line item !
! ! ! display logic in F66) !
!ICF ! X ! Governs execution of Reception !
! ! ! Functions (F05 through F40); !
! ! ! '0' in ICF generally implies !
! ! ! first time processing for screen !
!OCF ! X ! Governs execution of Display !
! ! ! Functions (F50 through F8Z) !
--

--
!DATA NAME ! FORMAT! MOST COMMON USAGE !
--
!SESSI ! X(5) ! Session number of generated prog. !
!LIBRA ! X(3) ! Library code !
!USERCO ! X(8) ! User code !

88 VisualAge Pacbase: STRUCTURED CODE

!DATGN ! X(8) ! Date of generated program !
!TIMGN ! X(8) ! Time of generated program !
!CAT-ER ! X ! Error in current category: !
! ! ! ' ' - no error; 'E' - error !
! ! ! Useful for conditioning Reception !
! ! ! Functions after edits (e.g., F21, !
! ! ! F31, F36, etc.) !
!CURPOS ! ! Cursor pos. on screen in reception!
!CPOSL ! S9(4) ! Line number of cursor !
! ! ! Useful for setting transfers !
! ! ! on cursor positioning (e.g., F06) !
!CPOSC ! S9(4) ! Column number of cursor !
!CPOSN ! S9(4) ! Absolute position of cursor in msg!
!IRR ! 99 ! No. of reps in the rep category !
!INT ! 999 ! No. of input fields in screen !
!IER ! 99 ! No. of screen-related error msg !
!DEL-ER ! X ! Error in current data element !
! ! ! '1' - no error; < '1' - error !
!DATCE ! X(8) ! (Group) Dates with century !
!CENTUR ! XX ! (century) !
!DATOR ! X(6) ! (group) !
!DATOA ! XX ! year !
!DATOM ! XX ! month !
!DATOJ ! XX ! day !
!DATSEP ! X ! Separator used in date !
!DAT6 ! X(6) ! (group) - fields for formatting !
!DAT61 ! ! the date - generated if the !
!DAT619 ! 99 ! OPERATOR 'AD_' is used, or if !
!DAT62 ! ! a variable data element has a !
!DAT629 ! 99 ! date format. !
!DAT63 ! XX ! !
!DAT7 ! ! !
!DAT71 ! XX ! !
!DAT72 ! XX ! !
!DAT73 ! XX ! !
!DAT8 ! ! !
!DAT81 ! XX ! !
!DAT8S1 ! X ! slash !
!DAT82 ! X ! !
!DAT8S2 ! X ! slash !
!DAT83 ! XX ! !
--

--
!DATA NAME ! FORMAT! MOST COMMON USAGE !
--
!DATCTY ! XX ! field for loading the century !
!DAT6C ! X(8) ! fields for loading the non-for- !
!DAT61C ! XX ! matted date with the century. !
!DAT62C ! XX ! !
!DAT63C ! XX ! !
!DAT64C ! XX ! !
!DAT7C ! ! !
!DAT71C ! XX ! !
!DAT72C ! XX ! !
!DAT73C ! XX ! !
!DAT74C ! XX ! !
!DAT8C ! ! !
!DAT81C ! XX ! !
!DAT8S1C ! X ! slash !
!DAT82C ! XX ! (slashes via filler) !
!DAT8S2C ! X ! slash !
!DAT83C ! XX ! !
!DAT84C ! XX ! !
!DAT8G ! X(8) ! Gregorian format date: CCYY/MM/DD !
!TIMCO ! ! TIME; field for loading the time !
!TIMCOG ! ! !
!TIMCOH ! XX ! !

Chapter 5. Modifying the Procedure Division 89

!TIMCOM ! XX ! !
!TIMCOS ! XX ! !
!TIMCOC ! XX ! !
!TIMDAY ! ! field for loading formatted time !
!TIMHOU ! XX ! !
!TIMS1 ! X ! !
!TIMMIN ! XX ! !
!TIMS2 ! X ! !
!TIMSEC ! XX ! !
!TIMCIC ! 9(7) ! !
!TIMCI1 ! ! REDEFINES TIMCIC !
!TIMCIG ! ! !
!TIMCIH ! XX ! !
!TIMCIM ! XX ! !
!TIMCIS ! XX ! !
!DATCIC ! 9(7) ! !
!DATQTM ! ! REDEFINES DATCIC !
!DATQUD ! 999 ! !
!DATQUY ! 99 ! !
--

--
!DATA NAME ! FORMAT! MOST COMMON USAGE !
--
!ddss-CF ! X ! Segment configuration flag !
! ! ! 0 - record not found; !
! ! ! 1 - successful read !
! ! ! To check the status of a read, !
! ! ! ddss-CF is preferred to IK !
! ! ! (e.g., F25, F26, F60, F61, F66) !
!G-ddss ! ! Pactables table description !
!G-ddss-eeeeee ! ! Pactables fields !
!K-scrn ! ! Fields common to dialogue !
!K-Ascrn-eeeeee! ! -screen top fields !
!K-Rscrn-eeeeee! ! -repetitive group fields !
!K-Rscrn-LINE(1) ! Key of the first line item !
! ! ! kept in common area for scrolling !
!K-Rscrn-LINE(2) ! Key of the record following the !
! ! ! last line item on the screen !
! ! ! kept in common area for scrolling !
!K-Zscrn-eeeeee! ! -screen bottom fields !
!T-scrn-eeeeee ! ! ("OFF" option only) !
! ! ! With modify data tags off, a copy !
! ! ! of each input field is stored in !
! ! ! the common area. F8135 ensures !
! ! ! consistency with the input map. !
!I-scrn ! ! Group field for input fields !
!I-scrn-eeeeee ! ! Input field label !
! ! ! useful for Validation Transfer !
! ! ! (e.g., F21-F24, F31) !
!E-scrn-eeeeee !alpha ! Input field label for numeric !
! ! ! fields after formatting !
!J-scrn-LINE ! ! Group input field containing !
! ! ! entire Repetitive group !
! ! ! An occurrence of this field can !
! ! ! be moved into I-scrn-LINE for !
! ! ! manual processing of a specific !
! ! ! line item. !
!Z-scrn-eeeeee ! ! reception - attributes !
!O-scrn ! ! group field for output fields !
!X-scrn-eeeeee ! ! Cursor positioning field. This !
! ! ! field is set in F70; any override !
! ! ! must be made later (e.g., F71) !
--

--
!DATA NAME ! FORMAT! MOST COMMON USAGE !
--

90 VisualAge Pacbase: STRUCTURED CODE

!Y-scrn-eeeeee ! ! Attribute byte. This field is !
! ! ! set in F70; any override must be !
! ! ! made later (e.g., F71). Manually !
! ! ! setting attributes may also be !
! ! ! accomplished by setting the field !
! ! ! A-scrn-eeeeee in Display Pre- !
! ! ! paration (e.g., F68 or F69) and !
! ! ! letting F70 fill Y-scrn-eeeeee !
! ! ! (which is the actual attr. byte) !
!O-scrn-eeeeee ! ! Output field label !
! ! ! Useful for Transfer for Display !
! ! ! (e.g., F66) !
!F-scrn-eeeeee ! ! to test for class (numeric) !
!9-scrn-eeeeee ! ! numeric fields !
!DE-ERR ! ! validation table fields !
!DE-ER (n) ! X ! !
!ER-scrn-eeeeee! ! Data element error code variable !
! ! ! used by the ERR operator; for !
! ! ! details, see OLSD ref. manual, !
! ! ! Documentary and Error Messages, !
! ! ! sub-chapter Manual Explicit Error !
!ddss-FST ! X ! non-chained segs:'1'= first access!
! ! ! '0'= next read !
!5-ddss-LTH !S9(4) ! Segment length !
!5-dd00-LTH !S9(4) ! Length of longest segment in file !
!I-PFKEY ! XX ! Attention Identifier variable !
!A-scrn-eeeeee(1) ! For attribute byte processing !
! ! ! before F70 (e.g., F68 or F69), !
! ! ! move an N, B, or D to this field !
! ! ! for normal, bright, or dark !
!A-scrn-eeeeee(4) ! For cursor position processing !
! ! ! before F70 (e.g., F68 or F69) !
! ! ! move a Y to this field to set the !
! ! ! cursor to the field manually !
!PROGR !X(8) ! Program code !
!K-Sscrn-PROGR !X(8) ! External name of the program we !
! ! ! just came from. Can be used to !
! ! ! check first time processing !
! ! ! (e.g., K-Sscrn-PROGR = PROGR is !
! ! ! used before F01; but after F01, !
! ! ! ICF = 0 is the simpler check) !
!5-Sscrn-PROGR !X(8) ! This field contains the name of !
! ! ! the program to branch to !
!PROGE !X(8) ! External name of the program !
!PRDOC !X(8) ! Help program external name !
--

Titles and Conditions Screen (-TC)
Programmers who begin using the System may have some difficulty mastering its
generation possibilities.

It is not always easy to know beforehand which procedures of a batch or on-line
Program will be generated.

Here, programming is done in two steps:
1. Call of automatically generated procedures,
2. Customizing the generated Program with structured code.

The first step is performed through data access in batch or on-line Programs:
1. Program Call of Data Structures screen (CH: P......CD),
2. On-Line Call of Segments screen (CH: O......CS),

Chapter 5. Modifying the Procedure Division 91

3. On-Line Call of Data Elements screen (CH: O......CE).

Depending on the kind of data that is entered on the call lines of these screens, the
system either will or will not generate certain automatic (sub-)functions.

EXAMPLES:

1. In a batch program, ’M’ entered in the USAGE OF DATA STRUCTURES field on
a Call of Data Structures (-CD) screen causes the generation of validation functions.

2. In an on-line program, ’E’ entered in the USE IN RECEPTION field on an
On-Line Call of Segments (-CS) screen will generate the Segment access for
validation with the setting of an error code.

The second step in programming is characterized by the use of the Structured
Code function which allows you to complete automatically generated procedures
with additional lines unique to the Program:
1. Call of P.M.S.’s screens for user-standard procedures.

CH: P......CP, O......CP.
2. Direct input of Procedural Code

CH: P......P, O......P.

A Program is then made up of automatically generated procedures and structured
code.

GENERAL INFORMATION

Titles and Conditions (-TC) screen lines display the titles and conditions of all
procedures of a batch or on-line Program, whether automatically generated or
specified with procedural code.

Using this screen, the user can examine the general structure of a generated
program and detect possible errors related to the uses of the Program’s different
parts.

ACCESSING THE TITLES AND CONDITIONS SCREEN

For batch Programs, enter the following in the CHOICE field:

CH: PppppppTCfusf<nn or Ppppppp<nnTCfusf

For on-line Programs, enter the following in the CHOICE field:

CH: OooooooTCfusf<nn or Ooooooo<nnTCfusf
where:

pppppp = PROGRAM CODE
oooooo = SCREEN CODE
fu = FUNCTION CODE (default:' ')
sf = SUB-FUNCTION CODE (default:' ')
nn = LEVEL NUMBER (default: 05)

EXAMPLE:

In order to obtain the complete list of titles and conditions for Program PGM001,
the following should be entered in the CHOICE field:

92 VisualAge Pacbase: STRUCTURED CODE

CH: P PGM001 TC

In order to focus on a specific part of the Program, for instance starting with
function F29, sub-function BB, and view the titles and conditions listed to the 15
level inclusive, the following should be entered in the CHOICE field:

CH: P PGM001 TC29BB<15 or CH: P PGM001 <15TC29BB

ORIGIN OF GENERATED LINES

The lines displayed on this screen originate from the following three sources:
1. VisualAge Pacbase automatic generation:

Displayed lines come from the Program Call of Data Structures (-CD) screen for
batch Programs, or On-Line Call of Segments (-CS) screen and On-Line Call of
Data Elements (-CE) screen for on-line Programs, both having been previously
entered by the user.
They are identified by a period (’.’) in the ACTION CODE field of each line.

2. Macro-structure calls:
Displayed lines come from the Call of P.M.S.’s (-CP) lines (of Programs and
Screens).
They are identified by an asterisk (’*’) in the ACTION CODE field of each line.

3. Procedural Code (-P) lines attached directly to the Program or to the Screen:
These lines are identified by a ’blank’ in the ACTION CODE field for each line.

UPDATE POSSIBILITIES

The Titles and Conditions (-TC) screen displays functions or sub-functions titles
with their conditions for execution. Therefore, updating affects a whole function or
sub-function.
v FOR GENERATED PROCEDURES AND MACRO-STRUCTURES :

The only updating possibility is the suppression of a function or sub-function
generation. This is done with the ’S’ OPERATOR (counterpart to the ’SUP’
OPERATOR in Procedural Code (-P) lines).
These procedures are identified with a (’.’) or an (’*’) in the ACTION CODE
field. This code must be deleted if the update is to be taken into account.

v SPECIFIC PROCEDURES :
The user may create, modify or delete the title of a function or sub-function
written in procedural code.
The user may also modify the LEVEL NUMBER, CONDITION TYPE OR S.F.
STRUCTURE and CONDITION FOR EXECUTION of a function or sub-function.
The corresponding ACTION CODES are : ’C’, ’M’, ’D’ or blank.
Each update is automatically channeled down to the corresponding Procedural
Code (-P) screen.

RETURN TO A DISPLAYED (SUB-)FUNCTION

The user may return to the Procedural Code (-P) screen corresponding to a
displayed line. In order to do this, the user places the cursor on the desired line
and presses the relevant PFkey (standard: PF10).

The user can also branch to the ’-PG’ screen from the line where the cursor is
positioned by using the appropriate PFkey (standard: PF9).

Chapter 5. Modifying the Procedure Division 93

Finally, the user can request that the same screen be displayed from the line where
the cursor is positioned by using the appropriate PFkey (standard: PF8, except
under IMS).

UPDATE OPERATORS ALLOWED IN THIS SCREEN
N Note (title).
S Suppression (equivalent to 'SUP').
Blank Continuation of conditioning of a (sub-)function.

Any other operator will be refused.

PREREQUISITE

The Program or Screen must have been previously defined.

NOTE TO ON-LINE SYSTEMS DEVELOPMENT FUNCTION USERS

Differences may appear between the Titles and Conditions (-TC) screen lines
display and the actual generated Program:

FUNCTION F80

On the Titles and Conditions (-TC) screen, the sequence order of the sub-functions
depends on the SEGMENT CODE IN THE PROGRAM, whereas in the generated
Program, sub-functions are ordered according to the SEGMENT CODE IN THE
LIBRARY. For a Segment called in on a Call of Segments (-CS) screen, which does
not have a ’U’-type ORGANIZATION and is not used in display or reception,
display is simulated on the Titles and Conditions (-TC) screen.

FUNCTION F81

Numeric and date validations are always considered to be generated, therefore
sub-functions F8110 and F8120 are always displayed on the Titles and Conditions
(-TC) screens. However, Sub-function F8110 is generated only if unprotected
numeric Data Elements are called. Sub-function F8120 is generated only if
unprotected date-type Data Elements are called.

SPECIAL PFKEYS

PF8:

Reset screen display starting from the line where the cursor is positioned (not
available with the IMS version).

PF9:

From the Titles and Conditions (-TC) screen, branch to the Procedures Generated
(-PG) screen and vice-versa, starting from the line where the cursor is positioned.

THE ’TITLES ONLY (-TO)’ SCREEN

The Preview Facility includes the Titles Only (-TO) screen. This screen displays the
list of program function titles only and illustrates their hierarchical organization.

94 VisualAge Pacbase: STRUCTURED CODE

The screen is accessed in the same manner as the Titles and Conditions (-TC)
screen (substitute ’TO’ for ’TC’); see Paragraph ″ACCESSING THE TITLES AND
CONDITIONS SCREEN″ above.

The advantage of this screen is that the level numbers of the program functions are
indented, showing the user a different view from the Titles and Conditions (-TC)
screen. However, this screen cannot be used for updates.

(The Titles Only (-TO) screen image can be found at the end of this sub-chapter).

Chapter 5. Modifying the Procedure Division 95

--
! PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 !
! !
! TITLES AND CONDITIONS BBINIT GENERAL PROCESSING !
! 1 !
! !
! 2 3 4 5 6 7 8 9 10 !
! A FUSF LIN O OPERANDS LVTY CONDITION !
! . 05 N READ SEQ.FILES NO CONTROL BREAK 05BL !
! . 20 N END OF RUN 05IT FT = ALL '1' !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! *** END *** !
! O: C1 CH: -TC !
--

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

1 6 PROGRAM CODE OR SCREEN CODE

This field contains the six-character program or on- line screen
code.

2 1 ACTION CODE

C Creation of the line

M Modification of the line

D Deletion of the line

A Deletion of the line

T Transfer of the line

B Beginning of multiple deletion

G Multiple transfer

? Request for HELP documentation

E or - Inhibit implicit update

X Implicit update without upper/lowercase processing (on certain
lines only)

On the GP-C4 screen (JCL command lines), upper/lowercase
processing.

On the GP-C1 screen, upper/lowercase processing on
continuation lines only.

3 2 FUNCTION CODE

AA to 99 This code determines the placement of the Procedural Code
lines in the sequence of functions. This is particularly important
when used with the On-Line and Batch Systems Development
functions in which automatic functions have pre-determined
codes.

96 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

$n In a Macro-Structure, the FUNCTION CODE can be
parameterized.

4 2 SUB-FUNCTION CODE

Made up of numeric or alphabetic characters.

This code determines the placement of the Procedural Code
within the function.

$n In a macro-structure, the SUB-FUNCTION CODE can be
parameterized.

5 3 LINE NUMBER

PARAMETERIZABLE NUMERIC FIELD

0-999 As a recommendation, number the lines starting with 10 by
intervals of 10, thus facilitating future insertion insertions.

$n0 to $n9 In a Macro-Structure, only the first two characters of the LINE
NUMBER can be parameterized.

6 1 OPERATOR

The following OPERATORS are the only ones allowed on this
screen:

N Title of the function or the sub-function.

S Equivalent of ’SUP’ in the Procedural Code (-P) lines.

Used to suppress a function or sub-function.

blank Continuation lines of the CONDITION FOR EXECUTION.

7 32 OPERANDS

The title of the corresponding function or sub-function is
displayed in this field.

8 2 LEVEL NUMBER

PARAMETERIZABLE NUMERIC FIELD

The LEVEL NUMBER is indicated only on the first line of a
Structure.

The CONDITION FOR EXECUTION of a Structure at a given
level applies to all the logically lower level Structures which
follow the initial Structure, until the next logically higher level
Structure is encountered.

05 This level is always assigned to functions. It is also the default
level of the first line of a function Structure.

10 This is the default level of the first line of a sub-function
Structure.

06 to 98 Possible levels for a sub-function.

99 Defines an elementary procedure in a function or sub-function.
(Maximum number of ’99’ levels ina sub-function = 98).

$n In a Macro-Structure the LEVEL NUMBER can be
parameterized.

9 2 CONDITION TYPE OR S.F. STRUCTURE

On the first line of a function or sub-function, the CONDITION
TYPE OR S.F. STRUCTURE value indicates the ’Structure type’
processing to be executed.

Chapter 5. Modifying the Procedure Division 97

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

In a Macro-Structure the CONDITION TYPE OR S.F.
STRUCTURE cannot be parameterized.

A (sub-)function constitutes a block of processing or structure.
It’s also possible to define, within a (sub-)function, elementary
Structures characterized by a ’99’ level.

BL ’Block’ type Structure.

Default value for all non-conditioned Structures.

IT ’IF THEN’ type structure.

Default value for all conditioned Structures. Executed if the
condition is satisfied.

EL ’ELSE’ type Structure.

Prohibited at the function level.

Executed if the preceding Structure at the same level (which
must be an ’IF THEN’) was not executed. An ’ELSE’ Structure
cannot have its own condition.

CO ’CASE OF’ type Structure.

Prohibited at the ’05’ function level and at the ’99’ level.

A ’CO’ Structure is used for procedures that are exclusive of
each other, and that are executed depending on the possible
values of a variable.

In a ’CASE OF’ Structure only the name of the variable is
defined (in the condition field and on a single line). The
possible values of this variable are specified in the Structures at
the next lower, non-elementary, hierarchical level. In a Dialog
screen, nesting of ’CASE OF’ loops is not authorized within
another ’CASE OF’ loop.

DW ’DO WHILE’ Structure.

Prohibited at the ’05’ function level and at the ’99’ level.

This Structure is executed repeatedly, as long as its condition is
satisfied.

DU ’DO UNTIL’ Structure.

Prohibited at the ’05’ function level and at the ’99’ level.

This Structure is executed repeatedly until its condition is
satisfied. Thus, it is executed at least one time.

For the ’DW’ and ’DU’ type Structures, the user must set up the
condition status (incrementation of an index, for example).

DO ’DO’ Structure (’loop’ Structure).

Cannot be used at an ’05’ function level or the ’99’ level.

The ’DO’ Structure is executed in a repetitive way depending
upon the conditioning of three variables: the first variable being
the iteration number where the processing should start; the
second one, the iteration number where the processing should
stop, the third being the incrementing interval.

98 VisualAge Pacbase: STRUCTURED CODE

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

All three variables may be either numbers or Data Elements.
The increment variable is optional and its default value is ’1’. (If
indicated, its value must be positive.) Both iteration variables
must be entered on the first line of the sub-function, separated
by a space.

The parameters must be entered in the following order: starting
limit (positive), ending limit and increment interval.

DO calls for 3 parameters, of which the first 2 are required. All
3 must appear on the first line.

The System automatically generates an index: JfusfR, ’fu’
standing for the FUNCTION CODE, and ’sf’ standing for the
SUB-FUNCTION CODE.

OR Continuation of the condition associated with the preceding
lines by a logical ’OR’.

AN Continuation of the condition associated with the preceding
lines by a logical ’AND’.

NOTE: The parentheses which group the terms of a condition
must be indicated in the text of the condition.

In a Macro-Structure, the type of structure or condition cannot
be parameterized.

WH You can use COBOL commands after an EVA or SEA command.
Each of these commands indicates one processing to be
performed according to the fulfilled condition. In the example
below, processing1 will be performed when condition1 is
fulfilled.

EVA condition

---processing1--- 99WH ---condition1---

---processing2--- 99WH ---condition2---

---processing1--- 99WH ---condition2---

---processing3--- 99WH ---condition3---

ON-LINE SYSTEMS DEVELOPMENT

The following values, in the CONDITION TYPE OR S.F.
STRUCTURE field, are used for relative positioning with the
On-Line Systems Development function and Pacbench C/S.

*A Insertion of a sub-function before an automatic sub-function
identified by the data element or the Segment it processes.

*P Insertion of a sub-function after an automatic sub-function
identified by the Data Element or the Segment it processes.

(The CONDITION FOR EXECUTION of the automatic
sub-function applies to the inserted sub-function if the LEVEL
NUMBER of the inserted sub-function is greater than that of the
automatic sub-function.)

*R Replacement of an automatic sub-function identified by the
Data Element or the Segment it processes. (The CONDITION
FOR EXECUTION of the automatic sub-function does not apply
to the replaced sub-function.)

For more information, see chapter ’Use of Structured code’,
subchapter ’Specific Procedures’ in the ’On-Line Systems’
manual.

Chapter 5. Modifying the Procedure Division 99

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

The two following values are used for the relative positioning
with Pacbench C/S (server components only):

*C Insertion or replacement of the processing on the server or the
Logical View.

*B Insertion in the elementary processing called by PERFORM.

For more information, see chapter ’Use of Structured code’,
subchapter ’Specific Procedures’ in the ’On-Line Systems’
manual.

10 28 CONDITION FOR EXECUTION

The CONDITION FOR EXECUTION statement is coded
without using ’IF’, ’AND’, ’OR’, ’GO TO’, or a period (.).

The first line must be associated with an explicit or implicit
LEVEL NUMBER (’05’ for a function; ’06’ to ’98’ for a
sub-function; ’99’ for an elementary procedure within a function
or sub-function). The LEVEL NUMBER need not be specified
on continuation lines.

For a ’CASE OF’ type structure, the name of the variable
(which may have alternative values) must be indicated on the
first line.

For structures dependent on a ’CASE OF’, the CONDITION
FOR EXECUTION indicates the possible value of the ’CO’
variable.

$n In a Macro-Structure, the CONDITION FOR EXECUTION can
be parameterized.

100 VisualAge Pacbase: STRUCTURED CODE

--
! PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 !
! !
! TITLES ONLY BBINIT GENERAL PROCESSING !
! . FUSF . TITLE . LEVEL . TY .SOURCE.LIBR !
! ...!
! . 05 . READ SEQ.FILES NO CONTROL BREAK . 05 . BL . . !
! . 20 . END OF RUN . 05 . IT . . !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! *** END *** !
! O: C1 CH: -TO !
--

Chapter 5. Modifying the Procedure Division 101

102 VisualAge Pacbase: STRUCTURED CODE

Chapter 6. Access Commands

On-Line Access Commands
LIST OF PROGRAMS

CHOICE SCREEN UPD
------ ------ ---

LCPaaaaaa List of Programs by code NO
(starting with Program 'aaaaaa').

LNPaaaaaa List of Programs by name NO
(starting with program 'aaaaaa').

LTPnPaaaaaa List of Programs of type 'n' NO
(starting with program 'aaaaaa').

LEPeeeeeeee List of Programs by external name NO
(starting with external name 'eeeeeeee').

DESCRIPTION OF PROGRAM 'aaaaaa'

CHOICE SCREEN UPD
------ ------ ---

Paaaaaa Definition of Program 'aaaaaa'. YES

PaaaaaaGCbbb Comments for Program 'aaaaaa' YES
(starting with line 'bbb').

PaaaaaaGObbb Generation option of Program 'aaaaaa' YES
(starting with line 'bbb').

PaaaaaaXVbbbbbb X-references of Program 'aaaaaa' to NO
Documents (starting with Document
'bbbbbb').

PaaaaaaATbbbbbb Text assigned to Program 'aaaaaa' NO
(starting with text 'bbbbbb').

PaaaaaaX X-references of Program 'aaaaaa'. NO

PaaaaaaXPbbbbbb X-references of Program 'aaaaaa' to NO
programs (starting with Program 'bbbbbb')

PaaaaaaXObbbbbb X-references of Program 'aaaaaa' to NO
screens (starting with Screen 'bbbbbb').

PaaaaaaXQrrrrrr List of occurrences linked to Program NO
'aaaaaa' through User Relationship
'rrrrrr'.

PaaaaaaCR Occurrences linked to Program YES
'aaaaaa' through User Relationship

PaaaaaaCDbb Call of Data Structures of Program YES
'aaaaaa' (starting with Data Structure
'bb').

PaaaaaaCPbbbbbb Call of Parameterized Macro- YES
Structure
of Program 'aaaaaa' (starting
with P.M.S. 'bbbbbb').

PaaaaaaBbbccddd Beginning Insertions Modifications YES
of Program 'aaaaaa' (starting with
section 'bb', paragraph 'cc',
line 'ddd').

PaaaaaaWbbccc Description of Work Areas of Program YES
'aaaaaa' (starting with Work Area 'bb'
line 'ccc').

© Copyright IBM Corp. 1983,2001 103

PaaaaaaPfusfnnn Description of Procedural Code of YES
Program 'aaaaaa' (starting with
function 'fu', sub-function 'sf',
line number 'nnn').

PaaaaaaPGfusfnnn View of Procedures Generated of YES
Program 'aaaaaa' (starting with
function 'fu', sub-function 'sf',
line number 'nnn'), with display
of generated procedure titles.

Paaaaaa9bbbbbb Description of Pure COBOL Source YES
Code of Program 'aaaaaa' (starting
with -9 line 'bbbbbb').

PaaaaaaTCfusf View of Titles and Conditions of YES
automatic and specific procedures
of Program 'aaaaaa' (starting with
function 'fu', sub-function 'sf').

PaaaaaaTCfusf<nn View of Titles and Conditions of YES
or automatic and specific procedures
Paaaaaa<nnTCfusf of Program 'aaaaaa' up to level 'nn'

(starting with function 'fu',
sub-function 'sf').

PaaaaaaTOfusf View of Titles Only of automatic and NO
specific procedures of Program 'aaaaaa'
(starting with function 'fu', sub-
function 'sf').

PaaaaaaTOfusf<nn View of Titles Only of automatic and NO
or specific procedures of Program 'aaaaaa'
Paaaaaa<nnTOfusf up to level 'nn' (starting with function

'fu', sub-function 'sf').

PaaaaaaSCfusfnnn Description of Source Code of YES
'reversed' Program 'aaaaaa'
(starting with function 'fu',
sub-function 'sf', line number 'nnn').

PaaaaaaSTRfusf Program Structure of 'reversed' YES
Program 'aaaaaa' (starting with
function 'fu', sub-function 'sf').

NOTE:: After the first choice of type ’Paaaaaa’, ’Paaaaaa’ can be replaced with ’-’.

All notations between parentheses are optional.

On-Line Display Options
PxxxxxxCP

C1: Displays the call lines of Macro-Structures.

C2: Displays the number of the session in which the line was updated.

PxxxxxxB, -W, -P, -8.

C1: Displays the input format.

C2: Displays information concerning the origin of the lines.

The Macro-Structure code will appear in the source area for the Program lines
obtained by a Macro-Structure call.

104 VisualAge Pacbase: STRUCTURED CODE

For lines that belong to the Library in which you are working, the LIB field
indicates the number of the session in which the line was updated. For lines that
belong to other Libraries, it indicates their code.

The ’C2’ option cannot be used for updating.

C3: Available only on -W screens. Displays the selected format (I-E-S) of the Data
Element.

The ’C3’ option cannot be used for updating.

On-Line Action Codes
On the Program Definition screen:

’C’= Create.

’M’= Modify.

’D’= Delete (possible only if there’s no description line).

’?’= Request for documentation (’HELP’ function).

On Description screens:

’C’= Create the line.

’M’= Modify the line.

’D’= Delete the line.

’X’= Create or modify the line. When a line contains fields which are automatically
transformed into uppercase, for example Pure COBOL Source Code (-9) lines, this
transformation is inhibited.

’B’= Multiple deletion beginning with this line,

’R’= Repeat the line.

’I’= Insert lines.

’T’= Transfer the line (enter target line number in the LINE NUMBER field),

’G’= Group transfer of lines (enter target line number in the LINE NUMBER
fields), beginning with this line,

’L’= With action codes ’B’ or ’G’ above: last line to be deleted or transferred,

’?’= Request for documentation (HELP function).

For more details on these Action Codes, refer to the ’Character Mode User
Interface’ guide.

Chapter 6. Access Commands 105

Generation and/or Printing
Programs can be generated and printed by entering certain commands, either
on-line, on the Generation and Print Commands (GP) screen (used for
documentation and generation requests), or in batch mode (see the ’Developer’s
Procedures’ manual).

These commands are listed below:
v LCP

List of all Programs by code.

C1: without keywords,

C2: with keywords.
v LNP

List of all Programs by name.
v LEP

List of all Programs by external name.
v LKP

List of Programs by keywords. The user may limit the keywords to explicit or
implicit only. The keywords are specified on a continuation line (see the The
’Character Mode User Interface’ guide).
v LTP

List of all Programs by type.
v DCP

Description information for the Program whose code is entered in the ENTITY
CODE field; if no code has been entered, the Description information for all
Programs will be provided.

C1: without assigned text,

C2: with the assigned text.
v DSP

Description information for the reversed Program whose code is entered in the
ENTITY CODE field.
v GCP

Generation and description of a Program whose code must be indicated.
v GSP

Generation and description of the reversed Program (with SC lines).
v FLP

Specify the flow of the programs. The user may specificy the environment (PEI),
control card options, and parameters (as needed).

106 VisualAge Pacbase: STRUCTURED CODE

C1 option only.
v FSP

Specify the flow of the reversed Programs.

Chapter 6. Access Commands 107

108 VisualAge Pacbase: STRUCTURED CODE

Chapter 7. Example of a Generated Program

Introduction
This chapter is designed to provide examples of how certain input will affect the
automatically generated Program.

Only those portions of the Program that can be modified by Structured Code will
be described in this chapter.

The displayed examples are not from the same Program. They are simply
examples.

A batch Program structure was used; however the principle is the same for on-line
programs.

Environment Division
The ENVIRONMENT DIVISION may be adapted as needed, via the Beginning
Insertions (-B) screen entries.

The example below illustrates how the Beginning Insertions lines may be used to
modify the INPUT-OUTPUT SECTION. The user entered the following lines in
order to code the SELECT statements for ESDS and RRDS VSAM files.
--
! A SE PA LIN INSTRUCTION TO BE INSERTED !
! 01 DD 090 * ENTRY-SEQUENCED DATA SET EXAMPLE !
! 01 DD 100 SELECT DD-FILE !
! 01 DD 120 ASSIGN TO ESMSTR !
! 01 DD 140 ORGANIZATION IS SEQUENTIAL !
! 01 DD 160 ACCESS MODE IS SEQUENTIAL !
! 01 DD 180 FILE STATUS IS DD00-STATUS. !
! 01 EE 090 * RELATIVE RECORD DATA SET EXAMPLE !
! 01 EE 100 SELECT EE-FILE !
! 01 EE 120 ASSIGN TO RRMSTR !
! 01 EE 140 ORGANIZATION IS RELATIVE !
! 01 EE 160 ACCESS MODE IS DYNAMIC !
! 01 EE 170 RELATIVE KEY IS WS00-RRN !
! 01 EE 180 FILE STATUS IS EE00-STATUS. !
! !
!O: C1 CH: -B !
--

The Call of Data Structures (-CD) lines are coded as follows:
--
! DP DL EXTERN OARFU U SELECTION !
! DD BL ESMSTR VSFID C *10 !
! STAT.FLD: DD00STATUS !
! EE BL RRMSTR VSFID C *20 !
! STAT.FLD: EE00STATUS !
! !
!O: C1 CH: -CD !
--

NOTE: For more input entered for the RELATIVE KEY IS statement on the RRDS
file, see subchapter ″WORKING-STORAGE SECTION″.

© Copyright IBM Corp. 1983,2001 109

The excerpt of COBOL that is generated as a result of these lines follows.
ENVIRONMENT DIVISION. BLPROG
CONFIGURATION SECTION. BLPROG
SOURCE-COMPUTER. IBM-370. BLPROG
OBJECT-COMPUTER. IBM-370. BLPROG
INPUT-OUTPUT SECTION. BLPROG
FILE-CONTROL. BLPROG
* ENTRY-SEQUENCED DATA SET EXAMPLE D01DD

SELECT DD-FILE D01DD
ASSIGN TO ESMSTR D01DD
ORGANIZATION IS SEQUENTIAL D01DD
ACCESS MODE IS SEQUENTIAL D01DD
FILE STATUS IS DD00-STATUS. D01DD

* RELATIVE RECORD DATA SET EXAMPLE D01EE
SELECT EE-FILE D01EE

ASSIGN TO RRMSTR D01EE
ORGANIZATION IS RELATIVE D01EE
ACCESS MODE IS DYNAMIC D01EE
RELATIVE KEY IS WS00-RRN D01EE
FILE STATUS IS EE00-STATUS. D01EE

DATA DIVISION. BLPROG
FILE SECTION. BLPROG

Working-Storage Section: Beginning
The WORKING-STORAGE SECTION and other sections belonging to the end of
the DATA DIVISION may be supplemented via the Work Areas (-W) screen. The
example shows the implementation of this feature using the Formatted Line for a
Work Areas screen with an alphabetic CODE FOR COBOL PLACEMENT.

The CODE FOR COBOL PLACEMENT, when alphabetic, causes the data to be
placed in the beginning of the WORKING-STORAGE SECTION, with this code
and the LINE NUMBER producing a sequencing number.

The Work Areas (-W) screen appeared as follows:
--
!CODE FOR PLACEMENT..: BB !
!A LIN T LEVEL OR SECTION WORK AREA DESCRIPTION !
!* 020 F PC: XW LC: XW SEL: 02____ PICT: I DESC: 2 LEV: 1 !
! 110 F DP: WK DL: BB SEL: ______ PICT: I DESC: 2 LEV: 1 !
! 120 F DP: WA DL: WA SEL: 00____ PICT: I DESC: 2 LEV: 1 !
--

NOTE: The formatted line that appears as line 020 in this example comes from a
Macro-Structure. (Notice the asterisk in the ACTION CODE field for this
line.) The field labels that appear on the screen for this Macro (’PC:’ and
’LC:’) result from an older version of this line, and are exactly the same as
those fields labeled ’DP:’ and ’DL:’.

In the generated COBOL, the WORKING-STORAGE SECTION will begin with the
Description of Segment XW02, followed by the Descriptions of all the Segments
that belong to Data Struc- ture WK. Segment WA00 follows.

Another Work Areas (-W) screen was entered for this example, to illustrate setting
up a search field for an RRDS file. In this example, the user did not use a
formatted line. The CODE FOR COBOL PLACEMENT used was higher than the
code used for the screen with the formatted lines above, thus the COBOL
corresponding to this entry follows those lines.

This Work Areas (-W) screen appeared as follows:

110 VisualAge Pacbase: STRUCTURED CODE

--
!CODE FOR PLACEMENT..: CC !
!A LIN T LEVEL OR SECTION WORK AREA DESCRIPTION !
! 020 * RELATIVE RECORD DATA SET SEARCH FIELD !
! 040 01 WS00-RRN PIC 99 VALUE ZEROS. !
--

The System-generated ’WSS-BEGIN’ will be generated after these supplementary
lines.

WORKING-STORAGE SECTION. FL10UP
*PC: XW LC: XW SEL: 02______ PICT: I DESC: 2 LEV: 1 ORG: _ SS: _ 7BB020
01 XW02. FL10UP

10 XW02-XDATE. FL10UP
11 XW02-XDAT1. FL10UP
12 XW02-XDAT19 PICTURE 99 FL10UP

VALUE ZERO. FL10UP
11 XW02-XDAT2. FL10UP
12 XW02-XDAT29 PICTURE 99 FL10UP

VALUE ZERO. FL10UP
11 XW02-XDAT3. FL10UP
12 XW02-XDAT39 PICTURE 99 FL10UP

VALUE ZERO. FL10UP
10 XW02-XLEAPY PICTURE 99 FL10UP

VALUE ZERO. FL10UP
*DP: WK DL: BB SEL: ________ PICT: I DESC: 2 LEV: 1 ORG: _ SS: _ 7BB110
01 WK00. FL10UP

10 WK00-FLTKEY. FL10UP
11 WK00-LIBKEY PICTURE X FL10UP

VALUE SPACE. FL10UP
11 WK00-FLM PICTURE 999 FL10UP

VALUE ZERO. FL10UP
11 WK00-FLDDEP PICTURE X(6) FL10UP

VALUE SPACE. FL10UP
11 WK00-PSNAME PICTURE X(4) FL10UP

VALUE SPACE. FL10UP
11 WK00-PANFI PICTURE X FL10UP

VALUE SPACE. FL10UP
01 WK10. FL10UP

10 WK10-FLDCAN PICTURE X(6) FL10UP
VALUE SPACE. FL10UP

10 WK10-FLCADE PICTURE XXX FL10UP
VALUE SPACE. FL10UP

10 WK10-FLCAAR PICTURE XXX FL10UP
VALUE SPACE. FL10UP

10 WK10-FLTDEP PICTURE 9(4) FL10UP
VALUE ZERO. FL10UP

10 WK10-FLTARR PICTURE 9(4) FL10UP
VALUE ZERO. FL10UP

10 WK10-ACMSER PICTURE 9(6) FL10UP
VALUE ZERO. FL10UP

10 WK10-FLCFS PICTURE X FL10UP
VALUE SPACE. FL10UP

10 WK10-FLQSTP PICTURE 9 FL10UP
VALUE ZERO. FL10UP

10 WK10-FLQRFC PICTURE 9(3) FL10UP
VALUE ZERO. FL10UP

10 WK10-FLQRCC PICTURE 9(3) FL10UP
VALUE ZERO. FL10UP

10 WK10-FILLER PICTURE X(31) FL10UP
VALUE SPACE. FL10UP

01 WK20. FL10UP
10 WK20-PANTTL PICTURE XXX FL10UP

VALUE SPACE. FL10UP
10 WK20-PANL PICTURE X(12) FL10UP

VALUE SPACE. FL10UP
10 WK20-PAMPHH PICTURE 9(10) FL10UP

Chapter 7. Example of a Generated Program 111

VALUE ZERO. FL10UP
10 WK20-PAMPHW PICTURE 9(10) FL10UP

VALUE ZERO. FL10UP
10 WK20-RECCLA PICTURE X FL10UP

VALUE SPACE. FL10UP
10 WK20-RECSMK PICTURE X FL10UP

VALUE SPACE. FL10UP
10 WK20-REDCAN PICTURE X(6) FL10UP

VALUE SPACE. FL10UP
10 WK20-FILLER PICTURE X(22) FL10UP

VALUE SPACE. FL10UP
*DP: WA DL: WA SEL: 00______ PICT: I DESC: 2 LEV: 1 ORG: _ SS: _ 7BB120
01 WA00. FL10UP

10 WA00-1TSTD. FL10UP
11 WA00-1HSTD PICTURE 99 FL10UP

VALUE ZERO. FL10UP
11 WA00-1RRCOL PICTURE X FL10UP

VALUE SPACE. FL10UP
11 WA00-1MSTD PICTURE 99 FL10UP

VALUE ZERO. FL10UP
11 WA00-1AMPM PICTURE X FL10UP

VALUE SPACE. FL10UP
10 WA00-1TMIL. FL10UP
11 WA00-1HMIL PICTURE 99 FL10UP

VALUE ZERO. FL10UP
11 WA00-1MMIL PICTURE 99 FL10UP

VALUE ZERO. FL10UP
10 WA00-1FCCTR PICTURE 999 FL10UP

VALUE ZERO. FL10UP
10 WA00-1CCCTR PICTURE 999 FL10UP

VALUE ZERO. FL10UP
*RELATIVE RECORD DATA SET SEARCH FIELD 7CC020
01 WS00-RRN PIC 99 VALUE ZEROS. 7CC040
01 WSS-BEGIN. FL10UP

05 FILLER PICTURE X(7) VALUE 'WORKING'. FL10UP
05 BLANC PICTURE X VALUE SPACE. FL10UP
05 IK PICTURE X. FL10UP

Working-Storage Section: End
When the CODE FOR COBOL PLACEMENT is numeric, the data description is
placed after those with alphabetic codes, and after most Data Structures
Descriptions which come from the Call of Data Structures (-CD) or On-line Screen
Call of Elements (-CE) or Call of Segments (-CS) screens.

The lines entered on the screen used for this example are generated just before the
PROCEDURE DIVISION statement.

The Work Areas (-W) screen was coded as follows:
--
!CODE FOR PLACEMENT..: 90 !
! LIN T LEVEL OR SECTION WORK AREA DESCRIPTION !
! 000 F DP: WB DL: WG SEL: 01______ PICT: I DESC: 4 LEV: 3!
--

*DP: WB DL: WG SEL: 01______ PICT: I DESC: 4 LEV: 3 ORG: _ SS: _ 790000
01 WB00. PJJPS1

02 WB01T. PJJPS1
03 WB01. PJJPS1
10 WB01-FILLER PICTURE X(18). PJJPS1
10 WB01-FILLER PICTURE X(4). PJJPS1
10 WB01-TABCPT PICTURE X(44). PJJPS1

PROCEDURE DIVISION.

112 VisualAge Pacbase: STRUCTURED CODE

Procedure Division
The user may modify the PROCEDURE DIVISION in any number of ways. The
lines that are generated may be overridden, supplemented, or suppressed. New
functions may be created for a Program by calling in Macros or by attaching
Procedural Code (-P) lines directly to the Program. Lines of the Macro may be
overridden, supplemented or suppressed.

The Procedural Code lines below illustrate different types of modifications that the
user may make to the PROCEDURE DIVISION.

MODIFYING AUTOMATICALLY GENERATED FUNCTIONS

The Procedural Code (-P) lines below illustrate the overriding of the generation of
the OPEN of the TR-FILE that would normally have occurred in Function F01.
--
! FUNCTION: 01 !
!A SF LIN OPE OPERANDS LVTY CONDITION !
!* TR N INITIALIZATION OF FILE TR 10BL !
!* TR M '1' TR-FT !
--

Although the source of the lines above is a Macro which was called into the
Program, the lines themselves are generated exactly as those lines that are attached
directly would be.

Without these lines, the OPEN of the TR file would look just like that of the EM
file.

Specific lines in certain automatically generated functions may be suppressed. The
lines below illustrate suppressing the CLOSE of the TR-FILE that would normally
occur in F20.
--
! FUNCTION: 20 !
!A SF LIN OPE OPERANDS LVTY CONDITION !
!* TR SUP !
--

The next excerpt shows the supplementation of Function F76. Here, the lines
identified with an asterisk in the ACTION CODE field come from a Macro. The
user has supplemented the lines of the Macro using Procedural Code (-P) lines
attached directly to the Program. They are interspersed with lines of the Macro.
This is controlled by the key : FUNCTION CODE, SUB-FUNCTION CODE, and
LINE NUMBER. The example with F76AL shows that the user can override lines
of a Macro with Procedural code lines of the same key:
--
! FUNCTION: 76 !
!A SF LIN OPE OPERANDS LVTY CONDITION !
!* AL N SEARCH 15DW I06 NOT > 27 !
! AL 10 M 6 EM00-ERTYP 99IT UT-PR (I06) NOT = 0 !
!* AL 10 M 6 EM00-ERTYP 99IT UT-UPR (I06) NOT = 0!
!* AL 20 M I06 EM00-ERCOD9 !
!* AL 30 P F76AU !
!* AL 40 A 1 I06 !
--

In F76AT, lines have been added to those of the Macro.

Chapter 7. Example of a Generated Program 113

--
! FUNCTION: 76 !
!A SF LIN OPE OPERANDS LVTY CONDITION !
!* AT N PRINT GOOD TRANS.. 10IT XW01-XERRCT = ZERO !
! AT 2 P F92 99IT 1-MB00-STRUCT = 'P' !
! AT 5 GT 10 99IT XW01-XERRCT NOT = 0 !
!* AT 10 M SPACE EM00 !
!* AT 20 P F8RBB F8R-FN 99IT XW01-XIPRIN = '1' !
!* AT 30 GT 10 99BL !
--

Note that the generated code contains lines that are generated automatically by the
System as well as these lines.

CREATING NEW FUNCTIONS

New functions may be added to the generated skeleton simply by using a
FUNCTION CODE that is not generated. The lines will be placed within the
Program according to the value of the FUNCTION CODE. Our example uses
Function F93.

N01. NOTE *************************************. FL10UP
* * FL10UP
* INITIALIZATIONS * FL10UP
* * FL10UP
*************************************. FL10UP

F01. EXIT. FL10UP
N01BB. NOTE *INITIALIZATION OF FILE BB-FILE *. FL10UP
F01BB. OPEN I-O BB-FILE. FL10UP
F01BB-FN. EXIT. FL10UP
N01EM. NOTE *INITIALIZATION OF FILE EM-FILE *. FL10UP
F01EM. OPEN INPUT EM-FILE. FL10UP
F01EM-FN. EXIT. FL10UP
N01MB. NOTE *INITIALIZATION OF FILE MB-FILE *. FL10UP
F01MB-10. RETURN MB-FILE AT END FL10UP

MOVE 1 TO MB-FI. FL10UP
F01MB-FN. EXIT. FL10UP
N01TR. NOTE *INITIALIZATION OF FILE TR *. P000
F01TR. P000

MOVE '1' TO TR-FT. P010
F01TR-FN. EXIT. P010
N01XE. NOTE *INITIALIZATION OF FILE XE-FILE *. FL10UP
F01XE. OPEN OUTPUT XE-FILE. FL10UP
F01XE-FN. EXIT. FL10UP
F01-FN. EXIT. FL10UP

.

.

.

.
N20. NOTE *************************************. FL10UP

* * FL10UP
* END OF RUN * FL10UP
* * FL10UP
*************************************. FL10UP

F20. IF FT = ALL '1' FL10UP
NEXT SENTENCE ELSE GO TO F20-FN. FL10UP

F20BB. CLOSE BB-FILE. FL10UP
F20BB-FN. EXIT. FL10UP
F20EM. CLOSE EM-FILE. FL10UP
F20EM-FN. EXIT. FL10UP
F20XE. CLOSE XE-FILE. FL10UP
F20XE-FN. EXIT. FL10UP

.

.

.

.

114 VisualAge Pacbase: STRUCTURED CODE

N76. NOTE *************************************. FL10UP
* * FL10UP
* STORE ERRORS, RETRIEVE INIT. STATE* FL10UP
* * FL10UP
*************************************. FL10UP

N76-A. NOTE * STORE ERRORS *. FL10UP
F76-A. IF ID-ER NOT = '0' MOVE ID-ER TO TR-ER FL10UP

GO TO F76-C. MOVE SE-ER (I01) TO SEG-ER. FL10UP
IF SEG-ER < '0' OR SEG-ER > '1' FL10UP
MOVE SEG-ER TO TR-ER GO TO F76-C. FL10UP
MOVE 1 TO I06. FL10UP

F76-B. MOVE DE-ER (I06) TO DEL-ER. FL10UP
IF DEL-ER = '1' OR DEL-ER = '0' GO TO F76-B1. FL10UP

MOVE 4 TO TR-ER GO TO F76-C. FL10UP
F76-B1. IF I06 = I50 MOVE I03 TO I06 GO TO F76-B. FL10UP

IF I06 < I04 ADD 1 TO I06 GO TO F76-B. FL10UP
F76-C. IF TR-ER NOT = '1' MOVE '1' TO GR-ER. FL10UP
N76AB. NOTE *INITIALIZATIONS *. P000
F76AB. P000

MOVE SPACE TO EM00 P010
MOVE ZERO TO XW01-XERRCT P020
MOVE '0' TO XW01-XIPRIN P030
MOVE 1-MB00 TO XW01-XTRAIM. P040

F76AB-FN. EXIT. P040
N76AC. NOTE *IDENTIFICATION ERROR *. P000
F76AC. IF ID-ER NOT = ZERO P000

NEXT SENTENCE ELSE GO TO F76AC-FN. P000
MOVE '1' TO EM00-ERTYP P010
MOVE ID-ER TO EM00-ERCOD P020
PERFORM F76AU THRU F76AU-FN. P030

F76AC-900. GO TO F76AD-FN. P030
F76AC-FN. EXIT. P030
N76AD. NOTE *ELEMENT/RECORD ERROR *. P000
F76AD. EXIT. P000
N76AE. NOTE *RECORD ERROR *. P000
F76AE. P000

MOVE SE-ER (I01) TO EM00-ERCOD. P010
IF EM00-ERCOD NOT = '0 ' P020
AND EM00-ERCOD NOT = '1 ' P030

MOVE '0' TO EM00-ERTYP P020
PERFORM F76AU THRU F76AU-FN. P030

F76AE-FN. EXIT. P030
N76AF. NOTE *ERROR IN COMMON PART OF SEGMENT *. P000
F76AF. P000

MOVE 1 TO I06. P010
N76AG. NOTE *SEARCH *. P000
F76AG. IF I06 NOT > I50 P000

NEXT SENTENCE ELSE GO TO F76AG-FN. P000
MOVE DE-ER (I06) TO EM00-ERTYP. P010

IF EM00-ERTYP NOT = ZERO P020
AND EM00-ERTYP NOT = '1' P030

MOVE I06 TO EM00-ERCOD9 P020
PERFORM F76AU THRU F76AU-FN. P030
ADD 1 TO I06. P040

F76AG-900. GO TO F76AG. P040
F76AG-FN. EXIT. P040
F76AF-FN. EXIT. P040
N76AH. NOTE *ERROR IN SPECIFIC PART OF SEGM. *. P000
F76AH. P000

MOVE I03 TO I06. P010
N76AI. NOTE *SEARCH *. P000
F76AI. IF I06 NOT > I04 P000

NEXT SENTENCE ELSE GO TO F76AI-FN. P000
MOVE DE-ER (I06) TO EM00-ERTYP. P010

IF EM00-ERTYP NOT = ZERO P020
AND EM00-ERTYP NOT = '1' P030

COMPUTE EM00-ERCOD9 = I06 - I03 + 1 P020

Chapter 7. Example of a Generated Program 115

PERFORM F76AU THRU F76AU-FN. P030
ADD 1 TO I06. P040

F76AI-900. GO TO F76AI. P040
F76AI-FN. EXIT. P040
F76AH-FN. EXIT. P040
F76AD-FN. EXIT. P040
N76AK. NOTE *USER ERRORS *. P000
F76AK. P000

MOVE 1 TO I06. P010
N76AL. NOTE *SEARCH *. P000
F76AL. IF I06 NOT > 27 P000

NEXT SENTENCE ELSE GO TO F76AL-FN. P000
IF UT-PR (I06) NOT = ZERO P010

MOVE 6 TO EM00-ERTYP P010
MOVE I06 TO EM00-ERCOD9 P020
PERFORM F76AU THRU F76AU-FN. P030
ADD 1 TO I06. P040

F76AL-900. GO TO F76AL. P040
F76AL-FN. EXIT. P040
F76AK-FN. EXIT. P040
N76AR. NOTE *TRANSACTION ERROR (GROUP) *. P000
F76AR. IF FTB7 = 1 P000

NEXT SENTENCE ELSE GO TO F76AR-FN. P000
MOVE 1 TO I06. P010

N76AS. NOTE *SEARCH *. P000
F76AS. IF I06 NOT > I51 P000

NEXT SENTENCE ELSE GO TO F76AS-FN. P000
IF SE-ER (I06) = '2' P010

MOVE SE-ER (I06) TO XW01-XERRN1 P010
MOVE I06 TO XW01-XERRN2 P020
MOVE XW01-XERRNU TO EM00-ERCOD P030
MOVE '0' TO EM00-ERTYP P040
PERFORM F76AU THRU F76AU-FN. P050
ADD 1 TO I06. P060

F76AS-900. GO TO F76AS. P060
F76AS-FN. EXIT. P060
F76AR-FN. EXIT. P060
N76AT. NOTE *PRINT GOOD TRANSACTIONS *. P000
F76AT. IF XW01-XERRCT = ZERO P000

NEXT SENTENCE ELSE GO TO F76AT-FN. P000
IF 1-MB00-STRUCT = 'P' P002

PERFORM F92 THRU F92-FN. P002
IF XW01-XERRCT NOT = ZERO P005

GO TO F76AT-FN. P005
MOVE SPACE TO EM00. P010

IF XW01-XIPRIN = '1' P020
PERFORM FBRBB THRU FBR-FN. P020

GO TO F76AT-FN. P030
N76AU. NOTE *PRINT BAD TRANSACTIONS *. P000
F76AU. P000

MOVE 'A' TO EM00-ENTYP P010
ADD 1 TO XW01-XERRCT. P020

N76AW. NOTE *READ ERROR MESSAGE FILE *. P000
F76AW. P000

MOVE LE-FIENR TO EM00-PROGR P005
MOVE LIBRA TO EM00-LIBRA P010
MOVE 0 TO EM00-LINUM P015
MOVE 0 TO IK P020
READ EM-FILE P020
INVALID KEY MOVE 1 TO IK P020
MOVE 'UNKNOWN MESSAGE' TO EM00-ERMSG P030
DISPLAY ' UNKNOWN MESSAGE, KEY IS ' P040
EM00-EMKEY. P050

F76AW-FN. EXIT. P050
N76AX. NOTE *STORE ERROR *. P000
F76AX. P000

MOVE 4 TO TR-ER. P010

116 VisualAge Pacbase: STRUCTURED CODE

F76AX-FN. EXIT. P010
N76AZ. NOTE *PERFORM THE PRINT ROUTINE *. P000
F76AZ. P000

PERFORM FBRBB THRU FBR-FN. P010
F76AZ-FN. EXIT. P010
F76AU-FN. EXIT. P010
F76AT-FN. EXIT. P010
F76-FN. EXIT. P010

.

.

.

.
N93DA. NOTE *DATE VALIDATION *. P000
F93DA. P000

MOVE 1 TO DEL-ER. P010
IF XW02-XDATE NOT NUMERIC P020

MOVE 4 TO DEL-ER P020
GO TO F93DA-FN. P030

IF XW02-XDAT1 > '12' P040
OR XW02-XDAT1 = '00' P050
OR XW02-XDAT2 > '31' P060
OR XW02-XDAT2 = '00' P070

MOVE 5 TO DEL-ER P040
GO TO F93DA-FN. P050

IF XW02-XDAT2 > '30' P080
AND (XW02-XDAT1 = '04' P090
OR XW02-XDAT1 = '06' P100
OR XW02-XDAT1 = '09' P110
OR XW02-XDAT1 = '11') P120

MOVE 5 TO DEL-ER P080
GO TO F93DA-FN. P090

IF XW02-XDAT1 NOT = '02' P130
GO TO F93DA-FN. P130

IF XW02-XDAT2 > '29' P140
MOVE 5 TO DEL-ER P140

GO TO F93DA-FN. P150
IF XW02-XDAT3 = '00' P160

MOVE 1 TO XW02-XLEAPY P160
ELSE P170

COMPUTE XW02-XLEAPY = XW02-XDAT39 - P170
(XW02-XDAT39 / 4) * 4. P180

IF XW02-XLEAPY NOT = ZERO P190
AND XW02-XDAT2 > '28' P200

MOVE 5 TO DEL-ER P190
GO TO F93DA-FN. P200

F93DA-FN. EXIT. P200

Chapter 7. Example of a Generated Program 117

118 VisualAge Pacbase: STRUCTURED CODE

Chapter 8. Appendix: Pure Cobol Source Code (-9)

The Pure COBOL Source Code (-9) screen contains COBOL source code statements.

It is used for the following:
v To use data descriptions generated by the System in COBOL programs,
v To use library and documentation components to manage existing COBOL

source code.

DATA GENERATION

It is possible to generate the first three Divisions of a COBOL program (using the
System’s functions) and to write the PROCEDURE DIVISION exclusively with
Pure COBOL Source Code (-9) lines.

This kind of program is defined with a ’D’ value in the TYPE AND STRUCTURE
OF PROGRAM field and the appropriate variant in the TYPE OF COBOL TO
GENERATE field.

The program will be made up of Call of Data Structures (-CD) lines, of Beginning
Insertions (-B) lines, of Work Areas (-W) lines and of Pure COBOL Source Code (-9)
lines for the PROCEDURE DIVISION.

It is also possible to generate the data description only, and to write the rest of the
Program using Pure COBOL Source Code (-9) lines.

The Program would then have an ’F’ in the TYPE AND STRUCTURE OF
PROGRAM field and a corresponding variant in the TYPE OF COBOL TO
GENERATE field.

This Program will be made up of Call of Data Structures(-CD) lines and Pure
COBOL Source Code (-9) lines. The positioning of the generated descriptions in the
Program is determined by a Pure COBOL Source Code (-9) line for each Call of
Data Structures (-CD) line. This Pure COBOL Source Code (-9) line must have an
’F’ value in COBOL column ’7’, followed by a blank, and the DATA STRUCTURE
CODE IN THE PROGRAM. The generated descriptions begin on the first ’01’ level
and do not include the COBOL ’FD’ clause.

PURE COBOL SOURCE

It is possible to manage pure COBOL Source Code (-9) in the System Database. It
can be extracted by generating the Program with the ’C’ variant in the TYPE OF
COBOL TO GENERATE field.

There can be two versions of a Program:

COBOL (Pure COBOL Source Code (-9) lines); and VA Pac (Call of Data Structures
(-CD), Call of a P.M.S.’s (-CP), Beginning Insertions (-B), Work Areas (-W), and
Procedural Code (-P) lines).

© Copyright IBM Corp. 1983,2001 119

If the variant is ’C’ in the TYPE OF COBOL TO GENERATE field, the Pure COBOL
Source Code (-9) lines will be generated and the programming lines will be
ignored.

If the value in the TYPE OF COBOL TO GENERATE field specifies a COBOL
variant, the program will be generated with programming lines, and the Pure
COBOL Source Code (-9) lines will be ignored.

If the user wishes to see the information found in the ’CONSTANTS’ area of a
generated Program in the Pure COBOL Source program, he/she must use the Pure
COBOL Source Code (-9) lines to code this information, being sure to use line
numbers in the WORKING-STORAGE SECTION to ensure that this information is
properly placed.

The -9 line must be coded in the following way:
01 PACBASE-CONSTANTS PIC X(20) VALUE '20 characters..'

col 12 35 48

For example:

01 PACBASE-CONSTANTS PIC X(20) VALUE ’XXXXXXXXXXXXXXXXXXXX’

The result will have the following structure:

AAA9999V000 DDDDDDDD, where:
v (AAA) is the application code,
v (9999V) is the number of the session during which the program was extracted,
v (DDDDDDDD) the date of the extraction.

If the user wishes to see more information (e.g. Database code, user code...), he
must code the -9 line in the following way:
col 12 35

01 PACBASE-CONSTANTS PIC X(60) VALUE
- 'PACBASE-C20

'DATGNC '.

The result will be composed of the following concatenated elements:
v Session number (5 char.),
v Application code (3 char.),
v Generation date (8 char.),
v System Program code (6 char.),
v User code (8 char.),
v Time of Program generation (8 char.),
v COBOL Program-Id (8 char.),
v Database code (4 char.),
v Date of Program generation with century (10 char.).
OPERATION FIELD

C1: default value.

C2: source and complementary input field display.

120 VisualAge Pacbase: STRUCTURED CODE

--
! PURCHASING MANAGEMENT SYSTEM SG000008.LILI.CIV.1583 !
! !
! PURE COBOL PROCEDURE LTVAL1 FIRST TEST PROGRAM !
! 1 !
! !
! 2 3 4 6 5 !
! A LINE C COMPL. COBOL INSTRUCTION : SOURCE LIBR. !
! 006000 * PJJPS1 DUPLICATE RECORD VALIDATION 0318 !
! 006001 PJJPS1 F36. 0318 !
! 006002 PJJPS1 IF CATX = 'HA' 0318 !
! 006003 PJJPS1 MOVE '1' TO W-WW00-REC 0318 !
! 006004 PJJPS1 ELSE MOVE ZERO TO W-WW00-REC. 0318 !
! 006005 PJJPS1 F36-FN. 0318 !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! *** END *** !
! O: C2 CH: -9 !
--

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

1 6 PROGRAM CODE

Code identifying the program in the library.

2 1 ACTION CODE

C Creation of the line

M Modification of the line

D Deletion of the line

A Deletion of the line

T Transfer of the line

B Beginning of multiple deletion

G Multiple transfer

? Request for HELP documentation

E or - Inhibit implicit update

X Implicit update without upper/lowercase processing (on certain
lines only)

On the GP-C4 screen (JCL command lines), upper/lowercase
processing.

On the GP-C1 screen, upper/lowercase processing on
continuation lines only.

3 6 NUMER. COBOL LINE NUMBER

FALSE NUMERIC FIELD

0-999999 The line number can be entered for each COBOL instruction
and renumbered after an update. It is advisable to use a line
increment of 100 in COBOL.

Chapter 8. Appendix: Pure Cobol Source Code (-9) 121

NUMLEN CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

nn00 -
nn99

In a macro-structure, the COBOL line number can be
parameterized on the four leftmost digits by two-digit groups.

4 1 CONTINUATION (COBOL COLUMN 7)

- Continuation of a literal (normal COBOL use).

* Comment line (ANSI COBOL only).

5 65 COBOL INSTRUCTION

First part of the COBOL line. The end of the line (column 66 to
72) is displayed with the C2 OPERATION (O: C2).

6 6 END OF COBOL LINE

This field is displayed as a complementary field which is
viewed only with the C2 OPERATION (O: C2).

(1) This field is used to complete a COBOL line up to 72
positions.

(2) It also corresponds to the Identification area on a COBOL
coding form (columns 73 to 80) for a Program identification
entry. This entry appears on the far right side of a VisualAge
Pacbase generated program.

122 VisualAge Pacbase: STRUCTURED CODE

	Contents
	Notices
	Trademarks
	Chapter 1. Introduction
	Purpose of the Manual
	Description Principles
	Introduction to Structured Code
	Managed Entities/Associated Screens

	Chapter 2. Parameterized Macro-Structures
	Overview
	The Program Entity
	Call of Parameterized Macro-Structures (-CP)
	X-References to Programs/Screens (-XP/-XO)

	Chapter 3. Modifying the Identification/Environment Div. (-B)
	Chapter 4. Modifying the Working Storage/Linkage Section
	Data Structure Calls (-CD)
	Work Areas Screen (-W)
	Work Areas Formatted Line

	Chapter 5. Modifying the Procedure Division
	Introduction
	Procedural Code Screen (-P)
	Programmer Flags and Variables
	Titles and Conditions Screen (-TC)

	Chapter 6. Access Commands
	On-Line Access Commands
	On-Line Display Options
	On-Line Action Codes
	Generation and/or Printing

	Chapter 7. Example of a Generated Program
	Introduction
	Environment Division
	Working-Storage Section: Beginning
	Working-Storage Section: End
	Procedure Division

	Chapter 8. Appendix: Pure Cobol Source Code (-9)

