VisualAge Pacbase

PACBASE ACCESS FACILITY

Version 3.0

Visualdge

VisualAge Pacbase

PACBASE ACCESS FACILITY

Version 30

<|lI!

[Note

Before using this document, read the general information under ["Notices” on page v]

According to your licence agreement, you may consult or download the complete up-to-date collection of the VisualAge
Pacbase documentation from the VisualAge Pacbase Support Center at:

http:/ /www.ibm.com/software/ad/vapacbase/productinfo.htm

Consult the Catalog section in the Documentation home page to make sure you have the most recent edition of this
document.

First Edition (August 2002)

This edition applies to the following licensed programs:
* VisualAge Pacbase Version 3.0

Comments on publications (including document reference number) should be sent electronically through the
Support Center Web site at: http:/ /www.ibm.com/software/ad/vapacbase/support.htm or to the following postal
address:

IBM Paris Laboratory
1, place Jean—Baptiste Clément
93881 Noisy-le-Grand, France.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983,2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Notices .
Trademarks.

Chapter 1. Foreword

Introduction to the PAF Function

Chapter 2. Implementation in User
Programs .

Introduction O

Syntax of the SQL-PAF Language

Database Access Optimization .

The 'IDENT’ Parameter e
PAF Implementation under VisualAge Pacbase
The Translated User Program

Embedded PAF Cursors . .

Execution of PAF User Programs .

Chapter 3. Examples of Programs
Using PAF .

Introduction .
Batch Example
On-Line Example

Chapter 4. PUF - Pacbase Update
Facility. .

UPDP - Batch Mode

On-Line Mode Lo
List of Statements and How They Work .

Chapter 5. PAF Implementation for

Various Environments .
0OS/390-CICS Version .

© Copyright IBM Corp. 1983,2002

. Vil

.15
.17
. 18
. 18
.21
. 23

. 25
.25
.25
. 38

. 57
. 57
. 57
. 59

. 61
. 61

IMS Version61
GCOS7 Version63
GCOSS8 Version64
Windows/NT Version.66
UNIX Version69
Chapter 6. Error Messages 73
The PAF Translator.73
The PAF Extractor76

Chapter 7. Presentation of the

PAF-PDM Functions79
Foreword79
Objectives of PAF-PDM Functions.79
Operating Mode of PAF-PDM Functions.81

Chapter 8. Extraction Master Path:

Definition / Description. 85
Chapter 9. Extraction Master Path . . . 89
Extraction Sequence (S-type lines)89
Extraction Sequence (Particular Cases)91
Extraction Sequence (A-type lines).92
Conditions and Filters (I and O-type lines)92
Selective Extraction (V-type line)93
Presentation (P-type line).9

Chapter 10. Execution of a User

Extractor / E-Type PTEx 99

Chapter 11. Examples of Extraction

Master Paths & XPAF Reports 101
iii

iV VisualAge Pacbase: PACBASE ACCESS FACILITY

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Subject to
IBM’s valid intellectual property or other legally protectable rights, any
functionally equivalent product, program, or service may be used instead of the
IBM product, program, or service. The evaluation and verification of operation in
conjunction with other products, except those expressly designated by IBM, are the
responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of

Licensing, IBM Corporation, North Castle Drive, Armonk NY 10504-1785, U.S.A.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Paris Laboratory, SMC
Department, 1 place J.B.Clément, 93881 Noisy-Le-Grand Cedex. Such information
may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM may change this publication, the product described herein, or both.

© Copyright IBM Corp. 1983,2002 \%

Vi VisualAge Pacbase: PACBASE ACCESS FACILITY

Trademarks

IBM is a trademark of International Business Machines Corporation, Inc. AIX,
AS /400, CICS, CICS/MVS, CICS/VSE, COBOL/2, DB2, IMS, MQSeries, OS/2,
PACBASE, RACE, RS/6000, SQL/DS, TeamConnection, and VisualAge are
trademarks of International Business Machines Corporation, Inc. in the United
States and/or other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

All other company, product, and service names may be trademarks of their
respective owners.

© Copyright IBM Corp. 1983,2002 vii

viii VisualAge Pacbase: PACBASE ACCESS FACILITY

Chapter 1. Foreword

Introduction to the PAF Function

The PACBASE Access Facility (PAF) function enables you to extract information
from the VisualAge Pacbase Database via SQL statements. This extracted
information can then be used to update the VisualAge Pacbase Database.

RELATIONAL VIEW OF THE DATABASE

The PAF Function provides a relational description of the standard VisualAge
Pacbase metamodel. This type of description is a prerequisite for the formulation
of SQL queries.

A relational model is a tabular structure of data organized in columns. Relations
between objects (data bases, table spaces, tables, views, or indexes - but not the
data itself) are correspondences between the table columns.

In the PAF tabular model:
* Each entity is described by a set of tables.

¢ Information about an entity definition or description is described by specific
columns.

* Cross-references are described in two ways:
— By direct relations between two columns of different Tables,

— By "virtual” tables, whose columns identify the two tables to be related and
represent the cross-references.

DESCRIPTION OF TABLES

The tables and columns of the VA Pac metamodel are described in detail in the
reference manual: PAF Tables/ Host (Ref: DD PAG).

If you ever need to write PAF programs concerning method entities managed by
the VA Pac VA Pac WorkStation, the edition is performed from the GENERATION
AND PRINTING COMMANDS screen (CH: GP), with PCM command in the COM
field. The method code -one character only- will be input in the ENTITY field.

List of possible values for methodologies:

M stands for Merise

D stands for YSM

Y stands for Yourdon

A stands for SSADM

O stands for OMT

F stands for IFW

© Copyright IBM Corp. 1983,2002 1

You will then have the description of the tables and columns for the required
metamodel.

DATABASE UPDATING

Refer to subchpater "UPDP - BATCH mode” (chapter "PUF - PACBASE UPDATE
FACILITY").

The Structured Query Language (SQL) is the standard query language used with
Relational Databases. Its syntax is similar to that of the English language.

This language is used to formulate queries, retrieve selected data, and update the
database.

An SQL query is defined by a SELECT statement (See Subchapter "SYNTAX OF
THE SQL-PAF LANGUAGE").

The tables in a Relational Database are composed of rows (equivalent to records of
a file).

An SQL query defines a subset of the information contained in a database without
specifying when or how this information was obtained and processed.

In order to integrate SQL with the procedural languages used in business-oriented
computing, the concept of the cursor has been associated with an SQL query.

A cursor makes the extracted rows available to a PAF user program. The cursor is
defined and declared with a DECLARE CURSOR statement, which includes a
SELECT statement that identifies the extracted rows. When a cursor is used, the
program can retrieve each extracted row sequentially: the cursor must be opened
(with an OPEN statement) before any rows are retrieved. A FETCH statement is
used to retrieve the cursor’s current row, and can be executed repeatedly until all
rows are retrieved. Then, the cursor must be closed with a CLOSE statement.

Once the cursor has been defined, the statements make the cursor similar to a file;
the FETCH statement is the equivalent of a READ statement in COBOL.

STANDARD SQL QUERIES

With the PACBASE Access Facility (PAF), the Database can be accessed via the
Structured Query Language (SQL), which is commonly used for Relational
Databases.

Accesses are performed by the declaration and use of SQL cursors.
Each cursor is associated with a VA Pac context, i.e. Library and Database Session.
Several cursors can be processed at one time in order to access information

pertaining to several VisualAge Pacbase cross-references.

Queries can be written directly in COBOL, described in all batch or on-line user
programs, or generated by VisualAge Pacbase.

In all cases, the query is processed by the PAF Translator program (before the

COBOL compilation), which translates the SQL statements into CALL instructions
used by the PAF Extraction Sub-Program.

2 VisualAge Pacbase: PACBASE ACCESS FACILITY

THE PAF EXTRACTION SUB-PROGRAM

This Sub-Program accesses and extracts data from the Database. It retrieves the
internal parameters built by the PAF Translator Program in order to perform the
requested data extraction.

Extracted data is transmitted to the PAF user program in the Communication Area

generated by the PAF Translator Program (COBOL Communication Area in the
WORKING-STORAGE SECTION).

Chapter 1. Foreword 3

4 VisualAge Pacbase: PACBASE ACCESS FACILITY

Chapter 2. Implementation in User Programs

Introduction
THE USER PROGRAM

PAF is implemented through an on-line or batch user program, either written
directly in COBOL or generated by VA Pac. The PAF Extraction Sub-Program
generates all the accesses to the Specifications Database.

In the user’s program, the cursor(s) must first be declared via a DECLARE
CURSOR statement in order to access the desired tables. For each declared cursor,

the sequence of statements is as follows:

CONNECT: Connect Cursor to a Visualge Pacbase context (User, Library, and
Database Session),

OPEN: Open Cursor, i.e. extraction from the Specifications Database,
FETCH: Sequentially retrieve extracted rows,
CLOSE: Close Cursor.

The SET statement allows for the dynamic modification of the PAF Translator
Program’s operating parameters.

The INIT and QUIT statements perform technical initialization and termination
operations according to the extraction mode and the hardware in use (e.g. File
OPEN/CLOSE in batch mode). They are not required in on-line mode.

THE PAF TRANSLATOR

SQL commands are inserted into a PAF user program and are translated into
COBOL instructions before the COBOL compilation.

The PAF Translator transforms SQL statements into comment lines which precede
the translated COBOL instructions.

The SQL-PAF DECLARE statement is translated into a declaration. Other SQL
commands are translated into CALLs of the Extraction Sub-Program, except for the
SET statement, which is not an SQL command and has a very special usage.

For more information, please refer to Paragraph "The Set Statement” in Subchapter
‘Syntax of the SQL-PAF Language’.

The PAF Translator is parameterized by a comment line inserted into the PAF user
program following the IDENTIFICATION DIVISION line. This parameter line, the
description of which appears on the next page, is automatically generated if the
program is developed with VA Pac and if the "EXP” operator is used on a
Procedural Code (-P) line of the program.

For more details, please refer to Subchapter 'PAF Implementation Under VisualAge
Pacbase’.

© Copyright IBM Corp. 1983,2002 5

The PAF Translator parameter line is formatted as follows:

COLUMN) LENGTH | CONTENT

1 6 Cobol line number

7 1 * for Cobol comment line

8 5 Execution mode: batch or on-line

14 4 Fixed label

19 3 Library code

23 5 Session number (& version)

29 2 Generation variant(s) (Cobol & Map)

32 3 Fixed label

38 3 Batch program skeleton, on-line program skeleton or Cobol program
skeleton

42 1 Skeleton language (A or F)

44 6 ‘Single” or “double’ quotes delimiter

The Execution Mode is used to distinguish between batch and on-line. The
Execution Mode that VA Pac takes into account depends on the generator
implemented on-site. The Execution Mode allows the PAF Translator to declare, as
appropriate, the work areas specific to on-line and to generate the calls to the
Extraction Sub-Program.

The Generation Variant taken into account by VA Pac depends on the one specified
on the Program Definition screen. It is used to adapt the generated syntax
according to the compiler.

The String Delimiter which VA Pac takes into account depends on what was
specified on the Library Definition. It allows PAF Translator to recognize the string
delimiter for both generation and source analysis.

The Library and Session parameters allow the PAF Translator to connect to the
appropriate VA Pac Database when it is processing a Cursor dealing with a User
Entity: the columns associated with User Entity depend on the description of the
corresponding Meta-Entity. Therefore, the PAF Translator has to read this
Meta-Entity in the Library and Session where it is described in order to validate
the SQL query.

The PAF Translator is a bilingual program. The first specified Language Code
applies to error messages generated by the Translator. The second refers to the
language used in the mnemonic coding of the Tables and Columns which describe
the VisualAge Pacbase Database.

This implementation of two language codes (English and French) allows a site to
generate programs for another site using a different language code. The values
taken by VA Pac for these two language codes are those of the AE and SG files
(error messages and generation skeleton).

The line 2 generated by the VA Pac generator is read by the PAF generator, but is
not reproduced in the translated source.

The SET statement can be used to easily modify these parameters anytime during
the actual translation process. For example, it may be necessary to change the

6 VisualAge Pacbase: PACBASE ACCESS FACILITY

Library Code one or more times. However, in the case of an on-line program
containing the INSERT and FETCHER statements (without DECLARE CURSOR),
the SET statement must come before the previous statements for the initialization
of the aerea (e.g., writing the statement in Working Storage Section).

THE PAF EXTRACTOR SUB-PROGRAM

The PAF Extractor Sub-Program manages accesses to the VisualAge Pacbase
Database.

This sub-program retrieves the internal parameters built by the PAF Translator and
performs the selected data extraction as follows:

¢ When a CONNECT statement is issued, the Extractor establishes the user’s
connection, for the specified Cursor, to the VA Pac Database (validates access
authorization to Library and Database Session).

e When an OPEN statement is issued, the Extractor accesses the VA Pac Database,
and stores the extracted rows in an temporary Work File. The number of
extracted rows may be parameterized for each Cursor (SIZE parameter within
the CONNECT Statement).

e When a FETCH statement is issued, the Extractor retrieves the extracted rows,
one by one, from the Temporary Work File and sends them to the user program
Communication Area generated by the PAF Translator.

Refer to Subchapter "Database Access Optimization” which provides a detailed
explanation of of the mechanism used by the Extractor Sub-Program to manage
the OPEN and FETCH statements.

* When a CLOSE statement is issued, the specified Cursor is closed.

DAF extractor is also used in the DUPD procedure, which updates the DSMS
database using the DAF Tables sequential file.

For more information, refer to the DSMS Operations Manual, Chapter ‘Batch
Updates from DAF TAbles (DUPD)’.

THE TEMPORARY WORKFILE

The purpose of the temporary Workfile is to store the rows extracted from the
Specifications Database after an OPEN statement is issued (or a FETCH statement
once all the extracted rows have been restituted to the user program).

Extracted rows are retrieved one by one from the temporary Workfile for each
FETCH statement. The maximum number of extracted rows may be parameterized
for each Cursor (via the SIZE parameter in the CONNECT statement).

For more details, refer to Subchapters ‘Syntax of the SQL-PAF Language’ and
"Database Access Optimization’.

The temporary Workfile also contains technical parameters used by the PAF
Extractor Sub-Program for Cursor management (See topic "SPECIFICATIONS
FIELD" in Subchapter "THE TRANSLATED USER PROGRAM”").

PHYSICAL DESCRIPTION

The temporary Workfile is an indexed sequential file with a variable format.

When this file is created for a batch job, its access key is composed of:

Chapter 2. Implementation in User Programs 7

e A Cursor code,
e A Structure code,
¢ A Record number.

When this file is created for on-line use, it is used by all PAF applications and
users, and its access key is composed of:

* A Conversation identifier,
e A Cursor code,

* A Structure code,

* A Record number.

CICS:: In a CICS environment, there can be several VA Pac databases; one
temporary Workfile is created for each database.

Syntax of the SQL-PAF Language

Due to the nature of the first release of PAF, i.e., as an extraction tool, the SQL
statements to be used with PAF are limited to database queries only. Creation,
Modification, and Deletion statements are not recognized.

GENERAL INFORMATION

To access the Specifications Database through the PAF function, the user has to
declare, and then use, SQL Cursors.

For each table to be accessed, the user must declare a Cursor in the
WORKING-STORAGE SECTION (DECLARE CURSOR statement). In the
PROCEDURE DIVISION, the sequence of statements associated with a given
Cursor is as follows:

CONNECT, OPEN, FETCH, and CLOSE.

OPEN, FETCH and CLOSE are standard SQL statements, while the CONNECT
statement is specific to the PAF function. All four of these statements are
designated as Cursor operation statements in SQL-PAF syntax.

A PAF user program can use up to 100 Cursors.
The INIT (initialization) and QUIT (termination) statements, which are
independent of Cursors, must be issued, respectively, before and after any Cursor

operation statements (compulsory in Batch mode).

NOTE: All SQL-PAF sentences must be coded starting in COBOL column 12, must
begin with EXEC PAF, and must end with END-EXEC.

CURSOR DECLARATION

An SQL Cursor is declared in the WORKING-STORAGE SECTION of the PAF user
program by means of a DECLARE CURSOR statement.

In the DECLARE statement, the following keywords should be noted:

SELECT, FROM, WHERE, AND, and OR.

8 VisualAge Pacbase: PACBASE ACCESS FACILITY

The syntax of the DECLARE CURSOR statement is as follows (values between
parentheses are optional):

EXEC PAF DECLARE <cursor-code> CURSOR FOR
SELECT * FROM <table-code> (WHERE <condition(s)>)
END-EXEC

where:
e <cursor-code> is the four-character cursor identifier,

SELECT here applies to the whole table, and is used to retrieve all table
columns; in other words, columns cannot be selected individually. Thus, the
syntax is always SELECT *.

¢ FROM cannot be used with a JOIN clause, and is therefore followed by just one
table code.

* <table-code> identifies the PAF Table. The tables and columns of the VisualAge
Pacbase metamodel are described in detail in the PAF Tables/Host (Ref: DD
PAG) Reference Manual. To edit tables and columns descriptions for method

entities, refer to sub-chapter Introduction to PAF function’, section "Description
of Tables'.

e WHERE does not allow SUBSELECTs.

* <condition(s)>: Each condition applies to a table column and is indicated in
parentheses.

Several conditions may be linked using the logical "AND” and "OR’ operators.
The total number of elementary conditions is limited to 50.

A condition is formatted as follows:

COLUMN OPERATOR OPERAND

where:

— COLUMN = column code

— OPERATOR may have the following values:

= : equals

> : is greater than

>= : is greater than or equal to
: is Tess than

<= : is less than or equal to

<> : is different from
¢ OPERAND is either:

. Another column of the table,
. A COBOL constant,
. A PAF user program COBOL variable.

NOTE: Alphanumeric constants cannot exceed 60 characters. If this length is
insufficient, an initialized COBOL variable can be used instead.

Numeric constants can only be unsigned integer constants and cannot exceed 18
digits. The PAF Translator does not validate the declaration of COBOL variables
used as operands. Subscripted COBOL variables cannot be created.

Limitations related to the use of the SELECT clause are not restrictive, since the
ability to manage several cursors at the same time makes up for the inconvenience
of mono-table accesses. Furthermore, coding a very complicated SQL query is often
a tricky matter. The purpose of the PAF Function is not to provide a
comprehensive SQL interface, but to allow its users to access any data contained in
the VA Pac Specifications Database. Data is accessed at the PAF user program level.

Chapter 2. Implementation in User Programs 9

For more information please refer to Subchapter "Embedded PAF Cursors” in this
Chapter.

CURSOR MANAGEMENT

Cursor operation statements are written in the PROCEDURE DIVISION of a PAF
user program.

CONNECT:: This is the first statement to be issued. It performs the connection to
a VisualAge Pacbase context. This context can be modified as many
times as needed.

The syntax of the CONNECT statement is as follows:
EXEC PAF CONNECT <cursor-code> TO
USER = <user-code>
PASS = <password>
LIB = <library-code>
SESSION = <session-number-and-version>
NET = <sub-network-option>
SIZE = <maximum-number-of-rows>
IDENT = <transaction-code>
BASE = <VA Pac-Database-code>
END-EXEC

The parameters to the right of the equal sign ('=’), which are described below,
must be either literals or COBOL variables.

USER: VisualAge Pacbase user code

PASS: VisualAge Pacbase user password

LIB: VisualAge Pacbase library code

SESSION: VisualAge Pacbase session number and version

NET: VisualAge Pacbase Database sub-network option:

ILC AU, < > and Z

SIZE: Maximum number of rows stored in the temporary Work File

IDENT: Conversation transaction code

BASE: 4-character Database code

All of the parameters in the CONNECT statement are required for the first cursor
connection. The CONNECT statement is used to assign values to the parameters
associated with the cursor during extraction. However, the user may modify
certain parameters during a subsequent connection (for example, to use the same

request in a different VA Pac context).

It is always possible to reconnect a cursor (for example to explore another
sub-network with the same query). In order to request another VA Pac connection,

10 VisualAge Pacbase: PACBASE ACCESS FACILITY

the user only has to enter the parameters for the new connection and does not
have to enter them in the order specified above.

EXEC PAF CONNECT <cursor-code> TO

NET = <sub-network-option>

LIB = <library-code>

END-EXEC

NOTES ON THE 'IDENT” AND "BASE’ PARAMETERS

These two parameters are only used in on-line PAF user programs.

The IDENT parameter is a 25-character field which identifies the on-line
conversation using the PAF function. It is also part of the access key in the
temporary Work File. Its value depends on the monitor in use. For example, on
CICS, it is advised to set this parameter with the DFHTERMID variable supplied
by CICS. For complete information on the IDENT values, refer to "The IDENT’
Parameter” subchapter.

The BASE parameter contains the four-character database code for access to the VA
Pac Database and the PAF Temporary Work File. (This parameter is used only with
IBM hardware running on CICS).

NOTES ON THE 'SIZE” PARAMETER

The maximum number of extracted rows in the temporary Workfile may be
exceeded in the case of the following tables:

* Segment Descriptions (SEGDEL),

* Entity Comments (entDOC) or Entity Decription Comments (entdscDOC) in
which Parameterized Input Aids are called.

For these three types of tables, the extraction proceeds until the end of the Segment
or PIA description. It stops when the SIZE limit (max. no. of rows) is reached or
exceeded.

The SIZE parameter value must be greater than zero. Otherwise, the PAF Extractor
Sub-Program automatically sets it to "1".

OPEN: When this statement is issued, the Extractor Sub-Program accesses the VA
Pac Database and writes, in the temporary Workfile, the rows selected (and
extracted) according to the cursor declaration.

A cursor can be opened if it is already connected and if it has not yet been opened.

The syntax of the OPEN statement is:
EXEC PAF OPEN <cursor-code> END-EXEC

FETCH: When this statement is issued, the Extractor Sub-Program sends the
current retrieved row from the Intermediate work file to the PAF user

program.

The cursor must be opened and there may be as many FETCH statements as
necessary.

The syntax of the FETCH statement is:
EXEC PAF FETCH <cursor-code> END-EXEC

Chapter 2. Implementation in User Programs 11

NOTE: The standard syntax of the FETCH statement includes the keyword
"INTO’, which allows each selected column to be associated with a COBOL
field.

The PAF-SQL extractor extracts ALL columns into a Communication Area,
generated in the WORKING-STORAGE SECTION when a DECLARE statement is
issued.

Thus, the keyword INTO (followed by the list of target COBOL fields) is not used
in the SQL-PAF FETCH statement.

CLOSE: Only an opened cursor can be closed: a CLOSE statement can be issued
only after an OPEN or a FETCH statement.

The syntax of the CLOSE statement is:
EXEC PAF CLOSE <cursor-code> END-EXEC

INSERT: INSERT inserts data in the intermediate workfile (for example, a PAF
extraction). This data must be stored initially in the pref-PUFENR field of
pref-PAFCOM - "pref” being a prefix of 1 to 4 characters long.

Note:

At the time of an INSERT the workfile may already contain "70"-type recordings
with the same identifier provided by previous transactions. Consequently, before
inserting new data in the workfile, these recordings are re-read in order to
determine the number of the statement which will be affected when the next
recording is inserted (pref-NUMENR field of pref-PAFCOM).

CALPUF: This statement changes itself into a call to the PUF subprogram.

FETCHER: It returns, one be one, the errors which have been stored in the
intermediate file by the PUF subprogram in the pref-PUFERR field of
pref-PAFCOM. The user program is the one who must contain the
restitution loop.

INSERT, CALPUF et FETCHER are independent of the cursors and exist in on-line
mode only.

THE SET STATEMENT

The SET statement is used to modify a number of parameters used by the PAF
Translator.

These parameters are initialized by the second line (a COMMENT line following
the IDENTIFICATION DIVISION) in a PAF user program. This line is described in
this chapter, in the 'Introduction” Subchapter, Paragraph 'The PAF Translator’.

After the specified parameters are actually updated, the PAF Translator sends the
SET statement as comments to the translated PAF user program. The SET
statement is the only SQL-PAF statement which is not translated into COBOL.

To generate the fields required by PUF, you must declare the SET statement at the
very beginning of the Working Storage Section, in the first EXEC PAF. In this EXEC
PAF SET, you can use the UPDATE, BASPUF and IDPUF parameters, which are
specific to PUE.

12 VisualAge Pacbase: PACBASE ACCESS FACILITY

You can also use the SET statement in the Procedure Division, provided you have
first declared SET at the very beginning of the Working Storage Section, in the first
EXEC PAF. In this case you can use it for the SESSION, LIB... parameters which are
dynamically modified.

The syntax of the SET statement is as follows:
EXEC PAF SET
LIB = <Library code>
DELIM = <delimiter>
TYPE
MODE
LINK = <calling mode>

<generation variant(s)>

<execution mode>

SESSION = <session-number-and-version>
USRENT = <UE parm>
CTXCOL = <CTX parm (context)>
BASPUF = <base-PUF>
IDPUFL = <ident-PUF>
UPDATE = <pref>
END-EXEC

The syntax of the SET statement is similar to that of the CONNECT statement. In
particular, it is not necessary to give new values to the LIB, DELIM, TYPE, and

MODE parameters and to enter them in the order given above.

THE PAF TRANSLATOR PARAMETERS

The values of these parameters are purely alphanumeric and do not require a
string delimiter.

EXAMPLE: In order to modify the LIB parameter, using the Library code "PFA",
the syntax would be as follows:

EXEC PAF SET LIB = PFA END-EXEC

DESCRIPTION OF PARAMETERS:

LIB: is a 3-character parameter. Its default value is the Library from which the PAF
user program is generated.

It is used to declare a cursor for a table of User Entities (UEs) described by
Meta-Entities which are not defined in the Library from which the PAF user

program is generated.

DELIM: is a six-character parameter. It is used to modify the delimiter using the
following values:

SINGLE: for the single quote ('),
DOUBLE: for the double quote (").
TYPE: is a two-character parameter. It is used to modify the variants VA PAC

TYPE OF TP MONITOR and MAP TO GENERATE/TYPE OF COBOL TO
GENERATE.

Chapter 2. Implementation in User Programs 13

EXAMPLE: When a PAF user program is written and generated with the VA Pac
Batch Systems Development component in an IBM CICS/MVS
environment (Variants ‘00" or X0’), in order to obtain an On-Line
application to be executed in an IBM IMS/VS environment, the TYPE
parameter value needs to be changed to "01” or "X1" (00’ is
automatically generated by the PAF Translator).

Refer to the On-Line Systems Development and Batch Applications Manuals for a
list of the values of these variants.

MODE: is a five-character parameter. It is used to modify the execution mode for
VA Pac users who are using the Batch generator to generate on-line
programs (value of MODE = "TP").

LINK: is a six-character parameter. It is used to specify the calling mode of the
extractor (STATIC or DYNAM) for static or dynamic calls, respectively. For
CICS, this parameter is ignored and the translator generates a LINK
statement for the call to the extractor. For DOS in batch mode, the call is
always dynamic and is executed using module PACDYNAM. For BULL
GCOS7 and GCOS8 hardware, the statement is ignored for on-line
processing, in which case the call is always static.

SESSION: is a five-character parameter. It is used to modify the session. Its
default value is the session in which the PAF user program is
generated.

USRENT: (1 to 5 characters). This parameter is used to modify the code of the
"keywords” column in the UE definition table, in order to avoid the
problem of codes conflicting with the user data elements called in the
description of the associated meta-entity. The default code of this
column is WUEO for the UE explicit keywords (see the "PAF
TABLES/HOST"” manual, Chapter "DESCRIPION OF PAF TABLES”,
Subchapters "CLIENT and EXTENS. USER ENTITY"). The USRENT
parameter value replaces the "'UEO’ string in the column code:

USRENT = XXX renames the column as WXXX.

CTXCOL: (1 to 5 characters). This parameter is used to modify the codes of the
context columns of every PAF table, in order to avoid the problem of
conflicting codes in the definition or description tables with user data
elements called in the description of the associated meta-entity. The
default codes of these columns are LCTX, SCTX, TCTX and for the
Library code, session number and hierarchical indicator, respectively
(see chapter "IMPLEMENTATION IN USER PROGRAMS", subchapter
"THE TRANSLATED USER PROGRAM").

The CTXCOL parameter value replaces the ‘'CTX’ string in each of these column
codes:

CTXCOL = YYY renames these columns as LYYY, SYYY, TYYY and NYYY,
respectively.

It is important that the USRENT and CTXCOL parameters are NOT assigned the
same values, in order to avoid additional conflicts.

The "UPDATE = pref” clause

14 VisualAge Pacbase: PACBASE ACCESS FACILITY

Generates the description of the two workings which will be used at the time of
the calls to the PAF extractor (pref-PAFCOM) or to the PUF program
(pref-PUFCOM) with the help of the INSERT, CALPUF and FETCHER statements -
"pref” being a prefix of 1 to 4 characters. This clause can only be used in the
Working Storage Section, in the SET statement.

The "BASPUF = base-PFU"” and "IDPUF = ident-PUF" statements

The PUF statements are independent of PAF cursors. The PUF- specific identifiers
must be declared in order to give access to the workfile.

- "base-PUF": VA Pac transaction code (4 chars.)

- "ident-PUF": identifier (1-25 chars.) These clauses can only be used in the
Working Storage Section, in the SET statement.

NOTE:

For the last two clauses, parameters on the right side of ‘=" may be constants
(indicated between quotes) or COBOL variables (for CONNECT).

TECHNICAL INITIALIZATION AND TERMINATION

The INIT and QUIT statements allow the Extractor to perform technical
initialization and termination operations which depend on the Operating System in
use. As a result, both statements must be issued, respectively, before and after
other SQL-PAF statements.

The syntax of the INIT statement is:

EXEC PAF INIT END-EXEC

The syntax of the QUIT statement is:

EXEC PAF QUIT END-EXEC

NOTE: INIT and QUIT in batch mode

If the PAF user program calls sub-programs, these statements may be executed
only once (in the calling program) but they must be written in each sub-program
which contains PAF statements.

Database Access Optimization
THE WHERE CLAUSE

Using the WHERE clause improves overall performance by optimizing Database
accesses and reducing the volume of extracted data stored in the SYSPAF
intermediate file (only relevant data need be extracted).

* Optimizing Database Accesses:

A Table access will prove more or less efficient according to the WHERE clause
utilization.

EXAMPLE: Access to the SEGDEL Table

Chapter 2. Implementation in User Programs 15

* SELECT * FROM SEGDEL WHERE CDEL = "ccccec’
Data Element’s cross-references to Segments
Equivalent on-line choice: EccccccXS

* SELECT * FROM SEGDEL WHERE CSEG = ’ssss’
Direct access to the Segment’s Description
Equivalent on-line choice: SssssCE

* SELECT * FROM SEGDEL WHERE CSEG > ’ssss’

Prior access to the List of Segments, then -- for each Segment -- an access to its
Description is performed.

Equivalent on-line choice: LCSssss, S CE
* Decrease in Volume of Extracted Data (stored in the SYSPAF Temporary File):

EXAMPLE: Extraction of Programs which are macro-commands.

— Either select all the programs and then keep only those whose Column code

TPGMNA = M,
— Or select in a WHERE clause only the programs whose Column code
TPGMNA = M.

Extraction will obviously be quicker with the second solution.

CONCLUSION: It is highly recommended to use the WHERE clause and to use it
with a maximum of restrictive paramaters.

THE SIZE PARAMETER

In order to optimize accesses to the VA Pac database, the PAF Extractor reads
several rows in advance. Advance reading avoids a systematic Read each time a
row is fetched; systematic Reads cause systematic resets (START) in the VA Pac
Index (AN) file.

Advance reading may be seen as the logical equivalent of Input/Output BUFFERs
used by File Access Methods implemented with any Operating System.

For each cursor, the user can parameterize the number of rows read in advance by
using the SIZE parameter in the PAF function’s CONNECT statement.

MANAGEMENT OF ROWS READ BY THE PAF EXTRACTOR

The PAF Extractor reads the Database and validates the row that has been read. If
the result is valid, the row is stored in the temporary Workfile.

This process is repeated as long as the number of stored rows is less than the value
of the SIZE parameter.

Processing ends when the Extractor READ function detects the last row for the
declared cursor.

The Extractor READ function returns the number of rows actually read and an
End-of-Cursor Indicator.

This Read function is systematically executed when a cursor OPEN statement is
issued.

16 VisualAge Pacbase: PACBASE ACCESS FACILITY

It may also be executed when a FETCH statement is issued. The purpose of a
FETCH is mainly to read the temporary Workfile in order to retrieve a new row.

When the retrieved row is the last one to be read by the Extractor READ function,
the function is executed once again if end-of-cursor has not been detected.

ACCESS OPTIMIZATION VIA THE SIZE PARAMETER

The SIZE parameter is a critical factor in the PAF Extractor’s efficiency in terms of
response time.

SETTING THE SIZE PARAMETER FOR AN ON-LINE PAF USER PROGRAM:

The value of the SIZE parameter should not be less than the number of rows
fetched per screen (number of records displayed on the screen, for example). Based
on a simple hypothesis that all rows which are read are also valid, the optimal
value of the SIZE parameter is a multiple of the number of rows fetched per
screen.

NOTE: If the on-line PAF user program includes screen branching operations, the
optimal value of the SIZE parameter is equal to the number of rows
fetched per screen.

SETTING THE SIZE PARAMETER FOR A BATCH PAF USER PROGRAM:

At first glance, it may seem appropriate to set the SIZE parameter to a large value
in order to minimize the number of READs. However, a value which is too large
would result in the dynamic creation of too many records for most indexed
sequential file access methods.

The ideal in Batch is to sufficiently define the size of the Input/Output BUFFER
for the temporary Work File so that the READ function causes only logical
input-outputs.

The ’IDENT’ Parameter

The purpose of the IDENT parameter is to uniquely identify a conversation in a
multi-user environment.

This identification is therefore closely linked to the TP Monitor under which the
translated PAF user application will be executed.

The recommendations below take into account the standard variables supplied
with the TP Monitor (terminal identifier, etc.).

0OS390-CICS or DOS

The EIBTRMID CICS variable identifies each terminal.
IMS/VS

The name of the logical terminal is found in the IO/PCB field (S-IPCB-XNMTE
variable in programs generated by the VA Pac OLSD function).

GCOS7 and GCOS8

Chapter 2. Implementation in User Programs 17

The variable associated with the SYMBOLIC SOURCE is found in the
COMMUNICATION SECTION (7-CD01-XTERM in programs generated by the VA
Pac OLSD function).

PAF Implementation under VisualAge Pacbase

The DECLARE CURSOR clause must be entered in the WORKING- STORAGE
SECTION.

It must therefore be inserted on Work Area (-W) lines in the Program or On-Line
Screen.

"EXEC PAF" must start in the 5th position of the LEVEL OR SECTION field, and
"END-EXEC" must be entered after the cursor declaration.

A LIN T LEVEL OR SECTION WORK AREA DESCRIPTION

100 EXEC PAF DECLARE CUO1 CURSOR FOR
120 SELECT = FROM DELDEF
140 WHERE FDELIL = 5 END-EXEC

Except for the DECLARE CURSOR clause, all SQL-PAF statements are written on
the Procedural Code (-P) lines of the PAF user Program or On-Line Screen. An EXP
PAF Operator generates EXEC PAF and END-EXEC calls, which are found before
and after all SQL-PAF statements, respectively.

A SF LIN OPE OPERANDS

EXP OPEN Cu0l

will generate:

EXEC PAF
OPEN Cuol
END-EXEC

The Translated User Program

Before COBOL compilation, the PAF Translator transforms SQL-PAF queries into
COBOL declarations and instructions. (Warning: PAF translator is incompatible
with a COBOL formatting request).

The EXEC PAF END-EXEC sequences are commented out in the COBOL
program.

WORKING-STORAGE SECTION

The following phrase:
DECLARE <cursor-code> CURSOR FOR SELECT * FROM <table-code>

generates the following data declarations in the WORKING- STORAGE SECTION,
under Level 01 <cursor-code>-CURSOR, of the PAF user program:

* The Cursor Management field,
* The Specifications field, where the query is translated,
¢ The Communication Area, i.e., the selected PAF Table.

The two fields which are accessible in the program (Cursor Management Field and

Communication Area) are prefixed by the cursor-code. The Specifications field is
generated as a FILLER.

18 VisualAge Pacbase: PACBASE ACCESS FACILITY

EXAMPLE:

Extraction of Text Descriptions (TXTDSC Table) for Text Entity "TEXTO01’, including
Text Paragraphs greater than 'EE’. The cursor-code is TX04.

EXEC PAF DECLARE TX04 CURSOR FOR SELECT = FROM
TXTDSC WHERE CTXT = 'TEXTO1' AND CPAR > 'EE'
END-EXEC

The following fields are grouped under the level:
01 TX04-CURSOR

CURSOR MANAGEMENT FIELD

05 TX04-SAVE.

10 FILLER PIC X(06) VALUE 'TX0401'.
10 TX04-TABCOD PIC X(10) VALUE 'TXTDSC "
10 TX04-RETCOD PIC 9(00002).

10 TX04-0RDER PIC X(00001).

10 TX04-FI PIC X(00001).

10 TX04-FT PIC X(00001).

10 TX04-CUSRCU PIC X(00008).

10 TX04-CPSWCU PIC X(00008).

10 TX04-CLIBCU PIC X(00003).

10 TX04-CSESCU PIC X(00005).

10 TX04-CNETCU PIC X(00001).

10 TX04-NRECCU PIC 9(00006).

10 TX04-INTERN PIC X(00034).

TABCOD: Table code.
RETCOD: Extractor Return Code.

"0": No error detected. Other values are presented in Chapter "ERROR
MESSAGES”, Subchapter "THE EXTRACTOR".

ORDER: Each PAF statement is identified by a number:
1 INIT

2 CONNECT

4 OPEN

6 FETCH

8 CLOSE

9 QUIT

FI: End of cursor READ:

1 Read of cursor’s last row,

0 Otherwise.

FT: End of cursor processing:

1 Cursor FETCH beyond its last row,

Chapter 2. Implementation in User Programs 19

0 Otherwise.

NOTE: Fl is set to ‘1’ in two cases:

* The FETCH command returns the last corresponding record to the cursor
selection.

* No data is selected by the OPEN command.

If a FETCH command is executed when FI = "1’, the FT indicator is returned to
1" without the

new record being used.
The OPEN command can also change the FI indicator to avoid a useless FETCH.

The other fields contain user parameters related to the CONNECT statement. The

values of these parameters are automatically generated in the PROCEDURE

DIVISION by the PAF Translator when the CONNECT statement is encountered.

CUSRCU: VisualAge Pacbase user code

CPSWCU: VisualAge Pacbase user password

CLIBCU: VisualAge Pacbase library code

CSESCU: VA PAC database session number (and version)

CNETCU: VisualAge Pacbase database sub-network option

NRECCU: Max. number of records in the Intermed. Work File

INTERN: Internal usage field

NOTE: The Cursor Management field is called <cursor-code>-SAVE since, for an
on-line PAF user program, this field has to be saved when the calling
program returns control to the monitor. The On-Line PAF Extractor
actually backs up a representation of the query in the Specifications field
<cursor-code>-TECH (see next paragraph) in the Temporary Work File.

For an on-line PAF user program, the management field is the same as in batch but

with two preceding fields, which are used to identify the database and the
terminal (see description of the CONNECT statement):

10 TX04-IDENT PIC X(25).
10 TX04-BASE PIC X(4).

The contents of both fields, <cursor-code>-SAVE and <cursor-code>-TECH, must
not be modified.

SPECIFICATIONS FIELD

This field is generated at the following level:
05 TX04-TECH.

This field is a variable length FILLER, where the query is translated for the PAF
Extractor. The PAF user cannot access this field.

COMMUNICATION AREA

20 VisualAge Pacbase: PACBASE ACCESS FACILITY

05 TX04.
10 TX04-LCTX PIC X(00003).
10 TX04-SCTX PIC 9(00004).
10 TX04-TCTX PIC X(00001).
10 TX04-NCTX PIC X(00001).
10 TX04-CTXT PIC X(00006) .
10 TX04-CPAR PIC X(00002).
10 TX04-CLIN PIC 9(00003).
10 TX04-TLIN PIC X(00001).
10 TX04-DLINTX PIC X(00060).
10 TX04-CDEL PIC X(00006) .

Whatever Table is selected, the first four columns are always generated. They
specifiy the origin of the extracted line, i.e.:

LCTX: Library code where the extracted line is defined.

SCTX: Session Number when the line was last modified.

TCTX: Version of session when the line was last modified.

NCTX: Line Source Indicator:

=: The line is extracted from the library to which the cursor is connected.

>: The line is extracted from a higher-level library than the cursor connection
library.

<: The line is extracted from a lower-level library than the cursor connection
library.

The codes of these four columns may be changed by using the SET statement with

the "CTXCOL’ parameter.
The other columns are specific to the selected table.

PROCEDURE DIVISION

For each SQL-PAF statement in the PROCEDURE DIVISION, the following
operations occur:

* the TX04-ORDER field is filled in,

 the Extractor Sub-Program is called and the entire TX04-CURSOR field is
passed to it.

When a CONNECT statement is encountered, the Translator sends the user’s
parameters to the Cursor Management field.

When an OPEN statement is encountered, the Translator fills in (in some cases
under specific conditions) the Specifications field (-TECH) when the cursor
depends on one or more COBOL fields.

Embedded PAF Cursors

LIMITATIONS OF THE SQL-PAF SYNTAX

Chapter 2. Implementation in User Programs

21

The SQL-PAF syntax uses a sub-set of the SQL language. In particular, cursors
cannot be defined with embedded SELECT clauses. Embedded SELECT clauses are
useful in obtaining information conditioned by a sequence of cross-references such
as, a List of Data Elements called in Segments used in Programs.

However, this limitation is not too restrictive since you can declare several cursors
(maximum number = 100). When a cursor depends on a COBOL field which
belongs to the Communication Area of another cursor, both cursors act as one
cursor using embedded SELECT clauses.

EMBEDDED CURSORS: EXAMPLE

Suppose a user wants to obtain, for each Data Structure in the VA Pac Database,
the list of Programs that use it.

This query involves the following Tables:
DSTDEF Data Structure Definition,
PGMDST Program Call of Data Structures,

and the following Columns:
CDST Data Structure code,
CPGM Program code.

The SELECT clause of a standard SQL query is written as follows:

SELECT * FROM PGMDST WHERE

CDST = (SELECT CDST FROM DSTDEF)

With the SQL-PAF syntax, the same query uses two embedded cursors:

DECLARE LCD CURSOR FOR SELECT * FROM DSTDEF

DECLARE PGCD CURSOR FOR SELECT * FROM PGMDST

WHERE CDST = LCD-CDST

The first cursor, coded LCD, provides the list of all Data Structures. The second
cursor, coded PGCD, provides the list of Programs using the Data Structure coded
LCD-CDST, i.e., the code of the Data Structure currently fetched in the first cursor.
In the PROCEDURE DIVISION, after both cursors are connected, the LCD cursor is
opened. As long as LCD-FT is not equal to one (i.e., the LCD cursor is still open),
each time a FETCH statement is issued on the LCD cursor, an OPEN statement
will be issued on the PGCD cursor. The PGCD cursor is issued. This OPEN allows
the code of the next Data Structure to be moved to the LCD-CDST field.

After all FETCH statements are issued for the PGCD cursor, the cursor is closed,
and another FETCH statement is issued for the LCD cursor.

In this way, you can simulate, through embedded cursor processing, a single
cursor defined by embedded SELECT clauses.

REMINDER:: Up to 100 cursors may be used by a PAF user program.

22 VisualAge Pacbase: PACBASE ACCESS FACILITY

Execution of PAF User Programs
BATCH

Each time a Batch PAF user program is executed, you have to create and declare
the temporary Workfile at the beginning of the job stream (and possibly delete the
same file if it was previously created).

This file has the following characteristics:
* Indexed sequential access.

* Key length = 12.

* Maximum record size = 468.

* Average record size = 170.

Then, in order to execute the batch PAF user program, the VisualAge Pacbase
Database files and the temporary Workfile have to be declared in the JCL. For
more details, refer to the JCL examples in the operations manual.

ON-LINE

The temporary Workfile has the following characteristics when used with an
on-line PAF user program:

* Indexed sequential access.
* Key length = 37, starting in position 2.
¢ Maximum record size = 539.

* Average record size = 200.

Chapter 2. Implementation in User Programs 23

24 VisualAge Pacbase: PACBASE ACCESS FACILITY

Chapter 3. Examples of Programs Using PAF

Introduction

The purpose of this chapter is to present two examples of programs (batch and
on-line) using PAF. Additionally, it suggests ways to use PAF programs (standard
quality control, VA Pac database administration, etc.).

The first program example, ‘PAFEX1’, is a batch program. It builds a list of all the
Properties (Data Elements whose Type = 'P’) without relational names. Two cursors
must be declared: one for the definition of Data Elements, and one for their
descriptions. This batch program is a good example of how to use embedded
cursors.

The second program example, 'PAFEX2’, is an on-line program. It builds a list of
screens that do not conform to a specific local standard (Data Element
presentation, initialization character, screen or element help character). This
program uses only one cursor (for the screen definition), and manages screen
scrolling. This on-line program provides an example of how to transmit the PAF
context between each iteration of a dialogue.

Batch Example

OBJECTIVE:
 To list the Properties without relational names.
PAF Cursor Declarations:

— CUO01 selects 'P’-type Data Elements (Properties).

— CUO02 (opened for each Element found by CUO01) selects the description lines
which contain a relational name.

Procedural logic:
FO02BA: PAF initialization.

— F02CA: CUO01 Cursor Connection. The user code and password are
hard-coded but could be obtained through a Read of an input file. The
sub-network option is set to "U’, which indicates that only Properties in
Library "CIV” are taken into account. The CONNECT statement establishes the
context for the PAF Read.

— FO2DA: CUO02 Cursor Connection.

— F21BA: Opening the CUO1 Cursor. This statement involves reading the
'P’-type Data Element Definition screens in Library ‘CIV’, and writing them in
the PAF work file.

— F21CA: Fetching the definition screens, i.e., the screens are read one-by-one
from the PAF work file.

— F21DA: As long as the end-of-cursor is not reached (CUO1-FI = '0’), the CU02
Cursor is opened for each fetched element. This Cursor selects only the
'R’-type description lines of the fetched elements. Therefore, an immediate
end-of-cursor (CUQ02-FI = 'l") after the first FETCH means that this property
does not have a relational name. In this case, a line is formatted and printed
on a Report. The CUO02 Cursor is closed so that it can be reopened for the
next element of the CUO1 Cursor.

© Copyright IBM Corp. 1983,2002 25

— F79 : When all of the Properties have been FETCHED, the CUO1 Cursor is
closed and a QUIT statement is issued in order to close the database files and
the PAF work file.

26 VisualAge Pacbase: PACBASE ACCESS FACILITY

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

PROGRAM DEFINITION....... PAFEX1

PROGRAM NAME.........ceveveuvuewnno.: LIST PROPERTIES W/0 SQL NAME
CODE FOR SEQUENCE OF GENERATION....: PAFEX1

TYPE OF CODE TO GENERATE...........: 0

COBOL NUMBERING AND ALIGNMENT OPT..:
CONTROL CARDS IN FRONT OF PROGRAM..:
CONTROL CARDS IN BACK OF PROGRAM...:

COBOL PROGRAM-ID.........cevvvvww.. PAFEXL

MODE OF PROGRAMMING................: P

TYPE AND STRUCTURE OF PROGRAM......: B

PROGRAM CLASSIFICATION CODE........: P PROGRAM

TYPE OF PRESENCE VALIDATION........:
SQL INDICATORS GENERATION WITH '-'.:

EXPLICIT KEYWORDS..:

UPDATED BY.........: ON : AT: @ LIB :
SESSION NUMBER.....: 2013 LIBRARY......: CIV LOCK....:
0: C1 CH: Ppafexl ACTION:

Chapter 3. Examples of Programs Using PAF

27

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

!
i DATA STRUCTURES USED IN PROGRAM : PAFEX1 LIST PROPERTIES W/0 SQL NAME !
: A DP CO : DL EXTERN OARFU BLOCK T B M U RE SE L UNIT C SELECTION F ER L PLi
' PR : PR PRLIST SSFOU 0R I A I 1 !
! : STAT.FLD: ACC. KEY: RECTYPEL !
i STAT.FLD: ACC. KEY: RECTYPEL i
: STAT.FLD: ACC. KEY: RECTYPEL i
: STAT.FLD: ACC. KEY: RECTYPEL i
: STAT.FLD: ACC. KEY: RECTYPEL i
: STAT.FLD: ACC. KEY: RECTYPEL i
: STAT.FLD: ACC. KEY: RECTYPEL i
i STAT.FLD: ACC. KEY: RECTYPEL i
i STAT.FLD: ACC. KEY: RECTYPEL i
i 0: C1 CH: -CD i

28 VisualAge Pacbase: PACBASE ACCESS FACILITY

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

I

! WORK AREAS.......... ENTITY TYPE P PAFEX1 LIST PROPERTIES W/0 SQL NAME !
| |
! CODE FOR PLACEMENT..: BA !
! A LIN T LEVEL OR SECTION WORK AREA DESCRIPTION 0CCURS!
| 100 * PROPERTIES LIST !
1110 EXEC PAF DECLARE CUOL CURSOR FOR !
I 120 SELECT * FROM DELDEF WHERE !
I 130 TDEL = 'P! !
I 140 END-EXEC !
! 200 * LIST OF RELATIONAL NAMES OF A PROPERTY !
1210 EXEC PAF DECLARE CUO2 CURSOR FOR !
I 220 SELECT * FROM DELDSC WHERE !
1230 CDEL = CUO1-CDEL AND !
I 240 TLIN = 'R’ !
I 250 END-EXEC !
| |
I I
| |
I I
| |
| |
| |
I 0: C1 CH: -W !

Chapter 3. Examples of Programs Using PAF 29

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

DA 100 EXP CONNECT CUG2 TO
DA 110 USER
DA 120 PASS

|
|
'USER' |
'PASS' !
|
|
I

| 0: C1 CH: -PO2

!

! PROCEDURAL CODE P PAFEX1 LIST PROPERTIES W/0 SQL NAME FUNCTION: 02 !
! !
! A SF LIN OPE OPERANDS LVTY CONDITION !
! N INITIALIZATION AND CONNECTIONS 05BL !
| o mm e e e e e 1
! BA N INITIALIZATION 10BL !
! BA 100 EXP INIT !
| o oo oo e e e e 1
' CA N CONNECTION OF CuO1 10BL !
! CA 100 EXP CONNECT Cu0l TO !
! CA 110 USER = 'USER' !
! CA 120 PASS = 'PASS' !
! CA 130 LIB = 'CIV' !
! CA 140 NET = 'U !
! CA 150 SESSION = SPACES !
! CA 160 SIZE = 40 !
| o om o n e e e e 1
! DA N CONNECTION OF CU02 10BL

!

!

!

!

!

!

30 VisualAge Pacbase: PACBASE ACCESS FACILITY

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

PROCEDURAL CODE P PAFEX1 LIST PROPERTIES W/0 SQL NAME FUNCTION: 02 !
!

A SF LIN OPE OPERANDS LVTY CONDITION !
DA 130 LIB = 'CIV! !
DA 140 NET = 'u' !
DA 150 SESSION = SPACES !

!

DA 160 SIZE =1

0: C1 CH: -P02da

Chapter 3. Examples of Programs Using PAF 31

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

! PROCEDURAL CODE P PAFEX1 LIST PROPERTIES W/0 SQL NAME FUNCTION: 21 !
! !
! A SF LIN OPE OPERANDS LVTY CONDITION !
N PROCESS 05BL !

o e e e e e 1
BA N OPEN THE PROPERTY LIST 10BL !

BA 100 EXP OPEN CUO1 !

CA N READ EACH PROPERTY 10DW CUOL-FI = 'O !
CA 100 EXP FETCH CUO1 !

!
DA 100 = OPEN RELATIONAL NAMES !
DA 110 EXP OPEN CUO2 !
DA 200 * READ RELATIONAL NAMES !
DA 210 EXP FETCH CUO2 !
!
!
!
!

DA 300 = NO RELATIONAL NAME : REPORT 99IT CUOG2-FT = '1'
DA 310 P F8F
DA 400 = CLOSE RELATIONAL NAMES 99BL

DA 410 EXP CLOSE CU02

|
|
|
|
|
|
|
|
|
|
|
!
! DA N SEARCH FOR RELATIONAL NAMES 15BL
|
|
|
|
|
|
|
|
|
1
! 0: C1 CH: -P21 !
|

32 VisualAge Pacbase: PACBASE ACCESS FACILITY

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

PROCEDURAL CODE P PAFEX1 LIST PROPERTIES W/0 SQL NAME FUNCTION: 79
A SF LIN OPE OPERANDS LVTY CONDITION

100 EXP CLOSE CUO1
110 EXP QUIT

!
!
!
N DISCONNECT FROM PAF 05BL !
!
!
120 GFT !

*%% END **=*

0: C1 CH: -P79

Chapter 3. Examples of Programs Using PAF 33

! APPLI CICS/VSAM *PTJML.D474.CIV.2020!
! REPORT CODE PRA

! NAME............ouuu..t LIST PROPERTIES W/0 SQL NAME
COMMENTS....ovvuianna:

: NATURE................: E REPORT

! PRINTER TYPE..........: L

! LINE LENGTH...........: 132

! FORMAT FOR TOTALS ¢ INTEGER........: 11

! EXPLICIT KEYWORDS..:

|
|
|
|
|
|
|
|
|
|
|
|
! DECIMAL PLACES.: 07
|
|
|
|
|
|
1
! UPDATED BY.........: ON : AT: :o: LIB :
|
|
|

| SESSION NUMBER.....: 2013 LIBRARY......: CIV LOCK....:
1 0: C1 CH: Rpra ACTION:

34 VisualAge Pacbase: PACBASE ACCESS FACILITY

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

!
! REPORT LAYOUT : PRA LIST PROPERTIES W/0 SQL NAME LENGTH= 132!
! !
I'ALNCP S 1 1 2 2 3 3 4 4 5 5 6 6!
! 1...5....0....5....0....5....0....5....0....5....0....5....0....5.!
00 1 !
' 03 2 LIST OF PROPERTIES WITHOUT RELATIONAL NAME !
106 3 e !
109 4 mmmmmm e e !
12 5 I CODE I PROPERTY NAME I INP. FORM. I IN!
15 4 mmmmm o !
! 18 6 I I I I !
121 4 e - !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
1'0: C1 CH: -L !

Chapter 3. Examples of Programs Using PAF 35

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

REPORT LAYOUT : PRA LIST PROPERTIES W/0 SQL NAME LENGTH= 132!
!

ALNCPS 6 7 7 8 8 9 9 10 10 11 11 12 12 13!
5....0....5....0....5....0....5....0....5....0....5....0....5....0!

03 2 E PAGE: !
06 3 - !
09 4 @ e !
12 5 INT. FORM. T U I OUTPUT FORMAT I PARENT I LIB I SESS!
15 4 e !
18 6 I 1 I I I !

L e L L PP !

0: C1 CH: -LO1C65

36 VisualAge Pacbase: PACBASE ACCESS FACILITY

! APPLI CICS/VSAM
! REPORT DESCRIPTION:

! A: LINE LENGTH:

*PTJML.D474.CIV.2020!
PRA LIST PROPERTIES W/0 SQL NAME !
!

132 LI PAGE: 60 CAT TBL INST: WR OPT: SECTION: 00!

!
!

!

!

! COMMENTS. ...: CONDITIONS !
! !
!' A CALIN T TLI ST CP SKP FUSF COMMENTS CONDITIONS !
! BA 010 101 01% HEADER 5-PROO-ALC NOT < 5-PROO-ALCM !
! BA 030 02 01 !
! BA 050 03 01 !
! BA 070 04 01 !
! BA 090 05 01 !
! BA 110 04 01 !
R R L E L L L e e e e e e e !
! CA 010 2 06 01 DETAIL !
| o oo eom o eem e e e e e e 1
! DA 010 04 01 FOOTER 5-PROO-ALC NOT < 5-PROO-ALCM OR !
! DA 020 CUO1-FI = '1! !
| o oo cmm o mmm oo e e e e e 1
! !
! !
! !
! !
! 0: C1 CH: -D !

Chapter 3. Examples of Programs Using PAF

37

! APPLI CICS/VSAM *PTJML.D474.CIV.2020
! REPORT CALL OF ELEMENTS PRA LIST PROPERTIES W/0 SQL NAME

! A ST ELEM

|

|

|

! L : STAC O W SOURCE FLD CONDITION LIBR.
! 01 XPAGE 0 : 112 M 5 PROO-APC 2013

| o e mmeeee &) e o m m e mmmmm mmmm e — e —————————— ————— |
! 02 CDEL ©O0: 3 M CUOICDEL 2013 !
! 02 LDEL 0 : 12 M CUOILDEL 2013 !
! 02 FDELT 0 : 51 M CUOIFDELT 2013 !
! 02 FDELI O : 65 M CUOIFDELI 2013 !
! 02 ODELUS ©0 : 78 M CUOIODELUS 2013 !
! 02 FDELO © : 82 M CUOL1FDELO 2013 !
! 02 CDELP 0 : 112 M CUO1CDELP 2013 !
' 02 LCTX 0 : 121 M CUOILCTX 2013 !
' 02 SCTX 0 : 127 M CUO1SCTX 2013 !
! 02 TCTX 0 : 131 M CUOITCTX 2013 !
| e me mmmeee &t mme o m m e e e mmmm mmmmmmmmmm e ——————— ————— |
! !
! !
! !
! !
! !
I %% END #%* i
1 0: C1 CH: -CE !

On-Line Example

OBJECTIVE:
 To list the Screens that do not conform to a particular local standard.
PAF Cursor Declarations:

— CUO1 selects those Screen Definitions in which the Data Element
presentation, initialization character, or Screen or Element help character
differs from the standard.

Procedural logic:

— FO2 : PAF initialization only for the first entry into the program (EIBCALEN
='0").

— FO06CA: CUO1 Cursor Connection. The user code and password are
hard-coded but could be entered on a menu and passed via the
COMMAREA. The VA Pac Database code must be specified (D474). In
addition, the terminal code (EIBTRMID) is assigned to the PAF 'IDENT’
parameter in order to ensure that the keys between conversations in the PAF
file are unique. The 'SIZE” parameter is set to "10’, which corresponds to the
number of repeated lines on the screen. Only the number of screens necessary
for display are read, in order to avoid on-line reads that are too long and may
prove to be pointless if a user ends up exiting the transaction without
consulting the whole list.

In this example, the F06 function is executed only on the first entry into the
program. Thus, the CONNECT and OPEN statements are issued only once.
This example does not take into account interactive modifications of selection
criteria. This could be implemented by modifying specific screen-top category
fields that are associated with the criterion of the SELECT statement defining
the CUO1 cursor.

— FO06DA: Opening the CU(1 Cursor. This statement causes screen definitions
which do not conform to a local standard to be read and stored in the PAF
work file.

38 VisualAge Pacbase: PACBASE ACCESS FACILITY

FO6EA: The field to save the CU01 Cursor (CUO1-SAVE) is transferred to a
backup field in the COMMAREA.

F4031: Closing the CUO1 Cursor and executing the PAF CLOSE and QUIT
statements.

F52BA: Retrieving the CUO1-SAVE field from the COMMAREA. If all records
have been fetched, the Cursor is closed.

F60PF: If the last record has not yet been fetched, and as long as the
repetitive category of the screen is being processed, the next record is fetched.
F60PQ: If the last record as been fetched, the "END” message is written and

an exit from the iteration is performed.

F75 : If no error is detected, the field to save the CUO1 Cursor (CU01-SAVE)
is transferred to a backup field in the COMMAREA.

Chapter 3. Examples of Programs Using PAF 39

*PTJML.D474.CIV.2020!

!

! !
! DIALOGUE COMPLEMENT...........ceuvven..: PP PAF !
! !
! !
! COMMON AREA-DATA STRUCTURE CODE........: PF !
! !
! ERROR MESSAGE FILE CHARACTERISTICS.....: !
! ORGANIZATION.....: !
! EXTERNAL NAME....: !
! !
! FIRST SCREEN OF THE DIALOGUE...........: !
! !
! COMPLEMENTARY COMMON AREA LENGTH.......: !
! !
! CODE OF PSB OR SUB-SCHEMA..............: !
! !
! !
! OPTIONS : !
! !
! !
! SESSION NUMBER.....: 2013 LIBRARY......: CIV !
I %% END #*%* i
! 0: C1 CH: -0 ACTION: !

40 VisualAge Pacbase: PACBASE ACCESS FACILITY

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

ON-LINE SCREEN DEFINITION..........: PAFEX2

SCREEN NAME..............ccvvueveeo ot LIST OF NON-STANDARD SCREENS
SCREEN SIZE (LINES, COLUMNS): 24 080

LABEL TYPE, TABS, INITIALIZATION...: * S * 02

HELP CHARACTER SCREEN, DATA ELEMENT: = 11 * 12

LABELS ~ DISPLAY INPUT ER.MESS. ER.FLD.

INTENSITY ATTRIBUTEcoovvs N N N B
PRESENTATION ATTRIBUTE: N N N N

COLOR ATTRIBUTEvvvvviivnnneenas W W W W

TYPE OF COBOL AND MAP TO GENERATE..: 0 * O IBM 0S CICS (PROG. & MAP BMS)
CONTROL CARD OPTIONS FRONT & BACK..: = CC (PROGRAM) = KK

EXTERNAL NAMES: PFOOIP (PROGRAM) PFOO1IM

TRANSACTION CODE.....covvvvvnnvnnnas
EXPLICIT KEYWORDS..:

UPDATED BY.........: ON : AT: HE
SESSION NUMBER.....: 2013 LIBRARY......: CIV LOCK....:
0: C1 CH: Opfo010 ACTION:

Chapter 3. Examples of Programs Using PAF

41

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

ON-LINE SCREEN X-REF'S TO SCREENS FOR ON-LINE SCREEN : PAFEX2 !
!

SCREEN : LIN D.ELEM P LN COLN P CHR VR C P O SEG D.ELEM W SEG D.ELEM LV!

[CALL OF T TYPE (TITLE) =-m-mmmmmmmmmmmmmmmmmmmdocommmcccooo oo !
PAFEX2 020 PAFEX2 A 01 025 T 00 00

42 VisualAge Pacbase: PACBASE ACCESS FACILITY

CICS/VSAM
SCREEN CALL OF ELEM...

A LIN : D.ELEM .
: . P LN

APPLI

PHYSICAL ATTRIBUTES

coL

*PTJML.D474.CIV.2020!
PAFEX2 LIST OF NON-STANDARD SCREENS

. VALIDATION UPDATE . DISPLAY

PV U UPD TARGET . S SOURCE LV

130 : .
140 : RGROUP .
160 : CSCR
180 : LSCR

200 : ODELLB .

020 : PAFEX2 .
025 : PFVIEW .

060 : ODELLI1 .
080 : ODELIL .
100 : OSCRH1 .
120 : OSCRHZ .

02

01

01
01

025
025
015
001
001

001

001
001
003
003
003

N LCHRVR
v
T
v
L
L
v
v
v
v
L
R 10
P
P
P

W U U X

Cuol
Cuol
Cuol

Chapter 3. Examples of Programs Using PAF

43

! APPLI CICS/VSAM *PTJML.D474.CIV.2020!
! SCREEN CALL OF ELEM... PAFEXZ2 LIST OF NON-STANDARD SCREENS

!

! !
! A LIN : D.ELEM . PHYSICAL ATTRIBUTES . VALIDATION UPDATE . DISPLAY !
: .PLNCOLNLCHRVR . PV UUPD TARGET . S SOURCE Lv !

1

|

|

|

I

|

I

! 220 : ODELIC . 003 P cuol !
| 240 : OSCRHS . 003 P cuol !
| 260 : OSCRHE . 003 P cuol !
! 900 : ZGROUP . A 23 001 Z !
| 920 : ERMSG . 001 P F !
L 940 : A 24 001 L !
I 960 : 001 L !
I 980 : 001 L !
| . |
! !
! !
! !
! !
! !
! !
! !
! !
! 0: CI CH !

44 VisualAge Pacbase: PACBASE ACCESS FACILITY

SCREEN CALL OF ELEM...

APPLI

CICS/VSAM
PAFEX2 LIST OF NON-STANDARD SCREENS

*PTJML.D474.CIV.2020!

LABEL

N LHR VR INPRCO . T LITERALS

|

|

1

I A LIN : D.ELEM . PHYSICAL
! : . P LN COL
|

I 010 : PFKEY

1ooell

1012 :)

I 020 : PAFEX2 . A 01 025
I 025 : PFVIEW . 02 025
I 040 : 02 015
I 045 : . 001
! 060 : ODELL1 . 02 001
! 080 : ODELIL .

I 100 : OSCRHI . 01 001
! 120 : OSCRH2 .

1130 : . 01 001
! 140 : RGROUP . 01 001
I 160 : CSCR 003
I 180 : LSCR . 003
! 200 : ODELLB . 003
|

|

ATTRIBUTES
v
T
v
L
L
v
v
v
v
L
R 10
P
P
P

. IC

PLEASE ENTER THE STANDARD/
SCREEN CHARACTERISTICS:/

S

TS
D~
NN =

Chapter 3. Examples of Programs Using PAF

45

! APPLI CICS/VSAM *PTJML.D474.CIV.2020!
! SCREEN CALL OF ELEM... PAFEXZ2 LIST OF NON-STANDARD SCREENS !

|

|

! !
! A LIN : D.ELEM . PHYSICAL ATTRIBUTES . LABEL !
! : . P LN COL N L HR VR IN PR CO . T LITERALS !
I

! 220 : ODELIC . 003 P !
| 240 : OSCRHS . 003 P !
| 260 : OSCRHE . 003 P !
| 900 : ZGROUP . A 23 001 Z !
| 920 : ERMSG . 001 P F !
L 940 : A 24 001 L ENTER: DISPLAY, PF1: SCRLL,/!
I 960 : 001 L PF2: EXIT, PF1l: SCRN HELP,/!
I 980 : 001 L PF12: FIELD HELP/ !
| . |
! !
! !
! !
! !
! !
! !
! !
! !
| 0: C2 CH: -CE !

46 VisualAge Pacbase: PACBASE ACCESS FACILITY

APPLI CICS/VSAM *PTJML.D474.CIV.2020!
S
SEGMENT CALL OF ELEMENTS PFOO COMMUNICATION AREA

A LIN : ELEM. [INT.FORM. U OCC GR K CMD456 CONT VALUE/SFC UPD/TRGET DOC LIBR
100 : PFSAVE X(115) D
110 : PFFRST X D

0: C1 CH: SpfOOCE

Chapter 3. Examples of Programs Using PAF 47

! APPLI CICS/VSAM *PTJML.D474.CIV.2020!
! WORK AREAS.......... ENTITY TYPE O PAFEX2 LIST OF NON-STANDARD SCREENS !

|

|

! !
! CODE FOR PLACEMENT..: BA !
I A LIN T LEVEL OR SECTION WORK AREA DESCRIPTION OCCURS!
I 100 * LIST OF NON STANDARD SCREENS !
1110 EXEC PAF DECLARE CUO1 CURSOR FOR !
1120 SELECT * FROM SCRDEF WHERE !
1130 ODELLB <> I-0020-ODELL1 OR !
1140 ODELIC <> I-0020-ODELI1 OR !
1150 OSCRHS <> 1-0020-0SCRH1 OR !
1160 OSCRHE <> I-0020-0SCRH2 OR !
1170 END-EXEC !
| |
! !
! !
! !
! !
! !
! !
! !
! !
! !
! 0: CI CH: -W !

48 VisualAge Pacbase: PACBASE ACCESS FACILITY

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

PROCEDURAL CODE 0 PAFEX2 LIST OF NON-STANDARD SCREENS FUNCTION: 02 !
!

A SF LIN OPE OPERANDS LVTY CONDITION !
N PAF INITIALIZATIONS 05IT EIBCALEN = 0 !

100 EXP INIT !

110 M '’ PFOO-PFFRST !

0: C1 CH: -PO2

Chapter 3. Examples of Programs Using PAF 49

! APPLI CICS/VSAM *PTJML.D474.CIV.2020!
! PROCEDURAL CODE 0 PAFEX2 LIST OF NON-STANDARD SCREENS ~ FUNCTION: 06 !

DA 100 EXP OPEN CUO1

| 0: C1 CH: -PO6

|

|

! !
! A SF LIN OPE OPERANDS LVTY CONDITION !
! N PAF CONNECTION 05IT PFOO-PFFRST = '0° !
| o e e e o e e e e ————— 1
! BA N SET FIRST TIME INDICATOR 10BL !
! BA100M 'l' PFOO-PFFRST !
| o e e e e e e e e cmcme C e e —————— |
I CA N CURSOR CONNECTION 10BL !
I CA 100 EXP CONNECT CUOL TO !
I CA 110 USER = 'USER' !
I CA 120 PASS = 'PASS' !
! CA 130 LIB = 'CIV! !
I CA 140 SESSION = SPACES !
! CA 150 NET = 1-0010-PFVIEW !
I CA 160 SIZE = 10 !
! CA 170 BASE = 'D474' !
I CA 180 IDENT = EIBTRMID !
| o e e e o e e e e —
| DA N OPEN CURSOR 10BL

|

|

|

I

50 VisualAge Pacbase: PACBASE ACCESS FACILITY

APPLI CICS/VSAM PTJML.D474.CIV.2020!

PROCEDURAL CODE 0 PAFEX2 LIST OF NON-STANDARD SCREENS ~ FUNCTION: 06 !
!

A SF LIN OPE OPERANDS LVTY CONDITION !
EA N SAVE CURSOR IN COMMAREA 10BL !
EA 100 M CUO1-SAVE PFOO-PFSAVE !

Chapter 3. Examples of Programs Using PAF 51

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

PROCEDURAL CODE 0 PAFEX2 LIST OF NON-STANDARD SCREENS ~ FUNCTION: 40 !
!

A SF LIN OPE OPERANDS LVTY CONDITION !
31 N END OF PAF PROCESSING 15BL !
31 100 EXP CLOSE CUO1 !
31 200 EXP QUIT !

0: C1 CH: -P40

52 VisualAge Pacbase: PACBASE ACCESS FACILITY

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

PROCEDURAL CODE 0 PAFEX2 LIST OF NON-STANDARD SCREENS FUNCTION: 52 !
!

A SF LIN OPE OPERANDS LVTY CONDITION !
N REINITIALIZATION OF PAF AREAS 05BL !

100 M PFOO-PFSAVE CUO1-SAVE !

o e o e e e e 1
BA N CLOSE IF END OF CURSOR 10IT CUGL-FT = '1! !
BA 100 EXP CLOSE Cu01 !

0: C1 CH: -P52

Chapter 3. Examples of Programs Using PAF 53

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

PROCEDURAL CODE 0 PAFEX2 LIST OF NON-STANDARD SCREENS ~ FUNCTION: 60 !
!

A SF LIN OPE OPERANDS LVTY CONDITION !
PF N FETCH SCREEN DEFINITION RECORDS 10IT CUO1-FT = '0' !
PF 100 EXP FETCH CUO1 AN CATX = 'R' !

o em e e e e e 1
PQ N DISPLAY END OF LIST MESSAGE 10IT CUOL-FT = '1° !
PQ 100 ERU 0001 !
PQ 200 GFT !

0: C1 CH: -P60

54 VisualAge Pacbase: PACBASE ACCESS FACILITY

APPLI CICS/VSAM *PTJML.D474.CIV.2020!

PROCEDURAL CODE 0 PAFEX2 LIST OF NON-STANDARD SCREENS FUNCTION: 75 !
!

A SF LIN OPE OPERANDS LVTY CONDITION !
N SAVE CURSOR IF NO ERROR 05IT GR-EG = '1' !

100 M CUO1-SAVE PFOO-PFSAVE AN CUO1-FT = 'O !

*%% END **=*

0: C1 CH: -P75

Chapter 3. Examples of Programs Using PAF 55

LIST OF NON-STANDARD SCREENS
PAF EXTRACTOR VIEW: C

| |
| |
| |
! !
! PLEASE ENTER THE STANDARD SCREEN CHARACTERISTICS: !
I I
| |
| |

! LABEL TYPE........: S INIT. CHAR........: _
! SCREEN HELP CHAR..: 11 FIELD HELP CHAR...: 12
SCREEN ~ SCREEN NAME LABEL INIT SCREEN FIELD
CODE TYPE CHAR HELP HELP
CHAR CHAR
XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X X XX XX

! ENTER: DISPLAY, PFl: SCRLL, PF2: EXIT, PF11: SCRN HELP, PF12: FIELD HELP

56 VisualAge Pacbase: PACBASE ACCESS FACILITY

Chapter 4. PUF - Pacbase Update Facility

UPDP - Batch Mode

A Specifications Database, with extractions of tables and columns carried out by
PAF, can be updated by using the Pacbase Update Facility (PUF) procedure.

BATCH MODE - UPDP

From the sequential files, the UPDP procedure transforms the extractions in
transactions used to update the Specifications Database.

For a description of this procedure and of its user input, refer to "'The Developer’s
Procedures” Manual, Chapter ‘Batch Update’, Subchapter "Update from PAF
Extactions’.

On-Line Mode

In on-line mode, PUF updates, in real-time, large transactions in VisualAge Pacbase
from a PAF user program. On certain platforms, this solves the problems of
concurrent batch and on-line updating.

THE SERVICE

The PUF communication program receives and sends, via a middleware, messages
related to several applications.

The client application requests the following types of services:

* Entity extraction (download): the monitor sends the entity description in the
communication area. There are two types of download:

— download with intention of updating: the download description is locked
until the upload forbidding all other updating.

— download for consultation: no lock, the entity can be updated.

* Entity update (upload): the monitor receives an entity description which it
transfers in the SYSPAF file when the last message is sent; it starts the uploading
transaction and the request to unblock the entity. It then sends the erroneous
transactions with errors. This service is stored in the CHOICE field, i.e. the
communication field; it is 18 characters long and is coded as follows:

— UPDOWN (1 char.): D for download, U for upload, V for lock.
SLASH (2 chars.): fixed value //
COMET (1 char.): methodology code

— DLIST (2 chars.): LC for list by code, LT for list by type, LU for user list
(only xxFCOM communication monitor)

DSCODE (3 chars.): local entity code

ENTITE (6 chars.): entity code

— DSCHXT (2 chars.): entity description selection ** for the whole of the entity,
blank for the definition page

UPDWYV (1 char.): this variable depends of UPDOWN.

- download = W if no update intention, X if update intention (lock
positioned)

© Copyright IBM Corp. 1983,2002 57

- upload = U if unlock after an update, V if no unlock after an update.
- lock = D for an unlock request, V for a lock request.
* Locking/unlocking of a technical lock on certain entity descriptions.

THE PUF ON-LINE ENTRY POINT
The program suffixed by F000 is the distributor for the PUF on-line application.
For the transactions transfer, the distributor uses the PA-suffixed workfile which is

the PAF workfile. It sends the update transactions to different program folders.

The following records are used in the workfile:

* PA70 which contains the erroneous transactions sent by the user program to the
distributor. They are cancelled by the distributor,

* PAS80 which contains the erroneous transactions (with the gravity and label of
the error), sent by the distributor to the user program. After analysis, the user
program cancels PAS0.

In the case of an ABEND, the distributor sends a message in the communication
field to warn the user program. The message appears in the following format:

- ABEND

- return code (2 chars.):

31 = problem with the PA file

32 = problem with the VisualAge Pacbase files

99 = problem with a program

- external name of the file or the program (8 chars.).

THE PAF CLIENT

The procedure for using PUF on-line is described in Chapter "Implementation in
User Programs”, Subchapter "Syntax of the SQL-PAF Language”. This procedure
includes the following specific statements:

- INSERT: storing information

- CALPUF: triggering updating by a distributor call,

and possibly:

- FETCHER: recovering errors signaled by PUF on-line in the PAS8O file.

THE REMOTE CLIENT (REMOTE PUF)

While PUF acts as a server, it can be used from a remote client: it is the
Remote-PUFE

It is possible to use the middleware communications. The user must create his/her
own communication monitor whose object will be to receive the message coming
from the client and to transmit the information to the distributor. This information
must be stored in the PAF workfile.

58 VisualAge Pacbase: PACBASE ACCESS FACILITY

The dialog monitor has a communication field whose structure is the same as that
of the screens generated by Pacbench C/S. It is activated by the client application.

List of Statements and How They Work
PUF CURSOR-INDEPENDENT STATEMENTS (ON-LINE ONLY)

To use PUF, refer to the specific INSERT, CALPUF and FETCHER statements, as
well as the UPDATE clause and the SET statement described in Chapter
"Implementation in User Programs”, Subchapter "Syntax of the SQL-PAF
Language”.

On coming across the "UPDATE = pref” clause the following fields are generated:

01 pref-PUFCOM.
05 pref-PUFID PIC X(25) VALUE SPACE.
05 pref-PUFRET.
10 pref-PUFPB PIC X(05) VALUE SPACE.
10 pref-PUFRC ~ PIC X(02) VALUE SPACE.
10 pref-PUFNX PIC X(08) VALUE SPACE.
10 pref-FILLER PIC X(15) VALUE SPACE.
05 pref-PUFTRA PIC X(04) VALUE SPACE.
05 pref-FILLER PIC X(11) VALUE SPACE.

PUFID: is the identifier of the on-line conversation using PAF. (similiar to the
IDENT parameter of the CONNECT statement)

PUFRET: contains the fields returned by PUF:
PUFPB: a problem was detected (ABEND or ERROR).
PUFRC: return code.

PUEFNX: external name of the file responsible.
FILLER: (15 chars. long) - not in use at present.

PUFTRA: is the transaction code of the VA Pac Database (similiar to the BASE
parameter of the CONNECT statement)

01 pref-PAFCOM.
05 pref-PAFID PIC X(25) VALUE SPACE.
05 pref-PAFTRA PIC X(04) VALUE SPACE.
05 pref-FILLER PIC X(16) VALUE SPACE.
05 pref-PAFRC ~ PIC X(02) VALUE SPACE.
05 pref-ORDER PIC X(01) VALUE SPACE.
05 pref-FI PIC X(01) VALUE SPACE.
05 pref-FT PIC X(01) VALUE SPACE.

05 pref-PUFERR.

10 pref-PUFENR.

15 pref-PUFMVT PIC X(01) VALUE SPACE.
15 pref-PAFTAB PIC X(10) VALUE SPACE.
15 pref-PAFEXT PIC X(299) VALUE SPACE.

10 pref-PUFGRE PIC X(01) VALUE SPACE.
10 pref-PUFLIE PIC X(66) VALUE SPACE.
05 pref-NUMERR PIC 9(06) VALUE ZERO.
05 pref-NUMENR PIC 9(06) VALUE ZERO.
05 pref-FILLER PIC X(11) VALUE SPACE.

PAFID: is the identifier of the on-line conversation using PAF (similiar to the
IDENT parameter of the CONNECT statement)

Chapter 4. PUF - Pacbase Update Facility 59

PAFTRA: is the transaction code of the VA Pac Database. (similiar to the BASE
parameter of the CONNECT statement)

FILLER: (16 chars. long) - unused.

PAFRC: is the return code of the PAF extractor (70 on INSERT: the recording
already exists)

ORDER: is the statement code for the PAF extractor ("I” for INSERT; "E" for
FETCHER)

FI: is the end of reading errors: (1 = read beyond the last record; 0 = if not)
FT: is the end of the process: (1 = read beyond the last record; 0 = if not)
And following the statement given to the PAF extractor ..

PUFERR: will contain the recording read thanks to the FETCHER statement. Either
the following five fields:

PUFMVT: code of erroneous transaction
PAFTAB: PAF table code of erroneous transaction
PAFEXT: erroneous transaction

PUFGRE: error gravity

PUFLIE: error label

Or ..

PUFENR: will contain the error to write thanks to the INSERT statement. Either
the following three fields:

PUFMVT: transaction code

PAFTAB: PAF table code of the transaction
PAFEXT: transaction

In all cases ..

NUMERR: is the order number of the "error” record

NUMENR: is the order number of the record to write; this field is to be entered
before INSERT statement and is supported by the user.

FILLER: (11 chars. long) - unused.

60 VisualAge Pacbase: PACBASE ACCESS FACILITY

Chapter 5. PAF Implementation for Various Environments

0S/390-CICS Version

For on-line processing, it is recommended to use the EIBTRMID field to identify
the users in CONNECT statements (IDENT parameter).

Furthermore, the user can access different databases from the same PAF program,
if more than one VA Pac database coexist in the same CICS. The database calling
code (4 characters), which is assigned to the BASE parameter in the CONNECT
statement, makes it possible to select the database that the user wishes to query.

A typical CONNECT statement under CICS looks like this:

EXEC PAF CONNECT C001 TO
USER = ZC00-CUSR
PASS = ZCOO-CPSW
LIB = ZC00-CLIB
SESSION = ZC00-CSES
NET = ZCOO-TVIS
SIZE = ZC00-LSCR
IDENT = EIBTRMID
BASE = ZC00-CBAS

IMS Version

All IMS PAF programs, whether batch or on-line, must always call the on-line
extractor. (The IMS version does not include a batch extractor. It is the on-line
extractor that’s used in both batch and on-line processing.)

- 'BVPBTPST' --> extractor for all entities except keywords
- 'BVPBTPWS' --> extractor for keyword entities only

You must always code the 'SET” statement in the WORKING-STORAGE SECTION
of batch programs (an on-line programs if they are developed with the Batch
Function). This statement should be coded as follows:

EXEC PAF SET TYPE = 01
END-EXEC

In addition, you must define, for your application program, a PSB that includes the
PCBs of the following databases:

it may include the PCBs of the user databases,

it must include the PCBs of the VA Pac system databases:
. AN AR AE LB AY AJ PA and DC
. GU GN GR GY GJ
. TR WS SV

These PCBs must be defined in the PSB in the following way:

PCB TYPE=DB, DBDNAME=BDAN$BASE, PROCOPT=GOT,KEYLEN=49
SENSEG NAME=PAC7AN

PCB TYPE=DB, DBDNAME=BDAR$BASE, PROCOPT=GOT,KEYLEN=08
SENSEG NAME=PAC7AR

PCB TYPE=DB,DBDNAME=BVPDAE, PROCOPT=GOT,KEYLEN=12

© Copyright IBM Corp. 1983,2002 61

SENSEG NAME=PAC7AE

PCB TYPE=DB,DBDNAME=BVPDLB, PROCOPT=GOT, KEYLEN=23
SENSEG NAME=PAC7LB

PCB TYPE=DB,DBDNAME=BDAY$BASE, PROCOPT=GOT,KEYLEN=08
SENSEG NAME=PAC7AY

PCB TYPE=DB,DBDNAME=BDAJ$BASE, PROCOPT=GOT,KEYLEN=08
SENSEG NAME=PAC7AJ

PCB TYPE=DB,DBDNAME=BDPA$BASE, PROCOPT=A,KEYLEN=37
SENSEG NAME=PAC7PA

PCB TYPE=DB,DBDNAME=BDDC$BASE, PROCOPT=GOT,KEYLEN=31
SENSEG NAME=PAC7DC

PCB TYPE=DB,DBDNAME=BVPDGU, PROCOPT=GOT, KEYLEN=8
SENSEG NAME=PACGGU

PCB TYPE=DB,DBDNAME=BVPDGN, PROCOPT=GOT, KEYLEN=49
SENSEG NAME=PACGGN

PCB TYPE=DB,DBDNAME=BVPDGR, PROCOPT=GOT, KEYLEN=08
SENSEG NAME=PACGGR

PCB TYPE=DB,DBDNAME=BVPDGY, PROCOPT=GOT, KEYLEN=8
SENSEG NAME=PACGGY

PCB TYPE=DB,DBDNAME=BVPDGJ, PROCOPT=GOT,KEYLEN=08
SENSEG NAME=PACGGJ

PCB TYPE=DB,DBDNAME=BVPDTR,PROCOPT=GOT,KEYLEN=08
SENSEG NAME=PAC7TR

PCB TYPE=DB,DBDNAME=BVPDWS, PROCOPT=GOT, KEYLEN=37
SENSEG NAME=PAC7WS

PCB TYPE=DB,DBDNAME=BVPDSV,PROCOPT=GOT,KEYLEN=15
SENSEG NAME=PAC7SV

PSBGEN PSBNAME=psbname, LANG=COBOL

END

where $BASE = Database code chosen when VisualAge Pacbase was installed.

Important note: Extractor call statements, which are generated by the preprocessor,
have the following format:

CALL “extractor” USING S-PCB-AN S-PCB-AR S-PCB-AE S-PCB-LB S-PCB-AY
S-PCB-AJ S-PCB-PA

S-PCB-DC S-PCB-GU S-PCB-GN S-PCB-GR S-PCB-GY S-PCB-GJ

S-PCB-TR S-PCB-WS S-PCB-SV

cursor-name.

Therefore, you must give the same names to PCBs in the LINKAGE SECTION and
the PROCEDURE DIVISION USING in batch Programs (S-PCB-xx). For OLSD
Screens, the definition screens of the PCBs called in the dialog PSB must be named
PCB-xx. The OLSD generator will add the prefix 'S-" in the source generated on the
LINKAGE SECTION and PROCEDURE DIVISION USING level.

Doing Extractions under the Control of a Security System:

Entities can be extracted under the control of a security system (e.g., RACF). In this
case, the extractor must be able to tell whether the program doing the extraction is
batch or on-line. The method for controling the user code is actually different for a
batch or an on-line program.

62 VisualAge Pacbase: PACBASE ACCESS FACILITY

In batch processing, the user code, given in the CONNECT statement, is directly
controlled, in relation to the security system, by means of an assembler program,
PACSECB, which is transparent to the user.

In on-line processing, the user code is controlled, in relation to the one listed in the
IO-PCB, by the security system.

In order to achieve this control, the extractor must know the type of the program
calling it (batch or on-line). To do this, the MODE parameter must be coded in the
SET order:

- MODE = 'TP ' <- the user program is an on-line
program
- MODE = 'BATCH' <- the user program is a batch program

Important note: For an on-line program, extractor call statements, which are
generated by the preprocessor, will appear as follows:

CALL “extractor” USING S-PCB-AN S-PCB-AR S-PCB-AE S-PCB-LB S-PCB-AY
S-PCB-AJ S-PCB-PA

S-PCB-DC S-PCB-GU S-PCB-GN S-PCB-GR S-PCB-GY S-PCB-GJ
S-PCB-TR S-PCB-WS S-PCB-SV
cursor-name S-IPCB.

For batch programs, call orders are generated the same way, with or without the
control of a security system (without the S-IPCB parameter in the CALL).

GCOS7 Version

The Pre-processor is made up of the PAFP10 program, which is installed in the
batch load module library.

Several different ways to process generated programs are available using PAF:

* using the GPRT procedure, which directly links the pre-processor to the
generated stream (see the ‘Developer’s Procedures’, Chapter ‘Generation and
Printing’, Subchapter 'GPRT: Generation and Printing’).

* using the PPAF procedure:

— by calling this procedure on optional before/after program control cards,
combined with the compile-and-link JCL,

— by calling this procedure after executing the standard GPRT procedure,
which produces the generated flow,

— by any other method that is best adapted to the site’s specifications.

(See the "Developer’s Procedures” Manual, Chapter ‘Generation and Printing’,
Subchapter 'PPAF - Generated Programs PAF preprocessor’.)

Five PAF sub-programs are provided at installation time:

* Three sub-programs for batch, installed in the batch compil-units library:
— BVPBBTST for standard PAF requests,
— BVPBBTWS for PAF requests by keyword,
— BVPFile for physical access to the VA Pac Database.

* Two sub-programs for on-line, installed in the on-line compil-units library:

Chapter 5. PAF Implementation for Various Environments 63

— BVPBTPST for standard PAF requests,
- BVPBTPWS for PAF requests by keyword.

The work files necessary for PAF operations are described in Subchapter "Modules
- Specific Files’ 'PAF’, in Chapter "Components’ of the ‘Installation Guide’.

An example of user batch program JCL that calls PAF can be found in member
PAFJCL in library $BVP.SYS.SL.

This example contains all the required files for executing such a user program. The
user can supply other batch work files besides the one provided at installation time
since this file is allocated only for the duration of the JOB.

The name of the work file needed for on-line PAF operations is imposed under a
TDS.

Since they can be used in programs that use the PAF module, the Data Element,
Data Structure, and Segment entities are provided as batch transactions in the
PAFDICF member in the $BVP.SYS.SL library.

The database administrator is responsible for integrating this PAF dictionary into
the database via the UPDT batch update procedure, after making sure that there is
no conflict between the supplied entity codes and the entities that already exist in
his/her network.

INTEGRATION OF PAF INTO A USER TDS

For PAF integration, a TDS source program (STDSPF) is provided in the library
$NMTD.SLIBSL as well as in the JCL jobstreams used for generating and starting
up this TDS in the library $SNMLIL.$LIBJCL.

To integrate PAF into a TDS, you must perform the following functions:
1. Generate the TDS.

You must merge the existing STDS with the source code provided for PAF
(STDSPF) by integrating the USE, SELECT, FILE-INTEGRITY,
PROCESSING-MODE, and MESSAGE clauses, and the WORKING-STORAGE
SECTION fields, into the required sections.

2. Allocate the PA file.
You must run the ALPA procedure from the library $BVP.SYS.JCL.

3. Start the TDS Up.
You can run the PBEXTFPF procedure, but in this case, only the PAF files will
be allocated and opened.

To allocate and open all the files used by TDS applications, you have to merge
the existing start-up JCL with the JCL provided with PAF (TDPF) by copying
the "ASSIGN’ lines and the "DEFINE’ lines from the files used for PAF.

GCOSS8 Version
EXAMPLES OF A PAF REQUEST PROVIDED ON THE INSTALLATION TAPE

A batch transaction file catalogued under '$SUMCU/$MB.PAFT" is standardly
provided. It contains examples of PAF requests for batch and on-line executions.

64 VisualAge Pacbase: PACBASE ACCESS FACILITY

The first on-line example lists the Data Elements, starting from a given Data
Element, in a sub-network. This request is executed from the menu screen and a
list screen via which the request context is defined: user code, password, library
code, session, number of reads to be stored on the intermediate file, sub-network
view and Data Element code.

The second on-line example lists the entities selecting from a given keyword. This
request is executed from a menu screen and from a list screen identical to the WS
screen in VisualAge Pacbase. The parameters are the same as those used in the first
on-line example.

The Dialogue code is 'PA’, and the screen codes are PA0000, PA0001, and PA0002.
The external screen codes are PFP000, PFP001, and PFP002. The transaction used to
execute this dialogue is defined in the VA Pac WCL.

The first batch example lists all the information for a Data Element in a Report
whose file-code is EP. Program PAFEL1 executes this request. A sample JCL of the
procedure used to execute this program is provided in the form of '9” cards in
program TPAF.

This request is parameterized via a $ DATA temporary work file that contains a
line defining the connection parameters.

COLUMN 1 .

COLUMN 2 - 9 : User code

COLUMN 10 - 17 : Password

COLUMN 18 - 20 ¢ Library code

COLUMN 21 - 25 : Session number/type

COLUMN 26 : Sub-network view

COLUMN 27 - 32 : Number of intermediate Reads
The Tines below are used to select the requested data ele-
ments:

COLUMN 1 : E

COLUMN 2 - 7 : Code of selected data elment

The second batch example prints all entities with references to keywords chosen in
a report with File Code-EQ. Program PAFWS1 executes this request. Sample JCL
for the procedure used to execute this program is provided in the form of 9" cards
in program WPAFE.

The PAF request is parameterized via a $ DATA intermediate work file that
contains three lines defining the request:

--the first is an "*’ type line that is identical to the one in the last request,

--the second indicates the keyword type as well as the entity you are searching for.

COLUMN 1 H
COLUMN 2 : Keyword type
: 'M' = explicit keyword
'L' = implicit keyword
: ' ' = both
COLUMN 3 - 4 : User Entity call type
: if entity type is UE
COLUMN 5 - 7 : Entity type
: ! " = all entities
'XXX' = for entity codes,

see PAF manual

--the third Tine formulates the request in the same way as
the WS screen in VisualAge Pacbase.

Chapter 5. PAF Implementation for Various Environments 65

COLUMN 1 : X
COLUMN 2 - 80 : Keyword combinations

This whole set of transactions must be inserted into a Library whose TYPE OF
COBOL TO GENERATE option = 'N’; the programs must be generated from a
sub-library whose TYPE OF COBOL TO GENERATE option = 6.

Since all of the entities required to execute the test deck are provided, the network
chosen for installation can be completely independent of the other networks.

Windows/NT Version

>>>:

The PAF Function processes SQL requests, written in user programs, for access to
the VA Pac Database, by the generation of data and sub-programs in the COBOL
source code generated from these programs.

The pre-processor processes the generated programs to perform this
transformation. The pre-processor is made up of the BVPAFP10.EXE program
which is installed in the "\SYS\PGM’" programs directory of the VA Pac server.

The PACX procedure processes the user’s generated programs that use PAF (refer
to the Chapter "Extraction” in the "Developer’s Procedures” Manual.)

THE EXTRACTION SUB-PROGRAMS

The PAF user programs (batch or on-line), generated with a ’3” variant (to comply
with Micro Focus COBOL) use the same extraction sub-programs. There are three
extraction sub-programs:
* BVPBBTST (for standard extractions)
* BVPBBTWS (for keyword extractions)

Both dynamically called by the PAF user programs, and

* BVPBBT98, which is dynamically called by the extractors (BVPBBTST and
BVPBBTWS) to access the VA Pac Database and the PAF workfile.

The three sub-programs, which are called dynamically, are supplied compiled and
linked (.DLL files) and are in the format of a COBOL source (.CBL files). The .DLL
files are installed in the "\SYS\PGM’" programs directory of the VA Pac servers.

Example of compilation: CBLLINK -D PAFDEL.CBL

The COBOL source files of the extractors are installed in the directory assigned by
the procedure.

The extractors which are dynamically called must be compiled and linked on the
site when the version of the site’s Micro Focus compiler is not compatible with that
used for the VA Pac release.

The following list indicates the compilation instructions to be used when compiling
extraction sub-programs (Micro Focus Net Express V3):

* - VERBOSE
* - NOANIM
* - ASSIGN"EXTERNAL"

66 VisualAge Pacbase: PACBASE ACCESS FACILITY

* - NOBOUND

* - IBMCOMPDIR

* - NOLIST

* - NATIVE"EBCDIC"

* - VSC2ZE

* - PERFORM-TYPE"0OSVS
* - SEQUENTIAL"LINE"
* - LINKCOUNT"96"

* - NOTRACE

* - NOWARNING

* - CALLFH"FHREDIR"
* - NOTRUNC

* - NOCOBOLDIR

* - NOBELL

* - INITCALL"UTILS"

PAF DICTIONARY

PAF Dictionary is described through occurrences of Data Structures, Segments and
Data Elements that will be used to write programs calling the PAF Function. These

occurrences are supplied as batch update transactions.

The insertion of this "PAF dictionary” in the VisualAge Pacbase Database is the

responsibility of the VisualAge Pacbase Database Administrator, who must run an

UPDT update procedure.

In order to avoid dictionary compatibility problems with the entities supplied for
the PAF function, it is advised to create an independent sub-network of libraries in

which the PAF utilities will be written.

EXAMPLE OF COMPILATION AND LINK OF A PAF PROGRAM

The purpose is to compile the batch program PAFDEL.

The compiler used for VA Pac is Micro Focus Net It is advised to use the same
compiler version for the PAF programs to avoid conflicts between Micro Focus
libraries.

Compilation instructions:

ASSIGN "EXTERNAL"

SEQUENTIAL "LINE"

Compilation and link command:

CBLLINK -E PAFDEL.CBL

EXAMPLE OF AN EXECUTION PROCEDURE USING PAF

Execution of the PAFDEL batch program.
**%% Deletion of the previous PAF file #xx%xx
*x%x Assignment of Database and PAF files **x

Chapter 5. PAF Implementation for Various Environments

67

**%% Assignment of user files #*x
(add the specific files of the user pgm)

**%% PAFDEL execution

*** End

**%% Error management of PAFDEL execution
$1 Example of a PAF Procedure Execution
REM — i mmm o o o e e e
REM = VISUALAGE PACBASE
REM =
REM % =m oo oo oo e e e e e e e e e e
REM = - EXAMPLE OF PAF PROCEDURE EXECUTION -
REM =
REM # mmmm e e e e e e -
Set WshShell = Wscript.CreateObject("Wscript.Shell")
Set Args = Wscript.Arguments
Set WshEnv = WshShell.Environment ("PROCESS")
Set WshVolEnv = WshShell.Environment ("VOLATILE")
Dim FSO
Set FSO = CreateObject("Scripting.FileSystemObject")
Dim ObjProcess
Set ObjProcess = CreateObject("BvpWsh.Process")
Rep_BVP="HKLM\SOFTWARE\IBM\BVP VisualAge Pacbase\Server\BVP"
Rep_Proc = WshShell.RegRead(Rep_BVP & "_SYS\PROC\")
Rep_NLS = WshShell.RegRead (Rep_BVP & "_SYS\NLS\")
Rep_SKEL = WshShell.RegRead (Rep BVP & " SYS\SKEL\")
Rep_PGM = WshShell.RegRead (Rep BVP & " SYS\PGM\")

WshEnv ("PATH") = Rep _PGM & ";" & WshEnv("PATH")
' Set COBOL environments :
Var = "HKLM\SOFTWARE\Micro Focus\NetExpress\"
On Error Resume Next
NetExpress_Version = WshShell.RegRead (Var & _
"DefaultVersion")
0 Then
NetExpress =1
Else
NetExpress

End if
On Error Resume Next

If Err.Number

"
(<]

NetExpress_Version = WshShell.RegRead (Var & "Version")
If Err.Number = 0 Then
ApplicationServer = 1
Else
ApplicationServer = 0
End if
If NetExpress = 1 or ApplicationServer = 1 Then
Var = Var & NetExpress_Version & "\COBOL\"
COBOL_Version = WshShell.RegRead (Var & "Version")

68 VisualAge Pacbase: PACBASE ACCESS FACILITY

Var = Var & COBOL_Version & "\Environment\"

COBPATH = WshShell.RegRead (Var & "PATH")

WshEnv ("COBDIR") = WshShell.RegRead (Var & "COBDIR")

WshEnv ("COBHNF") = WshShell.RegRead (Var & "COBHNF")

WshEnv ("PATH") = COBPATH & ";" & WshEnv ("PATH")
Else

wscript.echo "NetExpress or Application Server
not implemented. "

' 1-Delete PAF File

If FSO.FileExists(Rep _TMP & "\WPAF.tmp") Then
Set FileD = FSO.GetFile(Rep_TMP & "\WPAF.tmp")
FileD.Delete

End If

' 2-Assign database files ...

WshEnv ("PAC7AE") = Rep SKEL & "\AE"

WshEnv ("PAC7AR") = Rep_BASE & "\AR"

WshEnv ("PAC7AN") = Rep BASE & "\AN"

' 2bis- ... and PAF File

WshEnv ("SYSPAF") = Rep_TMP & "\WPAF.tmp"

' 3-Assign of program files

' 4- Execute ...

Return = WshShell.Run("BVPAFRUB.exe ", 1, TRUE)
" 5- If Error

if err.number <> 0 and Return = 0 then
wscript.echo "Syntax or RunTime Error"

End if

if Return <> 0 then

wscript.echo "PAFRUB execution error"

End if

Wscript.Quit (Return)

UNIX Version

EXTRACTION SUB-PROGRAMS

For user programs generated with variant '3” of TYPE OF COBOL TO GENERATE
(to comply with PC/MICROFOCUS COBOL), the same extraction sub-programs
are used for both batch and on-line processing. These extraction sub-programs are
supplied compiled and linked (.int or .gnt files) and formatted as COBOL sources
(.cbl files).

There are three extraction sub-programs:

* BVPBBTST (for standard extractions) and BVPBBTWS (for keyword extractions)
are dynamically called by the PAF user programs.

Chapter 5. PAF Implementation for Various Environments 69

BVPBBT98 is dynamically called by the extractors (BVPBBTST or BVPBBTWS)
for access to the VisualAge Pacbase for UNIX Database and to the PAF workfile.

These sub-programs must be compiled on the site when the release of the site
Micro Focus compiler is different from the one used for VisualAge Pacbase for
UNIX.

The release of the Micro Focus compiler used for VisualAge Pacbase for UNIX
is:

* MicroFocus 4.1.10 for the TRUE64 platform,

* MicroFocus HP 11.30 for the HP9000 platform,

* MicroFocus Objet Cobol 4.1.30 for the LINUX platform,

* MicroFocus Objet Cobol 4.1.30 for the SUN platform,

* MicroFocus Server Express 2.0.10 for the AIX platform.

THE PAF DICTIONARY

Occurrences of Data Structures, Segments, and Data Elements used with the PAF
Function are supplied as batch update transactions.

The introduction of this "PAF Dictionary” in the VA Pac Database is carried out via
the UPDT batch procedure. This procedure is under the responsability of the

Database Administrator.

COMPILATION OF PAF PROGRAMS

Programs are compiled using the .int files located in the $SPACDIR/system /int
directory.

Example of compilation script for PAF sub-programs
.1/bin/sh

. Assignment of the cobol compiler:
COBDIR=/usr/lib/cobol

export COBDIR

. Assignment of LIBPATH or LD_LIBRARY_PATH
LIBPATH=$COBDIR/lib:$LIBPATH

export LIBPATH

Assignment of the PATH:

PATH=$COBDIR /bin:$PATH

export PATH

. List of programs to be compiled:
PGM="BVPBBTST.int BVPBBTWS.int BVPBBT98.int"

. Compilation start-up:

70 VisualAge Pacbase: PACBASE ACCESS FACILITY

cob -uv $PGM $COBOPT

. Output files: BVPBBTST.gnt BVPBBTWS.gnt BVPBBT98.gn
Example of a compilation script for user PAF programs:
.1/bin/sh

. Assignment of the cobol compiler:
COBDIR=/usr/lib/cobol

export COBDIR

. Assignment of LIBPATH or LD_LIBRARY_PATH
LIBPATH=$COBDIR/lib:$LIBPATH

export LIBPATH

Assignment of PATH:

PATH=$COBDIR /bin:$PATH

export PATH

Compilation instructions:

COBOPT="-C ASSIGN=EXTERNAL -C NATIVE=EBCDIC -C SEQUENTIAL=LI
COBOPT="$COBOPT -C PERFORM-TYPE=0SVS -C OSVS -C NOBOUND -C I
COBOPT="$COBOPT -C NESTCALL -C DEFAULTBYTE=32"
List of programs to be compiled:

PGM="PGPAF.cbl PGPAFP.cbl"

Compilation start-up:

cob -uv $PGM $COBOPT

Output files: PGPAF.gnt and PGPAFP.gnt

EXECUTION OF A PAF EXTRACTOR

Before executing the PAF extractor, you should perform the following file
assignments:
. Permanent input files:

- VisualAge Pacbase data file : PAC7AR

- VisualAge Pachase index file : PAC7AN
- Error message file : PAC7AE

. PAF workfile : SYSPAF
. User files (when necessary).

Example of the PGPAF program execution script:
.1/bin/sh

Chapter 5. PAF Implementation for Various Environments 71

. Assignment of the cobol compiler:

COBDIR=/usr/1ib/cobol

export COBDIR

. Assignment of LIBPATH or LD_LIBRARY_PATH

LIBPATH=$COBDIR/1ib:$LIBPATH

export LIBPATH

. Assignment of PATH :

PATH=$COBDIR/bin:$PATH

export PATH

. Assignment of the VA Pacbh installation directory:

PACDIR="/pac300/paclanx"

export PACDIR

. Assignment of COBPATH: current directory
and BATCH programs directory

COBPATH=. :$PACDIR/batch/gnt

export COBPATH

. VisualAge Pachase Database assignments:

BASE=test

. $PACDIR/config/$BASE/PAC7AE. ini

. $PACDIR/config/$BASE/PAC7AN.ini

. $PACDIR/config/$BASE/PAC7AR.ini

. $PACDIR/config/$BASE/PAC7AY.ini

. $PACDIR/config/$BASE/PACGGN. ini

. $PACDIR/config/$BASE/PACGGR. ini

. $PACDIR/config/$BASE/PACGGU. ini

. $PACDIR/config/$BASE/PACGGY.ini

PAF assignments (required):

SYSPAF=. /wpaf

export SYSPAF

User assignments:

FILELI=./filel

export FILEL

Execution of the PAF program:

cobrun PGPAF

Deletion of temporary files:

rm -f $SYSPAF=

72 VisualAge Pacbase: PACBASE ACCESS FACILITY

Chapter 6. Error Messages

The PAF Translator

The PAF Translator can detect a number of syntax errors in SQL-PAF statements.
Each error, including the corresponding error message and the line number which
identifies the beginning of the PAF sequence in the translated program, is printed
in an output report.

The possible error messages are listed below, including explanatory comments, in
some cases.

UNKNOWN COLUMN CODE : <column-code>

The <column-code> does not identify a table column specified in the FROM clause
(in the selected language).

TOO MANY ELEMENTARY CONDITIONS IN SELECT CLAUSE
There are more than 50 elementary conditions in this SQL-PAF query.
CURSOR CODE IS TOO LONG : <cursor-code>

The cursor code must contain four characters.

CURSOR CODE ALREADY DECLARED : <cursor-code>

TOO MANY CURSORS DECLARED

There are more than 100 cursors declared in this SQL-PAF query.
UNKNOWN CURSOR CODE : <cursor-code>

There is a cursor management statement for a cursor which has not been declared
in the PAF user program.

NO CONNECT STATEMENT FOR CURSOR : <cursor-code>
NO OPEN STATEMENT FOR CURSOR : <cursor-code>

NO FETCH STATEMENT FOR CURSOR : <cursor-code>
NO CLOSE STATEMENT FOR CURSOR : <cursor-code>
NO INIT STATEMENT FOR CURSOR : <cursor-code>

THE PAF SEQUENCE IS TOO LONG

A PAF sequence is a series of lines grouped between EXEC PAF and END-EXEC.
The maximum number of these lines is 50.

END OF PROGRAM DURING A PAF SEQUENCE

© Copyright IBM Corp. 1983,2002 73

OPERAND CANNOT BE NUMERIC : <operand>

OPERAND CANNOT BE ALPHANUMERIC : <operand>

INVALID OPERAND LENGTH : <operand>

Alphanumeric constant operands have a maximum length of 120 characters.
INVALID COBOL OPERAND : <operand>

COLUMN TYPES ARE DIFFERENT : <coll-code> <col2-code>

An elementary condition applies in the comparison of a numeric column with an
alphanumeric column.

LEFT PARENTHESIS MISSING

RIGHT PARENTHESIS MISSING

Elementary conditions which follow the keyword WHERE must be enclosed
between balanced parentheses, i.e., the number of LEFT parentheses must equal
the number of RIGHT parentheses.

NO QUIT STATEMENT IN PAF-USER PROGRAM

SYNTAX ERROR : <erroneous-syntax>

Incorrect syntax for the SQL-PAF language.

INVALID LITERAL LENGTH : <literal>

The maximum length of a literal is 120 characters.

TOO MANY LITERALS ON A SINGLE LINE

The number of literals on a PAF sequence line must not exceed 40.
INCORRECT ENDING OF LITERAL : <literal>

UNKNOWN TABLE CODE : <table-code>

The <table-code> does not identify a PAF table (in the selected language).

UNKNOWN UE TYPE CODE (WRONG TABLE CODE): <UE-type-code>

The User Entity Table code is incorrect because the UE Type code, used to build
the generic Table code, does not exist (in the selected sub-network).

For more details, refer to the description of the User Entity Tables.
UNKNOWN UE DESCRIPTION (WRONG TABLE CODE) : <Dxx>

The code of the User Entity Table is incorrect since the specified Meta-Entity
Description Number does not exist.

For more details, refer to the description of the User Entity Tables.

74 VisualAge Pacbase: PACBASE ACCESS FACILITY

INVALID PACBASE CONNECTION PARAMETERS
INVALID STRING DELIMITER : <delimiter>

The delimiter specified in the SET statement must have a value of either SINGLE
(single (") quotes) or DOUBLE (double (") quotes), respectively.

INVALID EXECUTION MODE : <execution-mode>

The execution mode specified in the SET statement must have a value of either
BATCH or TP.

INVALID GENERATION VARIANT(S) : <generation-variant(s)>

The generation variant(s) specified in the SET statement must be VisualAge
Pacbase variant(s).

THERE SHOULD NOT BE A CONDITION ON COL.: <column-number>

There can’t be any conditions on columns 05 (VA Pac entity code), 06 (VA Pac
entity label), and 07 (explicit entity keywords) of the KEYWORD table.

THERE SHOULD NOT BE SEVERAL CONDITIONS ON COL. 01

There can’t be more than one condition on column 01 (entity type) of the
KEYWORD table.

THERE SHOULD NOT BE SEVERAL CONDITIONS ON COL. 02

There can’t be more than one condition on column 02 (UE type code) of the
KEYWORD table.

THERE SHOULD NOT BE SEVERAL CONDITIONS ON COL. 03

There can’t be more than one condition on column 03 (keyword type) of the
KEYWORD table.

THERE SHOULD NOT BE SEVERAL CONDITIONS ON COL. 04
There must be one and only one condition on column 04 (WS search argument).
THERE SHOULD BE A CONDITION ON COLUMN 01

If there is an elementary condition on column 02 (UE type code), then there must
be a condition on column 01 (entity type).

INCORRECT COMPARATOR FOR COLUMN: <column-number>

Only the '=" operator can be used in the elementary conditions of a KEYWORD
table query.

INCORRECT OPERAND FOR COLUMN: <column-number>

The operand in the elementary condition of a KEYWORD table query mustn’t be
another column of the table.

Chapter 6. Error Messages 75

ACCESS TO PAF IS NOT ALLOWED

Check the access key.

The PAF Extractor
ERROR CODES RETURNED BY THE EXTRACTOR SUB-PROGRAM

The <cursor-code>-RETCOD field, generated by the PAF Translator, contains the
error code returned by the PAF Extractor Sub-Program.

The '00” value in this field indicates that no error was detected.

There are three types of errors:
* SQL-PAF statement sequence errors,
* File access errors,

¢ Errors in extracted data.

SQL-PAF STATEMENT SEQUENCE ERRORS

Return Codes : 01 to 10

The following chart summarizes the errors which can occur in the sequence of
SQL-PAF statements.

Statements on lines precede statements in columns.
"NULL" means that no prior statement has been issued.

When there is a sequence error, the corresponding box contains the return code
value.

EXAMPLE: The first line indicates that no statement can be issued before the INIT

statement.
INIT CONNECT | OPEN FETCH CLOSE QUIT

NULL 01 01 01 01 01
INIT 02 03 04 05

CONNECT |02 06 07

OPEN 02 08

FETCH 02 08

CLOSE 02 09 10

QUIT 01 01 01 01 01

RETURN CODE VALUES AND MEANING
01 Initializations not performed.

02 Initializations already performed.
03 OPEN of an unconnected cursor.
04 FETCH of an unconnected cursor.
05 CLOSE of an unconnected cursor.
06 FETCH of an unopened cursor.

76 VisualAge Pacbase: PACBASE ACCESS FACILITY

07 CLOSE of an unopened cursor.
08 OPEN of an unclosed cursor.
09 FETCH of a closed cursor.
10 CLOSE of a closed cursor.

FILE ACCESS ERRORS

File access errors occur in relation to the VisualAge Pacbase Database files (Index,
Data, and Error Messages) and the Temporary Work File.

RETURN CODE VALUES AND MEANING

21: Open error on Index File,

22: Open error on Data File,

23: Open error on Error Message File,

24: Open error on Temporary Work File,

31: Read/Write error on Temporary Work File,
32: Read error on VisualAge Pacbase File,

40: VisualAge Pacbase Database Connection error.
41: Unauthorized use of PAF (access key).

ERRORS IN EXTRACTED DATA

Return Code: 50

Errors in extracted data occur with numeric columns in User-Entity Tables. This
happens when the internal format of a Data Element which describes a Meta-Entity
can be modified even though User Entity of that Meta-Entity have already been
created. Thus, the content of the column associated with this Data Element can be
alphanumeric instead of numeric.

In such cases, the query is still valid. It is when the FETCH statement is issued
that the Extractor returns error code "50".

Chapter 6. Error Messages 77

78 VisualAge Pacbase: PACBASE ACCESS FACILITY

Chapter 7. Presentation of the PAF-PDM Functions

Foreword

The PAF Function and the PDM Extension support functions which may be used
jointly.

They do not replace the initial PAF and PDM functions but enhance them as they
co-operate.

Hereafter, they will be referred to as PAF-PDM functions.

NOTE: The PAF-PDM functions may also be used independently of each other.
These functions are therefore sub-divided into PAF+ and PDM+.

PAF+ is documented in the PAF Reference Manual.

PDM+ is documented in the Personalized Documentation Manager Reference
Manual.

The following page lists all the manuals and documents which may be necessary
when using the PAF-PDM functions.

Using PAF-PDM requires an in-depth knowledge of the VisualAge Pacbase
metamodel and (if installed) the metamodels of the WorkStation’s Pacdesign or

Pacbench modules (specific to the methodology in use).

DOCUMENTATION

Listed below is the exhaustive list of manuals and documents which may be
necessary when using PAF-PDM:

1. PAF Reference Manual, with an appendix containing two examples of
Extraction Master Paths including the execution reports printed by the XPAF
Validation procedure (Ref: DD PAF).

2. PAF Tables / Host (Ref: DD PAG).

3. PAF Tables describing entities or Descriptions specific to a Methodology.
These tables are obtained in print via the GPRT 'PCM’ command.

4. Personalized Documentation Manager Reference Manual (Ref: DD PDM).

5. VisualAge Pacbase Procedures Manuals.

Objectives of PAF-PDM Functions

© Copyright IBM Corp. 1983,2002

AUTOMATIC STRUCTURING AND MAINTENANCE OF DOCUMENTS

The initial purpose of PAF-PDM is to add new functionalities to the PDM
extension.

The underlying principle of these functionalities is to make the most of the
cross-references between entities in the metamodel.

79

EXAMPLE:

You want to generate the comments on a Screen occurrence, i.e the comments
entered in:

* the Comments (-GC) of this Screen,
* the Comments (-GC) of its Segments,
* the Description (-D) of the Data Elements called by these Segments.

With PDM, you have to write each individual Segment call into the Document
Description (-D).

As a result, when a new Segment is called in the Screen (-CS), it must also be
added in the Document Description.

With PAF-PDM, you specify the information to be printed in the Document by
defining -- only once -- an Extraction Master Path, also called PTEx.

In the example shown above, the extraction path will start with the Screen entity,
find the called Segments, and finally work its way down to the Data Elements, its
course being guided by the VA Pac Metamodel.

PAF-PDM is therefore a tool not only for the automatic documentation of
applications, but also for the automatic maintenance of this documentation. When
the documented application is modified, you only have to re-generate the relevant
Documents without having to change their Description.

DOCUMENTATION STANDARDIZATION

PDM+ allows you to write Master Outlines (PTEds), i.e. skeletons which may be
used for various purposes:

* With PDM, print options assigned to a Document apply to this particular
Document only. As a result, options must be specified in each Document which
makes standardization not an easy task.

PDM+ allows you to specify all relevant print options in one Master Outline. This
PTEd is then called by as many Documents as needed.

* Coding standardized calls is another PDM+ facility.

For instance, in a Master Outline, the following call:
TGEN_ D

will cause all Text occurrences whose code starts with the letters "‘GEN’ to be
printed in ALL Documents where this Master Outline is invoked.

* Furthermore and most important, standardization in documentation structuring
is achieved with PDM+, in co-operation with PAF+.

It is in this framework that the expression Master Outline takes on its full meaning
as the PTEd becomes a structural skeleton. The generation of different Documents
in relation to several applications may be based on only one Master Outline (PTEd)
managing data extracted by one PTEXx.

NOTE: A Document may call several Master Outlines.

CONCLUSION

80 VisualAge Pacbase: PACBASE ACCESS FACILITY

With PAF-PDM, automatic documentation structuring and standardization are not
synonyms of strictness and rigidity since data extraction and printing are
completely user-defined.

However, this definition should come from one authoritative entity, failing which
standardization may prove a vain word.

Operating Mode of PAF-PDM Functions

The PAF+/Extraction and the PDM+/Outline can be used separately or together.

PAF+ allows for the writing of the Extraction Master Path and for its execution
when the PTEx is a User Extractor.

PDM+ allows for the writing and execution of the Master Outline (PTEd).

The PAF-PDM functions are used when the Master outline calls an Extraction
Master Path of the Macro-Command type.

* If you use the PAF+/Extraction function alone, you can generate User Extractor
programs and possibly format the extracted data.

* If you use the PDM+/Outline function alone, you can create skeletons to
standardize the printing of Documents (standard Print Options, Text instances
always called, standardized calls).

* If you use both functions together, PAF+ extracts data from the Database. This
data is processed by PDM+ and finally printed in a Document.

PAF+: THE EXTRACTION MASTER PATH

PAF+ allows you to write an Extraction Master Path (PTEXx), i.e. an exploration
course throughout the Specifications Database, from which a data extraction
program is automatically generated.

The writing of a PTEx means defining and describing a User Entity of a dedicated
Meta-Entity coded ".PPTEX’ and whose type code is 7E (CH: Y7E......).

There are two types of PTEx, therefore the User Entities of the . PPTEX’
Meta-Entity may be of either one of the following types:

* Type ‘M’ allows you to generate a Macro-Command, i.e. a sub-program which
will have to be called in a Master Outline (PTEd). See the Personalized
Documentation Manager Reference Manual for a complete documentation on the
PDM+ Functionality.

* Type 'E’ allows you to generate a User Extractor program executed
independently.

The input of an Extraction Master Path User Entity is documented in the PAF
Reference Manual, Chapter "Extraction Master Path: Definition / Description”.

VALIDATION
The Extraction Master Path must then be validated by the XPAF batch procedure

which generates the User Extraction Program or the Macro-Command
Sub-Program.

Chapter 7. Presentation of the PAF-PDM Functions ~ 81

>>>>: The XPAF procedure is documented in the ‘Developer’s Procedures’,
Chapter 'Personalized Extraction / Automated Documentation’ and in the
"Administrator’s Procedures’, Chapter ‘"Manager’s Utilities’, Subchapter
"PACX - Extractions’.

When no error is detected, the validation produces a COBOL source program
which must be compiled and linked to be executed.

EXECUTION OF A USER EXTRACTOR (E-TYPE PTEXx)

Once validated, compiled, and linked, a User Extractor is ready for execution.

EXECUTION OF A MACRO-COMMAND (M-TYPE PTEx):

Once validated, compiled, and linked, a Macro-Command is not ready for
execution. It must be called in a Master Outline.

See the 'Personalized Documentation Manager’ Manual for a complete
documentation on the PDM+ Functionality.

NOTE

An Extraction Master Path is independent of the Database in which it is defined
and described as long as the root is the same.

PAF+: EXTRACTION MASTER PATH - DESCRIPTION OF STEPS

DEFINITION !
___________________________________ 1
[! !
I Definition : xtmapa ! !
| ! !
I Extraction Type : E or M ! !
| | !
! ! PAF
! CH : Y7Extmapa ! Reference
----------------------------------- Manual

! !
1 PAF
) TabTes

DECRIPTION !
___________________________________ 1
! ! !
! ! !
! ! !
! ! !
!' CH : Y7ExtmapaD ! !
___________________________________ 1

! !
! !
_________________ V= = m o o e
XPAF-Validation procedure Developer's and
----------------------------- Administrator's
! ! Proc. Manual
Voo e Voo o e e e
USER EXTRACTOR MACRO-COMMAND !
PROGRAM SUB-PROGRAM !
if Extraction Type = E if Extraction Type = M PAF
! ! Reference
------------------- Manual

COMPILATION-LINK EDIT !
! ! !

82 VisualAge Pacbase: PACBASE ACCESS FACILITY

________ U

!
EXECUTION ! "Installation Guide'
________ 2 |
DATA EXTRACTED A Macro-Command must be called

by a PTEd. See PDM+ Functionality

PDM+: THE MASTER OUTLINE

PDM+ allows to write Master Outlines supported by occurrences of the P-type
Document entity.

A Master Outline organizes the printing of data extracted by PAF+ when its
Description calls an Extraction Master Path (on an M-type line).

Master Outlines are reusable as they may be called in different Documents where
they can be customized.

B R e e T R T T S R S S R S T e Lt L L

Once defined and described a Master Outline must be validated by the XPDM
procedure.

>>>>: The XPDM procedure is documented in the "Developer’s Procedures’
Manual, Chapter 'Personalized Extraction / Automated Documentation’.

FRKRIKIIIIAI K KKK AKX KKK XAKRXR KRRk hhd %% *k%k *k%k *k%k *kkk

NOTE: A Master Outline cannot be printed per se. It needs be called in another
Document which when printed will include the Master Outline contents.

However, it is possible to print the Description of a Master Outline (GPRT
procedure, DCV command).

>>>: For more information, refer to Chapter Access Commands, Subchapter
Generation-Print Commands.

You may also use the PRGS procedure which prints the file used to store
Extraction Master Paths and their calling Master Outlines.

>>>: The PRGS procedure is documented in the ‘Developer’s Procedures’” Manual,
Chapter 'Personalized Extraction / Automated Documentation’.

A Master Outline is independent of the VA Pac Database in which it is defined and
described, provided the Databases roots are identical.

If an Extraction Master Path is modified and then re-validated (XPAF), all Master
Outlines calling this Extraction Master Path may have to be modified and must
always be re-validated (XPDM).

PDM+: THE MASTER OUTLINE - DESCRIPTION OF STEPS

The chart below presents PAF-PDM used jointly: the Macro-Command
Sub-Program is called in a Master Outline.

DEFINITION OF MASTER OUTLINE !

___________________________________ 1
| !
I Type : P !
| !
I CH : Vmasout !

Chapter 7. Presentation of the PAF-PDM Functions 83

----------------------------------- PDM

! Reference
! Manual
v

_________________ |1 F Ty Sy Sy Sy Sy S
XPDM-Validation procedure 'The Developer's Proc'
! Manual
_________________ V= = m o e e
DOCUMENT DEFINITION !
___________________________________ 1
... ! !
! Type : M, C, T, U, Eou X ! !
[! !
' CH : Vvolume ! !
___________________________________ 1
! !
! !
) !
DOCUMENT DESCRIPTION !
___________________________________ 1
P Vmasout ! PDM
| ! Reference
' CH : VvolumeD ! Manual

GPRT-Generation-Print Procedure (PCV)

84 VisualAge Pacbase: PACBASE ACCESS FACILITY

Chapter 8. Extraction Master Path: Definition / Description

An Extraction Master Path is defined and described on a User Entity which is an
instance of a Meta-Entity dedicated to PAF+/Extraction. The code of this
Meta-Entity is ".PPTEX” and its call type is "7E". It is supplied on installation and
must not be modified.

The following pages explain the Definition screens (CH: Y7E......) and Description
screens (CH: Y7E.....D) of the User Entities. A brief description of the input fields
is also included.

The values given in the definition and the description of the User Entities are not
checked upon user input. For example, if a field that is listed as required in the
following pages is not filled in, the user will not be given an error message.

It is advised to document the Extraction Master Path by drawing an extraction tree
on the Comments screen (-GC) of the User Entity and by writing comments on the
Description screen. Comments will automatically be printed when the validation
procedure of the Extraction Master is submitted.

© Copyright IBM Corp. 1983,2002 85

DEFINITION TYPE : 7E META-ENTITY :.PPTEX

CODE ENTITE UTILSA : 1

LIBELLE ENTITE 2

PROGRAM CODE : 3

EXTRACTION TYPE 4

OPTIONS)

MAX. RECORD SIZE 6

SORT OPTION 7

NULE CLASS DESCRIPTION OF FIELDS AND FILLING MODE

VALUE

1 |6 CODE ENTITE UTILSA (ALPHABETIC) IDENTIFIER DATA
ELEMENT INVALID ABSENCE UPPERCASE

2 |36 LIBELLE ENTITE (ALPHABETIC) ENTITY LABEL INVALID
ABSENCE

3 |8 PROGRAM CODE (ALPHABETIC)
Required.

The value input in this field indicates where the COBOL
source of the Extraction Master Path will be stored before its
compilation, and what the PROGRAM-ID clause contains.

Furthermore if the Extraction Master Path is a user extraction
program, this value is the external name of the executed
program.

4 |1 EXTRACTION TYPE (ALPHABETIC)

Required.

Macro-command (sub-program)

E User extraction program (program)

5 |50 OPTIONS (ALPHABETIC)

STATI Default value: Static CALL of the PAF extractor

DYNAM Dynamic CALL of the PAF extractor

6 |3 MAX. RECORD SIZE (NUMERIC)

Optional.

maximum size of the extracted records formatted by
presentation lines. This field only applies to a User Extraction
('E” extraction type).

7 |5 SORT OPTION (ALPHABETIC)

Optional.

There are two sort options regarding the Extractor’s output
results:

CURS Default value: Primary sort on the extracted occurrence
(entity type and occurrence code). Secondary sort on the
identification criterion. (extraction pathway which leads to an
occurrence)

IDENT Primary sort on the identification criterion. Secondary sort on
the extracted occurrence (entity type and occurrence code)

For a macro-command, the CURS option is always
implemented.

86 VisualAge Pacbase: PACBASE ACCESS FACILITY

DESCRIPTION

REF. SELECTION-COMMENT VIR.PRES OPDV

4 5

6 7

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

NUMERO DE LIGNE (NUMERIC) IDENTIFIER DATA
ELEMENT

EMBEDDED LEVEL (ALPHABETIC)

Optional.

Its value must be numeric and included between 1 and 9.
Value 1" must be unique in an Extraction Master Path
because it corresponds to the entry point.

Input in this field is relevant in S-, A-, and V- type lines.

LINE TYPE (ALPHABETIC)

Required.

Sequencing

Access

Input conditions

Output conditions

Presentation

<|7|O|T|» |

Virtual cursor

*

Comments (printed in the validation report)

blanc

Ignored by the validation procedure

For more information, refer to Chapter 'Extraction Master
Path Definition/Description’, in this manual.

CODE OF REFERENCE CURSOR (ALPHABETIC)

Optional. Required on S-, A-, and V-type lines.

On S- and A-type lines, it specifies the cursor code associated
with the PAF table. It allows for the extraction sequencing
and identifies the occurrence extracted when the
identification criterion is created. For more information, refer
to Chapter "The Extraction Master Path’, Subchapters "The
Extraction Sequence (S-type lines) and (A-type lines)’.

Chapter 8. Extraction Master Path: Definition / Description 87

NU

LE

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

On V-type lines, it defines a virtual cursor code for the
selective extraction of an occurrence. For more information,
refer to Chapter "The Extraction Master Path’, Subchapter
‘Selective Extraction (V-type lines)’.

40

SELECTION OR COMMENT (ALPHABETIC)

Required on S-, A-, P-, I-, and O-type lines. For more
information, refer to Chapter "The Extraction Master Path’.

VIRTUAL & PRESENTATION CURSOR (ALPHABETIC)

Optional. The first four characters are a virtual cursor and
the last four are a presentation cursor. For more information,
refer to Chapter 'The Extraction Master Path’, Subchapters
‘Selective Extraction (V-type line)” for the virtual cursor and
"Presentation (P-type line)” for the presentation cursor.

PROCESSING OPTIONS (ALPHABETIC)

Optional.

blank

'O’ column: Print option (for S-type lines) Storing of the
occurrence in the extraction result file; this data can be
edited. Storing of the occurrence in the temporary Work File;
this data cannot be edited.

P’ column: Definition of en entry point Definition of an
occurrence as an entry point.

blank ,

‘D’ column: Delimiter value Default value in the description
syntax of the extraction on S- and A-type lines. Default value
on P-type lines. If these default values are not convenient,
the user may specify other values in this field. Warning: The
"-"and """ values are not authorized.

o

"V’ column: Value of the delimiter which bounds a constant
on a P-type line (see Chapter "The Extraction Master Path’,
Subchapter ‘Presentation (P-type line). Default value If this
value is not convenient, the user may modify it in this field.
Warning: The "-" and "’” values are not authorized.

88 VisualAge Pacbase: PACBASE ACCESS FACILITY

Chapter 9. Extraction Master Path

Extraction Sequence (S-type lines)

Data is extracted from the Database according to a path -- a sequencing -- based on
the cross-references existing between entities in the metamodel.

This is why a thorough knowledge of the metamodel being used is essential.

The metamodel can be the VisualAge Pacbase classic metamodel or the VA Pac
WorkStation metamodel for the Pacdesign or Pacbench Rews modules (which
varies with the methodology in use).

An Extraction Master Path can be thought of as a tree whose branches sub-divide
and explore the Specifications Dictionary in finer and finer detail.

The syntax used to describe the sequencing of an extraction is similar to the
language used for on-line navigation within the Database.

In other words, you should ask yourself the following questions before anything
else:

1. What data do I need to extract ?

2. What on-line input is necessary to access the screens which correspond to the
extracted data?

Extraction sequencing is entered on S-type lines in the SELECTION-COMMENT
field of the Y7E......D screen.

An extraction sequence is composed of three elements; the entity type, the
occurrence, and the type of line.

S-type lines examples are given at the end of this subchapter and two complete
PTEx examples are presented at the end of this manual.

1. ENTITY TYPE:

The entity type to be entered corresponds to the entity type that is entered in the
On-Line CHOICE field.

NOTE: If the entity is a WorkStation entity, its type must be coded according to
the following format:

//i__CCC
where "ii” is the Methodology code ("M’ for Merise, ‘D’ for YSM...),
and 'CCC’ is the entity local code.

You can refer to sub-chapter Introduction to PAF Function’, section "Description of
Tables’ for the list of methodology codes.

1. OCCURRENCE:

© Copyright IBM Corp. 1983,2002 89

The occurrence must be separated from the entity type (default value: SPACE,
modifiable in column 'D’). It is identified by the following two elements
separated by a dash (-):

2. Cursor code identifying the hierarchically higher PAF Table. The extraction
sequence depends exclusively on the cursor code which must be unique in an
Extraction Master Path.

3. Contents of the occurrence code: PAF Column code.

The PAF Column codes are given in a specific manual, Description of PAF
Tables (Ref: DD PAG).

NOTE: If the occurrence is an occurrence of a WorkStation entity, the code of
the Column code is the code of the Data Element called by the User
Entity which supports this entity in the Database.

In this case the cursor code and the Data Element/Column code are separated
by two dashes (--). See Example e) at the end of this subchapter.

The codes of these Columns are given in the manuals referenced in Paragraph
1.

4. TYPE OF LINE - TABLE TO EXTRACT:
This type of line corresponds to the coding in the second part of the On-Line

CHOICE field (ex: //M DOM DOM-COEU X1IMCD, where XIMCD is the type
of line). It completes the entity type to specify which table is to be extracted.

This coding must be separated from the occurrence identifier (default value:
SPACE, modifiable in column 'D’).

NOTE: Coding for WorkStation entities is given in the manuals referenced in
Paragraph 1.

EXAMPLES

LIN : L T REF. SELECTION-COMMENT
010 : 1 S PGM P

020 : 2 S LDST P PGM-CPGM CD

On line 010, the L column (which corresponds to the embedded level) does not
need to be filled in since this line correponds to the initial entry.

On line 020, the list of Data Structures for each occurrence of the Program entity
will be requested.

LIN : L T REF. SELECTION-COMMENT
010 : 1 S SEG S
020 : 2 S LDEL S SEG-CSEG CE

The Data Elements (LDEL cursor) belonging to each occurrence of the Segment
(SEG cursor) entity will be listed.

LIN : L T REF. SELECTION-COMMENT
010 : 1 S PGM P
020 : 2 S PGMP P PGM-CPGM P

The ’-P’ lines of each occurrence of the Program entity will be listed.
LIN : L T REF. SELECTION-COMMENT
010 : 1 S DOM //M DOM

90 VisualAge Pacbase: PACBASE ACCESS FACILITY

020 : 2 S LMCD //M DOM-CUEO X1MCD

The Conceptual Data Models for each occurrence of the Domain entity will be
listed.

LIN : L T REF. SELECTION-COMMENT
010 : 1 S PHA //M PHA
020 : 2 S FLC //M CHA PHA--PHACH

The definition of the Flowchart associated with each occurrence of the Phase entity
will be listed.

Explanation of this coding;:

On the Definition of a Phase appears the code of its associated Flowchart. The
Data Element which contains the occurrence code of the associated Flowchart must
then be extracted.

In the manual, DESCRIPTION OF THE USER ENTITIES DEDICATED TO THE
WORKSTATION, the first chapter on the Flowchart entity contains the description
of the Data Elements used in the Definition of the Flowchart. For the fourth field -
FLOWCHART - the Data Element code (PHACH) corresponding to the VALUE
column will be read. It will be coded -PHACH in the Extraction Master Path,
separated from the cursor code by the second dash (-).

More generally, all Data Elements which describe a User Entity AND whose code
is prefixed by a dot, must correspond to a Column code prefixed by a dash instead
of the dot.

NOTE: At the end of this manual, an appendix presents two examples of
Extraction Master Paths. One uses the WorkStation metamodel, and the
other one uses the classic VisualAge Pacbase metamodel.

Extraction Sequence (Particular Cases)

Ambiguities may appear when selecting certain tables for extraction, particularly

cross-reference tables. In this case the occurrence identifier and the table must be
added.

EXAMPLE: The objective is to list the uses of a Segment in Programs.

These uses may be viewed on the ’S... XP.....CP.." and the ’S... XP.....W....." screens.
The first screen lists the Segments called by the Data Structures that are called in
the Program (P......CD). The second screen lists the Segments called in the Working
Storage Section of the Program (P.....W).

This is why the following may be ambiguous:

LIN : L T REF. SELECTION-COMMENT

020 : 2 S SEGP S SEG-CSEG XP

Therefore, it should be written as:
S SEG-CSEG XP PGM-CPGM CD
and/or S SEG-CSEG XP PGM-CPGM W

Chapter 9. Extraction Master Path 91

At this step in the pathway, if the PGM cursor has not been defined, i.e. if no
extraction has been requested on the Program entity, the following lines must be
entered:

S SEG-CSEG XP * CD

and/or S SEG-CSEG XP * W

The result will be the uses of the Segment in the -CD and/or -W of all the
Programs of the queried Library.

Extraction Sequence (A-type lines)

Like an S-type line, an A-type line expresses an extraction selection. To condition
an extraction by testing the value of a Data Element (which belongs to the cursor,
BUT which is not an identifier) the user must write an A-type line and enter the
hierarchially superior cursor in the "VIR.” field.

EXAMPLE:
The objective is to find and list the uses of the Data Elements in the -CD’ of
Programs.

LIN : L T REF. SELECTION-COMMENT VIR.PRES

010 : 1 SDEL E

020 : 2 A PCDE P = CD DEL

030 : 0 CDEL = DEL-CDEL

040 : 0 OR CRES = DEL-CDEL

050 : S PGM P PCDE-CPGM

NOTE: In this example the identifiers of the PCDE cursor are P (for Program) and
CD (for Data Structure); CDEL is an additional Data Element of the table.

First, extract all the Data Elements, then select the -CD lines of Programs calling
the Data Elements (the Programs not having been called in a preceding extraction).

The pathway does not logically follow. The link between the Data Elements and
the Programs is assured by an A-type line which contains the cursor of the Data
Element Table in the first four characters of the VIR.PRES field. This type of line
includes a selection expressed with an asterisk.

Once the objects of the extraction are identified, the extraction conditions (the
"filter”) are entered on one or several O-type lines which must refer to the cursor
specified in the VIR.PRES field of the A-type line.

NOTE: The filter is discussed in the next Subchapter.

Conditions and Filters (I and O-type lines)
INTRODUCTION

The condition line authorizes the extraction from a Table (Input).
The filter selects the occurrences resulting from the extraction (Output).

CONDITIONS : I-TYPE LINES

92 VisualAge Pacbase: PACBASE ACCESS FACILITY

Conditioning an extraction is particularly useful when the extraction must follow a
search path starting from the data which fulfills the condition(s). Data occurrences
that are excluded by the condition will not be extracted.

The condition is expressed on an I-type line, in COBOL, in the form of a Boolean
operator + the expression. The condition references a hierarchically greater Table
already extracted.

EXAMPLE: The objective is to list the occurrences used by a Program.

For the Report entity, occurrences are to be extracted only if the call of their Data
Structures in the -CD of the Program is an I- or J-type line.

LIN : L T REF. SELECTION-COMMENT

010 : 1 S PGM P

020 : 2 S LDST P PGM-CPGM CD

030 : 3 S LRPT D LDST-CDST LR

040 : I LDST-ODSTUS = 'I' OR 'J'

FILTERS: O-TYPE LINES

Filters make it possible to screen out unwanted occurrences of an extraction. A
filter is expressed on an O-type line in SQL-PAF language using the WHERE
clause of the EXEC PAF DECLARE command.

The syntax of this language is described in Chapter "Implementation in User
Programs”, Subchapter "Syntax of the SQL-PAF Language”, Paragraph "Cursor
Declaration”.

The Filter uses a column of the current Table as a filter criterion.

NOTE: At least one filter line is mandatory after an

A-type selection line.

EXAMPLE: The objective is to list the texts called in a Volume whose occurrence
code is RAP001 and to list the Data Elements linked to these texts.

LIN : L T REF. SELECTION-COMMENT
010 : 1 STXT T

020 : 2 S XVOL T TXT-CTXT XV

030 : 0 CvoL = 'voLeel'
040 : 3 S TXTD T XVOL-CTXT D

050 : 0 CDEL <> SPACE

Selective Extraction (V-type line)

The processing loops of an extraction may cause the same occurrence to be
extracted several times. Such might be the case if a Data Element is used several
times in a Program. The repeated extraction of these occurrences may or may not
be relevant. If it is not, the principle of Selective Extraction is used.

A Selective Extraction associates each occurrence with an identification criterion
which differs from the one associated with the extraction level in the PTEx.

EXAMPLE: The objective is to list the uses of the Data Elements in Programs. Each

occurrence will be identified by the following criteria, according to the
number of levels in the extraction:

Chapter 9. Extraction Master Path 93

1 Program (PPPPPP) => PGM PPPPPP

2 Data Structures(DS) => PGM PPPPPP LDST DS

3 Segment (DSSS) => PGM PPPPPP LDST DS LSEG DSSS
4

Data Element (EEEEEE) => PGM PPPPPP LDST SD LSEG DSSS
LDEL EEEEEE

To link the Data Elements directly to the Program which uses them, a virtual or
selection cursor code (DELP) must be defined. This cursor will have an embedded
level of 2 since the path passes directly from the Program to the Data Elements:

=> PGM PPPPPP DELP EEEEEE

VARIANT: To link the Data Elements to their Data Structures, the selection cursor
code is DELD. This cursor will have an embedded level of 3 (Program,
Data Structures, Data Elements).

=> PGM PPPPPP LDST DS DELD EEEEEE

The selection cursor code is positioned in the Selection- Comment field (on S, I, or
O-type line) of the entity to be selected, in the first four characters of the VIR.PRES
field. Then, a V-type line is added at the end of the PTEx. On this line, the
embedded level of the selection cursor is entered in the L column and the selection
cursor code itself is entered in the REF. column.

LIN : L T REF. SELECTION-COMMENT VIR.PRES
010 : 1 S PGM P

020 : 2 S LDST P PGM-CPGM CD

030 : 3 S LSEG D LDST-CDST LS

040 : I (LDST-ODSTUS NOT = 'I' AND 'J'

050 : I AND LDSC-ODSTOR = 'V' OR 'S')

060 : 4 S LDEL S LSEG-CSEG CE DELP

070 : 0 CDEL <> FILLER

900 : 2 V DELP

VARIANT :

LIN : L T REF. SELECTION-COMMENT VIR.PRES

060 : 4 S LDEL S LSEG-CSEG CE DELD
070 & & i e
900 : 2 V DELD

A selection cursor must be entered as many times as branches of the extraction tree
lead to the same entity starting from the same reference entity.

For example, different extraction paths may finally lead to the Data Elements used
in a Program. In the preceding example, the DELP cursor should be used several
times, each time referenced to the same V-type line.

NOTE: The SELECTION-COMMENT field of a V-type line can contain a title or a
label for documentation purposes.

Presentation (P-type line)

Using presentation lines (or format lines), the user may:
* Select columns which describe occurrences resulting from an extraction,

* Specify a particular presentation for these selections.

These lines may be used to describe User Extractors (E-type PTEx) and
Macro-Commands (M-type PTEX).

94 VisualAge Pacbase: PACBASE ACCESS FACILITY

P-type lines are not required. Whether P-type lines are entered or not, a PTEx
always creates an unformatted result file which contains all the Tables extracted
(except those withheld by the user; see the 'Print Option’, in the "Processing
Options’ of the "Extraction Master Path: Definition / Description” Chapter).

USES OF P-TYPE LINES

In User Extraction Programs, Presentation lines may be used to:
* ’'Draw’ personalized list layouts,

e Automatically format user input for batch procedures such as GPRT or EXTR
(but this is useless for UPDP).

In Macro-Commands, Presentation lines allow the user to specify a format which
will be taken into account in a PDM+ Volume. Such a format is called by a G-type
line in a Master Outline.

>>>: For more details, refer to the Personalized Documentation Manager Reference
Manual.

SYNTAX OF P-TYPE LINES (SELECTION-COMMENT field):

P-type lines are written in positional language, based on the juxtaposition of the
following parameters:

PPP,LLL,content
PPP: Positioning:

Numeric, 3 characters maximum, indicates the position of the beginning of the
transfer into the reception field.

LLL: Length:

Numeric, 3 characters maximum, indicates the length of the field to transfer into
the reception field.

content:

Field to transfer:

* Constant (bounded by the value present in column "V’ of the OPDV field, "U’
by default).

* Table column (column code) extracted by the current cursor (generally a column
which contains an occurrence code).

* Table column (cursor-column) extracted by another cursor.

A column from another table may be called in ‘content’; so columns coming
from different tables may be formatted the same way.

"PPP,LLL,content’ can be repeated as many times as necessary; knowing that the
expanded length of the reception field must not exceed the value specified by the
MAX. RECORD SIZE field in the PTEx Definition.

NOTE: A presentation may be written on several consecutive P-type lines
provided that the presentation cursor is entered on the first line only. See
below Paragraph ’Positioning Presentation Cursors’ for more details.

Chapter 9. Extraction Master Path 95

Several presentations for an extracted occurrence may be defined, and one or
several of them may be selected. For example, an E-type occurrence corresponds
both to a Data Element and to a Property. The user may then define a specific
presentation for a Data Element, and another presentation for a Property.

A P-type line may be conditionned if it is directly followed by an I-type line.
Ex: P PREl 1,12,'DATA ELEMENT',14,6,CDEL

I DEL-TDEL = 'R'
P PRE2 1,8,'PROPERTY',10,6,CDEL
I DEL-TDEL = 'T'

If a presentation is associated with several cursors, the cursor code must be
replaced by an asterisk .

Ex: P PREl 1,12,'DATA ELEMENT',14,6,CDEL
I *-TDEL = 'R'

The comma is the default value for delimiting the parameters of P-type lines.
Another character can be used as a delimiter if it is specified in column "D’ of the
OPDV field of each P-type line concerned.

SPECIFIC SYNTAX OF THE MACRO-COMMAND P-TYPE LINES

The SELECTION-COMMENT field in the description of a User Entity occurrence
recognizes the ‘$VF PDM presentation parameter which corresponds to the
character used for vertical separators. Presentation is limited to 132 characters (to
avoid truncations at the time of printing).

All or part of a cursor presentation may be taken into account in a PDM+ Volume.
For more information refer to the description of a Master Outline in the
"Personalized Documentation Manager” Reference Manual.

POSITIONING PRESENTATION CURSORS:

A presentation cursor is positioned inside the selection (S, A, 1, or O-type lines) of
the table to be formatted in the last four characters of the VIR.PRES field.

NOTE: If a V-type line exists for the cursor that is to be formatted, it is
recommended that the cursor be positioned directly on this line (see line
900 of variant 2 shown below).

The P-type line is entered, either:

 directly in the selection of the Table to be formatted, in which case entering the
presentation cursor in the REF. field is not necessary (see variant 2), or

¢ at the end of the Extraction Master Path as in variant 1.

The REF. field must contain the presentation cursor entered previously, except in
the case of variant 2.

You may enter as many P-type lines as there are presentations to be extracted. A
presentation may also be described on several P-type lines (see the NOTE above).

Conversely, a specific presentation may be associated with the same cursor.

EXAMPLE:

LIN : L T REF. SELECTION-COMMENT VIR.PRES
010 : 1 S PGM P
020 : 2 S LDST P PGM-CPGM CD

96 VisualAge Pacbase: PACBASE ACCESS FACILITY

— = TOWwWHHW

LSEG D LDST-CDST LS
(LDST-0DSTUS NOT = "I' AND 'J'
AND LDST-ODSTOR = 'V' OR 'S")
LDEL S LSEG-CSEG CE
CDEL <> FILLER
2,7,0W1EX UED,9,6,CDEL

REF. SELECTION-COMMENT

LDEL S LSEG-CSEG CE
CDEL <> FILLER

PDEL 2,7,0W1EX UE0,9,6,CDEL

REF. SELECTION-COMMENT

030 : 3
040 :
050 :
060 : 4
070 :
080 :
VARIANT
LIN : L
060 : 4
070

999 :
VARTIANT
LIN : L
060 : 4
900 : 2
910

P

DELP SELECTION & PRES. SUPPORT
2,7,0W1EX UED,9,6,CDEL

VIR.PRES

PDEL

VIR.PRES

DELP

PDEL

Above, the extraction finds the Data Element Tines
which are then ready to be processed by EXTR, the
batch extraction procedure.

Chapter 9. Extraction Master Path 97

98 VisualAge Pacbase: PACBASE ACCESS FACILITY

Chapter 10. Execution of a User Extractor / E-Type PTEx

EXECUTION OF A USER EXTRACTOR: USER INPUT
* Several *-type lines, at least one is required.

POS. |LEN. |VALUE |MEANING
2 1 * Line type
3 8 uuuuuuuu | User code
11 8 pprppppp | Password
19 3 bbb Library code
22 4 SSSS Session number. Default value: current session
26 1 Session status if frozen:
" Frozen
T Test
27 1 Library Network Option:
C Default value: Selected and upper libraries See the Character
Mode User Interface Guide or the Developer workbench
on-line help for other possible values

* A required "X'-type line. One of its purposes is to qualify the extraction’s scope.

Several X-type lines may be entered so as to parameterize different executions of
one User Extractor program.

POS. |LEN. |VALUE MEANING

2 1 X Line type
3 4 Cursor code. Default value: 1rst cursor
7 8 Occurrence code.

Default value: All occurrences. The "*” generic character is

authorized.
15 8 Start limit
23 8 End limit
31 1 1 Printing of a debug report. Default value : no debug report
32 6 Number of records in SYSPAF file. Equivalent to PAF/SIZE

parameter. Default value : 10

For technical information, please refer to the ‘Developer’s Procedures” Manual,
Chapter 'Personalized Extractions / Automated Documentation’, Subchapter
"Personalized Extractions - XPAF’, Section "XPAF: Validation of the Extraction
Master Path’.

© Copyright IBM Corp. 1983,2002 99

100 vVisualAge Pacbase: PACBASE ACCESS FACILITY

Chapter 11. Examples of Extraction Master Paths & XPAF
Reports

The following pages contain two examples of Extraction Master Path validation
reports (XPAF Procedure).

An XPAF execution report is composed of:

1. The "COMMENT OR ERROR" page;

2. The user input,

3. The EXTRACTION MASTER PATH DESCRIPTION LINES;
4. The extraction simulation.

The first Extraction Master Path example explores the Data Element entity
cross-references in the Specifications Database metamodel.

The second example explores the Flowchart entity cross-references specific to the
VA Pac WorkStation’s metamodel.

WARNING

The following pages have a landscape format. To read them more easily, we advise
you to print them.

© Copyright IBM Corp. 1983,2002 101

*J93deyd ,uoL3dLadsaq, 9yl UL pagLAOSap a4e ALIuj eIal R

SLYl JO S3JU3AUNII0 JO SUDAADS u0L2dLUISDdQ pue UuoLILuLiaq AR
39Ul UL PaJd1Ud 9Q URD YdLym san|ea p[aLs anduL ||y AR
“S3[nsau et ie e

SNO3U0JJ3 3dnpodd 03 aunpadodd UOLIBPL[RA 3Y] dSheD p[NOM AR
uotjedLjLpow Auy “paLjLpow 8q Jou 3snw A3L3u3 BIDR SLYL et
*yjed 491Sely UOLJORUIXT UR AQLUISIP puR ul}ap AR

0} pasn sudaauds 3ndul ayjz sizsoddns A31Ljul eI SLYL AR AR

¢ (S)3uswwod pajeLdossy "

3+ adAL wU1Bd 49ISBW UOLIORUIXT, Indul : [3qe] X3ldd® : 9pO)
I 3Lvadn 419INYXx*3 /X3
I 419 100d*
I
19927 9 ¥4I I 0----G----Q----G----0----G----0----G----@----G--=-0----G----Q----G----0----G----
I8 L 9 5 b £ 4 1
sl ewouy I anduL J4asp
,Yzed Jarsew uoL3oeulx3, 40 3J4odad uoLieplL|ep Jed VA
NOILYISNYYL ONIWNG ONNO4 ¥OW¥d ON I I INYXxx
40UYI YO LNIWWOD I 3INIT I Wr90dd

102 VisualAge Pacbase: PACBASE ACCESS FACILITY

Zwﬁ_UnwnN NH_MZ& mHm R I I I R N R A A R R RN)

W9d29°6°8d09 Z8°9°C T4IN 4 GO6

0 ONTLLYWYO4 % 006
0 SNITUIS 40 LISIT . 018
0 T4IW ABd A Z S08
0 SWYYD0dd 40 1SIT % 008
0 Z43W AW9d W9dI-ddd d €EWId S 0S50
N WOdI-MdSX <> WHd) 0 0v0
N W9dI-MdSX dJ * d ddd S ¥ 6£0
0 INNOJIY OLINI NINVL 39 1SN OYIVW * 8€0
0 FHL TV HOIHM SWYY90dd IHL “FUNLINYLS * /€0
0 -0V ¥ ST WYY90dd Q3INY3FINOD 3FHL - * 9€0
0 N, <> YNWOdL QNY 0 €0
0 W, <> YNWOdL 0)
0 ¢43W AW9Sd WDdJI-MdSX d ¢2W9d S 2€0
O AQNDDA_UXM ¥ HMO A S
0 Y SOYIVW) WY¥90dd AINYIINOI - * 0€0
N M % dX 93S3-S3X S MdSX S € 6<0
0 ONTNYOM % 820
0 S/WYY90dd V NI LINIW9H3IS vV 40 3SN - * /20
0 ¥ 920
0 Z¢43W AW9d W9dI-daSX d TWHd S G20
0 WYY90dd . 420
N @) * dX 93SI-S3X S daASX S € 220
0 1TYd SFUNLINYLS Y1va * 120
0 SWYY90Yd ¥ NO LNIW9H3IS 3FHL 40 3ISN - * 020
0 % 610
N SUSI-93IS @ SAS S 810
N 93SI-SIX S 9IS S /10
N SX 1302-130 3 S3IX S ¢ 910
0 % 510
0 INIWO3S % v10
0 ¥V NI IN3W373 vivd 40 3sSn - * €10
0 % 210
0 B b e B A S =3 * 110 ettt
0 IN3W3T3 vLlva 40 3ISn - * 010
0 B b S S S =3 * 600 et
d0 3 730 S T S00
0 IN3IW3T3 VLIVA * LNIOd AYINT - * 000
A ddQ S34d "JLA INFWWOJ-NOILIITAS “43d L T NI : (s)uorydiaosap pajeLdossy -
080 * 1 03 : 1 INYIINLS ¢ wbdg

Juswa |3 ejeq e JO Sas(: [9geT NYX*»* : 9p0)

: abey ,yzred ualsew uoL3oeUIXF, JO Ju0dad uoLlepL|eA Jed VA
080 * 1 203 ¢ L ONYIINLS : whd

JUSWa | e3RQ B JO S3SN : [3qe] INYXxx : 3p0)

103

Chapter 11. Examples of Extraction Master Paths & XPAF Reports

104 vVisualAge Pacbase: PACBASE ACCESS FACILITY

T TS T T T T ST T TS T T T T T T T ST T === === +-====- +

I I WIdI-EWId I 900 I <200 I ¢43W I |
e mm o e m e e e e A e b
I I WIdI-EWId I 900 I 600 I I |
fmmmmmm e e R e R R R
I I d)d ZTI 9001 ¢00 I T4IW I €WId I *
fm i mmm e m e o o e e R e b e
I I WIdI-ZWId I 900 I 200 I ¢43W I I- Tt
m e e b m o o e imeemll e e R ‘e
I I WIdJI-2Wdd T 900 I 600 I I |
m e e e S e R R R P
I I d)d ZT 900 T 200 I T4IW I ¢WOd I **---"="rrrrrnneee
m e R e U e b,
I I WIdI-TWId I 900 I <200 I ¢43W I |
i mmmm e mmememee o oo o e e R e R R
I I WIdI-TWId I 900 I 600 I I |
e e o o e e e R e R
I I d)d ZTI 9001 200 I T43W I TWOd I **-r-""" = rrrrrnneee
fmmmmmm e o o e e A o b e
I jusuwo) 1 JUBJUOY T “UST I "SOd I JOW I “494 I ° R
fm e e o e R e e b

080 * 1 103 ¢ 1 INYIOWLS : whd
JUSWa |3 e3RQ B 1O S3sn : [3qe] INYXxx : dp0)

105

Chapter 11. Examples of Extraction Master Paths & XPAF Reports

AW9d AW9d 130

€W9d ddd MdSX S3X 73d 0 €W9d
N dad
AW9d AW9d 130
ZWod MdSX S3X 13 0 ZW9d
N MdSX
AW9d AW9d 13d
Ti9d dd SX S3x 13d 0 TW9d
N dasx
N Sas
N 93S
N SaxX
13d 7136 4 0 130
01 6 8 L 9 G 14 € 4 1 6 8 L 9 S 14 € b4 1
9p0D JOSJUND <-- UOLJUDILJUD UOLIRILLLIUBPL PaIRLIOSSY ---> 4 0 <----- yred uoLoeulxy 0 =—---- >
: UOL30RUAIXD UOLlR|NULS “ """ °
080 : 1 203 ¢ L ONYIOWLS : whd
JUSWa |3 e3RQ B 1O S3SN : |[3qe] INYXxx : dp0)
: abeq ,Yyzed 491Sew uOLIOLUIXT, 4O J4oddd uoLjepLiep oed VA

106 VisualAge Pacbase: PACBASE ACCESS FACILITY

*491deyd ,uoL3dLudsag, dYl UL pagLudSap ade A1L3uj elap AR
SLYl JO S3JU3AUNII0 JO SUDAUDS u0L2dLUISDdQ pue uoLlLuLiaq AR AR AR
39Ul UL PaJd1Ud 9Q uRD YdLym san|ea p[aLt anduL ||y AR
“S3[nsau et eeieeeaa

SNO2U0JJd 3dnpodd 031 aunpadodd UOLIBPL[RA 3yl dSNhRD p[NOM AR
uoLjedLyLpow Auy "paLjlpow 3¢ jou 3snw A3L3uj BIBW SLYL Trorrrrrrererrees
*Yyied 491Sely UOLJORUIXT UR AQLUISIP puR ul}ap AR

031 pasn suaaauds 3ndul ayjz sisoddns A31Ljul eI SLYL AR AR

¢ (S)3uswwod pajeLdossy "t

£V adA| wYded J93sel uoLloeuixi, ndur : [dqe7 X3ldd® : 9poO)
I jlvadn 41900XV*+3/X3
I 419 130d*
I
[°qe7 9 W3 I 0--------0----G----0----§----0----G----0----G----0----G----0----G----0Q----G----
I8 L 9 G 14 € 4 1
solewouy I 1ndut J4asq
1 : abed ,yred uajsew uoL3oeUlXq, JO Ju0dad uoLiepLl|ep oed VA
NOILYISNVYL INIYNA ANNO4 ¥O¥Y¥3 ON I I 0axXYy+*
40dd3 Y0 LNIWWOI I 3INITI WY490dd

107

Chapter 11. Examples of Extraction Master Paths & XPAF Reports

0 30YdS=10N 9dSas--49asn I tad
dO0 4asas--9as71 ada W// ada S 8 222
0 SAJ019 3ISvav1lva 40 SNOILINI43A - * 02¢
0 3I¥dS=10N 9HSSAS--9as1 I t0¢
d 0 9$SAS--9as1 9IS W// 9IS S 8 20¢
0 SINIW93IS 40 SNOILINI43Q - * 00¢
d 0 1@ 03nJ-SAs SAS W// 49as1 S £ 261
0 agas 3 SINIW93S 40 LSIT - * 061
0 3IVYdS=10N SSW9d--S131 I #81
d 0 SSW9d--Sd¥1 SAS W// SAS S 9 281
0 40a/S3714 40 SNOILINI43A - * 081
0 3I¥dS=10N L3IW9d--Sdu1 I 01
dO0 13IW9d--SddT V13 W// Ldd S 9 291
0 S140d3¥ 40 SNOILINI43Q - * 091
d 0 10 W9dI-WOd WOd W// Sd¥1 S G 09T
0 40/S3714 8 S1¥0dI¥ 40 LSIT - * Opl
d 0 JLW9d--NV1IT I¥L W// VL S 9 O€T
0 SASVL 40 SNOILINI43Q - * 021
d 0 30 WOdI-W9d WOd W// M¥LT S G OTT
0 SASYL S,/ WYY90dd IHL 40 SLISIT - * 00T
d0 J0002--W9d1 W9d W// W9Hd S ¥ 060
0 SWYY90dd 40 SNOILINI43Q - * 080
dO0 WOdTX 0INI-VHI VHD W// WOdT S € 00
0 SWYY90dd S, L4YHIMOT4 FHL 40 LSIT - * 090
dO0 HOVYHd--YHd YHO W// 214 S Z 050
0 S1YYHIMOT4 Q3LVIJOSSY 40 SNOILINI4AQ - * 0b0
40 YHd W// VHd S T 0€0
0 SASYHd 40 SNOILINI43Q - * 020
A Qd Q0 S34d “dLA INFWWOJ-NOILI3TAS “434 L T NIT : (s)uorididdosap pajeLdossy "ttt
080 : 1 03¢ 1 oaxy : wbd

S9JUBUISOY-SSOU) 24RYOMO|4 12qe] 0aXy=x : 9po)

2: 9bed ,yzred uajsew uoL3oedlXy, JO Juo0dad uoLiepLl|ep oed VA
2ET + 1 03¢ 1 0axy : wbd

S9JUDJD4Y-SS0U) JARYIMO |4 : 12gqe] 0QXys* : 9p0)

108 VisualAge Pacbase: PACBASE ACCESS FACILITY

aga agd das1 SAs Sd¥T WI9d WIdT VYH) VHd d O ada
H3s 93S das1 SAS Sd¥T WHd WHdT VYH) VHd d O 93s
aas7 ddsT SAS Sd¥T W9d WHdT VYH) VYHd d 0 aas71
Sas SAS Sd¥T WId WIdT VYH) VHd d O Sas
V13 V13 Sdd41 W9d WHdT VHD VYHd d O V13
Sdd1 Sdd1 W9d WIdT VH) VYHd d 0 Sdd1
vl JVL MYLT WOd WIdT VHI) VHd d 0 vl
AV AVLT WOd WOdT VYHD VHd d O AV
W9d W9d W9dT VHD VYHd d O W9d
W9d1 W9dT VH) VHd d 0 W9
YHI VH) VHd d 0 YHI
VHd YHd d 0 VHd
01 6 8 L 9 S v € é 1 6 8 L 9] 1 € I 1
9P0D UO0SUND <-- UOLUDILAD UOLIRILSLIUBPL PAIRLIOSSY =---> 4 0 <m---- yred uoL1oRUIX] m---- >
: UOL10BJUIXS uoLIe|NULS **°°°
2€T ¢ 1 SOW L 0axy : wbd
S9JUBJDY-SSOU) JURYIMO|4 : [3qeT 0QXyxx : 9po)

109

Chapter 11. Examples of Extraction Master Paths & XPAF Reports

Part Number: >

Printed in U.S.A.

	Contents
	Notices
	Trademarks
	Chapter 1. Foreword
	Introduction to the PAF Function

	Chapter 2. Implementation in User Programs
	Introduction
	Syntax of the SQL-PAF Language
	Database Access Optimization
	The 'IDENT' Parameter
	PAF Implementation under VisualAge Pacbase
	The Translated User Program
	Embedded PAF Cursors
	Execution of PAF User Programs

	Chapter 3. Examples of Programs Using PAF
	Introduction
	Batch Example
	On-Line Example

	Chapter 4. PUF - Pacbase Update Facility
	UPDP - Batch Mode
	On-Line Mode
	List of Statements and How They Work

	Chapter 5. PAF Implementation for Various Environments
	OS/390-CICS Version
	IMS Version
	GCOS7 Version
	GCOS8 Version
	Windows/NT Version
	UNIX Version

	Chapter 6. Error Messages
	The PAF Translator
	The PAF Extractor

	Chapter 7. Presentation of the PAF-PDM Functions
	Foreword
	Objectives of PAF-PDM Functions
	Operating Mode of PAF-PDM Functions

	Chapter 8. Extraction Master Path: Definition / Description
	Chapter 9. Extraction Master Path
	Extraction Sequence (S-type lines)
	Extraction Sequence (Particular Cases)
	Extraction Sequence (A-type lines)
	Conditions and Filters (I and O-type lines)
	Selective Extraction (V-type line)
	Presentation (P-type line)

	Chapter 10. Execution of a User Extractor / E-Type PTEx
	Chapter 11. Examples of Extraction Master Paths & XPAF Reports

