
VisualAge Pacbase

eBusiness & Pacbench C/S Applications
Proxy Programming Interface
Version 3.5

Note

Before using this document, read the general information under ‘Notices’ on the next page.

You may consult or download the complete up-to-date collection of the VisualAge Pacbase
documentation from the VisualAge Pacbase Support Center at:

http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm

Consult the Catalog section in the Documentation home page to make sure you have the most recent
edition of this document.

First Edition (June 2004)
This edition applies to the following licensed program:
VisualAge Pacbase Version 3.5
Comments on publications (including document reference number) should be sent electronically through the
Support Center Web site at:
http://www.ibm.com/software/awdtools/vapacbase/support.htm
or to the following postal address:
IBM Paris Laboratory
VisualAge Pacbase Support
1 place J.B. Clément
93881 Noisy-le-Grand Cedex France

© Copyright International Business Machines Corporation 1983,2004. All rights reserved.

Summary

A detailed Table of Contents is presented in the following pages.

Notices...ix

Trademarks ...xi

Foreword ..1

Chapter 1. Classes3
Data Classes ... 3
ProxyLv Class: Inheritance Diagrams 5
Classes of XML flows handling .. 5

Chapter 2. Attributes7
Management of Selections ... 7
Management of Updates.. 11
Exchange Flow Check .. 13
Logical View Instance Container.. 15
Management of User Services... 24
Management of Logical Locks .. 25
Management of Selection-Return Messages 26
Management of Events... 27
Management of Contextual Information............................. 28
Available Counters ... 29
Management of Communications .. 31
Management of Asynchronous Conversations 40
Conversation Time.. 42
Sub-Schema Management ... 43
External Request Management ... 44
Use of a JTable ... 45

Chapter 3. Actions......................................47
Actions Performed Locally .. 47

Actions Performed on a Remote Server............................... 66
Externalization of the Management of Requests................ 83
XML flows handling ... 84
Management of Proxy Context.. 87

Chapter 4. Events....................................... 89
Management of Paging... 89
Management of Unit Reads ... 90
Management of Simultaneous Selections 91
Management of Logical Locks... 91
Management of Dependent Instances.................................. 92

Chapter 5. Public Interface for Data
Elements Handling...................................... 93
Management of a Data Element's Contents 93
Management of Authorized-Value Codes........................... 93
Management of Authorized Values 94
Management of the Validity of a Data Element's Contents94
Access to the Characteristics of a Data Element 95
Initialization of the Data Elements Values 95
Management of a Data Element's Presence......................... 96
Management of a Data Element's Check 96
Management of membership to a Sub-schema................... 97
Management of membership to an extraction method 97

Chapter 6. Management of Errors 99
Management of Errors for Java Target................................. 99
Management of Errors for COM Target104

Index... 111

© Copyright IBM Corp, 1983, 2004
 iii

© Copyright IBM Corp, 1983, 2004 v

Table of Contents

Notices...ix

Trademarks ...xi

Foreword ..1

Chapter 1. Classes3
Data Classes ..3

Inheritance Diagrams.. 3
Java and COM ..3

DataDescription Class... 3
SelectionCriteria Class .. 4
DataDescriptionUpdate Class.. 4
UserContext Class.. 4

ProxyLv Class: Inheritance Diagrams5
Java and COM .. 5

Classes of XML flows handling ...5
Inheritance Diagrams.. 5

Java and COM ..5
Generic classes.. 6
Generated classes... 6

Chapter 2. Attributes....................................7
Management of Selections..7

Selection Criteria.. 7
List of Available Extraction Methods 8
Extraction Method to be Executed 9
Management mode of the collection............................. 10

Management of Updates...11
Implementation of Server Data Checks........................ 11
Server Data Refresh ... 12

Exchange Flow Check ...13
Limited Number of Exchanged Instances.................... 13
Unlimited Number of Exchanged Instances 14

Logical View Instance Container...15
Instance List Presentation... 15
Selection of Local or Server Criterion for Instance List
Sort ... 16
Local Criterion for Instance List Sort............................ 17
Instance Presentation .. 18
Presentation of Modified Folders.................................. 19
Presentation of Modified Instances............................... 20
Presentation of Instances for a User Service................ 21
Presentation of Instances Returned by a User Service22
Presentation of an Instance Linked to a User Service 23

Management of User Services..24
List of Available User Services 24
User Service to be Executed ... 24

Management of Logical Locks ...25
Folder Lock Identifier.. 25

Management of Selection-Return Messages........................26
Message Label .. 26

Message Key..26
Management of Events ...27

List of Events from the Last Server Action...................27
Management of Contextual Information28

Contextual Information...28
Contextual Information Associated with Reference
Nodes ...28

Available Counters..29
Total Number of Local Instances29
Total Number of Update Services29
Number of Update Services Associated with a Node 30

Management of Communications...31
List of Available Platforms ...31
Platform Selected for a Query Execution32
Log-in User Code ...32
Log-in Password...33
Name of the Machine Hosting the Java/VisualAge
Pacbase Gateway..33
IP Port Associated with the Communications
Manager ...34
Setting of the Platforms File's Address34
Selection of the Communication Adapter35
Management of Communication Parameters36

Management of Asynchronous Conversations...................40
Determining the Type of Conversation40
Last Identifier of an Asynchronous Conversation40
Maximum Number of Pending Replies........................41
Number of Pending Replies ...41

Conversation Time ..42
Communication Time..42
Execution Time of the Server Processing42

Sub-Schema Management..43
List of Available Sub-Schemas43
Sub-schema to be Taken into Account..........................44

External Request Management..44
Access and Set a Request...44

Use of a JTable..45
Display of the Instances Collection in a JTable............45
Display of the Updated Folders in a JTable45
Display of the Updated Instances in a JTable46
Display of the Instance Collection in input/output by
a User Service in a JTable ..46

Chapter 3. Actions 47
Actions Performed Locally ..47

Updates ..47
Creation of a Logical View Instance.......................47
Modification of a Logical View Instance48
Deletion of a Logical View Instance.......................49

Cancellation of Updates ..50
Cancellation of a Folder's Updates.........................50
Cancellation of all Folders Updates51
Cancellation of Updates on a Node Instance........52

Sub-Schema Management...82 Cancellation of Updates on all the Instances of a
Node ..53 Test of Communication with the Server.......................83

Management of User Services.. 54
Externalization of the Management of Requests................83 Assignment of an Instance to a User Service.........54

Creation of a Request...83 Modification of an Assigned Instance55
Execution of the Request Actions on the Server..........84 Deletion of an Assigned Instance............................56
Cancellation of the Request Actions..............................84 Local Navigation in the Folders 57

Current Selection of an Instance in a Folder57 XML flows handling ...84
Selection of an instance from an Index...................58 Status of a Logical View Instance85

Obtaining of a XML flow ..85 Selection of an Instance Associated with a User
Service..58 Update from a XML flow..86
Reactivation of the Current Selection.....................59

Management of Proxy Context..87 Miscellaneous Initializations.. 59
Initialization of the proxy context..................................87 Initialization of the collection59
Initialization of the local cache.......................................88 Initialization of Extraction Methods.......................60
Retrieval of the Proxy ..88 Initialization of the User Services60

Initialization of the “Presentation of Instances for
a User Service” Container ..61 Chapter 4. Events....................................... 89
Initialization of the Update-Refresh Option..........61 Management of Paging...89
Initialization of Selection Criteria62 Signal of Retrieval of a Collection's Last Page.............89
Addition of instances in the local cache without
server access ...62 Signal of Retrieval of a Collection's First Page89

Signal of Presence of at Least One Following Page90
Management of Referenced Instances 63 Signal of Presence of at Least One Preceding Page90

Assignment of a Referenced Instance.....................63
Retrieval of Proxies' Generation Contexts 64 Management of Unit Reads ...90

Generation Context of a Folder64 Signal of Reading of a Record not Found.....................90
Generation Context of a Node.................................65

Management of Simultaneous Selections91 Sub-Schema Management .. 65
Signal of Non-Participation to a Simultaneous Read .91 No Selection of Sub-Schema65

Management of Logical Locks...91 Actions Performed on a Remote Server66
Signal of Assigned Logical Lock....................................91 Selection on a Node... 66
Signal of Unsuccessful Logical Lock91 Selection of a Set of Instances66

Management of Dependent Instances..................................92 Reading of an Instance with or without Logical
Locking..67 Signal of Presence of at Least One Dependent Instance92
Reading of Instances from identifiers.....................68 Signal of Absence of Dependent Instances...................92

Concurrent Selection on Multiple Nodes with or
without Locking... 69 Chapter 5. Public Interface for Data

Elements Handling...................................... 93 Reading of an Instance and its Immediate
Hierarchy ..69

Management of a Data Element's Contents93 Reading of an Instance and its Complete
Hierarchy ..70

Management of Authorized-Value Codes...........................93 Reading of the Immediate Hierarchy of a Current
Instance..71 Management of Authorized Values94
Reading of the Complete Hierarchy of a Current
Instance..72 Management of the Validity of a Data Element's Contents94

Access to the Characteristics of a Data Element95 Anticipated Reading of an Instance's Immediate
Hierarchy ..72

Initialization of the Data Elements Values95 Anticipated Reading of an Instance's Complete
Hierarchy ..73 Management of a Data Element's Presence.........................96

Management of Paging ... 73
Management of a Data Element's Check96 Reading of the Following Page's Instances............73

Reading of the Preceding Page's Instances............75 Management of membership to a Sub-schema...................97
Sending of Updates ... 76 Data Element Belonging to the Sub-Schema................97

Sending of Local Updates to the Server76
Management of Logical Locks 77 Management of membership to an extraction method97

Logical Locking of a Current Instance77
Logical Unlocking of a Current Instance78 Chapter 6. Management of Errors 99

Management of Dependent Instances 79
Management of Errors for Java Target.................................99 Check on the Presence of Dependent Instances....79

Classes Related to the Management of Errors100 Management of User Services.. 80
Communication Errors...100 Execution of User Services80
System Errors...100 Management of Asynchronous Conversations........... 81
Local Errors ..100 Deferred Retrieval of a Reply81
Server Errors ..101 Check on a Message Identifier's Validity...............82

vi eBusiness & Pacbench C/S Applications - Proxy Programming Interface

Error Messages Received from the Server... 101
Error Messages Received from the Server on

the Update ... 101
Customizing Error Messages 102

Local Error Messages ... 102
Local Error Messages Received from the Server
Component .. 102
Server and System Error Messages...................... 103
Example of Error Messages File 103

Management of Errors for COM Target............................ 104
Access Method to Errors... 104
VapError Attributes... 105

Management of the Error Type 105
Management of the Action Which Triggers the
Error.. 105
Management of the Error Key 105
Management of the Error Label 105

Management of the Error Gravity105
Events Linked to Errors...106

Signal for No Error Detection106
Signal for Local Error Retrieval106
Signal for Server Error Retrieval...........................106
Signal for System Error Retrieval106
Signal for Communication Error Retrieval107

Customizing Error Messages..107
Naming Rules for Error Messages Files107
Syntax of Error Messages Files107
Error Messages for Local Exceptions107
Local Error Messages Received from the Server
Component...108
Server and System Error Messages108
Example of Error Message File108

Index... 111

 Table of Contents vii

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only that IBM product, program, or service may be used.
Subject to IBM's valid intellectual property or other legally protectable rights,
any functionally equivalent product, program, or service may be used instead
of the IBM product, program, or service. The evaluation and verification of
operation in conjunction with other products, except those expressly designated
by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to
Intellectual Property and Licensing, International Business Machines
Corporation, North Castle Drive, Armonk, New-York 10504-1785, USA

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of information which has been exchanged, should contact: IBM Paris
Laboratory, SMC Department,1 place J.B. Clément, 93881 Noisy-le-Grand
Cedex, FRANCE

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

IBM may change this publication, the product described herein, or both.

© Copyright IBM Corp, 1983, 2004 ix

Trademarks

IBM is a trademark of International Business Machines Corporation, Inc.

 AIX, AS/400, CICS, CICS/MVS, CICS/VSE, COBOL/2, DB2, IMS, MQSeries,
OS/2, PACBASE, RACF, RS/6000, SQL/DS, TeamConnection, and VisualAge are
trademarks of International Business Machines Corporation, Inc. in the United
States and/or other countries.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

All other company, product, and service names may be trademarks of their
respective owners.

© Copyright IBM Corp, 1983, 2004 xi

Foreword

This manual provides a comprehensive description of the Public Interface of
components generated for the Graphic Clients of eBusiness, according to the
Java and COM-compliant environments.

Each Proxy object's interface is generated using the characteristics –defined in
VisualAge Pacbase– of a Logical View and its associated Elementary
Component.

A Proxy object's public interface is made up of classes, characterized by a set of
attributes or properties, actions or methods, and events. A GUI application
handles these interface elements in order to manage each Logical View's
processing according to its associated Elementary Component.

Organization of the manual

This manual is divided into chapters, followed by an Index.
 Chapter 1. Classes, on page 3, describes the classes of the public

interface, including inheritance trees.
 Chapter 2. Attributes, on page 7, provides the list of all attributes types

existing for the various environments. For each attribute, the type
(internal code), name (use name) and get/set are given.

 Chapter 3. Actions, on page 47, describes the actions (called methods for
the Java environment) –whether local or remote– with the declaration
and use name.

 Chapter 4. Events, on page 89, describes the Events and lists their codes.
 Chapter 5. Public Interface for Data Elements Handling , on page 93,

documents the API for handling Data Elements.
 Chapter 6. Management of Errors , on page 99, describes the error

management for both the Java and COM platforms.

Prerequisites and further reading

You should be familiar with the basic principles of the eBusiness Function. The
explanations given in this manual assume you have such knowledge. For
detailed information about these principles, see the eBusiness & Pacbench C/S
Applications - Concepts & Architecture guide.

If you are new to this type of development, you may find it useful to read the
eBusiness & Pacbench C/S Applications - Graphic Presentation guide. This guide is
designed to assist you in the development of Graphic Client Components,
through the presentation of various examples.

© Copyright IBM Corp, 1983, 2004 1

http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm
http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm
http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm

Conventions

The courier font signals any character string displayed or to be typed, as
well as characters representing generated code.

The indication: “Internal Code” signals the code you will have to type in classic
programming.

The indication: “Use Name” signals the corresponding label displayed in the
Composition Editor, used in visual programming.

 Cross-reference, in italics, to another location in this manual or in another
manual. These cross-references are hyperlinks (position the mouse cursor, with
a double click you will display the target of the hyperlink).

 Caution, for a cross-reference to another manual, you open the home page of
the Documentation on the VisualAge Pacbase Internet site, locate the concerned
manual and double click.

 Precaution to be taken (for risky or irreversible action…).

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 2

Chapter 1. Classes

Data Classes

Inheritance Diagrams

Java and COM

DataGroup

DataDescriptionUpdate

Generic

DataDescription

 SelectionCriteria
<SelectionCriteria class

name>

UserContext
<user buffer class name>

 GeneratedDataDescription
<Data class name>

DataDescriptionUpdate
<Data class name><Update>

User DataDescription
<Data class name><User>

 In PB 300 version, naming of DataDescription, SelectionCriteria and
UserContext classes is made when creating Folders and the eBusiness
Application.

 As generating referenced nodes is optional, the naming process is made
dynamics and should follow this rule:

 <Name of the defined class><Folder name>

 If the generation is resulting from Folders defined in the PB 250 version,
naming classes should follow this rule:

 DataDescription : <LogicalView><Data>
 User DataDescription : < LogicalView ><UserData>
 SelectionCriteria : < LogicalView >< SelectionCriteria>
 UserContext : < LogicalView >< UserContext>
 DataDescriptionUpdate : < LogicalView ><DataUpdate>

DataDescription Class
This class is generated for each Logical View or node of a Folder. It represents
the structure of a Logical View, by defining one attribute for each identifier- or
composition-type Data Element.

In the context of a Folder, the DataDescription class associated with a
dependent node does not expose the identifier-type Data Elements of higher
nodes.

© Copyright IBM Corp, 1983, 2004 3

An instance of this class corresponds to a Logical View instance handled by the
application's graphic interface.

SelectionCriteria Class
This class is generated for each Logical View or node of a Folder. It represents
the structure of the key and of the extraction parameters of a Logical View, by
defining one attribute for each key- or extraction-parameter-type Data Element.

In the context of a Folder, the SelectionCriteria class associated with a
dependent node does not expose the key-type Data Elements of nodes higher in
the hierarchy.

There is only one instance of this class for each Logical View or node. This
instance can be used to define the identifier –and possibly the extraction
parameters– of the beginning of a collection (such as SelectInstance), or of a
direct read (such as ReadInstance).

DataDescriptionUpdate Class
This class is generated for Folders’ roots or dependent nodes, which can be
modified. It represents the structure of a modified Logical View, and qualifies
its modification type:

 Created: The Logical View associated with the node has been created
locally.

 Modified: The Logical View associated with the node has been
modified locally.

 Deleted: The Logical View associated with the node has been deleted
locally.

 Read: At least one dependent instance in the Folder has been updated
locally.

UserContext Class

This class is generated for each eBusiness Application in which a User Buffer
was defined. It represents the structure of the buffer, by defining an attribute
for each Data Element.

There is only one instance of this class. It is updated by the GUI or by replies
from the remote server.

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 4

ProxyLv Class: Inheritance Diagrams

Java and COM

In generation
option

ProxyLv

HierarchicalProxyLv

ReferenceProxyLv

 Generic

DependentProxyLv

Folder

...Generated

Dependent Proxy

Root Proxy

Reference Proxy

Classes of XML flows handling

Inheritance Diagrams

Java and COM

XMLMapping

XMLWrapper

<RootNodeName>ProxyLvXMLMapping

<RootNodeName>ProxyLvXMLWrapper
... Generated

Generic

At the end of the generation, an XML schema is also constituted for a folder or
a folder view (coded <FolderName>.xsd or <FolderName-ViewName>.xsd).
This schema, respecting the recommendations of the W3C contains the
description of data.

 Chapter 1. Classes 5

Generic classes

The XMLMapping and XMLWrapper classes define the generic API of XML
flows handling.

Generated classes

The XML mapping class is a XMLMapping-type singleton class. It describes the
elements of the mapping specific to a folder or folder view.

The XML wrapper class is a XMLWrapper-type class associated with the
generated instance of XMLMapping class. It offers methods that allow for each
node to mask the request elements. This class is generated for a folder or a
folder view.

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 6

Chapter 2. Attributes
An attribute is linked to one of three types of elements making up the public
interface of a class. For the public classes associated with a Proxy it may be a
constant, a parameter or the result of an action. It is initialized by the
application which uses the Proxy or by the Proxy itself, depending on the
context.

Management of Selections

Selection Criteria

Description

This attribute defines all the Data Elements of the key- or extraction parameter-
type, defined in the Logical View associated with a node.

For dependent nodes, key-type Data Elements already defined in the same
attribute of the parent node are not exposed.

The description order is that defined in the Logical View.

Each Data Element exposed is set to an “empty” value, or to its default value if
it is defined in the Repository.

This attribute is always available on root-, dependent-, and reference-type
nodes.

It is available for read and write access.

Java
• Type {Name of generated class SelectionCriteria}
• Internal code selectionCriteria
• Use name Selection Criteria
• get/set public {Name of generated class SelectionCriteria}

selectionCriteria() / set not available

COM
• Type {Name of generated class SelectionCriteria}
• Internal code selectionCriteria
• get/set C++ public LPDISPATCH getSelectionCriteria() / set not available

© Copyright IBM Corp, 1983, 2004 7

List of Available Extraction Methods

Description

This attribute exposes a list of extraction-method codes defined in the
Elementary Component which manages the Logical View associated with the
node.

It is available on root-, dependent-, and reference-type nodes, when at least one
extraction method is defined in the Elementary Component managing the
Logical View associated with the node.

It is available for read-only access.

Java
• Type java.lang.String[]
• Internal code extractMethodCodes
• Use name Extraction Method List
• get/set public String[] getExtractMethodCodes() / set not available

COM

This information is not identified as an attribute reference in the Proxy’s API.
To access to this information, follow this method:

• Internal code getExtractMethodCodes
• Declaration public VapCollection getExtractMethodCodes()
• Nb of elements public long getExtractMethodCodesCount()
• Element public char* getExtractMethodCodesElementAt(long i)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 8

Extraction Method to be Executed

Description

This attribute defines the extraction-method code to be implemented on a
collection-selection action.

It may be set to an initialization value, if this is defined in the Proxy's Settings
window.

It is available on root-, dependent-, and reference-type nodes, when at least one
extraction action is defined in the Elementary Component managing the
Logical View associated with the node.

It is available for read and write access.

Java
• Type java.lang.String
• Internal code extractMethodCode
• Use name Extraction Method Code
• get/set public String getExtractMethodCode() /
 public void setExtractMethodCode(String ExtractMethodCode)

COM
• Type String
• Internal code extractMethodCode
• get/set C++ public BSTR getExtractMethodCode() /
 public void setExtractMethodCode(LPCTSTR s)

 Chapter 2. Attributes 9

Management mode of the collection

Description

This attribute defines the collection management type, in return of a collection-
selection action.

Two modes are available:
 Automatic management (default value)
 Manual management

The automatic management enables the replacement of the current collection
with the selected instances, in return of a collection-selection action.

The manual management enables the completion of the current collection with
the selected instances, in return of a collection-selection action. A selected
instance, already present in the current collection, is refreshed if the instance of
the current collection has not been locally modified.

The switch from one mode to another one does not lead to any change of the
current collection.

As a default, the attribute is set to false.

In manual management, the pagination type for root- and reference-type nodes
is always extend.

This attribute is systematically available on root-, dependent- or reference-type
nodes.

It is available for read and write access.

Java
• Type Boolean
• Internal code manualCollectionReset
• Use name Manual Collection Reset
• get/set public Boolean isManualCollectionReset()

public void setManualCollectionReset(boolean b)

COM
• Type Boolean
• Internal code manualCollectionReset
• get/set C++ public BOOL getManualCollectionReset()

public void setManualCollectionReset(BOOL b)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 10

Management of Updates

Implementation of Server Data Checks

Description

This attribute triggers the data checks on the server when a server update
method is being executed.

As a default, it is set to false. It may be set to another initialization value, if
this is defined in the Proxy's Settings window.

It is available on root- and dependent-type nodes, when the associated Logical
View is designed for update mode in its Elementary Component and the
CHECKSER option of this Elementary Component is defined.

It is available for read and write access.

Java
• Type Boolean
• Internal code serverCheckOption
• Use name Server Check Option
• get/set public Boolean getServerCheckOption()
 public void setServerCheckOption(boolean b)

COM
• Type Boolean
• Internal code serverCheckOption
• get/set C++ public BOOL getServerCheckOption()

public void setServerCheckOption(BOOL b)

 Chapter 2. Attributes 11

Server Data Refresh

Description

This attribute retrieves Logical View instances modified following an update
performed by an Elementary Component. This function applies mainly to
Logical Views with Data Elements calculated by the server.

As a default, this attribute is set to false. It may be set to another
initialization value, if this is defined in the Proxy's Settings window.

It is available on root- and dependent-type nodes, when the associated Logical
View is designed for update in its Elementary Component.

It is available for read and write access.

Java
• Type Boolean
• Internal code refreshOption
• Use name Refresh Option
• get/set public Boolean getRefreshOption()
 public void setRefreshOption(boolean b)

COM
• Type Boolean
• Internal code refreshOption
• get/set C++ public BOOL getRefreshOption()

public void setRefreshOption(BOOL b)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 12

Exchange Flow Check

Limited Number of Exchanged Instances

Description

This attribute defines the maximum number of Logical View instances returned
in one exchange by an Elementary Component upon a collection-retrieving
action.

It is set to the Logical View's default iterative capacity. It may be set to another
initialization value, if this is defined in the Proxy's Settings window.

It may be set to a value between 0 and n, where n may exceed the Logical
View's iterative capacity. When this value is 0, simultaneous-selection actions
on multiple nodes do not propagate reading requests to the current node.

This attribute is available on root- or reference-type nodes, and on dependent
nodes with a maximum cardinal value of n.

It is available for read and write access.

Java
• Type Integer
• Internal code maximumNumberOfRequestedInstances
• Use name Maximum Number of Requested Instances
• get/set public int getMaximumNumberOfRequestedInstances()

public void setMaximumNumberOfRequestedInstances(int i)

COM
• Type Integer
• Internal code maxNumberOfRequestedInstances
• get/set C++ public long getMaxNumberOfRequestedInstances()
 public void setMaxNumberOfRequestedInstances(long i)

 Chapter 2. Attributes 13

Unlimited Number of Exchanged Instances

Description

This attribute retrieves all the instances found in the database for the collection
defined by the selection action. This function may generate a high number of
exchanges between the Client Component and the Server Component.

As a default, it is set to false. It may be set to another initialization value, if
this is defined in the Proxy's Settings window.

This attribute is available on root- and reference-type nodes, as well as
dependent nodes with a maximum cardinal value of n.

It is available for read and write access.

Java
• Type Boolean
• Internal code globalSelection
• Use name Global Selection
• get/set public Boolean getGlobalSelection()
 public void setGlobalSelection(boolean b)

COM
• Type Boolean
• Internal code globalSelection
• get/set C++ public BOOL getGlobalSelection()

public void setGlobalSelection(BOOL b)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 14

Logical View Instance Container

Instance List Presentation

Description

This attribute contains the current collection of the node to which it is
associated. This collection is made of a set, or row, of Logical View instances.
It results from the last reading action(s), and from local update actions
performed on the node.

For a root node, the collection of instances exposed contains the Folders
collection retrieved locally.

For a dependent node, the collection of instances exposed depends on the
Logical View instance contained in the detail attribute of its parent node.
Other local instances which may have been retrieved locally are stored in the
local cache and will be transferred according to the navigation operations
performed in the Folder.

For a reference node the collection of instances exposed corresponds to the
collection of Logical Views which can be referenced.

This attribute is available on root- or reference-type nodes, and on dependent
nodes with a maximum cardinal value of n.

It is available for read-only access.

Java
• Type com.ibm.vap.generic.DataDescriptionVector from generated

DataDescriptions
• Internal code rows
• Use name Rows
• get/set public DataDescriptionVector rows()
 set not available

If the generation option “Use IBM EAB classes” is selected, another
attribute is generated to simplify the use of IBM's EAB classes:

• Type COM.ibm.ivj.javabeans.IVector
• Internal code iRows
• Use name IRows
• get/set public COM.ibm.ivj.javabeans.IVector iRows()
 set not available

COM

This information is not identified as an attribute reference in the Proxy’s API.
To access to this information, follow this method:

• Internal code getRows
• Declaration public UcpCollection getRows()

Also available with a browsing API for collection-type attributes.
• Nb of elements public Long getRowsCount()
• Element public {Name of generated class DataDescription}

getRowsElementAt(Long i)

 Chapter 2. Attributes 15

Selection of Local or Server Criterion for Instance List Sort

Description

 This attribute enables you to specify whether the collection contained in the
Instance List Presentation attribute (page 15) is to be sorted according to the local
sort criterion (true) or to the server sort criterion (false).

As a default, the instances stored in the Instance List Presentation attribute are
sorted according to the local sort criterion.

This attribute is available on root-type or reference-type nodes, and on
dependent nodes with a maximum cardinal value of n.

It is available for read and write access.

Java
• Type Boolean
• Internal code localSort
• Use name Local Sort
• get/set public boolean getLocalSort() / public setLocalSort(boolean)

COM
• Type Boolean
• Internal code localSort
• get/set public Boolean isLocalSort()
 public void setLocalSort(BOOL a)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 16

Local Criterion for Instance List Sort

Description

 This attribute defines the local sort criterion applied to the collection stored in
the Instance List Presentation attribute (page 15).

As a default, the instances stored in the Instance List Presentation attribute are
sorted in the order of the Logical View's key.

This attribute is available on root- or reference-type nodes, and on dependent
nodes with a maximum cardinal value of n.

It is available for read and write access.

Java
In Java, the sort criterion is represented by the instance of a class
implementing the generic interface com.ibm.vap.generic.Comparator.
This interface is made of the following method declaration:

public int compare(Object a, Object b) ;

The implementation of this method must provide a sort criterion allowing the
positioning of a before b, if compare returned a negative number, or b before
a otherwise.

• Type com.ibm.vap.generic.Comparator
• Internal code dataComparator
• Use name -
• get/set public com.ibm.vap.generic.Comparator getDataComparator()
 public void setDataComparator(com.ibm.vap.generic.Comparator c)

COM

Not available.

 Chapter 2. Attributes 17

Instance Presentation

Description

This attribute is used to expose a particular Logical View instance (Detail). It
defines all the Logical View's Data Elements which are not defined as extraction
parameters.
For dependent nodes, Data Elements defining the key of parent node(s) are not
exposed. Initialization of these Data Elements is automatically managed by the
Folder View Proxy according to the current instances contained in the higher
nodes.

When this attribute is empty, each Data Element exposed is set to an empty
value, or to its default value if it is defined in the Repository.

After each direct reading or collection reading action returning only one
instance, this attribute is set with the Logical View instance retrieved from the
server.

This attribute is always available on root-, dependent-, and reference-type
nodes.

It is available for read or write access.

Java
• Type {Name of generated class DataDescription}
• Internal code detail
• Use name Detail
• get/set public {Name of generated class DataDescription} detail()

/ set not available

COM
• Type {Name of generated class DataDescription}
• Internal code detail
• get/set C++ public <LPDISPATCH> getDetail() / set not available

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 18

Presentation of Modified Folders

Description

This attribute exposes a list of locally modified Folders. It allows you, for
example, to cancel local changes performed on a deleted Folder instance which
does no longer appear in the Instance-list presentation attribute.

For each modified Folder, this attribute exposes:
 The Logical View instance of the Folder's root node.
 The number of modification services associated with the modified

Folder instance.
 The modification status, which may be one of the following:
#Created Locally created instance
#Modified Locally modified instance
#Deleted Locally deleted instance
#Read Instance read, for which certain dependent instances have

been updated locally.

This attribute is available on the root node of a Folder View Proxy when the
options defined in the Elementary Components managing the Folder make the
node modifiable.

It is available for read-only access.

Java
• Type com.ibm.vap.generic.DataDescriptionUpdateVector from

DataDescriptionUpdate
• Internal code updatedFolders
• Use name Updated Folders
• get/set public DataDescriptionUpdateVector updatedFolders()
 set not available

If the generation option “Use IBM EAB classes” is selected, another
attribute is generated to simplify the use of IBM's EAB classes:

• Type COM.ibm.ivj.javabeans.IVector
• Internal code iUpdatedFolders
• Use name IUpdated Folders
• get/set public COM.ibm.ivj.javabeans.IVector iUpdatedFolders()
 set not available

COM

Available with a browsing API for collection-type attributes.
• Nb of elements public Long getUpdatedFoldersCount()
• Element public {Name of generated class DataUpdate}

getUpdatedFoldersElementAt(Long i)

 Chapter 2. Attributes 19

Presentation of Modified Instances

Description

This attribute exposes the list of the instances of the node which have been
modified locally. It allows you, for example, to cancel local changes performed
on a deleted instance which does no longer appear in the presentation attribute
of a list of instances.

For each modified node, this attribute exposes:
 The Logical View instance of the node.
 The number of modification services associated with the modified

instance.
 The modification status, which may be one of the following:
#Created Locally created instance
#Modified Locally modified instance
#Deleted Locally deleted instance
#Read Read instance, but some of its dependent instances have

been updated locally.

This attribute is available on a root or dependent node of a Folder View Proxy if
the Elementary Component associated with the node has an update service.

It is available for read-only access.

Java
• Type com.ibm.vap.generic.DataDescriptionUpdateVector from

DataDescriptionUpdate
• Internal code updatedInstances
• Use name Updated Instances
• get/set public DataDescriptionUpdateVector updatedInstances()
 set not available

If the generation option “Use IBM EAB classes” is selected, another
attribute is generated to simplify the use of IBM's EAB classes:

• Type COM.ibm.ivj.javabeans.IVector
• Internal code iUpdatedInstances
• Use name IUpdated Instances
• get/set public COM.ibm.ivj.javabeans.IVector iUpdatedInstances()
 set not available

COM

Available with a browsing API for collection-type attributes
• Nb of elements public Long getUpdatedInstancesCount()
• Element public {Name of generated class DataUpdate}

getUpdatedInstancesElementAt(Long i)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 20

Presentation of Instances for a User Service

Description

 This attribute contains a list of Logical View instances, created by local actions
during the preparation of a User Service. These instances are independent from
those contained in the Instance List Presentation attribute (page 15).

The rules for showing the instances according to the node-hierarchy do not
apply to this attribute.

These instances will be sent to the server when executing the next server-type
User Service submission.

This attribute is available on root- or dependent-type nodes, when at least one
User Service is defined in the Elementary Component managing the Logical
View, and the latter has an iterative capacity higher than 1.

This attribute is available for read-only access.

Java
• Type com.ibm.vap.generic.DataDescriptionVector from generated

UserDataDescription
• Internal code userInputRows
• Use name User Input Rows
• get/set public DataDescriptionVector userInputRows()
 set not available

If the generation option “Use IBM EAB classes” is selected, another
attribute is generated to simplify the use of IBM's EAB classes:

• Type COM.ibm.ivj.javabeans.IVector
• Internal code iUserInputRows
• Use name IUser Input Rows
• get/set public COM.ibm.ivj.javabeans.IVector iUserInputRows()
 set not available

COM
Available with a browsing API for collection-type attributes.
• Nb of elements public Long getUserInputRowsCount()
• Element public {Name of generated class UserDataDescription}

getUserInputRowsElementAt(Long i)

 Chapter 2. Attributes 21

Presentation of Instances Returned by a User Service

Description

 This attribute contains a list of Logical View instances, returned by the server-
type User Service after its execution. These instances are independent from the
instances contained in the Instance List Presentation attribute (page 15).

The rules for showing the instances according to the node-hierarchy do not
apply to this attribute.

This attribute is available on root- or dependent-type nodes, when at least one
User Service is defined in the Elementary Component managing the Logical
View, and the latter has an iterative capacity higher than 1.

It is available for read and write access.

Java
• Type com.ibm.vap.generic.DataDescriptionVector from generated

UserDataDescription
• Internal code userOutputRows
• Use name User Output Rows
• get/set public DataDescriptionVector userOutputRows()
 set not available

If the generation option “Use IBM EAB classes” is selected, another
attribute is generated to simplify the use of IBM's EAB classes:

• Type COM.ibm.ivj.javabeans.IVector
• Internal code iUserOutputRows
• Use name IUser Output Rows
• get/set public COM.ibm.ivj.javabeans.IVector iUserOutputRows()
 set not available

COM

Available with a browsing API for collection-type attributes.
• Nb of elements public Long getUserOutputRowsCount()
• Element public {Name of generated class UserDataDescription}

getUserOutputRowsElementAt(Long i)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 22

Presentation of an Instance Linked to a User Service

Description

This attribute exposes a Logical View instance to be transmitted, or a Logical
View instance returned by a server-type User Service. It defines all the Logical
View's Data Elements which are not defined as extraction parameters.

The rules for showing the instances according to the node-hierarchy do not
apply to this attribute. Consequently, in a dependent node, Data Elements
defining the key of parent node(s) are exposed.

When this attribute is empty, each Data Element exposed is set to an empty
value, or to its default value if it is defined in the Repository.

When a server-type User Service returns only one Logical View instance, it is
exposed automatically by this attribute.

This attribute is available on root- or dependent-type nodes, when at least one
User Service is defined in the Elementary Component managing the Logical
View associated with the node.

It is available for read-only access.

Java
• Type {Name of generated class UserDataDescription}
• Internal code userDetail
• Use name User Detail
• get/set public {Name of generated class UserDataDescription}

userDetail()
 set not available

COM
• Type {Name of generated class UserDataDescription}
• Internal code userDetail
• get/set C++ public <LPDISPATCH> getUserDetail() / set not available

 Chapter 2. Attributes 23

Management of User Services

List of Available User Services

Description

This attribute exposes the list of User Services codes defined in the server
managing the Logical View associated with the node.

This attribute is available on root- or dependent-type nodes, when at least one
User Service is defined in the Elementary Component managing the Logical
View associated with the node.

It is available for read-only access.

Java
• Type java.lang.String[]
• Internal code userServiceCodes
• Use name User Service Codes
• get/set public String[] getUserServiceCodes()
 set not available

COM

Available with a browsing API for collection-type attributes.
• Nb of elements public Long getUserServiceCodesCount()
• Element public String getUserServiceCodesElementAt(Long i)

User Service to be Executed

Description

This attribute defines the code of the User Service which will be processed on
the server managing the node when the User Services execution is triggered on
a Folder's root node.

This attribute is available on root- or dependent-type nodes, when at least one
User Service is defined in the Elementary Component managing the Logical
View associated with the node.

It is available for read and write access.

Java
• Type java.lang.String
• Internal code userServiceCode
• Use name User Service Code
• get/set public String getUserServiceCode()
 public void setUserServiceCode(String s)

COM
• Type String
• Internal code userServiceCode
• get/set C++ public BSTR getUserServiceCode()

public void setUserServiceCode(LPCTSTR s)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 24

Management of Logical Locks

Folder Lock Identifier

Description

This attribute exposes a character string calculated by the server and returned
as a result of the last successful request of logical lock on a Folder instance. It is
associated with the Folder instance currently contained in the root node.

This attribute is available on the root node of a Folder View Proxy when the
‘logical locking’ option of the Folder is set.

When the logical locking option of a Folder is set, and this attribute is empty,
local updates on any of the Folder's nodes are denied.

This attribute is automatically set to an empty value for all Folder instances
affected by a successful server update, or when an explicit logical unlocking
action has been executed.

This attribute is available for read-only access.

 No event is sent when the value of this attribute changes. Therefore, it is
advised not to use attribute-to-attribute or event-to-method connections with
this attribute.

Java
• Type String
• Internal code lockTimestamp
• Use name Lock Timestamp
• get/set public String getLockTimestamp()
 set not available

COM
• Type String
• Internal code lockTimestamp
• get/set C++ public BSTR getLockTimestamp() / set not available

 Chapter 2. Attributes 25

Management of Selection-Return Messages

Message Label

Description

This attribute exposes the text of an information message returned by a server
after execution of a selection action, when the end of the requested collection is
reached, or when a requested instance cannot be found or is incomplete.

This attribute is always available on all types of nodes.

It is available for read-only access.

Java
• Type java.lang.String
• Internal code accessInfoLabel
• Use name Access Info Label
• get/set public String getAccessInfoLabel()
 set not available

COM
• Type String
• Internal code accessInfoLabel
• get/set C++ public BSTR getAccessInfoLabel() / set not available

Message Key

Description

This attribute exposes the key of an information message returned by a server
after execution of a selection action, when the end of the requested collection is
reached, or when a requested instance cannot be found or is incomplete.
This attribute is always available on all types of nodes.

It is available for read-only access.

Java
• Type java.lang.String
• Internal code accessInfoKey
• Use name Access Info Key
• get/set public String getAccessInfoKey()
 set not available

COM
• Type String
• Internal code accesInfoKey
• get/set C++ public BSTR getAccessInfoKey / set not available

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 26

Management of Events

List of Events from the Last Server Action

Description

This attribute contains a table of integral constants representing the various
events returned by the last server action.

This attribute is always available on the root node.

It is available for read-only access.

Java
Not available

COM

Available with a management API for a stack. The retrieval method for an
event retrieves the first event from the stack and cancels the event from the
stack.

• Nb of elements public Long getServerEventsCount()
• Element public String popServerEvent()

 Chapter 2. Attributes 27

Management of Contextual Information

Contextual Information

Description

This attribute contains the Data Elements of a contextual information structure
sent and received each time a server action associated with a root- or
dependent-type node is executed.
This attribute is available when a User Buffer has been defined at the eBusiness
Application level. It is available for read-only access.

Java
• Type {Name of generated class UserContext}
• Internal code folderUserContext
• Use name Folder User Context
• get/set public {Name of generated class UserContext}

folderUserContext()
 set not available

COM
• Type {Name of generated class UserContext}
• Internal code folderUserContext
• get/set C++ public <LPDISPATCH> getFolderUserContext() / set not available

Contextual Information Associated with Reference Nodes

Description

This attribute contains the Data Elements of a contextual information structure
sent and received each time a server action associated with a reference node is
executed.

It is available when a User Buffer has been defined at the level of the
Elementary Component which manages the reference node.

It is available for read-only access.

Java
• Type {Name of generated class UserContext}
• Internal code referenceUserContext
• Use name Reference User Context
• get/set public {Name of generated class UserContext}

referenceUserContext()/ set not available

COM
• Type {Name of generated class UserContext}
• Internal code referenceUserContext
• get/set C++ public <LPDISPATCH> getReferenceUserContext() / set not

available

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 28

Available Counters

Total Number of Local Instances

Description

This attribute contains the number of local instances stored in the Folder View
Proxy's cache, for all nodes.

This attribute is always available on the root node.

It is available for read-only access.

Java
• Type int
• Internal code folderInstancesCount
• Use name Folder Instances Count
• get/set public int getFolderInstancesCount() / set not available

COM

This information is not referenced as an attribute in the Proxy's API. It is
available through the following method:

• get/set C++ public Long getFolderInstancesCount() / set not available

Total Number of Update Services

Description

This attribute contains the number of updates that will be performed on the
various Logical View servers when the server-update execution action is next
sent. This number applies to all modified Folder instances, for all nodes.

This attribute is available on the root node when at least one Logical View
associated with one of the Folder's nodes is designed for update in the
Elementary Component managing the Logical View.

This attribute is available for read-only access.

Java
• Type int
• Internal code folderUpdatedInstancesCount
• Use name Folder Updated Instances Count
• get/set public int getFolderUpdatedInstancesCount()/ set not available

COM
This information is not referenced as an attribute in the Proxy API. It is
available through the following method:

• get/set C++ public Long getFolderUpdatedInstancesCount()
set not available

 Chapter 2. Attributes 29

Number of Update Services Associated with a Node

Description

This attribute contains the number of updates which will be performed on the
server associated with the node when the server-update execution action is next
sent.

This attribute is available on each root- and dependent-type node whose
associated Logical View is designed for update in the Elementary Component
managing the View.

It is available for read-only access.

Java
• Type int
• Internal code nodeUpdatedInstancesCount
• Use name Node Updated Instances Count
• get/set public long getNodeUpdatedInstancesCount()
 set not available

COM

This information is not referenced as an attribute in the Proxy API. It is
available through the following method:

• get/set C++ public long getNodeUpdatedInstancesCount()
set not available

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 30

Management of Communications

List of Available Platforms

Description

This attribute contains the list of logical codes (locations) of all the execution
platforms available for a Folder.

When using a gateway, the first time the getLocations is executed for Java
and getLocationsCount is executed for COM (either directly, or at the first
server access) a specific service call of the gateway is produced, whose role is
to return the list of locations logical names, which are associated with the
Folder.

This attribute is always available on the root node.

It is available for read or write access.

Java
When using the Java or COM version with a gateway, the first execution of
getLocations for Java and getLocationsCount for COM (either directly
or when first accessing the server) triggers the call of a specific service of the
gateway, whose role is to return the list of location logical names associated
with the Folder.

• Type java.lang.String[]
• Internal code locations
• Use name Locations
• get/set public String[] getLocations()
 set not available

COM

Available with a browsing API for collection-type attributes.
• Nb of elements public Long getLocationsCount()
• Element public String getLocationsElementAt(Long i)

 Chapter 2. Attributes 31

Platform Selected for a Query Execution

Description

This attribute contains the logical code (location) of the next service to be
executed on the server.

 The population existing in the local cache is not reset at a location modification.
However, it is possible to cancel from the local cache all the instances of the
node and its dependents with the resetCollection action (Initialization of the
collection section, page 59).

This attribute is always available on the root node.

It is available for read or write access.

Java
• Type String
• Internal code location
• Use name Location
• get/set public String getLocation()

public void setLocation(String l)

COM
• Type String
• Internal code location
• get/set C++ public BSTR getLocation()

public void setLocation(LPCTSTR l)

Log-in User Code

Description

This attribute contains the user code required for logging in to the selected
execution platform.

This attribute is always available on the root node.

It is available for read / write access.

Java
• Type String
• Internal code userId
• Use name User Id
• get/set get not available
 public void setUserId(String u)

COM
• Type String
• Internal code userId
• get/set C++ get not available / public void setUserId(LPCTSTR u)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 32

Log-in Password

Description

This attribute contains the password associated with the user code required for
logging in to the selected execution platform.

This attribute is always available on the root node.

It is available for read / write access.

Java
• Type String
• Internal code password
• Use name Password
• get/set get not available
 public void setPassword(String p)

COM
• Type String
• Internal code password
• get/set C++ get not available / public void setPassword(LPCTSTR p)

Name of the Machine Hosting the Java/VisualAge Pacbase Gateway

Description

This attribute contains the TCP-IP address of the computer hosting the
Communications Manager used for transmitting the messages to Elementary
Components.

This attribute is always available on the root node.

When the gateway is a Java/VisualAge Pacbase gateway, this attribute MUST
be set.

It is available for read or write access.

Java
• Type String
• Internal code host
• Use name Host
• get/set public String getHost()
 public void setHost(String h)

COM
• Type String
• Internal code host
• get/set C++ public BSTR getHost() / public void setHost(LPCTSTR h)

 Chapter 2. Attributes 33

IP Port Associated with the Communications Manager

Description

This attribute contains the TCP-IP port associated with the Communications
Manager used for transmitting the messages to Elementary Components.

This attribute is always available on the root node.

The port must be the same as that used for the gateway. As a default it is set to
5647 on both sides.

It is available for read or write access.

Java
• Type int
• Internal code port
• Use name Port
• get/set public int getPort()
 public void setPort(int p)

COM
• Type Long
• Internal code port
• get/set C++ public Long getPort() / public void setPort(Long p)

Setting of the Platforms File's Address

Description

This attribute contains the complete path of the platforms file used by the
Communications Manager to determine the characteristics of the
communication protocol providing access to an Elementary Component.

This attribute is always available on the root node.

It should be used only when the application accesses the middleware locally,
not via a gateway.

It is available for read or write access.

Java
This information is not referenced as an attribute in the Proxy's API. It is
possible to modify it by executing the following method:

• get/set No get
 public void setLocationsFile(String f)

COM
• Type String
• Internal code locationsFile
• get/set C++ get not available / public void setLocationsFile(LPCTSTR f)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 34

Selection of the Communication Adapter

Description

This attribute allows the definition of the communication mode used,
indicating the name of the class (or dll for COM) selected ServerAdapter
(com.ibm.vap.middleware.MiddlewareAdapter,
com.ibm.vap.gateway.GatewayAdapter for Java or MwAdapter, GwAdapter
for COM) or, indicating ‘Direct’ for a Middleware access and ‘Gateway’ for
an access via the Gateway adapter.

For Java, it is also possible to pass directly a ServerAdapter instance.

This attribute is systematically available on the root node.

Java
• Type ServerAdapterName
• Internal code serverAdapterName
• Use name Server Adapter Name
• get/set public String getServerAdapterName ()

public void setServerAdapterName(String className)
• Type ServerAdapter
• Internal code serverAdapter
• Use name Server Adapter
• get/set public ServerAdapter getServerAdapter ()

public void setServerAdapter(ServerAdapter serverAdapter)

COM
• Type String
• Internal code serverAdapterName
• get/set public BSTR getServerAdapterName ()

public void setServerAdapterName(LPCTSTR className)

 Chapter 2. Attributes 35

Management of Communication Parameters

Description

The « communication parameters » attributes are read and assigned using the
getProperty/setProperty methods. These attributes define especially the
required parameters to carry out a communication with the Server Components
according to the communication mode used (Direct or Gateway).

The following table gives the list of all parameters accepted for the above
mentioned communication modes.

Note : see the end of this section for details on each parameter.

Parameters common to both
communication modes

Parameters specific to
the Middleware
communication mode

Parameters specific to the
Gateway communication
mode

Folder and location locationsFile

host

userId

traceFile

port

password

traceLevel

connectionCleaningInterval

nbMaxConnection

hostEncoding

connectionTimeout

clientEncoding

codePageFile

Java
• Type Object
• Internal code property
• Use name Property
• get/set public Object getProperty (String attribut_name)/

public void setProperty(String attribut_name, Object
attribut_value)

COM
• Type Long Double String
• Internal code setDoubleProperty setIntProperty setStringProperty
• Use name setDoubleProperty setIntProperty setStringProperty
• get/set get not available /

public void setIntProperty(LPCTSTR attribut_name, Long
value)
public void setDoubleProperty(LPCTSTR attribut_name,
double value)
public void setStringProperty(LPCTSTR attribut_name,
LPCTSTR value)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 36

The following lines document the parameters accepted for the Direct and
Gateway communication modes.

ClientEncoding
Name or code of the character set used by the client program.
If this property is set, Unicode characters to send to the server are first be
converted into this "client" code page, then converted to the host code page
(according to the host encoding) and finally sent.
There is no need to set the client encoding property if it is compatible with
the host encoding (i.e. it contains the same characters, maybe not with the
same codes).
As soon as the encoding used by the client program is NOT compatible with
the host encoding (i.e. not the same character set), you should set the client
encoding property to avoid characters lost.
Defaults to null, which means that characters will be directly converted from
Unicode to the host code page.

CodePageFile
Name of the file containing the code page conversion tables
Optional, defaults to the file CharConv.txt found in the current working
directory if it exists. If no file name is given and the default file in not found,
no character conversions are done.

ConnectionCleaningInterval
Time in milliseconds between two cleaning of "idle" server connections.
For performance purposes, the middleware layer manages a pool of
underlying server connections. An idle connection is a connection in the
pool that has not been used since the last cleaning.

 Set this property to a small value (for example 1 second, i.e. 1000 ms), if you
do not want to keep unused connections to the server (limit resource usage).
Set this property to a high value (for example 60 seconds), if you want to
have better performance (lower the number of connection/disconnection/re-
connection).
Defaults to 60 seconds (i.e. 60000).

ConnectionTimeout
Indicates the maximum time in millisecond that a thread waiting for a
connection (when "nbMaxConnection" is reached) will wait before reporting
a communication error to the application.
If this value is set to a small value (i.e. 1 second or less), the application will
be sensible to blocking. As soon as the maximum number of connections is
reached, communication errors occur.
If this value is set to a big value (i.e. infinite), the adapter never reports
errors because of long waits (so, the application will not detect long waits).
Defaults to infinite.

location
Name of the entry point (Location) in the locations file where to look for
additional communication properties.

 Chapter 2. Attributes 37

The location name alone determines the section to be used. The given Folder
is used only when no location is given. In this case, the active location is the
first one which contains a property of name FOLDER which value is equal
to the given Folder. If both Folder and location are not set, the first location
of the locations file is used.

Host
Name or IP address of the host where the VAP gateway is running.
Default to 127.0.0.1, which means the local host.

HostEncoding
Name or code of the character encoding used by the server.
Characters to send are converted into the given code page before they are
sent.
The value of the host encoding property should be either an IBM code page
value (ex: "37", "297") known in the active character conversion file (see the
"codePageFile" property), or a code page value preceded with "Cp" (ex:
"Cp37", "Cp297"), or an alias name defined in the character conversion file.
If not set, the value of the property HOST_ENCODING (or MWCODE,
deprecated) found in the active location in the locations file is used.
If this property is not set and no HOST_ENCODING (and no MWCODE)
property is found in the active location in the locations file, characters are
not converted before they are sent.

LocationsFile
Name of the file used to look for additional communication properties.
The content of the locations file should be organized into main sections
(called Locations delimited by < >). Each Location section contains
communication properties to access one specific host.
The default file name of the current working directory is "vaplocat.ini". If no
valid file name is given and the default file is not found, a communication
error is sent.

NbMaxConnection
Indicates the maximum number of server connections that can exist at the
same time.
Before creating a new connection (when there is no available idle matching
connection in the pool), the adapter first checks that the maximum number
of connections is not reached before creating the new one. If it is reached, the
last recently used idle connection is destroyed before creating the new
connection. If all the connections are in use (i.e. there is no connection to
destroy), the current thread is blocked until a connection is no more in use.
For example, if you set this number to 1, only one connection will be created.
When two threads require to communicate "at the same time" through the
same connection (i.e. same connection properties), the second thread waits
for its turn to use the connection.
When two threads require to communicate "at the same time" through two
different connections (i.e. different connection properties), the second thread
waits until the first one terminates its use of its connection, then the
connection used by the first thread is destroyed before creating the
connection required by the second thread. This parameter has an important
impact on performance.

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 38

Defaults to infinite (no maximum, until the underlying communication API
gives up).

Password
Password used to communicate through the middleware.
If not set, no password is passed to the middleware layer.

Port
Value of the IP port on which the VAP gateway is listening for client
requests.
Default to 5647, which is the default port value used by the VAP gateway
when started.

TraceFile
Name of the file used to write execution traces.
The default file is an automatic created file name (with timestamp) stored in
the VapTrace subdirectory of the current working directory.

TraceLevel
Level of detail of the execution traces :
0 : no-traces
1 : traces of errors only
2 : standard non detailed traces
3 : information traces
4 : and upper is for debug traces.
The default value is 1.

UserId
User identification used to communicate through the middleware.
If not set, no user identification and password are passed to the middleware
layer.

 Chapter 2. Attributes 39

Management of Asynchronous Conversations

Determining the Type of Conversation

Description

This attribute is a Boolean value defining the current conversation type of the
Folder. It must de set to true for recognition of an asynchronous-type
conversation, to false for a synchronous-type conversation. As a default, it is
set to false.
This attribute is always available on the root node.

It is available for read / write access.

Java
• Type Boolean
• Internal code asynchronous
• Use name Asynchronous Mode
• get/set public Boolean isAsynchronous()
 public void setAsynchronous(Boolean isAsynchronous)

COM
• Type Boolean
• Internal code asynchronous
• get/set C++ public BOOL getAsynchronous()

public void setAsynchronous(BOOL a)

Last Identifier of an Asynchronous Conversation

Description

This attribute contains the identifier of the reply for last query performed with
an asynchronous-type conversation on the current location.

This attribute is always available on the root node.

It is available for read access.

Java
• Type com.ibm.vap.generic.ServerActionContext
• Internal code lastReplyContext
• Use name Last Reply Context
• get/set public ServerActionContext getLastReplyContext()
 set not available

COM
• Type ServerActionContext
• Internal code lastReplyContext
• Use name lastReplyContext
• get/set C++ public LPDISPATCH getLastReplyContext()

set not available

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 40

Maximum Number of Pending Replies

Description

This attribute contains the maximum number of reply-pending queries for the
current location. This number is a specific parameter (MWMAXREPLY) of the
asynchronous conversations, specified in the platforms file.

This attribute is always available on the root node.

It is available for read / write access.

Java
• Type int
• Internal code maximumReplyCount
• Use name Maximum Reply Count
• get/set public int getMaximumReplyCount()
 public void setMaximumReplyCount(int maximumReplyCount)

COM
• Type int
• Internal code maximumReplyCount
• get/set C++ public short getMaximumReplyCount() / set not available

Number of Pending Replies

Description

This attribute contains the number of asynchronous replies pending for a
Folder. It is set to zero after each location change.

It is incremented when executing any query using an asynchronous-type
conversation, except for update-type queries.

It is decremented after each return of a reply, or when pending queries are
canceled.

This attribute is always available on the root node.

It is available for read / write access.

Java
• Type int
• Internal code pendingReplyCount
• Use name Pending Reply Count
• get/set public int getPendingReplyCount()
 set not available

COM
• Type int
• Internal code pendingReplyCount
• get/set C++ public short getPendingReplyCount()

set not available

 Chapter 2. Attributes 41

Conversation Time

Communication Time

Description

This attribute contains the total communication time of the last conversation
with the server.

It is set to zero.

This attribute is always available on the root node.

It is available for read access.

Java
Time, stated in milliseconds.

• Type int
• Internal code communicationResponseTime
• Use name Communication Response Time
• get/set public int getCommunicationResponseTime()
 set not available

COM
• Type long
• Internal code communicationResponseTime
• get/set C++ public long getCommunicationResponseTime()

set not available

Execution Time of the Server Processing

Description

This attribute contains the total execution time of the server processing for the
last conversation.

It is set to zero.

This attribute is always available on the root node.

It is available for read access.

Java
Time, stated in milliseconds.

• Type int
• Internal code serverResponseTime
• Use name Server Response Time
• get/set public int getServerResponseTime()
 set not available

COM
• Type long
• Internal code serverResponseTime
• get/set C++ public long getServerResponseTime() / set not available

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 42

Sub-Schema Management

List of Available Sub-Schemas

Description

This attribute exposes the list of the sub-schemas available on the node. Sub-
schemas are specified in the description of the Logical View associated with the
node.

This attribute is available if the Elementary Components manage the presence
of Data Elements (options VECTPRES=YES or CHECKSER=YES) and if the node
includes at least one sub-schema.

It is available for read-only access.

Java
• Type SubSchema[]
• Internal code subSchemaList
• Use name SubSchema List
• get/set public SubSchema[] getSubSchemaList()
 set not available

COM

This action is not referenced as an attribute in the Proxy's API. It is possible to
modify it by executing the following method:

• Internal code getSubSchemas
• Declaration public VapCollection getSubSchemas()

Also available with a browsing API for collection-type attributes.
• Nb of elements public long getSubSchemasCount()
• Element public LPDISPATCH getSubSchemasElementAt(long i)

 Chapter 2. Attributes 43

Sub-schema to be Taken into Account

Description

This attribute contains the sub-schema to be taken into account when a
selection, read or update action is performed.

Sub-schemas are specified in the description of the Logical View associated
with the node.

This attribute is available if the Elementary Components manage the presence
of Data Elements (options VECTPRES=YES or CHECKSER=YES) and if the node
includes at least one sub-schema.

It is available for read and write access.

Java
• Type SubSchema
• Internal code subSchema
• Use name Current SubSchema
• get/set public String getSubSchema()

public void setSubSchema(SubSchema SubSchema)

COM
• Type VapSubSchema
• Internal code subSchema
• get/set C++ LPDISPATCH getSubSchema() / void setSubSchema(LPDISPATCH s)

External Request Management

Access and Set a Request

Operation

This attribute returns and sets the current request for the Proxy.

The set request method enables to have the Proxy participate in the storage
context of actions started by an other Proxy instance.

Java
• Type MainRequest
• Internal code request
• User name MainRequest
• get/set public MainRequest getRequest() /

public void setRequest(MainRequest request)

COM
• Type VapRequest
• Internal code Request
• get/set C++ LPDISPATCH getRequest() / void setRequest(LPDISPATCH)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 44

Use of a JTable

Display of the Instances Collection in a JTable

Description

This attribute is available with Java only.

It enables you to insert a JTable, which is a swing component constituted of
several rows and columns, and to display the collection of Logical View
instances in this JTable via the tableModel attribute.

This attribute is available on all node types if you selected the generation
option Use Swing.

It is available for read and write access.

Java
• Type PacbaseTableModel
• Internal code tableModel
• Use name TableModel
• get/set public getTableModel
 public setTableModel(PacbaseTableModel)

COM

Not available

Display of the Updated Folders in a JTable

Description

This attribute is available with Java only.

It enables you to insert a JTable, which is a swing component constituted of
several rows and columns, and to display the collection of updated Folders in
this JTable via the updatedFoldersTableModel attribute.

This attribute is available on all root-type nodes if you selected the generation
option Use Swing.

It is available for read and write access.

Java
• Type PacbaseUpdateTableModel
• Internal code updatedFoldersTableModel
• Use name UpdatedFoldersTableModel
• get/set public getUpdatedFoldersTableModel
 public

setUpdatedFoldersTableModel(PacbaseUpdateTableModel)

COM
Not available

 Chapter 2. Attributes 45

Display of the Updated Instances in a JTable

Description

This attribute is available with Java only.

It enables you to insert a JTable, which is a swing component constituted of
several rows and columns, and to display the collection of updated instances in
this JTable via the updatedInstancesTableModel attribute.

This attribute is available on all root-type nodes if you selected the generation
option Use Swing.

It is available for read and write access.

Java
• Type PacbaseUpdateTableModel
• Internal code updatedInstancesTableModel
• Use name UpdatedInstancesTableModel
• get/set public getUpdatedInstancesTableModel
 public

setUpdatedInstancesTableModel(PacbaseUpdateTableModel)

COM
Not available

Display of the Instance Collection in input/output by a User Service in a
JTable

Description

This attribute is available with Java only.

It enables you to insert a JTable in an application, which is a swing
component constituted of several rows and columns and to display the
collection of Logical View instances in input/output by a User Service in this
JTable via the tableModel attribute.

This attribute is available on all node types if you have selected the generation
option Use Swing.

It is available for read and write access.

Java
• Type PacbaseTableModel
• Internal code tableModel
• Use name TableModel
• get/set public getUserInputTableModel
 public setUserInputTableModel(PacbaseTableModel)

public getUserOutputTableModel
 public setUserOutputTableModel(PacbaseTableModel)

COM

Not available

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 46

Chapter 3. Actions
An action is a piece of processing which can be executed by the Proxy. When an
action requires some parameters for its execution, or when it returns results,
those are passed through by the Logical Views attributes.

There are two types of actions for a Proxy:
 Local actions, which perform update operations on Logical View

instances memorized by the Proxy.
 Server actions, which perform specific processing on the server. If the

server uses a User Buffer, this type of action exchanges its contents
every time it holds a conversation with the server.

Actions can therefore trigger either local processing internal, to the Logical
View, or remote processing. These are standard selections, update processing
actions, and user processing actions defined for the Elementary Components
associated with the Logical Views.

Note: The availability of these actions is indicated in the “Operation” paragraph for
each action. In the case of a Java target, if an action is used although it is not
available (wrong usage of the public method), a
java.lang.IllegalStateException exception will be raised.

Actions Performed Locally

Updates

Creation of a Logical View Instance

Operation

This action creates a Logical View instance locally.

This action is valid if:
 The instance does not exist locally.
 Checks performed on all the instance's Data Elements did not return

any errors.
 The parent instance of a dependent node is present locally.
 For a dependent node with a maximum cardinal value of 1, the created

instance is the only one present locally for the parent instance (i.e., the
parent instance has no dependent instance so far).

 The Folder has “modifiable” status.

If the action is valid:
 The “Total number of update services” counter is incremented by 1.
 The “Number of update services” counter associated with the node is

incremented by 1.
 The “Total number of local instances” counter is incremented by 1.
 The new instance is included in the instance-list container associated

with the node.

© Copyright IBM Corp, 1983, 2004 47

 The new modification is included in the modified Folders' presentation
attributes.

 The no-error-detection event is sent.

If the action is not valid:
 The error is added to the Error Object.
 A local error event is sent.

This action is available if the Elementary Component allows for updates on the
Logical View, and if all dependent nodes with a minimum cardinal value of 1
are present in the Folder View.

Java
• Declaration public void createInstance() throws LocalException
• Use name Create Instance

COM
• C++ declaration public void createInstance()
• Internal code createInstance()

Modification of a Logical View Instance

Operation

This action modifies a Logical View instance locally.

This action is valid if:
 The instance exists in the Instance-presentation attribute.
 The instance exists locally.
 Checks performed on all the instance's Data Elements did not return

any errors.
 The Folder has “modifiable” status.

If the action is valid:
 The “Total number of update services” counter is incremented by 1 if no

update transaction is currently associated with this instance.
 The “Number of update services” counter associated with the node is

incremented by 1 if no update transaction is currently associated with
this instance.

 The modification is included in the instance-list container associated
with the node.

 The new modification is included in the modified Folders' presentation
attributes.

 The no-error-detection event is sent.

If the action is not valid:
 The error is added to the Error Object.
 A local error event is sent.

This action is available if the Elementary Component allows for updates on the
Logical View.

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 48

Java
• Declaration public void modifyInstance() throws LocalException
• Use name Modify Instance

COM
• C++ declaration public void modifyInstance()
• Internal code modifyInstance()

Deletion of a Logical View Instance

Operation

This action deletes a Logical View instance locally. It locally deletes all
dependent nodes' instances one after the other.

This action is valid if:
 The instance exists locally.
 The instance exists in the Instance-presentation attribute.
 The parent instance of a dependent node is present locally.
 The Folder has “modifiable” status.

If the action is valid:
 The “Total number of update services” counter is incremented by 1 if no

update transaction is currently associated with this instance.
 The “Number of update services” counter associated with the node is

incremented by 1 if no update transaction is currently associated with
this instance.

 The “Total number of local instances” counter is decremented by the
number of dependent instances implicitly deleted, + 1.

 The instance is deleted from the instance-list container associated with
the node.

 The new modification is included in the modified Folders' presentation
attributes.

 All local instances which depend on the deleted instance are deleted.
 The no-error-detection event is sent.

If the action is not valid:
 The error is added to the Error Object.
 A local error event is sent.

This action is available if the Elementary Component allows for updates on the
Logical View.

Java
• Declaration public void deleteInstance() throws LocalException
• Use name Delete Instance

COM
• C++ declaration public void deleteInstance()
• Internal code deleteInstance()

 Chapter 3. Actions 49

Cancellation of Updates

Cancellation of a Folder's Updates

Operation

This action cancels all local updates performed on a Folder's instance, for all
nodes, starting with the first local update.

This action is valid if:
 The instance exists in the root node's Instance-presentation attribute.

If the action is valid:
 The initial image of the instance and dependent instances is restored in

the local cache, in the presentation attributes and in the instance list
containers.

 The update-services total number counter is recalculated.
 The update-services number counter associated with the node is

recalculated.
 The “Total number of local instances” counter is recalculated.
 The instance is deleted from the modified Folders' presentation

attributes.
 The no-error-detection event is sent.

If the action is not valid:
 The error is added to the Error Object.
 A local error event is sent.

This action is available if at least one of the Elementary Components of the
Folder allows for updates on a Logical View it manages.

Java
• Declaration public void undoLocalFolderUpdates({Name of generated

class DataUpdate} d) throws LocalException
• Use name Undo Local Folder Updates

COM
• C++ declaration public void undoLocalFolderUpdates(LPDISPATCH d)
• Internal code undoLocalFolderUpdates({Name of generated class

DataUpdate})

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 50

Cancellation of all Folders Updates

Operation

This action cancels all the local updates performed on all Folder instances, for
all nodes.

Action impact:
 The initial images of the Folder instances and all their dependent

instances are restored in the local cache, in the presentation attributes
and in the instance-list containers.

 The “Total number of update services” counter is reset.
 The “Number of update services” counters associated with each node

are reset.
 The “Total number of local instances” counter is recalculated.
 The modified Folders' presentation attributes are reset.
 The no-error-detection event is sent.

If the action is not valid:
 The error is added to the Error Object.
 A local error event is sent.

This action is available if at least one of the Elementary Components of the
Folder allows for updates on a Logical View it manages.

Java
• Declaration public void undoAllLocalFolderUpdates()
• Use name Undo All Local Folder Updates

COM
• C++ declaration public void undoAllLocalFolderUpdates()
• Internal code undoAllLocalFolderUpdates()

 Chapter 3. Actions 51

Cancellation of Updates on a Node Instance

Operation

This action cancels all local updates performed on an instance of the node,
starting with the first local update. This action takes a node instance as a
parameter.

This action is valid if:
 The instance passed as a parameter is a node instance which has been

locally updated.

If the action is valid:
 The initial image of the instance and dependent instances (if the

instance has a #Deleted or #Created status) is restored in the local cache
and in the presentation instances attributes.

 The counter of the total number of update services is recalculated.
 The counter of the update services number associated with the node is

recalculated.
 The counter of the total number of local instances is recalculated.
 The updated instance and all its dependent instances are deleted from

the presentation attributes of modified instances.
 The Folders' presentation attribute is updated.
 The no-error-detection event is sent.

If the action is not valid:
 The error is added to the Error Object.
 A local error event is sent.

This action is available on a root or dependent node of a Folder View Proxy if
the Elementary Component associated with the node includes an update
service.

Java
• Declaration public void undoLocalUpdate({Name of generated class

DataDescriptionUpdate} d) throws LocalException
• Use name Undo Local Update

COM
• C++ declaration public void undoLocalUpdate(LPDISPATCH d)
• Internal code undoLocalUpdate({Name of generated class

DataDescriptionUpdate} d)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 52

Cancellation of Updates on all the Instances of a Node

Operation

This action cancels all the local updates performed on the instances of a node
and of its current hierarchy, since the first local update.

Action impact:
 The initial images of the instances of the node for the current hierarchy

and of all their dependent instances (if the modification status of a node
instance is not #Modified) are restored in the local cache, in the
presentation attributes and in the instance-list containers.

 The "total number of update services" counter is recalculated.
 The "number of update services" counter of the number of update

services associated with the node is reset.
 The "total number of local instances" counter is recalculated.
 The updated instances and all their dependent instances are deleted

from the presentation attribute of modified instances.
 The modified Folders' presentation attribute is updated.
 The no-error-detection event is sent.

This action is available on a root or dependent node of a Folder View Proxy if
the Elementary Component associated with the node includes an update
service.

Java
• Declaration public void undoAllLocalUpdate()
• Use name Undo All Local Update

COM
• C++ declaration public void undoAllLocalUpdate()
• Internal code undoAllLocalUpdate()

 Chapter 3. Actions 53

Management of User Services

Assignment of an Instance to a User Service

Operation

On a node, this action locally creates a new Logical View instance, reserved for
the execution of the next User Service.

This action is valid if:
 The instance exists in the Instance-presentation attribute of an instance

linked to a User Service.

If the action is valid:
 The counter of Logical View instances reserved for a User Service is

incremented by 1.
 The instance is included in the presentation attributes of instances

reserved for a User Service.
 The no-error-detection event is sent.

If the action is not valid:
 The error is added to the Error Object.
 A local error event is sent.

This action is available when the Elementary Component associated with the
node manages at least one User Service.

Java
• Declaration public void createUserInstance() throws LocalException
• Use name Create User Instance

COM
• C++ declaration public void createUserInstance()
• Internal code createUserInstance()

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 54

Modification of an Assigned Instance

Operation

On a node, this action locally modifies a Logical View instance reserved for the
execution of the next User Service.

This action is valid if:
 The instance exists in the presentation attribute of instances reserved for

a User Service.
 The instance exists in the Instance-presentation attribute of an instance

linked to a User Service.

If the action is valid:
 The modification is included in the presentation attribute of instances

designed for a User Service.
 The no-error-detection event is sent.

If the action is not valid:
 The error is added to the Error Object.
 A local error event is sent.

This action is available when the Elementary Component associated with the
node manages at least one User Service.

Java
• Declaration public void modifyUserInstance() throws LocalException
• Use name Modify User Instance

COM
• C++ declaration public void modifyUserInstance()
• Use name modifyUserInstance()

 Chapter 3. Actions 55

Deletion of an Assigned Instance

Operation

On a node, this action locally deletes a Logical View instance reserved for the
execution of the next User Service.

This action is valid if:
 The instance exists in the presentation attribute of instances reserved for

a User Service.
 The instance exists in the presentation attribute of an instance linked to

a User Service.

If the action is valid:
 The counter of Logical View instances reserved for a User Service is

decremented by 1.
 The presentation attribute of instances designed for a User Service

integrates the instance deletion.
 The no-error-detection event is sent.

If the action is not valid:
 The error is added to the Error Object.
 A local error event is sent.

This action is available when the Elementary Component associated with the
node manages at least one User Service.

Java
• Declaration public void deleteUserInstance() throws LocalException
• Use name Delete User Instance

COM
• C++ declaration public void deleteUserInstance()
• Internal code deleteUserInstance()

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 56

Local Navigation in the Folders

Global Instance-presentation attributes setting rule:

When the detail attribute (instance-presentation) of a parent node contains a
valid instance, the detail and rows attributes (presentation of the instances
list) of its dependent nodes are set according to the following rules:

 If the dependent node has a maximum cardinal values of n, its rows
attribute is set with all the instances stored in the local cache and
depending on the current instance of the parent node. If there is only
one instance in the local cache, its detail attribute is also set with this
instance.

 If the node has a maximum cardinal value of 1, its detail attribute is
set with the instance depending on the parent node's current instance, if
it is found in the local cache.

 If the node does not meet any of the above rules, its Instances-
presentation attributes are empty.

Current Selection of an Instance in a Folder

Operation

This action assigns to the detail attribute of a node an instance of the same
type, such as, in particular, an instance from the rows attribute.

This action is valid if:
 The input parameter for this action is an instance from
DataDescription.

If the action is valid:
 The detail attribute contains the instance to be assigned.
 The detail and rows attributes of the dependent nodes are set

according to the Global setting rule.
 The Folder's lock identifier is set if the current instance belongs to the

root node which is currently locked.
 The no-error-detection event is sent.

If the action is not valid:
 The error is added to the Error Object.
 A local error event is sent.

This action is always available.

Java
• Declaration public void getDetailFromDataDescription({Name of

generated class DataDescription} d) throws LocalException
• Use name Get Detail From Data Description

COM
• C++ declaration public void getDetailFromData(LPDISPATCH d)
• Internal code getDetailFromData({Name of generated class

DataDescription})

 Chapter 3. Actions 57

Selection of an instance from an Index

Operation

This method enables to reactivate the current selection according to the index of
a Logical View instance contained in the "rows" collection.

Java
• Declaration public void getDetailFromRowsIndex(int index) throws

LocalException
• Use name Get Detail From Rows Index

COM
• C++ declaration public void getDetailFromRowsIndex (short index)
• Internal code getDetailFromRowsIndex(Integer)

Selection of an Instance Associated with a User Service

Operation

This action assigns to the UserDetail (Presentation of an instance for a User
Service) attribute of a node an instance of the same type, such as, in particular,
an instance from the UserRows (Presentation of an instance-list for a User
Service) attribute.

Action impact:
 The presentation attribute of an instance reserved for a User Service

contains the instance to be assigned.
 The no-error-detection event is sent.

If the action is not valid:
 The error is added to the Error Object.
 A local error event is sent.

This action is available when the Elementary Component associated with the
node has at least one User Service.

Java
• Declaration public void getUserDetailFromDataDescription({Name of

generated class DataDescription} d) throws LocalException
• Use name Get User Detail From Data Description

COM
• C++ declaration public void getUserDetailFromData(LPDISPATCH d)
• Internal code getUserDetailFromData({Name of generated class

DataDescription} d)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 58

Reactivation of the Current Selection

Operation

This action enables to reactivate the current selection according to a Logical
View instance.

Note: The Logical View instance is not always retrieved from the rows
collection. It may have been created only to meet the Development needs.

Example : After the selection of 300 "Client" Logical View instances, creation of
one "Client" Logical View instance which is assigned the client number 56 and
use of the "restoreSelection" method. The current selection of the Proxy is fed
with the client 56 first retrieved and the hierarchy of the dependants is
activated with client number 56 as the root.

Java
• Declaration public void restoreSelection ({Name of generated class

}Data d)
• Use name restoreSelectionFromData({Name of generated class}Data d)

COM

Not available

Miscellaneous Initializations

Initialization of the collection

Operation

This action enables to discard the node instances and its dependent nodes from
the local cache.

Action impact:
 the detail attribute of the node is re-initialized.
 the rows attribute of the node is re-initialized.
 the detail attributes of dependents nodes are re-initialized.
 the rows attributes of dependents nodes are re-initialized.

The action is always available for all nodes.

Java
• Declaration public void resetCollection()
• Use name Reset Collection

COM
• C++ declaration public void resetCollection()
• Internal code resetCollection()

 Chapter 3. Actions 59

Initialization of Extraction Methods

Operation

This action sets the Extraction method to be executed attributes of the node
and all its dependent nodes to empty values.

The “Extraction method to be executed” attribute of each affected node contains
an empty value.

This action is available for all nodes on which at least one extraction method
has been defined in the Elementary Component.

Java
• Declaration public void resetExtractMethodCodes()
• Use name Reset Extract Method Codes

COM
• C++ declaration public void resetExtractMethodCodes()
• Internal code resetExtractMethodCodes()

Initialization of the User Services

Operation

This action sets the User Service to be executed attributes of the node and all
its dependent nodes to empty values.

The “User Service to be executed” attribute of each affected node contains an
empty value.

This action is available when the Elementary Component associated with the
node has at least one User Service.

Java
• Declaration public void resetUserServiceCodes()
• Use name Reset User Service Codes

COM
• C++ declaration public void resetUserServiceCodes()
• Internal code resetUserServiceCodes()

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 60

Initialization of the “Presentation of Instances for a User Service” Container

Operation

This action sets the Presentation of instances for a User Service attributes of
the node and all its dependent nodes to empty values.

Action impact:
 For each affected node, the “Presentation of instances designed for a

User Service to be executed” attribute contains an empty value.

This action is available when the Elementary Component associated with the
node has at least one User Service.

Java
• Declaration public void resetUserRows()
• Use name Reset User Rows

COM
• C++ declaration public void resetUserRows()
• Internal code resetUserRows()

Initialization of the Update-Refresh Option

Operation

This action inhibits the update-refresh option on the node and on its dependent
nodes, by setting the corresponding Boolean value to “false”.

This action is available when the Elementary Component associated with the
node allows for updates on the Logical View it manages.

Java
• Declaration public void resetAllRefreshOption()
• Use name Reset All Refresh Option

COM
• C++ declaration public void resetAllRefreshOption()
• Internal code resetAllRefreshOption()

 Chapter 3. Actions 61

Initialization of Selection Criteria

Operation

This action sets the Selection Criteria attributes of the node and all its
dependent nodes to empty values.

As a result of this action, the Selection Criteria attribute of each affected node
contains an empty value.

This action is always available for all root- and dependent-type nodes.

Java
• Declaration public void resetSelectionCriterias()
• Use name Reset Selection Criterias

COM
• C++ declaration public void resetSelectionCriterias()
• Internal code resetSelectionCriterias()

Addition of instances in the local cache without server access

Operation

This action allows the addition, in the local cache, of non-read instances from
the server. These instances have not the locally-created status.

This action is valid if the instance does not exist in local mode, whatever its
status is.

If the action is valid:
 The “Total number of local instances” counter is incremented by 1.
 The instance list container associated with the node embeds the new

instance
 The event ‘no error detected’ is sent.

If the action is not valid:
 The error is added to the Error Object.
 A local error event is sent.

This action is always available on all nodes.

Java
• Declaration public void initializeInstance() throws LocalException
• Use name Initialize Instance

COM
• C++ declaration public void initializeInstance()
• Internal code initializeInstance()

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 62

Management of Referenced Instances

Assignment of a Referenced Instance

Operation

This action maps the identifier-type Data Elements in the reference-node
instance used as a parameter of the action to the ‘foreign key’-type Data
Elements of the referencing-node instance.

This action is valid if:
 An instance exists in the Instance-presentation attribute of the

referencing node.
 The reference-node's instance does not contain an empty value.

If the action is valid:
 The ‘foreign key’-type Data Elements in the Instance-presentation

attribute of the referencing node are initialized with the identifier-type
Data Elements of the reference node.

If the action is not valid:
 The error is added to the Error Object.
 A local error event is sent.

This action is always available on reference nodes.

Java
• Declaration public void transferReferenceFromSelectedRow({Name of

generated class DataDescription} d) throws LocalException
• Use name Transfer Reference From Selected Row

COM
• C++ declaration public void transferReferenceFromSelectedRow(LPDISPATCH d)
• Internal code transferReferenceFromSelectedRow({Name of generated class

DataDescription} d)

 Chapter 3. Actions 63

Retrieval of Proxies' Generation Contexts

Generation Context of a Folder

Operation

This action retrieves the VisualAge Pacbase constants from the Services
Manager associated with the root node, in the form of a collection of character
strings containing the following information:

 Services Manager external name
 VisualAge Pacbase code of the Folder (or Elementary Component)
 Database code of the VisualAge Pacbase Repository
 Library code
 Generation-session number
 User code
 Generation date
 Generation time
 Folder View code

This action is always available for a root node.

Java
• Declaration public String[] getFolderConstants()
• Use name Get Folder Constants

COM

Available with a browsing API for collection-type attributes.
• Nb of elements public Long getFolderConstantsCount()
• Element public String getFolderConstantsElementAt(Long i)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 64

Generation Context of a Node

Operation

This action retrieves the VisualAge Pacbase constants from the Elementary
Component associated with the node.

Action impact:
 The action returns a collection of character strings containing the

following information:
 External name of the Elementary Component
 VisualAge Pacbase code of the Elementary Component
 Database code of the VisualAge Pacbase Repository
 Library code
 Generation-session code
 User code
 Generation date
 Generation time
 Operations version of the Elementary Component

This action is always available for all types of nodes (root, dependent, or
reference).

Java
• Declaration public String[] getNodeConstants()
• Use name Get Node Constants

COM

Available with a browsing API for collection-type attributes.
• Nb of elements public Long getNodeConstantsCount()
• Element public String getNodeConstantsElementAt(Long i)

Sub-Schema Management

No Selection of Sub-Schema

Operation

This action resets the subSchema attribute, that is no sub-schema is selected.

This action is available if the Elementary Components manage the presence of
Data Elements (VECTPRES=YES or CHECKSER=YES) and if the node includes at
least one sub-schema.

Java
• Declaration public void resetSubSchema()
• Use name Reset SubSchema

COM
• C++ declaration public resetSubSchema()
• Internal code resetSubSchema()

 Chapter 3. Actions 65

Actions Performed on a Remote Server
Reminder: Global Instance-presentation attributes setting rule:

When the Instance-presentation attribute of a parent node contains a valid
instance, the Instance- and Instance-list-presentation attributes of the
dependent nodes are set according to the following rules:

 If the dependent node has a maximum cardinal value of n, its Instance-
list-presentation attribute is set with all the instances stored in the local
cache and dependent on the current instance of the parent node. If
there is only one instance in the local cache, the Instance-presentation
attribute is also set with this instance.

 If the node has a maximum cardinal value of 1, its Instance-presentation
attribute is set with the instance dependent on the parent node's current
instance, if it is found in the local cache.

 If the node does not meet the above-stated rules, its Instance-
presentation and Instance-list-presentation attributes are set to empty
values.

Selection on a Node

Selection of a Set of Instances

Operation

This action defines a Logical View instance collection associated with the node,
and retrieves all of this collection's instances, or the first page.

If the action is valid:
 The Instance-list-presentation attribute is modified according to the

value of the management mode attribute of the collection.
 The “Total number of local instances” counter is initialized.
 The selection-return message's label and key are initialized if the last

instance of the collection has been retrieved.
 The Instance- and Instance-list presentation attributes of dependent-

type nodes are set to empty values.
 A no-error-detection event is sent.
 The event “Presence of updatable local instances” is sent, with a

collection management in automatic mode, if updatable instances are
still present in the local cache.

 The event “Retrieval of a collection's first page” is sent if the Folder
operates in non extend mode and with the collection management in
automatic mode.

 The event “Presence of at least one following page” is sent if the
collection's last instance has not been retrieved.

 The event “Retrieval of the last page” is sent if the last collection's
instance has been retrieved.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 66

In all circumstances:
 Conversation time counters are set.
 Contextual information attributes –if they are present– are set.

This action is always available on root- and reference-type nodes.

Java
• Declaration public void selectInstances() throws ServerException,

CommunicationError, SystemError, LocalException
• Use name Select Instances

COM
• C++ declaration public void selectInstances()
• Internal code selectInstances()

Reading of an Instance with or without Logical Locking

Operation

This action retrieves a Logical View instance associated with the node, and
appropriates it for exclusive update, if relevant.

This action is valid if:
 The instance is not already locked, in the case of an action with locking.

If the action is valid:
 The Instance-presentation attribute is set.
 The Instance-list-presentation attribute is modified according to the

value of the management mode attribute of the collection.
 The “Total number of local instances” counter is initialized.
 The selection-return message's label and key are initialized if the last

instance of the collection has not been retrieved.
 The Instance- and Instances-lists- presentation attributes of dependent

nodes are set to empty values.
 A no-error-detection event is sent.
 The event “Presence of updatable local instances” is sent, with the

collection management in automatic mode, if updatable instances are
still present in the local cache.

 The Folder-lock identifier is initialized in the case of a locking request.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.
 The Folder-lock identifier is set to an empty value in the case of a

locking request, and the Folder changes to the ‘not-modifiable’ status.

In all circumstances:
 Conversation time counters are set.
 Contextual information attributes –if they are present– are set.

This action is always available on all nodes.

 Chapter 3. Actions 67

Java
• Declaration public void readInstance() throws LocalException,

ServerException, CommunicationError, SystemError
public void readInstanceAndLock() throws LocalException,
ServerException, CommunicationError, SystemError

• Use name Read Instance
 Read Instance And Lock

COM
• C++ declaration public void readInstance()

public void readInstanceAndLock()
• Use name readInstance()
 readInstanceAndLock()

Reading of Instances from identifiers

This action defines a Logical View instance collection associated with the node,
and retrieves the instances whose keys passed as a parameter.

The keys collection passed as a parameter can include SelectionCriteria
class instances or DataDescription classes.

If this action is valid:
 the rows attribute is entered according to the management mode of the

collection.
 The “Total number of local instances” counter of the Folder is

initialized.
 The selection-return message's label and key are initialized if the last

instance has been retrieved.
 The detail and rows attributes of the dependent nodes are set to

empty values.
 A no-error-detection event is sent.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.

In all circumstances:
 Conversation time counters are set.
 Contextual information attributes –if they are present– are set.

This action is always available on all root- and dependent-type nodes.

Java
• Signature public void readInstances(Enumeration keys) throws

ServerException, LocalException, CommunicationError,
SystemError

• User name Read Instances

COM
• C++ declaration public void readInstances(LPDISPATCH keys)
• Internal code readInstances(VapCollection)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 68

Concurrent Selection on Multiple Nodes with or without Locking

Reading of an Instance and its Immediate Hierarchy

Operation

This action retrieves a Logical View instance associated with the node, and
appropriates it for exclusive update –if relevant, then retrieves all or part of the
instances of first-level dependent nodes.

This action is valid if:
 The instance is not locked, in the case of an action with locking.

If the action is valid:
 The Instance-presentation attribute is initialized with the result of the

selection.
 The Instance-list-presentation attribute is modified according to the

value of the management mode attribute of the collection.
 The “Total number of local instances” counter is initialized.
 The selection-return message's label and key are initialized for each

first-level dependent node if the collection's last instance has been
retrieved.

 The Instance- and Instance-list-presentation attributes of first-level
dependent nodes in the hierarchy are initialized with the result of the
selection, except for those for which the number of exchanged instances
was set to zero (they are initialized to empty values). For the Instance-
list attribute, the modification is made according to the value of the
collection management mode attribute, the Instance-list attribute being
associated with each node.

 The Instance- and Instance-list-presentation attributes of dependent
nodes of a hierarchical level higher than one are set to empty values.

 A no-error-detection event is sent.
 The event “Presence of updatable local instances” is sent, with the

collection management in automatic mode, if updatable instances are
still present in the local cache.

 A “Record not found” event is sent on every node participating in the
selection and having a maximum cardinal value of 1, and whose
instance has not been retrieved.

 The Folder-lock identifier is set to an empty value in the case of a
locking request.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.
 The Folder-lock identifier is set to an empty value in the case of a

locking request, and the Folder changes to the ‘not-modifiable’ status.

In all circumstances:
 Conversation time counters are set.
 Contextual information attributes –if they are present– are set.

This action is always available on all root- and dependent-type nodes.

 Chapter 3. Actions 69

Java
• Declaration public void readInstanceWithFirstChildren() throws

LocalException, ServerException, CommunicationError,
SystemError
public void readInstanceWithFirstChildrenAndLock() throws
LocalException, ServerException, CommunicationError,
SystemError

• Use name Read Instance With First Children
Read Instance With First Children And Lock

COM
• C++ declaration public void readWithFirstChildren()

public void readWithFirstChildrenAndLock()
• Internal code readWithFirstChildren()

readWithFirstChildrenAndLock()

Reading of an Instance and its Complete Hierarchy

Operation

This action retrieves a Logical View instance associated with the root node,
appropriates it for exclusive update if relevant, and retrieves all the instances of
each dependent node, whatever its hierarchical level.

This action is valid if:
 The instance is not already locked, in the case of a action with locking.

If the action is valid:
 The Instance-presentation attribute of the root node is initialized with

the selection result.
 The Instance-list-presentation attribute of the root node is modified

according to the value of the collection management mode attribute.
 The “Total number of local instances” counter is initialized.
 The selection-return message's label and key are initialized for each

dependent node if the collection's last instance has been retrieved.
 The Instance- and Instance-list-presentation attributes of a dependent

node are set according to the Global setting rule. For the Instance-list
attribute, the modification is made according to the value of the
collection management mode attribute, the Instance-list attribute being
associated with each node.

 A no-error-detection event is sent.
 The event “Presence of updatable local instances” is sent, with the

collection management in automatic mode, if updatable instances are
still present in the local cache.

 A “Record not found” event is sent on every node participating in the
selection and having a maximum cardinal value of 1, and whose
instance has not been retrieved.

 The Folder-lock identifier is set to an empty value in the case of a
locking request.

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 70

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.
 The Folder-lock identifier is set to an empty value in the case of a

locking request, and the Folder changes to the ‘not-modifiable’ status.

In all circumstances:
 Conversation time counters are set.
 Contextual information attributes –if they are present– are set.

This action is always available on root nodes.

Java
• Declaration public void readInstanceWithAllChildren() throws

LocalException, ServerException, CommunicationError,
SystemError
public void readInstanceWithAllChildrenAndLock() throws
LocalException, ServerException, CommunicationError,
SystemError

• Use name Read Instance With All Children
Read Instance With All Children And Lock

COM
• C++ declaration public void readWithAllChildren()

public void readWithAllChildrenAndLock()
• Internal code readWithAllChildren()

readWithAllChildrenAndLock()

Reading of the Immediate Hierarchy of a Current Instance

Operation

For a node, this action retrieves all or part of the instances of first-level
dependent nodes, depending on the instance found in the node's Instance-
presentation attribute.

This action is valid if:
 The node's Instance-presentation attribute contains an instance.

If this action is valid, its result is the same as that of a read action on an instance
and its immediate hierarchy.

This action is always available on root- and dependent-type nodes.

Java
• Declaration public void readFirstChildrenFromCurrentInstance() throws

LocalException, ServerException, CommunicationError,
SystemError

• Use name Read First Children From Detail

COM
• C++ declaration public void readFirstChildrenFromDetail()
• Internal code readAllChildrenFromDetail()

 Chapter 3. Actions 71

Reading of the Complete Hierarchy of a Current Instance

Operation

This action retrieves all the instances of dependent nodes throughout the
Folder, depending on the instance found in the Instance-presentation attribute
of the root node.

This action is valid if the node's Instance-presentation attribute contains an
instance.

If this action is valid, its result is the same as that of a read action on an instance
and its complete hierarchy.

This action is always available on all root nodes.

Java
• Declaration public void readAllChildrenFromCurrentInstance() throws

LocalException, ServerException, CommunicationError,
SystemError

• Use name Read All Children From Detail

COM
• C++ declaration public void readAllChildrenFromDetail()
• Use name readAllChildrenFromDetail()

Anticipated Reading of an Instance's Immediate Hierarchy

Operation

This action has the same functionality as a read on an instance and its
immediate hierarchy, but allows for an anticipated selection of instances
without impacting the GUI.

This action is valid if the instance provided as a parameter does not have an
empty value.

If the action is valid, the rules are the same as for the read action on an instance
and its immediate hierarchy, except that the Instance-presentation attribute of
the affected node may contain an empty value.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.

This action is always available on root nodes.

Java
• Declaration public void readFirstChildren({Name of generated

class}Data d) throws LocalException, ServerException,
CommunicationError, SystemError

• Use name Read First Children From {Name of generated class}Data

COM
• C++ declaration public void readWithFirstChildrenFrom(LPDISPATCH d)
• Internal code readWithFirstChildrenFrom({Name of generated class

DataDescription} d)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 72

Anticipated Reading of an Instance's Complete Hierarchy

Operation

This action has the same functionality as a read on an instance and its complete
hierarchy, but it allows for an anticipated selection of instances without
impacting the GUI.

This action is valid if the instance provided as a parameter does not have an
empty value.

If the action is valid, the rules are the same as for the read action on an instance
and its complete hierarchy, except that the Instance-presentation attribute of the
affected node may contain an empty value.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.

This action is always available on root- or dependent-type nodes having at least
one dependent node.

Java
• Declaration public void readAllChildren({Name of generated class

DataDescription} d) throws LocalException,
ServerException, CommunicationError, SystemError

• Use name Read All Children From {Name of generated class}Data

COM
• C++ declaration public void readWithAllChildrenFrom(LPDISPATCH d)
• Internal code readWithAllChildrenFrom({Name of generated class

DataDescription} d)

Management of Paging

Reading of the Following Page's Instances

Operation

This action retrieves the next page in a node's collection. When the selected
paging mode is of the extend type, retrieved instances are compounded with
the instances already present in the Instance-list-presentation attribute.
Locally-created instances which might conflict with retrieved instances have
top priority. When the paging is of the non-extend type, instances contained
in the Instance-list-presentation attribute are overridden with the retrieved
instances.

This action is valid if:
 The last page of the collection has not been reached yet. Otherwise, this

action does not trigger a server access, and sends a “Collection's last-
page retrieval” event.

 On a dependent node, a collection must be already defined, or the
Instance-presentation attribute of the parent node must contain an
instance.

 Chapter 3. Actions 73

 On a root or reference node, if no collection has been defined, this action
operates as an instance-selection action.

If the action is valid:
 The Instance-list-presentation attribute is initialized with the result of

the query according to the paging-type and to the collection
management mode.

 If the paging applies to a root node and is of the non-extend type,
with a collection management in automatic mode, the Instance-
presentation attribute of the node is set to an empty value.

 If the paging applies to a root or dependent node and is of the extend
type, or with a collection management in automatic mode, its Instance-
presentation attribute as well as the Instance- and Instance-list-
presentation attributes of the dependent nodes are not modified.

 The “Total number of local instances” counter is initialized.
 The node-selection return message's label and key are initialized for

each dependent node if the collection's last instance has been retrieved.
 A no-error-detection event is sent.
 The event “Presence of updatable local instances” is sent, with a

collection management in automatic mode, if updatable instances are
still present in the local cache.

 The “Collection's fist-page retrieval” event is sent if the action applies to
the root or reference node, if the paging type is non-extend, with a
collection management in automatic mode, and if the page is the first
retrieved page in the collection.

 The “Presence of at least one preceding page” event is sent if the action
applies to the root or reference node, if the paging type is non-extend,
with a collection management in automatic mode, and if the page is not
the first retrieved page in the collection.

 The “Presence of at least one following page” event is sent if the last
instance of the collection has not been retrieved.

 The “Collection's last-page retrieval” event is sent if the last instance of
the collection has been retrieved.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.

In all circumstances:
 Conversation time counters are set.
 Contextual information attributes –if they are present– are set.

This action is always available on all nodes.

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 74

Java
• Declaration public void readNextPage() throws LocalException,

ServerException, CommunicationError, SystemError
• Use name Read Next Page

COM
• C++ declaration public void readNextPage()
• Internal code readNextPage()

Reading of the Preceding Page's Instances

Operation

This action retrieves the previous page of a node's collection. It is designed
exclusively for non-extend-type paging with a collection management in
automatic mode. Instances found in the Instance-list-presentation attribute are
systematically overridden by retrieved instances.

This action is valid if:
 The last page of the collection has not been reached yet. Otherwise, this

action does not trigger a server access, and sends the “Collection's first-
page retrieval” event.

 If no collection is defined, this action operates like an instance-selection
action.

If the action is valid:
 The Instance-list-presentation attribute is initialized.
 The Instance-list-presentation attribute is modified.
 The “Total number of local instances” counter is initialized.
 The selection-return message's label and key are initialized if the

collection's last instance has been retrieved.
 The Instance- and Instances-list-presentation attributes of dependent

nodes are set to empty values.
 A no-error-detection event is sent.
 The “Presence of updatable local instances” event is sent if updatable

instances are still present in the local cache.
 The “Presence of at least one preceding page” event is sent if the page is

not the first one retrieved in the collection.
 The “Retrieval of a collection's first page” event is sent if the page is the

first one in the collection.
 The “Presence of at least one following page” event is sent if the

collection's last instance was not retrieved.
 The “Last page retrieval” event is sent if the collection' last instance

was retrieved.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.

 Chapter 3. Actions 75

In all circumstances:
 Conversation time counters are set.
 Contextual information attributes –if they are present– are set.

The action is available on root- and reference-type nodes.

Java
• Declaration public void readPreviousPage() throws LocalException,

ServerException, CommunicationError, SystemError
• Use name Read Previous Page

COM
• C++ declaration public void readPreviousPage()
• Internal code readPreviousPage()

Sending of Updates

Sending of Local Updates to the Server

Operation

This action sends to the server all the updates performed locally since it was
last executed.

Only useful transactions are sent.

This action is valid if at least one local update has been performed.

If the action is valid:
 All updated instances are deleted from the local cache.
 Each modified Logical View instance is updated in the local cache with

its last, post-update server image, if the instance-refresh option is set
when sending the action.

 Data checking on the server may be activated by setting the appropriate
attribute before executing the action.

 A no-error-detection event is sent.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.

In all circumstances:
 Conversation time counters are set.
 Contextual information attributes –if they are present– are set.

This action is available on a root node when at least one of the Elementary
Components associated with the Folder's nodes can perform updates.

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 76

Java
• Declaration public void updateFolder() throws LocalException,

ServerException, CommunicationError, SystemError
• Use name Update Folder

COM
• C++ declaration public void updateFolder()
• Internal code updateFolder()

Management of Logical Locks

Logical Locking of a Current Instance

Operation

This action appropriates a Folder instance for exclusive update. It can apply to
a local instance identifier representing an instance which does not yet exist in
the Database.

This action is valid if:
 The root node's Selection Criteria attribute contains a Logical View

instance identifier.
 The instance is not currently locked.

If the action is valid:
 A no-error-detection event is sent.
 The Folder-lock identifier attribute is initialized with the value returned

by the server.
 The Folder changes to the “modifiable” status.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.
 The Folder-lock identifier attribute is set to an empty value.
 The Folder changes to the “not-modifiable” status.

In all circumstances:
 Conversation time counters are set.
 Contextual information attributes –if they are present– are set.

This action is available on a root node when the logical lock option is set for this
Folder in the VisualAge Pacbase Repository.

Java
• Declaration public void lock() throws LocalException,

ServerException, SystemError, CommunicationError
• Use name Lock

COM
• C++ declaration public void lock()
• Internal code lock()

 Chapter 3. Actions 77

Logical Unlocking of a Current Instance

Operation

This action “frees” a Folder instance used for exclusive update when the user
chooses not to send locally-updated instances to the server.

This action is valid if:
 The root node's Selection Criteria attribute contains a Logical View

instance identifier.
 The instance is locked.

If the action is valid:
 A no-error-detection event is sent.
 The Folder-lock identifier key attribute is set to an empty value.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.

In all circumstances:
 Conversation time counters are set.
 Contextual information attributes – if they are present– are set.

This action is available on a root node when the logical lock option is set for this
Folder in the VisualAge Pacbase Repository.

Java
• Declaration public void unlock() throws LocalException,

ServerException, SystemError, CommunicationError
• Use name Unlock

COM
• C++ declaration public void unlock()
• Use name unlock()

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 78

Management of Dependent Instances

Check on the Presence of Dependent Instances

Operation

This action finds out if the Logical View instance contained in the node's
Instance-presentation attribute has dependent instances. If this instance was
not created locally, and does not contain any dependent instances locally, the
system sends this action to the server in order to check for the existence of first-
level dependent instances.

This action is valid if the Instance-presentation attribute contains a non-empty
value.

If the action is valid:
 A no-error-detection event is sent.
 A “Presence of a dependent instance” or “Absence of dependent

instances” event is sent.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.

In all circumstances, if the action was passed on to the server:
 Conversation time counters are set.
 Contextual information attributes –if they are present– are set.

This action is available when the node on which it is performed has at least one
dependent node.

Java
• Declaration public void checkExistenceOfDependentInstances() throws

LocalException, ServerException, CommunicationError,
SystemError

• Use name Check Existence Of Dependent Instances

COM
• C++ declaration public void checkExistenceOfDependencies()
• Internal code checkExistenceOfDependencies()

 Chapter 3. Actions 79

Management of User Services

Execution of User Services

Operation

This action executes a User Service associated with a node and to its dependent
nodes for which a “User Service to be executed” is set.

This action operates if at least one of the relevant nodes contains a non-empty
value in the “User Service to be executed” attribute.

If the action is valid:
 A no-error-detection event is sent.
 The presentation attribute of instances returned by a User Service is

initialized.
 The “Number of Logical View instances processed by a User Service”

attribute is recalculated.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.

In all circumstances:
 Conversation time counters are set.
 Contextual information attributes – if they are present – are set.

This action is available if the Elementary Component associated with the node
contains at least one User Service.

Java
• Declaration public void executeUserService() throws ServerException,

CommunicationError, SystemError, LocalException
• Use name Execute User Service

COM
• Declaration public void executeUserService()
• Internal code executeUserService()

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 80

Management of Asynchronous Conversations

Deferred Retrieval of a Reply

Operation

This action retrieves the reply associated with a query sent with the
asynchronous communication type.

This action is valid if:
 The communications protocol used to send the query supports

asynchronous conversations.
 The conversation type is asynchronous.
 The identifier of the query specified as parameter is valid and known.

If this action is valid and the query available:
 The rules applied are the same as those governing the action which sent

the query –if the query was executed in synchronous mode.
 The “Number of pending replies” attribute is decremented by 1.
 Contextual information attributes –if they are present– are set.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.

If the query is not available, the “Unavailable-reply retrieval” event is sent.

In all circumstances, conversation time counters are set.

This action is always available on a root node.

Java
• Declaration public Boolean

getReply(com.ibm.vap.generic.ServerActionContext
aContext) throws LocalException, ServerException,
CommunicationError, SystemError

• Use name Get Reply

COM
• C++ declaration public BOOL getReply(LPDISPATCH i)
• Internal code Boolean getReply(<Foldername>ServerAction)

 Chapter 3. Actions 81

Check on a Message Identifier's Validity

Operation

This action finds out if a query identifier is valid and known.

If the action is valid, the action returns true if the key is valid, or false
otherwise.

If the action is not valid:
 The error is added to the Error Object.
 An error event is sent according to the type of error.

If the query is not available, the “Unavailable-reply retrieval” event is sent.

This action is always available on a root node.

Java
• Declaration public Boolean isReplyValid(com.ibm.vap.generic.Server

ActionContext aContext)
• Use name Checks the validity of the request reply

COM
• C++ declaration public BOOL isReplyValid(LPDISPATCH i)
• Internal code Boolean isReplyValid(<Foldername>ServerAction)

Sub-Schema Management

Operation

This action retrieves, by calling the Elementary Component associated with the
Logical View, the values of the Data Elements which do not belong to the sub-
schema selected via the subSchema attribute.

Upon the correct return of this action, the instance is considered to be complete,
so its associated implicit sub-schema is reset. Any subsequent modification is
then performed with no associated sub-schema.

Before this action is executed, the Data Elements which belong to the sub-
schema may have been modified locally.

This action is available if the Elementary Components manage the presence of
Data Elements (VECTPRES=YES or CHECKSER=YES).

Java
• Declaration public completeInstance throws LocalException,

ServerException, CommunicationError, SystemError
• Internal code Complete Instance

COM
• C++ declaration public completeInstance()
• Use name completeInstance()

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 82

Test of Communication with the Server

Operation

This action enables to perform a test of communication with the server and thus
to validate the communication parameters without accessing elementary
servers.

Java
• Declaration public void ping()throws CommunicationError
• Use name Ping

COM
• C++ declaration public void ping()
• Internal code ping()

Externalization of the Management of Requests

Operation

The externalization of the management of requests consists in creating a storage
context for actions which are to be executed on the server and thus enables to
post different services requests in only one request to the server.

This storage context is defined via a specific object which is an instance of the
"MainRequest" class. This object is used to “store” and “post” services requests
sent by one Proxy or more before sending them in one same request to the
server. Proxies then share the same execution context when updates are
requested on several Folders.

Creation of a Request

Operation

This action enables to start a storage context for actions which are to be
executed on the server by creating an instance of the "MainRequest" class for
the Proxy. This action values the "request" attribute for the Proxy. The whole set
of actions to be executed are first stored on local in this request object.

Java
• Declaration public void createRequest()
• Use name Create Request

COM
• C++ declaration public void createRequest()
• Internal code createRequest()

 Chapter 3. Actions 83

Execution of the Request Actions on the Server

Operation

This action enables to execute on the server the whole set of actions stored in
the request.

This action is available on the MainRequest object.

Java
• Declaration public void sendRequest() throws ServerException,

LocalException, CommunicationError, SystemError
• Use name Send Request

COM
• C++ declaration public void sendRequest()
• Internal code sendRequest()

Cancellation of the Request Actions

Operation

This action enables to cancel the whole actions which were stored in the
request.

This action is available on the MainRequest object.

Java
• Declaration public void cancel()
• Use name Cancel

COM
• C++ declaration public void cancel()
• Internal code cancel()

XML flows handling

The XML flow represents :
 the information hierarchy for a node of the folder (Detail)
 the collection of instances for a node of the folder (Rows)

In both cases, the XML flows correspond to the hierarchical structure of the
folder, from the folder root.

For each represented instance, the flow must describe :
 the instance status in the proxy cache,
 the value of the instance fields, (all the fields may not be set as the

notion of sub-schema, indicated in the selection operations of proxy
instances, is taken into account).

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 84

Status of a Logical View Instance
This notion is similar to the « attribute » notion, defined for a complexType
(the node) in a XML schema. This attribute can have the values: ‘read’,
‘created’, ‘modified’, ‘deleted’, or ‘unknown’ (case of retrieval of
invalid/unknown detail instance).

To guarantee the unicity of this attribute name or avoid conflicts with the name
of the Logical View fields, this name is on more than 6 characters:
dataStatus.

Obtaining of a XML flow

Operation

This action is used to obtain :
 the instances of a node with hierarchy or not (rows),
 an instance of node with hierarchy or not (detail).

The passed parameters allow:
 to identify the XML flow,
 to identify the node for which you want to retrieve the instance,
 to precise if you want to retrieve rows (true),
 to indicate if you want to retrieve the instance of node and its hierarchy

(true).

This action is not valid if the navigation context of the cache is inconsistent.

If this action is valid :
 If ‘hierarchy’, backup of the cache navigation context,
 XML flow built by browsing the hierarchy in the cache,
 If ‘hierarchy’, restoration of the cache navigation context.

If the action is not valid :
 The error is added to the Error Object,
 An error event is sent according to the type of error.

Java
• Declaration public void getXML(java.io.OutputStream outputStream,

ProxyLv proxy, Boolean rows, Boolean
hierarchicalStructure) throws XMLWrapperException

COM
• C++ declaration public void getXML(utfostream out, ProxyLv proxy, bool

rows, bool hierarchicalStructure)

 Chapter 3. Actions 85

Update from a XML flow

Operation

In that case, whatever the XML flow, this latter must be valid:
 rows with hierarchy or not,
 detail with hierarchy or not.

The status associated with each node instance in the XML flow guides the cache
update. This operation is performed depending on the initial status of the
instance in the cache.

Initial status of the
instance in the cache

Status of the instance in
the XML flow

Local action on the
proxy

created created modify instance if
update

read created exception
modified created exception
unknown created create instance
deleted created create instance
created read exception
read read Nothing
modified read exception
unknown read Initialize instance
deleted read exception
created modified Modify instance
read modified modify instance
modified modified modify instance
unknown modified initialize + modify

instance
deleted modified exception
created deleted delete instance
read deleted delete instance
modified deleted delete instance
unknown deleted initialize + delete

instance
deleted deleted Nothing

Note: The lock management is the user’s responsibility. It must be performed, if
needed, before the cache update from a XML flow.

This action is not valid if the cache navigation context is inconsistent.

If the action is valid:
 SAX-type parsing of the XML flow,
 For each node instance, identification of the associated status:

comparison with the status of this instance in the cache before the
update.

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 86

If this action is not valid:
 The error is added to the Error Object,
 An error event is sent according to the type of error.

Java
• Declaration public void updateFromXML(java.io.InputStream xmlStream)

throws XMLWrapperException

COM
• C++ declaration public void updateFromXML(utfostream xmlStream)

Management of Proxy Context

Initialization of the proxy context

Operation

This action memorizes the current context and restores an instance of the
initialized object. The attributes memorized in this context are: the
communication attributes, the extraction and paging attributes, the local
updates attributes, the user services attributes, the attributes of the user buffer
and of the current instance.

If this action is not valid:
 The error is added to the Error Object,
 A local error event is sent.

This action is available on a root node.

Java
• Declaration public com.ibm.vap.generic.ProxyContext getProxycontext()
 throws LocalException
• Use name getProxyContext

COM
• C++ declaration public VapTools.VapProxyContext getProxycontext()
• Internal code getProxyContext

 Chapter 3. Actions 87

Initialization of the local cache

Operation

This action resets the attributes in the local cache of the proxy and its
dependent nodes from the ProxyContext instance passed as parameter and so
the reads and updates can continue.

If the action is not valid:
 The error is added to the Error Object,
 A local error event is sent.

This action is available on a root node.

Java
• Declaration public void

initFromProxycontext(com.ibm.vap.generic.ProxyContext
context)

 throws LocalException
• Use name initFromProxycontext

COM
• C++ declaration public void initFromProxycontext(VapTools.VapProxyContext

context)
• Internal code initFromProxycontext

Retrieval of the Proxy

Operation

This method retrieves the name of the proxy with which the ProxyContext
object has been initialized, to re-instantiate it.

Java
• Declaration public String getProxyClassName()
• Use name getProxyClassName

COM
• C++ declaration public BSTR getProxyClassName()
• Internal code getProxyClassName

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 88

Chapter 4. Events

Management of Paging
 For COM, all the events described in the chapter are saved in a stack (consult

the paragraph dedicated to the Management of Events).

Signal of Retrieval of a Collection's Last Page

Sending rules

This signal is sent by a node when an instance selection action or a paging
action returns a page containing the last instance of the collection. This event is
available for root and reference nodes, and for dependent nodes with a
maximum cardinal value of n.

Java
• Code noPageAfter

COM
• Code NO_PAGE_AFTER

Signal of Retrieval of a Collection's First Page

Sending rules

This signal is sent by a node when an instance selection action or a paging
action returns a page containing the first instance of the collection. This event is
available for root and reference nodes, when the paging mode is of the non-
extend type with a collection management in automatic mode.

Java
• Code noPageBefore

COM
• String code NO_PAGE_BEFORE

© Copyright IBM Corp, 1983, 2004 89

Signal of Presence of at Least One Following Page

Sending rules

This signal is sent by a node when an instance selection action or a paging
action returns a page which does not contain the last instance of the collection.
This event is available for root and reference nodes, and for dependent nodes
with a maximum cardinal value of n.

Java
• Code pageAfter

COM
• Code PAGE_AFTER

Signal of Presence of at Least One Preceding Page

Sending rules

This signal is sent by a node when an instance selection action or a paging
action returns a page which does not contain the first instance of the collection.
This event is available for root and reference nodes, when the paging mode is of
the non-extend type and with a collection management in automatic mode.

Java
• Code pageBefore

COM
• Code PAGE_BEFORE

Management of Unit Reads

Signal of Reading of a Record not Found

Sending rules

This signal is sent by a node when an instance-reading action has not returned
the required instance.

This action is always available for all nodes.

Java
• Code notFound

COM
• Code NOT_FOUND

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 90

Management of Simultaneous Selections

Signal of Non-Participation to a Simultaneous Read

Sending rules

This signal is sent by a node following a write/read action the node did not
participate to.

This action is always available for all nodes.

Java
• Code notRead

COM
• Code NOT_READ

Management of Logical Locks

Signal of Assigned Logical Lock

Sending rules

This signal is sent by a root node following a valid action of logical-lock
request.

This action is available for a root node when the logical-lock option is coded for
this node in the VisualAge Pacbase Repository.

Java
• Code lockSuccessful

COM
• Code LOCK_SUCCESSFUL

Signal of Unsuccessful Logical Lock

Sending rules

This signal is sent by a root node following an aborted action of logical-lock on
a instance, this instance being already set to exclusive update mode for another
user.

This action is available for a root node when the logical-lock option is coded for
this node in the VisualAge Pacbase Repository.

Java
• Code lockFailed

COM
• Code LOCK_FAILED

 Chapter 4. Events 91

Management of Dependent Instances

Signal of Presence of at Least One Dependent Instance

Sending rules

This signal is sent by a node following a check action on the presence of
dependent instances, when the instance concerned has at least one dependent
instance. This action is always available for root- and dependent-type nodes.

Java
• Code dependentInstances

COM
• Code DEPENDENT_INSTANCES

Signal of Absence of Dependent Instances

Sending rules

This signal is sent by a node following a check action on the presence of
dependent instances when the instance concerned has no dependent instances.
This action is always available for root- and dependent-type nodes.

Java
• Code noDependentInstances

COM
• String code NO_DEPENDENT_INSTANCES

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 92

Chapter 5. Public Interface for Data Elements Handling

Management of a Data Element's Contents

Description

This attribute displays the Data Element's contents.

This attribute is always available for Data Elements defined in the
DataDescription, SelectionCriteria, and UserContext classes.

Java
• Type Depends on the type of Data Element (java.lang.String, int, long,

double, or java.util.Date)
• Internal code <DataElementCode>
• Use name <Data Element Clear Name>
• get/set public [Type] get<DataElementCode> ()

public void set<DataElementCode> (T-type)

COM
• Type Depends on the type of Data Element
• Internal code <DataElementCode>
• get/set C++ public [Type] get<DataElementCode> ()

public void set<DataElementCode> (T-type)

Management of Authorized-Value Codes

Description

This attribute provides the authorized values associated with a Data Element.

This attribute is always available for Data Elements containing authorized
values and defined in the DataDescription class.

Java
• Type [Type []]
• Internal code <DataElementCode>Values
• Use name <DataElementCode> Values
• get/set public [Type[]] get<DataElementCode>Values ()

set not available

COM
Available with a browsing API for collection-type attributes.

• Nb of elements public long <DataElementCode>ValidValuesCount()
• Element public Type <DataElementCode>ValidValuesAt(long i)

© Copyright IBM Corp, 1983, 2004 93

Management of Authorized Values

Description

This attribute displays the labels of authorized values associated with a Data
Element.

This attribute is always available for Data Elements which contain authorized
values and which are defined in the DataDescription class.

Java
• Type String []
• Internal code <DataElementCode>Labels
• Use name <DataElementCode> Labels
• get/set public String[] get<DataElementCode>Labels ()

set not available
These methods can accept the target local (new parameter which corresponds
to the Language for which you want to find the label).

COM

Available with a browsing API for collection-type attributes.
• Nb of elements public long <DataElementCode>ValidLabelsCount()
• Element public Type <DataElementCode>ValidLabelsAt(long i)

Management of the Validity of a Data Element's Contents

Description

This action specifies whether the contents of a Data Element are valid or not.

This action is always available for Data Elements which contain authorized
values and which are defined in the DataDescription class.

Java
• Declaration public DataFieldError get<DataElementCode>Error ()
• Use name <DataElementCode> Error

This method returns a DataFieldError instance which indicates the nature
of the error detected on the field or the null value if the Data Element
contents are empty.

COM
Not available.

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 94

Access to the Characteristics of a Data Element

Operation

The DataGroup class offer methods which enable to retrieve the input
characteristics of Data Elements fields composing a Logical View.

- findDataFieldFormat: sent back the Data Element VA Pac format. (Sends
nothing back for alphanumeric Data Element),

- findDataFieldMaxLength: sent back the maximum length authorized for the
value of a Data Element.

These actions are available for all the Data Elements which are defined in the
DataGroup class.

Java
• Declaration public java.text.Format findDataFieldFormat(String code)
• Use name findDataFieldFormat

COM

Not available.

Java
• Declaration public int findDataFieldMaxLength (String code)
• Use name findDataFieldMaxLength

COM

Not available.

Initialization of the Data Elements Values

Operation

This method enables to initialize the values of a DataGroup instance from the
values of an other DataGroup instance.

Java
• Declaration public void initializeFrom(DataGroup)
• Use name Initialize From

COM

Not available.

 Chapter 5. Public Interface for Data Elements Handling 95

Management of a Data Element's Presence

Description

These actions specify whether the Data Element is absent (empty contents) or
present (contents not empty).

These actions are always available for Data Elements defined in the
DataDescription and UserDataDescription classes

Before this action is executed, all Data Elements are considered to be absent,
except if a default value has been specified in VisualAge Pacbase.

Java
• Declaration public boolean is<DataElementCode>Present ()
 public void set<DataElementCode>Present (boolean b)
• Use name <DataElementCode> Present

COM
• C++ declaration public bool is<DataElementCode>Present ()

public void set<DataElementCode>Present (bool b)
• Internal code Boolean is<DataElementCode>Present/

setDataElementCodePresent(Boolean value)

Management of a Data Element's Check

Operation

These actions specify whether the Data Element is to be checked or not.

These actions are always available for Data Elements defined in the
DataDescription and UserDataDescription classes of the root or
dependent nodes whose Elementary Component includes the NULLMNGT=YES
and CHECKSER=YES options and an update service.

Before this action is executed, all Data Elements are to be checked (if the
serverCheckOption attribute is set to true).

Java
• Declaration public setCheck(int index, boolean aBoolean)
• Use name Check Flag for the Index’s field

The index of the Data Element to be checked is found via the following method:

• Declaration public int get<DataElementCode>Index()
• Use name <DataElementCode> Index

COM
• C++ declaration public void setCheck(long fieldIndex, BOOL b)
• Internal code setCheck(Long, Boolean)

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 96

Management of membership to a Sub-schema

Data Element Belonging to the Sub-Schema

Operation

This action enables you to know whether the Data Element whose index passed
as a parameter belongs to the sub-schema associated with the instance
contained in the detail attribute.

This action is available if the Elementary Components manage the presence of
Data Elements (VECTPRES=YES or CHECKSER=YES) and if the node includes at
least one sub-schema.

Java
• Declaration public boolean belongsToSubSchema(int indexDataElement)
• User name Belongs to current subschema

COM
• C++ declaration public BOOL belongsToSubschema(short index)
• Internal code Boolean belongsToSubSchema(Integer)

Management of membership to an extraction method
This action enables you to know whether the Data Element passed as a
parameter belongs to the extraction method, which also passed as a parameter.

This action is available in the SelectionCriteria classes whose node
includes at least one extraction method.

Java
• Declaration public boolean dataFieldBelongsToExtractMethod (String

FieldCode, String extractMethodCode)
• Internal code DataFieldsBelongsToExtractMethod

COM
• C++ declaration public BOOL dataFieldBelongsToExtractMethod (LPCTSTR

FieldCode, LPCTSTR extractMethodCode)
• Internal code Boolean dataFieldBelongsToExtractMethod(String, String)

 Chapter 5. Public Interface for Data Elements Handling 97

Chapter 6. Management of Errors

Management of Errors for Java Target

The management of the errors associated with the handling of Java Proxies is
based on the raise of exceptions mechanism.

Four classes enable to carry errors or exceptions issued from a VisualAge
Pacbase Proxy. The four classes are available to the developer and they inherit
from java.lang.Throwable in the following way:

java.lang.* ;

com.ibm.vap.generic.* ;

Throwable

Error Exception

SystemError Communication
Error

Runtime

Exception

VapExceptionVapError

Asynchronous
RequestException

Local
Exception

Server
Exception

The com.ibm.vap.generic.AsynchronousRequestException exception
is raised at a server access whenever the Proxy is in asynchronous mode.

The execution of some methods of the Proxy require the control of any
exception inheriting from com.ibm.vap.generic.VapException (refer to
the declarations documented in the manual to know the different types of
exceptions that can be sent by a method).

It is also highly recommended to control errors inheriting from
com.ibm.vap.generic.VapError although the control is optional for this
type of class in Java.

© Copyright IBM Corp, 1983, 2004 99

Note An excessive use of some Proxy methods may also raise the
java.lang.IllegalStateException exception, like in the case of the use
of a method which does not match with the VisualAge Pacbase Proxy
Definition (example: using the createUserInstance method although no
user service was defined in the VisualAge Pacbase Server Description).

Classes Related to the Management of Errors

Communication Errors

Name of the exception

com.ibm.vap.generic.CommunicationError

Note The exception is raised if an error occurs in the communication string with the
server.

The message carried by each instance of the class gives information concerning
the detected error (the getMessage() method of the class).

System Errors

Name of the exception

com.ibm.vap.generic.SystemError

Note The exception is raised by system errors.

This type of error represents an internal and irretrievable error. It can be
detected either by the client or by the server.

If the server detects system errors, messages associated with these errors are
represented by instances of com.ibm.vap.generic.ServerMessage. They
are available through the java.util.Enumeration serverMessages()
method from the com.ibm.vap.generic.SystemError class.

 Refer to the eBusiness & Pacbench C/S Applications - Graphic Presentation guide for
the list of the system errors.

Local Errors

Name of the exception

com.ibm.vap.generic.LocalException

Note The exception is raised by local errors. These errors are detected by the client.

The exception holds a property of the int type (int
getLocalExceptionKey()) that enables to identify the type of error leading
to the raise of the exception (mistaken creation, invalid instance, …).

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 100

http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm

 Errors responsible for the exception are described in the eBusiness & Pacbench
C/S Applications - Graphic Presentation guide and also in the HTML
documentation associated with the generic classes: Package
com.ibm.vap.generic.

Server Errors

Name of the exception

com.ibm.vap.generic.ServerException

Note The exception is raised by server errors. It is raised upon the reception of
logical error message(s) detected by the server. These logical error messages are
represented by instances of com.ibm.vap.generic.ServerMessage
class. The list of error messages received from the server is available via the
java.util.Enumeration serverMessages() method from the
com.ibm.vap.generic.ServerException class.

In the case of errors detected at the update service, it is possible to restore the
context of the Proxy related to the update request (restoration of the selection
tree and of the detail) for each error.

The com.ibm.vap.generic.ServerException class indicates if there are
restorable errors in the list of errors detected by the method (boolean
isContextRestorable()).

Error Messages Received from the Server

Error messages received from the server are represented by objects with the
com.ibm.vap.generic.ServerMessage type.

This interface offers methods enabling also to fetch the error key (String
key()), the error message label (String label()) and the error message label
formatted by the Client (String localLabel()).

 For the description of the local formatting principle for error message labels,
refer to section Customizing Error Messages, on page 102.

Error Messages Received from the Server on the Update

This interface inherits from com.ibm.vap.generic.ServerMessage
interface.

Objects of this type represent error messages received from the server; these
errors have been detected at the execution of update services.

This interface offers methods allowing to know and to restore the context of the
Proxy related to the update request:

 boolean isContextRestorable(): indicates if the error context is
« restorable »,

 void restoreContext() throws LocalException: triggers the
restoration of the context related to the error update,

 DataDescription erroneousData(): returns the
DataDescription class for which the update failed,

 Chapter 6. Management of Errors 101

http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm
http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm

 HierarchicalProxyLv erroneousProxy(): returns the
HierarchicalProxy class that handles the update request which
failed.

Customizing Error Messages
Customizing message labels for errors associated with the handling of Proxies
is possible with Java Proxies. The customization is based on the use of
internationalization and dynamic formatting techniques of labels provided by
Java language: the different labels are stored in a resource file
(vaperror.properties) that is loaded according to the geographical context
(the context being provided by the default Local). The file is structured on a
key-value relation mode where the value corresponds to a label.

Also, each label must respect the formality of the « patterns » used by Java when
handling labels with variable parts (java.text.MessageFormat).

The error labels stored in the file are:
 the message associated with an instance of
com.ibm.vap.generic.LocalException, SystemError and
ServerException (available through method String
getMessage()),

 the label of objects with com.ibm.vap.generic.ServerMessage
type locally formatted (String localLabel()).

Local Error Messages

Keys that enable to find local error messages correspond to the name of the
constants defined on the com.ibm.vap.generic.LocalException class.
The keys represent the different types of local errors and are prefixed with
LOCAL_.

Example : the key which enables to find the label associated with a local exception of
the INVALID_INSTANCE type will be LOCAL_INVALID_INSTANCE.

Local Error Messages Received from the Server Component

Error messages received from the server are set up with two information: a key
and a label.

The key of the error message is read in order to identify the key of storage of
the local label associated with the error.

 The structure of the error message key is described in the eBusiness & Pacbench
C/S Applications - Graphic Presentation guide.

In the case of a system error, the access key to the local label corresponds to the
SYSTEM_ prefix followed by characters comprised between columns 14 and 19
if they have a significant value (not blank) or followed by characters comprised
between columns 10 and 13, if the value is not significant.

In the case of error servers (user errors, for instance), the access key to the local
label corresponds to the characters comprised between columns 14 and 19 if
they have a significant value and if the character in column 20 is blank. If the
character of column 20 is 2 or 5, the error key is respectively REQUIRED and
VALUE. If the characters comprised between columns 14 and 19 have no
significant value, the access key to the local label corresponds to the character
comprised between columns 22 and 25.

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 102

http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm
http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm

Server and System Error Messages

The label of the com.ibm.vap.generic.ServerException -type
exceptions and of the com.ibm.vap.generic.SystemError -type errors are
respectively available with the VAP_SERVER_EXCEPTION and
VAP_SYSTEM_ERROR keys.

Example of Error Messages File

This file defines the default error labels in VisualAge Pacbase for Java.
Labels stored in this file are defined after the java.text.MessageFormat
pattern.
The possible arguments in the labels are :
{0} = library
{1} = server name
{2} = view code
{3} = data id
{4} = attribute name
{5} = attribute value
{6} = technical label (technical message from the local cache or message
label from the server)
Note: Those arguments are filled within the error context. They may not have
a value if the argument is not meaningful in the error context.

Local Exception Error Messages
LOCAL_PARENT_INSTANCE_MISSING = Parent instance missing (data id: {3})
LOCAL_CURRENT_INSTANCE_MISSING = Current instance missing
LOCAL_SERVER_UPDATE_REQUIRED = Server update required (data id: {3})
LOCAL_UNKNOWN_INSTANCE = Unknown instance (data id: {3})
LOCAL_INVALID_INSTANCE = Invalid instance
LOCAL_INSTANCE_NOT_LOCKED = Instance not locked (data id: {3})
LOCAL_INVALID_CREATION = Invalid creation (data id: {3})
LOCAL_INVALID_CHANGE = Invalid change (data id: {3})
LOCAL_INVALID_DELETION = Invalid delete (data id: {3})
LOCAL_INVALID_INITIALIZATION = Invalid initialization (data id: {3})
LOCAL_CARDINALITY_VIOLATION = Cardinality violation {6} (data id: {3})
LOCAL_INSTANCE_ALREADY_LOCKED = Already locked instance (data id: {3})
LOCAL_CURRENT_USER_INSTANCE_MISSING = Current user instance missing
LOCAL_REFERING_INSTANCE_MISSING = Referring instance missing
LOCAL_ASYNCHRONOUS_VIOLATION = Asynchronous violation ({6})
LOCAL_UNKNOWN_CONTEXT = Unknown context
LOCAL_VALUE_REQUIRED = Required item: {4} (data id: {3})
LOCAL_VALUE_ERROR = Value error: {4} (value: {5}, data id: {3})
LOCAL_LENGTH_ERROR = Length error on instance field: {4} (value: {5}, data id:
{3})
LOCAL_SUBSCHEMA_ERROR = Field {4} is out of sub-schema (value: {5}, data id:
{3})
LOCAL_FOLDER_USER_CONTEXT_LENGTH_ERROR = Length error on instance field in
Folder user context: {4} (value: {5})
LOCAL_REFERENCE_USER_CONTEXT_LENGTH_ERROR = Length error on instance field in
a reference user context: {4} (value: {5})

Server Service Error Messages
REQUIRED = Required value: {4} (library: {0}, server: {1}, view: {2})
VALUE = Value error: {4} (library: {0}, server: {1}, view: {2})
DUPL = Invalid creation (library: {0}, server: {1}, view: {2})
NFND = Invalid delete or modification (library: {0}, server: {1}, view: {2})
LOCKED = Already locked instance (library: {0}, server: {1})
NTLOCK = Instance not locked (library: {0}, server: {1})

System Error Messages
SYSTEM_STRU = Structure error onto Logical View (library: {0}, server: {1})
SYSTEM_VERS = Version error (library: {0}, server: {1})
SYSTEM_VIEW = Unknown view (library: {0}, server: {1})
SYSTEM_SERV = Unknown service (library: {0}, server: {1})
SYSTEM_LTH = Length view error (library: {0}, server: {1})
SYSTEM_LSRV = Length received message error (library: {0}, server: {1})
SYSTEM_NUVE = Version error in Elementary Component (library: {0}, server:
{1})
SYSTEM_PCVLTH = Message length error (library: {0}, server: {1})
SYSTEM_MISPCV = Components out of phase

 Chapter 6. Management of Errors 103

SYSTEM_ACCESS = Data access error {6} (library: {0}, server: {1}, view: {2})
SYSTEM_LKABSC = Invalid absence of lock processing (library: {0}, server: {1})
SYSTEM_WF00 = Temporary file access error or Database connect error (error :
{6})
SYSTEM_TAND = Pathsend error {6} (library: {0}, server: {1})
SYSTEM_PILO = Pilot Record not found during user buffer processing (library:
{0}, server: {1})
SYSTEM_EXT1 = Extract method : PCV syntax error or size error (library: {0},
server: {1})
SYSTEM_EXT2 = Unknown extract method (library: {0}, server: {1})
SYSTEM_USR1 = User service not found (library: {0}, server: {1})
SYSTEM_USR2 = Size error for user service (library: {0}, server: {1})
SYSTEM_USR3 = Unknown user service (library: {0}, server: {1})

Internal Exception Labels
VAP_SERVER_EXCEPTION = A Server Exception occurred.
VAP_SYSTEM_ERROR = A System Error occurred

Management of Errors for COM Target
In the COM environment, there is a VAPERROR interface which contains the
attributes, actions and events enabling the consultation of all types of errors
(local, communication and server). This interface is available in the VapTools
Library delivered with the generator. This library must be saved on the
workstation (regsvr32 VapTools.dll) and referenced in the client language
before being used.

Access Method to Errors

Operation

This method enables to retrieve an instance of the VapError object sent back by
local or server actions.

• C++ declaration public VapError getErrorsElementAt(int i)
• Internal code getErrorsElementAt(long i)

Operation

This method contains the number of errors sent back by a local or server action.

It is available on each node of the Proxy.

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 104

• C++ declaration public Int getErrorsCount()
• Internal code getErrorsCount

VapError Attributes

Management of the Error Type

Operation

This action enables to retrieve the "LOCAL", "SERVER" or
"COMMUNICATION" type of error.

• C++ declaration public BSTR getType()
• Internal code String getType()

Management of the Action Which Triggers the Error

Operation

This action enables to retrieve the action which triggered the error.

• C++ declaration public BSTR getAction()
• Internal code String getAction()

Management of the Error Key

Operation

 This action enables to retrieve the error key (refer to the eBusiness & Pacbench
C/S Applications – Graphic Presentation guide for the list of errors).

• C++ declaration public BSTR getType()
• Internal code String getKey

Management of the Error Label

Operation

 This action enables to retrieve the default or customized error label (cf. section
Customizing Error Messages for information on the customization procedure).

• C++ declaration public BSTR getLabel()
• Internal code String getLabel()

Management of the Error Gravity

Operation

This action enables to retrieve the error gravity, "EXCEPTION" or "ERROR"

• C++ declaration public BSTR getGravity()
• Internal code String getGravity

 Chapter 6. Management of Errors 105

http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm
http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm

Events Linked to Errors
For the COM target, all the events described in this chapter are to be retrieved
in the whole events associated with each Proxy using the public String
popServerEvent() method as long as public Int
getServerEventsCount() does not send back zero. The String which are
retrieved correspond to the codes of the events described.

Signal for No Error Detection

Sending rules

This signal is sent by the Error Manager when no local, server or system error is
detected.

This event is systematically available.

• Code NO_ERROR

Signal for Local Error Retrieval

Sending rules

This signal is sent by the Error Manager when a local action detects an error.

This event is systematically available.

• Code LOCAL_ERROR

Signal for Server Error Retrieval

Sending rules

This signal is sent by the Error Manager when a server detects an access logical
error, a user error or an error on the Logical View data check.

This event is systematically available.

• Code SERVER_ERROR

Signal for System Error Retrieval

Sending rules

This signal is sent by the Error Manager when a server detects a severe error
such as a discrepancy of the versions between the Client Component and the
associated Elementary Component.

This event is systematically available.

• Code SYSTEM_ERROR

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 106

Signal for Communication Error Retrieval

Sending rules

This signal is sent by the Error Manager when a communication error is
detected during an exchange between a Client Component and a Server
Component.

This event is systematically available.

• Code FATAL_ERROR

Customizing Error Messages
Customizing the messages linked to errors associated with the handling of
Proxies is possible with COM Proxies. The various messages are stored in a text
file (VapProxyMsg.txt by default) located in a directory that can be accessed by
the Path environment variable.

Naming Rules for Error Messages Files

The following rules apply to the storage of error messages:
 As much VapErrorMsg text files as targeted languages. The name of

files is formatted as follows : VapProxyMsg_language_country.txt.
 You must try first to load the file which corresponds to the geographic

context (this context is given by the default Local). If this file is not
found, try to load the file with the language extension
(VapProxyMsg_language.txt). If this file is not found, try then to load the
default VapProxyMsg.txt file.

 This file is structured following the key-value relation mode where the
value corresponds to a label. The error messages stored in this file are
messages associated with local, system or server errors.

Syntax of Error Messages Files

To modify or create a file of error messages, a number of syntax rules must be
followed Any syntax error triggers the complete invalidity of the
externalization of error messages.

 Use quotes to delimit a key-value relation. This relation must be found
on one same line.

 Any line which does not begin with a quote is not read.
 The key and the message must be “framed” separately with quotes.
 To specify a variable attribute in a message, use the { and } curly

brackets to enclose the attribute number.

Error Messages for Local Exceptions

Keys that enable to find local error messages correspond to the names of
constants defined for the local exceptions representing the various types of
local errors, prefixed by LOCAL_

Example : the key which enables to find the error message associated with a local
exception whose type is INVALID_INSTANCE is LOCAL_INVALID_INSTANCE.

 Chapter 6. Management of Errors 107

Local Error Messages Received from the Server Component

Error messages received from the Server are set up with two information: a key
and a label.

The key of the error message is read in order to identify the key of storage of
the local label associated with the error.

 The structure of the error message key is described in the eBusiness & Pacbench
C/S Applications - Graphic Presentation guide.

In the case of system errors, the access key to the local label corresponds to the
SYSTEM_ prefix followed by characters comprised between columns 14 and 19
if they have a significant value (not blank) or followed by characters comprised
between columns 10 and 13, if the value is not significant.

In the case of server errors (user errors, for instance), the access key to the local
label corresponds to the characters comprised between columns 14 and 19 if
they have a significant value and if the character in column 20 is blank.

If the character of column 20 is 2 or 5, the error key is respectively REQUIRED
and VALUE.

If the characters comprised between columns 14 and 19 have no significant
value, the access key to the local label corresponds to the character comprised
between columns 22 and 25.

Server and System Error Messages

The label for Server and System exceptions are respectively available with the
VAP_SERVER_EXCEPTION and VAP_SYSTEM_ERROR keys.

Example of Error Message File

This file defines the default error labels in VisualAgePacbase for Java.
The labels are stored in the bundle are potential java.text.MessageFormat
pattern.
The possible arguments in the label are :
{0} = library
{1} = server name
{2} = view code
{3} = data id
{4} = attribute name
{5} = attribute value
{6} = technical label (technical message from the local cache or message
label from the server)
Note : Those arguments are filled within the error context. They may not
have value if the argument is
not meaningful in the error context.

Local exception error
LOCAL_PARENT_INSTANCE_MISSING = Parent instance missing (data id: {3})
LOCAL_CURRENT_INSTANCE_MISSING = Current instance missing
LOCAL_SERVER_UPDATE_REQUIRED = Server update required (data id: {3})
LOCAL_UNKNOWN_INSTANCE = Unknown instance (data id: {3})
LOCAL_INVALID_INSTANCE = Invalid instance
LOCAL_INSTANCE_NOT_LOCKED = Instance not locked (data id: {3})
LOCAL_INVALID_CREATION = Invalid creation (data id: {3})
LOCAL_INVALID_CHANGE = Invalid change (data id: {3})
LOCAL_INVALID_DELETION = Invalid delete (data id: {3})
LOCAL_INVALID_INITIALIZATION = Invalid initialization (data id: {3})
LOCAL_CARDINALITY_VIOLATION = Cardinality violation {6} (data id: {3})
LOCAL_INSTANCE_ALREADY_LOCKED = Already locked instance (data id: {3})
LOCAL_CURRENT_USER_INSTANCE_MISSING = Current user instance missing
LOCAL_REFERING_INSTANCE_MISSING = Referring instance missing
LOCAL_ASYNCHRONOUS_VIOLATION = Asynchronous violation ({6})

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 108

http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm
http://www.ibm.com/software/awdtools/vapacbase/productinfo.htm

LOCAL_UNKNOWN_CONTEXT = Unknown context
LOCAL_VALUE_REQUIRED = Required item: {4} (data id: {3})
LOCAL_VALUE_ERROR = Value error: {4} (value: {5}, data id: {3})
LOCAL_LENGTH_ERROR = Length error on instance field: {4} (value: {5}, data id:
{3})
LOCAL_SUBSCHEMA_ERROR = Field {4} is out of subschema (value: {5}, data id:
{3})
LOCAL_FOLDER_USER_CONTEXT_LENGTH_ERROR = Length error in instance field of
folder user context: {4} (value: {5})
LOCAL_REFERENCE_USER_CONTEXT_LENGTH_ERROR = Length error in instance field of
reference user context: {4} (value: {5})
LOCAL_REQUEST_ALREADY_EXIST = External request already exists
LOCAL_REQUEST_BAD_USERBUFFER = Incorrect folder user context for linking the
external request ({6})
LOCAL_REQUEST_NOT_ACTIVE = External request state unallowed for create or link
LOCAL_UPDATE_CURRENTLY_POSTED = Instance update already posted (data id: {3})
LOCAL_NO_SERVER_RESPONSE_EXPECTED = No server response expected
LOCAL_LOCK_SERVICE_ALREADY_REQUESTED = Lock service already present in the
request for this instance (data id: {3})
LOCAL_UNLOCK_SERVICE_ALREADY_REQUESTED = Unlock service already present in the
request for this instance (data id: {3})
LOCAL_READ_SERVICE_ALREADY_REQUESTED = Same read service already present in
the request
LOCAL_REQUEST_BAD_APPLICATION = Incorrect eBusiness application for linking
the external request
LOCAL_REQUEST_TOO_LARGE = The request has reached its maximum size, can't
create more services in it

Server Service Error Messages
REQUIRED = Required value: {4} (library: {0}, server: {1}, view: {2})
VALUE = Value error: {4} (library: {0}, server: {1}, view: {2})
DUPL = Invalid creation (library: {0}, server: {1}, view: {2})
NFND = Invalid delete or modification (library: {0}, server: {1}, view: {2})
LOCKED = Already locked instance (library: {0}, server: {1})
NTLOCK = Instance not locked (library: {0}, server: {1})

System Error Messages
SYSTEM_STRU = Structure error onto logical view (library: {0}, server: {1})
SYSTEM_VERS = Version error (library: {0}, server: {1})
SYSTEM_VIEW = Unknown view (library: {0}, server: {1})
SYSTEM_SERV = Unknown service (library: {0}, server: {1})
SYSTEM_LTH = Length view error (library: {0}, server: {1})
SYSTEM_LSRV = Length received message error (library: {0}, server: {1})
SYSTEM_NUVE = Version error in business component (library: {0}, server: {1})
SYSTEM_PCVLTH = Message length error (library: {0}, server: {1})
SYSTEM_MISPCV = Components out of phase
SYSTEM_ACCESS = Data access error {6} (library: {0}, server: {1}, view: {2})
SYSTEM_LKABSC = Invalid absence of lock processing (library: {0}, server: {1})
SYSTEM_WF00 = Temporary file access error or Database connect error (error :
{6})
SYSTEM_TAND = Path send error {6} (library: {0}, server: {1})
SYSTEM_PILO = Pilot Record not found during user buffer processing (library:
{0}, server: {1})
SYSTEM_EXT1 = Extract method : PCV syntax error or size error (library: {0},
server: {1})
SYSTEM_EXT2 = Unknown extract method (library: {0}, server: {1})
SYSTEM_USR1 = User service not found (library: {0}, server: {1})
SYSTEM_USR2 = Size error for user service (library: {0}, server: {1})
SYSTEM_USR3 = Unknown user service (library: {0}, server: {1})

Internal Exception Labels
VAP_SERVER_EXCEPTION = A Server Exception occurred.
VAP_SYSTEM_ERROR = An System Error occurred.

 Chapter 6. Management of Errors 109

Index

Classes extractMethodCode..9
FolderUserContext ... 28 Data Class Inheritance diagrams .. 3
GetErrorCount() ..105 DataDescription... 3
getGravity...105 DataDescriptionUpdate Class .. 4
getKey ...105 Inheritance Diagrams of the ProxyLv class Class 5
getLabel ..105 SelectionCriteria Class .. 4
getType ...105 UserContext Class... 4
globalSelection .. 14 COM actions
host .. 33 <DataElementCode>ValidLabelsCount()94
is<DataElementCode>Present .. 96 <DataElementCode>ValidValuesCount()................................93
lastReplyContext ... 40 checkExistenceOfDependencies() ...79
localSort .. 16 completeInstance ..82
location ... 32 createInstance..48
LocationsFile .. 34 createUserInstance()...54
LockTimestamp ... 25 deleteInstance..49
manualCollectionReset.. 10 deleteUserInstance()...56
maximumReplyCount .. 41 executeUserService()..80
maxNumberOfRequestedInstances .. 13 getDetailFromDataDescription({}LPDISPATCH d)57
password .. 33 getDetailFromRowsIndex ..58
pendingReplyCount ... 41 getProxyClassName..88
port .. 34 getProxyContext..87
referenceUserContext ... 28 getReply(<Foldername>ServerAction).....................................81
refreshOption .. 12 getReply(ServerActionContext s) ...81
serverCheckOption .. 11 getUserDetailFromDataDescription({}LPDISPATCH d)58
serverResponseTime .. 42 initFromProxyContext...88
set<DataElementCode>Present(BOOL Boolean Value) 96 isReplyValid(<Foldername>ServerAction)...............................82
setProperty ... 36 isReplyValid(ServerActionContext s)82
UserDetail... 23 lock() ..77
userId... 32 MainRequest ..44, 83, 84
userServiceCode ... 24 modifyInstance...49
VapError getErrorElementAt(Int i) ..104 modifyUserInstance()..55

COM events ping ..83
DEPENDENT_INSTANCES.. 92 readAllChildrenFromDetail() ...72
FatalError...107 readFirstChildrenFromDetail()...71
LocalError..106 readInstance()...68
LOCK_FAILED ... 91 readInstanceAndLock() ..68
LOCK_SUCCESSFUL.. 91 readInstances()...68
NO_DEPENDENT_INSTANCES... 92 readNextPage...75
NO_PAGE_AFTER .. 89 readPreviousPage..76
NO_PAGE_BEFORE ... 89 readWithAllChildren()...71
NoError ...106 readWithAllChildrenAndLock()...71
NOT_FOUND ... 90 readWithAllChildrenFrom({}LPDISPATCH d).........................73
NOT_READ.. 91 readWithFirstChildren() ..70
PAGE_AFTER ... 90 readWithFirstChildrenAndLock() ..70
PAGE_BEFORE .. 90 readWithFirstChildrenFrom({}LPDISPATCH d)72
ServerError..106 resetAllRefreshOption()..61
SystemError ..106 resetCollection() ..59

Java events resetExtractMethodCodes()...60
resetSelectionCriterias() ...62 dependentInstances ... 92
ResetSubSchema ...65 lockFailed.. 91
resetUserRows()...61 lockSuccessful.. 91
resetUserServiceCodes()..60 noDependentInstances.. 92
selectInstances ...67 noPageAfter ... 89
setCheck(Long,Boolean) ..96 noPageBefore .. 89
transferReferenceFromSelectedRow({}LPDISPATCH d)......63 notFound .. 90
undoAllLocalFolderUpdates() ...51 notRead .. 91
UndoAllLocalUpdate()..53 pageAfter .. 90
undoLocalUpdate..52 pageBefore... 90

Java methods undoLocalUpdate(DataUpdate d) ...50
unlock()..78 <DataElementCode>Error.. 94
updateFolder()..77 <DataElementCode>Index .. 96

COM attributes belongsToSubschema .. 97
checkExistenceOfDependentInstances() 79 <DataElementCode>...93
completeInstance.. 82 accesInfoKey ..26
createInstance()... 48 accessInfoLabel..26
createUserInstance() .. 54 asynchronous ...40
deleteInstance()... 49 communicationResponseTime..42
deleteUserInstance() .. 56 detail ..18

© Copyright IBM Corp, 1983, 2004 111

executeUserService()..80
findDataFieldFormat ...95
findDataFieldMaxLengtht...95
getDetailFromDataDescription({}d) ...57
getDetailFromRowsIndex ..58
getFolderConstants()...64
getNodeConstants()..65
getProxyclassName...88
getProxyContext..87
getReply(com.ibm.vap.generic.ServerActionContext
aContext) ..81
getUserDetailFromDataDescription({} d)................................58
getXML ..85
initFromProxyContext...88
initializeFrom ..95
initializeInstance ..62
isReplyValid(com.ibm.vap.generic.ServerActionContext
aContext) ..82
lock() ..77
MainRequest ...44, 84
MainRequest ..83
modifyInstance() ..49
modifyUserInstance()..55
ping ..83
readAllChildren({} d) ...73
readAllChildrenFromCurrentInstance()72
readFirstChildren({}Data data)...72
readFirstChildrenFromCurrentInstance()71
readInstance()...68
readInstanceAndLock() ..68
readInstances()...68
readInstanceWithAllChildren()..71
readInstanceWithAllChildrenAndLock()71
readInstanceWithFirstChildren() ...70
readInstanceWithFirstChildrenAndLock()...............................70
readNextPage() ..75
readPreviousPage() ...76
resetAllRefreshOption()..61
resetCollection...59
resetExtractMethodCodes()...60
resetSelectionCriterias() ...62
resetSubSchema ..65
resetUserRows()...61
resetUserServiceCodes()..60
restoreSelection ({}Data d) ..59
selectInstances()...67
setCheck(int index, boolean a Boolean).................................96
transferReferenceFromSelectedRow({} d)63
undoAllLocalFolderUpdates() ...51
undoAllLocalUpdate ...53
undoLocalFolderUpdates(ClientDataUpdate d)50
undoLocalUpdate..52
unlock()..78
updateFolder()..77
updateFromXML..87

Java properties
<DataElementCode>...93

<DataElementCode>Labels... 94
<DataElementCode>Values .. 93
accessInfoKey.. 26
accessInfoLabel ... 26
asynchronous... 40
communicationResponseTime... 42
dataComparator .. 17
detail .. 18
extractMethodCode..9
extractMethodCodes ..8
FolderInstancesCount .. 29
FolderUpdatedInstancesCount .. 29
FolderUserContext ... 28
globalSelection .. 14
host .. 33
iRows... 15
is<DataElementCode>Present .. 96
iUpdatedFolders.. 19
iUpdatedInstances .. 20
iUserInputRows... 21
iUserOutputRows ... 22
lastReplyContext ... 40
localSort .. 16
location ... 32
locations.. 31
lockTimestamp .. 25
manualCollectionReset.. 10
maximumNumberOfRequestedInstances.............................. 13
maximumReplyCount .. 41
nodeUpdatedInstancesCount .. 30
password .. 33
pendingReplyCount ... 41
port .. 34
property .. 36
referenceUserContext ... 28
refreshOption .. 12
rows ... 15
selectionCriteria ...7
serverAdapter .. 35
serverAdapterName ... 35
serverCheckOption .. 11
serverResponseTime .. 42
set<DataElementCode>Present(Boolean b) 96
subSchema... 44
subSchemaList ... 43
tableModel ... 46
tableModel ... 45
updatedFolders.. 19
updatedFoldersTableModel.. 45
updatedInstances.. 20
updatedInstancesTableModel .. 46
userDetail ... 23
userId... 32
userInputRows... 21
userOutputRows... 22
userServiceCode ... 24
userServiceCodes ... 24

eBusiness & Pacbench C/S Applications - Proxy Programming Interface 112

	Notices
	Trademarks
	Foreword
	Chapter 1. Classes
	Data Classes
	Inheritance Diagrams
	Java and COM

	DataDescription Class
	SelectionCriteria Class
	DataDescriptionUpdate Class
	UserContext Class

	ProxyLv Class: Inheritance Diagrams
	Java and COM

	Classes of XML flows handling
	Inheritance Diagrams
	Java and COM

	Generic classes
	Generated classes

	Chapter 2. Attributes
	Management of Selections
	Selection Criteria
	List of Available Extraction Methods
	Extraction Method to be Executed
	Management mode of the collection

	Management of Updates
	Implementation of Server Data Checks
	Server Data Refresh

	Exchange Flow Check
	Limited Number of Exchanged Instances
	Unlimited Number of Exchanged Instances

	Logical View Instance Container
	Instance List Presentation
	Selection of Local or Server Criterion for Instance List Sort
	Local Criterion for Instance List Sort
	Instance Presentation
	Presentation of Modified Folders
	Presentation of Modified Instances
	Presentation of Instances for a User Service
	Presentation of Instances Returned by a User Service
	Presentation of an Instance Linked to a User Service

	Management of User Services
	List of Available User Services
	User Service to be Executed

	Management of Logical Locks
	Folder Lock Identifier

	Management of Selection-Return Messages
	Message Label
	Message Key

	Management of Events
	List of Events from the Last Server Action

	Management of Contextual Information
	Contextual Information
	Contextual Information Associated with Reference Nodes

	Available Counters
	Total Number of Local Instances
	Total Number of Update Services
	Number of Update Services Associated with a Node

	Management of Communications
	List of Available Platforms
	Platform Selected for a Query Execution
	Log-in User Code
	Log-in Password
	Name of the Machine Hosting the Java/VisualAge Pacbase Gateway
	IP Port Associated with the Communications Manager
	Setting of the Platforms File's Address
	Selection of the Communication Adapter
	Management of Communication Parameters

	Management of Asynchronous Conversations
	Determining the Type of Conversation
	Last Identifier of an Asynchronous Conversation
	Maximum Number of Pending Replies
	Number of Pending Replies

	Conversation Time
	Communication Time
	Execution Time of the Server Processing

	Sub-Schema Management
	List of Available Sub-Schemas
	Sub-schema to be Taken into Account

	External Request Management
	Access and Set a Request

	Use of a JTable
	Display of the Instances Collection in a JTable
	Display of the Updated Folders in a JTable
	Display of the Updated Instances in a JTable
	Display of the Instance Collection in input/output by a User Service in a JTable

	Chapter 3. Actions
	Actions Performed Locally
	Updates
	Creation of a Logical View Instance
	Modification of a Logical View Instance
	Deletion of a Logical View Instance

	Cancellation of Updates
	Cancellation of a Folder's Updates
	Cancellation of all Folders Updates
	Cancellation of Updates on a Node Instance
	Cancellation of Updates on all the Instances of a Node

	Management of User Services
	Assignment of an Instance to a User Service
	Modification of an Assigned Instance
	Deletion of an Assigned Instance

	Local Navigation in the Folders
	Current Selection of an Instance in a Folder
	Selection of an instance from an Index
	Selection of an Instance Associated with a User Service
	Reactivation of the Current Selection

	Miscellaneous Initializations
	Initialization of the collection
	Initialization of Extraction Methods
	Initialization of the User Services
	Initialization of the “Presentation of Instances for a User Service" Container
	Initialization of the Update-Refresh Option
	Initialization of Selection Criteria
	Addition of instances in the local cache without server access

	Management of Referenced Instances
	Assignment of a Referenced Instance

	Retrieval of Proxies' Generation Contexts
	Generation Context of a Folder
	Generation Context of a Node

	Sub-Schema Management
	No Selection of Sub-Schema

	Actions Performed on a Remote Server
	Selection on a Node
	Selection of a Set of Instances
	Reading of an Instance with or without Logical Locking
	Reading of Instances from identifiers

	Concurrent Selection on Multiple Nodes with or without Locking
	Reading of an Instance and its Immediate Hierarchy
	Reading of an Instance and its Complete Hierarchy
	Reading of the Immediate Hierarchy of a Current Instance
	Reading of the Complete Hierarchy of a Current Instance
	Anticipated Reading of an Instance's Immediate Hierarchy
	Anticipated Reading of an Instance's Complete Hierarchy

	Management of Paging
	Reading of the Following Page's Instances
	Reading of the Preceding Page's Instances

	Sending of Updates
	Sending of Local Updates to the Server

	Management of Logical Locks
	Logical Locking of a Current Instance
	Logical Unlocking of a Current Instance

	Management of Dependent Instances
	Check on the Presence of Dependent Instances

	Management of User Services
	Execution of User Services

	Management of Asynchronous Conversations
	Deferred Retrieval of a Reply
	Check on a Message Identifier's Validity

	Sub-Schema Management
	Test of Communication with the Server

	Externalization of the Management of Requests
	Creation of a Request
	Execution of the Request Actions on the Server
	Cancellation of the Request Actions

	XML flows handling
	Status of a Logical View Instance
	Obtaining of a XML flow
	Update from a XML flow

	Management of Proxy Context
	Initialization of the proxy context
	Initialization of the local cache
	Retrieval of the Proxy

	Chapter 4. Events
	Management of Paging
	Signal of Retrieval of a Collection's Last Page
	Signal of Retrieval of a Collection's First Page
	Signal of Presence of at Least One Following Page
	Signal of Presence of at Least One Preceding Page

	Management of Unit Reads
	Signal of Reading of a Record not Found

	Management of Simultaneous Selections
	Signal of Non-Participation to a Simultaneous Read

	Management of Logical Locks
	Signal of Assigned Logical Lock
	Signal of Unsuccessful Logical Lock

	Management of Dependent Instances
	Signal of Presence of at Least One Dependent Instance
	Signal of Absence of Dependent Instances

	Chapter 5. Public Interface for Data Elements Handling
	Management of a Data Element's Contents
	Management of Authorized-Value Codes
	Management of Authorized Values
	Management of the Validity of a Data Element's Contents
	Access to the Characteristics of a Data Element
	Initialization of the Data Elements Values
	Management of a Data Element's Presence
	Management of a Data Element's Check
	Management of membership to a Sub-schema
	Data Element Belonging to the Sub-Schema

	Management of membership to an extraction method

	Chapter 6. Management of Errors
	Management of Errors for Java Target
	Classes Related to the Management of Errors
	Communication Errors
	System Errors
	Local Errors
	Server Errors
	Error Messages Received from the Server
	Error Messages Received from the Server on the Update

	Customizing Error Messages
	Local Error Messages
	Local Error Messages Received from the Server Component
	Server and System Error Messages
	Example of Error Messages File

	Management of Errors for COM Target
	Access Method to Errors
	VapError Attributes
	Management of the Error Type
	Management of the Action Which Triggers the Error
	Management of the Error Key
	Management of the Error Label
	Management of the Error Gravity

	Events Linked to Errors
	Signal for No Error Detection
	Signal for Local Error Retrieval
	Signal for Server Error Retrieval
	Signal for System Error Retrieval
	Signal for Communication Error Retrieval

	Customizing Error Messages
	Naming Rules for Error Messages Files
	Syntax of Error Messages Files
	Error Messages for Local Exceptions
	Local Error Messages Received from the Server Component
	Server and System Error Messages
	Example of Error Message File

	Index

