VisualAge Pacbase

Batch Applications

Version 3.5

VLSUG/ZA oe

Pacb ase)

VisualAge Pacbase

Batch Applications

Version 3.5

— Note

Before using this document, read the general information under [“Notices” on page v

You may consult or download the complete up-to-date collection of the VisualAge Pacbase documentation
from the VisualAge Pacbase Support Center at:

http:/ /www.ibm.com/software/awdtools/vapacbase/productinfo.htm

Consult the Catalog section in the Documentation home page to make sure you have the most recent edition of
this document.

First Edition (December 2004)

This edition applies to the following licensed programs:
* VisualAge Pacbase Version 3.5

Comments on publications (including document reference number) should be sent electronically through the Support
Center Web site at: http://www.ibm.com/software/awdtools/vapacbase/support.htm or to the following postal
address:

IBM Paris Laboratory
1, place Jean-Baptiste Clément
93881 Noisy-le-Grand, France.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983,2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Notices.
Trademarks .
Chapter 1. Introduction .

Purpose of the manual .
Principles of description

Batch Systems Development Functlon.

Managed entities .

Chapter 2. Programs .
Definition (P) . .o

Call of Data Structures (- CD)
On-line access commands
Generation and/or printing .

Chapter 3. Segments
Definition .

Call of Elements screen (- CE)
On-line access commands
Generation and/or printing .

Chapter 4. Reports
Definition screen (R) .
Layout screen (-L) .

Call of Elements screen (-CE)
Description screen (-D) .
Description screen top
Description screen body

Direct print / application spooling routmes

On-line access commands .
Generation and/or printing

Chapter 5. Error messages .
Introduction

© Copyright IBM Corp. 1983,2004

. Vil

W N = = -k

.12
. 36
.41

. 43
. 43
. 50
.71
. 80

. 83

. 83

. 86

. .93
. 104

. 105

. 108

114

. 116
. 119

121
121

Coding of error messages .
Description of error message file.
Generation and/or printing

. 123
. 126
. 129

Chapter 6. Example of generated program 131

Introduction .
Identification division
Environment division

Data division : File section .
Beginning of Working Storage
Variables and indexes

Key, validation, print areas.
Data structure work areas .
0A Declaratives

Initializations (FO1)

Read sequential files with no control break

(FO5) .

Read sequential flles w1th Control breaks

(F10) . .

End of run (FZO)

Calculate file control breaks (F22)
File matching logic (F24)

Total control break logic (F26).
Calculate validation variables (F30) .
Identification validation (F33) .
Duplicate record validation (F36).
Presence of data elements (F39) .
Record structure validation (F42).

Data element contents validation (F45).

Record presence validation (F51).
Existence validation (F70) .
Update (F73) .

Store errors and backout (F76)
Report logic (F8r) .

Write files (F90)

. 131
. 135
. 136
. 137
. 142
. 145
. 152
. 163
. 168
. 170

. 173

. 174
. 176
. 177
. 179
. 181
. 182
. 184
. 185
. 186
. 188
. 189
. 191
. 192
. 193
. 194
. 196
. 204

iii

iV VisualAge Pacbase: Batch Applications

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only that IBM product, program, or service
may be used. Subject to IBM’s valid intellectual property or other legally
protectable rights, any functionally equivalent product, program, or service
may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those
expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk NY
10504-1785, U.S.A.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM Paris
Laboratory, SMC Department, 1 place J.B.Clément, 93881 Noisy-Le-Grand
Cedex. Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

IBM may change this publication, the product described herein, or both.

© Copyright IBM Corp. 1983,2004 v

Vi VisualAge Pacbase: Batch Applications

Trademarks

IBM is a trademark of International Business Machines Corporation, Inc. AIX,
AS/400, CICS, CICS/MVS, CICS/VSE, COBOL/2, DB2, IMS, MQSeries, OS/2,
PACBASE, RACEF, RS/6000, SQL/DS, TeamConnection, and VisualAge are
trademarks of International Business Machines Corporation, Inc. in the United
States and/or other countries.

Java and all Java-based trademarks and logos are trademarks of Sun
Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

All other company, product, and service names may be trademarks of their
respective owners.

© Copyright IBM Corp. 1983,2004 vii

o

(=Y

(=YY

VisualAge Pacbase: Batch Applications

Chapter 1. Introduction

Purpose of the manual

The purpose of this manual is to describe the entire tire range of the entities
managed by the Batch Systems Development function.

This manual is not a User’s Guide or a textbook, but a reference document to
be consulted for complete information concerning this function.

PREREQUISITES

For a basic knowledge of all the possibilities the system has to offer and
specifically, the command language used to access the different screens, the
user must consult:

.The Character Mode User Interface Guide,

.The Data Dictionary Manual,

.The Structured code Manual.

Principles of description

In this manual, the entities and screens managed by VisualAge Pacbase are

described in two parts:

* An introductory comment explaining the purpose and the general
characteristics of the entity or screen,

* A detailed description of each screen, including the input fields for on-line
screens data entry into the Database.

For the description of batch input, refer to the ‘Developer’s Procedures’
manual.

All on-line fields described in this manual are assigned an order number.

These numbers are displayed on the screen examples which appear before the

input field descriptions and allow for easy identification of a given field.

NOTE: If you use Developer workbench, refer to the on-line Help.

NOTE: If you use the VisualAge Pacbase WorkStation, refer to the
"WorkStation User Interface’ guide which documents the

corresponding windows.

© Copyright IBM Corp. 1983,2004 1

Batch Systems Development Function

The purpose of the Batch Systems Development (BSD) function is to describe
and generate batch systems.

The general principle is to describe the batch procedures that are most often
used:

- File access,

- Loading of tables,

- Data validation,

- Updates,

- Reports.

From the description of these procedures, the BSD function ensures the
generation of the corresponding programs. All programs have the same

structure, which contains all or some of the procedures described above.

GENERAL DESCRIPTION

Each batch procedure is described as to what can be done automatically.

Specific procedures are described in functions written in Structured Code
(refer to the corresponding manual).

The BSD function automatically generates the following:

* File retrieval, especially sequential files, with synchronization and control
break detection; the matching and control break criteria are indicated when
the file is called in a program,

Automatic loading of files into program tables,

* Validation of transactional information in the batch input stream. This is
done by adding information on the segment description made during the
analysis phase. Validations include presence, class, and value validations
(coding, tables, etc.),

* Update of permanent data of the system accomplished by conditional
substitution, subtraction or addition, following the same principle as that
adapted for validation processing,

* Report printing. This is accomplished with the description of a report
layout, as it will be seen by the end-user. This will assist in determining

2 VisualAge Pacbase: Batch Applications

both the report composition (headings, detail lines, page bottom, etc.) and
the structure of the output (data elements making up each line, position in
the line, source, condition, etc.).

The coding of the report is accomplished using the layout. There will be no
difference between the layout and the report once it is programmed.

Report printing automatically generates the processing of totals, to be
executed at each control-break.

GENERATION

Once the above data is defined, the VisualAge Pacbase system ensures:

* The automatic generation of batch COBOL programs containing one or
more of the procedures described above,

* The ability to generate and incorporate additional functional procedures
that have not been taken into account. These additional procedures must be
written in Structured Code.

Therefore, these programs are completely generated in COBOL.

CROSS-REFERENCES

The Batch Systems Development function is used in conjunction with the
Specifications Dictionary and Structured Code functions, and benefits from all
the advantages associated with them (keywords, cross-references,
documentation, use of macro-structures, etc.).

Managed entities

All VisualAge Pacbase information is grouped into homogeneous families
called ENTITIES.

Entities are made up of one or more associated screens. The three basic types
of screens are:

- DEFINITION,

- DESCRIPTION,

- DOCUMENTATION.

Each screen is made up of fields. Definition screens define a single "line”
whereas the other two may contain more than one line. Certain fields function

as keys to these lines.

The entities managed by the BSD function are the following:

Chapter 1. Introduction 3

. Programs,
. Reports.

The automatic generation of BSD procedures is obtained from data structure
and report calls in the programs:

* The Definition screen of a program determines the repetitive structure
characteristic of a batch procedure,

* Data from the Program Call of Data Structures Screen (-CD) provokes the
generation of file retrieval functions: open, read, detection of control breaks,
file matching, write and close,

* Validation and update processing are generated from the definition and
description of segments,

* Print procedures are generated from the definition and description of
reports.

The Structured Code also allows to:
* Add work and linkage areas (-W),
* Complete or modify the beginning of the program (-B),
* Add specific procedures (-P).
REVERSE ENGINEERED PROGRAMS
Programs that have been "reverse engineered” include only the following:
* Work Area (-W) lines,
* Source Code (-SC) lines (COBOL source code).

It is possible to add Structured Code (-W and -P lines) and Calls of
Marcro-Structures (-CP lines) to these programs, and then regenerate them.
Call of Data Structures (-CD) and Beginning Insertions (-B) lines are ignored.

4 VisualAge Pacbase: Batch Applications

Chapter 2. Programs

Definition (P)

The purpose of the 'Program’ entity is to develop and implement all
procedures defined in the detailed analysis phase.

GENERAL CHARACTERISTICS

The Program entity contains:

* A Definition, required, giving general characteristics (Program code on six
characters, keywords, Type of COBOL to generate, etc.),

¢ Comments entered on the Comments screen or batch form providing
useful data related to the program (programmer’s name, etc.),

* Several types of description lines:

Call of Data Structures lines make up the Data Division and most of the
Procedure Division in the generated program,

— Beginning Insertions lines, allowing the user to modify the Environment
Division up to and including the 'Data Division” and ‘File Section’
statements,

— Work Area lines used to supplement the DATA DIVISION, procedures”
manual.

Call of PMS lines used to call pre-defined macros into the program.

NOTE

For more information concerning Beginning Insertions, Procedural Code,
Work Areas, and Parameterized Macro- Structures, see the Structured Code
Manual.

The Batch codes are to be found in the "Developer’s Procedures” Manual.

© Copyright IBM Corp. 1983,2004 5

PURCHASING MANAGEMENT SYSTEM SGO000O8.LILI.CIV.1583

PROGRAM CODE............. P00001 1
PROGRAM NAME..........ccevveeeeea..: VENDOR REPORTS 2
CODE FOR SEQUENCE OF GENERATION....: P00001 3
TYPE OF CODE TO GENERATE...........: @ 4
COBOL NUMBERING AND ALIGNMENT OPT..: 5
CONTROL CARDS IN FRONT OF PROGRAM..: B 6
CONTROL CARDS IN BACK OF PROGRAM...: B 7
COBOL PROGRAM-ID.......eevvvuvne...: POOOOL 8
MODE OF PROGRAMMING........cevevuvo.: P 9
TYPE AND STRUCTURE OF PROGRAM......: B 10
PROGRAM CLASSIFICATION CODE........: P PROGRAM 11
TYPE OF PRESENCE VALIDATION........: 12
SQL INDICATORS GENERATION WITH '-'.: 13
EXPLICIT KEYWORDS..: 14
UPDATED BY.........: ON : AT : HE LIB :
SESSION NUMBER.....: 0059 LIBRARY......: CIV LOCK....:
0: C1 CH: Ppo0001 ACTION:
CLASS
NUMLEN| VALUE DESCRIPTION OF FIELDS AND FILLING MODE
1 6 PROGRAM CODE (REQUIRED)

Code identifying the program in the library.
2 30 PROGRAM NAME (REQUIRED IN CREAT)

It must be as explicit as possible since the implicit
keywords are created from this name.

3 6 CODE FOR SEQUENCE OF GENERATION

Default option: PROGRAM CODE in the VisualAge Pacbase
Library.

Programs are sorted on this code in the generated program
stream.

4 1 TYPE OF COBOL TO GENERATE
Specifies the COBOL variant for the generated Program.

The default value at creation is the value of the
GENERATED LANGUAGE field in the Library Definition.

Compatibility of Programs generated with Cobol 85, Cobol
II, Cobol /370, Cobol OS/390 operates according to the
value of the GENERATED LANGUAGE in the Library.

"N’ No adaptation to a language variant.

6 VisualAge Pacbase: Batch Applications

CLASS
NUMLEN| VALUE DESCRIPTION OF FIELDS AND FILLING MODE

It is used to prevent program generation.

0’ Adaptation to COBOL IBM MVS/ESA OS/390

1 Adaptation to COBOL IBM DOS/VSE

3’ Adaptation to COBOL: MICROFOCUS, IBM AIX-OS/2-
Windows/NT

£ Adaptation to COBOL: BULL Gcos?

5 Adaptation to ANSI COBOL: BULL Gcos8

7 Adaptation to COBOL: HP-3000

'8’ Adaptation to ANSI COBOL: UNISYS A Series

< Extraction of COBOL Source Code.

(Refer to chapter “Appendix: Pure COBOL Source Code’ in
the 'Structured Code” manual).

F Adaptation to COBOL: TANDEM
T Adaptation to COBOL: DEC/VAX VMS
K’ Adaptation to ANSI COBOL: ICL 2900
™M’ Adaptation to COBOL: BULL Gcos6
o Adaptation to COBOL: IBM AS 400
'R’ Adaptation to COBOL: TUXEDO
9% Adaptation to ANSI COBOL: UNISYS 2200 Series
X Adaptation to COBOL IBM MVS/ESA OS/390
QY Adaptation to ACUCOBOL
5 1 COBOL NUMBERING AND ALIGNMENT OPTION

This option can be used to suppress numbering or the
identification of a program or to modify the justification of
the generated program lines.

blank Numbering, justification and identification of program in
accordance with the standard COBOL line (default value).

gy Suppression of numbering.

2 Suppression of numbering and justification of statements

(columns 8 to 71 inclusive) in column 1.

< Standard numbering and justification, suppression of
program identification.

4’ Suppression of numbering and program identification.

Chapter 2. Programs 7

NUN

ILEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

Suppression of numbering and of program identification
justification of instructions (columns 8 to 71 inclusive) in
column 1.

Control cards in front of programs

Enter the one-character code that identifies the job card to
be inserted before the generated program.

Default: Code entered on the Library Definition Screen

CONTROL CARDS IN BACK OF PROGRAMS

Enter the one-character code that identifies the job card to
be inserted after the generated program.

Default: Code entered on the Library Definition Screen

COBOL PROGRAM-ID

(Default value at generation: CODE FOR SEQUENCE OF
GENERATION.)

This code identifies the generated program:

.in the IDENTIFICATION DIVISION,

.in a source module library,

.in the library of executable modules.

This code intervenes (totally or partially) in the job control
language lines generated before or after the program.

MODE OF PROGRAMMING

Structured Code

Default value when creating a Library. Programming in
Structured Code on ’-P’ lines (Procedural Code).

Cobol generator (in conjunction with the Reverse
Engineering function)

Specific procedures composed of Source Code (-SC) and
Procedural Code (-P).

With this value, the Type and structure of Program field
must also be 'S’.

Programming with "-8” type of lines.

Used only to maintain applications written with former
VisualAge Pacbase versions.

The value entered on the Definition line of the Library is
channeled down by default to the Definition line of a
Program when it is created.

8 VisualAge Pacbase: Batch Applications

NUMLEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

At the Program level, the programming type can be
modified.

The combination of -P” and ’-8’ lines called in the same
Program, either directly, or via Macro-structures, is rejected.

10 |1

TYPE AND STRUCTURE OF PROGRAM

This identifies the structure of the generated Program or the
type of the Program in the Library.

Structure of a batch Program (default option).

It provides the general structure of an iterative program:

beginning of the loop (F05),

.end of run (F20),

.end of the loop (F9099. GO TO F05).

Suppress automatic structure generation

STRUCTURED CODE FUNCTION

This type can be used to describe the TDS “system
generation’, the IDS II "schema’, ...

.suppression of COBOL divisions,

.the program is made up of Beginning Insertions

(-B), Work Areas (-W) and Call of Data Structures (-CD)
lines.

COBOL GENERATOR FUNCTION

.the program is made up of "-W’, -P’, '-SC” and "-CP” lines.

On-line Program structure.

Suppression of the loop, i.e:

.no beginning of loop (F05),

.no end of run (F20),

no end of loop (F9099. GO TO F05).

C.I.C.S. on-line Program structure.

Suppression of the loop, i.e:

.no beginning of loop (F05),

.no end of run (F20),

no end of loop (F9099. GO TO F05).

Same as "T” but also with:

Chapter 2. Programs 9

NUMLEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

.generation, at the beginning of the PROCEDURE
DIVISION, of the line: MOVE CSACDTA TO TCACBAR,

.generation in F9099 of: DFHPC TYPE=RETURN,

o line numbering in the generated program.

Parameterized Macro-Structure type. (For documentation
purposes only).

This is used for programs to be inserted into other
programs. This type of program cannot be generated alone.

Program composed of Call of Data Structures (-CD) and
Pure COBOL Source Code (-9) lines.

This option permits the manipulation of the Pure COBOL
Source Code (-9) lines that invoke the structural description
of the automatically generated D.S.’s, according to the
characteristics assigned to that D.S. on the Call of Data
Structures (-CD) screen.

For more information see chapter "Appendix: Pure COBOL
Source Code’ in the 'Structured Code” Manual.

Program composed of Call of Data Structures (-CD),
Beginning Insertions (-B), Work Areas (-W) and Pure
COBOL Source Code (-9) lines. This option provides the
automatic generation of the IDENTIFICATION,
ENVIRONMENT and DATA DIVISIONS.

The PROCEDURE DIVISION is written entirely on Pure
COBOL Source Code (-9) lines.

Program composed of Call of Data Structures (-CD),
Beginning Insertions (-B), Work Areas (-W) and Procedural
Code (-P) lines. This option provides the automatic
generation of the IDENTIFICATION, ENVIRONMENT and
DATA DIVISIONS. The PROCEDURE DIVISION is entirely
written in Structured Code.

Program written in C LANGUAGE and composed of Work
Areas (-W), Source Code (-SC) and Call of PM.S.’s (-CP)
lines.

11 |1

PROGRAM CLASSIFICATION CODE

This value is used primarily for documentation purposes.
The label corresponding to the selected code will be
displayed on Reports and Screens.

It is also used to select the non-expansion option for
Macro-Structures.

TP System

10 VisualAge Pacbase: Batch Applications

NUMLEN| VALUE DESCRIPTION OF FIELDS AND FILLING MODE
D’ Sub-program
‘G’ Screen map
M’ Macro-structure
‘N’ Non-expanded Macro-Structure
P’ Program
'S Schema
T On-line Program (Screen)
U Utility
A% Sub-schema
12 |1 TYPE OF PRESENCE VALIDATION
In validation Programs, the presence of numeric Data
Element will be determined according to this code:
For numeric fields:
blank Field present if not blank (default value).
0’ Field present if not zero.
For alphabetic and numeric fields:
T Field present if not low-value.
13 |1 SQL INDICATORS GENERATION WITH -’
Cross-references available for the use of SQL indicators in
Structured Language.
BLANK SQL indicators generated in the format: VXXNNCORUB:
e SQL indicators generated in the format: V-XXNN-CORUB.
14 |55 EXPLICIT KEYWORDS

This field allows you to enter additional (explicit)
keywords. By default, keywords are generated from the
instance’s name (implicit keywords).

Keywords must be separated by at least one space.
Keywords have a maximum length of 13 characters which
must be alphanumeric. However, '=" and "*’ are reserved for
special usage and are therefore ignored in keywords.

Keywords are not case-sensitive: uppercase and lower-case
letters are equivalent.

Chapter 2. Programs 11

CLASS
NUMLEN| VALUE DESCRIPTION OF FIELDS AND FILLING MODE

NOTE: Accented and special characters can be declared as
equivalent to an internal value in order to optimize the
search of instances by keywords (Administrator workbench,
‘Window” menu, 'Parameters browser” choice, in ‘Special
Characters’ tab).

A maximum of ten explicit keywords can be assigned to
one entity. For more details, refer to the ‘Character Mode
User Interface” guide, chapter ‘Search for Instances’,
subchapter 'Searching by Keywords'.

Call of Data Structures (-CD)

The purpose of the Call of Data Structures is to identify all Data Structures
used in a Program, specifying their physical characteristics as well as the way
these files are to be used in the Program.

The Call of Data Structures screen is accessed by entering '-CD’ in the
CHOICE field from any screen within the Program entity’s network.

GENERAL CHARACTERISTICS

Each Data Structure may be described on as many continuation lines as
needed. Certain information must be entered on the first line of the call, as
opposed to being entered on a continuation line, and vice versa.

The system assigns default values to required information areas of the Data
Structure call line. By default, a Data Structure will look like a sequential file
with fixed-length records. The Data Structure Description will contain all of
the Data Structure records, with the Data Elements in internal format, without
the optional Data Elements.

ORGANIZATION

Data Structures are ‘organized’ into three basic types:
. Standard Files,

. Database Blocks,

. Work Areas or Linkage Areas.

The descriptions of the latter category may involve specifying Data Structures
and/or Data Elements.

12 VisualAge Pacbase: Batch Applications

It is preferable to define the WORK or LINKAGE fields on the screen
provided for this purpose (-W). If the Program is a Macro-Structure (P.M.S.),
the "-W’ is generated in the calling Program, not the "-CD’.

NOTE: A Data Structure call in the -W screen does not allow for the creation
of continuation lines (which limits the number of Segment selections

to four Segments, for example).

Also, utilization, control breaks, and file matching cannot be specified on -W
lines.

AUTOMATIC PROCESSING OPTIONS

The user identifies the data structures used in the program, providing their:
* Physical characteristics (external name, organization, access, blocking
factor, etc.),

* File matching criteria, controlled by three different fields (for input data

structures):

— SORT KEY, which identifies the keys to match on, arranged
hierarchically from the major-most key,

— NUMBER OF CONTROL BREAKS, which specifies how many control
breaks there are,

— FILE MATCHING LEVEL NUMBER, which specifies the number of
levels to match.

¢ The RECORD TYPE / USE WITHIN D.S.: Several description variants may
be defined from the data structure descriptions contained in the VA Pac
database.

These variants are:

— The format type used,

The selection of certain segments, taken from the various data structure
descriptions in the library,

The selection of certain reserved data elements or groups of data
elements,

The record description mode (redefined or not, repeated, etc.), and the
COBOL level number,

— The location of the generated description in the DATA DIVISION (this
location can vary from one record to another),

The type of use of the data structure, controlling generation of certain
specific procedures (table loading, validation, updating, etc.).

LIMITATIONS

Chapter 2. Programs 13

There is no limit for the number of data structure calls per program. However,
principal data structures, or data structures with control breaks or file
matching must appear among the first 23. If not, file matching might not be
carried out as desired and the updating of these principal data structures will
not take place.

For I, V-, or S-organization files, the number of call lines must not exceed 100.

The maximum number of times a single data structure can be called is limited
to 500, for all the programs that are generated in one run.

FILE RETRIEVAL

It is generated according to the file matching and control break criteria
indicated on the -CD line.

To have an example of how it works and how the corresponding matching
(XX-CFn), File Break (XX-IBn, XX-FBn), Total break (ITBn, FIBn), Update
occurrence (XX-OCn) variables are managed, refer to the Chapter "Example of
generated program’ at the end of the ‘Batch Applications” manual.

COMPOSITE DATA STRUCTURES

It is possible at the Program level to build a Data Structure with Segments
belonging to different Data Structures.

This is accomplished by assigning the same DATA STRUCTURE CODE IN
THE PROGRAM to different Data Structures, and selecting the desired
Segments from each.

The common part will be made of the code of the Data Structure called on the
first line.

In order to call in a Program Data Structure two or more Segments which
have the same two-character SEGMENT CODE or the same LAST
CHARACTER OF THE REPORT CODE, but are extracted from different Data
Structures in the Library, it is necessary to change the code of one of them in
the Program, in the SELECTION field.

14 VisualAge Pacbase: Batch Applications

PURCHASING MANAGEMENT SYSTEM SGOO00O8.LILI.CIV.1583
DATA STRUCTURES USED IN PROGRAM : 1 VRPREP VENDOR RATING PREPARATION
23 4 5 6 7911 1314 16 18 19 21 22 23 25 27
8 10 12 15 17 20 24 26
A DP CO : DL EXTERN OARFU BLOCK T B M U RE SE L UNIT C SELECTION F ER L PL
co : CO PMSCO SSFOU 0 R D I 1
: STAT.FLD: 28 ACC. KEY: 29 RECTYPEL 30
0I : 0I PMSPOF VSFID OR 1 C I 1
: STAT.FLD: ACC. KEY: RECTYPEL
SO : CO SORT SSFTU 0R D I 1
: STAT.FLD: ACC. KEY: RECTYPEL
Wo : CO WORK WSFOU 0 R D I 1
: STAT.FLD: ACC. KEY: RECTYPEL
STAT.FLD: ACC. KEY: RECTYPEL
STAT.FLD: ACC. KEY: RECTYPEL
STAT.FLD: ACC. KEY: RECTYPEL
STAT.FLD: ACC. KEY: RECTYPEL
0: C1 CH: -CD
VALUE
NUMLEN| CLASS AND FILLING MODE DESCRIPTION OF FIELDS
1 6 PROGRAM CODE (REQUIRED)
Code identifying the program in the library.
2 1 ACTION CODE
(e Creation of the line
™M’ Modification of the line

‘D" or 'A’ Deletion of the line

T’ Transfer of the line

"B’ Beginning of multiple deletion

‘G’ Multiple transfer

'y Request for HELP documentation

"E’ or "’ Inhibit implicit update

X Implicit update without upper/lowercase processing
3 2 DATA STRUCTURE CODE IN THE PROGRAM

(REQUIRED)

This code establishes the sequence in which the Data
Structure will be processed in the Program.

Chapter 2. Programs 15

NUN

MLEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

The first character must be alphabetic but the second one
can be numeric or alphabetic.

It is recommended to keep the same DATA STRUCTURE
CODE IN THE PROGRAM and IN THE LIBRARY when
the Data Structure described in the Library is used only
once in the Program.

ALPHA.

Continuation of D.S. Description

blank

First line of a Data Structure description. This line must
contain all information defining the input-output
characteristics, all technical characteristics and the
description of the Data Structure.

Two-letter code indicating a continuation line.

The continuation lines are used to select the records of the
different Data Structures in the Library and to request their
description in a specified position.

DATA STRUCTURE CODE

This code is made up of two alphanumeric characters. This
is a logical code internal to the Database and therefore
independent of the names used in Database Blocks and
Programs.

EXTERNAL NAME OF THE FILE

(Default option: DATA STRUCTURE CODE IN THE
PROGRAM.)

(NOTE: In this discussion, the term 'COBOL Variant’ = the
value in the TYPE OF COBOL TO GENERATE field)

FOR the 'Y’ ORGANIZATION:

This field must contain the code of the COBOL COPY
clause which represents the communication area of the
Pacbench C/S Application Component which accesses the
Logical View. For more details, refer to the "Pacbench C/S
Applications - Business Logic’ Manual.

FOR SQL ORGANIZATIONS:

This field must contain the VisualAge Pacbase code of the
SQL block.

For explanations, refer to the ‘Structured Code’

manual, chapter ‘Modifying the Procedure Division’,
subchapter "Procedural Code Screen (-P)’, and to the ‘SQL
Databases” manual, chapter 'SQL Accesses’, Sub-chapter
"Customized SQL Accesses’.

16 VisualAge Pacbase: Batch Applications

NUN

ILEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

FOR ALL THE OTHER ORGANIZATIONS:

IBM OS/390 (variant X): DDNAME in 1 to 6 positions.

COBOL IT IBM VS2 (Variant X): The ASSIGN clause (for
sequential files, 'S” organization) with SYSnnn as external
name is generated in the following form:

SYSnnn-UT-....-5-SYSnnn

IBM DOS (COBOL Variant 1), three forms:

.SYSnnn Symbolic unit name.

cooxnnn Specifies at the same time the symbolic unit name
and the external name of the Data Structure.

xxxxxx External name. The symbolic unit is generated with
SYSnnn, nnn being incremented by one for each Data
Structure starting with SYS010.

BULL Gcos?7 (COBOL Variant 4):

INTERNAL-FILE-NAME in 1 to 6 position.

BULL Gcos8 (COBOL Variant 5):

.File code (2 characters). UNISYS A Series (COBOL Variant
8):

.nnppp numeric, generate AREA nn, AREASIZE pppp.

CDC (Variants D and E): Indicate output for a printer.

Otherwise, external name in 1 to 6 positions.

BULL MINI 6 (Variant M): 2 alphabetic characters.

TANDEM (Variant F): external name in 1 to 6 positions.

DEC/VMS (COBOL Variant I): external name in 1 to 6
positions.

PHYSICAL CHARACTERISTICS OF FILE

ORGANIZATION

Sequential (Default value).

Indexed sequential (ISP for Gcos8 BCD).

An ISP file with 'LE’-code will be generated in 3 work
areas: LE-FILE, LE-DATA and INVKEY.

LE-DATA will have the external file name as a value which
must be the file code in the preceding $ DATA line. In the
job control lines, the ISP lines give the physical
characteristics of the file.

VSAM (IBM), UFAS (BULL), etc.

Chapter 2. Programs 17

NUN

MLEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

Generates the STATUS KEY IS clause and the corresponding
field is declared in the STATUS FIELD: VSAM FILE
INDICATOR field.

The file is considered sequential if the name of the key in
the record is absent; it is considered indexed if the key
name is entered.

File descriptions are generated in WORKING-STORAGE
before the constant "WSS-BEGIN'.

A Data Structure thus described will be used like a work
area or processed through a function of a generalized
management system (Database in particular).

Identical to "W’ except that the user may choose the
description location (See CODE FOR COBOL
PLACEMENT).

Data Structure used as a comment, not used for generation.

Table description.

Generates the communication area with the access module.
See the 'Pactables Access Facility” manual.

Call of the COPY clause which corresponds to the
communication area between the client and the server
(Pacbench C/S Business Components only).

For details, refer to the "Pacbench C/S Applications -
Business Logic” Manual.

DATABASES

The values of the following codes are reserved for Database
Descriptions when the Database Description function is not
used. These values are taken into account by application
programs.

Reserved for the Description of Segments or records of the
different Databases, IMS (DL/1), IDS I, IDS 1II, (according to
the TYPE OF COBOL TO GENERATE selected), in the
generation of DBD, SYSGEN, schemas or application
Programs (according to the TYPE AND STRUCTURE OF
PROGRAM selected).

Reserved for the description of records for an IDMS
Database in the sub-schemas or application programs.

Reserved for an ADABAS file description in the definition
programs or usage programs of the Database.

Reserved for the description of "TOTAL’ files in the
definition programs or the usage programs of the Database.

18 VisualAge Pacbase: Batch Applications

NUN

ILEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

Q

Reserved for the description of SQL/DS, DB2/2 or
DB2/6000 Databases (IBM), or

ALLBASE/SQL Databases (HP3000), or

DB2/2 or DB2/600 Databases (MICROFOCUS).

Generation-Description of a DB2 or VAX/SQL Segment.
Only physical accesses are not generated. The structure of
variable indicators corresponding to the columns of the DB2
or VAX/SQL table is always generated.

Reserved for the description of an INTEREL RDBC, RFM
Database Structure.

Reserved for the description of an ORACLE (< V6)
Database Structure.

Reserved for the description of an ORACLE (V6 and V7)
Database Structure.

Reserved for the description of an RDMS Database
Structure.

Reserved for the description of a DB2/400 Database
Structure.

Reserved for the description of a NONSTOP SQL Database
Structure.

Reserved for the description of a DATACOM DB Database
Structure.

Reserved for the description of an INFORMIX, SYBASE,
INGRES/SQL, and SQL SERVER Database Structure.

The use of the System with the different DBMS’s is
documented in specific "Database Description” manuals.

Access mode

Sequential (default option).

Random - Direct (indexed sequential organization only).

Dynamic (VSAM files only - "V’ organization)

RECORDING MODE

For 'P’-type organizations (Oracle V6 and V7) and '9’-type
organizations (Sybase): Automatic generation of CONNECT
AT Database, DECLARE Database and access SQL AT
Database.

Fixed (default option).

At generation time, the lengths of the different records are
aligned with the length of the longest record.

Chapter 2. Programs 19

NUN

ILEN

AND FILLING MODE DESCRIPTION OF FIELDS

Variable.

Undefined.

Spanned (Reserved for IBM MVS and DOS variants).

10

FILE TYPE - INPUT / OUTPUT

Input file - Default option with the following values of
USAGE OF DATA STRUCTURE: 'C’, 'T’, 'X’, 'M’, ‘"N’ 'P".
This value is prohibited with all other USAGEs.

Output file - Default option with the following values of
USAGE OF DATA STRUCTURE: 'D’, 'S, 'R/, 'E’, T and J".
This value is prohibited for all other USAGEs.

Output file. Generation of an OPEN EXTEND clause (only
with the following values of COBOL TO GENERATE: "2/,
/4/’ 757, I6II /Df, /E/’ /Ff, VGV, IH/’ VIV, /If, IKI /Q/’ /S/’ VU/’ /W/’
IXV/ /YI).

Sort (on Input or Output, depending on the USAGE OF
DATA STRUCTURE value).

Input-Output (direct access Data Structures only).

11

UNIT TYPE

Magnetic storage with sequential access.

Default value.

Magnetic memory with selective access.

Direct access device.

Slow peripherals (Card punch reader, printer).

This parameter is important for the TYPEs OF COBOL TO
GENERATE variant for which the "ASSIGN" clause, the FD
level or the WRITE statements depend on the UNIT TYPE.

12

NUMER.

BLOCK SIZE SPACES AND ZEROES ARE EQUIVALENT

PURE NUMERIC FIELD

(Note: In this discussion the term ‘COBOL Variant” = the
value in the TYPE OF COBOL TO GENERATE field)

Default value.

The blocking factor can be zero in the following cases:

. IBM OS (COBOL variant 0) except for indexed
organization files.

. IBM MVS. The BLOCK CONTAINS clause is generated for
a VSAM file only if the library is in COBOL II.

20 VisualAge Pacbase: Batch Applications

VALUE

NUMLEN| CLASS AND FILLING MODE DESCRIPTION OF FIELDS
The corresponding COBOL clause (BLOCK CONTAINS) is
not generated in the following cases:
.sort file,
.disk Data Structure (file stored on a disk) if no number is
mentioned,
file with UNIT TYPE = 'R’ in IBM DOS (COBOL variant 1)
.Block 0 for UNISYS A Series (COBOL Variant 8) and AS
400 (COBOL Variant O).
.Block 0 for IBM VSE COBOL II and file with UNIT TYPE =
"N’.

13 |1 BLOCK SIZE UNIT TYPE

'R’ Records (default value).

C’ Characters.

‘N’ The BLOCK CONTAINS clause is not generated.

14 |1 NUMER. NUMBER OF CONTROL BREAKS
(BATCH SYSTEMS DEVELOPMENT Function) All spaces
are replaced with zeroes.
For sequentially accessed, sorted files: Enter the number of
Elements (elementary or group) on which there is to be
control break processing for the Data Structure.

0 Default.

"Tto 9 1 to 9 levels, according to the number of Elements to be
used for control break processing. These Elements are
identified as the SORT KEYs for this Data Structure.

When there is control break processing on one or more Data
Structures, two indicators keep track of the status of the
records being processed:

Note: The term 'nth key Data Element” includes all key
Data Elements up to and including the nth level.

.dd-IBn = "1": the nth key Data Element of the current
record of Data Structure dd contains a new value,

.dd-FBn = "1": the nth key Data Element of the current
record of Data Structure dd contains the last occurrence of
the present value.

When these files are synchronized with others, (see FILE
MATCHING LEVEL NUMBER) the control breaks are kept
synchronized via two additional switches:

Chapter 2. Programs 21

NUN

MLEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

ITBn = ’1": a new value in the nth key Data Element has
been detected. This signals beginning processing on all
synchronized D.S’s.

FTBn = "1": the present value of the nth key Data is
occurring for the last time. This signals end processing for
the records in this iteration for all synchronized D.S’s.

For output files (USAGE OF DATA STRUCTURE value 'D’):

A non-zero value will create a duplicate file layout to be
generated in the WORKING-STORAGE area identifiable by
a prefix of "1-".

Note however a preferable procedure to accomplish this is
via the Work Areas (-W) Screen.

15

NUMER.

FILE MATCHING LEVEL NUMBER

BLANKS REPLACED BY ZEROES.

For sequentially accessed files:

Used to establish the synchronization of two or more files.

Default.

"Tto 9

Enter the number of Elements (Elementary or Group) on
which file matching is to be synchronized for this Data
Structure. This number identifies the number of the key
fields (identified in the SORT KEY/ field) that are involved
in the synchronization.

For an automatic file matching, the following conditions
must be met:

. The Data Structure control break level must be equal to
the file matching level - 1, except for a transaction Data
Structure, whose control break level must be equal or
superior to the file matching level.

. The Data Element(s) which constitute(s) the sort keys of a
Data Structure must be sorted in ascending order.

. The Data Element(s) which constitute(s) the sort keys of a
Data Structure must have the same length for the same
level.

. These Data Elements must have a display format (if they
are numeric, they must be whole numbers and unsigned).

Switches generated to control the file matching are:

.dd-CFn: which indicates whether a file should be processed
or bypassed in this iteration, (1" = process, ‘0" = bypass).

22 VisualAge Pacbase: Batch Applications

NUN

ILEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

.dd-OCn: which indicates the status of processing on a
record of a principal file (USAGE OF DATA STRUCTURE =
P’).

For sequentially accessed files:

1" = WRITE to the principal file

’0” = do not WRITE.

For direct access files:

1" = CREATE or REWRITE

‘0" = DELETE

16

USAGE OF DATA STRUCTURE

This code defines the role of the Data Structure in the
Program and determines the generated functions.

Consult

Any input file (Data Structure).

Direct

Any output file (default).

Table

A file to be fully stored in memory. The table is generated
according to the number of repetitions indicated on each
Segment Definition. (See OCCURRENCES OF SEGMENT
IN TABLE).

The maximum number of selected Segments per D.S. = 50.

Table

A file to be partially stored in memory. Only Data Elements
other than FILLER are loaded.

Elementary Data Elements other than FILLER are limited to
10 (in addition to the RECORD TYPE ELEMENT) for the
‘00" Segment and to 29 for each specific non-00 Segment.

Selected

Output file extracted from another file.

It differs from USAGE value ‘D’ since the generated
description in the output area is not detailed. For Data
Elements with an ‘'OCCURS DEPENDING ON’ clause, the
USAGE OF DATA STRUCTURE must be 'D’.

The following values are specific to the Batch Systems
Development function:

Chapter 2. Programs 23

VALUE
NUMLEN| CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

Principal

Input file, likely to be updated (by a transaction file - usage
value ‘M’ or 'N’).

Result

Updated principal file in sequential access mode. (When the
Data Structure contains an "'OCCURS DEPENDING ON’
clause, the output/result D.S must be declared as ‘D).

Transactions to be validated:

Input file to be validated which may update other file(s).
The generated functions range from 30 to 76.

Note: Only one "M’ or ‘N’ Data Structure is allowed per
Program.

Transactions not to be validated:

Input file which can update other files.

The generated functions are: 30, 33, 39, 70 to 76.

Note: Only one ‘M’ or ‘N’ D.S. is allowed per Program.

Transaction file with errors detected:

Output transaction file containing a field identifying records
with errors. The system will generate the field(s) to track
the erroneous Elements, erroneous Segments and user
defined errors using the reserved Data Elements ENPR,
GRPR and ERUT. (The option is selected in the RESERVED
ERROR CODES IN TRANS. FILE field). Selected or not, the
descriptions of these Elements are generated (using the
Data Elements DE-ERR and ER-PRR).

These descriptions precede the descriptions of the Elements.

Direct printing (or by SYSOUT in IBM MVS)

At the generation level, the lines with STRUCTURE
NUMBER value of 00" will be ignored.

Indirect printing to be processed by a spool Program.

Fields required for identifying the lines, line skips, etc. are
defined in Report STRUCTURE NUMBER value 00.

17 |2

RESULTING FILE DATA STRUCTURE CODE

With USAGE OF DATA STRUCTURE value 'P’, indicate the
DATA STRUCTURE CODE IN THE PROGRAM of the
resulting output D.S.

24 VisualAge Pacbase: Batch Applications

NUN

ILEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

For an output type USAGE OF DATA STRUCTURE (value
'R” or 'D’), indicate the DATA STRUCTURE CODE IN THE
PROGRAM of the input principal D.S.

18

SOURCE OR ERROR DATA STRUCTURE CODE

For a transaction file (USAGE OF DATA STRUCTURE = "M’
or 'N’), enter the DATA STRUCTURE CODE IN THE
PROGRAM of the transaction file containing the error fields
(USAGE OF DATA STRUCTURE = 'E’) if one has been
called.

For a transaction file with the error field (USAGE OF DATA
STRUCTURE’), enter the DATA STRUCTURE CODE IN
THE PROGRAM of the corresponding transaction file
(USAGE OF DATA STRUCTURE = "M’ or 'N’).

For a selected file (USAGE OF DATA STRUCTURE = 'S’),
enter the DATA STRUCTURE CODE IN THE PROGRAM of
the input source with the corresponding Data Structure
code of the selected file on the line where the source file is
being called.

19

TRANSACTION CONTROL BREAK LEVEL

ALL SPACES REPLACED BY ZEROS.

Default option: NUMBER OF CONTROL BREAKS

In a transaction file, enter the position within the SORT
KEY/ of the ACTION CODE ELEMENT. For example, if the
SORT KEY/ value is ABCDE and the ACTION CODE
ELEMENT is ‘D’, enter ‘4" here.

This element is the minor-most key of the sort key and the
one used to differentiate one type of transaction from
another of the same principal file. Duplicates are detected if
any key elements below this one are found to match.

20

PHYSICAL UNIT TYPE

NOTE: The term "COBOL Variant’ = the value in the TYPE
OF COBOL TO GENERATE field) generates the following
in the SELECT clause of some COBOL variants:

IBM DOS (COBOL Variant 1):

Enter the model type (examples: 2314, 3330, 2400).

MICROFOCUS, COBOL 1I, IBM VISUAL SET (COBOL
Variant 3)

EXT

Generation of the EXTERNAL clause at the file FD level

LS

Generation of the LINE SEQUENTIAL clause

Chapter 2. Programs 25

VALUE

NUMLEN| CLASS AND FILLING MODE DESCRIPTION OF FIELDS

EXLS Generation of the LINE SEQUENTIAL clause and of the
EXTERNAL clause at the file FD level
ACU COBOL (COBOL Variant Q) :

LS Generation of the LINE SEQUENTIAL clause
Gcos7 (COBOL Variant 4):

'SSF’ Option WITH SSF in the SELECT clause

‘ouT’ Option -SYSOUT suffix after the filename in the SELECT
clause (WITH SSF is generated).

Gcos8 ASCII (COBOL Variant 5):

'PT Printer.

'CR’ Card reader.

'SSF’ ORGANIZATION IS GFRC SEQUENTIAL SSF CODE SET
IS IS GBCD.

"IBM’ ORGANIZATION IS IBM-OS SEQUENTIAL.

"xxx’ WITH xxx.

Y A 'V’ in the 4th position generates the clause "VALUE OF
FILE-ID is 3-FFO0-IDENT” (FF is the program Data Structure
code being called).

The field 3-FFO0-IDENT must be defined in -W by the user.
BURROUGHS large system (COBOL Variant 8) UNISYS A
Series:

DK or

‘blank’ Disk.

"DKS’ Sort Disk (with T opening).

"DKM’ Merge Disk (with T opening).

'RD’ Reader.

PT Printer.

PO’ File.

TP’ Tape.

For the 2-character codes, a third character can specify a
particular final disposition:

P Purge.

"R’ Release.

i Lock.

'S Save.

26 VisualAge Pacbase: Batch Applications

VALUE

NUMLEN| CLASS AND FILLING MODE DESCRIPTION OF FIELDS

LV A 'V’ in the 4th position generates the clause "VALUE OF
D.S. NAME IS 3-FF00-IDENT".
UNISYS 2200 (COBOL Variant U):

'CR’ Card reader.

'CP’ Card punch.

"UN’ Uniservo.

TP’ Tape.

'PN’ Printer with external name. If the COMPLEMENTARY
PHYSICAL UNIT TAPE field contains input, the
RECORDING clause is also generated.

PT” Printer without external name.

'PF Printer with external name and:
VALUE OF PRINTER-FORMS 3-FF00-FORMS
LINAGE IS 3-FF00-LINES
TOP IS 3-FF00-TOP
BOTTOM IS 3-FF00-BOTTOM
These 4 data-names are to be declared in Work Areas (-W)
lines with their appropriate values.
AS 400 (COBOL Variant O):

DB Database.

RD Reader.

CP Card Punch.

PT Printer.

TP Tape.

DK or

‘blank’ Disk.

21 |1 COMPLEMENTARY PHYSICAL UNIT TYPE

NOTE: The term "COBOL Variant’ = the value in the TYPE
OF COBOL TO GENERATE field.
IBM DOS (COBOL Variant 1):

'R’ Reader.

P’ Punch.
IBM 3/15D (COBOL Variant 3):

'S EBCDIC Tape.

Chapter 2. Programs 27

NUMLEN| CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

ASCII Tape.

BULL Gcos8 ASCII (COBOL Variant 5):

EBCDIC Set code.

ASCII Set code.

CDC COBOL 68 (COBOL Variant E):

Recording mode is EBCDIC.

UNISYS 2200 (variant U):

Recording followed by lock mode.

BULL Gcos?7 (COBOL Variant 4) and Gcos8 (COBOL Variant
6)

If the value 'O’ is entered in this field, the OPTIONAL
option is not generated.

Otherwise, the OPTIONAL option is generated by default.

DEC VAX VMS (COBOL Variant I)

File opening with option ALLOWING ALL and sequential
reading with option REGARDLESS.

IBM MVS :

OPTIONAL parameter generated in the SELECT clause of a
VSAM file.

22 |9

SELECTION

This field has three mutually exclusive uses:

1. Composition of the sort key

This is the group of Data Elements making up the sort key
for control break processing. They are identified by the
value entered in the KEY INDICATOR FOR ACCESS OR
SORT field on the Segment Call of Elements (-CE) screen.

The order of sorting these key Data Elements may be
entered here using the values assigned on the Call of
Elements (-CE) screen in the desired order of major to
minor - left to right. If no explicit entry is made here,
Elements coded with value 1 to 9 will be taken as the
default.

The Data specifying the sort order must be entered on first
line of the Data Structure call. (That is on the line where the
CONTINUATION OF D.S. DESCRIPTION field remains
blank.)

28 VisualAge Pacbase: Batch Applications

NUN

ILEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

Note: for transaction files, include the ACTION CODE and
RECORD TYPE ELEMENTs as a part of the key. The order
in which these Elements are sorted will determine the
sequence in which the transactions update the principal file,
and the policy for duplicate record detection.

2. Selection of Segments in a Data Structure

Rather than having all of the Segments belonging to a Data
Structure described, the user may select the ones that are
needed, thus avoiding unnecessary description lines and
wasted work area space. This may be significant for tables
(USAGE OF DATA STRUCTURE = "T").

This is done by entering an "*’ in the first column of this
field followed by a maximum of 4 SEGMENT CODES, in
addition to the common part. The Segments may come
from different D.S.’s, but in this case, it is better to call
these Segments into another Segment.

When the user wishes to re-create the file matching key and
select records, he/she must indicate the file matching on
the first Segment Call line, and the selected records on
continuation lines.

When Segments come from different D.S.’s Descriptions, the
common part of the first D.S. called is considered to be the
resulting file common part. The other D.S.’s must not have
a common part.

3. Report selection: To select a particular Report, the third
character in the Report code must be entered in the field. To
select all Reports with the same prefix, you must leave the
field blank.

Generally, continuation lines are created if more than four
Segments or nine Reports are selected.

It is possible to rename a SEGMENT CODE or LAST
CHARACTER OF REPORT CODE: one line per Segment or
Report to be renamed is created. Enter the LAST
CHARACTER OF REPORT CODE as known in the Library,
followed by the desired code for the Program separated an

Follow the same procedure to rename the SEGMENT
CODE, but precede the old Segment code with an asterisk.

EXAMPLE:

1=2 Rename report code 1 report code 2

*01=02 Rename segment code 01 segment code 02.

Chapter 2. Programs 29

VALUE
NUMLEN| CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

23 |1

NON-PRINTING DATA STRUCTURE FORMAT

This option is reserved for Data Structures with a USAGE
OF DATA STRUCTURE other than 'T" or J'.

Input format. (Default option with USAGE OF D.S. = 'M’,
‘N’ or 'E).

Internal format (Default with USAGE OF D.S. NOT= "M/,
‘N’ or 'E’).

Output format.

Note: the Elements making up the Segments must not
exceed 999 characters.

24 |1

RESERVED ERROR CODES IN TRANS. FILE

Indicates if reserved Data Elements (ENPR, GRPR, ERUT)
contained in the Data Structure Description are to be
described.

The Description is not generated.

The Descriptions are generated for all of these Data
Elements.

Same as "V’, but the Data Element ENPR represents the
error vector. (Reserved for USAGE OF D.S. = 'M’, ‘N’ or
E’.)

Only the "ENPR” and "‘GRPR’ Descriptions are generated.

Only the "ERUT’ Description is generated.

In a transaction file (USAGE OF D.S.= '"M’, ‘N’ or E’), these
Data Elements must appear at the beginning of the
Description and are used to carry results of validations to
the update.

.ENPR: n+1 positions for values 'V’ or ‘E’ and m+1
positions for value "W’, where:

n = number of elementary Data Elements in the Data
Structure description.

m = greatest number of elementary Elements in the file :
that is, those in the common part Segment plus the largest
non-00 Segment. The extra position is the identification
€rTor.

It initializes the DE-ERR vector.

.GRPR: 1 position per record + 1 for group error.

It initializes the SE-ERR vector.

30 VisualAge Pacbase: Batch Applications

NUMLEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

When these Elements are used in a file other than a
transaction-type file, the placement and format is at the
option of the user.

1.9,0

With the Pactables function, it specifies the number of
sub-schemas desired. Refer to the 'Pactables” Reference
manual.

With an SQL utilization file, it specifies the number of the
sub-schemas desired (selection of a Column in a Table).

25 |1

RECORD TYPE / USE WITHIN D.S.

This option is used to select the type of record description
to be used in the COBOL Program to allow different uses of
the Segment Description stored in the Library.

blank

Redefined records (Default option). No VALUE clause is
generated.

A record set without initial values or repetitions of records.
These records are presented with the Segment common part
followed by the different specific parts.

If the Data Structure Description appears in the COBOL
FILE SECTION, the LEVEL NUMBER (COBOL) OF THE
RECORD must be 2. With this value, the specific Segments
are described without redefines, at the COBOL 02 level.
Several Segment Descriptions are grouped together under
the same I/O area.

A record set with the specific initial values of the Data
Element of the Segment as defined on the Call of Elements
or Data Element Description screen. These values may also
default to blank or zero depending on the format.

This type of description cannot be used for a Data Structure
having a number of repetitions in the common part
Definition. (Use ORGANIZATION = "W’ or 'L’).

A record set which incorporates the number of repetitions
specified in OCCURRENCES OF SEGMENT IN TABLE on
the Segment Definition Screen. No VALUE clause will be
generated.

If the description of the Data Structure appears in the
COBOL FILE SECTION, the LEVEL NUMBER (COBOL) OF
THE RECORD must be 2’.

A record set which incorporates the number of repetitions
specified in the OCCURRENCES OF SEGMENT IN TABLE
on the Segment Definition Screen.

Chapter 2. Programs 31

VALUE
NUMLEN| CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

The associated LEVEL NUMBER (COBOL) OF THE
RECORD must be "3".

Comment specific to the OLSD function: For a description
type of ‘4" and a COBOL 03 level, the index is not
generated.

A COBOL 02 level is used to access the table made up of
repetitions of the same record (ddssT).

A COBOL 01 level is used to group the whole Data
Structure together - common or specific parts, whether
repeated or not.

A group level field that incorporates all occurrences is
generated.

For Data Structures that do not have a value specified for
the OCCURRENCES OF SEGMENT IN TABLE, use
ORGANIZATION = "W’ with USAGE OF Data Structure =
T".

To be used only with the GIP interface. The number of
levels are the same as the one of the record type 4.

26 |1

LEVEL NUMBER (COBOL) OF THE RECORD

This option, used in conjunction with the RECORD TYPE
/USE WITHIN D.S. field, defines the COBOL level number
for the descriptions of Data Structures, Segments and
Elements.

In the following descriptions, the term 'D.S. Area’ is meant
as the area "dd00” (possibly 1-dd00, 2-dd00).

COBOL 01 level for D.S. Area and Segments. (Default
value).

If the Data Structure Description appears in the COBOL
FILE SECTION, the Segments must be redefined.

If a Data Structure has no common part with a non-
redefined Description, the D.S. Area will only appear when
the RECORD TYPE / USE WITHIN D.S. = blank.

COBOL 01 level for D.S. Area and Segments at 02 level.

If the RECORD TYPE / USE WITHIN D.S. = blank, both
the DS Area and the Segments will be described at the 02
level. (To define the 01 level, use ORGANIZATION = 'L’
and Work Areas (-W) lines.)

Reserved for D.S. with an ORGANIZATION = "W’ or 'L".

32 VisualAge Pacbase: Batch Applications

NUMLEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

COBOL 02 level for the D.S. Area and Segments at 03 level
when associated with RECORD TYPE / USE WITHIN D.S.
=1,2, or 3.

01 level for the D.S. Area and Segments at 03 level when
associated with RECORD TYPE / USE WITHIN D.S.= 4.

03 level for both the D.S. Area and the Segments when
associated with RECORD TYPE / USE WITHIN D.S. =
blank.

Reserved for Data Structures with an 'L” ORGANIZATION
and USAGE OF DATA STRUCTURE = 'D’. The 01 level is
to be defined via the Work Areas Screen (-W).

COBOL 02 level for group Data Elements or elementary
Elements that are not part of a group.

Elementary Elements that are part of a group appear. The
D.S. Area and Segment levels disappear.

Reserved for Data Structures in ORGANIZATION 'L’ or ‘"W’
and with a USAGE OF DATA STRUCTURE = 'D’.

COBOL 01 level for group Data Elements or elementary
Elements that are not part of a group.

Elementary Elements that are part of a group appear. The
D.S. Area and Segment levels disappear.

Reserved for Data Structures with an 'L” ORGANIZATION
and USAGE OF DATA STRUCTURE = 'D’. The 01 level is
to be defined via the Work Areas Screen (-W).

COBOL 02 level for group Data Elements or elementary
Elements that are not part of a group.

Elementary Elements that are part of a group disappear as
well as D.S. Area and Segment levels.

For standard OLSD Screens only.

Reserved for Data Structures in ORGANIZATION 'L’ or "W’
and with a USAGE OF DATA STRUCTURE = 'D’.

COBOL 01 level for group Data Elements or elementary
Elements that are not part of a group.

Elementary Elements that are part of a group disappear as
well as D.S. Area and Segment levels.

For standard OLSD Screens only.

27 |2

CODE FOR COBOL PLACEMENT

PSEUDO-NUMERIC FIELD, blanks replaced by zeros.

Chapter 2. Programs 33

VALUE
NUMLEN| CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

This field concerns only the principal Description of a D.S.
(ddss) and not the Descriptions preceded by a prefix
(1-ddss or 2-ddss).

This field is used to obtain a Description of a D.S. in a
particular area (COMMUNICATION area with DBMS'’s or
the LINKAGE SECTION which the user must define by a
Work Areas (-W) line), or at the beginning of the
WORKING-STORAGE SECTION.

This field is reserved for D.S.’s with an 'L’, 'D” or "W’
ORGANIZATION, in order to place the I/O area in
WORKING STORAGE.

To have a Data Structure described in WORKING-
STORAGE it is preferable to use the Work Areas (-W) lines.

100/

The Description of the D.S. is inserted after all the Work
Areas (-W) lines. (Default value).

alphabet.

The Description of the D.S. is inserted after all the Work
Areas (-W) lines whose 5-digit line number begins with this
value.

The Description and Work Areas (-W) lines are found at the
beginning of the generated Program WORKING-STORAGE
SECTION. These lines appear both before Data Structures
with ORGANIZATION = "W’ and before those whose
DATA STRUCTURE CODE IN THE PROGRAM is greater
than this alphabetic code.

(Do not use this field with a Data Structure whose
ORGANIZATION = "W".)

alphanum.

The Description of the D.S. is inserted after all the Work
Areas (-W) lines whose 5-digit line number begins with this
value. The Work Areas (-W) lines and the Description can

be found in the generated Program, at the end of the
WORKING-STORAGE SECTION among the user areas.

The location is indicated on the first line of the D.S. call
(CONTINUATION OF DS DESCRIPTION field = blank),
and is repeated (by default) on all of its continuation lines.

However, it is possible to attribute different locations to
each record description of D.S. in a Program. This is done
by entering several call lines for this D.S., specifying a
record selection and a location for each one.

Therefore, the Data Structure must have an unpacked
description, whether implicit or explicit.

34 VisualAge Pacbase: Batch Applications

NUN

ILEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

WARNING: with ORACLE, you must use numeric values
so that the DECLARE SECTION will be correctly generated
(with data fields and indicators included in it).

28

10

STATUS FIELD - FILE INDICATOR

(Note: In this discussion, the term 'COBOL Variant’ = the
value in the TYPE OF COBOL TO GENERATE field)

Enter the DATA STRUCTURE, SEGMENT and DATA
ELEMENT CODE:s in the following format:

ddsseeeeee

(Recommendation: ss = 00).

This field is used in one of three ways:

For VSAM files

.The FILE STATUS IS clause is generated using
1-ddss-eeeeee (declared as a two byte field).

For hardware other than Gcos8 BCD and non-VSAM files

.The NOMINAL, SYMBOLIC or ACTUAL KEY depending
on the COBOL Variant.

The user must define the corresponding work area:
1-ddss-eeeeee.

The positioning of this key as well as the read of the D.S.
must be programmed by using Procedural Code (-P).

For Gcos8 BCD (COBOL Variant 6)

Jdentification of the Data Structure.

.The corresponding "VALUE OF’ clause will be generated
only if it’s filled in.

.The return-code area of the input-output operations

.The corresponding "FILE STATUS IS’ clause will be
generated only if it’s filled in.

29

Indexed Data Structure Access Key

Required for indexed Data Structures: Enter the DATA
ELEMENT CODE of the access key Element.

30

CODE OF RECORD TYPE ELEMENT

Enter the code of the Data Element whose values define
different record types of a Data Structure.

Note: Must be in the common part (00 Segment).

Chapter 2. Programs 35

VALUE
NUMLEN| CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

This code can also be specified on the Segment Definition
Screen for the 00 Segment in the CODE OF RECORD TYPE
ELEMENT field, and is then used as a default value at
generation level.

On-line access commands

LIST OF PROGRAMS
CHOICE

LCPaaaaaa
LNPaaaaaa

LTPnPaaaaaa

LEPeeeeeeee

SCREEN UPD

List of Programs by code NO
(starting with Program 'aaaaaa').

List of Programs by name NO
(starting with program 'aaaaaa').
List of Programs of type 'n' NO
(starting with program 'aaaaaa').

List of Programs by external name NO
(starting with external name 'eeeeeeee').

DESCRIPTION OF PROGRAM 'aaaaaa'

CHOICE

Paaaaaa
PaaaaaaGCbbb

PaaaaaaGObbb

PaaaaaaXVbbbbbb

PaaaaaaATbbbbbb

PaaaaaaX
PaaaaaaXPbbbbbb

PaaaaaaXObbbbbb

PaaaaaaXQrrrrrr

PaaaaaaCR

SCREEN UPD
Definition of Program 'aaaaaa'. YES
Comments for Program 'aaaaaa' YES

(starting with Tine 'bbb').

Generation option of Program 'aaaaaa' YES
(starting with Tine 'bbb').

X-references of Program 'aaaaaa' to NO
Documents (starting with Document

'bbbbbb"').

Text assigned to Program 'aaaaaa' NO
(starting with text 'bbbbbb').
X-references of Program 'aaaaaa'. NO

X-references of Program 'aaaaaa' to NO
programs (starting with Program 'bbbbbb')

X-references of Program 'aaaaaa' to NO
screens (starting with Screen 'bbbbbb').

List of occurrences Tinked to Program NO
'aaaaaa' through User Relationship
"rrreer'.

Occurrences linked to Program YES
'aaaaaa' through User Relationship

36 VisualAge Pacbase: Batch Applications

PaaaaaaCDbb

PaaaaaaCPbbbbbb

PaaaaaaBbbccddd

PaaaaaaWbbccc

PaaaaaaPfusfnnn

PaaaaaaPGfusfnnn

Paaaaaa9bbbbbb

PaaaaaaTCfusf

PaaaaaaTCfusf<nn
or
Paaaaaa<nnTCfusf

PaaaaaaTOfusf

PaaaaaaTOfusf<nn
or
Paaaaaa<nnTOfusf

NOTE: After the first choice of type 'Paaaaaa’, ‘Paaaaaa’ can be replaced with

i

Call of Data Structures of Program YES
'aaaaaa' (starting with Data Structure
'bb').

Call of Parameterized Macro- YES
Structure

of Program 'aaaaaa' (starting

with P.M.S. 'bbbbbb').

Beginning Insertions Modifications YES
of Program 'aaaaaa' (starting with
section 'bb', paragraph 'cc',

Tine 'ddd').

Description of Work Areas of Program YES
'aaaaaa' (starting with Work Area 'bb'
line 'ccc').

Description of Procedural Code of YES
Program 'aaaaaa' (starting with

function 'fu', sub-function 'sf',

line number 'nnn').

View of Procedures Generated of YES
Program 'aaaaaa' (starting with

function 'fu', sub-function 'sf',

Tine number 'nnn'), with display

of generated procedure titles.

Description of Pure COBOL Source YES
Code of Program 'aaaaaa' (starting
with -9 Tine 'bbbbbb"').

View of Titles and Conditions of YES
automatic and specific procedures
of Program 'aaaaaa' (starting with
function 'fu', sub-function 'sf').

View of Titles and Conditions of YES
automatic and specific procedures

of Program 'aaaaaa' up to Tevel 'nn'
(starting with function 'fu',
sub-function 'sf').

View of Titles Only of automatic and NO
specific procedures of Program 'aaaaaa'
(starting with function 'fu', sub-
function 'sf').

View of Titles Only of automatic and NO
specific procedures of Program 'aaaaaa'
up to Tevel 'nn' (starting with function
"fu', sub-function 'sf').

All notations between parentheses are optional.

Chapter 2. Programs

PURCHASING MANAGEMENT SYSTEM SGOOOOO8.LILI.CIV.1583

LIST OF PROGRAMS BY CODE

PROGRA MEMBER NAME OF PROGRAM OR MODULE V N FR BA PROGR.ID TNT TYPE LIBR
AAAB ---- ADABAS MACRO STRUCTURES ---- N PB M *CEN
AAAB10 AAAB1O ADABAS general access N L L AAAB1O PB M *CEN
AAAB20 AAAB20 ADABAS on line structure N L L AAAB20 PB M *CEN
AAAB30 AAAB30 ADABAS STANDARD FILE DESCRIPT. N L AAAB30 PB M *CEN
AAAD ---- IMS-DL1 MACRO STRUCTURES ---- N PB M *CEN
AAADEM AAADEM IMS error processing in monit. N L L AAADEM PB M *CEN
AAADL2 AAADL2 Display list on 2 levels N L L AAADL2 PB M *CEN
AAADL3 AAADL3 Display 1ist on 3 levels N L L AAADL3 PB M *CEN
AAADMS AAADMS MONITOR SWITCHING N L L AAADMS PB P *CEN
AAADSA AAADSA Definition of standard SSA N L L AAADSA PB M *CEN
AAADSO AAADSO SORT OF A DATA BASE AS INPUT N L L AAADSO PB M *CEN
AAADSW AAADSW On Tine program switch N L L AAADSW PB M *CEN
AAADUP AAADUP Update segment without key N L L AAADUP PB M *CEN
AAAD2S AAAD2S Display 2 segments in list N L L AAAD2S PB M *CEN
AAAD30 AAAD30 DL1 batch program structure N L L AAAD30 PB M *CEN
AAAD31 AAAD31 DL1 BMP program structure N L L AAAD31 PB M *CEN
AAAD4O AAAD4O IMS standard call N L L AAAD4O PB M *CEN
AAAD50 AAAD50 IMS STANDARD I-O CALL N L L AAAD50 PB M *CEN
0: C1 CH: LCP

38 VisualAge Pacbase: Batch Applications

PURCHASING MANAGEMENT SYSTEM SGOOOOO8.LILI.CIV.1583
PROGRAM ~ GENERAL DOCUMENTATION AAPR20 Display the file counters

A LIN : T DESCRIPTION LIB

. 010 : THIS MACRO STRUCTURE IS USED TO DISPLAY THE NUMBER OF *CEN
. 020 : RECORDS READ OR WRITTEN FOR A FLAT FILE. *CEN
. 030 : *CEN
. 040 : PARAMETERS : $1 -> SEQUENCE NUMBER *CEN

. 050 : $2 -> FILE CODE (4 CHAR.) *CEN

0: C1 CH: Paapr20GC

Chapter 2. Programs 39

PURCHASING MANAGEMENT SYSTEM SGO000O8.LILI.CIV.1583

PROGRAMS CROSS-REFERENCES AAPR20 DISPLAY PGM BEGIN. AND END
A T PG/SC LN C : COMMENTS OR PARAMETER VALUES DE

C 10 : NO PARAMETERS TO DEFINE.

P JIPED1

P JIPED2

0: C1 CH: Paapr20XP

40 VisualAge Pacbase: Batch Applications

PURCHASING MANAGEMENT SYSTEM SGOO00O8.LILI.CIV.1583

PROGRAM CROSS-REFERENCES AVJIAl Validation and Update
A T PG/SC LN C : COMMENTS OR PARAMETER VALUES DE
0 JIEQ20 : 020/A/

0 JIEO50 1 050/A/

0: C1 CH: PavjialX0

Generation and/or printing

Programs can be generated and printed by entering certain commands, either
on-line, on the Generation and Print Commands (GP) screen (used for
documentation and generation requests), or in batch mode (see the
"Developer’s Procedures” manual).

These commands are listed below:
e LCP

List of all Programs by code.
C1: without keywords,

C2: with keywords.
+ LNP

List of all Programs by name.
* LEP

List of all Programs by external name.
+ LKP

Chapter 2. Programs 41

List of Programs by keywords. The user may limit the keywords to explicit or
implicit only. The keywords are specified on a continuation line (see the The
"Character Mode User Interface” guide).

- LTP

List of all Programs by type.
* DCP

Description information for the Program whose code is entered in the ENTITY
CODE field; if no code has been entered, the Description information for all
Programs will be provided.

C1: without assigned text,

C2: with the assigned text.
+ DSP

Description information for the reversed Program whose code is entered in
the ENTITY CODE field.

« GCP

Generation and description of a Program whose code must be indicated.
+ GSP

Generation and description of the reversed Program (with SC lines).
« FLP

Specify the flow of the programs. The user may specificy the environment
(PEI), control card options, and parameters (as needed).

C1 option only.
e FSP

Specify the flow of the reversed Programs.

42 VisualAge Pacbase: Batch Applications

Chapter 3. Segments

Definition

A Segment is defined by its code and name.
The Segment code is made of the Data Structure code and a number.

Depending on future needs, it is also possible to specify:

* the number of occurrences of the Segment (used in the activity calculation
of the PACMODEL function),

* the maximum number of items of the table, if the Segment describes a
table item.

STANDARD FILES

A standard file may have several types of records.

Nevertheless, the sort criteria and keys must be on all the records. This
‘common part’ is described once in the Segment number "00".

The specific part of each record is described in a Segment number 'nn’.

In generated programs, a record description will be made of the concatenation
of the '00” and the appropriate 'nn’ segment descriptions.

A data element used to identify the specific record type has to be defined on
the common part : the CODE OF RECORD TYPE.

This data element code is specified on the definition line of segment number
’00’; the appropriate value is coded on the definition line of the specific part
segment.

For a file that has only one type of record, a unique ‘00" segment is described.

TRANSACTION FILE (BATCH SYSTEMS DEVELOPMENT FUNCTION)

A transaction file is made of records that update a ‘permanent’ file.
A data element belonging to the common part of the file is used to identify

the type of update being done (Creation, Modification, Deletion, or other
cases). It is called the ACTION CODE.

© Copyright IBM Corp. 1983,2004 43

This Data Element code and values are indicated on the Definition line of the
'00” Segment, respectively in the 'CODE OF ACTION CODE’ and "VALUES
OF TRANSACTION CODE’ fields.

When each specific part Segment is defined, the rules concerning its presence
or absence with each type of update are specified in the corresponding fields.

PREREQUISITE
The data structure must have been previously defined.

ASSOCIATED LINES
¢ Comments (-GC).
These lines are used for documentation purposes.

e ’Generation Elements’ (-GG).
These lines are used to customize SQL accesses.

* ’Error Messages - Help” (-GE) where you specify error messages and
on-line help on the Segment.

* ’Generation Options’ (-GO) for the uppercase-lowercase management in
customized SQL accesses.

44 VisualAge Pacbase: Batch Applications

PURCHASING MANAGEMENT SYSTEM SGOO00O8.LILI.CIV.1583

12
SEGMENT DEFINITION........: PROO
NAME............cvvvvueo..t COMPLETE PRODUCT RECORD 3

OCCUR. OF SEGMENT IN TABLE: 4
EST. NUMBER OF INSTANCES..:

o

CODE OF RECORD TYPE ELEM..: 6

CODE OF ACTION CODE ELEM..: 7

VALUES OF TRANSACTION CODE: CR: 8 MO: 9 DE: 10
M4: 11 M5: 12 M6: 13

EXPLICIT KEYWORDS..: 14

SESSION NUMBER.....: 0059 LIBRARY......: CIV LOCK :
0: C1 CH: Spr00 ACTION:
CLASS
NUMLEN| VALUE DESCRIPTION OF FIELDS AND FILLING MODE
DATA STRUCTURE / SEGMENT CODE
1 2 DATA STRUCTURE CODE (REQUIRED)

This code is made up of two alphanumeric characters. This
is a logical code internal to the Database and therefore
independent of the names used in Database Blocks and
Programs.

2 2 Segment number (REQUIRED)

The first character must be numeric and the second either
numeric or alphabetic. However the second character can
be alphabetic only if the first character is other than zero.

00 For standard files:

Used to indicate the common part of records in a file,
located at the beginning of each record (Default).

The control break sort keys, the record type and the keys of
indexed files are contained in this Segment.

A file does not necessarily have a common part.

Records on files with only one type of record should be
coded as a ‘00" Segment.

Chapter 3. Segments 45

NUMLEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

With the Pactables function, this value is not allowed.

01-99

Designates a specific Segment. The common part Data
Elements are automatically concatenated with each specific
part Segment. Although a data element may not be used
twice in the same Segment, it may be used in both the
common part and in one or more specific Segments (except
data structures used as Tables).

SEGMENT NAME (REQUIRED IN CREAT)

This name must be as explicit as possible because it is used
in the automatic building of keywords, Words used here
become implicit keywords (subject to limitations specified
in the Character-Mode User Interface Guide, chapter ‘Search
for Instances’, subchapter ‘Searching by Keywords’).

NUMER.

Occurrences of segment in table

PURE NUMERIC FIELD

BATCH SYSTEMS DEVELOPMENT:

This is the amount of space reserved for a Segment in
memory (USAGE OF DATA STRUCTURE 'T” or "X/, or
RECORD TYPE = 3, or 4.

For tables (USAGE OF DATA STRUCTURE 'T" or 'X’), the
default value at generation time is 100.

Pactables:

This field is strictly for documentation purposes.

PACBENCH C/S:

The value entered in this field indicates the repetitive read
or update capacity of the server which calls the Logical
View. This capacity is expressed by a maximum number of
repetitions. The Logical View can then be used as a
repeated structure.

NOTE: The use of a Logical View in a card layout does not
exclude its use in a row layout. It is therefore strongly
recommended to systematically fill in this field. Moreover,
the entered value must be high enough to limit the
exchanges between the client and the server.

NUMER.

Estimated number of instances

PURE NUMERIC FIELD

For the Batch Systems Development function, this field is
used to specify the estimated number of occurrences for a
segment in a database or in a standard file.

46 VisualAge Pacbase: Batch Applications

CLASS

NUMLEN| VALUE DESCRIPTION OF FIELDS AND FILLING MODE
For the METHODOLOGY function, this field is used for
activity calculation on the record or set using the Segment
(on-line only).
For the DBD function, this field is used to specify the
application number of an entity in a SOCRATE/CLIO
Block.

6 10 Code/value of record elm. - table id
For the Batch Systems Development function:
CODE OF RECORD TYPE ELEM for the ‘00" segment:
Enter the code of the data element used to identify the type
of record (left-justified, six characters maximum).
VALUE OF RECORD TYPE ELEM for the non-00 segments:
Enter the value to differentiate the individual segments
from one another.
This information is required every time a variablel file is
used in a Segment.
DL/1, SQL:
Enter the external name of the segment or object 1 to 8
characters, between quotes).
For Pactables table segments:
Enter the END USER TABLE ID on 6 characters.

7 6 Code of action code element

In the BATCH SYSTEMS DEVELOPMENT FUNCTION:

Enter the DATA ELEMENT CODE for the element used to
identify the transaction type. The System will generate
validation logic appropriate for creation, modification,
deletion and implicit action codes, as well as user-defined
transaction types. Six values are associated with this code.
Validation and updates are automatic for these six values:

. transaction 1 creation, . transaction 2 modification, .
transaction 3 deletion, . transaction 4 modification .
transaction 5 modification, . transaction 6 modification.

If there is no ACTION CODE ELEMENT, this field remains
blank, and the transaction type is a modification. In this
case, presence specifications for the segment are entered in
the MOD-4 : ACTN CODE VALUE / SEG PRES. field, and
for the elements, in the MOD-4 field on the Call of
Elements (-CE) screen.

Chapter 3. Segments 47

CLASS
NUMLEN| VALUE DESCRIPTION OF FIELDS AND FILLING MODE
The CODE OF ACTION CODE ELEMENT and the values
must be entered on only one segment of the data structure,
preferably on the common part "00".
8 |5 CREATE : ACTN CODE VALUE / SEG PRES.
(Specific to the Batch Systems Development function).
ACTION CODE VALUE:
On the '00” segment, enter the value that stands for "create”
for this file: Example: "ADD’. Note: for alphabetic characters
use quotes.
SEGMENT PRESENCE:
On the non-00 segments, enter the presence specifications
for the individual segment.
(o4 Obligatory: the segment must be present on a "create”
T Invalid: the segment must not be present on a "create”
"F’ Optional (default).
9 5 MODIFY : ACTN CODE VALUE / SEG PRES.
(Specific to the Batch Systems Development function).
ACTION CODE VALUE:
On the '00” segment, enter the value that stands for
"modify” for this file: Example: '"CHG’. Note: for alphabetic
characters use quotes.
SEGMENT PRESENCE:
On the non-00 segments, enter the presence specifications
for the individual segment.
(o4 Obligatory: the segment must be present on a "modify”
T Invalid: the segment must not be present on a "mofify”
"F’ Optional (default)
10 |5 DELETE : ACTN CODE VALUE / SEG PRES.
(Specific to the Batch Systems Development function).
ACTION CODE VALUE:
On the ‘00" segment, enter the value that stands for "delete”
for this file: Example: "‘DEL’. Note: for alphabetic characters
use quotes.
SEGMENT PRESENCE:
On the non-00 segments, enter the presence specifications
for the individual segment.

48 VisualAge Pacbase: Batch Applications

NUMLEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

Obligatory: the segment must be present on a "delete”

Invalid: the segment must not be present on a "delete”

Optional (default).

11 |5

MOD-4 : ACTN CODE VALUE / SEG PRES.

(Specific to the Batch Systems Development function).

ACTION CODE VALUE:

On the ‘00" segment, enter the value that stands for implicit
action codes - (creates or modifications). Note: for
alphabetic characters use quotes.

SEGMENT PRESENCE:

On the non-00 segments, enter the presence specifications
for the individual segment.

Obligatory: the segment must be present.

Invalid: the segment must not be present.

Optional (default).

12 |5

MOD-5 : ACTN CODE VALUE / SEG PRES.

(Specific to the Batch Systems Development function).

ACTION CODE VALUE:

On the ‘00" segment, enter the value that stands for this
user-defined action. Note: for alphabetic characters use
quotes.

SEGMENT PRESENCE:

On the non-00 segments, enter the presence specifications
for the individual segment.

Obligatory: the segment must be present.

Invalid: the segment must not be present.

Optional (default).

13 |5

MOD-6 : ACTN CODE VALUE / SEG PRES.

(Specific to the Batch Systems Development function).

ACTION CODE VALUE:

On the '00” segment, enter the value that stands for this
user-defined action. Note: for alphabetic characters use
quotes.

SEGMENT PRESENCE:

Chapter 3. Segments 49

CLASS
NUMLEN| VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

On the non-00 segments, enter the presence specifications
for the individual segment.

o Obligatory: the segment must be present.
T Invalid: the segment must not be present.
"F’ Optional (default)

14 |55

EXPLICIT KEYWORDS

This field allows you to enter additional (explicit)
keywords. By default, keywords are generated from the
instance’s name (implicit keywords).

Keywords must be separated by at least one space.
Keywords have a maximum length of 13 characters which
must be alphanumeric. However, =" and "*’ are reserved for
special usage and are therefore ignored in keywords.

Keywords are not case-sensitive: uppercase and lower-case
letters are equivalent.

NOTE: Accented and special characters can be declared as
equivalent to an internal value in order to optimize the
search of instances by keywords (Administrator workbench,
"Window” menu, 'Parameters browser” choice, in "Special
Characters’ tab).

A maximum of ten explicit keywords can be assigned to
one entity. For more details, refer to the ‘Character Mode
User Interface” guide, chapter ‘Search for Instances’,
subchapter ‘Searching by Keywords’.

Call of Elements screen (-CE)

A Segment is described by listing (calling) the Data Elements it contains. This
is done by the -CE screen.

Additional information may be coded, according to the future use of the
Segment (validation and update for transaction files, keys for database
Segments, Pactables information..).

It is highly recommended to dedicate a Segment to only one type of future

use.

OPERATION CODE

Cl: default value (Update).
C2: display of the internal format of the Data Elements.

50 VisualAge Pacbase: Batch Applications

display of Elements of a called "data aggregate"
(see below).

display of names of Elements defined at the
Segment Tlevel.

C3: display of the input format of each Data Element
called in the Segment.

GENERAL CHARACTERISTICS

A Segment is described by an ordered sequence of Data Elements. This
sequence may include group Data Elements, or repetitions of elementary or
group Data Elements.

Redefinitions are possible within a Segment.

For files and databases, access and control break sort keys are indicated.
Initial values can be defined for work areas.

A segment is described by Data Elements defined in the Specifications
Dictionary. As a result, the clear name of the Data Element, its formats and
USAGE clauses are channeled down to the Segment level.

It is not possible to modify those characteristics at the Segment level.

It is possible to use Data Element codes which are not defined in the
Specifications Dictionary, only when they do not have a real functional
meaning (group Elements, fillers, error tables, etc.) In this case, a name
and/or a format are required.

It is also possible to describe a Segment containing different aggregates of
previously defined data, such as Segments or entities described with the
PACMODEL function (Objects and Relationships).

It is not possible to modify the description of the called entity at the Segment
level.

The same Data Element code, used in more than one place in a Segment, will
provoke generation of identical data names.

PREREQUISITE

The Segment and the Data Elements (except some technical Data Elements
which can be defined in the Segment description lines) must have been
previously defined.

ASSOCIATED SCREENS

Chapter 3. Segments 51

There are additional screens associated (via the LINE NUMBER) with each of
the entities called onto the Segment Call of Elements (-CE) screen:

¢ the S....CEnnnGC screen for comments on the line,

* the S...CEnnnGG screen for additional information about the generation of
Database Blocks,

* the S...CEnnnGE screen for additional documentation concerning error
messages (Batch Systems Development function).

GROUP ELEMENTS

A Group Element is identified in the list by the number of elementary Data
Elements it contains. These Elements are listed after the group element.

A group may include other groups. All elementary Elements are then counted
to define the group.

If a dictionary Data Element is used as a group, its length is recalculated (sum
of the lengths of the elementary data elements), regardless of its dictionary

format.

REDEFINITION

Redefinition is possible within a Segment (generating the COBOL
"REDEFINES’ clause). The following is entered in the UPDATE TARGET field:
J'Rx'in the UPDATE TARGET / FIRST PART,
. Blank in the rest of the UPDATE TARGET field.

The Data Element containing this option redefines the Data Element of the
same COBOL level which precedes it in the Segment description. (See
UPDATE TARGET / FIRST PART.)

If a Data Element which redefines another Data Element is contained in a
group, it is considered to be an elementary Data Element. It must be taken
into account in the calculation of the number of Data Elements contained in a
group (except for DL1 database Segments).

NOTE: When Data Elements are redefined, the system does not take their
respective lengths into account. This is the user’s responsibility.

In the calculation of address length (Segment Level, Address and Length
Description (-LAL)), the redefined Data Element length is used for the address

calculation.

DATA AGGREGATES

52 VisualAge Pacbase: Batch Applications

Segments, Model Objects and Relationships (PACMODEL) are also called
"data aggregates”. They may be called into other segments.

The data aggregate code is indicated instead of the data element code in the
list, and it is specified as a special group (see NO. OF ELEMENTARY
ELEMENTS IN A GROUP). It may be occurred (See OCCURRENCES (COBOL
‘Occurs’ clause)).

The description (list of elements) will be included, but it cannot be modified
at this level.

NOTE: On the -CE screen, the list of Data Elements of a called aggregate is
only viewed in O: C2. When a Segment description is printed (DCS),
only the SEGMENT CODE will appear. The expanded view of the
Segment may be seen on the Segment Level, Address and Length
(-LAL) screen.

LIMITATION

Called Segments may also contain segments. This 'nesting’ may occur up to
three times.

EXAMPLE:
ELEM. GR 01 level: Segment BLOO
ELEM. 01 level: Segment BLOO
S BL0OO CE DELCO1 05 level: Delcol
CL10 ** Segment CL10
S CL10 CE DELCO2 10 level: Delco2
DL20 ** Segment DL20
S DL20 CE DELCO3 15 level: Delco3
DELCO4 Delco4
Segment AA30
S AA30 CE DELCO5 i 20 level: Delco5

DATABASES SEGMENT DESCRIPTION
* Existing DL/1 segments

DL/1 Segments defined prior to the installation of the System may have
used Data Element codes that are eight characters in length. This does not
conform to the System standards.

Chapter 3. Segments 53

In that case, it is possible to define the Elements in the Dictionary to ensure
future management in the System, and associate them with the old codes,
to maintain compatibility with the existing applications.

¢ SQL external names

SQL Data element codes are used also by the end-user, so they must be
significant. In some cases, a Data Element must be given a code other than
its System code.

In these cases, the two codes can be managed as follows:

On the Segment Call of Elements (-CE) screen, enter:
¢ The data element code in the DATA ELEMENT CODE field,
* ’'A* in the UPDATE TARGET / FIRST PART field,

* The former code (up to 8 characters) in the UPDATE TARGET / SECOND
and LAST PARTs.

For DL/1, the "old’ code will be not only used in the Database Block
description, but also in generated SSAs for on-line or batch programs.

TRANSACTION FILES

For each data element, there is a presence, class and value validation, with
automatic reference to the values and intervals defined on the data element
itself. Updates to be executed are also indicated.

NOTE:: Several principal data structures can be updated from one transaction
data structure. The update processing will only be generated in a
program if:

¢ The transaction data structure has a USAGE OF D.S. value of ‘M’ or 'N’,

* The principal data structure has a USAGE OF D.S. value of 'P".

For transaction data structures used to update principal data structures:
* Each transaction d.s. can update 10 principal d.s.’s.
* A "record pair” is one transaction d.s. and one principal data structure.

* Each record pair generates a sub-function.
EXAMPLE:

Using 'PD’ and "QD’ as Principal data structures, and '"MD’ and 'ND’ as

transaction data structures:

e If 'PD’ is updated by 'MD’ and 'QD’ is updated by 'ND’, two
sub-functions will be generated.

* If 'ND’ also updates 'PD’, a third sub-function will be be generated.

54 VisualAge Pacbase: Batch Applications

There is a limit of 99 sub-functions per program and 200 for all programs, for
each transaction Data Structure.

Chapter 3. Segments 55

PURCHASING MANAGEMENT SYSTEM SGOOOOO8.LILI.CIV.1583
12
SEGMENT CALL OF ELEMENTS PROO COMPLETE PRODUCT RECORD
34 5 7 89 1011 14 17 20 22 23 26
12 15 18 21 24
1316 19 25
A LIN : ELEM. INT.FORM. U OCC GR K CMD456 CONT VALUE/SFC UPD/TRGET DOC LIBR
000 : PRDKEY 1U 0059
010 : VENUMB B 0059
020 : PRO1 *k 0059
NAME)
*%x%x END **%
0: C1 CH: -CE
CLASS
NUMLEN| VALUE DESCRIPTION OF FIELDS AND FILLING MODE
DATA STRUCTURE / SEGMENT CODE
1 2 DATA STRUCTURE CODE (REQUIRED)

This code is made up of two alphanumeric characters. This
is a logical code internal to the Database and therefore
independent of the names used in Database Blocks and
Programs.

2 2 Segment number (REQUIRED)

The first character must be numeric and the second either
numeric or alphabetic. However the second character can
be alphabetic only if the first character is other than zero.

00 For standard files:

Used to indicate the common part of records in a file,
located at the beginning of each record (Default).

The control break sort keys, the record type and the keys of
indexed files are contained in this Segment.

A file does not necessarily have a common part.

Records on files with only one type of record should be
coded as a '00” Segment.

56 VisualAge Pacbase: Batch Applications

NUN

ILEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

With the Pactables function, this value is not allowed.

01-99

Designates a specific Segment. The common part Data
Elements are automatically concatenated with each specific
part Segment. Although a data element may not be used
twice in the same Segment, it may be used in both the
common part and in one or more specific Segments (except
data structures used as Tables).

ACTION CODE (REQUIRED)

Creation of the line

Modification of the line

Deletion of the line

Transfer of the line

Beginning of multiple deletion

Multiple transfer

Request for HELP documentation

Inhibit implicit update

Implicit update without upper/lowercase processing

Line number

Numeric.

It is advisable to begin with line number "100” and then
number in intervals of 20. This facilitates subsequent line
insertions, as necessary.

DATA ELEMENT CODE

ELEMENTARY DATA ELEMENT DEFINED IN THE
DICTIONARY

The Data Element automatically assumes the characteristics
defined at the Specifications Dictionary level.

If the Data Element is used as a group, its format depends
on the characteristics of the elementary Elements that make
up the group.

If the group is used as a key (sort or access key), the
composite format of the elementary Elements must be
compatible with the format specified for the group.

DATA ELEMENT NOT DEFINED IN THE DICTIONARY

The name and/or format of undefined Data Elements must
be indicated at the segment level.

RESERVED DATA ELEMENT CODES

Chapter 3. Segments 57

NUN

MLEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

SUITE

Prohibited. This code is reserved for the System for
program generation.

FILLER

Data Element that is used for the alignment of fields.

OPTIONS OF THE BATCH SYSTEMS DEVELOPMENT
FUNCTION

These codes (when used) precede other entries made in this
field, in the sequence described below.

ENPR

Used to store Element error verifications in a transaction
file. The length is n + 1 where n = either the total number
of elementary Elements in the file, or the number of
elementary Elements in the ‘00" Segment added to the
largest non-00 Segment. ("Largest” here means the most
elementary Elements.) This depends upon the value entered
in the RESERVED ERROR CODES IN TRANS FILE field on
the Call of Data Structures (-CD) screen.

GRPR

Used to store Segment error verifications. Its length isn + 1
where n = the number of records.

ERUT

Used to store error verifications for users.

Normally, these last three Data Elements are used in
transaction files for error verification fields. When used in
other types of files as "optional” Data Elements, they may
be used as group fields whose generation may be invoked
or suppressed according to the option selected in the
RESERVED ERROR CODES IN TRANS. FILE field. (Note:
this will affect the elementary Elements within the group as
well.)

CALLING DATA AGGREGATES

A SEGMENT CODE or a Model Entity code (Relationship
or Object in the METHODOLOGY function) can be entered
in this field. The called data aggregate will be interpreted as
if the individual Elements that make it up had been
entered.

The NO. OF ELEMENTARY ELEMENTS IN GROUP field is
used to identify data aggregate calls.

Enter the code at the location the elements are to be
included in the Segment description.

In O:C2, the level of 'nesting’ is displayed in the Action
Code (up to four levels).

The number of authorized nesting levels varies according to
the type of generator. Up to 4 nesting levels are authorized
for data generation and PAF use.

58 VisualAge Pacbase: Batch Applications

NUN

ILEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

CONTINUATION LINES

It is possible to create continuation lines. This may be
necessary if there are many validations on a Data Element.
In this case, leave the DATA ELEMENT CODE field blank,
and use a LINE NUMBER value that sequentially follows
that of the line where the Data Element code was entered.

18

NAME OF DATA ELEMENT

It is not required for a Data Element which is not defined in
the Data Dictionary.

However, it is optional for a data aggregate or a FILLER.

NOTE: For on-line entry of Data Elements that are not
declared in the Dictionary, this field cannot be used to input
more than one Data Element at a time. There is actually
only one available field on this screen, whether for input or
for display.

To define an Element at the Segment level :

- Enter the Element code (and possibly the format) on the
-CE, line nnn,

- On the 'name’ line, repeat the line number (nnn), and
indicate the name (18 characters maximum),

- Use the C2 option to view the name and format.

NOTE: If several undefined Data Elements have been
defined in the Dictionary, only the name of the first Data
Element will be displayed if the Choice 'CH:S.....CE" is
used.

To view the name of the Data Element CODEL, on line 130,
for example, use the choice ‘O: C2 CH: Sssss-CE130’. This
will display the Data Elements called in the Segment "ssss’
from the line 130 on.

10

Data element internal format

It is required only in the following cases :

- For an elementary Data Element not defined in the
Dictionary (COBOL format),

- For a group Data Element that is or belongs to a key; its
length must be the sum of the lengths of its elementary
Data Elements,

- For a FILLER-type field.

Chapter 3. Segments 59

CLASS
NUMLEN| VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

It is the internal format; input and output formats will be
the same (but with usage Display). It is defined as on a
Data Element Definition screen.

INTERNAL USE

For Data Elements not defined in the Specifications
Dictionary when the INTERNAL FORMAT OF DATA
ELEMENT field has been given a value, enter the
appropriate USAGE (default : ‘D’ for DISPLAY).

For valid values, see the USAGE field on the Data Element
Definition Screen.

OCCURRENCES (COBOL "OCCURS" CLAUSE)

PURE NUMERIC FIELD

This field represents the 'OCCURS’ clause at an elementary
Data Element level, or at a group level (Maximum of 3
levels).

It can be changed into an "OCCURS DEPENDING ON’
clause by entering **” in the UPDATE TARGET field,
followed by the counter’s Segment and Data Element codes.

The COBOL restrictions on the OCCURS clause apply.

No. of elementary elements in group

PSEUDO NUMERIC FIELD

1 to 99’

For group Data Elements, enter the number of elementary
Elements that belong to the group (A Segment call is
considered as an elementary Data Element).

Groups may contain up to 99 elementary Elements. Group
Elements may contain embedded groups however the total
number of elementary Elements cannot exceed 99. (The
group Data Element codes are not counted). The maximum
number of levels of 'nesting” is 9.

This field is also used to identify the entity called in the
DATA ELEMENT CODE field as Methodology entities or
previously defined Segments.

u(.M/ Ik

Call of an Object or a Relationship. Call of a Segment.

IS

SQL DBD function: Call of a Segment into a view.

11 |1

Access or sort key

This field identifies all data elements that might be used as
control break sort keys, or as access keys to a file, a
database or a Pactables table.

60 VisualAge Pacbase: Batch Applications

NUN

ILEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

Note: It is highly recommended to dedicate a Segment to
only one type of use.

Each data element that may belong to a sort key must be
referenced by a unique alphabetic or numeric character. It is
recommended to reference the indicators by a series (1, 2, 3

).

The actual sort sequence will be chosen at the program
level (on the Call of Data Structures (-CD) screen) by
sequencing the characters in the appropriate order.

Reminder:

The format of key group data elements must have been
entered in the Dictionary or at the segment level.

PACTABLES:

References the access key for a VisualAge Pacbase table.
This value must be indicated on the group data element if
it is a group key.

Indicates that the data element belongs to at least one
sub-system.

DL1 DBD (See the DL/1 DATABASE DESCRIPTION
Reference Manual)

References a unique key for an DL/1 database.

References a multiple key for an DL/1 database.

Secondary index

All other values designate a search field.

DBD AS400 physical file (See the corresponding DBD
Reference Manual)

0to9

AS400 physical file key.

Relational databases (See the corresponding DBD Reference
Manual)

Variable length column

Fixed length column

For DB2 SQL, SQL/DS and ORACLE, generation of a
variable length column (VARCHAR).

For DB2 SQL, SQL/DS and ORACLE, generation of a
LONG VARCHAR.

NOTE: Sort keys are not allowed on data elements
redefining other data elements (see VALIDATION and
UPDATE FIELDS, below).

Chapter 3. Segments 61

CLASS
NUMLEN| VALUE DESCRIPTION OF FIELDS AND FILLING MODE
DATA ELEMENT PRESENCE VALIDATION
12 |1 CREATE : ELEMENT PRESENCE
(o4 Required. Generation of a level 'E’ (transaction refused) in
standard error messages.
P’ Required. Generation of a level 'C” (data element refused)
in standard error messages.
'V Optional (default value).
T Not allowed.
Relational Databases (Refer to the corresponding DBD
Reference manual)
It indicates the presence of a Column in a Table.
13 |1 MODIFY : ELEMENT PRESENCE
(o4 Required. Generation of a level 'E’ (transaction refused) in
standard error messages.
P’ Required. Generation of a level 'C’ (data element refused)
in standard error messages.
'F’ Optional (default value).
T Not allowed.
14 |1 DELETE : ELEMENT PRESENCE
(o4 Required. Generation of a level 'E’ (transaction refused) in
standard error messages.
P’ Required. Generation of a level 'C” (data element refused)
in standard error messages.
¥ Optional (default value).
T Not allowed.
15 |1 MOD-4 : ELEMENT PRESENCE
(o4 Required. Generation of a level 'E’ (transaction refused) in
standard error messages.
P’ Required. Generation of a level 'C” (data element refused)
in standard error messages.
F Optional (default value).
T Not allowed
Note: for segments without action code elements, enter
element presence specifications.
16 |1 MOD-5 : ELEMENT PRESENCE

62 VisualAge Pacbase: Batch Applications

NUMLEN SXIEISJ: DESCRIPTION OF FIELDS AND FILLING MODE
o Required. Generation of a level ‘E’ (transaction refused) in
standard error messages.
P’ Required. Generation of a level ‘C’ (data element refused)
in standard error messages.
B Optional (default value).
g Not allowed
17 |1 MOD-6 : ELEMENT PRESENCE
o Required. Generation of a level ‘E’ (transaction refused) in
standard error messages.
P’ Required. Generation of a level ‘C’ (data element refused)
in standard error messages.
B’ Optional (default value).
T Not allowed.
DATA ELEMENT CONTENTS VALIDATION
18 |1 CLASS (ALPHA / NUMERIC)
Must appear on the first line for the data element. Validate
the data element contents:
A’ Alpha or spaces are valid.
L’ Alpha Lowercase.
9% Alpha Uppercase.
9’ Numeric values only.
"B’ Numeric with leading spaces to be replaced by zeroes.
4 Numeric or spaces, the spaces are replaced by zeroes.
‘B’ and ’Z’ type validations are possible for any data
element with a "display” format (unpacked).
BLANK No class validations on the contents.
19 |1 OPERATORS (AND / OR)
Y Must not appear on the first line for a data element.
E’ AND,
o OR.
20 |1 Negation (NOT)
‘N’ Negation ('NOT’ is generated).
blank No negation.
21 |1 TYPE : VALIDATION, UPDATE, VALUES

Chapter 3. Segments 63

NUN

MLEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

This field has several different uses. More than one entry
may be needed to assign all the validation conditions,
update conditions and values that apply to a data element.
In this case, enter the desired values on as many lines as
needed, immediately following the original line used to call
the element.

1. Definition of the type of validation

A. Contents Validation:

Equal to the value entered in the VALUES/SUB-
FUNCTION CODE field.

Greater than the value entered (as above).

Less than the value entered (as above).

Must be in the table indicated in the UPDATE TARGET
field. Content validations entered following a "T” type
validation are not executed.

Must have one of the values defined on the Description
screen (-D) for this data element.

B. Validation by PERFORM:

Validation by PERFORM of a sub-function defined by the
user. There may be only one validation by PERFORM per
data element called in a segment.

The following operations are executed:

transfer of the data element into the COBOL work area
named in the UPDATE TARGET field. The naming of the
work area on the appropriate line is the responsibility of the
user.

.PERFORM the sub-function entered (left-justified) in the
VALUES / SUB-FUNCTION CODE field.

This sub-function may check and modify (as needed) the
data element.

The result of the validation is indicated in the error
indicator (DEL-ER), which is automatically generated.

.This result is automatically transferred to the error table
(DE-ERR) in the location that corresponds to the element
being processed.

Aransfer of data from the work area to the initial data
element, thereby incorporating any modifications made as a
result of the performed function.

64 VisualAge Pacbase: Batch Applications

NUN

ILEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

This option is recommended for date validation, with
possible inversion. In this case, the date must be defined as
an elementary data element.

In the description of a data element in a transaction, a
"Validation by PERFORM" can be executed before or after a
"Content Validation”.

If it appears before, it is executed only if the data is present
with no error.

If it appears after, it is executed only if there is a content
error. The value for the corresponding location in the
DE-ERR table then becomes the responsibility of the user.

2. Definition of the type of update:

blank

Direct update of the data element in the UPDATE TARGET
field, contingent upon valid presence of the data element.
This type of update can also be used with with ’contents
Validations” other than "T".

Update by addition, contingent upon valid presence.

Update by subtraction, contingent upon valid presence.

Update by unconditional substitution (MOVE). Updating is
done regardless of the validation result. This type of update
can be used with group data elements.

3. Definition of an initial value

Initial value: generates a value using the literal entered in
the VALUES / SUB-FUNCTION CODE field.

It is the default value defined on the element description if
the VALUES / SUB-FUNCTION CODE field is not used
and if the element description has a D-type line (see the
corresponding Chapter and Subchapter in the Specifications
Dictionary manual).

The RECORD TYPE / USE WITHIN D.S. field on the Call
of Data Structures (-CD) screen must allow for the
generation of VALUES clauses.

Same as "V’, but the literal can be continued into the
UPDATE TARGET field. The two fields together would be
considered as one.

4. Special usages:

DL/1 GROUP KEY DATA ELEMENTS

Chapter 3. Segments 65

NUMLEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

To indicate a group key data element associated with the
code entered (after "A*’) in the UPDATE TARGET. See
"DL/1 SEGMENT DESCRIPTIONS” in Chapter
"SEGMENTS" Subchapter "CALL OF ELEMENTS (-CE)".

PACTABLES FUNCTION

This indicates that the data element belongs to one or or
more sub-schemas. The sub-schemas are entered in the
VALUES / SUB-FUNCTION CODE field.

If the data element belongs to a group element, you must
enter a sub-schema number on the group element line.

SQL RELATIONAL DBD FUNCTION

The VALUE / SUBFUNCTION CODE field is used to
indicate the sub-schema(s) a Column belongs to.

22 |10

VALUES / SUB-FUNCTION CODE

The input made in this field depends on the value of the
TYPE : VALIDATION, UPDATE, VALUES field:

Numeric or alphanumeric literal, name of manually
positioned work area or sub-function code (left- justified),
called by PERFORM in a data element validation.

With '=’, ’>" or '<’, enter the value to be compared.

With 'P” enter the sub-function code to be performed. This
code must be left-justified. (For more information, see
Subchapter "DATA ELEM. CONTENTS VALIDATION
(F45)".

With '+, ’-" or ‘"M’ enter the value to be added, subtracted,
or moved.

With "V’ enter the literal to use as the initial value

With "W’ enter the first part of the literal (which extends
into the next field).

With ’S” (PACTABLES and SQL DBD functions), enter the
letter 'O’ in the position in this field that corresponds to the
sub-schemas to which the element belongs:

Example:

CONT VALUE/SFC DELCO S O OOO

In this example, the data element 'DELCO’ belongs to
sub-schemas 1,3,4 and 5.

UPDATE TARGET

This field has several different usages:

66 VisualAge Pacbase: Batch Applications

NUN

ILEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

1. To identify the target of the update;

2. To identify the counter field defining a variable number
of repetitions;

3. To cause the redefinition of a data element within a
segment;

4. To identify the external name of a DL/1 search or key
field;

5. As a continuation of a literal.

23

UPDATE TARGET / FIRST PART

DATA STRUCTURE CODE IN THE PROGRAM of a
permanent file (USAGE OF D.S.= ‘P’ on the Call of Data
Structures screen) to be updated, or of a table data structure
with TYPE : VALIDATION, UPDATE, VALUES = 'T".

The data structure code for the target of an update.

Tt can also be the WORKING data structure code for the
data element communication area in a "'PERFORM’ (TYPE :
VALIDATION, UPDATE, VALUES = 'P’).

Iee Y

Associated with a repetitions number, in order to generate a
variable number of OCCURSs, using a counter contained in
an element. This counter is referenced by the segment and
data element codes which are indicated in the UPDATE
TARGET / SECOND and LAST PARTs.

Generation of an OCCURS DEPENDING ON clause.
Transfers of the counter between input, WORKING and
output areas are carried out automatically by VA Pac if this
counter belongs to the common part.

/R*/

To redefine a data element within a segment. The data
element named in the DATA ELEMENT CODE field will
refine the first data element that precedes it which is
generated at the same COBOL level.

Example:

ELEM. GR GRPFLD 2 ELEM1 ELEM2 R* <--- or NEWVAL
R* <---

If 'R* is entered opposite ELEM2, ELEM2 will redefine
ELEMLI. If 'R* is entered opposite NEWVAL, NEWVAL will
redefine GRPFLD.

Chapter 3. Segments 67

CLASS
NUMLEN| VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

N

To identify the external name of a DL/1 key or search field.
The external name (8 characters) is entered in the UPDATE
TARGET / SECOND and LAST PARTs, and applies to the
data element entered in the DATA ELEMENT CODE field
on this line.

SQL Relational Databases (Refer to the corresponding DBD
Manual)

.UPD/TRGET:

The relational label of a Column can be identified in this
field; the value "A* must be left flushed and followed by
the external name of the Column.

On the complementary screen displaying the origin of the
columns of each view (-DBE), this field contains both the
segment and the data element of the original Table.

24 |2

UPDATE TARGET / SECOND PART

SEGMENT CODE (default).

When applicable:

Enter the continuation of a literal.

Enter the SEGMENT CODE.

Enter the first two characters of the DL/1 external name.

25 |6

UPDATE TARGET / LAST PART

(Default Option: Data Element code)

The default option also works for a modification.

26 |1

DOCUMENTATION INDICATOR

This field is used in on-line mode only. It is a read-only
field.

A Comment, a Generation Element or an Error Message has
been assigned to the element called on this line.

Access to line nnn: -CEnnn, or -Dxnnn for a Database Block
(with x = C, H or R depending on the Block type)

To access the Comment, Generation Element or Error
Message assigned to the called element, enter the access to
line nnn followed (without blank) by GC (for Comment),
GG (for Generation Element) or GE (for Error Message).

68 VisualAge Pacbase: Batch Applications

PURCHASING MANAGEMENT SYSTEM SGOO00O8.LILI.CIV.1583
DESCRIPTION OF SEGMENT : PROO COMPLETE PRODUCT RECORD

A LIN LEVEL ELEM. O0CC INT. FOR. U LGTH ADD INP. FOR. LGTH ADD

000 10 PRDKEY 1

010 11 VENUMB X(5) D 5 1 X(5) 5

020 10 PRO1 ----> SEGMENT PRODUCT INFORMATION
1100 11 PRNUMB X(10) D 10 6 X(10) 10
1110 11 PRDESC X(30) D 30 16 X(30) 30 1
1120 11 PRPRIC 9(6)V99 3 5 46 9(6)Vv99 8 4
1130 11 PRDTIM 999 3 2 51 999 3 5
1140 11 PRMEAS XX D 2 53 XX 2 5

*x% END *%*

0: C1 CH: SprOOLAL

Chapter 3. Segments 69

PURCHASING MANAGEMENT SYSTEM SGO000O8.LILI.CIV.1583
DESCRIPTION OF SEGMENT : PROO COMPLETE PRODUCT RECORD

A ELEM. NAME INP. FOR. INT. FOR. U OCC GR K LIBR
PRDKEY PRODUCT KEY 1 U 0059
VENUMB VENDOR NUMBER X(5) X(5) D B 0059
PRO1 *% 0059

1 PRNUMB PRODUCT NUMBER X(10) X(10) D A 0059

1 PRDESC PRODUCT DESCRIPTION X(30) X(30) D 0059

1 PRPRIC PRODUCT PRICE 9(6)Vv99 9(6)Vv99 3 0059

1 PRDTIM ESTIMATED DELIVERY TIME 999 999 3 0059

1 PRMEAS UNIT OF MEASURE XX XX D 0059

*%x%x END **%

0: C1 CH: -DED

70 VisualAge Pacbase: Batch Applications

PURCHASING MANAGEMENT SYSTEM SGOAOOA8.LILI.CIV.1583
DESCRIPTION OF SEGMENT : PROO COMPLETE PRODUCT RECORD
PROO TOTAL
NUMBER OF DATA ELEMENTS......: 8 8
NUMBER OF ELEMENTARY FIELDS..: 6 6
INPUT LENGTH. e uvvvrennennennss 58 58
INTERNAL LENGTH....vvuvvnnnnns 54 54
OUTPUT LENGTH. v uvvveneernnnnns 54 54
*%% END *#*%
0: C1 CH: -STA
On-line access commands
LIST OF SEGMENTS
CHOICE SCREEN UPD
LCSaaaa List of Segments by code NO

(starting with Segment 'aaaa').

LNSaaaa List of Segments by name NO
(starting with Segment 'aaaa').

DESCRIPTION OF SEGMENT 'aaaa'

CHOICE SCREEN UPD
Saaaa Definition of Segment 'aaaa'. YES
SaaaaCR Instances linked to Segment YES

'aaaa' via User Relations.

SaaaaGChbb Comments on Segment 'aaaa' YES
(starting with line number 'bbb').

SaaaaGEbbb Error messages on Segment 'aaaa' YES
(starting with line number 'bbb').

Chapter 3. Segments 71

SaaaaGGbbb Generation Elements for Segment YES
'aaaa' (starting with line number 'bbb').

SaaaaGObbb Generation option for Segment 'aaaa' YES
(starting with Tine number 'bbb').

SaaaaATbbbbbb Text assigned to Segment 'aaaa' NO
(starting with text 'bbbbbb').

SaaaalLSPbbbb List of Parent Segments for Segment NO
'aaaa' (starting with Parent Segment
"bbbb').

SaaaalSCbbbb List of Child Segments for Segment NO
'aaaa' (starting with Child Segment
'bbbb').

SaaaaX X-references of Segment 'aaaa'. NO

SaaaaXSbbbb X-references of Segment 'aaaa' to NO
segments (starting with Segment 'bbbb').

SaaaaXBbbbbbb X-references of Segment 'aaaa' to NO
Blocks (starting with Block 'bbbbbb').

SaaaaXQbbbbbb Occurrences lTinked to Segment NO

'aaaa' through User Relations
(starting with Relation 'bbbbbb').

SaaaaXVbbbbbb X-references of Segment 'aaaa' to NO
Documents (starting with Document
"bbbbbb').

SaaaaXPbbbbbb X-references of Segment 'aaaa' to NO
programs (starting with program
"bbbbbb") .

SaaaaXPbbbbbbCPcccccc X-references of Segment 'aaaa' to NO
Call of P.M.S. (-CP) of Program
"bbbbbb' starting with Macro-Structure
'ccecec').

SaaaaXPbbbbbbWccddd X-references of Segment 'aaaa' to NO
Work Areas (-W) of Program 'bbbbbb'
(starting with Work Area 'cc', line
number 'ddd').

SaaaaXObbbbbb X-references of Segment 'aaaa' to NO
Screens (starting with Screen 'bbbbbb').

SaaaaX0bbbbbbCPcccccc
X-references of Segment 'aaaa' to NO
Call of P.M.S.(-CP) of Screen 'bbbbbb'
(starting with Macro-Structure
'cceeec').

SaaaaXObbbbbbWccnnn X-references of Segment 'aaaa' to NO
Work Areas (-W) of Screen 'bbbbbb'
(starting with Work Area 'cc', line
number 'nnn').

72 VisualAge Pacbase: Batch Applications

SaaaaSSbhn

SaaaaCEbbb

SaaaaCEbbbGCccc

SaaaaCEbbbGEccc

SaaaaCEbbbGGccc

SaaaaDBEbbb

SaaaalALbbb

SaaaaDEDbbb

SaaaaCNbbbbbb

SaaaaSTA
SaaaaACT

Definition of the sub-schemas or YES
sub-systems of Segment 'aaaa' in
the Pactables function (starting with

sub-schema 'n' with 'b' = 's', or
sub-system 'n' with 'b' = 'y'.
Call of Elements/Attributes of YES

Segment 'aaaa'(starting with line
number 'bbb').

Comments on the Element/Attribute YES
called on line 'bbb' of Segment

'aaaa' (starting with Comments

line number 'ccc").

Error message on the Elem/Attribute YES
called on Tine 'bbb' of Segment

'aaaa' (starting with Tine number
'cee').

Generation Elements on the Element/ YES
Attribute called on line 'bbb' of
Segment 'aaaa' (starting with line
number 'ccc').

SQL view source for view 'aaaa' YES
(starting with 1ine 'bbb').

Level, address and length of Segment NO
'aaaa' (starting with Tine 'bbb').

Data Element details of Segment NO
'aaaa' (starting with Tine 'bbb').

If this choice is used in C2 option,
the relational Tlabel replaces that of
the Data Element.

List of constraints of Segment 'aaaa' NO
integrity (from the block 'bbbbbb')

Statistics on Segment 'aaaa'. NO
Activity calculation on Segment NO
'aaaa’.

NOTE: After the first choice of type ‘Saaaa’, ‘Saaaa’ can be replaced with "-".

All notations between parentheses are optional.

Chapter 3. Segments

73

PURCHASING MANAGEMENT SYSTEM SGOOOOO8.LILI.CIV.1583
LIST OF SEGMENTS BY CODE
CODE NAME OF THE SEGMENT OR D.S. TYPE OF THE D.S. LIBR
co ORDER PREPARATION Z DATA STRUCTURE 0059
€000 ORDER ITEM 0059
LE PACBASE ERROR MESSAGES Z DATA STRUCTURE *CEN
LEOO PACBASE ERROR MESSAGES *CEN
01 PURCHASE ORDER INFORMATION Z DATA STRUCTURE 0059
0100 PURCHASE ORDER KEYS 0059
0110 BASIC ORDER DATA 0059
0120 ORDER LINE ITEM DATA 0059
PR PRODUCT FILE Z DATA STRUCTURE 0059
PROO COMPLETE PRODUCT RECORD 0059
PRO1 PRODUCT INFORMATION 0059
TT TABLE DESCRIPTION G TABLES 0093
TT20 AREA CODES 0093
VE VENDOR FILE Z DATA STRUCTURE 0059
VEOO VENDOR INFORMATION 0059
X0 Structure for On-line guide Z DATA STRUCTURE *CEN
X001 Password *CEN
X002 Root segment *CEN
0: C1 CH: LCS

74 VisualAge Pacbase: Batch Applications

PURCHASING MANAGEMENT SYSTEM SGOO00O8.LILI.CIV.1583
SEGMENT LIST OF PARENT SEGMENTS FOR SEGMENT : PC10

PRNT BLOCK LIN SET MODEL OCC. NAME OF REL./COMMENTS LIBR.
C000 SPCHO1 100 HO1001 STCOUN 0 STATE/COUNTY *JIA

0: C1 CH: SpclOLSP

Chapter 3. Segments 75

PURCHASING MANAGEMENT SYSTEM SGO000O8.LILI.CIV.1583
SEGMENT LIST OF CHILD SEGMENTS FOR SEGMENT : (€000

CHLD BLOCK LIN SET MODEL OCC. NAME OF REL./COMMENTS LIBR.
PC10 SPCHO1 100 HO1001 STCOUN 0 STATE/COUNTY *JIA

0: C1 CH: Sco00LSC

76 VisualAge Pacbase: Batch Applications

PURCHASING MANAGEMENT SYSTEM SGOO00O8.LILI.CIV.1583

SEGMENT CROSS-REFERENCES PC0OO
SEGMENT LIN NAME LIBR.
PT 00 100 ACCESS AND PRINTING 0179

0: C1 CH: SpcOOXS

Chapter 3. Segments 77

PURCHASING MANAGEMENT SYSTEM SGO000O8.LILI.CIV.1583
SEGMENT X-REFERENCES TO PROGRAMS FOR SEGMENT : PT10

=== PROGRAM JIPED] ====mmm o mmmmmmmm oo LIBR.
DL EXTERN OARFU BLOCKT B M U RE SE L UNIT C SELECTION F E R L PL
1 PC PC VDFID R1 ¢ *10 I 1 0399

*%x%x END **%

0: C1 CH: SptloxpP

78 VisualAge Pacbase: Batch Applications

PURCHASING MANAGEMENT SYSTEM SGOO00O8.LILI.CIV.1583
SEGMENT : TT20 CITY CODES
SUB-SCHEMAS

AT N : NAME ENT. LIBR.
S 1 : CITY INFORMATION SUB-SCHEMA 1 0289
S 2 : AREA CODE SUB-SCHEMA 2 0289
Y 1 : DISTRIBUTING OFFICES 0500 SUB-SYSTEM 1 0289
Y 2 : LOCATIONS 1500 SUB-SYSTEM 2 0289

0: C1 CH: Stt20SS

Chapter 3. Segments 79

PURCHASING MANAGEMENT SYSTEM SGO000O8.LILI.CIV.1583

ACTIVITY AGOO test for segment common part
TEXT PA LIN DESCRIPTION OF THE ACTIVITY LIBR.
TESTO1 AG 000 activity calculation 0377
060 TEST 3*N N= 357 0377
080 TEST N+1 N= 357 0377
100 TEST N/2 N= 357 0377
120 TEST 12 0377
FREQUENCY 1 SUB-TOTAL --> 1619
TOTAL --> 1619

*%x%x END **%

0: C1 CH: Sag@OACT

Generation and/or printing

Lists and description reports on data structures may be obtained by entering
certain commands on the Generation and Print Commands (GP) screen.

LISTS

LCS: List of Segments sequenced by code.

C1 OPTION: Without explicit keywords,

C2 OPTION: With explicit keywords.

LKS: List of Segments sequenced by keyword.

After typing LKS, a selection field (SEL:) enables the user to choose implicit
('L") or explicit ('M’) keywords, or both (" ’). Keywords are entered on a

continuation line or

DESCRIPTION

80 VisualAge Pacbase: Batch Applications

DCS : Segment description On the GP screen, enter the Data Structure code in
the ENTITY field. The segment selection is made by listing the 2-characters
numbers (00,10,20..) on the continuation line. To get the continuation line, put
an ¥ in the 'S’ field.

The format of the Elements may be selected. After typing "'DCS’, a FORMAT:
tield appears.

The valid values are :

I = internal,

.E = input,

.S = output.

.R = internal, but if there is a relational
format, it replaces the Data Element format.

Regardless of the selected Library code, the print option for this entity can
only be 1" or 2" (C1, U1, etc., C2, U2, etc.).

Option "1 generates the printing of:
* The definition line of the data structure:
Associated keywords and general comments lines,
Cross-references to programs and screens,
The list of segments belonging to the data structure,
* The definition line of each segment:
Associated keywords and comments lines,
Cross-references to all other entities,
* Description lines of each segment:
The list of sub-schemas and sub-systems (Pactables only)
The call of elements (including the comments),

The statistics of the segment (number of elementary elements and record
length).

NOTE: For table segments, see the Pactables Reference Manual.

Option "2’ provides the same listings as above, but adds a listing of the texts
assigned to the data structure and the segment.

Chapter 3. Segments 81

82 VisualAge Pacbase: Batch Applications

Chapter 4. Reports

Definition screen (R)
The Report Definition screen is accessed by entering in the CHOICE field:

CH : Rddd
where ‘ddd’ is replaced by the code of the report code.

GENERAL CHARACTERISTICS

When used in a program, the user may opt to:
¢ DPrint all the reports with the same prefix,
* Print only selected reports.

For more details, read Chapter 'Program’, Sub-chapter ‘Data Structures
Call’, ‘Report Selection” part.

A report cannot be generated by itself. The report is included in a batch
program on the Data Structure call screen.

This causes an F8x edit function to be generated, where x is the Report code.

© Copyright IBM Corp. 1983,2004 83

12
REPORT CODE...........: EO1
NAME.......ooovennae VENDOR ACTIVITY 3
COMMENTS.....cviianns 4
NATURE................: E REPORT 5
PRINTER TYPE..........: L 6
LINE LENGTH...........: 132 7
FORMAT FOR TOTALS : INTEGER........: 11 8

DECIMAL PLACES.: 07 9

EXPLICIT KEYWORDS..: 10

UPDATED BY.........: ON : AT+ : ¢ LIB:
SESSION NUMBER.....: 0059 LIBRARY......: CIV LOCK :
0: C1 CH: Reol ACTION:
VALUE
NUMLEN| CLASS AND FILLING MODE DESCRIPTION OF FIELDS

Report code

The Report code consists in three numeric or alphabetic
characters.

1 30 NAME OF REPORT (REQUIRED IN CREAT)

’

Do not begin by 'Report of....".

This name must be as explicit as possible. It is used for the
automatic creation of keywords, as detailed in Chapter
"Search for Instances” in the Character Mode User Interface
Guide.

2 36 REPORT COMMENTS

For documentary purposes only: Enter comments.

3 1 NATURE CODE

This code is for documentary purposes. It identifies the
nature of the report and is used to restrict listings of reports
to those of the specified nature: (CH: LTRnRddr where n =
NATURE CODE).

'E’ Report,

84 VisualAge Pacbase: Batch Applications

NUMLEN| CLASS AND FILLING MODE DESCRIPTION OF FIELDS
'K’ Indicates a screen layout: a report can be used as a way to
paint a screen layout prior to implementation.
"L’ Table,
T Indicates a report that is a form, to be subsequently filled
in.
4 1 REPORT PRINTER TYPE
This field contents cannot be blank.
L Default option: standard line printing.
P’ Layout of a report to be printed on a 3800 printer, with

character set codes specified in the Report Layout lines (in
column labeled 'C’).

NOTE: These character sets are not taken into account
when the Report occurrence is used as a Volume Print
Layout.

'S’ Layout of a report to be printed on a 3800 printer, without
definition of character sets. For a Report used with
Microfocus, this value generate a skip character.

5 3 LINE LENGTH (MAXIMUM)

PURE NUMERIC FIELD

This value identifies the length of the longest report
constant line which is taken in account at generation.

Default option: 132.

"1 to 264 The length indicated here will be the one considered at
generation time for the calculation of the
WORKING-STORAGE length for report descriptions.

Note: The actual length of the report to be printed is
determined from the value entered on the Report
Description (-D) Screen Top. Example: You may want a
report containing technical comments in columns 81 to 132
but truncate the display in the report for the users to the
80th column. This can be accomplished by using the 132
default here, and entering 80 as the value of the LINE
LENGTH (MAXIMUM) field on the Report Description
screen.

FORMAT FOR TOTALS

Internal accumulators, (counters) are generated by
PACBASE when the report contains data elements that are
to be totaled.

The default value is 9(11)V9(7).

Chapter 4. Reports 85

VALUE
NUMLEN| CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

The total number of digits must remain within the limit
allowed by the compiler (this is not verified by VA Pac).

NO. OF DIGITS LEFT OF THE DECIMAL

PURE NUMERIC FIELD

>00

Default option: 11.

NO. OF DIGITS RIGHT OF THE DECIMAL

PURE NUMERIC FIELD

Default option: 7.

EXPLICIT KEYWORDS

This field allows you to enter additional (explicit)
keywords. By default, keywords are generated from the
instance’s name (implicit keywords).

Keywords must be separated by at least one space.
Keywords have a maximum length of 13 characters which
must be alphanumeric. However, =" and "*’ are reserved for
special usage and are therefore ignored in keywords.

Keywords are not case-sensitive: uppercase and lower-case
letters are equivalent.

NOTE: Accented and special characters can be declared as
equivalent to an internal value in order to optimize the
search of instances by keywords (Administrator workbench,
"Window’” menu, 'Parameters browser” choice, in ‘Special
Characters’ tab).

A maximum of ten explicit keywords can be assigned to
one entity. For more details, refer to the ‘Character Mode
User Interface” guide, chapter ‘Search for Instances’,
subchapter 'Searching by Keywords'.

Layout screen (-L)

The purpose of the Layout (-L) screen is to describe a page of the end Report;
all significant lines are described at least once. It is then possible :

* To present it to the end-user for discussion,

» To directly define all the constant elements (Title, labels..) of the Report.

The layout is normally produced during the functional analysis phase.

The screen contains the following fields:
* an identifier line which specifies the REPORT CODE, name and line

length.

86 VisualAge Pacbase: Batch Applications

* a LINE NUMBER used to sequence the lines of the layout.

a CONSTANT PART NUMBER, used to identify the different titles, labels,
column headings... that appear on the Report.

the LINE SKIP BEFORE PRINTING, which is used in prototyping.

* a CHARACTER SET OPTION field (which will only appear on the screen
if the REPORT PRINTER TYPE = 'P).

a LAYOUT LINE, which shows the column numbers. As a suggestion,
left-justifying the Report will enable easier referencing.

The Report lines cannot contain the litteral delimiter in use on site (single (")
or double (") quote).

As you are drawing the Report layout, you assign a CONSTANT PART
NUMBER to the lines containing literals which are to appear on the printed
Report. These numbers must start with ‘01" and increase consecutively. The
variable fields on these lines (if any) which will receive input when the Report
is generated, will overlay the portion of the layout line, as specified on the
Report Description (-D) screen.

ACCESS TO THE DIFFERENT PARTS OF THE LAYOUT

The Layout screen has a maximum of 264 columns. Thus, to access the
different parts of the layout screen (scrolling right or left, up or down), enter
the following input in the CHOICE field:

CH: RddeLnnCppp
which will display the Layout from Line 'nn” and Column "ppp’.

Use the following commands to view specific parts of the layout:

* <t shift to the left; for example enter "<20" to shift 20 columns to the left.
Default shift is 66 columns.

¢ ’>: shift to the right; for example enter ">20" to shift 20 columns to the
right. Default shift is 66 columns.

* ’=n": positioning on column n.

¢ ="t repositioning on column 001.

CONSTANT TABLES

The Report Layout (-L) screen is also used to describe the constant tables,
internal to programs, even if they are not used for a printed report.

To describe such tables, the user has to:
* define a report for each table, specifying the table position length,

Chapter 4. Reports 87

¢ no STRUCTURE NUMBER or CATEGORY value is entered,

* constants must be described on lines assigned CONSTANT PART
NUMBERs, entered in the appropriate sequence,

* call the data structure into programs via the Call of Data Structures (-CD)
screen using an ORGANIZATION of "W’, and selecting the tables needed as
you would any report.

No functions will be generated for reports without structures and categories.

88 VisualAge Pacbase: Batch Applications

PURCHASING MANAGEMENT SYSTEM SGOOOOO8.LILI.CIV.1583
REPORT LAYOUT : 1 EO2 VENDOR ACTIVITY LENGTH= 132
23 4 5 6
A LN CP S 1 1 2 2 3 3 4 4 5 5 6
1...5....0....5....0....56....0....5....0....5....0....5....0....
03 1 = Date: 10/11/88 QUARTERLY VENDOR ACT
06 22 Activity of vendor: CALIBRATION ENGINEERING, INC.
00 3 2 s
12 4 PRODUCT PRODUCT DESCRIPTION PRODUCT QUANT
15 5 NUMBER PRICE RECEI
18 e
21 6 X362-1A441 | MASS SPECTROMETER 456.78 | 12318
24
27 9
30 e
33 72 Total amoun
36 82
0: C1 CH: -L
CLASS
NUMLEN| VALUE DESCRIPTION OF FIELDS AND FILLING MODE
1 3 Report code (REQUIRED)
The Report code consists in three numeric or alphabetic
characters.
2 1 ACTION CODE
(G4 Creation of the line
™M’ Modification of the line
‘D" or 'A’ Deletion of the line
T’ Transfer of the line
"B’ Beginning of multiple deletion
‘G’ Multiple transfer
" Request for HELP documentation
'E” or "~ Inhibit implicit update
X Implicit update without upper/lowercase processing
3 2 LINE NUMBER (REQUIRED)
PURE NUMERIC FIELD

Chapter 4. Reports 89

NUN

ILEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

'00-99

It is advisable to leave gaps in the numbering sequence to
allow for future line insertions as necessary.

NUMER.

LINE LABEL NUMBER (REQUIRED)

PURE NUMERIC FIELD

This value identifies lines that contains labels to be printed
in the actual report. The label number is to be indicated on
the first part of the line, and it is automatically set to the
next parts.

BATCH SYSTEMS DEVELOPMENT

"blank’

Lines without constant parts.

"01-99’

Lines with constant parts.

Lines with constants are stored in a table. This number is
the subscript. Therefore, begin with ‘01" and number the
lines consecutively. ('00" is not valid).

In Batch mode, this value need not be repeated for lines
that are described using more than one part.

A constant line cannot be deleted unless it is the last one of
the report. To delete a line, either renumber the lines, or
delete the line and renumber the lines, or delete the line
and renumber the last constant line with the deleted line
value. Note that the Description (-D) screen field must also
be updated to reflect the change.

CONSTANT PART NUMBERS are not necessarily in the
same sequence as Line Numbers.

The value entered here can only be used once per layout.

P.D.M. EXTENSION

The Line Label Number identifies the Layout component. In
some cases, it may be necessary to create several lines of
the same label number.

For complete information, refer to the Personalized
Documentation Manager Manual.

NOTE: ALL print windows must have a minimum length
of 30 characters.

1. DOCUMENT PRINT LAYOUT:

For detailed information, refer to Paragraph Document
Layout Description Principles.

Line for setting parameters’ values.

10

Line for page header or footer.

90 VisualAge Pacbase: Batch Applications

NUN

ILEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

70

No.0 Print Window (required). Default Print Window used
in relation to A-, G-, H-, and all S-type Document
Description lines.

NOTE: This default value may be modified by the $DL
parameter and at the Document Description line level, in
the W-labeled field. Print Windows specified in Text lines
necessarily override these defaults.

Enter between the "$" delimiters the number of repetitive
lines per page (default=48).

It is recommended that the No.0 Print Window’s length be
at least 78 characters.

The No.0 Print Window’s framing characteristics also apply
to: . Section Titles generated with $VT=nm and printed in
the section’s title-page. . Title lines generated with $GT=1
using the GV or GA print option, and printed in the call’s
first page.

71 to 79

Print window No.1 to print window No.9.

NOTE: Line labels are not necessarily entered in increasing
order. A 10-labeled line which describes a page footer must
be entered after the 7n-labeled lines.

2. SPECIFIC LAYOUT:

Line labels must be entered in increasing order.

*** TITLE LAYOUT

20

Title-page header

25

. When used for titles printed in title-pages: - Print window
- Framing characteristics

. If used for the Table of Contents and Index titles when
printed in their title-page: - Print window only

Framing characteristics are those specified in the 35-labeled
line for the Table of Contents, in the 55-labeled line for the
Index.

. This line also includes the number of lines in a title-page
(header and footer lines excluded), followed by the number
of the line where the title is printed.

Default: number specified in the 70-labeled line of the
Document Print Layout.

. Also used for title-page blank lines to specify framing
characteristics.

29

Title-page footer

Chapter 4. Reports 91

CLASS
NUMLEN| VALUE DESCRIPTION OF FIELDS AND FILLING MODE

*** TABLE OF CONTENTS LAYOUT

30 Table of Contents header

35 Number of lines in a Table of Contents page (header and
footer lines excluded).
Also used for Table of Contents blank lines & Table of
Contents title line when printed in its title- page (See also
25-labeled line) to specify framing characteristics. This line
is required.

39 Table of Contents footer

40 Title for the Table of Contents

41 to 49 Print windows for (sub)entries in the Table of Contents and
framing characteristics
*** INDEX LAYOUT

50 Index header

55 Number of lines in an Index page (header and footer lines
excluded). Also used for Index blank lines & Index title line
when printed in its title-page (See also 25-labeled line) to
specify framing characteristics. This line is required.

59 Index footer

60 Index title

61 Print window & framing characteristics for Index Entries

62 Print window & framing characteristics for Index
Comments

63 Print window & framing characteristics for Index
references, i.e. Index lines where page numbers are printed.
*** GENERATED TITLES LAYOUT

71 to 79 Print windows for Level-1 to Level-9:
. Generated Section Titles printed in sections’ first pages
($VT=nm),
. Generated Titles printed in calls’ first pages ($GT=1, GV or
GA print option).

5 1 PAGE BREAK - LINE SKIP

BATCH SYSTEMS DEVELOPMENT

92 VisualAge Pacbase: Batch Applications

NUN

ILEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

The value entered in this field is used for paging and line
spacing when generating the Report Layout, i.e. with the
DCR Generation-Print request, or an R...L call in a
Document Description. Paging and line spacing for the
actual printed Report is specified in the SKP-labeled fields
in the Report Description (-D).

Page break.

NOTE: A page break is automatically generated on the first
line of a Report Layout.

"Tto 9’

Line spacing from single spacing (1) to 9x spacing (9) (1 is
the default value).

G

Overprinting. This value is reserved for type 3800 layouts.
It is interpreted as single line spacing in the Layout
Description with formatting.

P.D.M. EXTENSION

Page break or line skip associated with the Print Window
unless specified otherwise in the called Text Description.

Page break.

"Tto 9’

Line spacing from single spacing (1) to 9x spacing (9) (1 is
the default value).

132

PRINT LITERAL/DOCUMENT PRINT LAYOUT

Simple or double quotes are replaced by blank characters in
this field IF the same quote is the delimiter chosen on the
Library Definition. This replacement prevents COBOL
compilation errors due to the presence of this delimiter in
the "values’.

Call of Elements screen (-CE)

The purpose of this screen is to describe the data elements of each Report.

This is achieved by listing the data elements and identifying their position on
the layout line, the source of the data and under what conditions the data is
to be moved into the data element.

Lines that contain the same data elements using the same formats and
locations may be described as the same structure even if the print condition
differs. For example, when totals are to be printed at different control break
levels, only one structure is needed. When a single data element is to be filled
with different data, depending upon the condition, increment the LINE

Chapter 4. Reports 93

NUMBER value within the structure. The STARTING ADDRESS (COLUMN
NUMBER) remains the same, and the various conditions may be entered.

OPERATION CODE

C1: default value.

C2: displays the output format of the data element, and the BLANK WHEN
ZERO specification.

94 VisualAge Pacbase: Batch Applications

PURCHASING MANAGEMENT SYSTEM SGOO00O8.LILI.CIV.1583
REPORT CALL OF ELEMENTS1 EO1 VENDOR ACTIVITY
23 4 5 6 78910 12 13 14
11

A ST ELEM L : STA C O W SOURCE FLD CONDITION LIBR.
01 XDAT8 0 : 7 I = DATOR 0059
01 XPAGE © 90 M 5 E0001PC 0059
02 VENAME 0 : 27 M VEOOVENAME 0059
03 PRNUMB 0 3 M COOOPRNUMB CATX = 'CA' 0059
03 PRDESC 0 16 M PROOPRDESC CATX = 'CA' 0059
03 PRPRIC 0 48 M PROOPRPRIC CATX = 'CA' 0059
03 ITQREC 0 60 M COGOITQREC CATX = 'CA' 0059
03 6LIB1O A : 71 M % 'MILLIMETERS' 1-PROO-PRMEAS = 'MM' 0059
03 6LIB10 B : 71 =* AND CATX = 'CA' 0059
03 6LIB10 C : 71 M = 'GRAMS' 1-PROO-PRMEAS = 'GR' 0059
03 6LIB10 D 71 * AND CATX = 'CA' 0059
03 6LIB10 E 71 M * 'CENTIMETERS' 1-PROO-PRMEAS = 'CM' 0059
03 6LIB10O F 71 = AND CATX = 'CA' 0059
03 6LIB10 G 71 M * 'METERS' 1-PROO-PRMEAS = 'ME' 0059

0: C1 CH: -CE

Chapter 4. Reports 95

PURCHASING MANAGEMENT SYSTEM SGOO0OO8.LILI.CIV.1583
REPORT CALL OF ELEMENTS1 EO1 VENDOR ACTIVITY
23 4 5 6 78910 12 13 15 16
11
A ST ELEM L STA C O W SOURCE FLD PICTURE : Z LIBR.
01 XDAT8 0 : 7 I = DATOR X(8) : 0059
01 XPAGE 0 90 M 5 E0001PC 779 : 0059
02 VENAME 0 : 27 M VEOOVENAME X(25) : 0059
03 PRNUMB 0 3 M COOOPRNUMB X(12) : 0059
03 PRDESC 0 16 M PROOPRDESC X(20) : 0059
03 PRPRIC 0 48 M PROOPRPRIC 779,99 : 0059
03 ITQREC 0 60 M COOOQITQREC 777179 : Z 0059
03 6LIB1O0 A : 71 M %= 'MILLIMETERS' X(15) : 0059
03 6LIB1O B : 71 * : 0059
03 6LIB1O C : 71 M = 'GRAMS' X(15) : 0059
03 6LIB10 D 71 * : 0059
03 6LIB10 E 71 M = 'CENTIMETERS' X(15) : 0059
03 6LIB10 F 71 * : 0059
03 6LIB1O G : 71 M % 'METERS' X(15) : 0059
0: C2 CH: -CE
VALUE
NUMLEN| CLASS AND FILLING MODE DESCRIPTION OF FIELDS
1 3 Report code (REQUIRED)
The Report code consists in three numeric or alphabetic
characters.
2 1 ACTION CODE
'’ Creation of the line
‘™M’ Modification of the line

"D’ or 'A’ Deletion of the line

T Transfer of the line

"B’ Beginning of multiple deletion

‘G’ Multiple transfer

e Request for HELP documentation

"E’ or " Inhibit implicit update

X Implicit update without upper/lowercase processing

3 2 NUMER. Structure number (REQUIRED)
PURE NUMERIC FIELD

96 VisualAge Pacbase: Batch Applications

NUN

ILEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

‘01 to 98’

The structure number sequence must start from 01 (or 00)
and contain no gaps.

This value becomes a subscript for a table containing all the
structures.

Each structure listed on the Report Description (-D) screen
must have at least one corresponding line on the Report
Call of Elements (-CE) screen. For structures that come from
other reports, (see TYPE OF LINE IN REPORT on the
Report Description (-D) screen), the elements belonging to
the structure are listed on the Call of Elements (-CE) of the
report that describes the detail line, as does the
STRUCTURE NUMBER value. For example, DDR is a
report with a detail line to be used in report DDS. This
detail line is located in Structure 06 of DDR. The data
elements for this structure are entered on the Call of
Elements (-CE) of DDR. STRUCTURE NUMBER = '06" does
not appear on DDS’s Call of Elements screen. Note: In our
example, there would have to be a structure ‘01" to '05” to
avoid gaps.

Note on deletion of structures:

When a structure, other than the last one, is no longer
required, either a dummy structure must be maintained or
the last structure renumbered with the value of the one not
needed. The Layout (-L) and Call of Elements screens may
need to be updated to reflect the change.

A structure cannot be deleted globally. It must be done data
element by data element.

7 001

This value is used to identify fields required for
user-defined spooling. (See USAGE OF D.S. = ’]" on the Call
of Data Structures (-CD) screen, and also, "DIRECT PRINT
/APPLIC. SPOOLING RTN.” Subchapter.)

The data elements belonging to this structure are positioned
relative to the beginning of the record, and not to the
beginning of the line, as is true of all other structures.

The two data elements "LSKP’ or 'SAUT’ for a French
generator and 'LIGNE’ are reserved. LSKP is a pointer to
the SKIP field which controls line skips. LIGNE controls the
placement and alignment of the layout line.

At generation, structure ‘00" is taken into consideration only
if the USAGE OF DATA STRUCTURE = J".

DATA ELEMENT CODE (REQUIRED)

Chapter 4. Reports 97

NUN

ILEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

Enter the mnemonic code which references the Data
Element independently of any Data Structure, Report or
Screen to which the Data Element might belong.

There is no need to include a Report, Screen or Segment
code in the Data Element code since the System does it
automatically.

This code consists of alphabetic or numeric characters only.

Some Data Element codes are reserved by the System for
use in Data Structures, Reports or Screens and cannot be
defined in the Specifications Dictionary:

"SUITE’

Prohibited. This code is reserved for the System for
program generation.

"FILLER’

Data Element that is used for the alignment of fields.

Options of the BSD Function:

Error Verification fields on transaction files:

"ENPR’
"GRPR’
"ERUT’

Used for Data Element error verification. Used for Segment
error verification. Used for user defined errors.

For more information see DATA ELEMENT CODE on the
Segment Call of Elements.

For Reports:

"LIGNE’

Reserved for the placement and alignment of the layout
line. It is used only for a "00” structure.

"LSKP’

Reserved usage only in the 00" Report Structure. See
STRUCTURE NUMBER on the Report Call of Elements.

'SAUT’

Reserved usage. This code is the counterpart of LSKP and
used with the French version of the System.

Options of the OLSD and Pacbench C/S (TUI Client)
Functions:

"ERMSG’

Data Element for the placement of the error message.

"LIERR’

Reserved usage. This code is the counterpart of ERMSG and
used with the French version of the System.

'PFKEY’

Used to represent the programmable function keys.

"*PASWD’

(IMS only): Used for passwords on a specific screen.

For more information see DATA ELEMENT CODE OR
SCREEN CODE TO CALL on the Call of Elements.

CONTINUATION LINE NUMBER

98 VisualAge Pacbase: Batch Applications

NUN

ILEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

BLANKS REPLACED BY ZEROS.

Alphabetic or numeric character.

blank or 0

Default value.

Enter a value when more than one line is needed to
describe a data element. This may occur when the condition
is longer than the field allows, or when different values fill
in the data element according to the conditions.

The maximum number of lines per data element within a
structure is 36.

STARTING ADDRESS (COLUMN NUMBER)

PURE NUMERIC FIELD

Enter the column number, in which the data element field
begins. (Required in creation).

This value is to be specified on the first line that concerns
the data element - that is, not on a continuation line.

CONTINUATION OF CONDITION OR SOURCE

The source or the condition of a data element may take
more than one line to describe.

"blank’

Indicates the first line.

Indicates continuation lines.

OPERATION ON SOURCE FIELD

‘blank’

This value is used on a continuation line. (The
CONTINUATION OF CONDITION OR SOURCE field
contains an asterisk ("*’)).

NOTE: There must be at least as many continuation lines as
there are lines needed to complete the condition.

/Mr

Move (default option if the SOURCE FIELD area contains
an entry).

RN
+

Add. Subtract. Multiply. Divide.

NOTE: With these four values, generation of a COMPUTE.
On the first line, the user must enter a '+ or 'R’ value in
order to indicate the beginning of a calculation.

Chapter 4. Reports 99

NUN

MLEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

The division of a report is performed in the following way:
Enter "+ in the Operation on Source field followed by the
code of the Data Element to be divided. On a continuation
line ("* in the Continuation of Source field) enter '/’ in the
Operation on Source field followed by the 'divider” Data
Element. The procedure is the same for a multiplication,
except that '/’ must be replaced by "*’.

Provide a rounded result on the calculation. This value
must be entered as the first operation line for the data
element concerned (within the structure).

Transfer of data via user-specified procedures. Only the
description of the corresponding 6- Data Element is
generated. A U-type line may be used: . as a
complementary line to an S-type line (transfer of data after
a table search), . as a continuation line if the number of
source continuation lines is inferior to the number of
condition continuation lines.

Loading of the century from a DAT-CTY field initialized to
’19’, it can be modified.

Loading of the century to "19” if the year is lower than the
value in the DAT-CTYT field (‘61" by default), loading to
’20” in the other case.

Loading of the century field to 20" if the year is lower than
the value in the DAT-CTYT field (‘61" by default), to "19” in
the other case.

Print a date in extended format: XX/XX/XX. The target
data element must be 8 characters long, and the source, 6
characters.

Same as with the ‘D’ value, except that a machine date is
used and is formatted as follows: MM/DD/YY.

A date of the form XXYYZZZZ becomes XX/YY/ZZZ77Z

A date of the form XXYYZZZZ becomes YY/XX/ZZZZ Be
sure that the sending field is 8 characters long and the
receiving field is 10 characters long.

Data element to be totaled, and the total printed.

When the TYPE OF LINE IN REPORT on the Report
Description (-D) screen = * or "T":

The value indicated in the SOURCE FIELD will be added to
the value in the DATA ELEMENT CODE field and moved
into the latter data element.

100 VisualAge Pacbase: Batch Applications

NUN

ILEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

When the TYPE OF LINE IN REPORT on the Report
Description (-D) screen = ‘0" to '9":

The value indicated in the SOURCE FIELD will be
accumulated in either the "Intermediate Totals
Accumulator” (Trst-eeeeee(n)), or in a "Grand Totals
Accumulator” (Grst-eeeeee). The desired total will be
moved into the data element when the appropriate break
level is attained, and when the conditions are true. The total
will be printed. (See Note below.)

A set of internal accumulators is associated with each data
element to be totaled. The calculation of the sum is made
each time through the processing loop.

If a data element is only printed under certain conditions,
these conditions will also apply to the totaling. The total
itself will only be printed on a line designated for totaling.

The maximum number of data elements to be totaled is 99
per program.

The conditions concerning all other data elements are
entered, making sure that the data element is a part of the
appropriate Report Category (CATEGORY OF REPORT
field on the Report Description screen) by using the VA
Pac-generated indicator ‘CATX’".

NOTE: When a basic totaling structure is defined in a
report, the proper loading and moving is generated if the
data element to be totaled has "T” entered on the line
containing the first occurrence of the data element within
the structure.

Example: The following is correct:

NN 071 O QTTIT T DDSSQTTIT NN 071 1 QTTIT M *
ZERO Condition

while the next two lines do not generate the total:

NN 071 0 QTTIT M * ZERO NN 071 1 QTTIT T
DDSSQTTIT Condition

Transfer of data after table search.

Chapter 4. Reports 101

VALUE
NUMLEN| CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

Coding this operation takes two lines: On the first line,
enter 'S” and specify the search argument in the SOURCE
FIELD. On the second line, (a continuation line), enter "U’
and specify the data element to be matched. Table search
can only be performed from a non-repetitive field which
has been defined in the standard way (ddss-delco or
x-ddss-delco). If the search is successful, the target data
element will receive data from the table data element with
the same name.

SOURCE FIELD

9 1 WORKING-STORAGE PREFIX OF SOURCE
Indicates the WORKING-STORAGE prefix area the source
data element comes from.

* Indicates that the source does not have a standard
PACBASE structure. The 13 characters that follow will
contain the expression (data name, literal, etc.) to be
integrated into the generated source language.

The following values are used to indicate that the source
data element has a standard structure; the value entered
replaces the ‘'w’ in w-ddss-eeeeee.

The values below may be used for areas other than the ones
mentioned in the description.

‘blank’ This is the read area of a file, as generated in the FILE
SECTION.

1 Normally used for the processing area for files with control
breaks, and tables.

2 This is the update area of principal files.

'5’ These are lines directly related to the report itself like
record counter fields, line count fields, etc.

6 This value is used for the output area.

Other numeric and alphabetic values may also be used for
user-defined prefixes.
10 |2 SOURCE FIELD - FIRST PART

For sources that are data elements:

Enter the DATA STRUCTURE CODE IN THE PROGRAM
of the data structure containing the source data element.

For sources that are literals:

Enter the beginning of the literal (starting with a quote).

102 VisualAge Pacbase: Batch Applications

NUMLEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

Note: For literals longer than 11 characters, you must use
the Work Areas (-W) screen and define a specific VALUE
clause.

11 |2

SOURCE FIELD - SECOND PART

For sources that are data elements:

Enter the SEGMENT CODE of the segment containing the
source data element.

For sources that are literals:

Enter a continuation of the literal. If the literal value ends
in this field, enter the close quote.

12 |6

SOURCE FIELD - THIRD PART

For sources that are data elements:

Enter the DATA ELEMENT CODE of the source data
element (default if the WORKING-STORAGE PREFIX OF
SOURCE value is not ¥, and if the SOURCE FIELD is not
blank).

For sources that are literals:

Enter a continuation of the literal. If the literal value ends
in this field, enter the close quote.

13 |3

SOURCE FIELD - LAST PART

FALSE NUMERIC FIELD

For sources that are data elements:

This field is used to identify indexes.

"blank’

No index

001 to 999

Number of repetitions (OCCURS)

2 ’

nnn

User defined index name

/Ia(.*/

The standard look-up index for tables (USAGE OF DATA
STRUCTURE = "T” or 'X” or a Work Areas table): The index
is generated in the form IddssR, where ddss = DATA
STRUCTURE and SEGMENT CODEs.

"*cc

" is the fixed code and ’cc’ is the category code.

It is the standard index for repetitive category cc. The index
is generated in the form Jddrcc, where ddr = REPORT
CODE cc = CATEGORY CODE (repetitive category).

For sources that are literals: Where relevant, enter the
continuation of the literal. Enter the close quote character to
end the literal.

Chapter 4. Reports 103

VALUE
NUMLEN| CLASS AND FILLING MODE DESCRIPTION OF FIELDS

14 |32 CONDITION

This field is used to indicate the conditions under which the
source should be transferred to the target. The condition
may take several consecutive lines. This is indicated by an
asterisk ("*’) in the CONTINUATION OF CONDITION OR
SOURCE field.

Format of entry:

For IF conditions, use COBOL format but omit the 'IF’.

For ANDs, ORs etc., use COBOL format.

Note: The period (full stop) is generated automatically and
therefore should not be entered by the user.

15 |14 PICTURE : OUTPUT FORMAT

This field is viewed with OPERATION field value C2: O:
C2 CH: -CE

For data elements defined to the Specifications Dictionary,
this field cannot be modified. It displays the OUTPUT
FORMAT as defined on the Data Element Definition Screen.

For data elements not defined to the Specifications
Dictionary, this field is used to specify the output format of
the element, using COBOL syntax. This can be modified.

16 |1 GENERATION CLAUSE BLANK WHEN ZERO

This field is viewed with OPERATION field value C2: O:
C2 CH: -CE

For data elements defined in the Specifications Dictionary,
this field cannot be modified. It displays the BLANK
WHEN ZERO CLAUSE option as entered on the Data
Element Definition screen.

For data elements not defined in the Specifications
Dictionary, this field may be used to cause the generation of
the BLANK WHEN ZERO clause.

7 Generate the BLANK WHEN ZERO clause.

Description screen (-D)

The Report Description screen has a two-fold purpose:

* To define the general characteristics of a report: the number of characters
per line and lines per page, segment type overlay, print condition, etc.,

104 VisualAge Pacbase: Batch Applications

* To position the report lines: lines are grouped into categories to be printed
under the same condition. Each line is composed of a constant, a structure,
a skip character and additional elements.

The general characteristics are entered using the description Screen Top,
sometimes referred to as the 'E-line’. The screen layout for this part of the
screen, along with a detailed description of the fields follows.

A screen layout for the Description Screen Body appears subsequently with
the details concerning these fields.

Description screen top

Chapter 4. Reports 105

PURCHASING MANAGEMENT SYSTEM SGO000O8.LILI.CIV.1583
REPORT DESCRIPTION: 1 EO1 VENDOR ACTIVITY
A: 2 LINE LENGTH: 3 132 LI PAGE: 4 60 CAT TBL INST: 5 WR OPT: 6 SECTION: 7
COMMENTS....: 8 CONDITIONS 9 CO-CF2 =1
A CA LIN T TLI ST CP SKP FUSF COMMENTS CONDITIONS
BA 100 101 01% HEADING ITB1 =1
BA 120 2 02 02 OR 5-E000-1LC NOT < 5-E000-1LCM
BA 140 03 03
BA 160 04 01
BA 180 05 01
BA 200 03 01
CA 100 = 3 06 01 96BA CURRENT LINE
DA 100 03 01 FRAME CLOSING FTB1 =1
DA 120 OR 5-E000-1LC NOT < 5-E000-1LCM
EA 100 1 3 07 02 TOTAL FTB1 =1
EA 120 4 08 01
0: C1 CH: -D
CLASS
NUMLEN| VALUE DESCRIPTION OF FIELDS AND FILLING MODE
1 3 Report code (REQUIRED)
The Report code consists in three numeric or alphabetic
characters.
2 1 ACTION CODE (REQUIRED)

The different ACTION CODE values are listed in the
Character Mode User Interface Guide for on-line mode and
for those used in batch mode, see "OPTIONS SPECIFIC TO
BATCH MODE" or "GENERATION AND/OR PRINTING"
Subchapters.

C NOTE: An explicit CREATE action code value must be
entered when the report is first being created.

3 3 LINE LENGTH (MAXIMUM)
PURE NUMERIC FIELD

Default option: 132. This code indicates the line length.
4 2 LINES PER PAGE
PURE NUMERIC FIELD

Default option: 60.
5 4 NO. OF INSTANCES IN CATEGORY TABLE

106 VisualAge Pacbase: Batch Applications

NUN

ILEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

PURE NUMERIC FIELD

Enter the number of positions to allocate to store the
different categories in the report (at generation).

100

Default.

0000

Rather than using the category table to control the
organization of printing the categories, the categories are
printed directly.

Note: If the number of positions is higher than 1000, the
table is not generated.

WRITE OPTION : BEFORE OR AFTER

"Blank’

Print options are generated according to the hardware
variant indicated at the library level.

Example: "WRITE AFTER’ for GCOS?7 (variant 4). "WRITE
BEFORE’ for GCOSS8 (variant 5).

In the case of conversion libraries, the print options are
automatically reformulated according to the library variant.

Prohibits any automatic reformulation of the print option,
in a conversion library.

Generation of "WRITE BEFORE’ statement.

SECTION PRIORITY

This field is used with hardware requiring program
segmentation due to small memory capacity. For
information, consult a COBOL manual.

Generates a segment type overlay between print functions
in a program. It should only be used if input data
structures to print programs are sorted by report code and
if the COBOL variant is ANSI. Priorities less than 50
generate an overlay only in association with the 'SEGMENT
LIMIT’ clause, to be inserted in the ENVIRONMENT
DIVISION.

13

COMMENTS

The comment entered on the screen top refers to the whole
report. Comments entered on the screen body normally
refer to the individual lines.

35

CONDITIONS OF REPORT EXECUTION

On the screen top - (the "E-line”):

Enter conditions relevant for report execution.

On the screen body:

Chapter 4. Reports 107

CLASS
NUMLEN| VALUE DESCRIPTION OF FIELDS AND FILLING MODE

Enter conditions concerning the execution of the Category
of Report.

Format of entry:

Use the COBOL format to enter conditions but do not enter
‘IF’, nor GO TO, and do not enter any period.

Description screen body

108 VisualAge Pacbase: Batch Applications

PURCHASING MANAGEMENT SYSTEM SGOO00O8.LILI.CIV.1583
REPORT DESCRIPTION: 1 EO1 VENDOR ACTIVITY
A: LINE LENGTH: 132 LI PAGE: 60 CAT TBL INST: WR OPT: SECTION:
COMMENTS....: CONDITIONS CO-CF2 =1
23 4 56 7 8 91011 12 13
A CA LIN T TLI ST CP SKP FUSF COMMENTS CONDITIONS
BA 100 101 01= HEADING ITB1 =1
BA 120 2 02 02 OR 5-E000-1LC NOT < 5-E000-1LCM
BA 140 03 03
BA 160 04 01
BA 180 05 01
BA 200 03 01
CA 100 = 3 06 01 96BA CURRENT LINE
DA 100 03 01 FRAME CLOSING FTB1 =1
DA 120 OR 5-E000-1LC NOT < 5-E000-1LCM
EA 100 1 3 07 02 TOTAL FTB1 = 1
EA 120 4 08 01
0: C1 CH: -D
VALUE
NUMLEN| CLASS AND FILLING MODE DESCRIPTION OF FIELDS
1 3 Report code (REQUIRED)
The Report code consists in three numeric or alphabetic
characters.
2 1 ACTION CODE
< Creation of the line
™’ Modification of the line

‘D" or 'A’ Deletion of the line

T’ Transfer of the line

‘B’ Beginning of multiple deletion

‘G’ Multiple transfer

7 Request for HELP documentation

'E” or "~ Inhibit implicit update

X Implicit update without upper/lowercase processing
3 2 ALPHA. CATEGORY OF REPORT

(maximum of 39 lines per category.)

Chapter 4. Reports 109

VALUE
NUMLEN| CLASS AND FILLING MODE DESCRIPTION OF FIELDS

"AB to ZY’ | The value entered here is used to differentiate categories
from one another. Report lines are grouped together
according to the conditions under which they will be
printed (totaled, etc...).

Leaving gaps in the category sequence will facilitate future
modifications.

Categories containing a detail line with elements to be
totaled - (TYPE OF LINE = "* or 'T"):

.can only contain one detail line,

.cannot contain a total line,

.cannot be repetitive,

.can contain other ordinary lines.

Categories used for the lines containing the totals - (TYPE
OF LINE = 0’ to '9):

.can contain several total lines,

.cannot have a detail line,

.cannot be repetitive,

.can contain other ordinary lines.

77 Prohibited.
"AA’ Not recommended.
4 3 Line number
Numeric.

It is advisable to begin with line number "100” and then
number in intervals of 20. This facilitates subsequent line
insertions, as necessary.

5 1 TYPE OF LINE IN REPORT

This field is used to identify the type of category.

To designate a Header, repetitive area, or Footer:

A’ This value applies to repetitive categories only. This
indicates the first line of a top-of-page category (header).
Headers are automatically printed at the top of each page
of a report. They are also printed when the repetitive
category lines exceed the number of lines per page allowed
for the report, causing a new page to be printed.

110 VisualAge Pacbase: Batch Applications

NUN

ILEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

Indicates the first line of a category printed several times
(repetitive category). This value causes the generation of a
subscript which controls the number of repetitions. This
number may be fixed or variable.

For a fixed number:

.enter a number in the TOTALING LINE INDICATOR field

For a variable number:

.enter a three-character code in the TOTALING LINE
INDICATOR field. (The code was defined on the Work
Areas (-W) screen for use as the subscript field. Procedural
code is used to move in the values.) OR .use the standard
PACBASE index (Jddrcc), generated for the category: Note:
ddr = REPORT CODE, cc = CATEGORY OF REPORT
(repetitive) See SOURCE FIELD - LAST PART on the Report
Call of Elements (-CE) screen, with value "*cc’.

This value applies to repetitive categories only. This
indicates the first line of an end-of-page category (footer).
Footers are automatically printed when the repetitive
category lines exceed the number of lines per page allowed
for that report.

To identify detail lines with fields to accumulate:

This indicates a detail line containing fields whose values
are to be accumulated for totaling. The lines will be printed
in the report. Note: The data elements to total are identified
on the Report Call of Elements screen by entering "T” in
OPERATION ON SOURCE FIELD. All elements are
conditioned by report category. (See Subchapter "CALL OF
DATA ELEMENTS (-CE)".)

A category containing a detail line: . can contain only one
detail line, . cannot contain a total line, . cannot be iterative,
. can include other ordinary lines.

The logic for data elements to be totaled is generated only
if the conditions specified for the *’ line category are met.

Same as ", but the category containing this line is not to be
printed.

Note: For information concerning other lines that may or
may not be included with lines of this type, see
CATEGORY OF REPORT.

One program may use several reports. There can only be 12
" and "T’ type lines (combined) per program.

To identify lines displaying accumulated totals:

Chapter 4. Reports 111

VALUE
NUMLEN| CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

0’ Indicates a line for Grand Totals. Note: Grand Totals may
only be requested if there is at least one Total at a control
break level. At least one control break has to be specified
for a file on the -CD screen.

"Tto 9 Indicates a line for totaling at the control break level

corresponding to this value.

A category containing a total line: . may contain several of
them, . cannot contain a detail line, . cannot be iterative, .
can include other ordinary lines.

See CATEGORY OF REPORT for information on other lines
that may or may not be included in a category with
totaling-type lines.

NOTE: A detail line may be defined in a different report.
For example, a summary report based on accumulations
from other reports may be needed. This can be done using
the following technique: The STRUCTURE NUMBER
assigned to the detail line of the other report is not used on
the summary report’s Call of Elements screen, and on its
Description (-D) screen, the TYPE OF LINE value is entered
and the TOTALING LINE INDICATOR will be comprised
of the LAST CHARACTER OF REPORT CODE of the report
containing the detail line, followed by its STRUCTURE
NUMBER. Only the totaled data elements will be printed,
at the designated control break level.

TOTALLING LINE INDICATOR

On a line that has fields being totaled (TYPE OF LINE
values '0” to '9"), which has a detail line described in a
different report, enter the following:

first character: LAST CHARACTER OF REPORT CODE of
the report containing the description,

2nd and 3rd characters: STRUCTURE NUMBER.

On the first line of a repetitive category (TYPE OF LINE =
'T’), this value causes the generation of a subscript which
controls the number of repetitions. This number may be
fixed or variable.

For a fixed number:

.enter an absolute number value.

For a variable number:

112 VisualAge Pacbase: Batch Applications

NUMLEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

"blank’

.enter the three character code defined on the Work Areas
(-W) screen for use as the subscript field. (The values are
determined via Procedural Code.) OR .use the standard
PACBASE index (Jddrcc), generated for the category.

STRUCTURE OF THE LINE FOR PRINTING

PURE NUMERIC FIELD

It is the variable part of the line, called “structure’. Enter
here the number of the chosen structure (from 01" to '98’)
which must have been defined on the 'Call of elements’
screen (-CE).

CONSTANT PART NUMBER

FALSE NUMERIC FIELD

The constant part is defined on the Report Layout (-L)
screen. Enter here its corresponding number, also defined
on the Layout.

SKIP

LINE SKIP

PURE NUMERIC FIELD

This line skip is taken into account at the report generation.

(default option: 01).

Enter the number of lines to skip, or an absolute line
number.

Overprinting

10 |1

LINE SKIP TYPE

Skips the number of lines indicated in the field. (Default
option).

Absolute line number, when indicated on the first line of a
category (except for the heading category).

Ex: if you indicated *70, a category is printed after line '70".

11 |4

FUNCTION SUB-FUNCTION PRIOR TO PRINT

Enter the code of the function (and sub-function) to be
performed before the processing of the STRUCTURE
NUMBER indicated on this line, and before the WRITE.

Chapter 4. Reports 113

NUMLEN

VALUE
CLASS

AND FILLING MODE DESCRIPTION OF FIELDS

Note: The same STRUCTURE NUMBER may be used in
several categories. In this case, the PERFORM will take
place each time through the processing loop for that
structure. It is not necessary to enter the (sub)function code
on the first category that uses that structure. A function
must not be mentioned more than once for the same
structure.

In cases where several functions are to be performed with
the same structure, the execution sequence may be
problematic.

For lines without a STRUCTURE NUMBER specified, the
function will be performed once only, preceding the
completion of processing of the structures, (F8199), and just
prior to the WRITE.

This function is performed according to the positioning of
the associated structure and thus to the type or condition of
the category in which the structure is called.

12 |13

COMMENTS

The comment entered on the screen top refers to the whole
report. Comments entered on the screen body normally
refer to the individual lines.

13 |35

CONDITIONS OF REPORT EXECUTION

On the screen top - (the "E-line”):

Enter conditions relevant for report execution.

On the screen body:

Enter conditions concerning the execution of the Category
of Report.

Format of entry:

Use the COBOL format to enter conditions but do not enter
‘IF’, nor GO TO, and do not enter any period.

Direct print / application spooling routines
GENERAL INFORMATION

For the purpose of this discussion, the term "direct print” applies to those
automatic spooling programs that are transparent to the user. Reference to
"application spooling routines’ are those where the user specifies the spooling,
for instance, in order to sort reports after they are produced.

114 VisualAge Pacbase: Batch Applications

The user identifies which type of report it is via the USAGE OF DATA
STRUCTURE value for the report data structure on the Call of Data Structures
(-CD) screen of the program.

DIRECT PRINT REPORTS: USAGE OF DATA STRUCTURE = T

The generated WRITE statements take the line SKIP values entered on the
Report Description (-D) screen into account.

Some hardware permits the output of files using the direct print option (usage
='I’) to be sent to devices other than printers. The first position of each record
is therefore reserved for the 'skip’ character, and automatically translated by
the compiler in WRITE commands. A utility program then transfers it to the
printer.

APPLICATION SPOOLING ROUTINES: USAGE OF DATA STRUCTURE =]’

Spooling consists of storing the print file lines on an intermediate tape or disk
file. The stored file is retrieved by a program executing a print job, with the
spooled file as input.

For certain operating systems, the spooling program is written according to
specific criteria and may use external parameters. Each record image of the
stored file (on an intermediate tape or disk) contains information that will not
be printed: information used to control line skips, sort criteria, and the output
line.

WRITE commands in a spooled report do not check for line SKIP field values.
The PACBASE data element "LSKP” acts like a pointer to this value. 'LIGNE’
is a group field into which the sorted output is moved.

These fields are included by using STRUCTURE NUMBER = '00’, in which
sort criteria, like the REPORT CODE, may be entered (major-to-minor
sequence).

USE OF 'LSKP’ DATA ELEMENT:
If the 'LSKP” element is not used, a "WRITE’ statement is generated.

Entering 'LSKP” in the 00" STRUCTURE generates a "WRITE AFTER LSKP”
statement.

If "LSKP’ is the first element of the 00 STRUCTURE, the first character of the

file is automatically filled with the corresponding ASA skip value, if this
operating system specification is available.

Chapter 4. Reports 115

If the 'LSKP’ is not entered as the first element, it is necessary to enter the
skip value in this field.

Data elements of a ‘00" structure are referenced in relation to the beginning of
the record. They are listed on the Report Call of Elements (-CE) screen exactly
as the data Elements of all the other structures are.

Reports that are spooled are described exactly as reports printed directly, with
respect to the Layout, Description and Call of Elements, except for the
inclusion of a ‘00" structure as described above.

Spooling is transparent at the program level. Therefore the user may change
the USAGE OF DATA STRUCTURE value to send the output directly to the
printer. This may be convenient for testing purposes. The ‘00" structure will
not be used with usage = 'I. At implementation, the only modification to
make is to change the usage back to 'J".

On-line access commands
LIST OF REPORTS

CHOICE SCREEN UPD

LCRaaa List of Reports by code (starting NO
with Report 'aaa').

LNRaaa List of Reports by name (starting NO
with Report 'aaa').

LTRbRaaa List of Reports by type 'b'(starting NO

with Report 'aaa').
DESCRIPTION OF REPORT 'aaa'

CHOICE SCREEN UPD

Raaa Definition of Report 'aaa'. YES

RaaaGCbbb Comments of Report 'aaa'. YES
(starting with Tine 'bbb').

RaaaCRbbbbbb Occurrences Tinked to Report 'aaa'
through User Relationship 'bbbbbb'.

RaaaATbbbbbb Text assigned to Report 'aaa' NO
(starting with text 'bbbbbb').

RaaaX X-references of Report 'aaa'. NO

RaaaXVbbbbbb X-references of Report 'aaa' to NO
Documents (starting with Document
"bbbbbb") .

RaaaXPbbbbbb X-references of Report 'aaa' to NO
programs (starting with program
"bbbbbb") .

116 VisualAge Pacbase: Batch Applications

RaaaXQbbbbbb

RaaalbbCccc

RaaaDbbccc

RaaaCEbbccc

NOTE: After the first choice of type 'Raaa’, 'Raaa’ can be replaced with ’-".

List of occurrences linked to Report NO
'aaa' through User Relationship

"bbbbbb".

Layout of Report 'aaa' YES
(starting with Tine 'bb', column 'ccc').
Description of Report 'aaa' YES
(starting with category 'bb',

line 'ccc').

Call of Data Elements in Report 'aaa' YES
(starting with Structure 'bb',
position 'ccc').

All notations between parentheses are optional.

Chapter 4. Reports

117

PURCHASING MANAGEMENT SYSTEM SGOOOOO8.LILI.CIV.1583
LIST OF REPORTS BY CODE
CODE NAME AND COMPLEMENT T TYPE LGT TOTAL LIBR
EO 1 VENDOR ACTIVITY E REPORT 132 11 07 0059
EO 2 VENDOR LIST E REPORT 132 11 07 0059
XE R CONTROL REPORT E REPORT 132 11 07 =CEN
X0 C Comment of data element E REPORT 132 11 07 =CEN
X0 D Dialogue E REPORT 132 11 07 *CEN
X0 E Complement of the Dialogue E REPORT 132 11 07 =*CEN
X0 K List of data elements (cl) E REPORT 132 11 07 =CEN
X0 L List of data elements (c2) E REPORT 132 11 07 =*CEN
X0 M Macro structures called E REPORT 132 11 07 =CEN
X0 P Structured code E REPORT 132 11 07 =CEN
X0 S Screen definition E REPORT 132 11 07 =CEN
X0 2 Segments used E REPORT 132 11 07 *CEN
X0 7 Lines '7' E REPORT 132 11 07 =*CEN
XY A TRANSACTION REPORT E REPORT 132 11 07 =*CEN
XY B PRODUCTION REPORT E REPORT 132 11 07 *CEN
XY C TRANSACTION SELECTION CARDs E REPORT 132 11 07 =*CEN
*%x%x END **%
0: C1 CH: LCR

118 VisualAge Pacbase: Batch Applications

PURCHASING MANAGEMENT SYSTEM SGOO00O8.LILI.CIV.1583
REPORT GENERAL DOCUMENTATION ED1 FOLLOW-UP AND STATISTICS

A LIN : T DESCRIPTION LIB
100 : THIS EDITION SHOULD BE EXECUTED EVERY NIGHT.

Generation and/or printing
With COMMAND FOR PRINT REQUEST = "DCR”:

The ENTITY CODE is optional. When selecting a report or Reports, enter the
prefix of the ENTITY CODE, and the LAST CHARACTER OF REPORT
CODKE(s) in the continuation area (beginning in column 31 in batch mode).

Whatever the library selection code happens to be, the output option for a
report can be only 1" or 2" (C1, U1,..., C2, U2..).

The '1” option generates the printing of:

.the definition line of reports:
 associated keywords and general documentation lines,
* cross-references to programs,

.description lines of reports:

* report layouts,

¢ report descriptions (general characteristics and list of categories),
* report call of elements.

Chapter 4. Reports 119

The "2” option provides the same listings as above, but adds a listing of the
data structure assigned text and the report assigned text.

With COMMAND FOR PRINT REQUEST = "LCR”:
A list of reports in report code sequence is provided.
With COMMAND FOR PRINT REQUEST = "LKR”:

A list of reports in keyword sequence is provided. The user may restrict the
listing by specifying the keyword type:

Explicit only = "M’; Implicit only = 'L’, entered in column 30 (batch mode).
The keyword to search on may be specified, by entering it in the continuation
area (column 31 in batch mode).

With COMMAND FOR PRINT REQUEST = 'LTR":

A list of reports in report type sequence is provided.

With COMMAND FOR PRINT REQUEST = "DKR’:

A description of reports in keyword sequence is provided.

120 VisualAge Pacbase: Batch Applications

Chapter 5. Error messages

Introduction

The System manages error messages that will be used to inform you of input
errors detected by application programs.

Error messages can be created as needed, or generated upon request, to
update the sequential error message file. This file will be used to create
application error message files. They can be indexed files or databases,
depending on the hardware in use.

The generation is performed by the GPRT procedure, using the GEO
generation/print command. It is possible, in this command, to specify the
generation language (EN or FR) of the error messages, which is by default the
language assigned to you.

It generates the error messages for the Screens specified in the GEO command
inside the PAC7GL file. Error messages of other Screens found in the PAC7LG
file are copied in the PAC7GL file and not modified.

GENERAL INFORMATION

There are two different types of error messages for batch: those that are
generated automatically, and those that are user-defined.

Standard error messages will appear for errors detected in processing of
transactions according to the DATA ELEMENT PRESENCE and CONTENTS
specifications entered on the Segment Call of Elements (-CE) screen. These
messages may be modified by the user, and/or supplemented with text.

User-defined error messages may be used with other validations. They are
defined in a program using Procedural Code lines, and then attached to the
transaction data structure to which they apply. Any program with appropriate
messages may be associated with the transaction, however since the
maximum number of programs that can be associated is two, it is advisable
(perhaps) to design a program or two whose only function is to contain these
messages.

The Error Message File must be generated and the sequential file loaded into
the program. Backout issues may also need to be addressed.

AUTOMATIC ERROR MESSAGES

© Copyright IBM Corp. 1983,2004 121

An error message record is automatically generated for each control coded in
the Segment description lines. It consists of two parts which follow one after
the other:

* A message corresponding to the error type and therefore to the type of
control being performed. These standard messages are stored in a VA Pac
file, but they can be modified on-site by the Database Administrator).

Example:
'INVALID ABSENCE OF THE DATA ELEMENT’
* The data element clear name in the dictionary.
Example:
"ORDER NUMBER’
Concatenating the two gives the following result:
'INVALID ABSENCE OF THE DATA ELEMENT ORDER NUMBER’

REPLACEMENT OF AUTOMATIC MESSAGES

Automatic messages can be replaced by specific messages such as:

"THE ORDER NUMBER IS REQUIRED’

These messages are indicated on 'S’ type lines assigned to data element call
lines in the Segments (S5ddssCEnnnGE, where nnn is the Data element call line

number).

EXPLICIT ERROR MESSAGES

Controls coded on Data element calls in Data Structures are the only ones that
cause error messages to be automatically generated. For all types of errors
detected by other controls, automatic or otherwise, error messages must be
defined explicitly with the 'E” operator on structured language description
lines (-P).

(See Subchapter "Procedural Code Screen” in the Chapter "Modifying the
Procedure Division” of the Manual Structured Code.)

DOCUMENTATION MESSAGES

Besides error messages, it is possible to generate documentation messages of
the same format. These documentation messages consist of the following;:

* Description lines of the Data elements called in the Segments.
* Text lines called in the -GE screen assigned to the Data Element call lines.
* lines of ‘D’ type assigned to the Data element call lines (SddssCEnnnGE).

122 VisualAge Pacbase: Batch Applications

Replacing automatic messages and defining documentation labels are not
possible with the generation of VA Pac Version 6 type error messages.

ERROR MESSAGE EDIT EXAMPLE

ERR G ! LIST OF ERROR MESSAGES
______ | e

1
I NUMBER OF DELIVERIES

| e

I Text or comment lines associated with the data
I element.

I Data element description Tines.

10 : Before creating the 1st delivery.

1'1 to 9: Each time a delivery is created, its value
is incremented by 1.

I

!

I

I

|

I

!

! INVALID ABSENCE OF THE DATA ELEMENT NUMBER OF
! DELIVERIES

I

I NON-NUMERIC CLASS DATA ELEMENT NUMBER OF

! DELIVERIES

I
!
I
!
I

Text or comment lines associated with type 4 Data
element errors

INVALID VALUE FOR DATA ELEMENT NUMBER OF
DELIVERIES

Coding of error messages
CODING OF ERROR MESSAGES

Automatic error messages are built in two parts. The first part is a description
of the type of error. The second part is the clear name of the erroneous data
element. The first part may be modified on-site by the Data Administrator.
Additionally, the error message can be customized to suit the specific data
element it concerns by entering the message on the Data Structure Definition
line, using the LINE NUMBER value to attach the message to the appropriate
element.

The TYPE OF LINE value determines whether the contents of the COMMENT
field override a message or supplement it.

To override a message, enter 'S’ for TYPE OF LINE, and code the COMMENT
field as follows:

Column 1: ERROR TYPE (2, 3, 4 or 5)

Column 2: blank

Chapter 5. Error messages 123

Column 3: ERROR GRAVITY (E, C or W)
Column 4: blank
Column 5: enter the message beginning here.

Example: To replace the automatically generated message for an erroneous
value of the data element called on line 120:

! LIN : T DESCRIPTION

! 010 : S 5 E THIS VENDOR IS SUSPENDED
!

10: C1 CH: -cel20ge

SUPPLEMENTING AUTOMATIC ERROR MESSAGES

To supplement the error report with extra documentation, enter ‘D’ for the
TYPE OF LINE, and code the COMMENT field as follows:

Column 1: 0 = place this information before Data
Element Description (-D) Tlines,
1 = place this information after Data
Element Description (-D) lines,
2 to 5 = place the documentation after
the corresponding error message
Column 2: blank
Column 3: blank
T
Column 4: blank
Column 5: Begin the documentary message or
Enter the text & paragraph code being called.
Two asterisks (**) for the paragraph code is
a permitted value, it will call all the para-
graphs of the text.

a documentary message
the call of a text

EXAMPLE: To precede all error messages for the data element called on line
230 with a text:

! LIN : T DESCRIPTION

! 010 : D O T TEXTCDPP
!

10: C1 CH: -ce230ge

PROVIDING ADDITIONAL ERROR MESSAGES

124 VisualAge Pacbase: Batch Applications

The only error messages that are automatically generated are for errors
detected according to the data element validation specifications entered on the
Segment Call of Elements (-CE) screen. All other types of messages must be
explicitly defined.

Since only two programs containing error messages can be associated with the
transaction data structure concerned, it may be convenient to define separate

programs just to contain these messages.

DEFINING USER ERROR MESSAGES

User error messages are defined in Structured Code on the Procedural Code
(-P) screen, using the 'E” OPERATOR. The OPERAND field is coded as
described below.

Column 1: A User Error Code character.
Note: Avoid values 0 to 5 inclusive,
as they have pre-defined meanings.
Recommendation: Use '6', since this is
the value used in standard macros.

Column 2 to 4: Enter a unique identifying number
for this message.
Column 5: Error gravity.
Column 6: Begin your error message
In the CONDITION field, the message may be continued.
Example:

ILIN OPE OPERANDS LVTY CONDITION
! N USER ERRORS 10BL

6001 ZIPCODE DOES NOT CORRESPOND TO STATE
6002 FIRST CLASS SMOKING SECTION IS FULL

10: C1 CH: Perrpgl POOut

ASSOCIATING THE USER ERROR MESSAGE WITH THE ERROR

This is normally accomplished using the User Error Table (UT-UPR(n)), which
is generated with the error variable, 'ERUT’. Error messages are stored
positionally according to the error number (example 001, then 002). In order
to specify which error message is desired, use Procedural Code: Move 1" into
UT-UPR(n), where n = the error number of the message.

ASSOCIATING ERROR MESSAGE PROGRAM(S) WITH THE
TRANSACTION

On the Data Structure Definition screen of the transaction data structure, enter
the error program’s PROGRAM CODE in the COMPLEMENT field as follows:

Chapter 5. Error messages 125

Column 1 : blank

Column 2 : E

Column 3 to 8 : first program with error messages
Column 9 to 14 : second program with error messages.

GENERATING THE ERROR MESSAGE FILE

In order to include error messages in a program, the error message file must
be generated. This is accomplished by using the 'GED’ COMMAND FOR
PRINT REQUEST, with the data structure being the transaction data structure
code.

Using the C2 print option, a report similar to the one below will be produced.

I Text or general documentation Tines associated
I with the data element from SddssCEnnnG, TYPE OF
I LINE = 'D' and COMMENT first column = '0'.

|

!

|

!

| Data element description lines: EeeeeeeD.
10 .before first delivery

'l 9 .with each delivery, the value is 1ncremented'
|

!

|

!

!

1

!

! by one. !
! INVALID ABSENCE OF DATA ELEM. NUMBER OF DELIVERIES!
I NON NUMERIC CLASS DATA ELEM. NUMBER OF DELIVERIES !
I Text or general documentation Tines associated !
! with error type 4: SddssCEnnnG, TYPE OF LINE = 'D'!
! and COMMENT first column = '4', !
! ERRONEOUS VALUE FOR DATA ELE. NUMBER OF DELIVERIES!

NOTE:: Loading of the sequential error file and addressing backout issues
may be accomplished by calling in Parameterized Macro Structures.

Description of error message file

The System generates an error message file. The records generated for this file
are described on the following pages.

Examples of error message file records:

126 VisualAge Pacbase: Batch Applications

! AP6AMBOO 0035000EERRONEOUS VALUE FOR DATA ELEMENT DELAY !

|
1
| GCCHJIEO100054000ENON-NUMERIC CLASS DATA ELEMENT ACTION
1
|

! LU1ID0000116 002 009

Decoding the first example:

LIBRARY CODE :
ENTITY TYPE
ENTITY CODE
ERROR NUMBER :

ERROR TYPE
LINE NUMBER

AP6

: A (Segment)

: MBOO

003 (rank - Tocation on the list of elements

of the segment)

: 5 (erroneous value)

ERROR GRAVITY: E

ERROR MESSAGE:

: 000

ERRONEOUS VALUE

NUN

ILEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

1

3

LIBRARY CODE

1

This code identifies a Library. The Library code is assigned
at the time a Library is created and cannot be modified.

Special characters are not allowed in a Library code but any
alphabetic or numeric character can be used.

This value is forbidden to define a library. It must be used
only to select all the Libraries when viewing the Database.

ENTITY TYPE

Used to specify the type of entity.

For Data Structures or Segments (BSD error messages).

For Screens (OLSD error messages).

Record reserved for internal use by the OLSD function. It is
used by the Help function to indicate the position of a field
on a Screen, using a line / column formula.

ENTITY CODE

ERROR NUMBER

For automatically generated error messages:

It is the data element position (or sequence number) in the
segment or screen.

For user-defined error messages:

This is the unique error code entered on a Procedural Code
(-P) screen with OPERATOR = "E’. This value is entered in
columns 2 to 5 of the OPERAND field.

Chapter 5. Error messages 127

CLASS
NUMLEN| VALUE DESCRIPTION OF FIELDS AND FILLING MODE
5 1 ERROR TYPE
The following values are used by the system to flag
erroneous conditions as specified in the validation fields on
the Segment or Screen Call of Elements (-CE) screens for
data elements:
2 . Invalid absence.
'3’ . Invalid presence.
£y . Erroneous class.
5 . Erroneous value.
Other error types can be defined by the user, for non-
standard validations. They must be inserted via procedural
Code (-P) in validation and update programs.
Documentary messages assigned to data elements are
identified by the following values:
0’ Documentation placed prior to Data Element Description
information.
gy Documentation placed after Data Element Description
information.
6 3 LINE NUMBER
This number is managed by the system.
’000’ Error messages
’001-999 Documentary messages
NOTE: For an ENTITY TYPE ‘T’ record, this number is
managed by the system and contains the LINE NUMBER of
the erroneous field on the Screen.
7 1 ERROR GRAVITY
The value of this zone may be controlled by the user in
order to restrict transaction rejections. For example: "W’ =
Warning. Transaction accepted. ‘C’ = Caution, error. The
data element is corrected, or its update is refused (the rest
of the transaction is accepted. 'E” = Error. This error is not
corrected. The transaction is rejected.
Standard PACBASE does not check the value of this field,
and rejects all erroneous transactions.
8 30 ERROR MESSAGE FIRST PART
For automatic error messages, this part of the message
remains constant and is used to indicate the type of error:
2: INVALID ABSENCE OF DATA ELEMENT,

128 VisualAge Pacbase: Batch Applications

NUMLEN

CLASS
VALUE

DESCRIPTION OF FIELDS AND FILLING MODE

3: INVALID PRESENCE OF DATA ELEMENT,

4: CLASS OF DATA ELEMENT NOT
NUMERIC/ALPHABETIC,

5: ERRONEOUS VALUE FOR DATA ELEMENT.

For explicit error messages, this is the first part of the error
message as entered in the OPERAND field on the
Procedural Code (-P) screen.

For ENTITY TYPE = I’ records, the value in this field
identifies the column of the erroneous field.

ERROR MESSAGE 2ND PART

For automatic error messages, this is the clear name of the
erroneous data element as defined on the Data Element
Definition screen, or on the Segment Call of Elements (-CE)
screen.

For explicit error messages, this is the part of the message
entered in the CONDITION field of the Procedural Code
(-P) screen.

Generation and/or printing

GED: Generate the error messages defined for a data structure and for each
segment. (A language code (EN or FR) can be entered to generate the
error messages in a language other than the language assigned to the
user).

C1: Error messages defined for the data structure and for each segment.

C2: Error messages generated through option 1 plus documentary help
messsages.

LED: List the error messages defined for the data structure and for each
segment.

This command is accessible in option 1 only.

This list only includes messages that have already been generated.

NOTE: If a segment suffix is entered on the continuation line of a GED or
LED command, error messages are generated/ printed for this

segment only.

Chapter 5. Error messages 129

130 VisualAge Pacbase: Batch Applications

Chapter 6. Example of generated program

Introduction

The purpose of this chapter is to present a program designed in the System,
as it is generated in COBOL.

The objective of this program is to demonstrate a wide variety of options, not
a model for "good programming”.

In this chapter, the user will find the following;:

* coding of the data names,

* different types of data structure descriptions,

* a complete glossary of variables, counters and indexes,

* the description of all the standard functions with their generation
condition.

Highlights of various screen images used in the generated example are
entered below:

Transaction file Definition screen:

IDATA STRUCTURE DEFINITION MV !
INAME...............: TRANSACTION FILE !
ICOMPLEMENT.........: !
'TYPE...............: Z DATA STRUCTURE !
!
!

ISEGMENT DEFINITION........: MVOO
INAME..........ceeeeeeene..: TRANSACTION SEGMENT
10CCUR. OF SEGMENT IN TABLE:

TEST. NUMBER OF INSTANCES..:

ICODE OF RECORD TYPE ELEM..: NUCAR

ICODE OF ACTION CODE ELEM..: CODMV

IVALUES OF TRANSACTION CODE: CR: 'C' MO: 'M' DE: 'S’
! M4: 'D' M5: 'E' M6: 'F'
|

10: C1 CH: s mv0O

Transaction Segment (common part) Call of Elements screen:

© Copyright IBM Corp. 1983,2004 131

!SEGMENT CALL OF ELEMENTS MVOO TRANSACTION SEGMENT
TELEM. U OCC GR K CMD456 CONT VALUE/SFC UPD/TRGET

!
10: C1 CH: s mvOO ce

!

!
'ENPR 1 !
'EPR 10 !
!GRPR 1 !
!GPR 2 !
'ERUT 1 !
'UPR 10 !
INOCL 3 M LVOONOCL !
INOCL11 A 000000 !
INOCL12 B 000000 !
INOCL2 C 000000 9 !
INUORD D 000000 9 !
! N< '1° !
! EN> '8! !
! 0="9' !
1CODMV E !
INUCAR F !

!

!

!SEGMENT DEFINITION........: MVOl

|
1
10CCUR. OF SEGMENT IN TABLE: !
TEST. NUMBER OF INSTANCES..: !
IVALUE OF RECORD TYPE ELEM.: 'A' !
ICODE OF ACTION CODE ELEM..: !
IPRESENCE.........cceveeeeos CR: 0O MO: I DE: I !
! M4 M5: M6 : !
| 1
10: C1 CH: s mvOl !

ISEGMENT CALL OF ELEMENTS MVO1 TRANSACTION SEGMENT
VELEM. INT.FORM. U.... CMD456 CONT VALUE/SFC UPD/TRGET

INOMCL 0 A
1ADRES 0
IFILLER X(6) D

!
!
10: C1 CH: s mvOl ce

!
!
!
!
!'NUDEP 0 T TDOINUDEP !
!
!
!
!

!SEGMENT DEFINITION........: MVO2

'0CCUR. OF SEGMENT IN TABLE:
'EST. NUMBER OF INSTANCES..:

132 VisualAge Pacbase: Batch Applications

IVALUE OF RECORD TYPE ELEM.: 'B'

ICODE OF ACTION CODE ELEM..:
'PRESENCE..........evvvveet CR: 0O MO: DE: I
! M4: 0 M5: 0 M6: O
1

10: C1 CH: s mv02

!SEGMENT CALL OF ELEMENTS MV02 TRANSACTION SEGMENT !

'ELEM. INT.FORM. U.... CMD456 CONT VALUE/SFC UPD/TRGET !
IMREEL9 !
IMREEL9 R= !
IDALI !
IFILLER X(62) D !
| |
1 1
10: C1 CH: s mv0O2 ce !

! DECIMAL PLACES.: 07
!

10: C1 CH: r edl

!REPORT DEFINITION.....: ED1 !
INAME..................: TEST FOR BATCH MANUAL !
ICOMMENTS...ovvvnnnii !
INATURE................: E REPORT !
!PRINTER TYPE..........: P !
'LINE LENGTH...........: 045 !
'FORMAT FOR TOTALS : INTEGER........: 11 !

!

!

!

IREPORT LAYOUT : ED1 TEST FOR BATCH MANUAL LENGTH= 045 !
ILNCP S C 1 1 2 2 3 3 4 4
!

! 1...5....0....56....0....5....0....5....0....5...!
101 1«1 UPDATE REPORT XXXXXXX !
110 0 !
120 2 1 NUMBER OF VALID TRANSACTIONS : 495 !
130 3 2 NUMBER OF INVALID TRANSACTIONS : 55 !
140 4 2 0 NUMBER OF TRANSACTIONS : 550 !
150 5 O PERCENTAGE OF INVALID TRANSACTIONS : 10,00 !
160 6 2 0 NUMBER OF FILE RECORDS : !
170 7 0 !
180 840 Cb : 100 !
190 9 3 0 *xkkkhkhkkhkkhrkhkkhrkhhkhrhrkrkhk *hkhkkkhxhkkhx |

|

|

10: C1 CH: r edl 1

Report Call of Elements for Report 1:

Chapter 6. Example of generated program 133

'REPORT CALL OF ELEMENTS ED1 TEST FOR BATCH MANUAL
IST ELEM L : STA C O W SOURCE FLD CONDITION

!

!
100 LSKP 0O 1 M * LSKP !
100 PAGE 0 3 M5 LI0OO1CP !
100 NULIG O 6 !
100 LIGNE © 9 !
101 ACCEP 0 39 M WAO4ACCEP !
102 REFUS 0O 39 M WAGAREFUS !
103 TOTAL 0 : 39 R WAOG4ACCEP !
103 TOTAL 1 : 39 = + WAO4REFUS !
'04 POURC 0 : 39 M = ZERO !
104 POURC 1 39 R * 100 WAO4-ACCEP > 0 OR...!
104 POURC 2 39 =« WADAREFUS !
104 POURC 3 39 =/ (WAGAACCEP !
104 POURC 4 39 * + WAG4REFUS) !
105 NOFICH 0 32 M WCO2NOFICH+DD !
105 CPTENR O 38 M WCO3CPTENR+DD !
106 ZLIBO3 O 1 !

!

!

10: C1 CE: r edl ce

'REPORT DESCRIPTION : ED1 TEST FOR BATCH MANUAL !
'LINE LENGTH: 045 LI PAGE: 60 CAT TBL INST: 0000 ..SECT. 00!
ICOMMENTS. . .: CONDITIONS FT = ALL '1' !
ICA LIN T TLI ST CP SKP FUSF COMMENTS CONDITIONS !
!BC 100 01 01+ 91BC !
!BC 110 102 02 !
!BC 120 2 03 02 !
!BC 130 3 04 02 !
!BC 140 4 05 02 !
!BC 150 06 02 !
1BC 160 07 01 !
!DD 100 I 012 5 08 01 !
'EE 100 09 01 !

!

!

10: C1 CH: r edl d

IREPORT CALL OF ELEMENTS ED3 TEST FOR BATCH MANUAL

!
IST ELEM L : STA C O W SOURCE FLD CONDITION !
101 DATEM O : 46 M = DAT8C !
101 PAGE 0 : 76 M 5 EDOO3PC !
102 NOCL 0 : 10 M 2 CLOONOCL !
102 NOMCL 0 : 17 M 2 CLOONOMCL !
103 FILLER @ : 38 M % 'DELIVERY' !
103 JED3FA O : 48 M = JED3FA !
103 DATE 0 : 53 M 2 LVOODALI =*FA !
103 QUL 0 : 75 M 2 LVOOQULI =*FA !
104 4 0: 35 M1 LIoo4 Jo5 !
104 NOCL11 0 : 56 M 2 CLOONOCL11 Jo5 < 4 !

134 VisualAge Pacbase: Batch Applications

!
10: C1 CH: r ed3 ce

104 NOCL12 0 57 M 2 CLOONOCL12 Jo5 =2 O0R J05 = 3 !
104 NOCL2 © 59 M 2 CLOONOCLZ Jo5 =3 !
104 QUCO 0 : 64 T 2 CDOOQUCO !
104 QTLI 0 : 76 T 2 LVOOQTLI !
104 SOLDE 0 : 88 R 2 CDOOQUCO Jos = 3 !
104 SOLDE 2 88 * - 2 LVOOQTLI !
104 SOLDE 3 88 R T304QuCO JO5 JO5 NOT = 3 !
104 SOLDE 4 88 - T304QTLI JO5 !

!

!

The main characteristics of the Program Call of Data Structures (-CD) screen
used for the generated program are illustrated below:

! DP DL ! OARFU ! BM ! U ! RESE ! L ! SELECT. ! FERL !
| | [— R [L — | [| [|
1CDCD ! SSFIU ! 23 1 P1IDC ! ! ABC Il 11
I CLCL!SSFIU! 23 1P I LCSE! ! ABC Il 1!
! DC CD ! SSFOU ! TRICD ! ! Il 11
! ED ED ! SSFOU ! 11! P13 Il 1!
I EN MV ! SSFIU ! 1C! Pl Il 1!
IGLGR ! SSFIU ! 21 C! I 1 AB Il 1!
I LC CL ! SSFOU ! TRICL o ! Il 1!
! LI ED ! SSFOU ! 1J! | Il 11
LV LV ISSVIU ! 23 P I VL | 1 ABC Il 11
! MO MO ! VSFID ! rTrCED L Il 1!
! STAT.FLD: MOGOSTATUS ACC. KEY: MOIS RECTYPEL: !
LMV MV I SSFTU ! 63 ! M! VM ! 51 ABCDEF ! I 1!
I SE CL ! SSFOU ! 1S oocLtod Il 1!
! TD TD ! SSFIU ! DX L1 %0102 ! I 1!
I VL LV ! SSFOU ! IDILy Il 11
I VM MV ! SSFOU ! LEL Mt PIW 1!
I WA WG ! WSFOU ! 1 D! L1 x04 'T 22 !
I WR WR ! WSFOU ! 1D L1 %02 'T 22 !
| |

1

10: C1 CH: p pjjpsl cd

Identification division

The user may modify the IDENTIFICATION DIVISION of the generated
program, via the Beginning Insertions (-B) screen.

(See the STRUCTURED CODE Reference Manual).
IDENTIFICATION DIVISION.

PROGRAM-ID. PJJPSI. PJJPS1
AUTHOR. VALIDATION/UPDATE. PJJPS1
DATE-COMPILED. 07/03/04. PJJPS1

Chapter 6. Example of generated program 135

Environment division

The ENVIRONMENT DIVISION is adapted to the appropriate COBOL variant
according to the TYPE OF COBOL TO GENERATE option.

(IBM MVS is used for the sample program).

In general:

-three types of file organization are accepted:

.sequential,

indexed,

JVSAM’, for IBM MVS and DOS variants.

-three types of access methods are accepted:

.sequential access,

.dynamic (for VSAM organization only),

.direct access.

In the latter case, the generated NOMINAL KEY (or SYMBOLIC KEY) is
always in the form 1-ddss-eeeeee where dd, ss, and eeeeee have been defined
by the user on the Program Call of Data Structures (-CD). In fact, this key
normally appears in a transaction file work area. If not, it is up to the user to
define and control it.

NOTE

The user can modify this part of the program via the Beginning Insertions (-B)
screen.

(See the STRUCTURED CODE Reference Manual.)

ENVIRONMENT DIVISION. PJJPS1
CONFIGURATION SECTION. PJJPS1
SOURCE-COMPUTER. IBM-370. PJJPS1
OBJECT-COMPUTER. IBM-370. PJJPS1
SPECTAL-NAMES. PJJpPS1
Co1 IS LSKPP PJJPS1
CSP IS LSKPO. PJJPS1
INPUT-OUTPUT SECTION. PJJPS1
FILE-CONTROL. PJJPS1
SELECT CD-FILE ASSIGN uT-S-CD. PJJPS1
SELECT CL-FILE ASSIGN uT-S-CL. PJJPS1

136 VisualAge Pacbase: Batch Applications

SELECT DC-FILE ASSIGN uT-S-DC. PJJPS1

SELECT ED-FILE ASSIGN UT-S-ED. PJJPS1
SELECT EN-FILE ASSIGN UT-S-EN. PJJPS1
SELECT GL-FILE ASSIGN UT-S-GL. PJJPS1
SELECT LC-FILE ASSIGN UT-S-LC. PJJPS1
SELECT LI-FILE ASSIGN UT-S-LI. PJJPS1
SELECT LV-FILE ASSIGN UT-S-LVv. PJJPS1
SELECT MO-FILE ASSIGN TO ENTO1 PJJPS1
ORGANIZATION INDEXED PJJPS1
FILE STATUS IS 1-M00O-STATUS PJJPS1
RECORD KEY IS M00O-MOIS. PJJPS1
SELECT MV-FILE ASSIGN UT-S-Mv. PJJPS1
SELECT SE-FILE ASSIGN UT-S-SE. PJJPS1
SELECT TD-FILE ASSIGN uT-S-TD. PJJPS1
SELECT VL-FILE ASSIGN UT-S-VL. PJJPS1
SELECT VM-FILE ASSIGN UT-S-VM. PJJPS1

Data division : File section

The user cannot modify this part of the program in any way, except via the
actual description of the data structures.

The FILE SECTION

All the data structures of a program with an ORGANIZATION S, I, or V,
appear in the FILE SECTION. They are described according to their USAGE
OF DATA STRUCTURE, their NUMBER OF CONTROL BREAKS and FILE
TYPE.

Each record described appears in the form ddss where:
.dd = DATA STRUCTURE CODE IN THE PROGRAM
.ss = SEGMENT CODE.

Each data element appears in the form ddss-eeeeee with its format, or if
defined as a group data element, is sub-defined in the Segment Call of
Elements (-CE) screen.

Data structures without REDEFINES have only one COBOL record dd00,
which includes the common and specific parts described in the PACBASE
library.

Input data structures without control breaks or for which a description was
requested, input-output data structures and direct output data structures
(USAGE OF D.S. = 'D’) are described fully in the FILE SECTION.

Input data structures with control breaks and for which a description was
requested are only described partially. Only the common part appears in

Chapter 6. Example of generated program 137

detail. The other data elements are regrouped into the PACBASE group data
element ‘SUITE’ in the format dd00-SUITE.

For output data structures linked to input data structures and for print data
structures (USAGE OF D.S. = T or ']"), details of data elements do not appear
here.

The description of an output transaction file (USAGE = "E’) depends on the
value in the RESERVED ERROR CODES IN TRANS. FILE field on the Call of
Data Structures (-CD) screen for the description of error tables.

If the descriptions of the reserved data elements are requested, the formats
etc. will come from the specifications entered for them on the Segment Call of
Elements screen. If not, the descriptions are generated as follows:

dd00-ENPR PICTURE X(n)
dd00-GRPR PICTURE X(m)
where:

n
m

number of data elements in transaction d.s. + 1,
number of record types in transaction d.s. + 1.

In any case, all other data elements in the data structure are grouped under:
dd00-SUITE PICTURE X(p)

where:
p = length of the longest record in the transaction d.s.

Transaction data structures (USAGE OF D.S.= "M’ or 'N’) that select
descriptions of the reserved error codes, have two additional group levels
within the dd00 level.

dd00V, for the description of reserved data elements,

ddOOE, for the record image.

DATA DIVISION. PJJPS1
FILE SECTION. PJJPS1
FD CD-FILE PJJPS1
BLOCK 00000 RECORDS PJJPS1

DATA RECORD PJJPS1

CDOO PJJPS1

LABEL RECORD STANDARD. PJJPS1

01 CDOO. PJJPS1
10 CDOO-NOCL. PJJPS1

11 CDOO-NOCL11 PICTURE X. PJJpPS1

11 CDOO-NOCL12 PICTURE XX. PJJPS1

11 CDOO-NOCL2 PICTURE XX. PJJPS1

10 CDOO-QUCO PICTURE S9(5)V99 PJJPS1
COMPUTATIONAL-3. PJJPS1

FD CL-FILE PJJPS1

138 VisualAge Pacbase: Batch Applications

01

FD

01

FD

01

FD

01

01

01

BLOCK 00000 RECORDS PJJPS1
DATA RECORD PJJPS1
CLOO PJJPS1

LABEL RECORD STANDARD. PJJPS1
CLOO. PJJPS1

10 CLOO-KEYCI. PJJPS1
11 CLOO-NOCL. PJJPS1
12 CLOO-NOCL11 PICTURE X. PJJPS1
12 CLOO-NOCL12 PICTURE XX. PJJPS1
12 CLOO-NOCL2 PICTURE XX. PJJPS1
10 CLOO-NOMCL PICTURE X(20). PJJPS1
10 CLOO-ADRES PICTURE X(43). PJJPS1
10 CLOO-NUDEP PICTURE XXX. PJJPS1
10 CLOO-LIDEP PICTURE X(24). PJJPS1
10 CLOO-NUREG PICTURE XXX. PJJPS1
10 CLOO-LIREG PICTURE X(24). PJJPS1
DC-FILE PJJPS1

BLOCK 00000 RECORDS PJJPS1
DATA RECORD PJJPS1
DCOO PJJPS1

LABEL RECORD STANDARD. PJJPS1
DCOO. PJJPS1

10 FILLER PICTURE X(00166). PJJPS1
ED-FILE PJJPS1

BLOCK 00000 RECORDS PJJPS1
DATA RECORD PJJPS1
EDOO PJJPS1

LABEL RECORD STANDARD. PJJPS1
EDOO. PJJPS1

10 FILLER PICTURE X(097). PJJPS1
EN-FILE PJJPS1

BLOCK 00000 RECORDS PJJPS1
DATA RECORD PJJPS1
ENOO PJJPS1

ENO1 PJJPS1

ENO2 PJJPS1

LABEL RECORD STANDARD. PJJPS1
ENOO. PJJPS1

05 ENOO-00. PJJPS1
10 ENOO-NOCL. PJJPS1
11 ENOO-NOCL11 PICTURE X. PJJPS1
11 ENOO-NOCL12 PICTURE XX. PJJPS1
11 ENOO-NOCL2 PICTURE XX. PJJPS1
10 ENOO-NUORD PICTURE X. PJJPS1
10 ENOO-CODMV PICTURE X. PJJPS1
10 ENOO-NUCAR PICTURE X. PJJPS1
05 ENOO-SUITE. PJJPS1
15 FILLER PICTURE X(00072). PJJPS1
ENO1. PJJPS1

10 FILLER PICTURE X(00008). PJJPS1
10 ENOI-NOMCL PICTURE X(20). PJJPS1
10 ENO1-ADRES PICTURE X(43). PJJPS1
10 ENO1-NUDEP PICTURE XXX. PJJPS1
10 ENOL1-FILLER PICTURE X(6). PJJPS1
ENOZ. PJJPS1

Chapter 6. Example of generated program 139

FD

01

FD

01

FD

01

FD

01

FD

01

10
10

10
10

BLOCK

FILLER PICTURE X(00008).
ENO2-MREEL9 PICTURE S9(5)V99
COMPUTATIONAL-3.

ENO2-DALI ~ PICTURE X(6).

FILLER PICTURE X(00062).
GL-FILE

00000 RECORDS

DATA RECORD

10
10

BLOCK

GLOO

LABEL RECORD STANDARD.

GLOO.
GLOO-NOCL11 PICTURE X.
GLOO-NOCL12 PICTURE XX.
LC-FILE

00000 RECORDS

DATA RECORD

10

BLOCK

LCOO
LABEL RECORD STANDARD.
LCOO.
FILLER PICTURE X(00122).
LI-FILE

00000 RECORDS

DATA RECORD

10

BLOCK

LI0O
LABEL RECORD STANDARD.
LI0O.
FILLER PICTURE X(056).
LV-FILE

00000 RECORDS

RECORDING V
DATA RECORD

10
11
11
11
10
10

10

11

11

BLOCK

LVoo

LABEL RECORD STANDARD.

LV0o.
LVOO-NOCL.
LVOO-NOCL11 PICTURE X.
LVOO-NOCL12 PICTURE XX.
LVOO-NOCL2 PICTURE XX.
LVOO-NBLIV PICTURE 9.
LVOO-QTLI ~ PICTURE S9(5)V99
COMPUTATIONAL-3.
LVOO-GROUPE
0CCURS 009 TIMES
DEPENDING ON LVOO-NBLIV.
LV0O-QULI ~ PICTURE S9(5)V99
COMPUTATIONAL-3.
LVOO-DALI PICTURE X(6).
MO-FILE

00000 RECORDS

DATA RECORD

10
10

M00O

LABEL RECORD STANDARD.

MO0O.
MOOO-ANNUL PICTURE X.
M00O-MOIS PICTURE 99.

140 VisualAge Pacbase: Batch Applications

PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1

SD

01

FD

01

FD

01

01

01

FD

01

05

05

05

05

10 MOQO-LMOIS PICTURE X(9).

10 MOOO-FILLER PICTURE X(68).
MV-FILE
DATA RECORD
MVOO.
MVOO.
MV00-00.
10 MVOO-NOCL.
11 MVOO-NOCL11 PICTURE X.
11 MVOO-NOCL1Z2 PICTURE XX.
11 MVOO-NOCL2 PICTURE XX.
10 MVOO-NUORD PICTURE X.
10 MVOO-CODMV PICTURE X.
10 MVOO-NUCAR PICTURE X.
MVOO-SUITE.
15 FILLER PICTURE X(00072).
SE-FILE
BLOCK 00000 RECORDS
DATA RECORD
SE00
LABEL RECORD STANDARD.
SE00.
10 FILLER PICTURE X(00122).
TD-FILE
BLOCK 00000 RECORDS
DATA RECORD
TDOO
TDO1
TDO2
LABEL RECORD STANDARD.
TDOO.
TD0OO-00.
10 TDOO-NOTAB PICTURE X.
TDOO-SUITE.
15 FILLER PICTURE X(00030).
TDO1.
10 FILLER PICTURE X(00001).
10 TDO1-NUDEP PICTURE XXX.
10 TDO1-LIDEP PICTURE X(24).
10 TDO1-NUREG PICTURE XXX.
TDOZ2.
10 FILLER PICTURE X(00001).
10 TDO2-NUREG PICTURE XXX.
10 TDO2-LIREG PICTURE X(24).
10 FILLER PICTURE X(00003).
VL-FILE
BLOCK 00000 RECORDS
DATA RECORD
VLOO
LABEL RECORD STANDARD.
VLOO.
10 VLOO-NOCL.
11 VLOO-NOCL11 PICTURE X.
11 VLOO-NOCL12 PICTURE XX.
11 VLOO-NOCL2 PICTURE XX.

Chapter 6. Example of generated program 141

PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1

10 VLOO-NBLIV PICTURE 9 PJJPS1

10 VLOO-QTLI ~ PICTURE S9(5)V99 PJJPS1
COMPUTATIONAL-3. PJJPS1

10 VLOO-GROUPE PJJPS1
0CCURS 009 TIMES PJJPS1

DEPENDING ON VLOO-NBLIV. PJJpPS1

11 VLOO-QULI ~ PICTURE S9(5)V99 PJJPS1
COMPUTATIONAL-3. PJJpPS1

11 VLOO-DALI ~ PICTURE X(6). PJJPS1
FD VM-FILE PJJPS1
BLOCK 00000 RECORDS PJJPS1
DATA RECORD PJJPS1
VMOO PJJpPS1

LABEL RECORD STANDARD. PJJPS1

01 VM0O. PJJpPS1
10 VMOO-ENPR. PJJPS1
11 VMOO-EPR PICTURE X PJJPS1
0CCURS 010 TIMES. PJJPS1

10 VMOO-GRPR. PJJPS1
11 VMOO-GPR PICTURE X PJJPS1
0CCURS 002 TIMES. PJJPS1

10 VMOO-ERUT. PJJpPS1
11 VMOO-UPR PICTURE X PJJPS1
0CCURS 010 TIMES. PJJPS1

10 VMOO-SUITE. PJJPS1
15 FILLER PICTURE X(00080). PJJPS1

Beginning of Working Storage

Data structures with ORGANIZATION = "W’, or ORGANIZATION = "L’ or
"D’ with an alphabetic CODE FOR COBOL PLACEMENT will be generated at
the beginning of the WORKING-STORAGE SECTION.

For data structures with ORGANIZATION = "W’ or 'L’, all description types
are possible here. Furthermore, complementary levels may be inserted, either
between data structures, or between segments in the same data structure, via
the Work Areas (-W) screen.

WSS-BEGIN will be generated in every program, after these descriptions.

The constant ‘BLANC’ is only generated when Data Structure Usage is ‘M’ or
‘N

The variable 'IK” is always generated.

The PACBASE-CONSTANTS level includes:
e the session number (NUGNA),
* the Library code (LIBRA),

142 VisualAge Pacbase: Batch Applications

* the generation date (DATGN) (MM/DD/YY if user language = 'E’, or
DD/MM/YY otherwise),

* the Program code in library (PROGR),
* the user code (CODUTI),

 the generation time (TIMGN),

¢ the COBOL Program-ID (PROGE),

* the Database code (COBASE),

* the generation date with the century (DATGNC) (MM/DD/CCYY if user
language = 'E’, or DD/MM/CCYY otherwise).

These constants are always generated.

The 'DATCE’ variable includes the CENTUR field (containing the value of the
century), and a blank date area (DATOR) in which the user can store the
processing date in a year-month-day format (DATOA-DATOM-DATOQ]J).

Note: in COBOL II and COBOL 85, if you use the date operator ADT or ADC,
and if the year is less than ‘61", the CENTUR field is automatically set to "20".

Fields to handle date rotations, slashes, century etc. are DAT6, DATS8, DATSE,
DAT6C and DATSC.

The "DATSEP’ variable contains the separator used in the dates. You can
modify its default value (/) by giving another value to the DATSEP Data
Element in the -P lines.

WORKING-STORAGE SECTION. PJJPS1
01 WAOO. PJJPS1
02 WAO4. PJJPS1

10 WAQ4-REFUS PICTURE S9(3) PJJPS1
VALUE ZERO PJJPS1

COMPUTATIONAL-3. PJJPS1

10 WAQ4-ACCEP PICTURE S9(3) PJJPS1
VALUE ZERO PJJPS1

COMPUTATIONAL-3. PJJPS1

10 WAQ4-INTER PICTURE S9(3) PJJPS1
VALUE ZERO PJJPS1

COMPUTATIONAL-3. PJJPS1

10 WAQ4-DECLA PICTURE S9(8) PJJPS1
VALUE ZERO PJJPS1

COMPUTATIONAL. PJJPS1

01 WROO. PJJPS1
10 WROO-DATL. PJJPS1

11 WROO-DAT11 PICTURE XX PJJPS1
VALUE SPACE. PJJPS1

11 WROO-DAT12 PICTURE XX PJJPS1
VALUE SPACE. PJJPS1

11 WROO-DAT13 PICTURE XX PJJPS1
VALUE SPACE. PJJPS1

Chapter 6. Example of generated program 143

01

01

01

01

10
10
11
12
11
11

10

12

11

10
11

11

11

11

11

WSS-BEGIN.
05 FILLER PICTURE X(7) VALUE 'WORKING'.

WROO-DAT113
VALUE
WROO-AMJ.
WROO-AMJA.
WROO-AMJA9
VALUE
WROO-AMJIM
VALUE
WROO-AMJJ
VALUE
WROO-BIS
VALUE

WROO-DHORDI.

WROO-DORDI.
WROO-DORDIA
VALUE
WROO-DORDIM
VALUE
WROO-DORDIJ
VALUE
WROO-HORDI
VALUE
WROO-DORDE.
WROO-DORDEJ
VALUE
WROO-SLASH1
VALUE
WROO-DORDEM
VALUE
WROO-SLASH2
VALUE
WROO-DORDEA
VALUE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

PICTURE

05 BLANC PICTURE X

05 IK

PICTURE X.

PACBASE-CONSTANTS.

05 FILLER

"0630 TOA10/03/96PJJPSIPDXC
CONSTANTS-PACBASE REDEFINES PACBASE-CONSTANTS

05 NUGNA
05 APPLI
05 DATGN
05 PROGR
05 CODUTI
05 TIMGN
05 PROGE
05 COBASE
05 DATGNC
DATCE.

05 CENTUR

05 DATOR.
10 DATOA
10 DATOM

PICTURE X(50)

XX

SPACE.

99
ZERO.
XX

SPACE.

XX

SPACE.

9
ZERO.

XX

SPACE.

XX

SPACE.

XX

SPACE.

9(6)
ZERO.

XX

SPACE.

X

SPACE.

XX

SPACE.

X

SPACE.

XX

SPACE.

VALUE SPACE.

VALUE

PICTURE X(5).
PICTURE X(3).
PICTURE X(8).
PICTURE X(6).
PICTURE X(8).
PICTURE X(8).
PICTURE X(8).

PICTURE X(4)
PICTURE X(10

PICTURE XX

PICTURE XX.
PICTURE XX.

144 VisualAge Pacbase: Batch Applications

).

VALUE '20'.

10:41:21PJJPS1

PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1

PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1

01

01

01

01

01

01

10 DATOJ PICTURE XX. PJJPS1
DAT6. PJJPS1
10 DAT61 PICTURE XX. PJJPS1
10 DAT62 PICTURE XX. PJJPS1
10 DAT63 PICTURE XX. PJJPS1
DAT8. PJJPS1
10 DAT81 PICTURE XX. PJJPS1
10 DAT8S1 PICTURE X. PJJPS1
10 DAT82 PICTURE XX. PJJPS1
10 DAT8S2 PICTURE X. PJJPS1
10 DAT83 PICTURE XX. PJJPS1
DAT8E REDEFINES DATS8. PJJPS1
10 DAT81E PICTURE X(4). PJJPS1
10 DAT82E PICTURE XX. PJJPS1
10 DAT83E PICTURE XX. PJJPS1
DAT6C. PJJPS1
10 DAT61C PICTURE XX. PJJPS1
10 DAT62C PICTURE XX. PJJPS1
10 DAT63C PICTURE X(4). PJJPS1
DAT8C. PJJPS1
10 DAT81C PICTURE XX. PJJPS1
10 FILLER PICTURE X VALUE '/'. PJJPS1
10 DAT82C PICTURE XX. PJJPS1
10 FILLER PICTURE X VALUE '/'. PJJPS1
10 DAT83C PICTURE X(4). PJJPS1
DATSEP PICTURE X VALUE '/'. PJJPS1

Variables and indexes

According to specifications provided by the user for the application program,
PACBASE will generate the appropriate variables, indexes, etc.

CONDITIONAL VARIABLES

FTB: Final total control breaks.
* Group field for all FTBn’s.

FTBn: Final total control break at level n.

* Used to indicate the status of processing. The value of this flag changes
when the value of the nth key data element, (or of a key subordinate to the
nth key) does not match the corresponding data element in the next record
read.

* Generated if the program contains at least one input data structure for
which a control break level has been requested.

* 1 = key of level n is being processed for the last time.

* 0 = (above is) not true

ITB: Initial total control breaks.

* Group field for all ITBn’s.

Chapter 6. Example of generated program 145

ITBn: Initial total control break at level n.

* The first record at level n is being processed. By moving in the value of the
FIBn flag, the iteration following a "last-record-detected” status identifies a
new control break level.

* Generated with FTBn.
* 1 = key at level n is being processed for the first time.
* 0 = (above is) not true

dd-FB: Final control breaks on data structure dd.
* Group field for all dd-FBn’s.

dd-FBn: Final control break on data structure dd at level n.
* The last record, at level n, on data structure dd, is ready for processing.

* Generated if the control break level given for D.S. dd is greater than or
equal to n and if the key data element at level n has been declared in the
data structure description.

* 1 = last record on dd at level n is being processed
* 0 = (above is) not true

dd-IB: Initial control breaks on data structure dd.
* Group-level field for all dd-IBn’s.
¢ Generated with dd-FB.

dd-IBn: Initial control break on data structure dd, level n.
* The first record, at level n, on data structure dd, is ready for processing.
* Generated with dd-FBn.
e 1 = first record on dd, level n is being processed
* 0 = (above is) not true

dd-CF: Configuration indicator on data structure dd.
* Group field for dd-CFn’s.
* Generated if file matching was requested for the dd file.

dd-CFn: Configuration on data structure dd at level n.

* At level n, the input record of data structure dd is to be processed in this
program cycle.

* Generated if the file matching level specified for data structure dd is
greater than or equal to n and if there is an nth key named for this data
structure on the Segment Call of Elements screen.

* 1 = Yes - there is a record at level n to be processed this iteration
* 0 = (above is) not true

146 VisualAge Pacbase: Batch Applications

dd-OC: Occurrence variables for data structure dd.
Group field for all dd-OCn’s.

Generated if file matching was requested for the principal file (USAGE OF
D.S. ="P).

Provides information concerning the state of the update area (2-dd00).

dd-OCn: Occurrence on data structure dd at level n.

A record of data structure dd, with key at level n, is being processed in
this program cycle.

Generated for principal data structures whose file matching level is greater
than or equal to n and if there is an nth key named for this data structure
on the Call of Data Structures screen.

1 = record in the update area (2-area) should exist on the output file:
WRITE, REWRITE or CREATE.

0 = record in the update area should not be written on the output file: do
not WRITE, or, DELETE.

FT: End-of-Processing indicator for all files.

Used to indicate processing has been completed for all files when FT =
ALL 1"

dd-FT: End-of-Processing indicator for data structure dd.

Used to indicate when processing for all the records of this data structure
has been completed.

Generated for every sequential data structure with a USAGE OF D.S. = 'C’,
"M, 'N’, 'P’, and for every data structure with a USAGE of "T” or "X’ and an
ORGANIZATION = "W’ or 'L".

1 = all records in data structure dd have been processed (including the last
one).

0 = (above is) not true

dd-FI: End-of-File indicator on data structure dd.

Used to indicate that all records of data structure dd have been read.
Generated for all input data structures for which control breaks have been
specified.

1 = all records in data structure dd have been read.

0 = (above is) not true

FBL: Minor-most final control break level detected in this run. This variable
keeps track of the current level of break being processed this iteration.

Generated if at least one control break level has been specified for any
input data structure.

Chapter 6. Example of generated program 147

IBL: Minor-most initial control break level detected in this run. This
variable keeps track of the current level of break being processed this
iteration.

* Generated if at least one control break level has been specified for any
input data structure.

INDEXES
Used for validation processing: 101 to I51.

101: Stores the rank of the record type, according to the value of the record
type number.

= 1 if only one record type.

102: Stores the rank of the action type, according to its value (example: C =1,
M=2,D =23, etc)

= 4 if no action type specified.

103: Considering the aggregate of data elements within the transaction, stores
a pointer (rank) to the first element of the specific part segment of the
record being processed. This index is not generated when the transaction
file consists of only one record type.

104: Considering the aggregate of data elements within the transaction, stores
a pointer (rank) to the last data element of the specific part segment
being processed. This index is not generated when the transaction file
consists of only one record type.

106: Working index.

I50: Stores the rank of the last data element of the common part. This index is
always generated. It is initialized by a VALUE clause.

I51: Stores the number of record types. This index is always generated. It is
initialized by a VALUE clause.

Used for loading and consulting tables:

IddssM: Contains the value of the maximum number of entries specified by
the user.

IddssL: Contains the value of the number of entries actually loaded from
segment ss in data structure dd. This number cannot exceed the

maximum specified above.

148 VisualAge Pacbase: Batch Applications

IddssR: Varying from 1 to IddssL, used for all look-ups on the table loaded
from data structure dd, segment ss. Once the table is loaded, this
index is initialized to zero if there is no overflow, or to the number of
records read if an overflow has occurred.

These three indexes are generated for all records of:
1. data structures defined as tables, or

2. data structures with a non-redefined description with OCCURs, where
there is a maximum number of records specified, or

3. if a table (W-ddss) was declared in the user Work Areas (-W) screen.
Used for print processing:
J00: Look-up index for the category table, CAT-TAB.

J01: Look-up index for the three dimensional table (containing the structure
and constant part numbers, and line/page skip character), called ST-TA.

Jddrcc: Index associated with repetitive category cc for report r of data
structure dd.

Contains the rank of the category (cc) being printed, at the time the structures
are being loaded.

J05, J06, J07: Accumulator indexes.
Accumulators are always indexed, except at the grand totaling level.
The value in the index = the totaling level being processed.

Source data elements are added into the accumulators at the lowest level
when the condition for printing the category has been satisfied.

When a final control break is detected, accumulators at each level (J07) are
added into the accumulators at the next highest level (J06). This process is
carried out for all accumulators, at a level less than or equal to the highest
control break level detected in the iteration.

01 CONDITIONAL-VARIABLES. PJJPS1
05 FTB. PJJPS1

10 FTB1 PICTURE X VALUE '1'. PJJPS1

10 FTB2 PICTURE X VALUE '1'. PJJPS1

10 FTB3 PICTURE X VALUE '1'. PJJPS1

10 FTB4 PICTURE X VALUE '1'. PJJPS1

10 FTB5 PICTURE X VALUE '1'. PJJPS1

10 FTB6 PICTURE X VALUE '1'. PJJPS1

05 FBL PICTURE 9 VALUE 1. PJJPS1

05 IBL PICTURE 9 VALUE ZERO. PJJPS1

Chapter 6. Example of generated program 149

05

05

15
15
15
10
15
15
15
10
15
15
10
15
15
15

150 VisualAge Pacbase: Batch Applications

ITB.

ITB1

1TB2

ITB3

1TB4

ITB5

ITB6
CD-FB.
CD-FB1
CD-FB2
CL-FB.
CL-FB1
CL-FB2
LV-FB.
LV-FB1
LV-FB2
MV-FB.
MV-FB1
MV-FB2
MV-FB3
MV-FB4
MV-FB5
MV-FB6
CD-IB.
CD-IB1
CD-1B2
CL-IB.
CL-IB1
CL-1IB2
LV-IB.
LV-1IB1
LV-1IB2
MV-IB.
MV-IB1
MV-1B2
MV-IB3
MV-1B4
MV-IB5
MV-IB6

VCF.
CD-CF.
CD-CF1
CD-CF2
CD-CF3
CL-CF.
CL-CF1
CL-CF2
CL-CF3
GL-CF.
GL-CF1
GL-CF2
LV-CF.
LV-CF1
LV-CF2
LV-CF3

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

PICTURE
PICTURE

PICTURE
PICTURE

PICTURE
PICTURE

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

PICTURE
PICTURE

PICTURE
PICTURE

PICTURE
PICTURE

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

PICTURE
PICTURE
PICTURE

PICTURE
PICTURE
PICTURE

PICTURE
PICTURE

PICTURE
PICTURE
PICTURE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE

VALUE
VALUE
VALUE

VALUE
VALUE

VALUE
VALUE
VALUE

1'.
"1'.
e,
1'.
e,
.

"1'.
"1'.

1'.
"1'.

"1'.
Ill.

1'.
1'.
"1'.
1'.
"1'.
Ill.

1'.
1'.

1'.
"1'.

"1'.
Ill.

Ill‘
1'.
"1'.
"1'.
1'.
Ill.

1'.
"1'.
"1'.

Ill.
1'.
"1'.
"1'.
Ill.

"1'.
1'.
"1'.

PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1

01

10

15
15
15

MV-CF.
MV-CF1
MV-CF2
MV-CF3
CD-0C.
CD-0C1
CD-0C2
CD-0C3
CL-0C.
CL-0C1
CL-0C2
CL-0C3
Lv-0C.
LV-0C1
LV-0C2
LV-0C3
FT.
CD-FT
CL-FT
EN-FT
GL-FT
LV-FT
MV-FT
FI.
CD-FI
CL-FI
LV-FI
MV-FI

PICTURE
PICTURE
PICTURE

PICTURE
PICTURE
PICTURE

PICTURE
PICTURE
PICTURE

PICTURE
PICTURE
PICTURE

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

PICTURE
PICTURE
PICTURE
PICTURE

INDICES COMPUTATIONAL SYNC.

05
05

101
102
103
104
150
106
151
Joo
Jo1
Jo5
Jo6
Jo7
JLI
JLI

1DD
1DDM

JED3FA

IMOOOL
IMOOOR
IMOOOM
ITDO1L
ITDOIR
ITDOIM
ITDO2L
ITDOZ2R
1TDO2M
IWCo2L

PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)

PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)
PICTURE S9(4)

Chapter 6.

VALUE '1'.
VALUE '1'.
VALUE '1'.

VALUE '0'.
VALUE '0'.
VALUE '0'.

VALUE '0'.
VALUE '0'.
VALUE '0'.

VALUE '0'.
VALUE '0'.
VALUE '0'.

VALUE '0'.
VALUE '0'.
VALUE '0'.
VALUE '0'.
VALUE '0'.
VALUE '0'.

VALUE '0'.
VALUE '0'.
VALUE '0'.
VALUE '0'.

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

+1.
+4.

ZERO.
ZERO.

+006.

ZERO.

+002.
+1.
+1.
+0.
+0.
+0.

ZERO.
ZERO.

ZERO.
ZERO.
ZERO.
+0012.
ZERO.
ZERO.
+0103.
ZERO.
ZERO.
+0016.
ZERO.

Example of generated program 151

PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1

PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1

05 IWCO2R PICTURE S9(4) VALUE ZERO. PJJPS1

05 IWCO2M PICTURE S9(4) VALUE +0011. PJJPS1
05 IWCO3L PICTURE S9(4) VALUE ZERO. PJJPS1
05 IWCO3R PICTURE S9(4) VALUE ZERO. PJJPS1
05 IWCO3M PICTURE S9(4) VALUE +0011. PJJPS1

Key, validation, print areas
KEY STORAGE AREAS: CONF-CALCULATION-AREA

IND: .Stores the major-most key level of all input data structures to be
matched.

.Generated only if there are at least two input data structures to be matched.

ddIND: .Stores the current value of the key of the record on data structure
dd.

.Generated only for an input data structure with file matching.

RECORD COUNTERS: FILE-COUNTERS

5-dd00-RECCNT Record counter for data structure dd.

.This counter is generated for each data structure whose USAGE OF D.S. is
not "T" or "X".

Incremented with each READ or WRITE of the d.s.

VALIDATION PROCESSING (WORK AREAS AND VARIABLES)

DE-TAB: .Stores DATA ELEMENT PRESENCE VALIDATION specifica_ tions
for each transaction file data element.

.Generated only if the program has a transaction file to be validated.

DE-ERR: .Stores the presence status of each data element of the transaction
being processed.

Each elementary data element (eeeeee), other than FILLER, ENPR, GRPR,
ERUT and their sub-elements, is provided with a status field within the table.
This field is named ER-ss-eeeeee (ss = SEGMENT CODE).

The values vary at different points in the processing cycle:

0 = data element absent,

152 VisualAge Pacbase: Batch Applications

1 = data element present,

2 = invalid absence of data element,
3 = invalid presence of data element,
4 = erroneous class,

5 = invalid content.

DE-TTE: .Stores the presence validation (optional, required or not allowed) to
be done on the data element being processed.

.Generated only if the program has a transaction file to be validated.

ID-ER: .The last field in the table is ID-ER and is used for storing the record
identification status:

0 = record type and action code are valid values,

5 = error detected on record type,

6 = error detected on action code.

DEL-ER: .Stores the presence status of the data element being processed.

.Generated only if the program contains a transaction file (to be validated or
not).

DE-ERR: .Used only to carry out transfers between DE-ERR and a data
structure (USAGE OF D.S. = 'M’, ‘N’ or 'E’) with a reduced error
array (RESERVED ERROR CODES IN TRANS. FILE = "W).
ER-ID: .Will receive ID-ER.

ER-PRR: .Generated if a reduced error table has been requested on at least
one of the D.S. (transaction file with or without errors detected).

ER-PRO: .Will receive the error status of each data element belonging to the
common part of the data structure.

ER-PRM: .Will receive the error status of each data element belonging to the
specific part segment being processed.

Chapter 6. Example of generated program 153

SE-TAB: .Stores the theoretical absence or presence of each record type of the
transaction file for the various action codes specified. (See
SEGMENT PRESENCE on the Segment Definition screen).

.Generated only if the program contains a transaction file to be validated.

SE-ERR: .Stores the presence status of each transaction file record type.

.Generated if the program contains a transaction file (to be validated or not).

Each record type is provided with a status field within this table. This field is
named SE-ER(I01).

The values vary at different points in the processing cycle:
0 = record absent,

1 = record present,

2 = invalid absence of record,

3 = invalid presence of record,

7 = duplicate record,

8 = invalid creation,

9 = invalid modification or deletion.

TR-ER: .The last field in the table is named TR-ER and is used for storing
errors detected.

1 = no error detected.

SE-ERE: .Stores the presence status of the record being pro_ cessed.

.Generated if the program contains a transaction file (to be validated or not).

GR-ER: .Stores information concerning errors detected on a group of
transactions which update a record, of at least one principal data
structure.

.Generated only if the program updates one or more data structure.

UT-ERUT: .Stores the user’s errors. If the program contains a transaction file,
(USAGE OF D.S. ="M/, 'N’ or 'E’) with the user error table

154 VisualAge Pacbase: Batch Applications

"ERUT’, the description generated will be as specified on the Call
of Data Structures (-CD) screen, using sub-elements named
UT-eeeeee.

TABLES USED FOR REPORTS

CAT-TAB: .Category table: stores all categories to be printed in this iteration.

.Generated only if categories have been defined for at least one report without
direct printing, in the program.

ST-TA: .Table storing the structure number, constant part number, and
page/line skip for the category to be printed.

.Generated only if categories have been defined for at least one report without
direct printing, in the program.

1. .Table containing constants for report r.

STORE AREAS FOR PRINT PROCEDURES

TS-r-cc: .Definition of the contents of category cc of report r.
.Generated only for reports with categories not printed directly.

ABS-r-cc: .Variable indicating if category cc of report r begins after a page
skip.

.Generated only for reports with categories not printed directly.

1. .Number of lines necessary for printing category cc of report r.
These areas are generated only if categories have been defined for the report.

ACCUMULATORS

rst-CPT OCCURS n.

Group level of the accumulators associated with structure st in report r. n is
the lowest accumulation level for this structure appearing in the report
definition (default 1).

Trst-eeeeee(n)

Accumulator at level n, for data element eeeeee of structure st in report r.

Grst-eeeeee

Chapter 6. Example of generated program 155

Grand total accumulator, for data element eeeeee of structure st in report r.
Appears if the structure is used in a category with grand totaling (TYPE OF
LINE IN REPORT = "0).

PRINT VARIABLES AND COUNTERS

ST-SLS .A table subdivided into:
STX -STRUCTURE NUMBER (redefined by ST9),
J02 -CONSTANT PART NUMBER,
LSKP -SKIP to be executed before writing a line,
NUPOL -CHAR. SET OPTION : SPECIAL PRINTER
CATX .Stores the CATEGORY OF REPORT being printed.

5-dd00-rPC .Page counter for report r of data structure dd.

5-dd00-rLC .Line counter for report r of data structure dd,
incremented at category table load time and
indicating the line number of the Tast line of
the category just printed. Initialized at 99 by
value.

5-dd00-rLC1 .Line counter for report r of data structure dd,
incremented at each output Tine and indicating
the line number of the last written line.

5-dd00-rLCM .Counter for maximum number of lines per page.

5-dd00-rRC .Counter for number of lines written for the
report. Incremented after writing.

5-dd00-rTP .Top of page indicator for report r of D.S. dd.

All these variables are generated for report r, of D.S. dd, for which structures
have been defined.

ZONES DE MEMORISATION DES TACHES D’EDITION

Ces zones ne sont générées que pour les états pour lesquels on a défini des
catégories sans demander 1’édition ligne a ligne.

TS-e-cc: définition du contenu de la catégorie cc de 'Etat e.

ABS-e-cc: variable indiquant si la catégorie cc de 1’Etat e commence apres un
saut canal.

N’est générée que pour des états dont les catégories ne sont pas éditées
directement.

1. nombre de lignes requis pour éditer la catégorie cc de 1’Etat e.

ZONES-TOTALISATION

ess-CPT OCCURS N.

156 VisualAge Pacbase: Batch Applications

Niveau de groupe des totalisateurs automatiques associés de la structure ss de
I’Etat e. N est le plus bas niveau de totalisation apparaissant dans la
description de I'état pour cette structure (1 par défaut).

Tess-CORUB (X)

totalisateur au niveau X associé a la rubrique CORUB de la structure ss de
I’Etat e.

Gess-CORUB

totalisateur général associé a la rubrique CORUB de la structure ss de I'Etat e.
Il apparait si la structure intervient dans une catégorie total général (type 0).

01 CONF-CALCULATION-AREA. PJJPS1
05 IND. PJJPS1
16 TIND3. PJJPS1
17 TINDZ. PJJPS1
18 TINDL. PJJPS1
19 IND1 PICTURE X(001). PJJPS1
18 IND2 PICTURE X(002). PJJPS1
17 IND3 PICTURE X(002). PJJPS1
05 CDIND. PJJPS1
10 CDINDIL. PJJPS1
15 CD-IN-NOCL11 PICTURE X. PJJPS1
10 CDIND2. PJJPS1
15 CD-IN-NOCL12 PICTURE XX. PJJPS1
10 CDIND3. PJJPS1
15 CD-IN-NOCL2 PICTURE XX. PJJPS1
05 CLIND. PJJPS1
10 CLINDIL. PJJPS1
15 CL-IN-NOCL11 PICTURE X. PJJPS1
10 CLIND2. PJJPS1
15 CL-IN-NOCL12 PICTURE XX. PJJPS1
10 CLIND3. PJJPS1
15 CL-IN-NOCL2 PICTURE XX. PJJPS1
05 GLIND. PJJPS1
10 GLINDI. PJJPS1
15 GL-IN-NOCL11 PICTURE X. PJJPS1
10 GLINDZ. PJJPS1
15 GL-IN-NOCL12 PICTURE XX. PJJPS1
05 LVIND. PJJPS1
10 LVINDI. PJJPS1
15 LV-IN-NOCL11 PICTURE X. PJJPS1
10 LVINDZ. PJJPS1
15 LV-IN-NOCL12 PICTURE XX. PJJPS1
10 LVIND3. PJJPS1
15 LV-IN-NOCL2 ~ PICTURE XX. PJJPS1
05 MVIND. PJJPS1
10 MVINDI. PJJPS1
15 MV-IN-NOCL11 PICTURE X. PJJPS1
10 MVINDZ. PJJPS1
15 MV-IN-NOCL12 PICTURE XX. PJJPS1

Chapter 6. Example of generated program 157

10 MVIND3.
15 MV-IN-NOCL2 ~ PICTURE XX.
01 FILE-COUNTERS COMPUTATIONAL-3.
05 5-CDOO-RECCNT PICTURE S9(9) VALUE ZERO.
05 5-CLOO-RECCNT PICTURE S9(9) VALUE ZERO.
05 5-DCOO-RECCNT PICTURE S9(9) VALUE ZERO.
05 5-ENOO-RECCNT PICTURE S9(9) VALUE ZERO.
05 5-GLOO-RECCNT PICTURE S9(9) VALUE ZERO.
05 5-LCOO-RECCNT PICTURE S9(9) VALUE ZERO.
05 5-LVOO-RECCNT PICTURE S9(9) VALUE ZERO.
05 5-MVOO-RECCNT PICTURE S9(9) VALUE ZERO.
05 5-SEQO-RECCNT PICTURE S9(9) VALUE ZERO.
05 5-VLOO-RECCNT PICTURE S9(9) VALUE ZERO.
05 5-VMOO-RECCNT PICTURE S9(9) VALUE ZERO.
05 5-WAGO-RECCNT PICTURE S9(9) VALUE ZERO.
05 5-WROO-RECCNT PICTURE S9(9) VALUE ZERO.
01 STATUS-AREA.
05 1-MOOO-STATUS PICTURE XX VALUE ZERO.
01 VALIDATION-VARIABLES.
05 DE-TAB.
10 EN-OONOCL11 PICTURE X(6) VALUE '000000'.
10 EN-0ONOCL12 PICTURE X(6) VALUE '000000'.
10 EN-O0ONOCL2 PICTURE X(6) VALUE '000000'.
10 EN-OONUORD PICTURE X(6) VALUE '000000'.
10 EN-00CODMV PICTURE X(6) VALUE 'FFFFFF'.
10 EN-OONUCAR PICTURE X(6) VALUE 'FFFFFF'.
10 EN-OINOMCL PICTURE X(6) VALUE 'OFFFFF'.
10 EN-O1ADRES PICTURE X(6) VALUE 'OFFFFF'.
10 EN-OINUDEP PICTURE X(6) VALUE 'OFFFFF'.
10 EN-02MREEL9 PICTURE X(6) VALUE 'FFFFFF'.
10 EN-02DALI ~ PICTURE X(6) VALUE 'FFFFFF'.
05 DE-T REDEFINES DE-TAB.
10 DE-TTT OCCURS 011.
15 DE-TT OCCURS 6 PICTURE X.
05 DE-ERR.
10 DE-ER OCCURS 011 PICTURE X.
10 ID-ER PICTURE X VALUE ZERO.
05 DE-E REDEFINES DE-ERR.
07 ER-00.
10 ER-00-NOCL.
11 ER-00-NOCL11 PICTURE X.
11 ER-00-NOCL12 PICTURE X.
11 ER-00-NOCL2 PICTURE X.
10 ER-00-NUORD PICTURE X.
10 ER-00-CODMV PICTURE X.
10 ER-00-NUCAR PICTURE X.
07 ER-01.
10 ER-01-NOMCL PICTURE X.
10 ER-01-ADRES PICTURE X.
10 ER-01-NUDEP PICTURE X.
07 ER-02.
10 ER-02-MREEL9 PICTURE X.
10 ER-02-DALI ~ PICTURE X.
07 FILLER PICTURE X.

158 VisualAge Pacbase: Batch Applications

PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1

PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1

01

01

01

01

05

DEL-ER PICTURE X.

05 DE-TTE PICTURE X.
05 ER-PRR.
10 ER-ID PICTURE X VALUE ZERO.
10 ER-PRO PICTURE X(006).
10 ER-PRM.
15 ER-PR OCCURS 003 PICTURE X.
05 SE-TAB.
10 FILLER PICTURE X(6) VALUE 'OIIFFF'.
10 FILLER PICTURE X(6) VALUE 'OFI000'.
05 SE-T REDEFINES SE-TAB.
10 SE-TTT OCCURS 002.
15 SE-TT OCCURS 6 PICTURE X.
05 SE-ERR.
10 SE-ER OCCURS 002 PICTURE X.
10 TR-ER PICTURE X VALUE '1'.
05 SEG-ER PICTURE X.
05 GR-ER PICTURE X VALUE ZERO.
05 LE-FIENR PICTURE X(4) VALUE 'MV0O'.
05 UT-ERUT.
11 UT-UPR PICTURE X
0CCURS 010.
CAT-TAB.
05 FILLER PICTURE X(100) VALUE SPACES.
05 FILLER PICTURE X(100) VALUE SPACES.
CAT-TAB-R REDEFINES CAT-TAB.
05 CAT PICTURE XX 0CCURS 0100.
ST-TA.
05 ST-ABS PICTURE X VALUE SPACE.
05 ST-T.
07 ST-TT OCCURS 40.
10 ST-ST PICTURE XX.
10 ST-LI PICTURE 99.
10 ST-SA PICTURE 99.
CONTENT-OF-CATEGORIES.
05 TS-3-DA.
10 ABS-3-DA PICTURE X VALUE '='.

10 FILLER PICTURE X(30) VALUE
'010101000201000302000401000301 " .

05 TS-3-EA.

10 ABS-3-EA PICTURE X VALUE ' '.
10 FILLER PICTURE X(12) VALUE
'000501020501" .

05 TS-3-FA.

10 ABS-3-FA PICTURE X VALUE ‘' '.
10 FILLER PICTURE X(06) VALUE
'030501".

05 TS-3-GA.

10 ABS-3-GA PICTURE X VALUE ‘' '.
10 FILLER PICTURE X(12) VALUE
'000501040501" .

05 TS-3-HA.

10 ABS-3-HA PICTURE X VALUE ' '.
10 FILLER PICTURE X(06) VALUE
'040501".

Chapter 6. Example of generated program 159

PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJIPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1

05 TS-3-IA. PJJpPS1

10 ABS-3-IA PICTURE X VALUE ‘' '. PJJPS1
10 FILLER PICTURE X(06) VALUE PJJPS1
'040501". PJJPS1
05 TS-3-IL. PJJPS1
10 ABS-3-IL PICTURE X VALUE ' '. PJJpPS1
10 FILLER PICTURE X(12) VALUE PJJPS1
'000501000301" . PJJpPS1
05 TS-3-JA. PJJPS1
10 ABS-3-JA PICTURE X VALUE ' '. PJJPS1
10 FILLER PICTURE X(06) VALUE PJJPS1
'040002". PJJPS1
01 SIZE-OF-CATEGORIES COMPUTATIONAL-3. PJJPS1
05 1-BC-NL PICTURE S99 VALUE +11. PJJPS1
05 1-DD-NL PICTURE S99 VALUE +01. PJJpPS1
05 1-EE-NL PICTURE S99 VALUE +01. PJJPS1
05 3-DA-NL PICTURE S99 VALUE +05. PJJPS1
05 3-EA-NL PICTURE S99 VALUE +02. PJJPS1
05 3-FA-NL PICTURE S99 VALUE +01. PJJPS1
05 3-GA-NL PICTURE S99 VALUE +02. PJJPS1
05 3-HA-NL PICTURE S99 VALUE +01. PJJPS1
05 3-TA-NL PICTURE S99 VALUE +01. PJJpPS1
05 3-IL-NL PICTURE S99 VALUE +02. PJJPS1
05 3-JA-NL PICTURE S99 VALUE +02. PJJPS1
01 TOTALLING-AREA COMPUTATIONAL-3. PJJPS1
05 304-CPT OCCURS 2. PJJPS1
10 T304-QuCO PICTURE S9(07). PJJPS1

10 T304-QTLI PICTURE S9(07). PJJPS1

05 G304-QuCO PICTURE S9(07) VALUE ZERO. PJJPS1
05 G304-QTLI PICTURE S9(07) VALUE ZERO. PJJPS1
01 PRINT-COUNTERS-AND-VARIABLES. PJJPS1
05 COUNTERS COMPUTATIONAL-3. PJJPS1
10 5-ED0O-3LCM PICTURE S999 VALUE +60. PJJPS1
10 5-EDOO-3RC PICTURE S9(9) VALUE ZERO. PJJpPS1
10 5-ED0O-3LC PICTURE S999 VALUE +60. PJJPS1
10 5-EDOO-3LC1 PICTURE S999 VALUE +60. PJJpPS1
10 5-EDOO-3PC PICTURE S9(7) VALUE ZERO. PJJPS1
10 5-LI00-1LCM PICTURE S999 VALUE +60. PJJPS1
10 5-L100-1RC PICTURE S9(9) VALUE ZERO. PJJPS1
10 5-L100-1LC PICTURE S999 VALUE +60. PJJPS1
10 5-L100-1LC1 PICTURE S999 VALUE +60. PJJPS1
10 5-L100-1PC PICTURE S9(7) VALUE ZERO. PJJPS1
05 5-LI00-1TP PICTURE X VALUE '1'. PJJpPS1
05 5-EDOO-3TP PICTURE X VALUE '1'. PJJPS1
05 ST-SLS. PJJPS1
10 STX PICTURE XX. PJJpPS1
10 ST9 REDEFINES STX PICTURE 99. PJJPS1
10 Joz2 PICTURE 99. PJJpPS1
10 LSKP PICTURE 99. PJJPS1
10 NUPOL PICTURE X. PJJPS1
05 CATX PICTURE XX VALUE SPACE. PJJPS1
01 REPORT-CONSTANTS. PJJPS1
05 1-LAB. PJJPS1
10 1-LABO1. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJpPS1

160 VisualAge Pacbase: Batch Applications

' UPDATE REPORT XXXXXXX . PJJPS1
15 FILLER PICTURE X(01) VALUE PJJPS1

o PJJPS1
10 1-LABO2. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1

"NUMBER OF VALID TRANSACTIONS : 495 . PJJPS1
15 FILLER PICTURE X(01) VALUE PJJPS1

v PJJPS1
10 1-LABO3. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1

"NUMBER OF INVALID TRANSACTIONS : 55 . PJJPS1
15 FILLER PICTURE X(01) VALUE PJJPS1

v PJJPS1
10 1-LABO4. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1

"NUMBER OF TRANSACTIONS : 550 . PJJPS1
15 FILLER PICTURE X(01) VALUE PJJPS1

b PJJPS1
10 1-LABO5. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1
"PERCENTAGE OF INVALID TRANSACTIONS : 10,00'. PJJPS1
15 FILLER PICTURE X(01) VALUE PJJPS1

" PJJPS1
10 1-LABO6. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1

"NUMBER OF FILE RECORDS : . PJJPS1
15 FILLER PICTURE X(01) VALUE PJJPS1

b PJJPS1
10 1-LABO7. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1

' . PJJPS1
15 FILLER PICTURE X(01) VALUE PJJPS1

b PJJPS1
10 1-LABOS8. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1

' Cb : 100 . PJJPS1
15 FILLER PICTURE X(01) VALUE PJJPS1

b PJJPS1
10 1-1LABO9. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1
Dkkkdkkkkkhkhhkhkhhkhkhhkhkhkhhkhkhkkhrhrkrrhx ' | PJJPS1
15 FILLER PICTURE X(01) VALUE PJJPS1

fx!, PJJPS1
05 1-LAB-R REDEFINES 1-LAB. PJJPS1
106 1-LI0O-1 OCCURS 009. PJJPS1

15 FILLER PICTURE X(00045). PJJPS1

05 3-LAB. PJJPS1
10 3-LABO1. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1

' ORDER AND DELIVERY REPORT AT 07'. PJJPS1
15 FILLER PICTURE X(44) VALUE PJJPS1
'/10/1986 PAGE 123 . PJJPS1
15 FILLER PICTURE X(08) VALUE PJJPS1

! . PJJPS1
10 3-LABO2. PJJPS1

Chapter 6. Example of generated program 161

15 FILLER PICTURE X(44) VALUE PJJpPS1

D kkkkkxokk B Rk R R R R R R R S R g *xk PJJPS1
15 FILLER PICTURE X(44) VALUE PJJPS1
Vhkkkkkkkhkhhk ' PJJPS1
15 FILLER PICTURE X(08) VALUE PJJPS1

! . PJJPS1
10 3-LABO3. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1

Dkkkdkkkkkkkk ok ko kR kR kR kKRR R KRk ko kK k ok k ok hkh kK kh ', PJJPS1
15 FILLER PICTURE X(44) VALUE PJJPS1
Phkkkkhkkhkhkhhkhkhkkhkhkkhkhkhhkhkhrkkhkkhrhrx ' | PJJPS1
15 FILLER PICTURE X(08) VALUE PJJPS1
Vhkkkkhrk | PJJPS1
10 3-LABO4. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1

'x CUSTOM = NAME * . PJJPS1
15 FILLER PICTURE X(44) VALUE PJJPS1

! * ORDERED +*DELIVERED *= BA'. PJJPS1
15 FILLER PICTURE X(08) VALUE PJJPS1

"LANCE ', PJJPS1
10 3-LABO5. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1

'x * * . PJJPS1
15 FILLER PICTURE X(44) VALUE PJJPS1

! * * * . PJJPS1
15 FILLER PICTURE X(08) VALUE PJJPS1

! *', PJJPS1
05 3-LAB-R REDEFINES 3-LAB. PJJPS1
10 1-LI60-3 OCCURS 005. PJJPS1

15 FILLER PICTURE X(00096). PJJPS1

05 4-LAB. PJJPS1
10 4-1LABO1L. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1
'%x*BATCH TOTAL . PJJPS1
15 FILLER PICTURE X(26) VALUE PJJPS1

! . PJJPS1
10 4-LABO2. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1

' **SUBTOTAL . PJJPS1
15 FILLER PICTURE X(26) VALUE PJJPS1

! . PJJPS1
10 4-1LABO3. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1

' *CHECK TOTAL . PJJPS1
15 FILLER PICTURE X(26) VALUE PJJPS1

! . PJJPS1
10 4-LABO4. PJJPS1

15 FILLER PICTURE X(44) VALUE PJJPS1

! SUM TOTAL . PJJPS1
15 FILLER PICTURE X(26) VALUE PJJPS1

! . PJJPS1
05 4-LAB-R REDEFINES 4-LAB. PJJPS1
10 1-LI00-4 OCCURS 004. PJJPS1

15 FILLER PICTURE X(00070). PJJPS1

162 VisualAge Pacbase: Batch Applications

Data structure work areas

All input data structures for which a control break level has been entered, will
be described completely, in the WORKING STORAGE SECTION.

The common part is named in the form 1-dd00. The variable parts either
redefine each other or are defined successively, depending upon the RECORD
TYPE/USE WITHIN D.S. value.

They are named 1-ddss where:
dd = DATA STRUCTURE CODE IN THE PROGRAM,
ss = SEGMENT CODE.

Each data element is named in the form 1-dd00-eeeeee, with its format, or
sub-defined if it is a group level field.

When the D.S. has redefined variable length segments, each definition is
completed with a FILLER so that each segment is the same length (equal to
the longest).

The "1-" area is loaded at the READ of each d.s., from the data last read. Thus
the read area of a data structure with control breaks will only be used for
calculating these control breaks. The segment being processed is always in the
"1-" (work) area.

A ’2-" area is set up for each input principal file (USAGE OF D.S. = 'P’) in
which a common part is declared, as well as variable parts, through
successive redefinition, according to the RECORD TYPE / USE WITHIN D.S.
entered. The data elements are described in detail as in a "1-’ area. All
updating is done in this area.

An area in the WORKING-STORAGE SECTION is set up for each table D.S.
For each segment to be loaded, an area will be allocated in the form 1-ddss
OCCURS n, where:

n = OCCURRENCES OF SEGMENT IN TABLE.

If the D.S. has been defined with a USAGE of T, all data elements will be
declared and loaded. If the USAGE is "X’, only data elements other than
FILLER and the record type will appear. All elementary data elements at the

01 level, and all elementary or group data elements at the 02 level will be
loaded.

Chapter 6. Example of generated program 163

The data element descriptions are the same as for the "1-" work areas for D.S.’s
with control breaks, except for data elements of the common part which are
described in each specific part segment.

For each print D.S., an area called 6-dd00 is set up, where dd is the DATA
STRUCTURE CODE IN THE PROGRAM. All the lines of the different reports
will be moved into this area before being written. This area is subdivided at
level 05 by successive redefinitions for each report appearing in the print data
structure. At the 10 level, the data elements common to all printed lines
appear, as well as the different report structures. The names appear in the
form 6-ddrst where:

dd = DATA STRUCTURE CODE IN THE PROGRAM,
LAST CHARACTER OF REPORT CODE,
STRUCTURE NUMBER.

r
st

The structure descriptions are redefinitions of each other. The descriptions
contain all the receiving data elements, plus FILLER’s whose length is
calculated by the generator. The data-names are in the form 6-ddrst-eeeeee,
where:

eeeeee = DATA ELEMENT CODE in the Report Call of
Elements (-CE) screen.

NOTE

The user can modify the contents of D.S work areas through data structure
descriptions. However, their location in the the generated program cannot be
modified.

THE USER WORK AREAS

Here, the user will find area or section names defined by Work Areas (-W)
lines, where the CODE FOR COBOL PLACEMENT is numeric. If this code is
alphabetic, the Work Areas (-W) lines are inserted at the beginning of
WORKING-STORAGE.

The descriptions of some data structures with ORGANIZATION 'L’ or ‘D’ are
also located here.

There is a description among the user’s areas generated for each d.s. with
ORGANIZATION = 'L’ or ‘D’ with an alphabetic CODE FOR COBOL
PLACEMENT.

For these data structures, the user can request any possible description type in
this area.

164 VisualAge Pacbase: Batch Applications

Moreover, using the level number and/or location, the D.S. description can
appear under a level 01, or in a particular section (LINKAGE, IDS, ...) entered
via the Work Areas (-W) screen.

NOTE

The user can modify the work areas, with respect to content and location,
using the CODE FOR COBOL PLACEMENT and the LINE NUMBER of the
Work Areas (-W) screen with data structures with an ORGANIZATION = "L’
or 'D".

01 6-ED0O. PJJPS1
05 6-ED0OO-3. PJJPS1
10 6-ED300-LSKP PICTURE X. PJJPS1
10 6-ED300 PICTURE X(096). PJJPS1
10 6-ED301 REDEFINES 6-ED300. PJJPS1
15 FILLER PICTURE X(045). PJJPS1
15 6-ED301-DATEM PICTURE X(10). PJJIPS1
15 FILLER PICTURE X(020). PJJPS1
15 6-ED301-PAGE PICTURE Z779. PJJPS1
15 FILLER PICTURE X(018). PJJPS1
10 6-ED302 REDEFINES 6-ED300. PJJPS1
15 FILLER PICTURE X(009). PJJPS1
15 6-ED302-NOCL PICTURE X(5). PJJPS1
15 FILLER PICTURE X(002). PJJPS1
15 6-ED302-NOMCL PICTURE X(20). PJJPS1
15 FILLER PICTURE X(060). PJJPS1
10 6-ED303 REDEFINES 6-ED300. PJJPS1
15 FILLER PICTURE X(037). PJJPS1
15 6-ED303-FILLER PICTURE X(9). PJJPS1
15 FILLER PICTURE X(001). PJJPS1
15 6-ED303-JED3FA PICTURE 9. PJJPS1
15 FILLER PICTURE X(004). PJJPS1
15 6-ED303-DATE ~ PICTURE X(6). PJJPS1
15 FILLER PICTURE X(016). PJJPS1
15 6-ED303-QULI ~ PICTURE Z(4)9,99. PJJPS1
15 FILLER PICTURE X(014). PJJPS1
10 6-ED304 REDEFINES 6-ED300. PJJPS1
15 FILLER PICTURE X(034). PJJPS1
15 6-ED304-4 PICTURE X(20). PJJPS1
15 FILLER PICTURE X(001). PJJPS1
15 6-ED304-NOCL11 PICTURE X. PJJPS1
15 6-ED304-NOCL12 PICTURE XX. PJJPS1
15 6-ED304-NOCL2 PICTURE XX. PJJPS1
15 FILLER PICTURE X(003). PJJPS1
15 6-ED304-QUCO PICTURE Z(4)9,99. PJJPS1
15 FILLER PICTURE X(003). PJJPS1
15 6-ED304-QTLI PICTURE Z(4)9,99. PJJPS1
15 FILLER PICTURE X(003). PJJPS1
15 6-ED304-SOLDE PICTURE -(5)9,99. PJJPS1
15 FILLER PICTURE X(002). PJJPS1
01 6-L100. PJJPS1
05 6-LI00-1. PJJPS1
10 6-LI100-ETAT PICTURE X. PJJPS1

Chapter 6. Example of generated program 165

01

01

01

6-L1100-LSKP PICTURE
6-LI100-PAGE PICTURE
6-LI100-NULIG PICTURE
6-L1100 PICTURE
6-L1101 REDEFINES

FILLER PICTURE
6-LI101-ACCEP PICTURE
FILLER PICTURE
6-L1102 REDEFINES

FILLER PICTURE
6-L1102-REFUS PICTURE
FILLER PICTURE
6-L1103 REDEFINES

FILLER PICTURE
6-LI103-TOTAL PICTURE
FILLER PICTURE
6-L1104 REDEFINES

FILLER PICTURE
6-L1104-POURC PICTURE
FILLER PICTURE
6-LI105 REDEFINES

FILLER PICTURE
6-LI105-NOFICH PICTURE
FILLER PICTURE
6-LI105-CPTENR PICTURE
FILLER PICTURE
6-L1106 REDEFINES

6-L1106-ZLIBO3 PICTURE
FILLER PICTURE

1-CD0O.
1-CDOO-NOCL.

99.
779.
9(3).
X(045).
6-L1100.
X(038).
719.
X(004) .
6-L1100.
X(038).
719.
X(004).
6-L1100.
X(038).
779.
X(004).
6-L1100.
X(038).
779,99.
X(001).
6-L1100.
X(031).
XX.
X(004) .
Z(3)9.
X(004).
6-L1100.
99999999999999.
X(031).

1-CDOO-NOCL11 PICTURE
1-CDOO-NOCL12 PICTURE
1-CDOO-NOCL2 PICTURE
1-CDOO-QUCO PICTURE
COMPUTATIONAL-3.

2-CD00.

2-CD0OO-NOCL.
2-CDOO-NOCL11 PICTURE
2-CDOO-NOCL12 PICTURE
2-CDOO-NOCLZ PICTURE
2-CD00-QUCO PICTURE

COMPUTATIONAL-3.

1-CLOO.

1-CLOO-KEYCI.
1-CLOO-NOCL.
1-CLOO-NOCL11 PICTURE
1-CLOO-NOCL12 PICTURE
1-CLOO-NOCL2 PICTURE
1-CLOO-NOMCL PICTURE
1-CLOO-ADRES PICTURE
1-CLOO-NUDEP PICTURE
1-CLOO-LIDEP PICTURE
1-CLOO-NUREG PICTURE
1-CLOO-LIREG PICTURE

166 VisualAge Pacbase: Batch Applications

X.

XX.

XX.
S9(5)Vv99

X.

XX.

XX.
S9(5)Vv99

XX.

X(20).
X(43).
XXX.
X(24).
XXX.
X(24).

PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1

01

01

01

01

01

11
11
10
11
11
10
10

10

11

11

02

10
10
10
10

05
10
11
11
11

10

2-CLo0.
2-CLOO-KEYCI.
2-CLOO-NOCL.
2-CLOO-NOCL11 PICTURE
2-CLOO-NOCL12 PICTURE
2-CLOO-NOCLZ PICTURE
2-CLOO-NOMCL PICTURE
2-CLOO-ADRES PICTURE
2-CLOO-NUDEP PICTURE
2-CLOO-LIDEP PICTURE
2-CLOO-NUREG PICTURE
2-CLOO-LIREG PICTURE
1-Lvoo.
1-LvVOO-NOCL.
1-LV0O-NOCL11 PICTURE
1-LVOO-NOCL12 PICTURE
1-LV0O-NOCL2 PICTURE
1-LVOO-NBLIV PICTURE
1-LV00-QTLI ~ PICTURE
COMPUTATIONAL-3.
1-LVOO-GROUPE
OCCURS 009
DEPENDING ON
1-LV00-QULT PICTURE
COMPUTATIONAL-3.
1-LV0O-DALI ~ PICTURE
2-1v00.
2-LV00-NOCL.
2-LV00-NOCL11 PICTURE
2-LV00-NOCL12 PICTURE
2-LV00-NOCLZ PICTURE
2-LVOO-NBLIV PICTURE
2-LV00-QTLI ~ PICTURE
COMPUTATIONAL-3.
2-LV00-GROUPE
OCCURS 009
DEPENDING ON
2-LV00-QULI PICTURE
COMPUTATIONAL-3.
2-LV0O-DALI ~ PICTURE
1-MO-TABLE.
1-MOOOT.
1-M000 OCCURS
1-MOOO-ANNUL PICTURE
1-M000-MOIS PICTURE
1-M000-LMOIS PICTURE
1-MOOO-FILLER PICTURE
1-Mv0o.
1-MV00-00.
1-MV0OO-NOCL.
1-MVOO-NOCL11 PICTURE
1-MV0O-NOCL12 PICTURE
1-MV00-NOCL2 PICTURE
1-MVOO-NUORD PICTURE
1-Mv00-CODMV PICTURE

Chapter 6. Example of generated program 167

X.

XX.
XX.
X(20).
X(43).
XXX.
X(24).
XXX.
X(24).

X.

XX.

XX.

9.
S9(5)Vv99

1-LVOO-NBLIV.

S9(5)Vv99

X(6) .

X.

XX.

XX.

9.
S9(5)Vv99

2-LVOO-NBLIV.

S9(5)Vv99

X(6) .

0012.

99.
X(9).
X(68).

PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJIPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1

10 1-MVOO-NUCAR PICTURE X. PJJpPS1

05 1-MVOO-SUITE. PJJPS1

15 FILLER PICTURE X(00072). PJJPS1

01 1-Mv01 REDEFINES 1-MVOO. PJJPS1
10 FILLER PICTURE X (00008). PJJPS1

10 1-MVO1-NOMCL PICTURE X(20). PJJIPS1

10 1-MVO1-ADRES PICTURE X(43). PJJPS1

10 1-MVO1-NUDEP PICTURE XXX. PJJPS1

10 1-MVO1-FILLER PICTURE X(6). PJJPS1

01 1-MV02 REDEFINES ~ 1-MVOO. PJJPS1
10 FILLER PICTURE X (00008). PJJPS1

10 1-MV02-MREEL9 PICTURE 9(5)V99. PJJPS1

10 1-MVO2-MREELOX REDEFINES PJJIPS1
1-MVO2-MREEL9 PICTURE X(007). PJJPS1

10 1-MV02-DALT ~ PICTURE X(6). PJJPS1

10 FILLER PICTURE X(00059). PJJPS1

01 1-TD-TABLE. PJJPS1
02 1-TDO1T. PJJIPS1

05 1-TDO1 OCCURS 0103. PJJPS1

10 1-TDO1-NUDEP PICTURE XXX. PJJIPS1

10 1-TDO1-LIDEP PICTURE X(24). PJJPS1

10 1-TDO1-NUREG PICTURE XXX. PJJPS1

02 1-TDO2T. PJJPS1

05 1-TDO2 OCCURS 0016. PJJPS1

10 1-TDO2-NUREG PICTURE XXX. PJJIPS1

10 1-TDO2-LIREG PICTURE X(24). PJJPS1

01 USERS-AREAS PICTURE X. PJJIPS1
*SD: WB BIB: WG SEL: 01 FORM: T DESC: 2 NIV: 2 ORG: _ SS: _ 790020
01 WBOO. PJJPS1
02 WBO1. PJJPS1

10 WBOI-FILLER PICTURE X(18) PJJPS1
VALUE 'CDCLDCENGLLCLVMVSE' . PJJPS1

10 WBOI-FILLER PICTURE X (4) PJJPS1
VALUE 'WLVM' . PJJPS1

10 WBO1-TABCPT PICTURE X (44) PJJPS1
VALUE SPACE. PJJPS1

01 WBOO-R REDEFINES WBOO. 791010
xSD: WC BIB: WG SEL: 0203 FORM: I DESC: 3 NIV: 3 ORG: _ SS: _ 791020
02 WCOO. PJJPS1

03 WCO2 OCCURS 0011. PJJPS1

10 WCO2-NOFICH PICTURE XX. PJJIPS1

03 WCO3 OCCURS 0011. PJJPS1

10 WCO3-CPTENR PICTURE S9(7) PJJPS1
COMPUTATIONAL-3. PJJPS1

0A Declaratives

The FOA function contains one FOAff function for each indexed file called in
the -CD lines.

PROCEDURE DIVISION. PJJPS1
DECLARATIVES. PJJPS1
SECMO SECTION. PJJPS1

USE AFTER ERROR PROCEDURE ON MO-FILE. PJJpPS1
FOAMO. DISPLAY 'STATUS : ENTO1 = ' 1-MOOO-STATUS. PJJPS1

168 VisualAge Pacbase: Batch Applications

FOAMO-A. GO TO FOA90. PJJPS1
FOAMO-FN. EXIT. PJJPS1
FOA90. STOP 'INPUT-OUTPUT ERROR CANCEL THE JOB '. PJJPS1
FOA90-FN. EXIT. PJJPS1
END DECLARATIVES. PJJPS1
SECOO SECTION. POOO
NODCA. NOTE *APPEL DU TRI *. POOO
FODCA. PO10
SORT MV-FILE PO20
ON ASCENDING KEY P110
MVOO-NOCL MVOO-NUORD P120
MVOO-CODMV MVOO-NUCAR P500
INPUT PROCEDURE ENTREE P510
OUTPUT PROCEDURE SORTIE. P900
STOP RUN. P900
FODCA-FN. EXIT. P900
ENTREE SECTION. POOO
NOF. NOTE # %%k kshbkhdhrhhhhhkhr kAR A AR ARK IR ARK AR AR *H POOO
* * POOO
*PROCEDURE D'ENTREE * POOO
* * POOO
B R L X R POOO
FOF. EXIT. POOO
NOFBA. NOTE *=INITIALIZATION *. POOO
FOFBA. POOO
OPEN INPUT EN-FILE PO10
*PROCESSING DATE PO80
MOVE CURRENT-DATE TO DAT8 P100
MOVE DAT81 TO DATOM P100
MOVE DAT82 TO DATOJ P100
MOVE DAT83 TO DATOA P100
MOVE DATCE P110
TO DAT8E DAT6C P110
MOVE DAT81E TO DAT63C P110
MOVE DAT82E TO DAT61C MOVE DAT83E TO DAT62C P110
MOVE DAT6C TO DATCE P110
MOVE DATCE P120
TO DAT8E DAT6C P120
MOVE DAT61C TO DAT81C MOVE DAT62C TO DAT82C P120
MOVE DAT63C TO DAT83C P120
MOVE DAT8C TO DAT8C. P120
FOFBA-FN. EXIT. P120
NOFCA. NOTE *=TRAITEMENT FICHIER EN ENTREE *. POOO
FOFCA. IF EN-FT = 0 POOO
NEXT SENTENCE ELSE GO TO FOFCA-FN. POOO
MOVE 0 TO IK PO10
READ EN-FILE PO10
AT END MOVE 1 TO IK. PO10
IF IK =1 PO20
MOVE 1 TO EN-FT P020
GO TO FOFCA-FN. PO30
ADD 1 TO 5-ENOO-RECCNT. PO40
NOFFF. NOTE *DELIVERY DATE SELECTION *. POOO
FOFFF. IF ENOO-NUCAR = 'B' POOO
AND ENO2-DALI < DATOR P020

Chapter 6. Example of generated program 169

NEXT SENTENCE ELSE GO TO FOFFF-FN. P020

GO TO FOFFF-FN. P20

NOFZA. NOTE *ECRITURE *. PO0OO
FOFZA. POOO
MOVE ENOO TO MVOO P0O20
MOVE 0 TO IK PO30
RELEASE MvVeo. PO30
FOFZA-FN. EXIT. PO30
FOFFF-FN. EXIT. PO30
FOFCA-900. GO TO FOFCA. PO30
FOFCA-FN. EXIT. PO30
NOFZZ. NOTE *FERMETURE *. POOO
FOFZZ. POOO
CLOSE EN-FILE. PO10
FOFZZ-FN. EXIT. PO10
FOF-FN. EXIT. PO10
SORTIE SECTION. POOO

Initializations (F01)

Function F01 is always generated. Data structures defined as commentary
(ORGANIZATION = X’) are not described in this function. Data Structures
described in WORKING-STORAGE or LINKAGE (ORGANIZATION = "W’ or
"L’) are not described in F01, except those with USAGE = 'C’, and control
breaks. For these files, see the note below.

Primary purpose: Function FO1 OPEN:Ss files, loads and CLOSEs table files.

Sub-functions: Each data structure is initialized in its own sub-function. The
sub-function code is created using the DATA STRUCTURE CODE IN THE
PROGRAM.

The sub-functions are generated in alphabetical order.

Each sub-function contains:

* the OPEN instruction for the data structure if its ORGANIZATION is 'S/,
T" or 'V’, or "W’ or 'L’ with control breaks.

* the prime READ instruction, for data structures with control break
processing specified,

* the loading of the table files from the description in WORKING-STORAGE,
if the ACCESS MODE is sequential, and if the USAGE OF DATA
STRUCTURE = "T” or "X’. For these files, a CLOSE instruction is generated
once the table is loaded.

NOTE

For input data structures (USAGE = 'C’) described in WORKING STORAGE
or LINKAGE (ORGANIZATION = "W’ or 'L’), with control breaks, an OPEN

170 VisualAge Pacbase: Batch Applications

is generated followed by a PERFORM F95dd for the prime READ. It is the
user’s responsibility to code Sub-function F95dd, (normally using Procedural
Code). This code may need to account for the end-of-processing and
end-of-file indicators, as well as the OPEN and CLOSE of table files, etc.

NO1. NOTE ***%*xkkkkkhkhhrhrrkhrhkkhkhdkhxhkkhrh® PJJPS1
* * PJJPS1

* INITIALIZATIONS * PJJPS1

* * PJJPS1

E R L T X X T T PJJPS1

FO1. EXIT. PJJPS1
NO1CD. NOTE *=INITIALIZATION OF FILE CD-FILE *. PJJPS1
FO1CD. OPEN INPUT CD-FILE. PJJPS1
FO1CD-10. READ CD-FILE AT END PJJPS1
MOVE 1 TO CD-FI. PJJPS1

FOLCD-FN. EXIT. PJJPS1
NO1CL. NOTE *=INITIALIZATION OF FILE CL-FILE *. PJJPS1
FO1CL. OPEN INPUT CL-FILE. PJJPS1
FO1CL-10. READ CL-FILE AT END PJJPS1
MOVE 1 TO CL-FI. PJJPS1

FOICL-FN. EXIT. PJJPS1
NO1DC. NOTE *=INITIALIZATION OF FILE DC-FILE *. PJJPS1
FO1DC. OPEN OUTPUT DC-FILE. PJJPS1
FO1DC-FN. EXIT. PJJPS1
NO1ED. NOTE =INITIALIZATION OF FILE ED-FILE *. PJJPS1
FOL1ED. OPEN OUTPUT ED-FILE. PJJPS1
FO1ED-FN. EXIT. PJJPS1
NO1GL. NOTE *INITIALIZATION OF FILE GL-FILE *. PJJPS1
FO1GL. OPEN INPUT GL-FILE. PJJPS1
FO1GL-FN. EXIT. PJJPS1
NO1LC. NOTE *=INITIALIZATION OF FILE LC-FILE *. PJJPS1
FO1LC. OPEN OUTPUT LC-FILE. PJJPS1
FOLLC-FN. EXIT. PJJPS1
NOILI. NOTE =INITIALIZATION OF FILE LI-FILE *, PJJPS1
FOILI. OPEN OUTPUT LI-FILE. PJJPS1
FOILI-FN. EXIT. PJJPS1
NO1LV. NOTE =INITIALIZATION OF FILE LV-FILE *. PJJPS1
FOL1LV. OPEN INPUT LV-FILE. PJJPS1
FO1LV-10. READ LV-FILE AT END PJJPS1
MOVE 1 TO LV-FI. PJJPS1

FOILV-FN. EXIT. PJJPS1
NO1IMO. NOTE *INITIALIZATION OF FILE MO-FILE *. PJJPS1
FO1MO. OPEN INPUT MO-FILE. PJJPS1
IF 1-MOOO-STATUS NOT = ZERO PJJPS1
PERFORM FOAMO PJJPS1
PERFORM FOA90 THRU FOA90-FN. PJJPS1
FO1IMO-10. READ MO-FILE AT END PJJPS1
GO TO FO1MO-20. PJJPS1

ADD 1 TO IMOOOL IF IMOGOL NOT > 0012 PJJPS1

MOVE MOoo0O PJJPS1

T0 1-M000 (Imo00L) . PJJPS1

GO TO FO1MO-10. PJJPS1

FO1MO-20. PJJPS1
IF IMOOOL > IMOOOM PJJPS1

MOVE IMOOOL T0 IMOGOR PJJPS1

Chapter 6. Example of generated program 171

MOVE IMOOOM T0 IMooOL. PJJPS1

FOIMO-99. CLOSE MO-FILE. PJJPS1
FO1IMO-FN. EXIT. PJJPS1
NOIMV. NOTE *INITIALIZATION OF FILE MV-FILE *. PJJPS1
FO1IMV-10. RETURN MV-FILE AT END PJJPS1
MOVE 1 TO MV-FI. PJJpPS1

FOIMV-FN. EXIT. PJJPS1
NO1SE. NOTE +INITIALIZATION OF FILE SE-FILE *. PJJPS1
FO1SE. OPEN OUTPUT SE-FILE. PJJPS1
FO1SE-FN. EXIT. PJJPS1
NO1TD. NOTE *INITIALIZATION OF FILE TD-FILE *. PJJPS1
FO1TD. OPEN INPUT TD-FILE. PJJPS1
FO1TD-10. READ TD-FILE AT END PJJPS1
GO TO FO1TD-20. PJJPS1

IF TDOO-NOTAB = ‘D' PJJpPS1

NEXT SENTENCE ELSE GO TO FO1TD-O1F. PJJPS1

ADD 1 TO ITDOIL IF ITDO1L NOT > 0103 PJJPS1

MOVE TDO1-NUDEP TO PJJPS1
1-TDO1-NUDEP (ITDO1L) PJJPS1

MOVE TDO1-LIDEP TO PJJpPS1
1-TDO1-LIDEP (ITDO1L) PJJPS1

MOVE TDO1-NUREG TO PJJPS1
1-TDO1-NUREG (ITDO1L) PJJPS1

GO TO FO1TD-10. PJJPS1
FO1TD-01F. PJJPS1
IF TDOO-NOTAB = 'R PJJPS1

NEXT SENTENCE ELSE GO TO FO1TD-02F. PJJPS1

ADD 1 TO ITDO2L IF ITDO2L NOT > 0016 PJJPS1

MOVE TDO2-NUREG TO PJJPS1
1-TDO2-NUREG (1ITDO2L) PJJPS1

MOVE TDO2-LIREG TO PJJPS1
1-TDO2-LIREG (1TDO2L) PJJPS1

GO TO FO1TD-10. PJJPS1
FO1TD-02F. PJJPS1
GO TO FO1TD-10. PJJPS1

FO1TD-20. PJJpPS1
IF ITDOIL > ITDOIM PJJPS1

MOVE ITDOIL T0 ITDOIR PJJPS1

MOVE ITDOIM T0 ITDO1L. PJJPS1

IF ITDO2L > 1TDO2M PJJPS1

MOVE ITDO2L T0 ITDOZR PJJPS1

MOVE 1TDO2M T0 ITDO2L. PJJPS1

FO1TD-99. CLOSE TD-FILE. PJJPS1
FO1TD-FN. EXIT. PJJPS1
NO1VL. NOTE #INITIALIZATION OF FILE VL-FILE *. PJJPS1
FO1VL. OPEN OUTPUT VL-FILE. PJJPS1
FO1VL-FN. EXIT. PJJPS1
NO1VM. NOTE =INITIALIZATION OF FILE VM-FILE *. PJJPS1
FO1VM. OPEN OUTPUT VM-FILE. PJJPS1
FO1VM-FN. EXIT. PJJPS1
FO1-FN. EXIT. PJJPS1

172 VisualAge Pacbase: Batch Applications

Read sequential files with no control break (F05)

Function F05 is always generated, except in cases where the TYPE AND
STRUCTURE OF PROGRAM selected does not generate the PROCEDURE
DIVISION.

Primary purpose: Function FO5 does the READ for all data structures without
control breaks.

Special Note: Function F05 is the top of the iteration loop. Therefore it is
important not to delete it, or if deleted, to insert the function number by other
means.

Sub-functions: Each data structure without control breaks is given its own
sub-function. The sub-function code is created using the DATA STRUCTURE
CODE IN THE PROGRAM.

The data structures are read sequentially, (alphabetical order).

Each sub-function:

* contains the test giving access to the sub-function,

e contains the READ instruction,

* sets the end-of-processing indicator (dd-FT) AT END of READ,

* stores all data elements that make up the key for file matching, if a FILE
MATCHING LEVEL NUMBER was entered (dd-IN-eeeeee),

* increments the record counter (5-dd00-RECCNT).

NOTE

For input data structures (USAGE = 'C’) described in WORKING STORAGE
or LINKAGE (ORGANIZATION = "W’ or 'L’) without control breaks, the
READ is generated as a PERFORM F95dd. It is the user’s responsibility to
code sub-function F95dd, normally using Procedural Code). This code may
need to account for the end-of-processing and end-of-file indicators, as well as
the OPEN and CLOSE of table files, etc.

* NOTE = BEGINNING OF PROGRAM ITERATION =. PJJPS1
FO5. EXIT. PJJPS1
NO5. NOTE **%*kkkkkkhkhkkhkrhkhkkhkhkkhkhkhkkhrs PJJPS1

* * PJJPS1

*READ SEQ.FILES NO CONTROL BREAK * PJJPS1

* * PJJPS1

KARKERKRI IR ARKARKRK AR ARK AR I RR AR KRR ARK | PJJPS1

NO5GL. NOTE *READ FILE GL *. PJJPS1
FO5GL. IF FTB2 = '1" AND GL-CF2 = 'I' PJJPS1
NEXT SENTENCE ELSE GO TO FO5GL-FN. PJJPS1

FO5GL-10. READ GL-FILE AT END PJJPS1
MOVE 1 TO GL-FT PJJPS1

Chapter 6. Example of generated program 173

MOVE HIGH-VALUE TO GLIND PJJpPS1

GO TO FO5GL-FN. PJJPS1
MOVE GLOO-NOCL11 TO GL-IN-NOCL11. PJJPS1
MOVE GLOO-NOCL12 TO GL-IN-NOCL12. PJJPS1
ADD 1 TO 5-GLOO-RECCNT. PJJPS1
FO5GL-FN. EXIT. PJJpPS1
FO5-FN. EXIT. PJJPS1

Read sequential files with control breaks (F10)

Function F10 is generated if there is at least one principal, consulted or
transaction file (USAGE OF DATA STRUCTURE = 'P’, ‘C’, 'M’ or 'N’) on
which there is a control break.

Primary purpose: Function F10 MOVEs the prime read data from the read
area to the work area, and then does a READ for next data in the read area.

Sub-functions: Each data structure with a control break is given its own
sub-function. The sub-function code is created using the DATA STRUCTURE
CODE IN THE PROGRAM.

The data structures are read sequentially, (alphabetical order).

Each sub-function:

* contains the test giving access to the subfunction, if a FILE MATCHING
LEVEL NUMBER has been entered for the data structure,

* sets the initial control break variables (dd-IB),

* sets the end-of-processing indicator (dd-FT), if the end-of-file indicator
(dd-FI) has been set,

* transfers 'OCCURS DEPENDING ON’ counters, if they are in the common
part ('00” segment) of the D.S,,

* transfers the read area data (dd00) to the work area (all file processing will
be done in the work area),

* stores all data elements that make up the key for file matching if a FILE
MATCHING LEVEL NUMBER was entered (dd-IN-eeeeee),

* increments the record counter (5-dd00-RECCNT),
e contains the READ instructions,
* sets end-of-file indicator (dd-FI), AT END.

NOTE
For data structures described in WORKING-STORAGE or LINKAGE,

(ORGANIZATION = "W’ or 'L’), it is the user’s responsibility to code the
READ instruction. This is normally done by a PERFORM of sub-function

174 VisualAge Pacbase: Batch Applications

F95dd, using Procedural Code. The code may need to account for the
end-of-processing and end-of-file, as well as the OPEN and CLOSE of table

files, etc.
N10.

F10.
N10CD.
F10CD.

F10CD-10.

F10CD-FN.
N10OCL.
F10CL.

F10CL-10.

F10CL-FN.
N1OLV.
F10LV.

F10LV-10.

NOTE #**%kxkkkkkhkhhrkhrrkhrhkrkhrhdrkhxhkrkhrh®, PJJPS1
* * PJJPS1
*READ SEQ. FILES CONTROL BREAK * PJJPS1
* * PJJPS1
E R o X X T T PJJPS1

EXIT. PJJPS1

NOTE *READ CONTROL BREAK CD-FILE *. PJJPS1

IF FTB3 = '1' AND CD-CF3 = '1' PJJPS1

NEXT SENTENCE ELSE GO TO F10CD-FN. PJJPS1

MOVE CD-FB T0 CD-1IB. PJJPS1

IF CD-FI ='1 PJJPS1

MOVE HIGH-VALUE TO CDIND PJJPS1

MOVE 1 TO CD-FT GO TO F10CD-FN. PJJPS1

MOVE CDOO T0 1-CD00. PJJPS1

MOVE CDOO-NOCL11 TO CD-IN-NOCL11 PJJPS1

MOVE CDOO-NOCL12 TO CD-IN-NOCL12 PJJPS1

MOVE CDOO-NOCL2 TO CD-IN-NOCL2 PJJPS1

ADD 1 TO 5-CDOO-RECCNT. PJJPS1

READ CD-FILE AT END PJJPS1

MOVE 1 TO CD-FI. PJJPS1

EXIT. PJJPS1

NOTE *READ CONTROL BREAK CL-FILE *. PJJPS1

IF FTB3 = '1' AND CL-CF3 = '1' PJJPS1

NEXT SENTENCE ELSE GO TO F10CL-FN. PJJPS1

MOVE CL-FB T0 CL-IB. PJJPS1

IF CL-FI = '1 PJJPS1

MOVE HIGH-VALUE TO CLIND PJJPS1

MOVE 1 TO CL-FT GO TO F10CL-FN. PJJPS1

MOVE CLoO T0 1-CLOO. PJJPS1

MOVE CLOO-NOCLI1 TO CL-IN-NOCL11 PJJPS1

MOVE CLOO-NOCL12 TO CL-IN-NOCL12 PJJPS1

MOVE CLOO-NOCLZ2 TO CL-IN-NOCL2 PJJPS1

ADD 1 TO 5-CLOO-RECCNT. PJJPS1

READ CL-FILE AT END PJJPS1

MOVE 1 TO CL-FI. PJJPS1

EXIT. PJJPS1

NOTE *=READ CONTROL BREAK LV-FILE *. PJJPS1

IF FTB3 = '1" AND LV-CF3 = 'I1' PJJPS1

NEXT SENTENCE ELSE GO TO F1OLV-FN. PJJPS1

MOVE LV-FB T0 LV-IB. PJJPS1

IF LV-FI = '1' PJJPS1

MOVE HIGH-VALUE TO LVIND PJJPS1

MOVE 1 TO LV-FT GO TO F1OLV-FN. PJJPS1

MOVE LVOO-NBLIV TO 1-LVOO-NBLIV PJJPS1

MOVE LVOO TO 1-LV00. PJJPS1

MOVE LVOO-NOCL11 TO LV-IN-NOCL11 PJJPS1

MOVE LV0O-NOCL12 TO LV-IN-NOCL12 PJJPS1

MOVE LVOO-NOCL2 TO LV-IN-NOCL2 PJJPS1

ADD 1 TO 5-LVOO-RECCNT. PJJPS1

READ LV-FILE AT END PJJPS1

MOVE 1 TO LV-FI. PJJPS1

Chapter 6. Example of generated program 175

F1OLV-FN. EXIT. PJJpPS1

N1OMV. NOTE *READ CONTROL BREAK MV-FILE *. PJJPS1
F1OMV. IF MV-CF3 = 'l PJJpPS1
NEXT SENTENCE ELSE GO TO F1OMV-FN. PJJPS1
F10MV-10. MOVE MV-FB T0 MV-IB. PJJPS1
IF MV-FI =1 PJJpPS1
MOVE HIGH-VALUE TO MVIND PJJPS1
MOVE 1 TO MV-FT GO TO F1OMV-FN. PJJpPS1
MOVE MVOO TO 1-Mve0. PJJPS1
MOVE MVOO-NOCL11 TO MV-IN-NOCL11 PJJPS1
MOVE MV0O-NOCL12 TO MV-IN-NOCL12 PJJPS1
MOVE MVOO-NOCLZ2 TO MV-IN-NOCL2 PJJPS1
ADD 1 TO 5-MVOO-RECCNT. PJJPS1
RETURN ~ MV-FILE AT END PJJPS1
MOVE 1 TO MV-FI. PJJpPS1
F1OMV-FN. EXIT. PJJPS1
F10-FN. EXIT. PJJPS1

End of run (F20)

Function F20 is always generated. The execution condition is that FT = ALL
1.

Primary purpose: Function F20 is used for closing files, and for the STOP
RUN.

Sub-functions: Each data structure (other than those mentioned below) is
given its own sub-function. The sub-function code is created using the DATA
STRUCTURE CODE IN THE PROGRAM. A special Sub-function F2099 is
generated for the STOP RUN instruction.

The data structures are closed sequentially according to their order on the Call
of Data Structures (-CD) screen.

Each sub-function contains:
* the test giving access to the function,

¢ the CLOSE instruction for the data structure if its ORGANIZATION is S, I,
or V, or W or L with control breaks.

¢ sub-function 99’ contains the STOP RUN instruction if there is no sort data
structure (FILE TYPE - INPUT / OUTPUT = 'T’) in the program.

N20. NOTE **%**xkkkkkhkhkxkhrhhhkhrhkxkhxhhrkhrhkxs, PJJPS1
* * PJJPS1
* END OF RUN * PJJPS1
* * PJJPS1
"""""""""""""""""" *kk PJJPS1
F20. IF FT = ALL '1' PJJPS1
NEXT SENTENCE ELSE GO TO F20-FN. PJJPS1
N20AA. NOTE *END OF REPORTS *. PO0O
F20AA. POOO

176 VisualAge Pacbase: Batch Applications

*UPDATE REPORT PO10
PERFORM F81 THRU F81-FN P100
*REPORT FOOTER P150
MOVE 5-ED0O-3LCM TO 5-EDOO-3LC P180
PERFORM F83IL THRU F83-FN. P200
F20AA-FN. EXIT. P200
F20CD. CLOSE CD-FILE. PJJPS1
F20CD-FN. EXIT. PJJPS1
F20CL. CLOSE CL-FILE. PJJPS1
F20CL-FN. EXIT. PJJPS1
F20DC. CLOSE DC-FILE. PJJPS1
F20DC-FN. EXIT. PJJPS1
F20ED. CLOSE ED-FILE. PJJPS1
F20ED-FN. EXIT. PJJPS1
F20GL. CLOSE GL-FILE. PJJPS1
F20GL-FN. EXIT. PJJPS1
F20LC. CLOSE LC-FILE. PJJPS1
F20LC-FN. EXIT. PJJPS1
F20LI. CLOSE LI-FILE. PJJPS1
F20LI-FN. EXIT. PJJPS1
F20LV. CLOSE LV-FILE. PJJPS1
F20LV-FN. EXIT. PJJPS1
F20SE. CLOSE SE-FILE. PJJPS1
F20SE-FN. EXIT. PJJPS1
F20VL. CLOSE VL-FILE. PJJPS1
F20VL-FN. EXIT. PJJPS1
F20VM. CLOSE VM-FILE. PJJPS1
F20VM-FN. EXIT. PJJPS1
N2099. NOTE =FIN PROGRAMME *. POOO
F2099. POOO
GO TO F9999-FN. PO10
F2099-FN. EXIT. PO10
F20-FN. EXIT. PO10

Calculate file control breaks (F22)

Function F22 is generated if there is at least one principal consulted or
transaction file (USAGE OF DATA STRUCTURE = 'P’, 'C’, 'M’ or 'N’) on

which there is a control break.

Primary purpose: Function F22 detects the next control break level by
comparing key data in the work area to that in the read area.

Sub-functions: Each data structure with a control break is given its own
sub-function. The sub-function code is created using the DATA STRUCTURE
CODE IN THE PROGRAM.

The data structures are processed sequentially, in alphabetical order.

Each sub-function:

Sets final control break variables (dd-FB) to zero,

Chapter 6. Example of generated program 177

* Calculates final control breaks, by comparing the values of the key fields in
the read area to the corresponding values in the work area. This is done in
the sequence of the data elements belonging to the SORT KEY field, from
major to minor (1 to n) 'n” being the number entered for the NUMBER OF
CONTROL BREAKS on the Call of Data Structures (-CD) screen,

* sets up the 'FTB’ variable when the program does not contain file
matching. In this case, FIB is used as dd-FB and has the same meaning,

* sets up the 'FBL’ and "IBL’ variables, when the program does not contain
file matching.

N22. NOTE **kkkkkkkhkkhkhkhrkhhkkhkhkkhkhkhkkhkhrsk, PJJPS1
* * PJJPS1

*CALCULATE FILE CONTROL BREAKS * PJJPS1

* * PJJPS1
AERKRKIRIRRARK AR KRNI IR KRNI AR ARI IR AR KA *A PJJPS1

F22. EXIT. PJJPS1
N22CD. NOTE *CAL. CONTROL BREAK ON CD-FILE *, PJJPS1
F22CD. MOVE ZERO TO CD-FB. PJJPS1
IF CD-FI = '1' GO TO F22CD-1. PJJPS1

IF CDOO-NOCL11 NOT = 1-CDOO-NOCL11 PJJPS1

GO TO F22CD-1. PJJPS1

IF CDOO-NOCL12 NOT = 1-CD0O-NOCL12 PJJPS1

GO TO F22CD-2. PJJPS1

GO TO F22CD-FN. PJJPS1

F22CD-1. MOVE 1 T0 CD-FB1. PJJPS1
F22CD-2. MOVE 1 T0 CD-FB2. PJJPS1
F22CD-FN. EXIT. PJJPS1
N22CL. NOTE *=CAL. CONTROL BREAK ON CL-FILE *. PJJPS1
F22CL. MOVE ZERO TO CL-FB. PJJPS1
IF CL-FI = '1' GO TO F22CL-1. PJJPS1

IF CLOO-NOCL11 NOT = 1-CLOO-NOCL11 PJJPS1

GO TO F22CL-1. PJJPS1

IF CLOO-NOCL12 NOT = 1-CLOO-NOCL12 PJJPS1

GO TO F22CL-2. PJJPS1

GO TO F22CL-FN. PJJPS1

F22CL-1. MOVE 1 T0 CL-FBI1. PJJPS1
F22CL-2. MOVE 1 T0 CL-FB2. PJJPS1
F22CL-FN. EXIT. PJJPS1
N22LV. NOTE *=CAL. CONTROL BREAK ON LV-FILE *. PJJPS1
F22LV. MOVE ZERO TO LV-FB. PJJPS1
IF LV-FI = '"1' GO TO F22LV-1. PJJPS1

IF LVOO-NOCL11 NOT = 1-LVOO-NOCL11 PJJPS1

GO TO F22LV-1. PJJPS1

IF LVOO-NOCL12 NOT = 1-LVOO-NOCL12 PJJPS1

GO TO F22LVv-2. PJJPS1

GO TO F22LV-FN. PJJPS1

F22LV-1. MOVE 1 T0 LV-FB1. PJJPS1
F22LV-2. MOVE 1 T0 LV-FB2. PJJPS1
F22LV-FN. EXIT. PJJPS1
N22MV. NOTE *CAL. CONTROL BREAK ON MV-FILE *, PJJPS1
F22MV. MOVE ZERO TO MV-FB. PJJPS1
IF MV-FI = '1' GO TO F22MV-1. PJJPS1

IF MVOO-NOCL11 NOT = 1-MVOO-NOCL11 PJJPS1

178 VisualAge Pacbase: Batch Applications

GO TO F22MV-1. PJJPS1

IF MVOO-NOCL12 NOT = 1-MVOO-NOCL12 PJJPS1
GO TO F22mv-2. PJJPS1
IF MVOO-NOCL2 NOT = 1-MVOO-NOCL2 PJJPS1
GO TO F22MV-3. PJJPS1
IF MVOO-NUORD NOT = 1-MVOO-NUORD PJJPS1
GO TO F22MV-4. PJJPS1
IF MVOO-CODMV NOT = 1-MVOO-CODMV PJJPS1
GO TO F22MV-5. PJJPS1
IF MVOO-NUCAR NOT = 1-MVOO-NUCAR PJJPS1
GO TO F22MV-6. PJJPS1
GO TO F22MV-FN. PJJPS1
F22Mv-1. MOVE 1 T0 MV-FBI1. PJJPS1
F22Mv-2. MOVE 1 T0 MV-FB2. PJJPS1
F22MV-3. MOVE 1 T0 MV-FB3. PJJPS1
F22MV-4. MOVE 1 T0 MV-FB4. PJJPS1
F22MV-5. MOVE 1 T0 MV-FB5. PJJPS1
F22MV-6. MOVE 1 T0 MV-FB6. PJJPS1
F22MV-FN. EXIT. PJJPS1
F22-FN. EXIT. PJJPS1

File matching logic (F24)
Function F24 is generated if there is at least one input data structure on which

there is file matching, or if there is one or more input(-output) principal data
structure(s).

Primary purpose: Function F24 detects a new level of file matching. When the

minor-most level has been attained, the work area is moved into the update
area (1-dd00 --> 2-dd00).

Sub-functions: Each data structure with file matching is given its own
sub-function. The sub-function code is created using the DATA STRUCTURE
CODE IN THE PROGRAM. In addition to those sub-functions, a numeric
code is created based on the number of levels of file matching - one
sub-function per level.

The sub-functions using the data structure code are generated in alphabetical
order.

The alphabetic sub-functions will:

* set the Configuration Flag according to the current status of the file
matching level (dd-CFn).

The numeric sub-functions will:

* set the Occurrence Flag, once the file matching level processing has been
completed (dd-OCn),

* at the minor-most level, for principal files, the work area is moved to the
update area (1-dd00 --> 2-dd00).

Chapter 6. Example of generated program 179

N24. NOTE **kkkkkhkhkhhhhhhhhhhhhhhkhrkhhhhrhhdk,

* *
«CAL. CONFIGURATIONS OCCURRENCES*
* *
F*hkhkhkhhkhkhhkhhhkhhhhhhkhhhhhhkrkhhkkhhkrhkdxx,
F24. MOVE ZERO TO VCF MOVE HIGH-VALUE TO IND.
IF TIND3 > CDIND MOVE CDIND TO IND.
IF TIND3 > CLIND MOVE CLIND TO IND.
IF TIND3 > LVIND MOVE LVIND TO IND.
IF TIND3 > MVIND MOVE MVIND TO IND.
IF TIND2 > GLIND MOVE GLIND TO IND.
F24CD. IF CDIND1 = IND1
MOVE 1 TO CD-CF1.
IF CDIND2 - IND2
MOVE CD-CF1 T0 CD-CF2.
IF CDIND3 = IND3
MOVE CD-CF2 T0 CD-CF3.
F24CD-FN. EXIT.
F4cL. IF CLIND1 = IND1
MOVE 1 TO CL-CF1.
IF CLIND2 - IND2
MOVE CL-CF1 T0 CL-CF2.
IF CLIND3 = IND3
MOVE CL-CF2 T0 CL-CF3.
F24CL-FN. EXIT.
F24GL. IF GLIND1 = IND1
MOVE 1 TO GL-CF1.
IF GLIND2 = IND2
MOVE GL-CF1 T0 GL-CF2.
F24GL-FN. EXIT.
F24Lv. IF LVINDI = IND1
MOVE 1 TO LV-CF1.
IF LVIND2 = IND2
MOVE LV-CF1 70 LV-CF2.
IF LVIND3 = IND3
MOVE LV-CF2 T0 LV-CF3.
F24LV-FN. EXIT.
F2amv. IF MVIND1 = IND1
MOVE 1 TO MV-CF1.
IF MVIND2 - IND2
MOVE MV-CF1 T0 MV-CF2.
IF MVIND3 = IND3
MOVE MV-CF2 T0 MV-CF3.
F24MV-FN. EXIT.
F2401.
IF FTB1 = 'l
NEXT SENTENCE ELSE GO TO F2401-FN.
MOVE CD-CF1 T0 CD-0C1.
MOVE CL-CF1 T0 CL-0C1.
MOVE LV-CF1 T0 LV-0C1.
F2401-FN. EXIT.
F2402.
IF FTB2 = 'l
NEXT SENTENCE ELSE GO TO F2402-FN.
MOVE CD-CF2 T0 CD-0C2.

180 VisualAge Pacbase: Batch Applications

PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1

MOVE
MOVE

F2402-FN. EXIT.

F2403.

IF

NEXT
MOVE
MOVE
MOVE
IF

MOVE
ELSE
MOVE
IF

MOVE
ELSE
MOVE
IF

MOVE
MOVE
ELSE
MOVE
MOVE

F2403-FN. EXIT.
F24-FN. EXIT.

CL-CF2
LV-CF2

FTB3 =
SENTENCE ELSE
CD-CF3
CL-CF3
LV-CF3
CD-CF3

SPACE

1-CD00
CL-CF3
SPACE

1-CLOO
LV-CF3

SPACE

ZERO

1-LVOO-NBLIV
1-Lvoo

T0
TO

"
GO TO
TO
T0
TO
NOT =
TO

TO
NOT =
TO

TO0
NOT =
TO
TO

TO0
TO

CL-0C2. PJJPS1
Lv-0C2. PJJPS1
PJJPS1

PJJPS1

PJJPS1

F2403-FN. PJJPS1
CD-0C3. PJJPS1
CL-0C3. PJJPS1
LV-0C3. PJJPS1

1 PJJPS1
2-CD0O0 PJJPS1
PJJPS1

2-CD00. PJJPS1
1! PJJPS1
2-CLOO PJJPS1
PJJPS1

2-CLo0. PJJPS1
1! PJJIPS1
2-LV0o PJJPS1
2-LVOO-NBLIV PJJPS1
PJJPS1

2-LVOO-NBLIV PJJPS1
2-Lv00. PJJPS1
PJJPS1

PJJIPS1

Total control break logic (F26)

Function F26 is generated if there is at least one principal, consulted or
transaction file (USAGE OF DATA STRUCTURE = 'P’, 'C’, ‘M’ or 'N’) with

both control breaks and file matching.

Primary purpose: Function F26 detects when all processing on all files is
complete, (the "total control break level”), and when the next READ on all
files is ready to occur.

Sub-functions: none.

The Function will:

set variables (ITB variables) indicating that a new cycle is about to begin

on all files,

set variables (FIB variables) to zero indicating that processing on the
current set of data is ending,

based on a series of tests (sequenced major to minor on the FILE
MATCHING LEVEL NUMBER), calculate the level of total control breaks
for the current iteration.

This function cannot be altered in any way.

Chapter 6. Example of generated program 181

N26. NOTE **kkkkkhkhkhhhhhhhhhhhhhhkhrkhhhhrhhdk, PJJPS1

* * PJJPS1

*CALCULATE TOTAL CONTROL BREAKS * PJJPS1

* * PJJPS1
e X T T PJJPS1

F26. MOVE FTB TO ITB. MOVE ZERO TO FTB. PJJPS1
MOVE FBL TO IBL. MOVE ZERO TO FBL. PJJPS1

IF (CD-CF1 = '0' OR CD-FB1 = '1' PJJPS1

AND CD-CF3 ='1") PJJPS1

IF (CL-CF1 = '0' OR CL-FB1 = '1' PJJPS1

AND CL-CF3 ='1") PJJPS1

IF (Lv-CF1 = '0' OR LV-FB1 = '1' PJJPS1

AND LV-CF3 ='1") PJJPS1

IF (Mv-CF1 = '0' OR MV-FB1 = '1' PJJPS1

AND MV-CF3 ='1") PJJPS1

MOVE 1 TO FBL GO TO F26-1. PJJPS1

IF (CD-CF2 = '0' OR CD-FB2 = '1' PJJPS1

AND CD-CF3 ='1") PJJPS1

IF (CL-CF2 = '0' OR CL-FB2 = '1' PJJPS1

AND CL-CF3 ='1") PJJPS1

IF (Lv-CF2 = '0' OR LV-FB2 = '1' PJJPS1

AND LV-CF3 ='1") PJJPS1

IF (MvV-CF2 = '0' OR MV-FB2 = '1' PJJPS1

AND MV-CF3 ='1") PJJPS1

MOVE 2 TO FBL GO TO F26-2. PJJPS1

IF MV-CF3 ='0" OR Mv-FB3 = 'I' PJJPS1

MOVE 3 TO FBL GO TO F26-3. PJJPS1

IF MV-CF3 ='0" OR Mv-FB4 = 'I' PJJPS1

MOVE 4 TO FBL GO TO F26-4. PJJPS1

IF MV-CF3 ='0" OR Mv-FB5 = 'I' PJJPS1

MOVE 5 TO FBL GO TO F26-5. PJJPS1

IF MV-CF3 ='0" OR MvV-FB6 = 'I' PJJPS1

MOVE 6 TO FBL GO TO F26-6. PJJPS1

GO TO F26-FN. PJJPS1

F26-1. MOVE 1 TO FTBL. PJJPS1
F26-2. MOVE 1 TO FTB2. PJJPS1
F26-3. MOVE 1 TO FTB3. PJJPS1
F26-4. MOVE 1 TO FTB4. PJJPS1
F26-5. MOVE 1 TO FTBS5. PJJPS1
F26-6. MOVE 1 TO FTB6. PJJPS1
F26-FN. EXIT. PJJPS1

Calculate validation variables (F30)

Function F30 is generated if there is an input transaction data structure
(USAGE OF DATA STRUCTURE ="M’ or'N’).

Primary purpose: Function F30 controls the initialization of the Error tables, as
needed.

Sub-functions: none.
The Function contains:

182 VisualAge Pacbase: Batch Applications

.the test giving access to the function;

.the initialization of the error table fields:
A) For elements (DE-ERR and/or ER-PRR)
Source:

the error table from the transaction file with error fields detected (USAGE =
"E’), stored in PACBASE variable "TENPR’.

Validation:

1. standard: direct initialization of DE-ERR,

2. reduced: initialization of ER-PRR and transfer into DE-ERR:
ER-ID --> ID-ER
ER-PRO --> ER-00.

If the source is not as described above, the error table is initialized to zero;
B) For user-defined errors (UT-ERUT)

If ERUT is not a repeated data element:

1. using 'ERUT, if it is called into the transaction data structure (and
selected in the RESERVED ERROR CODES IN TRANS. FILE field),

2. if not, initialized to zero;

C) For segments

For multi-record transaction processing, initialization of "group” variables:
According to the TRANSACTION CONTROL BREAK LEVEL indicator

(dd-IBn), determine whether the transaction error table is being built, or if a
new transaction cycle is beginning in this iteration:

1. If a new transaction cycle is beginning, set SE-ERR to zero,

2. If not, set SE-ERR from the error table contained on the record of the
transaction file with error validations in the GRPR field;

For a new transaction cycle:

Initializing the "group” error variable (GR-ER): A new transaction cycle begins
when all files match at the highest level (ITBn = "1” where n = highest FILE
MATCHING LEVEL NUMBER).

This function cannot be altered in any way.

Chapter 6. Example of generated program 183

N30. NOTE #*#%k*xkrhkhhrhrrkhrhhhhrhdrhrhhhhrhdxx, PJJPS1

* * PJJPS1

* CALCULATE VALIDATION VARIABLES = PJJPS1

* * PJJPS1
e X T T PJJPS1

F30. IF MV-CF3 = '1" PJJPS1
NEXT SENTENCE ELSE GO TO F30-FN. PJJPS1

MOVE ZERO TO DE-ERR. PJJPS1

MOVE ZERO TO UT-ERUT. PJJPS1

IF My-IB5 = '1' PJJPS1

MOVE ZERO TO SE-ERR MOVE 1 TO TR-ER. PJJPS1

IF ITB3 = '1' PJJPS1

MOVE 0 TO GR-ER. PJJPS1

F30-FN. EXIT. PJJPS1

Identification validation (F33)

Function F33 is generated if the transaction d.s. contains an element to
identify the record type or one for the action: (CODE / VALUE OF RECORD
TYPE ELEMENT or CODE / VALUE OF ACTION CODE ELEMENT on the

Segment Definition screen.)

Primary purpose: Function F33 checks to see if the value in the record type
and action code fields is one of the values designated as valid. The presence
of the segment is also detected.

Sub-functions: 'AA' for validation of the record type,
'BB' for validation of the action code.
The Function contains:

* the test giving access to the function, if the minormost FILE MATCHING
LEVEL NUMBER for the data Structure has been achieved;

* Sub-function F33AA: record type validation which:

— assigns a rank to the record according to its type (i.e. the position of this
record type in relation to all the records of the file) in index 101,

in the case of a reduced error validation initialized tialized by ENPR of
the input D.S., transfer of ER-PRM into the part of DE-ERR
corresponding to the record type (ER-NN),

sets the Identification Error indicator if the record type field does not
contain one of the specified values (ID-ER = 5),

indicates record presence (via SE-ER (I01) = 1) if GRPR is not on the
input data structure;

¢ Sub-function F33BB: Validation of the action, which:

— assigns a rank to the action field value- (Create = 1; Modify = 2; Delete
= 3; etc.), according to the value detected,

— sets the Identification Error indicator if the action code field does not
contain one of the specified values (ID-ER = 6).

184 VisualAge Pacbase: Batch Applications

N33. NOTE #**%xkkkkkhrkhhrhrrkhrhkkhkhFkhxhkhhrh® PJJPS1

* * PJJPS1

* IDENTIFICATION VALIDATION * PJJPS1

* * PJJPS1

E R T X X T T PJJPS1

F33. IF MV-CF3 = '1! PJJPS1
NEXT SENTENCE ELSE GO TO F33-FN. PJJPS1

F33AA. PJJPS1
IF 1-MVOO-NUCAR = 'A' PJJPS1

MOVE 'MVOl! TO LE-FIENR PJJPS1

MOVE 001 TO I01 GO TO F33AA-01. PJJPS1

IF 1-MVOO-NUCAR = 'B' PJJPS1

MOVE 'MVO2' TO LE-FIENR PJJPS1

MOVE 002 TO I01 GO TO F33AA-01. PJJPS1

MOVE 5 TO ID-ER GO TO F33-FN. PJJPS1

F33AA-01. IF ID-ER = 'O' MOVE 1 TO SE-ER (I01). PJJPS1
F33AA-FN. EXIT. PJJPS1
F33BB. PJJPS1
IF 1-MVOO-CODMV = 'C' PJJPS1

MOVE 1 TO 1I02 GO TO F33BB-FN. PJJPS1

IF 1-MVOO-CODMV = 'M' PJJPS1

MOVE 2 TO 102 GO TO F33BB-FN. PJJPS1

IF 1-MVOO-CODMV = 'S! PJJPS1

MOVE 3 TO 102 GO TO F33BB-FN. PJJPS1

IF 1-MvVOO-CODMY = 'D' PJJPS1

MOVE 4 TO 1I02 GO TO F33BB-FN. PJJPS1

IF 1-MVOO-CODMY = 'E' PJJPS1

MOVE 5 TO 1I02 GO TO F33BB-FN. PJJPS1

IF 1-MVOO-CODMV = 'F! PJJPS1

MOVE 6 TO 102 GO TO F33BB-FN. PJJPS1

MOVE 6 TO ID-ER. PJJPS1

F33BB-FN. EXIT. PJJPS1
F33-FN. EXIT. PJJPS1

Duplicate record validation (F36)

Function F36 is generated if the transaction file is to be validated in this
program (USAGE OF DATA STRUCTURE = "M’), if a control break has been
specified, and also:

* either the record type element is part of the sort key and is the minor-most
control break level,

* or the data structure has only one segment.
Primary purpose: Function F36 detects duplicate records.
Sub-functions: none.

The function contains:

* the test giving access to the function;

Chapter 6. Example of generated program 185

* the test to detect duplicate records, using dd-IBn and and dd-FBn, where n
= the highest NUMBER OF CONTROL BREAKS (See also TRANSACTION
CONTROL BREAK LEVEL);

If a duplicate is detected,
* setting the Segment Error Indicator (SE-ER (101) = 7).

This function cannot be altered in any way.

N36. NOTE ks skk sk Kok kA h KK H kAR H KKKk A KkkkKkk PJJPS1
* * PJJPS1

* DUPLICATE RECORD VALIDATION * PJJPS1

* * PJJPS1

KRR KRKKRIIR IR K IR ARI IR AR K IR AR I IR AR * AR K, PJJPS1

F36. IF MV-CF3 = '1' PJJPS1
NEXT SENTENCE ELSE GO TO F36-FN. PJJPS1

IF MV-I1B6 = '0' OR MV-FB6 = 'O PJJPS1

MOVE 7 TO SE-ER (I01). PJJPS1

F36-FN. EXIT. PJJPS1

Presence of data elements (F39)

Function F39 is generated if there is a transaction data structure (USAGE OF
DATA STRUCTURE = ‘M’ or 'N’).

Primary purpose: Function F39 determines the status of each key data
element, i.e., which are present and which are absent.

Sub-functions: Each different record type is given its own sub-function. The
sub-function code is a number allocated by the system at generation time.

The function contains:
* the test giving access to the function:

There must be no identification error (i.e. ID-ER = 0) and if file matching
has been specified, the record must be at the minor-most level of matching-
(dd-CFn = 1 with n = FILE MATCHING LEVEL NUMBER);

e sub-functions which:

* test the record type value (according to values specified on the Segment
Definition (S) screen),

* store pointers to the first and last data elements of the record in relation to
the beginning of the record (in Index '103’),

* indicate the status of key data element presence using DE-ER(n) or
ER-ss-eeeeee,

The presence of a data element is detected by the fact that a value exists in
the work area of the element. The test is done against blanks, zero or
low-values, depending upon the option selected in the TYPE OF

186 VisualAge Pacbase: Batch Applications

PRESENCE VALIDATION field on the Program Definition screen. This is
only done for transactions without the error vector ENPR.

NOTE: The sub-functions are exclusive from one another.

N39. NOTE ***%*xkkkkkhkhhrhrrkhrhkkhkhdkhxhkkhrh® PJJPS1
* * PJJPS1

* PRESENCE OF DATA ELEMENTS * PJJPS1

* * PJJPS1

E R L T X X T T PJJPS1

F39. IF MV-CF3 = '1! AND ID-ER = '0' PJJPS1
NEXT SENTENCE ELSE GO TO F39-FN. PJJPS1

F3900. PJJPS1
IF 1-MVOO-NOCL11 NOT = BLANC PJJPS1

MOVE 1 TO ER-00-NOCL11. PJJPS1

IF 1-MVOO-NOCL12 NOT = BLANC PJJPS1

MOVE 1 TO ER-00-NOCL12. PJJPS1

IF 1-MVOO-NOCL2 NOT = BLANC PJJPS1

MOVE 1 TO ER-00-NOCL2. PJJPS1

IF 1-MVOO-NUORD NOT = BLANC PJJPS1

MOVE 1 TO ER-00-NUORD. PJJPS1

IF 1-MVOO-CODMV ~ NOT = BLANC PJJPS1

MOVE 1 TO ER-00-CODMV. PJJPS1

IF 1-MVOO-NUCAR NOT = BLANC PJJPS1

MOVE 1 TO ER-00-NUCAR. PJJPS1

F3900-FN. EXIT. PJJPS1
F3901. PJJPS1
IF 1-MVOO-NUCAR = 'A' PJJPS1

NEXT SENTENCE ELSE GO TO F3901-FN. PJJPS1

MOVE 007 TO 103. PJJPS1

IF 1-MVO1-NOMCL NOT = BLANC PJJPS1

MOVE 1 TO ER-O1-NOMCL. PJJPS1

IF 1-MVO1-ADRES NOT = BLANC PJJPS1

MOVE 1 TO ER-O1-ADRES. PJJPS1

IF 1-MVO1-NUDEP NOT = BLANC PJJPS1

MOVE 1 TO ER-O1-NUDEP. PJJPS1

MOVE 009 TO 104. PJJPS1

GO TO F39-FN. PJJPS1

F3901-FN. EXIT. PJJPS1
F3902. PJJPS1
IF 1-MVOO-NUCAR = 'B' PJJPS1

NEXT SENTENCE ELSE GO TO F3902-FN. PJJPS1

MOVE 010 TO 103. PJJPS1

IF 1-MVO2-MREEL9X NOT = BLANC PJJPS1

MOVE 1 TO ER-02-MREEL9. PJJPS1

IF 1-MV02-DALI NOT = BLANC PJJPS1

MOVE 1 TO ER-02-DALI. PJJPS1

MOVE 011 TO 104. PJJPS1

GO TO F39-FN. PJJPS1

F3902-FN. EXIT. PJJPS1
F39-FN. EXIT. PJJPS1

Chapter 6. Example of generated program 187

Record structure validation (F42)

Function F42 is generated if the transaction d.s. is to be validated (USAGE OF
DATA STRUCTURES = "M’).

Primary purpose: Function F42 evaluates whether the key data
elements are erroneously present or absent.

Sub-functions: '10' to validate data elements in the common
part segment,

'20' to validate data elements in the
specific part segments.

The function contains:
* the test giving access to the function:

There must be no identification error (ID-ER = 0) and the record on the
transaction file must participate in this iteration (dd-CFn = 1). The latter test
is done only if file matching has been specified;

¢ Sub-function F4210, which checks whether a data element of the common
part should be present or absent, according to the specifications entered on
the segment Call of Elements (-CE) screen. If an error is detected, DEL-ER
takes on the following values:

2 = invalid absence,
3 = invalid presence;

* Sub-function F4220, (if the file has more than one record type), which
checks whether a data element of a specific part segment should be present
or absent. If an error is detected, DEL-ER takes on the same values as
mentioned above.

N42. NOTE #***kkkkrhhhhrhhrhrhhhh Rk AR A R* AR AR I A*K | PJJPS1
* * PJJPS1

* RECORD STRUCTURE VALIDATION = PJJPS1

* * PJJPS1
B T PJJPS1

F42. IF MV-CF3 = '1' AND ID-ER = '0' PJJPS1
NEXT SENTENCE ELSE GO TO F42-FN. PJJPS1

F4210. MOVE 1 TO 1I06. PJJPS1
F4210-010. MOVE DE-TT (106, 102) TO DE-TTE. PJJPS1
IF DE-TTE = 'F!' GO TO F4210-090. PJJPS1

MOVE DE-ER (I06) TO DEL-ER. PJJPS1

IF DE-TTE = 'O"' AND DEL-ER = '©@' MOVE 2 TO DEL-ER. PJJPS1

IF DE-TTE = 'I' AND DEL-ER = "1' MOVE 3 TO DEL-ER. PJJPS1
MOVE DEL-ER TO DE-ER (I06). PJJPS1
F4210-090. IF 106 < I50 ADD 1 TO I06 GO TO F4210-010. PJJPS1
F4210-FN. EXIT. PJJPS1
F4220. MOVE 103 TO 1I06. PJJPS1
F4220-010. MOVE DE-TT (I06, 102) TO DE-TTE. PJJPS1
IF DE-TTE = 'F!' GO TO F4220-090. PJJPS1

MOVE DE-ER (I06) TO DEL-ER. PJJPS1

IF DE-TTE = 'O"' AND DEL-ER = '0' MOVE 2 TO DEL-ER. PJJPS1

IF DE-TTE = 'I' AND DEL-ER = '1' MOVE 3 TO DEL-ER. PJJPS1

188 VisualAge Pacbase: Batch Applications

MOVE DEL-ER TO DE-ER (I06). PJJPS1

F4220-090. IF 106 < I04 ADD 1 TO I06 GO TO F4220-010. PJJPS1
F4220-FN. EXIT. PJJPS1
F42-FN. EXIT. PJJPS1

Data element contents validation (F45)

Function F45 is generated if the transaction d.s. is to be validated (USAGE OF
DATA STRUCTURE = "M’).

Primary purpose: Function F45 checks the values in the key fields for valid
class and contents.

Sub-functions: Each record type is given its own sub-function. The
sub-function code is a number allocated by the system at generation time.

The function contains:
* the test giving access to the function:

There must be no identification error (ID-ER = 0) and if file matching has
been specified, the record on the transaction file participates in this iteration
(dd-CFn = 1);

* The sub-functions are executed according to the value detected in the
record type field. They are therefore exclusive from one another. If there are

contents validations specified for data elements of the record type, (see
DATA ELEMENT CONTENTS VALIDATIONS), each sub-function contains:

— the test verifying the valid presence of this data element and its status
of being error-free (ER-ss-eeeeee = 1),

— class validation, if specified, can be:
- purely numeric,
- alphabetic with spaces,
- numeric with spaces to the left,
- numeric with spaces to the left or right,
Failure results in ER-ss-eeeeee = 4,
- contents validation, if specified, can:

* check that the data element has (or does not have) some specified
value(s),

* check that the data element is within a given range(s),

* check that the contents of data element are in a table accessed
sequentially,

* check that the contents correspond to a set of codes given on the
Data Element Description (-D) screen,

Failure results in ER-ss-eeeeeee = 4,

Chapter 6. Example of generated program 189

- if one of the types of validations specified for a data element is a
PERFORM of a sub-function it is executed before or after the content
validation depending upon the sequence in which it was entered on
the Call of Elements (-CE) screen. (The sequence is determined by the
LINE NUMBER value),

If it precedes the class/contents validations, the PERFORM is executed
only if the data element is present and still error free,

If it follows the class/contents validations, the PERFORM is executed
only if an error in the contents HAS been detected. This being the case
the user must fill in the corresponding DE-ERR entity,

The PERFORM statement is never executed, after a Table validation.

N45. NOTE **kkkkkkkhkhkkhrkhkkhkhkhhkhkhrkkhrhrrk, PJJPS1
* * PJJPS1

* DATA ELEMENT CONTENTS VALIDATION = PJJPS1

* * PJJPS1
KEKRKRKIRIFR IR K IR ARI IR AR K IR AR I IR AR R IR K, PJJPS1

F45. IF MV-CF3 = '1' AND ID-ER = '0' PJJPS1
NEXT SENTENCE ELSE GO TO F45-FN. PJJPS1

F4500. PJJPS1
IF ER-00-NOCL2 NOT = '1' PJJPS1

GO TO F4500-003. PJJPS1

IF 1-MVOO-NOCL2 NOT NUMERIC PJJPS1

MOVE 4 TO ER-00-NOCL2 GO TO F4500-003. PJJPS1
F4500-003. PJJPS1
IF ER-00-NUORD NOT = '1' PJJPS1

GO TO F4500-004. PJJPS1

IF 1-MVOO-NUORD NOT NUMERIC PJJPS1

MOVE 4 TO ER-00-NUORD GO TO F4500-004. PJJPS1

IF 1-MVOO-NUORD NOT < 1! PJJPS1

AND 1-MVOO-NUORD NOT > '8! PJJPS1

OR 1-MVOO-NUORD = '9' PJJPS1

GO TO F4500-004. PJJPS1
F4500-004C. MOVE 5 TO ER-00-NUORD. PJJPS1
F4500-004. EXIT. PJJPS1
F4500-FN. EXIT. PJJPS1
F4501. PJJPS1
IF 1-MVOO-NUCAR = 'A' PJJPS1

NEXT SENTENCE ELSE GO TO F4501-FN. PJJPS1

IF ER-01-NOMCL NOT = '1' PJJPS1

GO TO F4501-007. PJJPS1

IF 1-MVO1-NOMCL NOT ALPHABETIC PJJPS1

MOVE 4 TO ER-01-NOMCL GO TO F4501-007. PJJPS1
F4501-007. PJJPS1
IF ER-O01-NUDEP NOT = '1' PJJPS1

GO TO F4501-009. PJJPS1

MOVE 1 TO ITDOIR. PJJPS1
F4501-009A. IF ITDOIR > ITDOIL PJJPS1
MOVE 5 TO ER-01-NUDEP GO TO F4501-009. PJJPS1

IF 1-TDO1-NUDEP (ITDOIR) = PJJPS1
1-MVO1-NUDEP GO TO F4501-009. PJJPS1

ADD 1 TO ITDOIR. GO TO F4501-009A. PJJPS1
F4501-009. PJJPS1

190 VisualAge Pacbase: Batch Applications

GO TO F45-FN. PJJPS1
F4501-FN. EXIT. PJJPS1
F45-FN. EXIT. PJJPS1

Record presence validation (F51)

Function F51 is generated if the transaction d.s. is to be validated in the
program (USAGE OF DATA STRUCTURE = "M’), and if it contains more than
one record type.

Primary purpose: Function F51 detects an erroneous absence

or presence of a segment.

Sub-functions: '10' to detect invalid absence of a segment,

'20' to detect invalid presence of a segment.

The function contains:

the test giving access to the function:

There must be no identification error (ID-ER = 0) and if file matching has
been specified, the record on the transaction file participates in this iteration
(dd-CFn = 1);

Sub-function F5110 which verifies that the record is supposed to be present
for this transaction (Segment Definition screen SEGMENT PRESENCE
specifications), and if not, identifies the error: (SE-ER (101) = 3);

Sub-function F5120 is executed only when the minor- most
TRANSACTION CONTROL BREAK LEVEL has been (dd-FBn = 1). This
sub-function verifies that achieved all records needed for this transaction
are present, and if not, flags the error for that particular record (SE-ER (106)
= 2 with 106 as the index specifying the record) and the transaction (TR-ER
=2).

N51. NOTE sk soksokskok sk sk kok ko kok ko ok ook Kok kKK Kk KKk *%, PJJPS1
* * PJJPS1

* RECORD PRESENCE VALIDATION * PJJPS1

* * PJJPS1
KARKERKRIIRARKIRKRK AR ARK AR I RR IR KRR AR K, PJJPS1

F51. IF MV-CF3 = '1'" AND ID-ER = '0' PJJPS1
NEXT SENTENCE ELSE GO TO F51-FN. PJJPS1

F5110. IF SE-ER (I01) = '1' PJJPS1
AND SE-TT (I01, I02) = 'I' MOVE 3 TO SE-ER (101). PJJPS1
F5110-FN. EXIT. PJJPS1
F5120. IF MV-FB5 = '1' PJJPS1
NEXT SENTENCE ELSE GO TO F51-FN. PJJPS1

MOVE 1 TO I06. PJJPS1
F5120-010. PJJPS1
IF SE-ER (I06) = 'O' AND SE-TT (I06, I02) = 'O PJJPS1

MOVE 2 TO SE-ER (I06) MOVE 2 TO TR-ER. PJJPS1

IF 106 < 002 ADD 1 TO I06 GO TO F5120-010. PJJPS1
F5120-FN. EXIT. PJJPS1
F51-FN. EXIT. PJJPS1

Chapter 6. Example of generated program 191

Existence validation (F70)

Function F70 is generated if a transaction d.s. (USAGE OF DATA
STRUCTURE = "M’ or 'N’) contains data elements that update one or more
Principal d.s.’s (USAGE = 'P’) accessed in program.

Primary purpose: Function F70 evaluates the compatibility of the intended
action with the status of segment presence or absence.

Sub-functions: Each principal data structure to be updated is given its own
sub-function. The sub-function code is created using the DATA STRUCTURE
CODE IN THE PROGRAM.

The function contains:
* the condition test giving access to the function:
There must be no identification error (ID-ER = 0) and if file matching has
been specified, the record on the transaction file participates in this iteration
(dd-CFn = 1) and a new transaction cycle is beginning ginning (dd-IBn = 1
where n = the minor-most TRANSACTION CONTROL BREAK LEVEL
specified);
* Each sub-function contains:
— the test for erroneous existence on the principal file of a record to be
created,
— if detected, SE-ER (I01) = 8,
— the test for erroneous absence on the principal file of a record to be
deleted or modified,

— if detected, SE-ER (I01) = 9.

N70. NOTE *#%**xxkxkkkhrhkkhrhhhkhrhkxhrhdkhrhkxs, PJJPS1
* * PJJPS1
*CORRESPONDENCE VALIDATION * PJJPS1
* * PJJPS1
B T R X X T PJJPS1

F70. IF MV-CF3 = '1' AND 1ID-ER = '0' PJJPS1

NEXT SENTENCE ELSE GO TO F70-FN. PJJPS1
IF MV-1IB5 = '1' PJJPS1
NEXT SENTENCE ELSE GO TO F70-FN. PJJPS1
N70CD. NOTE +CORRESPONDENCE VALID. FILE CD *. PJJPS1
F70CD. IF 102 =1 AND Ccb-0C3 = '1! PJJPS1
MOVE 8 TO SE-ER (101). PJJPS1
IF 102 NOT =1 AND Cb-0C3 = '0' PJJPS1
MOVE 9 TO SE-ER (101). PJJPS1

F70CD-FN. EXIT. PJJPS1

N70CL. NOTE +*CORRESPONDENCE VALID. FILE CL *. PJJPS1

F70CL. IF 102 =1 AND CL-0C3 = '"1! PJJPS1

MOVE 8 TO SE-ER (101). PJJPS1
IF 102 NOT =1 AND CL-0C3 = '0' PJJPS1
MOVE 9 TO SE-ER (101). PJJPS1
F70CL-FN. EXIT. PJJPS1

192 VisualAge Pacbase: Batch Applications

N70LV. NOTE «CORRESPONDENCE VALID. FILE LV *, PJJPS1

F7OLV. IF 102 = 1 AND LV-0C3 = '1" PJJIPS1
MOVE 8 TO SE-ER (101). PJJPS1
IF 102 NOT = 1 AND LV-0C3 = '0" PJJPS1
MOVE 9 TO SE-ER (101). PJJPS1
F7OLV-FN. EXIT. PJJIPS1
F70-FN. EXIT. PJJIPS1

Update (F73)

Function F73 is generated if a transaction d.s. has at least one data element
that updates at least one data element of a Principal Data Structure in this
program.

Primary purpose: Function F73 updates the principal file.

Note: A transaction record may be used to update more than one principal

file, or conversely, a single principal file may be updated by more than one
transaction record. Each occurrence of one transaction and one principal file
shall be referred to as a "record pair”.

Sub-functions: There is one sub-function for each Principal- Transaction record
pair. The sub-function code is allocated by the system at generation time.

The function contains:
¢ the test giving access to the function:

There must be no identification error (ID-ER = 0) and if file matching has
been specified, the record on the transaction file participates in this iteration
(dd-CFn = 1) and a new transaction cycle is beginning, (dd-IBn = 1, where
n = the minor-most TRANSACTION CONTROL BREAK LEVEL specified);

* two types of sub-functions:
1. Update the common part segment of the principal file:

The Occurrence variable at the minor-most control break level on the
principal file (dd-OCn) is set to 1 or 0, depending upon whether a record is
being created or deleted;

2. Update the specific part segments (non-"00’):

These sub-functions are conditioned by a test on the SEGMENT CODE of
the record concerned;

* in both sub-function types, the update is carried out data element by data
element, as specified on transaction file Call of Elements (-CE) screen (see
TYPE: VALIDATION, UPDATE, VALUES):

— with unconditional replacement of a data element in the principal file by
the corresponding transaction file data element (MOVE),

— with replacement, addition or subtraction conditioned by the fact that
the transaction file data element is present and error-free.

Chapter 6. Example of generated program 193

N73. NOTE #*#%k*xkrhkhhrhrrkhrhhhhrhdrhrhhhhrhdxx, PJJPS1

* * PJJPS1

* UPDATE * PJJPS1

* * PJJPS1
e X T T PJJPS1

F73. IF MV-CF3 = '1' AND ID-ER = '0' PJJPS1
NEXT SENTENCE ELSE GO TO F73-FN. PJJPS1

IF SE-ER (I01) NOT = '1' GO TO F73-FN. PJJPS1

N7301. NOTE + UPDATE OF LV 00 BY MV 00 *. PJJPS1
F7301. PJJPS1
IF 102 = 3 MOVE 0 TO LV-0C3 PJJPS1

GO TO F7301-FN. PJJPS1

IF 102 = 1 MOVE 1 TO LV-0C3. PJJPS1

MOVE 1-MVOO-NOCL TO 2-LV00-NOCL. PJJPS1

F7301-FN. EXIT. PJJPS1
F73-FN. EXIT. PJJPS1

Store errors and backout (F76)

Function F76 is generated if there is a transaction file in this program.

Primary purpose: Function F76 detects errors found in various validations and
marks bad transactions (TR-ER), and/or bad group transactions (GR-ER). If an
error has been detected, a backout procedure retrieves the initial state of the
principal file.

Sub-functions: There is one sub-function generated for each Principal data
structure (USAGE OF DATA STRUCTURE = 'P’) to be updated. The
sub-function code is created using the DATA STRUCTURE CODE IN THE
PROGRAM of the Principal D.S.

The function contains:

* the condition test giving access to the function:
The record on the transaction d.s. must participate in this iteration (dd-CFn
=1).

e if there is an identification error, (ID-ER), mark the transaction (TR-ER),

e if there is an erroneous record, (SE-ER (I01)), mark the transaction (TR-ER),

* if there are any errors detected on data elements of a particular record,
(DE-ER (106)), mark the transaction (TR-ER = 4),

 if any user errors have been detected (UT-ERUT), mark the transaction
(TR-ER). Note: this is true when the data element "ERUT’ has been called
into a transaction d.s. (USAGE OF DATA STRUCTURE = "M’, ‘"N’ or 'E’)
and that it does not have an OCCURS clause,

e if the transaction has been marked as bad, the group error indicator is also
marked (GR-ER = 1),

194 VisualAge Pacbase: Batch Applications

if no reserved data element was selected, (see RESERVED ERROR CODES
IN TRANS. FILE field on the Call of Data Structures (-CD) screen), and if
the program calls for an update report D.S., set up the output area, (see

Function F90 for other conditions),

Each sub-function contains:

— the condition test for the file matching level, (FTBn = 1 with n = highest

tile matching level),

— the condition test for the detection of an error on the transaction group

(GR-ER = 1),

If both conditions are true, the data structure is restored to its original
state. This is done by the re-initialization of the Occurrence variable

(dd-OCn) from the Configuration variable (dd-CFn) and if necessary, the

transfer of the work area to the update area.

N76. NOTE ** %%k xkkkkrkhrhhrhrrhhrhkkhkhF R kR h kR AR *H PJJPS1
* * PJJPS1

* STORE ERRORS, RETRIEVE INIT. STATE= PJJPS1

* * PJJPS1

E R R L X X T T PJJPS1

F76. IF MV-CF3 = '1' PJJPS1
NEXT SENTENCE ELSE GO TO F76-FN. PJJPS1

N76-A. NOTE = STORE ERRORS *, PJJPS1
F76-A. IF ID-ER NOT = '©@' MOVE ID-ER TO TR-ER PJJPS1
GO TO F76-C. MOVE SE-ER (I101) TO SEG-ER. PJJPS1

IF SEG-ER < '0' OR SEG-ER > '1' PJJPS1

MOVE SEG-ER TO TR-ER GO TO F76-C. PJJPS1

MOVE 1 TO I06. PJJPS1

F76-B. MOVE DE-ER (I06) TO DEL-ER. PJJPS1
IF DEL-ER = '"1' OR DEL-ER = '0' GO TO F76-B1. PJJPS1

MOVE 4 TO TR-ER GO TO F76-C. PJJPS1

F76-B1. IF 106 = I50 MOVE I03 TO 106 GO TO F76-B. PJJPS1
IF 106 < I04 ADD 1 TO IO6 GO TO F76-B. PJJPS1

F76-B2. IF UT-ERUT NOT = ZERO MOVE 4 TO TR-ER. PJJPS1
F76-C. IF TR-ER NOT = '1' MOVE 'l"' TO GR-ER. PJJPS1
N76CD. NOTE *RETRIEVE INITIAL STATE ON CD-FILE =. PJJPS1
F76CD. IF FTB3 = '1' PJJPS1
AND GR-ER = '1' PJJPS1

NEXT SENTENCE ELSE GO TO F76CD-FN. PJJPS1

MOVE CD-CF3 T0 CD-0C3. PJJPS1

IF CD-CF3 = '] PJJPS1

MOVE 1-CD0O T0 2-CD00. PJJPS1

F76CD-FN. EXIT. PJJPS1
N76CL. NOTE *RETRIEVE INITIAL STATE ON CL-FILE =. PJJPS1
F76CL. IF FTB3 = '1' PJJPS1
AND GR-ER = '1' PJJPS1

NEXT SENTENCE ELSE GO TO F76CL-FN. PJJPS1

MOVE CL-CF3 T0 CL-0C3. PJJPS1

IF CL-CF3 = '1' PJJPS1

MOVE 1-CLOO T0 2-CL00. PJJPS1

F76CL-FN. EXIT. PJJPS1
N76LV. NOTE *=RETRIEVE INITIAL STATE ON LV-FILE =. PJJPS1

Chapter 6. Example of generated program 195

F76LV. IF FTB3 = 'l PJJPS1
AND GR-ER =1 PJJPS1

NEXT SENTENCE ELSE GO TO F76LV-FN. PJJpPS1

MOVE LV-CF3 TO LV-0C3. PJJPS1

IF LV-CF3 =1 PJJPS1

MOVE 1-LVOO-NBLIV TO 2-LVOO-NBLIV PJJPS1

MOVE 1-LVOO TO 2-1Lv00. PJJPS1

F76LV-FN. EXIT. PJJPS1
F76-FN. EXIT. PJJPS1

Report logic (F8r)

Function F8r is generated if there is a Print d.s. (USAGE OF DATA
STRUCTURE =T or J’).

NOTE: The Function Code is created using the LAST CHARACTER OF
REPORT CODE for the last character of the function code (replacing
the '’ of F8r).

Primary purpose: Function F8r controls the printing of reports. This includes
moving the contents line to the output area, computing totals, moving the
variable values, keeping track of the line counters, etc.

Sub-functions: One sub-function per Report Category to be printed, plus one
sub-function per Report Structure is generated. The sub-function code is
created using the alphabetic CATEGORY OF REPORT value, and the numeric
STRUCTURE NUMBER values respectively.

The function contains:

* the condition for printing the report as defined by the user on the Report
Description (-D) screen (Top);

* a sub-function per category, containing:

— the condition for printing the category, as defined by the user on the
body of the Report Description screen,

— the update of the line counter (5-dd00-1LC),

— depending upon the value entered in the NO. OF INSTANCES IN
CATEGORY TABLE, either:

1. loading the category code into the category table (CAT (J00)), or

2. the direct printing of each line of the category (via a PERFORM of
sub-function 'ZZ’ - detailed explanation will follow),

If the category is repetitive (TYPE OF LINE IN REPORT = T), its loading, or

calling its lines to print, is done in a loop controlled by an index (Jddrcc). If a
page overflow is detected when the table is being loaded, the top-of-page and
end-of-page categories are automatically printed,

196 VisualAge Pacbase: Batch Applications

Since each iteration of the repetitive category loop causes an additional entry
in the category table, the user must ensure that the total number of categories
to be printed is less than (or equal to) the NO. OF INSTANCES IN
CATEGORY TABLE (default = 100),

If there is totaling, the following paragraphs are generated:

¢ 090: puts zero in accumulators up to the highest initial control break level
detected in this iteration (IBL),

* 150: loads the category if the condition is satisfied (generated if TYPE OF
LINE IN REPORT = "*") and adds source data elements into the
accumulators at the major-most level,

* 200 and 300: add accumulators of the major-most level to those at the next
level, up to the minor-most final control break level detected in the iteration
(FBL),

* Sub-function 'F8rZZ’, which determines the next line to be printed and
loads the information (STRUCTURE NUMBER, CONSTANT PART
NUMBER, SKIP, etc.), necessary for printing this line;

For direct printing, the loading is done for each line at the category level,
and sub-function 'F8rZZ’ begins by an unconditional skip to the end of
function F8r;

This Sub-function is the link for printing. Depending on the USAGE value,
it contains:

— Paragraph 005 which moves data on each category into the Structure
table (ST-TA),

— Paragraph 010 which:
- resets the print line to spaces if necessary,
- increments the page counter if necessary,
- transfers the constants to be printed on the print line if necessary;

* Sub-function 'F8r00’, if the report is to be printed by a spooling program
(USAGE OF DATA STRUCTURE = 'J’), which contains:

— transfer of data to the common part segment,
— branch to the sub-function that prints the next structure;
* a sub-function per structure which contains:

— any 'PERFORM’ commands the user has specified on the Report
Description (-D) screen,

incrementation of index Jddrcc, if the structure printed is the first of a
repetitive category when the report is printed by category loading,

the transfer of data to each data element in the structure,

— for structures containing totaling fields, the transfer of data is
accomplished in three steps:

non-totaled data elements,

Chapter 6. Example of generated program 197

— data elements to be totaled (where TYPE OF LINE IN REPORT = "*),

— accumulator fields: (the CATEGORY OF REPORT being processed
determines the level of accumulator to be moved);

* Sub-function 'F8r99” which contains:
— the WRITE commands for the report:

For a direct print file (USAGE OF D. S. = 'T), the commands vary
according to the page/line skip characteristics,

For a spooled file, there is only one WRITE command if the carriage
control character is not the first element of the common part (00)
structure. Otherwise, the commands vary as in the non-spooled file,

If no category is defined, a simple WRITE statement is generated,

— incrementation of the counter of printed lines.

N81. NOTE

F81.
IF
NEXT
N81BC. NOTE
F81BC.
MOVE
ADD
MOVE
MOVE
MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

MOVE

F81BC-FN. EXIT.

N81DD. NOTE
F81DD.
MOVE
MOVE
MOVE
F81DD-A.

kkhkkhkkkhkkkhkkhkhkhhhkhhkdkhkhkrkhhkrkhkkhhkrhdkdxx,
* *
*PRINTING OF REPORT 1 *
* *
LR R R R R Rk R
FT = ALL '1"
SENTENCE ELSE GO TO F81-FN.
x LOADING CATEGORY BC *.
01 TO 5-LI00-1LC
1-BC-NL TO 5-L100-1LC
'BC' TO CATX.
Lt TO ST-ABS
'0001011' TO ST-SLS.
PERFORM F817Z-010 THRU F8199-FN.
'0102021' TO ST-SLS.
PERFORM F817Z-010 THRU F8199-FN.
'0203022"' TO ST-SLS.
PERFORM F81ZZ-010 THRU F8199-FN.
'030402 ' TO ST-SLS.
PERFORM F817Z-010 THRU F8199-FN.
'040502 ' TO ST-SLS.
PERFORM F817Z-010 THRU F8199-FN.
'000602 ' TO ST-SLS.
PERFORM F817Z-010 THRU F8199-FN.
'000701 ' TO ST-SLS.
PERFORM F817Z-010 THRU F8199-FN.
x LOADING CATEGORY DD *.
012 TO JLI1DD.
JLI1DD TO JLILDDM.
1 TO JLI1DD.
JLIIDD > JLIIDDM GO TO F81DD-FN.

IF
ADD
MOVE

1-DD-NL TO
'DD' TO CATX.

5-LI00-1LC

198 VisualAge Pacbase: Batch Applications

PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1

MOVE ~ '050801 ' TO ST-SLS. PJJPS1

PERFORM F81ZZ-010 THRU F8199-FN. PJJPS1

ADD 1 T0 JLI1DD PJJPS1

GO TO F81DD-A. PJJPS1

F81DD-FN. EXIT. PJJPS1
N81EE. NOTE = LOADING CATEGORY EE *, PJJPS1
F81EE. PJJPS1
ADD 1-EE-NL TO 5-LI100-1LC PJJPS1

MOVE '"EE' TO CATX. PJJPS1

MOVE ~ '000901 ' TO ST-SLS. PJJPS1

PERFORM F81ZZ-010 THRU F8199-FN. PJJPS1

F81EE-FN. EXIT. PJJPS1
F8177. MOVE SPACE TO CATX. GO TO F81-FN. PJJPS1
F8177-010. PJJPS1
IF J02 = '00' MOVE SPACE TO 6-LI100 ELSE PJJPS1

MOVE 1-LI00-1 (J02) TO 6-LI100. PJJPS1

IF ST-ABS NOT = ' ' AND LSKP = '01' PJJPS1

ADD 1 TO 5-LI00-1PC. PJJPS1

F81ZZ-FN. EXIT. PJJPS1
N8100. NOTE * STRUCTURE 00 REPORT 1 *, PJJPS1
F8100. PJJPS1
PERFORM F91BC THRU F91BC-FN. PJJPS1

MOVE 'B' TO 6-LI100-ETAT. PJJPS1

MOVE LSKP TO 6-LI100-LSKP. PJJPS1

MOVE 5-LI00-1PC TO 6-LI100-PAGE. PJJPS1

IF STX = '00' GO TO F8199. PJJPS1

GO TO F8101 PJJPS1

F8102 PJJPS1

F8103 PJJPS1

F8104 PJJIPS1

F8105 PJJPS1

F8106 PJJPS1

DEPENDING ON ST9. PJJPS1

F8100-FN. EXIT. PJJPS1
N8101. NOTE = PRINT STRUCTURE 01 *, PJJPS1
F8101. PJJPS1
MOVE WAO4-ACCEP TO 6-LI101-ACCEP. PJJPS1

F8101-99. GO TO F8199. PJJPS1
F8101-FN. EXIT. PJJPS1
N8102. NOTE = PRINT STRUCTURE 02 *, PJJPS1
F8102. PJJPS1
MOVE WAO4-REFUS TO 6-LI102-REFUS. PJJPS1

F8102-99. GO TO F8199. PJJPS1
F8102-FN. EXIT. PJJPS1
N8103. NOTE = PRINT STRUCTURE 03 *. PJJPS1
F8103. PJJPS1
COMPUTE 6-LI103-TOTAL = PJJPS1
WAO4-ACCEP PJJPS1

+ WAO4-REFUS. PJJPS1

F8103-99. GO TO F8199. PJJPS1
F8103-FN. EXIT. PJJPS1
N8104. NOTE = PRINT STRUCTURE 04 *. PJJPS1
F8104. PJJPS1
MOVE ZERO TO 6-LI104-POURC. PJJPS1

IF WAO4-ACCEP > 0 OR WAO4-REFUS > 0 PJJPS1

Chapter 6. Example of generated program 199

COMPUTE 6-LI104-POURC ROUNDED

F8104-99.
F8104-FN.
N8105.
F8105.

F8105-99.
F8105-FN.
N8106.
F8106.
F8106-99.
F8106-FN.
N8199.
F8199.

F8199-20.
F8199-FN.
F81-FN.
N83.

F83.

N83DA.
F83DA.

F83DA-FN.
N83EA.
F83EA.

F83EA-FN.
N83FA.
F83FA.
F83FA-A.

100
* WAO4-REFUS
/ (WAG4-ACCEP
+ WAO4-REFUS).

GO TO F8199.
EXIT.
NOTE = PRINT STRUCTURE 05 *.
MOVE WCO2-NOFICH (JLI1DD)

TO 6-LI105-NOFICH.
MOVE WCO3-CPTENR (JLI1DD)

TO 6-LI105-CPTENR.
GO TO F8199.
EXIT.
NOTE = PRINT STRUCTURE 06 *.

EXIT.

GO TO F8199.
EXIT.
NOTE = WRITE REPORT 1 *.
MOVE 6-LI00 TO LIOO.

MOVE ' ' TO ST-ABS.

WRITE LI00.

ADD 1 TO 5-LIO0O-1RC.

EXIT.

EXIT.

NOTE #***kkkkrhhhhrhrrkhrhhhhrhdrhrhhkhrhhrx,
* *
*PRINTING OF REPORT 3 *
* *

Kkhkkkhkkkhhkkkhkhkkkhkkkhkkkhhkkkhhkkkhkhkxkkkx,

IF LV-0C3 = ZERO OR FTB3 = ZERO
NEXT SENTENCE ELSE GO TO F83-FN.

NOTE = LOADING CATEGORY DA *.

IF 5-ED0O-3LC + 2-LVOO-NBLIV NOT <
5-EDOO-3LCM

MOVE 01 TO 5-EDOO-3LC

ADD 3-DA-NL TO 5-ED00O-3LC

MOVE 'DA' TO CAT (J0O) ADD 1 TO J0O.

EXIT.

NOTE = LOADING CATEGORY EA *,

ADD 3-EA-NL TO 5-ED0OO-3LC

MOVE "EA' TO CAT (J0O) ADD 1 TO J0O.

EXIT.

NOTE = LOADING CATEGORY FA *,
EXIT.

IF JED3FA = ZERO GO TO F83FA-FN.

IF 5-EDOO-3LC NOT < 5-ED0O-3LCM

PERFORM F83IL

PERFORM F83DA.

ADD 3-FA-NL TO 5-ED0OO-3LC

200 VisualAge Pacbase: Batch Applications

PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1

F83FA-FN.
N83GA.
F83GA.

MOVE "FA' TO CAT (J0O) ADD 1 TO JoO.

F83GA-090.

SUBTRACT 1 FROM JED3FA

G0 TO F83FA-A.

EXIT.

NOTE * LOADING CATEGORY GA *.
IF IBL = ZERO

OR IBL > 2 GO TO F83GA-100.
MOVE IBL TO JO5.

MOVE ZERO TO T304-QUCO (J05).
MOVE ZERO TO T304-QTLI (J05).

ADD 1 TO JO5.
IF Jo5 NOT > 2 GO TO F83GA-090.

F83GA-100. EXIT.
F83GA-150.

ADD 2-CD0O-QUCO TO T304-QUCO (2).
ADD 2-LV00-QTLI TO T304-QTLI (2).

F83GA-200.

ADD 3-GA-NL TO 5-ED0O-3LC
MOVE '"GA' TO CAT (J0O) ADD 1 TO JoO.
IF FBL = ZERO GO TO F83GA-FN.
MOVE 2 T0 Jo7.

F83GA-300. SUBTRACT 1 FROM JO7 GIVING JO6.

IF J07 < FBL OR J07 = 1 GO TO F83GA-400.

ADD T304-QUCO (J67) TO T304-QUCO (J0O6).
ADD T304-QTLI ~ (J07) TO T304-QTLI (J0O6).

SUBTRACT 1 FROM JO7 GO TO F83GA-300.

F83GA-400. EXIT.
F83GA-500. IF FBL NOT =1 GO TO F83GA-FN.

F83GA-FN.
N83HA.
F83HA.

F83HA-FN.
N83IA.
F83IA.

F83IA-FN.
N83IL.
F83IL.

F83IL-FN.
N83JA.
F83JA.

ADD T304-QUCO (1) TO G304-QUCO.
ADD T304-QTLI (1) TO G304-QTLI.

EXIT.

NOTE = LOADING CATEGORY HA *.
IF FTB2 = 1 AND LV-IB2 =1

ADD 3-HA-NL TO 5-ED0O-3LC
MOVE "HA' TO CAT (J0O) ADD 1 TO JoO.
EXIT.

NOTE = LOADING CATEGORY IA *.
IF FTB1 = 1 AND LV-CF1 =1

ADD 3-IA-NL TO 5-EDOO-3LC
MOVE "IA' TO CAT (J0O) ADD 1 TO J6O.
EXIT.

NOTE = LOADING CATEGORY IL *.
IF 5-EDOO-3LC NOT < 5-EDOO-3LCM

ADD 3-IL-NL TO 5-ED0O-3LC
MOVE "IL' TO CAT (J0O) ADD 1 TO JoO.
EXIT.

NOTE = LOADING CATEGORY JA *.

IF FT = ALL '1'
ADD 3-JA-NL TO 5-EDOO-3LC

Chapter 6. Example of generated program 201

PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJIPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJIPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1

F83JA-FN.
F8377.
F837Z-005.

F837Z-009.

MOVE
EXIT.
MOVE 1 TO JOO.

'JA' TO CAT (J0O) ADD 1 TO J0O.

MOVE CAT (J00) TO CATX. IF CATX = ' '
MOVE 1 TO JOO MOVE SPACE TO CAT-TAB

GO TO

IF CATX

MOVE TS-3-DA
IF CATX

MOVE TS-3-EA
IF CATX

MOVE TS-3-FA
IF CATX

MOVE TS-3-GA
IF CATX

MOVE TS-3-HA
IF CATX

MOVE TS-3-IA
IF CATX

MOVE TS-3-IL
IF CATX

MOVE TS-3-JA
ADD 1 TO Jol.

TO ST-TA

TO ST-TA

TO ST-TA

TO ST-TA

TO ST-TA

T0 ST-TA

TO ST-TA

TO ST-TA

F8399-FN. MOVE

GO

GO

GO

GO

GO

GO

GO

GO

0 TO JO1.
IDAI

TO F837Z-009.
IEAI

TO F837Z-009.
IFAI

TO F837Z-009.
IGAI

TO F837Z-009.
IHAI

TO F83ZZ-009.
IIAI

TO F83ZZ-009.
IILl

TO F837Z-009.
IJAI

TO F837Z-009.

F83Zz-010. MOVE ST-TT (JO1) TO ST-SLS.
IF ST-SLS = SPACE

IF Joz =

F83ZZ-FN.
N8300.
F8300.

F8300-FN.
N8301.
F8301.

F8301-99.
F8301-FN.
N8302.
F8302.

F8302-99.
F8302-FN.
N8303.

ADD 1 TO J0O

MOVE 1-LI00-3
IF ST-ABS NOT
ADD 1
EXIT.

NOTE *

IF STX = '00'

GO TO

(J02)

DEPENDING ON ST9.

EXIT.

NOTE = PRINT
PERFORM F9101
MOVE DAT8C
MOVE 5-EDOO-
GO TO F8399.
EXIT.

NOTE = PRINT
MOVE 2-CLOO-
MOVE 2-CLOO-
GO TO F8399.
EXIT.

NOTE = PRINT

202 VisualAge Pacbase: Batch Applications

GO

TO F83ZZ-005.

'00' MOVE SPACE TO 6-ED300 ELSE

TO 6-ED300.
= ' " AND LSKP = '01'

GO

TO 5-EDOO-3PC.

STRUCTURE 00 REPORT 3

TO F8399.

F8301
F8302
F8303
F8304

STRUCTURE 01

THRU

3PC

F9101-FN.

T0
T0

6-ED301-DATEM.

6-ED301-PAGE.

STRUCTURE 02

NOCL
NOMCL

TO
TO

6-ED302-NOCL.

6-ED302-NOMCL.

STRUCTURE 03

PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1

PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1

F8303. PJJPS1

ADD 1 TO JED3FA. PJJPS1

MOVE 'DELIVERY' TO 6-ED303-FILLER. PJJPS1

MOVE JED3FA TO 6-ED303-JED3FA. PJJPS1

MOVE 2-LVOO-DALI (JED3FA) PJJPS1

TO 6-ED303-DATE. PJJPS1

MOVE 2-LV00-QULI (JED3FA) PJJPS1

TO 6-ED303-QULI. PJJPS1

F8303-99. GO TO F8399. PJJPS1
F8303-FN. EXIT. PJJPS1
N8304. NOTE = PRINT STRUCTURE 04 *, PJJPS1
F8304. PJJPS1
MOVE 1-LI0O-4 (J05) PJJPS1

TO 6-ED304-4. PJJPS1

IF Jo5 < 4 PJJPS1

MOVE 2-CLOO-NOCL11 TO 6-ED304-NOCL11. PJJPS1

IF Jo5 = 2 OR J05 = 3 PJJPS1

MOVE 2-CLOO-NOCL12 TO 6-ED304-NOCL12. PJJIPS1

IF Jo5 =3 PJJPS1

MOVE 2-CLOO-NOCLZ2 TO 6-ED304-NOCLZ2. PJJPS1

IF Jo5 =3 PJJPS1

COMPUTE 6-ED304-SOLDE = PJJPS1
2-CD00-QuCo PJJPS1

- 2-LV00-QTLI. PJJPS1

IF Jo5 NOT = 3 PJJPS1

COMPUTE 6-ED304-SOLDE = PJJPS1
T304-QUCO (J05) PJJPS1

- T304-QTLI ~ (J05). PJJPS1

IF CATX NOT = 'GA' GO TO F8304-TOT. PJJPS1

MOVE 2-CD00-QUCO TO 6-ED304-QuUCO. PJJPS1

MOVE 2-LVOO-QTLI TO 6-ED304-QTLI. PJJPS1

GO TO F8399. PJJPS1
F8304-TOT. PJJPS1
IF CATX NOT = 'IA' PJJPS1

GO TO F8304-IAF. PJJPS1

MOVE T304-QuUCO (1) T0O 6-ED304-QuCO. PJJPS1

MOVE T304-QTLI (1) TO 6-ED304-QTLI. PJJPS1

GO TO F8304-99. PJJPS1

F8304-IAF. PJJPS1
IF CATX NOT = 'HA' PJJPS1

GO TO F8304-HAF. PJJPS1

MOVE T304-QUCO (2) T0 6-ED304-QuCO. PJJPS1

MOVE T304-QTLI (2) TO 6-ED304-QTLI. PJJPS1

GO TO F8304-99. PJJPS1

F8304-HAF. PJJPS1
IF CATX NOT = 'JA' PJJPS1

GO TO F8399. PJJPS1

MOVE G304-QuUCO TO 6-ED304-QuCO. PJJPS1

MOVE G304-QTLI TO 6-ED304-QTLI. PJJPS1
F8304-99. GO TO F8399. PJJPS1
F8304-FN. EXIT. PJJPS1
N8399. NOTE = WRITE REPORT 3 *, PJJPS1
F8399. MOVE 6-EDOO TO EDOO. PJJPS1
IF ST-ABS = ' ! GO TO F8399-10. PJJPS1

MOVE ' ' TO ST-ABS. PJJPS1

Chapter 6. Example of generated program 203

IF LSKP = '01' MOVE 1 TO 5-ED0OO-3LC1 PJJPS1

WRITE EDOO AFTER ~ ADVANCING LSKPP PJJPS1
GO TO F8399-20. PJJPS1
SUBTRACT 5-ED00-3LC1 FROM LSKP. PJJPS1
F8399-10. IF LSKP = '00' PJJPS1
WRITE EDOO AFTER ~ ADVANCING LSKPO ELSE PJJPS1
WRITE EDOO AFTER ~ ADVANCING LSKP PJJPS1
ADD LSKP TO 5-EDOO-3LCIL. PJJPS1
F8399-20. ADD 1 TO 5-EDOO-3RC. GO TO F837ZZ-009. PJJPS1
F8399-FN. EXIT. PJJPS1
F83-FN. EXIT. PJJPS1

Write files (F90)

Function F90 is generated for all ouput sequential files with USAGE D, S, R,
or E.

Primary purpose: Function FO90 does the WRITE to the segment. Also, it
unconditionally causes a loop back to Function F05.

Sub-functions: There is one sub-function per output d.s. (as described above).
The sub-function code is created using the DATA STRUCTURE CODE IN
THE PROGRAM.

This function contains:
* no execution conditions for the function;

* a sub-function per output file containing;:

the test giving access to the sub-function write:

For USAGE OF DATA STRUCTURE = 'D’, 'S” or 'R":
a) The highest file matching level is occuring,

b) all control breaks have been processed,

For USAGE OF DATA STRUCTURE = 'E":

a) The highest file matching level is occuring;

— the transfer of 'OCCURS DEPENDING ON’ counters if the file, linked
to a principal file, contains the counter in the common part;

— transfer from the update area to the segment, (for USAGE ='S’, 'R’ or
/DI);

— the transfer of data into the reserved data elements (ENPR, GRPR,
ERUT) from error tables, and into the element dd00-SUITE from the read
area of the transaction file (for USAGE = "E’, if these elements are in the
file, - see RESERVED ERROR CODES IN TRANS. FILE on the Call of
Data Structures (-CD) screen);

NOTE:: If not selected, the transfer is done in Function F76;
¢ The WRITE command:

204 VisualAge Pacbase: Batch Applications

For a variable length record, (RECORDING MODE = "V’), there is one
WRITE per record type, preceded by a test on record type;

* increment record counter;

* Paragraph F9099-ITER-FN, an unconditional GO TO F05.

By default, the date processing function is generated in F9520. However, if
you have specific code lines in F9520, you may change the date processing
function in order to keep your specific code lines. To do so, in an 'O’-type line
of the Generation Options (-GO) screen of the Program, enter the
DATPRO=ffss function (‘ffss’ being the new function-subfunction code).

Note: In the Library Generation Options screen, an Administrator can specify
whether the F9520 function may be overridden by source code lines.

N9O. NOTE ** %% xkkkkkhrhhrhrrkhrhkkhrhFkhxhkkhrh® PJJPS1
* * PJJPS1

* WRITE * PJJPS1

* * PJJPS1

E R T X X T T PJJPS1

F90. EXIT. PJJPS1
N9ODC. NOTE =* WRITE RECORDS ON DC-FILE *. PJJPS1
F90DC. PJJPS1
IF Ccb-0C3 = '1' PJJPS1

AND FTB3 = '1! PJJPS1

NEXT SENTENCE ELSE GO TO F9ODC-FN. PJJPS1

MOVE 2-CD0O TO DCOO. PJJPS1

WRITE DCOO. PJJPS1

F90DC-99. ADD 1 TO 5-DCOO-RECCNT. PJJPS1
F90ODC-FN. EXIT. PJJPS1
N9OLC. NOTE * WRITE RECORDS ON LC-FILE *. PJJPS1
FI0LC. PJJPS1
IF CcL-0c3 = '1" PJJPS1

AND FTB3 = 'I1' PJJPS1

NEXT SENTENCE ELSE GO TO FIOLC-FN. PJJPS1

MOVE 2-CL0OO TO LCOO. PJJPS1

WRITE LCOO. PJJPS1

F90LC-99. ADD 1 TO 5-LCOO-RECCNT. PJJPS1
F9OLC-FN. EXIT. PJJPS1
N9OSE. NOTE = WRITE RECORDS ON SE-FILE *. PJJPS1
F90OSE. PJJPS1
IF cL-oc3 ='1" PJJPS1

AND FTB3 = '1' PJJPS1

NEXT SENTENCE ELSE GO TO FIOSE-FN. PJJPS1

MOVE 2-CL0OO T0 SEGO. PJJPS1

WRITE SE00. PJJPS1

FO9OSE-99. ADD 1 TO 5-SEOQO-RECCNT. PJJPS1
FOOSE-FN. EXIT. PJJPS1
N9OVL. NOTE = WRITE RECORDS ON VL-FILE *. PJJPS1
FOOVL. PJJPS1
IF Lv-oc3 = '1' PJJPS1

AND FTB3 = '1' PJJPS1

NEXT SENTENCE ELSE GO TO FIOVL-FN. PJJPS1

MOVE 2-LVOO-NBLIV TO VLOO-NBLIV PJJPS1

Chapter 6. Example of generated program 205

Fo0VL-99.
FOOVL-FN.
NIOVM.
FOOVM.

F90VM-99.
F9OVM-FN.
F90-FN.

MOVE 2-LV0O TO

WRITE VLOO.

ADD 1 TO 5-VLOO-RECCNT.
EXIT.

NOTE = WRITE RECORDS ON
IF MV-CF3 = '1'
NEXT SENTENCE ELSE GO TO F
MOVE ID-ER T0
MOVE ER-00 T0

IF 101 = 001
MOVE ER-01 TO

IF 101 = 002
MOVE ER-02 TO
MOVE ER-PRR T0
MOVE SE-ERR T0
MOVE UT-ERUT T0
MOVE 1-MVOO TO
WRITE VM0O.

ADD 1 TO 5-VMOO-RECCNT.
EXIT.

EXIT.

F9099-ITER-FN. GO TO FO5.

N91BC.
F91BC.

MOVE

ADD
F91BC-FN.
N9101.
Fo9101.
F9101-FN.
N9999.
F9999.
F9999-FN.

NOTE *LINE NUMBER IMPLEMENT

IF ST-ABS NOT = SPACE
AND LSKP = '0O1'
ZERO TO 6-LI100-NULIG.
1 TO 6-LI100-NULIG.
EXIT.
NOTE *SAME PLAYER SHOOTS AGAIN
EXIT.
EXIT.
NOTE +RETOUR DU TRI
EXIT.
EXIT.

206 VisualAge Pacbase: Batch Applications

VLOO.

VM-FILE

90VM-FN.
ER-ID.
ER-PRO.

ER-PRM.

ER-PRM.
VMOO-ENPR.
VMOO-GRPR.
VMOO-ERUT.
VMOO-SUITE.

PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJPS1
PJJpPS1
PJJPS1
POOO
POOO
PoO1
P120
PoO1
P200
P200
POOO
POOO
POOO
POOO
POOO
PO0OO

Part Number: DDBTC000351A - 6803

Printed in USA

	Contents
	Notices
	Trademarks
	Chapter 1. Introduction
	Purpose of the manual
	Principles of description
	Batch Systems Development Function
	Managed entities

	Chapter 2. Programs
	Definition (P)
	Call of Data Structures (-CD)
	On-line access commands
	Generation and/or printing

	Chapter 3. Segments
	Definition
	Call of Elements screen (-CE)
	On-line access commands
	Generation and/or printing

	Chapter 4. Reports
	Definition screen (R)
	Layout screen (-L)
	Call of Elements screen (-CE)
	Description screen (-D)
	Description screen top
	Description screen body
	Direct print / application spooling routines
	On-line access commands
	Generation and/or printing

	Chapter 5. Error messages
	Introduction
	Coding of error messages
	Description of error message file
	Generation and/or printing

	Chapter 6. Example of generated program
	Introduction
	Identification division
	Environment division
	Data division : File section
	Beginning of Working Storage
	Variables and indexes
	Key, validation, print areas
	Data structure work areas
	0A Declaratives
	Initializations (F01)
	Read sequential files with no control break (F05)
	Read sequential files with control breaks (F10)
	End of run (F20)
	Calculate file control breaks (F22)
	File matching logic (F24)
	Total control break logic (F26)
	Calculate validation variables (F30)
	Identification validation (F33)
	Duplicate record validation (F36)
	Presence of data elements (F39)
	Record structure validation (F42)
	Data element contents validation (F45)
	Record presence validation (F51)
	Existence validation (F70)
	Update (F73)
	Store errors and backout (F76)
	Report logic (F8r)
	Write files (F90)

