
IBM Software Group | DB2 information management software

0

IBM Software Group

© 2003 IBM Corporation

IBM Software Group
IBM Software Group

©2008 IBM Corporation

DB2 9 SQL Enhancements

Fen-Ling Lin

Senior Technical Member Stuff and Manager

Query Technology, DB2 for z/OS

IBM Silicon Valley Laboratory

DB2 for z/OS 2009 Taipei Conference

OCT 5 - 6, 2009

Taipei, Taiwan

1DB2 9 for z/OS Workshop

© Copyright IBM Corporation [current year]. All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES
ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE
INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM
SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE
RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS
PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR
REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND
CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR
SOFTWARE.

IBM, the IBM logo, ibm.com, DB2, and z/OS are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their
first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at www.ibm.com/legal/copytrade.shtml

Disclaimer

2DB2 9 for z/OS Workshop

DB2 for z/OS V9 SQL, DB2 family & porting

�XML

�MERGE

�SELECT FROM UPDATE,
DELETE, MERGE

�TRUNCATE

�INSTEAD OF TRIGGER

�BIGINT, VARBINARY,

DECIMAL FLOAT

�Native SQL Procedure
Language

�Optimistic locking

�LOB File reference variable &

FETCH CONTINUE

�FETCH FIRST & ORDER BY
in subselect and fullselect

�INTERSECT & EXCEPT

�ROLE & trusted context

�Many new built-in functions,

caseless comparisons

�Index on expression

�Improved DDL consistency

�CURRENT SCHEMA

3DB2 9 for z/OS Workshop

DB2 SQL
z z/OS V7
common
LUW Linux, Unix & Windows V8.2

Inner and Outer Joins, Table Expressions, Subqueries, GROUP BY, Complex Correlation, Global
Temporary Tables, CASE, 100+ Built-in Functions, Limited Fetch, Insensitive Scroll Cursors,
UNION Everywhere, MIN/MAX Single Index Support, Self Referencing Updates with Subqueries,
Sort Avoidance for ORDER BY, and Row Expressions, Call from trigger, statement isolation

Updateable UNION in Views, ORDER BY/FETCH FIRST in subselects & table expressions,
GROUPING SETS, ROLLUP, CUBE, INSTEAD OF TRIGGER, EXCEPT, INTERSECT, 16 Built-
in Functions, MERGE, Native SQL Procedure Language, SET CURRENT ISOLATION, BIGINT
data type, file reference variables, SELECT FROM UPDATE, DELETE & MERGE, multi-site join,
2M Statement Length, GROUP BY Expression, Sequences, Scalar Fullselect, Materialized Query
Tables, Common Table Expressions, Recursive SQL, CURRENT PACKAGE PATH, VOLATILE
Tables, Star Join Sparse Index, Qualified Column names, Multiple DISTINCT clauses, ON
COMMIT DROP, Transparent ROWID Column, FOR READ ONLY KEEP UPDATE LOCKS, SET
CURRENT SCHEMA, Client special registers, long SQL object names, SELECT from INSERT

z

L

U

W

c
o
m
m
o
n

Range partitioning

4DB2 9 for z/OS Workshop

DB2 SQL
z z/OS V8
common
LUW Linux, Unix & Windows V8.2

Multi-row INSERT, FETCH & multi-row cursor UPDATE, Dynamic Scrollable Cursors, GET
DIAGNOSTICS, Enhanced UNICODE for SQL, join across encoding schemes, IS NOT
DISTINCT FROM, Session variables, range partitioning

Inner and Outer Joins, Table Expressions, Subqueries, GROUP BY, Complex Correlation, Global
Temporary Tables, CASE, 100+ Built-in Functions including SQL/XML, Limited Fetch, Insensitive
Scroll Cursors, UNION Everywhere, MIN/MAX Single Index Support, Self Referencing Updates
with Subqueries, Sort Avoidance for ORDER BY, and Row Expressions, 2M Statement Length,
GROUP BY Expression, Sequences, Scalar Fullselect, Materialized Query Tables, Common
Table Expressions, Recursive SQL, CURRENT PACKAGE PATH, VOLATILE Tables, Star Join
Sparse Index, Qualified Column names, Multiple DISTINCT clauses, ON COMMIT DROP,
Transparent ROWID Column, Call from trigger, statement isolation, FOR READ ONLY KEEP
UPDATE LOCKS, SET CURRENT SCHEMA, Client special registers, long SQL object names,
SELECT from INSERT

Updateable UNION in Views, ORDER BY/FETCH FIRST in subselects & table expressions,
GROUPING SETS, ROLLUP, CUBE, INSTEAD OF TRIGGER, EXCEPT, INTERSECT, 16 Built-
in Functions, MERGE, Native SQL Procedure Language, SET CURRENT ISOLATION, BIGINT
data type, file reference variables, SELECT FROM UPDATE, DELETE & MERGE, multi-site join

z

L

U

W

c
o
m
m
o
n

5DB2 9 for z/OS Workshop

DB2 SQL
z z/OS V9
common
LUW Linux, Unix & Windows V9

Multi-row INSERT, FETCH & multi-row cursor UPDATE, Dynamic Scrollable Cursors, GET
DIAGNOSTICS, Enhanced UNICODE for SQL, join across encoding schemes, IS NOT
DISTINCT FROM, Session variables, range partitioning, TRUNCATE, DECIMAL FLOAT,
VARBINARY, optimistic locking, FETCH CONTINUE, ROLE, MERGE, SELECT from MERGE

Inner and Outer Joins, Table Expressions, Subqueries, GROUP BY, Complex Correlation, Global
Temporary Tables, CASE, 100+ Built-in Functions including SQL/XML, Limited Fetch, Insensitive
Scroll Cursors, UNION Everywhere, MIN/MAX Single Index Support, Self Referencing Updates with
Subqueries, Sort Avoidance for ORDER BY, and Row Expressions, 2M Statement Length, GROUP
BY Expression, Sequences, Scalar Fullselect, Materialized Query Tables, Common Table
Expressions, Recursive SQL, CURRENT PACKAGE PATH, VOLATILE Tables, Star Join Sparse
Index, Qualified Column names, Multiple DISTINCT clauses, ON COMMIT DROP, Transparent
ROWID Column, Call from trigger, statement isolation, FOR READ ONLY KEEP UPDATE LOCKS,
SET CURRENT SCHEMA, Client special registers, long SQL object names, SELECT from INSERT,
UPDATE, DELETE & MERGE, INSTEAD OF TRIGGER, Native SQL Procedure Language, BIGINT,
file reference variables, XML, FETCH FIRST & ORDER BY in subselect and fullselect, caseless
comparisons, INTERSECT, EXCEPT, not logged tables, range partitioning, compression

Updateable UNION in Views, GROUPING SETS, ROLLUP, CUBE, 16 Built-in Functions, SET
CURRENT ISOLATION, multi-site join, MERGE, XQUERY

z

L

U

W

c
o
m
m
o
n

6DB2 9 for z/OS Workshop

Key SQL Features in DB2 9

� Intersect/Except

� Instead of Trigger

� MERGE

� SELECT from MERGE, UPDATE, DELETE

� TRUNCATE

� ORDER BY and FETCH FIRST N Row in Subselect

� RANK, DENSE_RANK, ROW_NUMBER

� Index on Expression

7DB2 9 for z/OS Workshop

Key SQL Features in V9

� FETCH Continue to aid fetching of LOB data

� LOB File Reference

� RENAME Column

� RENAME TABLE

� Automatic Creation of Objects

� New Data Types

� XML

8DB2 9 for z/OS Workshop

Click to edit Master title style

Intersect and Except

9DB2 9 for z/OS Workshop

INTERSECT/EXCEPT

SELECT c11, c12, ? c1n FROM T1 <set-op>

SELECT c21, c22, ? c2m FROM T2

SET operator: UNION, INTERSECT, EXCEPT

I N T E R S E C T E X C E P T

(D i f f e r e n c e)

U N I O N

R 1 R 1R 2 R 2

R 1 R 2

I N T E R S E C T E X C E P T

(D i f f e r e n c e)

U N I O N

R 1 R 1R 2 R 2

R 1 R 2R 1 R 2

10DB2 9 for z/OS Workshop

Columns participating in INTERSECT and
EXCEPT

� R1 and R2 must have the same number of columns

– Data type for the n-th column of R1 must be compatible
with the n-th column of R2

– Data type must no be CLOB, BLOB, DBCLOB, XML, or
distinct type based on these type

� Qualified column names cannot be used in the
ORDER BY clause with the set operators are

specified

11DB2 9 for z/OS Workshop

Sample query

SELECT LAST_NAME,
FIRST_NAME, …

FROM first_table
WHERE ….

UNION | INTERSECT | EXCEPT

SELECT LAST_NAME,
FIRST_NAME, …

FROM second_table
WHERE ….

First_table

Second_table

12DB2 9 for z/OS Workshop

Result of Operations -- R1 UNION R2

R1 R2 UNION ALL UNION

1 1 1 1
1 1 1 2

1 3 1 3

2 3 1 4

2 3 1 5

2 3 2
3 4 2

4 2
4 3

5 3

3
3

3

4
4

4
5

Show me all the rows from

The result table of each
SELECT statement

13DB2 9 for z/OS Workshop

Result of Operations -- R1 EXCEPT R2

R1 R2 EXCEPT ALL EXCEPT

1 1 1 2
1 1 2 5

1 3 2

2 3 2

2 3 4

2 3 5
3 4

4
4

5
Show me all the rows in R1

Which do not have a corresponding

Row in R2

14DB2 9 for z/OS Workshop

Result of Operations -- R1 INTERSECT R2

R1 R2 INTERSECT ALL INTERSECT

1 1 1 1
1 1 1 3

1 3 3 4

2 3 4

2 3

2 3

3 4

4
4

5 Show me all the rows which

Appear in both R1 and R2

15DB2 9 for z/OS Workshop

INTERSECT/EXCEPT

5

4

4

4

3

3

3

35

34

24

243

5232

45132

424132

4323131

31522111

11211111

INTERSECT
INTERSECT

ALL
EXCEPT

EXCEPT
ALL

UNIONUNION ALLR2R1

5

4

4

4

3

3

3

35

34

24

243

5232

45132

424132

4323131

31522111

11211111

INTERSECT
INTERSECT

ALL
EXCEPT

EXCEPT
ALL

UNIONUNION ALLR2R1

16DB2 9 for z/OS Workshop

Click to edit Master title style

INSTEAD OF TRIGGERS

17DB2 9 for z/OS Workshop

INSTEAD OF Triggers: current problem and
goal

� Customers use views for read access control

� Many views are not updatable, so customers
have to access base tables for data changes.

� No INSERT / UPDATE / DELETE for read-only
views

� Goal: to provide a mechanism to unify the
target for all read / write access by an
application (i.e., through views)

18DB2 9 for z/OS Workshop

Instead of Trigger

A new type of trigger (~ BEFORE, AFTER
triggers)

Defined on VIEWs
provides an extension to the updatability of
views

requested update operation against the view
gets replaced by the trigger logic

application still believes all operations are
performed against the view

applicable even for updatable views

19DB2 9 for z/OS Workshop

Instead of Trigger
CREATE TABLE WEATHER (CITY VARCHAR(25), TEMPF DECIMAL(5,2));

CREATE VIEW CELCIUS_WEATHER_V (CITY, TEMPC) AS

 SELECT CITY, (TEMPF-32)*5.00/9.00 FROM WEATHER

CREATE TRIGGER CW_INSERT INSTEAD OF INSERT ON

 CELCIUS_WEATHER_V

REFERENCING NEW AS NEWCW DEFAULTS NULL

FOR EACH ROW MODE DB2SQL

 INSERT INTO WEATHER VALUES (NEWCW.CITY,

 9.00/5.00*NEWCW.TEMPC+32)

CREATE TRIGGER CW_UPDATE INSTEAD OF UPDATE ON

 CELCIUS_WEATHER_V

REFERENCING NEW AS NEWCW OLD AS OLDCW DEFAULTS NULL

FOR EACH ROW MODE DB2SQL

 UPDATE WEATHER AS W

 SET W.CITY = NEWCW.CITY,

 W.TEMPF = 9.00/5.00*NEWCW.TEMPC+32

 WHERE W.CITY = OLDCW.CITY

20DB2 9 for z/OS Workshop

DROP TRIGGER / VIEW

� DROP view also drops INSTEAD OF triggers

� DROP trigger invalidates other packages (including

trigger packages) that depends on the dropped
INSTEAD OF trigger

Create trigger TR1 instead of update on V1

begin … end

Create trigger TR2 after update on T1

begin

Update v1 … -> TR2 depends on TR1

end

DROP trigger TR1 -���� package TR2 is invalidated

21DB2 9 for z/OS Workshop

Restrictions

� Only 1 INSTEAD OF INSERT, UPDATE, DELETE per view

� View cannot be symmetric (i.e,, no WHERE clause)

� Only has row granularity

� No WHEN clause

� Cannot specify UPDATE OF column list

� New REFERENCING DEFAULTS NULL clause

� Cannot change transition variables

� Does not work with position UPDATE/DELETE

� No LOB, XML

� SELECT FROM UPDATE/DELETE/INSERT not supported

� MERGE into a view with INSTEAD OF trigger is not supported

22DB2 9 for z/OS Workshop

Click to edit Master title style

MERGE

23DB2 9 for z/OS Workshop

Choices in V8

� Issue a SELECT to determine whether the row exists

– If Yes, UPDATE

– If No, INSERT

� Determine whether or not the row is likely to exist most of the

time

– If the row is likely to exist, try UPDATE – if it fails, perform INSERT

– If the row is not likely to exist, try INSERT – if it fails, perform
UPDATE

� In either case, more than one SQL statement is necessary to

perform the data changes

24DB2 9 for z/OS Workshop

MERGE

� Combine UPDATE and INSERT operation to a target
table or view, from a input source of host-variable-
arrays modeled as a source table

– When source rows match the target, UPDATE the
target rows from source

– When source rows do not match to target, INSERT
source rows into target

– UPDATE/INSERT triggers will be fired

25DB2 9 for z/OS Workshop

Example

T.id balance

1 1000

10 500

200 600

300 300

315 100

500 4000

...

Account - before

MERGE INTO account AS T

USING VALUES (:hv_id, :hv_amt) FOR 5 ROWS AS S(id,amt)

ON T.id = S.id

WHEN MATCHED THEN

 UPDATE SET balance = T.balance + S.amt

WHEN NOT MATCHED THEN

 INSERT (id, balance) VALUES (S.id, S.amt)

NOT ATOMIC CONTINUE ON SQLEXCEPTION

T.id balance

1 1080

5 30

10 540

200 600

300 300

315 100

500 4000

...

Account - after

TargetSource

S.id

1

5

10

5

1

S.amt

30

10

40

20

50

balance

1030

10

540

30

1080

Account - changed

T.id

1

5

10

5

1

26DB2 9 for z/OS Workshop

EXPLAIN changes

� Plan_table

– New QBLOCK_TYPE: “MERGE”

– MERGE is QB(1)

– UPDATE is QB(2)

– INSERT is QB(3)

� DSN_STATEMENT_TABLE

– New STMT_TYPE of “MERGE”

27DB2 9 for z/OS Workshop

Sam ple Explain

qblockno qblock_type planno correlation
_nam e

table_type jo in_type m ethod accesstype

1 MERGE 1 S B (1*) V (2*)

1 MERGE 2 T T L 1 (3*) (4*)

2 UPDATE 1 T T

3 INSERT 1 T T

1* : table_type of "B" is already supported in V8

Need to update the "EXPLAIN" statement description in SQL Reference

2* : accesstype of "V" is already supported in V8

Need to update the "EXPLAIN" statement description in SQL Reference

3* : S ince we are doing "update in place",

only Nested Loop Join is considered

4* : S ince we are doing "update in place",

if an index column is being updated, the index won't be considered for the
table access to avoid Halloween problem

RID access ("I" w ith prefetch="L") won't be considered

Sparse index access ("T") won't be considered

No parallel support for MERGE.

28DB2 9 for z/OS Workshop

Merge notes

� Source data are piped into target

– A row inserted into target is immediately available for update

– A row updated is immediately available for more update in the
same statement

� NOT atomic – operation continues to next input, even after the

merge operation of an input row fails

GET DIAGNOSTICS is useful for operations!!!

� No MERGE trigger; UPDATE/INSERT trigger will be fired

� If target is a view with INSTEAD OF triggers, MERGE is not

allowed

29DB2 9 for z/OS Workshop

Click to edit Master title style

SELECT FROM MERGE, UPDATE,
DELETE

30DB2 9 for z/OS Workshop

Review: V8 – SELECT FROM INSERT

� Benefits

– Enhances usability and power of SQL

– Enhances user to immediately determine values inserted in tables by DB2
(identify, sequence, defaults, etc.) and before triggers

– Cuts down on network cost in application programs

– Cuts down on procedural logic in stored procedures

� What is it?

– INSERT statement is now allowed in the FROM clause of a

• SELECT statement that is a subselect

• SELECT INTO statement

– Users can automatically retrieve column values created by DB2 INSERT
in single SELECT statement

• Identity column, sequence values

• User-defined defaults, expressions

• Column modified by BEFORE INSERT triggers

• ROWIDs

31DB2 9 for z/OS Workshop

Example of SELECT FROM INSERT

DECLARE CS1 CURSOR FOR

SELECT EMP_ROWID

FROM FINAL TABLE

(INSERT INTO DSN810.EMP_RESUME(EMPNO)

SELECT EMPNO FROM DSN810.EMP));

32DB2 9 for z/OS Workshop

SELECT FROM UPDATE/DELETE/MERGE

� SELECT from UPDATE or DELETE will be implemented by allowing a
searched UPDATE or searched DELETE statement in the FROM
clause of a select-statement that is a subselect or in the SELECT
INTO statement. By allowing a searched UPDATE or searched
DELETE to appear in a select-statement or SELECT INTO statement,
the database will allow the user to know which values were updated in
a table and which rows were deleted from a table via a single SQL
statement.

� SELECT FROM MERGE will return all the updated rows and inserted
rows, including column values which are generated by DB2.

� An INCLUDE column specified is being introduced to allow the user to
identify a new column for the select-list and as a method for sorting
the data (also added to SELECT from INSERT).

33DB2 9 for z/OS Workshop

SELECT FROM MERGE/UPDATE/DELETE

V8 - The INSERT statement was allowed in the FROM
clause

V9 - A searched UPDATE/DELETE is now allowed in the
FROM clause

SELECT SUM(Salary)

FROM OLD TABLE

(DELETE FROM Employee WHERE Level =
'Contractor');

Delete employees at level 'Contractor' and return the total amount
of salary:

34DB2 9 for z/OS Workshop

SELECT FROM MERGE/UPDATE/DELETE

Update salaries of employees at level 'Associate' and
return the new salary:

SELECT Name, Salary

FROM FINAL TABLE

(UPDATE Employee SET Salary = Salary *1.1

 WHERE Level = 'Associate');

Update salaries of employees at level 'Associate' and return the old
salary:

SELECT Name, Salary

FROM OLD TABLE

(UPDATE Employee SET Salary = Salary *1.1

 WHERE Level = 'Associate');

35DB2 9 for z/OS Workshop

INCLUDE Columns

� Introduces a list of columns to be included in the
result table of the
DELETE/INSERT/UPDATE/MERGE statement.

� The include columns are only available if the DELETE

/ INSERT / UPDATE / MERGE statement is nested in
the from clause of a select-statement or SELECT

INTO statement.

36DB2 9 for z/OS Workshop

Example - select from Final Table (Merge...)

T.id balance

1 1000

10 500

200 600

300 300

315 100

500 4000

...

Account - target table

Account - after

T.id balance status

1 1080 upd

5 30 upd

10 540 upd

99 90 ins

output

(plan B)

SELECT balance, status FROM FINAL TABLE (

MERGE INTO account AS T INCLUDE(status char(3))

USING VALUES (:hv_id, :hv_amt) FOR 3 ROWS AS S(id,amt)
ON T.id = S.id

WHEN MATCHED THEN

 UPDATE SET balance = T.balance + S.sum_amt,

 status = 'upd'

WHEN NOT MATCHED THEN

 INSERT (id, balance) VALUES (S.id, S.sum_amt,'ins ')

NOT ATOMIC CONTINUE ON SQLEXCEPTION

)

Source
S.id

1

5

10

5

1

99

S.amt

30

10

40

20

50

90

T.id balance

1 1080

5 30

10 540

99 90

200 600

300 300

315 100

500 4000

...

balance

1030

10

540

30

1080

90

Account - changed (plan C)

T.id

1

5

10

5

1

99

status

upd

ins

upd

upd

upd

ins

include

columns

37DB2 9 for z/OS Workshop

Click to edit Master title style

ORDER BY and FETCH FIRST N Rows
in Subselect

38DB2 9 for z/OS Workshop

Background

� Prior to V9, DB2 z/OS prohibit ORDER BY and
FETCH FIRST n Rows in a select

– i.e., one can write

– But cannot write

SELECT * FROM T ORDER BY c1 FETCH FIRST 1 ROW ONLY;

INSERT INTO TEMP

SELECT * FROM T ORDER BY c1 FETCH FIRST 1 ROW ONLY;

39DB2 9 for z/OS Workshop

In V9

� Allow all semantically relevant clause of the select
statement to be pushed into subqueries. The original
query can be taken as is and wrapped by more SQL,
such as show in the example above

� Provides more function by being able to select, e.g.,
the top N rows in a leg of a join, a leg of union, or a
subquery

(SELECT * FROM T1 ORDER BY C1

FIRST 4 ROW ONLY)

UNION

SELECT * FROM T2 ;

40DB2 9 for z/OS Workshop

Customer Requirement

� One customer has a huge table of which they want
just the first 2000 rows sorted in a particular order.

� If the sort is done first, and the FETCH FIRST later, it
will cause a huge sort for no reason.

� The solution is the V9 FETCH FIRST N Row in

Subselect

�

SELECT A, B, C FROM

(SELECT A, B, C, FROM TABLE_A WHERE ….

FETCH FIRST 2000 ROWS ONLY) AS TABLE_B

ORDER BY C, B;

41DB2 9 for z/OS Workshop

ORDER BY and FETCH FIRST in subselect

ORDER BY clause can be specified in subselect or
fullselect

FETCH FIRST n ROWS ONLY clause can be
specified in subselect or fullselect

ORDER OF table-designator extension to the
ORDER BY clause

(SELECT * FROM T1

 ORDER BY C1)

UNION

(SELECT * FROM T2

 ORDER BY C2

 FETCH FIRST 2 ROWS)

(SELECT * FROM T1

 ORDER BY C1)

UNION

SELECT * FROM T2

ORDER BY C2

FETCH FIRST 2 ROWS

42DB2 9 for z/OS Workshop

Using the EMP_ACT table, find the project numbers that have an employee
whose salary is in the top 3 of all employees.

SELECT EMP_ACT.EMPNO, PROJNO

FROM EMP_ACT

WHERE EMP_ACT.EMPNO IN

 (SELECT EMPLOYEE.EMPNO

 FROM EMPLOYEE

 ORDER BY SALARY DESC

 FETCH FIRST 3 ROWS ONLY)

EMPNO SALARY

 5 100,000

 8 50,000

 11 60,000

 12 150,000

 18 30,000

 22 80,000

 23 55,000

EMPNO PROJNO

 5 100

 8 101

 11 123

 12 100

 18 112

 22 105

 23 107

EMPNO SALARY

 12 150,000

 5 100,000

 22 80,000

Employee EMP_ACT

ExampleExample

subq

43DB2 9 for z/OS Workshop

ORDER OF table-designator ORDER OF table-designator

The use of ORDER OF table-designator in the ORDER BY
clause in a nested table expression allows the higher level select
to retain the ordering of the rows returned from the nested table
expression

SELECT C1 FROM

 (SELECT C1, C2 FROM T1

 UNION ALL

 SELECT C1, C2 FROM T2

 ORDER BY C1) AS UTABLE

ORDER BY ORDER OF UTABLE

The higher select "inherits" the ordering of the rows of the result
table of the inner table expression (UTABLE).

44DB2 9 for z/OS Workshop

SELECT TEMP.Cx, TEMP.Cy, T1.C1, T1.C2

FROM T1 ,

 (SELECT T2.C1, T2.C2

 FROM T2

 ORDER BY 2) AS TEMP(Cx,Cy)

W HERE Cy = T1.C1

ORDER BY ORDER OF TEMP

SELECT TEMP.Cx, TEMP.Cy, T1.C1, T1.C2

FROM T1 ,

 (SELECT T2.C1, T2.C2

 FROM T2

 ORDER BY 2) AS TEMP(Cx,Cy)

W HERE Cy = T1.C1

ORDER BY TEMP.Cy

45DB2 9 for z/OS Workshop

(SELECT * FROM T1

 ORDER BY C1)

UNION

(SELECT * FROM T2

 ORDER BY C2

 FETCH FIRST 2 ROWS)

ExamplesExamples

(SELECT * FROM T1

 ORDER BY C1)

UNION

SELECT * FROM T2

ORDER BY C2

FETCH FIRST 2 ROWS

The following examples are invalid

SELECT * FROM T1

ORDER BY C1

UNION

(SELECT * FROM T2

 ORDER BY C2

 FETCH FIRST 2 ROWS)

CREATE VIEW V1 AS

(SELECT * FROM T1

ORDER BY C1)

46DB2 9 for z/OS Workshop

Click to edit Master title style

TRUNCATE

47DB2 9 for z/OS Workshop

What TRUNCATE does

� Gives user an alterative way of emptying a table, with
more flexibility over the current DELETE statement
with no WHERE clause (i.e., a mass delete operation):

– Delete all data rows in a designated DB2 table without
activating DELETE trigger

– DB2 catalog definition of the table (i.e., dropping and
recreating of the delete triggers) is not needed for faster
processing

– Provides an option to allow the users to empty the
designated DB2 table permanently without going
through the current commit phase

– Provides an option to reuse deallocated storage

48DB2 9 for z/OS Workshop

TRUNCATE Table

A fast way to empty a table

DELETE Triggers are ignored

Indexes, LOB, XML Tablespaces are also deleted

X lock on the target table, Mass-delete

TRUNCATE <TABLE> TABLE-NAME

 < DROP STORAGE | REUSE STORAGE>

 < RESTRICT WHEN DELETE TRIGGERS | IGNORE DELETE TRIGGERS>

 < IMMEDIATE>

49DB2 9 for z/OS Workshop

Processing modes for TRUNCATE

� Normal way:

– Truncate operation process each data page to
physically delete data records from the page

• Table in a simple table space

• Table in a partitioned table space

• Any table with table attribues

– CDC-enabled (Change Data Capture)

– MLS-enabled (Multiple Level Security)

– VALID PROC exist

� Fast way:

– Truncate operation deletes data records without
physically processing each data page

• table in a segmented table without table attributes

• table in a universal table space without table attributes

50DB2 9 for z/OS Workshop

Examples

� Empty an old inventory table regardless any existing DETETE

triggers and like to return its allocated space.

TRUNCATE INVENTORY_TABLE

IGNORE DELETE TRIGGERS

DROP STORAGE;

� Empty an old inventory table regardless any existing DELETE

triggers but also like to preserve its allocated space for later

user

TRUNCATE INVENTORY_TABLE

IGNORE DELETE TRIGGERS

REUSE STORAGE;

51DB2 9 for z/OS Workshop

TRUNCATE …. IMMEDIATE

� Specifies that the truncate operation is processed immediately
and cannot be undone

� When IMMEDIATE option is specified, the table must not
contain any uncommitted updates:

– For a DGTT table object, the IMMEDIATE option does not apply to
it. The truncate operation will fail since the table space contains a
DGTT will be always in the update mode.

– No uncommitted DDL is allowed on the table prior to the
TRUNCATE

� The truncated table is immediately available for use in the same
unit of work

� Although a ROLLBACK statement is allowed after the
TRUNCATE statement, the truncate operation is not undone,
and the table rename truncated. Other data changes following
TRUNCATE are rolled back

52DB2 9 for z/OS Workshop

Click to edit Master title style

Rank, DESE_RANK, Row_Number

53DB2 9 for z/OS Workshop

OLAP specification -- RANK, DENSE_RANK,
ROW_NUMBER

RANK() OVER Window ----> OLAP Function

PARTITION BY sh.territory --- row should be assigned to partition
according to territory

ORDER BY sh.sales --- row sorted in the order of sales amount
within each partition

Apply after Join, Predicates, Group By, Having

A new class of aggregate functions

Rank

DENSERANK

ROWNUMBER

SELECT sh.territory, sh.sales,

 Rank() over (PARTITION BY sh.territory

 ORDER BY sh.sales desc) as rank

 FROM sales_history;

54DB2 9 for z/OS Workshop

SELECT EMPNUM, DEPT, SALARY,

 RANK() OVER (ORDER BY SALARY DESC) as RANK,

 DENSERANK() OVER (ORDER BY SALARY DESC)as DENSERANK,

 ROWNUMBER() OVER (ORDER BY SALARY DESC) as ROWNUM

FROM EMPLOYEE;

EMPNUM DEPT SALARY RANK DENSERAN

K

ROWNUM

3 - 84000 1 1 1

8 3 79000 2 2 2

6 1 78000 3 3 3

2 1 75000 4 4 4

7 1 75000 4 4 5

12 3 75000 4 4 6

10 3 55000 7 5 7

11 1 53000 8 6 8

OLAP specification -- RANK, DENSE_RANK,
ROW_NUMBER

55DB2 9 for z/OS Workshop

Click to edit Master title style

New Data Type

56DB2 9 for z/OS Workshop

New data types: BIGINT, BINARY,
VARBINARY, DECFLOAT

BIGINT - big integer.

Big integer is a binary integer with a precision of 63 bits. The
range of big integers is [-9223372036854775808,
9223372036854775807

BINARY ? fixed-length binary string.

Fixed-length binary string is in a range of [1,255]. The
padding with hexadecimal zeros (X? 0?. Not associated
with any CCSID

VARBINARY ? varying-length binary string.

Varying-length binary string is in a range of [1,32704]. No
padding is performed. Not associated with any CCSID

DECFLOAT ? Decimal float.

DECFLOAT(16) = decimal64 format (8 bytes)

DECFLOAT(34) = decimal128 format (16 bytes)

57DB2 9 for z/OS Workshop

DECFLOAT

-1.000000000000000000000000000000000x10-6143Largest negative DECFLOAT(34)

Value

1.000000000000000000000000000000000x10-6143Smallest positive DECFLOAT(34)

Value

9.999999999999999999999999999999999x106144Largest DECFLOAT(34) Value

-9.999999999999999999999999999999999x106144Smallest DECFLOAT(34) Value

-1.000000000000000x10-383Largest negative DECFLOAT(16) value

1.000000000000000x10-383Smallest positive DECFLOAT(16)

Value

9.999999999999999x10384Largest DECFLOAT(16) Value

-9.999999999999999x10384384Smallest DECFLOAT(16) Values

LimitDescription

-1.000000000000000000000000000000000x10-6143Largest negative DECFLOAT(34)

Value

1.000000000000000000000000000000000x10-6143Smallest positive DECFLOAT(34)

Value

9.999999999999999999999999999999999x106144Largest DECFLOAT(34) Value

-9.999999999999999999999999999999999x106144Smallest DECFLOAT(34) Value

-1.000000000000000x10-383Largest negative DECFLOAT(16) value

1.000000000000000x10-383Smallest positive DECFLOAT(16)

Value

9.999999999999999x10384Largest DECFLOAT(16) Value

-9.999999999999999x10384384Smallest DECFLOAT(16) Values

LimitDescription

Both IEEE and hexadecimal floating point numbers can only approximate
common decimal numbers. But DFP can represent decimal number exactly.

DFP can represent much bigger and smaller number than DECIMAL.

58DB2 9 for z/OS Workshop

Click to edit Master title style

Index on Expression

59DB2 9 for z/OS Workshop

Index on Expression

Create index on result of Expression

Enhance Query Performance

If we want to search for customers whose Upper(Lastname)
= MITH�

CREATE INDEX IX_LastName ON CUSTOMER

 (UPPER (Lastname), CUSTOMER_ID);

SELECT * FROM EMP

 WHERE UPPER (Lastname) = 'SMITH';

R o o t

S M IT H S m ith b u s h s m i t h

R o o t

S M IT H S m ith b u s h s m i t h

Root

BUSH
SMITH(Brian)
SMITH(John)

SMITH(Kyle)

… ZAJAC

Root

BUSH
SMITH(Brian)
SMITH(John)

SMITH(Kyle)

… ZAJAC

60DB2 9 for z/OS Workshop

High Level Design(key target)

•Key source v.s. Key target

•Key source: the columns that an index is built on
•Key target: the resultant keys that compose the final index.

Normal index: IX1(c1, c2, c3)

Index on Expr: IX2 (c2+c3, c1 - c2)

c1 c2 c3 IX1 IX2

row 1 1 2 3 (1,2,3) (5,-1)

row 2 2 3 2 (2,3,2) (5,-1)

row 3 4 7 6 (4,7,6) (13,-3)

Key source
Key target

•Extended index: when key source and key target are different:

•Index on expression(li611)
•XML value index(li603):
•Spatial index(li705)

61DB2 9 for z/OS Workshop

Unique

•Uniqueness for index on expression: be aware it is the result of the expressions

which determine the uniqueness.

In our example, IX2 is not an unque index although IX1 is.

Normal index: IX1(c1, c2, c3)

Index on Expr: IX2 (c2+c3, c1 - c2)

c1 c2 c3 IX1 IX2

row 1 1 2 3 (1,2,3) (5,-1)

row 2 2 3 2 (2,3,2) (5,-1)

row 3 4 7 6 (4,7,6) (13,-3)

62DB2 9 for z/OS Workshop

Index on Expression - 2

CREATE INDEX IX1 ON T1 (HEX(c1), BINARY(LTRIM(c2)));

CREATE INDEX IX2 ON T2 (SUBSTR(c2, 1, 23), CONCAT(c2, c3));

CREATE INDEX IX3 ON T2 (salary, bonus/salary, bonus+salary);

CREATE INDEX IX4 ON T1 (DAYOFYEAR(endship) -
DAYOFYEAR(startship));

CREATE INDEX IX5 ON T2 (GRAPHIC(c3));

CREATE INDEX IX6 ON T1 (VARCHAR(INSERT(vchar30,1,0,''),20));

CREATE INDEX IX7 ON T1 (posstr(lvcharx2, '7.2E+02')) ;

CREATE INDEX IX8 ON T1 (MIDNIGHT_SECONDS(birthday));

63DB2 9 for z/OS Workshop

Click to edit Master title style

LOB File Reference Variable

64DB2 9 for z/OS Workshop

Customer Pain Point

� Difficult to Load/Unload large Lob

� Poor Performance

� Significant application storage required

� Support File Reference Variable exists in other
platforms

65DB2 9 for z/OS Workshop

What is File Reference Variable

� A variable defined in the host language. It
contains a file name and allows direct transfer
of LOB data between DB2 and the file.

� Language Support

– C, C++, JAVA

– Cobol, PL/I

– Assembler, REXX

66DB2 9 for z/OS Workshop

Technical Overview

� Allow a Large LOB or XML to be read and write directly from a
file

� Application no long needs to allocate storage to contain LOB or
XML data

� Bypass the host language limitations on the maximum allowed
size for LOB in the working storage

� Support HFS or BSAM

� Application must ensure DB2 has access to the file

� Three new SQL host variables

– BLOB_FILE

– CLOB_FILE

– DBCLOB_FILE

� XML File Reference Variable

– Specify SQL Type as XML AS

67DB2 9 for z/OS Workshop

How does File Reference Variable work?

� Application declare a file reference variable

EXEC SQL BEGIN DECLARE SECTION

SQL TYPE IS CLOB_FILE hv_text_file;

EXEC SQL END DECLARE SECTION

� Precompiler building a host language construct as following:

struct {

unsigned long name_length // file name length

unsigned long data_length // data length

unsigned long file_options // file options

char name[255] // file name

} hv_text_file;

68DB2 9 for z/OS Workshop

Input File Reference Variable

strcpy(hv_text_file.name, “/u/gainer/papers/sigmod.94");

hv_text_file.name_length = strlen("/u/gainer/papers/sigmod.94");

hv_text_file.file_options = SQL_FILE_READ;

EXEC SQL INSERT INTO PATENTS(TITLE,TEXT)

VALUES(:hv_patent_title, :hv_text_file);

LOB

69DB2 9 for z/OS Workshop

Output File Reference Variable

strcpy(hv_text_file.name, "/u/gainer/papers/sigmod.94");

hv_text_file.name_length = strlen("/u/gainer/papers/sigmod.94");

hv_text_file.file_options = SQL_FILE_CREATE;

EXEC SQL SELECT content INTO :hv_text_file from
papers_table

where TITLE = 'The Relational Theory behind Juggling';

LOB

70DB2 9 for z/OS Workshop

Click to edit Master title style

Fetch Continue to Aid Fetching of Lob

71DB2 9 for z/OS Workshop

FETCH CONTINUE
Provides 2 new syntax extensions on FETCH for LOB and XML data:

FETCH WITH CONTINUE

Just like a regular FETCH but�

Tells DB2 how to react when truncation occurs on output of a
LOB or XML column

Preserve the rest of the data, remember positiion

In the output length field, return the size that the host variable
should have been

No effect on VARCHAR column truncation�

FETCH CURRENT CONTINUE

Tells DB2 to continue fetching from the truncation point

The CURRENT keyword implies tay on the same row�

Can be executed multiple times to tream?the data

ow-based?operation ? DB2 tries retrieve all truncated
LOB/XML columns.

Column-based operation can be achieved by setting output

lengths to zero for other columns

72DB2 9 for z/OS Workshop

FETCH CONTINUE – Basic Application

Flow
Integer hostvar1

char[32767] hostvar2

Char[] *hostvar3 “based” structure

DECLARE CURSOR C1 FOR

SELECT INTCOL, CLOBCOL FROM T1 …

OPEN C1

FETCH WITH CONTINUE C1

INTO :hostvar1, :hostvar2

If hostvar2 was truncated

{

get length from output length field

allocate storage to hold the rest

FETCH CURRENT CONTINUE INTO :hostvar3

}

Application DB2

I’m a loo…oong LOB74

I’m a short LOB23

T1
INTCOL CLOBCOL (10MB)

74

1048576 | I’m a looo…oooo

1015809 | ooooooo…ooooooong LOB

heap storage:

Assume
1MB

73DB2 9 for z/OS Workshop

FETCH CONTINUE for XML and LOB

� No size associated with XML values

� Hard to allocate large memory

� Shortcomings with LOB Locator

� New FETCH CONTINUE statements: (one of two ways)

– DECLARE CURSOR1 CURSOR FOR SELECT C2 FROM T1;

– OPEN CURSOR1;

– FETCH WITH CONTINUE CURSOR1 into :clobhv;

– if (sqlcode >= 0) & sqlcode <> 100

– Loop if truncation occurs until lob/xml complete (total length)

– FETCH CURRENT CONTINUE CURSOR1 into :clobhv;

– Consume :clobhv content

– end loop

� Another way is to use FETCH … INTO DESCRIPTOR :SQLDA

74DB2 9 for z/OS Workshop

Click to edit Master title style

Rename Index / Rename Column

75DB2 9 for z/OS Workshop

RENAME INDEX/COLUMN

Without having to drop and recreate the
object

Rename Column

Rename Index

ALTER TABLE tb1

 RENAME COLUMN old_columnname

 TO new_columnname

RENAME INDEX/TABLE

 old_name TO new_name

76DB2 9 for z/OS Workshop

Click to edit Master title style

Automatic Creation of Objects

77DB2 9 for z/OS Workshop

What’s New?

� In V9, CREATE TABLE without specifying an associated table space
and database

– Implicit Database

• DB2 creates an implicit database

• Use DSN0001 to DSN60000 as naming convention for implicit created
databases.

• If DSN60000 is reached, DB2 wraps around and uses existing implicitly
created databases.

• Max # of database per DB2 subsystem has been increased from 32767 to
65271

– Implicit Table space

• Starting V9, the implicitly created table spaces will be segmented table spaces.

• CM Mode
– SEGSIZE 4, LOCKSIZE ROW

• NFM Mode
– Implicitly created table spaces are Partition By Growth table spaces.

– SEGSIZE 4, DSSIZE 4G, MAXPARTITIONS 256, LOCKSIZE ROW, LOCKMZE
SYSTEM

78DB2 9 for z/OS Workshop

Click to edit Master title style

pureXML in DB2 9

79DB2 9 for z/OS Workshop

Example of V8 XML publishing

functions
<Department name="Shipping">

<emp>Lee</emp>
<emp>Martin</emp>
<emp>Oppenheimer</emp>

</Department>

SELECT XML2CLOB(
XMLELEMENT(NAME "Department",
XMLATTRIBUTES (e.dept AS "name"),
XMLAGG(XMLELEMENT(NAME "emp", e.lname)

ORDER BY e.lname)
)) AS "dept_list"

FROM employees e
GROUP BY dept;

80DB2 9 for z/OS Workshop

XML Data Processing before pureXML

Fixed

Mapping
Shredder

(regular relational tables)

Storing/Shredding
XML

Composer

Composing
XML

Complex

Logic

Decompositon / Composition

Rapid
Changes

Painful
Changes

Painful
Schema
Changes

Painful
Data

Migration

Painful
Changes

81DB2 9 for z/OS Workshop

pureXML in DB2 9

� SQL XML data type and native storage

� Designed specifically for XML

– Supports XML hierarchical structure storage

– Native operations and languages: XPath, SQL/XML, (XQuery in
the future)

� Not transforming into relational

� Not using objects or nested tables

� Not using LOBs

� Integrated with relational engine, with all the utilities and tools
support

82DB2 9 for z/OS Workshop

Example: Tax Forms

� Application
– Processing & validating tax returns, payments, refunds

– Corporate Tax, Personal Income Tax (PIT), Sales Tax

� Objectives
– Move Tax processing off legacy systems

� Move to a more flexible, automated, extensible framework
Reduce cost & labor for implementing tax form changes

– Increase performance. Improve straight-through processing from filing to
refund/payment

� Typical current environment
– Processing using manual and/or legacy systems

� This is an example of usage for Online Forms processing in general

83DB2 9 for z/OS Workshop

� Usually hundreds-thousands
of different tax forms

� Schema Diversity

� Typically not every field in a
form is used

� Sparse Data

� Many forms change every
year

� Schema Evolution

���� A case for XML !

Tax Forms

84DB2 9 for z/OS Workshop

� Solution 1: Each form has a different set of fields
(schema)

� Thousands of Tables … i.e. one per form ?

� Considered not feasible

– Too many tables to maintain

– Relational schema would deteriorate
over time

– Not sufficiently flexible and extensible

� Solution 2: Single table whose rows
can store any form

– 100s of generic columns … Ouch!

Typical Current Usage: Relational Database

85DB2 9 for z/OS Workshop

XML: Avoids sparsity. Proper data labeling. 2 columns, not
1000. Transformable. Extensible. Simplifies mapping.

Generic columns � XML
Current relational storage,

inefficient, anonymous
columns, requires complex

mappings in the application

New XML format:

…

No…NULL123.23NULLNULLNULL

NULL…NULL99.99NULLNULL12

NULL…YesNULLNULL276NULL

NULL…NULLNULL11/23/05NULL134

col1000…col5col4col3col2col1

<form>
<wages>134</wages>
<date>11/23/05</date>

</form>

86DB2 9 for z/OS Workshop

What You Can Do with pureXML

� Create tables with XML columns

� Insert XML data, optionally
validated against schemas

� Create indexes on XML data

� Efficiently search XML data

� Extract XML data

� Decompose XML data into
relational data

� Construct XML documents from
relational and XML data

� All the utilities and tools support for
XML

XML

DOC

XML Column

XML
Index

XML

87DB2 9 for z/OS Workshop

XML Type and DDL

CREATE TABLE PurchaseOrders (
ponumber varchar(10) not null,
podate date not null,
status char(1),
XMLpo xml);

[or: IN MYDB.MYTS;]
[or: IN DATABASE MYDB;]
[or: IN MYTS;]

CREATE TABLE PO LIKE PurchaseOrders;

CREATE VIEW ValidPurchaseOrders as
SELECT ponumber, podate, XMLpo

FROM PurchaseOrders
WHERE status = ‘A’;

ALTER TABLE PurchaseOrders
ADD revisedXMLpo xml;

• Hidden DocID column

• One DocID index

• Internal XML table (16K

BP) for each XML column
• NodeID index
• No associated schema

• No length limit

• Hidden DocID column

• One DocID index

• Internal XML table (16K

BP) for each XML column
• NodeID index

• No associated schema

• No length limit

88DB2 9 for z/OS Workshop

XML Storage on Mature Infrastructure

Base Table

XMLColDocID …

B+treeB+tree

DocID index

Internal XML Table

B+treeB+tree

NodeID index

B+treeB+tree

XML index (user)

Each XMLData column is a VARBINARY, containing
a subtree or a sequence of subtrees, with context path.
Rows in XML table are freely movable, linked with a
NodeID index.

A table with an XML column has a
DocID column, used to link from the
base table to the XML table.
A DocID index is used for getting to
base table rows from XPath value
indexes.

XMLDataDocID Min_NodeID

Regular
Table space

89DB2 9 for z/OS Workshop

XML objects for non-partitioned base table

BASE Table

DOC
INDEX

Non-Partioned Base TS

(segmented, PBG)

XMLCol1 Table

NODEID
INDEX

XML
Index

PBG TS for XMLCol1

XML Col2 Table

PBG TS for XMLCol2

Cols:
DOCID

MIN_NODEID

XMLDATA

NODEID
INDEX

Cols:
DOCID

XMLCol1
XMLCol2

Cols:
DOCID

MIN_NODEID

XMLDATA
XML
Index

90DB2 9 for z/OS Workshop

XML objects for partitioned base table

Cols:
DOCID

XMLCOL1
XMLCOL2

BASE Table
Part1

Partitioned Base TS
2 Parts, Table has 2

XML Coumns

XML
Index

Part TS XMLCol1
(NPI)

Cols:
DOCID

XMLCOL1
XMLCOL2

BASE Table
Part2

Part1 Part2

NodeID

INDEX

(NPI)

XML
Index

Part TS XMLCol2

Part1 Part2

DOCID

INDEX

DOCID
MIN_NODEID

XMLDATA

DOCID
MIN_NODEID

XMLDATA

DOCID
MIN_NODEID

XMLDATA

DOCID
MIN_NODEID

XMLDATA

NodeID

INDEX

(NPI)

91DB2 9 for z/OS Workshop

Manipulating XML Data

EXEC SQL BEGIN DECLARE SECTION;

SQL TYPE IS XML AS CLOB(1M) xmlPo;

EXEC SQL END DECLARE SECTION;

INSERT INTO PurchaseOrders VALUES (‘200300001’,

CURRENT DATE, ‘A’, :xmlPo);

INSERT INTO PurchaseOrders VALUES (‘200300001’,

CURRENT DATE, ‘A’, CAST(? AS XML));

INSERT INTO PurchaseOrders VALUES(‘200300003’, CURRENT DATE, ‘A’,
XMLPARSE(DOCUMENT :vchar PRESERVE WHITESPACE));

INSERT into PurchaseOrders VALUES('200300004', CURRENT DATE, 'A',
DSN_XMLValidate(:lobPo, ’SYSXSR.myPOSchema’));

UPDATE PurchaseOrders SET XMLpo = :XMLpo_revised

WHERE ponumber = ‘12345’;

DELETE FROM PurchaseOrders WHERE ponumber = ‘12345’;

Host var of XML type

String literal is OK

Whole document
replacement

92DB2 9 for z/OS Workshop

Retrieving XML Data

� Simple select:
SELECT XMLpo INTO :xmlPo

FROM PurchaseOrders

WHERE ponumber = ‘200300001’;

� Select with condition:
SELECT XMLPO

FROM PurchaseOrders

WHERE XMLEXISTS(‘//items/item[desc = “Shoe”]’ PASSING XMLpo);

� Extract from a document:
SELECT XMLQUERY(‘//items/item/quantity’ PASSING XMLpo)
FROM PurchaseOrders WHERE …;

93DB2 9 for z/OS Workshop

Application Interfaces

� XML type is supported in

– Java (JDBC, SQLJ), ODBC,

– C/C++, COBOL, PL/I, Assembly

– .NET

� Applications use:

– XML as CLOB(n), XML as CLOB_FILE

– XML as DBCLOB(n), XML as DBCLOB_FILE

– XML as BLOB(n), XML as BLOB_FILE

– All character or binary string types are supported

94DB2 9 for z/OS Workshop

XML Indexes

� XPath value index: index values of
elements or attributes inside a
document.

� Index entries include:
(key value, DocID, NodeID, RIDx)

� Support string (VARCHAR) or
numeric (DECFLOAT) key type

CREATE INDEX ON
PurchaseOrders(XMLPO) Generate
Keys Using XMLPATTERN
‘/purchaseOrder/items/item/desc’
as SQL VARCHAR(100);

<?xml version="1.0"?>

<purchaseOrder orderDate="1999-10-20">

<shipTo country="US">

<name>Alice Smith</name>

. . .

</shipTo>

<billTo country="US">

<name>Robert Smith</name>

. . .

</billTo>

<comment>Hurry, my lawn is going wild!</comment>

<items>

<item partNum="872-AA">

<desc>Lawnmower</desc>

<quantity>1</quantity>

<USPrice>148.95</USPrice>

<comment>Confirm this is electric</comment>

</item>

<item partNum="926-AA">

<desc>Baby Monitor</desc>

<quantity>1</quantity>

<USPrice>39.98</USPrice>

<shipDate>2003-05-21</shipDate>

</item>

</items>

</purchaseOrder>

<?xml version="1.0"?>

<purchaseOrder orderDate="1999-10-20">

<shipTo country="US">

<name>Alice Smith</name>

. . .

</shipTo>

<billTo country="US">

<name>Robert Smith</name>

. . .

</billTo>

<comment>Hurry, my lawn is going wild!</comment>

<items>

<item partNum="872-AA">

<desc>Lawnmower</desc>

<quantity>1</quantity>

<USPrice>148.95</USPrice>

<comment>Confirm this is electric</comment>

</item>

<item partNum="926-AA">

<desc>Baby Monitor</desc>

<quantity>1</quantity>

<USPrice>39.98</USPrice>

<shipDate>2003-05-21</shipDate>

</item>

</items>

</purchaseOrder>
This index can be used for predicate:
XMLEXISTS(‘/purchaseOrder/items/item[desc = “Baby Monitor”]’ passing XMLPO)

95DB2 9 for z/OS Workshop

Utilities

� Enhanced to handle new XML
type, XML tablespaces, and
XML indexes

� CHECK DATA

� CHECK INDEX
� COPY INDEX

� COPY TABLESPACE
� COPYTOCOPY

� LISTDEF
� LOAD

� MERGECOPY

� QUIESCE TABLESPACESET

� REAL TIME STATISTICS

� REBUILD INDEX

� RECOVER INDEX

� RECOVER TABLESPACE

� REORG INDEX

� REORG TABLESPACE

� REPORT TABLESPACESET

� UNLOAD

� Basic RUNSTATS

96DB2 9 for z/OS Workshop

Customer Experiences

� Insurance, financial, banking, government, healthcare,
telecom, manufacturing, … (private list)

� References or public information:

– ADP Netherlands: Payroll services (client XML data)

– ZIVIT: Tax processing

– Univar USA: Chemical Industry (CIDX contract)

– GAD: Banking, XBRL & SEPA (financial report and payment)

– Merrill Lynch: Finance

– Temenos T24: universal banking application (object persistence)

� From LUW:

– NY State: Tax processing

– UCLA Health System: medical records

– More at
http://www.ibm.com/developerworks/wikis/display/db2xml/DB2+pureXML+Case+St

udies

