
D A T A S H E E T

AT A GLANCE

Key Features

•	 Built-in transfer security that uses
standard open-source OpenSSL toolkit.

•	 Secure,	encrypted	 sessions using standard
secure shell (SSH).

•	 User/endpoint authentication with Native
File System Access Control support across
all operating systems.

•	 Data encryption in transit and at rest with	
AES-128 cryptography.

•	 Data integrity verification for each
transmitted block.

Key Benefits

•	 Standard open-source encryption
supports alternative ciphers, if needed.

•	 LDAP, Active Directory user	
authentication.

•	 Encryption in transit and at rest assures	
maximum security of business-critical	
digital assets.

•	 Data integrity verification guards against	
man-in-the-middle, re-play, and UDP	
denial-of-service attacks.

Supported Operating Systems

•	 Windows 2000/XP/2003/2008, Windows	
Vista, Windows 7

•	 Mac OS	 version 10.4 and higher

•	 Linux

•	 Solaris

•	 Isilon OneFS

Firewall Configuration Summary

•	 Aspera	transfers use one TCP port for
session	initialization and control, and one	
UDP port for data	transfer.

•	 Concurrent transfers on Windows require
a range of UDP ports because Windows
does not allow the use one port for
multiple connections.

All Aspera products have complete, builtin

security for data transfers using the standard

open-source OpenSSL toolkit. The OpenSSL

cryptographic libraries and the standard

secure shell (SSH) are used unmodified in

order to take full advantage of the standard.

Aspera’s products have been approved by

the US Department of Commerce for export

as a mass-market encryption product with

>64 bit encryption. The security model

consists of session encryption (to establish

a secure channel for exchanging a random

persession key for data encryption), secure

authentication of the transfer endpoints,

on-the-fly data encryption, and integrity

verification for each transmitted data block.

The transfer preserves the native file system

access control attributes between any of the

supported operating systems.

SESSION ENCRYPTION

Each transfer job begins by establishing

a secure, encrypted session between the

endpoints, using the standard secure shell

(SSH). SSH is invoked with its default

symmetric cipher option for session

encryption, 3DES (128 bits). SSH supports

other ciphers for session encryption (e.g.

128 bit AES, Blowfish, CAST128, Arcfour,

192 bit AES, or 256 bit AES) and command

line invocations of Aspera scp may request

these alternative ciphers if supported by

the peer ssh server. The particular algorithm

used to negotiate the session encryption

key depends upon whether SSHv-2 or

SSHv-1 is used. SSH-v2 is the default for the

sshd service built into Linux, Solaris and

Mac OS X, and included with the Aspera

distribution for MS Windows. However,

Aspera scp can be run with SSH-v1 as a

command line option (and also works with

other commercial implementations of ssh).

SSH-v2 uses a Diffie-Hellman key agreement

to negotiate the session encryption key. In

SSH-v1, each host has a host-specific RSA

key (normally 1024 bits) and dynamically

generates a new server RSA key (normally

768 bits) each time the ssh daemon starts

up. This key is normally regenerated every

hour if it has been used, and is never stored

on disk. When an ssh client connects, the

daemon responds with its public host

and server keys, and the client and server

negotiate the session encryption key.

AUTHENTICATION

Once the secure session channel is

established, the transfer endpoints

authenticate using one of the secure

authentication mechanisms in ssh:

interactive password or public-key. For

public key authentication, the private keys

are stored encrypted on disk using a secure,

private passphrase and authentication is

done using RSA only (SSH-v1) or RSA/

DSA (SSH-v2) public key exchange. The

ssh-keygen program is distributed with

the Windows version of Aspera scp for

generating DSA and RSA keys. The default

key length is 1024 bits although the user

may request longer key lengths.

DATA ENCRYPTION

Once SSH authentication has completed,

the FASP™ transfer session performs a

three-way handshake during which the

remote endpoint generates a random AES

128-bit per-session key for data encryption,

and a random 128-bit key for computing an

MD5 checksum, and sends these keys to

the initiator over the secure ssh channel. A

new encryption and MAC key is generated

on each FASP transfer session, and the

keys are never stored on disk.

FASP uses 128-bit AES encryption in which

the key is re-initialized throughout the

duration of the transfer using a standard

CFB (Cipher Feedback) mode with a unique,

secret nonce (or “initialization vector”) for

each block. CFB protects against all standard

attacks based on sampling of encrypted data

during long-running transfers.

FASP™ Security Model
Bulletproof security for business-critical digital assets

About Aspera

The creator of next-generation transport technologies that move the world’s data at maximum speed regardless
of file size, transfer distance and network conditions. Based on its patented FASP™ protocol, Aspera software
fully utilizes existing infrastructures to deliver the fastest, most predictable file-transfer experience. Aspera’s core
technology delivers unprecedented control over bandwidth, complete security and uncompromising reliability.
Organizations across a variety of industries on six continents rely on Aspera software for the business-critical
transport of their digital assets.

Learn more at www.asperasoft.com

FASP™ Security ModelD A T A S H E E T

©2014 Aspera, an IBM Company.
All rights reserved.

Product features, specifications, system
requirements and availability are subject
to change without notice. FASP and
faspex are trademarks of Aspera, Inc. in
the U.S. and other countries. All other
trademarks contained therein are the
property of their respective owners.

The FASP source code includes support for ciphers in addition to

128-bit AES, and can be extended with other openssl ciphers such

as AES 192. At this time, FASP does not expose command-line or

GUI options for the end-user to select a cipher other than AES 128

but could if needed, as the cipher code is modular.

DATA INTEGRITY VERIFICATION

An MD5 cryptographic hash function (128 bits) is applied to each

encrypted datagram before transmission on the network. The

resulting message digest is appended to the secure datagram and

verified at the receiver for data integrity (to prevent man-in-the-

middle, re-play, and UDP denial-of-service attacks).

FIREWALL CONSIDERATIONS

Aspera server runs one SSH server on a configurable TCP port (22

by default; 33001 is often used). The firewall on the server side must

allow this one TCP port to reach the Aspera server. No servers are

listening on UDP ports. When a transfer is initiated by an Aspera

client, it opens an SSH session to the SSH server on the designated

TCP port and negotiates the UDP port (33001 by default) over

which the data will travel. To allow the UDP session to start, the

firewall on the Aspera server side must allow port UDP 33001 to

reach the Aspera server.

Concurrent Transfers Considerations

Concurrent transfers on Aspera servers with multiple concurrent

clients will:

•	 Share the same UDP port on Unix.

•	 Require a range of UDP ports (e.g. 33001-33100) to be

allowed on Windows because the operating system does not

allow Aspera’s FASP protocol to reuse the same UDP port for

multiple connections. Incoming client connections will auto-

increment to use the next available port in the range.

In the case of point to point deployments of Aspera products, the

end-points accepting incoming connections act as servers, and

therefore their firewalls must allow TCP port 22 and UDP

port 33001 (both configurable) to access the Aspera machine.

Client/Server Installations

Server side firewall must allow inbound connections to the server

on the TCP port and on the UDP port. For Windows servers

only, allow a range of ports large enough to cover the number

of potential concurrent clients (e.g. 33001 through 33020, for

20 concurrent transfers). This is needed because Windows does

not allow UDP port sharing. Server side firewall must also allow

outbound connections from the server on the TCP port and on the

UDP port (or range of ports for Windows servers).

On the client side, typical consumer and business firewalls allow

direct outbound connections from client computers on TCP and

UDP. There is no configuration required for Aspera transfers in this

case. In cases where corporate firewalls disallow direct outbound

connections (typically using proxy servers for web browsing), allow

outbound connections from the Aspera client on the TCP port and

on the UDP port.

Point to Point Installations

Consider two Aspera computers: A and B. A initiates the transfer

(we call A client) and B accepts an incoming connection (we call

B server). The client and server designations are given by the

computer initiating the Aspera transfers, regardless of the direction

of the transfer (upload or download).

On the client side (computer A), typical consumer and business

firewalls allow direct outbound connections from client computers

on TCP and UDP. There is no configuration required for Aspera

transfers in this case. In cases where corporate firewalls disallow

direct outbound connections (typically using proxy servers for

web browsing):

•	 Allow outbound connections from the Aspera client on the

TCP port and on the UDP port.

•	 Allow either:

•	 inbound UDP traffic responding to the outbound UDP

(this is default on most firewalls) or

•	 inbound UDP traffic on port 33001 (on non-standard

firewall configurations)

On the server side (computer B), allow inbound connections

from A on the TCP port and allow inbound and outbound UDP

connections to B on the UDP port.

For A and B to act as both client and servers, both computers’

firewalls must allow outbound and inbound connections to/from

the peer on the TCP port, and allow outbound and inbound UDP

connections to/from the peer on the UDP port.

