
MQSeries Integrator  
Message tree parser 

Version 1.3 
 

 

 

23rd April 2001 

 

 

 

Neil Kolban 
MQSeries Technical Support 

IBM Advanced Technical Support 
Dallas, TX 

USA 

kolban@us.ibm.com 

 

 

 

 

 

 

 

 

Property of IBM 

 



MQSeries Integrator – Message tree parser 

 ii 

Take Note! 

Before using this report be sure to read the general information under "Notices". 

Second Edition, April 2001 

This edition applies to Version 1.3 of MQSeries Integrator – Message tree parser and to all 
subsequent releases and modifications unless otherwise indicated in new editions. 

© Copyright International Business Machines Corporation 2001. All rights reserved. Note 
to US Government Users -- Documentation related to restricted rights -- Use, duplication or 
disclosure is subject to restrictions set forth in GSA ADP Schedule contract with IBM Corp 



MQSeries Integrator – Message tree parser 

 iii

Table of ContentsTable of ContentsTable of ContentsTable of Contents    

Trademarks and service marks..................................................................................................iv 

Summary of Ammendments ...................................................................................................... v 

Preface.......................................................................................................................................vi 

Chapter 1. Introduction .............................................................................................................. 1 

Chapter 2. Background to Parsers............................................................................................. 2 

Chapter 3. The TREEASIS Parser............................................................................................. 4 

Example:  Colon delimited, variable length data ................................................................ 4 

Installation of the TREEASIS parser ...................................................................................... 6 

Data types supported ............................................................................................................. 6 

Character ............................................................................................................................ 6 

Byte array (BLOB) .............................................................................................................. 7 

Integer................................................................................................................................. 7 

Additional Information............................................................................................................. 7 

Future enhancements ............................................................................................................ 7 

Support ................................................................................................................................... 7 



MQSeries Integrator – Message tree parser 

 iv 

NoticesNoticesNoticesNotices    

The following paragraph does not apply in any country where such provisions are inconsistent 
with local law. 

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION 
"AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY 
OR FITNESS FOR A PARTICULAR PURPOSE. 

Some states do not allow disclaimer of express or implied warranties in certain transactions, 
therefore this statement may not apply to you. 

References in this publication to IBM products, programs, or services do not imply that IBM 
intends to make these available in all countries in which IBM operates. 

Any reference to an IBM licensed program or other IBM product in this publication is not 
intended to state or imply that only IBM's program or other product may be used.  Any 
functionally equivalent program that does not infringe any of the intellectual property rights 
may be used instead of the IBM product. 

Evaluation and verification of operation in conjunction with other products, except those 
expressly designated by IBM, is the user's responsibility. 

IBM may have patents or pending patent applications covering subject matter in this 
document.  The furnishing of this document does not give you any license to these patents.  
You can send license inquiries, in writing, to the IBM Director of Licensing, IBM Corporation, 
500 Columbus Avenue, Thornwood, New York 10594, USA. 

The information contained in this document has not be submitted to any formal IBM test and 
is distributed AS-IS.  The use of the information or the implementation of any of these 
techniques is a customer responsibility and depends on the customer's ability to evaluate and 
integrate them into the customer's operational environment.  While each item has been 
reviewed by IBM for accuracy in a specific situation, there is no guarantee that the same or 
similar results will be obtained elsewhere.  Customers attempting to adapt these techniques 
to their own environments do so at their own risk. 

Trademarks and service marks 

The following terms, used in this publication, are trademarks of the IBM Corporation in the 
United States or other countries or both: 

! IBM 

! MQSeries 

! MQSeries Integrator 

! MQSI 

The following terms are trademarks of other companies: 

• NEON New Era of Networks, Inc. 



MQSeries Integrator – Message tree parser 

 v 

Summary of AmendmentsSummary of AmendmentsSummary of AmendmentsSummary of Amendments    

Date Changes 

December 2001 Initial release 

April 2001 Bug fix for character string fields greater than 255 characters 



MQSeries Integrator – Message tree parser 

 vi 

PrefacePrefacePrefacePreface    

The IBM MQSeries Integrator V2 (MQSI V2) product provides a wealth of capabilities for 
formatting and reformatting data.  The initial parsing and ultimate generation of data received 
or put to an MQSeries queue is performed by a parser.  IBM supplies a suite of pre-built 
parsers to accommodate many current data forms.  This SupportPac provides an additional 
parser to complement those supplied with the product. 



MQSeries Integrator – Message tree parser 

 1

Chapter 1. Chapter 1. Chapter 1. Chapter 1. IntroductionIntroductionIntroductionIntroduction    

When data is supplied to MQSI V2 for processing, that data is supplied in the form of an 
MQSeries message on an MQSeries queue.  The developer of an MQSI V2 message flow will 
have included an MQInput node and associated that node with a queue.  When a message 
arrives on the queue, the MQInput node is activated and retrieves the message.  Based on either 
the implicit content of the message or attributes of the MQInput node, a parser is selected to 
decompose the message structure into its constituent elements. 

As the message passes through MQSI V2, it may eventually reach an MQOutput node.  At this 
stage, the message is placed upon an MQSeries queue.  To perform this task, the individual 
elements of the message are recombined into a binary or wire format.  The parser again performs 
this. 

The parsers supplied with MQSI V2 include: 

• XML – Extensible Markup Language 

• MRM – Fixed length data structures 

• NEON – Invocation of NEON input/output formats 

• BLOB – Unparsed data 

Although these accommodate the functions needed to handle the majority of data formats, there 
may still be opportunities for additional parsers to handle additional generic or specific formats. 

This SupportPac documents and provides just such an additional parser called TREEASIS that 
accommodates new forms of generic data. 

 



MQSeries Integrator – Message tree parser 

 2

Chapter 2. Chapter 2. Chapter 2. Chapter 2. Background to ParsersBackground to ParsersBackground to ParsersBackground to Parsers    

Before explaining the details of the TREEASIS parser, it is highly beneficial to have a good 
understanding of how MQSI V2 parsers operate. 

In the following trivial message flow, both MQInput (IN) and MQOutput (OUT) nodes are 
illustrated.  These nodes are associated with MQSeries queues.  When a message arrives on the 
queue associated with the MQInput node, the node will get the message from the queue and 
parse its contents. 

 

 

The parser operates by interpreting the contents of the binary data retrieved from the queue and 
building a message tree from that data.  The design and implementation of the parser dictates 
how the message tree should be built. 

A full message tree has the following generic format: 

 

The message tree is a logical representation of the original incoming binary data in the incoming 
MQSeries message.  The Properties and MQMD sub trees are automatically added by MQSI for 
each message.  An MQSI parser creates the right-most sub tree illustrated above.  The name of 
the node immediately beneath the Root node is that of the parser.  Commonly this will be seen as 
one of XML, MRM, NEON or BLOB. 

The architecture of MQSI allows additional parsers to be designed, implemented and made 
available.  These custom parsers can take the incoming message data and build an associated 
message tree. 

Root

Properties MQMD Parser



MQSeries Integrator – Message tree parser 

 

When a message reaches an MQOutput node, a parser will be re-invoked.  The purpose at this 
time will be to take the message tree currently in effect and produce a binary representation of 
the tree.  This data will then be written as a message to a queue.  The "un-parsing" or re-
combination of the elements of the tree is controlled by the logic of the parser.  For example, a 
tree with the following structure: 

 

 

 

 

 

 

 

Will produce a message with binary format of: 

 

 

As can be seen, a p
writing to the queue
stream.  For other p
combination of both
For MRM, this form
stored in a databas

XML 

Name Employer

Jane 
Doe 

IBM

Customer 

<
<
<
<

Customer>
Name>Jane Doe</Name>
Employer>IBM</Employer>
/Customer>
3

arser usually adds additional data format to that of the message tree prior to 
.  For XML, the parser adds angle brackets to make a well-formed XML data 
arsers, for example MRM and NEON, the actual format of the output data is a 
 the message tree and a description of the format to use stored elsewhere.  
at is stored in the message repository database and for NEON, the format is 
e by the NEON Formatter. 



MQSeries Integrator – Message tree parser 

 

Chapter 3. Chapter 3. Chapter 3. Chapter 3. The TREEASIS ParserThe TREEASIS ParserThe TREEASIS ParserThe TREEASIS Parser    

Compute nodes, Extract nodes and other such nodes perform the manipulation of a message 
tree within a message flow.  The coding of the business logic is performed in the ESQL language; 
the elements of the message tree can be added, deleted, copied or modified.  The programmers 
who design the message flows are usually accomplished in thinking in terms of the message tree 
and the effects of ESQL statements on that tree.  When the message tree reaches an MQOutput 
node, the tree structure is lost and the data reformatted to a message on a queue. 

The TREEASIS parser is intrinsically very simple.  It walks the message tree and, for each node 
in the tree that contains a value, writes its binary representation as part of the outgoing message. 

For example, in the following tree: 

 

The nodes marked BOLD have values.  When the TREEASIS parser navigates the tree, it will 
create an output data stream containing the values: 

 

The benefits and use of this can be quickly seen when, for example, contemplating variable or 
delimited data. 

Example:  Colon delimited, variable length data 

An input piece of data consists of XML in the following form: 

 

<
<
<
<
<
<

Root

TREEASIS 

A 

B 

C D

E F 

B

Customer>
Name>Jane Doe</Name>
Street>123 Elm</Street>
City>Anytown</City>
State>TX</State>
/Customer>
 C D E F 
4



MQSeries Integrator – Message tree parser 

 

It is desired to transform this data to a colon-delimited format: 

 

Us
TR

 

 

On
pro
fun

 

 

J

D
S
W

E

-
m

S
S
"
S
"
S
"

D
S
W

E
-
m
S
S
S
S

ane Doe:123 Elm:Anytown:TX:
5

ing the MQSI supplied parsers, such a transformation would be very difficult.  Using the 
EEASIS parser, such a transformation becomes much easier: 

ly the values and order of the elements in the message tree are important when a message is 
cessed for output by the TREEASIS parser.  The names of the fields are unimportant.   A 
ctionally identical alternative to the previous ESQL is illustrated next: 

ECLARE I INTEGER;
ET I = 1;
HILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

ND WHILE;

- Enter SQL below this line. SQL above this line might be regenerated, causing any
odifications to be lost.

ET "OutputRoot"."TREEASIS"."Value" = "InputBody"."Customer"."Name" || ':';
ET "OutputRoot"."TREEASIS"."Value" = "OutputRoot"."TREEASIS"."Value" ||
InputBody"."Customer"."Street" || ':';
ET "OutputRoot"."TREEASIS"."Value" = "OutputRoot"."TREEASIS"."Value" ||
InputBody"."Customer"."City" || ':';
ET "OutputRoot"."TREEASIS"."Value" = "OutputRoot"."TREEASIS"."Value" ||
InputBody"."Customer"."State" || ':';

ECLARE I INTEGER;
ET I = 1;
HILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

ND WHILE;
- Enter SQL below this line. SQL above this line might be regenerated, causing any
odifications to be lost.
ET "OutputRoot"."TREEASIS"."Name" = "InputBody"."Customer"."Name" || ':';
ET "OutputRoot"."TREEASIS"."Street" = "InputBody"."Customer"."Street" || ':';
ET "OutputRoot"."TREEASIS"."City" = "InputBody"."Customer"."City" || ':';
ET "OutputRoot"."TREEASIS"."State" = "InputBody"."Customer"."State" || ':';



MQSeries Integrator – Message tree parser 

 6

The following would also produce identical output: 

 

MQSI knows to utilize the TREEASIS parser to produce the output message because that is the 
name of the tree node immediately subordinate to Root. 

Unlike other parsers, the TREEASIS parser may only be utilized to generate output data.  It has 
no meaning if there is an attempt to parse incoming data in an MQInput node using TREEASIS to 
format the data.  If attempted, the parser will detect this invalid use and throw a catchable 
exception. 

Installation of the TREEASIS parser 

The TREEASIS parser is supplied as an MQSI Loadable Implementation Library (LIL).  On NT, 
this is a DLL and the file should be copied to: 

C:\Program Files\IBM MQSeries Integrator 2.0.1\bin 

On AIX, the LIL file should be copied to: 

/usr/opt/mqsi/lil 

and the messages file (MQSIV2_TREEASIS.cat) copied to: 

/usr/opt/mqsi/messages 

Data types supported 

The TREEASIS parser supports message tree content with the following data types: 

Character 

The character string is the most common type of data.  When a string value is contained in a 
TREEASIS node in the message tree, it is output as ASCII (code page 1208).  For example, the 
following statement: 

SET "OutputRoot"."TREEASIS"."A" = 'ABCD1234'; 

will result in the 8 characters "ABCD1234" in the final output stream. 

DECLARE I INTEGER;
SET I = 1;
WHILE I < CARDINALITY(InputRoot.*[]) DO

SET OutputRoot.*[I] = InputRoot.*[I];
SET I=I+1;

END WHILE;
-- Enter SQL below this line. SQL above this line might be regenerated, causing any
modifications to be lost.
SET "OutputRoot"."TREEASIS"."A" = "InputBody"."Customer"."Name" || ':';
SET "OutputRoot"."TREEASIS"."B" = "InputBody"."Customer"."Street" || ':';
SET "OutputRoot"."TREEASIS"."C" = "InputBody"."Customer"."City" || ':';
SET "OutputRoot"."TREEASIS"."D" = "InputBody"."Customer"."State" || ':';



MQSeries Integrator – Message tree parser 

 7

Byte array (BLOB) 

The byte array is an un-interpreted array of bytes.  For example, the following statement: 

SET "OutputRoot"."TREEASIS"."C" = CAST('F0E1D2C3' AS BLOB); 
SET "OutputRoot"."TREEASIS"."D" = "InputRoot"."MQMD"."MsgId"; 

will result in 4 bytes of data (0x'F0E1D2C3') followed by the MsgId from the MQMD structure.  

Integer 

An integer value is output as a machine native 64-bit representation of the value. 

Additional Information 

Additional information on MQSI parsers may be found in the MQSeries Integrator Programming 
Guide (SC34-5603) for Chapter 6 onwards. 

Future enhancements 

At this time, future enhancements will be added on a best-effort basis.  Candidates for additional 
functions include: 

• Support for additional data types. 

• The ability to specify the size of data types (e.g. 32-bit integer) 

• Build for Solaris (based upon demand for this function) 

Support 

Support for this parser including defect reports and enhancement requests will be supplied on a 
best effort basis. 

Please send any support requests by email to: 

Attn: Neil Kolban 

kolban@us.ibm.com 

Please include as much detail as possible and, a "Trace" node output of the message tree 
immediately prior to the failing node. 

mailto:kolban@us.ibm.com

	Trademarks and service marks
	Introduction
	Background to Parsers
	The TREEASIS Parser
	
	Example:  Colon delimited, variable length data

	Installation of the TREEASIS parser
	Data types supported
	Character
	Byte array (BLOB)
	Integer

	Additional Information
	Future enhancements
	Support


