.||I

Internet Inter-ORB Protocol Connect for TPF

Reference

Release 1

SH31-0188-01

.||I

Internet Inter-ORB Protocol Connect for TPF

Reference

Release 1

SH31-0188-01

Note!

Before using this information and the product it supports, be sure to read the general information under FNotices” on page ix|

Second Edition (July 2000)
This is a major revision of, and obsoletes, SH31-0188-01 and all associated technical newsletters.

This edition applies to Version 1 Release 1 Modification Level 0 of IBM Internet Inter-ORB Protocol Connect for TPF, program
number 5799-D64, and to all subsequent releases and modifications until otherwise indicated in new editions or technical
newsletters. Make sure you are using the correct edition for the level of the product.

Order books through your IBM representative or the IBM branch office serving your locality. Books are not stocked at the address
given below.

IBM welcomes your comments. There is a form for readers' comments at the back of this book. If the form has been removed,
address your comments to:

IBM Corporation

TPF Systems Information Development
Mail Station P923

2455 South Road

Poughkeepsie, NY 12601-5400

USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2000. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

© Copyright IBM Corp. 2000

Notices iX
Permission Notices iX
Trademarks L iX
About This Book Xi
Before You Begin Xi
Who Should Read This Book xi
How This Book Is Organized Xi
Conventions Used in the IIOP Connect for TPF Library Xii
Related Information Xiii
IBM IIOP Connect for TPF Books Xiii
IBM Transaction Processing Facility (TPF) 4.1 Books Xiv
Non-IBM Books Xiv
How to Send Your Comments Xiv
Summary of Changes XV
Major Revision SH31-0188-01 XV
Changed Information XV
Chapter 1. Internet Inter-ORB Protocol Connect for TPF 1-1
Prerequisite APARs 1-1
Functional Overview 1-1
Architecture 1-2
Operating Environment Requirements and Planning Information 1-3
Interfaces 1-4
C/C++ Language 1-4
Publications 1-4
Application Programming Interfaces (APIs), 1-5
Migration Scenarios 1-5
Chapter 2. IIOP Connect for TPF Functions 2-1
Type Definitions 2-1
General Type Definitions 2-1
Common Data Representation Type Definitions 2-2
General Inter-ORB Protocol Type Definitions 2-2
Interoperable Object Reference Type Definitions 2-3
TCP/IP Control Block 2-4
Return Values 2-4
Common Data Representation Return Values 2-4
General Inter-ORB Protocol Return Values 2-5
Internet Inter-ORB Protocol Return Values 2-6
Interoperable Object Reference Return Values 2-7
CDRAddBuffer—Add a Buffer to a Common Data Representation Coder 2-8
CDRAIlloc—Register the Buffer Allocation Callback Function of a Common
Data Representation Coder 2-10
CDRBuflen—Return Total Buffer LengthinUse 2-12
CDRByteSex—Set the Byte Order Flag of a Common Data Representation
Coder Structure 2-13
CDRCodeBool-Encode or Decode a Boolean Value 2-14
CDRCodeChar—Encode or Decode a Char Value 2-16

CDRCodeDouble—-Encode or Decode a Double Value 2-18

CDRCodeEnum—Encode or Decode an Enumeration Value 2-20
CDRCodeFloat-Encode or Decode a Float Value 2-22
CDRCodeLong—-Encode or Decode a Long Value 2-24
CDRCodeNOctet—-Encode or Decode Octet Values 2-26
CDRCodeNString—Encode or Decode a String Value 2-28
CDRCodeOctet-Encode or Decode an Octet Value 2-30
CDRCodeShort—-Encode or Decode a Short Value 2-32
CDRCodeString—Encode or Decode a String Value 2-34
CDRCodeULong—Encode or Decode an Unsigned Long Value 2-36
CDRCodeUShort—Encode or Decode an Unsigned Short Value 2-38
CDRDealloc—Buffer Deallocation Callback Function of a Common Data

Representation Coder 2-40
CDREbcdic_OTW, CDRS390_OTW-Override Platform-Oriented Data

Conversions 2-42
CDREncapCreate—Initialize a Common Data Representation Coder to Begin

Encoding an Encapsulated Data Buffer 2-44
CDREncapEnd—Complete Encoding an Encapsulated Data Buffer 2-46
CDREnNcaplnit-Initialize a Common Data Representation Decoder to Decode

or Encode an Encapsulated Data Buffer 2-48
CDRFree—Free All Buffers Connected to a Common Data Representation

Coder 2-50
CDRInit—Initialize a Common Data Representation Coder Structure 2-51
CDRMode-Set the Common Data Representation Coder Mode 2-53
CDRNeedBuffer—Find a Buffer in a Common Data Representation Coder

Structure 2-54
CDRReset—Reset the Current Buffer of a Common Data Representation

Coder Structure 2-56
CDRRewind-Return to the Start of a Common Data Representation Coder

Buffer 2-57
d390tolEEE, dIEEEt0390, f390tolEEE, fIEEEto390-Convert Floating Point

Numbers between IBM System/390 and IEEE Representations 2-58
GIOPAccept—-Accept a Connection froma Client 2-60
GIOPAutoFrag—Change the Automatic Fragmentation Behavior 2-62
GIOPAutoFragGetSize—Get the Current Maximum Automatic Fragment Size .2-64
GlOPCancelRequestSend—Cancel a Previously Sent Request Message . .. 2-65
GIOPCloseConnectionSend—Close an Open Connection 2-67
GIOPConnect—Connect a Clienttoa Server 2-68
GIOPFragCreate—Create a Fragment Message 2-70
GIOPFragSend-Send a Fragment Message 2-72
GIOPGetNextMsg—Get the Next Incoming General Inter-ORB Protocol

Message 2-75
GIOPInit—Initialize a General Inter-ORB Protocol State Object 2-78
GIOPListen—Listen for Client Requests to Connect 2-80
GlOPLocateReplyCreate—Create a LocateReply Message 2-82
GIOPLocateReplySend—Send a LocateReply Message 2-84
GlOPLocateRequestSend—Create and Send a LocateRequest Message to a

Server . 2-86
GlOPMessageErrorSend-Create and Send a MessageError Message 2-88
GIOPReject-Reject a Connection froma Client 2-89
GIOPReplyCreate—Create a Reply Message 2-91
GIOPReplySend-Send a Reply Message 2-93
GIOPRequestCreate—Create a Request Message 2-95
GIOPRequestSend—Send a Request Message 2-97

iV 1IOP Connect for TPF R1 Reference

GIOPStopListen—Notify Clients That the Server Is No Longer Listening for

New Connections 2-99
iiop_error_code—Get Error Code for Last Transmission Control

Protocol/Internet Protocol Error 2-100
IORAddTaggedProfile—Add a Tagged Profile to an Interoperable Object

Reference Structure 2-103
IORCreatelor—Initialize an Interoperable Object Reference Structure 2-105
IOREncapllOP-Encapsulate Internet Inter-ORB Protocol Profile Body 2-107
IORFree—Free Resources Allocated to an Interoperable Object Reference

Structure 2-110
IORFromString—Convert an Interoperable Object Reference String to an IOR

Structure 2-112
IORToString—Convert an Interoperable Object Reference Structure to a

String . .. 2-114
tpf_asc2ebc, tpf_ebc2asc—Convert Characters between ISO 8859-1 (ASCII)

and IBM-1047 (US EBCDIC) 2-116
Index X-1

Contents V

Vi IIOP Connect for TPF R1 Reference

Figures

Tables

© Copyright IBM Corp. 2000

1-1.

0-1.
1-1.

1-3.
2-1.
2-2.
2-3.

2-5.
2-6.

2-8.
2-9.

IIOP Connect for TPF 1-2
How to Read the Tables Xii
General Use C/C++ Language Header Files for IOP Connect for TPF 1-4
Link-Edited Modules for IIOP Connect for TPF 1-4
Publications for IIOP Connect for TPF 1-5
General Type Definitions 2-1
CDR Type Definitions 2-2
GIOP Type Definitions 2-2
IOR Type Definitions 2-3
TCP/IP Control Block Type Definitions 2-4
CDR Function Return Values 2-4
GIOP Function Return Values 2-5
IIOP Return Values 2-6
IOR Function Return Values 2-7

vii

Viil 11OP Connect for TPF R1 Reference

Notices

References in this book to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service in this book is not intended to
state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
IBM's intellectual property rights may be used instead of the IBM product, program,
or service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Department 830A

Mail Drop P131

2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Permission Notices

Copyright (c) 1991-1998 IONA Technologies PLC.

Portions of this information are IONA copyright.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

IBM
0S/390
System/390.

IIOP is a registered trademark of Object Management Group, Inc.

© Copyright IBM Corp. 2000 ix

Other company, product, and service names may be trademarks or service marks
of others.

X 1IOP Connect for TPF R1 Reference

About This Book

This book describes Internet Inter-ORB Protocol Connect for TPF (referred to as
[IOP Connect for TPF in the remainder of this book), which is ported from the Orbix
[IOP Engine from IONA Technologies.

IIOP Connect for TPF provides services to TPF applications to facilitate
Transmission Control Protocol/Internet Protocol (TCP/IP) interoperability with
heterogeneous environments using an industry standard message protocol. This
protocol, called Internet Inter-ORB Protocol (IIOP), is defined by the Object
Management Group (OMG) Common Object Request Broker Architecture
(CORBA). IIOP is one component of the CORBA specification, which defines a
complete distributed object platform.

IIOP Connect for TPF is a shared library that TPF applications can use to
communicate, using CORBA compliant-messaging, without access to a full
implementation of the CORBA specification.

Before You Begin

Before using this book, you should be familiar with both the C programming
language and CORBA distributed programming. In addition, knowledge of CORBA
Interface Definition Language (IDL) is fundamental to understanding documentation
annotations.

Who Should Read This Book

This book is intended for:

e Application programmers or system programmers who are responsible for
planning the application of or installing IIOP Connect for TPF on the TPF 4.1
system. See TPF Migration Guide: Program Update Tapes for more information
about installation requirements for the TPF 4.1 system.

» Application programmers and designers who want to familiarize themselves
with [IOP Connect for TPF. Use this book with the Orbix IIOP Engine
Programmer's Guide to gain a more complete understanding of these protocols
and how to use the interface provided by IIOP Connect for TPF.

How This Book Is Organized

© Copyright IBM Corp. 2000

This book is organized as follows:

* [Chapter 1, Internet Inter-ORB Protocol Connect for TPF|, provides an overview
of IIOP Connect for TPF. This chapter includes information about the
architecture and migration considerations. A series of tables is used to present
some of the migration considerations to you. The information in each table is
order sequentially or alphabetically depending on the type of information
presented.

Note: To help you to better understand the content of each table, a
description of the various column headings follows in|Table 0-1 o

Xi

Table 0-1. How to Read the Tables

Column Heading

Description

C/C++ Language Header File

Indicates the name of the general use C/C++ language header file.

Description of Change

Provides a description of the entity.

Do You Need to Recompile?

Indicates whether you must recompile programs (Yes, No, or Not Applicable).

ISO-C

An X in this column indicates that the C/C++ language header file is for ISO-C
support. A blank in this column indicates that the header file is for offline programs.

Link-Edited Module

Indicates the name of the link-edited module.

Supported

New, Changed, or No Longer

Indicates whether an entity is new, changed, or no longer supported.

Book Title

Indicates the name of the book in the IIOP Connect for TPF library.

Softcopy or PDF File Name

Indicates the softcopy or Portable Document Format (PDF) file name for the book.

* [Chapter 2, IIOP Connect for TPF Functions| provides a reference for the IIOP

Connect for TPF application programming interface (API) functions. The
description of each function in this book contains the following information:

Format The function prototype and a description of any parameters.

Description
The service that the function provides.

Normal Return
What is returned when the requested service has been performed.

Error Return
What is returned when the requested service could not be
performed. Specifying incorrect function parameters results in a
system error with exit.

Programming Considerations
Remarks that help a programmer understand the correct use of the
function, any side effects that may occur when the function is
executed, and how the use of a particular function affects the use of
another function.

Example A code segment that shows a sample function call.

Related Functions
Where to find additional information pertinent to this function.

* An index helps you to locate information quickly.

Conventions Used in the IIOP Connect for TPF Library

The IIOP Connect for TPF library uses the following conventions:

Conventions Examples of Usage

italic Used for important words and phrases. For example:

A database is a collection of data.

Used to represent variable information. For example:

Enter ZFRST STATUS MODULE mod, where mod is the module for which you want
status.

Xii 11OP Connect for TPF R1 Reference

Conventions

Examples of Usage

bold

Used to represent text that you type. For example:
Enter ZNALS HELP to obtain help information for the ZNALS functional message.
Used to represent variable information in C language. For example:

level

monospaced

Used for messages and information that displays on a screen. For example:
PROCESSING COMPLETED

Used for C language functions. For example:
maskc

Used for examples. For example:
maskc (MASKC_ENABLE, MASKC_I0);

bold italic

Used for emphasis. For example:

You must type this command exactly as shown.

Bold underscore

Used to indicate the default in a list of options. For example:
Keyword=OPTION1 | DEFAULT

Vertical bar |

Used to separate options in a list. (Also referred to as the OR symbol.) For example:

Keyword=Option1 | Option2

CAPital LETters

Used to indicate valid abbreviations for keywords. For example:
KEYWord=option

Scale

Used to indicate the column location of input. The scale begins at column position 1. The
plus sign (+) represents increments of 5 and the numerals represent increments of 10 on
the scale. The first plus sign (+) represents column position 5; numeral 1 shows column
position 10; numeral 2 shows column position 20 and so on. The following example shows
the required text and column position for the image clear card.

LOADER IMAGE CLEAR

Notes:
1. The word LOADER must begin in column 1.
2. The word IMAGE must begin in column 10.
3. The word CLEAR must begin in column 16.

Related Information

A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM IIOP Connect for TPF Books

e [IOP Connect for TPF Licensed Program Specifications, GH31-0189
e [IOP Connect for TPF Program Directory, Gl10-0691.

About This Book Xiil

IBM Transaction Processing Facility (TPF) 4.1 Books
e TPF Application Programming, SH31-0132

e TPF C/C++ Language Support User's Guide, SH31-0121
e TPF Migration Guide: Program Update Tapes, GH31-0187.

Non-IBM Books
e Orbix IIOP Engine Programmer's Guide.

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, do one of the following:

e Go to the TPF Web page at:
http://www.s390.ibm.com/products/tpf

Click TPF Family Libraries on the left menu. There you will find a link to a
feedback page where you can enter and submit comments.

e Send your comments by e-mail to:
tpfid @us.ibm.com

Make sure you include the title and number of the book, the version of your
TPF system and, if applicable, the specific location of the text you are
commenting on (for example, a page number or table number).

 Fill out one of the forms at the back of this book and return it by mail, by fax, or

by giving it to an IBM representative.

XiV 1IOP Connect for TPF R1 Reference

Summary of Changes

This section provides a summary of the changes made to this book. Changes to
the latest edition are marked with a vertical bar (l) to the left of the change.

Major Revision SH31-0188-01
17 July 2000

This major revision, Second Edition (July 2000), contains maintenance and editorial
changes.

Changed Information
The following information is changed for APAR PJ27024::
e The programming considerations and examples have been updated for the

CDRAddBuffer function. See FCDRAddBuffer—Add a Buffer to a Common Data]

|[Representation Coder” on page 2-8| for more information.

e The programming considerations and examples have been updated for the

CDRAT1oc function. See [fCDRAIlloc—Register the Buffer Allocation Callback|

|[Function of a Common Data Representation Coder” on page 2-10| for more
information.

© Copyright IBM Corp. 2000 XV

XVi 1IOP Connect for TPF R1 Reference

Chapter 1. Internet Inter-ORB Protocol Connect for TPF

The following section discusses the migration considerations for Internet Inter-ORB
Protocol Connect for TPF, referred to as IIOP Connect for TPF in the remainder of
this publication.

Prerequisite APARs

APAR PJ26685 is a prerequisite for IOP Connect for TPF. See the APEDIT for this
APAR for more information.

Functional Overview

IIOP Connect for TPF, which provides a standard way to connect distributed
objects across the Internet and intranets, continues to position the TPF 4.1 system
for IBM's e-business initiatives. By using IIOP Connect for TPF you can leverage
TPF application programs with new distributed applications. For example, Web
browsers support Internet Inter-ORB Protocol (IIOP) to facilitate communication
between Web-based applications and intranet enterprise applications.

The Object Management Group (OMG) Common Object Request Broker
Architecture (CORBA) specifications define a complete distributed object platform.
[IOP, which is a required component of an Object Request Broker (ORB), is an
implementation of the General Inter-ORB Protocol (GIOP) over Transmission
Control Protocol/Internet Protocol (TCP/IP). IIOP is a key component because [IOP
focuses on interoperability of distributed objects in heterogeneous environments.

[IOP Connect for TPF introduces the first phase of CORBA functionality for the TPF
4.1 system.

Note: I1IOP Connect for TPF is a stand-alone IIOP, which means that it is not part
of an ORB. A stand-alone IIOP provides the following advantages:

It enables TPF applications to communicate over IIOP and is suitable
for applications with strict performance constraints.

* You can leverage existing and new TPF application programs with new
distributed applications.

[Figure 1-1 on page 1-2| provides an overview of IIOP Connect for TPF.

© Copyright IBM Corp. 2000 1-1

TPF TPF
Application Application

Application Server Application Client
[IOP Interface [IOP Interface

TPF [IOP Engine Interface

CDR

GIOP

[IOP

TCP/IP

Figure 1-1. IIOP Connect for TPF

Architecture

The CORBA specification defines the GIOP for communication between
independent ORB implementations. Specifically, GIOP defines a set of on-the-wire
data representation and message formats that allow a client of one ORB to start
operations on an object in the same ORB or a different ORB. With the IIOP, ORBs
can reside on different systems or platforms.

GIOP is defined as a message-level protocol above an underlying transport layer.
GIOP does not address communication issues specific to any single transport
protocol, but acts as a basis for a range of interoperability protocols that map GIOP
to individual transport layers. For example, the CORBA specification defines a
specialization of GIOP that uses TCP/IP as the transport layer. This specialization
is called the IIOP.

[IOP Connect for TPF is a set of C functions that are implemented as a single
dynamic link library (DLL) or shared library that provides a complete programming
interface to the GIOP using TCP/IP. IIOP and GIOP are defined by the OMG
CORBA specifications.

[IOP Connect for TPF fully supports GIOP Version 1 Release 1 and GIOP Version
1 Release 0. The major difference between the two versions is that GIOP Version 1
Release 1 supports message fragmentation. The following functional areas are
provided by the IIOP:

» Application programming interfaces (APIs) to create and manage the
Interoperable Object Reference (IOR), which is a standard object reference
format used by clients to locate objects created by a CORBA-compliant ORB or
for the TPF 4.1 system, a server.

* APIs to manage connections and send GIOP messages between a client and a
server:

1-2 1IOP Connect for TPF R1 Reference

— Request

— Reply

— CancelRequest
— LocateRequest
— LocateReply

— CloseConnection
— MessageError
— Fragment.

e APIs to encode and decode data types using Common Data Representation
(CDR). These functions hide the complexity of converting data to CDR,
including data alignment and byte ordering, and enable CORBA-compliant data
encapsulation.

e Support to map the general APIs to the TCP/IP transport layer.
» Automatic fragmentation of reply messages.

* Interfaces with applications to provide their own memory allocations and
deallocations.

e Support for standard [IOP data formats such as ASCII, big endian or little
endian, and Institute of Electrical and Electronics Engineers (IEEE) floats and
doubles.

e QOperational support for IBM System/390 data formats on-the-wire such as
EBCDIC, and IBM System/390 floating point values and double values.

See the Orbix IIOP Engine Programmer's Guide for more information about the
[IOP. In addition, see the following Website for more information about CORBA and
the 11OP:

http://www.omg.org

Operating Environment Requirements and Planning Information

To ensure that your TPF 4.1 system performs correctly with IIOP Connect for TPF,
you must establish the required operating environment. See TPF Migration Guide:
Program Update Tapes for more information about the minimum system
configuration requirements that are necessary to operate the TPF 4.1 system.

You must have the following to use IIOP Connect for TPF:

e A TPF 4.1 system with program update tape (PUT) 10 and APAR PJ26685
installed

e TCP/IP network connectivity. See TPF Migration Guide: Program Update Tapes
for more information about TCP/IP-based communication requirements.

Chapter 1. Internet Inter-ORB Protocol Connect for TPF~ 1-3

Interfaces
The following section summarizes the interfaces for IIOP Connect for TPF.

C/C++ Language
The following section summarizes C/C++ language information. This information is
presented in alphabetic order by the type of C/C++ language information. See the
TPF C/C++ Language Support User's Guide and TPF Application Programming for
more information about C/C++ language.

General Use C/C++ Language Header Files

Table 1-1 summarizes the general use C/C++ language header files. This
information is presented in alphabetic order by the name of the general use C/C++
language header file.

General use means these header files are available for your use.

Table 1-1. General Use C/C++ Language Header Files for IIOP Connect for TPF

C/C++ Language Do You Need to
Header File 1ISO-C New, Changed, or No Longer Supported? Recompile?
cdr.h X New No

encap.h X New No

giop.h X New No

iiop.h X New No

ior.h X New No

tcpeb.h X New No

typ.h X New No

ver.h X New No

Link-Edited Modules

Table 1-2 summarizes the link-edited modules shipped by IBM, which should go
into a data set with attributes DCB=(RECFM=U,LRECL=80,BLKSIZE=1200). This
information is presented in alphabetic order by the name of the link-edited module.

Table 1-2. Link-Edited Modules for IIOP Connect for TPF

New, Changed, or No
Link-Edited Module Longer Supported? Description of Change
CIOP New Load module for the IIOP dynamic link library (DLL).
Publications

[Table 1-3 on page 1-5|summarizes the publications in the IIOP Connect for TPF
library. This information is presented in alphabetic order by the publication title.

1-4 11OP Connect for TPF R1 Reference

Table 1-3. Publications for IIOP Connect for TPF

Publication Title

Softcopy or PDF File
Name Description of Change

IIOP Connect for TPF
Licensed Program
Specifications

Not Applicable New publication that contains license and warranty
information for IIOP Connect for TPF.

IIOP Connect for TPF
Program Directory

Not Applicable New publication that contains information about installing the
product tape for IIOP Connect for TPF.

IIOP Connect for TPF
Reference

irpref00.pdf New publication that contains planning, installation, and
application programming information for IOP Connect for
TPF. This publication is available only as a Portable
Document Format (PDF) file.

Application Programming Interfaces (APIs)

IIOP Connect for TPF provides several new C functions. See [Chapter 2, “llOP)]
[Connect for TPF Functions” on page 2-1| for more information about these C
functions.

Migration Scenarios

Use the following procedure to install IIOP Connect for TPF on your existing TPF
4.1 system.

1.

Install program update tape (PUT) 10.

2. Apply APAR PJ26685.
3.
4
5

Install the IIOP Connect for TPF product tape.

. Load the CIOP link-edited module.

. Compile your C or C++ applications against the IIOP Connect for TPF header

files. See[Table 1-1 on page 1-4|for a list of these header files.

Chapter 1. Internet Inter-ORB Protocol Connect for TPF~ 1-5

1-6 110P Connect for TPF R1 Reference

Chapter 2. IIOP Connect for TPF Functions

This chapter contains information about the application programming interface (API)
functions for IIOP Connect for TPF.

* giop.h
e typ.h
e cdr.h
e jor.h
e encap.h
e tcpch.h
e ver.h

e ijop.h

— Include the Correct Header Files

#include <giop.h>

Code the following statement in your IIOP application programs:

This statement causes all the necessary header files to be included in the
application program. The following is a list of these header files:

Type Definitions

The following describes the type definitions used with IOP Connect for TPF.

General Type Definitions

Table 2-1 lists the general type definitions for IOP Connect for TPF.

Table 2-1. General Type Definitions

Type Definition

Description

OctetT

The octet data type is an 8-bit quantity that is guaranteed
not to undergo any conversion when transmitted by the
communication system.

BooleanT

The Boolean data type is used to denote a data item that
can take only one of the following values:

e TRUE
e FALSE

GIOPAllocFpT

Memory allocation function type signature:
void *(*GIOPA1TocFpT) (size_t_size)

GIOPDeallocFpT

Memory deallocation function type signature:
void *(*GIOPDeallocFpT) (void *data_p)

© Copyright IBM Corp. 2000

Common Data Representation Type Definitions
Table 2-2 lists the type definitions for the Common Data Representation (CDR)

functions.

Table 2-2. CDR Type Definitions

Type Definition

Description

CDRStatusT The return status type for the CDR functions.

CDRModeT The CDR coder mode.

CDRCharsetT The type of character coding for this machine.

CDRBufferT A single coder buffer. This contains a memory block for
the buffer and various settings.

CDRAIllocFpT The function pointer type for automatic buffer allocation.

CDRDeallocFpT

The function pointer type for automatic buffer
deallocation.

CDRCoderT

The main coder object. This structure is used to manage
the buffer list for the coder and contains callbacks for
buffer allocation or deallocation. This structure also is
used to maintain total buffer usage and the byte order
setting.

General Inter-ORB Protocol Type Definitions
Table 2-3 lists the type definitions for the General Inter-ORB Protocol (GIOP)

functions.

Table 2-3 (Page 1 of 2). GIOP Type Definitions

Type Definition

Description

GIOPStatusT

The return status type for GIOP functions.

GIOPMsgType

The type of GIOP message.

GlOPMessageHeader_1_0T

The GIOP Version 1.0 header structure.

GlOPMessageHeader_1_1T

The GIOP Version 1.1 header structure.

GIOPRequestHeader_1_0T

The GIOP Version 1.0 request header structure.

GlOPequestHeader_1_1T

The GIOP Version 1.1 request header structure.

GIOPReplyStatusType

The reply status in the reply header.

GIOPReplyHeaderT

The GIOP reply header structure. This is the same
for versions 1.0 and 1.1.

GIOPCancelRequestHeaderT

The GIOP cancel request header. This is the same
for versions 1.0 and 1.1.

GIOPLocateRequestHeaderT

The GIOP locate request header. This is the same
for versions 1.0 and 1.1.

GIOPLocateStatusType

The result of a locate request, returned in the
LocateReply message.

GlOPLocateReplyHeaderT

The GIOP locate reply header. This is the same for
versions 1.0 and 1.1.

GIOPMsgInfoT

Information about the most recently processed
incoming and outgoing messages.

2-2 |IOP Connect for TPF R1 Reference

Table 2-3 (Page 2 of 2). GIOP Type Definitions

Type Definition

Description

GIOPCitrIProfileT

A transport-specific control profile.

GIOPCtrIBIKT The GIOP control block holds the Interoperable
Object Reference (IOR), object key, and a
transport-specific 1IOP control block.

GIOPStateT The main GIOP state structure contains all

information for an agent (for example, a client or
server application) to connect and pass messages
to and from another agent. An instance of this
structure is defined in the calling application and
passed to each GIOP API function call.

GIOPConnectFpT

A pointer to the transport-specific connect function.

GIOPAcceptFpT

A pointer to the transport-specific accept function.

GIOPRejectFpT

A pointer to the transport-specific reject function.

GIOPListenFpT

A pointer to the transport-specific listen function.

GIOPCloseFpT

A pointer to the transport-specific close function.

GIOPRecvFpT

A pointer to the transport-specific receive function.

GIOPSendFpT

A pointer to the transport-specific send function.

GIOPProtCallsT

A pointer to the transport-specific functions for
handling conversations. These functions
implement the generic GIOP transport API.

Interoperable Object Reference Type Definitions
Table 2-4 lists the type definitions for the Interoperable Object Reference (IOR)

functions.

Table 2-4 (Page 1 of 2). IOR Type Definitions

Type Definition

Description

IORStatusT The return status type for the IOR functions.
IORProfileldT The profile identifier (ID) component tag.
IORComponentldT The component ID of a multi-component profile.
IORServiceldT The object service-specific ID.

IORTaggedProfileT

The structure representing the 1IOP protocol in an
IOR.

IORTaggedComponentT

Version 1.1 of the TAG_INTERNET_IOP profile
includes a sequence<Tagged Component> that
can contain additional information supporting
optional IIOP features and ORB services (such as
security). A fagged component is a structural
representation of the parametric values unique to
the protocol.

IORMultipleComponentProfileT

A structure that contains profile components.

IORT The IOR structure, which contains a type ID and a
sequence of tagged profiles.
IORServiceContextT A structure to hold service context data.

Chapter 2. 1IOP Connect for TPF Functions 2-3

Table 2-4 (Page 2 of 2). IOR Type Definitions

Type Definition

Description

IORServiceContextListT A sequence of service context structures.
IIOPBody_1_0T A structure that contains the IIOP 1.0 profile body.
IIOPBody_1_1T A structure that contains the IIOP 1.1 profile body.

TCP/IP Control Block

The TCP/IP control block is stored in the tagged profile of the GIOP control block
and is index TAG_INTERNET_IOP in the profile array. The TCP/IP control block
contains the transport level information associated with a connection. This
information enables applications to monitor and manage a connection. Table 2-5
lists the type definitions in the TCP/IP control block.

Table 2-5. TCP/IP Control Block Type Definitions

Type Definition

Description

TCPCtriBIKT

The TCP/IP control block.

IIOPStatusT

The return status type for the IIOP functions.

Return Values

The following describes the return values for the functions provided with 11OP

Connect for TPF.

Common Data Representation Return Values

Table 2-6 lists the return values for the CDR functions.

Table 2-6. CDR Function Return Values

CDRStatusT Return

Value Description
CDR_OK The function call was completed successfully.
CDR_FAIL The function failed with an unspecified error.

CDR_EFLOAT_RANGE

The function was unable to fit the source floating point
number in the range allowed by the target.

CDR_EINV_LEN

The function received a buffer parameter and a coded
length parameter, but the buffer was less than the coded
length value.

CDR_EINV_MODE

The current CDR coder mode is cdr_unknown.

CDR_ENOSPACE

The function failed to allocate memory.

CDR_ENULL_CODER

The function received a null CDR coder parameter.

CDR_ENULL_DATA

The function received a null profile data parameter.

CDR_ENULL_RETURN

The caller failed to allocate memory for an outgoing
parameter.

CDR_EAUTO_FRAG

Automatic fragmentation failed.

CDR_ESTR_FRAG

A partial string (fragment) was found.

IIOP Connect for TPF R1 Reference

General Inter-ORB Protocol Return Values

Table 2-7 lists the return values for the GIOP functions.

Table 2-7. GIOP Function Return Values

GIOPStatusT Return
Value

Description

GIOP_OK

The function call was completed successfully.

GIOP_ENULL_STATE

The function received a null GIOP connection state
structure parameter.

GIOP_EBADMAGIC

The GIOP identifier in the GIOP header of an incoming
message was incorrect.

GIOP_ECLOSED

The function call failed because of a closed GIOP
connection.

GIOP_ECONNECT

The function failed to connect to the server.

GIOP_EEXCEPT

An exception was returned in the reply.

GIOP_EINV_AGENT

The function call is not valid for the current application.
For example, a client called a function that is valid only
for a server.

GIOP_EINV_CALL

The function call is not valid at the current point in the
processing.

GIOP_EINV_FRAGSZ

The function received a fragment size parameter that is
not valid.

GIOP_EINV_MSGSZ

The message size is not valid for the type of message
specified.

GIOP_EINV_MSGTYP

The message type specified in the GIOP header is not
valid.

GIOP_EINV_TAG

The tag parameter passed to the function is not valid.

GIOP_ENOPROFILE

The requested tagged profile does not exist.

GIOP_ENOSPACE

The function failed to allocate memory.

GIOP_ENULL_CB

The function received a null callback function pointer.

GIOP_ENULL_CODER

The function received a null CDR coder structure
parameter.

GIOP_ENULL_CTRLBLK

The transport control block is null or not valid.

GIOP_ENULL_IOR

The function received a null IOR structure parameter.

GIOP_ENULL_PARAM

The function received a null pointer parameter.

GIOP_ENULL_PROFILE

No profile exists in the specified IOR with the specified
tag type.

GIOP_ENULL_TYP

The function received a null pointer parameter for an
outgoing message parameter.

GIOP_EREVISION

The GIOP version number for an incoming message is
not supported.

GIOP_ETRANSPORT

The call to the transport layer returned an error.

Chapter 2. 1IOP Connect for TPF Functions

2-5

Internet Inter-ORB Protocol Return Values

The return values listed in Table 2-8 are returned in the TCP control block when a
GIOP function call returns the value GIOP_ETRANSPORT, which indicates a
TCP/IP (or transport) error. If a TCP/IP error occurs, use the iiop_error_code

function to determine the specific type of error. See [iiop_error_code—Get Error|

|Code for Last Transmission Control Protocol/Internet Protocol Error” on page 2-100|

for more information about the iiop_error_code function.

Table 2-8. IIOP Return Values

lIOPStatusT Return

Value Description
IIOP_OK TCP/IP returned no error.
IIOP_EINV_FD A TCP/IP error occurred. The file descriptor is not valid.

IIOP_EINV_HOST

A TCP/IP error occurred

. The host is not valid.

IIOP_EINV_IPADDR

A TCP/IP error occurred.

The IP address is not valid.

IIOP_EBAD_SOCK

A TCP/IP error occurred.

The socket is not valid.

IIOP_EBAD_SOCKTYPE

A TCP/IP error occurred.

The socket type is not valid.

IIOP_EBAD_SOCKADDR

A TCP/IP error occurred.

The socket address is not valid.

IIOP_ESOCK_INUSE

A TCP/IP error occurred.

The socket is already in use.

IIOP_EADDR_INUSE

A TCP/IP error occurred.

use.

The port address is already in

IIOP_EBAD_INPUT

A TCP/IP error occurred
related to the calling pro

. An internal error occurred
gram.

IIOP_ECONN_REFUSED

A TCP/IP error occurred

. The connection was refused.

IIOP_EIS_CONN

A TCP/IP error occurred
established.

. The connection is already

IIOP_ECONN_CLOSED

A TCP/IP error occurred
closed or reset.

. The connection is already

IIOP_ENO_BUFFER

A TCP/IP error occurred

. There is not enough buffer

space or there is no buffer space available.

IIOP_EMSG_TOO_BIG

A TCP/IP error occurred
send.

. The message is too large to

IIOP_EZERO_READ

A TCP/IP error occurred.

TCP/IP read zero bytes of data.

IIOP_ENOPERM

A TCP/IP error occurred.

perform the operation.

There is no permission to

IIOP_ETIMEDOUT

A TCP/IP error occurred.

The operation timed out.

IOP_ENETWORK_ERROR

A TCP/IP error occurred.

There was a network error.

IIOP_EIO_ERROR

A TCP/IP error occurred.

error.

There was an input/output (I/0)

IIOP_EINTR

A TCP/IP error occurred.

TCP/IP operation.

An interrupt occurred during a

IIOP_ENO_BLOCK

A TCP/IP error occurred
issued, but no data was

. A nonblocking socket call was
available.

IIOP_EUNKNOWN

TCP/IP returned an unknown error.

2-6 110P Connect for TPF R1 Reference

Interoperable Object Reference Return Values
Table 2-9 lists the return values for the IOR functions.

Table 2-9. IOR Function Return Values

IORStatusT Return Value

Description

IOR_OK

The function call was completed successfully.

IOR_EINV_TAG

An unknown tag type was specified.

IOR_EINV_IORSTR

The function received an IOR string with the wrong

format; for example, the string did not begin with IOR.

IOR_ENOSPACE

The function failed to allocate memory.

IOR_ENULL_CODER

The function received a null CDR coder parameter.

IOR_ENULL_DATA

The function received a null profile data parameter.

IOR_ENULL_IOR

The function received a null IOR parameter.

IOR_ENULL_PROFILE

The function received a null profile parameter.

IOR_ENULL_RETURN

The caller failed to allocate memory for an outgoing
parameter.

IOR_ENULL_TYPEID

The function received a null type identifier parameter
unexpectedly.

IOR_EZERO_PROFILE

The target IOR contains no profiles.

Chapter 2. 1IOP Connect for TPF Functions

2-7

CDRAddBuffer

2-8

CDRAddBuffer—-Add a Buffer to a Common Data Representation Coder

Format

Normal Return

Error Return

This function explicitly adds a buffer to a Common Data Representation (CDR)
coder. If the coder already contains buffers, the new buffer is inserted after the
current buffer.

#include <cdr.h>
CDRStatusT CDRAddBuffer(CDRCoderT =*cod p,
CDRBufferT *buf p);

cod_p
A pointer to the CDR coder.

buf_p
A pointer to the new buffer; if the buf_p parameter is a null pointer, the new
buffer is allocated using the buffer allocation callback routine.

If successful, the CDRAddBuffer function returns CDR_OK.

If there is an error, the CDRAddBuffer function returns CDR_FAIL.

Programming Considerations

Examples

e See[‘Common Data Representation Return Values” on page 2-4|for more
information about CDR return values.

e Buffers are reset before they are used for either decoding or encoding data.
For decoding buffers, this implies that newly added buffers are unmarshalled
beginning with the first octet in the buffer. For encoding buffers, this implies that
the complete buffer is available for marshalling. Marshallingis the act of
copying data into an RPC packet. For decoding and encoding, the
CDRAddBuffer function assumes that cdrb_len octets are available and that
cdrb_used is initially zero.

¢ Only a single CDR buffer can be added to a coder with each explicit
CDRAddBuffer function call or implicit allocation callback made. Specifically, a
buffer that contains valid next and previous references to other buffers should
not be provided because these references will be lost when the buffer is added
to the coder during the reset operation, which is performed with each newly
added buffer.

The following example adds a buffer to the CDR coder and obtains that buffer to
initialize the control fields.

IIOP Connect for TPF R1 Reference

CDRAddBuffer

#include <cdr.h>

CDRCoderT xcdr_coder;

CDRBufferT +xcdr_buffer;

unsigned long Ten=16;

cdr_buffer = (CDRBufferT *)malloc(sizeof (CDRBUFFERT));
cdrcoder = (CDRCoderT =)malloc(sizeof(CDRCoderT));

cdr_buffer->cdrb_buffer p = (unsigned char *)mallo(len);
cdr_buffer->cdrb_pos_p = cdr_buffer->cdrb_buffer_p;
cdr_buffer->cdrb Ten = Ten;

cdr_buffer->cdrb_next_p = 0;
cdr_buffer->cdrb prev p = 0;

buf_p->cdrb_used = 0;

if (CDRAddBuffer(cdr_coder, cdr buffer) != CDR_OK)

{
printf("CDRAddBuffer failed \n");

}

Related Functions
 [‘CDRAlloc—Register the Buffer Allocation Callback Function of a Common Data|

Representation Coder” on page 2-10

» FCDRDealloc—Buffer Deallocation Callback Function of a Common Data]
Representation Coder” on page 2-40

Chapter 2. 1IOP Connect for TPF Functions 2-9

CDRAlloc

CDRAIlloc—-Register the Buffer Allocation Callback Function of a
Common
Data Representation

Coder
This function registers the buffer allocation callback function for use by a Common
Data Representation (CDR) coder whenever [IOP Connect for TPF needs to
allocate a new buffer.

Format

#include <cdr.h>
void CDRA11oc(CDRCoderT *cod p,
CDRATTocFpT alloc_fp);

cod_p
A pointer to the CDR coder.

alloc_fp
The buffer allocation callback function.

Normal Return
Void.

Error Return
Not applicable.

Programming Considerations
e The buffer allocation callback function must have the following prototype:

CDRBufferT *alloc_callback(size t min_bytes);
e The CDRAlloc function must do the following:

— Allocate a CDRBufferT structure and an array of at least min_bytes
characters

— Initialize all the fields in the CDRBufferT structure

— Set the cdrb_buffer_p member of the CDRBufferT structure to the address
of the array

— Set cdrb_len member of the CDRBufferT structure to the size of the array

— Set the cdrb_pos_p member of the CDRBufferT structure to the start of the
buffer (for example, the same value as cdrb_buffer_p)

— Set the cdrb_used, which is the number of bytes used so far, to zero
— Set cdrb_next_p, which is the pointer to the next buffer, to zero
— Set cdrb_prev_p, which is the pointer to the previous buffer, to zero.

e Only a single buffer can be added to a CDR coder with each call.

2-10 1I0P Connect for TPF R1 Reference

CDRAlloc

Examples

The following example initializes a CDR coder and registers a buffer allocation
callback function.

#include <cdr.h>

CDRCoderT coder;
CDRBuffer *newHeapBuf(size t);

CDRInit (&coder, CDR_BYTE_ORDER, 512);
CDRA11oc(&coder, newHeapBuf);

The following shows an example of a buffer allocation callback function that uses

heap storage.

CDRBufferT *newHeapBuf(size_t min_bytes)

{
CDRBufferT xbuf p = malloc(sizeof (CDRBufferT));

if (!buf_p)
{

}
if (min_bytes < CDR_MIN_ BUFZ)
{

}
buf p->cdrb_buffer p = malloc(min_bytes);

if (!buf_p->cdrb_buffer_p)
{

return NULL;

min_bytes = CDR_MIN_BUFZ;

free(buf_p);

return NULL;
}
buf_p->cdrb_len = min_bytes;
buf p->cdrb_pos p = cdr_buffer->cdrb_buffer p;
buf_p->cdrb_used = 0;
buf_p->cdrb_next_p =
buf_p->cdrb_prev
return buf p;

_p = 0;
_p =0;

}

Related Functions

« [‘CDRDealloc—Buffer Deallocation Callback Function of a Common Datal
[Representation Coder” on page 2-40]

« [‘CDRInit-Initialize a Common Data Representation Coder Structure” on|

[page 2-51]

Chapter 2. 1IOP Connect for TPF Functions

2-11

CDRBuflen

CDRBuflen—Return Total Buffer Length in Use

This function returns the total number of bytes that are in use by buffers connected
to a Common Data Representation (CDR) coder and can also reset the in-use
count so that the buffers can be reused.

Format

#include <cdr.h>
unsigned long CDRBuflen(CDRCoderT *xcod_p,
unsigned char do_reset);

cod_p
A pointer to the CDR coder.

do_reset
A flag indicating whether or not to reset the in-use count. Use one of the
following values:

false
Do not reset.

true
Reset, which allows the buffers to be reused.

Normal Return
The number of bytes that were in use by buffers connected to the CDR coder.

Error Return
Not applicable.

Programming Considerations
None.

Examples

The following example initializes a CDR coder structure and, at some later time,
gets the number of bytes in use by buffers connected to the CDR coder.

#include <cdr.h>
CDRCoderT coder;
CDRInit(&coder, CDR BYTE ORDER, 512);

unsigned long totalInUse = CDRBuflen(&coder, false);

Related Functions
. FCDRReset—Reset the Current Buffer of a Common Data Representation Coder|
Structure” on page 2-56

 ['CDRRewind—Return to the Start of a Common Data Representation Coder]
[Buffer” on page 2-57}

2-12 1I0P Connect for TPF R1 Reference

CDRByteSex

CDRByteSex-Set the Byte Order Flag of a Common Data
Representation Coder

Structure

Format

Normal Return

Error Return

This function sets the byte order flag for the Common Data Representation (CDR)
coder to indicate big endian or little endian ordering.

#include <cdr.h>
void CDRByteSex(CDRCoderT xcod p,
unsigned char order);

cod_p
A pointer to the CDR coder.

order
The required byte order. Use one of the following values:

0 Big endian.

1 Little endian.

Void.

Not applicable.

Programming Considerations

Examples

This function is useful mainly when code is run on a machine architecture that is
different from the one on which it was completed.

The following example initializes a CDR coder and sets its byte order flag to
indicate big endian ordering.

#include <cdr.h>
CDRCoderT coder;

CDRInit(&coder, 1, 512); /* 1ittle endian */
CDRByteSex(&coder, 0); /* big endian */

Related Functions

None.

Chapter 2. 1lOP Connect for TPF Functions 2-13

CDRCodeBool

CDRCodeBool-Encode or Decode a Boolean Value

This function encodes or decodes an 8-bit Boolean value, which can be false (0) or
true (1).

Format

#include <cdr.h>
CDRStatusT CDRCodeBool (CDRCoderT xcod_p,
unsigned char *bool p);

cod_p
A pointer to the Common Data Representation (CDR) coder.

bool_p
When the coder is in encoding mode, this is a pointer to the 8-bit value to be
encoded. When the coder is in decoding mode, this is a pointer to the location
where the 8-bit Boolean value is stored.

Normal Return
If successful, the CDRCodeBoo1 function returns CDR_OK.

Error Return
If there is an error, the CDRCodeBoo1 function returns CDR_FAIL.

Programming Considerations

See fCommon Data Representation Return Values” on page 2-4]for more
information about CDR return values.

Examples
The following example encodes or decodes a Boolean value.

#include <cdr.h>
unsigned char boolean value;
CDRCoderT coder;

CDRCodeBoo1 (&coder, &boolean value);

Related Functions
» ‘CDRCodeChar—Encode or Decode a Char Value” on page 2-16|

» [‘CDRCodeDouble—Encode or Decode a Double Value” on page 2-18|

e ['CDRCodeEnum—Encode or Decode an Enumeration Value” on page 2-20|

« [‘CDRCodeFloat—Encode or Decode a Float Value” on page 2-22|

» FCDRCodeLong—Encode or Decode a Long Value” on page 2-24
» FCDRCodeNOctet—Encode or Decode Octet Values” on page 2-26]

» [‘CDRCodeNString—Encode or Decode a String Value” on page 2-28|

» [‘CDRCodeOctet—Encode or Decode an Octet Value” on page 2-30|
« [‘CDRCodeShort—Encode or Decode a Short Value” on page 2-32|

» FCDRCodeString—Encode or Decode a String Value” on page 2-34]

2-14 110P Connect for TPF R1 Reference

CDRCodeBool

» FCDRCodeULong—Encode or Decode an Unsigned Long Value” on page 2-36)|

. |“CDRCodeUShort—Encode or Decode an Unsigned Short Value” on page 2-38|

Chapter 2. 1lOP Connect for TPF Functions 2-15

CDRCodeChar

CDRCodeChar—Encode or Decode a Char Value

This function encodes or decodes an 8-bit char value.

Format

#include <cdr.h>
CDRStatusT CDRCodeChar(CDRCoderT *cod p,
char *ch _p);

cod_p
A pointer to the Common Data Representation (CDR) coder.

ch_p
A pointer to the 8-bit char value to be encoded or decoded.

Normal Return
If successful, the CDRCodeChar function returns CDR_OK.

Error Return
If there is an error, the CDRCodeChar function returns CDR_FAIL.

Programming Considerations

e See[FCommon Data Representation Return Values” on page 2-4]for more
information about CDR return values.

e Under normal conditions in encoding mode, translations from EBCDIC to the
ASCII character set take place. Under normal conditions in decoding mode,
translations from the ASCII to EBCDIC character set take place. You can
suppress translation from EBCDIC to ASCII during encoding or decoding by
first calling the CDR_NOCHARSET_CONV macro.

Examples
The following example encodes or decodes a char value.

#include <cdr.h>
char ebcdic_value;
CDRCoderT coder;

CDRCodeChar (&coder, &ebcdic_value);

Related Functions
« ['CDRCodeBool-Encode or Decode a Boolean Value” on page 2-14

« [‘CDRCodeDouble—Encode or Decode a Double Value” on page 2-18|

» [‘CDRCodeEnum—-Encode or Decode an Enumeration Value” on page 2-20)|
» FCDRCodeFloat—Encode or Decode a Float Value” on page 2-22

» FCDRCodelLong—Encode or Decode a Long Value” on page 2-24
» [‘CDRCodeNOctet—Encode or Decode Octet Values” on page 2-26)|

» [‘CDRCodeNString—Encode or Decode a String Value” on page 2-28|
 [‘CDRCodeOctet—Encode or Decode an Octet Value” on page 2-30|

2-16 110P Connect for TPF R1 Reference

CDRCodeChar

» FCDRCodeShort—Encode or Decode a Short Value” on page 2-32|

. |“CDRCodeString—Encode or Decode a String Value” on page 2-34
o |“CDRCodeULong—Encode or Decode an Unsigned Long Value” on page 2-36|

» ['CDRCodeUShort—Encode or Decode an Unsigned Short Value” on page 2-38|

Chapter 2. 1lOP Connect for TPF Functions 2-17

CDRCodeDouble

CDRCodeDouble—Encode or Decode a Double Value

This function encodes an IBM 32-bit extended floating point value to a 64-bit
Institute of Electrical and Electronics Engineers (IEEE) double value, or decodes an
IEEE 64-bit double value to an IBM 64-bit extended floating point value.

Format

#include <cdr.h>
CDRStatusT CDRCodeDouble(CDRCoderT *cod p,
double *db1 p);

cod_p
A pointer to the Common Data Representation (CDR) coder.

dbl_p
When the coder is in encoding mode, this is a pointer to the 64-bit IBM
extended floating point value to be encoded. When the coder is in decoding
mode, this is a pointer to the location where the 64-bit double value is stored
as an IBM 64-bit extended floating point value.

Normal Return
If successful, the CDRCodeDouble function returns CDR_OK

Error Return
If there is an error, the CDRCodeDouble function returns CDR_EFLOAT_RANGE.

Programming Considerations

See [‘Common Data Representation Return Values” on page 2-4|for more
information about CDR return values.

Examples
The following example encodes or decodes a double value.

#include <cdr.h>
doubTe ibm double value;
CDRCoderT coder;

CDRCodeDouble(&coder, &ibm_double value);

Related Functions
» [‘CDRCodeBool-Encode or Decode a Boolean Value” on page 2-14

» [‘CDRCodeChar—Encode or Decode a Char Value” on page 2-16|

« [‘CDRCodeEnum—Encode or Decode an Enumeration Value” on page 2-20|

 |“CDRCodeFloat—Encode or Decode a Float Value” on page 2-22|

» FCDRCodeLong—Encode or Decode a Long Value” on page 2-24

« FCDRCodeNOctet—Encode or Decode Octet Values” on page 2-26

» ['CDRCodeNString—Encode or Decode a String Value” on page 2-28|

» [‘CDRCodeOctet—Encode or Decode an Octet Value” on page 2-30|

2-18 110P Connect for TPF R1 Reference

CDRCodeDouble

» FCDRCodeShort—Encode or Decode a Short Value” on page 2-32|

. |“CDRCodeString—Encode or Decode a String Value” on page 2-34
o |“CDRCodeULong—Encode or Decode an Unsigned Long Value” on page 2-36|

» ['CDRCodeUShort—Encode or Decode an Unsigned Short Value” on page 2-38|

Chapter 2. 1lOP Connect for TPF Functions 2-19

CDRCodeEnum

CDRCodeEnum-Encode or Decode an Enumeration Value

This function encodes or decodes a 32-bit enumeration value.

Format

#include <cdr.h>
CDRStatusT CDRCodeEnum(CDRCoderT *cod_p,
unsigned long *enum_p);

cod_p
A pointer to the Common Data Representation (CDR) coder.

enum_p
When the coder is in encoding mode, this is a pointer to the 32-bit enumeration
value to be encoded. When the coder is in decoding mode, this is a pointer to
the location where the 32-bit enumeration value is stored.

Normal Return
If successful, the CDRCodeEnum function returns CDR_OK.

Error Return
If there is an error, the CDRCodeEnum function returns CDR_FAIL.

Programming Considerations

e See[‘Common Data Representation Return Values” on page 2-4|for more
information about CDR return values.

e All the IBM System/390 C and C++ compilers store enumeration values in the
smallest integral type that can contain all of the enumeration constants. For
example, the enumerated type:

enum Colors {RED, GREEN, BLUE};

has a size of 1 byte. Any enumerated type that is encoded or decoded by the
CDRCodeEnum function must be either assigned or typecast to an unsigned long
value. If you use a typecast, you must ensure that the enumerated type is 32

bits by including an enumeration constant that requires more than 16 bits; for
example:

enum Colors { RED, GREEN, BLUE, COLOR_32BIT = INT MAX };

Examples
The following example encodes and decodes a 32-bit enumeration value.

#include <cdr.h>
unsigned long enum_value;
CDRCoderT coder;

CDRCodeEnum(&coder, &enum_value);

2-20 1I0OP Connect for TPF R1 Reference

CDRCodeEnum

Related Functions
« [‘CDRCodeBool-Encode or Decode a Boolean Value” on page 2-14

» FCDRCodeChar—Encode or Decode a Char Value” on page 2-16]
» FCDRCodeDouble—Encode or Decode a Double Value” on page 2-18|

» [‘CDRCodeFloat—Encode or Decode a Float Value” on page 2-22|

 [‘CDRCodeLong—Encode or Decode a Long Value” on page 2-24

* [‘CDRCodeNOctet—Encode or Decode Octet Values” on page 2-26|

» FCDRCodeNString—Encode or Decode a String Value” on page 2-2§
» FCDRCodeOctet—Encode or Decode an Octet Value” on page 2-30|
 [‘CDRCodeShort—Encode or Decode a Short Value” on page 2-32|

» [‘CDRCodeString—Encode or Decode a String Value” on page 2-34|

« [‘CDRCodeULong—Encode or Decode an Unsigned Long Value” on page 2-36|
» [‘CDRCodeUShort—Encode or Decode an Unsigned Short Value” on page 2-38|

Chapter 2. 1IOP Connect for TPF Functions 2-21

CDRCodeFloat

CDRCodeFloat—-Encode or Decode a Float Value

This function encodes an IBM 32-bit floating point value to a 32-bit Institute of
Electrical and Electronics Engineers (IEEE) floating point value, or decodes an
IEEE 32-bit floating point value to an IBM 32-bit floating point value.

Format

#include <cdr.h>
CDRStatusT CDRCodeFloat(CDRCoderT *cod p,
float *f1t p);

cod_p
A pointer to the Common Data Representation (CDR) coder.

fit_p
When the coder is in encoding mode, this is a pointer to the 32-bit IBM floating
value to be encoded. When the coder is in decoding mode, this is a pointer to
the location where the 32-bit float value is stored as an IBM 32-bit floating point
value.

Normal Return
If successful, the CDRCodeF1oat function returns CDR_OK.

Error Return
If there is an error, the CDRCodeFloat function returns CDR_EFLOAT_RANGE.

Programming Considerations

See [‘Common Data Representation Return Values” on page 2-4|for more
information about CDR return values.

Examples
The following example encodes or decodes a 32-bit enumeration value.

#include <cdr.h>
float ibm_float value;
CDRCoderT coder;

CDRCodeFloat (&coder, &ibm float value);

Related Functions
» [‘CDRCodeBool-Encode or Decode a Boolean Value” on page 2-14

» [‘CDRCodeChar—Encode or Decode a Char Value” on page 2-16|

« [‘CDRCodeDouble—Encode or Decode a Double Value” on page 2-18|

 [‘CDRCodeEnum—Encode or Decode an Enumeration Value” on page 2-20)|
« FCDRCodeFloat—Encode or Decode a Float Value’]

» [f{CDRCodelLong-Encode or Decode a Long Value” on page 2-24

» ['CDRCodeNOctet—Encode or Decode Octet Values” on page 2-26|

» ['CDRCodeNString—Encode or Decode a String Value” on page 2-28|

2-22 |IOP Connect for TPF R1 Reference

CDRCodeFloat

» FCDRCodeOctet—Encode or Decode an Octet Value” on page 2-30]

. |“CDRCodeShort—Encode or Decode a Short Value” on page 2-32|
o |“CDRCodeString—Encode or Decode a String Value” on page 2-34|

» ['CDRCodeULong—Encode or Decode an Unsigned Long Value” on page 2-36|
» [‘CDRCodeUShort—Encode or Decode an Unsigned Short Value” on page 2-38|

Chapter 2. 1lOP Connect for TPF Functions ~2-23

CDRCodelLong

CDRCodeLong-Encode or Decode a Long Value

This function encodes or decodes a 32-bit long value.

Format

#include <cdr.h>
CDRStatusT CDRCodelLong(CDRCoderT *cod p,
Tong *Tong_p);

cod_p
A pointer to the Common Data Representation (CDR) coder.

long_p
When the coder is in encoding mode, this is a pointer to the 32-bit value to be
encoded. When the coder is in decoding mode, this is a pointer to the location
where the 32-bit long value is stored.

Normal Return
If successful, the CDRCodeLong function returns CDR_OK.

Error Return
If there is an error, the CDRCodeLong function returns CDR_FAIL.

Programming Considerations

See [‘Common Data Representation Return Values” on page 2-4|for more
information about CDR return values.

Examples
The following example encodes or decodes a long value.

#include <cdr.h>
long Tong_p;
CDRCoderT coder;

CDRCodeLong(&coder, &long_value);

Related Functions
» ['CDRCodeBool-Encode or Decode a Boolean Value” on page 2-14|

» FCDRCodeChar—Encode or Decode a Char Value” on page 2-16]

» FCDRCodeDouble—Encode or Decode a Double Value” on page 2-18|

e ‘CDRCodeEnum—Encode or Decode an Enumeration Value” on page 2-20|

» [‘CDRCodeFloat—Encode or Decode a Float Value” on page 2-22|
» [‘CDRCodeNOQOctet—Encode or Decode Octet Values” on page 2-26|

« [‘CDRCodeNString—Encode or Decode a String Value” on page 2-28|
» FCDRCodeOctet—Encode or Decode an Octet Value” on page 2-30]
» FCDRCodeShort—Encode or Decode a Short Value” on page 2-32]

» ['CDRCodeString—Encode or Decode a String Value” on page 2-34]

2-24 1I0OP Connect for TPF R1 Reference

CDRCodelLong

» FCDRCodeULong—Encode or Decode an Unsigned Long Value” on page 2-36)|

. |“CDRCodeUShort—Encode or Decode an Unsigned Short Value” on page 2-38|

Chapter 2. 1lOP Connect for TPF Functions ~ 2-25

CDRCodeNOctet

CDRCodeNOctet—-Encode or Decode Octet Values

Format

Normal Return

Error Return

This function encodes or decodes an array of octets. For a sequence of octets, the
current length value must be encoded or decoded separately by first calling the
CDRCodeULong function.

#include <cdr.h>

CDRStatusT CDRCodeNOctet (CDRCoderT *cod_p,
OctetT **0ct_pp,
unsigned long *oct len p);

cod_p
A pointer to the Common Data Representation (CDR) coder.

oct_pp
When the coder is in encoding mode, this is a pointer to the address of the first
8-bit value to be encoded. When the coder is in decoding mode, this is a
pointer to a pointer that will be set to point to the octet array or sequence
contained in the decoder buffer.

oct_len_p
A pointer to the length of the array of octets to be encoded or decoded. In
decoding mode, when a message fragment contains less than the entire
sequence or array, the actual length of the array or sequence fragment is
returned.

 If successful in encoding mode, the CDRCodeNOctet function returns CDR_OK.

e In decoding mode, if the entire sequence or array was received, the
CDRCodeNOctet function returns CDR_OK; if a fragment of the array or
sequence was received, the CDRCodeNOctet function returns
CDR_ESTR_FRAG.

If there is an error when automatically fragmenting the array or sequence of octets,
the CDRCodeNOctet function returns CDR_EAUTO_FRAG. If there is another kind of
error, the CDRCodeNOctet function returns CDR_FAIL.

Programming Considerations

e See[FCommon Data Representation Return Values” on page 2-4]for more
information about CDR return values.

* In encoding mode, the oct_pp parameter must point to a pointer to the array of
octets to be encoded; there, octets are moved into the buffer of the coder.
When automatic fragmentation is active, the fragment size defined for
automatic fragmentation is ignored and the fragment size is changed to contain
the entire array of octets.

e In decoding mode, the oct_pp parameter is a pointer to a pointer to OctetT; on
return, the pointer to OctetT points into the buffer of the coder. If you need to
modify the OctetT values, first copy them into other storage.

2-26 1I0P Connect for TPF R1 Reference

CDRCodeNOctet

Examples
The following example first encodes and then decodes an octet sequence.

#include <cdr.h>
CDRCoderT coder;

/* encode */

OctetT octets[] = {0, 1, 2, 3 };

OctetT =*encode octet ptr = octets;

unsigned long encode_sequence_length = sizeof octets;
CDRCodeUTong(&coder, &encode _sequence_length);

CDRCodeNOctet (&coder, &encode_octet_ptr, &encode_sequence_length);

/* decode */

unsigned long decode_sequence_Tength;

OctetT *decode_octet ptr;

if (CDRCodeULong(&coder, &decode sequence_length) != CDR _OK)
{

}

else

{

/* error decoding sequence Tength */

switch (CDRCodeULong(&coder, &decode octet+ptr, &decode_sequence_length))
{
case CDR_OK:
/* got the entire sequence x/
break;
case CDR_ESTR_FRAG:
/* got the first fragment, decode sequence length contains the
*1ength of the fragment.
*/
default:
/* error decoding the sequence of octets =*/
}
}

Related Functions
» ['CDRCodeBool-Encode or Decode a Boolean Value” on page 2-14

['CDRCodeChar—Encode or Decode a Char Value” on page 2-16]
[FCDRCodeDouble—Encode or Decode a Double Value” on page 2-18§|

“CDRCodeEnum—Encode or Decode an Enumeration Value” on page 2-20

[‘CDRCodeFloat—Encode or Decode a Float Value” on page 2-22|

[*CDRCodelLong—Encode or Decode a Long Value” on page 2-24]
[‘CDRCodeNString—Encode or Decode a String Value” on page 2-28|
FCDRCodeOctet—Encode or Decode an Octet Value” on page 2-30]
FCDRCodeShort—Encode or Decode a Short Value” on page 2-32]

[FCDRCodeString—Encode or Decode a String Value” on page 2-34

[‘*CDRCodeULong—Encode or Decode an Unsigned Long Value” on page 2-36|
['CDRCodeUShort-Encode or Decode an Unsigned Short Value” on page 2-38|

Chapter 2. 1IOP Connect for TPF Functions 2-27

CDRCodeNString

CDRCodeNString—Encode or Decode a String Value

Format

Normal Return

Error Return

This function encodes a null (\0') terminated string of EBCDIC 8-bit characters to a
null-terminated string of ASCII 8-bit characters, or decodes a null-terminated string
of ASCII 8-bit characters to a null-terminated string of EBCDIC 8-bit characters.

#include <cdr.h>

CDRStatusT CDRCodeNString(CDRCoderT *cod_p,
char **str_pp,
unsigned long *strlen p);

cod_p
A pointer to the Common Data Representation (CDR) coder.

str_pp
When the coder is in encoding mode, this is a pointer to the address of the first

8-bit EBCDIC character to be encoded. When the coder is in decoding mode,
this is a pointer to a pointer that will be set to point to the string contained in
the decoder buffer and translated to EBCDIC.

strlen_p
In encoding mode, this is a pointer to the length of the string, including the
terminating null byte (\0'). In decoding mode, this is the address where the
length of the string is stored. If a message fragment contains less than the
entire string, the actual length of the string fragment is returned.

If successful in encoding mode, the CDRCodeNString function returns CDR_OK. In
decoding mode, if the entire string was received, the CDRCodeNString function
returns CDR_OK and sets the *strlen_p parameter to the length of the string,
including the terminating null byte (\0"); if a fragment of the string was received, the
CDRCodeNString function returns CDR_ESTR_FRAG and sets the *strlen_p
parameter to the length of the string fragment.

If there is an error when automatically fragmenting the string, the CDRCodeNString
function returns CDR_EAUTO_FRAG; if there is another kind of error, the
CDRCodeNString function returns CDR_FAIL.

Programming Considerations

e See[‘Common Data Representation Return Values” on page 2-4|for more
information about CDR return values.

¢ In encoding mode, the str_pp parameter must point to a pointer to the first
element of the array of EBCDIC characters to be encoded; this string is moved
into the buffers of the coder. When automatic fragmentation is active, the
fragment size defined for automatic fragmentation is ignored and the fragment
size is changed to contain the entire string.

e In decoding mode, the str_pp parameter is a pointer to a pointer to char; on
return, the pointer to char points into the buffer of the coder. If you need to
modify the string, you must first copy it into other storage.

2-28 1I0P Connect for TPF R1 Reference

Examples

CDRCodeNString

e The length parameter includes the terminating null byte (\0") for the string. A
length of zero indicates a null string; a length of one indicates an empty string

"),

e Under normal conditions in encoding mode, translations from EBCDIC to the
ASCII character set take place. Under normal conditions in decoding mode,
translations from the ASCII to EBCDIC character set take place. You can
suppress translation from EBCDIC to ASCII during encoding or decoding by
first calling the CDR_NOCHARSET_CONV macro.

The following example encodes and then decodes a string.

#include <cdr.h>
CDRCoderT coder;

/* encode */

char ebcdic_str[] = "I'm a string.";

char *encode_ebcdic_str_ptr = ebcdic_str;

unsigned long encode length = sizeof ebcdic_str;
CDRCodeNString(&coder, &encode ebcdic_str ptr, &encode length);

/* decode */
unsigned long decode_length;
char *decode_ebcdic_str ptr;
switch (CDRCodeNString(&coder, &decode_ebcdic_str_ptr, &decode_length))
{
case CDR_OK:
/* got the entire string =/
break;
case CDR_ESTR_FRAG:
/*got the first fragment, decode sequence length contains the
*Tength of the fragment.
*/
default:
/* error decoding the sequence of octets x/
}

Related Functions

« [‘CDRCodeBool-Encode or Decode a Boolean Value” on page 2-14
FCDRCodeChar—Encode or Decode a Char Value” on page 2-16|
FCDRCodeDouble—Encode or Decode a Double Value” on page 2-18

[‘'CDRCodeEnum—Encode or Decode an Enumeration Value” on page 2-20|

[‘*CDRCodeFloat—Encode or Decode a Float Value” on page 2-22

[‘*CDRCodeLong—Encode or Decode a Long Value” on page 2-24]
[‘CDRCodeOctet—Encode or Decode an Octet Value” on page 2-30|
FCDRCodeShort—Encode or Decode a Short Value” on page 2-32|

[‘'CDRCodeString—Encode or Decode a String Value” on page 2-34|

[‘*CDRCodeULong—Encode or Decode an Unsigned Long Value” on page 2-36|
['CDRCodeUShort-Encode or Decode an Unsigned Short Value” on page 2-38|

Chapter 2. 1lOP Connect for TPF Functions ~ 2-29

CDRCodeOctet

CDRCodeOctet—-Encode or Decode an Octet Value

This function encodes or decodes an octet value.

Format

#include <cdr.h>
CDRStatusT CDRCodeOctet(CDRCoderT *cod p,
OctetT *oct_p);

cod_p
A pointer to the Common Data Representation (CDR) coder.

oct_p
When the coder is in encoding mode, this is a pointer to the 8-bit value to be
encoded. When the coder is in decoding mode, this is a pointer to the location
where the octet value is stored.

Normal Return
If successful, the CDRCodeOctet function returns CDR_OK.

Error Return
If there is an error, the CDRCodeOctet function returns CDR_FAIL.

Programming Considerations

See [‘Common Data Representation Return Values” on page 2-4|for more
information about CDR return values.

Examples
The following example encodes or decodes an octet value.

#include <cdr.h>
OctetT octet value;
CDRCoderT coder;

CDRCodeOctet (&coder, &octet value);

Related Functions
» ['CDRCodeBool-Encode or Decode a Boolean Value” on page 2-14|

» FCDRCodeChar—Encode or Decode a Char Value” on page 2-16]

» FCDRCodeDouble—Encode or Decode a Double Value” on page 2-18|

» ['CDRCodeEnum—Encode or Decode an Enumeration Value” on page 2-20|
» [‘CDRCodeFloat—Encode or Decode a Float Value” on page 2-22|

 ['CDRCodelLong—Encode or Decode a Long Value” on page 2-24|

* [‘CDRCodeNOctet—Encode or Decode Octet Values” on page 2-26|
 FCDRCodeNString—Encode or Decode a String Value” on page 2-28
 FCDRCodeShort—Encode or Decode a Short Value” on page 2-32|

» ['CDRCodeString—Encode or Decode a String Value” on page 2-34]

2-30 1I0P Connect for TPF R1 Reference

CDRCodeOctet

» FCDRCodeULong—Encode or Decode an Unsigned Long Value” on page 2-36)|

. |“CDRCodeUShort—Encode or Decode an Unsigned Short Value” on page 2-38|

Chapter 2. 1IOP Connect for TPF Functions 2-31

CDRCodeShort

CDRCodeShort—-Encode or Decode a Short Value

This function encodes or decodes an 16-bit short value.

Format

#include <cdr.h>
CDRStatusT CDRCodeShort (CDRCoderT *cod p,
short *short_p);

cod_p
A pointer to the Common Data Representation (CDR) coder.

short_p
When the coder is in encoding mode, this is a pointer to the 16-bit value to be
encoded. When the coder is in decoding mode, this is a pointer to the location
where the 16-bit value is stored.

Normal Return
If successful, the CDRCodeShort function returns CDR_OK.

Error Return
If there is an error, the CDRCodeShort function returns CDR_FAIL.

Programming Considerations

See [‘Common Data Representation Return Values” on page 2-4|for more
information about CDR return values.

Examples
The following example encodes or decodes a short value.

#include <cdr.h>
short short value
CDRCoderT coder;

CDRCodeShort (&coder, &short value);

Related Functions
» ['CDRCodeBool-Encode or Decode a Boolean Value” on page 2-14|

» FCDRCodeChar—Encode or Decode a Char Value” on page 2-16]

» FCDRCodeDouble—Encode or Decode a Double Value” on page 2-18|

e ‘CDRCodeEnum—Encode or Decode an Enumeration Value” on page 2-20|

» [‘CDRCodeFloat—Encode or Decode a Float Value” on page 2-22|

« ['CDRCodeLong—Encode or Decode a Long Value” on page 2-24]

« [‘CDRCodeNOctet—Encode or Decode Octet Values” on page 2-26)|

» FCDRCodeNString—Encode or Decode a String Value” on page 2-28

» FCDRCodeOctet—Encode or Decode an Octet Value” on page 2-30]

» ['CDRCodeString—Encode or Decode a String Value” on page 2-34]

2-32 1I0OP Connect for TPF R1 Reference

CDRCodeShort

» FCDRCodeULong—Encode or Decode an Unsigned Long Value” on page 2-36)|

. |“CDRCodeUShort—Encode or Decode an Unsigned Short Value” on page 2-38|

Chapter 2. 1lOP Connect for TPF Functions 2-33

CDRCodeString

CDRCodeString—Encode or Decode a String Value

Format

Normal Return

Error Return

This function encodes a null (\0') terminated string of EBCDIC 8-bit characters to a
null-terminated string of ASCII 8-bit characters, or decodes a null-terminated string
of ASCII 8-bit characters to a null-terminated string of EBCDIC 8-bit characters.

#include <cdr.h>
CDRStatusT CDRCodeString(CDRCoderT =*cod p,
char **str_pp);

cod_p
A pointer to the Common Data Representation (CDR) coder.

str_pp
When the coder is in encoding mode, this is a pointer to the address of the first

8-bit EBCDIC character to be encoded. When the coder is in decoding mode,
this is a pointer to a pointer that is set to point to the string contained in the
decoder buffer, translated to EBCDIC.

If successful in encoding mode, the CDRCodeString function returns CDR_OK. In
decoding mode, if the entire string was received, the CDRCodeString function
returns CDR_OK; if a fragment of the string was received, the CDRCodeString
function returns CDR_ESTR_FRAG.

If there is an error while automatically fragmenting the string, the CDRCodeString
function returns CDR_EAUTO_FRAG,; if there is another kind of error, the
CDRCodeString function returns CDR_FAIL.

Programming Considerations

e See[‘Common Data Representation Return Values” on page 2-4|for more
information about CDR return values.

* In encoding mode, the str_pp parameter must point to a pointer to the array of
EBCDIC characters to be encoded; this string is moved into the buffer of the
coder. When automatic fragmentation is active, the fragment size defined for
automatic fragmentation is ignored and the fragment size is changed to contain
the entire string.

¢ In decoding mode, the str_pp parameter is a pointer to a pointer to a char; on
return, the pointer to char points into the buffer of the coder. If you need to
modify the string, you must first copy it into other storage.

e Under normal conditions in encoding mode, translations from EBCDIC to the
ASCII character set take place. Under normal conditions in decoding mode,
translations from the ASCII to EBCDIC character set take place. You can
suppress translation from EBCDIC to ASCII during encoding or decoding by
first calling the CDR_NOCHARSET_CONV macro.

2-34 1I0P Connect for TPF R1 Reference

CDRCodeString

Examples
The following example encodes and then decodes a string.

#include <cdr.h>
CDRCoderT coder;

/* encode */

char ebcdic_str[] = "I'm a string."

char *encode_ebcdic_str ptr = ebcdic_str;
CDRCodeString(&coder, &encode ebcdic_str ptr);

/* decode */
char xdecode_ebcdic_str_ptr;
switch (CDRCodeString(&coder, &decode ebcdic_str ptr))
{
case CDR_OK:
/* got the entire string */
break;
default:
case CDR_ESTR_FRAG:
/*got the first fragment =/
default:
/* error decoding the string */
}

Related Functions
» [‘CDRCodeBool-Encode or Decode a Boolean Value” on page 2-14

['CDRCodeChar—Encode or Decode a Char Value” on page 2-16|

[‘CDRCodeDouble—Encode or Decode a Double Value” on page 2-18|

» FCDRCodeEnum—Encode or Decode an Enumeration Value” on page 2-20]

» FCDRCodeFloat—Encode or Decode a Float Value” on page 2-22

» FCDRCodelLong—Encode or Decode a Long Value” on page 2-24
» [‘CDRCodeNOctet—Encode or Decode Octet Values” on page 2-26)|

« [‘CDRCodeNString—Encode or Decode a String Value” on page 2-28|
 [‘CDRCodeOctet—Encode or Decode an Octet Value” on page 2-30|
» FCDRCodeShort—Encode or Decode a Short Value” on page 2-32|

* [‘'CDRCodeULong—Encode or Decode an Unsigned Long Value” on page 2-36
[‘*CDRCodeUShort—Encode or Decode an Unsigned Short Value” on page 2-38|

Chapter 2. 1lOP Connect for TPF Functions 2-35

CDRCodeULong

CDRCodeULong-Encode or Decode an Unsigned Long Value

This function encodes or decodes a 32-bit unsigned long value.

Format

#include <cdr.h>
CDRStatusT CDRCodeULong(CDRCoderT *xcod_p,
unsigned long *ulong p);

cod_p
A pointer to the Common Data Representation (CDR) coder.

ulong_p
When the coder is in encoding mode, this is a pointer to the 32-bit value to be
encoded. When the coder is in decoding mode, this is a pointer to the location
where the 32-bit unsigned long value is stored.

Normal Return
If successful, the CDRCodeULong function returns CDR_OK.

Error Return
If there is an error, the CDRCodeULong function returns CDR_FAIL.

Programming Considerations

See [‘Common Data Representation Return Values” on page 2-4|for more
information about CDR return values.

Examples
The following example encodes or decodes an unsigned long value.

#include <cdr.h>
unsigned long ulong value;
CDRCoderT coder;

CDRCodeULong(&coder, &ulong value);

Related Functions
» ['CDRCodeBool-Encode or Decode a Boolean Value” on page 2-14|

» FCDRCodeChar—Encode or Decode a Char Value” on page 2-16]
» FCDRCodeDouble—Encode or Decode a Double Value” on page 2-18|

e ‘CDRCodeEnum—Encode or Decode an Enumeration Value” on page 2-20|

» [‘CDRCodeFloat—Encode or Decode a Float Value” on page 2-22|

« ['CDRCodeLong—Encode or Decode a Long Value” on page 2-24]

« [‘CDRCodeNOctet—Encode or Decode Octet Values” on page 2-26)|

» FCDRCodeNString—Encode or Decode a String Value” on page 2-28

» FCDRCodeOctet—Encode or Decode an Octet Value” on page 2-30]

» [‘CDRCodeShort—Encode or Decode a Short Value” on page 2-32|

2-36 1I0P Connect for TPF R1 Reference

CDRCodeULong

» FCDRCodeString—Encode or Decode a String Value” on page 2-34)

. |“CDRCodeUShort—Encode or Decode an Unsigned Short Value” on page 2-38|

Chapter 2. 1IOP Connect for TPF Functions 2-37

CDRCodeUShort

CDRCodeUShort—-Encode or Decode an Unsigned Short Value

This function encodes or decodes a 16-bit unsigned short value.

Format

#include <cdr.h>
CDRStatusT CDRCodeUShort (CDRCoderT *cod_p,
unsigned short *ushort p);

cod_p
A pointer to the Common Data Representation (CDR) coder.

ushort_p
When the coder is in encoding mode, this is a pointer to the 16-bit value to be
encoded. When the coder is in decoding mode, this is a pointer to the location
where the 16-bit unsigned short value is stored.

Normal Return
If successful, the CDRCodeUShort function returns CDR_OK

Error Return
If there is an error, the CDRCodeUShort function returns CDR_FAIL.

Programming Considerations

See [‘Common Data Representation Return Values” on page 2-4for more
information about CDR return values.

Examples
The following example first encodes or decodes an unsigned short value.

#include <cdr.h>
unsigned short ushort value;
CDRCoderT coder;

CDRCodeUSHort (&coder, &ushort value);

Related Functions
» ['CDRCodeBool-Encode or Decode a Boolean Value” on page 2-14|

» FCDRCodeChar—Encode or Decode a Char Value” on page 2-16]
» FCDRCodeDouble—Encode or Decode a Double Value” on page 2-18|

e ‘CDRCodeEnum—Encode or Decode an Enumeration Value” on page 2-20|

» [‘CDRCodeFloat—Encode or Decode a Float Value” on page 2-22|

« ['CDRCodeLong—Encode or Decode a Long Value” on page 2-24]

« [‘CDRCodeNOctet—Encode or Decode Octet Values” on page 2-26)|

» FCDRCodeNString—Encode or Decode a String Value” on page 2-28

» FCDRCodeOctet—Encode or Decode an Octet Value” on page 2-30]

» [‘CDRCodeShort—Encode or Decode a Short Value” on page 2-32|

2-38 1I0P Connect for TPF R1 Reference

CDRCodeUShort

» FCDRCodeString—Encode or Decode a String Value” on page 2-34)

. |“CDRCodeULong—Encode or Decode an Unsigned Long Value” on page 2-36|

Chapter 2. 1lOP Connect for TPF Functions 2-39

CDRDealloc

CDRDealloc—Buffer Deallocation Callback Function of a Common Data
Representation Coder
This function registers the buffer deallocation callback function for use by a

Common Data Representation (CDR) coder whenever the coder needs to
deallocate a buffer.

Format

#include <cdr.h>
void CDRDealloc(CDRCoderT xcod _p,
CDRDeallocFpT *dealloc_fp);

cod_p
A pointer to the CDR coder.

dealloc_fp
A pointer to the callback function.

Normal Return
Void.

Error Return
Not applicable.

Programming Considerations
» The buffer deallocation callback function must have the following prototype:
void dealloc_callback(CDRBufferT *buf p);
¢ The buffer deallocation callback function must deallocate the cdrb_buffer_p

member of the CDRBufferT structure and deallocate the CDRBufferT structure
itself.

Examples

The following example initializes a CDR coder, registers a buffer allocation callback
function, and registers a buffer deallocation callback function.

#include <cdr.h>

CDRCoderT coder;
CDRBuffer *newHeapBuf(size t);

CDRInit(&coder, CDR_BYTE ORDER, 512);
CDRA11oc(&coder, newHeapBuf);
CDRDealloc(&coder, freeHeapBuf);

The following shows an example of a callback function that frees heap storage.

void freeHeapBuf(CDRBufferT *buf p)

{
free(buf_p->cdrb_buffer_p);

free(buf p);

2-40 1I0OP Connect for TPF R1 Reference

CDRDealloc

Related Functions
 [‘CDRAlloc—Register the Buffer Allocation Callback Function of a Common Data|

Representation Coder” on page 2-10

« [CDRInit-Initialize a Common Data Representation Coder Structure” on|
‘ﬁaae 2-51]

Chapter 2. 1lOP Connect for TPF Functions 2-41

CDREbcdic_OTW, CDRS390_OTW

CDREbcdic_OTW, CDRS390_OTW-Override Platform-Oriented Data

Conversions

Format

Normal Return

Error Return

These functions enable TPF conversations with applications running on OS/390
platforms to assert on-the-wire conventions that are not supported by Common
Object Request Broker Architecture (CORBA). This allows applications to be
optimized by bypassing routines that translate IBM System/390 data formats to and
from on-the-wire formats.

The CDREbcdic_0TW function overrides the default platform-oriented character set
conversion routines and allows connections to TPF to use EBCDIC on the wire.

The CDRS390_0TW function overrides the default platform-oriented floating point data

conversion routines and allows connections to TPF to use IBM System/390 float
and double formats on the wire.

#inTcude <cdr.h>
void CDREbcdic_OTW(CDRCoderT *cod ptr);
void CDRS390 OTW(CDRCoderT *cod ptr);

cod_ptr
A pointer to a Common Data Representation (CDR) coder.

Void.

Not applicable.

Programming Considerations

Examples

Call these functions before using the coder to encode or decode any message
data.

The following example initializes a CDR coder and suppresses character set and
floating point conversion.

#include <cdr.h>
CDRCoderT coder;

CDRInit (&coder, CDR_BYTE_ORDER, 512);
CDREbcdic_OTW(&coder);
CDRS370_0TW(&coder);

2-42 1I0OP Connect for TPF R1 Reference

CDREbcdic_OTW, CDRS390_OTW

Related Functions
« [‘CDRCodeChar—Encode or Decode a Char Value” on page 2-16|

» FCDRCodeDouble—Encode or Decode a Double Value” on page 2-18|
» FCDRCodeFloat—Encode or Decode a Float Value” on page 2-29|

» [‘CDRCodeNString—Encode or Decode a String Value” on page 2-28|

« ['CDRCodeString—Encode or Decode a String Value” on page 2-34]

. :“CDRInit—InitiaIize a Common Data Representation Coder Structure” on
ﬁaée 2-51]

* [‘d390tolEEE, dIEEEt0390, f390tolEEE, fIEEEto390—Convert Floating Point|

[Numbers between IBM System/390 and IEEE Representations” on page 2-58

» [tpf_asc2ebc, tpf_ebc2asc—Convert Characters between ISO 8859-1 (ASCII)
and IBM-1047 (US EBCDIC)” on page 2-11

Chapter 2. 1lOP Connect for TPF Functions 2-43

CDREnNncapCreate

CDREnNcapCreate—-Initialize a Common Data Representation Coder to
Begin

Encoding an Encapsulated

Data Buffer

This function initializes a Common Data Representation (CDR) coder to prepare an
application to begin encoding an encapsulated data buffer.

Format

#include <cdr.h>
CDRStatusT CDREncapCreate(CDRCoderT *cod_p,
OctetT byte sex);

cod_p
A pointer to the CDR coder.

byte_sex
A flag indicating the byte ordering that is used to encode the encapsulated data
buffer. Use one of the following values:

0 Big endian.

1 Little endian.

Normal Return
If successful, the CDREncapCreate function returns CDR_OK.

Error Return

If the cod_p parameter is a null pointer, the CDREncapCreate function returns
CDR_ENULL_CODER.

Programming Considerations

» See[FCommon Data Representation Return Values” on page 2-4]for more
information about CDR return values.

e The CDREncapCreate function resets the buffers for the CDR coder; any data is
lost.

e The CDREncapCreate function can be used only to initialize CDR coders for
encoding encapsulated data buffers. To initialize a CDR coder for decoding
encapsulated data buffers, use the CDREncapInit function.

Examples

The following example initializes a CDR coder to begin encoding an encapsulated
data buffer.

2-44 1I0OP Connect for TPF R1 Reference

CDREnNcapCreate

#include <cdr.h>

CDRCoderT encapCoder;

CDRBufferT *newBuf(size t);

void freeBuf(CDRBufferT =*);
CDRInit(&encapCoder, CDR BYTE ORDER, 512);
CDRA11oc(&encapCoder, newBuf);

CDRDealloc (&encapCoder, freeBuf);
CDREncapCreate(&encapCoder, CDR_BYTE_ORDER);

Related Functions
 ['CDREncapEnd—Complete Encoding an Encapsulated Data Buffer” on|
[page 2-46

o |“CDREncaQInit—lnitialize a Common Data Representation Decoder to Decode|
|or Encode an Encapsulated Data Buffer’ on page 2-4§|.

Chapter 2. 1lOP Connect for TPF Functions ~ 2-45

CDREnNncapEnd

CDREncapEnd-Complete Encoding an Encapsulated Data Buffer

This function completes the process of encoding an encapsulated data buffer. It
sets the sequence length field to the final sequence length and the actual buffer
containing the resulting octet stream is then returned along with its physical length.

Format

#include <cdr.h>

CDRStatusT CDREncapEnd(CDRCoderT *xcod_p,
OctetT **0oct_pp,
unsigned long =*octlen p,
GIOPAT1ocFpT *getmem);

cod_p
A pointer to the Common Data Representation (CDR) coder.

oct_pp
The address of a pointer to be set to the address of the encapsulated data
buffer.

octlen_p
The address of an unsigned long value to be set to the length of the
encapsulated data buffer (*oct_pp).

getmem
A pointer to a storage allocation function that is used to get storage to store the
encapsulated data buffer.

Normal Return

If the encoding of the encapsulated data buffer is completed successfully, the
CDREncapEnd function returns CDR_OK.

Error Return

If there is an error, the CDREncapEnd function returns one of the following return
values:

 CDR_ENULL_CODER
e CDR_ENULL_RETURN
» CDR_ENOSPACE.

Programming Considerations
e See |“Common Data Representation Return Values” on page 2-4|for more

information about CDR return values.

e This function can only be passed by a CDR encapsulation coder (a coder that
was initialized for encapsulation by the CDREncapCreate or CDREncapInit
function) in encoding mode after the entire encapsulated data buffer has been
encoded.

2-46 1I0P Connect for TPF R1 Reference

CDREnNncapEnd

Examples

The following example encapsulates two long values and adds the encapsulated
data buffer to a General Inter-ORB Protocol (GIOP) message.

#include <cdr.h>
CDRCoderT; /* GIOP message encoder */
/* initialize the GIOP message encoder and begin encoding a message */

/* declare the encapsulation encoder and other required data =*/
CDRCoderT encapCoder; /+ encapsulation encoder */
CDRBufferT *newBuf(size t);

void freeBuf(CDRBufferT =*);

long data;

OctetT =*encap_ptr;

unsigned long encap len;

/* initialize the encapsulation encoder */
CDRInit(&encapCoder, CDR_BYTE_ORDER, 16);
CDRATToc(&encapCoder, newBuf);

CDRDealloc (&encapCoder, freeBuf);
CDREncapCreate(&encapCoder, CDR BYTE ORDER);

/* encode the encapsulated data buffer x/

data = 0;
CDRCodelLong (&encapCoder, &data);
data = 1;

CDRCodelLong(&encapCoder, &data);

/*finish the encapsulation encoding */
CDREncapEnd (&encapCoder, &encap_ptr. &encap_len, malloc);

/*add the encapsulated data buffer to the GIOP message */
CDRCodeNOctet (&coder, &encap ptr, &encap_len);

Related Functions
» [‘CDREncapCreate-Initialize a Common Data Representation Coder to Begin|

Encoding an Encapsulated Data Buffer” on page 2-44

. FCDREncaglnit—lnitialize a Common Data Representation Decoder to Decode|
or Encode an Encapsulated Data Buffer’ on page 2-48.

Chapter 2. 1lOP Connect for TPF Functions ~ 2-47

CDREncaplnit

CDREncaplnit-Initialize a Common Data Representation Decoder to

Decode
or Encode an

Encapsulated Data Buffer

Format

Normal Return

Error Return

This function initializes a Common Data Representation (CDR) coder with an
existing buffer. The resulting coder is used to encode an encapsulated data buffer
or to decode an existing encapsulated data buffer.

#include <cdr.h>
CDRStatusT CDREncapInit(CDRCoderT *cod_p,
CDRBufferT *buf p,

OctetT *data_p,
unsigned long data_len,
CDRModeT mode) ;

cod_p
A pointer to an uninitialized CDR coder structure.

buf_p
A pointer to an uninitialized CDR buffer structure.

data_p
A pointer to the encapsulated data buffer.

data_len
The length of the encapsulated data buffer.

mode
One of the following values:

e CDR coder mode
e cdr_decoding

e cdr_encoding.

If successful, the CDREncapInit function returns CDR_OK.

If there is an error, the CDREncapInit function returns one of the following return
values:

CDR_ENULL_CODER
A null coder or buffer structure or unknown mode was specified.

CDR_ENULL_DATA
A null data (raw buffer) or data length was specified.

2-48 110P Connect for TPF R1 Reference

CDREncaplnit

Programming Considerations
e See[‘Common Data Representation Return Values” on page 2-4|for more

Examples

information about CDR return values.

The CDREncapInit function is useful for decoding encapsulated data buffers or
for encoding encapsulated data buffers when the size of the encapsulated data
buffer is known and the buffer is preallocated.

If the CDR coder is initialized in decoding mode, the CDREncapInit function
automatically reads the initial byte-order octet and sets the state of the coder
accordingly.

The following function decodes the encapsulated data buffer that is passed to it in
the data_p and data_len parameters. The structure of the encapsulated data buffer
is not shown.

#include <cdr.h>
struct decoded data { /* members for decoded encapsulated data buffer */};
CDRStatusT decodeEncap(OctetT *data_p, unsigned long data_len,

{

}

struct decoded data *output)

CDRCoderT coder;
CDRBufferT buffer;
CDRStatusT rc =
CDREncapInit(&coder, &buffer, data p, data len,
cdr_decoding);

if (rc != CDR_OK) return rc;
/* decode the encapsulated data buffer into the output structurex*/

return CDR_OK;

Related Functions

“CDREncapCreate—Initialize a Common Data Representation Coder to Begin|
Encoding an Encapsulated Data Buffer” on page 2-44]

FCDREncapEnd—Complete Encoding an Encapsulated Data Buffer” on|

page 2-46

Chapter 2. 1lOP Connect for TPF Functions ~ 2-49

CDRFree

CDRFree—Free All Buffers Connected to a Common Data
Representation Coder
This function deallocates all of the buffers that are connected to a Common Data

Representation (CDR) coder structure. This function does not free the coder
structure itself.

Format

#include <cdr.h>
void CDRFree(CDRCoderT *cod p);

cod_p
A pointer to the CDR coder.

Normal Return
Void.

Error Return
Not applicable.

Programming Considerations
None.

Examples

The following example initializes a CDR coder, registers a buffer deallocation
callback function, and at some later time frees all of the buffers connected to the
coder.

#include <cdr.h>

void freeBuf(CDRBufferT =);

CDRCoderT coder;

CDRInit(&coder, CDR BYTE ORDER, 512);
CDRDealloc(&coder, freeBuf);

CDRFree (&coder) ;

Related Functions

o ‘CDRDealloc—Buffer Deallocation Callback Function of a Common Datal
Representation Coder” on page 2-40

2-50 110P Connect for TPF R1 Reference

CDRInit

CDRInit-Initialize a Common Data Representation Coder Structure
This function initializes a Common Data Representation (CDR) coder structure.

Format

Normal Return

Error Return

#include <cdr.h>

CDRStatusT CDRInit(CDRCoderT *cod_p,
unsigned short byte sex,
size_t alloc_min);

cod_p

A pointer to the address of the CDR coder that will be initialized.

byte_sex

The byte ordering for this platform, which is one of the following:

0 Big endian.
1 Little endian.
Normally, use CDR_BYTE_ORDER.

alloc_min

The minimum number of bytes in each CDR coder buffer. This value must be a

multiple of 8.

If successful, the CDRInit function returns CDR_OK.

If there is an error, the CDRInit function returns a CDR return value.

Programming Considerations
» See[‘Common Data Representation Return Values” on page 2-4|for more

Examples

information about CDR return values.

¢ Call this function to initialize a CDR coder.

» Use the CDRA11oc function to specify the storage allocation function for the
coder to use and the CDRDealloc function to specify the storage deallocation

function.

The following example initializes a CDR coder.

#include <cdr.h>

CDRCoderT coder;
CDRInit(&coder, CDR_BYTE ORDER, 512);

Chapter 2. 1IOP Connect for TPF Functions 2-51

CDRInit

Related Functions

 [‘CDRAlloc—Register the Buffer Allocation Callback Function of a Common Data|

Representation Coder” on page 2-10

 [‘CDRDealloc—Buffer Deallocation Callback Function of a Common Datal

Representation Coder” on page 2-40

2-52 1I0P Connect for TPF R1 Reference

CDRMode

CDRMode-Set the Common Data Representation Coder Mode

This function sets the Common Data Representation (CDR) coder mode and
returns the previous mode.

Format

#include <cdr.h>
CDRModeT CDRMode (CDRCoderT *cod_p,
CDRModeT mode);

cod_p
A pointer to the CDR coder.

mode
The new mode for the CDR coder. Use one of the following values:

e cdr_encoding
e cdr_decoding

e cdr_unknown.

Normal Return
The previous CDR coder mode is returned.

Error Return
Not applicable.

Programming Considerations
The CDR coder mode is set automatically depending on the connection context.

Examples

The following example initializes a CDR coder; at some later time the CDR coder
mode is set to cdr_encoding and the previous mode is saved.

#include <cdr.h>
CDRCoderT coder;CDRInit(&coder, CDR_BYTE_ORDER, 512);

CDRModeT previousMode = CDRMode(&coder, cdr _encoding);

Related Functions
None.

Chapter 2. 1lOP Connect for TPF Functions 2-53

CDRNeedBuffer

CDRNeedBuffer—-Find a Buffer in a Common Data Representation
Coder

Structure
This function finds the minimum length of a single buffer in the coder. Each
intermediate buffer that is not long enough is released. If a buffer is found, it is
found at the start of the buffer list. If no such buffer is found, a new one is allocated
at the top of the list.

Format

#include <cdr.h>

CDRStatusT CDRNeedBuffer(CDRCoderT *cod p,
size t min_len,
BooleanT free_trailing);

cod_p
A pointer to the Common Data Representation (CDR) coder.

min_len
The minimum length required for the buffer that is found.

free_trailing
A flag indicating whether or not to free all trailing buffers following the buffer
that is found:

0 Indicates not to release the trailing buffers.

1 Releases the trailing buffers.

Normal Return

If a buffer of the required size is found or allocated, the CDRNeedBuffer function
returns CDR_OK.

Error Return
If there is an error, the CDRNeedBuffer function returns CDR_FAIL.

Programming Considerations

See[‘Common Data Representation Return Values” on page 2-4/for more
information about CDR return values.

Examples

The following example initializes the CDR coder and registers a buffer allocation
routine. In this example, the buffers have not been allocated so the CDRNeedBuffer
function allocates a buffer. As a result, there are no trailing buffers.

2-54 110P Connect for TPF R1 Reference

CDRNeedBuffer

#include <cdr.h>

CDRCoderT *cdr_coder;

unsigned long min_buffer_size = 100;

coder = (CDRCoderT *)malloc(sizeof(CDRCoderT));
free trailing buffers = 1;

if (CDRNeedBuffer(cdr coder, min_buffer, free trailing buffers)
1=CDR_OK)

{
printf("CDRNeedBuffer failed\n");
}

Related Functions

» FCDRAIlloc—Register the Buffer Allocation Callback Function of a Common Datal
[Representation Coder” on page 2-10|

. |“CDRDeaIIoc—Buffer Deallocation Callback Function of a Common Datgl
Representation Coder” on page 2-40

Chapter 2. 1lOP Connect for TPF Functions 2-55

CDRReset

CDRReset—Reset the Current Buffer of a Common Data Representation
Coder

Structure

This function clears the current buffer of the Common Data Representation (CDR)
coder for reuse.

Format

#include <cdr.h>
CDRStatusT CDRReset(CDRCoderT *cod_p,
unsigned char in_use);

cod_p
A pointer to the CDR coder.

in_use
A flag indicating whether or not the buffer is in use.

0 Indicates that the buffer is not in use.

1 Indicates that the buffer is in use.

Normal Return
If successful, the CDRReset function returns CDR_OK.

Error Return
If there is no current buffer to reset, the CDRReset function returns CDR_FAIL.

Programming Considerations

See [‘Common Data Representation Return Values” on page 2-4|for more
information about CDR return values.

Examples

The following example initializes a CDR coder and, at some later time, rewinds and
resets its buffer.

#include <cdr.h>
CDRCoderT coder;
CDRInit(&coder, CDR BYTE ORDER, 512);

CDRRewind(&coder, true);
CDRReset (&coder, false);

Related Functions

:“CDRRewind—Return to the Start of a Common Data Representation Coder Buffer]
[on page 2-57}

2-56 110P Connect for TPF R1 Reference

CDRRewind

CDRRewind-Return to the Start of a Common Data Representation
Coder
Buffer

This function returns to the beginning of the first buffer of the Common Data
Representation (CDR) coder.

Format

#include <cdr.h>
CDRStatusT CDRRewind(CDRCoderT *cod_p,
unsigned char reset_length);

cod_p
A pointer to the CDR coder.

reset_length
A flag indicating whether or not to reset the buffer length.

0 Indicates not to reset the buffer length.

1 Resets the buffer length to 0.

Normal Return
If successful, the CDRRewind function returns CDR_OK.

Error Return
If there is no buffer, the CDRRewind function returns CDR_FAIL.

Programming Considerations

e See[‘Common Data Representation Return Values” on page 2-4|for more
information about CDR return values.

e This function is useful for scanning the buffer again or for resetting the entire
buffer. To scan the buffer again, code the reset_ length parameter with a
value of true.

Examples

The following example initializes a CDR coder and, at some later time, rewinds the
buffer for the coder.

#include <cdr.h>
CDRCoderT coder;
CDRInit(&coder, CDR BYTE ORDER, 512);

CDRRewind (&coder, true);

Related Functions

“CDRReset—Reset the Current Buffer of a Common Data Representation Coder
Structure” on page 2-56

Chapter 2. 1lOP Connect for TPF Functions 2-57

d390tolEEE, dIEEEt0390, f390tolEEE, fIEEEt0390

d390tolEEE, dIEEEt0390, f390tolEEE, fIEEEt0390-Convert Floating
Point Numbers between IBM System/390 and IEEE Representations

Format

Normal Return

Error Return

These functions convert a floating point value from IBM System/390 format to
Institute of Electrical and Electronics Engineers (IEEE) format, or the reverse:

e dIEEEt0390 converts an IEEE format double value to an IBM System/390
format double value.

e d390tolEEE converts an IBM System/390 format double value to an IEEE
format double value.

e fIEEEt0390 converts an IEEE format floating point value to an IBM System/390
format floating point value.

e f390tolEEE converts an IBM System/390 format floating point value to an IEEE
format floating point value.

#include <cdr.h>

int dIEEEto390(double *scr, double xdst);
int d390toIEEE(double *scr, double xdst);
int fIEEEto390(float *scr, float xdst);
int f390toIEEE(float *scr, float *dst);

src
A pointer to the floating point value to be converted.

dst
A pointer to the location where the converted value is stored.

If the conversion is successful, these functions return 0.

If an overflow or underflow condition occurs during conversions, these functions
return 1.

Programming Considerations

Examples

Floating-point instructions are used to perform calculations on operands with a wide
range of magnitude and to yield results that are scaled to preserve precision.
Magnitudes that underflow during conversion are converted to 0, while magnitudes
that overflow during conversion are converted to the largest represented number.

The following example asserts IBM System/390 float on the wire, receives an IEEE
double value, and manually converts the value to IBM System/390 format.

2-58 110P Connect for TPF R1 Reference

d390tolEEE, dIEEEt0390, f390tolEEE, fIEEEt0390

#include <cdr.h>

CDRCoderT coder;

double dS390, dIEEE;

CDRInit(&coder, CDR_BYTE_ORDER, 512);
CDRS390 0TW(&coder);

CDRCodeDouble(&coder, &IIEEE);
if (dIEEEto390(&dIEEE, &dS390) == 0)
{

}
else if (dS390 == 0.0)
{

/* Conversion was successful. =/

/* underflow */

/* overflow */

}

Related Functions
» FCDRCodeDouble—Encode or Decode a Double Value” on page 2-18|

» FCDRCodeFloat—Encode or Decode a Float Value” on page 2-29|

e ['CDREbcdic_ OTW, CDRS390_ OTW-Override Platform-Oriented Datal
Conversions” on page 2-42|

Chapter 2. 1lOP Connect for TPF Functions 2-59

GIOPAccept

GIOPAccept—Accept a Connection from a Client

Format

Normal Return

Error Return

This function accepts a connection request from a client. This follows a successful
call to the GIOPListen function. The connection is opened to the client so it can
begin sending requests.

#include <giop.h>
GIOPStatusT GIOPAccept(GIOPStateT xgiop);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a server
conversation with a client.

If successful, the GIOPAccept function returns GIOP_OK.

If there is an error, the GIOPAccept function returns a GIOP error code.

Programming Considerations

Examples

See[‘General Inter-ORB Protocol Return Values” on page 2-5 for more information
about GIOP return values.

The following example listens for and accepts a connection request from a client.

#include <giop.h>
GIOPStateT gstate;
IORT =ior_p;

switch (GIOPListen(&gstate, ior_p, TAG_INTERNET_IOP))
{
case GIOP_OK:
switch (GIOPAccept(&gstate))
{
case GIOP_OK:
/* ready to start receiving requests from the client */
break;
default:
/* some kind of accept error */
break;
}
default:
/* there was some kind of Tisten error */
break;

2-60 110P Connect for TPF R1 Reference

GIOPAccept

Related Functions
« [‘GIOPListen—Listen for Client Requests to Connect” on page 2-80|

» FGIOPReject-Reject a Connection from a Client” on page 2-89]

Chapter 2. 1IOP Connect for TPF Functions 2-61

GIOPAutoFrag

GIOPAutoFrag—Change the Automatic Fragmentation Behavior

This function changes the automatic fragmentation behavior of a client or server
agent. Automatic fragmentation allows you to specify a fragment size that IIOP
Connect for TPF will use to automatically convert a message to a series of
fragments. Manual fragmentation allows you to create each Fragment message
individually.

Format
#include <giop.h>
GIOPStatusT GIOPAutoFrag(GIOPStateT *giop,
OctetT flags,
unsigned long nbyte);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a
conversation with a client or server.

flags
One of the following flags:

GIOP_AFRAG_CLR
Clears the specified flags.

GIOP_AFRAG_ON
Turns on automatic fragmentation.

GIOP_AFRAG_STR
Allows strings to be fragmented.

GIOP_AFRAG_MSGHDR
Allows message headers to be fragmented.

Use the GIOP_AFRAG_ON flag and a logical OR operation to set an option; for
example, to enable string fragmentation, use the following:
GIOP_AFRAG_ON|GIOP_AFRAG_STR

Use the GIOP_AFRAG_CLR flag and a logical OR operation to turn off an
option; for example, to turn off automatic fragmentation, use the following:

GIOP_AFRAG_CLR|GIOP_AFRAG_ON

Note: The GIOP_AFRAG_STR and GIOP_AFRAG_MSGHDR flags are not
supported in this release of IIOP Connect for TPF and are only
described here for completeness. Currently, both flags are simply
ignored.

nbyte
The maximum size of a fragment when automatic fragmentation is turned on.

2-62 1I0P Connect for TPF R1 Reference

Normal Return

Error Return

GIOPAutoFrag

If successful, the GIOPAutoFrag function returns GIOP_OK.

If there is an error, the GIOPAutoFrag function returns a GIOP error code.

Programming Considerations

Examples

e See[‘General Inter-ORB Protocol Return Values” on page 2-5| for more
information about GIOP return values.

* With automatic fragmentation, Request and Reply messages are fragmented
automatically based on the value of the nbyte parameter.

Note: For strings and arrays of octets, this value is ignored and the fragment
size is changed to include the entire string or array.

e The IIOP Connect for TPF dynamic link library (DLL) is built with automatic
fragmentation enabled.

e [IOP Connect for TPF supports both GIOP Version 1 Release 1 and GIOP
Version 1 Release 0. Only GIOP 1.1 supports fragmentation.

The following example turns on automatic fragmentation for a conversation that was
established with a remote client or server object.

#include <giop.h>
GIOPStateT gstate;

/* establish a conversation with a remote object =*/

switch (GIOPAutoFrag(&gstate, GIOP_AFRAG ON, 1024))
{
case GIOP_OK:
/* automatic fragmentation is turned on for the conversation */
break;
default:
/* there was some kind of Tisten error x/
break;

}

Related Functions

e [‘GIOPAutoFragGetSize—Get the Current Maximum Automatic Fragment Size’)

o FGIOPFragCreate—Create a Fragment Message” on page 2-70

e ['GIOPFragSend—Send a Fragment Message” on page 2-72

Chapter 2. 1lOP Connect for TPF Functions 2-63

GIOPAutoFragGetSize

GIOPAutoFragGetSize—Get the Current Maximum Automatic Fragment
Size
This function gets the maximum fragment size that is currently set for automatic
fragmentation. Automatic fragmentation allows you to specify a fragment size that
IIOP Connect for TPF will use to automatically convert a message to a series of

fragments. Manual fragmentation allows you to create each Fragment message
individually.

Format

#include <giop.h>
unsigned long GIOPAutoFragGetSize(GIOPStateT =*giop);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a
conversation with a client or server.

Normal Return

If successful, the GIOPAutoFragGetSize function returns the current maximum
fragment size.

Error Return
Not applicable.

Programming Considerations
None.

Examples

The following example gets the automatic fragmentation size for a conversation that
was established with a remote client or server object.

#include <giop.h>
GIOPStateT gstate;
unsigned long autofragsize;

/* establish a conversation with a remote object =*/

autofragsize=GIOPAutoFragGetSize(&gstate)

Related Functions
« FGIOPAutoFrag—Change the Automatic Fragmentation Behavior’” on page 2-62|

» [‘GIOPFragCreate—Create a Fragment Message” on page 2-70|

» [‘GIOPFragSend—Send a Fragment Message” on page 2-72

2-64 110P Connect for TPF R1 Reference

GIOPCancelRequestSend

GIOPCancelRequestSend—Cancel a Previously Sent Request Message

This function requests that the server stop handling a Request message that was
sent previously over the current conversation.

Format

#include <giop.h>
GIOPStatusT GIOPCancelRequestSend(GIOPStateT *giop
unsigned Tong request_id);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a client
conversation with a server.

request_id
The identifier (ID) of the Request message that was sent previously.

Normal Return
If successful, the GIOPCancelRequestSend function returns GIOP_OK.

Error Return

If there is an error, the GIOPCancelRequestSend function returns a GIOP return
value.

Programming Considerations

e Seel‘General Inter-ORB Protocol Return Values” on page 2-5| for more
information about GIOP return values.

e Use this function when the client no longer cares about the results of a request
that was sent previously to the server.

 If the server receives a cancel request, the server avoids processing the
specified request if possible. Only a request that is still in progress will be
canceled.

Examples

The following example creates and sends a Request message, and then decides
that the result is no longer required and cancels the request.

Chapter 2. 1lOP Connect for TPF Functions 2-65

GIOPCancelRequestSend

#include <giop.h>

#include <stdlib.h>

#include <string.h>

#include <cdr.h>

#define OPERATION "aMethod"

GIOPStateT gstate;

char *op;

/* establish a conversation with a server =/

op=malloc(sizeof OPERATION);

memcpy (op, OPERATION, sizeof OPERATION);

switch (GIOPRequestCreate(&gstate, op, 0, (OctetT =)0,
(IORServiceContextListT *)0, FALSE))

{

case GIOP_OK:
/* the request message was successfully created,
call CDR functions to build the request body =*/

switch (GIOPRequestSend(&gstate;, FALSE, FALSE))
{
case GIOP_OK:
/* the request message was successfully sent x/

/* decide that the results of the previous message
are no longer required */
switch (GIOPCancelRequestSend(&gstate, gstate.gs request_id))
{
case GIOP_OK;
/* The cancel request was successfully sent,
DO NOT ASSUME that the request was cancelled =/
break;
default:
/* there was some kind of cancel request send error =/
break;
}
break;
default:
/* there was some kind of send error */
break;

}

break;

default:
/* there was some kind of create error */
break;

Related Functions
» [‘GIOPRequestCreate—Create a Request Message” on page 2-95|

2-66 110P Connect for TPF R1 Reference

GIOPCloseConnectionSend

GIOPCloseConnectionSend-Close an Open Connection

This function closes a connection that was established previously and is currently
still valid.

Format

#include <giop.h>
GIOPStatusT GIOPCloseConnectionSend(GIOPStateT *giop);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a
conversation with a client or server.

Normal Return
If successful, the GIOPC1oseConnectionSend function returns GIOP_OK.

Error Return

If there is an error, the GIOPC1oseConnectionSend function returns a GIOP error
code.

Programming Considerations

See[‘General Inter-ORB Protocol Return Values” on page 2-5 for more information
about GIOP return values.

Examples

The following example closes a conversation that was established previously with a
remote client or server object.

#include <giop.h>
GIOPStateT gstate;

/* establish a conversation with a remote object =/

switch (GIOPCloseConnectionSend(&gstate))
{
case GIOP_OK:
/* the conversation ended cleanly */
break;
default:
/* there was some kind of error */
break;

}

Related Functions
None.

Chapter 2. 1IOP Connect for TPF Functions 2-67

GIOPConnect

GIOPConnect—Connect a Client to a Server

Format

Normal Return

Error Return

This establishes an Internet Inter-ORB Protocol (IIOP) connection from a client
process to a server process.

#include <giop.h>

GIOPStatusT GIOPConnect(GIOPStateT =*giop,
IORT *jor_p,
short policy);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a client
conversation with a server.

ior_p
A pointer to an Interoperable Object Reference (IOR) object that points to the
server object.

policy
The connection policy for the GIOP state. The policy determines the behavior
when a connection is lost (subsequent to the GIOPConnect call). Use one of the
following values:

AUTO_RETRY
The 1IOP engine will automatically try to connect again.

TRY_ONE
The IIOP engine will exit if the initial connection is lost.

If successful, the GIOPConnect function returns GIOP_OK, and the giop parameter
is set to idle (GIOP_SIDLE) state.

If there is an error, the GIOPConnect function returns a GIOP error code.

Programming Considerations

Examples

¢ See[‘General Inter-ORB Protocol Return Values” on page 2-5| for more
information about GIOP return values.

e The first IOR entry to provide a successful connection is chosen.

The following example connects an IIOP client process with a remote server object.

2-68 110P Connect for TPF R1 Reference

GIOPConnect

#include <giop.h>
GIOPStateT gstate;
IORT =*ior_p;

switch (GIOPConnect(&gstate, ior p, AUTO RETRY))
{
case GIOP_OK:

/* successful connection, prepare to send a request =*/
break;

default:
/* some kind of error =/
break;

Related Functions
None.

Chapter 2. 1lOP Connect for TPF Functions ~ 2-69

GIOPFragCreate

GIOPFragCreate—Create a Fragment Message

Format

Normal Return

Error Return

This function creates a Fragment message. Automatic fragmentation allows you to
specify a fragment size that IOP Connect for TPF will use to automatically convert
a message to a series of fragments. Manual fragmentation allows you to create
each Fragment message individually.

#include <giop.h>

GIOPStatusT GIOPFragCreate(GIOPStateT xgiop);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a
conversation with a client or server.

If successful, the GIOPFragCreate function returns GIOP_OK.

If there is an error, the GIOPFragCreate function returns a GIOP return value .

Programming Considerations

Examples

e See[‘General Inter-ORB Protocol Return Values” on page 2-5| for more
information about GIOP return values.

e This function is used for manual fragmentation. With automatic fragmentation,
Request and Reply messages are fragmented automatically beyond a set
message size. Use the GIOPAutoFrag function to turn automatic fragmentation
on or off and to set the message size.

Note: For strings and arrays of octets, the set message size is ignored and
the fragment size is changed to include the entire string or array.

e The IIOP Connect for TPF dynamic link library (DLL) is built with automatic
fragmentation enabled.

¢ |IOP Connect for TPF supports both GIOP Version 1 Release 1 and GIOP
Version 1 Release 0. Only GIOP 1.1 supports fragmentation.

The following example creates a Fragment message for a conversation that was
established with a remote client or server object.

2-70 1IOP Connect for TPF R1 Reference

GIOPFragCreate

#include <giop.h>
GIOPStateT gstate;

/* establish a conversation with a remote object =/

switch (GIOPFragCreate(&gstate))

{

case GIOP_OK:
/* a fragment message is created */
break;

default:
/* there was some kind of error =/
break;

Related Functions
» FGIOPAutoFrag—Change the Automatic Fragmentation Behavior’ on page 2-62|

. |“GIOPAutoFragGetSize—Get the Current Maximum Automatic Fragment Size”l

« [‘GIOPFragSend—Send a Fragment Message” on page 2-72

Chapter 2. 1IOP Connect for TPF Functions 2-71

GIOPFragSend

GIOPFragSend-Send a Fragment Message

This function sends the current Fragment message and indicates to the remote
agent whether or not more fragments will follow. Automatic fragmentation allows
you to specify a fragment size that IIOP Connect for TPF will use to automatically
convert a message to a series of fragments. Manual fragmentation allows you to
create each Fragment message individually.

Format
#include <giop.h>
GIOPStatusT GIOPFragSend(GIOPStateT *giop
BooleanT more_fragments);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a
conversation with a client or server.

more_fragments
One of the following values:

TRUE
Indicates that more fragments will follow the current Fragment message.

FALSE
Indicates that this is the last fragment of the current message.

Normal Return
If successful, the GIOPFragSend function returns GIOP_OK.

Error Return
If there is an error, the GIOPFragSend function returns a GIOP return value.

Programming Considerations
e See[‘General Inter-ORB Protocol Return Values” on page 2-5| for more
information about GIOP return values.

e This function is used for manual fragmentation. With automatic fragmentation,
Request and Reply messages are fragmented automatically beyond a set
message size. Use the GIOPAutoFrag function to turn on or turn off automatic
fragmentation and to set the message size.

Note: For strings and arrays of octets, the set message size is ignored and
the fragment size is changed to include the entire string or array.

e The IIOP Connect for TPF dynamic link library (DLL) is built with automatic
fragmentation enabled.

* |IOP Connect for TPF supports both GIOP Version 1 Release 1 and GIOP
Version 1 Release 0. Only GIOP 1.1 supports fragmentation.

2-72 1IOP Connect for TPF R1 Reference

GIOPFragSend

Examples

The following example creates and sends two Fragment messages for a
conversation that was established with a remote client or server object.

#include <giop.h>
GIOPStateT gstate;

/* establish a conversation with a remote object */

switch (GIOPFragCreate(&gstate))
{
case GIOP_OK:
/* set the first fragment message contents */

switch (GIOPFragSend(&gstate, TRUE))
{
case GIOP_OK:

/* the first fragment was sent successfully,

create and send the second (last) fragment */

switch (GIOPFragCreate(&gstate))

{

case GIOP_OK:

/* set the second fragment message contents */
switch (GIOPFragSend(&gstate, FALSE))
{
case GIOP_OK:
/* the second fragment was sent successfully =/

default:
/* there was some kind of send error for the
second fragment =/
break;
}

break;

default:
/* there was some kind of creation error for the
second fragment */
break;

}

break;

default:
/* there was some kind of send error for the first fragment */
break;

}

break;
default:

/* there was some kind of creation error for the first fragment =*/
break;

Chapter 2. 1lOP Connect for TPF Functions 2-73

GIOPFragSend

Related Functions
e [‘GIOPAutoFrag—Change the Automatic Fragmentation Behavior” on page 2-62|

» FGIOPAutoFragGetSize—Get the Current Maximum Automatic Fragment Size’]
on page 2-64

» [‘GIOPFragCreate—Create a Fragment Message” on page 2-70|

2-74 1I0P Connect for TPF R1 Reference

GIOPGetNextMsg

GIOPGetNextMsg—-Get the Next Incoming General Inter-ORB Protocol
Message

This function gets the next General Inter-ORB Protocol (GIOP) message (if one is
available) and prepares it for processing.

Format

#include <giop.h>
GIOPStatusT GIOPGetNextMsg(GIOPStateT =*giop,
GIOPMsgType *typ p);

giop
A pointer to the GIOP state structure for a conversation with a client or server.

typ_p
A pointer to enumerated type GIOPMsgType. On return, GIOPMsgType
contains the type of message received, which is one of the following:

GIOPRequest
Request message.

GIOPReply
Reply message.

GIOPCancelRequest
Cancel request message.

GIOPLocateRequest
Locate request message.

GIOPLocateReply
Locate reply message.

GIOPCloseConnection
Close connection message.

GIOPMessageError
Message error message.

GIOPFragment
Message fragment.

GIOPUnknown
Unknown message type.

Normal Return

If successful, the GIOPGetNextMsg function returns GIOP_OK and the typ_p
parameter points to the message type.

Error Return
If there is an error, the GIOPGetNextMsg function returns a GIOP error code.

Chapter 2. 1lOP Connect for TPF Functions 2-75

GIOPGetNextMsg

Programming Considerations

Examples

2-76

See|‘General Inter-ORB Protocol Return Values” on page 2-5 for more
information about GIOP return values.

The buffer containing the message received is maintained by the GIOP state
structure.

Incoming messages are read in stages. First, the GIOP identifier (the value
GIOP) is read, followed by the remainder of the GIOP header. Finally, the
message contents are read. The CDR coder is rewound for each stage.

Incoming messages are expected to be in GIOP Version 1 Release 1 format
unless the server is receiving a Version 1.0 message from a Version 1.0 based
client.

Use the Common Data Representation (CDR) functions declared in the cdr.h
header file to decode the contents of the message received.

The following message receives the next inbound message and prepares the GIOP
state structure to process it.

IIOP Connect for TPF R1 Reference

#inc
GIOP

GIOPGetNextMsg

lude <giop.h>
StateT gstate;

GIOPMsgType mtype;

swit
{

case

ch (GIOPGetNextMsg(&gstate, &mtype))

GIOP_OK:
switch (mtype)
{
case GIOPRequest:
/* handle request message */
break;

case GIOPCancelRequest:
/* handle cancel request message */
break;

case GIOPLocateRequest:
/* handle locate request message */
break;

case GIOPMessageError:
/* handle message error message */
break;

case GIOPFragment:
/* handle message fragment =/
break;

default:
/* some other kind of message */
break;

}

break;

default;

Related Functions

/* there was an error =*/
break;

None.

Chapter 2. 1lOP Connect for TPF Functions 2-77

GIOPInit

GIOPInit-Initialize a General Inter-ORB Protocol State Object

This function initializes a General Inter-ORB Protocol (GIOP) state structure,
associating it with a (previously initialized) Common Data Representation (CDR)
coder object, and preparing it to be used for other Internet Inter-ORB Protocol
(IOP) engine application programming interface (API) functions.

Format
#include <giop.h>
GIOPStatusT GIOPInit(GIOPStateT =*giop,
CDRCoderT =*coder_p,
BooleanT is_server);

giop
A pointer to the GIOP state structure for a conversation with a client or server.

coder_p
A pointer to a CDR coder object; the coder must be initialized already.

is_server
One of the following values:

TRUE
Initializes the GIOP state structure as a server.

FALSE
Initializes the GIOP state structure as a client.

Normal Return

If successful, the GIOPInit function returns GIOP_OK and the GIOP state structure
is ready to connect with a remote client or server object.

Error Return
If there is an error, the GIOPInit function returns a GIOP return value.

Programming Considerations

e See[‘General Inter-ORB Protocol Return Values” on page 2-5| for more
information about GIOP return values.

e The default is set for no automatic fragmentation.

Examples

The following example initializes a GIOP state structure to run as a server that is
ready to continue processing IIOP APIs to accept and process messages from a
client.

2-78 1IOP Connect for TPF R1 Reference

GIOPInit

#include <giop.h>
GIOPStateT gstate;
CDRCoderT coder

switch (GIOPInit(&gstate, &coder, TRUE))
{
case GIOP_OK:
/* wait for client to connect and begin conversation */
break;
default:
/* some kind of error */
break;

Related Functions
o FGIOPConnect—Connect a Client to a Server’ on page 2-68

. |“GIOPListen—Listen for Client Requests to Connect” on page 2-80|

Chapter 2. 1lOP Connect for TPF Functions ~ 2-79

GIOPListen

GIOPListen-Listen for Client Requests to Connect

Format

Normal Return

Error Return

This function listens for any requests made by clients to connect. If a request is
detected, the server can accept the connection by using the GIOPAccept function or
reject the connection by using the GIOPReject function.

#include <giop.h>

GIOPStatusT GIOPListen(GIOPStateT =*giop,
IORT *ior_p,
IORProfilldT tag);

giop
A pointer to the GIOP state structure for a server conversation with a client.

ior_p
A pointer to a published Interoperable Object Reference (IOR) object.

tag
The type of transport over which the server will listen. Use the value
TAG_INTERNET_IOP.

If successful, the GIOPListen function returns GIOP_OK.

If there is an error, the GIOPListen function returns a GIOP return value.

Programming Considerations

Examples

See [‘General Inter-ORB Protocol Return Values” on page 2-5 for more information

about GIOP return values.

The following example listens for a client to request a connection with the server.

#include <giop.h>
GIOPStateT gstate;
IORT =*ior_p;

switch (GIOPListen(&gstate, ior_p, TAG_INTERNET IOP))
{
case GIOP_OK:
/* accept or reject the connection */
break;
default:
/* there was some kind of error =/
break;

2-80 110P Connect for TPF R1 Reference

GIOPListen

Related Functions
» [‘GIOPAccept—Accept a Connection from a Client” on page 2-60|

» FGIOPReject—-Reject a Connection from a Client” on page 2-89|

. |“GIOPStogListen—Notify Clients That the Server Is No Longer Listening for New

Connections” on page 2-99

Chapter 2. 1IOP Connect for TPF Functions 2-81

GIOPLocateReplyCreate

GIOPLocateReplyCreate—Create a LocateReply Message

This function creates a LocateReply message.

Format

#include <giop.h>

GIOPStatusT GIOPLocateReplyCreate(GIOPStateT *giop,
OctetT major,
OctetT minor,
GIOPLocateStatusType status,
unsigned Tong request_id);

giop

A pointer to the General Inter-ORB Protocol (GIOP) state structure for a server
conversation with a client.

major
The GIOP major release number of the reply. Use the following value:

1 Major release 1.

minor
The GIOP minor release number of the reply. Use one of the following values:

0 Minor release 0.
1 Minor release 1.

status
The result of the locate query. Use one of the following values:

GIOP_UNKNOWN_OBJECT
The server has no knowledge of the requested object.

GIOP_OBJECT_HERE
The server can access the requested object.

GIOP_OBJECT_FORWARD
The server provides an Interoperable Object Reference (IOR) to another
server that may have access to the requested object.

request_id
The identifier (ID) of the LocateRequest message to which you are responding.

Normal Return
If successful, the GIOPLocateReplyCreate function returns GIOP_OK.

Error Return

If there is an error, the GIOPLocateReplyCreate function returns a GIOP return
value.

2-82 1I0P Connect for TPF R1 Reference

GIOPLocateReplyCreate

Programming Considerations

e See[‘General Inter-ORB Protocol Return Values” on page 2-5|for more
information about GIOP return values.

e Use this function to reply after receiving a LocateRequest message from the
client.

¢ When status is GIOP_UNKNOWN_OBJECT or GIOP_OBJECT_HERE, the
LocateReply message has no message body. When status is
GIOP_OBJECT_FORWARD, the LocateReply message body consists of an
IOR for the object located on another server.

Examples

The following example creates a LocateReply message in response to a
LocateRequest message that was received from a conversation with a client object.

#include <giop.h>
GIOPStateT gstate;
OctetT major, minor;
unsigned long rid;

/* receive a LocateRequest message from the remote client;
reply using the request ID from the client =/
major=gstate.gs_msg_in.mi_major;
minor=gstate.gs_msg_in.mi_minor;
CDRCodeULong(gstate.gs_coder p, &rid);

switch (GIOPLocateReplyCreate(&gstate, major, minor,
GIOP_OBJECT HERE, rid))
{

case GIOP_OK:
/* the LocateReply message was created successfully */
break;
default:
/* there was some kind of error =/
break;

}

Related Functions
» FGIOPLocateReplySend=Send a LocateReply Message” on page 2-84]

. FGIOPLocateRequestSend—Create and Send a LocateRequest Message to al
Server” on page 2-86

Chapter 2. 1lOP Connect for TPF Functions 2-83

GIOPLocateReplySend

GIOPLocateReplySend-Send a LocateReply Message

This function sends a LocateReply message that was created previously and, if
required, has an Interoperable Object Reference (IOR) appended.

Format

#include <giop.h>
GIOPStatusT GIOPLocateReplySend(GIOPStateT =*giop);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a server
conversation with a client.

Normal Return
If successful, the GIOPLocateReplySend function returns GIOP_OK.

Error Return
If there is an error, the GIOPLocateReplySend function returns a GIOP return value.

Programming Considerations

» See[General Inter-ORB Protocol Return Values” on page 2-5 for more
information about GIOP return values.

e Use this function to reply after receiving a LocateRequest message from the
client.

e The LocateReply message header must first be created by calling the
GIOPLocateReplyCreate function.

* When status is GIOP_UNKNOWN_OBJECT or GIOP_OBJECT_HERE, the
LocateReply message has no message body. When status is
GIOP_OBJECT_FORWARD, the LocateReply message body consists of an
IOR for the object located on another server.

Examples

The following example creates and sends a LocateReply message in response to a
LocateRequest message that was received from a conversation with a client object.

2-84 110P Connect for TPF R1 Reference

GIOPLocateReplySend

#include <giop.h>
GIOPStateT gstate;
OctetT major, minor;
unsigned long rid;

/* receive a LocateRequest message from the remote client;
reply using the request ID from the client */
major=gstate.gs_msg_in.mi_major;
minor=gstate.gs_msg_in.mi_minor;
CDRCodeULong(gstate.gs_coder_p, &rid);

switch (GIOPLocateReplyCreate(&gstate, major, minor,
GIOP_OBJECT HERE, rid))
{

case GIOP_OK:

switch (GIOPLocateReplySend(&gstate))

{

case GIOP_OK:
/* the LocateReply message was sent successfully =*/
break;

default:
/* there was some kind of send error */
break;

}

break;

default:
/* there was some kind of create error */
break;

Related Functions
» [‘GIOPLocateReplyCreate—Create a LocateReply Message” on page 2-82|

Chapter 2. 1lOP Connect for TPF Functions ~2-85

GIOPLocateRequestSend

GIOPLocateRequestSend-Create and Send a LocateRequest Message
to
a Server

This function creates and sends a LocateRequest message to a server with which
a conversation was established.

Format

#include <giop.h>

GIOPStatusT GIOPLocateRequestSend(GIOPStateT *giop
unsigned long objkey len
OctetT xobjkey p);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a server
conversation with a client.

objkey_len
The length of the key for the object that you want to locate.

objkey_p
A pointer to the first octet of the object key.

Normal Return
If successful, the GIOPLocateRequestSend function returns GIOP_OK.

Error Return

If there is an error, the GIOPLocateRequestSend function returns a GIOP return
value.

Programming Considerations

e See[‘General Inter-ORB Protocol Return Values” on page 2-5| for more
information about GIOP return values.

e You can get the length and address of an object key from an Interoperable
Object Reference (IOR) structure or directly from the GIOPStateT structure for
the connection.

Examples
The following example creates and sends a LocateRequest message to a server.

2-86 110P Connect for TPF R1 Reference

GIOPLocateRequestSend

#include <giop.h>
GIOPStateT gstate;
unsigned long keylen
OctetT =*key p;

/* establish a conversation with a server =/

keylen=giop.gs_ctrl blk.cb _objkey Ten;
key p=giop.gs_ctrl _blk.cb_objkey p;
switch (GIOPLocateRequestSend(&gstate, keylen, key p))

{
case GIOP_OK:

/* the Tocate request message was successfully created and sent */
break;

default:

/* there was some kind of create error */
break;

Related Functions
« [GIOPLocateReplyCreate—Create a LocateReply Message” on page 2-82

o [‘GIOPLocateReplySend—Send a LocateReply Message” on page 2-84|

Chapter 2. 1IOP Connect for TPF Functions 2-87

GIOPMessageErrorSend

GlIOPMessageErrorSend—Create and Send a MessageError Message
This function creates and sends a MessageError message.

Format

#include <giop.h>
GIOPStatusT GIOPMessageErrorSend(GIOPStateT =*giop);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a
conversation with a client or server.

Normal Return
If successful, the GI0OPMessageErrorSend function returns GIOP_OK.

Error Return
If there is an error, the GIOPMessageErrorSend function returns a GIOP return value.

Programming Considerations

See [‘General Inter-ORB Protocol Return Values” on page 2-5| for more information
about GIOP return values.

Examples

The following example receives the next inbound message, finds that it is not valid,
replies with a MessageError message, and closes the connection.

#include <giop.h>
GIOPStateT gstate;
GIOPMsgType mtype;

switch (GIOPGetNextMsg(&gstate, &mtype))

{

case GIOP_EBADMAGIC:

case GIOP_EREVISION:

case GIOP_EINV_MSGTYP:

case GIOP_EINV_MSGSZ:
GIOPMessageErrorSend(&gstate);
GIOPCloseConnectionSend(&gstate);
/* Other error handling code */
break;

/* and so on */

}

Related Functions
None.

2-88 110P Connect for TPF R1 Reference

GIOPReject

GIOPReject—Reject a Connection from a Client

This function rejects a connection request from a client. This follows a successful
call to the GIOPListen function.

Format

#include <giop.h>
GIOPStatusT GIOPReject(GIOPStateT xgiop,);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a server
conversation with a client.

Normal Return
If successful, the GIOPReject function returns GIOP_OK.

Error Return
If there is an error, the GIOPReject function returns a GIOP return value.

Programming Considerations

See [FGeneral Inter-ORB Protocol Return Values” on page 2-5 for more information
about GIOP return values.

Examples

The following example listens for and then rejects a connection request from a
client.

#include <giop.h>
GIOPStateT gstate;
IORT =ior_p;

switch (GIOPListen(&gstate, ior_p, TAG_INTERNET IOP))
{
case GIOP_OK:
switch (GIOPReject(&gstate))
{
case GIOP_OK:
/* clean up and finish =/
break;
default:
/* some kind of reject error x/
break;
}
default:
/* there was some kind of Tisten error =*/
break;

Chapter 2. 1lOP Connect for TPF Functions 2-89

GIOPReject

Related Functions
» [‘GIOPAccept—Accept a Connection from a Client” on page 2-60|

» FGIOPListen—Listen for Client Requests to Connect” on page 2-80

2-90 1I0P Connect for TPF R1 Reference

GIOPReplyCreate

GIOPReplyCreate—Create a Reply Message

This function creates a Reply message in response to a Request message from a
client object.

Format
#include <giop.h>
GIOPStatusT GIOPReplyCreate(GIOPStateT *giop,
OctetT major,
OctetT minor,
GIOPReplyStatusType status,
unsigned long request_id

IORServiceContextListT *scxt_p);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a server
conversation with a client.

major
The GIOP major release number of the reply. Use the following value:
1 Major release 1.

minor
The GIOP minor release number of the reply. Use one of the following values:

0 Minor release 0.
1 Minor release 1.

status
The result of answering the request. Use one of the following values:

GIOP_NO_EXCEPTION
The request is completed successfully.

GIOP_USER_EXCEPTION
The request resulted in a user exception, which is contained in the reply.

GIOP_SYSTEM_EXCEPTION
The request resulted in a system exception, which is contained in the reply.

GIOP_LOCATION_FORWARD

The reply contains an Interoperable Object Reference (IOR) for another
server that may be able to satisfy the request.

request_id
The identifier (ID) of the LocateRequest message to which you are responding.

scxt_p
A pointer to the first element of an array of service contexts.

Chapter 2. 1IOP Connect for TPF Functions 2-91

GIOPReplyCreate

Normal Return
If successful, the GIOPLocateReplySend function returns GIOP_OK.

Error Return
If there is an error, the GIOPLocateReplySend function returns a GIOP return value.

Programming Considerations

e See[‘General Inter-ORB Protocol Return Values” on page 2-5|for more
information about GIOP return values.

» Use this function to reply after receiving a Request message from the client.

 After this function returns successfully, use the Common Data Representation
(CDR) functions to code the Reply message body, and then the GIOPReplySend
function to send the reply to the client.

Examples

The following example creates a Reply message in response to a Request
message that was received from a conversation with a client object.

#include <giop.h>
GIOPStateT gstate;
OctetT major, minor;
unsigned long rid;

/* receive a Request message from the remote client;
reply using the request ID from the client */

major=gstate.gs_msg_in.mi_major;

minor=gstate.gs_msg_in.mi_minor;

CDRCodeULong (&gstate, &rid);

switch (GIOPReplyCreate(&gstate, major, minor,
GIOP_NO_EXCEPTION, rid, (IORServiceContextListT *)0))
{

case GIOP_OK:
/* the Reply message was created successfully =*/
break;
default:
/* there was some kind of error */
break;

Related Functions
e [‘GIOPReplySend—Send a Reply Message” on page 2-93

2-92 1I0OP Connect for TPF R1 Reference

GIOPReplySend

GIOPReplySend-Send a Reply Message

This function sends a Reply message to a client.

Format

#include <giop.h>
GIOPStatusT GIOPReplySend(GIOPStateT *giop
BooleanT more_fragments);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a server
conversation with a client.

more_fragments
One of the following:

TRUE
Indicates that this message is a fragment, and more fragments will follow to
complete the message.

FALSE
Indicates that this is a complete message.

Normal Return
If successful, the GIOPReplySend function returns GIOP_OK.

Error Return
If there is an error, the GIOPReplySend function returns a GIOP return value.

Programming Considerations

e See[‘General Inter-ORB Protocol Return Values” on page 2-5| for more
information about GIOP return values.

» After receiving a Request message from the client, do the following:
1. Use the GIOPReplyCreate function to create the Reply message.
2. Use the CDR functions to build the message body.
3. Use the GIOPReplySend function to send the Reply message.

Examples

The following example creates and sends a Reply message in response to a
Request message that was received from a conversation with a client object.

Chapter 2. 1lOP Connect for TPF Functions 2-93

GIOPReplySend

#include <giop.h>
GIOPStateT gstate;
OctetT major, minor;
unsigned long rid;

/* receive a Request message from the remote client;
reply using the request ID from the client */

major=gstate.gs_msg_in.mi_major;

minor=gstate.gs_msg_in.mi_minor;

CDRCodeULong (&gstate, &rid);

switch (GIOPReplyCreate(&gstate, major, minor,
GIOP_NO_EXCEPTION, rid, (IORServiceContextListT *)0))
{

case GIOP_OK:
/* add the reply message body by calling the CDR functions */
switch (GIOPReplySend(&gstate, FALSE))
{
case GIOP_OK:
/* the Reply message was sent successfully =*/
break;
default:
/* there was some kind of send error */
break;

}

break;

default:
/* there was some kind of create error x/
break;

Related Functions
. |“GIOPReQIyCreate—Create a Reply Message” on page 2-91|

2-94 1I0P Connect for TPF R1 Reference

GIOPRequestCreate

GIOPRequestCreate—Create a Request Message

This function creates a Request message to be sent from a client to a server over
a previously established conversation.

Format

#include <giop.h>

GIOPStatusT GIOPRequestCreate(GIOPStateT *giop
char *xoperation_p,
unsigned long principal_len,
OctetT *principal_p,
IORServiceContextListT *scxt_p,
BooleanT no_response) ;

giop

A pointer to the General Inter-ORB Protocol (GIOP) state structure for a client
conversation with a server.

operation_p
A pointer to a string that contains the name of the operation (member function)
to be called on the server object.

principal_len
The size of the principal array.

principal_p
A pointer to the first octet in the principal array.

scxt_p
A pointer to the first element of an array of service contexts.

no_response
A flag that indicates the expected response. Use one of the following values:

FALSE
A response is expected from the server.

TRUE
A response is not expected from the server.

Normal Return
If successful, the GIOPRequestCreate function returns GIOP_OK.

Error Return
If there is an error, the GIOPRequestCreate function returns a GIOP return value.

Programming Considerations

e See|‘General Inter-ORB Protocol Return Values” on page 2-5|for more
information about GIOP return values.

e The principal identifies, in an ORB-dependent way, the client sending the
request. In Common Data Representation (CDR), the principal is encoded as a
sequence of octets.

Chapter 2. 1lOP Connect for TPF Functions ~ 2-95

GIOPRequestCreate

 After this function returns successfully, call the CDR functions to build the
request body and then call the GIOPRequestSend function to send the completed
Request message to the server.

e The GIOP message version (major or minor) depends on the version of the
Internet Inter-ORB Protocol (IIOP) profile used to open the connection; that is,
the version is determined by the server.

Examples
The following example creates a Request message.

#include <giop.h>

#include <stdlib.h>

#include <string.h>

#define OPERATION "aMethod"

GIOPStateT gstate;

char *op;

/* establish a conversation with a server x/

op=malloc(sizeof OPERATION);

memcpy (op, OPERATION, sizeof OPERATION);

switch (GIOPRequestCreate(&gstate, op, 0, (OctetT =*)0,
(IORServiceContextListT *)0, FALSE))

{

case GIOP_OK:
/* the request message was successfully created */
break;

default:
/* there was some kind of create error */
break;

Related Functions
» [‘GIOPRequestSend—Send a Request Message” on page 2-97|

2-96 110P Connect for TPF R1 Reference

GIOPRequestSend

GIOPRequestSend-Send a Request Message

This function sends a previously created Request message from a client to a server
over a previously established conversation.

Format

#include <giop.h>

GIOPStatusT GIOPRequestSend(GIOPStateT =*giop
BooleanT no_response,
BooleanT more_fragments) ;

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a client
conversation with a server.

no_response
A flag that indicates the expected response. Use one of the following values:

FALSE
A response is expected from the server.

TRUE
A response is not expected from the server.

more_fragments
One of the following:

TRUE
Indicates that this message is a fragment, and more fragments will follow to
complete the message.

FALSE
Indicates that this is a complete message.

Normal Return
If successful, the GIOPRequestSend function returns GIOP_OK.

Error Return
If there is an error, the GIOPRequestSend function returns a GIOP return value.

Programming Considerations
e See |“General Inter-ORB Protocol Return Values” on page 2-5 for more

information about GIOP return values.

» Call the GIOPRequestCreate function to create a Request message and call the
Common Data Representation (CDR) functions to build the request body before
calling the GIOPRequestSend function to send the completed Request message
to the server.

Chapter 2. 1IOP Connect for TPF Functions 2-97

GIOPRequestSend

Examples
The following example creates and sends a Request message.

#include <giop.h>

#include <stdlib.h>

#include <string.h>

#include <cdr.h>

#define OPERATION "aMethod"

GIOPStateT gstate;

char *op;

/* establish a conversation with a server =/

op=malloc(sizeof OPERATION);

memcpy (op, OPERATION, sizeof OPERATION);

switch (GIOPRequestCreate(&gstate, op, 0, (OctetT =)0,
(IORServiceContextListT =)0, FALSE))

{

case GIOP_OK:
/* the request message was successfully created,
call CDR functions to build the request body */

switch(GIOPRequestSend(&gstate;, FALSE, FALSE))

{

case GIOP_OK:
/* the request message was successfully sent =/
break;

default:
/* there was some kind of send error */
break;

}

break;

default:
/* there was some kind of create error x/
break;

Related Functions
. |“GIOPReguestCreate—Create a Request Message” on page 2-95|

2-98 1I0P Connect for TPF R1 Reference

GIOPStopListen

GIOPStopListen—Notify Clients That the Server Is No Longer Listening
for New Connections

This function notifies connected clients that the server will not be listening for new
connections in the future.

Format

#include <giop.h>
GIOPStatusT GIOPStopListen(GIOPStateT =*giop);

giop
A pointer to the General Inter-ORB Protocol (GIOP) state structure for a server
conversation with a client.

Normal Return
If successful, the GIOPStopListen function returns GIOP_OK.

Error Return
If there is an error, the GIOPStopListen function returns a GIOP return value.

Programming Considerations

e See[‘General Inter-ORB Protocol Return Values” on page 2-5|for more
information about GIOP return values.

e This function does not affect conversations that are currently established.

e (Call this function only after the GIOPListen function has already been called.

Examples

The following example notifies a connected client that the server will not accept
future connection requests.

#include <giop.h>
GIOPStateT gstate;

switch (GIOPStopListen(&gstate))

{
case GIOP_OK:

/* the client knows that the server will not listen for future connections */
break;
default:
/* there was some kind of error =/
break;

}

Related Functions
[‘GIOPListen—Listen for Client Requests to Connect” on page 2-80|

Chapter 2. 1lOP Connect for TPF Functions ~ 2-99

iiop_error_code

iiop_error_code—Get Error Code for Last Transmission Control
Protocol/Internet Protocol Error

This function gets the error code for the last Transmission Control Protocol/Internet
Protocol (TCP/IP) error. Use this function to determine the type of error when a
function receives a TCP/IP (or transport) error.

Format

#include <tcpch.h>
II0PStatusT iiop_error_code(void);

Normal Return

The iiop_error_code function returns an 1IOPStatusT value that describes the last
TCP/IP error.

Error Return
Not applicable.

Programming Considerations

 See [internet Inter-ORB Protocol Return Values” on page 2-6|for more
information about the IIOP return values.

e This function maps the TCP/IP error code to an Internet Inter-ORB Protocol
(IIOP) error code.

e The General Inter-ORB Protocol (GIOP) functions store the IIOP status in the
TCP state structure. This status can then be accessed directly from the
structure. This function allows event handlers to report standard TCP/IP errors
and maintain IIOP status in the TCP control block.

Examples

The following example receives the next inbound message, determines that there is
a TCP/IP error, and gets the TCP/IP error code.

2-100 110P Connect for TPF R1 Reference

iilop_error_code

#include <giop.h>
GIOPStateT gstate;
GIOPMsgType mtype;

switch (GIOPGetNextMsg(&gstate, &mtype))
{
case GIOP_ECLOSED:
case GIOP_ETRANSPORT:
switch (iiop_error_code))
{
case IIOP_EZERO_READ:
/* handle error =/
break;
case IIOP_ETIMEDOUT:
/* handle error */
break;
case ITOP_ENETWORK_ERROR:
/* handle error */
break;
case IIOP_EIO_ERROR:
/* handle error =/
break;
case IIOP_EUNKNOWN:
/* handle error =/
break;
/* and so on */
}
break;
/* and so on */

}

Related Functions
. |“GIOPAccth—Accth a Connection from a Client” on page 2-60|

» [‘GIOPCancelRequestSend—Cancel a Previously Sent Request Message” on|

[page 2-65|
» FGIOPCloseConnectionSend—Close an Open Connection” on page 2-67|

¢ [‘GIOPConnect—Connect a Client to a Server’” on page 2-68

» [‘GIOPFragSend—Send a Fragment Message” on page 2-72
» [‘GIOPGetNextMsg—Get the Next Incoming General Inter-ORB Protocol|

[Message™ on page 2-75

» [‘GIOPListen—Listen for Client Requests to Connect” on page 2-80|

» [‘GIOPLocateReplyCreate—Create a LocateReply Message” on page 2-82|

 [‘GIOPLocateReplySend—Send a LocateReply Message” on page 2-84|

. FGIOPLocateReguestSend—Create and Send a LocateRequest Message to a
Server” on page 2-86

. :“GIOPMessa eErrorSend—Create and Send a MessageError Message” o
‘Eaée 2-88|

[‘GIOPReject—Reject a Connection from a Client’ on page 2-89|

[‘GIOPReplyCreate—Create a Reply Message” on page 2-91|

Chapter 2. 1IOP Connect for TPF Functions 2-101

iiop_error_code

» FGIOPRequestCreate—Create a Request Message” on page 2-95)|

. |“GIOPReguestSend—Send a Request Message” on page 2-97|

2-102 110P Connect for TPF R1 Reference

IORAddTaggedProfile

IORAddTaggedProfile—Add a Tagged Profile to an Interoperable Object
Reference Structure

Format

Normal Return

Error Return

This function adds a tagged profile to an Interoperable Object Reference (IOR)
structure.

#include <ior.h>

IORStatusT IORAddTaggedProfile(IORT *ijor_p,
IORProfileldT tag,
unsigned long data len,
OctetT xdata_p,
GIOPA1TocFpT getmem)

ior_p
A pointer to the target IOR structure.

tag
The tag type identifier of the profile to be added to the IOR.

data_len
The length of the profile data to be added to the IOR.

data_p
A pointer to the profile data to be added to the IOR. The data is an array of
octets that hold encapsulated information.

getmem
A pointer to the memory allocation function of the calling application. This
function is called to allocate a memory block. The I0RAddTaggedProfile
function copies the profile data in the allocated memory block. If the value of
the getmem parameter is NULL, the passed data is used directly (data pointed
to by the data_p parameter).

If successful, the I0RAddTaggedProfile function returns IOR_OK.

If there is an error, the I0RAddTaggedProfile function returns an IOR return value.
See [‘Interoperable Object Reference Return Values” on page 2-7|

Programming Considerations

* If the calling application supplies a memory allocation function (getmem
parameter), the calling application is responsible for deallocating the memory.

e The data pointed to by the data_p parameter is an encapsulation octet stream
of either an Internet Inter-ORB Protocol (IIOP) profile body or a multiple
component profile. The caller encapsulates the data using the IOREncapXX
functions before calling the I0RAddTaggedProfile function.

Chapter 2. 1IOP Connect for TPF Functions 2-103

IORAddTaggedProfile

Examples
The following example adds a tagged profile to an IOR structure.
#include <ior.h>
IORT MyIOR;

char MyTypeld p[] = "MessageDisplay";
IORCreatelor(&MyIOR, MyTypeId p, MyAllocationFunction);

/* Create an object key */

/* Encapsulate the object key, if necessary */

/* Create IIOP profile body and assign the IIOP version number, TCP/IP
address and object key fields to the profile body structure. */

/* Encapsulate the profile body */

I0RAddTaggedProfile(&MYIOR, TAG_INTERNET IOP, Datalength, DataPtr, 0);

Related Functions
 [‘CDRAlloc—Register the Buffer Allocation Callback Function of a Common Data|

Representation Coder” on page 2-10

» FCDRDealloc—Buffer Deallocation Callback Function of a Common Data]
Representation Coder” on page 2-40

2-104 110P Connect for TPF R1 Reference

IORCreatelor

IORCreatelor-Initialize an Interoperable Object Reference Structure
This function initializes an Interoperable Object Reference (IOR) structure.

Format

#include <ior.h>

IORStatusT IORCreatelor(IORT *ior_p,
char *typid p,
unsigned long max_profiles,
GIOPA1TocFpT getmem)

ior_p
A pointer to the IOR structure to be initialized.

typid_p
A pointer to the type identifier of the IOR to be initialized.

max_profiles
The number of tagged profiles to be maintained by this IOR.

getmem
A pointer to the memory allocation function of the calling application.

Normal Return
If successful, the I0RCreatelor function returns IOR_OK.

Error Return

If there is an error, the I0RCreatelor function returns an IOR return value. See
[“Interoperable Object Reference Return Values” on page 2-7|

Programming Considerations

Use the I0RFree function to free the memory associated with the contents of the
IOR structure before freeing the structure itself.

Examples
The following example initializes an IOR structure.

Chapter 2. 1IOP Connect for TPF Functions 2-105

IORCreatelor

#include <ior.h>

IORT MyIOR;

char MyTypeld p[] = "MessageDisplay";
IORCreatelor(&MyIOR, MyTypeld p, MyAllocationFunction);
/* process IOR */

IORFree(&MyIOR, MyDeallocationFunction);
return;

/* My Memory Allocation function =*/

void *MyAllocationFunction(unsigned Tong Size)
{

void *m;

m = malloc ((unsigned int) Size);

return m;

}

/* My Memory Deallocation Function x/

void MyDeallocationFunction(void *Data_p)

{

if (Data_p)

free (Data_p);

Related Functions

 [IORAddTaggedProfile—Add a Tagged Profile to an Interoperable Object]

Reference Structure” on page 2-103

o FIORFree—Free Resources Allocated to an Interoperable Object Reference]
Structure” on page 2-11

e User-written function of type GIOPAllocFpT
e User-written function of type GIOPDeallocFpT.

2-106 110P Connect for TPF R1 Reference

IOREncapliOP

IOREncapllOP-Encapsulate Internet Inter-ORB Protocol Profile Body

Format

Normal Return

Error Return

This function encapsulates the generic Internet Inter-ORB Protocol (IIOP) profile
body, common to both Versions 1.0 and 1.1 of IIOP. The Version 1.1 specifics are
coded manually by the application, following this call.

#include <encap.h>

IORStatusT IOREncapIIOP(CDRCoderT *cod_p,
OctetT *major_p,
OctetT *minor_p,
char **host_pp,

unsigned short =port_p,
unsigned long =*objkey len_p,
Octet *xobjkey pp);

cod_p
A pointer to the Common Data Representation (CDR) coder that is used to
encode the Interoperable Object Reference (IOR).

major_p
A pointer to the major IIOP version number.

minor_p
A pointer to the minor IIOP version number.

host_pp
A pointer to the address of the host name.

port_p
A pointer to the port number.

objkey_len_p
A pointer to the length of the object key.

objkey_pp
A pointer to the address of the object key.

If the IOREncapIIOP function is successful, it returns IOR_OK.

If a null coder is specified, the I0REncapIIOP function returns IOR_ENULL_CODER.

Programming Considerations

e See [‘Interoperable Object Reference Return Values” on page 2-7for more
information about IOR return values.

e Under normal conditions in encoding mode, translations from EBCDIC to the
ASCII character set take place. Under normal conditions in decoding mode,
translations from the ASCII to EBCDIC character set take place. If the host
name is coded in EBCDIC, it will automatically be converted to ASCII. You can
suppress translation from EBCDIC to ASCII during encoding or decoding by
first calling the CDR_NOCHARSET_CONV macro.

Chapter 2. 1IOP Connect for TPF Functions 2-107

IOREncapliOP

Examples
The example that follows creates an 1IOP IOR by using the following algorithm:

1. Call the I0RCreatelor function to initialize an IOR structure.
2. Create an object key that identifies the object in the server.

3. Optionally, encapsulate this object key in a sequence of octets by using the
CDR functions.

4. Create an IIOP profile body of type 1IOPBody_1_1T and assign the IIOP
version number, Transmission Control Protocol/Internet Protocol (TCP/IP)
address, and object key fields of the profile body structure.

5. Encapsulate this profile body in a sequence of octets by using the CDR
functions.

6. Call the I0RAddTaggedProfile function to add the encapsulated profile body to
the IOR.

7. Repeat steps 4 to 6 to add additional [IOP profile bodies to the IOR, if required.

#include <giop.h>
CDRCoderT coder;

IORT idor; /* IO0R. =/

char *typeid p; /* I0Rtype id. */

110PBody 1 1T iiop_body; /* 110P profile body. */

const char *okey p; /* Object key. */

unsigned long okey len;

OctetT *pdata_p; /* Encapsulated profile body */
unsigned long plen;

unsigned long num_tc = 0; /* Number of tagged components. x/

/* Initialize CDR coder =/

/* Step 1: Create an initial IOR structure. */
typeid p="IDL:MessageDisplay:1.0";
IORCreateIOR(&ior, typeid p, 1, malloc);

/* Step 2: Create an object key. */
okey p = "my object";
okey len = strlen(okay p);

/* Step 3: Encapsulate the object key. */

/* (The object key is coded in EBCDIC and is automatically =*/

/* converted to ASCII by the CDRCodeNString() function.) */
CDREncapCreate(&coder, CDR_BYTE_ORDER);

CDRCodeNString(&coder, &okey p, &okey len);

CDREncapEnd(&coder, &iiop_body.ib objkey p, &iiop_body.ib_objkey len, malloc);

/* Step 4: Assign version number, address and */
/* encapsulated object key to profile body. */
/* (The assignment of the encapsulated object key */

/* to iiop_body.ib.objkey p is actually implicit in step 3.) */
iiop_body.ib_major = iiop_body.ib_minor = 1; /+IIOP 1.1 %/
iiop_body.ib _host p = malloc(strlen ("my host") + 1);
strcpy(iiop_body.ib_host p, "my host");

iiop_body.ib_port = 5678;

2-108 110P Connect for TPF R1 Reference

IOREncapliOP

/* Step 5: Encapsulate the profile body. */

CDREncapCreate(&coder, CDR_BYTE_ ORDER);

IOREncapIIOP(&coder, &iiop_body.ib_major, &iiop_body.ib_minor,
&iiop_body.ib_host_p, &iiop_body.ib_port,
&iiop_body.ib_objkey len, &iiop_body.ib objkey p);

CDRCodeULong (&coder, &num_tc); /*IIOP 1.1 only */

CDREncapEnd(&coder, &pdate p, &plen, malloc);

free (iiop_body.ib_host_p);

/* Step 6: Add encapsulated profile body to IOR. */
I0RAddTaggedProfile(&ior, TAG_INTERNET IOP, plen, pdata_p, getmem);

Related Functions

. |“CDREncaQCreate—Initialize a Common Data Representation Coder to Begid
Encoding an Encapsulated Data Buffer” on page 2-44

|“CDREncaQEnd—ComQIete Encoding an Encapsulated Data Buffer” on|

FIORAddTaggedProfile—Add a Tagged Profile to an Interoperable Object]

Reference Structure” on page 2-103

* [IORCreatelor—Initialize an Interoperable Object Reference Structure” on|
‘ﬁaae 2-105]

Chapter 2. 1lOP Connect for TPF Functions 2-109

IORFree

IORFree—Free Resources Allocated to an Interoperable Object
Reference
Structure

This function frees all resources that are allocated to an Interoperable Object
Reference (IOR) structure.

Format

#include <ior.h>
void IORFree(IORT *ior_p,
GIOPDeallocFpT delmem);

ior_p
A pointer to the IOR structure to be initialized.

delmem
A pointer to the memory deallocation function of the calling application.

Normal Return
Void.

Error Return
Not applicable.

Programming Considerations

Call this function to free the memory associated with the contents of the IOR
structure before freeing the structure itself.

Examples
The following example frees resources associated with an IOR structure.

#include <ior.h>
IORT MyIOR;
IORCreatelor(&MyIOR, MyTypeld p, MyAllocationFunction);

/* process IOR, add Tagged Profile, etc =/

IORFree(&MyIOR, MyDeallocationFunction);
return;

/* My Memory Allocation function */

void *MyAllocationFunction(void *Data_p)

{

if (Data_p)
free (Data_p);
}

2-110 110P Connect for TPF R1 Reference

IORFree

Related Functions

. :“IORCreateIor—InitiaIize an Interoperable Object Reference Structure” on|
Eaﬁe 2-105|

e User-written function of type GIOPAllocFpT

e User-written function of type GIOPDeallocFpT.

Chapter 2. 1IOP Connect for TPF Functions 2-111

IORFromString

IORFromString—Convert an Interoperable Object Reference String to an
IOR
Structure

This function converts an Interoperable Object Reference (IOR) string to an IOR
structure.

Format

#include <ior.h>

IORStatusT IORFromString(IORT *ior_p,
unsigned char *iorstr_p,
GIOPATlocFpT getmem,
GIOPA1TocFpT delmem)

ior_p
A pointer to the target IOR structure.

iorstr_p
A pointer to the address of the IOR string to be converted.

getmem
A pointer to the memory allocation function of the calling application.

delmem
A pointer to the memory deallocation function of the calling application.

Normal Return
If successful, the I0RFromString function returns IOR_OK.

Error Return

If there is an error, the I0RFromString function returns an IOR return value. See
[FInteroperable Object Reference Return Values” on page 2-7|

Programming Considerations
The format of the string must be "IOR: string".

Examples
The following example converts an IOR string to an IOR structure.

#include <ior.h>
IORT MyIOR;
char *MyIORString[]="IOR: Data containing the ID type and Tagged Profiles";

IORFromString (&MyIOR, MyIORString, MyAllocationFunction, MyDeallocationFunction);

Related Functions

. :“IORFree—Free Resources Allocated to an Interoperable Object Referencel
[Structure” on §a§e 2-110)

» FIORToString—Convert an Interoperable Object Reference Structure to a String’]
[on page 2-114

e User-written function of type GIOPAIllocFpT

2-112 110P Connect for TPF R1 Reference

IORFromString

e User-written function of type GIOPDeAllocFpT.

Chapter 2. 1IOP Connect for TPF Functions 2-113

IORToString

IORToString—Convert an Interoperable Object Reference Structure to a

String

Format

Normal Return

Error Return

This function converts an Interoperable Object Reference (IOR) structure to a
string.

#include <ior.h>

IORToString (IORT *ior_p,
unsigned char **xiorstr_pp,
GIOPATTocFpT getmem) ;

ior_p
A pointer to the target IOR structure.

iorstr_p
A pointer to the address obtained from the getmem parameter, which will hold
the resulting IOR string.

getmem
A pointer to the memory allocation function of the calling application. This
function allocates the memory to hold the resulting IOR string.

If successful, the I0RToString function returns IOR_OK.

If there is an error, the I0RToString function returns an IOR return value. See
[Interoperable Object Reference Return Values” on page 2-7]

Programming Considerations

Examples

e The resulting string is in the form "IOR: string".

e The resulting string can be used by the server application to publish an IOR.

The following example converts an IOR structure to a string.

#include <ior.h>

IORT MYIOR;

unsigned char =*MyIORString;

IORFromString (&MyIOR, MyIORString, MyAllocationFunction);

Related Functions

» FCDRCodeNOctet—Encode or Decode Octet Values” on page 2-26|
» ['CDRCodeString—Encode or Decode a String Value” on page 2-34]

» [‘CDRCodeULong—Encode or Decode an Unsigned Long Value” on page 2-36|

 [‘CDREncaplnit-Initialize a Common Data Representation Decoder to Decode|
or Encode an Encapsulated Data Buffer” on page 2-48

» [IORFromString—Convert an Interoperable Object Reference String to an IOR|
Structure” on page 2-112

2-114 110P Connect for TPF R1 Reference

IORToString

e User-written function of type GIOPAIlocFpT.

Chapter 2. 1IOP Connect for TPF Functions 2-115

tpf_asc2ebc, tpf_ebc2asc

tpf_asc2ebc, tpf_ebc2asc—-Convert Characters between ISO 8859-1
(ASCIIl) and IBM-1047 (US EBCDIC)

These functions do the following respectively:
» tpf_asc2ebc converts an ISO 8859-1 coded array of characters to IBM-1047
coding.

» tpf_ebc2asc converts an IBM-1047 coded array of characters to 1ISO 8859-1
coding.

Format

#include <cdr.h>
int tpf_asc2ebc(char *first_char, int char_count);
int tpf_ebc2asc(char *first_char, int char_count);

first_char
A pointer to the address of the first character to be converted.

char_count
The number of characters to be converted.

Normal Return
These functions return the number of bytes that were translated.

Error Return
Not applicable.

Programming Considerations

You can modify the conversion tables to convert to a different single-byte-coded
code page. See TPF Application Programming for more information.

Examples

The following example asserts EBCDIC on the wire and then receives an ASCII
coded string and manually converts it to EBCDIC.

#include <cdr.h>

CDRCoderT coder;

char buffer[80];

char *bptr = buffer;

unsigned long len = sizeof buffer;
CDRInit(&coder, CDR BYTE ORDER, 512);
CDREbcdic_OTW(&coder);

CDRCodeNString(&coder, &bptr, &len);
tpf_asc2ebc(buffer, sizeof buffer);

2-116 110P Connect for TPF R1 Reference

tpf_asc2ebc, tpf_ebc2asc

Related Functions
« [‘CDRCodeChar—Encode or Decode a Char Value” on page 2-16|

» FCDRCodeNString—Encode or Decode a String Value” on page 2-28

» FCDRCodeString—Encode or Decode a String Value” on page 2-34]

“CDREbcdic_ OTW, CDRS390_OTW-Override Platform-Oriented Data

Conversions” on page 2-42|

Chapter 2. 1IOP Connect for TPF Functions 2-117

tpf_asc2ebc, tpf_ebc2asc

2-118 110P Connect for TPF R1 Reference

Index

A

accept a connection from a client 2-60
add a buffer to a CDR coder 2-8
add a tagged profile to an IOR structure 2-103
API functions
CDRAddBuffer 2-8
CDRAlloc 2-10
CDRBuflen 2-12
CDRByteSex 2-13
CDRCodeBool 2-14
CDRCodeChar 2-16
CDRCodeDouble 2-18
CDRCodeEnum 2-20
CDRCodeFloat 2-22
CDRCodelLong 2-24
CDRCodeNOctet 2-26
CDRCodeNString 2-28
CDRCodeOctet 2-30
CDRCodeShort 2-32
CDRCodeString 2-34
CDRCodeULong 2-36, 2-38
CDRDealloc 2-40
CDREbcdic_OTW, CDRS390_OTW 2-42
CDREncapCreate 2-44
CDREncapEnd 2-46
CDREncaplnit 2-48
CDRFree 2-50
CDRInit 2-51
CDRMode 2-53
CDRNeedBuffer 2-54
CDRReset 2-56
CDRRewind 2-57
d390tolEEE 2-58
dIEEEt0390 2-58
f390tolEEE 2-58
fIEEEto390 2-58
GIOPAccept 2-60
GIOPAutoFrag 2-62
GIOPAutoFragGetSize 2-64
GIOPCancelRequestSend 2-65
GIOPCloseConnectionSend 2-67
GIOPConnect 2-68
GIOPFragCreate 2-70
GIOPFragSend 2-72
GIOPGetNextMsg 2-75
GIOPInit 2-78
GIOPListen 2-80
GIOPLocateReplyCreate 2-82
GlOPLocateReplySend 2-84
GlOPLocateRequestSend 2-86
GlOPMessageErrorSend 2-88

© Copyright IBM Corp. 2000

API functions (continued)
GIOPReject 2-89
GIOPReplyCreate 2-91
GIOPReplySend 2-93
GIOPRequestCreate 2-95
GIOPRequestSend 2-97
GIOPStopListen 2-99
iiop_error_code 2-100
IORAddTaggedProfile 2-103
IORCreatelor 2-105
IOREncapllOP 2-107
IORFree 2-110
IORFromString 2-112
IORToString 2-114
tpf_asc2ebc, tpf_ebc2asc 2-116

APIls 1-5

architecture 1-2

C

C/C++ language 1-4

cancel a Request message 2-65
CDRAddBuffer function 2-8
CDRAlloc function 2-10
CDRBUuflen function 2-12
CDRByteSex function 2-13
CDRCodeBool function 2-14
CDRCodeChar function 2-16
CDRCodeDouble function 2-18
CDRCodeEnum function 2-20
CDRCodeFloat function 2-22
CDRCodelLong function 2-24
CDRCodeNOctet function 2-26, 2-38
CDRCodeNString function 2-28
CDRCodeOctet function 2-30
CDRCodeShort function 2-32
CDRCodeString function 2-34
CDRCodeULong function 2-36
CDRDealloc function 2-40

CDREbcdic_OTW, CDRS390_OTW function 2-42

CDREnNcapCreate function 2-44
CDREnNcapENd function 2-46
CDREncaplnit function 2-48
CDRFree function 2-50
CDRiInit function 2-51
CDRMode function 2-53
CDRNeedBuffer function 2-54
CDRReset function 2-56
CDRRewind function 2-57
change the automatic fragmentation behavior
close a connection 2-67

2-62

complete encoding an encapsulated data buffer

connect a client to a server 2-68

convert an I0OR string to an IOR structure 2-112

convert an IOR structure to a string 2-114

convert characters between ISO 8859-1 (ASCII)
IBM-1047 (US EBCDIC) 2-116

convert floating point numbers between IBM S/390 and

IEEE representations 2-58
create a Fragment message 2-70
create a LocateReply message 2-82
create a LocateRequest message 2-86
create a MessageError message 2-88
create a Reply message 2-91
create a Request message 2-95

D

d390tolEEE function 2-58
dIEEEt0390 function 2-58

E

encapsulate 1IOP profile body 2-107

encode or decode a Boolean value 2-14
encode or decode a char value 2-16

encode or decode a double value 2-18

encode or decode a float value 2-22

encode or decode a long value 2-24

encode or decode a short value 2-32

encode or decode a string value 2-28, 2-34
encode or decode an enumeration value 2-20
encode or decode an octet value 2-30

encode or decode an unsigned long value 2-36
encode or decode an unsigned short value 2-38
encode or decode octet values 2-26

F

f390tolEEE function 2-58
fIEEEto390 function 2-58
find a buffer in a CDR coder structure 2-54
Fragment message
creating 2-70
sending 2-72
free all buffers connected to a CDR coder 2-50

free resources allocated to an IOR structure 2-110

functional overview 1-1

G

get error code for TCP/IP error 2-100
get the automatic fragment size 2-64
get the next incoming message 2-75
GIOPAccept function 2-60
GIOPAutoFrag function 2-62
GIOPAutoFragGetSize function 2-64

X-2 110P Connect for TPF R1 Reference

GIOPCancelRequestSend function 2-65
GIOPCloseConnectionSend function 2-67
GIOPConnect function 2-68
GIOPFragCreate function 2-70
GIOPFragSend function 2-72
GIOPGetNextMsg function 2-75
GIOPInit function 2-78

GIOPListen function 2-80
GlOPLocateReplyCreate function 2-82
GlOPLocateReplySend function 2-84
GIOPLocateRequestSend function 2-86
GlOPMessageErrorSend function 2-88
GIOPReject function 2-89
GIOPReplyCreate function 2-91
GIOPReplySend function 2-93
GIOPRequestCreate function 2-95
GIOPRequestSend function 2-97
GIOPStopListen function 2-99

H

header files
including 2-1

IIOP Connect for TPF

APIls 1-5

architecture 1-2

C/C++ language 1-4

functional overview 1-1

interfaces 1-4

migration scenarios 1-5

operating environment requirements 1-3

overview 1-1

planning information 1-3

prerequisite APARs 1-1

publications 1-4
iiop_error_code function 2-100
initialize a CDR coder structure 2-51
initialize a CDR coder to begin encoding an

encapsulated data buffer 2-44
initialize a CDR decoder to decode or encode an
encapsulated data buffer 2-48

initialize a GIOP state structure 2-78
initialize an IOR structure 2-105
interfaces 1-4
IORAddTaggedProfile function 2-103
IORCreatelor function 2-105
IOREnNcapllOP function 2-107
IORFree function 2-110
IORFromString function 2-112
IORToString function 2-114

L

listen for client requests to connect 2-80
LocateReply message

creating 2-82

sending 2-84
LocateRequest message

creating 2-86

sending 2-86

M

MessageError message
creating 2-88
sending 2-88

migration scenarios 1-5

N

notify clients that the server is no longer listening for
new connections 2-99

)

operating environment requirements 1-3
override platform-oriented data conversions 2-42
overview 1-1

P

planning information 1-3
prerequisite APARs 1-1
publications 1-4

R

register the buffer allocation callback function of a CDR
coder 2-10
register the buffer deallocation callback function of a
CDR coder 2-40
reject a connection from a client 2-89
Reply message
creating 2-91
sending 2-93
Request message
creating 2-95
sending 2-97
reset the current buffer of a CDR coder 2-56
return to the start of a CDR coder buffer 2-57
return total buffer length in use 2-12
return values
for CDR functions 2-4
for GIOP functions 2-5
for IOR functions 2-7
returned in the TCP/IP control block 2-6

S

send a Fragment message 2-72

send a LocateReply message 2-84

send a LocateRequest message 2-86

send a MessageError message 2-88

send a Reply message 2-93

send a Request message 2-97

set the byte order flag of a CDR coder structure 2-13
set the CDR coder mode 2-53

T

tpf_asc2ebc, tpf_ebc2asc function 2-116
type definitions

for CDR functions 2-2

for GIOP functions 2-2

for IOR functions 2-3

general 2-1

in the TCP/IP control block 2-4

Index X-3

Communicating Your Comments to IBM

Internet Inter-ORB Protocol Connect for TPF
Reference
Release 1

Publication No. SH31-0188-01

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

 If you prefer to send comments by mail, use the RCF at the back of this book.
e If you prefer to send comments by FAX, use this number:

— United States and Canada: 1 + 845 + 432 + 9788
— Other countries: (international code) + 845 + 432 + 9788

* If you prefer to send comments electronically, use this network ID:
— Internet e-mail: tpfid@us.ibm.com
— IBMLINK (and DiallBM in Europe): ETR function of ServiceLink
Make sure to include the following in your note:

¢ Title and publication number of this book
e Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

Internet Inter-ORB Protocol Connect for TPF
Reference
Release 1

Publication No. SH31-0188-01

Overall, how satisfied are you with the information in this book?

Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Overall satisfaction O O O m] m]
How satisfied are you that the information in this book is:
Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Accurate O O O m] m]
Complete o m] m] a m]
Easy to find O O O m] O
Easy to understand O O O m] m]
Well organized O O O m] m]
Applicable to your tasks O O O m] O

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? O Yes O No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments

in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers' Comments — We'd Like to Hear from You

SH31-0188-01

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
TPF Systems Information Development

Mail Station P923

2455 SOUTH ROAD

POUGHKEEPSIE NY 12601-5400

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SH31-0188-01

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

File Number: S370/30XX-40
Program Number: 5799-D64

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

	Contents
	Figures
	Tables
	Notices
	Permission Notices
	Trademarks

	About This Book
	Before You Begin
	Who Should Read This Book
	How This Book Is Organized
	Conventions Used in the IIOP Connect for TPF Library
	Related Information
	IBM IIOP Connect for TPF Books
	IBM Transaction Processing Facility (TPF) 4.1 Books
	Non-IBM Books

	How to Send Your Comments

	Summary of Changes
	Major Revision SH31-0188-01
	Changed Information

	Chapter 1. Internet Inter-ORB Protocol Connect for TPF
	Prerequisite APARs
	Functional Overview
	Architecture
	Operating Environment Requirements and Planning Information
	Interfaces
	C/C++ Language
	General Use C/C++ Language Header Files
	Link-Edited Modules

	Publications
	Application Programming Interfaces (APIs)
	Migration Scenarios

	Chapter 2. IIOP Connect for TPF Functions
	Type Definitions
	General Type Definitions
	Common Data Representation Type Definitions
	General Inter-ORB Protocol Type Definitions
	Interoperable Object Reference Type Definitions
	TCP/IP Control Block

	Return Values
	Common Data Representation Return Values
	General Inter-ORB Protocol Return Values
	Internet Inter-ORB Protocol Return Values
	Interoperable Object Reference Return Values

	CDRAddBuffer–Add a Buffer to a Common Data Representation Coder
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRAlloc–Register the Buffer Allocation Callback Function of a Common Data Representation Coder
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRBuflen–Return Total Buffer Length in Use
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRByteSex–Set the Byte Order Flag of a Common Data Representation Coder Structure
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRCodeBool–Encode or Decode a Boolean Value
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRCodeChar–Encode or Decode a Char Value
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRCodeDouble–Encode or Decode a Double Value
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRCodeEnum–Encode or Decode an Enumeration Value
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRCodeFloat–Encode or Decode a Float Value
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRCodeLong–Encode or Decode a Long Value
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRCodeNOctet–Encode or Decode Octet Values
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRCodeNString–Encode or Decode a String Value
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRCodeOctet–Encode or Decode an Octet Value
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRCodeShort–Encode or Decode a Short Value
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRCodeString–Encode or Decode a String Value
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRCodeULong–Encode or Decode an Unsigned Long Value
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRCodeUShort–Encode or Decode an Unsigned Short Value
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRDealloc–Buffer Deallocation Callback Function of a Common Data Representation Coder
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDREbcdic_OTW, CDRS390_OTW–Override Platform-Oriented Data Conversions
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDREncapCreate–Initialize a Common Data Representation Coder to Begin Encoding an Encapsulated Data Buffer
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDREncapEnd–Complete Encoding an Encapsulated Data Buffer
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDREncapInit–Initialize a Common Data Representation Decoder to Decode or Encode an Encapsulated Data Buffer
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRFree–Free All Buffers Connected to a Common Data Representation Coder
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRInit–Initialize a Common Data Representation Coder Structure
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRMode–Set the Common Data Representation Coder Mode
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRNeedBuffer–Find a Buffer in a Common Data Representation Coder Structure
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRReset–Reset the Current Buffer of a Common Data Representation Coder Structure
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	CDRRewind–Return to the Start of a Common Data Representation Coder Buffer
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	d390toIEEE, dIEEEto390, f390toIEEE, fIEEEto390–Convert Floating Point Numbers between IBM System/390 and IEEE Representations
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPAccept–Accept a Connection from a Client
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPAutoFrag–Change the Automatic Fragmentation Behavior
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPAutoFragGetSize–Get the Current Maximum Automatic Fragment Size
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPCancelRequestSend–Cancel a Previously Sent Request Message
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPCloseConnectionSend–Close an Open Connection
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPConnect–Connect a Client to a Server
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPFragCreate–Create a Fragment Message
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPFragSend–Send a Fragment Message
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPGetNextMsg–Get the Next Incoming General Inter-ORB Protocol Message
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPInit–Initialize a General Inter-ORB Protocol State Object
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPListen–Listen for Client Requests to Connect
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPLocateReplyCreate–Create a LocateReply Message
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPLocateReplySend–Send a LocateReply Message
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPLocateRequestSend–Create and Send a LocateRequest Message to a Server
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPMessageErrorSend–Create and Send a MessageError Message
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPReject–Reject a Connection from a Client
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPReplyCreate–Create a Reply Message
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPReplySend–Send a Reply Message
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPRequestCreate–Create a Request Message
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPRequestSend–Send a Request Message
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	GIOPStopListen–Notify Clients That the Server Is No Longer Listening for New Connections
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	iiop_error_code–Get Error Code for Last Transmission Control Protocol/Internet Protocol Error
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	IORAddTaggedProfile–Add a Tagged Profile to an Interoperable Object Reference Structure
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	IORCreateIor–Initialize an Interoperable Object Reference Structure
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	IOREncapIIOP–Encapsulate Internet Inter-ORB Protocol Profile Body
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	IORFree–Free Resources Allocated to an Interoperable Object Reference Structure
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	IORFromString–Convert an Interoperable Object Reference String to an IOR Structure
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	IORToString–Convert an Interoperable Object Reference Structure to a String
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	tpf_asc2ebc, tpf_ebc2asc–Convert Characters between ISO 8859-1 (ASCII) and IBM-1047 (US EBCDIC)
	Format
	Normal Return
	Error Return
	Programming Considerations
	Examples
	Related Functions

	Index

