
Transaction Processing Facility

XML User’s Guide
Version 4 Release 1

GTPX-1MST-00

���

ii TPF V4R1 XML User’s Guide

Contents

Tables . v

About This Guide . vii

The Basics . 1
Why XML? . 1
XML Support on TPF . 2

Character Encodings . 2
Learn XML . 4

The Parser . 7
Application Programming . 7

InputSource: Where Is the XML Document?. 8
Document Type Definitions (DTDs): Defining the Rules 9
XML Schema: Another Way to Define Rules 9
Namespaces: A Two-Part Naming System 10
For More Information. 10

DOM . 10
How Do I Use DOM? . 10
When Should I Use DOM? 10
For More Information. 11

SAX . 11
How Do I Use SAX? . 11
When Should I Use SAX? . 11
For More Information. 12

DOM versus SAX . 12
Validation . 13

When Should I Use Validation? 13
How Do I Use Validation? . 13
Results of Validation . 13
For More Information. 13

Examples . 15
XML on TPF: A Short Tutorial 15
Samples from the Source: XML4C. 15

Supplements . 21
Glossary . 21
Migration Information. 21

XML4C Parser 3.5.1 (APAR PJ28176) 22
Prerequisite APARs . 22
Functional Overview . 22
Architecture . 23
Operating Environment Requirements and Planning Information 23
Interface Changes. 23
Functional and Operational Changes 25
Performance or Tuning Changes 25
Storage Considerations and Changes 25
System Initialization Program (SIP) and System Generation Changes. . . 25
Loading Process Changes. 25
Online System Load Changes 25
Publication Changes . 25
Host System Changes . 26

© Copyright IBM Corp. 2001, 2002 iii

||
||
||
||
||
||
||
||
||
||
||
||
||
||

Application Programming Interface (API) Changes 26
Database Changes . 26
Feature Changes . 26
Installation Validation. 26
Migration Scenarios . 26

Resources . 27
XML4C Version 3.5.1 Documentation. 28

iv TPF V4R1 XML User’s Guide

||
||
||
||
||

Tables

1. XML Character Encodings Supported on TPF. 3
2. Comparing the DOM API with the SAX API . 12
3. Summary of Expected Validation Results . 13
4. Changes to Link-Edited Modules for XML4C Parser 3.5.1 24
5. Changes to TPF Publications for XML4C Parser 3.5.1 25

© Copyright IBM Corp. 2001, 2002 v

||
||

vi TPF V4R1 XML User’s Guide

About This Guide

This guide is intended for TPF application programmers who already understand
some general TPF programming concepts, and who will be programming in C++
language to access XML data. Users of this guide are expected to be C/C++
programmers who have some familiarity with TPF and a markup language such as
HTML or BookMaster.

This guide contains the following:

v Get Started With “The Basics” on page 1

– Learn how XML can be beneficial in the process of programming TPF
applications.

– Read detailed information about XML support on TPF.

– Find additional resources for learning the XML language.

v Understand How To Use “The Parser” on page 7 on TPF

– Learn details about using XML data when programming applications on TPF
that access XML data.

– Learn about the DOM and SAX specifications.

– Understand validation.

v Apply What You Have Learned Through “Examples” on page 15

– Take an online tutorial that walks you through the development of a sample
TPF application that interacts with XML data.

– Experiment with sample programs that came with the ported XML4C code.

v Clarify and Research More XML Information in “Supplements” on page 21

– Understand terminology used throughout the guide.

– Read Migration Information for XML4C parser 3.5.1 (APAR PJ28176).

– Find out where you can learn more about XML and all of its components.

– Open the documentation that came with the ported XML4C code.

© Copyright IBM Corp. 2001, 2002 vii

viii TPF V4R1 XML User’s Guide

The Basics

Before you can start programming TPF applications that use the XML parser, you
need to understand some XML basics.

This section contains the following:

“Why XML?”
Understanding how you can benefit from using XML on TPF will give you insight
into how you design your XML applications.

“XML Support on TPF” on page 2
As an evolving technology, XML is constantly growing and changing, so
understanding what is supported on TPF (and what is not) is critical to your
application programming.

“Learn XML” on page 4
There are many pieces needed to complete the XML puzzle. Before you begin
writing TPF applications that interact with XML data, you will need to
understand these pieces of XML.

Why XML?
XML allows you to tag data in a way that is similar to how you tag data when
creating an HTML file. XML incorporates many of the successful features of HTML,
but was also developed to address some of the limitations of HTML. XML tags are
actually user-defined through a schema, which can either be a Document Type
Definition (DTD) or a document written in the XML Schema language. In addition,
namespaces can help ensure you have unique tags for your XML document. The
syntax of XML has more restrictions than HTML, but this results in faster and
cheaper browsing. The ability to create your own tagging structure gives you the
power to categorize and structure data for both ease of retrieval and ease of
display. XML is already being used for publishing, as well as for data storage and
retrieval, data interchange between heterogeneous platforms, data transformations,
and data displays. As it evolves and becomes more powerful, XML may allow for
single-source data retrieval and data display.

XML4C parser 3.5.1 (APAR PJ28176) is a port of XML Parser for C++ (XML4C)
version 3.5.1. With this APAR installed, applications on your TPF 4.1 system can
interact with tagged XML data.

The benefits of using XML vary but, overall, marked-up data and the ability to read
and interpret that data provide the following benefits

v With XML, TPF applications can more easily read information from a variety of
platforms. The data is platform-independent, so now the sharing of data between
you and your customers can be simplified.

v Companies that work in the business-to-business (B2B) environment are
developing DTDs for their industry. The ability to parse XML documents gives
TPF an opportunity to be exploited in the B2B environment.

v XML data can be read even if you do not have a detailed picture of how that data
is structured. Your clients will no longer need to go through complex processes to
update how to interpret data that you send to them because the DTD gives the
ability to understand the information.

© Copyright IBM Corp. 2001, 2002 1

v Changing the content and structure of data is easier with XML. The data is
tagged so you can add and remove elements without impacting existing
elements. You will be able to change the data without having to change the
application.

However, despite all the benefits of using XML, there are some things to be aware
of. First of all, working with marked up data can be additional work when writing
applications because it physically requires more pieces to work together. (Go to
“Learn XML” on page 4 for more information.) Given the benefits of using XML, this
additional work up front can reduce the amount of work needed to make a change
in the future. Second, although it is a recommendation developed by the World
Wide Web Consortium (W3C), XML is still a developing technology.

There are many resources available for learning about XML, some of which are
included in “Resources” on page 27.

XML Support on TPF
XML4C parser 3.5.1 (APAR PJ28176) is a port of XML Parser for C++ (XML4C)
Version 3.5.1 to the TPF 4.1 system. The parser is XML Version 1.0 compliant and
allows TPF 4.1 applications written in C++ language to do the following:

v Parse XML documents using the Document Object Model (DOM) Level 1.0 or
2.0. You can also parse XML documents using the experimental IDOM API, but
this is not formally supported by the XML4C parser and, therefore, not formally
supported on TPF.

v Parse XML documents using the Simple API for XML (SAX) Version 1.0 or 2.0
specification.

v Parse XML documents with or without validation against a specified Document
Type Definition (DTD).

v Parse XML documents with or without validation against a document written in
the XML Schema language.Note: XML Schema support is experimental and only
includes a subset of the W3C Schema language.

In addition, the parser fully implements the ability to use namespaces in support of
unique tagging structures.

IBM contributed the XML4C parser to the Apache XML Project
(http://xml.apache.org) as open source in November 1999. XML4C Version 3.5.1 is
based on Xerces-C Version 1.5.0 and is fully compliant with the Unicode 3.0
specification. While the Apache Xerces-C parser can be updated by the open
source community, the XML4C parser is maintained only by IBM and may differ
from Xerces-C.

v For more information about Unicode specifications, go to http://www.unicode.org.

v For more information about XML and the DOM specification, go to
http://www.w3.org/.

v For more information about the SAX specification, go to
http://www.megginson.com.

Character Encodings
XML documents, DTDs, and XML Schema documents require that you declare
which version of XML you are using as well as what encoding you are using. This
declaration is done in the first line and is similar to the following: <?xml
version=″1.0″ encoding=″ISO-8859-1″?>

2 TPF V4R1 XML User’s Guide

http://xml.apache.org
http://www.unicode.org
http://www.w3.org/
http://www.megginson.com

Note: In general, parsers often have the ability to auto-detect certain encodings.
When using this version of the XML4C parser, you do not need to specify the
encoding when your documents are written in either UTF-8, UTF-16 Little Endian,
or UTF-16 Big Endian.

The following table shows which character encodings are supported on TPF. The
first column indicates the encoding and the second column lists common names
associated with that encoding. The third column shows acceptable values for the
encoding= portion of the XML declaration. The fourth column indicates if the
encoding is supported on TPF, and the last column indicates if the encoding is
supported in XML4C version 3.5.1. Note that some encodings supported in XML4C
version 3.5.1 are not supported on TPF and some encodings supported on TPF are
not supported in XML4C version 3.5.1.

Table 1. XML Character Encodings Supported on TPF

Encoding Common Name Declaration
(encoding=)

Supported on
TPF 4.1

Supported in
XML4C

ASCII US-ASCII
USASCII
ASCII
US_ASCII

X X

IBM037 1 EBCDIC US EBCDIC-CP-US
IBM037

X X

IBM500 1 IBM-500 X

IBM1047 1 2 IBM-1047 X

IBM1140 1 EBCDIC with
Euro symbol

IBM1140 X X

ISO-8859-1 ISO Latin 1 ISO8859-1
ISO-8859-1
ISO_8859-1
IBM-819
IBM819
LATIN1
LATIN-1
LATIN_1

X X

UTF-8 8-bit Unicode UTF-8
UTF8

X X

UTF-16 Little
Endian

UTF-16 (LE)
UTF-16LE
UTF-16
UCS2
IBM1200
IBM-1200

X X

UTF-16 Big
Endian

UTF-16 (BE)
UTF-16BE
UTF-16
UCS2
IBM1200
IBM-1200

X X

UCS4 Little
Endian

UCS-4 (LE)
UCS-4LE
UCS4
UCS-4
UCS_4

X X

The Basics 3

Table 1. XML Character Encodings Supported on TPF (continued)

Encoding Common Name Declaration
(encoding=)

Supported on
TPF 4.1

Supported in
XML4C

UCS4 Big
Endian

UCS-4 (BE)
UCS-4BE
UCS4
UCS-4
UCS_4

X X

Windows-1252 WINDOWS-1252 X X

Big5 Chinese, Big5 X

euc-kr Korean,
Extended UNIX
code

X

gb2312 Chinese, PRC X

ISO-8859-2 ISO Latin 2 X

ISO-8859-3 ISO Latin 3 X

ISO-8859-4 ISO Latin 4 X

ISO-8859-5 ISO Latin Cyrillic X

ISO-8859-6 ISO Latin Arabic X

ISO-8859-7 ISO Latin Greek X

ISO-8859-8 ISO Latin
Hebrew

X

ISO-8859-9 ISO Latin 5 X

koi8-r Cyrillic X

Shift_JIS Japanese, Shift
JIS

X

Notes:

1. This encoding is an EBCDIC code page.

2. IBM1047 is the code page used by the C language compiler for TPF.

How satisfied are you with this encoding support? If you would like support for additional
encodings that are not currently supported on TPF, contact your TPF service representative
to open a requirement or enhancement request.

Learn XML
Learning the basics about XML is important in the successful use of XML on TPF.
Because XML is an evolving technology, any XML education that could be provided
here would most likely be out of date within a few months. In addition, there are
many resources available for learning the detailed syntax of XML documents, DTDs,
and the XML Schema language. To find these resources, do a search on any
Internet search engine or browse the technology section of your local book store.
You will find many books, Web sites, and tools that will assist you in writing XML
documents. We have included a few book titles and Web pages in “Resources” on
page 27 that we found useful while porting the XML4C parser to TPF. The list is by
no means exhaustive, but provides you with a few places to start.

The following list identifies the core pieces of XML that you should understand
before writing applications that use XML4C parser 3.5.1 on TPF:

4 TPF V4R1 XML User’s Guide

v XML is Unicode 3.0 compliant.

v A schema is used to define the tags and structure of an XML document. Two
types of schema are (1) XML Schema ; and (2) DTD.

Note: XML Schema support in XML4C parser 3.5.1 is limited to a subset of the
W3C XML Schema language and is considered experimental at this time.
For more information about XML Schema support in this parser, go to
“XML4C Version 3.5.1 Documentation” on page 28.

v An XML namespace is simply a two-part naming system used for qualifying
element and attribute names used in an XML document.

v XML documents must be well-formed and may be valid based on an associated
DTD. Depending on the encoding used, you may be able to open your XML
document in Microsoft Internet Explorer Version 5.0 or later to see if it is
well-formed.

v XML documents contain elements and attributes.

v The parser specifications supported on TPF are DOM (versions 1.0 and 2.0) and
SAX (versions 1.0 and 2.0). (The experimental IDOM API is also available, but is
not supported for production work.)

v On TPF, the schema (DTD or XML Schema) must reside either in the XML
document or in the TPF file system. An XML document can reside in the file
system, reside in memory, or be passed through standard input (stdin). See the
following TPF books for more information about the TPF file system:

– TPF Application Programming

– TPF C/C++ Language Support User’s Guide

– TPF Concepts and Structures

– TPF Operations

“XML on TPF: A Short Tutorial” on page 15 explores many of these topics and
provides you with a sample application that interacts with XML data.

The Basics 5

6 TPF V4R1 XML User’s Guide

The Parser

After gaining an understanding of the XML pieces identified in “Learn XML” on
page 4, you need to know specific information about how these pieces work
together. This section provides you with specific information about how the XML4C
parser works.

This section contains the following:

“Application Programming”
Learn the big picture of how the parser works on TPF and read key points to
remember when writing an application that uses the parser.

“DOM” on page 10
Learn how and when to use the DOM specification.

“SAX” on page 11
Learn how and when to use the SAX specification.

“DOM versus SAX” on page 12
Before writing an application that uses the parser, you need to decide which
specification to use. We help you with this decision by comparing DOM and
SAX.

“Validation” on page 13
Learn about validation: what it is, how to use it, and when not to use it.

Application Programming
The XML4C parser lets you interact with XML data. You can choose to use either
the DOMpy or the SAX API with or without validation against a DTD or XML
Schema document.

An application on TPF is coded in C++ language such that it uses one of the two
APIs to interact with the parser. The chosen API determines how the parser
accesses XML data. If the parser is asked to validate the data, it simultaneously
interacts with the XML data and the associated DTD or XML schema document;
otherwise, the parser interacts only with the XML document.

© Copyright IBM Corp. 2001, 2002 7

Go to “DOM” on page 10 or “SAX” on page 11 for more information about each API;
go to “Validation” on page 13 for more information about the process of validating
your XML document.

InputSource: Where Is the XML Document?
Whether you use the DOM or SAX API, your applications will need to tell the parser
where to find the XML document. The location of the document is specified through
the InputSource class and can be one of the following:

Figure 1. The XML Parser on TPF

8 TPF V4R1 XML User’s Guide

LocalFileInputSource
The XML document is in the TPF file system.

MemBufInputSource
The XML document is stored in memory.

STDInputSource
The XML document is coming into TPF through standard input (stdin).

URLInputSource
The XML document is located at the specified Web address (URL).

Note: Although the XML4C parser allows an XML document to be specified as a
uniform resource locator (URL), there is no HTTP client shipped with TPF to
allow its use.

For more information about InputSource, go to “XML4C Version 3.5.1
Documentation” on page 28.

Document Type Definitions (DTDs): Defining the Rules
A DTD is one type of schema that is used for defining the tagging rules and
structure for an XML document and is written using a strict (and specific) syntax. If
you specify DOM or SAX as validating and your XML document uses a DTD to
define the rules, the parser compares the XML document with the DTD to ensure
that it conforms to the specified rules. The DTD can be in one of the following
locations:

v In the XML document An XML document can have a DTD in the same file.

v In a separate file An XML document can reference a DTD that resides in a
separate file. For example, the following is taken from an XML document that
references an external DTD called pnr.dtd: <!DOCTYPE PassengerNameRecord
SYSTEM ″pnr.dtd″ >

Note: On other platforms, DTDs can also be referenced through a URL. However,
TPF does not have an HTTP client to support the use of this reference.

XML Schema: Another Way to Define Rules
XML Schema language can be used in place of a DTD to define the tagging
structure and rules for an XML document. It is different from using a DTD because
an XML Schema generally provides a more complete and precise definition
document and is actually written in the XML language. An XML Schema is housed
in a separate document and is referenced at the start of the XML document. For
example, the following is taken from an XML document that references an XML
Schema document called pnr.xsd:

<PNRroot xmlns:xsi=″http://www.w3.org/2001/XMLSchema-instance″
xsi:noNamespaceSchemaLocation=″pnr.xsd″>

According to the Schema information in the “XML4C Version 3.5.1 Documentation”
on page 28, ″The schema must be specified by the xsi:schemaLocation or
xsi:noNamespaceSchemaLocation attribute on the root element of the document.
The xsi prefix must be bound to the Schema document instance namespace as
specified by the Recommendation.″

Note: On other platforms, an XML Schema can also be referenced through a URL.
However, TPF does not have an HTTP client to support the use of this reference.

The Parser 9

Namespaces: A Two-Part Naming System
Simply put, an XML namespace is a collection of names and allows for two-part
naming. Namespaces are often confused as a separate entity and something that
exists or is coded. The W3C recommendation for namespaces simply uses a
Universal Resource Identifier (URI) as a way of ensuring uniquely tagged elements.
A namespace has an associated URI, of which each is unique by definition. By
using this identifier with the words chosen for tag names, you can be assured that
your tags are completely unique and can be used exactly the way you want them to
be used. For example, an XML Schema based on a namespace will identify that
namespace: <xsd:schema xmlns:xsd=″http://www.w3.org/2001/XMLSchema″>

Each time a tag is used, associate that tag with that namespace as follows:
<xsd:complexType name=″USAddress″>

You can use more than one namespace in a document. Using multiple namespaces
can assist in using the same tag name in two different ways. For example, a tag
name of <address> might mean a home address when associated with one
namespace and a work address when associated with another namespace.

XML Schema documents do not require an associated namespace. If you do not
have a namespace to associate with your XML Schema document, use the
noNamespaceSchemaLocation attribute. For example,
xsi:noNamespaceSchemaLocation=″pnr.xsd″

Although a Web address (URL) is a type of URI, the use of URIs for namespaces
does not require an HTTP client. The parser does not attempt to access the URI
and, in fact, the URI does not even need to contain any data or content because
namespaces only create a two-part naming convention.

For More Information
For more information, do the following:

v Go to “Resources” on page 27 for a list of book titles and Web pages about
writing XML documents, DTDs, XML Schema documents, and namespaces.

v See TPF Application Programming for more information about writing applications
on TPF.

DOM
The DOM specification is an object-based interface developed by the World Wide
Web Consortium (W3C) that builds an XML document as a tree structure in
memory. An application accesses the XML data through the tree in memory, which
is a replication of how the data is actually structured. The DOM also allows you to
dynamically traverse and update the XML document.

How Do I Use DOM?
When writing applications using the DOM API, you will use a set of C/C++ APIs to
interact with the XML data. The documentation for these functions was included in
the XML4C package that was ported to TPF. To view the API documentation, go to
“XML4C Version 3.5.1 Documentation” on page 28.

When Should I Use DOM?
The DOM API is ideal when you want to manage XML data or access a complex
data structure repeatedly. The DOM API:

10 TPF V4R1 XML User’s Guide

v Builds the data as a tree structure in memory

v Parses an entire XML document at one time

v Allows applications to make dynamic updates to the tree structure in memory.
(As a result, you could use a second application to create a new XML document
based on the updated tree structure that is held in memory.)

Using the DOM API preserves the structure of the document (and the relationship
between elements) and does the parsing up front so that you do not have to do the
parsing process over again each time you access a piece of data. If you choose to
validate your document, you can be assured that the syntax of the data is valid
while you are working with it. However, the DOM API requires the memory needed
to store the data, which can be expensive in terms of machine cycles. In addition,
the DOM API is, by nature, a two-step process:

1. It parses the entire XML document.

2. Applications interact with the XML data held in memory using the C/C++ APIs.

As a result, you cannot begin working with the data until the DOM API has
completely parsed the entire document.

XML4C parser 3.5.1 supports both DOM level 1.0 and DOM level 2.0. Level 2.0
builds on the APIs in level 1.0, which allow for data manipulation by having
additional APIs that allow for items such as namespaces and cascading style
sheets (CSSs). IDOM is an experimental API included in this version of the XML4C
parser that is a prototyped redesign of the DOM API. For more information about
the DOM API at each of these levels, go to “XML4C Version 3.5.1 Documentation”
on page 28.

For More Information
For more information, do the following:

v Go to the W3C Web page at http://www.w3.org/ for more information about the
DOM specification.

v Go to “Resources” on page 27 for a list of books and Web sites that provide
more information about the DOM specification.

SAX
The Simple API for XML (SAX) specification is an event-based interface developed
by members of the XML-DEV mailing list. It uses the parser to access XML data as
a series of events in a straight line, which means that the parser finds information in
the XML document without retaining state or context information.

How Do I Use SAX?
When writing applications using the SAX specification, you will use a set of C/C++
APIs to interact with the XML data. The documentation for these functions was
included in the XML4C package that was ported to TPF. To view the API
documentation, go to “XML4C Version 3.5.1 Documentation” on page 28.

When Should I Use SAX?
The SAX API can provide faster and less costly processing of XML data when you
do not need to access all of the data in an XML document. The SAX API does the
following:

The Parser 11

http://www.w3.org/

v Accesses data through a series of events, eliminating the need to build a tree
structure in memory. (As a result, speed of data retrieval is faster than with the
DOM API because it is viewed as a flat document, or data stream.)

v Gives more control to the application by only parsing and returning the
information it is asked for; the application builds the object model each time it
parses the information.

v Allows you to access a small number of elements at one time rather than an
entire document.

The SAX API is best for applications that need to access a specific piece of data
and do not need to understand its relationship to surrounding elements. SAX is also
ideal for information that is both generated by and readable by a machine.
However, SAX cannot traverse the data, which makes it more expensive when you
want to access data repeatedly from an XML document.

According to the Megginson Technologies Web site, SAX2 is a new version of
Simple API for XML (SAX) that adds support for namespaces. among other things.
For more information about the SAX API at each of these levels, go to “XML4C
Version 3.5.1 Documentation” on page 28.

For More Information
For more information, do the following:

v Go to the Megginson Technologies Web site at http://www.megginson.com for
more information about the SAX specification.

v Go to “Resources” on page 27 for a list of books and Web sites that provide
more information about the SAX specification.

DOM versus SAX
The DOM and SAX APIs can each parse documents efficiently given appropriate
conditions. The following table summarizes and compares the characteristics of the
DOM API with those of the SAX API:

Table 2. Comparing the DOM API with the SAX API

DOM SAX

Type of Interface Object-based Event-based

Object Model Created automatically Must be created by
application

Element Sequencing 1 Preserved Ignored in favor of single
events

Use of TPF Memory Higher Lower

Speed of Initial Data
Retrieval

Slower Faster

Stored Information Better for complex structures Better for simple structures

Validation Optional Optional

Ability to Update XML
Document

Yes (in memory) No

Notes:

1. Element sequencing refers to the ability of the API to remember the order of the
elements. DOM can traverse the tree structure in memory; SAX locates a specific
element and ignores the surrounding elements.

12 TPF V4R1 XML User’s Guide

http://www.megginson.com
http://www.megginson.com

For more detailed information about the two APIs, go to “DOM” on page 10 or
“SAX” on page 11.

Validation
A valid document is one that follows the XML syntax and also conforms to the rules
of an associated DTD or XML Schema. (A well-formed document is one that follows
the XML syntax.) Both the DOM and SAX specifications enforce the rules for XML
syntax whether you are using validation or not.

Validation is the process of comparing an XML document with a specified DTD or
XML Schema. It ensures that the document uses only those tags that have been
defined in the DTD or XML Schema as well as ensuring that it conforms to the
element rules specified in the DTD or XML Schema. Both the DOM and SAX
specifications have the ability to validate an XML document, but this is not a
requirement for either.

When Should I Use Validation?
Validation of an XML document is expensive in terms of machine cycles. If the
document is received from a reliable source and the format of the document has
been predetermined, validation may not be necessary. However, using validation
ensures that only elements defined in the DTD or XML Schema are used and,
therefore, the structure of the XML document remains consistent.

If you do not want to validate the document each time you access data, you can, as
an example, code an application so that it may reject tags that it does not recognize
and takes an appropriate error path. If you do this, you may want to use validation
during testing and initial implementation of a new version of an application or
temporarily until the source of a document has been accredited.

How Do I Use Validation?
Validation is controlled by an API in the SAXParser and DOMParser classes. For
more information about the classes for both DOM and SAX, go to “XML4C Version
3.5.1 Documentation” on page 28.

Results of Validation
The following table summarizes the expected results of validation:

Table 3. Summary of Expected Validation Results

Validate Against a DTD Do Not Validate

Document is Valid Once validation is completed,
parsing continues.

Validation is ignored and
processing continues.

Document is Not Valid Validation will result in an
error response that will help
you determine the error.
Parsing is discontinued.

Validation is ignored and
processing continues.

For More Information
For more information, do the following:

v Go to the World Wide Web Consortium (W3C) Web site at http://www.w3.org/ for
more information about XML syntax.

The Parser 13

http://www.w3.org/

v Go to “Resources” on page 27 for a list of books and Web sites that contain
more information about the XML syntax, DTDs, XML Schema, and validation.

14 TPF V4R1 XML User’s Guide

Examples

This section provides you with an XML tutorial and examples that use the parser.

“XML on TPF: A Short Tutorial”
This tutorial will help you to understand the basics of writing applications and
drivers that use the parser. You can choose to just view the tutorial or you can
participate to gain hands-on experience with XML on TPF.

“Samples from the Source: XML4C”
Get directions for using the sample programs that came with XML4C parser
3.5.1, which was ported to TPF.

XML on TPF: A Short Tutorial
To help you learn about using TPF applications to access XML data, this tutorial
takes you through the process step-by-step. We give you a sample Document Type
Definition (DTD), a sample XML Schema document, some sample XML data, and
two sample applications that interact with the XML data. Overall, this tutorial:

v Demonstrates how TPF applications written in C++ language interact with XML
data through the DOM and SAX APIs

v Identifies the core skills that are needed before writing applications that access
XML data using the parser

v Gives you an opportunity to gain hands-on experience with XML on TPF.

This tutorial is only accessible when you are connected to the Internet. If you are,
click the following link to launch the tutorial:

http://www.ibm.com/software/ts/tpf/pubs/xml4ic/xmltut/xtut.htm

Note: This tutorial has been tested using Netscape version 4.72 and Microsoft
Internet Explorer version 5.5. Problems may occur when using earlier
versions of these browsers to view the XML documents and DTDs included
with this tutorial.

Samples from the Source: XML4C
XML Parser for C++ (XML4C) version 3.5.1 contains sample programs to help you
understand how the APIs work as well as the differences between DOM and SAX.

As noted in the Migration Information (MAKE THIS A LINK), the actual XML4C code
that was ported to the TPF 4.1 system has been included for your information
only. If the XML4C tar file has been extracted and placed onto your OS/390 UNIX
System Services (OS390 UNIX) system, you may choose to install the samples that
come with XML4C on TPF.

The following instructions guide you through the process of installing and running
the XML4C samples on TPF.

On your OS/390 UNIX system and do the following:

1. To define the value for the variable XERCESCROOT, enter: export
XERCESCROOT=″/dirname″ where dirname is the full path to the directory in
which the XML4C tar file was extracted. The directory specified for dirname will

© Copyright IBM Corp. 2001, 2002 15

http://www.ibm.com/software/ts/tpf/pubs/xml4ic/xmltut/xtut.htm

contain a subdirectory called samples. The XERCESCROOT variable is used in
the configure and make processes; do not change the name XERCESCROOT.

2. To configure the samples for your TPF 4.1 system, do the following:

a. Enter chmod -R 777 $XERCESCROOT to set the correct permission values
for the files in the samples directory.

b. Enter cd $XERCESCROOT/samples to change your directory to the
samples directory.

c. Enter export USE_TPF_MAKEFILES=true to create the environment
variable.

d. Enter configure —cache-file=/dev/null local-ibm-tpf to begin the configure
process.

3. To compile the samples, do the following:

a. Enter the following export commands: (After you enter these export
commands, you cannot go back to the configure step without first exiting
your OS390 UNIX session.)

Note: You may need to change these export commands to match your
development environment.

v export _C89_CCMODE=1

v export _CXX_INCDIRS=″$XERCESCROOT/include
/u/tpf41/currentmaint/include″

(Enter the entire command as a single line.)

Note: _CXX_INCDIRS must contain the directory where the TPF system
header files are as well as the directory that contains the extracted
XML4C header files.

v export _C89_INCDIRS=″$_CXX_INCDIRS″

v export _CXX_INCLIBS=″″

v export _C89_INCLIBS=″″

v export _CXX_CSYSLIB=″″

v export _C89_CSYSLIB=″″

v export _CXX_CXXSUFFIX=″cpp″

v export _CXX_OPTIONS=″-W 0,langlvl(extended) -W0,NOSTART
-D_POSIX_SOURCE -Uerrno -DTPF″

(Enter the entire command as a single line.)

b. Enter cd $XERCESCROOT/samples to ensure you are in the samples
directory.

c. Enter make to begin the compiling process. The following warning may be
issued when compiling the sample programs using the OP2 (-2) compiler
option; it is expected and can be ignored:
WARNING CBC5109: Infinite loop detected in function xxx::fatalError(const SAXParseException&). Program may not stop.

4. To link the samples, do the following:

v For each sample identified in the following list, link the appropriate .ofiles with
CSTRTD(40) and CGETOP40.pds. (The .o files are generated in the
$XERCESCROOT/bin/obj directory.)

v CreateDOMDocument: CreateDOMDocument.o

v DOMCount: DOMCount/DOMCount.o

v DOMPrint: DOMPrint/DOMPrint.o DOMPrint/DOMTreeErrorReporter.o

16 TPF V4R1 XML User’s Guide

v EnumVal: EnumVal.o

v MemParse: MemParse/MemParse.o MemParse/MemParseHandlers.o

v PParse: PParse.o PParseHandlers.o

v Redirect: Redirect.o RedirectHandlers.o

v SAXCount: SAXCount/SAXCount.o SAXCount/SAXCountHandlers.o

v SAXPrint: SAXPrint/SAXPrint.o SAXPrint/SAXPrintHandlers.o

v StdInParse: StdInParse.o StdInParseHandlers.o

v IDOMCount: IDOMCount/IDOMCount.o

v IDOMprint: IDOMPrint/IDOMPrint.o IDOMPrint/IDOMTreeErrorReporter.o

v SAX2Count: SAX2Count/SAX2Count.o SAX2Count/SAX2CountHandlers.o
Note: The following warnings are expected when linking this sample and can
be ignored:
WARNING EDC4016: Duplicate objects are detected:
{NameIdPoolEnumerator}XMLEnumerator::virtual-fn-table-ptr
{NameIdPoolEnumerator}XMLEnumerator::virtual-fn-table-ptr
{RefHash2KeysTableOfEnumerator}XMLEnumerator::virtual-fn-table-ptr
{RefHash3KeysIdPoolEnumerator}XMLEnumerator::virtual-fn-table-ptr
{NameIdPoolEnumerator}XMLEnumerator::virtual-fn-table-ptr

v SAX2Print: SAX2Print/SAX2Print.o SAX2Print/SAX2PrintHandlers.o

5. Create a loadset for the samples you linked in the previous step.
On a TPF 4.1 test system, complete the remaining steps:

6. To set up a test system, do the following:

a. Ensure you do not have the hash (#) and double quotation (″) key strokes
mapped to have special meanings. For example, if you use eNetwork
Personal Communications as your emulator, you can enter q term at the CP
prompt to determine if these two symbols are mapped to special meanings
or not.

b. To associate the names of the sample drivers with each respective program
name, use the ZFILE echo and ZFILE chmod commands. An example of
what to enter for each sample is included in the following list. The CXM
names are only examples; use the same names that you used in step 4
when you linked each sample. Note: The following ZFILE entries are
case-sensitive.

v ZFILE echo ″#!CXMA″ > /bin/CreateDOMDocument ZFILE chmod 777
/bin/CreateDOMDocument

v ZFILE echo ″#!CXMB″ > /bin/DOMCount ZFILE chmod 777
/bin/DOMCount

v ZFILE echo ″#!CXMC″ > /bin/DOMPrint ZFILE chmod 777
/bin/DOMCount

v ZFILE echo ″#!CXMD″ > /bin/EnumVal ZFILE chmod 777 /bin/EnumVal

v ZFILE echo ″#!CXME″ > /bin/MemParse ZFILE chmod 777
/bin/MemParse

v ZFILE echo ″#!CXMF″ > /bin/PParse ZFILE chmod 777 /bin/PParse

v ZFILE echo ″#!CXMG″ > /bin/Redirect ZFILE chmod 777 /bin/Redirect

v ZFILE echo ″#!CXMH″ > /bin/SAXCount ZFILE chmod 777
/bin/SAXCount

v ZFILE echo ″#!CXMI″ > /bin/SAXPrint ZFILE chmod 777 /bin/SAXPrint

v ZFILE echo ″#!CXMJ″ > /bin/StdInParse ZFILE chmod 777
/bin/StdInParse

Examples 17

v ZFILE echo ″#!CXMN″ > /bin/IDOMCount ZFILE chmod 777
/bin/IDOMCount

v ZFILE echo ″#!CXMO″ > /bin/IDOMPrint ZFILE chmod 777
/bin/IDOMPrint

v ZFILE echo ″#!CXMP″ > /bin/SAX2Count ZFILE chmod 777
/bin/SAX2Count

v ZFILE echo ″#!CXMQ″ > /bin/SAX2Print ZFILE chmod 777
/bin/SAX2Print

c. Load and activate the new loadsets.

d. TFTP or FTP the following documents from $XERCESCROOT/samples/data
to your test system using binary mode:

v personal.xml

v personal.dtd

v redirect.dtd

7. To run the samples, enter each of the following commands. (These commands
are case-sensitive.) Each entry is accompanied by the output. Note: Some
characters may be displayed differently because of console restrictions.

v ZFILE CreateDOMDocument
The tree just created contains: 4 elements.

v ZFILE DOMCount personal.xml
personal.xml: xx ms (37 elems).

v ZFILE DOMPrint -x=IBM-1047 personal.xml
<?xml version=’1.0’ encoding=’IBM-1047’ ?>
<!-- @version: -->
<personnel>

<person id = "Big.Boss">
<name><family>Boss</family> <given>Big</given></name>
<email>chief@foo.com</email>
<link subordinates = "one.worker two.worker three.worker four.worker five.worker"/>
</person>

...

v ZFILE EnumVal personal.xml
ELEMENTS:

Name: personnel
Content Model: (person)+
Name: person
Content Model: (name,email*,url*,link?)
Attributes:

Name:id, Type: ID
...

v ZFILE MemParse
Finished parsing the memory buffer containing the following XML statements:
<?xml version=’1.0’ encoding=’ibm-1047’?>
<!DOCTYPE company [
<!ELEMENT company (product,category,developedAt)>
<!ELEMENT product (#PCDATA)>
<!ELEMENT category (#PCDATA)>
<!ATTLIST category idea CDATA #IMPLIED>
<!ELEMENT developedAt (#PCDATA)>
]>
...

v ZFILE PParse personal.xml
Got the required 16 elements

v ZFILE Redirect personal.xml
personal.xml: xx ms (37 elems, 12 attrs, 0 spaces, 268 chars)

18 TPF V4R1 XML User’s Guide

v ZFILE SAXCount personal.xml
personal.xml: xx ms (37 elems, 12 attrs, 134 spaces, 134 chars)

v ZFILE SAXPrint -x=IBM-1047 personal.xml
<?xml version="1.0" encoding="IBM-1047"?>
<personnel>
<person id="Big.Boss">

<name><family>Boss</family> <given>Big</given></name>
<email>chief@foo.com</email>
<link subordinates="one.worker two.worker three.worker four.worker five.worker"></link>

</person>

v ZFILE StdInParse < personal.xml
stdin: xx ms (37 elems, 12 attrs, 134 spaces, 134 chars)

v ZFILE SAX2Count personal.xml
personal.xml: xx ms (37 elems, 12 attrs, 134 spaces, 134 chars)

v ZFILE SAX2Print -x=IBM-1047 personal.xml
<?xml version="1.0" encoding="IBM-1047"?>
<personnel>
<person id="Big.Boss">

<name><family>Boss</family> <given>Big</given></name>
<email>chief@foo.com</email>
<link subordinates="one.worker two.worker three.worker four.worker five.worker"></link>

</person>

v ZFILE IDOMCount personal.xml
personal.xml: xx ms (37 elems).

v ZFILE IDOMPrint -x=IBM-1047 personal.xml
<?xml version=’1.0’ encoding=’IBM-1047’ ?>
<!-- @version: -->
<personnel>

<person id = "Big.Boss">
<name><family>Boss</family> <given>Big</given></name>
<email>chief@foo.com</email>
<link subordinates = "one.worker two.worker three.worker four.worker five.worker"/>
</person>

...

Examples 19

20 TPF V4R1 XML User’s Guide

Supplements

This section provides you with supporting information for the contents of this guide
and contains the following:

“Glossary”
Use the glossary to look up terms you are unfamiliar with.

“Migration Information”
Learn how to install APAR PJ28176. This chapter is also included in TPF
Migration Guide: Program Update Tapes.

“Resources” on page 27
Learn more about XML, DTDs, Unicode, DOM, and SAX. A list of book titles
and Web pages is provided to help you learn about the different XML pieces.

“XML4C Version 3.5.1 Documentation” on page 28
Open XML4C Version 3.5.1 documentation for more information about XML4C,
including the API documentation for both DOM and SAX.

Glossary
See TPF Library Guide for glossary definitions of important terms and abbreviations
that are used in this guide.

Migration Information

© Copyright IBM Corp. 2001, 2002 21

XML4C Parser 3.5.1 (APAR PJ28176)
The following section discusses the migration considerations for XML4C parser
3.5.1.

Prerequisite APARs
XML4C Parser 3.5.1 (APAR PJ28176) obsoletes the version of the parser that was
ported for XML parser (APAR PJ27634) on PUT 14. As a result, only the pieces of
APAR PJ27634 that are TPF-specific are considered prerequisites for APAR
PJ28176:

v The updates to the CICONT library member (object file) and to the CISO
link-edited module support changes to the iconv function.

v The SPPGML and IBMPAL macro updates support the addition of the CXML
link-edited module. (The parser code contained in the CXML link-edited module,
however, is not required because it is replaced by XML4C Parser 3.5.1.)

Functional Overview
XML4C parser 3.5.1 allows your applications to read (parse) and write Extensible
Markup Language (XML) data on the TPF 4.1 system. XML is a markup language
that combines the power of Standard Generalized Markup Language (SGML) and
the simplicity of Hypertext Markup Language (HTML). XML allows you to mark up
data based on what information the data contains rather than on how it is to be
rendered. Data marked up in XML is easy to share across various platforms and
across various companies. For more information about the XML specification, go to
http://www.w3.org/.

XML4C parser 3.5.1 is the XML Parser for C++ (XML4C) Version 3.5.1 ported to the
TPF 4.1 system. The parser is XML Version 1.0 compliant and allows TPF 4.1
applications written in C++ language to do the following:

v Parse XML documents using the Document Object Model (DOM) Level 1.0 or 2.0
specification. You can also parse XML documents using the experimental IDOM
API, but this is not formally supported by the XML4C parser and, therefore, not
formally supported on the TPF 4.1 system.

v Parse XML documents using the Simple API for XML (SAX) Version 1.0 or 2.0
specification.

v Parse XML documents with or without validation against a specified Document
Type Definition (DTD).

v Parse XML documents with or without validation against a document written in
the XML Schema language.

Note: XML Schema support is experimental and only includes a subset of the
W3C Schema language.

In addition, the parser fully implements the ability to use namespaces in support of
unique tagging structures.

Applications on the TPF 4.1 system interact with XML documents that are in the file
system, coming in through standard input (stdin) or residing in memory. This
interaction is made possible through application programming interfaces (APIs)
specified by either the DOM or SAX specifications and can be either nonvalidating
or validating against a schema (DTD or XML Schema). The API definitions are
contained in a set of header files that application programmers will need to have in
their #include (or search) path. See General Use C/C++ Language Header Files on
page 23 for more information about these header files.

22 TPF V4R1 XML User’s Guide

|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|

http://www.w3.org/

TPF information for XML4C parser 3.5.1 is exclusively online. The browser-readable
HTML files are available on IBM TPF Product Information Center, which is the
CD-ROM included with TPF 4.1 PUT 16, or on the TPF Web site
(http://www.ibm.com/tpf/pubs/tpfpubs.htm). See Publication Changes on page 25 for
more information about XML4C parser 3.5.1 written information.

Architecture
IBM contributed the XML4C parser to the Apache XML Project
(http://xml.apache.org) as open source in November 1999. XML Parser for C++
(XML4C) Version 3.5.1 is based on Xerces-C Version 1.5.0 and is fully compliant
with the Unicode 3.0 specification. While the Apache Xerces-C parser can be
updated by the open source community, the XML4C parser is maintained only by
IBM and may differ slightly from the Xerces-C parser.

v For more information about the Unicode specification, go to the Unicode
Consortium’s Web page (http://www.unicode.org).

v For more information about XML and the DOM specification, go to
http://www.w3.org/.

v For more information about the SAX specification, go to
http://www.saxproject.org.

Operating Environment Requirements and Planning Information
There are none.

Interface Changes
The following section summarizes interface changes.

C/C++ Language: The following section summarizes C/C++ language changes.
This information is presented in alphabetic order by the type of C/C++ language
information. See the TPF C/C++ Language Support User’s Guide and TPF
Application Programming for more information about the C/C++ language.

Build Scripts: There are no changes.

Dynamic Load Module (DLM) Stubs: There are no changes.

General Use C/C++ Language Header Files: General use means these header
files are available for your use.

The ported XML4C parser code provides a set of header files (or #include files)
that are needed for applications that use the XML4C parser to access XML data.
The header files are included with XML4C parser 3.5.1 and must be copied into a
directory accessible by application programmers. (Application programmers are
instructed to concatenate the directory that contains these header files in their
#include path.)

When copying the XML4C header files to your TPF 4.1 system, ensure that you first
remove any header files you copied with the XML parser (APAR PJ27634) on PUT
14 and that you retain the directory structure in which the XML4C parser 3.5.1
(APAR PJ28176) header files reside. The following shows the directory structure for
the XML4C parser 3.5.1 files (note that there are many header files in each
directory):

Supplements 23

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|

|
|
|
|

|

|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

http://www.ibm.com/tpf/pubs/tpfpubs.htm
http://www.ibm.com/tpf/pubs/tpfpubs.htm
http://xml.apache.org
http://xml.apache.org
http://www.unicode.org
http://www.w3.org/
http://www.saxproject.org

include
|- dom
|- framework
|- internal
|- parsers
|- sax
|- sax2
|- util

|- regx
|- Compilers
|- MsgLoaders

|- InMemory
|- Platforms

|- TPF
|- Transcoders

|- IconvTPF
|- validators

|- common
|- datatype
|- schema
|- DTD

See Publication Changes on page 25 for more information about XML4C parser
3.5.1 information. (For specific information about the XML4C header files, open
XML on TPF: An Online User’s Guide and click XML4C Version 3.5.1
Documentation.)

Note: The XML4C header files cannot reside in a partitioned data set (PDS)
because the first eight characters of all header files that reside in a PDS
must be unique, and the XML4C header file names do not follow this rule. To
ensure that your application programs work, put the header files into a
hierarchical file system (HFS); these header files cannot be renamed and
each must reside in its native directory in the HFS.

Implementation-Specific C/C++ Language Header Files (IBM Use Only): There are
no changes.

Library Interface Scripts: There are no changes.

Link-Edited Modules: Table 4 summarizes changes to the link-edited modules
shipped by IBM, which should go into a data set with attributes
DCB=(RECFM=U,LRECL=80,BLKSIZE=1200). This information is presented in
alphabetic order by the name of the link-edited module.

Table 4. Changes to Link-Edited Modules for XML4C Parser 3.5.1

Link-Edited Module New, Changed, or No Longer
Supported?

Description of Change

CXML Changed Updated for XML4C Parser 3.5.1.

Members: There are no changes.

Object Code Only (OCO) Stubs: There are no changes.

Configuration Constant (CONKC) Tags: There are no changes.

Control Program Interface (CINFC) Tags: There are no changes.

Copy Members: There are no changes.

24 TPF V4R1 XML User’s Guide

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|

|
|
|
|
|
|

|
|

|

|
|
|
|

||

||
|
|

|||
|

|

|

|

|

|

Fixed File Records: There are no changes.

Macros: There are no changes.

Segments: There are no changes.

System Equates: There are no changes.

User Exits: There are no changes.

Functional and Operational Changes
There are no changes.

Performance or Tuning Changes
There are no changes.

Storage Considerations and Changes
There are no changes.

System Initialization Program (SIP) and System Generation
Changes
There are no changes.

Loading Process Changes
There are no changes.

Online System Load Changes
There are no changes.

Publication Changes
Table 5 summarizes changes to the publications in the TPF library. This information
is presented in alphabetic order by the publication title. See the TPF Library Guide
for more information about the TPF library.

Table 5. Changes to TPF Publications for XML4C Parser 3.5.1

Publication Title Softcopy File Name Description of Change

TPF Migration Guide: Program
Update Tapes

GTPMG206 Updated with migration considerations for XML4C parser 3.5.1.

TPF C/C++ Language Support
User’s Guide

GTPCLU0G Updated the list of classes that are supported by XML Parser
for C++ (XML4C) Version 3.5.1 but not documented in the TPF
C/C++ Language Support User’s Guide.

XML User’s Guide Not Applicable Updated for the delivery of TPF information on XML4C parser
3.5.1.

This guide was delivered previously as browser-readable HTML
files only, called XML on TPF: An Online User’s Guide. The
contents of this guide have been changed slightly so that you
can view XML information in PDF as well as in HTML format.
From the IBM TPF Product Information Center, do one of the
following:

v Click Tasks –> XML4C Parser 3.5.1 to view task-oriented
information such as a short tutorial that walks you through a
real example of XML on TPF, step-by-step instructions for
using sample programs included with the ported source code,
and migration information.

v Click Concepts –> XML4C Parser 3.5.1 to view conceptual
information about XML on TPF, including a list of resources
and the documentation included with the ported source code.

v Click Full Library and select XML User’s Guide to view the
information in either HTML or PDF.

Supplements 25

|

|

|

|

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|
|

||

|||

|
|
||

|
|
||
|
|

|||
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Host System Changes
There are no changes.

Application Programming Interface (API) Changes
XML4C parser 3.5.1 supports the DOM and SAX specifications, which are each
comprised of several APIs. These APIs are supported on the TPF 4.1 system but
are not documented in the library. Some of the APIs included with this version of
the parser may be different than those included with the original port of the XML
parser (APAR PJ27634) on PUT 14. The information for the APIs was included with
the ported code for XML4C parser 3.5.1 and is available in XML on TPF: An Online
User’s Guide. See Publication Changes on page 25 for more information.

Database Changes
There are no changes.

Feature Changes
There are no changes.

Installation Validation
There are no changes.

Migration Scenarios
Use the following procedure to install XML4C parser 3.5.1 on your TPF 4.1 system:

1. Unpack program update tape (PUT) 16, which contains APAR PJ28176 for
XML4C parser 3.5.1. See TPF Memo to Licensees for more information about
unpacking the tape.

2. Copy the XML4C C/C++ language header files into an HFS so that they are
available to application programmers. The directory structure must be
maintained and any header files copied for XML parser (APAR PJ27634) on
PUT 14 must be removed. See General Use C/C++ Language Header Files on
page 23 for more information about the XML4C header files.

3. Load the CXML link-edited module listed in Table 4 on page 24.

4. IPL your TPF 4.1 system.

Additional Information

v Listing files are available on a CD-ROM. See your IBM service representative for
more information about these CD-ROMs.

v Source code information:

1. The xml4c3_5_1.tpf.ascii.tar.Z tar file is provided and contains the XML
Parser for C++ (XML4C) Version 3.5.1 source code. The files created after
extracting this tar file contain source code, listings, samples, written
information, and makefiles. (IBM does not, however, warrant that these
makefiles will run in your development environment because these files may
use tools that are not required for your TPF 4.1 system.) The tar file is
provided for your information only and this source code is not supported on
the TPF 4.1 system.

2. Extracting the contents of the tar file will create a samples directory. The
samples in this directory may be useful to programmers who are writing
applications that interact with XML data. Directions for using these samples
(included in XML on TPF: An Online User’s Guide) assume that the
programmers have access to the extracted samples directory.

26 TPF V4R1 XML User’s Guide

|
|

|
|
|
|
|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|

|

|

|

|
|

|

|
|
|
|
|
|
|
|

|
|
|
|
|

Resources
The following list of resources may be helpful to you while learning XML. This is not
a complete list and you are encouraged to find other resources on the Web or
through other sources.

Book Titles Part of the power of XML is that it can be used for both publishing to
an end user and for data definitions (schema) for the interchange of data between
computer programs. Many of the books in the list below favor one of the two points
of view. XML for the World Wide Web: Visual QuickStart Guide presents a
publishing point of view. Beginning XML bridges the gap between both, while
Professional XML focuses on the data perspective.

v Benoit, Marcahl. XML by Example. Indianapolis, IN: QUE, 2000.

v Castro, Elizabeth. XML for the World Wide Web: Visual QuickStart Guide.
Berkeley, CA: Peachpit Press, 2001.

v Graham, Tony. Unicode: A Primer. United States of America: M& T Books, 2000.

v Harold, Elliotte Rusty. XML Bible. United States of America: IDG Books
Worldwide, Inc, 1999.

v Hunter, David, Curt Cagle, Dave Gibbons, Nikola Ozu, Jon Pinnock, and Paul
Spencer. Beginning XML. Birmingham, UK: Wrox Press Ltd, 2000.

v Martin, Didier, Mark Birbeck, Michael Kay, Brian Loesgen, Jon Pinnock, Steven
Livingstone, Peter Stark, Kevin Williams, RIchard Anderson, Stephen Mohr, David
Baliles, Bruce Peat, and Nikola Ozu. Professional XML. Birmingham, UK: Wrox
Press Ltd, 2000.

v North, Simon and Paul Hermans. Teach Yourself XML in 21 Days. United States
of America: Sams, March 1999.

v Ray, Eric T. Learning XML. United States of America: O’Reilly & Associates,
2001. A sample chapter from this book can be found on the O’Reilly Web site at
http://www.oreilly.com/catalog/learnxml/chapter/ch02.html

IBM Web Sites

v Alphaworks: http://alphaworks.ibm.com/

v developerWorks’ XML Zone: http://www.ibm.com/developerworks/xml/

v IBM Red Books: http://www.redbooks.ibm.com/

v XML Toolkit of z/OS and OS/390 Home Page: http://www.s390.ibm.com/xml/

Non-IBM Web Sites IBM accepts no responsibility for the content or use of
non-IBM Web sites.

v Apache XML Project: http://xml.apache.org

v developerlife.com: http://developerlife.com

v OASIS: http://www.oasis-open.org/

v SAX: http://www.megginson.com and http://www.saxproject.org

v Unicode: http://www.unicode.org

v W3C (for the XML specification, the DOM specification, namespaces, and XML
Schema): http://www.w3.org/

v The XML Cover Pages: http://xml.coverpages.org/

v XML.com: http://www.xml.com

– Annotated XML specification: http://www.xml.com/axml/testaxml.htm.

– Myths about Namespaces:
(http://www.xml.com/pub/a/2000/03/08/namespaces/index.html)

Supplements 27

http://www.oreilly.com/catalog/learnxml/chapter/ch02.html
http://alphaworks.ibm.com/
http://www.ibm.com/developerworks/xml/
http://www.redbooks.ibm.com/
http://www.s390.ibm.com/xml/
http://xml.apache.org
http://developerlife.com
http://www.oasis-open.org/
http://www.megginson.com
http://www.saxproject.org
http://www.unicode.org
http://www.w3.org/
http://xml.coverpages.org/
http://www.xml.com
http://www.xml.com/axml/testaxml.htm

.

v XML.ORG: http://www.xml.org

XML4C Version 3.5.1 Documentation
When the TPF development lab ported XML Parser for C++ (XML4C) version 3.5.1,
online documentation was included. The XML4C online documentation provides you
with additional information about the XML4C parser, including the API
documentation used for both the (DOM) and (SAX) specifications. (Some of the
APIs included with this version of the parser may be different than those included
with the original port of the XML parser (APAR PJ27634) on PUT 14.)

IBM has not committed to including any future release of this product for TPF.
Discussion of future support (such as (XML Schema)) in the following documents
should not be interpreted to imply that such support will be provided on TPF.

This documentation is only available when you are connected to the Internet. If you
are connect, the following link opens a new browser window. To return to this page,
simply close the new browser window by using the X in the upper-right corner.

To open the XML4C Version 3.5.1 Documentation, click the following:

http://www.ibm.com/software/ts/tpf/pubs/xml4ic/xml4c351/html/index.html

Note: This documentation was not developed by the TPF development lab and the
lab is, therefore, not responsible for the information and links contained in the
documentation.

28 TPF V4R1 XML User’s Guide

http://www.xml.org
http://www.ibm.com/software/ts/tpf/pubs/xml4ic/xml4c351/html/index.html

	Contents
	Tables
	About This Guide
	The Basics
	Why XML?
	XML Support on TPF
	Character Encodings

	Learn XML

	The Parser
	Application Programming
	InputSource: Where Is the XML Document?
	Document Type Definitions (DTDs): Defining the Rules
	XML Schema: Another Way to Define Rules
	Namespaces: A Two-Part Naming System
	For More Information

	DOM
	How Do I Use DOM?
	When Should I Use DOM?
	For More Information

	SAX
	How Do I Use SAX?
	When Should I Use SAX?
	For More Information

	DOM versus SAX
	Validation
	When Should I Use Validation?
	How Do I Use Validation?
	Results of Validation
	For More Information

	Examples
	XML on TPF: A Short Tutorial
	Samples from the Source: XML4C

	Supplements
	Glossary
	Migration Information
	XML4C Parser 3.5.1 (APAR PJ28176)
	Prerequisite APARs
	Functional Overview
	Architecture
	Operating Environment Requirements and Planning Information
	Interface Changes
	C/C++ Language
	Configuration Constant (CONKC) Tags
	Control Program Interface (CINFC) Tags
	Copy Members
	Fixed File Records
	Macros
	Segments
	System Equates
	User Exits

	Functional and Operational Changes
	Performance or Tuning Changes
	Storage Considerations and Changes
	System Initialization Program (SIP) and System Generation Changes
	Loading Process Changes
	Online System Load Changes
	Publication Changes
	Host System Changes
	Application Programming Interface (API) Changes
	Database Changes
	Feature Changes
	Installation Validation
	Migration Scenarios

	Resources
	XML4C Version 3.5.1 Documentation

