
Transaction Processing Facility

Programming Standards
Version 4 Release 1

SH31-0165-10

���

Transaction Processing Facility

Programming Standards
Version 4 Release 1

SH31-0165-10

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

Eleventh Edition (June 2002)

This is a major revision of, and obsoletes, SH31-0165-09 and all associated technical newsletters.

This edition applies to Version 4 Release 1 Modification Level 0 of IBM Transaction Processing Facility, program
number 5748-T14, and to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. Address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Tables . v

Notices . vii
Trademarks . vii

About This Book . ix
Who Should Read This Book . ix
Conventions Used in the TPF Library ix
Related Information. x

IBM Transaction Processing Facility (TPF) 4.1 Books x
Miscellaneous IBM Books . x
Online Information . x

How to Send Your Comments. xi

Introduction to TPF Standards 1
Deviations and Additions . 1

Preexisting Code . 1
Acquired Code . 1

Format for I/O Messages to CRAS 3
Commands. 3

Reserved Secondary Action Codes 3
Secondary Action Code Format Examples 3
Character Set . 3
Field Delimiters . 4
Parameters. 4
Message Parsing Techniques 4

Messages . 5
Message Generation . 5
Character Set . 5
Message Format. 5
Message Identification. 6
Time Stamp . 7
Message Text . 8
Multiple Line Messages . 8
Modifying Existing Messages 9
Defining New Messages . 10
Message Parsing Techniques 10

System Errors . 11

Record IDs . 13
Database Record IDs . 13
Tape Record IDs . 13

Naming Conventions . 15
Source File Names . 15
Contents of C/C++ Source Files 19
Generally Reserved Names for the TPF System 21

TPF File System File Names. 22
TPF Collection Support Data Store Names 22
Symbolic Register Names . 22
Coupling Facility Structure Names 23

© Copyright IBM Corp. 1994, 2002 iii

||

Logical Record Cache Names 23
Tape Names . 23
Recoup Descriptors . 23

C/C++ Standards for the TPF System 25
Compile Options for TPF Programs 25
Mapping Library Names and LONGNAME Support. 25
Structure and DSECT Definition and Documentation 25
Using the CHECKOUT Option for C Headers. 25
Using the C++ INFO Compiler Option for C Headers 25

Assembler Coding Practices 27
Register Usage. 27

Registers Reserved for the Application Program Interface 27
Registers Reserved for Control Program Use. 27

Program Structure. 27
Use of Global Variables for CSECT Statements 27
VCONC Macro . 28

Appendix A. Deviations from Existing Naming Standards 29
TPF Real-time Segments . 29
CP CSECTS and Copy Members 29
Macros . 29
TPF 4.1 Headers . 31

Appendix B. Existing Database Record ID Deviations 33

Appendix C. Record IDs Used for RTA/RTL Tape 35

Index . 37

iv TPF V4R1 Programming Standards

||
||

Tables

1. Naming Conventions for Source Files . 16
2. Naming Conventions for C/C++ Source Code (Contents of File) 20
3. Record IDs for RTA/RTL . 35

© Copyright IBM Corp. 1994, 2002 v

vi TPF V4R1 Programming Standards

Notices

References in this book to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service in this book is not intended to
state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
IBM’s intellectual property rights may be used instead of the IBM product, program,
or service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department 830A
Mail Drop P131
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Any pointers in this book to non-IBM Web sites are provided for convenience only
and do not in any way serve as an endorsement. IBM accepts no responsibility for
the content or use of non-IBM Web sites specifically mentioned in this book or
accessed through an IBM Web site that is mentioned in this book.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AD/Cycle
EOCF/2
IBM
Sysplex Timer
System/390.

Other company, product, and service names may be trademarks or service marks
of others.

© Copyright IBM Corp. 1994, 2002 vii

viii TPF V4R1 Programming Standards

About This Book

This book presents programming standards used by TPF Development. The
standards manual contains information, methods, and examples for implementing
user programs compatible with TPF.

This manual contains both statements of standards and examples of standards. The
materials used to illustrate standards may not be entirely up-to-date with the current
product (for example, the text of an operator message may be changed); they only
serve to indicate the points being made. Strict accuracy with a changing product
need not be achieved when the intent is solely the purpose of illustration.

In this book, abbreviations are often used instead of spelled-out terms. Every term
is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, Systems Network Architecture (SNA). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in the TPF
Library Guide.

Who Should Read This Book
This book is intended for application and system programmers, and for
programming managers.

Conventions Used in the TPF Library
The TPF library uses the following conventions:

Conventions Examples of Usage

italic Used for important words and phrases. For example:

A database is a collection of data.

Used to represent variable information. For example:

Enter ZFRST STATUS MODULE mod, where mod is the module for which you want
status.

bold Used to represent text that you type. For example:

Enter ZNALS HELP to obtain help information for the ZNALS command.

Used to represent variable information in C language. For example:

level

monospaced Used for messages and information that displays on a screen. For example:

PROCESSING COMPLETED

Used for C language functions. For example:

maskc

Used for examples. For example:

maskc(MASKC_ENABLE, MASKC_IO);

bold italic Used for emphasis. For example:

You must type this command exactly as shown.

Bold underscore Used to indicate the default in a list of options. For example:

Keyword=OPTION1 | DEFAULT

© Copyright IBM Corp. 1994, 2002 ix

Conventions Examples of Usage

Vertical bar | Used to separate options in a list. (Also referred to as the OR symbol.) For example:

Keyword=Option1 | Option2

Note: Sometimes the vertical bar is used as a pipe (which allows you to pass the output of
one process as input to another process). The library information will clearly explain
whenever the vertical bar is used for this reason.

CAPital LETters Used to indicate valid abbreviations for keywords. For example:

KEYWord=option

Scale Used to indicate the column location of input. The scale begins at column position 1. The
plus sign (+) represents increments of 5 and the numerals represent increments of 10 on the
scale. The first plus sign (+) represents column position 5; numeral 1 shows column position
10; numeral 2 shows column position 20 and so on. The following example shows the
required text and column position for the image clear card.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

LOADER IMAGE CLEAR

Notes:

1. The word LOADER must begin in column 1.

2. The word IMAGE must begin in column 10.

3. The word CLEAR must begin in column 16.

Related Information
A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM Transaction Processing Facility (TPF) 4.1 Books
v TPF Library Guide, GH31-0146

v TPF Application Programming, SH31-0132

v TPF C/C++ Language Support User’s Guide, SH31-0121

v TPF General Macros, SH31-0152

v TPF Operations, SH31-0162

v TPF Main Supervisor Reference, SH31-0159

v TPF System Generation, SH31-0171.

Miscellaneous IBM Books
v ESA/390 Principles of Operation, SA22-7201.

Online Information
v Messages (Online)

v Messages (System Error and Offline).

x TPF V4R1 Programming Standards

|

|

|

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

v If you prefer to send your comments electronically, do either of the following:

– Go to http://www.ibm.com/tpf/pubs/tpfpubs.htm.

There you will find a link to a feedback page where you can enter and submit
comments.

– Send your comments by e-mail to tpfid@us.ibm.com

v If you prefer to send your comments by mail, address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

v If you prefer to send your comments by FAX, use this number:
– United States and Canada: 1 + 845 + 432 + 9788
– Other countries: (international code) + 845 + 432 +9788

About This Book xi

http://www.ibm.com/tpf/pubs/tpfpubs.htm

xii TPF V4R1 Programming Standards

Introduction to TPF Standards

TPF Programming Standards is for any programmer who writes or modifies
programs that interface with the TPF program product. This does not apply to the
EOCF/2, TPFDF, or ALCS products, except where explicitly noted.

As used in this document, a programming standard is a method or group of actions
that provides a specific solution to a programming problem. Standards and
conventions are the interfaces between the TPF development lab and our
customers that allow us to limit any disruption to their processor complexes. Most
conventions are derived from several years of experience in writing TPF programs.
Along with TPF standards and conventions, there are IBM programming standards.
All programmers must adhere to items defined as standards when creating or
modifying TPF programs.

Note: The word program refers to an individual partitioned data set (PDS) member.

Deviations and Additions
Customer requests for additions or changes to this document should be made
through your IBM customer representative.

Preexisting Code
While IBM makes every effort to conform to the standards described here, complete
adherence is not currently possible because of the nature of the TPF program
product. Consequently, some aspects of the TPF program will not conform to these
standards. Any deviations from these standards found in TPF 4.1 and earlier
releases are considered to be an acceptable, preexisting condition. Preexisting
deviations will conform to these standards on a “time available” basis and as
business decisions dictate.

Acquired Code
There may be times when IBM will acquire code to be installed as part of the TPF
base. Conditions may occur when changing the code to comply with the standards
in this document would be difficult or expensive. At the time when the code is
acquired, a decision will be made as to whether or not the code will be changed to
comply to these standards.

IBM reserves the right to implement acquired code into the TPF base without
changing it to adhere to these standards.

© Copyright IBM Corp. 1994, 2002 1

2 TPF V4R1 Programming Standards

Format for I/O Messages to CRAS

This chapter defines the recommended format for all commands (input messages)
and output messages. Ensure that all new code conforms to these guidelines.
Messages provide a means for the operator to communicate with and to monitor the
TPF system. By providing a consistent format for the operator, we are making the
job of interpretation and action easier. It is essential not to change the format of
existing input and output messages because of the impact on automation.

Commands
Commands (previously known as functional messages), which are sent from the
operator to the TPF system, have Z as the primary action code (that is, the first
character) and have a 1- to 4-character secondary action code immediately
following the Z.

Reserved Secondary Action Codes
The following secondary action codes are reserved:

v Those beginning with U, Z, CTCI, FDRS, and RDRS are reserved for TPF
customers.

v The special action code, Z M, is used as an interface to the scrolling package.

v All other secondary action codes are reserved for IBM.

Within the IBM reserved action codes, the following applies:
– Secondary action codes beginning with N are reserved for IBM System

Network Architecture (SNA) messages.
– Secondary action codes beginning with L are reserved for IBM line control

messages.

Secondary Action Code Format Examples
The secondary action code either ends the message or is followed by a blank.
Examples:

ZDTIM The secondary action code DTIM ends the
message.

ZDCOR 000100 DCOR does not end the message, so it is
followed by a blank.

ZZDW/0125//// This message format is non-standard.

Character Set
For interfaces that receive commands on data level 0 (D0), the character set is
restricted to alphanumeric characters A–Z, 0–9, and special characters hyphen (-),
period (.), asterisk (*), dollar sign ($), and slash (/).
Example:

ZRTCU CTON #KEYPT This message is nonstandard because it
contains a pound sign, #, which is not
available on all terminals.

Note: Message help functions can use nonstandard characters only if there is also
support for an alternative standard form of the message.

© Copyright IBM Corp. 1994, 2002 3

Example:

ZASER ? The question mark is a non-standard character;
ZASER HELP however, the alternative HELP parameter will

provide the same function.

There is also another interface provided where a copy of the command, as it was
entered, is pointed to by field CE2CRSMSG of the entry control block (ECB). This
copy of the command message can contain uppercase characters, lowercase
characters, other special characters, and is ended by the null character (X'00').

Field Delimiters
Fields in the message should be delimited by blanks. Occasionally, you can use a
special character, (hyphen, period, asterisk, dollar sign and virgule) to delimit
subfields of a field. All new commands should be free format, that is, all
unnecessary blanks in the command should be ignored.

Examples:

ZTINT 280 123456 D1600 Each field is delimited by a blank.

ZDREC 05C.000006 080 006 The record ID field (05C.000006) uses the period (.)
to separate the record type from the ordinal
number.

Parameters
Commands can contain positional or keyword parameters, or combinations of the
two. Positional parameters must be entered in the sequence shown in TPF
Operations, separated by one or more blanks. Keyword parameters can be entered
in any position. The absence of a parameter implies a default specification. The
default should be indicated in the command documentation in the individual
command specifications.

Commands should support variable length keywords and parameters. The shortest
unique character string should be allowed for keywords (that is, the keyword
parameters may be truncated to the minimum unique abbreviation). This can be
identified in the individual command documentation by uppercase letters. No
extraneous data should be entered after the keywords or parameters. If any
extraneous data is entered with a message, the message will be flagged as not
valid by the message processor.
Examples:

ZAUTH D(isplay) LIT-030205 The minimum character representation
for display is D. The second
parameter is a keyword.

ZVFAC DIS(play) STA(tus) The minimum character representation
for display is DIS and for status is STA.

ZMPIF DEF(ine) D(evice) N(ame)-$3088G00 The minimum character representation
for define is DEF, for device is D,
and for name is N.

Message Parsing Techniques
Use the Input Message Tokenization support (either through the BPKDC macro or
the IPRSE C language utility) to edit command parameters. Using these tools saves
you the tedium of editing out multiple blanks, checking for an end-of-message, and

4 TPF V4R1 Programming Standards

so on. When coding new commands, look into the function provided by these
macros in TPF General Macros and the TPF C/C++ Language Support User’s
Guide.

Messages

Message Generation
Sending most output messages to the system operator is a simple, straightforward,
uncomplicated task. For most messages, it is only necessary to point to the output
parameters and text, relying on the system to do the formatting. The following
macros are provided for this purpose and should be used whenever possible.

WTOPC Edit and send system message

The WTOPC macro constructs a message block and provides
facilities for converting binary values into EBCDIC, decimal, or
hexadecimal, and for editing the message.

GENMSG Generate message table for WTOPC

The GENMSG macro constructs the information that WTOPC uses
to build a message. Multiple GENMSG macros can be assembled
together to form message text tables.

DCTMSG Define GENMSG entry

The DCTMSG macro defines and labels entry information
generated by the GENMSG macro. These labels can be used when
coding a subsequent WTOPC macro.

The WTOPC macro is described in TPF General Macros and in the TPF C/C++
Language Support User’s Guide. GENMSG and DCTMSG are described in more
detail in TPF General Macros.

Note
If you are coding in C, do not use printf. Use the C language wtopc macro.
See the TPF C/C++ Language Support User’s Guide for more information.

Character Set
All characters are allowed for messages except the following:

v X'4E' (+), which is the end-of-message control character

v X'6E' (>), which is the start-of-message control character.

TPF system code unconditionally translates these two characters to X'4B' (.).
Control program (CP) user exit WTOP is provided for you to customize your output.
See TPF System Installation Support Reference for more information about this
user exit.

Message Format
All messages from the system to the operator, whether reply or unsolicited, have
the same basic format:

Message_ID Time_stamp Text

Format for I/O Messages to CRAS 5

Message Identification
All messages from the system to the operator, whether reply or unsolicited, must
have a unique message identifier (ID). A unique message ID is made up of a
segment name, message number, and a severity code in the form aaaannnns
where:

aaaa Message prefix

For a reply message, this represents the secondary action code of the
associated command.

For an unsolicited message, this represents the issuing program or package
name.

nnnn Message number

This is a decimal number from 0001 to 9999. Each message should have a
unique message number.

s Severity code

This code is used by the operator to determine what additional action, if
any, is required. The codes are:

I Information only

This code is appended to all normal response message numbers.

A Action required

This code indicates that additional operator action is required.

W Attention

This code is appended to error messages that may require
additional operator action.

E Error

This code is appended to error messages that reflect an error
condition without program termination.

T Termination

This code indicates that the program or function is in error and that
program termination has taken place.

Message identification is made through the prefix and number only. The severity
code is used only as a qualifier.

Message Examples
The following examples show how the message identification guidelines are used.

For command:
ZDKAT KPB

a normal reply message is:
DKAT0001I 11.35.00 KEYPT B IS PROC UNIQUE AND SS RESIDENT

KEYPT B FILE ADDRESS 18480013
KEYPT B CORE ADDRESS 000CD458

For the command:
ZDKAT KPQ

6 TPF V4R1 Programming Standards

an error reply message is:
DKAT0006E 11.35.00 INVALID KEYPT NAME, CHOOSE FROM

A,B,C,D,E,I,M,V,0,1,2,3,4,5,6,9

The following are examples of unsolicited messages:

v CSG50002I 11.45.31 RVT1 RELOADED FROM FILE

v GOGO0001I 11.35.51 APPLICATION FIXED CORE LOADED MODE 7 SSU HPN I-S 3

v CANT0001I 10.25.21 ANT LOAD SUCCESSFUL

Note on Messages for the TPFDF Recoup Package
Message numbers in the 9000–9999 range with the RECP message
identification code (ID) are reserved for the TPF Database Facility (TPFDF)
product.

Message ID Uniqueness
A message can be identified by more than one ID, but not in the same segment;
nor can an ID identify more than one message except where the subsequent
message is a more detailed form of previous messages.

Some examples follow:

v The following example is incorrect because the severity code does not make the
message ID unique:

ABCD0001W THIS IS AN ATTENTION MESSAGE
ABCD0001E THIS ATTENTION MESSAGE HAS NOW BECOME AN ERROR

The message is correct as follows:
ABCD0001W THIS IS AN ATTENTION MESSAGE
ABCD0002E THIS ATTENTION MESSAGE HAS NOW BECOME AN ERROR

v The following example is correct because the message prefix, (in this case, the
issuing program name) makes the message ID unique:

ABCD0010E ERROR RETRIEVING RECORD FROM FILE
EFGH0010E ERROR RETRIEVING RECORD FROM FILE

v The following example is correct because it is acceptable to reuse a message ID
if more detailed information is added to the end of the existing message:

ABCD0015E ERROR RETRIEVING RECORD FROM FILE
ABCD0015E ERROR RETRIEVING RECORD FROM FILE

BECAUSE RECORD ID WAS CORRUPTED

v The following example is incorrect because the detailed information has caused
the placement of the existing text in the message to change:

ABCD0015E ERROR RETRIEVING RECORD FROM FILE
ABCD0015E ERROR RETRIEVING RECORD nnnn FROM FILE

Time Stamp
A time stamp is required on all messages. The time stamp must give the value of
the 24–hour local standard time clock. (Note that local standard time is subsystem
unique. Some messages may require the use of a time-of-day (TOD) clock for time
stamping. The time stamp immediately follows the message ID and precedes the
message text as follows.
MSG ID TIME STAMP MESSAGE TEXT
MCHR0050E 10.05.11 INVALID FARF ADDRESS

Format for I/O Messages to CRAS 7

Message Text
There are two kinds of messages: static and variable.

Static Messages
Static messages are those that do not contain variables. There is only one
message text and only one meaning.

CANT0001I 14.52.24 ANT LOAD SUCCESSFUL

Variable Messages
Variable messages contain parameter data. The variable data should not change
the meaning or context of a message. There are various kinds of parameter data:
main storage displays, tag names, program names, record IDs and numbers, time
stamps, addresses, utility names, processor numbers and displays (such as from
operator commands ZSTAT, ZDFPC, ZNETW D, and others).

Multiple Line Messages
Output requiring more than one line can be either of two formats: table displays or
formatted displays. Each can also be static or variable.

Table displays are usually in tabular form and begin with headings identifying the
multiple lines that follow. For example:

SYSL0002I 17.52.21
CURRENT SHUTDOWN LEVELS FOR CLASS BATCH

TOTAL SHUTDOWN SHUTDOWN
KEYWORD ALLOCATED LEVEL PCT-AGE

CMB 258 123 48
ECB 541 259 48
FRM 2709 1300 48
IOB 2272 1090 48
SWB 1128 541 48

END OF DISPLAY

Formatted displays usually have fixed forms and contain the same number of
output lines. The output lines can have a mixed style.

STAT0008I 14.51.24 SYSTEM STATUS DISPLAY
IOB FRAME COMMON SWB ECB

ALLOCATED 2720 6000 500 1000 3000
AVAILABLE 2703 5834 465 932 2998

ACTIVE ECBS 2
PROCESSED 0
LOW SPEED 0
ROUTED 0
CREATED 70
END OF DISPLAY

Conventions for Multiple–Line Messages
v All tabular and formatted displays have a header line containing a message ID,

time stamp, and explanatory text.

v Any tabular display message must not exceed 64 characters in length. If a
tabular display exceeds 64 characters, the column can then be staggered over
two lines.

Note: This does not apply to a single message that wraps.

v The message ID is only found on the first line of a message. It is not repeated on
subsequent lines.

v The last line of a multiple-line display must be one of the following:

8 TPF V4R1 Programming Standards

– END OF DISPLAY
– END OF MESSAGE
– A “continuation” line.

It is suggested that you use the ZPAGE function to display continuation
messages. Remember that subsequent pages of a multiple–line message that
are displayed after ZPAGE has been entered are considered new messages.
Therefore, a header line containing the original message ID should be the first
line of subsequent pages.

v Variable displays do not have null results; instead, they result in a separate
message indicating that there is nothing to display.

v If an error occurs while successive lines in a multiple-line message are being
displayed, output from the error message is displayed only after an END OF
DISPLAY line has been sent. This separates the multiple-line message from the
error message.

v Multiple-line messages consist of multiple blocks, not multiple messages.

Formatted displays that contain no variable data are simply static displays.
MPIF0001I 14.51.24 MPIF HELP DISPLAY
TRACE - USED TO TRACE ACTIVITY OF A USER, PATH OR DEVICE
USER - NAME OF THE USER
PATH - NAME OF THE PATH OR DEVICE
ALL - TRACE ACTIVITY ON ALL PATHS
STOP - STOP ACTIVE TRACE
DISPLAY - DISPLAY THE IN-CORE MSRB TRACE TABLE
NOLOG - DO NOT WRITE MSRB TRACE TO REAL-TIME DUMP TAPE
END OF DISPLAY

Modifying Existing Messages
The following modifications are allowed to existing message text because they will
not cause breakage to existing automation procedures that follow the recommended
message parsing techniques that are described in Message Parsing Techniques on
page 10:

v Message text with no substitutable data fields may be changed as necessary
provided the meaning of the message text does not change. A substitutable data
field (or fields) may be added to the message text, however, any subsequent
change must follow the next rule.

v Message text with substitutable data fields may be changed as long as the
number of tokens that are needed to represent the message text and the position
of tokens representing substitutable data fields in the message text does not
change. In addition, the following changes may be made to these messages:

– Additional values may be added to an existing substitutable data field, such as
a new value for rc. For example:
TRAC0001I TRACE MODIFY COMPLETE RC=rc

If a human readable text is used to represent the values of rc, each value
must be represented by the same number of tokens.

– The length of substitutable data fields may change.

– New substitutable data fields may be added to the end of the message text
provided the meaning of the original message does not change.

Format for I/O Messages to CRAS 9

|

Defining New Messages
When a new message is being considered for a segment, examine all existing
messages that are issued by that segment to determine whether an applicable
message already exists. If no message text exists that satisfies the requirements, a
new message can be generated.

If message text exists in a segment, it must be used with the existing message ID.
There should be no duplicate message texts in a segment.

Message text must depict only one meaning. If a message already exists for one
purpose, but its text could be interpreted differently for another condition, a different
message and message ID must be used.

Message Parsing Techniques
Message parsing becomes extremely important in the context of automation.
Console automation and test script automation (with a product such as EOCF/2) are
the most relevant for the TPF system. The method of automation influences the
parsing techniques used.

v Parsing the Message ID

Techniques for parsing the message ID should be structured in such a way that
they will be independent of system changes.

In EOCF/2, the message filter parses the message ID. The selected message is
then passed to a user automation script. The automation script does not need to
parse the ID.

The solution for parsing a message ID is to break the ID into its parts and to
compare each part against the same part of each ID in a predefined set. The
prefix and severity code can be compared by using string compares, while the
number can be compared using a numeric comparison. This numeric comparison
will ignore any leading zeros, and therefore, will allow the serial number to be
expanded without the threat of reducing the effectiveness of the automation.

v Parsing variables

Parsing variables is only necessary for variable messages. Static messages are
always identified by the message ID.

Either console or test script automation will have to parse the message text.

Always parse the text by using tokens (strings delimited by blanks and special
characters), not by position. Tokens allow easier handling of variable length
fields.

10 TPF V4R1 Programming Standards

System Errors

Control programs and real-time programs can execute the SERRC macro or the
SNAPC macro to issue a system error. However, use the SERRC macro with
discretion because of its high system overhead. With the size of main storage
increasing, criteria for issuing system errors has become more rigorous. The
SNAPC macro produces more manageable dumps without the overhead required
by SERRC.

If a problem can be adequately signalled without a dump, do not take a dump. If a
smaller, ″snapshot″ of memory is enough, it should be taken in preference to a
complete dump. The SNAPC macro is preferred for such a snapshot. If the SERRC
macro is used, the SLIST parameter lets you define (and restrict) storage lists to be
dumped.

Note: During SERRC macro execution, the CPU becomes dedicated to dumping
areas of main storage to the real-time logging/activity tape. The dump time is
measured in seconds, and during this time the CPU cannot do productive work.
This is not true for a SNAPC dump.

The SERRC macro also creates an entry control block (ECB) to send a system
error message to the computer operator, and an ECB to carry out a keypoint
update.

The following system error numbers are reserved:

v For the CTCI package: A20000–A20FFF using prefix Z.

© Copyright IBM Corp. 1994, 2002 11

12 TPF V4R1 Programming Standards

Record IDs

This chapter discusses database record identifiers (IDs) and tape record IDs.

Database Record IDs
All new database record IDs used by the TPF system will fall in the following
ranges:
v X'0000' to X'00FF'
v X'FC00' to X'FFFF'

Current record IDs that fall outside this range will not be changed at this time to
comply with this standard. See Appendix B, “Existing Database Record ID
Deviations” on page 33 for a list of existing database record IDs which deviate from
this standard.

Tape Record IDs
All new tape record IDs that are used by the TPF system will fall in the following
ranges:
v X'EA00' to X'EFFF'

Current record IDs which fall outside this range will not be changed at this time to
comply with this standard. See Appendix C, “Record IDs Used for RTA/RTL Tape”
on page 35 for a list of existing tape record IDs that deviate from this standard.

© Copyright IBM Corp. 1994, 2002 13

14 TPF V4R1 Programming Standards

Naming Conventions

This chapter contains naming conventions for E-type programs, ISO-C build scripts,
ISO-C library interface scripts, macros, coupling facility (CF) list structures, and
other names.

Source File Names
The following table identifies how to name source files.

© Copyright IBM Corp. 1994, 2002 15

Table 1. Naming Conventions for Source Files
Type of Source File Naming Convention Reserved Names Notes

CP CSECT CCxxxx, where x is any alphanumeric character. See Appendix A, “Deviations from Existing Naming
Standards” on page 29 for a list of CP CSECTs
that deviate from the naming conventions.

COPY members axxx|x|x, where a is B, C, D, U, JC, or XL, and x is
any alphanumeric character. The maximum length
is six characters.

See Appendix A, “Deviations from Existing Naming
Standards” on page 29 for a list of copy members
of CP CSECTs that deviate from the naming
conventions.

E-type (real-time) program
v load module (DLM, library, DLL)
v BAL
v TARGET(TPF)

Note: The program name is the name in the
TPFLDR input deck.

axxx, where a is B, C, D, U, JC, or XL, and x is
any alphanumeric character.

v For the TPF Database Facility (TPFDF) product:
members starting with BCB, BFA–BFB, BRC,
BRZ, and all members beginning with UF
(except those that start with UFF and UFH–UFJ,
which are reserved for the TPFDF product for
atraxis (Swissair) only).

v For the Step-by-Step trace (SST) facility product:
members starting with BT (BTxx).

v For the CMS/TPF product: members in the
CTP0–CTP9 and CTPA–CTPZ range.

v For atraxis (Swissair): members starting with DC
(DCxx), DI (DIxx), DO (DOxx), DP (DPxx), and
CVZK, CVZN, and CVZO.

v BRCP and BRCQ are already in use by the TPF
product and are not available to TPFDF.

v BTCB, BTIM, and BTLI are already in use by the
TPF product and are not available to the SST
facility.

v See Appendix A, “Deviations from Existing
Naming Standards” on page 29 for a list of those
TPF real-time programs that deviate from the
naming conventions.

C/C++ source axxx/x/x, where a is B, C, D, U, JC, or XL, and x is
any alphanumeric character.

v The standard is to have 4- to 6-character
names, but the guideline is to use 5- to 6-
character names.¹

C/C++ build script axxxBS
v where a is B, C, D, U, JC, or XL, and x is any

alphanumeric character.
v axxx must match the load module name.

Because axxx matches the load module name, the
same list of reserved names for E-type (real-time)
programs applies.

C run-time (nondynamic) library interface script axxxXV
v where a is B, C, D, U, JC, or XL, and x is any

alphanumeric character.
v axxx must match the load module library name.

Because axxx matches the load module name, the
same list of reserved names for E-type (real-time)
programs applies.

Ported code segments Same as the ported code name, unless it is a
system-required function that must go through SIP.
If you must change the file name, you must follow
the TPF standard for file names.

v Ported code segment names can be reused as
long as the type is different. ABC.C and ABC.H
are allowed. The key is that no two executable
programs can have the same name.

v Six-character segment names will be allowed for
ported code.

v Ported code will not have SID codes
automatically placed on changed lines.

16
T

P
F

V
4R

1
P

rogram
m

ing
S

tandards

Table 1. Naming Conventions for Source Files (continued)
Type of Source File Naming Convention Reserved Names Notes

TPF external C/C++ header

(TPF interface protected; interface guaranteed)

C$xxxx, where x is any alphanumeric character. v If an equivalent BAL DSECT already exists, xxxx
should be as close as possible to the name of
the BAL DSECT.

v If there is no BAL DSECT equivalent, there is no
restriction. However, if an equivalent BAL
DSECT is created, xxxx must match for both the
external C/C++ header and BAL DSECT.²

v Existing C headers, including those for drivers,
will not be renamed and will remain exceptions.

TPF internal C/C++ header

(TPF implementation specific; interface not
guaranteed)

I$xxxx, where x is any alphanumeric character. v If an equivalent BAL DSECT already exists, xxxx
should be as close as possible to the name of
the BAL DSECT.

v If there is no BAL DSECT equivalent, there is no
restriction. However, if an equivalent BAL
DSECT is created, xxxx must match for both the
internal C/C++ header and BAL DSECT.²

Ported C/C++ header Same name as ported header. Ported C/C++ header files will not be renamed and
will be named “as ported” unless they are more
than 8 characters long. Ported C/C++ header files
are restricted to 8 characters in length. Ported
C/C++ header files are exceptions to the C/C++
header naming conventions.

Standard header Same name as standard.

BAL imperative macro

(any macro that generates code)

a(xxxx)C, where a is an alphabetic character and x
is any alphanumeric character.

Note: xxxx is variable in length and can be from
1–4 characters in length. BAL imperative macros
can be no longer than 6 characters in length but
can be fewer than 6 characters.

v For the Step-by-Step trace (SST) facility product:
SSTxxC

v Does not apply to system generation macros.
v See “Macros” on page 29 for a list of existing

macros that currently deviate from these naming
standards.

v The FDRSC macro name is reserved for
customer use.

BAL equate, declarative, keypoint, and control
block macros ³

Ixxxx(x), where x is any alphanumeric character.
Note: The 5th x is obsolete. All existing BAL
equate, declarative, keypoint, and control block
macros that are 6 characters in length are
exceptions and will not be renamed.

v For the Step-by-Step Trace (SST) product:
ISSTxx.

v For atraxis (Swissair):
– IDxxDC
– IRxxDC
– ITxxDC
– IWxxDC

v Field names must start with I.
v Does not apply to system generation macros.
v If a BAL DSECT is created and it will also have

an equivalent C header, the BAL DSECT will be
Ixxxx,
– where xxxx is any alphanumeric character.
– where xxxx must match for both the BAL

DSECT and C header.²
v See “Macros” on page 29 for a list of existing

macros that currently deviate from these naming
standards.

BAL global set symbols in macros &xx, where x is any alphanumeric character. All global set symbol names starting with &SU,
&XU, and &U are for customer use.

Global symbols must be unique to the system.

N
am

ing
C

onventions
17

Table 1. Naming Conventions for Source Files (continued)
Type of Source File Naming Convention Reserved Names Notes

Notes:

¹ The PDS member name for the compiled or assembled object code will be the same as the source file member name. This name must be unique in the directory that it is in. See TPF Application
Programming for details about ISO-C, build scripts, and the library interface tool. See the BSCRLSCR prolog for a sample build script format.

² In the following example, a new C header file is created and no BAL DSECT exists:

C$TABL (external header)

struct tpf_itabl_item
{
char itabl_field1;
short int itabl_field2;

}

But then, if a C$TABL BAL equivalent is created, it would be named ITABL. For example:

ITABL
ITABL_FIELD1 DS CL1
ITABL_FIELD2 DS XL2

In the following example, a new C header file is created and there is an existing BAL DSECT:

ECBHDR a "made-up existing" TPF BAL DSECT
C$ECBH /* its new "made up" C language header

The field name in the C header should (but is not required to)
match those in the BAL DSECT.

³Any equates that are specific to a declarative macro will be defined in the macro definition. For example, if the macro has indicator bytes with predefined bits, those bits will be defined via equates in the
macro. These equates are available for program use with the macro call. The naming convention for all labels in a macro (including equates) should follow the macro naming convention and also begin with the
letter I.

18
T

P
F

V
4R

1
P

rogram
m

ing
S

tandards

Contents of C/C++ Source Files
The following table describes how to name the C/C++ item that is in a C or C++
source file; these are the actual contents, not the external source file name. These
conventions are in place to avoid clashing with namespaces of customers:

v If a header is included in and compiled with customer source code.

v If external symbols are generated (for example, the names of ISO-C library
function stubs).

Naming Conventions 19

Table 2. Naming Conventions for C/C++ Source Code (Contents of File)

Item in C/C++ Source File Standard and Ported C/C++
Code

TPF - Interface Protected
(Interface Guaranteed)

TPF - Implementation
Specific (Interface Not
Guaranteed)

BAL Equivalent Exists

identifiers
v functions¹
v data

macro (#define)

typedef

enumeration
v tag
v value

tags⁵
v structure⁶
v union

exported
v functions
v data

As is² One of the following³:
v tpf_
v TPF_
v tpfxxx_
v TPFxxx_ where xxx is a

package or feature code that
will allow the names to be
grouped together in
documentation and also
self-document to which
package they belong.

Anything One of the following:⁴
v TPF_name
v TPF_name_xxx
v tpf_name
v tpf_name_xxx

names coded with the #pragma
map directive or assembler
external symbols
Note: Names beginning with
@@LM are reserved for TPF
link map support for C load
modules.

@@xxxxxx, where x is any
alphanumeric character.
Note: xxxxxx is variable in
length and can be from 1–6
characters.

@@xxxxxx, where x is any
alphanumeric character.
Note: xxxxxx is variable in
length and can be from 1–6
characters.

@@xxxxxx, where x is any
alphanumeric character.
Note: xxxxxx is variable in
length and can be from 1–6
characters.

@@xxxxxx, where x is any
alphanumeric character.
Note: xxxxxx is variable in
length and can be from 1–6
characters.

20
T

P
F

V
4R

1
P

rogram
m

ing
S

tandards

Table Notes:

1. For external function names, the name in the header file must map as
@@nnnnnn for a library function and Cnnn for a dynamic load module (DLM).
For example:

Name in Header File

pragma maps
library tpf_sort() --------> @@SORT

to

pragma maps
DLM tpf_cima_sort() --------> CIMA

to

See “Mapping Library Names and LONGNAME Support” on page 25 for
information about LONGNAME support.

2. If you are porting a standard package but find that you need to write
TPF-unique function that will still be considered part of the standard package,
use the naming convention of that package and add a suffix of _tpf. Following is
an example with a standard package of standpkg and a function of newfunc:

standpkg_portedfunc /* Part of the package and ported as is */
standpkg_newfunc_tpf /* Part of the package but written by TPF */

3. TO2_ functions are exceptions to this naming convention. They will not be
renamed.

4. All existing TPF DSECTs will not be renamed and are exceptions.

5. Global Tags and System Equates Migrated from Assembler to ISO-C:

v Use an underscore character followed by the name in lowercase when
naming global variables. For example, global assembler tag @globz would be
globz in C. Except for the underscore () substitution, names should follow
the existing assembler standard.

v Use uppercase characters when naming constants. Replace the # at the start
of some system constants with an underscore character (_). Comment on the
use or purpose of all constant values.
The following assembler system equates

#SYSEQ EQU 12 maximum number of jobs allowed in system
WIGITCNT EQU 42 number of wigits supported

become, in C

#define _SYSEQ 12 /* maximum number of jobs allowed in system */
#define WIGITCNT 42 /* number of wigits supported */

6. If a C or C++ header is created for an existing BAL DSECT, prefix the C or C++
structure name with TPF_ or tpf_. If there is an existing BAL DSECT, member
names in the C or C++ structure are the same as in the corresponding BAL
DSECT.

Generally Reserved Names for the TPF System
The letters I, i, TPF, TPF_, tpf, and tpf_ are reserved for future use by IBM. This
standard applies to the following names.

v TPF file system file names

v TPF collection support data store (DS) names

v Event names created by EVNTC and ENQC macros

v DECB namespaces

Naming Conventions 21

v Coupling facility (CF) structure names

v Logical record cache names.

TPF File System File Names
The TPF file system file names reference links to file system objects. These objects
include:

v Directories

v Regular files

v Special files

v Symbolic links.

You can access any file system object other than tmpfiles by name. The file
system file names have as many as 256 characters and contain a hierarchical
directory structure that is largely compatible with the Portable Operating System
Interface for Computer Environments (POSIX) standards, although this directory
structure does not contain executable files.

Note: The TPF system does not implement the POSIX standards, and the TPF file
system application programming interface (API) functions are not POSIX
compliant, although they are modeled after the POSIX standards and, for the
most part, are POSIX compatible.

TPF Collection Support Data Store Names
A TPF collection support data store (DS) is a named set of collections residing in a
TPF subsystem. DS names are limited to 8 characters.

Symbolic Register Names
Register naming conventions for TPF system programs now require the use of the
equated values R0–R15. See the following table.

New Register Names Old Register Names

R0 RAC, RG0, R00

R1 RG1, R01

R2 RGA, RG2, R02

R3 RGB, RG3, R03

R4 RGC, RG4, R04

R5 RGD, RG5, R05

R6 RGE, RG6, R06

R7 RGF, RG7, R07

R8 RAP, RG8, R08

R9 REB, RG9, R09

R10 RLA

R11 RLB

R12 RLC

R13 RLD

R14 RDA

22 TPF V4R1 Programming Standards

R15 RDB

Coupling Facility Structure Names
There are two types of coupling facility (CF) structures:

v List structure, which is a named piece of storage on a CF that enables users to
share information organized as entries on a set of lists or queues. A user is an
application or an instance of an application using connection services to access a
CF list structure. Because users connect to a CF list structure to access it, users
are also referred to as connections or connectors.

v Cache structure, which is a named piece of storage on a CF that enables users
to share information. A CF cache structure allows high-performance sharing of
frequently referenced data.

Logical Record Cache Names
A logical record cache provides high-speed access to data, which enables you to
develop data sharing programs with improved performance. You can use a logical
record cache for data consistency, which ensures the validity of the data that is
shared and keeps track of data that resides in permanent storage and the local
cache.

Tape Names
IBM reserves all tape names that have a numeric value (0 - 9) as the second
character; for example, A4X or B2B.

Recoup Descriptors
The following recoup descriptors are reserved for customer use:

v BKWx

v BKXx

v BKYx

v BKZx

Naming Conventions 23

|

|
|

|

|

|

|

|

|

24 TPF V4R1 Programming Standards

C/C++ Standards for the TPF System

This chapter briefly discusses the C and C++ standards for the TPF system.

Compile Options for TPF Programs
All ported C code that requires TPF platform-specific code will be included or
excluded during compilation with _TPF.

You must compile programs the way that they are defined in SPPGML and with the
defaults that are set by the multiple assembler (MASM).

Mapping Library Names and LONGNAME Support
Library functions must have an associated #pragma map. Prefix the mapped name
with @@. Use the remaining 6 characters to indicate the function that is being
mapped. For example, the longjmp function is mapped as follows:

#ifndef _TARGET_TPF
#pragma map(longjmp,"@@LONGJM")
#endif

Structure and DSECT Definition and Documentation
IBM recommends that you use packed format only for existing structures for
compatibility with assembler code. Allowing the compiler to set the alignment of
structures helps to improve performance.

Using the CHECKOUT Option for C Headers
The IBM C compiler products on the System/390 platform have a CHECKOUT option
that provides warnings for dubious code and provides informational messages as
warnings. All C header files must compile cleanly with the CHECKOUT option, while all
C language executable code must compile cleanly without the CHECKOUT option.

External headers must compile with RC=0 with the CHECKOUT option.

Use the following parameters to compile with the CHECKOUT option:
CHECKOUT(NOPPC)

This works for the IBM SAA AD/Cycle C/370 Compiler.

Note: Depending on the compiler, the parameters can change at a future time.

Using the C++ INFO Compiler Option for C Headers
The IBM C++ compiler products on the System/390 platform have an INFO option
that will generate warning and informational messages. All C header files must
compile cleanly with the C++ compiler INFO option as well as with the C compiler
CHECKOUT option.

External headers must compile with RC=0 with the INFO option.

Use the following parameters to compile with the INFO option:
INFO(NOPPC)

© Copyright IBM Corp. 1994, 2002 25

Note: Depending on the compiler, the parameters can change at a future time.

26 TPF V4R1 Programming Standards

Assembler Coding Practices

This chapter provides some recommendations for coding in assembler language.

Register Usage
The following gives the TPF system perspective on register usage, but not the
application perspective. Registers R0–R7 are saved for an application by the TPF
system.

Registers Reserved for the Application Program Interface
Register 8 = R8 = TYPE E PROGRAM BASE REGISTER

Register 9 = R9 = ENTRY CONTROL BLOCK BASE REGISTER

Registers Reserved for Control Program Use
Register 11 = R11 = CONTROL PROGRAM BASE REGISTER (fixed)

Register 12 = R12 = CONTROL PROGRAM BASE REGISTER (fixed)

Register 13 = R13 = CONTROL PROGRAM STACK REGISTER

Registers R10, R11, R12, R13, R14, and R15 are not guaranteed across macro
calls.

Program Structure
Type E assembler programs must contain a standard prolog and use the following
format:
v BEGIN macro
v Copyright statement
v General prolog
v FINIS macro.

The FINIS macro, together with the BEGIN macro, calculates the program size.
This calculation is required by the system loader to ensure that the program is not
greater than its allocated size. The FINIS macro also generates an LTORG
statement, which causes all literals to be generated before the FINIS macro.

Use of Global Variables for CSECT Statements
When you complete a DSECT definition, resume the previous control section
(whether CSECT or DSECT). The method used to resume the previous control
section depends on the mechanism that is used to define the DSECT:

v If the DSECT is defined inline in a CP segment, use &CONPRO CSECT to resume
the CP CSECT.

v If the DSECT is defined inline in an assembler real-time segment, use IS
CSECT to resume the real-time CSECT.

v If the DSECT is defined inline in an assembler object file included in an ISO-C
load module, use &CG2 CSECT to resume the C load module CSECT.

Note: This requires you to have explicitly included a GBLC &CG2 statement in the
C load module.

© Copyright IBM Corp. 1994, 2002 27

v If the DSECT is defined in a macro definition, use &SYSECT &SYSSTYP in the macro
definition to resume the control section that was in effect when the macro was
called.

VCONC Macro
Do not directly generate LEDT-resolved V-Type constants (VCONs). Call the
VCONC macro to generate them, because this macro handles both assembler and
ISO-C VCONs correctly. Using VCONC allows both ISO-C and BAL programs to
call BAL macros and handles the different externals generated by both.

28 TPF V4R1 Programming Standards

Appendix A. Deviations from Existing Naming Standards

This section lists the deviations from the IBM naming standards previously defined
for the following real-time (E-type), control program (CP), macro, and C/C++
language header file names.

TPF Real-time Segments

ACPD ACPE ACPF ACPJ AMX2 ARDW ARDY ARD3 ARD5
ARD6 ARD7 ARD8 ARD9 ARPC ARPI ARPK ARPT ARP1
ARP2 ASCA ASC1 ASC2 ASC3 ASC4 ASC5 ASC6 ASC8
ASFI ASFJ ASFO ASFP ASF1 ASF2 ASF3 ASF4 ASF5
ASF6 ASF7 ASF8 ASF9 ASL1 ASL2 ASL3 ASL4 ASL5
ASL6

FMSG FMS2 FMS3 GLBL GOGO GOG1 GOG3 GOG5 PTVB
PTVC PTVE PTVF PTVG PTVH PTVK PTVL PTVP PTVR
PTVS PTVT PTVV PTVX PTV0 PTV1 PTV2 PTV3 PTV4
PTV5 PTV6 RCTD RLCH WGA1 WGRA WGR1 XHAA XHA1
XHA2 XHA3 XHA4 XHBB XHB1 XHCC XHDD XHEE XHFF
XHGG XHHJ XHHK XIAA XIA1 XIBB XICC XIDD XIEE
XNAA XNBB XNEE XNRB XOAA XOBB XOCC XODD XTAA
XTA1 XTBB XXAA XXA1 XXBB XXCC XXDD XXEE XXFF
XXGG XXHH

CP CSECTS and Copy Members
The following CP CSECTS and copy members deviate from the naming standards.

CPLKMP EPTV FPTV GPTV GRFS HPTV IBF1 IBF2 IB01
IB02 IB03 IB04 IB05 IB06 IB07 IB08 IB09 IB10
IBF1 IPL2 IPTV JPTV KPTV MPTV NPTV RTCU

Macros
The following imperative-type macros deviate from the naming standard of ending
with the letter C. For more information about imperative-type macro naming
standards, see Table 1 on page 16.

$AOR $CNFMD $CNFRM $FLUSH $GETAT $GETYP $IRSTR
$POSTR $PTRCV $RECVW $RTSND $SENDD $SENDE $TEST
$WAIT ALPHA BBEWP BBWRT BCRUS BEGIN BFIND
BLOAD BRSTR BSAVE BTEST CASE CM0ND CM0PR
CONVT CPRND CRUSA CTKL CVRTK DCL DCLREG
DDATA DIAG DO DPANL EDITA ELSE ENDDO
ENDIF ENDSEL FILKW FINIS FONTA GCALX GCLKX
GDATX GENMSG GFMTB GFMTD GLMOD GLOBZ GOTO
ICALL ICELOG ICPLOG IDATB IDATG IDOTB IF
ILCKCB INDEX IPSVE IPSVT ISKLG ISNSE ITPNT
IULKCB IVTYPE JRET KARMA LEAVE LET LEVTA
MPGMA MPY OLDTBL OTHERW PKSTG PM0CN PTVERM
RAISA RCHKA REHKA RIATA RITID RLCHA SCANA

© Copyright IBM Corp. 1994, 2002 29

SCASE SELECT SENDG SET SKLNG SNAKEY SPMEQ
SSKE SYSRA TAPMA THEN TMCNA TPFGLB TYCVA
UDATB UNHKA UNTIL WHEN WHILE

The following is a list of data macro (DSECT) names that deviate from the naming
standard of beginning with the letter I. For more information about declarative
macro naming standards, see Table 1 on page 16.

AD0DS AD1WB AD2IN AM0SG AN0NT AO1ON AR0RT
AS0MP AS1MP AS2MT AS4MF AS5MB BCPBC BC0SA
BK0DF BK0LC BK0RP BK0UX BK1RP BL0RF BL0RP
BMGLA BMGLB BMGLC BMGLD BMGLE BMGLF BMGLG
BMGLP BMGLQ BMGLY BR0ID BR1ID BS0AT BXLBC
CA4CT CB8HD CB9PD CCPTB CD0BT CD0DC CD0DT
CGNDS CI0CO CI1AP CJID CJ3TP CJ6KP CK0KE
CK1KE CK2KC CK2SN CK6KE CK7KE CK8KE CMAMC
CMFEQ CM0MC CM8CM CN0CM CN0CN CN0CP CN1ST
CO1DR CO3NL CPTIC CP0SK CR0AT CS0CA CT0SD
CV0CM CW0CC CW0CW CX#EV CX7CW CX8CW CY$CR
CY0PD CY1KR CY2KT CY3DR CY5GT CY5PA CY6TR
CY7PL CY8TB CY8WB CY9KP CZ1GF CZ1UX C404C
C50C5 DBRREC DB0DB DC0DP DCTBCR DCTBPK DCTBRD
DCTBXP DCTCDB DCTCIO DCTCRW DCTCTL DCTCWA DCTDCL
DCTDCR DCTDDB DCTDNT DCTDOR DCTECH DCTERI DCTFCA
DCTGDS DCTGEN DCTGFN DCTICD DCTIGT DCTIRB DCTISB
DCTIST DCTISV DCTMAT DCTMCH DCTMDR DCTMFS DCTMGT
DCTMIO DCTMPR DCTMRB DCTMSG DCTMUP DCTMUS DCTOLC
DCTOLD DCTOLI DCTOLM DCTORB DCTPAN DCTPDT DCTPFX
DCTPTV DCTRDF DCTRFN DCTRIT DCTRTX DCTSCH DCTSCT
DCTSOI DCTSON DCTSTK DCTSWC DCTTIO DCTTOK DCTTRC
DCTUCL DCTVAL DCTVFA DC0DC DC0RT DR0IL DR1IL
EB0CN EB0EB EB1PR EP0EC ER1ER ES4ES EV0BK
E80E8 FC0TB FI0CB FN1FN FR0RT GENFD GL0AT
GL0BA GL0BB GL0BC GL0BD GL0BE GL0BF GL0BG
GL0BP GL0BQ GL0BY GO1GO GROUP I80I8 I82I8
LCODS LDCRL LDEVBK LK4KC LK5KC LK6KC LOCORE
LTDRT L80L8 MA0TB MC0MC MI0MI MK0CK MPRECP
MS0AT MS0UT MT0MT NA0AT NC0CB NC2EC NF1NF
NP0CP OB0IR OB1IR OL1OL NC2EC
PI1DT POSTPT PO1PO PQ5CQ PR1OT QWEQU RC0AT
RC0EQ RC0PL RC1IT RECOUP RGEQUC RR0RT RTTEQ
RUNID RV0VT RV1VT RV2VT SA0AT SCKDS SC0TM
SDFPF SD0RV SE0MS SH0LL SI0GT SI1GT SI3CT
SI3GT SI4CT SI5CT SLSTL SN0CT SP0KY SP0PA
SRCK1P SRHH1P SRM31A SRM41A SRM51A SRM61A SR54BA
SR0RT SS0OR STDHD ST0TB ST0TM ST1ST TA0PP
TC0TS TE0TE TI0ME TI0MP TI0MT TI1TI TO9TO
TPLDR TPPCE TS0TS TVDSA TVDSB UA1UA UCNFEQ
UD0RV UI0OM UI1OM UI2PF UI3MP UR0IO UR1DS
UR1ST UT2RT UU1TT UV1RP UV3RP UW2CP UX1DQ
UX1PL UY1BQ UZ1PQ VF0AC VK4CK VSFLWA WA0AA
WA1AA WG0TA WI2BS WI3BS WI4BS WI5BS WI6BS
WO0RK XA1DS XB0XB XB1XB XC1CC XD0LS XE1SC
XF1FF XH0XH XI0DS XI1XI XJ1LC XK1CT XL0DS
XM0RL XM5XM XN1XN XP1XP XQ1XQ XR1TR XS0AA

30 TPF V4R1 Programming Standards

XT0CB XT1XT XU2TQ XV1XV XW1OC XX1ON XY0XY
XZ1AT XZ9ER ZR0ZR Z5OTP

The following is a list of other macros (such as EQU) that deviate from the naming
standard of starting with the letter I. For more information about these macro
naming standards, see Table 1 on page 16.

BRPEQ CAIEQ CCLEQ CLAWC CLHEQ CLKEQ CPSEQ
CVHDK CVRTK CVTEQ CZOCP CZ1CP CZ1SE CZ3CP
CZ4CP DADFQ DATAS DSEQU ECBEQ FIDEQ GLBEQ
GLOB GL0EQ LINEQ LOCEQ MAPEQ MP0EQU MRLNQ
NODEQ OMTEQ PARSE PIUEQ PTVEQ QWEQU REGACP
REGEQ REGEQ1 REGSTR REGVAL RGEQUC RITEQ RMXEQ
RTCEQ RTTEQ SETX SNAEQ SSCPP TAPEQ PFGLB
TA0EQ TRMEQ TSTEQ UCNFEQ UMSG UXTEQ XMSEQ

The following is a list of TPFDF structured programming macros (SPMs) that
deviate from the naming standards for TPF macros. For more information about
macro naming standards, see Table 1 on page 16.

#ANALOP #BOOLTRN #CASE #CAST #CHKSTAC #CONB
#COND #CONH #CONP #CONS #CONT #CONX #DECODEB
#DO #DOEX #DOPROC# #DOSTAK# #ECAS #EDO #EIF
#EIFM #ELIF #ELOP #ELSE #ESUB #EXEC #EXIF
#GETBC## #GOTO #IF #IFPROC# #LBIT #LEVL #LOCA
#OREL #PERF #POPAAC# #POPINS# #POPMAC# #POPNEST #PUSHAAC
#PUSHINS #PUSHLAB #PUSHMAC #PUSHNES #REGR### #RPRT #SPM
#SPRT #STKINS# #STPC #STPF #STPH #STPR #SUBR
#UBACK #UENTR #UEXIT #URTRN

TPF 4.1 Headers

ADATA BLDTOL C$AM0SG C$BK0RP C$BL0RP
C$CINFC C$CJ6KP C$CK1KE C$CK2SN C$CX0CK
C$DADFQ C$DBSAC C$DBSDC C$DCTIST C$EB0EB
C$GLOBZ C$GW01SR C$IBMHDR C$ICADAP C$ICCACB
C$ICHUTL C$ICILI C$ICOLR C$ICPATH C$ICRACB
C$ICUSDA C$IC0CK C$IDCUTL C$IDDMEQ C$IDIRMC
C$IDSALO C$IDSCDR C$IDSCRP C$IDSEAT C$IDSECR
C$IDSELD C$IDSELT C$IDSELV C$IDSEMR C$IDSEPD
C$IDSERD C$IDSFRP C$IDSICD C$IDSICR C$IDSIHR
C$IDSINQ C$IDSIPL C$IDSKPT C$IDSLDR C$IDSLDT
C$IDSLSD C$IDSLST C$IDSMXP C$IDSOLD C$IDSPAT
C$IDSPRG C$IDSPVR C$IDSSAL C$IDSUXT C$IDSXTP
C$IEDCTL C$IFDOMC C$IFLDDF C$IHCTCB C$IMERMC
C$IPTBL C$IRDICB C$ISCCDT C$ISCFDT C$ISCIPT
C$ISCLNT C$ISDDCB C$ISIUCV C$ISMTCB C$ISQLMC
C$ISRTBK C$ISTPCB C$ITPICB C$ITRTBL C$ITUUTL
C$KPTPAT C$MI0MI C$MK0CK C$MS0AT C$MS0UT
C$PI1DT C$RC0PL C$RECOUP C$RMXEQ C$RV1VT
C$SD0RV C$SI3CT C$SQLCA C$SQLDA C$SRCK1P
C$SRHH1P C$STDHD C$SYSEQ C$SYSTC C$SYSUG
C$TPLDR C$UATBC C$UCNFEQ C$UD0RV CLAW

Appendix A. Deviations from Existing Naming Standards 31

COIBM CTOOL GLDEF GLDEFH LIBIH
MPHDR MPSIPCC NLDTCI NLDTIF PIUTR
PLFAPI SYSAPI TPFAPI TPFARAPI TPFCTYPE
TPFEQ TPFERRNO TPFFLOAT TPFGLBL TPFIO
TPFLIMIT TPFLINK TPFLOCAL TPFMAP TPFMATH
TPFMCSLL TPFPARFT TPFPARSE TPFREGS TPFSTARG
TPFSTDEF TPFSTDIO TPFSTDLB TPFSTRNG TPFTAPE
TPFTIME TPFTUU TPPC ZIMAG ZIMAGEQ
ZIMAGMC ZIMAGMSG ZTPLD

32 TPF V4R1 Programming Standards

Appendix B. Existing Database Record ID Deviations

The following is a list of database record IDs that have been identified by IBM as
in-use on TPF systems and deviate from the range of X'0000' to X'00FF' and
X'FC00' to X'FFFF'. See TPF System Generation for a list of record IDs that are
verified during system initialization by the RAMFIL macro and for a list of required
record IDs.

X'8384' (C’ca’) X'C1C1' (C’AA’) X'C1D6' (C’AO’)
X'C1D9' (C’AR’) X'C2D2' (C’BK’) X'C2D3' (C’BL’)
X'C2E4' (C’BU’) X'C3C1' (C’CA’) X'C3C2' (C’CB’)
X'C3C3' (C’CC’) X'C3C4' (C’CD’) X'C3C6' (C’CF’)
X'C3C7' (C’CG’) X'C3C9' (C’CI’) X'C3D1' (C’CJ’)
X'C3D2' (C’CK’) X'C3D3' (C’CL’) X'C3D4' (C’CM’)
X'C3D6' (C’CO’) X'C3D7' (C’CP’) X'C3D9' (C’CR’)
X'C3E2' (C’CS’) X'C3E3' (C’CT’) X'C3E4' (C’CU’)
X'C3E5' (C’CV’) X'C3E7' (C’CX’) X'C3E8' (C’CY’)
X'C3F1' (C’C1’) X'C3F8' (C’C8’) X'C3F9' (C’C9’)
X'C4C1' (C’DA’) X'C4C2' (C’DB’) X'C4C3' (C’DC’)
X'C4C4' (C’DD’) X'C4D3' (C’DL’) X'C4D9' (C’DR’)
X'C4E2' (C’DS’) X'C4E4' (C’DU’) X'C4E7' (C’DX’)
X'C4F4' (C’D4’) X'C5C5' (C’EE’) X'C5D7' (C’EP’)
X'C5D9' (C’ER’) X'C5E2' (C’ES’) X'C5F5' (C’E5’)
X'C5F6' (C’E6’) X'C5F7' (C’E7’) X'C6C3' (C’FC’)
X'C6C4' (C’FD’) X'C6C5' (C’FE’) X'C6C6' (C’FF’)
X'C6C9' (C’FI’) X'C6D2' (C’FK’) X'C6D8' (C’FQ’)
X'C6D9' (C’FR’) X'C6E8' (C’FY’) X'C7C5' (C’GE’)
X'C7D3' (C’GL’) X'C7D6' (C’GO’) X'C7E2' (C’GS’)
X'C8D4' (C’HM’) X'C9C3' (C’IC’) X'C9C4' (C’ID’)
X'C9C6' (C’IF’) X'C9C8' (C’IH’) X'C9D4' (C’IM’)
X'C9D9' (C’IR’) X'D2C5' (C’KE’) X'D2D7' (C’KP’)
X'D2E3' (C’KT’) X'D2E5' (C’KV’) X'D2E6' (C’KW’)
X'D3C3' (C’LC’) X'D3C4' (C’LD’) X'D3C8' (C’LH’)
X'D3D3' (C’LL’) X'D3E2' (C’LS’) X'D3E7' (C’LX’)
X'D4C1' (C’MA’) X'D4C2' (C’MB’) X'D4C3' (C’MC’)
X'D4C4' (C’MD’) X'D4C6' (C’MF’) X'D4C9' (C’MI’)
X'D4D3' (C’ML’) X'D4D6' (C’MO’) X'D4D7' (C’MP’)
X'D4E2' (C’MS’) X'D4E3' (C’MT’) X'D4E7' (C’MX’)
X'D4F4' (C’M4’) X'D5C1' (C’NA’) X'D5C2' (C’NB’)
X'D5C3' (C’NC’) X'D5C4' (C’ND’) X'D5C6' (C’NF’)
X'D5E2' (C’NS’) X'D6C1' (C’OA’) X'D6C6' (C’OF’)
X'D6D3' (C’OL’) X'D6D4' (C’OM’) X'D6D7' (C’OP’)
X'D6D9' (C’OR’) X'D6E3' (C’OT’) X'D6E7' (C’OX’)
X'D7C1' (C’PA’) X'D7C4' (C’PD’) X'D7C7' (C’PG’)
X'D7D2' (C’PK’) X'D7D3' (C’PL’) X'D7D4' (C’PM’)
X'D7D6' (C’PO’) X'D7D7' (C’PP’) X'D7D9' (C’PR’)
X'D7E2' (C’PS’) X'D7E6' (C’PW’) X'D7F1' (C’P1’)
X'D7F2' (C’P2’) X'D7F3' (C’P3’) X'D7F4' (C’P4’)
X'D7F5' (C’P5’) X'D7F6' (C’P6’) X'D8D9' (C’QR’)
X'D9C3' (C’RC’) X'D9D3' (C’RL’) X'D9D4' (C’RM’)
X'D9D7' (C’RP’) X'D9E3' (C’RT’) X'D9E7' (C’RX’)
X'E2C1' (C’SA’) X'E2C4' (C’SD’) X'E2C6' (C’SF’)
X'E2C9' (C’SI’) X'E2D2' (C’SK’) X'E2D3' (C’SL’)
X'E2D6' (C’SO’) X'E2D7' (C’SP’) X'E2D8' (C’SQ’)

© Copyright IBM Corp. 1994, 2002 33

X'E2D9' (C’SR’) X'E2E2' (C’SS’) X'E2E3' (C’ST’)
X'E2F1' (C’S1’) X'E2F2' (C’S2’) X'E2F3' (C’S3’)
X'E2F6' (C’S6’) X'E2F7' (C’S7’) X'E2F8' (C’S8’)
X'E25C' X'E3C1' (C’TA’) X'E3C3' (C’TC’)
X'E3C5' (C’TE’) X'E3C6' (C’TF’) X'E3D2' (C’TK’)
X'E3D3' (C’TL’) X'E3D4' (C’TM’) X'E3D9' (C’TR’)
X'E3E2' (C’TS’) X'E3E9' (C’TZ’) X'E4C1' (C’UA’)
X'E4C2' (C’UB’) X'E4C4' (C’UD’) X'E4C6' (C’UF’)
X'E4D4' (C’UM’) X'E4D8' (C’UQ’) X'E4D9' (C’UR’)
X'E4E2' (C’US’) X'E4E3' (C’UT’) X'E4E4' (C’UU’)
X'E4E5' (C’UV’) X'E4E6' (C’UW’) X'E4E8' (C’UY’)
X'E4E9' (C’UZ’) X'E5C1' (C’VA’) X'E5C4' (C’VD’)
X'E5D9' (C’VR’) X'E5E4' (C’VU’) X'E7C1' (C’XA’)
X'E7C2' (C’XB’) X'E7C3' (C’XC’) X'E7C4' (C’XD’)
X'E7C5' (C’XE’) X'E7C6' (C’XF’) X'E7C8' (C’XH’)
X'E7C9' (C’XI’) X'E7D1' (C’XJ’) X'E7D2' (C’XK’)
X'E7D3' (C’XL’) X'E7D4' (C’XM’) X'E7D5' (C’XN’)
X'E7D7' (C’XP’) X'E7D8' (C’XQ’) X'E7D9' (C’XR’)
X'E7E2' (C’XS’) X'E7E3' (C’XT’) X'E7E4' (C’XU’)
X'E7E5' (C’XV’) X'E7E6' (C’XW’) X'E7E7' (C’XX’)
X'E7E8' (C’XY’) X'E7E9' (C’XZ’) X'E9D3' (C’ZL’)
X'E9D9' (C’ZR’) X'E9E2' (C’ZS’)

34 TPF V4R1 Programming Standards

Appendix C. Record IDs Used for RTA/RTL Tape

The following record IDs are used when logging records to the RTA/RTL tape.

Table 3. Record IDs for RTA/RTL

Record ID Description

"BM" Inboard block multiplexor code

"CA" Long term pool return record

"CB" DASD dispensing log record

"CT" CCP trace record

"CW" CRW logout record

"DB" CUAK error ID

"DD" Dump separator record

"DE" Device error log message ID

"DF" Valid dump record

"DG" Recoup record

"DP" Dump data record

"DX" Primary Dump Label index record

"DY" Secondary Dump Label index record

"MD" 3705 MDR code

"MR" 3270 BSC MDR input record

"MX" Inboard multiplexor code

"OB" 3270 Local/3215/3705 OBR input record

"RT" Real-time trace record

"SH" Subchannel logout record

"SD" Selective dump record

"SL" Inboard selector channel code

"ST" Selective trace record

"SY" Sysplex Timer (STR) record

"TD" Reserved for IBM use

"TR" PIU trace record

"TV" Test Vehicle record

"UC" Unknown channel type code

X'00E3' MPIF MSRB record

X'00E4' SNAP Dump record

X'00E5' Online mini dump

X'33xx' EREP DASD record

X'3480' MDR record for 3480/3490

X'3420' OBR Tape error log record

© Copyright IBM Corp. 1994, 2002 35

36 TPF V4R1 Programming Standards

Index

A
abbreviations 4
acquired code 1
action code 3
additions 1
alphabet 3
API registers 27
application program interface registers 27
assembler coding practices 27
assembler coding practices, program structure 27
assembler coding practices, register usage 27

C
C headers - CHECKOUT option 25
C headers - INFO option 25
C standards 25
C-type program errors 13
C++ standards 25
character set 3
CHECKOUT option for C headers 25
coding practices, assembler 27
command format 3
compile options for TPF programs 25
contents of C/C++ source files, naming conventions 19
control program use registers 27
coupling facility (CF) 23
coupling facility (CF) structure names 23
CRAS message format 3
CSECT statements, use of global variables 27

D
default parameters 4
Definition of New Messages 10
delimiters 4
deviations 1
deviations for real-time programs 29
deviations from existing naming standards 29
deviations of database record IDs 33
DSECT definition, structure definition, and

documentation - standards 25

E
E-type program errors 13

F
fields 4
format for command 3
format for output messages 5

G
Global variables for CSECT statements 27

I
I/O messages to CRAS 3
INFO option for C headers 25
input character set 3
input message format 3

K
keyword parameters 4

L
library names, mapping for LONGNAME support 25
logical record cache names 23
LONGNAME support, mapping library names 25

M
mapping library names and LONGNAME support 25
message examples, output messages 6
message format to CRAS 3
message ID uniqueness, output messages 7
message identification code 6
message parameters 4
modifying existing messages 9
Multiple Line Messages 8

N
naming conventions 15
naming conventions, contents of C/C++source files 19
naming conventions, coupling facility (CF)

structures 23
naming conventions, deviations from 29
naming conventions, logical record caches 23
naming conventions, symbolic register names 22
naming of coupling facility (CF) cache structures 23
naming of coupling facility (CF) list structures 23
naming of coupling facility (CF) structures 23
naming of logical record caches 23
naming of TPF file system files 22
naming of TPF persistent collections 22

O
output message format 5
output messages

character set 5
lowercase characters 5
special characters 5
translation user exit 5

output messages, message examples 6
output messages, message ID uniqueness 7

© Copyright IBM Corp. 1994, 2002 37

P
parameters for messages 4
ported code, compile options for TPF programs 25
positional parameters 4
program structure, assembler coding practices 27

R
range of record IDs

database record IDs 13
tape record IDs 13

record IDs 13
register 8 27
register 9 27
register names, naming conventions 22
register usage, assembler coding practices 27
Registers Reserved for Control Program Use 27
registers reserved for the API 27
registers reserved for the application program

interface 27
reserved secondary action codes 3

S
secondary action codes 3
SERRC macro 11
severity code 6
source file names, naming conventions 15
special action codes 3
standards for C 25
standards for C++ 25
structure and DSECT definition and documentation -

standards 25
symbolic register names, naming conventions 22
system errors 11

T
tape names 23
time stamp 7
TPF 4.1 C headers 31
TPF CP segments deviations 29
TPF file system file names 22
TPF Macro name deviations 29
TPFCS 22

U
Use of global variables for CSECT statements 27
using the CHECKOUT option for C headers 25
using the INFO option for C headers 25

V
VCONC macro 28

38 TPF V4R1 Programming Standards

����

File Number: S370/30XX-40
Program Number: 5748-T14

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH31-0165-10

	Contents
	Tables
	Notices
	Trademarks

	About This Book
	Who Should Read This Book
	Conventions Used in the TPF Library
	Related Information
	IBM Transaction Processing Facility (TPF) 4.1 Books
	Miscellaneous IBM Books
	Online Information

	How to Send Your Comments

	Introduction to TPF Standards
	Deviations and Additions
	Preexisting Code
	Acquired Code

	Format for I/O Messages to CRAS
	Commands
	Reserved Secondary Action Codes
	Secondary Action Code Format Examples
	Character Set
	Field Delimiters
	Parameters
	Message Parsing Techniques

	Messages
	Message Generation
	Character Set
	Message Format
	Message Identification
	Message Examples
	Message ID Uniqueness

	Time Stamp
	Message Text
	Static Messages
	Variable Messages

	Multiple Line Messages
	Conventions for Multiple–Line Messages

	Modifying Existing Messages
	Defining New Messages
	Message Parsing Techniques

	System Errors
	Record IDs
	Database Record IDs
	Tape Record IDs

	Naming Conventions
	Source File Names
	Contents of C/C++ Source Files
	Generally Reserved Names for the TPF System
	TPF File System File Names
	TPF Collection Support Data Store Names
	Symbolic Register Names
	Coupling Facility Structure Names
	Logical Record Cache Names
	Tape Names
	Recoup Descriptors

	C/C++ Standards for the TPF System
	Compile Options for TPF Programs
	Mapping Library Names and LONGNAME Support
	Structure and DSECT Definition and Documentation
	Using the CHECKOUT Option for C Headers
	Using the C++ INFO Compiler Option for C Headers

	Assembler Coding Practices
	Register Usage
	Registers Reserved for the Application Program Interface
	Registers Reserved for Control Program Use

	Program Structure
	Use of Global Variables for CSECT Statements
	VCONC Macro

	Appendix A. Deviations from Existing Naming Standards
	TPF Real-time Segments
	CP CSECTS and Copy Members
	Macros
	TPF 4.1 Headers

	Appendix B. Existing Database Record ID Deviations
	Appendix C. Record IDs Used for RTA/RTL Tape
	Index

