
Transaction Processing Facility

Main Supervisor Reference
Version 4 Release 1

SH31-0159-07

���

Transaction Processing Facility

Main Supervisor Reference
Version 4 Release 1

SH31-0159-07

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on page xi.

Eighth Edition (December 2001)

This is a major revision of, and obsoletes, SH31-0159-06 and all associated technical newsletters.

This edition applies to Version 4 Release 1 Modification Level 0 of IBM Transaction Processing Facility, program
number 5748-T14, and to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. Address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . vii

Tables . ix

Notices . xi
Trademarks . xi

About This Book . xiii
Before You Begin . xiii
Who Should Read This Book xiii
Conventions Used in the TPF Library xiii
Related Information . xiv

IBM Transaction Processing Facility (TPF) 4.1 Books. xiv
IBM Enterprise Systems/9000 (ES/9000) Books. xiv
Miscellaneous IBM Books . xv

How to Send Your Comments xv

System Initialization . 1
Initial Program Loading . 1

Multiple TPF Images . 1
Considerations for HPO Users. 3

Initializing Main Storage . 4
Low-Address Protection . 5

System Restart . 5
State Change . 5

1052 State . 5
Utility State. 6
CRAS State . 6
Message Switching State . 6
Norm State. 6

Restart and State Change Considerations for HPO Users 6

System Service and Control Functions 9
Supporting a Tightly Coupled System 9
Supporting Common I/O Operations 9
Using Keypoints to Maintain System Operations. 10

Time Initiated Keypoint Copy 11
Control Program Keypoints 12

Controlling E-Type Programs. 15
Initializing ECBs via OPZERO 15
Initializing ECBs for Entries from Control Transfer Macros 15
Initializing ECBs for Entries from Create Macros 15
Transferring Control among E-Type Programs 16
Suspending Processing of Entries 16
Returning ECBs after Entries Are Processed 18

Managing Address Spaces . 18
Handling System Interrupts . 18

SVC and Fast-Link Macros 19
SVC Macro Decoder . 19
Fast-Link Macro Decoder . 20
Adding New SVC or Fast-Link Macros to the System 20
Displaying SVC Codes . 20

Dispatching Work . 20

© Copyright IBM Corp. 1994, 2001 iii

Managing Storage. 21
Block Checking Mode . 22

Managing and Synchronizing Clocks 23
Commands . 24
Displaying the Time and Date 24
Altering Clock Values . 24
Restart Facilities . 25
Cycle Facilities . 25
Time-Initiated Functions . 25
Timekeeping Considerations for Loosely Coupled Processing 25
Synchronization Check Error 26

Altering and Displaying Data and Programs 27
Altering and Displaying Main Storage 27
Displaying Link Map Data in C Load Modules 27
Altering and Displaying File Records 28
Altering and Displaying Programs, by Program Name. 28
Altering and Displaying Entries in the Program Allocation Table 28
Displaying Program Linkage Types 28
Maintaining a Memory Patch Deck. 29
Altering and Displaying System Generation Values. 29
Altering and Displaying Resource Control Values 29

Initiating System Alerts . 29
Long-Life ECB Detection and Removal 29
Time-Initiated Alerts Function. 30

Initializing the Program Allocation Table 31
Using Control Program User Exits for User Functions. 31

High Performance Option . 33
Controlling Loosely Coupled Processors 33
Cross Subsystem Access Services 34
Owning Resources in a Loosely Coupled System 34

Data Records Unique to Loosely Coupled Processing 35
Interprocessor Communications (IPC) 35

Restart . 35
Sending Data . 36
Receiving Data . 36
Timing Out . 37
Displaying and Altering IPC Information 37
Performance Considerations 37
Cross References . 37

Error Recovery . 39
Processing System Errors . 39
Types of System Errors. 40

Application Program Errors 40
Control Program Errors . 40

Initiating System Error Processing 40
The SNAPC macro . 40
The SERRC Macro . 41
Hard Errors . 41

Controlling the Content of System Storage Dumps 41
Defining Keywords . 42
Coding Dump Overrides . 43

Coding Prefixes . 43
Determining Appropriate Recovery Action 44
Channel Check Handling . 44

iv TPF V4R1 Main Supervisor Reference

Machine Check Handling . 44

Checking System Internals . 47
I/O Trace . 47
Displaying Online Dump Tag Addresses. 47
System Maintenance. 47

The Environmental Recording, Editing and Printing (EREP) Postprocessor 48
Processing Device Error Statistics 48
Recording 37x5 Native Subchannel Errors 48

Appendix A. Job Control Language 49
EREP Job Control Language. 49
Device Error Statistics Postprocessor JCL 49

Appendix B. Virtual Storage Layout 51

Index . 53

Contents v

vi TPF V4R1 Main Supervisor Reference

Figures

1. Components of Dump Content Control . 42
2. Virtual Storage Layout . 51

© Copyright IBM Corp. 1994, 2001 vii

viii TPF V4R1 Main Supervisor Reference

Tables

1. Control Program Keypoints . 13
2. System Interrupts . 18

© Copyright IBM Corp. 1994, 2001 ix

x TPF V4R1 Main Supervisor Reference

Notices

References in this book to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service in this book is not intended to
state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
IBM’s intellectual property rights may be used instead of the IBM product, program,
or service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department 830A
Mail Drop P131
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Any pointers in this book to non-IBM Web sites are provided for convenience only
and do not in any way serve as an endorsement. IBM accepts no responsibility for
the content or use of non-IBM Web sites specifically mentioned in this book or
accessed through an IBM Web site that is mentioned in this book.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

Enterprise Systems Connection Architecture

ES/9000

IBM

Sysplex Timer

System/370

VisualAge.

Other company, product, and service names may be trademarks or service marks
of others.

© Copyright IBM Corp. 1994, 2001 xi

xii TPF V4R1 Main Supervisor Reference

About This Book

The TPF Main Supervisor Reference describes the functions performed by the main
supervisor, a component of the TPF control program, in coordinating the use of
resources and maintaining processing unit operations by performing initialization,
service and control, and error processing. This book describes system start-up,
online system operations, the High Performance Option, system errors, and
checking system internals.

In this book, abbreviations are often used instead of spelled-out terms. Every term
is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, Systems Network Architecture (SNA). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in the TPF
Library Guide.

Before You Begin
You should be familiar with the main supervisor and its interfaces to other TPF
components before you begin this book. See TPF Concepts and Structures.

Who Should Read This Book
This manual is intended for system programmers responsible for maintaining and
modifying the main supervisor; it provides the information needed to understand the
main supervisor component.

Conventions Used in the TPF Library
The TPF library uses the following conventions:

Conventions Examples of Usage

italic Used for important words and phrases. For example:

A database is a collection of data.

Used to represent variable information. For example:

Enter ZFRST STATUS MODULE mod, where mod is the module for which you want
status.

bold Used to represent text that you type. For example:

Enter ZNALS HELP to obtain help information for the ZNALS command.

Used to represent variable information in C language. For example:

level

monospaced Used for messages and information that displays on a screen. For example:

PROCESSING COMPLETED

Used for C language functions. For example:

maskc

Used for examples. For example:

maskc(MASKC_ENABLE, MASKC_IO);

bold italic Used for emphasis. For example:

You must type this command exactly as shown.

© Copyright IBM Corp. 1994, 2001 xiii

Conventions Examples of Usage

Bold underscore Used to indicate the default in a list of options. For example:

Keyword=OPTION1 | DEFAULT

Vertical bar | Used to separate options in a list. (Also referred to as the OR symbol.) For example:

Keyword=Option1 | Option2

Note: Sometimes the vertical bar is used as a pipe (which allows you to pass the output of
one process as input to another process). The library information will clearly explain
whenever the vertical bar is used for this reason.

CAPital LETters Used to indicate valid abbreviations for keywords. For example:

KEYWord=option

Scale Used to indicate the column location of input. The scale begins at column position 1. The
plus sign (+) represents increments of 5 and the numerals represent increments of 10 on the
scale. The first plus sign (+) represents column position 5; numeral 1 shows column position
10; numeral 2 shows column position 20 and so on. The following example shows the
required text and column position for the image clear card.

|...+....1....+....2....+....3....+....4....+....5....+....6....+....7...

LOADER IMAGE CLEAR

Notes:

1. The word LOADER must begin in column 1.

2. The word IMAGE must begin in column 10.

3. The word CLEAR must begin in column 16.

Related Information
A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM Transaction Processing Facility (TPF) 4.1 Books
v TPF ACF/SNA Data Communications Reference, SH31-0168

v TPF Concepts and Structures, GH31-0139

v TPF C/C++ Language Support User’s Guide, SH31-0121

v TPF System Macros, SH31-0151

v TPF General Macros, SH31-0152

v TPF Multi-Processor Interconnect Facility Reference, SH31-0155

v TPF Operations, SH31-0162

v TPF Program Development Support Reference, SH31-0164

v TPF System Generation, SH31-0171

v TPF System Installation Support Reference, SH31-0149.

IBM Enterprise Systems/9000 (ES/9000) Books
v ES/9000 Models 330, 340, 580, 620, and 720 Functional Characteristics and

Configuration Guide, GA22-7138

v ES/9000 Models 520, 640, 660, 740, 820, 860 and 900 Functional
Characteristics and Configuration Guide, GA22-7139

v ES/9000 Models 711, 821, 822, 831, 941, 942, 952, 962, 972, and 982
Functional Characteristics and Configuration Guide, GA22-7144.

xiv TPF V4R1 Main Supervisor Reference

Miscellaneous IBM Books
v Environmental Record Editing and Printing Program (EREP) User’s Guide,

GC35-0151

v Environmental Record Editing and Printing Program (EREP) Reference,
GC35-0152

v ESA/390 Principles of Operation, SA22-7201.

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

v If you prefer to send your comments electronically, do either of the following:

– Go to http://www.ibm.com/tpf/pubs/tpfpubs.htm.

There you will find a link to a feedback page where you can enter and submit
comments.

– Send your comments by e-mail to tpfid@us.ibm.com

v If you prefer to send your comments by mail, address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

v If you prefer to send your comments by FAX, use this number:
– United States and Canada: 1 + 845 + 432 + 9788
– Other countries: (international code) + 845 + 432 +9788

About This Book xv

http://www.ibm.com/tpf/pubs/tpfpubs.htm

xvi TPF V4R1 Main Supervisor Reference

System Initialization

System initialization consists of 4 functions:

v Initial program load (IPL). The initial program loader loads the control program
from auxiliary direct access storage devices (DASD) into main storage.

v Main storage initialization. The initializer, CCCTIN, allocates and initializes all of
the main storage areas the control program needs to operate.

v System restart. The system restart program activates a series of ECB-controlled
system programs, which place the system in a condition to process real-time
input.

v State change. The system state change program activates and deactivates
system resources and functions.

Initial Program Loading
There are 2 types of IPL, software and hardware.

v An operator activates a hardware IPL through the processor control console.

v A software IPL can be activated by:

– The ZRIPL command, issued by an operator or by control program software,
or

– A catastrophic error.

On a hardware IPL the operator is given the opportunity to modify the current active
TPF image.

The devices reset by a hardware IPL are not reset by a software IPL. IPL
segments:

v Read the image control record (ICR) and obtain the address of the image pointer
record (CTKX).

v Perform the initial call to the common I/O handler.

v Load the CTKX and keypoint records.

v Determine the number and status of I-streams on the processor.

v Verify the online DASD.

v Load the control program segments.

v Load the tables from the core image restart area to their main storage locations.

Multiple TPF Images
Multiple TPF images allow the TPF user to integrate changes in a TPF environment
by:

v Performing loads in NORM state without destroying the existing program base.

v Falling back immediately to a previous program base with a single IPL without
re-IPLing the loader general file.

It is possible to have as many as 8 images. One primary image is designated for
use during a hard IPL. Each image has a unique core image restart area (CIMR).
Each image also has an IPL area (IPLA and IPLB), E-type program base, and a
keypoint staging area (to facilitate the pre-loading of keypoints in NORM state).

Note: There is one working keypoint area that contains the active keypoints. This
area is used no matter what image you IPL on.

© Copyright IBM Corp. 1994, 2001 1

If, upon a hardware IPL, you want to modify the current active image and more than
one image is enabled, all the enabled images will be displayed. You will then be
prompted to select an image for the BSS. If the selected image’s IPL area is
different from the primary image’s IPL area then a software IPL will occur, so that
the new IPL area can be read in. The primary image is the image whose IPL area is
used during a hardware IPL prior to prompting the operator for image selection.

The ZIMAG commands and ZTPLD command can be used to define and
manipulate the TPF images. See TPF Operations for detailed information on these
commands.

The ZIMAG Commands
Option Description

DEFINE Allows you to define (or redefine) as many as 8
images.

DISPLAY IMAGE Displays the image name, status, associated IPL
and program areas, CTKX version code (if
physically loaded), and CIMR component.

ENABLE Allows you to enable an image for an IPL.

PRIMARY Defines an enabled image as the primary image.
The primary image is used during a hard IPL and is
valid only on the basic subsystem (BSS).

DISABLE Disables an enabled image so that it cannot be
IPLed.

CLEAR Deletes a disabled image.

COPY Allows you to copy core image restart area (CIMR)
components from one image to another by
reference (logically) or physically.

UNREF Deletes the logical references of CIMR components
from a disabled image.

MAKEPHYS Allows you to make all of your CIMR component
references physical copies.

DISPLAY PROG Displays all of the program areas defined in the
TPF 4.1 system and identifies which (if any) images
they are associated with.

DISPLAY IPL Displays all the IPL areas that were loaded and
identifies which (if any) images they are associated
with. This option also displays IPLA and IPLB
information for each area.

DISPLAY PROCESSOR Displays the image associated with each processor
in the complex, as well as the status of the
processor.

The ZTPLD Command
Message Description

ZTPLD Load data to a specified image

2 TPF V4R1 Main Supervisor Reference

Considerations for HPO Users
Under MDBF, the operator specifies the IPL type as one of the following:
v Basic subsystem only
v Multiple subsystems
v Fast IPL.

You can define a new subsystem configuration when you select the multiple
subsystems option. Any existing subsystem configuration is cleared.

The fast IPL option allows you to configure subsystems from the existing
configuration. If there is an I/O error, the subsystem configuration is purged.
Otherwise, the new subsystem configuration is copied from the existing one, and
further operator intervention is not required.

Keypoint record M (CTKM) contains subsystem configuration data. The IPL program
uses CTKM each time a new subsystem configuration is generated. Under MDBF, a
software IPL can be activated when the system operator issues ZRIPL, or when a
catastrophic error occurs. During the IPL, the operator may receive a message
indicating there is not enough storage to continue. The operator can use the ZFKPA
command to reduce the number of main storage blocks or to cancel the IPL.

MDBF System Definition
The MDBF system is loaded as one of the following:
v A basic subsystem with a single subsystem user
v A basic subsystem with multiple subsystem users
v Multiple subsystems with single or multiple subsystem users.

Generating multiple subsystems is a process that includes:
v Loading subsystem keypoint records
v Performing disk roll call (verifying all the channel paths to the online modules)
v Loading the subsystem tables.

The IPL program determines the configuration for a basic subsystem with one or
more subsystem users. IPL also assigns an identifier or subsystem user ID (SSU
ID) to each subsystem user.

In a system with multiple subsystems, the configuration can be determined by either
the system operator or the IPL program. For an operator-determined configuration,
the operator provides subsystem definitions during loading of the subsystem
keypoints. The IPL program configures multiple subsystems when a software IPL is
started or fast IPL has been specified.

Both methods require the use of CTKM. The system initialization program (SIP)
generates CTKM, but this keypoint record is not completely initialized until the first
IPL is completed. System startup, restart, and state change programs perform
initialization during the first and subsequent IPLs of the system. The MVS utility
program ICKDSF initializes the basic subsystem loader general file with standard
IPL records and the IPL segment IPLA. ICKDSF also initializes the volume labels
on the online basic subsystem file disk packs. The general file loader online
segment (ACPL) writes the IPL1 and IPL2 records to these disk packs.

Processor Identification
Loosely coupled processors require unique identification for a number of reasons,
such as identifying processor unique keypoints and communication between
processors. The control program records the serial numbers from the processors
that are IPLed and places them in keypoint record I (CTKI). CTKI is referred to as

System Initialization 3

the loosely coupled identity table. For each processor it loads, the IPL program
establishes a connection between the processor and a central processing unit
(CPU) ID. Either the system operator (under IPL program direction) or the IPL
program itself (using the information in CTKI) can establish processor identifiers.

Each processor must be assigned an ID for the IPL to continue. Once an ID is
assigned to a processor, the process of coupling the processor with the rest of the
complex begins.

Lock Management
TPF loosely coupled processors share a common database that resides on shared
DASD. Updates to the database are controlled by locking instructions executed in
the shared DASD control units. DASD lock facilities-the limited lock facility (LLF)
and the concurrency filter lock facility (CFLF)-reside in DASD control units and
provide the hardware support for these locking instructions. All DASD used by a
TPF loosely coupled complex must be connected to control units with LLF or CFLF.

LLF and CFLF provide locking based on the physical attachment of the processor
to the control unit. The point of attachment between a DASD control unit and a
channel from a processor is called a control unit interface. In an 8 processor loosely
coupled complex each control unit would require 8 interfaces, one for each
processor in the complex.

IDs are assigned to the control unit interfaces on each control unit starting with one
and as many as the maximum number of interfaces available. A given processor in
a loosely coupled complex using LLF must be attached to the same interface ID on
all attached DASD control units. This restriction does not apply if CFLF is used.

The IPL program examines all of the control units that a processor has access to
and identifies the existing LLF or CFLF relationships. If LLF or CFLF errors are
found, the IPL program may limit the system to single processor mode despite the
fact that the loosely coupled facility is present.

Only one processor in a loosely coupled complex loads the control program to the
online modules. No other processor should be active when the one processor loads
the control program.

Initializing Main Storage
The programs that initialize main storage, referred to collectively as the initializer,
receive control directly from the IPL program.

The initializer is a stand-alone CSECT, CCCTIN, which does not need to access
tape or disk data. All of the necessary information is maintained in the keypoint
records and essential control program records. The IPL program passes the
initializer a parameter list that contains the addresses of the records. The initializer
must be executed before ECB-controlled programs can use control program
services. (Refer to “Controlling E-Type Programs” on page 15 for a description of
ECB-controlled programs.)

The initializer sets up all fixed and working main storage. The main storage
allocation programs then control the dynamic use of working storage (see
“Managing Storage” on page 21).

4 TPF V4R1 Main Supervisor Reference

Low-Address Protection
Low-address protection is a hardware facility that protects the first 512 bytes of
each CPU’s page 0 — the part of storage most apt to be corrupted by programs.
Neither applications nor the TPF control program can modify this storage while
low-address protection is active.

Low-address protection is turned on by IPLB. Programs that modify the first 512
bytes of memory can use the LCPCC macro to turn low-address protection off (and
on again). Commands that alter main storage (such as ZACOR and ZAPGM) turn
off low-address protection internally.

System Restart
System restart places the system in a condition to process real-time input; that is, it
places the system in 1052 state. System restart initializes system tables used for
resource management and control program execution. The order in which system
restart initializes these programs is extremely important. You should analyze any
change to the restart series very carefully before implementing it.

The initializer activates the restart program when an IPL of the online system
occurs. The general file loader online segment (ACPL) activates the restart program
when an IPL of the general file occurs. The general file is an offline TPF-formatted
disk pack. See TPF System Installation Support Reference for more information on
the contents of the general file.)

State Change
The state change process is known as cycle-up when system resources and
functions are being activated and cycle-down when system resources and functions
are being deactivated. During cycle-up, additional resources and functions are
made available in successively higher system states, until all resources are
available. There are 5 system states cycled up in the following ascending order:
v 1052 state
v Utility state
v CRAS (computer room agent set) state
v Message switching state
v Norm state.

You can change system states with the ZCYCL command and display the system
state with the ZDSYS command. See TPF Operations for detailed information on
the functions available in each state.

Note: Application programmers should consider the services and functions that are
operational during a particular system state when designing application
programs.

1052 State
1052 state is the lowest system state. Most system services are inactive. Services
active during 1052 state include:

v Commands from the system console or 3270 local devices logged into the
system message processor. 3270 devices must have their addresses in the
CRAS status table (CRAT).

v Keypoint update.

System Initialization 5

Utility State
Utility state can be entered only from 1052 state. Thus, the system must be
returned to 1052 state from any other state (CRAS, message switching, or norm)
before utility state can be entered. Utility state services include:

v Commands from CRAS terminals

v The real-time clock (which is adjusted to compensate for time spent in 1052
state)

v Time-initiated entries

v Keypoint update

v Disk lost interrupt

v Tape lost interrupt

v Interrupts from 3270 local devices (but messages are rejected if the terminal is
not logged into the system message processor).

CRAS State
In CRAS state, all of the services active during utility state are active, as well as the
following services:

v All messages are accepted, but only from CRAS terminals. All other terminals
receive a response of: SYSTEM RESTRICTED. RETRY IN 5 MIN.

v The GFS (get file storage) facility is available. You can issue GETSC, GETLC,
and RELFC macros. See TPF General Macros.

v All active high-speed and BSC communication lines are polled. Synchronous link
control (SLC) is active.

Message Switching State
Message switching state is similar to CRAS state, with the following exceptions:

v All non-SDLC (Synchronous Data Link Control) lines are active.

v Only message switching entries are processed. All other entries are either
rejected or queued for later processing.

Norm State
Norm or normal state allows the activation of all system and application services
and functions. All entries are allowed in norm state.

v The time available supervisor (TAS) is active.

v Catastrophic error recovery is attempted.

v Polling of the Network Control Program (NCP) can be started.

Restart and State Change Considerations for HPO Users
v The restart program (CTKS) invokes programs CNAE and CNAJ to send the

status of a processor to every other active processor in the complex.

v CTKS checks each processor during restart to determine if the processor was
previously inactive. If the processor was inactive, CTKS initiates a software IPL to
synchronize this processor with the others in the complex.

v Program CNPY is called to ensure that only one processor is active if the IPL
program designated the processor as the first in the IPL chain.

v Certain restart programs ensure that all loosely coupled processors access the
same DASD via the same channel and control unit. See the ZRSTT command in
TPF Operations. These programs also maintain the status of each processor and
make the status available to the other processors in the complex.

6 TPF V4R1 Main Supervisor Reference

v In an MDBF system, the basic subsystem must be cycled up before any other
subsystem; no subsystem can be in a higher system state during cycle-up.

System Initialization 7

8 TPF V4R1 Main Supervisor Reference

System Service and Control Functions

This chapter explains the purpose and use of the system and control functions
provided by the control program main supervisor. System service and control
functions are configuration dependent. These vary in each TPF installation. For
example, a system that supports financial applications may require control or
maintenance functions not necessarily required in an airlines reservation system.

Supporting a Tightly Coupled System
A TPF tightly coupled processing system consists of main storage, one copy of the
TPF system, a Central Processing Complex (CPC), and a channel subsystem. A
CPC is a configuration that contains one or more processors or instruction streams
(I-streams). The I-streams within the CPC share main storage. TPF uses the term
I-stream interchangeably with processor.

TPF tightly coupled support is designed to provide the image of one single, very
fast uniprocessor. There is only one copy of the TPF system executing on a CPC
regardless of the number of I-streams that CPC contains.

A detailed description of the TPF system tightly coupled support can be found in
TPF Concepts and Structures.

Supporting Common I/O Operations
Common I/O (CIO) supports System/370 XA I/O architecture for processors
executing in ESA (ESA/370 and ESA/390) mode. This support includes:

v A device addressing scheme called symbolic device addressing.

In ESA mode, all I/O operations are directed to subchannel numbers. The
subchannel numbers are generated in ascending order, starting with 0. A
symbolic device address (SDA) is the user’s designation for the subchannel
associated with a particular device.

v Processing to initialize CIO control blocks.

CIO code, included as part of IPLB, allocates and initializes the following control
blocks as part of system initialization:
– CIO communications area
– I/O trace table
– Lost interrupt table
– Fast path translate table
– Device blocks
– Interrupt save blocks.

v CIO functions to process System/370 XA I/O:

These functions include processing the system macros that request I/O services,
initiating I/O operations, and intercepting the I/O interrupts and delivering them to
the TPF device interrupt handlers.

v System macros to invoke the CIO functions.

The system macros used to request I/O services include the following:

MSDAC: Mount SDA

DSDAC: Dismount SDA

ISDAC: Display SDA status

© Copyright IBM Corp. 1994, 2001 9

RIOSC: Reset SDA

SIOSC: Initiate I/O to SDA

HIOSC: Halt active I/O

IOIRC: CIO interrupt routine return

A system macro, CIOSC, allows real-time (E-type) programs to mount, dismount
or request status for an SDA.

v A preemptive I/O (PIO) mode enabling special I/O operations while normal
system I/O activity is suspended.

This mode provides similar functions to the normal CIO activity. I/O operations
are initiated, interrupts are intercepted, and an interface to PIO device interrupt
handlers is supported.

The following PIO macros are supported:

SPNDC: Suspend normal system I/O activity

RESMC: Resume normal system I/O activity

PIOFC: Initiate a PIO operation to an SDA

PIORC: PIO interrupt routine return

TIOSC: Test I/O services

Additional information regarding the macros can be found in TPF System Macros
and TPF General Macros.

Using Keypoints to Maintain System Operations
Control program keypoints are data records used to maintain system operations.
These records reflect the current status of the system and are essential to the
startup/restart process. A copy of the keypoint records is maintained in the fixed file
area on each disk pack in the online system.

File-resident keypoints are retrieved and updated via system ECB-controlled
programs. There is one program for retrieving records; one for filing. As these
keypoint records are resident in file storage, control program macros are used to
activate the update sequence (see “Initializing ECBs for Entries from Control
Transfer Macros” on page 15).

TPF users can maintain main-storage resident data records in a portion of main
storage called the global area. Global records are data records that support user
written applications. A back-up copy of the global records is maintained on file. For
this reason, global records are often referred to as application keypoint records.
Main-storage resident control program and application keypoints are updated
through a program called the keypoint update mechanism. Requests to update
main-storage resident keypoints (both control program and application) receive a
higher priority than do requests to update file-resident keypoints. This process is
referred to as demand keypointing.

Control program keypoints are 4096-bytes (4KB) and are retrieved in 4KB blocks.
Any ECB-controlled program can retrieve or file a keypoint record. When the file
copy of a main storage keypoint is updated, that is, keypointed, the name of the
program that initiated the request is placed within the filed record.

10 TPF V4R1 Main Supervisor Reference

The record types used to manage keypoints are the keypoint staging area (#KSAx),
the working keypoint area (#KEYPT), and the keypoint backup area (#KBA). The
keypoint staging areas are image-unique records; therefore, there is a one-to-one
correspondence between the #KSA areas and the #CIMR areas. The auxiliary
loader loads to the keypoint staging areas rather than directly to the working
keypoint area. The keypoints can then be moved to the working area by issuing the
ZIMAG KEYPT MOVE command. There are also other ZIMAG KEYPT command
options to manipulate and display the keypoint staging area. The working keypoint
area is shared by all images and contains the keypoints that are currently used by
the online system. Keypoints can be loaded directly to the working keypoint with the
general file loader. The keypoint backup area is used to maintain backup copies of
the active keypoints that have been overlaid by a ZIMAG KEYPT MOVE command.
Keypoints can be selectively fallen back from the keypoint backup area with the
ZIMAG KEYPT RESTORE command. See TPF Operations for more information
about the ZIMAG command. See TPF System Installation Support Reference for
more information about multiple TPF images.

Note: Each subsystem in a multiple database function (MDBF) system can
maintain unique keypoints or may share keypoints with the basic subsystem.
Shared keypoints are filed using information that identifies the filing
subsystem.

Time Initiated Keypoint Copy
Copies of the control program keypoints are written, on a rotational basis, to the
fixed file area on the first 256 device type A disk packs in the system. The keypoints
are copied from a location on one pack that is not used in the copy rotation. This
pack is called the prime module. In a duped system, the dupe of the prime module
will not be in the copy rotation. In a fully duped system, keypoints are written to one
disk pack and not its corresponding dupe pack. This is because the order in which
the keypoints are written is determined by the disk pack’s symbolic module number.
This function is used to propagate the ICR, CTKX and IPL areas across the online
modules. Using the time initiated keypoint copy function means that when someone
is IPLing a pack with the most recent keypoints, the most recent copies of the ICR,
CTKX, and IPL areas will also be there. Note that because the ICR, CTKX, and IPL
areas are not altered often, they do not need to be propagated with every time
initiated update. Instead, these areas are copied to all modules in a cyclic order
when any of them is modified. Because the propagation of the IPL areas is
infrequent and is not required when the ICR or CTKX is modified, it is controlled
separately.

Note: In an MDBF environment, the active processor with the lowest ordinal
number copies the keypoints for all processors in the complex.

An alternate keypoint copy mechanism called fallback extent keypointing can also
be generated. In fallback extent keypointing, keypoints are copied from their prime
location to an extent area on the same disk pack. This area is an extension of the
prime area (not necessarily contiguous to it). Each fallback copy area (fallback
extent) is a separate record definition in the FACE table (FCTB) with record types
#KFBXn (where n = 0 – 254). Fallback extents must be defined using contiguous
record types starting with record type #KFBX0. If n fallback extents are defined, the
record types that are used to define them in the FACE table must be #KFBX0 –
#KFBXm, where m equals n − 1. The keypoints are copied to these areas on the
same timed rotational basis as described previously. This option is intended for use
only in an MDBF system where the basic subsystem (BSS) is generated on a small
number of disk packs. Fallback extent keypointing is not necessary when the

System Service and Control Functions 11

number of packs that are available is enough for normal rotational keypointing.
Keypoint fallback extents that are defined on subsytems other than the BSS are not
used.

The time increment for keypoint copying is set in keypoint record A (CTKA) during
system initialization. The keypoint copy program reactivates itself with a CRETC
(create a time-initiated entry) macro using the increment value in keypoint A. See
TPF General Macros for more information about the CRETC macro, or the TPF
C/C++ Language Support User’s Guide for more information about the cretc
function.

Control Program Keypoints

12 TPF V4R1 Main Supervisor Reference

Table 1. Control Program Keypoints

Keypoint Macro
Name

Function Processor SS Initialized By Residency Demand
Keypointable

Record A
(CTKA)

CK1KE Contains information required for system loading
and for the initializer program.

Unique Unique SIP File No

Record B
(CTKB)

CK9KC Miscellaneous initialization and restart values, for
example, clock status, VFA status, and DASD
error thresholds.

Unique Unique SIP Main storage Yes

Record C
(CTKC)

CK8KE Status of Computer Room Agent Set (CRAS)
attached terminals, initial Routing Control
Application Table (RCAT) and Terminal Address
Table (WGTA) control information.

Shared Shared SIP Main storage No

Record D
(CTKD)

CK7KE Status used by the synchronous link programs. Unique Shared SIP Main storage Yes

Record E
(CTKE)

CK6KE Describes the non-SNA communications network. Unique Shared SIP File No

Record I
(CTKI)

IC0CK Describes the status of all processors in a loosely
coupled complex of the HPO feature.

Shared Shared SIP File No

Record M
(CTKM)

MK0CK Describes the status of each subsystem and each
subsystem user.

Shared Shared SIP Main storage No

Record V
(CTKV)

IDSCKV Contains volume serial number ranges for the
online modules, the copy module, and the loader
general file.

Shared Unique SIP File No

Record 0
(CTK0)

CK0KE Contains legal disk hardware addresses. Shared Shared SIP File No

Record 1
(CTK1)

CK2KC Contains the Tape Status Table (TSTB). Unique Shared N/A Main storage Yes

Record 2
(CTK2)

CK2SN Contains all the information in the system about
the SNA configuration and the TCP/IP device
parameters.

Unique Shared Source, contains
no SIP provided
inputs

Main storage No

Record 3
(CTK3)

None This keypoint is available for customer use. Unique Shared Customer File No

Record 4
(CTK4)

VK4CK This keypoint is available for customer use. Shared Unique Customer File No

Record 5
(CTK5)

None This keypoint is reserved for IBM use. Shared Shared N/A File No

S
ystem

S
ervice

and
C

ontrolF
unctions

13

Table 1. Control Program Keypoints (continued)

Keypoint Macro
Name

Function Processor SS Initialized By Residency Demand
Keypointable

Record 6
(CTK6)

CJ6KP Contains the DASD module status indicators. Shared Unique SIP File and main
storage (see note
1)

No

Record 9
(CTK9)

CY1KR Contains the status of the DASD pools. Shared Unique Source, contains
no SIP provided
inputs

Main storage No

Note:

1. The entire keypoint is file-resident; the first section of the keypoint is also main-storage-resident.

2. Processor shared means that there is one copy of the keypoint for all processors in a loosely coupled environment.

3. Processor unique means that there is one copy of the keypoint per processor in a loosely coupled environment.

4. Subsystem (SS) shared means that there is one copy of the keypoint residing in the BSS in an MDBF environment.

5. Subsystem (SS) unique means that there is one copy of the keypoint per subsystem in an MDBF environment.

14
T

P
F

V
4R

1
M

ain
S

upervisor
R

eference

Controlling E-Type Programs
The entry control block (ECB) is the primary interface between real-time programs
and the control program. Programs that require an ECB to operate are called
ECB-controlled or E-type programs. An ECB is created for each new entry in the
system and assigned an activation number, which is obtained from a system
counter in OPZERO. This activation number determines which version of the E-type
program the ECB will use. All references to system resources and register usage
are maintained in the ECB. The ECB remains associated with the entry for which it
was created until the entry is completely processed. After the entry is processed,
the ECB is returned to the pool of available ECB storage blocks (see “Managing
Storage” on page 21). ECB processing includes:
v Initializing ECBs for input message entries
v Initializing ECBs for entries from control transfer or create macros
v Transferring control among ECB-controlled programs
v Suspending processing of ECBs
v Returning ECBs and associated resources after entries are processed.

Initializing ECBs via OPZERO
The ECB initialization routine, OPZERO, initializes an ECB for each new entry in
the system. OPZERO is usually activated by the CXFRC macro or by the control
program polling the various communication lines for incoming messages.

OPZERO does the following:

1. Obtains a storage block from the pool of available ECB blocks.

2. Initializes fields in the block to indicate the status of the ECB, the resources
attached to the ECB, and the activation number assigned to the ECB.

3. Initializes the ECB to service premature error conditions.

CSECT Segment ECB Initialization for

CCCCP1 CLPE 1052/3215 console entries
CCCCP2 CLSQ High-speed line entries
CCCCP3 CLQC Synchronous link control (SLC) entries
CCCCP4 CLOC Entries from 3270 local devices
CCCCP5 CRMR Binary synchronous communication (BSC) entries
CCCSNA CS10 Systems Network Architecture (SNA) entries

Initializing ECBs for Entries from Control Transfer Macros
Control program segments use the control transfer, CXFRC, to create an ECB and
transfer control to another program that is then free to use any control program
macros. By using CXFRC, you can create an ECB immediately or defer creation.
You can also create an ECB with an attached block.

The CXFRC macro obtains the current activation number from OPZERO and
assigns it to the ECB that is being created.

Initializing ECBs for Entries from Create Macros
When an active ECB needs to create a second ECB to perform independently, it
can issue one of the following create macros:

CREMC Creates an independent ECB for immediate processing and adds it
to the ready list.

System Service and Control Functions 15

CREDC Creates an independent ECB for deferred processing and adds it to
the deferred list.

CREXC Creates an independent ECB for low-priority deferred processing
and adds it to the deferred list.

CREEC Creates an independent ECB for immediate or deferred processing
and adds it to the ready list or the deferred list.

CRETC Creates an independent ECB for activation after a specified interval
of time.

SWISC TYPE=CREATE
Creates an independent ECB on a specified I-stream.

These create macros, except for the CRETC macro, assign the second ECB the
same activation number as the parent ECB. The CRETC macro obtains the current
activation number from OPZERO and assigns it to the second ECB.

The create macros are serviced by the control transfer routine (CXFRC).

Transferring Control among E-Type Programs
When E-type programs need to request the services of other E-type programs, they
use Enter/Back macros. E-type programs, which can reside in file storage, virtual
file access (VFA) buffers, or main storage in either the 24- or 31-bit core resident
program areas or in a common block are brought into main storage upon request
for execution. Enter/Back macros perform the following tasks:

v Maintain control of program records and associated ECBs

v Pass the contents of registers R0–R7 to the program

v Save the program base, addressing mode, and next sequential instruction (NSI)
of the active program

v Activate the requested program at the correct entry point in 24-bit or 31-bit
addressing mode (addressing mode is based on the allocation characteristics of
the program).

Enter macros are used to transfer control as follows:

ENTNC Releases the active program from the ECB and transfers control to
the requested program.

ENTRC Transfers control to the requested program. The original program is
not released from the ECB; it is attached to the ECB and is said to
be nested. Return is expected to the NSI in the original program.

ENTDC Releases all nested programs from the ECB and transfers control to
the requested program.

BACKC Returns control to the nested program (attached to the ECB) that
last issued an ENTRC.

SWISC TYPE=ENTER
Performs the ENTDC function while moving the existing ECB to a
specified I-stream.

Suspending Processing of Entries
There are two distinct sets of macros that you can use to suspend processing of an
entry. The first set of macros are the defer, delay, and event macros which you can

16 TPF V4R1 Main Supervisor Reference

use to immediately force an active entry to be suspended. These macros provide
only limited control over a suspended entry.

The second set of macros are the load-balancing and time-slicing macros. These
macros allow more control over when an entry gets suspended and when the entry
resumes running. The load-balancing macros allow an entry to be suspended and
unsuspended based on the availability of system resources. The time-slicing macro
allows an entry to be suspended and unsuspended based on user-specified time
intervals.

Defer, Delay, and Event Macros
Macros are provided that permit the entry currently in control in an I-stream engine
to request processing to be suspended. A suspended entry is placed on the input or
deferred CPU loop list (dispatch control list) or in the event table. The following
macros are used to suspend processing:

v DEFRC — defers processing of the current entry. The entry is placed at the
bottom of the deferred list. The deferred list is simply the lowest-priority list
serviced by the CPU loop. After the entry is placed on the deferred list, the
system will service the higher-priority lists.

v DLAYC — delays processing of the current entry. The entry is placed at the
bottom of the input list. The DLAYC macro suspends processing for a shorter
period of time than the DEFRC macro.

v EVNWC — delays processing of the current entry until a named event completes
its function. The entry is placed in the event table until the event completes its
function.

DEFRC and DLAYC macro requests are different from a WAITC request. WAITC is
related to the completion of an I/O operation; if no I/O is pending, no delay occurs.
DLAYC and DEFRC macro requests place the entry at the bottom of a list; their use
is usually related to indicators to be set by other programs associated with the
program that requests the suspension.

The EVNTC macro is used to name an event which is an item in the event table.
The EVNWC macro is used to specify, through a field in the event table that is
known to all parties, that a bit-setting event should occur before the entry regains
control (after the EVNWC is specified). This removes the need for an
ECB-controlled program to continue to place itself on the deferred list each time the
event fails; the checking is driven by timers in the control program and the entry is
placed on the ready list when the event occurs.

Load-Balancing and Time-Slicing Macros
Two macros are provided to help to automatically control system activity. One
macro can be used to suspend low-priority work during peak or busy periods. The
other macro provides a way to force CPU-intensive applications to repeatedly give
up control after running for a specified period of time. The macros are:

v LODIC macro — checks if enough system resources are available to begin
processing low-priority work. Depending on the parameters with which LODIC is
called, the ECB that issued the LODIC macro can become suspended when
system resources fall below user-selected shutdown levels. Once suspended, the
ECB will not get back control until enough system resources are available again.

v TMSLC macro — enables or disables an ECB to be time sliced. When an ECB is
enabled for time slicing, the ECB will lose control at user-defined time intervals.

When you run one of these macros, the macro service routine sets up the
appropriate ECB fields and return conditions. In most cases, control returns to the

System Service and Control Functions 17

entry through the common macro exit routine. In other cases, the entry does not
immediately get back control. The entry is placed on the suspend list instead, and
the system task dispatcher (CPU loop) receives control.

While suspended, ECBs that issued the LODIC or TMSLC macros reside on a
suspend list. The suspend list is checked once every pass through all items on the
input list.

Returning ECBs after Entries Are Processed
The EXIT routine does the processing necessary to remove an entry from the
system. All of the exiting entry’s resources are returned to the control program.
These resources can include storage blocks, programs, data records, unit record
devices and tapes. The EXIT routine checks fields in the ECB for the status of
these resources, returns the resources, and ultimately releases the ECB. You can
activate the EXIT routine explicitly with the EXITC macro, or system error programs
can invoke it. (See “Error Recovery” on page 39).

Managing Address Spaces
TPF supports two types of address spaces, the system virtual memory and the ECB
virtual memory. The system virtual memory (SVM) contains all storage that can be
used by a particular I-stream and dispenses storage, as needed, to ECBs. Each
I-stream has its own SVM. The ECB virtual memory (EVM) contains all storage that
can be referenced by an ECB. An ECB can only access storage in its own EVM.

ECBs run in the EVM and control program services run in either the EVM or the
SVM. I/O servers execute in the EVM for macro service routines and then switch to
the SVM for starting I/O and I/O interrupt routines. I/O servers execute in the SVM
for I/O post-interrupt routines that then switch to the EVM for returning to the user.
The layouts of both the EVM and SVM are shown in Appendix B, “Virtual Storage
Layout” on page 51.

When you write control program code, you must know whether you are in the SVM
or EVM. The control program uses the following macros for managing these
address spaces:

$GEVAC To convert SVM addresses to EVM addresses

$GSVAC To convert EVM addresses to SVM addresses

$SWSPC To switch between the 2 address spaces

E-type programs use the following macros for managing address spaces:

MOVEC To move data between the EVM and the SVM in any combination
(from EVM to EVM, EVM to SVM, SVM to SVM, and SVM to EVM).

GSVAC To convert EVM addresses to SVM addresses

For more information about each of these macros, see TPF General Macros.

Handling System Interrupts
An interrupt is a hardware-enforced transfer of control. There are five types of
interrupts: external, input/output (I/O), machine check, program check, and
supervisor call (SVC). Table 2 on page 19 summarizes the different types of
interrupts, which areas of the control program process them, and what causes
them.

18 TPF V4R1 Main Supervisor Reference

Table 2. System Interrupts

Type of Interrupt Processed By Caused By

External External interrupt handler (CTME) v Signal from the interrupt key on
the system console

v TOD clock comparator

v CPU timer

v Sysplex Timer (STR)

v TOD clock synch checks

v Service signals

v Malfunction alerts

v External calls.

I/O Common I/O handler (CCIO) Status from an I/O operation

Machine check Machine check handler (CMKH) Equipment malfunction (hardware
error)

Program check System error processor (CPSE) Programming error

SVC SVC macro decoder (CEDM) Supervisor call instruction

SVC and Fast-Link Macros
SVC instructions are requests for control program services. When an SVC is
executed, the macro decoder gets control and PSWs are swapped. The SVC new
PSW allows the macro service routine to store into any area of memory, and issue
supervisor state instructions.

For some requests for control program services the storage protection key does not
need to be changed, privileged instructions are not needed, and protected storage
is not updated. For these requests, TPF fast-link macros provide a faster
processing path than SVC instructions. (This is because fast-link macros use a
Branch and Save Register instruction, rather than swapping PSWs.)

Pointers to SVC routines are maintained in tables. There are 255 SVC entries in the
primary SVC tables (for main and application I-streams). Of these 255 entries, 31
are reserved for customers or “users,” and 2 are reserved to point to a second-level
structure. This secondary or indexed table supports an additional 32,767 SVCs. To
specify secondary SVCs, add a halfword index number to the SVC instruction.

You can define and maintain data in the primary and secondary SVC tables and the
fast-link macro tables using the following macros:

CRESVC Defines an SVC or fast-link macro to the system and adds the
macro definition to the primary, secondary, or fast-link macro table.

CREGPC Defines a macro group so that you can set debugger macro
breakpoints to trap a group of SVCs instead of requesting the SVC
names individually.

USRSVC Contains user-defined CREGPC and CRESVC macro calls.

CFISVC Returns the address of the macro table entry for a specified SVC.

SVC Macro Decoder
All SVC instructions that are requests for some control program service activate the
SVC macro decoder (CEDM).

System Service and Control Functions 19

1. CEDM saves the active program’s registers in the entry’s ECB.

2. If keypoint record A (CTKA) specifies that macro trace is active, CEDM records
the use of supervisor call (SVC) macros in the ECB.

3. CEDM routes the request to the correct macro service routine.

4. Once the macro request is completed, CEDM restores the active program’s
registers and returns to the next sequential instruction.

(See “Checking System Internals” on page 47 for information on ECB-check and the
internal trace table.)

Fast-Link Macro Decoder
The fast-link macro decoder is activated through a branch and save register (BASR)
instruction. Therefore, the fast-link macro decoder operates in problem state.
Control is passed directly to the requested macro service routine, which completes
the request and activates the common fast-link exit routine. This routine is
responsible for restoring registers and returning control to the program’s next
sequential instruction.

Adding New SVC or Fast-Link Macros to the System
To add new SVC or fast-link macros:

1. Code the SVC service routine and the macro that invokes the service routine.
The SVC service routine should be in a copy member that is called by
CCUEXT.

2. Code a CRESVC macro for each new SVC or fast-link macro, and optionally
code the CREGPC macro for each new macro group and put these calls into
USRSVC. (USRSVC will use these entries to generate the macro decoder table
and your secondary SVC tables.)

You can call CFISVC from both E-type and CP programs, as well as from ICDF and
STPP, to get the address of an entry in any SVC or fast-link table. Use data macro
ISV0SV to reference fields in the table entries.

Displaying SVC Codes
You can display any SVC interrupt code in hexadecimal using the ZDSVC
command. The display SVC code program returns the SVC code to the CRAS
terminal that issued the ZDSVC command.

Dispatching Work
The system task dispatcher, which is also known as the CPU loop, dispatches all
activity for a particular I-stream. Each I-stream in a CPC has its own set of CPU
loop lists. The system task dispatcher (CPU LOOP) CSECT CCCLHR contains the
CPU loop support code. The equate macro, CLHEQ, defines working storage
constants necessary for CPU loop list management.

The CPU loop services four dispatch control lists and a number of unique program
switches. Processing work items consists of serially scanning the loop and (1)
removing a task from one of the lists or (2) finding one of the switches set to
indicate that some event that requires processing (such as a clock update request
or a keypoint update) has occurred.

Priority scheduling of jobs is not present in the TPF system. In the TPF system,
interrupt routines do not call the dispatcher to check for dispatching priorities when

20 TPF V4R1 Main Supervisor Reference

interrupt processing is completed. Interrupt routines always return to the interrupted
program, placing the system’s priority on work in progress rather than on new work.

The dispatcher is activated when a task either completes or enters WAIT state. The
CPU loop lists are processed in the following order:
1. Cross list
2. Ready list
3. Input list
4. Deferred list.

In addition to the four main CPU loop lists, there are two secondary lists. These two
lists, which are checked once every pass through all items on the input list, are:
v Virtual file access count (VCT) list
v Suspend list.

The structure of these lists and the processing theory incorporated in their design is
discussed in detail in TPF Concepts and Structures.

The dispatcher also controls system activity levels. During CPU loop execution, the
dispatcher checks the available number of different types of storage blocks against
threshold numbers for each block type. TPF sets these threshold limits at system
generation time in terms of frames, common blocks, ECBs, I/O control blocks
(IOCBs) and system work blocks (SWBs). You can change these values with the
ZACLV command (see TPF Operations for more details). When the dispatcher
checks, if the number of blocks is not in the threshold value, no work is dispatched
until additional resources are available.

Managing Storage
Main storage allocation for ECB-controlled programs is a dynamic process of
getting and releasing virtual storage. All requests are processed through the storage
management CSECT, CCSTOR.

There are two types of storage blocks: logical and physical. Logical blocks are
carved from 4K frames. Common frames reside below 16MB and can be shared by
application programs.

Application programs normally use logical block types, which include:

Block Type Use

128-byte block
381-byte block Data records

Message blocks
1055-byte block Data records

Message blocks
4095-byte block Data records

Keypoint records
Program segments
Message blocks

The control program normally uses physical block types that include:

Block Type Use

Frames Working storage for ECBs (carved into 128-, 381-,
1055- and 4095-byte blocks).

System Service and Control Functions 21

Common frames Working storage that can be shared between ECBs
assigned for 128-, 381-, 1055- and 4095-byte
blocks).

ECB Entry control block.

SWB System work block. SWBs are used as work blocks
for the control program, for example, to contain
multi-system request blocks used by the
Multi-Processor Interconnect Facility (MPIF) feature.
See the TPF Multi-Processor Interconnect Facility
Reference.

IOCB Input/output (control) block. Only DASD servicing
routines use IOCBs.

In each ECB virtual memory is a one-megabyte area of private storage, below
16MB, known as the ECB private area. Application programs can issue macros
(such as GETCC, RELCC, FINWC, FILEC and EXITC) to get and return storage
blocks in this area. This virtual storage is carved from 4K frames of main storage.

ECBs can also get contiguous (or heap) storage in the heap private area area
above 16MB. Application programs can issue the CALOC, MALOC, REALLOC and
FREEC macros (or the calloc, malloc, realloc and free C functions) to get and
release storage in this area.

ECBs share a pool of working storage below 16MB called the common area.
Application programs use the GETCC macro (with the COMMON=YES parameter)
to get common blocks in this area.

The control program uses the following macros to get and release storage:

v $GCOMC and $RCOMC to get and release common blocks

v $GIOBC and $RSWBC to get and release IOCBs

v $GSWBC and $RSWBC to get and release system work blocks

v $GETBC and $RELBC to get and release other types of storage blocks

v $GMNBC and $RMNBC to get and release contiguous storage in the heap
private area.file

The control program uses the $CONBC and $DISBC macros to connect and
disconnect blocks to and from an ECB virtual memory.

The working storage blocks for ECBs are allocated by CTIN and assigned by the
OPZERO program and returned to the ECB pool by the EXIT routine (see
“Initializing ECBs via OPZERO” on page 15 and “Returning ECBs after Entries Are
Processed” on page 18).

IOCBs and SWBs are for the exclusive use of the control program and reside in
protected storage. All other blocks reside in unprotected storage.

In an online system, you can display the number of available main storage blocks
with the ZSTAT command.

Block Checking Mode
Block checking mode is a debugging tool that flags certain coding errors, such as
writing beyond the end of a block, passing blocks chained to other blocks, and
using storage that has already been released. When block checking mode is on:

22 TPF V4R1 Main Supervisor Reference

v ECBs run in single block mode. Single block mode dispenses a single block in
each frame. The block is located in the last block slot available in the frame.
Therefore, if a program overwrites the block, there is an increased chance of
receiving a page fault for going beyond the end of the frame. This is not
foolproof, however. If the subsequent frame is valid in the ECB’s address space,
a page fault will not occur. Furthermore, L0 (127-byte) blocks are located in the
same size block slot as used for L1 (384-byte) blocks, and overwriting these
blocks will not result in a page fault until the end of the frame is reached. Single
block mode is automatically suspended for an individual ECB if the ECB’s
available storage falls below 10 pages.

v Release block processing disconnects a frame from an ECB if the block being
released is the only block in the frame. Subsequent references to the block will
result in a page fault because the address is no longer valid in the ECB’s
address space.

v ECB exit processing interrogates each frame it disconnects from the ECB to look
for lost blocks. If a block is found to be flagged in use, then a CTL-749 system
error will occur to indicate that a missing block has been found.

You can turn block checking mode on and off with the ZSTRC command, without
re-IPLing.

Note: Block checking mode should be used with caution in a production system,
since it degrades CPU performance and depletes working storage.

Managing and Synchronizing Clocks
The control program clock software uses three hardware clock components:
v The time of day (TOD) clock
v The TOD clock comparator
v The CPU timer.

Timekeeping in this system is performed using the TOD clock to drive a set of
software clocks. Whenever the system is above 1052 state, TOD clock comparator
interrupts increment a control program seconds clock, a systems clock, and a set of
subsystem clocks. Software clocks are not incremented when the system is not
above 1052 state. The CPU timer is used to verify that ECB-controlled programs
release control of the CPU, in a half-second.

Note: Base systems (those that do not include HPO/MDBF) are treated as MDBF
systems with a basic subsystem only. For systems that include MDBF, all
subsystem clock values, including the basic subsystem, are derived from the
system clock.

The system clocks maintained in this system are:
v System seconds clock
v System perpetual minutes clock
v System local standard time (LST) clock
v System last midnight value clock.

The subsystem clocks are:
v Subsystem perpetual minutes clock
v Subsystem local standard time clock
v Subsystem last midnight value clock
v Subsystem Greenwich mean clock
v Subsystem Greenwich mean time midnight value clock.

System Service and Control Functions 23

Commands
A number of commands exist to either display or alter clock and date information.
These include: ZDDAT, ZDTIM, and ZATIM. Consult the TPF Operations for detailed
information on these messages.

Displaying the Time and Date
Clock display facilities can display:

v The system clock

v A subsystem clock

v The system clock and the subsystem clock for each subsystem. The subsystem
must be cycled above 1052 state.

v The Time of Day value given by a Sysplex Timer (STR).

Note: The IBM 9037 Sysplex Timer is part of the IBM Enterprise Systems
Connection Architecture.

Date displays are identical to those designed for clocks. Thus, display capabilities
include:

v The system date

v A subsystem date

v The system date and the subsystem date for each subsystem. Again, the
subsystem must be cycled above 1052 state.

v The date given by an STR.

Altering Clock Values
Periodically, the need arises to alter various system and/or subsystem clock values.
In TPF, the capability exists to alter either: a subsystem time clock, or the TOD
clock. Altering the TOD clock will initiate an automatic change to the system clock
as well.

Considerations for TOD Clock Alteration
v The system must be in 1052 state.

v When operating under a supported version of VM, issuing the ZATIM command
does not alter the VM TOD clock.

v Subsystem clocks are altered when the subsystem is cycled above 1052 state.

Considerations for Subsystem Clock Alteration
1. A subsystem may be in any system state (NORM,1052,etc.) when a subsystem

clock is altered.

2. Altering a subsystem clock has no effect on the TOD clock, the system clock, or
any other subsystem clock.

3. Issuing the ZATIM SET option to alter a subsystem clock in 1052 state, does
not change the subsystem date from the date when the subsystem was last
above 1052 state.

4. Issuing the ZATIM ADD option to alter the subsystem clock in 1052 state, the
system calculates what the time would be if the subsystem was above 1052
state (including any date change) and then updates the subsystem clock as
requested.

24 TPF V4R1 Main Supervisor Reference

Restart Facilities
During system restart, the clock program verifies that the TOD clock is operating. If
it is not operating, the operator is prompted for a ZATIM command to set the TOD
clock. When the TOD clock is operating or after it is started, the system generates
the following message to inform the operator:
CLKS0001I HH.MM.SS SYSTEM CLOCK IS NOW SET

Cycle Facilities
Entering the ZCYCL command to cycle a subsystem above 1052 state results in a
clock program test of the midnight boundary. If the subsystem crosses a midnight
boundary since the last time it was above 1052 state:

1. A message is sent to inform the operator

2. The operator is prompted with a second command, ZATME, before cycling the
system. The operator can choose one of 3 options:

a. Cycle-up the subsystem with the new date - ZATME GOOD

b. Alter the subsystem time to maintain the old date and then cycle-up the
subsystem - ZATIM SET followed by ZATME GOOD

c. Cancel the cycle request - ZATME CNCL

The subsystem calendar is initialized each time a subsystem is cycled above 1052
state. The subsystem perpetual minutes clock is used to determine the correct date.

Time-Initiated Functions
Using the CRETC macro, real-time programs activate other programs at a later
interval of time. The system calculates the clock value when the program is to be
activated, and transfers control to the program at that time. (Refer to the section
entitled “Initializing ECBs for Entries from Create Macros” on page 15.)

CRETC Considerations
1. For subsystems in 1052 state, CRETC requests are ignored if the subsystem

clocks are not operating, unless the STATE=1052 option is specified.

2. CRETC macro requests with the seconds option are activated when the system
seconds clock reaches the calculated time. Thus, an alter time request has no
effect on the activation of the program.

3. CRETC macro requests with the minutes option are activated when the
subsystem minutes clock reaches the calculated time. Thus, if the subsystem
clocks are altered, such a request may be activated at a time interval other than
had been specified in the request.

4. When a subsystem is cycled-down, all pending CRETC macro requests for the
subsystem are purged unless the STATE=1052 option was specified.

5. ECBs created by the CRETC macro are dispatched on the I-stream on which
the CRETC was issued.

6. ECBs created by the CRETC macro with the STATE=1052 option specified are
honored at the time requested regardless of the system state.

Timekeeping Considerations for Loosely Coupled Processing
v Native processors that are loosely coupled require either the TOD clock

synchronization RPQ or an STR to perform TOD clock synchronization for
multiple processors. Clocks must operate with the same time value in all
processors.

v Control program synchronization of the system clock is performed:

System Service and Control Functions 25

– During system restart
– Whenever the operator alters the TOD clock.

If the satellite processors in a loosely coupled system are in 1052 state when the
time is changed on the master, the TOD clocks on the satellite processors will
automatically be re-synchronized.

v Altering one processor’s subsystem clocks, results in the same change(s) to the
subsystem clocks in all other processors.

Synchronization Check Error
A synchronization check error (referred to as synch check in Messages (System
Error and Offline) and Messages (Online)) is a condition detected by the hardware
that indicates 2 clocks are not in synchronization when they are supposed to be.
Clocks are either reference points sending timing signals (master clocks) or are
remote points receiving timing signals (remote or slave clocks). If an STR is the
synchronization source, then all the clocks in the complex are considered remote.
Otherwise, a CPC is the synchronization source. Each remote clock is either in
synchronization with the master synchronization source or it is in error. This error is
known as a synch check. There is no functional connection between remote clocks.
However, there is a functional connection between the master synchronization
source and the remote clocks.

Hardware features determine the relationships between clocks. Control register 0
contains a bit that determines whether the clock on that processor will be sensitive
to the timing pulses sent to it. If this bit is not set, any stepping pulses sent to it will
be ignored. If the bit is set, a stepping pulse every microsecond is expected. If the
TOD RPQ is used, the master clock ignores timing pulses, while remote clocks
expect the timing pulses. If an STR is used, all clocks are remote and expect timing
pulses. Control register 0 also contains a bit that determines whether synch checks
will be recognized. If this bit is set, synch checks will be recognized, otherwise not.
Recognizing a synch check means that at the moment the remote clock reaches
the one second mark it expects a synchronization pulse to be sent by the master
clock and, if this pulse doesn’t occur at that moment, an external interrupt will take
place on the remote processor. A synch check is a catastrophic condition under
most configurations.

This logical picture of clocks in synchronization is the same whether the system
consists of standard 370 hardware, STR hardware, or a TOD clock RPQ
enhancement. The standard hardware maintains the synchronization in a CPC. The
STR hardware or the TOD RPQ hardware maintains the synchronization between
CPCs. The standard hardware, the STR hardware, and the TOD RPQ can be
involved in loosely coupled complexes of tightly coupled CPCs.

When a sync check occurs, the external interrupt handler is invoked to determine
which error has occurred. When the sync check is isolated, TOD clock
synchronization routines are called to attempt to resolve the error. If the processor
in error is a remote processor in a loosely coupled complex with the TOD RPQ or
an STR, hardware revalidation is attempted. If the hardware is operational, the
processor is not taken down. All other scenarios are catastrophic. After a
catastrophic synch check the system reloads and the time must be confirmed with
an external source. If a synch check is not catastrophic, the CPC will be locally
synchronous, in the loosely coupled complex. To restore the CPC to the
synchronization of the complex, the time should be reset on the master CPC, or the
CPC must be reIPLed.

26 TPF V4R1 Main Supervisor Reference

|
|
|
|
|
|
|
|
|
|
|

Altering and Displaying Data and Programs
TPF allows you to alter and display:
v Main storage (by address or label)
v Data or program records (by file address)
v Fixed file records (by record type and ordinal number)
v Pool file records (by pool record type and ordinal number)
v File-resident programs (by program name) except for ISO-C programs
v Main storage-resident programs (by program name) except for ISO-C programs
v Link map data in C load modules (display only)
v Entries in the program allocation table (by program)
v System generation values
v Resource control values
v System allocation values in keypoint record A (CTKA).

You can use various commands to alter or display programs or data. When altering
data, you can include validation data in the message itself to ensure that you are
altering the appropriate data. (If the validation data does not match, no alteration
occurs.) Data is displayed as both hexadecimal codes and printed characters, and
altered data is shown both before and after alteration. The amount of data that can
be altered or displayed varies by command and generally starts on a fullword
boundary. Following are summaries of the commands for altering and displaying
data and programs. For more information see TPF Operations.

Altering and Displaying Main Storage
You can use 2 sets of messages to alter and display main (core) storage. For
ZACOR and ZDCOR, you specify a main storage address. For ZADCA and ZDDCA
you specify a dump label. In a tightly coupled system you can specify an I-stream.

ZACOR Alter main storage by specifying a system virtual address and
display storage before and after alteration.

ZDCOR Display storage by specifying a system virtual address. The display
starts on a fullword boundary unless you specify disassembled data
which starts at the specified address.

ZADCA Alter main storage by specifying a dump label and display storage
before and after alteration.

ZDDCA Display the address of a specified dump label or main storage by
specifying a dump label.

Displaying Link Map Data in C Load Modules
You can display the link map contained in a C load module by using the ZDMAP
command. The link map consists of a list of object files included in the C load
module, a list of C function names in the object files, and the addresses of the
object files and C functions.

Link map displays include both main storage addresses and the offsets of C
functions into their respective object files. Any time an object file name or function
name is displayed, its address is also displayed.

See TPF Operations for more information about the ZDMAP command.

System Service and Control Functions 27

Altering and Displaying File Records
You can alter and display any file records using ZAFIL and ZDFIL or fixed file
records using ZAREC and ZDREC.

ZAFIL Alter a file record by specifying the file address.

ZDFIL Display or print a file record with a specified file address. You can
also display a chain of as many as 33 addresses from the specified
record or print a chain of as many as 33 records.

ZAREC Alter a fixed-file record or pool record.

ZDREC Display a specified number of bytes from a fixed-file record with a
specified record type beginning at a relative starting address or
display the file address of the record.

Other commands for altering or displaying files include:

ZIFIL Initialize a fixed file data record by specifying a FACE equate value,
a record ID, record code check byte, and starting and ending
ordinal numbers for the initialization.

ZDADD Display the file address for a specified record type and ordinal
number.

Altering and Displaying Programs, by Program Name
You can alter and display programs (except for ISO-C programs) using ZAPGM and
ZDPGM.

ZAPGM Alter the file or main storage copy of a file-resident program.

ZDPGM Display the file or main storage copy of a file-resident program.

Altering and Displaying Entries in the Program Allocation Table
You can alter and display entries in the program allocation table (PAT) using ZAPAT
and ZDPAT.

ZAPAT Change a program entry in the file or main storage copy of the
program allocation table. Changes to the file copy take effect when
you re-IPL. If you specify a transfer vector entry, the parent program
is changed.

For ISO-C programs ZAPAT can authorize programs to use
reentrant static blocks. ZAPAT cannot change the module type.
ZAPAT is restricted to CLASS=SHARED for ISO-C programs,
dynamic load modules (DLMs) and libraries.

ZDPAT ZDPAT displays a program entry in the program allocation table that
includes the program linkage type, class, file address, addressing
mode, authorization, and program size, and the base address of its
PAT entry in main memory (see the DSECT Program Allocation
Table [IDSPAT] for more information). If you specify a transfer
vector entry, the entry for the parent program is displayed.

Displaying Program Linkage Types
You can display program names from the program allocation table (PAT) with their
program linkage type by using the ZDPLT command.

28 TPF V4R1 Main Supervisor Reference

ZDPLT Display program names from the program allocation table by
specifying the program linkage type and, optionally, the program
name.

Maintaining a Memory Patch Deck
You can maintain and execute patch decks, which are groups of commands for
changing main storage (ZACOR, ZADCA, and ZAPGM).

ZPTCH Maintain and execute patch decks. You can use ZPTCH to build as
many as 20 patch decks, each containing as many as 50
messages.

Altering and Displaying System Generation Values
ZSYSG Change and display system generation bits initially defined by SIP.

You cannot use this message to change system generation bits that
require the reassembling of programs, allocator changes, or the
rerunning of SIP if they are changed. Changes take effect on the
next IPL of the system.

ZCTKA Change and display storage allocation values. If you are using the
multiple database facility (MDBF), you can issue ZCTKA from any
subsystem (although some subsystem shared values can only be
changed from the BSS). Changes take effect on the next IPL of the
system.

Altering and Displaying Resource Control Values
ZSYSL Change and display shutdown levels defined for various block types

in the LODIC priority class table.

ZTMSL Add, remove, change, or display time-slice attributes in the time
slice name table.

Initiating System Alerts
System alerts consist of 2 functions:
v Long-life ECB detection and removal
v Time-initiated alerts.

Long-Life ECB Detection and Removal
Entries that loop without relinquishing control are removed from the system by the
application loop timeout mechanism. However, entries that relinquish control in an
indefinite loop are detected by the long-life ECB detection program.

This detection does not occur automatically for all ECBs. Each ECB is created with
its CE1LML (maximum permitted lifetime) field set to X'FF', which prevents long-life
detection. To enable long-life detection for any given entry, the application program
must issue the LONGC macro.

When a long-life entry (in other words, a looping entry) is detected, message
ECBL01 is sent to the operator. The operator can request that a looping ECB be
scheduled to EXIT by use of the ZECBL command with the E parameter (ZECBL
E). The ECB address specified on the ZECBL E command must be a system virtual
address. If a looping ECB that is scheduled to exit by ZECBL E command is
dispatched again it is exited with system error dump number 0000D3.

System Service and Control Functions 29

If a looping entry scheduled to exit by the ZECBL E command does not exit in 1
minute, it is determined to be hung; it has lost control and will not be dispatched
again (possibly waiting for an event that will never occur). Hung ECBs cannot be
removed from the system, but message ECBL01 is sent to the operator whenever a
new hung entry is detected.

The ZECBL command can be used to display all looping and hung entries, or to
display an individual entry. The information provided by ZECBL D includes the ECB
address, program name and address, PSW address, wait count, record hold count
and maximum, and current ECB lifetime.

Time-Initiated Alerts Function
The time-initiated alerts function provides system operators with the capability of
automatically starting system functions and maintaining operator communications.
The operator adds a message to the time-initiated message table by specifying
when the message is to be started and, optionally, the destination of the message.
For example, if a user performs disk capture at a particular time every day, a
message to remind the operator at the DASD functional support console to start the
capture is put into the time-initiated message table. If a system function such as
displaying pool counts periodically is required, the command to display pool counts
is put into the table.

The contents of the table are controlled by the operator; there are options in the
command support to add a message, display a single message or all the
messages, delete a message from the table, and reinitialize the table.

The operator can add time-initiated messages or stage-initiated messages to the
table. A time-initiated message is one that is initiated at a specified time.
Stage-initiated messages are processed during periods of system operation when
time cannot be used to control the processing. System stages have been defined to
identify these periods:
v Beginning of restart
v End of restart
v End of cycle-up
v End of cycle-down
v When NORM stage is reached.

Messages are processed when a stage is entered or when a stage is left.

The time-initiated message table is a fixed file record (FACS record type #TIMRI);
there are no overflow records. The record size is variable and is determined by the
user based on estimates of how many messages will be in the table at any one
time, and the lengths of the messages. The table record has a 28-byte header, and
each message in the table record has an 18-byte header. The table record is
defined in the DSECT macro TI0MT.

In a loosely coupled complex, there is 1 record per processor; the record ordinal
number is the same as the processor ordinal number. In a multiple database
function system, there is 1 record associated with each subsystem. It is not
necessary for records to be allocated for all subsystems in the system. The records
must be allocated at system generation time by coding the appropriate RAMFIL
macros. If the records are not allocated, it is assumed that the time-initiated alerts
function is not active, and processing is not performed for it.

30 TPF V4R1 Main Supervisor Reference

Command Support
The command is ZSTIM. The add, display, cancel, and reinitialize options are
described in detail in TPF Operations.

Initializing the Program Allocation Table
The system allocator creates 2 tables from SALO input files: the offline system
allocator table (known as the SAL table) and the online program allocation table
(PAT). There is an entry in each table for every allocated program. The TPF linkage
editor uses the libraries to resolve external references (VCONS) in object modules.
Because this process occurs in an offline environment, the SAL table is strictly an
offline structure. The PAT is used online by Enter/Back routines. It contains the
addresses of all E-type programs as well as other allocation information. The PAT
resides in the core image restart area and is brought into main storage by IPLB.
Some fields in each PAT entry are initialized by CTIN. There is a PAT in main
storage and the core image restart (CIMR) area for each subsystem.

If you need to display allocation characteristics of E-type programs, use the ZDPAT
command. If you need to change allocation characteristics of E-type programs, use
the ZAPAT command. See TPF Operations for more information about the ZDPAT
and ZAPAT commands.

Using Control Program User Exits for User Functions
To allow TPF system users to perform processing that is unique to the user’s
operation, a set of predefined user exit points have been provided in the TPF
control program. These user exit points (when activated) will cause control to be
passed to user-supplied routines. See TPF System Installation Support Reference
for additional information.

System Service and Control Functions 31

32 TPF V4R1 Main Supervisor Reference

High Performance Option

The High Performance Option (HPO) is a licensed feature available to TPF users.
HPO is composed of 2 subfunctions:
v The multiple database function (MDBF), and
v The loosely coupled (LC) facility.

The multiple database function (MDBF) enhances portability, protection, and sharing
of system resources. It consists of 2 distinct, yet related, operating modes;
subsystems (SS) and subsystem users (SSU). Users can configure as many as 64
subsystems or 127 subsystem users. The combination of subsystems and
subsystem users cannot exceed 128. Each subsystem owns independent disk
packs (DASD) while sharing control program services with other subsystems. For
ease of control, one subsystem contains all the system related software. This
subsystem is called the basic subsystem (BSS). Base TPF systems (without HPO)
consist of a single BSS with no subsystem users.

Both subsystems and subsystem users contain E-type (online) programs, V-type
(offline) programs, and a database. A database can consist of fixed files, pool files,
user global area(s), application control data, and system control data.

There are several different variations of MDBF systems, ranging from one basic
subsystem with one or more subsystem users, to multiple subsystems with multiple
subsystem users.

The loosely coupled (LC) facility provides the potential for 8 processors to access a
shared database while presenting the outward appearance of a single processor.
Database sharing is accomplished by one of 2 hardware RPQs: the limited lock
facility (LLF) or the concurrency filter lock facility (CFLF). CFLF is a companion
feature to the 3990 Storage Control Multi-Path Record Cache RPQ. A Sysplex
Timer (STR) or a second RPQ (necessary for interprocessor clock synchronization)
is also required in a loosely coupled system.

Note: The IBM 9037 Sysplex Timer is part of the IBM Enterprise Systems
Connection Architecture.

Controlling Loosely Coupled Processors
Loosely coupled processors require control functions that are not needed in a single
processor environment. The programs that perform these functions are referred to
collectively as processor status management services (PSMS). These programs:

v Maintain the same system state for all processors in the complex. This is
necessary during the processing of certain system utilities.

v Enable and disable system state change.

v Display the status for:
– A processor
– All subsystems within a processor
– A single subsystem within all processors.

v Deactivate processors.

v Activate and deactivate subsystems.

PSMS programs are resident in the basic subsystem in a multiple database function
(MDBF) system. PSMS is activated with the ZPSMS command.

© Copyright IBM Corp. 1994, 2001 33

Cross Subsystem Access Services
In an MDBF system, system programs need support facilities to access the program
or database of subsystem users in the complex. Under MDBF, each subsystem
maintains its own database, which is identified by a subsystem database ID (DBI).
All subsystem users within a particular subsystem have the same DBI. During IPL
each subsystem (SS) and subsystem user (SSU) is assigned an ID.

Cross subsystem access service routines use the program base ID (PBI), database
ID (DBI), and subsystem user ID (SSU ID) to service MDBF macro requests.
Normal changes to the DBI and PBI are from the basic subsystem (BSS) to a
subsystem (SS), or vice versa. System programs should use only MDBF macros to
change and manipulate these fields. Application programs should not use MDBF
macros. MDBF macros include:

CROSC CROSC permits one subsystem to access another subsystem’s
data or program base. To access programs or global data, invoke
the CROSC macro in either the ECB virtual memory or the system
virtual memory. To get pools from another subsystem, use CEBIC to
change the DBI and GETFC to get the pool.

UATBC Use the UATBC macro to locate information pertaining to a
particular subsystem. UATBC calculates and returns the address of
a subsystem user from a list of addresses in the subsystem user
table (SSUT). UATBC then uses the SSUT to access specific
subsystem user data.

CEBIC To access the database of any other subsystem, use the CEBIC
macro to change the DBI and SSU ID in an active program’s ECB.
The DBI and SSU ID are preserved across CEBIC calls. Return is
made to the original subsystem and/or subsystem user.

LEBIC Several tables are generated in an MDBF system. These tables are
accessed by using either the subsystem or SSU ID. To locate the
proper ID from a list of identifiers requires an index into the list. The
LEBIC macro standardizes the retrieval of these index values. Use
the LEBIC macro to obtain the index value for a specified ID,
validate the ID, and convert a specified subsystem or SSU ID to a
subsystem/SSU ordinal number.

Both CP segments and E-type programs can use CEBIC and LEBIC, however,
different input restrictions apply. See TPF General Macros and TPF System Macros
for these restrictions and more information on all the MDBF macros.

Owning Resources in a Loosely Coupled System
Hardware and software resources in a loosely coupled system are switchable,
shared, or unique by processor:

v Switchable resources can be dedicated to any one of the processors. Tape drives
are an example.

v Shared resources can be shared concurrently among all processors. Certain
storage devices are an example. Shared resources can also refer to resources
that are used by more than one subsystem or subsystem user.

v Processor unique resources cannot be shared or switched. Processor unique
keypoints are an example.

34 TPF V4R1 Main Supervisor Reference

Loosely coupled processors can dynamically acquire and release ownership of
switchable hardware and software resources. The processor resource ownership
facility (PROF) controls this dynamic ownership and maintains the status of tape
drives and system utilities. System utilities are programs that perform repetitive
everyday tasks, such as TPF capture.

Data Records Unique to Loosely Coupled Processing
Two tables support loosely coupled processing: the processor resource ownership
table and the processor status table.

The processor resource ownership table (PROT) maintains the ownership status of
tape drives and system utilities. You can use the ZPROT command to assign,
release, and display ownership of resources. Although the PROT maintains tape
drive ownership, the tape control program actually assigns and releases ownership.
See TPF Operations for information on the ZTVAR command.

The system test compiler creates the PROT offline. You can load the PROT to the
online system with the ZSLDR command when the system is in 1052 state.

The PROT consists of fixed file records of record type #PRORI. There is one record
for tapes that contains space for a maximum of 257 entries. One or more records
can be generated for system utilities; each record can contain as many as 102
entries.

The status of each processor is maintained in the processor status table (PIDT).
TPF generates one PIDT for each processor in a loosely coupled complex. The
PIDT is a main-storage resident record.

Interprocessor Communications (IPC)
Interprocessor communications (IPC) allows you to move data between loosely
coupled processors using the Multi-Processor Interconnect Facility (MPIF) licensed
feature and channel-to-channel (CTC) communication links. The MPIF path active
exit establishes a MPIF connection across each CTC communication link between
processors. The system whose name is first in the alphabetic generally initiates
connection processing.

IPC maintains an internal control block structure. The IPC global table (IGT)
contains control information and one entry for each processor in a loosely coupled
complex. Each entry contains data collection counters and a chain of IPC
connection definition blocks (ICDBs) mapped by data macro DCTICD. An ICDB is
established for each IPC connection between processors. For example, if 3 CTC
links exist between processors A and B, the IGT entry for B in processor A contains
a chain of 3 ICDBs. The ICDB contains the connection token, the identify token
(IDTOK) for the resident system, and a pointer to the relevant IGT entry. CCCTIN
allocates the IPC control block area based on the maximum number of links
between loosely coupled processors in keypoint record E (CTKE) and places the
address of the IGT in the CINFC table.

Restart
IPC restart:

1. Initializes the IGT and ICDBs and initiates processing to establish
communication with other processors.

High Performance Option 35

2. Uses the CINFC macro to locate the IPC control blocks and CTKE to determine
the maximum number of connections allowed between processors.

3. Initializes the IGT, ICDBs, and ICDB block list. The ICDB block list contains
addresses of available ICDBs. The number of ICDBs allocated is the product of
the number of processors in the complex and the maximum number of
connections between processors.

4. Uses the MPIFC macro to identify itself to MPIF.

5. Places the IDTOK in the IGT.

6. Uses MPIFC QUERY to query all MPIF users named IPC. The QUERY reply
area contains the hardware CPUID for each system.

7. Scans CTKI for a match of hardware CPUIDs. A match is found if the system is
located in the loosely coupled complex.

8. Initializes the appropriate entry in the IGT.

9. Issues MPIFC CONNECT across each active path if the resident system name
is alphabetically ahead of the other system name.

Sending Data
The SIPCC macro invokes the staging and transmit function to pass data to other
processors within a loosely coupled complex. This function then:

1. Verifies that the requested destination processor is active.

2. Selects a connection to send the data over for each active processor.
Connections are selected on a rotational basis to balance loads.

3. Maintains a pointer to the next connection to send over in each IGT entry.

4. Builds the send parameter list, the IPC 24-byte control area, and data area 1 in
a system work block.

5. Copies data area 2 to a core block for each destination processor.

6. Assigns an IPC sequence number to the IPC item. IPC uses this number to
keep IPC items in order in the receiving system.

7. Executes MPIFC SEND for each destination processor. If no connections exist
to the remote system, the IPC item is queued. If the IPC sequence number is
about to roll over to zero, the IPC item is queued until restart notification is
received from the remote system.

The SIPCC macro passes IPC items to destination users in sequence. The MPIF
data received exit queues items until they can be presented in sequence. The
sending system halts transmission when its send sequence number reaches the
largest positive value (X'FFFFFFFF'). When the receiving system has received all
pending messages, a message (with sequence number zero) is returned.
Transmission then begins with send sequence number 1.

Receiving Data
MPIF activates the receive function when data is received from IPC. Receive is also
activated following a successful send if Device End notification was requested in the
send parameter list.

If the data received exit has been activated for Device End notification, the receive
function places the IPC item on the ready list to be passed to the IPC user by the
IPC post interrupt routine. Otherwise, receive checks the sequence number and if
the received item is next in sequence places the item on the ready list for IPC post
interrupt processing. If the received item is not next in sequence, receive queues it
for resequencing. Resequencing occurs when an in-sequence item is received. If

36 TPF V4R1 Main Supervisor Reference

the receive sequence number is about to roll over to zero, receive sends a restart
message to the remote system. This message (with an IPC sequence number of
zero) informs the remote system to send IPC items again. Receive then releases
the block containing the data received exit parameter list.

Timing Out
This function returns IPC items to the sender when data is not transmitted within
the required time period. The timing function scans the IGT for remote systems that
don’t have connections to the local system. When such a system is found, timing
decrements the time-out count for the items on the output queue. When the count
reaches zero, timing sends a message to the operator. If the SIPCC return option
was specified, each queued item is returned to the sender. Otherwise, the core
blocks are released.

Displaying and Altering IPC Information
The ZSIPC command allows the operator to display and alter the IPC status, time
intervals, number of IPC paths, class of IPC paths, and transmit or receive counts
to any or all processors.

ZSIPC DISPLAY displays status and processor counts. The STATUS display shows
the restart connection time-out value, the amount of time IPC will wait, the
maximum number of IPC paths, and the IPC path class. The COUNTS parameter
displays a processor’s total activity and a breakdown of receiving processor activity.

ZSIPC ALTER alters the IPC timing values, the maximum number of paths between
processors, the path class IPC uses, and resets the IPC counters. You can use the
INTERVAL parameter to modify IPC time values. Use the TIME subparameter to set
the length of the IPC interval and the TOUT subparameter to set the number of IPC
intervals to wait before timing out.

Performance Considerations
Increasing the number of connections defined for IPC to use between processors
improves IPC performance. Also, you can dynamically tune IPC for optimum system
performance by altering the IPC timing values.

Cross References
For more information on IPC see:
v TPF Multi-Processor Interconnect Facility Reference
v TPF General Macros
v TPF System Macros
v TPF Operations

High Performance Option 37

38 TPF V4R1 Main Supervisor Reference

Error Recovery

Errors can occur at any time, in any area of processing. They may be software
errors, hardware errors, or both. TPF error processing is concerned primarily with
the speed of recovery; errors must not allow processing to be interrupted for a
prolonged period of time.

Processing System Errors
System errors are errors which occur in software. Software error recovery in the
TPF system is known as system error processing. There are 2 types of system
errors:

v Error processing is purposely initiated by a TPF program when an unusual
condition is detected, such as an invalid macro parameter or an error on an I/O
device. These errors are known as soft errors because they are detected by
software.

v Error processing is initiated in response to a program check resulting from a
software logic error. These errors are known as hard errors because they are
detected by hardware.

In both cases the philosophy of system error processing is the same:

v Send a message to the prime CRAS informing the operations staff that an error
occurred. If the error occurred in an application program activated in response to
an input message, send the message CHECK DATA CALL SUPERVISOR to the
originating terminal.

v Generate a full or partial memory dump of main storage.

v Determine the appropriate recovery action.

The primary diagnostic aid in the TPF system is a main storage dump, formatted to
facilitate identifying relevant storage locations. You can control which storage areas
are included in different dumps, in order to limit their size. This is done by
associating keywords with areas of storage, and mapping a given system error
number to a list of these keywords.

The SNAPC and SERRC macros initiate system error processing procedures for
soft errors. The following macros are used to control dump content:

IDATG Associates keywords with areas of storage.

IDATB Contains IDATG calls, and builds the selective memory dump table
(SMDT)

IDOTB Codes dump overrides, and builds the static override bitmap tables.

The relationship of these macros and tables is discussed in “Controlling the Content
of System Storage Dumps” on page 41 and shown in Figure 1 on page 42. See the
TPF System Macros for details on how to code the IDATG macro.

You can use the ZASER and ZDSER commands to alter and display system error
processing options and to activate the dump data user exit (whether and where the
dump will be written, where to route messages, and so on). The ZIDOT command
enables you to create additional keyword-to-storage-area mappings, and to override
IDOTB calls. ZIDOT commands create entries in the dynamic override bitmap table
(DOBT). These commands are described in detail in TPF Operations.

© Copyright IBM Corp. 1994, 2001 39

Types of System Errors
System errors can occur either in application programs, or in the TPF control
program.

Application Program Errors
Application program errors are errors in logic detected during processing. These
errors relate to an application, that is, an ECB. The application detects the error and
chooses the necessary corrective action. When an application detects an error, it
can either:
v Ask the control program to exit the ECB via the EXIT routine, or
v Resume control and process the error as it deems appropriate.

Either the SNAPC or SERRC macro tells the control program which option the
application requests.

Control Program Errors
Control program errors may or may not be associated with an ECB. These errors
occur for these reasons:

v Violation of the rules of the TPF system. For example, a GETCC macro is issued
to retrieve a storage block on a data level that is already holding a block.

v Violation of hardware rules. These can be subdivided as follows:

– A software logic error causes the program new PSW to be loaded, for
example, a hard error occurs.

– A hardware operation fails because of erroneous software input. For example,
an I/O operation is initiated to retrieve a record, and the device address
specified is wrong. The hardware then reports the error back to the software
for it to process.

The system operator can also request a control program dump with the ZDUMP
command, or by depressing the system restart key (O2 on the OPRCTL frame).
This is referred to as a manual dump.

Initiating System Error Processing
Both the SNAPC and SERRC macros initiate system error processing; they differ
only in the amount of diagnostic information they produce, and the amount of online
resources they require.

The SNAPC macro
The SNAPC macro is used whenever the cause of the error condition is well
understood, and less than 32K of data is required to fully document the problem.
The SNAPC macro only dumps areas of main storage that the programmer has
specified using LISTC macros (refer to the TPF General Macros for details on
LISTC).

You can use the ZASER command to specify whether to route a snapshot dump to
a tape or printer device, and how much of the snapshot dump information to display
on the CRAS terminal. Note that routing a snapshot dump to CRAS generates extra
ECBs, because of the use of WTOPC.

SNAPC uses far fewer processor resources than SERRC. Only the I-stream on
which the error occurred is used to generate the error data; the other I-streams in
the CPC are not affected.

40 TPF V4R1 Main Supervisor Reference

You can use SNAPC for database corruption errors, hardware errors, or any other
errors where you understand the cause of the problem and need less than 32K of
data to fully document it.

The SERRC Macro
The SERRC macro always produces a standard memory dump of main storage.
There are 2 types of SERRC dumps, one for application program errors and one for
control program errors:

v An OPR dump, in which the error was detected by an operational program
(application program);

v A CTL dump, in which the error was detected by the control program.

The first section of a dump is identical for both types of SERRC dumps. It contains
information describing the system configuration, the status of each I-stream in the
configuration, and the system trace tables for each I-stream. If there is an ECB
associated with the error, a dump of the ECB virtual memory will follow, including all
of the data objects that are logically attached to the ECB. An OPR dump ends at
this point.

In a CTL dump, the dump of the ECB virtual memory (if any) is followed by a dump
of system storage. This dump begins at location X'1000' and continues to the end
of the system virtual memory. This dump is limited to a reasonable size through the
use of pre-defined dump keywords, which identify large areas of storage that
normally are omitted from dumps. One or more of these areas can be included in
the dump for a particular system error if a dump override has been defined for that
system error. See Controlling the Content of System Storage Dumps.

The format and content of the TPF system dumps is discussed in greater detail in
TPF Program Development Support Reference.

Hard Errors
Four system error numbers are reserved exclusively for the purpose of identifying
program checks that result from software logic errors. They are:

v CTL-I000001. Identifies a program exception which occurred in the SVM. This is
a catastrophic error.

v CTL-I000002. Identifies a segment- or page-translation exception in the SVM.
This is also a catastrophic error.

v CTL-I000003. Identifies a program exception which occurred in an EVM. The
failing ECB is exited.

v CTL-I000004. Identifies a segment- or page-translation exception in the EVM.
The failing ECB is exited.

Note that segment- or page-translation exceptions which occur in supervisor state
are not necessarily catastrophic errors. If the error occurred in an EVM, the error
will be converted to a CTL-I000004 and the ECB will simply be exited.

Controlling the Content of System Storage Dumps
TPF dumps system storage under the following conditions:

v There is no ECB associated with an error.

v There is an ECB associated with an error, the SERRC macro is coded in an
ECB-controlled program, and SYSDUMP=YES has been coded on the SERRC
macro call.

Error Recovery 41

v There is an ECB associated with an error, the SERRC macro is coded in an
ECB-controlled program, and ZASER LONG is in effect.

v There is an ECB associated with the error, and the SERRC macro is coded in
the control program.

You can control the contents of your SERRC dumps by selecting which large areas
or tables you want in certain dumps. There are 2 steps to this process:

1. Defining areas of storage that are normally excluded from dumps. This is done
by defining keywords and associating these keywords with areas of storage.

2. Coding dump overrides is done by mapping system error numbers to keywords.

The relationship of the macros and tables described in the following sections is
shown in Figure 1.

Defining Keywords
IBM ships a list of predefined keywords for large IBM storage areas in the IDATB
macro. These keywords are defined using IDATG macro calls. When IDATB is
assembled, these calls generate entries in the selective memory dump table

IDATB Macro CPST

UDATB Copy Member

Selective Memory Dump
Table (SMDT)

IDATG ...
IDATG ...
IDATG ...

COPY UDATB

Maps keywords to addresses
for large data areas in main
memory and working storage
pools.

CIDP

ZIDOT

Prefix=I,W,X,Y,Z

CUDP

Prefix=U (or other)

IBM's Static Override
Bitmap Table (SOBT)

Dynamic Override
Bitmap Table (DOBT)

User's Static Override
Bitmap Table (SOBT)

Maps IBM system error
numbers with specific
areas of main storage.

Associate system error
numbers with keywords,
override IDOTB calls, or
add entries to SMDT.

Maps user system error
numbers with specific
areas of main storage.

IDATG ...
IDATG ...
IDATG ...

CIDP CUDP

IDOTB ...
IDOTB ...

IDOTB BUILD

IDOTB
IDOTB

IDOTB BUILD

Figure 1. Components of Dump Content Control

42 TPF V4R1 Main Supervisor Reference

(SMDT). Entries in the SMDT represent data areas that are normally excluded from
dumps. All of IBM’s predefined areas start with I for example, ICLH represents the
CLH block management tables.

The IDATB macro contains a call to copy member UDATB, which contains user
IDATG calls, for customer use. You can code your own IDATG calls to associate
keywords with regions of storage that you want to include in (or exclude from)
dumps using the IDATG calls in IDATB as an example. Include your IDATG calls in
UDATB.

Coding Dump Overrides
The areas defined in the SMDT will not be included in dumps unless a dump
override is created for a particular system error requesting that a storage area be
included. The IDOTB macro maps specific system error numbers to keywords,
creating dump overrides. IBM’s dump overrides are coded on IDOTB macros in
segment CIDP. When CIDP is assembled, these calls generate entries in IBM’s
static override bitmap table (SOBT).

You can code your own dump overrides using IDOTB calls in copy member CUDP
of user exit CSECT CCUEXT using IBM’s IDOTB calls in CIDP as an example. Your
IDOTB calls will generate entries in the user SOBT.

Once the system is up and running, you can use the ZIDOT commandto associate
system error numbers with keywords or to override what’s coded on IDOTB calls.

Coding Prefixes
You can code a prefix on IDOTB calls to distinguish between the system error
numbers you created and those provided by IBM. IBM reserves prefixes I, W, X, Y,
and Z for its own use. You can use other prefixes to distinguish between, or to
group, system errors. If you do not code a prefix, it defaults to U. The prefix
determines which dump override tables the TPF system will refer to when a system
error occurs. (There is one exception to this: the TARGET(TPF) functions exit and
perror cannot accommodate a prefix character, so a single set of system error
numbers is used by programs provided by IBM and developed on your site.

If you want to use the version of SMDT that IBM ships with minimal tailoring, but
you want to include areas that are excluded by default (such as the global areas),
you can do one of the following:

v Remove the IDATG call from the IDATB deck that excludes the area you want
included, or

v Code an IDOTB macro to override the entry (excluding the area) in the SMDT for
certain system errors, and include it in CUDP.

All IBM SERRC calls are prefixed with the letter I. The SERRC service code will
supply a default prefix of U for all other code. When you use ZIDOT to include or
exclude specific areas in your dump, you must include the prefix. If you are allowing
the prefix to default to U, code this prefix on the ZIDOT command or the IDOTB
macro.

Error Recovery 43

Determining Appropriate Recovery Action
After generating appropriate diagnostic data, the system error routine examines the
error options specified by the program that detected the error. These options
indicate which recovery technique is needed. Recovery alternatives are:
v Return to the program that detected the error
v Remove the entry associated with the error via the EXIT routine
v Transfer control to the catastrophic error recovery routine.

When a catastrophic (unrecoverable) system error occurs, the present condition of
the system is examined to determine the extent of the recovery procedures. The
basic catastrophic recovery options are:
v Return to the CPU loop
v Cycle-down, software IPL (restart), cycle-up to the previous state
v Software IPL (restart) and cycle-up (no cycle-down is attempted)
v Cycle-down, software IPL (restart), cycle to 1052 state.

If additional program errors occur during catastrophic processing, the control
program may decide that further processing is impossible. In this situation no
attempt will be made to re-IPL the system; instead, a disabled wait PSW will be
loaded. The 6-digit code in the address field of the PSW provides an indication of
the nature of the error. These error codes are documented in TPF Operations.

Channel Check Handling
A channel check is an error associated with the channel subsystem, or the devices
attached to it, that is reported in the interrupt response block (IRB) by the Test
Subchannel (TSCH) instruction. There are 3 channel check conditions:

v Channel control check (CCC) is caused by any machine malfunction affecting
channel-subsystem controls.

v Channel data check (CDC) indicates that an uncorrected storage error was
detected related to data contained in main storage that is currently used in the
execution of an I/O operation.

v Interface control check (IFCC) indicates that an incorrect signal occurred on the
channel path.

See ESA/390 Principles of Operation for more information about channel check
conditions.

TPF handles channel checks by logging them on the RTA or RTL tape and tracking
how often they occur. The channel check handler (CNCEX1) issues message
CNCE0001E and cycles down the TPF system when the fault-rate threshold is
exceeded. IFCCs are not tracked because they originate outside of the channel
subsystem; tracking them would allow a defective device to cause TPF to
automatically cycle down.

The channel check threshold is defined in subroutine EFL000 of segment CMKH of
CSECT CCMCKH.

Machine Check Handling
Machine checks are rare, and when they do occur they typically report that a device
has been added to or deleted from the I/O configuration. However, when they occur,
you must be prepared to handle the full range of machine check conditions the
ESA/390 Principles of Operation.

44 TPF V4R1 Main Supervisor Reference

The TPF machine check handler consists of:
v CPPMKH — the machine check first level interrupt handler (FLIH)
v CMKHRDO — the machine check second level interrupt handler (SLIH)
v CNCEX9 — the CRW handler
v CPPLMI — the event information handler
v CZSA — the Sysplex Timer machine check handler
v CPPMAL — the check stop handler.

Error Recovery 45

46 TPF V4R1 Main Supervisor Reference

Checking System Internals

Checking system internals is an essential function of a properly operating TPF
system. The following section describes some of the methods used by the TPF
system to perform this checking.

I/O Trace
The common I/O routine creates the I/O trace table IDSTTR, and traces all I/O
activities continuously. The I/O trace table contains the following I/O interrupt
information, except when requested via macros SPNDC and RESMC:
v System device address
v Subchannel number
v SVC trace pointer
v I/O old PSW
v SCSW from IRB.

For SPNDC and RESMC macros, the I/O trace table contains:
v Indicator for SPNDC/RESMC macros
v Type indicator for SPNDC/RESMC macros
v SVC trace pointer
v Caller’s return address.

An I/O trace table example can be found in TPF Program Development Support
Reference.

Displaying Online Dump Tag Addresses
Dump tags are labels attached to significant storage locations when system error
dumps are created. This program displays online the storage address for a given
dump tag using the tag itself as input. Dump tags are retrieved in blocks from file.
The ZDDCA command activates this program. See TPF Operations for the format of
this message. See TPF Program Development Support Reference for a listing of all
system dump tags.

System Maintenance
TPF provides both offline and online segments to collect, edit, and print hardware
error and trace data. The online segments:
v Record environmental data
v Close log entries
v Log error entries
v Log 37x5 related data records.

The restart program activates AMX2 during a cycle-down of the system. AMX2
scans the SON file status tables to locate the online disk packs. AMX2 reads the
environmental data from the buffer of these packs. All of this information is passed
to segment CYSA. CYSA initializes these closing log entries and passes control to
CYSM. CYSM logs the data to a real-time log tape. CYSM also logs device error
records for DASD.

The 37x5 communications controller is a programmable control unit. It performs the
line handling and processing functions in a communications network. The network
control program (NCP) regulates operation of the 37x5.

© Copyright IBM Corp. 1994, 2001 47

The offline segments:
v Record, edit, and print environmental data
v Process device error statistics.

The Environmental Recording, Editing and Printing (EREP)
Postprocessor

Operating under MVS control, the EREP interface postprocessor uses the real-time
log tape to create 2 distinct output files; work tapes, and history tapes. All TPF
device errors are written to work tapes. All other device errors are written to history
tapes. History tapes are compatible with the format of the EREP accumulation input
data set (ACCIN). See Environmental Record Editing and Printing Program (EREP)
User’s Guide and Environmental Record Editing and Printing Program (EREP)
Reference for more information about this data format.

To activate EREP follow the procedure listed below. The job control language (JCL)
statements referred to in the text are listed in “EREP Job Control Language” on
page 49.

1. Startup the system with the bypass label processing (BLP) function.

2. Prepare and input the JCL.

3. Mount the TPF real-time tape (//INTAPE in the JCL) on the drive specified by
MVS.

4. Mount the output history tape (//HISTORY in the JCL) on the tape drive
specified by MVS.

5. Mount the work tape (//WORKOUT in the JCL) on the drive specified by MVS.

Processing Device Error Statistics
This program itemizes the hardware error messages sent to the CRAS console. It
provides varying levels of error message summaries by device type, device
address, and the time period under operator control. The error message listing and
summaries are used to locate system hardware problems. The EREP generated
work tapes are the input to this program. The EREP output (the work tape) is sorted
beforehand using the MVS sort/merge utility program. This program is often referred
to as the device error statistics postprocessor. “Device Error Statistics
Postprocessor JCL” on page 49, lists the JCL statements used to start the program.

Follow this procedure to activate the postprocessor:
1. Prepare and input the JCL
2. Mount the work tape on the drive specified by MVS.

Recording 37x5 Native Subchannel Errors
A subchannel is part of the channel data path; a piece of hardware. This program
records the pertinent data associated with 37x5 native subchannel errors. This data
aids in locating the source of such errors. This program also increments the error
counter in the 3705 keypoint record — CEPR. Error data is written to the real-time
log tape, reformatted by program AMX1, and ultimately processed by EREP.

Display 37x5 Native Subchannel Error Counts
This program processes ZNERR commands. ZNERR is issued to display and/or
reset (to zero) the 37x5 native subchannel error counters. There is one counter per
control unit. In addition, this program checks the error totals maintained in the 3705
keypoint record. SNA support must be generated in the system to activate this
program.

48 TPF V4R1 Main Supervisor Reference

Appendix A. Job Control Language

This appendix contains examples of load decks to run the environmental recording,
editing and printing (EREP) postprocessor and the device error statistics
postprocessor. The format of the load decks vary depending on the type of storage
medium used.

EREP Job Control Language

//JOBLIB DD DSN=xxxx,DISP=SHR
//AMS EXEC PGM=AMX1
//INTAPE DD VOL=SER=xxxx,LABEL=(2,BLP),UNIT=3480,

DISP=(OLD,KEEP),DCB=BLKSIZE=32760,DSN=xxxx
//HISTORY DD LABEL=(,NL),UNIT=3480,VOL=SER=xxxx,

DISP=(NEW,KEEP),DSN=xxxx,DCB=(BLKSIZE=yyyy,LRECL=zzzz)
//WORKOUT DD LABEL=(,NL),UNIT=3480,VOL=SER=xxxx,

DSN=xxxx,DISP=(NEW,KEEP)
//SYSUDUMP DD SYSOUT=A

Where:

xxxx
Any combination of characters or numbers in accordance with standard MVS
conventions. Tape serial numbers and the data set on which the program AMX1
(EREP) must also be supplied.

yyyy
1832 bytes and zzzz = 1828 when creating a history file for EREP0 processing.

yyyy
1948 bytes and zzzz = 1944 when creating a history file for EREP1 processing.

Device Error Statistics Postprocessor JCL
//HLST1 EXEC PGM=SORT,PARM=’MSG=AP’
//SORTIN DD LABEL=(,NL),UNIT=TAPE,VOL=SER=xxx,DISP=OLD,DSN=xxxx,

DCB=(RECFM=FB,LRECL=100,BLKSIZE=1000)
//SORTOUT DD DSN=&&HLSTINP,UNIT=DISK,SPACE=(SYL,(50,20),

DISP=(NEW,PASS),DCB=(RECFM=FB,LRECL=100,BLKSIZE=3600)
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
//SYSOUT DD SYSOUT=A
//SORTWK01 DD UNIT=DISK,SPACE=(3600,200,,CONTIG)
//SORTWK02 DD UNIT=DISK,SPACE=(3600,200,,CONTIG)
//SORTWK03 DD UNIT=DISK,SPACE=(3600,200,,CONTIG)
//SYSIN DD *

SORT FIELDS=(1,6,BI,A),SIZE=E2000
/*
//HLST2 EXEC PGM=HLST
//INPUT DD DSN=&&HLSTINP,DISP=(OLD,DELETE)
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=121
//STEPLIB DD DSN=xxxx,DISP=SHR

Where:

xxxx
Any combination of characters or numbers in accordance with standard MVS
conventions. Tape serial numbers and the data set on which the program HLST
resides must also be supplied.

© Copyright IBM Corp. 1994, 2001 49

50 TPF V4R1 Main Supervisor Reference

Appendix B. Virtual Storage Layout

Figure 2 shows the layout of both ECB and system virtual memory.

Note: TPF’s virtual address spaces makes it impossible to use a full 2 gigabytes of
real memory.

Storage Area

System Heap Storage

ISO-C Stack Storage
For Threads

(Area 2)

System Heap Storage

Page 0s

CIO Code/Blocks

FACE, RIAT, etc.

PAT, XPAT, etc.

Extended Globals

SVM Page/Seg. Tables

Assorted Tables

ECB Page/Seg. Tables

CLH Tables

IOBs

SWBs

ISO-C stack

Control Program Area

I-S Shared Global Areas
GL1, GL2, GL3

I-S Unique Global Areas
GL1, GL2, GL3

Control Program
Records and Tables

24-Bit Core Resident
Program Area

4K Common Frames

ECB Private Area (1M)

ECB Heap

ISO-C Stack Storage
For Threads

(Area 1)

VFA Storage
(Buffers and Control Tables)

(never mapped in EVM)

31-Bit Core Resident
Program Area

Page 0s

CIO Code/Blocks

FACE, RIAT, etc.

PAT, XPAT, etc.

Extended Globals

SVM Page/Seg. Tables

Assorted Tables

ECB Page/Seg. Tables

CLH Tables

IOBs

SWBs

ECBs

4K Frames

4K Common Frames

24-Bit Core Resident
Program Area

Control Program
Records and Tables

I-S Unique Global Areas
GL1, 2, 3GL GL

I-S Shared Global Areas
GL1, 2, 3GL GL

Control Program Area F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

C

1

C

F

F

F

F

F

F

F

F

F

F

F

F

1

1

1

F

C, 1, C

C, 1, C

F

E

varies

F

C, 1, CC, 1, C

E

varies

C, 1, C

C, 1, C

16MB 16MB

Low

IPL and System Virtual Memory ECB Virtual Memory

VFA Storage
(Buffers and Control Tables)

Global Areas for
other I-Streams

31-Bit Core Resident
Program Area

(never mapped in SVM) (never mapped in EVM)

Storage AreaProtection
Key

Protection
Key

Figure 2. Virtual Storage Layout

© Copyright IBM Corp. 1994, 2001 51

52 TPF V4R1 Main Supervisor Reference

Index

Special Characters
$CONBC macro 22
$DISBC macro 22
$GCOMC macro 22
$GETBC macro 22
$GEVAC macro 18
$GIOBC macro 22
$GMNBC macro 22
$GSVAC macro 18
$GSWBC macro 22
$RCOMC macro 22
$RELBC macro 22
$RMNBC macro 22
$RSWBC 22
$RSWBC macro 22
$SWSPC macro 18

Numerics
1052 state 5
37x5 communications controller 47
37x5 native subchannel 48

displaying of 48

A
ACPL 3, 5
address spaces

managing 18
application program errors 40

B
BACKC 16
block checking mode 22

C
catastrophic error recovery 44
CCCLHR 20
CCCTIN 4
CCSTOR 21
CEBIC macro 34
CEDM 19
CFISVC macro 19, 20
channel check handling 44
channel control check (CCC) 44
channel data check (CDC) 44
channel-to-channel (CTC) communication link 35
CIDP 43
CLHEQ macro 20
clocks

altering of 24
CPU timer 23
displaying of 24
Sysplex Timer (STR) 24, 25

clocks (continued)
TOD clock 23
TOD clock comparator 23
TOD synchronization 25

commands
displaying and altering data 27
ZACLV 21
ZACOR 27
ZADCA 27
ZAFIL 28
ZAPAT 28
ZAPGM 28
ZAREC 28
ZASER 39
ZATIM 24
ZATME 25
ZCTKA 29
ZCYCL 5
ZDADD 28
ZDCLV 21
ZDCOR 27
ZDDAT 24
ZDDCA 27, 47
ZDFIL 28
ZDPAT 28
ZDPGM 28
ZDPLT 29
ZDREC 28
ZDSER 39
ZDSYS 5
ZDTIM 24
ZDUMP 40
ZIFIL 28
ZIMAG 2

CLEAR 2
COPY 2
DEFINE 2
DISABLE 2
DISPLAY IMAGE 2
DISPLAY IPL 2
DISPLAY PROCESSOR 2
DISPLAY PROG 2
ENABLE 2
MAKEPHYS 2
PRIMARY 2
UNREF 2

ZNERR 48
ZPROT 35
ZPTCH 29
ZRIPL 1
ZRSTT 6
ZSLDR 35
ZSTAT 22
ZSYSG 29
ZSYSL 29
ZTMSL 29
ZTPLD 2

© Copyright IBM Corp. 1994, 2001 53

common blocks
getting 22

common frames
use of 21

concurrency filter lock facility 4, 33
control program errors 40
control program user exits 31
control transfer 15
CPU ID 4
CPU loop 20

lists 21
CRAS state 6
create macros 15
CREDC 15
CREEC 15
CREGPC macro 20
CREMC 15
CRESVC macro 19, 20
CRETC 15
CRETC macro 25
CREXC 15
CROSC macro 34
cross subsystem access services 34

macros 34
CTK0 keypoint 13
CTK1 keypoint 13
CTK2 keypoint 13
CTK3 keypoint 13
CTK4 keypoint 13
CTK5 keypoint 13
CTK6 keypoint 14
CTK9 keypoint 14
CTKA keypoint 13
CTKB keypoint 13
CTKC keypoint 13
CTKD keypoint 13
CTKE keypoint 13
CTKI keypoint 13
CTKM keypoint 13
CTKS 6
CTKV keypoint 13
CUDP 43
CXFRC 15
cycle-down 5
cycle-up 5

D
data 27

altering and displaying 27
data received exit 36
database ID (DBI) 34
debugging

block checking mode 22
define internal event macro (EVNTC) 17
device errors 48
dispatcher, system task 20
dump

controlling content of 42
overrides, coding 43
prefixes 43

dump tags 47

E
E-type programs 33

controlling 15
ECB private area 22
ECB virtual memory

description of 18
layout of 51

ECBs
initializing 15

ENTDC 16
enter/back macros

BACKC 16
ENTDC 16
ENTNC 16
ENTRC 16
SWISC 16

ENTNC 16
ENTRC 16
entry control block (ECB) 15
EREP postprocessor 48
error recovery 39
EXIT routine 18
EXITC 18
Extended Limited Lock Facility

interface ID 4

F
fast-link macro decoder 20
fast-link macros 19
frames

use of 21

G
general file loader 5
GETCC macro 22
global area 10
GSVAC macro 18

H
hard errors 39
hardware IPL 1
heap private area 22
High Performance Option

controlling loosely coupled processors 33
IPL 3
processor resource ownership facility 35
processor status management services 33
processor unique resources 34
restart and state change 6
shared resources 34
switchable resources 34

HPO
loosely coupled facility 33
multiple database function 33

54 TPF V4R1 Main Supervisor Reference

I
I/O trace 47
ICKDSF 3
IDATB macro 42
IDATG macro 42
identify token (IDTOK) 35
IDOTB macro 43
initializer 4
initializing the system 1
interface control check (IFCC) 44
interprocessor communications (IPC)

bibliography 37
commands 37
control blocks 35
data received exit 36
general description 35
information, displaying and altering 37
path active exit 35
performance 37
restart 35
sending data 36

interrupts, system
types of 18

IOCBs
use of 22

IPC connection definition block (ICDB) 35
IPC global table (IGT) 35
IPL

fast 3
hardware vs. software 1

J
job control language 49

K
keypoint backup area 11
Keypoint Record I (CTKI) 3
Keypoint Record M (CTKM) 3
keypoint records

control program 12
keypoint staging area 11
keypoints 10

application keypoint records 10
copying 11
demand keypointing 10
fallback keypointing 11
update mechanism 10

keywords, defining for dump content 42

L
LCPCC macro 5
LEBIC macro 34
limited lock facility 4, 33
loosely coupled identity table 3
loosely coupled system

owning resources in 34
low-address protection 5

M
machine check handling 44
macro group definition 20
main storage

initializing 4
manual dump 40
message switching state 6
MOVEC macro 18
multiple database function

macros 34
Multiple Database Function

IPL, types of 3
system definition 3

multiple images
image control record (ICR) 1

multiple TPF images 1
MVS utility programs

ICKDSF 3

N
network control program 47
norm state 6

O
OPZERO 15
overrides

dump, coding 43

P
patch deck

maintaining 29
path active exit 35
prefix, dump 43
prime module 11
private area, ECB 22
processor identification 3
processor resource ownership facility 35
processor resource ownership table 35
processor status table 35
processor unique resources in loosely coupled

system 34
processors, IPC 35
PROF

ownership 35
program allocation table 31
programs 27

altering and displaying 27

R
recovery action 44
RELCC macro 22
resource control values

altering and displaying 29
restart, IPC 35

Index 55

S
secondary SVCs 19
selective memory dump table

description of 42
shared resources in loosely coupled system 34
SIP values

altering and displaying 29
SIPCC macro 36
SNA communications keypoint

keypoint record 2 (CTK2) 13
SNAPC macro 40

using instead of SERRC 40
soft errors 39
software IPL 1
SSU ID 3
state change 5
static override bitmap table 43
storage

contiguous 22
heap 22
managing 21

storage allocation values
altering and displaying 29

storage blocks
getting and returning 22
logical 21
threshold checking 21

storage management 21
STR (Sysplex Timer) 33
subsystem 33
subsystem users 33
suspend processing 16
SVC macro decoder 19
SVC macros 19
SVCs

adding new 20
displaying 20
secondary 19

SWBs
use of 22

SWISC 15, 16
switchable resources in loosely coupled system 34
Sysplex Timer* (STR) 33
system allocator table 31
system error options 39
system error processing 39
system initialization 1, 4
system interrupts 18

types of 18
system maintenance 47
system restart 5
system states 5

changing 5
system task dispatcher 20
system virtual memory 18

description of 18
layout of 51

T
task dispatching 20
TCP/IP communications keypoint

keypoint record 2 (CTK2) 13
time initiated keypoint copy 11
transferring control 16

U
UATBC macro 34
UDATB macro 43
user exits 31
USRSVC macro 19, 20
utility state 6

V
V-type programs 33
virtual storage

layout of 51

W
wait for event completion macro (EVNWC) 17
working keypoint area 11

Z
ZACLV 21
ZACOR 27
ZADCA 27
ZAFIL 28
ZAPAT 28
ZAPGM 28
ZAREC 28
ZCTKA 29
ZCYCL 5
ZDADD 28
ZDCOR 27
ZDDCA 27
ZDFIL 28
ZDPAT 28
ZDPGM 28
ZDPLT 29
ZDREC 28
ZDSYS 5
ZIDOT 43
ZIFIL 28
ZIMAG

CLEAR 2
COPY 2
DEFINE 2
DISABLE 2
DISPLAY IMAGE 2
DISPLAY IPL 2
DISPLAY PROCESSOR 2
DISPLAY PROG 2
ENABLE 2
MAKEPHYS 2
PRIMARY 2

56 TPF V4R1 Main Supervisor Reference

ZIMAG (continued)
UNREF 2
ZTPLD 2

ZPROT 35
ZPTCH 29
ZRIPL 1
ZRSTT 6
ZSIPC

ALTER 37
DISPLAY 37

ZSLDR 35
ZSTAT 22
ZSTRC 23
ZSYSG 29
ZSYSL 29
ZTMSL 29

Index 57

58 TPF V4R1 Main Supervisor Reference

����

File Number: S370/30XX-36
Program Number: 5748-T14

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SH31-0159-07

	Contents
	Figures
	Tables
	Notices
	Trademarks

	About This Book
	Before You Begin
	Who Should Read This Book
	Conventions Used in the TPF Library
	Related Information
	IBM Transaction Processing Facility (TPF) 4.1 Books
	IBM Enterprise Systems/9000 (ES/9000) Books
	Miscellaneous IBM Books

	How to Send Your Comments

	System Initialization
	Initial Program Loading
	Multiple TPF Images
	The ZIMAG Commands
	The ZTPLD Command

	Considerations for HPO Users
	MDBF System Definition
	Processor Identification
	Lock Management

	Initializing Main Storage
	Low-Address Protection

	System Restart
	State Change
	1052 State
	Utility State
	CRAS State
	Message Switching State
	Norm State

	Restart and State Change Considerations for HPO Users

	System Service and Control Functions
	Supporting a Tightly Coupled System
	Supporting Common I/O Operations
	Using Keypoints to Maintain System Operations
	Time Initiated Keypoint Copy
	Control Program Keypoints

	Controlling E-Type Programs
	Initializing ECBs via OPZERO
	Initializing ECBs for Entries from Control Transfer Macros
	Initializing ECBs for Entries from Create Macros
	Transferring Control among E-Type Programs
	Suspending Processing of Entries
	Defer, Delay, and Event Macros
	Load-Balancing and Time-Slicing Macros

	Returning ECBs after Entries Are Processed

	Managing Address Spaces
	Handling System Interrupts
	SVC and Fast-Link Macros
	SVC Macro Decoder
	Fast-Link Macro Decoder
	Adding New SVC or Fast-Link Macros to the System
	Displaying SVC Codes

	Dispatching Work
	Managing Storage
	Block Checking Mode

	Managing and Synchronizing Clocks
	Commands
	Displaying the Time and Date
	Altering Clock Values
	Considerations for TOD Clock Alteration
	Considerations for Subsystem Clock Alteration

	Restart Facilities
	Cycle Facilities
	Time-Initiated Functions
	CRETC Considerations

	Timekeeping Considerations for Loosely Coupled Processing
	Synchronization Check Error

	Altering and Displaying Data and Programs
	Altering and Displaying Main Storage
	Displaying Link Map Data in C Load Modules
	Altering and Displaying File Records
	Altering and Displaying Programs, by Program Name
	Altering and Displaying Entries in the Program Allocation Table
	Displaying Program Linkage Types
	Maintaining a Memory Patch Deck
	Altering and Displaying System Generation Values
	Altering and Displaying Resource Control Values

	Initiating System Alerts
	Long-Life ECB Detection and Removal
	Time-Initiated Alerts Function
	Command Support

	Initializing the Program Allocation Table
	Using Control Program User Exits for User Functions

	High Performance Option
	Controlling Loosely Coupled Processors
	Cross Subsystem Access Services
	Owning Resources in a Loosely Coupled System
	Data Records Unique to Loosely Coupled Processing

	Interprocessor Communications (IPC)
	Restart
	Sending Data
	Receiving Data
	Timing Out
	Displaying and Altering IPC Information
	Performance Considerations
	Cross References

	Error Recovery
	Processing System Errors
	Types of System Errors
	Application Program Errors
	Control Program Errors

	Initiating System Error Processing
	The SNAPC macro
	The SERRC Macro
	Hard Errors

	Controlling the Content of System Storage Dumps
	Defining Keywords
	Coding Dump Overrides

	Coding Prefixes
	Determining Appropriate Recovery Action
	Channel Check Handling
	Machine Check Handling

	Checking System Internals
	I/O Trace
	Displaying Online Dump Tag Addresses
	System Maintenance
	The Environmental Recording, Editing and Printing (EREP) Postprocessor
	Processing Device Error Statistics
	Recording 37x5 Native Subchannel Errors
	Display 37x5 Native Subchannel Error Counts

	Appendix A. Job Control Language
	EREP Job Control Language
	Device Error Statistics Postprocessor JCL

	Appendix B. Virtual Storage Layout
	Index

