Transaction Processing Facility

Application Requester
User’s Guide

Version 4 Release 1

<|lI!

SH31-0133-04

Transaction Processing Facility

Application Requester
User’s Guide

Version 4 Release 1

<|lI!

SH31-0133-04

Note!
FBefore using this information and the product it supports, be sure to read the general information under ENafices” on page .

Fifth Edition (June 2002)
This is a major revision of, and obsoletes, SH31-0133-03 and all associated technical newsletters.

This edition applies to Version 4 Release 1 Modification Level 0 of IBM Transaction Processing Facility, program
number 5748-T14, and to all subsequent releases and modifications until otherwise indicated in new editions or
technical newsletters. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. Address your comments to:

IBM Corporation

TPF Systems Information Development
Mail Station P923

2455 South Road

Poughkeepsie, NY 12601-5400

USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1994, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures .
Tables .

Notices.
Trademarks

About This Book .

Who Should Read This Book .

Conventions Used in the TPF Library .

Related Information
IBM Transaction Processmg FaC|I|ty (TPF) 4 1 Books
Miscellaneous IBM Books . .
Online Information

How to Send Your Comments

The TPF Application Requester (TPFAR) Feature.

Introduction . .
Access to Remote Data . .
Moving TPF Data to a DB2 Database Wlthout TPFAR .

Moving TPF Data to and from a DB2 Database Using TPFAR .

How TPFAR Works. :
Methods for Using TPFAR in Your Enterpnse .
Transaction Logging .o
Bulk Data Transfer .
Single Line Query .

Block Query

Preparing Your Environment for TPF Application Requester .

TPF Requirements .
Configuring TPFAR
Defining the Applications for LU 6 2 .
Defining the Local TPF/APPC Applications for LU 6 2
Defining the Remote DB2 PLU Application for LU 6.2.
Attaching to the LU 6.2 Communications Cloud .
Defining the TPFAR Storage Areas
Other TPF System Storage Requirements .
LU 6.2 Requirements .o
TCP/IP Requirements
Commands . . .
Coding the SQL Trace Table User Exrt .
Character Sets .
Loosely Coupled Requlrements
Subsystem Requirements .
VTAM Requirements for LU 6.2.
Mode Names
RU Sizes and Pacing Consrderatrons .
Connecting a TPF System and a DB2 System Usrng LU 6. 2
Defining the TPF Application LUs to VTAM .
Configuring the TPF System and a DB2/6000 System
DB2 Requirements S Coe e .o
Putting It All Together
Starting the TPF/APPC Appllcatlon for Use Wlth TPFAR

© Copyright IBM Corp. 1994, 2002

. Xi
. Xi
L Xi
. Xii
. Xii
. Xii
. Xiii
. Xiii

WOOUURADNWERRPR

L1
.11
.11
.12
.12
.12
.12
. 13
.14
.14
. 15
. 15
. 16
.17
.17
. 18
. 18
.19
. 19
. 19
.19
. 20
. 20
.22
. 26

Setting the Stage with a Telephone Directory Application.27

A Few Words about Relational Databases27
Creating the Telephone Directory27
SQL Considerations .28
Length of Time Field. 2 <
Request Unit Size ConS|derat|ons 2
Number of Cursors .. .29
ProtectKey30
AddressingMode .. .30
Registers30
DynamicSQL30
Collection Identifiers e (0
TPFAR Working Storage Blocks < (0]
Synchronizing Updates .31
C Language Header Files.32
Error Handling32
Preparing an Application . . . R /4
Using the TPF DB2 Postprocessor (TPF DBZPP) . e e35
Database Resource Management (DBRM).37
Using the Same Cursor in Multiple Programs.41
TARGET C Language Moadifications42
Assembler Modifications .43
Using TPF C with TPFAR45
The Root Segment for the Telephone D|rectory Appl|cat|on. Y o)
Inserting a Telephone Directory Entry. P 1)
Removing a Telephone Directory Entry56
Updating a Telephone Directory Entry61
Displaying Entries in the Telephone Directory.70
Using Assembler Language with TPFAR79
Offloading Data from the TPF System79
Setting Up the Application Server79
Assembler Program QXRK .80
Assembler Program QXRL .86
Performance and Tuning for TPFAR97
Considerations That Are the Same97
Considerations That Are Different V4
Communications Overhead and Hotcons . V4
Application Overhead .98
CTC Considerations forLu6.2.98
Specific Performance Considerations.98
Methods of Calculating Response Time.98
Segment Allocation L . o009
TPF Utilization Impact .9
SQL Commands Supported by TPFAR.101
Appendix. TPFARSQLCODEs103
Glossary of Terms Related to TPFAR11
Index .. .13

iV TPF V4R1 Application Requester User’s Guide

Figures

©CoN>OrWDN R

Overview of Remote Data .

Moving TPF Data to a DB2 Database W|thout TPFAR .

Moving TPF Data to and from a DB2 Database Using TPFAR and LU 6 2 .

Moving TPF Data to and from a DB2 Database Using TPFAR and TCP/IP .

Transaction Logging with a Frequent Flyer Database . .

Bulk Data Transfer. .o

Single Line Query .

Block Query . .

Parameter Relat|0nsh|ps on MVS for LU 6. 2

Parameter Relationships on MVS for TCP/IP

Parameter Relationships with Specific Examples on MVS

Parameter Relationships on RS/6000 . . .

SQL CREATE TABLE Command to Create the PHONE DIRECTORY TabIe

Example of Calculating RU Size . e e e e

Overview of TPF Application Preparation .

Sample JCL to Run TPF DB2PP .

Modifying Non-ISO-C SQL Source Programs for the DBZ Precompller When Usmg the Same
Cursor. .
C Code to Copy to Each TPF Segment .

Assembler Code Area Needed at the Top of Each Separated TPF Segment

Assembler Code Area Needed in Each TPF Segment before the END Statement .

Root Segment . .

TPF Program to Insert an Employee |nto the PHONE DIRECTORY Table

TPF Program to Remove a Specific Entry in the PHONE_DIRECTORY Table

TPF Program to Update a Specific Entry in the PHONE_DIRECTORY Table .

TPF Program to Display a Specific Entry in the PHONE_DIRECTORY Table .

SQL CREATE TABLE Commands to Create the INSERT_DRIVER and LOG_DRIVER Tables
Example of SQL CREATE INDEX Commands to Create a Primary Index . Coe
TPF Program to Call the Insert Driver with the Values Passed .

TPF Program to Insert Multiple Records into a Table.

© Copyright IBM Corp. 1994, 2002

Vi TPF V4R1 Application Requester User’s Guide

Tables

1. Example of a Corporate Telephone Directory .27
2. Strings Altered by TPF DB2PP for C Programs.36
3. TPFARSQLCommandSubset ... 101

© Copyright IBM Corp. 1994, 2002 vii

Viil TPF V4R1 Application Requester User’s Guide

Notices

References in this book to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM product, program, or service in this book is not intended to
state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any of
IBM's intellectual property rights may be used instead of the IBM product, program,
or service. Evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation

Department 830A

Mail Drop P131

2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Any pointers in this book to non-IBM Web sites are provided for convenience only
and do not in any way serve as an endorsement. IBM accepts no responsibility for
the content or use of non-IBM Web sites specifically mentioned in this book or
accessed through an IBM Web site that is mentioned in this book.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

AIX

APPN

C/370

Cics

DATABASE 2

DB2

Distributed Relational Database Architecture

DRDA

ESCON

IBM

Language Environment

© Copyright IBM Corp. 1994, 2002 iX

MVS

0s/2

PS/2

RACF

RISC System/6000
RS/6000

SAA

S/370

System/370
Systems Application Architecture
VTAM

Other company, product, and service names may be trademarks or service marks
of others.

X TPF V4R1 Application Requester User’s Guide

About This Book

This book describes the TPF Application Requester (TPFAR) feature; it includes
information about installing the TPFAR feature and writing TPFAR application
programs using the Structured Query Language (SQL), a common interface. The
TPFAR feature supports the IBM System Application Architecture.

In this book, abbreviations are often used instead of spelled-out terms. Every term
is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, Systems Network Architecture (SNA). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in the

Who Should Read This Book

The [RE Application Requester User's Guidd is for TPF programmers who need to
install the TPFAR feature and write TPFAR application programs using the common
Structured Query Language (SQL) interface.

Conventions Used in the TPF Library

The TPF library uses the following conventions:

Conventions Examples of Usage
italic Used for important words and phrases. For example:
A database is a collection of data.
Used to represent variable information. For example:
Enter ZFRST STATUS MODULE mod, where mod is the module for which you want
status.
bold Used to represent text that you type. For example:
Enter ZNALS HELP to obtain help information for the ZNALS command.
Used to represent variable information in C language. For example:
level
monospaced Used for messages and information that displays on a screen. For example:
PROCESSING COMPLETED
Used for C language functions. For example:
maskc
Used for examples. For example:
maskc (MASKC_ENABLE, MASKC_I0);
bold italic Used for emphasis. For example:
You must type this command exactly as shown.
Bold underscore Used to indicate the default in a list of options. For example:
Keyword=OPTION1 | DEFAULT

© Copyright IBM Corp. 1994, 2002 Xi

Conventions

Examples of Usage

Vertical bar |

Used to separate options in a list. (Also referred to as the OR symbol.) For example:
Keyword=0Optionl | Option2
Note: Sometimes the vertical bar is used as a pipe (which allows you to pass the output of

one process as input to another process). The library information will clearly explain
whenever the vertical bar is used for this reason.

CAPital LETters

Used to indicate valid abbreviations for keywords. For example:
KEYWord=option

Scale

Used to indicate the column location of input. The scale begins at column position 1. The
plus sign (+) represents increments of 5 and the numerals represent increments of 10 on the
scale. The first plus sign (+) represents column position 5; numeral 1 shows column position
10; numeral 2 shows column position 20 and so on. The following example shows the
required text and column position for the image clear card.

LOADER IMAGE CLEAR

Notes:

1. The word LOADER must begin in column 1.
2. The word IMAGE must begin in column 10.
3. The word CLEAR must begin in column 16.

Related Information

A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM Transaction Processing Facility (TPF) 4.1 Books

+ [[PE ACE/SNA Data Communications Referencd, SH31-0168
 [[PE ACE/SNA Network Generatiod, SH31-0131

« [[PE Application Programming, SH31-0132

- [[PE Application Requester User's Guidel, SH31-0133

« [[PE C/C++ | anguage Support User's Guidd, SH31-0121

« [[PE General Macrod, SH31-0152

« [[PE | ibrary Guidd, GH31-0146

« [[PE Main Supervisor Referencd, SH31-0159

« [PE Qperationd, SH31-0162

« [[PE System Generatiod, SH31-0171

« [TPE Transmission Cantral Protacal/lnternet Pratacal, SH31-0120.

Miscellaneous IBM Books

+ ICharacter Data Representation Architecture Reference and Registryl, SC09-2190

* IBM DATABASE 2 Administration Guide, (order the correct version and release
for your installation)

* IBM DATABASE 2 Application Programming and SQL Guide, (order the correct
version and release for your installation)

* IBM DATABASE 2 Command and Utility Reference, (order the correct version
and release for your installation)

Xii TPF V4R1 Application Requester User's Guide

* IBM DATABASE 2 SQL Reference, (order the correct version and release for
your installation)

« Distributed Data Management Architecture Referencd, SC21-9526
+ Distributed Relational Database Architecture Referencd, SC26-4651

« Distributed Relational Database Connectivity Guidd, SC26-4783
« ESCON User's Guide and Service Information, SC31-8197

+ ISNA Channel Connectivity for A1, GC31-8201

* VTAM Resource Definition Reference, (order the correct version and release for
your installation).

| Online Information
| » Messages (Online)
| + Messages (System Error and Qffline).

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

» If you prefer to send your comments electronically, do either of the following:
— Go to hitp:/www ibm com/tpfipubs/tpipubs him.

There you will find a link to a feedback page where you can enter and submit
comments.

— Send your comments by e-mail to tpfid@us.ibm.com
* If you prefer to send your comments by mail, address your comments to:

IBM Corporation

TPF Systems Information Development
Mail Station P923

2455 South Road

Poughkeepsie, NY 12601-5400

USA

* If you prefer to send your comments by FAX, use this number:
— United States and Canada: 1 + 845 + 432 + 9788
— Other countries: (international code) + 845 + 432 +9788

About This Book Xiil

http://www.ibm.com/tpf/pubs/tpfpubs.htm

XiV TPF V4R1 Application Requester User's Guide

The TPF Application Requester (TPFAR) Feature

Introduction

The TPF Application Requester (TPFAR) feature supports IBM’s Distributed
Relational Database Architecture (DRDA) strategy for database distribution using
the remote unit of work method of distributed access. DRDA is a relational database
connection architecture, consisting of protocols for communications between an
application and a remote database, and for communications between databases.
Distributed access involves working with data that is located on remote systems. A
relational database is a database in which the data is organized and accessed
according to relations. Structured Query Language (SQL) is a programming
language used to define relational data, access relational data, and control access
to relational data resources.

The TPFAR feature permits you to share data between any DRDA- compliant
database servers, such as a DATABASE 2 (DB2) relational database and a TPF
application using the SQL interface. The component of DB2 that allows the TPFAR
connection is known as an application server (AS). For more information about the
concept of an application server, see lAccess to Remate Datal or the Distributed
Relational Database Architecture Reference. An LU 6.2 conversation or a TCP/IP
connection is used to connect a DB2 subsystem with the TPFAR feature. By using
the TPFAR feature, a TPF application can directly access and update the
information residing on the remote DB2 subsystem.

Access to Remote Data

The remote unit of work is a method of accessing distributed relational data in
which users or applications can, within a single unit of work, read and update one
system using multiple Structured Query Language (SQL) statements. For a
complete list of SQL commands that TPFAR supports, see L

Bupported by TPEAR” on page 101l. To better understand how TPFAR fits the

concept of remote data access, DRDA needs to be explained.

There are two parts of accessing remote data defined in DRDA:

* The system requesting the data is generically known as the application
requester (AR).

* The system that needs to service the request for data is generically known as the
application server (AS).

Eigure 1 on page 4 shows two non-TPF environments, both with a full DRDA
implementation.

© Copyright IBM Corp. 1994, 2002 1

Operating Environment 1 Operating Environment 2
APPL APPL
SQL SQL
E A A i
: p p :
sQL b P sQL
K C C
> AR<> |¢ > H>ASe>
DBMS DBMS
AS AR
F y
A\ 4
Data Data

Figure 1. Overview of Remote Data

Operating Environment 1 is running with an SQL application (APPL). When a
remote SQL request is made, the Operating Environment 1 application requester
(AR) of the database management system (DBMS) takes control. The DBMS is a
software system that has a catalog describing the data it manages. The DBMS
controls access to the data stored within it. The AR then uses the Advanced
Peer-to-Peer Communications (APPC) session to route the request to the
application server (AS) of the remote database management system (DBMS) of
Operating Environment 2 where the data resides.

When the Operating Environment 2 AS has collected the requested information, this
information is passed back through APPC to the AR of Operating Environment 1
running the application. The AR then returns the data back to the application
program on Operating Environment 1.

Operating Environment 2 can also have local applications accessing the same
database. Because Operating Environment 1 and 2 both have implemented the AR
and AS, the application in Operating Environment 2 can also access the data
residing on Operating Environment 1.

2 TPF V4R1 Application Requester User's Guide

TPF MVS

APPL APPL
SQL
A vV CICS
= T
P A SQL
K C M A
v
B < » AS
DB2
AR
F N
v
Data Data

Figure 2. Moving TPF Data to a DB2 Database without TPFAR

Moving TPF Data to a DB2 Database without TPFAR

Eigure 4 shows one method of moving TPF data to a DB2 database without TPFAR.
A TPF application program takes the data from TPF and, using TPF/APPC, sends
the data to the Customer Information Control System (CICS) subsystem on MVS.
An MVS CICS application receives the data from the TPF application and issues
the necessary SQL commands to the DB2 subsystem to do the requested work.

TPF MVS
APPL APPL
SQL SQL
A Vv CICS
: P T :
SQL P A SQL
T C M
v
<> < > » AS >
TPFAR DB2
AR
F N
v
Data Data

Figure 3. Moving TPF Data to and from a DB2 Database Using TPFAR and LU 6.2

The TPF Application Requester (TPFAR) Feature 3

TPF MVS
T T T T
' c c cics :
: P P :
: | | :
sQL | | SQL
t P P
v
<> <+» AS +>
TPFAR DB2
AR
F y
A 4
Data Data

Figure 4. Moving TPF Data to and from a DB2 Database Using TPFAR and TCP/IP

Moving TPF Data to and from a DB2 Database Using TPFAR

TPFAR implements the application requester (AR) part of the DRDA. Thus, with
TPFAR, a TPF application can directly access and update data residing on the
remote DB2 subsystem.

Eigure 3 on page 3 shows how TPFAR moves data from TPF to a DB2 database
using LU 6.2. Eigure 4 shows how TPFAR moves data from TPF to a DB2 database
using TCP/IP.The TPF application program now includes the SQL commands that
previously were in the CICS application program. When the TPF application makes
an SQL request, TPFAR forwards the request to the application server (AS) on
DB2. DB2 completes the requested work and returns the results to TPFAR. TPFAR
then returns the results of the request back to the application.

TPFAR can also be used to move DB2 data to TPF.

Note: TPF does not implement the AS portion of the DRDA. Applications on remote
operating systems cannot access data on TPF through an application
requester/application server DRDA implementation because the database
facilities, such as indexes, access logic, and data formats are contained in
the TPF application programs. Therefore, remote requests for data on TPF
must use a non-DRDA mechanism to communicate with the TPF application
programs that manage the data.

How TPFAR Works

With TPFAR, SQL commands can now be included in a TPF application program
that is coded in assembler or C language. The SQL commands are removed from
the application at the DB2 precompile time, then they are assembled or compiled
and replaced with system calls. (DB2 precompiler is a prerequisite for TPFAR).
Additional information on the DB2 precompiler is found in EPreparing an Application’l
n_page 32 and tUsing the Same Cursor in Multiple Programs” on page 41|, At

4 TPF V4R1 Application Requester User’s Guide

application execution time, the TPFAR code takes over when a system call is made
and routes the request to the application server (DB2).

When DB2 has processed the request, the data is passed back to TPFAR, which
places the data in the TPF application’s host variables. (The formats of the data are
determined by the host variables that are defined by the application). The
application then regains control to continue processing.

Methods for Using TPFAR in Your Enterprise

TPFAR can be used to enhance your enterprise in these processing areas:
» Transaction logging

* Bulk data transfer

* Single line query

» Block query.

Note: Within your enterprise, additional methods for using TPFAR are possible.

User requests
an update

to frequent
flyer data

Relational Database Manager

TPF (RDBM) Platform

\ 4

Application

1) FIND record.

2) Update TPF
record.

3) FILE record.

4) SQL UPDATE o
SQL INSERT.

5) SQL COMMIT.

F

TPF
Application |,
Requester |
(TPFAR)

Application
Server
(AS)

\ 4

DB2

A 4 v

TPF
Record

Relational
Database (RDB)

Figure 5. Transaction Logging with a Frequent Flyer Database. Identical data resides on both the TPF and remote

systems.

Transaction Logging

Transaction logging can be used when the data you are working with normally
resides on TPF, but the decision support is done on the remote application server
(AS). It can also be used if there is a requirement for the data on the AS to be
current with the data on TPF. A transaction logging implementation can be used in
which the TPF application issues the SQL INSERT or UPDATE command to the AS
whenever the data on TPF is updated.* Thus, the application guarantees that the
data on RDBM and TPF are identical. The remote unit of work method of accessing
distributed relational data does not support a two phase commit. Therefore, if the

1. The SQL INSERT command inserts new rows into a table. The SQL UPDATE command changes the values of specified columns
in rows of a table. See the IBM DATABASE 2 Version 2 SQL Reference for additional information on these commands.

The TPF Application Requester (TPFAR) Feature 5

data must be identical on both the relational database manager (RDBM) and TPF,
the application must guarantee that the data is identical.

Eigure 5 on page 5 shows how transaction logging can work with a frequent flyer
database.

The user requests an update for frequent flyer data. The application finds the TPF
record, makes the change and files it. Then, the application issues an SQL
UPDATE or SQL INSERT command to make the same change to the remote
relational database. In this case, the application maintains identical data on both
TPF and the relational database manager (RDBM) at all times.

Bulk Data Transfer

Bulk data transfer can be used when the data you are working with normally
resides on TPF, but the decision support is done on the remote application server
(AS). However, in this case, the data on the AS need not be current with the data
on TPF, and the number of changes made to the data is high. A bulk data transfer
implementation can be used in which the TPF application queues the data in a TPF
file. At a specified time, another application reads all of the data from the TPF file
and ships it to the AS using SQL INSERT and UPDATE commands. The savings
occurs in that each application does not need to issue an SQL CONNECT and an
SQL COMMIT command.? Instead, one application issues an SQL CONNECT
command, does all of the inserts, and then issues the SQL COMMIT command. A
detailed implementation of bulk data transfer is found in lLsing Assemblen

This method is also useful when only certain pieces of the data are needed on the
remote DB2 subsystem. For example, on your DB2 subsystem you need the
information on who flew on what flight. Until that flight takes off, this information is
constantly changing. Keeping a DB2 database synchronized with the TPF database
is costly. Instead, after a flight has taken off, a program can send the final
information over to DB2 for processing either immediately or during off-peak hours.

Eigure 6 on page 7 shows how bulk data transfer can work with a customer account
database.

2. The SQL CONNECT command establishes a connection between an application and the application server, DB2. The SQL
COMMIT command normally terminates a unit of work that is complete and saves the changes in the database. All locks are
released. These changes can then be accessed by other users accessing the table. See the IBM DATABASE 2 Version 2 SQL
Reference for additional information on these commands.

6 TPF V4R1 Application Requester User's Guide

Relational Database Manager

TPF (RDBM) Platform
User requests
a change to
account Application 1
information
1) FIND record. o
> 2) Update TPF Application
record. < | Server
» 3) FILE record. TPE (AS)
Application
TPE JRR— Requester > DB2
< > ication
Record pp (TPFAR)
1) SQL CONNECT.

2) FIND. 1
3) SQL INSERT.

A 4

4) Repeat for
all records. Relational
5) SQL COMMIT. [*™] Database (RDB)

Figure 6. Bulk Data Transfer. Large amounts of data are transferred to the remote system.

The user requests a change to account information. The first application takes
control and updates the TPF record with the new information and exits. A second
application retrieves the record and issues an SQL INSERT command to log that
this transaction occurred. A program can then be written on the remote system to
gather statistical information on the types of transactions made by the user.

Relational Database Manager

PR (RDBM) Platform

User requests|
a telephone
number L

Application TPE -

Application pplication
» | 1) soLSELECT |« Rgzl:est'er < o Sorvor
INTO. (TPFAR) (AS)
2) Return data.
> DB2

Relational
Database (RDB)

Figure 7. Single Line Query. A single data record is retrieved from the remote system.

The TPF Application Requester (TPFAR) Feature

7

Single Line Query
Single line query can be used when there are a relatively low number of TPF
transaction requests for data that normally reside on the remote application server

(AS). A single query using the SQL SELECT INTO command can be issued to
retrieve the needed information.®

Eigure 7 on page 4 shows how single line query can work with a phone directory
database.

The user requests a telephone number. The application issues an SQL SELECT
INTO command to retrieve the information. The telephone number is returned to the

application.
TPE Relational Database Manager
(RDBM) Platform

User requests —
a new rate Application
file

1) SQL OPEN.

2) SQL FETCH. TPF o

> icati Application
3) Update TPF Application | R Sppl I
< » Server
record. Requester AS)
4) Repeat until (TPFAR)
all data
TPF retrieved. s DB2
Record " 5) SQL CLOSE. [
A
v
Relational
Database (RDB)

Figure 8. Block Query. Many data records are retrieved from the remote system.

Block Query

A block query can be used when the data you are working with resides on the
remote application server (AS), and a refresh of that data is needed on TPF. Using
the SQL SELECT INTO command, a block query can be issued to retrieve the
needed information.

m shows how block query can work with a new rate file.
The user requests a refresh of the rate table. The application issues an SQL OPEN

command to open a cursor to retrieve the rate information. The SQL FETCH
command is then used to retrieve each individual row of data.* A cursor is a control

3. The SQL SELECT INTO command retrieves a certain column or columns of data to work on based upon requested conditions.
See the IBM DATABASE 2 Version 2 SQL Reference for additional information on this command.

8 TPF V4R1 Application Requester User's Guide

structure used by an application to retrieve, update, or point to information in a
table. The SQL FETCH command is repeated until all of the information has been
retrieved.

The main difference between the block query and single line query is that with block
query, an SQL FETCH command goes across the network to DB2 only once to
retrieve a block of data. From then on, the SQL FETCH takes place at the local
level between the application and TPFAR. This is explained in more detail in

4. The SQL OPEN command initializes a cursor to fetch rows from its result table. The SQL FETCH command retrieves the next
requested row in an answer set table. See the IBM DATABASE 2 Version 2 SQL Reference for additional information on these

commands.

The TPF Application Requester (TPFAR) Feature 9

10 TPF V4R1 Application Requester User's Guide

Preparing Your Environment for TPF Application Requester

To install the TPF Application Requester (TPFAR) feature, you must make
provisions in the following areas of your system:

* TPF system: Requires online and offline changes.

» If you are using LU 6.2 communications: Requires changes determined by the
remote systems.

* Any DRDA-compliant database server, such as DATABASE 2 (DB2) system:
Requires installation and communication changes.

Throughout this publication, the DB2 system is used to refer to any remote
distributed relational database architecture (DRDA) level-1 compliant relational
database.

You must carefully specify the various parameters required for the three different
areas of your system when installing the TPFAR feature.

Because of the interdependency of these three areas of your system, certain
parameter values specified in one area must be identically specified in other areas.
Throughout this section, a parameter value specified in one example is carried forth
into another example when the parameters must be identical. For instance, if there
is a definition on the TPF system that requires the same value as a definition on the
DB2 system, in both of the examples given, the same value is used.

TPF System Communications Remote System
Cloud
Application
T— SQL Request— — DB2

A summary of the various parameters and their location in the system is found in

LEmegJLAlquﬂhﬂLQﬂ_pag&Zd‘ " .

If you are using LU 6.2, many of the requirements for TPFAR are defined by the
TPF Advanced Program-to-Program Communications (TPF/APPC) interface. For
more information about TPF/APPC, see the icati

TPF Requirements

This section contains information about how to configure your system for the TPF
Application Requester feature.

Configuring TPFAR

To include TPFAR in your system, you must specify TPFAR=YES on the SIP
CONFIG macro for TPF Application Requester support.

For additional information about the SIP CONFIG macro, see [PE Systend
Generatiod.

© Copyright IBM Corp. 1994, 2002 11

Defining the Applications for LU 6.2

For TPFAR to connect with the DB2 system by using LU 6.2, both the local
TPF/APPC application in the TPF system and the remote DB2 system primary
logical unit (PLU) must be defined to the communication network as TPF/APPC
resources.

Defining the Local TPF/APPC Applications for LU 6.2

To define the local TPF/APPC application to TPF, the SIP stage 1 deck must be
updated with an entry for the TPF/APPC application. This is done with the MSGRTA
macro. Use the MSGRTA APPL parameter to specify the local TPF/APPC
application name. Use the name on the MSGRTA macro when you define the TPF
application. The application is defined by one of two ways, depending on whether
your system is loosely coupled. For example, we will define the TPF system
application as TPAR, that is, APLIC=TPAR.

If your TPF system is loosely coupled, you need to define a separate local
TPF/APPC application in TPF for each processor in the TPF system loosely
coupled complex. These are known as service LUs. Note that the name of the
service LU is SVCx, where x is the processor (CPU) ID.

Using the service LUs is the recommended way to define the local TPF/APPC
application to the TPF system for maximum efficiency. Another method of defining
the local TPF/APPC application is documented in [[RE ACE/SNA Datd

Defining the Remote DB2 PLU Application for LU 6.2

To define the DB2 system to the TPF system, the resource deck input to offline
SNA table generation (OSTG) function can be updated to have the DB2 system
defined as an LUTYPE=L6PLU resource, if dynamic LU is not used. For example:
to have DB2 defined as an LUTYPE=L6PLU resource, for example:

TPFDB2T RSC LUTYPE=L6PLU

For more information about OSTG, see [[PE ACF/SNA Network Generatiod. See the
[[PE ACF/SNA Data Communications Referencd for more information about how to

define SNA resources.

Attaching to the LU 6.2 Communications Cloud

12

The TPF system attaches to the communications system, which attaches to the
remote system running the DB2 system.

Defining the Channel-Attached Link Station for MVS

The connection between the DB2 system and TPF Application Requester is either a
37x5 running a Network Control Program (NCP) defining the TPF system as a type
PU 2.1 or type 5 node, or a 3088 Channel-to-Channel (CTC) connection defining
the TPF system as a type PU 5 node. Both types of connections can have an entry
in the adjacent link station (ALS) deck of the OSTG.

Each CTC link is uniquely defined to VTAM by its qualifier number. This number is
needed when setting up the definitions for a CTC connection on VTAM and when

defining the CDRSC statement on VTAM. See lDefining the TPE Application | Us td
MTAM” an page 19 for more information about how this is needed for the VTAM

definitions.

TPF V4R1 Application Requester User’'s Guide

See the [[PE ACF/SNA Network Generation for more information about coding CTC
and ALS statements in an OSTG deck.

Defining the Channel-Attached Link Station for the DB2/6000

System
TPF Application Requester and IBM DATABASE 2 AIX/6000 system (DB2/6000)

connection uses an enterprise systems connection (ESCON) adapter (5765-603) or
a block multiplexer channel adapter.

Activate a PU 2.1 link between the TPF system and the RISC System/6000
(RS/6000) in one of several ways:

* TPF NCP/CTC/ALS dynamic discovery processing that takes place during SNA
restart

* The TPF system ZNETW ACT ID-ALSNODES command, which activates all PU
2.1 links

» Starting SNA support from the SNA Server/6000
» Starting a specific link station from the SNA Server/6000.

Communications Requirements for the RS/6000 System
See ESCON Users Guide and Service Information and SNA Channel Connectivity
for AIX for information about the required software.

Communications Requirements for the PS/2
The TPF Application Requester communicates with the DB2 system on a Personal
System/2 (PS/2) through an LU 6.2 connection.

Defining the TPFAR Storage Areas

In the SNAKEY macro, the following additional definitions are required. All of these
storage areas are carved out of storage above the 16-MB line.

* MAXHCT specifies the maximum number of hotcon table (HCT) entries between
remote relational databases (RDBs) and TPFAR. This is the maximum number of
hotcons for the entire processor, including all subsystems. The HCT contains
TPFAR communication parameters that are saved as an entry in the HCT for
later use by another transaction. You must use the ZSQLD command to assign
the exact number of hotcons per database.

Hotcons are described as follows depending on the communication protocol
used:

— A hotcon for LU 6.2 is a TPF/APPC conversation that remains allocated and
active past the completion of the transaction; that is, active until the SNA
session is deactivated or the conversation is deallocated by the remote
transaction program. The TPF/APPC conversation parameters between
TPFAR and the DB2 system are saved in an entry in the HCT. When another
ECB requests a conversation with the same remote application server, TPFAR
reuses the active conversation.

— A hotcon for TCP/IP is a TCP/IP connection that remains active past the
completion of the transaction. The socket descriptors are saved in an entry in
the HCT. When another ECB requests a connection with the same remote
application server, TPFAR reuses the active connection.

* MAXSDD is the maximum number of SQL database management systems
(DBMSs) that communicate with each subsystem. The number indicated in
MAXSDD is the number of entries reserved for each subsystem. This parameter
is required to be nonzero in order for TPFAR to work.

« MAXSMTB is the number of 4K storage areas used for the SQL trace table. An
SQL trace table is set up for each currently active I-stream.

Preparing Your Environment for TPF Application Requester 13

Note: In a loosely coupled environment, each processor has its own copy of

keypoint 2.

For detailed information about the SNAKEY macro, see the [[PE_ ACE/SNA Networkl
Generatiod

Other TPF System Storage Requirements

TPF Application Requester affects storage on the TPF base system. When an SQL
call is issued, all processing for that ECB is suspended until control is returned.

Note: When developing an application, be careful of any locks, file records, or core

blocks associated with an ECB over an SQL call. All processing for this ECB
is suspended until a response is received from the remote AS. This can
result in a TPF system resource problem.

For TPFAR, you need to assess the following TPF system resources to ensure that
storage requirements are adequately met:

Heap Storage: TPFAR uses the malloc function for all of its storage
requirements. The exact amount of heap storage needed by TPFAR is dependent
on the type of SQL requests made by the TPF system applications. For instance,
an SQL INSERT command with many host variables defined as characters will
take up more storage than an SQL INSERT command with two host variables
defined as short integers.

#IBMMP4 Records: Ten IBM miscellaneous processor unique records
(#IBMMP4) are defined for the SQL database management system directory
(SDD).

TPF/APPC Fastpath: TPF/APPC uses OM (output message) records to queue
messages received. In most TPF systems, most OM records are not VFA
candidates. A separate record ID X'FFOF' is used to queue messages for
conversations with TPFAR; the new record type is a VFA candidate. Copying
data from VFA instead of doing 1/Os improves performance.

Short Term Pools: Short term pools are used to store the SQL transaction
profile (STP) and associated blocks when the DBSAC and DBSDC
macros/functions are used. The DBSDC macro/function detaches the associated
blocks from the ECB and files them out in short term pools.

Attention: Ensure that the short term pool cycle time is large enough for
records to still be present when the DBSAC macro/function is used to reattach
the STP and associated blocks.

See FTPEAR Woarking Storage Blocks” on page 3d for more information about the
DBSAC and DBSDC macros/functions. See also [[PE General Macrod and [[PH
(C/C++ | anguage Support User's Guidd for additional information about the

DBSAC and DBSDC macros/functions.

LU 6.2 Requirements

TPFAR can use the TPF/APPC code for communication between the remote
application server (AS) and TPF.

Note: Ensure that the following areas have values sufficient for TPFAR:

* MAXTPI in the SNAKEY macro may need to be updated to include a
transaction program instance (TPI) identifier for each TPF/APPC session
between the TPF system and the remote AS that will be in use at one
time. See the [[RE_ ACE/SNA Netwark Generation for more information
about the MAXTPI parameter of the SNAKEY macro.

e The MAXSCB parameter of the SNAKEY macro may need to be updated
to include additional session control blocks (SCB) for the TPF/APPC

14 TPF V4R1 Application Requester User’s Guide

sessions with the remote AS. One SCB is needed for every TPF/APPC
session that is active. The maximum number of active sessions for TPFAR
is specified on the ZNCNS command. See [PE ACF/SNA Networld

for more information about the MAXSCB parameter of the
SNAKEY macro. See m for more information about the
ZNCNS command.

* The MAXCCB parameter of the SNAKEY macro may need to be updated
to include additional conversational control blocks (CCB) for the
TPF/APPC conversations used by TPFAR. One CCB is needed for every
TPF/APPC conversation that is active. This number should be at least as
high and possibly higher than the number of SCBs defined. See fred
ACE/SNA Netwark Generation for more information about the MAXCCB
parameter of the SNAKEY macro.

Additionally, in order to use TPFAR in a PU 5 environment, the SNAKEY
parameter NETID must be coded with the network id of the TPF system.

See the [[PE ACE/SNA Data Communications Referencd and [TPE ACE/SNA

Network Generatiod for additional information about TPF/APPC requirements.

TCP/IP Requirements

TPFAR can use the TCP/IP code for communication between the remote application
server (AS) and the TPF system.

Commands

Notes:

1.

Configure the remote AS to use the same port number that was specified with
the ZSQLD command for TPF to connect to the server. See m for
more information about the ZSQLD command.

The TPFAR feature requires that the server accept a security protocol of
USERID only. The userid that TPF provides is the complex name that is
contained in keypoint I.

The TPFAR feature uses one socket for each connection, so the number of
available sockets must at least equal the number of connections. Use the
MAXSOCK parameter of the SNAKEY macro to set the maximum number of
sockets, including any additional sockets needed for the remote AS. If hotcons
are used, sockets are then saved in the hotcon table (HCT). See
Network Generation for more information about the SNAKEY macro and the
hotcon table.

See [[PE Transmission Caontrol Pratocol/lnternet Pratacal for additional information

about TCP/IP requirements.

The following commands are particularly applicable when using TPFAR.

ZSQLD: The ZSQLD command displays and maintains the SQL database
management systems directory (SDD). This command must be used to set up
the directory with the necessary database information before any TPFAR
application programs are started. The ZSQLD command also controls SQL entry
tracing. Tracing can be global or selective.

The following parameters are important when using the ZSQLD command to add
an entry to the SDD.

— Rdb must be the same as the location name specified in the DB2 system

bootstrap data set (BSDS). See EDR2 Requirements” an page 2d for more

information about the location name.

Preparing Your Environment for TPF Application Requester 15

— If you are using LU 6.2, the LU must be the same as the LU name defined in
the VTAM APPL statement for the DB2 system as well as in the DB2

bootstrap data set. See 'DB2 Requirements” on page 2d and F'VTAM
Requirements for | U 6.2” on page 18 for more information about the LU

name.

— If you are using LU 6.2, the mode must be the APPC mode name used with
this RDB when an APPC allocate verb is issued. The default value is
TPFDB2MO. This value must match the mode name defined to LU 6.2, which
is the mode name used in the ZNCNS command. In MVS, the mode name
must match what is used in the SYSIBM.SYSLUNAMES table. For OS/2 and
AlX, the mode name matches the LU 6.2 connection.

— If you are using TCP/IP, the host name is the 1- to 128-character
alphanumeric host name of the server or a dotted decimal notation of the
Internet Protocol (IP) address of the server.

— Cecsid must be the same as the coded character set identifiers (CCSIDs)
defined in the server (in MVS, the DSNTIPF installation panel; in OS/2, the
code page specified in the CONFIG.SYS file; in AlX, the CCSIDs specified in
SMIT). The CCSID specifies what coded character sets are in use on
machines that the TPF system communicates with. The default is 500, which
is the single-byte default used by the DB2 system for installation on MVS. The
TPF system supports single-, double- and mixed-byte character sets. When
you specify CCSIDs using ZSQLD, you can define either a single-byte or a
mixed-byte CCSID alone or you can define a triplet made up of a
single-byte-double-byte-mixed-byte combination. These combinations must be
consistent with each other. The CCSIDs that are available are specified in a
table loaded to the TPF system and translations involving them are defined in
individual DLMs (CPGX).

— TPFCCSID specifies the coded character sets used by the TPF system. The
same considerations described for CCSIDCcsid are true for TPFCCSID.

— MAXHCT specifies the number of hotcons to use for this RDB. A value of zero
means that no hotcons will be kept active for this RDB.

The following is an example of a ZSQLD command to add an SDD entry:

ZSQLD ADD RDB-DB23TST,LU-TPFDB2T,MAXHCT-5,MODE-TPFMOD1
ZSQLD MOD RDB-DB23TST,LU-TPFDB2T,CCSID-897.301.932,TPFCCSID-282.300.930

* ZNKEY: You can use the ZNKEY command to display and alter the number of
hotcons (MAXHCT), the number of the SQL database management systems
defined to TPF system (MAXSDD), and the number of 4K storage areas used for

the SQL trace table (MAXSMTB). See LDefining the TPEAR Starage Areas” an

for more information about these storage areas.
e ZSTTD: The ZSTTD command formats and displays the SQL trace table. This
can be helpful in both online debugging and monitoring TPFAR performance.

You can use the ZSTTD command to display trace entries either in summary or
in detail. The detailed form includes exception fields from the SQLCA.

For detailed information about these commands, see [TRPE Qperations, Messaged
(System Error and Qffline), and Me.ssa.ge.s_(.On.lLuej

Coding the SQL Trace Table User Exit

Each SQL command that is issued by the application is logged in the SQL trace
table (if it is defined via the MAXSMTB parameter in SNAKEY). When the table is
full, it wraps and subsequent SQL commands overwrite the existing entries in the
table.

16 TPF V4R1 Application Requester User's Guide

A user exit (segment UAR1) can be utilized to process the information in the SQL
trace table before it is overwritten.

Character Sets

A number of offline tasks must be completed before you can use a new character
set on the TPF system or connect to a remote server that uses a character set that
does not have a translate table loaded on the TPF system. See

for more detailed information about character sets.

Choosing a New Character Set

Character sets are chosen on the basis of the kinds of letters and symbols required.
Once these requirements are understood, you can choose the appropriate character
sets. To learn more about character sets, see Character Data Representation
Architecture Reference and Registry.

Translating Character Sets

A character set is referred to by a number called a coded character set identifier
(CCsID). Each DB2 system contains characters in one or more CCSIDs. The TPF
system also contains characters in one or more CCSIDs (or TPFCCSIDs).

Characters residing in the DB2 system must have a corresponding form in the TPF
system to be used in the TPF system database. When the CCSIDs match, no
translation is necessary. If the character sets are different, a translation mechanism
must exist to transform each character from the remote CCSID to a corresponding
character of the TPF system CCSID.

Seeing the Overall Character Flow

The ZSQLD command defines the TPF system CCSIDs and verifies the remote
CCSIDs. Consider, for example, the CCSID of a remote DB2 system CCSID (xx)
and the TPF system CCSID (yy). The xxyy table name must appear in the CPGS
table to identify the name of the DLM to be used for the translation from the remote
database to the TPF system. The DLM name found in CPGS is used to make the
conversions from one character set to the other. The ZSQLD command verifies that
the CCSIDs specified have the correct STYLE. It does not verify the compatibility of
the CCSIDs.

Converting Numbers
Processors differ in how they represent numbers. These differences are

automatically detected and accounted for by the TPF system.

Loosely Coupled Requirements

When using TPFAR in a loosely coupled environment, be aware of the following
conditions:

1. Each SDD is processor unique. When setting up the relational database (RDB)
information, you must enter the ZSQLD command on each processor that
handles TPFAR applications.

2. Because each processor has its own copy of keypoint record 2 (CTK2), you
have to setup the CTK2 (using SNAKEY) parameters need to be set up for
each processor.

3. For LU 6.2, separate service LUs must be defined for each processor in the
complex. For more information about service LUs, see tDefining the | acal

Preparing Your Environment for TPF Application Requester 17

Subsystem Requirements

The TPFAR applications must be defined in each of the subsystems that accesses
TPFAR. See [[PE System Generation for more information about defining
applications for subsystems. In addition, each subsystem has its own unique SDD
record; for each subsystem communicating with the DB2 system, the RDB
information must be added to the SDD by using the ZSQLD command.

Additionally, the originating subsystem where an ECB issues its first SQL command
must be the subsystem where all subsequent processing must occur. This ECB
cannot change subsystems after an SQL command has been issued. This
requirement also applies when using the DBSAC and DBSDC macros/functions.

VTAM Requirements for LU 6.2

18

To connect to the VTAM network, each relational database (RDB) must have an LU
name defined. To define the RDB to the network, a VTAM APPL definition statement
must be coded with the specified LU name to register the RDB name to VTAM. The
LU name must match the LU name defined in the DB2 system bootstrap data set

(BSDS). See DBR2 Requirements” on page 2d for additional information about

BSDS. If defined in the OSTG resource deck, this LU name must match the LU
name used to define the DB2 system PLU to the TPF system. The name can also

be defined dynamically. See [Defining the Remate DR2 Pl LI Application for | U 6 21

for more information. Here is an example of a VTAM APPL definition
statement, where TPFDB2T is the LU name:

TPFDB2T APPL APPC=YES,
AUTH= (ACQ),
AUTOSES=1,
DMINWNL=10,
DMINWNR=10,
DSESLIM=20,
EAS=9999,
MODETAB=RDBMODES,
PRTCT=PSWDBD1,
SECACPT=ALREADYV,
SRBEXIT=YES,
VERIFY=NONE,
VPACING=10

Some of the keywords in the VTAM APPL definition statement are described briefly
here; for detailed information about these and other keywords for the VTAM APPL
definition statement, see the IBM Database 2 Version 2 Administration Guide,
Volume 1 and the VTAM Resource Definition Reference Manual.

Note: Many of the keywords on the VTAM APPL statement can be overridden by
defining entries in the DB2 system communications database (CDB). See the
DB2 Administration Guide Volume | for more on this relationship.

* The EAS keyword specifies the total number of sessions for all partners.

* The PRTCT keyword identifies the VTAM password to use when the DB2 system
attempts to connect to VTAM. If the PRTCT keyword is not specified on the
definition statement, the password is not required, and the bootstrap data set
must have not been coded with a password on the DB2 Distributed Data Facility
(DDF) panel DSNTIPR, or the NOPASSWD option of the DDF statement of the
DB2 system change log inventory utility must have been specified. If the PRTCT
keyword is specified, it must match the password defined in the BSDS. For more
information, see the DB2 Administration Guide.

TPF V4R1 Application Requester User’'s Guide

Mode Names

* The SECACPT keyword denotes the highest SNA conversation-level security
value accepted in the DB2 system subsystem when the system receives a
distributed database request from a remote system.

Note: You must specify ALREADYYV for this keyword because conversational
security is not supported in TPF/APPC.

* The VERIFY keyword identifies the level of SNA session security (partner LU
verification) required by the DB2 system subsystem.

Note: You must specify NONE for this keyword because session level security is
not supported in TPF/APPC.

TPFAR requires a mode definition in the VTAM Logon Mode Table. This mode
name is needed for establishing the LU 6.2 sessions between TPFAR and the DB2
system. An example of mode definition is:

TPFMOD1 MODEENT LOGMODE=TPFMOD1,SSNDPAC=X'02',RUSIZES=X'F8F8'

See the DB2 Administration Guide Volume 1, and the VTAM Resource Definition
Reference for more information about mode definitions.

RU Sizes and Pacing Considerations

In order for the VTAM network to run efficiently in the distributed access
environment, it is important that you carefully specify RU sizes and pacing.
Suggested guidelines can be found in the Distributed Relational Database
Connectivity Guide.

Connecting a TPF System and a DB2 System Using LU 6.2

The routing between TPFAR and the DB2 system is through a channel-attached link
station. This link station can be (1) a 37x5 with the Network Control Program (NCP)
defining the TPF system as a type PU 2.1 or type 5 node or (2) a 3088
Channel-to-Channel (CTC) connection defining the TPF system as a type PU 5. At
least one of these two types of channel link stations is required for communication
between the TPF system and the DB2 system.

Defining the TPF Application LUs to VTAM

The LU 6.2 applications are defined on the TPF system with the MSGRTA macro.
See [Defining the | acal TPE/APPC Applications for | U 6.2” an page 14. How the
TPF LU 6.2 applications are defined to VTAM depends on whether the TPF system
is defined as a type PU 5 node or type PU 2.1 node. You need to code a CDRSC
statement on VTAM when the TPF system is a type PU 5 node. You need to code
an APPL statement on VTAM and an LU statement in the NCP generation when the
TPF system is a type PU 2.1 node.

The name you use on the APPC statement has to match the name you used on
MSGRTA to define the local TPF/APPC application. The local LU you described in a
previous example was defined as TPAR or SVCx. The names on the LU statement
in the NCP gen are TPARA30 and TPARA34. For further information about the
VTAM APPL statement, the VTAM CDRSC statement, and the NCP LU statement,
see the VTAM Resource Definition Reference Manual. For examples showing how

to define LUs, see the [[PE ACE/SNA Data Communications Referencd.

Preparing Your Environment for TPF Application Requester 19

Configuring the TPF System and a DB2/6000 System

To connect the TPF system to DB2 on RS/6000 systems there are changes
required in a TPF system SIP macro and in the SNA Server/6000 settings.

SIP macro MSGRTA defines LU 6.2 applications running on the TPF system. When
defining the TPF system applications for SNA Server/6000, the TPF system
applications are defined as LU 6.2 partner LUs and the names used are the same
as those used in the MSGRTA macro.

TPF system applications that are defined on the SNA Server/6000 have the
following settings:

* A fully qualified name: The network identifier must be the same network identifier
used by the TPF system for activation (in SNAKEY macro parameter
LENNETID). The ZNKEY command displays this value.

» Parallel session support: Parallel sessions with the DB2 system are
recommended (YES). Setting the parameter to NO means that only single
sessions are available.

» Session security support: This support is set to NO because TPF/APPC does not
support session-level security.

» Conversation-level security: This support is set to ALREADY_VERIFIED because
TPF/APPC does not support conversation-level security.

You must define the DB2/6000 system to SNA Server/6000 support as a local LU
6.2 logical unit.

Note: You do not have to add the DB2/6000 LU name to the TPF system OSTG
deck if dynamic LU definition support is active. If this support is not active,
you must include the LU name in the OSTG deck as LUTYPE=L6PLU.

You must define all LU 6.2 mode names used for sessions between the TPF
system and the DB2/6000 system to the SNA Server/6000. The important fields
used as a part of mode definition are:

* Mode name.

» Total session limit for an (LU,mode) pair.

* Minimum number of contention winner sessions.
e Minimum number of loser sessions.

* Number of sessions automatically activated. This is the number of sessions
driven by the DB2/6000 system when initialization of the number of sessions
(CNOS) has been performed for the mode.

» Receive pacing window size (for fixed pacing).

* Maximum adaptive pacing receive window size.

e Maximum and minimum SNA response units (RUS) sizes.
* Class of service (COS) name.

See the ESCON Users Guide and Service Information and SNA Channel
Connectivity for AIX for information about these settings.

DB2 Requirements

To connect the TPF system with a DB2 system:
* For MVS systems, the DB2 system must be at Version 2 Release 3 to Version 6.

20 TPF V4R1 Application Requester User's Guide

* For AIX or OS/2 systems, the DB2 system must be at Version 2 Release 1 to
Version 6.

The following considerations pertain solely to the DB2 system running on MVS.

The DB2 system Installation Panel DSNTIPF allows you to set the coded character
set identifier (CCSID) for the DB2 subsystem. This must match the CCSID in the
TPF system SDD entry for this database. For detailed information about the DB2
Installation Panels DSNTIPR, DSNTIPE, and DSNTIPF, see the DB2 Administration
Guide. The location name (RDB name), the LU name, and the CCSID specified on
these panels are the same values that must be used when issuing the ZSQLD
command to define this database to TPF. See the m and
lCommands” an page 15 for more information about ZSQLD command.

Under the DB2 system, the DB2 Distributed Data Facility (DDF) uses the system
installation parameters to connect DB2 to VTAM. The DB2 Installation Panel
DSNTIPR allows you to enter the required DDF BSDS information that describes
the connection parameters between the DB2 system and VTAM, such as the
location name (RDB name), LU name, and password. The DB2 Installation Panel
DSNTIPE allows you to set the number of maximum number of remote database
access threads that can be allocated concurrently. There must be one thread
available for each LU 6.2 session from the TPF system you plan on using.

DDF connects to VTAM and passes the LU name and optional password to VTAM.
VTAM verifies the LU name and password, if specified, with what was coded on the

VTAM APPL statement. See ['\VTAM Requirements for | Ll 6 2” on page 14 for more

information about the VTAM APPL definition.

The communications database is made up of five interrelated tables and is an
important source of information about the system. To run TPFAR with a DB2
system, minimum changes are required in two tables, the SYSIBM.SYSLUNAMES
(LU 6.2 only) and the SYSIBM.SYSUSERNAMES tables. These changes cause
DB2 to bypass the verifying of the ID sent on the LU 6.2 ALLOCATE verb with
RACF. For TCP/IP, USER.ID security will be used to verify the TPFAR client.See
the DB2 Administration Guide for more information about these tables.

* For LU 6.2 only, the SYSIBM.SYSLUNAMES table defines the LU names that
can connect to the DB2 system. This table initially contains one entry that is
blank. You can delete the blank entry and specify the LU names that are allowed
to connect to the DB2 system.

To allow TPFAR to connect to the DB2 system a new entry must be added to this

table for each local TPF/APPC application defined in TPF. Each entry must have:

— The USERNAMES column of the entry set to I, meaning that inbound ID
translation and “come from” checking is to occur. (“Come from” checking is an
LU 6.2 security option, which defines a list of authorization IDs that are
allowed to connect to the DB2 system from a partner LU).

— The LUNAME column of the entry set to the LU name defined for the local
TPF/APPC application in TPF. In our examples, it has been TPAR or SVCx in
a loosely coupled environment.

— The SYSMODENAME column of the entry set to the name of the LU 6.2
mode defined to VTAM in the mode name table and used on the ZNCNS
command. In the following example, this is TPFMOD1.

The following SQL command to accomplish this change can be issued through
the SQL Processor Using File Input (SPUFI). SPUFI is a way to execute SQL
commands from a TSO terminal.

Preparing Your Environment for TPF Application Requester 21

INSERT INTO SYSIBM.SYSLUNAMES (USERNAMES, LUNAME, SYSMODENAME)
VALUES ('I', 'TPAR', 'TPFMOD1');

For a loosely coupled environment using the service LUs, one entry is needed in
this table for each SVCx defined in the complex.

See the DB2 Application Programming and SQL Guide for more information
about SPUFI.

* The SYSIBM.SYSUSERNAMES table needs a new row to describe the
translation that is needed for the inbound translation. The translation is necessary
to bypass the step in which the DB2 system uses RACF to check the validity of
the name. Because this only involves inbound translation, the type specified must
be I, and the AUTHID must be the same as the TPF system complex name
specified in keypoint | (CTKI). The LUNAME and NEWAUTHID fields are blank
because no real translation is needed; all that is desired is to bypass the RACF
check. For TCP/IP, USER.ID security will be used to verify the TPFAR client.

The following SQL command to accomplish this change can be issued through
SPUFI:

INSERT INTO SYSIBM.SYSUSERNAMES (TYPE, AUTHID, LUNAME, NEWAUTHID)
VALUES ('I', 'TPFNET', ' ', ' ');

Because the communications database consists of five interrelated tables, the
information that you specify in one table might have to be specified in the other
tables. See the Distributed Relational Database Connectivity Guide for detailed
information about the communications database.

The system administrator also needs to grant access for the TPFAR application’s
AUTHID. TPFAR uses the TPF system complex name found in CTKI as its
application AUTHID. Depending upon the SQL commands that are issued from the
TPF system, the AUTHID needs sufficient privileges to perform the commands. See
the DB2 SQL Reference guide for more information about the SQL GRANT
command necessary to set up the access.

Putting It All Together

22

Eigure d shows the relationships between the various parameters that you have to
specify for the TPF system, a DB2 system, and VTAM on MVS for LU 6.2.

TPF V4R1 Application Requester User’'s Guide

TPF
SDD CTKI OSTG
1) RDB name 1) TPF 1) PLU name of DB2
complex
2) PLU name name 2) Local TPF/APPC
of DB2 application in TPF
from the MSGRTA
3) LUG6.2 macro
mode name
4) CCSID
VTAM
VTAM APPL CDRSC (PU 5) PU 2.1 MODEENT
1) PLU name 1) TPF/APPC 1) Onthe APPL stmt, 1) LU6.2
of DB2 application code TPF/APPC appl mode
in TPF from from MSGRTA macro name
MSGRTA
appended 2) Onthe LU stmtin
with CPU ID the NCP gen, code
and qualifier TPF/APPC appl. in
number TPF from MSGRTA
appended with
CPU ID and
qualifier number.
DB2
Bootstrap SYSIBM, SYSIBM,
Data Set SYSLUNAMES SYSUSERNAMES
1) RDB name 1) Modify for 1) Modify to
come from bypass RACF
2) PLU name checking check for TPF
of DB2 complex name
2) LU name for
3) CCSID TPF appl.
3) LU 6.2 mode
name

Figure 9. Parameter Relationships on MVS for LU 6.2

m shows the relationships between the various parameters that you have to

specify for the TPF system, a DB2 system, and VTAM on MVS for TCP/IP.

Preparing Your Environment for TPF Application Requester

23

TPF

SDD CTKI
1) RDB name 1) TPF complex
name

2) Host name

3) IP address

DB2
Bootstrap
Data Set DDF
1) RDB name 1) Set DRDA port
to 446
2) CCsID

2) Set TCP/IP
already verified
to YES

Figure 10. Parameter Relationships on MVS for TCP/IP

Eigure 11 on page 25 shows the relationships of the TPF, DB2, and VTAM
parameters on MVS with the specific values used in previous examples in this

section.

24 TPF V4R1 Application Requester User's Guide

TPF

SDD CTKI OSTG
1) DB23TST 1) TPFNET 1) TPFDB2T
2) TPFDB2T 2) TPAR or SVCA
3) TPFMOD1
4) 500
VTAM APPL CDRSC (PU 5) PU 2.1 MODEENT
1) TPFDB2T 1) TPARAO2 or 1) Onthe APPL stmt, 1) TPFMOD1
SVCAA02 code TPF/APPC appl
from MSGRTA macro
2) Onthe LU stmtin
the NCP gen, code
TPARA30, TPARA34,
SVCAA30, SVCAA34
DB2
Bootstrap SYSIBM. SYSIBM.
Data Set SYSLUNAMES SYSUSERNAMES
1) DB23TST LU SYSMODE | USER
NAME| NAME NAMES TYPE AUTHID
2) TPFDB2T
TPAR | TPFMOD1 | | | TPFNET]
3) 500 or
SVCA

Figure 11. Parameter Relationships with Specific Examples on MVS

For the RS/6000 system the TPF system parameters and the communications
parameters for LU 6.2 are substantially the same. The RS/6000 system, however,
does add its own parameter requirements as shown in

RS/6000

Bootstrap SYSIBM. SYSIBM.

Data Set SYSLUNAMES SYSUSERNAMES
LU name for TPF/APPC LU 6.2 mode
DB2/6000 application names defined in
defined in name defined SNA Server/6000
SNA Server/ in SNA
6000 Server/6000

Preparing Your Environment for TPF Application Requester

Figure 12. Parameter Relationships on RS/6000

25

Starting the TPF/APPC Application for Use with TPFAR

26

After all of the definitions have been set up, the last item is to start the TPF/APPC
application for use by TPFAR.

1. Start the TPF/APPC application on the TPF system with the ZROUT command.

For example:
ZROUT START TPAR

or

ZROUT START SVCx

Activate the TPF/APPC application on the TPF system with the ZNETW
command. For example:

ZNETW ACT ID-APPC
or

ZNETW ACT ID-SVCx

Start the logon manager session with the local CLU. This is done with the
ZNETW command. For more information about how to activate CLU-CLU

sessions, see [[PE ACE/SNA Data Communications Referencd.

Initialize the number of allowed sessions with the DB2 LU. Note that the LU
name is the same as the PLU name of the DB2 system and mode name is the

mode as defined on VTAM on the mode table. (See I'Defining the Remote DR2
BLU Application for | U 6 2” on page 19))

ZNCNS T LU-TPFDB2T,MODE-TPFMOD1,LIMIT-10,CONW-10,LO0CAL-TPAR

or

ZNCNS I LU-TPFDB2T,MODE-TPFMOD1,LIMIT-10,CONW-10,L0CAL-SVCx

Note: Because TPFAR initiates all conversations, LIMIT and CONW should be
equal.

e m for more information about these commands.

TPF V4R1 Application Requester User’'s Guide

Setting the Stage with a Telephone Directory Application

This section uses a telephone directory application as an example to illustrate the
role TPFAR and relational databases play in developing an application. The
programs shown in the following examples have been run in a TPF system using
LU 6.2.

Note: The sample code presented in the following examples illustrates the different
methods of working with SQL, TPF, and DB2; the examples are not intended
to reflect the best method for implementing the code.

A Few Words about Relational Databases

Relational databases consist of a set of related tables. The tables are made up of
rows and columns. In a table, a column is a vertical arrangement of information,
and a row is a horizontal arrangement of information. contains an example
of a corporate telephone directory. Each row contains phone information about an
employee. This information is arranged by columns. Each column is a different part
of the employee information. In our example, the employee record is broken up into
last name, first name, middle initial, country code, city code, phone number,
employee number, and an internal time stamp value. In our example, the time
stamp indicates the last time the record was updated.

Table 1. Example of a Corporate Telephone Directory

Last First Middle Country City Code Phone Employee Time Stamp

Name Name Initial Code Number

Villard Jean E 33 6 555-2342 4 1991-05-04-10.30.30.123423
Martinez ~ Juan C 52 748 555-1923 2 1991-05-04-12.30.30.345452
Durr Robert 1 914 555-1272 1 1991-05-04-16.00.12.324567
Chiba Takao 81 3 555-1625 6 1991-02-01-19.32.13.432342
Johnson Hans 49 89 555-1625 5 1990-11-21-22.45.32.875643
Stewart Mary L 44 1 555-2323 3 1991-08-08-14.14.08.847372
Stewart James J 44 1 5565-2324 7 1991-03-23-15.39.59.948373

Creating the Telephone Directory

You can create the telephone directory by using an SQL CREATE TABLE
command. You can do this in DB2 using interactive SQL. On MVS, you access this
through the SQL Processor Using File Input (SPUFI) application or from a TPF
application. SPUFI is a way to execute SQL commands from a TSO terminal. See
the IBM DATABASE 2 Application Programming and SQL Guide for more
information about SPUFI. On AIX and OS/2 systems, you access interactive SQL by
typing db2 on the command line. You can also prepare data definition language
(DDL) files containing SQL statements.

Use the SQL CREATE TABLE command through the DB2 system because:

* The SQL CREATE TABLE command is usually issued only once. Issuing this
command through SPUFI is much easier and quicker than from a TPF
application.

* When issuing an SQL CREATE TABLE command, all of the DB2 internal system
tables are locked so that no other application can access table information. If the

© Copyright IBM Corp. 1994, 2002 27

SQL CREATE TABLE command is issued from TPF, the added communications
overhead can cause problems on the DB2 side if any other application is
accessing DB2 at that time.

m shows the SQL CREATE TABLE command that creates the
PHONE_DIRECTORY table.

CREATE TABLE TPFNET.PHONE_DIRECTORY
(LAST_NAME CHAR(17) NOT NULL,
FIRST NAME CHAR(8) NOT NULL,
MIDDLE_INITIAL CHAR(1),
COUNTRY_CODE CHAR(4),
CITY_CODE CHAR(5),
PHONE_NUMBER CHAR(12),
EMPLOYEE_NUMBER SMALLINT NOT NULL,
TIME_STAMP TIMESTAMP NOT NULL);

Figure 13. SQL CREATE TABLE Command to Create the PHONE_DIRECTORY Table

SQL Considerations

When writing TPFAR application programs in C or assembler, you should keep the
following SQL considerations in mind.

Note: You should have a basic knowledge of the SQL programming language.

Length of Time Field

TPFAR requires that you use at least 8 numeric characters when specifying a time
field. If a value of 5 to 7 characters is specified, truncation occurs, and SQLWARN
is set in the structured query language communications area (SQLCA). The SQLCA
contains information about the execution of SQL commands. If a value of 0 to 4
characters is specified, an SQLCODE and SQLSTATE is set indicating an error.
SQLSTATE is a system-independent SQL return code field for the outcome of the
last executed SQL command. SQLCODE is a system-dependent SQL return code.

Request Unit Size Considerations

28

There are different LU 6.2 request unit (RU) (also known as datastream structure
within DRDA) size requirements depending on the flow of data. For the outbound
flow (information passed to DB2), TPF/APPC has a MAXRU of 3840 bytes.

When calculating the size of an RU, the following overhead needs to be taken into
account. For each command, a 10-byte base overhead is needed, as well as a
3-byte per column overhead, and a 1-byte per null field overhead for the indicator
variable. To better understand this, look at Eigure 13 and [Tahle 1 on page 27. To
calculate the size of the outbound data, add up the different column sizes: 17 + 8 +
1+4+5+ 12+ 2+ 26=75. Added to this is a 10-byte base overhead, plus 3
bytes for each column (3 x 8 = 24), plus 1 byte for each null column (4). This

means that 113 total bytes are needed. Eigure 14 on page 29 illustrates this
calculation.

TPF V4R1 Application Requester User’'s Guide

LAST_NAME 17

FIRST NAME 8
MIDDLE_INITIAL 1
COUNTRY_CODE 4
CITY_CODE 5
PHONE_NUMBER 12
EMPLOYEE_NUMBER 2
TIME_STAMP + 26

Total number of bytes needed for the data: 75

10 bytes base overhead 10

8 columns times 3 bytes per column: 24

4 nullable columns + 4
Total bytes needed for this RU: _115“

Figure 14. Example of Calculating RU Size

When receiving data from DB2, the same size calculations described above can be
used to figure out the size of the data returned. The one case that deviates from
this is when a cursor is used.

If you opened a cursor and issued an SQL FETCH command, as long as block
fetch is being used, the application server (AS) sends back the data blocked into
the query block size (QRYBLKSZ) that is used by TPFAR.®> The QRYBLKSZ value
used by TPFAR is 3800 bytes. Therefore, the first PIU returned from the AS returns
33 rows, if there were 33 rows in the answer set (3800 + 113 = 33). If the answer
set is less than 33 rows, the entire answer set is returned in the first PIU.

To force a block fetch to be used by DB2, you can open a cursor with the FOR
FETCH ONLY option. No subsequent SQL commands can issue an UPDATE or
DELETE WHERE CURRENT OF for this cursor. In addition, DB2 may decide to use
block fetch even if the FOR FETCH ONLY option is not specified, depending upon
the other SQL commands that are working on this same cursor. See the IBM
DATABASE 2 Application Programming and SQL Guide for more detailed
information on block fetch.

TPFAR keeps track of all the rows in the query block and returns only the first row
to the application. Subsequent fetches for rows made by the application can then
be accomplished with no further calls to the AS; instead, only local processing is
performed by TPFAR. This greatly cuts down on the response time. In addition,
while TPFAR and the application are working with this first set of data, the AS can
be working on the next set to return; this too reduces response time.

See the Distributed Data Management Architecture Reference for more information

about how to calculate how much storage TPFAR uses.

Number of Cursors

The maximum number of cursors that an application program can have open at one
time is 10. Over the lifetime of the application there can be as many opened
cursors as desired, but at any one time, there can only be 10 open cursors.

5. The SQL FETCH command retrieves the next requested row in an answer set table. See the IBM DATABASE 2 SQL Reference for
additional information on this command.

Setting the Stage with a Telephone Directory Application 29

Protect Key

When an SQL call returns to the application, its protect key is reset to application
protect key 1. Therefore, any required protect keys have to be reestablished on
return from the SQL call.

Addressing Mode

When writing a TPFAR application in assembler, the TPFAR system code always
returns to the application in the mode that the application call was made, either
24-bit or 31-bit mode.

Registers
When writing a TPFAR application in assembler, no application registers are saved
over the SQL call. Therefore, the application must save all the application registers
needed by the TPFAR assembler application after the SQL call.

Dynamic SQL

Dynamic SQL is supported by the TPFAR feature with the PREPARE, EXECUTE,
EXECUTE IMMEDIATE, and DESCRIBE verbs. See LSQ.I_Cnmma.nds_Su.ppoLted
b;L‘LEEAB_nn_pagL’LD_‘IJ for a list of the SQL commands that are supported and not

supported by the TPF system.

Collection Identifiers
A collection identifier specifies a group of packages. It is used in SQL appllcatlons

to provide additional detail for the package identifier. See L
m for more information about packages.

TPFAR Working Storage Blocks

Between application SQL calls, TPFAR holds on to a number of storage areas for
its own use. During this time, these areas may need to be freed up. For instance, if
the application is returning the data to a terminal, quite a bit of time could pass
before the terminal operator asks for more data. The DBSDC and DBSAC macros
or functions can be used to file the storage areas out to DASD using TPF 4K short
term pool. When the terminal asks for more data, the file records containing the
TPFAR storage areas can be retrieved from DASD and reattached to the user’s
ECB in order for more SQL commands to be issued. For more information about
the holding and release of malloc blocks, see the information on heap storage in

the [[PE Main Supervisor Referencd.

You need to be aware of the effect these macros have on the TPF and DB2
systems. Use attach (DBSAC) relatively quickly after the detach (DBSDC) because:

* The file types used are short term pools. Therefore, take care when using the
DBSAC macro to reattach these records before the short term pools are
recycled. Otherwise, all information pertaining to this SQL query is lost.

» All DB2 locks that are being held are still in effect. For example, if you have a
write lock on a page on DB2, no one else can read or write to that page. If other
transactions are running and require this page, they will eventually time out and
get SQL error return codes. Issuing a query can cause problems because you
are holding a read lock on the page.

* The LU 6.2 conversation that the current unit of work is using is not available for

any other application’s use. This can lead to conversation resource problems on
TPF if they are not returned for other applications to use.

30 TPF V4R1 Application Requester User's Guide

Synchronizing

* In short, this service should only be used after a thorough analysis of the impact
on TPF and DB2 system performance.

» Because the storage areas acquired by malloc are not released until the ECB is
exited, this service should only be used when exiting an ECB.

See the DBSAC and DBSDC macros in [[PE_General Macrod for more information
about the use of these macros.

Note: There are also C versions of the DBSAC and DBSDC macros. See rPH
’ idg for information about these functions.

Updates

Synchronizing the data is very important. The application program is responsible for
synchronizing the updates on TPF with those on the remote RDB. The
synchronizing is not done using LU 6.2 Sync_Level = CONFIRM or SYNC_PT.

An application program must consider the following when attempting to synchronize
data on DB2 and TPF:

* The data on DB2 can only be guaranteed when a zero SQLSTATE is returned to
the application from an SQL COMMIT command. Therefore, just because an
SQL INSERT or an SQL UPDATE command returns a zero SQLSTATE does not
mean that the record is out on DB2. The application must wait for the SQL
COMMIT command with an SQLSTATE of zero to return before concluding any
work, for example, when releasing pool files on TPF for the information altered,
inserted, or deleted.

If a zero SQLSTATE is not returned on the SQL COMMIT command, the changes
made have not been reflected in the DB2 database, and the database looks the
same as it did before the changes, even though the change itself may have had
a zero SQLSTATE returned. For example, an SQL INSERT command may
complete with a zero SQLSTATE, but if the SQL COMMIT command completes
with a nonzero SQLSTATE, the change will not be reflected in the database.

* When the TPF or DB2 subsystem goes down, application restart logic is very
important to guarantee data integrity. For example, if you issue an SQL COMMIT
command and DB2 goes down before the SQL COMMIT command is received,
an implied ROLLBACK is performed and all the work is backed out when DB2
comes back.

Another example would be the case where the SQL COMMIT command makes it
through DBZ2, but on the way back through VTAM, the connection between TPF
and VTAM goes down and the response is lost. The data is out on DB2, but the
TPF application does not receive the confirmation. One method of addressing
this situation is to create another table to hold log records. Before the application
program issues an SQL COMMIT command, an SQL INSERT command is
issued to the table to log the progress of the application’s processing. The same
scenario occurs in assembler language; see LLsi i

” for the assembler example.

If the SQL COMMIT command fails, and the connection can be reestablished, the
log table can be interrogated to determine the last committed change by DB2.
The application can then start from this point.

Setting the Stage with a Telephone Directory Application 31

C Language Header Files

When writing a TPFAR program in C, the header file tpfarapi.h must be included
in every C program with SQL instructions. This header file contains the linkage for
the SOL calls. For additional information on tpfarapi.h, see the

Error Handling

Error handling for TPFAR follows four basic guidelines:

» All errors appear as relational database errors reported to the application through
the SQLSTATE and SQLCODE fields of the SQL communications area (SQLCA).
The SQLCA is defined in the IBM SQL Reference Version 1. SQLSTATE codes
are consistent across all SAA platforms and provide a consistently portable
interface.

Note: The SQLCODE field is also reported; however, the application should not
use this field to check for errors because it contains error codes specific to
a particular relational database implementation. The SQLCODE provides
more specific information and is better used for debugging problems in
applications.

» All errors are reported back to the application program, except those for which
the path back to the application has been destroyed by main memory corruption.

» If an application issues a SERRC with exit or if the application takes an error
causing the ECB to exit, an implied ROLLBACK is issued to the remote AS if a
unit of work was in progress.® All changes made since the last SQL COMMIT
command are backed out.

» If an application issues an EXITC with a unit of work in progress, an implied
COMMIIT is issued for this application. Any changes made to the database are
now permanent, and other users can view them. If for some reason the implied
COMMIIT fails, an implied ROLLBACK is attempted to back out all the changes
made since the last successful SQL COMMIT command, if one was issued. The
implied COMMIT feature must be used carefully.

For example, if an application issues an SQL INSERT command and then exits
without explicitly issuing an SQL COMMIT command, an implied COMMIT will be
issued. TPF then issues a dump. If the implied COMMIT fails for any reason, an
implied ROLLBACK is issued, and the SQL INSERT command into the table is
backed out. Because the application has already exited, there is no way to report
that the SQL INSERT command was backed out. This can cause the loss of data
integrity. A case where the implied COMMIT could be used is when you are
querying data. Because no tables are updated, if the SQL COMMIT command
fails, it may not be important to the application.

Preparing an Application

Eigure 15 on page 33 shows the basic flow of transforming an application from
source code to object code on TPF and into a bind file on DB2 through the DB2
bind process. The bind process converts output from a DB2 precompiler (DBRM) to
the usable control structure known as a bind file. During this process, complete
error checking and access strategy is performed for each SQL command. In ISO-C
programs, you can perform binding directly on DB2 offline (static binding) before

6. An implied ROLLBACK is when an application voids any uncommitted changes. See the IBM DATABASE 2 SQL Reference for
additional information on this command.

32 TPF V4R1 Application Requester User’s Guide

you run the application. Alternatively, TPF can perform a bind at run time (run-time
binding).

i —

Assembler Database
or C Source R bB2 | Request
Programs - ”| Precompiler "] Modules
with SQL — (DBRMs)
v
'\"Odiﬁe& Modified DB2
Assembler C Source Bind
Source Programs Process
Programs

v A\ 4

TPF DB2
Postprocessor

Packages
on DB2

A 4

Normal Assemble/
Compile and Load n
Process

Application
Programs on TPF

Figure 15. Overview of TPF Application Preparation

TPF application programs must be precompiled using the DB2 precompiler on the
MVS system. The DB2 program preparation procedure is described in the IBM
Database 2 Application Programming and SQL Guide.

The following explains each of the steps in Eigure 15.

Note: You must ensure that the object code from the modified source produced
from the DB2 precompiler matches the package produced by the
database-request-module bind process from the DB2 precompiler.

1. The TPF application is written in C or assembler with imbedded SQL
commands.

2. The DB2 precompiler extracts the SQL commands from the TPF application and
places them in a database request module (DBRM). The DBRM is a data set
member containing information about SQL commands. This data set contains

Setting the Stage with a Telephone Directory Application 33

information on all SQL commands used in your application program. Information
is included about how the SQL commands are executed and DB2’'s access
strategy.

In place of the SQL commands, the DB2 precompiler places host language
system calls into the application programs.

The following parameters are important to the DB2 precompiler:

DEC Specifies the maximum precision to be used in decimal
arithmetic operations. This parameter must be set to DEC(15)
for use with TPFAR. This parameter is ignored for C programs.

HOST Informs the DB2 precompiler about which host language is
being used. This parameter must be set to one of the following:
* HOST(C) for TARGET(TPF) programs or ISO-C programs
* HOST(ASM) for assembler programs.

See ElUsing the TPE DR2 Pastprocessor (TPE DR2PP)” of
for more information about the TPF DB2PP HOST
parameter.

VERSION Allows the DB2 precompiler to separate two different
applications with the same name, so that the bind files created
are not the same. This is important when supporting multiple
copies of the same program (that is, when using the TPF online
loader and fallback packages).

Supporting multiple versions can also be accomplished by
changing the member name of the DBRM data set where the
DB2 precomplier places the output DBRM. This member name
is what DB2 uses to correlate different DB2 packages. By
changing the DBRM member for different versions of the same
program, multiple copies of the same program can have active
DB2 packages. See step ngor more information on
DB2 packages.

Note: For DB2 Version 3, you must specify the CONNECT(1) precompiler
option to specify the rules for the CONNECT (Type 1) statement. The
TPF system does not support the CONNECT (Type 2) option.

See the IBM DATABASE 2 Command and Utility Reference for more information
regarding the DB2 precompiler options.

3. C language programs that are output from the DB2 precompiler are then run
through the TPF DB2 postprocessor (TPF DB2PP), an offline program
generated by SIP that alters some of the DB2 global variables placed in the
program. (This step is not performed on assembler language programs.) See
I lQing the TPE DRB2 Postprocessar (TDIZ nn?pp)" Qon page 34 for more

information on this program.

4. The modified assembler or C programs are assembled or compiled. Care must
be taken at this point to check the output. Because the DB2 precompiler has
added code to the segments, you must check the size of the program to make
sure that it fits in the segment if you are using assembler or TARGET(TPF). The
amount of code added depends on individual SQL commands and their
parameters. After this has been checked, the programs can be loaded to the
TPF system using the online loader package.

Note: When you are compiling an ISO-C program, the RENT option should be
specified.

34 TPF V4R1 Application Requester User's Guide

5. The DBRM, also referred to as a bind file, must be bound on the DB2
subsystem that is to connect to the TPF system. This bind process can run on
the application server containing the target relational database before the TPF
application can access this system. Target C programs and assembler programs
must be bound offline. ISO-C programs can be bound offline or online at
run-time. Run-time binding for ISO-C programs is automatic. For Target C and
assembler programs, any attempt to run a TPF application before the DBRM
has been bound results in an error.

The output from the bind process is called a package. A package is an object
containing a set of SQL statements that have been bound and are available for
processing.

The DB2 package is called at program execution time to execute the SQL
commands extracted from the program during DB2 precompilation. (See step

.) The package is in a format understood only by the DB2. The
DBRM could be transported to another MVS system, using MVS system utilities
for example, and bound on the second system if the TPFAR application is to
also connect and to work on this second system.

When binding the DBRM, the following options are required:

PACKAGE or COLLECTION-ID
Must be the same as that used by TPFAR, which is made up of
the TPF:

* complex name
* subsystem name
* subsystem user name.

Each of these pieces is separated by an underscore (). For
example, the parameter could be:

TPFNET_BSS_HPN

When running the bind process in a batch mode, the parameter
is specified as PACKAGE. When running the bind process
through the DB2 interactive panels, the parameter is specified
at the COLLECTION-ID entry field. Both PACKAGE and
COLLECTION-ID refer to the same value.

RELEASE Specifies when the application server (AS) can release the
resources reserved for this conversation or connection. This
option must be COMMIT when using hotcons because TPF
reuses this session if another program requests a connection to
the same AS. If RELEASE was DEALLOCATE, these AS
resources would continue to be held until the session was
deallocated. When using hotcons, the deallocation may not
happen for quite a while.

MEM Indicates the member that is to be bound. This option must be
the same as the member name used for the partitioned data set
in which the DBRM output was placed in the DB2 precompiler.

See the IBM DATABASE 2 Command and Utility Reference for more information
about the bind options.

Using the TPF DB2 Postprocessor (TPF DB2PP)

When writing a C application using SQL, the TPF DB2 postprocessor (TPF DB2PP)
offline module needs to be run against the DB2 precompiler output. The TPF

Setting the Stage with a Telephone Directory Application 35

36

DB2PP program alters and removes some variables that the DB2 precompiler sets
up for the TPF C compiler with the TPF option to run successfully.

If the modified C program is not run through TPF DB2PP before C compiling, the
program does not compile. Fable 3 shows the strings that are altered by the TPF
DB2PP program for C programs.

Table 2. Strings Altered by TPF DB2PP for C Programs

Original String Altered String

#pragma linkage (DSNHLI,OS); (This field is removed by the TPF DB2PP
program. The C header file tpfarapi.h will
resolve the DSNHLI call.)

char SQLTEMP??(19 ??); static char SQLTEMP??(19??);
struct sqlca sqglca; static struct sglca sqlca;

struct SQLVTAG SQLVERS static struct SQLVTAG SQLVERS
char DSNPNM??(57 ?7?); static char DSNPNM??(57 ?7?);

Note: Trigraph representations of square brackets are used in the preceding
examples. The DB2 precompiler output may not always contain the trigraph
representation. Regardless of which representation is used by the DB2
precompiler, DB2PP will always alter the string using the trigraph
representation.

Invoking TPF DB2PP
TPF DB2PP has different required PARM parameters, depending on whether an
ISO-C or a TARGET(TPF) program is to be processed.

If an ISO-C program is being postprocessed, there are two required parameters.
Any additional parameters result in an error.

HOST The HOST parameter specifies the language of the host program to
the TPF DB2PP program. This parameter must be set to
HOST(ISOC).

PKGISO The PKGISO parameter specifies the package isolation level, a

security technique for DB2 packages, to be passed during the bind
process. Acceptable values for this parameter are CS and RR. Any
other value specified results in an error from TPF DB2PP. A typical
PARM parameter specification is:

PARM="HOST(ISOC) PKGISOL(CS)'
If a TARGET(TPF) program is being postprocessed, there is one required
parameter. Any additional parameters result in an error.

HOST The HOST parameter specifies the language of the host program to
the TPF DB2PP program. You must set this parameter to HOST(C).

PARM="HOST(C) '

SamDIe JCL

shows sample JCL that you can use to process the output
from the DB2 precompiler. The HOST(ISOC) and package isolation level PKISOL
are also shown.

TPF V4R1 Application Requester User’'s Guide

Note: The INFILE data set specified must be the data set where the DB2
precompiler placed the modified output file.

//MODIFY EXEC PGM=DB2PP,REGION=4096K,PARM="HOST(ISOC) PKGISOL(CS)'
//STEPLIB DD DSN=AR20000.DEVP.TEST.LK,DISP=SHR

// DD DSN=ACP.LINK.INTG40.BSS,DISP=SHR
// DD DSN=ACP.LINK.RLSE31.BSS,DISP=SHR
// DD DSN=SYS1.CEE.SCEERUN,DISP=SHR

//SYSPRINT DD SYSOUT=+

//INFILE DD DSN=&&DSNHOUT,DISP=(OLD,DELETE)
//DBRMLIB DD DSN=AR20000.DEVP.TEST.DBRM(QXMARF),DISP=(0LD,PASS)
//OUTFILE DD DSN=&&TEMP,DISP=(NEW,PASS),UNIT=SYSDA,
// DCB=(DSORG=P0,RECFM=FB,LRECL=80,BLKSIZE=80)
/1%

//COPY EXEC PGM=IEBGENER,REGION=58K

//SYSPRINT DD SYSOUT=A

//SYSIN DD DUMMY

//SYSUT2 DD DSN=TPFAR.TEST.SRCE(QXP1JV),DISP=0LD
//SYSUT1 DD DSN=&&TEMP,DISP=(0OLD,PASS)

/1%

Figure 16. Sample JCL to Run TPF DB2PP

Database Resource Management (DBRM)

The DBRM consists of the SQL statements and variables pertaining to a particular
program. The DB2 system uses the DBRM to optimize application program
interaction. If the DBRM is bound by DB2 before running the application, the DBRM
is considered statically bound. The DBRM can be bound at run time when it is
combined with its ISO-C program by the postprocessor before the program is
compiled. When the application runs, the DBRM is sent to the DB2 system to be
bound.

The contents of the DBRM represent the variables, framework, and generated SQL
calls required by the DB2 system when processing the SQL commands sent from
the TPF system. The dbrm_array is a large character array that carries the variable
portion and is added to the program source by the postprocessor. SQL statements
bound by /***$$$ and $$$***/ are from the application program. They are followed
by generated statements to use at run time. Each application that contains SQL
statements must include the SQLCA and identify EXEC SQL INCLUDE SQLCA and
EXEC SQL BEGIN DECLARE SECTION variable declarations.

static const char dbrm_array[] = {

"\xC4',"'\xC2"',"'\xD9"', '\xD4"','\x00","\x00"', '\x00"', '\xA0Q", DBRM
"\xC2',"'\xD9"',"\xC1','\xD1",'\x40"', '\x40",'\x40"','\x40", BRAJ
"\xD8','\xE7"',"'\xD4"',"\xC1"',"'\xD9"', '"\xC6",'\x40"',"'\x40", QXMARF
"\x15','\xB5", "\x7E"','"\x06", '\x02','\x85",'\x14"','\x80",
"\x07',"\x00", '\xC4","'\x00","'\x00", '\x02"','\x00","'\x00",
"\x00','\x00","\x00"', '\x00"','\x00",'\x00", '\x00"','\x00",
:\XOO','\x00','\x00','\x00','\x00','\x00','\x00','\x00',

"\xC4',"'\xC5","\xC3","'\xD3"',"'\xC1"',"'\xD9", "\xC5"', '\x40", DECLARE
"\xC3',"'\xF2',"'"\x40"','\xC3", '\xE4"', '\xD9"', '\xE2"','\xD6", C2 CURSO:
"\xD9','\x40"',"\xC6"',"'\xD6"',"'\xD9", '\x40"', '\xE2','\xC5", R FOR SE
"\xD3"','"\xC5","\xC3"',"\xE3", '\x40"', "\xC3"', '\xE4", '\xE2"', LECT CUS
"\xE3','\xD5"',"'\xD6"','\x40", '\x6B"', '\x40"','\xD5"',"'\xC1", T,N O NA
"\xD4','\xC5"',"'\x40"','\x6B", '\x40"', '\xD7"',"\xC2"',"'\xC1"', ME , PBA
"\xD3',"'\x40"',"'\x6B"','\x40", '\xD4"', '\xC1',"'\xE7","'"\xC2", L , MAXB
"\xC1','\xD3","\x40"','\xC6"',"'\xD9", '\xD6"', '\xD4', '\x40", AL FROM
"\xE2',"\xC1',"\xC1',"\xC9", '"\xC4"',"'\x40","'\x4B",'\x40", SAAID .
"\xE2',"\xC1',"\xF1',"\xC3", '\xE4"', "\xE2"','\xE3"',"'\x40", SA1CUST
"\xE6','\xC8"',"'\xC5"',"'\xD9", '\xC5"', '\x40",'\xD4","'\xC1"', WHERE MA

Setting the Stage with a Telephone Directory Application 37

38

"\xE7',"\xC2"',"\xC1','\xD3","\x40"', '\xD5",'\xD6", '\xE3", XBAL NOT
"\x40','\xC2"',"'\xC5", "\xE3", "\xE6"', '\xC5"','\xC5"',"'\xD5", BETWEEN

"\x40', '\xF2',"\xFO', '"\xFO"', '\xFO', '\xFO', '\x4B", '\xFO', 20000.0

"\x40',"\xC1',"\xD5", '\xC4", "\x40"', "\xF1',"\xFO"','\xFO", AND 100

"\xFO','\xFO', "\xFO"','\xFO','\x4B", '\xFO"', '\x40',"'\xD6", 0000.0 0
"\xD9','\xC4"',"\xC5"',"'\xD9", '\x40"', '\xC2"','\xE8",'\x40", ORDER BY
"\xD7"','\xC2"',"\xC1','\xD3", '"\x40"', '\xC1"','\xE2"',"'"\xC3", PBAL ASC
"\x40','\x00"',"'\x00"','\x00", '\x00"', '\x40",'\x40"',"'\x40",

"\x40','\x40","'\x40"','\x40", '\x40"', '\x40", '\x40"','\x40",
"\xC4',"\xC2"',"'\xD9"','\xD4", "\x00"','\x00","'\x00","'\x24", DBRM
"\x00', '\x01"',"'\x00"','\x00", '\x00"','\x00",'\x00", '\x9E",
"\x00','\x00"','\x00"','\x14",'\x00"','\x00", '\x00", '\x08",
"\xD6','\xD7"',"\xC5"','\xD5"', '\x40", "\xC3"', '"\xF2','\x40", OPEN C2
"\x00","'\x00"',"'\x00",'\x00", '\x40"', '\x40",'\x40"',"'\x40",
"\x40','\x40"',"'\x40"',"\x40"', '\x40"', '\x40", '\x40", '\x40",

;\x40','\x40','\x40','\x40','\x40','\x40','\x40','\x40',
"\x40','\x40"',"'\x40",'\x40", '\x40"', '\x40",'\x40"','\x40",

bs

"\x40','\x40"',"'\x40"','\x40", '\x40"', '\x40", '\x40"','\x40",

/***

*k THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM"
*k COPYRIGHT = 5748-T13 (C) COPYRIGHT IBM CORP 1979,1989
*k LICENSED MATERIAL - PROGRAM PROPERTY OF IBM

*k REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083
B T e T P T e T T
*%

x FUNCTION NAME...gxma_saamdcl0

*% SEGMENT NAME....QXMA

%

*% Load module name: QX0Z

*%

*%

R o e R T R T T S T T L e e T e s L Tt L

**

*x EXTERNAL REFERENCES...printf, gxo2_check, gxo3_check

**

*%

«+ HEADER FILES #INCLUDE
*/

#ifdef TARGET TPF

D...c$artst0

#error This segment cannot be compiled using TARGET(TPF)

#endif

/***/

/*

/* TESTCASE NAME:

/*

/* TESTCASE DESCRIPTIO
/*

/* CREATION DATE:

/*

SAAMDC10 MEMBER:
N: Queries and Predicates

5/5/1989

/* SPECIAL TESTING NOTES: None

/*
/* TERMINATION STATUS:
/*

Cond code 0

DOI1YNN

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/***/

typedef struct
{ short

TPF V4R1 Application Requester User’'s Guide

SQLPLLEN;

short SQLFLAGS;
short SQLCTYPE;
char SQLPROGN[8];
short SQLTIMES[4];
short SQLSECTN;
char *SQLCODEP;
char *SQLVPARM;
char *SQLAPARM;
short SQLSTNUM;
short SQLSTYPE;
char SQLPKISL[2];
const char *DBRM_PTR;
long DBRM_SIZE;
} SQLPLIST;
typedef struct
{ short SQLTYPE;
short SQLLEN;
char *SQLADDR;
char *SQLIND;
} SQLELTS;
typedef SQLELTS *SQLELTS_PTR;
static char SQLTEMP??(197?) ;
struct SQLVTAG
{ char *VERSPRE ;
char *VERSSTR ;
b
static struct SQLVTAG SQLVERS = {
IIVER' n s
IIRFII} ;
static char DSNPNM??(5727) ;

[%x%$$$
EXEC SQL INCLUDE SQLCA
$§$wx/
#ifndef SQLCODE
struct sqlca
{ unsigned char sqlcaid[8];

Tong sqlcabc;

long sqlcode;

short sqlerrml;
unsigned char sqlerrmc[70];
unsigned char sqlerrp[8];

Tong sqlerrd[6];
unsigned char sqlwarn[11];

unsigned char sqlstate[5];
' s

#define SQLCODE sqlca.sqlcode
#define SQLWARNO sqlca.sqlwarn[0]
#define SQLWARN1 sqlca.sqlwarn[1]
#define SQLWARNZ2 sqlca.sqlwarn[2]
#define SQLWARN3 sqlca.sqlwarn[3]
#define SQLWARN4 sqlca.sqlwarn[4]
#define SQLWARN5 sqlca.sqlwarn[5]
#define SQLWARN6 sqlca.sqlwarn[6]
#define SQLWARN7 sqlca.sqlwarn[7]
#define SQLWARNS sqlca.sqlwarn[8]
#define SQLWARN9 sqlca.sqlwarn[9]
#define SQLWARNA sqlca.sqlwarn[10]
#define SQLSTATE sqlca.sqlstate
#endif
static struct sqlca sqlca ;

#include <c$artst0.h>

/* The following macros are defined to check if two given values
of various types are equivalent and print out their differences. *

Setting the Stage with a Telephone Directory Application

39

static char d_tmp1[20], d_tmp2[20];
#define Str_Comp(X, Y) (strncmp(X, Y, strlen(Y)) == 0)
#define Dou_Comp(X, Y) (\
sprintf(d_tmpl, "%e\0", X), \
sprintf(d_tmp2, "%e\0", Y), \
(strcmp(d_tmpl, d_tmp2) == 0))
#define PDiff_s(X, Y) if (!(Str_Comp(X, Y))) \
printf(#x " : %s\nexpected : %s\n", X, Y)
#define PDiff g(X, Y) if (!(Dou_Comp(X, Y))) \
printf(#X " : %g expected : %g\n", X, Y)
#define PDiff_d(X, Y) if (X !=Y) \
printf(#X " : %d expected : %d\n", X, Y)

extern void gxma_saamdc10(
long *return_ptr, /* No. of Errors encountered

Tong *warning_ptr /+ No. of Warnings encountered */

{
int warn = 0;
long return_code;
long warning_code;

/#**$$$
EXEC SQL BEGIN DECLARE SECTION
$$§ww/

char host1[7], host2[40];
double host8, host9;

/#**$$$
EXEC SQL END DECLARE SECTION
$$§ww/

return_code=*return_ptr;
warning_code=+warning_ptr;

/***

DECLARE CURSOR C2

***/

/%**$$$
EXEC SQL
DECLARE C2 CURSOR FOR

SELECT CUSTNO, NAME, PBAL, MAXBAL
FROM SAAID.SALCUST
WHERE MAXBAL NOT BETWEEN 20000.0 AND 1000000.0
ORDER BY PBAL ASC

$$$wwx/

gxo02_check ("DECLARE CURSOR C2",&sqlca,&return_code);

/***

OPEN CURSOR C2

*kkkkkkkkk kkhkkhkhkhkhkhkhkhkhhhhhhhhhhkhhhhk ***************************/

/***$$$
EXEC SQL OPEN C2

40 TPF V4R1 Application Requester User's Guide

$$?***/
SQLPLIST SQLPLIST2 =
{40, 0, 50, "QXMARF ", 0, 0, 0 ,0,
1, 0, 0, 0, 158, 3};
SQLELTS_PTR SQLELTS_PTR2;
SQLPLIST2.SQLCODEP = (char *) &sqlca;

SQLPLIST2.SQLTIMES[0] = 0x15B5;
SQLPLIST2.SQLTIMES[1] = 0x8055;
SQLPLIST2.SQLTIMES[2] = 0x15B9;
SQLPLIST2.SQLTIMES[3] = OxE240;
SQLPLIST2.SQLPKISL[O] = 0x24;
SQLPLIST2.SQLPKISL[1] = 0x42;

SQLPLIST2.DBRM_PTR = dbrm_array;
SQLPLIST2.DBRM_SIZE = sizeof(dbrm_array);
SQLPLIST2.SQLFLAGS =

SQLPLIST2.SQLFLAGS | 0x1;

DSNHLI ((unsigned int =) &SQLPLIST2);

}

gx02_check("OPEN CURSOR C2",&sqlca,&return_code);
/***

TEST FETCH CURSOR C2

***/

Using the Same Cursor in Multiple Programs

Because of the TPF system restriction to a 4 KB program size for assembler and
TARGET(TPF) programs, you may have to use the same cursor throughout multiple
TPF segments (the SQL source programs). If so, you must make the following
modifications to your SQL source programs.

Segment size is not a problem for ISO-C programs, so this section is restricted to
TARGET(TPF) and assembler considerations.

The DB2 precompiler needs to have all of the programs in one file in order to
create the DBRM. The individual TPF segments must be placed into a single source
file for the DB2 precompiler to work on. After the DB2 precompiler has finished, a
single modified source output is returned. This modified source output contains the
updated source code with the SQL commands removed. If the host language used
was C, the modified source output needs to be run through the DB2PP processor
before continuing. The modified source file now has to be separated into the
different original TPF source program segments. [Eigure 17 an page 42 shows this
process.

Setting the Stage with a Telephone Directory Application 41

SQL Source
Program 1

SQL Source
Program 2

SQL Source
Program 1

SQL Source
Program 2

SQL Source
Program X

A 4

SQL Source
Program X

One
Source
File

\ 4

DB2
Precompiler

Modified
Source
Program 1

\ 4

Modified
Source
Program 2

A4

Modified
Source
Program 1

Modified
Source
Program X

One
Modified
Source
File

v

Modified
Source
Program 2

v

Modified
Source
Program X

Figure 17. Modifying Non-ISO-C SQL Source Programs for the DB2 Precompiler When Using the Same Cursor

TARGET C Language Modifications

42

TPF V4R1 Application Requester User’'s Guide

lines starting with the SQLVTAG structure are not present.

After the file has been separated into the different original segments, modifications
need to be made, depending upon the host language used.

Note: When using the same cursor throughout multiple TPF segments, the same
host language must be used in all of the segments.

When the TPF segments are coded in C language, the large source file needs to
be precompiled and then run through the TPF DB2PP program to process the
precompiled output. After these have both been run with successful completion, the
top of the returned source file in the first TPF segment contains the lines of code

shown in Eigure 18 on page 43.

Note: If the VERSION option was not used on the precompile run, the last seven

typedef struct
{ short SQLPLLEN;
short SQLFLAGS
short SQLCTYPE
char SQLPROGN[8];
short SQLTIMES[4];
short SQLSECTN;
char *SQLCODEP;
char *SQLVPARM;
char *SQLAPARM;
short ~ SQLSTNUM;
short SQLSTYPE;
} SQLPLIST;
typedef struct
{ short SQLTYPE;
short SQLLEN;
char *SQLADDR;
char *SQLIND;
} SQLELTS;
typedef SQLELTS *SQLELTS_PTR;
static char SQLTEMP??(197?) ;
struct SQLVTAG
{ char *VERSPRE ;
char *VERSSTR ;
b
static struct SQLVTAG SQLVERS = {
IIVER'II’
"JT"};
static char DSNPNM??(57?7) ;

Figure 18. C Code to Copy to Each TPF Segment

When the modified output is separated into the different TPF segments, this code
must be copied to each of the segments. When adding this code to the each
segment, this code should be placed at the top of the individual segments after any
#includes that are used. (The #include is a C programming structure.)

The individual TPF segments can then be compiled and loaded, and the DBRM can
be bound.

Assembler Modifications
The assembler modifications are similar to those for C language.

In the modified assembler source file that is returned, two areas need to be copied:

one at the top of the modified assembler (shown in [Eigure 19 an page 44), and the
other at the bottom of the first TPF program, just before the END statement (shown

in Eigure 20 on page 44).

Note: Note that the SQLVERSP and SQLVERD1 tags are only found when the
VERSION parameter is coded in the precompile options.

Setting the Stage with a Telephone Directory Application 43

&SQLSECT

.REST
&SQLSECT

MACRO

SQLSECT &TYPE

GBLC

AIF ('

SETC
MEXIT
ANOP
CSECT
MEND

&SQLSECT
&TYPE' EQ 'RESTORE').REST
"&SYSECT'

Figure 19. Assembler Code Area Needed at the Top of Each Separated TPF Segment

SQLVERSP
SQLVERD1

SQLDSIZ

SQLDSECT
SQLPLIST
SQLPLLEN
SQLFLAGS
SQLCTYPE
SQLPROGN
SQLTIMES
SQLSECTN
SQLCODEP
SQLVPARM
SQLAPARM
SQLSTNUM
SQLSTYPE
SQLPVARS
SQLAVARS
SQLTEMP

SQLDLEN

DC
DC

DC
DSECT

DS
DS

DS

EQU

CL4'VER.' VERSION-ID PREFIX
CL64'JT! VERSION-ID

***$$$ SQL WORKING STORAGE

A(SQLDLEN) SQLDSECT SIZE

F

H PLIST LENGTH
XL2 FLAGS

H CALL-TYPE

CL8 PROGRAM NAME
CL8 TIMESTAMP

H SECTION

A CODE POINTER

A VPARAM POINTER
A AUX PARAM PTR
H STATEMENT NUMBER
H STATEMENT TYPE
F,1CL12

F,1CL12

CL18 TEMPLATE

oD

*-SQLDSECT

Figure 20. Assembler Code Area Needed in Each TPF Segment before the END Statement

Place the code in exactly the same places you found it in the first segment: at the
top and before the END statement.

44 TPF V4R1 Application Requester User's Guide

Using TPF C with TPFAR

This section contains examples of TPF applications written in C that use TPFAR to
access data in a relational database.

Note: The following applications demonstrate the use of TPFAR. These examples
may not reflect the best method for implementing the application, but instead
are intended to show different data access methods.

The Root Segment for the Telephone Directory Application

Eigure 21 on page 46 shows the root segment for the telephone directory
application package. In the sample C code the following conventions have been

established:
* The message block to be processed is on data level 0.
* The puts C function has been implemented by the user.

The basic format for all of the messages used in this package is as follows:
rc /a add_parm

where:

rc Arouting code. This code is used to route messages to the application and is
not used in the example of parsing the entry.

a A l-character action code:
* | Insert
» D Display
* R Remove
* U Update.

add_parm
Depends on the action code.

© Copyright IBM Corp. 1994, 2002 45

46

#include <tpfeq.h> /* Include libraries
#include <tpfapi.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

#pragma map (qxp0_exm_tests,"QXP0")
extern void gxp0_exm_tests();
#pragma map(gqxpl_insert,"QXP1")
extern void gqxpl_insert();

#pragma map (qxp2_delete,"QXP2")
extern void gxp2_delete();

#pragma map(qxp3_update,"QXP3")
extern void gxp3_update();

#pragma map(qxp4_display,"QXP4")
extern void gxp4_display();

/**/

/* This is the root function of the SQL example segments. It */
/* will parse the input Tooking for the action code, then x/
/* depending on the action code, it will call the appropriate x/
/* routine. */

/**/
void gxp0_exm_tests()

{
struct miOmi *blk; /* Pointer to the input message: =/
/* The input message is on DO */
char action; /* Action code entered: */
/* This is from the parsed */
/* message. */

Figure 21. Root Segment (Part 1 of 3)

TPF V4R1 Application Requester User’'s Guide

/**/

/* The database name is placed in ebx000 so that any function */
/* that needs it can use it and if it is changed, it will only */
/* have to be changed in one spot. */

/**/

memset ((void *) &ecbptr()->ebx000, ' ', 15);
memcpy ((void x) &ecbptr()->ebx000,
"DB23TST",
sizeof ("DB23TST")-1);
/% The size of the string includes the */
/* null at the end which needs to be */
/* placed at byte 16. */
echptr()->ebx016 = '\0';

/**/

/* Set up a pointer to the input message and replace the EOM */
/* character with a NULL. */
/* */

/**/

b1k = ecbptr()->celcro;
*strchr (blk->miGacc, EOM) = '\0';

/**/

/* Parse the message block. The first parameter is unused, the */
/* second parameter is the action. The rest of the parameters */
/* depend on what the first parameter is. They will be scanned */
/* individually based on the action. Notice that the action is */
/* preceded by a /. */
/% */

/**/
sscanf(blk->miQacc, "%*s /%lc",
&action);

Figure 21. Root Segment (Part 2 of 3)

Using TPF C with TPFAR

47

/**/

/* Based on the action entered, call the different routines. */
/* The action is converted to uppercase so that the case statement */
/* can be made smaller. */
/* */

/**/
switch (toupper(action))

case 'I': /* A new entry is to be inserted =/
gxpl_insert();
break;

case 'D': /* A display is requested. */
gxp4_display();
break;

case 'R': /* A removal of an entry is needed. */
gxp2_delete();
break;

case 'U': /* An update of an entry is needed. */
qxp3_update();
break;

default:
printf(
"Action entered is incorrect. Please enter a I, D, U or R");
break;

}
exit(0);
1

Figure 21. Root Segment (Part 3 of 3)

48 TPF V4R1 Application Requester User's Guide

Inserting a Telephone Directory Entry

The program listed in Eigure 22 on page 50 inserts a new employee entry into the
corporate telephone directory.

The format of the parameters is:
rc /I last_name/first_name/middle_initial/country/area/phone_number

where:

rc A routing code. This code is used to route messages to the application and is
not used in the example of parsing the entry.

| Insert action code.

last_name
The last name of the person to add to the database.

first_name

The first name of the person to add to the database.
middle_initial

The middle initial of the person to add to the database.

country
The country code of the person to add to the database.

area
The area code of the person to add to the database.

phone_number

The phone number of the person to add to the database.
Notes:
1. The / character separates the different parameters.

2. The employee number is not needed for an insert because a unique number is
assigned by the program.

For example, to insert an entry for Juan Martinez into the PHONE_DIRECTORY
table, you would type:

rc /1 MARTINEZ/JUAN/C/52/748/2221923

Using TPF C with TPFAR 49

#include <tpfeq.h> /* Include the libraries */
#include <tpfapi.h>

#include <tpfarapi.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#pragma map(qxpl_insert,"QXP1")
extern void gxpl_insert();
static void Check();

EXEC SQL INCLUDE SQLCA; /* Include the SQLCA */

/**/
/* Check: */
/* This function verifies the SQLSTATE returned. If it is not 0,*/
/* a message is printed indicating what the SQLSTATE returned was. */

/* */
/* A customer implementing a function Tike this may want to include */
/* a much more robust error handling and recovery. */

/**/

static void Check()

if (memcmp(sqlca.sqlstate,"00000",sizeof(sqlca.sqlstate)) != 0) {
printf("FAILED\n %d %.5s\n",sqlca.sqlcode,sqlca.sqlstate);
exit(5);
}
1

Figure 22. TPF Program to Insert an Employee into the PHONE_DIRECTORY Table (Part 1
of 6)

50 TPFV4R1 Application Requester User’'s Guide

/**/

/* qxpl_insert: x/
/* This function inserts a new record into a database with */
/* the information passed from the user. */
/* */

/**/

void gxpl_insert()

{
short int num_input; /* The number of variables sscanf %/
/* has correctly set up. This is */
/* used to check the validity of */
/* the parameters. */
struct miOmi *blk; /* Pointer to the input message */
/*** """""""""" /
/* Declare all the variables that SQL needs to know about. */

/**/

EXEC SQL BEGIN DECLARE SECTION;

[k Fkkk kg kk Kk kK *k KK I I KRR Khhh I I I I h* Kk kK H ok R R 2 2 2 R R R R R IR /

/* Set up a structure for the directory record. This structure */

/* is set up in the same order as the CREATE TABLE parameters */

/* when the table was created on DB2. */

/**/
struct {

char last_name[18];
char first_name[9];
char middle initial[2];
char country_code[5];
char area_code[6];
char phone_number[13];
short int employee_number;
char timestamp[27];

} dir_record;

char buf[16]; /* This will be used to point to =/
/* the database to connect to. */
short int indnull; /* Used to indicate a null */
/* variable. */

EXEC SQL END DECLARE SECTION;

Figure 22. TPF Program to Insert an Employee into the PHONE_DIRECTORY Table (Part 2

of 6)

Using TPF C with TPFAR

51

/**/

/* Issue the connect with the name of the database to connect */
/* to. When done, the check function will check the return code, */
/* and if invalid, exit. Ebx000 was set up in the root segment */
/* with the name of the database to connect to. */

/**/

strcpy (buf, &ecbptr()->ebx000);
EXEC SQL

CONNECT TO :buf;
Check();

/**/

/* Parse the message block. The first parameter is unused, and */
/* the second was already parsed. The rest of the parameters are */
/* all the information needed for the insert. */
/* Notice that all of the parameters are separated by a /. */
/* */

/**/
blk = ecbptr()->celcro;
num_input = sscanf(blk->miOacc,
"gxs [%xlc B1T[N1/%8 [N/ 1 /%1~ 1/%41~1/%5("/1/%12s",
dir_record.Tast_name,
dir_record.first_name,
dir_record.middle_initial,
dir_record.country_code,
dir_record.area_code,
dir_record.phone_number) ;

/**/

/* The number of conversions must be 6 which is the number of */
/* items needed for input. */
/* */

/**/
if (num_input != 6)
printf("The input is invalid. The format is:\n\

Last name/First name/MI/Country/Area/Phone number\n");
exit(0);

Figure 22. TPF Program to Insert an Employee into the PHONE_DIRECTORY Table (Part 3
of 6)

52 TPF V4R1 Application Requester User’s Guide

/**/

/* The new employee will automatically have the next employee */
/* number assigned to them. The table must be Tocked first so that */
/* anyone else making an update will not get the same employee */
/* number automatically assigned. */
/* */
/* The new employee number is one more than the current maximum */
/* employee number in the table. */
/* */
/******** """"""""" dhkkkhkhkrhhkhkhhkhhhhhrhhxk *******************/
EXEC SQL

LOCK TABLE TPFNET.PHONE_DIRECTORY IN EXCLUSIVE MODE;
Check();

EXEC SQL
SELECT MAX(EMPLOYEE_NUMBER)
INTO :dir_record.employee number:indnull
FROM TPFNET.PHONE_DIRECTORY;

Check();

[k Fkkk kg kk Kk kK o ek ek ok ek ok ok ok ko ke kK ok ko ok ok ko ke ko ok ke ko ke ko ko /
/* Check the return to see if the answer was null. If it is null, =/
/* then there are no entries in the table, so set the employee */
/* number to zero, indicating no employee numbers yet assigned. */

/**/

if (indnull < 0)
{

}

dir_record.employee_number++;

dir_record.employee number = 0;

Figure 22. TPF Program to Insert an Employee into the PHONE_DIRECTORY Table (Part 4

of 6)

Using TPF C with TPFAR

53

/**/

/* Insert the record into the database. */
R R R R R R A A T e /
EXEC SQL

INSERT INTO TPFNET.PHONE_DIRECTORY
(LAST_NAME, FIRST_NAME, MIDDLE INITIAL, COUNTRY_CODE,
AREA_CODE, PHONE_NUMBER, EMPLOYEE_NUMBER,
TIME_STAMP)

VALUES

(:dir_record.last_name,
:dir_record.first_name,
:dir_record.middle_initial,
:dir_record.country_code,
:dir_record.area_code,
:dir_record.phone_number,
:dir_record.employee_number,

CURRENT TIMESTAMP);

Check();
[ek ke k kK kKK I I IR KRR hh Ik I I h* kKK * ok kKK xR IR IR Khhhh kA I I h* kKK H % Kkkkkkkk [
/* The insert has completed. We now want to commit the work so thatx/
/* others can see our updates. */
/% */
/**/
EXEC SQL
COMMIT;
Check();

Figure 22. TPF Program to Insert an Employee into the PHONE_DIRECTORY Table (Part 5
of 6)

54 TPF V4R1 Application Requester User's Guide

/**/
/* Let us now double check to show the user what is actually out */

/* on the database. */
/* */
/**/
EXEC SQL
SELECT =*
INTO
:dir_record

FROM TPFNET.PHONE_DIRECTORY WHERE EMPLOYEE_NUMBER =
:dir_record.employee _number;

Check();
/**/
/* Show the results and exit. */
/* */
/**/

printf(

"Employee added to database\n\
last name : %s\n\
first name : %s\n\

middle initial : %s\n\

employee number: %hd\n",
dir_record.last_name,
dir_record.first_name,
dir_record.middle_initial,
dir_record.employee number);

exit(0);

Figure 22. TPF Program to Insert an Employee into the PHONE_DIRECTORY Table (Part 6

of 6)

Using TPF C with TPFAR

55

Removing a Telephone Directory Entry

56

The program listed in Eigure 23 on page 571 removes an employee entry from the
corporate telephone directory.

The format of the parameters is:
rc /R last_namel/first_name[/employee_number]

where:

rc A routing code. This code is used to route messages to the application and is
not used in the example of parsing the entry.

R Remove action code.

last_ name
The last name of the person to be removed.

first_name
The first name of the person to be removed.

employee _number
An optional parameter that indicates a specific employee number. If this
parameter is included, only the person with this last name, first name, and
employee number is removed. If this parameter is omitted, all people with the
same last and first names are removed.

Notes:
1. The / character separates the different parameters.
2. The [and] characters denote an optional parameter.

For example, to remove an entry for Robert Durr from the PHONE_DIRECTORY
table, you would type:

rc /R DURR/ROBERT/1

TPF V4R1 Application Requester User’'s Guide

#include <tpfeq.h> /* Include libraries */
#include <tpfapi.h>

#include <tpfarapi.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

/**/

/* */
/* Declare the internal and external functions */
/* */

/**/
static void Check();

#pragma map(qxp2_delete, "QXP2")

extern void qxp2_delete();

EXEC SQL INCLUDE SQLCA; /* Include the SQLCA */

/**/
/* Check: */
/* This function verifies the SQLSTATE returned. If it is not 0,*/
/* a message is printed indicating what the SQLSTATE returned was. =*/

/* */
/* A customer implementing a function like this may want to include */
/* a much more robust error handling and recovery. */

/**/

static void Check()
{
if (memcmp(sqlca.sqlstate,"00000",sizeof(sqlca.sqlstate)) != 0) {
printf("FAILED\n %d %.5s\n",sqlca.sqlcode,sqlca.sqlstate);
exit(5);
}
}

Figure 23. TPF Program to Remove a Specific Entry in the PHONE_DIRECTORY Table (Part

1 of 4)

Using TPF C with TPFAR

57

R R R R s A 2 T /
/* This function will delete a entry from the database. */

/* */

/**/

void qxp2_delete()
{

short int num_input; /* The number of variables sscanf =/
/* has correctly set up. This is */
/* used to check the validity of =/
/* the parameters. */
struct miOmi *blk; /* Pointer to the input message =/

/**/

/* Declare all the variables that SQL needs to know about. */
/**/

EXEC SQL BEGIN DECLARE SECTION;

/**/
/* Set up a structure for the directory record. This structure */

/* is set up in the same order as the CREATE TABLE parameters */

/* were when the table was created on DB2. */

/**/
struct {

char last_name[18];
char first _name[9];
char middle_initial[2];
char country_code[5];
char area_code[6];
char phone_number[13];
short int employee number;
char timestamp[27];

} dir_record;

char buf[16]; /* This will be used to point to =/

/* the database to connect to. */
EXEC SQL END DECLARE SECTION;

Figure 23. TPF Program to Remove a Specific Entry in the PHONE_DIRECTORY Table (Part
2 of 4)

58 TPF V4R1 Application Requester User’'s Guide

/**/

/* Issue a connect with the name of the database to connect */
/* to. When done, the check function will check the return code, */
/* and if invalid, exit. */

/**/

strcpy (buf, &ecbptr()->ebx000);
EXEC SQL

CONNECT TO :buf;
Check();

/**/

/* Parse the message block. The first parameter is unused, and */
/* the second was already parsed. The next two must be the */
/* last name/first name combination. The employee number is */
/* optional. */
/* */

/**/
b1k = ecbptr()->celcro;
num_input = sscanf(blk->miOacc,
"Gxs [%x1lc %17[~/1/%8["/1/%hd",
dir_record.last_name,
dir_record.first_name,
&dir_record.employee_number);

Figure 23. TPF Program to Remove a Specific Entry in the PHONE_DIRECTORY Table (Part

3 of 4)

Using TPF C with TPFAR

59

switch (num_input)
/***/
/* We only have the last name and first name. The delete will =/

/* be based on just this information. */
/***/

case 2:
{
EXEC SQL
DELETE FROM TPFNET.PHONE_DIRECTORY
WHERE LAST_NAME = :dir_record.Tast_name AND
FIRST_NAME = :dir_record.first_name;

Check();
break;

}

/***/

/* We have the Tast name and first name and employee number. */
/* This will guarantee a unique identification. */
/***/
case 3:

EXEC SQL

DELETE FROM TPFNET.PHONE_DIRECTORY

WHERE LAST_NAME = :dir_record.Tast_name AND
FIRST_NAME = :dir_record.first_name AND
EMPLOYEE_NUMBER = :dir_record.employee_number;

Check();
break;

}
default:

{
printf("The input for the delete was invalid. Please check.");
exit(0);

}

/**/

/* Commit the work so others may continue. */
/**/

EXEC SQL
COMMIT;

Check();
/**/
/* Tell the user that we have completed. */
/********************** """""""""""" **********************/

printf("Employee %s %s was removed from the database.",
dir_record.first_name,
dir_record.last_name);
exit(0);
}

Figure 23. TPF Program to Remove a Specific Entry in the PHONE_DIRECTORY Table (Part
4 of 4)

60 TPF V4R1 Application Requester User's Guide

Updating a Telephone Directory Entry

The program listed in Eigure 24 on page 62 updates an employee’s entry in the
corporate telephone directory.

The format of the parameters is:
rc /U field_to_update/employee_number/new_value

where:

rc A routing code. This code is used to route messages to the application and is
not used in the example of parsing the entry.

U Update action code.

field_to_update
One of the following employee entry fields to be updated:

Last name
First name
Middle initial

Country code

> 0O 2 T

Area code
P Phone number

employee_number
The employee number of the entry to be updated.

new_value
The new value for the field indicated in the field _to_update parameter.

Note: The / character separates the different parameters.

For example, to update the country in the PHONE_DIRECTORY table entry for
Mary Stewart, you would type:

rc /U C/3/1

Using TPF C with TPFAR 61

#include <tpfeq.h> /* Include Libraries */
#include <tpfapi.h>

#include <tpfarapi.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

/**/

/* */
/* Declare the internal and external functions. */
/* */

/**/
static void Check();

#pragma map(qxp3_update,"QXP3")

extern void gxp3_update();

EXEC SQL INCLUDE SQLCA; /* Include the SQLCA */

/**/
/* Check: */
/* This function verifies the SQLSTATE returned. If it is not 0,*/
/* a message is printed indicating what the SQLSTATE returned was. =*/

/* */
/* A customer implementing a function like this may want to include */
/* a much more robust error handling and recovery. */

/**/

static void Check()
{
if (memcmp(sqlca.sqlstate,"00000",sizeof(sqlca.sqlstate)) != 0) {
printf("FAILED\n %d %.5s\n",sqlca.sqlcode,sqlca.sqlstate);
exit(5);
}
}

/**/
/* This routine updates the employee record requested. */
/**/

void gxp3_update()
{

short int num_input; /* The number of variables sscanf */
/* has correctly set up. This is */
/* used to check the validity of =/

/* the parameters. */
struct miOmi *blk; /* Pointer to the input message */
char field; /* The field in the record that =/

/* is being updated. */
char change[18]; /* The new value needed for the =/

/* field. The largest value is */

/* 18 for the last name. */

Figure 24. TPF Program to Update a Specific Entry in the PHONE_DIRECTORY Table (Part
1 of 8)

62 TPF V4R1 Application Requester User's Guide

/**/

/* Declare all the variables that SQL needs to know about. */
[Fek ke Kk ko ok ke kok ok ok ok R LR R Kkkkkkkkkkkhkkkkhkk [

EXEC SQL BEGIN DECLARE SECTION;

/**/
/* Set up a structure for the directory record. This structure */

/* is set up in the same order as the CREATE TABLE parameters */

/* were when the table was created on DB2. Two copies of this */

/* structure are needed, one for what the new record looks like, */

/* and one for what the old record looked Tike. */

/**/
struct {

char last name[18];
char first_name[9];
char middle_initial[2];
char country_code[5];
char area_code[6];
char phone_number[13];
short int employee_number;
char timestamp[27];

} dir_record;

struct {
char last_name[18];
char first_name[9];
char middle_initial[2];
char country code[5];
char area_code[6];
char phone_number[13];
short int employee_number;
char timestamp[27];

} dir_up_record;

char buf[16]; /* This will be used to point to */
/* the database to connect to. */
char column[10];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE Ul CURSOR FOR
SELECT =
FROM TPFNET.PHONE_DIRECTORY
WHERE EMPLOYEE_NUMBER = :dir_record.employee_number
FOR UPDATE OF LAST_NAME, FIRST_NAME, MIDDLE_INITIAL,
COUNTRY_CODE, AREA_CODE, PHONE_NUMBER, TIME_STAMP;

/**/

/* Issue a connect with the name of the database to connect */
/* to. When done, the check function will check the return code, */
/* and if invalid, exit. */

/**/

strcpy (buf, &ecbptr()->ebx000);
EXEC SQL

CONNECT TO :buf;
Check();

Figure 24. TPF Program to Update a Specific Entry in the PHONE_DIRECTORY Table (Part

2 of 8)

Using TPF C with TPFAR

63

/**/
/* Parse the message block. The first parameter is unused, and */
/* the second was already parsed. The third parameter is the field */
/* to be updated, the fourth, the employee number to be updated, */
/* and the last, the new value of the field. */
/% */
/**/
b1k = ecbptr()->celcro;
num_input = sscanf(blk->miOacc,

"%xs [%x1c %1c/%hd/%s",

&field,
&dir_record.employee_number,
change);
/ """""" khkhkkkhkhkhkrhhkkhhkhhhhkhrhhrsk ********************************/
/* A1l parameters are required. If any are missing, then tell */
/* the user and exit. */
/* */

/**/
if (num_input != 3)

printf("The input is invalid. The format is:\n\
Field to change/employee number/new field");
exit(0);

/***/

/* Open the cursor for input. */
/***/

EXEC SQL OPEN U1;
Check();

Figure 24. TPF Program to Update a Specific Entry in the PHONE_DIRECTORY Table (Part
3 of 8)

64 TPF V4R1 Application Requester User's Guide

/***/

/* Find the record that matches this request. */
/* */
[ek ke Kk ok ke ok ok ok ke kok ok ok ok ok R LR R Fkkkkkkkkkkkhkkhhkxk [
EXEC SQL
FETCH Ul

INTO :dir_record;
if (memcmp(sqlca.sqlstate,"02000",sizeof(sqlca.sqlstate)) == 0)
{

printf("Employee Number %d not found.",dir_record.employee number);
exit(0);

}

Check();

/***/
/* Copy the request to the update record. */
/* */

/***/

memcpy (dir_up_record.last_name,
dir_record.last_name, sizeof(dir_record));

/***/

/* */
/* Set up the update field based on what needs to be updated. =*/
/* The first bytes of the string that are needed are used. */
/* */
/% */

/***/

switch (toupper(field))
{

Figure 24. TPF Program to Update a Specific Entry in the PHONE_DIRECTORY Table (Part

4 of 8)

Using TPF C with TPFAR

65

66

case 'L':
{
memcpy (dir_up_record.last_name, change,
sizeof(dir_up_record.last_name)-1);

/***/

/* The last character must be the null. If the input */
/* was less than the length, then the null is already */
/* in place. This is only for the case when the change */
/* string is greater than or equal to the Tength of the x/
/* record. */
/* */

/***/

dir_up_record.last_name[sizeof(dir_up_record.last_name)-1]
= "\0';
break;

}

case 'F':
{
memcpy (dir_up_record.first_name, change,
sizeof(dir_up_record.first_name)-1);

/***/

/* The last character must be the null. If the input */
/* was less than the length, then the null is already */
/* in place. This is only for the case when the change */
/* string is greater than or equal to the length of the */
/* record. */
/* */

/***/
dir_up_record.first_name[sizeof(dir_up_record.first_name)-1]

= "\0';
break;

Figure 24. TPF Program to Update a Specific Entry in the PHONE_DIRECTORY Table (Part
5 of 8)

TPF V4R1 Application Requester User’'s Guide

case 'M':
{
memcpy (dir_up_record.middle_initial, change,
sizeof (dir_up_record.middle_initial)-1);

/***/

/* The last character must be the null. If the input */
/* was less than the length, then the null is already */
/* in place. This is only for the case when the change */
/* string is greater than or equal to the Tength of the */
/* record. */
/* */

/***/

dir_up_record.middle_initial
[sizeof(dir_up_record.middle_initial)-1]
- I\OI;

case 'C':
{
memcpy (dir_up_record.country code, change,
sizeof(dir_up_record.country code)-1);

/***/

/* The last character must be the null. If the input */
/* was less than the length, then the null is already */
/* in place. This is only for the case when the change */
/* string is greater than or equal to the length of the */
/* record. */
/* */

/***/
dir_up_record.country_code[sizeof(dir_up_record.country_code)-1]

= '"\0';
break;

Figure 24. TPF Program to Update a Specific Entry in the PHONE_DIRECTORY Table (Part
6 of 8)

Using TPF C with TPFAR 67

case 'A':
{
memcpy (dir_up_record.area_code, change,
sizeof(dir_up_record.area_code)-1);

/***/

/* The last character must be the null. If the input */
/* was less than the length, then the null is already */
/* in place. This is only for the case when the change */
/* string is greater than or equal to the Tength of the x/
/* record. */
/* */

/***/

dir_up_record.area_code[sizeof(dir_up_record.area_code)-1]
= "\0';
break;

}

case 'P':
{
memcpy (dir_up_record.phone_number, change,
sizeof(dir_up_record.phone_number)-1);

/***/

/* The last character must be the null. If the input */
/* was less than the length, then the null is already */
/* in place. This is only for the case when the change */
/* string is greater than or equal to the length of the */
/* record. */
/* */

/***/

dir_up_record.phone_number
[sizeof(dir_up_record.phone_number)-1]
= "\0';
break;

}

default:
printf("Invalid type to update.");
printf("valid types are L, F, M, C, A, or P");
exit(0);

Figure 24. TPF Program to Update a Specific Entry in the PHONE_DIRECTORY Table (Part
7 of 8)

68 TPF V4R1 Application Requester User's Guide

EXEC SQL
UPDATE TPFNET.PHONE_DIRECTORY
SET LAST_NAME = :dir_up_record.last_name,
FIRST_NAME :dir_up_record.first_name,
MIDDLE_INITIAL :dir_up_record.middle_initial,
COUNTRY_CODE :dir_up_record.country_code,

AREA_CODE = :dir_up_record.area_code,
PHONE_NUMBER = :dir_up_record.phone_number,
TIME_STAMP = CURRENT TIMESTAMP
WHERE CURRENT OF Ul;
Check();
EXEC SQL
COMMIT;
Check();
EXEC SQL
SELECT *
INTO

:dir_up_record
FROM TPFNET.PHONE_DIRECTORY WHERE EMPLOYEE_NUMBER =
:dir_record.employee number;

Check();

printf("Employee record updated");
printf(
"OLD %s %s %s %S %s %s %hd\n",
dir_record.last_name,
dir_record.first_name,
dir_record.middle_initial,
dir_record.phone_number,
dir_record.country_code,
dir_record.area_code,
dir_record.employee_number);
printf(
"NEW %s %s %S %s %S %s %hd\n",
dir_up_record.last_name,
dir_up_record.first_name,
dir_up_record.middle_initial,
dir_up_record.phone_number,
dir_up_record.country_code,
dir_up_record.area_code,
dir_up_record.employee_number);

exit(0);

Figure 24. TPF Program to Update a Specific Entry in the PHONE_DIRECTORY Table (Part

8 of 8)

Using TPF C with TPFAR

69

Displaying Entries in the Telephone Directory

The program listed in [Eigure 25 on page 71| displays an employee entry in the
corporate telephone directory.

The format of the parameter is:
rc /D last_name[%][/first_name]

where:

rc A routing code. This code is used to route messages to the application and is
not used in the example of parsing the entry.

D Display action code.

last_ name
The last name of the employee entry to be displayed.

% The % is an optional parameter used to retrieve information sharing common
characteristics, such as similar names. See the examples that follow.

first_ name
The first name of the employee entry to be displayed.
Notes:
1. The / character separates the different parameters.
2. The % can only be used when the first_name parameter has been omitted.
3. The [and] characters denote an optional parameter.

For example, to display the entry for Takao Chiba, you would type:
rc /D CHIBA/TAKAQ

To display the entries for everyone who has a last name that begins with S, you
would type:

rc /D S%

To display the entries for everyone in the database, you would type:
rc /D %

70 TPF V4R1 Application Requester User's Guide

#include <tpfeq.h> /* Include libraries */
#include <tpfapi.h>

#include <tpfarapi.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

/**/

/* */
/* Declare the internal and external functions. */
/* */

/**/
static void Check();

#pragma map (qxp4_display,"QXP4")

extern void gqxp4_display();

EXEC SQL INCLUDE SQLCA; /* Include the SQLCA */

/**/
/* Check: */
/* This function verifies the SQLSTATE returned. If it is not 0,*/
/* a message is printed indicating what the SQLSTATE returned was. =*/

/* */
/* A customer implementing a function like this may want to include */
/* a much more robust error handling and recovery. */

/**/

static void Check()
{
if (memcmp(sqlca.sqlstate,"00000",sizeof(sqlca.sqlstate))!= 0) {
printf("FAILED\n %d %.5s\n",sqlca.sqlcode,sqlca.sqlstate);
exit(5);
}
1

Figure 25. TPF Program to Display a Specific Entry in the PHONE_DIRECTORY Table (Part

1of 7)

Using TPF C with TPFAR

71

/**/

/* qxp4_display: */
/* This routine will display the data asked for from DB2. It will =*/
/* parse the rest of the message and issue a query depending on */
/* what information was passed. */

/**/

void gxp4_display()
{

short int num_input; /* The number of variables sscanf */
/* has correctly set up. This is */
/* used to check the validity of */

/* the parameters. */
struct miOmi *blk; /* Pointer to the input message */
/ """""" *Ahkhkhhhhkhhhhhhhhhhhkhhkhkx%k ********************************/
/* Declare all the variables that SQL needs to know about. */

/**/

EXEC SQL BEGIN DECLARE SECTION;

[ek ke k kK kKK I I IR KRR hh Ik I I h* kKK * ok kKK xR IR IR Khhhh kA I I h* kKK H % Kkkkkkkk [
/* Set up a structure for the directory record. This structure */
/* is set up in the same order as the CREATE TABLE parameters */
/* were when the table was created on DB2. */
/**/
struct {
char last _name[18];
char first_name[9];
char middle initial[2];
char country_code[5];
char area_code[6];
char phone_number[13];
short int employee_number;
char timestamp[27];
} dir_record;

char buf[16]; /* This will be used to point to */
/* the database to connect to. */
EXEC SQL END DECLARE SECTION;

Figure 25. TPF Program to Display a Specific Entry in the PHONE_DIRECTORY Table (Part
20f7)

72 TPF V4R1 Application Requester User's Guide

/**/
/* There are two possible cursors needed. The first one is used */

/* when only the last name has been given. The second one is */
/* used when the last name and first name are given. */
/* */

/**/

/**/

/* Declare a cursor D1 for use when only the last name is given. */
/**/

EXEC SQL DECLARE D1 CURSOR FOR
SELECT LAST_NAME,FIRST_NAME,
PHONE_NUMBER, EMPLOYEE_NUMBER FROM TPFNET.PHONE_DIRECTORY
WHERE LAST_NAME LIKE :dir_record.last_name
ORDER BY LAST_NAME,FIRST_NAME;

/**/

/* Declare a cursor D2 for use when the last name and the first */
/* name are given. */
[k gk ek ok ko K T T Kkkkkkkkkkkkhkkkkkkkkkkkkk kK

EXEC SQL DECLARE D2 CURSOR FOR
SELECT =
FROM TPFNET.PHONE_DIRECTORY
WHERE LAST_NAME = :dir_record.last_name AND
FIRST_NAME = :dir_record.first_name;

/**/
/* Issue the connect with the name of the database to connect */
/* to. When done, the check function will check the return code, */
/* and if invalid, exit. Ebx000 was set up in the root segment with*/

/* the name of the database to connect to. */
[k Fkdk ke kkk ke ok ko k R R R R R R R R R L R R R 2 R R R R T T /
strcpy (buf, &ecbptr()->ebx000);
EXEC SQL
CONNECT TO :buf;
Check();

/**/

/* Parse the message block. The first parameter is unused, and */
/* the second was already parsed. If there is a first name, it is =*/
/* separated from the last name by a /. */
/* */

/**/
blk = ecbptr()->celcro;
num_input = sscanf(blk->miOacc,
"%xs [%x1c %17[~/]1/%8s",
dir_record.last_name,
dir_record.first_name);

/******************************** """"""""" *******************/
/* Based on the number of successful conversions, we can tell */
/* which query is requested. */

/**/

switch (num_input)

{

Figure 25. TPF Program to Display a Specific Entry in the PHONE_DIRECTORY Table (Part

3 of 7)

Using TPF C with TPFAR

73

case 1:

{

/***/

/* */
/* Since we are using the LIKE attribute on the WHERE clause, */
/* we must append a "%" at the end of the last_name. */
/* */

/***/

strcpy((strchr (dir_record.last_name,'\0')),"%");

/***/
/* Only the last name is given. Give back all the names for =/
/* all the people with a Tast name like the one entered. */
/* The first thing that needs to be done is the cursor opened. */
/***/
EXEC SQL OPEN D1;

Check();

/***/

/* Now that the cursor is opened, get the first row of data. %/
/***/

EXEC SQL FETCH D1 INTO
:dir_record.last_name,
:dir_record.first_name,
:dir_record.phone_number,
:dir_record.employee_number;

/***/
/* Before we call check, check for end of table. If it is, */
/* there were no entries for this query, so respond back with =/

/* this information. */
/***/

if (memcmp(sqlca.sqlstate,"02000",sizeof(sqlca.sqlstate))== 0)
{
printf("No entries found for name %s",dir_record.last_name);

else

{

Figure 25. TPF Program to Display a Specific Entry in the PHONE_DIRECTORY Table (Part
4 0f 7)

74 TPF V4R1 Application Requester User’s Guide

short int count; /* Count has the number of rows */

/* returned from the query. */
count = 0; /* No rows printed yet. */
Check(); /* Check the results of the first =/

/* fetch. */
printf(

"Last Name Fst Name Phone ENum") ;

[Fk ek ko ek ok ok R LR Kkkkkkkkkkkkkkkhkkk [
/* While there is more information, send it all back to the */
/* person who issued the query. */

/**/
while (memcmp(sqlca.sqlstate,"00000",sizeof(sqlca.sqlstate))

{
printf("%s %s %s %hd\n",
dir_record.last_name,
dir_record.first_name,
dir_record.phone_number,
dir_record.employee_number);
count++;

/**/

/* Get the next row of data from the query. */

/**/

EXEC SQL FETCH D1 INTO
:dir_record.last_name,
:dir_record.first_name,
:dir_record.phone_number,
:dir_record.employee_number;

/**/

/* Again, before we call check, we must see if this is the =/

/* last record. */
/**/

if (memcmp(sqlca.sqlstate,"02000",sizeof(sqlca.sqlstate))==0)
{

printf("%1.0d rows found.",
count);
}

else

Check();

Figure 25. TPF Program to Display a Specific Entry in the PHONE_DIRECTORY Table (Part
50f 7)

Using TPF C with TPFAR 75

case 2:

{

/***/
/* The last name and the first name were given. Return */
/* the entire record(s) of the person with this name. */
/* The first thing that needs to be done is the cursor opened. */
/***/
EXEC SQL OPEN D2;

Check();

/***/

/* Now that the cursor is opened, get the first row of data. %/
/***/

EXEC SQL FETCH D2 INTO
:dir_record;

/***/

/* Before we call check, check for end of table. If it is, %/
/* there were no entries for this query, so respond back with =/
/* this information. */

/***/

if (memcmp(sqlca.sqlstate,"02000",sizeof(sqlca.sqlstate))== 0)
{

printf("No entries found for name %s",dir_record.last_name);

else

{

Figure 25. TPF Program to Display a Specific Entry in the PHONE_DIRECTORY Table (Part
6 of 7)

76 TPF V4R1 Application Requester User's Guide

short int count; /* Count has the number of rows */

/* returned from the query. */
count = 0; /* No rows printed yet. */
Check(); /* Check the results of the first =/
/* fetch. */
printf(
"Last Name Fst Name MI Phone Country Area ENum");
[Fk ek ko ek ok ok R LR Kkkkkkkkkkkkkkkhkkk [
/* While there is more information, send it all back to the */
/* person who issued the query. */

/**/

while (memcmp(sqlca.sqlstate,"00000",sizeof(sqlca.sqlstate))

==0)
{

printf(

"%S %S %S %S %S %s %hd\n",

dir_record.last_name,
dir_record.first_name,
dir_record.middle_initial,
dir_record.phone_number,
dir_record.country_code,
dir_record.area_code,
dir_record.employee_number);

count++;
EZT T R 2 2 R R R R R T T T IR E kkxxrhhhhhh kR r*hhh Kk kk /
/* Get the next row of data from the query. */

/**/

EXEC SQL FETCH D2 INTO
:dir_record;

/**/
/* Again, before we call check, we must see if this is the =/

/* last record. */
/**/

if (memcmp(sqlca.sqlstate,"02000",sizeof(sqlca.sqlstate))==0)

printf("%1.0d rows found.",
count);
1

else

Check();
}
}
}
break;
}
default:
printf("Invalid input for display option. Please re-enter\n");
}
exit(0);
}

Figure 25. TPF Program to Display a Specific Entry in the PHONE_DIRECTORY Table (Part
7 of 7)

Using TPF C with TPFAR 77

78 TPF V4R1 Application Requester User's Guide

Using Assembler Language with TPFAR

This section contains examples of TPF applications written in assembler language
that use TPFAR to offload data from TPF.

Offloading Data from the TPF System

Another type of application using TPFAR is a back end program to move the data
from TPF to DB2. A back end program is most appropriately used when many
different ECBs are inserting single rows into a DB2 table that does not need to be
current with the TPF database. An example of this type of application is an
application server table (AS) containing flight reservations used for statistical
purposes only. (The example is shown coded in assembler language).

Instead of issuing SQL CONNECT, INSERT, and COMMIT commands every time a
request comes in, the application queues the data in a file-chained area. The back
end application then issues the SQL CONNECT command, issues any number of
SQL INSERT commands, and then issues an SQL COMMIT command. Because an
SQL CONNECT and COMMIT command are not issued for each SQL INSERT
command, processing is significantly more efficient.

Note: This type of back end processing can be used only when the data on the
remote AS does not need to be current with the TPF data.

Another benefit of offloading is that if the connection to the AS is lost, the TPF
applications can continue to queue the messages and, when the connection is
brought back, the data can be offloaded.

Setting Up the Application Server

For the assembler examples to work, two tables, INSERT_DRIVER and
LOG_DRIVER, must be created on the remote DB2 subsystem. You can do this in
the DB2 system through the use of interactive SQL. On MVS, the mechanism used
is called SQL Processor Using File Input (SPUFI) application. SPUFI is a way to
execute SQL commands from a TSO terminal.See the DB2 Application

Programming and SQL Guide for more information on SPUFI. [Eigure 26 an page 80
shows the two SQL CREATE TABLE commands needed to create these tables.

© Copyright IBM Corp. 1994, 2002 79

CREATE TABLE TPFNET.INSERT DRIVER
(IDENTIFIER CHAR(8),
TIME_STAMP TIMESTAMP NOT NULL,

ECB_ADDR INTEGER NOT NULL,
CPU_ID CHAR(1),
NUM_LEFT INTEGER NOT NULL,
NUM_DONE INTEGER,

NUM_INSERT INTEGER,
NUM_FINDS INTEGER,
NUM_TO_LOG INTEGER,
PRIMARY KEY(ECB_ADDR, NUM_LEFT, TIME_STAMP));

CREATE TABLE TPFNET.LOG_DRIVER
(IDENTIFIER CHAR(8) NOT NULL,
TIME_STAMP TIMESTAMP NOT NULL,

ECB_ADDR INTEGER NOT NULL,
CPU_ID CHAR(1) NOT NULL,
NUM_DONE INTEGER NOT NULL,

PRIMARY KEY (ECB_ADDR, NUM_DONE, TIME_STAMP));

Figure 26. SQL CREATE TABLE Commands to Create the INSERT_DRIVER and
LOG_DRIVER Tables

These table commands have a primary key. Every primary key requires a primary
index. These indexes must be created before the table definitions are complete. A
primary key identifies a specific column or columns in a table that uniquely define
each row in the table. Each row in the table must have a primary key value that is
unigue and not null. A primary index on a table allows access to a specific row of
data without having to read every row in the table each time.

Eigure 27 shows an example of the two SQL CREATE INDEX commands that need
to be run for the CREATE TABLE definitions to be complete.

CREATE UNIQUE INDEX TPFNET.INSERT_D_INDEX ON TPFNET.INSERT_DRIVER
(ECB_ADDR ASC,
NUM_LEFT DESC,
TIME_STAMP DESC);

CREATE UNIQUE INDEX TPFNET.LOG_D_INDEX ON TPFNET.LOG_DRIVER
(ECB_ADDR ASC,
NUM_DONE DESC,
TIME_STAMP DESC);

Figure 27. Example of SQL CREATE INDEX Commands to Create a Primary Index

Assembler Program QXRK

Segment QXRK is shown in Eigure 28 on page 82. The beginning of this program is
a simple command front end interface. Segment QXRK parses the input message
and passes the parameters to the back end program (segment QXRL in m

. It also calculates the time it takes the back end program to complete
by storing the time of day (TOD) clock before and after the call to the back end
program. Before completing, this segment informs you if the function completed
successfully, what the invocation parameters were, and how long it took to run. This
application is started using a command, which can be ZTEST or any other
command that points to this program. An example of a ZTEST command to start
this application is:

ZTEST num_insert num_find num_com [text] [RDB-rdbname]

80 TPF V4R1 Application Requester User's Guide

where:

num_insert
The decimal number of inserts for the application to perform.

num_find
The decimal number of finds to do before each insert. This can be used to
simulate the average number of finds that are needed. The program repeatedly
finds RRT record ordinal number 0.

num_com

The decimal number of inserts to do before a log record is inserted and an SQL
COMMIT command is issued.

text
An 8-byte field used to uniquely define records.

rbdname

An 16-byte field that indicates the remote relational database name to connect
to.

Using Assembler Language with TPFAR 81

PRINT NOGEN
KRR AR KRR AR AR A AT A A KA A AT H R A AT H A A R KA AT A AR F A K AT KA AT A AR F AT AT R K
* THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM "
* COPYRIGHT = 5748-T13 (C) COPYRIGHT IBM CORP 1979,1989
* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM
* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083
e o ook e e e e o
BEGIN NAME=QXRK,VERSION=ZZ,IBM=YES CREATED 05/03/91
*
S S oo ook e ook ek o ke ek o ek oo ek ook e ek ek ko ok

MODULE NAME..... QXRK (PDS NAME)

RELATED MODULE.. NONE

DOCUMENT NAME... NONE

DESCRIPTION..... ZTEST DRIVER TO START TPFAR INSERT PGM
LEVEL......oovtt VERSION 1 MODIFICATION 0

FUNCTION... THIS SEGMENT JUST CALLS THE TPFAR INSERT DRIVER
WITH THE VALUES PASSED

MODULE ATTRIBUTES..

ECB-CONVENTIONS....... NONE
REGISTER-CONVENTIONS. .NONE

L R S R S N
L R S S N

EEE R R R R R R R R R R R R Rt R R R R R R e R R R R R R R R R R R R R e Rt

« INTERFACE REQUIREMENTS: *
* *
* DEPENDENCIES... TPFAR MUST BE GENERATED IN SYSTEM. *
* RESTRICTIONS... NONE *
* *
* ECB * INPUT * OUTPUT. . *
K mmmmmm - ——— e e e e e e e ————— e e TP PP *
* WORK AREA.... * * *
* DATA LEVELS.. * MESSAGE BLOCK * *
* REGISTERS.... * * *
* *

Sk e ok o ko ke ok e o ok ook ok ke ok ok ok ke ko ok o ko ko ok e ko ke ko ke ok ko ok
EXTERNAL-REFERENCES. . NONE
ACRONYMS... (& DEFINITIONS)

EXIT-NORMAL.. PRINT OUT STATISTICS FOR INSERTS AND EXIT
-ERROR... PRINT OUT ERROR MESSAGE AND EXIT

EE S R
EE S I I

B R R e e e T T T R e TS e ST e e L s L e et

SPACE 5

hAAIA A I A AR A AR A A I I AR IR I A I I A A I A A A hhhkhhhkhhhkhhhhhhhhhhhhhhhhhhrrx

Parse the message block Tooking for the parameters.

When finished, we can release the message block.

* % X X X
* % X X X

EE R R R R R R R R R R R R R R R R T R T S T T T T Tt Lt

SPACE 2
BPKDC EXECUTE=Y,BPKD=DB2IBPKD,HELP=QXRKHELP

Figure 28. TPF Program to Call the Insert Driver with the Values Passed (Part 1 of 5)

82 TPF V4R1 Application Requester User’s Guide

EE R S T R S R R e R R e

insert program.

accessed.

L I T R R

The parameter area needs to be set up for the call to the
The first parameter is the number of
inserts the program is to do, the second is the number of
finds the program is to do between inserts, the third is
the number of inserts to do before inserting a log record
and committing, the forth parameter is an optional field
that is placed in the inserted record.
is a optional keyword parameter for the RDBNAME to be
If not given, it will default to DB23TST.

The last parameter

L T R R

EE R R R R R R R R R R R Rk R R R R R R R R R R R R e R R R R R R R

SPACE 2

DCTBPK REG=R1

L R4, BPKOPM1
L R15,0(,R4)
ST R15,EBX000
L R4, BPKOPM2
L R15,0(,R4)
ST R15,EBX004
L R4, BPKOPM3
L R15,0(,R4)
ST R15,EBX008
L R4, BPKOPM4

MVC EBX012(8),=C'

SR R15,R15

ICM R15,B'0001',0(R4)

BZ QXRKCONT

BCTR R15,0

EX R15,QXRKMVC
QXRKCONT DS OH

L R4, BPKOPM5
*

SR R15,R15

ICM R15,B'0001',0(R4)

BZ QXRKCONT2

MVC EBX020(16),=C'

BCTR R15,0

EX R15,QXRKMVC2

B QXRKCONT3
QXRKCONT2 DS OH

Set up format of param 1ist
Set up the first parameter
(Number of inserts)
In EBX000
Set up the second parameter
(Number of finds)
In EBX004
Set up the third parameter
(Number before commit)
In EBX008
Set up the forth parameter
(Informational log)

" Initialize field to blanks
Clear for insert
Get Tength of field
No input, Teave blank
Minus 1 for MVC
Move the input field

Set up the fifth parameter
(RDBNAME)
Clear for insert
Get length of field
No input, use default
' Init field to blnks
Minus 1 for MVC
Move the input field
Continue
Move the default RDBNAME

MVC EBX020(16),=C'DB23TST '

QXRKCONT3 DS OH

Figure 28. TPF Program to Call the Insert Driver with the Values Passed (Part 2 of 5)

Using Assembler Language with TPFAR

83

EE R S S R R S R Rk L e

* *
* Issue the message indicating that the inserts have started. =*
* *

S S o o ook o oo ok e o oo ok ok e o ek ok
SPACE 2
WTOPC PREFIX=QXRK,TIME=YES,NUM=02,LET=I,CHAIN=NO,ENDOFM=YES, X
TEXT="'STARTING INSERTS'

R R e e e e e T T T e e T e e S T e e L e s L e e

* *
* Set up the interface register, R6, and release the block. =*
* *

EEE R S R Rk

SPACE 2
RELCC DO Release the parse block
LA R6,EBX000 Interface is in R6

B R R R R R R R e R R R T R e S T T T L St L Lt

Store the TOD clock before the call. On return from the
insert, the clock time will be again stored so that the
time that it took for all the inserts to work can be
calculated.

* %k X X X %
L R

S S oo ook ok ko o ko e o o e ook e e o ek ok
SPACE 2
STCK EBX040
ENTRC QXRL CALL THE INSERT
STCK EBX048

Figure 28. TPF Program to Call the Insert Driver with the Values Passed (Part 3 of 5)

84 TPF V4R1 Application Requester User's Guide

EE R S T R S R R e R R e

at the start.

* %k ok X X

of the time to a Tong.

In order to work with the STCK, we must change the format
This is done by inserting a x'4D'

* % % ok %

R R R e e T R TR e S T e L L e s L s e

SPACE
MvVC
MvC
MVI
MVI
LD

SD

DD

AD

ST
CvD
UNPK
MvZ
MVI

SR
SR

ST
CvD
UNPK
Mvz
MVI
LTR
BZ
WTOPC

EXITC
QXRKGOOD DS
WTOPC

EXITC
QXRKHELP DS
WTOPC

EXITC

Figure 28. TPF Program to Call the Insert Driver with the Values Passed (Part 4 of 5)

2

EBX080(15) ,EBX040
EBX041(15),EBX080
EBX040,X'4D"
EBX048,X'4D'
0,EBX048

0,EBX040
0,=D"'1000"

0,DUBB

0,EBX040
R3,EBX044

R2,R2
R2,=F'1000'

R3,EBX056
R2,EBX080
EBX060(4) , EBX086(2)
EBX061(3),EBX060
EBX060,C" .

R3,EBX044
R2,R2

R2, EBX000

R2,R2

R2,=F'1000"
R3,EBX064

R2, EBX080

EBX068(4) ,EBX086(2)
EBX069(3) ,EBX068
EBX068,C" .

R6,R6

QXRKGOOD

Copy for move

Copy back over one space
Insert a X'4D' in front of
both numbers

Load double the ending time
Subtract the starting time
Divide by 1000 to get
milliseconds

This add will shift the high
order fullword of a double to
last four bytes for usage as
an integer.

Store the number.

Load the last four bytes.
This is the number of
milliseconds that elapsed.
Clear R2 for divide.

Divide by 1000 to get num. of
seconds.

Save number of seconds.
Convert the remainder to printable
characters.

Set up the zone for the characters.

Add the decimal point.

Number of milliseconds

Clear for divide

Divide by the number of inserts
Clear for divide

Divide to get seconds

Save the number of seconds

Convert the remainder to printable
characters.

Set up the zone for the characters.

Add the decimal point.
If the return was good,
issue the good message.

PREFIX=QXRK, TIME=YES,NUM=04,LET=E,CHAIN=NO, ENDOFM=YES,
TEXTA=QXRKERR, SUB=(DECA, EBX056, CHARA , EBX060,
DECA,EBX000,DECA, EBX004,
DECA,EBX008,CHARA,EBX012,CHARA, EBX020) ,COMP=YES

OH

PREFIX=QXRK, TIME=YES,NUM=03,LET=I,CHAIN=NO, ENDOFM=YES,
TEXTA=QXRKMSG1,SUB=(DECA,EBX056,CHARA, EBX060,
DECA,EBX064,CHARA,EBX068,DECA, EBX000,DECA, EBX004,
DECA,EBX008,CHARA,EBX012,CHARA, EBX020) , COMP=YES

OH

PREFIX=QXRK, TIME=YES,NUM=01,LET=E,CHAIN=NO, ENDOFM=YES,

TEXTA=QXRKMSG

Using Assembler Language with TPFAR

> >

> >

85

QXRKMSG DC AL1(QXRKMSGE-QXRKMSG-1),AL1(#CAR)
DC C'ZDB2I INSERTS FINDS LOGGING R-RDBNAME',AL1(#CAR)
DC C' WHERE INSERTS - NUMBER OF INSERTS TO DO',ALI(#CAR)
DC C' FINDS - NUMBER OF FINDS TO DO BEFORE INSERT',AL1(#CAR)
DC C' LOGGING - AMOUNT TO WAIT BEFORE COMMITTING',ALL(#CAR)
DC C' RDBNAME - RDBNAME TO CONNECT TO'

QXRKMSGE EQU *

QXRKMSGL DC ALL(QXRKMSGLE-QXRKMSG1-1)

DC C'DONE WITH INSERTS, TIME= ',AL1(#CAR)
DC C'AVERAGE PER INSERT= ',AL1(#CAR)

DC C'NUM INSERTS= ', AL1(#CAR)

DC C'NUM FINDS= ',AL1(#CAR)

DC C'LOGGING= ", AL1(#CAR)

DC C'IDENTIFIER = ',AL1(#CAR)

DC C'RDBNAME= '

QXRKMSG1E EQU *

QXRKERR DC AL1(QXRKERRE-QXRKERR-1)
DC C'AN ERROR OCCURRED. '

DC C'TIME= wurernnnnn onn. ' ,AL1(#CAR)
DC C'NUM INSERTS= ' ,AL1(#CAR)
DC C'NUM FINDS= ' ,AL1(#CAR)
DC C'LOGGING= *,ALL(#CAR)

DC C'IDENTIFIER = ' ,AL1(#CAR)

DC C'RDBNAME= '
QXRKERRE EQU =
QXRKMVC MVC EBX012(0),1(R4)
QXRKMVC2 MVC EBX020(0),1(R4)
DS 0D
DUBB DC X'4F08000000000000"
DB2IBPKD BPKDC (PRD,INSERTS,,8),
(PRD,FINDS, ,8),
(PRD,LOGGING, ,8) ,
(P, IDENT,,8),
(K,RDBNAME, 1,16)

>< > > X<

LTORG
FINIS QXRK
END

Figure 28. TPF Program to Call the Insert Driver with the Values Passed (Part 5 of 5)

Assembler Program QXRL

86

Segment QXRL does the SQL work of the assembler package. It takes as input the
parameters that were parsed in the QXRK and does the requested inserts.

The commit log is used to indicate how far the program has gone, if a problem
occurs. By inserting this record into the LOG_DRIVER table, you can be sure that,
if the next issued SQL COMMIT command works, all the inserts done up to that
point have been placed in the tables. For example, you want to insert 10,000
records into the table. You would issue an SQL COMMIT command at a given
interval to prevent the entire table from locking for the whole duration. If, after
inserting 5,000 records, a problem occurred on TPF or the remote AS or the link
between the two, when the problem was resolved, you would restart the program
from that point, rather than from the beginning. By looking at the LOG_DRIVER
table, you would be able to tell what record was last committed, and you could then
restart your program from this point. Because this program is just an example, the
recovery logic is not included but must be considered when writing this type of
application.

TPF V4R1 Application Requester User’'s Guide

This program issues a find and wait for the number of times that was asked for in
the num_find parameter. Because this program is only locating a randomly chosen
record (RRT record 0), actual performance can differ.

Using Assembler Language with TPFAR 87

PRINT NOGEN

R e e e T T T e T S e e S e e e L e s L e L

* THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM "

* COPYRIGHT = 5748-T13 (C) COPYRIGHT IBM CORP 1979,1989

* LICENSED MATERIAL - PROGRAM PROPERTY OF IBM

* REFER TO COPYRIGHT INSTRUCTIONS FORM NUMBER G120-2083

e o ook e e e e o
BEGIN NAME=QXRL,VERSION=ZZ,IBM=YES

*

S S oo ook e ook ek o ke ek o ek oo ek ook e ek ek ko ok

* *
* MODULE NAME..... QXRL *
* RELATED MODULE.. None *
* DOCUMENT NAME... None *
* DESCRIPTION..... Issues inserts into a remote database *
* LEVEL.......en.. VERSION 1 MODIFICATION 0 *
* *
* FUNCTION... This driver issues inserts into a remote *
* database. Depending on the input values, this =*
* could be used to simulate a real environment. =*
* *
* MODULE ATTRIBUTES.. *
* TYPE.......... "E' (ECB CONTROLLED) *
* *
* ECB-CONVENTIONS....... NONE USED *
* *

EEE R R R R R R R R R R R R Rt R R R R R R e R R R R R R R R R R R R R e Rt

DATA LEVELS.. = D1, D2, and DF free =« D1, D2, and DF free =«
REGISTERS.... * R6 POINT TO INPUT * R6 = 0 - GOOD RETURN =
PARAMETER * R6 = 0 - BAD RETURN =*

EE R R R R R R R R R R R Rk R R R R R R R R R R S R Rk Sk

* INTERFACE REQUIREMENTS: *
* *
* DEPENDENCIES... This will only work with the TPFAR function =*
* RESTRICTIONS... NONE *
* *
* ECB * INPUT.. * QUTPUT.. *
Kk kkkkkkhkkhkkhkkkhhkkkhhkkkhkkhkhkkhhkhkhhkhkhkkhhkkhhkhkhkkhkhkkhhkkhhkkhkkhkhkkhkhkkhkhkkkkx*
* WORK AREA.... =* * *
*

*

*

EXTERNAL-REFERENCES. .
ROUTINES.... NONE
DATA AREAS.. NONE
ACRONYMS. ..

EXIT-NORMAL.. R6 = 0
-ERROR... R6 != 0

INTERFACE REGISTER R6 -

R6 MUST POINT TO A AREA THAT LOOKS LIKE THE FOLLOWING:

F - The number of inserts this call is to do
F - The number of find and waits to be issued
before an insert.
F - The number of inserts to do before a log record is

inserted into the log table and a commit issued

CL8 - A 8 byte token used to identify different inserts
into the table. This is included on both the
inserts and the log records.

CL16 - A 16 byte RDBNAME used to connect to.

LR R R R R R R
L I R R N N N S I N N N S N

EE R R R R R R R R R R R R R S R e S T T T T Tt Lt

Figure 29. TPF Program to Insert Multiple Records into a Table (Part 1 of 8)

88 TPF V4R1 Application Requester User's Guide

Pseudo Code

1. Issue the SQL WHENEVER command for SQLERROR and
SQLWARING to go to the error handler on any bad return.
2. Set up addressability to the SQL area.
3. Set up addressability to the save area and save
the calling programs RO through R7.
4. Set up addressability to the SQLCA area.
5. Save the ECB address and the CPUID in the save area.
(These are needed in a local variable for SQL)
6. Issue the SQL CONNECT to the RDB name passed in the
parameter area.
7. Clear the total number of inserts completed.
8. Set up the total number of inserts to do from the
parameter area.
9. While the total number of inserts to do is > 0
A. Set the number of inserts completed since the Tast
commit to 0.
B. While the total number of inserts to do is > 0 and
(Number of inserts before logging is 0 or
the number of inserts completed since the last
commit is < the number of inserts to do before
Togging)
. Set up the number of find and waits before
an insert from the parameter area.
2. While the number of find and waits before an insert*
is >0
a. Find RRT record 0 on Tevel F
b. Release the record on level F
c. Decrement the number of find and waits before
an insert.
3. Issue the SQL INSERT to insert a record into the
INSERT_DRIVER table.
4, Decrement the total number of inserts to do.
5. Increment the number of inserts completed since
the last commit.
C. If the number of inserts before logging is NOT O
1. Issue the SQL INSERT to insert a record into the
LOG_DRIVER table.
D. Issue the SQL COMMIT command to commit all inserts.
10.Restore the calling programs R6 and R7.
11.Set R6 to 0 to indicate that this is a good return.
12.Release the Blocks used for the SQL area and the
save/SQLCA area.
13.Return to the calling application.

1

EE I I R R R N G R I S R

On any error from a SQL call, the following will be done:

1. Issue the SQL WHENEVER command for SQLERROR and
SQLWARING to continue on any bad return. This will
stop an infinite loop if the SQL ROLLBACK we are
about to issue fails.

2. Issue a SQL ROLLBACK command to rollback any work that

has been completed.

. Restore the calling programs R6 and R7.

. Set R6 to 4 to indicate that this is a error return.

5. Release the Blocks used for the SQL area and the
save/SQLCA area.

6. Return to the calling application.

B~ w

L T R R R R N N S . N I R I N I I S S N I I S R R I R S S N

EEE I T R R S R R I SR T I T I R B T R

EE R S R R R Rk

Figure 29. TPF Program to Insert Multiple Records into a Table (Part 2 of 8)

Using Assembler Language with TPFAR 89

EJECT
hhkk kA r kA k kA hhhhkdhk kA hhhhh bk d bk hhhkdhhdhhhhhhhhhdrhdhhhhdhhdrhdrhdhhrhdhrisx
* If any error occurs, go to the bad return routine to issue a *
* rollback. *
kkhkkkkhkkkkhkkhkhkkkhhkkkhkkhhkkhhkkhhkhhhkkhhkkhhkhkhkkhhkkhhkkhhkkhkkhkhkkhhkhkhhkkkhkkhkhkkhkkhkkhkkkk**

EXEC SQL WHENEVER SQLERROR GO TO QXRL_BAD

EXEC SQL WHENEVER SQLWARNING GO TO QXRL_BAD

SPACE 1
hhhkkhhhkhkhhhhhkhkdhhhhhhhhhhdhhhhhdhhrhhhhhhdhhdrhhhhhhdhhdrhdrhdhhhrdrisx
* Get and set up a block for the SQL area *
hhkhkkkkhkhkhhhhhhhkdhhhrhdhhhhdhhdhhhdhhrhhhhhhdhhdrhhhhhhdhhdrhdrhdhhhhdhrisx

GETCC D1,L4 Get a 4k block on Tevel 1.

L R2,CEICR1 Set up addressability.

LA R3,4095 Load the length of the block

XR R5,R5 Clear length so the MVCL will
* clear storage.

MVCL R2,R4 Clear the work block.

L R2,CEICR1 Re-establish addressability.

USING SQLDSECT,R2

SPACE 1
ER R R R R R R R R R R R R R R R RS R R R R R R R R R R SR R R R R R R R R R R R R R R L R R R R R S
* Get and set up a block for the SQLCA and a save area. The save *
* area will be the first 100 bytes. *
kkhkkkkkkhkkhkkhhkkkhhkkhkkhhkkhhkhkkhhkhkhhkkhhkkhhkhkhkkhhkkhhkkhhkkhkkhkhkkhkhkhkhhkkkhkkhkhkkhkkhkhkkhkk**

GETCC D2,L4 Get a 4K block on Tevel 2.

USING SAVEAREA,R1

L R1,CE1CR2 Addressability to the block.

LA R3,100(,R1) Bump past the save area.

ST™M RO,R7,REG_SAVEL Save the registers

ST R9,ECB_ADDR Put the ECB address in the save
* area.

MvC CPU_ID,CEICPD Move the CPUID into the save area

USING DSQLCA,R3 Access to the SQLCA

USING PARAM, R6 Access to the parameter area

SPACE 1

Figure 29. TPF Program to Insert Multiple Records into a Table (Part 3 of 8)

90 TPF V4R1 Application Requester User's Guide

EEE R

* Connect to the remote database. The RDBNAME is passed as a *
* parameter. *
Kkokk ok kkok ok ok kkokk ok okk ok ok ok kok ok kX B T hkkkkkkkkhhkhkhkhkkk

ST™M RO,R7,REG_SAVE Save registers over SQL call

EXEC SQL CONNECT TO :RDBNAME

L R1,CE1CR2 Reload save area

LM RO,R7,REG_SAVE Reload registers

SPACE 1
khkkkhkkhkkhkkkhkhkkhkkhhkkhhkkhhkkhhkhhhkkhhkkhhkkhhkhkhhkkhhkkhhkkhhkhkhkkhhkkhhkhkhhkkhkhkkhkhkkhkkhkkhkkhkk**x
* Set up R4 for the total number of inserts completed. *
KA AR A A R A A R I AR I A I AR I A h I Ak h A hhhhhhhdhhhkhhhhhhdhhdhhdhhhhdhhdrhdxdhhhiixsd

SPACE 1

XC TOT_COMPLETE,TOT_COMPLETE None completed so far.

L R4 ,NUM_INSERT Number of inserts to do
hkkhhkkhhhkhhhhhhhhhhhhhhhhhrhhrhhhhhhdhhdhrhhhhhhdhhdhrhdhhdrhdhhdhrhdrhrhhxsk
* Do while # of inserts is > 0 *

AR AR AR R A R R A A A A A A A A A A A A A A A KA KA ARk hhhhhhhhhhhhhhhdhdhhdhdhdhdhdhdhdhdhdhdhdkdx*x
QXRLWH1 DS OH

LTR R4,R4 Are there more inserts to do?

BZ QXRLWH1D No all finished.

kkhkkkkhkkhkkhkkhhkkhkhhkkhkhkkhhkkhhkhkhhkkhhkkhhkkhhkhkhkkhkhkkhhkkhhkhkhkkhkhkkhhkhkhkkhkhkkhkhkkhkkhkhkkhkk**x
* RO will contain the current number of inserts completed since the =

* last commit. So far we haven't done any. *
Khhkhhkkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhrhhhhhhdhhdrhhrhhhdhhdhrhkdhrhdx
SR R7,R7 No inserts completed yet.
kkhkkkkhkkhkhkkhkhkhkkhhkkkhkkhhkkhhkhkhhkkhhkkhhkkhhkhkhhkhhkkhhkhkhhkhkhkkhkhkkhhkhkhkkhkhkkhkhkkhkkhkhkkhkkk*x
* Do while # of inserts is > 0 and *
* (Number to log = 0 or # of inserts done < number to log) =*
P T L R L P R

QXRLWH2 DS OH

LTR R4, R4 Number of inserts left to do

BZ QXRLWH2D None left, Tog if necessary

0cC NUM_TO_LOG,NUM_TO_LOG Are we logging?

BZ QXRLWH2C No, keep inserting.

C R7,NUM_TO_LOG Numb. of inserts done since last
* commit < number to log?

BNL QXRLWH2D Yes, log and commit.
QXRLWH2C DS OH

Figure 29. TPF Program to Insert Multiple Records into a Table (Part 4 of 8)

Using Assembler Language with TPFAR

91

khkkhkkhkhkhkhkhkhkkhhhkhkhhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhkhhhhhhhhhhkkhkhhkikx
* While # of finds is > 0, issues the find and waits. *
* This code will issue a find and wait for the number of times *

* that was passed in the parameter of the RRT ordinal # 0 record. =
EE R R R R R R R R S R R R R R R S R L R R R R R R

L R5,NUM_FINDS Number of finds to do
LTR R5,R5 Are there any?
BZ QXRLWH3D No, go do the insert.
ST™ RO,R7,REG_SAVE Save registers over find code
CRUSA SO=F Insure level F is clear
QXRLWH3 DS OH
SR RO,RO Set ordinal number to zero
LA R6,=CL8'#RRTRI" Record type of RRT
LA R7,CE1FAF Location for storage of addr.
ENTRC FACS Get file addr of RRT.
LTR RO,RO Has an error been detected?
Bz QXRLFERR Yes, process the error.
XC CE1FAF,CE1FAF Clear RCC and check field
LH R2,QXRLRRTI Set up record id for find
STH R2,CE1FAF in CEIFAF.
FINWC DF,QXRLFERR Initiate record retrieval
* Handle error if it occurs
RELCC DF Just wanted to do the find
* so we can release the block.
BCT R5,QXRLWH3 If there are more finds to do
* then continue.
L R1,CELICR2 Restore base of save area.
LM RO,R7,REG_SAVE Reload registers.

Figure 29. TPF Program to Insert Multiple Records into a Table (Part 5 of 8)

92 TPF V4R1 Application Requester User's Guide

khkkkkkkkkhkkkhhkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhkhhhkhkhhkhkhkhkhkik
* Save the number left and the number done into the host variables *

* for the SQL INSERT command, and then issue the command. *
Kkokk ok kkok ok ok kkokk ok okk ok ok ok kok ok kX B T hkkkkkkkkhhkhkhkhkkk
QXRLWH3D DS OH
ST R4 ,NUM_LEFT The number left and the number
ST R7,NUM_DONE done must be saved in host
* variables for use by SQL.
ST™ RO,R7,REG_SAVE Save regs over SQL call.
EXEC SQL INSERT INTO INSERT DRIVER
(IDENTIFIER,TIME_STAMP,ECB_ADDR,CPU_ID,
NUM_LEFT,NUM_DONE,NUM_INSERT,NUM_FINDS,NUM_TO_LOG)
VALUES
(:IDENTIFIER,CURRENT TIMESTAMP,:ECB_ADDR,:CPU_ID,
:NUM_LEFT, :NUM_DONE, :NUM_INSERT, :NUM_FINDS,
:NUM_TO_LOG)
L R1,CEICR2 Reload base of save area.
LM RO,R7,REG_SAVE Restore regs.
KRR A R A A R A AR A AR A A A R A AR AR A Ak A h A hdkhhhkhhhhhkhkdhhhdhhkhhhhdhhddrhdxhhhhrixd
* Decrement the number of inserts left to do. *
* Remember that the SQL WHENEVER statements at the top will cause *
* Control to be switched to the error routine whenever an error occurs*
k,kkhkhkkkhkhkkhhhkhrhhxk khkhkkkhkhkkrhhkkhhhhhhkhrhhrk khhkkkhhkhkkhhkhhhhkdhhhdhrhhhhrhhhkhk
BCTR R4,0 Another insert completed
* successfully.
KRR A R A A R A AR A AR A R A KNI AR A A A A h A h Ak hdkhhhhhkhhhkhdhhddhhkhhhhdhhdrhdhxhrhhrxsd
* Increment the number of inserts that have completed *
hhhkkhkhhkkhhhhhhdhhhhhhhhhhdhhhhdrhhrhhhhhhdrhdrhhhhhhdhhdrhdrhrhhrhdrdsx
LA R7,1(,R7) Increment # done
Fekok ok dokok ko ok ko ke ke ok ok k Kkkokkokkkkkok ko okkokkok ko ok ko ko ko ok ok ko Kokkokkok ko ko ok ko kok ok ko ko ok kK
* Increment the total number of inserts that have completed *
EE R R R R R R R R R R e R R R R R R R R R R R R R S R R R R R R R R S R S R R R R R R R S R
L R5,TOT_COMPLETE ~ Total number of inserts completed.
LA R5,1(,R5) Add one.
ST R5,TOT_COMPLETE Save this value.
B QXRLWH2 GO AND CHECK FOR MORE INSERTS.
QXRLWH2D DS OH

Figure 29. TPF Program to Insert Multiple Records into a Table (Part 6 of 8)

Using Assembler Language with TPFAR

><X > XX XX X X

93

kkhkkkkhkkhkhkkhkhkkhhkkhhkkhkhkkhhkhkkhhkkhkhhkkhhkkhhkhkhkkhkhkkhhkkhhkkhkkhkhkkhkhkhkkhhkhkkhkkhkkhkkhkkhkhkkkkk*
* We have left the inner while loop. This means that it is either *
* time to log or we are at the end of our inserts. We must now check *

* to see if logging is to occur. *
EE R R R RS R R S R R R R R R S R L R R R R R R
0cC NUM_TO_LOG,NUM_TO_LOG Are we logging?

Bz QXLRIFN No, go commit.

ST™M RO,R7,REG_SAVE Save regs over SQL call.

EXEC SQL INSERT INTO LOG_DRIVER X
(IDENTIFIER,TIME_STAMP,ECB_ADDR,CPU_ID,NUM DONE) VALUES X
(:IDENTIFIER,CURRENT TIMESTAMP,:ECB_ADDR,:CPU_ID, X
:TOT_COMPLETE)

L R1,CELICR2 Restore save area base.

LM RO,R7,REG_SAVE Restore registers.

QXLRIFN DS OH

""""""" khhkkkkhhkkhhkhhhhhhhdhrhhhhhhhhhdhhdhrhdhhrhhhhdhhdhrdrhdhrhdhxd
* Commit the work completed *
khhkkkhhhkhhhkhhhhhhhhrhhhhhhdhhhhhhdhhrhhhhhhdhhdrhhhhhhdhhdrhdhrhhhhhhdhrdhsx

ST™M RO,R7,REG_SAVE Save regs over SQL call.

EXEC SQL COMMIT

L R1,CE1CR2 Restore save area base.

LM RO,R7,REG_SAVE Restore registers.

B QXRLWH1 Go back and check for more to do.

KAk ARhkARhAhkhhhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhdhhkhhhkhhhdhhdrxkhdhxhhkhk,xkx
* We have now completed the number of inserts asked. Restore the =*

* callers registers, setting R6 to 0 to indicate that this *
* is a good return. *
khhkkkhhhkkhhhhhhkdhhdrhhhhhhdhhdhhdhhhhhhhdhhhhhdrhhrhhhhhhdrhdrhdhrhhrdhrk
QXRLWH1D DS OH

LM RO,R7,REG_SAVEL Restore callers registers.

LA R6,0 Indicate good return.
QXRLRET DS OH

RELCC D1 Release used blocks on Tlevels

RELCC D2 D1 and D2.

BACKC

EJECT

Figure 29. TPF Program to Insert Multiple Records into a Table (Part 7 of 8)

94 TPF V4R1 Application Requester User’s Guide

khkkhkkhkhkhkkhkkkhhkkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhhhkhhhkhhhkkkhxkx
* An error was returned on a SQL command. Whenever this occurs,

we want to rollback the work completed so far. Before doing this,
we have to make sure that if another error occurs on the rollback
we have set the SQL WHENEVER to continue so we do not get into an
infinite loop.

On entry to this Toop, the registers need to be restored from the

* save area, as they were saved there before the SQL call.
khhkkkhhkhkkhhhhhhdhhhhhhdhhhhhhhhhdhhdrhhhhhhdhhdrhhrhhhhhhdrhdhrhdhrhrhdhrk

* % kX X
EEE I R

QXRLFERR DS OH
L R1,CE1CR2 Restore save area base.
LM RO,R7,REG_SAVE Restore registers.
QXRL_BAD DS OH

EXEC SQL WHENEVER SQLERROR CONTINUE
EXEC SQL WHENEVER SQLWARNING CONTINUE
EXEC SQL ROLLBACK

L R1,CE1CR2 Restore save area base.

LM RO,R7,REG_SAVEL Restore callers registers.
LA R6,4 Indicate error.

B QXRLRET Return to caller.

EJECT

kkhkkkkhkkhkkhkkhkhkkkhhkkhkhhkkhhkkhhkhhkkhkhkkhhkkhhkkhhkhkhkkhhkhkkhhkkhhkkhkhkkhkhkhkhhkhkhkkhkhkkhkhkkhkkkk*x
* The SQLCA dsect must be included in all assembler programs with SQL*
* The actual storage is on data Tevel 1. This is used just to *
* include the dsect. *
KA KA R A KR A AR A AR I A I AR A A *h A h A hhhhhkhkhhkhhkhhhkhhhkhdhhdhhhhhhhdrhdrhdrhrhhxkx
DSQLCA DSECT

EXEC SQL INCLUDE SQLCA
$1S$ CSECT

SPACE 5
EE R S
* The PARAM dsect maps to the parameter area passed by the calling =
= application. *
kkhkkkkhkkhkkhkkhhkkkhhkhkhkkhhkkhhkhkhkkhkhkkhhkkhhkkhhkhkhkkhhkhkkhhkkhhkhkhkkhkhkhkkhhkhkhkkhkhkkhkhkkhkkhkk*x

PARAM DSECT

NUM_INSERT DS F Number of inserts to do.
NUM_FINDS DS F Number of finds before insert.
NUM_TO_LOG DS F Number of inserts before logging.
IDENTIFIER DS CL8 Identifier inserted into rows.
RDBNAME DS CL16 RDBNAME to connect to.
$1S$ CSECT

SPACE 2
kkhkkkhkkhkkhkkhhkkkhhkkhkhkkhhkkhhkkhhkkhhkkhhkkhhkkhhkkhkhkkhhkhkkhhkkhhkkhkhkkhkhkkhhkkhkkhkhkkhkkkhkkkkkx
* The SAVEAREA dsect maps to the save area on Tevel 2. *

EE R R R R R R R o R T e T T T S S T e s Tt LT

SAVEAREA DSECT

REG_SAVE1 DS 8F Save area for users RO through R7.
REG_SAVE DS 8F Reg save area over SQL calls.
NUM_LEFT DS F # of inserts left to do.
NUM_DONE DS F # of inserts completed since last
* commit.
ECB_ADDR DS F Address of ECB (used for insert)
CPU_ID DS CL1 CPUID (Used for inserts)
TOT_COMPLETE DS F Total number inserts completed.
$1S$ CSECT

SPACE 5
QXRLRRTI DC CL2'S2' Record ID of RRT for finds.

LTORG ,

FINIS ,

END

Figure 29. TPF Program to Insert Multiple Records into a Table (Part 8 of 8)

Using Assembler Language with TPFAR

95

96 TPF V4R1 Application Requester User's Guide

Performance and Tuning for TPFAR

This section discusses performance and tuning considerations that are specific to
the TPFAR environment. For related information on DB2 performance, see the DB2
Administration Guide.

Considerations That Are the Same

TPFAR is subject to the same performance and tuning considerations that apply to
an application running on the same platform as the relational database manager.
Therefore, performance studies must begin with the expected performance of the
relational database that serves as a target for the request: the application server
(AS). The considerations involved include locking, I/O, CPU speed, and type of
command. If the application would not perform well as an host application on the
remote AS, it will not perform well as a remote application on TPFAR.

Considerations That Are Different

Communications Overhead and Hotcons

In standard processing, when a transaction requires access to the application
server (AS), an LU 6.2 conversation is allocated between the application requester
(AR) and the AS. When this transaction ends, the conversation is deallocated. If the
duration of the transaction request is short, for example, a single SQL INSERT
command, setting up and tearing down conversations can cause a significant
amount of overhead. Setting up and tearing down conversations can account for
over half of the data flow between the AR and AS.

The hotcon method reduces this overhead. If hotcons are defined for a particular
AS, conversations or connections to that AS are no longer deallocated when the
transactions are over. Instead, they are saved in hotcon table entries and attached
to the appropriate SQL DBMS directory (SDD) entry. The next request directed to
that AS automatically gets a ready-to-use conversation or connection bypassing the
overhead of allocating a new conversation or connection.

The use of hotcons is not without cost; namely, there is a loss of diagnostic
information at the AS, as well as the holding of resources on TPF, VTAM, and DB2
systems for each conversation in the hotcon table. Because the logical unit of work
identifier (LUWID) is associated with each conversation, one LUWID is now shared
by many transactions. To DB2, it appears as a long running thread. The LUWID
consists of a fully qualified LU name, a logical unit of work instance number, and
logical unit of work sequence number that uniquely identifies a logical unit of work
within the network.

Performance trace information cannot be gathered for a single transaction while
hotcons are in use. If information needs to be gathered at the AS for a TPF

application, hotcons should be turned off. See [[PE ACF/SNA Network Generatior

for information about using hotcons.

When using TCP/IP, the hotcon method similarly reduces overhead. If hotcons are
defined for a particular AS, connections to the application server are no longer
closed when the transactions are over. Instead, they are saved in hotcon table
(HCT) entries and attached to the appropriate SQL DBMS (SDD) entry. The next

© Copyright IBM Corp. 1994, 2002 97

request directed to that AS automatically gets a ready-to-use connection, bypassing
the overhead of starting a new TCP/IP connection.

Application Overhead

The design of the application programs themselves can reduce the amount of
communications traffic and database activity. Each application instance, or entry
control block (ECB), that issues a remote SQL INSERT command requires a
subsequent SQL COMMIT command. An installation can batch the SQL INSERT
commands through an intermediate queue and then issue the SQL INSERT
commands from a single ECB followed by a single SQL COMMIT command. This
method of implementing an application as described in L i

[PE System” on page 79, may cut in half the time it would have taken if each SQL

INSERT command was followed by an SQL COMMIT command.

Note: This method should not be used for applications requiring the data be
current with other database updates.

CTC Considerations for LU 6.2

The communications line throughput needs to be monitored. As a rule of thumb, LU
6.2 running on an SNA CTC link can probably handle the throughput requirements
of the TPFAR connected to DB2, but application profiles vary widely. The number of
the CTC read buffers defined in keypoint 2 through the use of the SNAKEY macro
is one place to check on TPF if the amount of data returned on queries is large.
Increasing the number of read buffers may cause better throughput if the bottleneck
is on the return side of the CTC link from VTAM. A performance study of each
application or group of applications should be done to determine the impact to
system resources. You have to consider both sides of the interface. For ALS
connections, you can increase the number of read buffers by using the MAXBFRU
parameter on the SNAKEY macro.

For detailed information about the SNAKEY considerations, see ffeE ACE/SNA
Netwark Generatiod.

Specific Performance Considerations

Methods of Calculating Response Time

98

This section describes methods for calculating TPFAR response times to SQL
requests.

ZSTTD and the SQL Trace Table

Using ZSTTD, you can display the SQL trace table, which contains the response
time for SQL requests. At the start of each SQL request, TPFAR saves the original
clock value. When the return is made to the application, TPFAR saves the current
clock value and subtracts this from the original clock value. The difference, which
represents the response time, is stored in the SQL trace table. See

for more information about ZSTTD.

The SQL trace table is processed in wrap-around mode. Only the most recent SQL
commands are saved in the table and can be examined via ZSTTD. In order to
save information from older SQL commands, the user exit in segment UARL can be
used to process the information in the SQL trace table before it is overwritten.

TPF V4R1 Application Requester User’'s Guide

Data Reduction Reports
A data reduction report, called a system summary report, is calculated for TPFAR.

The system summary report has 2 fields:
e The SQL REQUESTS PER SECOND field calculates the total number of SQL requests.

* The ACTIVE SQL ECBS field counts the number of ECBs that are making SQL
requests at a given time.

Message stream data is available for data reduction for the TPFAR system by using
the SNA DDM option. The STREAM DDM report shows the DDM message traffic,
including the existence time. The existence time is the time difference between the
SQL request being sent out from TPF to DB2 and the response coming back into
TPF from DB2. By using the existence time and the ZSTTD information, you can
determine the SQL request time within TPFAR and TPF/APPC code.

Segment Allocation

Because most TPFAR segments are one-time calls and returns, it is recommended
that the segments be core-resident to reduce the enter/back overhead. This greatly
improves TPFAR performance.

TPF Utilization Impact

The following list contains items in TPF that can affect TPF processor utilization
when using TPFAR. All users need to evaluate their own requirements for utilization
and TPFAR in order to adjust their system accordingly.

1. The format of the data type.

When the table is created on DB2, information about the column types is
supplied. When a user program asks for the data back in a different form (for
instance the table column was created as a floating point number, but the
application wants the data in an integer format), this causes additional TPF
overhead to convert the data to the requested type.

2. The number of affected columns.

The larger the number of columns returned on an SQL SELECT or the larger
the number of columns used on an SQL INSERT, the more the processing time
is affected. The affected columns can have a large impact on processing time,
especially on SQL SELECTS. With SQL, you can specify the specific columns
that you want returned to your application. An application program that issues
an SQL SELECT should only request the data that is required for the
application. This way, the amount of processing to return a row to the
application can be reduced.

3. The cumulative size of host variables.
TPF/APPC limits the size of an RU. This limit affects the number of host

variables that can fit in a single RU. See LRequest Lnit Size Considerations” or

for more on the effect this limit has on the system. TCP/IP similarly
limits the size of a send message.

4. The select conditions specified.

When a large number of host variables are used in the condition statement of
an SQL command, these variables need to be transmitted to DB2. The more
host variables there are on a condition statement, the larger the utilization
impact on TPF.

5. The SNA pacing for LU 6.2.

When sending a large amount of SQL traffic over SNA, SNA pacing limits need
to be evaluated. If the pacing value is too low, the processing of a pacing

Performance and Tuning for TPFAR 99

request or response slows system performance. SNA pacing includes session
as well as virtual route (with PU 5 support) pacing.

6. The SQL command mix.

Of all the SQL commands, the cursor-related, blocked-SQL fetch especially
affects system performance. When using the blocked-SQL fetch, multiple rows
of the answer set are sent back to TPF from DB2. When the application
requests the next row, TPF can use the row information already returned by
DB2, rather then having to go back to DB2.

7. Run-time binding versus static binding.
Run-time binding can be a convenient method for managing DBRMs across
multiple platforms. Run-time binding incurs the overhead of the time required to
perform the bind. This overhead depends on the system load and configuration.
Once a DBRM is bound for a given program on a DB2 system, there is no
performance difference between run-time binding and static binding.

100 TPF V4R1 Application Requester User’s Guide

SQL Commands Supported by TPFAR

This table lists all of SQL commands and whether they are supported by TPFAR.
See the DB2 SQL Reference for more information on the use of each command.

Table 3. TPFAR SQL Command Subset

SQL Command Supported Comments
ALTER DATABASE Yes

ALTER INDEX Yes

ALTER STOGROUP Yes

ALTER TABLE Yes

ALTER TABLESPACE Yes

BEGIN DECLARE SECTION Yes

CLOSE Yes

COMMENT ON Yes

COMMIT Yes

CONNECT Yes TPF supports only the TO option

because it does not have a default
database manager.

CREATE ALIAS Yes

CREATE DATABASE Yes

CREATE INDEX Yes

CREATE STOGROUP Yes

CREATE SYNONYM Yes

CREATE TABLE Yes

CREATE TABLESPACE Yes

CREATE VIEW Yes

DECLARE CURSOR Yes

DECLARE STATEMENT Yes

DECLARE TABLE Yes

DELETE Yes

DESCRIBE Yes

DROP Yes

END DECLARE SECTION Yes

EXECUTE Yes

EXECUTE IMMEDIATE Yes

EXPLAIN Yes

FETCH Yes

GRANT Yes

INCLUDE Yes

INSERT Yes

LABEL ON Yes

LOCK TABLE Yes

© Copyright IBM Corp. 1994, 2002 101

Table 3. TPFAR SQL Command Subset (continued)

SQL Command Supported Comments

OPEN Yes

PREPARE Yes

REVOKE Yes

ROLLBACK Yes

SELECT INTO Yes

SET CURRENT PACKAGESET No CURRENT PACKAGESET register is
not supported.

SET CURRENT SQLID No TPF uses a fixed SQLID.

SET HOST VAR No TPF does not support special
registers.

UPDATE Yes

WHENEVER Yes

102 TPF V4R1 Application Requester User’s Guide

Appendix. TPFAR SQLCODEs

This appendix lists all SQLCODEs that are set by TPF Application Requester
(TPFAR), as well as their corresponding SQLSTATEs. For SQLCODESs set by the
application server (AS), for example DB2, see the messages and codes manual for
that particular AS. The originator of the SQLCODE (the product identifier) is
indicated in the SQLERRP field of the Structured Query Language communications
area (SQLCA).

SQLCODE is a signed integer value representing the disposition of the executed
SQL statement. Normally, SQLSTATE should be used to check the execution of an
SQL statement. The application program checks for different classes of errors by
examining the first character of the SQLSTATE. Because the SQLSTATE is product
independent, the explanations are common for all platforms. The SQLCODEs are
product specific and generally provide more detailed information than SQLSTATE.

When more than one SQLSTATE is listed for a particular SQLCODE, examine the
SQLSTATE field in the SQLCA to identify the specific reason for the SQLCODE.

When the system action indicates that the program has been put in a connectable

state because of a system error, the LU 6.2 conversation to the AS has been
deallocated and an implied rollback has been done on the current unit of work.

© Copyright IBM Corp. 1994, 2002 103

0 - -302

0
SQLSTATE: 00000

Explanation: The last SQL statement executed without any
errors.

System Action: Processing continues.
System Programmer Response: None.
SQLSTATE: 01501

Explanation: The value of a string was truncated when
assigned to a host variable. The column size on the AS may
have changed since the application was written and the size of
the host variable may need to be increased.

System Action: SQLWARNL in the SQLCA is set. The
truncated value was placed in the host variable.

System Programmer Response: Check the definitions on
the AS with the host variable length.

SQLSTATE: 01503

Explanation: The number of result columns is greater than
the number of host variables provided. Columns may have
been added to the table on the AS since the application was
written.

System Action: SQLWARNS in the SQLCA is set. The
columns that had host variables defined are returned.

System Programmer Response: Ensure that the application
is still compatible with the table on the AS.

+100
SQLSTATE: 02000

Explanation: No data. The statement was executed but no
data was found.

System Action: No data is returned.

System Programmer Response: None.

+180
SQLSTATE: 01534

Explanation: The string representation of a datetime value
returned by the AS is invalid. The application had a host
variable defined as a time, timestamp, or date, but the data
returned by the AS was the wrong size to fit in this type of host
variable.

System Action: The host variable is set to null.

System Programmer Response: Check the definitions in the
application and on the AS to correlate the data types.

+183
SQLSTATE: 01535

Explanation: The string representation set up as a host
variable is too short to hold the datetime value returned by the
AS. The AS returned a variable defined as a time, timestamp,
or date, but the host variable defined in the application was too
small to fit the data in.

System Action: The host variable is set to null.

System Programmer Response: Check the definitions in the

104 TPF V4R1 Application Requester User’s Guide

application and on the AS to correlate the data types.

+802
SQLSTATE: 01519

Explanation: The numeric value received from the AS was
not in the valid range.

System Action: The host variable is set to null.

System Programmer Response: Check the AS to see the
value sent and verify its size.

+863
SQLSTATE: 01539

Explanation: In response to TPFAR’s CONNECT request,
the AS sent coded character set identifiers (CCSIDs) for double
or mixed-byte character sets. Because TPFAR does not
support double- or mixed-byte character sets, a warning is
given. If actual double or mixed-byte data is received in
subsequent processing, a dump is taken.

System Action: The connection is established.

System Programmer Response: Verify that the AS should
return double or mixed-byte character sets.

-180
SQLSTATE: 22007

Explanation: The string representation of a datetime value
returned by the AS is invalid. The application had a host
variable defined as a time, timestamp, or date, but the data
returned by the AS was the wrong size to fit in this type of host
variable.

System Action: The host variable is not set.

System Programmer Response: Check the definitions in the
application and on the AS to correlate the data types.

-183
SQLSTATE: 22008

Explanation: The string representation set up as a host
variable is too short to hold the datetime value returned by the
AS. The AS returned a variable defined as a time, timestamp,
or date, but the host variable defined in the application was too
small to fit the data in.

System Action: The host variable is not set up.

System Programmer Response: Check the definitions in the
application and on the AS to correlate the data types.

-302
SQLSTATE: 22510

Explanation: A NULL terminated input host variable did not
contain a NULL. This error probably occurred because a host
variable did not contain a NULL character within the first table
column size number of characters of the host variable.

System Action: The statement cannot be executed. A dump
is taken. The program state is not changed.

System Programmer Response: Investigate why there is no
NULL character in the host variable.

-303 « -901

-303
SQLSTATE: 22509

Explanation: A value could not be assigned to a host
variable because the data types are incompatible.

System Action: The value is set to null, if it is a nullable
value.

System Programmer Response: Ensure that the host data
type and the data type on the AS are compatible.

-522
SQLSTATE: 54014

Explanation: An OPEN statement was executed when the
maximum number of concurrent cursors have already been
opened by this ECB.

System Action: The cursor was not opened.

System Programmer Response: Examine the application to
determine why multiple cursors are open.

-305
SQLSTATE: 22002

Explanation: A null value could not be assigned to a host
variable because no indicator variable was specified.

System Action: The variable is not set up.

System Programmer Response: Set up an indicator variable
for the variable in question, or change the definition on the AS
to NOT NULL.

-332
SQLSTATE: 57017

Explanation: Character translation is not defined. The data
returned by the AS is of a different code character set identifier
(CCsID) than specified in the SQL Database Management
System Directory (SDD). TPFAR does not support character
translation.

System Action: The statement cannot be executed. A dump
is taken. If the failing statement was a CONNECT, the program
is left in an unconnected but connectable state, otherwise the
program remains in a connected state.

System Programmer Response: Determine why the data is
a different CCSID. If all data from this AS is the same
single-byte CCSID, and the application is capable of handling
this CCSID, then update the SDD entry for this AS.

-501
SQLSTATE: 24501

Explanation: The cursor specified by the last SQL statement
is not open. COMMIT closes all cursors that did not specify the
HOLD option and ROLLBACK closes all cursors. Error
conditions on prior SQL statements may also close cursors.

System Action: Statement cannot be executed.

System Programmer Response: Determine why the cursor
is not open.

-502
SQLSTATE: 24502

Explanation: The cursor specified by the OPEN statement is
already open.

System Action: Statement cannot be executed. The cursor
state is unchanged.

System Programmer Response: Determine why the
application attempted to open a cursor that is already open.

-752
SQLSTATE: 51011

Explanation: A CONNECT statement was executed while the
ECB is not in a connectable state. The ECB is connectable if
no prior SQL statements have been executed or if the last SQL
statement was a CONNECT, COMMIT, or ROLLBACK. All
other SQL statements take the ECB out of a connectable state,
even if the statement fails.

System Action: Statement cannot be executed. The ECB
remains not connectable.

System Programmer Response: Determine by the ECB is
not in a connectable state.

-802
SQLSTATE: 22003

Explanation: The numeric value received from the AS was
out of the supported range.

System Action: The host variable was not set up.

System Programmer Response: Determine why the
mismatch occurred. The program may be out of date.

-809
SQLSTATE: 54018

Explanation: The data length would exceed the maximum
block size. The data cannot be sent.

System Action: The statement cannot be executed. A dump
is taken. The program state is not changed.

System Programmer Response: Try to reduce the number
of columns or the size of the fields. Use multiple statements to
send the data.

-901
SQLSTATE: 58004
Explanation: An internal error occurred.

System Action: The statement cannot be executed. A dump
is taken. The program is left in a connected state.

System Programmer Response: Check the dump for the
exact cause of the error.

Appendix. TPFAR SQLCODEs 105

-902 - -30020

-902
SQLSTATE: 58005
Explanation: An internal error occurred.

System Action: The statement cannot be executed. A dump
is taken. The program is left in an unconnected but
connectable state.

System Programmer Response: Check the dump for the
exact cause of the error. Check the primary and secondary

TPF/APPC return codes if a communications error occurred.
(See TPF General Macros for more information about return
codes for the TPPCC macro.)

-922
SQLSTATE: 42505

Explanation: The remote AS did not have the communication
database set up to be accessed by TPFAR.

System Action: The statement cannot be executed. A dump
is taken. The program is left in an unconnected but
connectable state.

System Programmer Response: Check the
SYSIBM.SYSLUNAMES and SYSIBM.SYSUSERNAMES table
on the remote AS for the definition needed for TPFAR. See the
TPF Application Requester User’s Guide for information about
definitions needed.

-923
SQLSTATE: 57015

Explanation: The remote AS did not like a parameter in the
TPPCC ALLOCATE issued by TPFAR.

System Action: The statement cannot be executed. A dump
is taken. The program is left in an unconnected but
connectable state.

System Programmer Response: Check the secondary

return code in the dump for the specific reason for the problem.

(See TPF General Macros for more information about return
codes for the TPPCC macro .)

-949
SQLSTATE: 58024

Explanation: A TPF/APPC error with an unknown primary or
secondary return code was received.

System Action: The statement cannot be executed. A dump
is taken. The program is left in an unconnected but
connectable state.

System Programmer Response: Check the dump for the
exact cause of the error. Check the primary and secondary
TPF/APPC return codes. (See TPF General Macros for more
information about return codes for the TPF/APPC macros.)

-951
SQLSTATE: 58024

Explanation: The conversation has failed because of a LU
6.2 protocol error.

System Action: The statement cannot be executed. The
program is left in an unconnected but connectable state.

106 TPF V4R1 Application Requester User’s Guide

System Programmer Response: Check for a LU 6.2 dump
relating to the protocol error.

-953
SQLSTATE: 58024

Explanation: A timeout or system error occurred on the
LU6.2 session.

System Action: The statement cannot be executed. The
program is left in an unconnected but connectable state.

System Programmer Response: Check the cause of the LU
6.2 timeout.

-1013
SQLSTATE: 52005

Explanation: The server name is undefined. The specified
RDB name could not be found in the SDD. An AS must be
defined in the SDD before it can be accessed.

System Action: The CONNECT cannot be executed. The
program is left in an unconnected but connectable state.

System Programmer Response: Determine why the AS is
not in the SDD. The SDD is processor and subsystem unique.
If the specified relational database (RDB) is valid, add it to the
SDD of the appropriate processor and subsystem.

-1024
SQLSTATE: 51007

Explanation: A CONNECT must be the first SQL statement
to be executed. TPFAR does not support a default connection
or an implied CONNECT.

System Action: The statement cannot be executed. The
program is left in an unconnected but connectable state.

System Programmer Response: Determine why a
CONNECT was not issued previously.

-30000
SQLSTATE: 58008
Explanation: A distributed protocol error occurred.

System Action: The statement cannot be executed. A dump
is taken. The program remains in a connected state.

System Programmer Response: Check the dump for the
specific DDM command returned and any associated
information to determine the cause of the error.

-30020
SQLSTATE: 58009
Explanation: A distributed protocol error occurred.

System Action: The statement cannot be executed. A dump
is taken. The program is left in an unconnected but
connectable state.

System Programmer Response: Check the dump for the
specific DDM command returned and any associated
information to determine the cause of the error.

-30021
SQLSTATE: 58010

Explanation: Manager levels between the AS and TPFAR are
not compatible.

System Action: The statement cannot be executed. A dump
is taken. The program is left in an unconnected but
connectable state.

System Programmer Response: Check the dump for the
manager levels of the AS. Update the manager levels on the
AS to a level supported by TPFAR.

-30024
SQLSTATE: 58009

Explanation: An SQL communications area reply data
(SQLCARD) was expected, but did not arrive.

System Action: The statement cannot be executed. A dump
is taken. The program is left in an unconnected but
connectable state.

System Programmer Response: Check the dump to find out
why the SQLCARD was not found.

-30025
SQLSTATE: 58009

Explanation: A premature end of the reply assembly block
(RAB) was encountered.

System Action: The statement cannot be executed. A dump
is taken. The program is left in an unconnected but
connectable state.

System Programmer Response: Check the dump to see
what replies were missing from the RAB by comparing the
RAB with the command assembly block (CAB).

-30035
SQLSTATE: 58009

Explanation: A request correlation ID (RQSCRR) was
missing, out of order, or invalid.

System Action: The statement cannot be executed. A dump
is taken. The program is left in an unconnected but
connectable state.

System Programmer Response: Check the dump to find out
what was wrong with the RQSCRR in error.

-30040
SQLSTATE: 57012

Explanation: The last SQL statement failed because of
insufficient nondatabase resources. This does not affect the
successful execution of subsequent SQL statements. TPFAR
has attempted to issue a TPPCC ALLOCATE 5 times, but has
received a retry indication every time. The error probably
occurred because all of the TPF/APPC sessions with the
remote AS are in use.

System Action: The statement cannot be executed. The
program is left in an unconnected but connectable state.

System Programmer Response: Establish sufficient LU 6.2

-30021 - -30044

sessions to the remote AS to handle the maximum number of
concurrent requests to the AS.

-30041
SQLSTATE: 57013

Explanation: The last SQL statement failed because of
insufficient nondatabase resources. This affects the successful
execution of subsequent SQL statements. TPFAR has received
a no-retry return code while trying to issue a TPPCC
ALLOCATE. The error probably occurred because there were
no LU 6.2 sessions active to the remote AS LU defined in the
SDD.

System Action: The statement cannot be executed. The
program is left in an unconnected but connectable state.

System Programmer Response: Start the LU 6.2 sessions
with the remote AS before retrying.

-30042
SQLSTATE: 57012

Explanation: TPFAR issued a TPPCC ALLOCATE to begin a
session, but the AS has rejected the request because of lack of
resources.

System Action: The statement cannot be executed. The
program is left in an unconnected but connectable state.

System Programmer Response: Investigate the lack of
resources on the remote side.

-30043
SQLSTATE: 57013

Explanation: A permanent lack of resources has been
detected on the remote AS side. No other SQL commands will
work.

System Action: The statement cannot be executed. The
program is left in an unconnected but connectable state.

System Programmer Response: Investigate the lack of
resources on the remote side.

-30044
SQLSTATE: 57013

Explanation: The TPPCC ALLOCATE was issued with an
invalid LU 6.2 mode name. This error probably occurred
because of a mismatch between the LU 6.2 mode name
defined in the SDD and the active available mode names,
previously set up with the ZNCNS command.

System Action: The statement cannot be executed. The
program is left in an unconnected but connectable state.

System Programmer Response: Investigate why there is a
difference between the mode name defined in the SDD with
the ZSQLD command and the one defined using the ZNCNS
command.

Appendix. TPFAR SQLCODEs 107

-30045 - -30073

-30045
SQLSTATE: 22003

Explanation: TPFAR received an RAB size from the
application server (AS) that was not valid. The value is greater
than the maximum socket read buffer specified in TPFAR or
the value equals zero.

System Action: The statement cannot be executed. A dump
is taken. The program is left in a connected state.

System Programmer Response: Check the dump to
determine the rejected value.

-30046
SQLSTATE: 57013

Explanation: An SQL connect failed because of a function
that returned an error, preventing subsequent SQL statements
from being completed successfully. One of the following
occurred:

» TPFAR was unable to acquire a TCP/IP socket. The socket
function returned an error.

* TPFAR was unable to resolve a host name to an Internet
Protocol (IP) address. The gethostbyname function returned
an error.

* TPFAR was unable to connect to the application server
(AS). The connect function returned an error.

System Action: The statement cannot be executed. A dump
is taken. The program is left in a unconnected but connectable
state.

System Programmer Response: Determine which function
caused the error and correct the problem.

-30047
SQLSTATE: 57012

Explanation: TPFAR issued a TCP/IP socket function that
reurned an error.

System Action: The statement cannot be executed. A dump
is taken with the specific function and errno value. The
program is left in a connected state.

System Programmer Response: Check the errno value
returned in the dump to determine why the function failed.

-30060
SQLSTATE: 42507

Explanation: An AS reply message indicated that TPFAR is
not authorized for the specified RDB. Because TPF uses the
complex name as the TPF application’s AUTHID, authorize this
complex name in CTKI for the commands that TPF is to issue.

System Action: The statement cannot be executed. The
program is left in an unconnected but connectable state.

System Programmer Response: Grant TPFAR access from
DB2.

108 TPF V4R1 Application Requester User’s Guide

-30061
SQLSTATE: 52017

Explanation: An AS reply message indicated that the RDB
name sent by TPFAR does not exist. The RDB name at the AS
needs to match the name specified in the SDD.

System Action: The statement cannot be executed. The
program is left in an unconnected but connectable state.

System Programmer Response: Update the SDD entry to
reflect the correct AS RDB name.

-30070
SQLSTATE: 58014

Explanation: Either the AS or TPFAR detected an
unsupported SQL command.

System Action: The statement cannot be executed. A dump
is taken. The program is left in a connected state.

System Programmer Response: Examine the dump to
determine the rejected command. Also, check the service level
of the AS and TPFAR to ensure that they are up to date.
Check the DDM table ensure there was no core corruption.

-30071
SQLSTATE: 58015

Explanation: An AS reply message indicated that an invalid
DDM object was sent by TPFAR.

System Action: The statement cannot be executed. A dump
is taken. The program is left in a connected state.

System Programmer Response: Examine the dump to
determine the rejected object. Also, check the service level of
the AS and TPFAR to ensure that they are up to date. Check
the DDM table to ensure there was no core corruption.

-30072
SQLSTATE: 58016

Explanation: An AS reply message indicated that an invalid
DDM parameter was sent by TPFAR.

System Action: The statement cannot be executed. A dump
is taken. The program is left in a connected state.

System Programmer Response: Check the dump to
determine the rejected parameter. Also, check the service level
of the AS and TPFAR to ensure that they are up to date.

-30073
SQLSTATE: 58017

Explanation: An AS reply message indicated that an invalid
DDM parameter value was sent by TPFAR.

System Action: The statement cannot be executed. A dump
is taken. The program is left in a connected state.

System Programmer Response: Check the dump to
determine the rejected parameter value. Check the service
level of the AS and TPFAR to ensure that they are up to date.
When the rejected parameter is identified, check the DDM

encode routine to see how this parameter was built.

-30074
SQLSTATE: 58018

Explanation: An invalid severity code or reply message was
received from the remote AS.

System Action: The statement cannot be executed. A dump
is taken. The program is left in a connected state.

System Programmer Response: Check for a possible
mismatch in the AS or TPFAR manager levels.

-30080
SQLSTATE: 58019

Explanation: A communications error occurred. The current
conversation has failed because of a failure of the underlying
session. This can be cause by operator action or hardware
failure.

System Action: The statement cannot be executed. The
program is left in an unconnected but connectable state.

System Programmer Response: The communications
console should be checked to determine the reason for the
session failure.

-30074 - -30080

Appendix. TPFAR SQLCODESs

109

110 TPF V4R1 Application Requester User's Guide

Glossary of Terms Related to TPFAR

This glossary defines terms and concepts related
to TPFAR in this book. If you do not find the term

ou are looking for, refer to the Index, the fred
m, or the Dictionary of Computing,

ZC20-1699.

A

application requester (AR) . A DRDA component that
transforms a database request into communication
protocols for a distributed relational database system.

application server (AS) . A DRDA component that
receives and processes database requests from an
application requester.

B

bind process . A process in which a relational
database management system transforms the
specification of an SQL statement into a sequence of
internal operations to optimize data retrieval.

C

column . A vertical arrangement of information in a
table.

cursor . A control structure used by an application to
retrieve and or update multiple rows in a table or to
point to a row of interest within a table.

D

database management system (DBMS). A software
system that has a catalog describing the data it
manages. The DBMS controls access to the data stored
within it.

database request module (DBRM) . A DB2 data set
member containing information about SQL commands.
The DBRM is created by the precompiler and used in
the bind process.

This file contains information on all SQL commands in
the user application program. Included is information
about how the SQL commands are executed and DB2’s
access strategy.

DB2. An IBM relational database management system
for MVS operating systems.

Distributed Relational Database Architecture
(DRDA). A relational database connection protocol
consisting of protocols for communication between an
application and a remote database, and
communications between databases.

© Copyright IBM Corp. 1994, 2002

H

HCT . Hotcon table.

hotcon . A hot conversation or hot connection,
depending on the communication protocol used.

In LU 6.2, a TPF Advanced Program-to-Program
Communications (TPF/APPC) conversation that remains
allocated and active past the completion of the
transaction. The TPF/APPC conversation parameters
between the TPF Application Requester (TPFAR) and
the DB2 system are saved in an entry in the hotcon
table (HCT). When another entry control block (ECB)
requests a conversation with the same remote
application server, TPFAR reuses the active
conversation.

In Transmission Control Protocol/Internet Protocol
(TCP/IP), a TCP/IP connection that remains active past
the completion of the transaction. The socket
descriptors are saved in an entry in the hotcon table.
When another entry control block (ECB) requests a
connection with the same remote application server, the
TPFAR reuses the active connection.

L

logical unit of work . A sequence of SQL commands
that DB2 treats as a single entity.

logical unit of work identifier (LUWID) . An ID
consisting of the fully qualified LU name, logical unit of
work instance number, and logical unit of work
sequence number that uniquely identifies a logical unit
of work within the network.

P

package . An object containing a set of SQL
statements that have been bound statically and are
available for processing.

R

relational database (RDB). A database in which the
data are organized and accessed according to relations.

remote unit of work. A method of accessing
distributed relational data in which users or applications
can, within a single unit of work, read and update one
system using multiple SQL statements.

row. A horizontal arrangement of information in a
table.

111

S

SQLCODE . A system-dependent SQL return code.

SQLSTATE . A system-independent SQL return code
field for the outcome of the last executed SQL
command.

structured query language (SQL) . The programming
language used to define relational data, access
relational data, and control access to relational
database resources.

SQL database management system directory
(SDD). A directory used by TPF to keep relational
database (RDB) information. Most of this information is
set up with the ZSQLD command.

structured query language communications area
(SQLCA). A structure that contains information about
the execution of the SQL commands.

Systems Application Architecture (SAA). A set of
software interfaces, conventions, and protocols that
provide a foundation for designing and developing
consistent applications across systems.

T

table . A named data object consisting of a specific
number of columns and some number of unordered
rows.

112 TPF V4R1 Application Requester User's Guide

Index

Special Characters
#IBMMP4 records 14

Numerics

24-bit mode 30

3088 channel-to-channel link station 19
31-bit mode 30

37x5 link station 19

A

Advanced Peer-to-Peer Communication (APPC)
session 2,3
ALREADYV
specifying on the SECACPT keyword of VTAM APPL
statement 19
APPC
starting 26
APPC (Advanced Peer-to-Peer Communication)
session 2,3
application programs
assembler language 79
assembler modifications when using the same
cursor 43
C 32
defining to VTAM 19
effect on TPFAR performance 98
header files for C 32
role in synchronizing updates 31
SQL considerations for 31
TPF C 42, 45, 49, 56, 61, 70
application requester (AR)
definition of 111
illustration in remote data access 1, 2
implementation in Distributed Relational Database
Architecture (DRDA) 1
application server (AS) 1,5
definition of 111
example of setting up when using assembler
language with TPFAR 79
illustration in remote data access 1, 2
implementation in Distributed Relational Database
Architecture (DRDA) 1
AR (application requester)
definition of 111
illustration in remote data access 1, 2
implementation in Distributed Relational Database
Architecture (DRDA) 1
AS (application server) 1,5
definition of 111
example of setting up when using assembler
language with TPFAR 79
illustration in remote data access 1, 2
implementation in Distributed Relational Database
Architecture (DRDA) 1

© Copyright IBM Corp. 1994, 2002

assembler language
for TPF applications 79
modifications 43
to offload data from TPF 79
AUTHID field of SYSIBM.SYSUERNAMES table
relationship to TPF complex name in CTKI 22

B
bind
definition of 111
bind file (DB2) 32
package 35
bind process (DB2) 32
package 35
block query method for using TPFAR 8
illustration of 8
blocks (TPFAR), working storage 30
bootstrap data set (BSDS) of DB2 15, 18, 21
BSDS (bootstrap data set) of DB2 15, 18, 21
bulk data transfer method for using TPFAR 6
illustration of 7

C

C language for TPF applications 32, 45
example of displaying data 70
example of inserting data 49
example of removing data 56
example of updating data 61
modifications 42
CCSID (coded character set identifier) default for
DB2 16,21
Ccsid parameter of ZSQLD 16
CDRSC statement
defining 19
illustration of dependency of parameters 23, 26
Channel-to-Channel (CTC) link station 19
considerations 98
read buffers and SNAKEY 98
code page specifications 16
coded character set identifier (CCSID) default for
DB2 16,21
COLLECTION-ID option of DBRM 35
column
and primary key/index 80
definition of 111
explanation of 27
in relational databases 27
commands for TPFAR 15
ZNKEY 16
ZSQLD 13, 17,18, 21
ZSTTD 16, 98
communications requirements for TPFAR 11
CONFIG macro of SIP
TPFAR option 11
CONFIG.SYS file 16

113

connection
3088 channel-to-channel link station 19
37x5 link station 19
TPF and DB2 for VTAM 19
conversational security and TPF/APPC 19
CTC (channel-to-channel) link station 19
considerations 98
read buffers and SNAKEY 98
CTK2 (keypoint 2) 14, 17
CTKI (keypoint) 22
cursor 29
definition of 111
maximum number 29

using the same cursor in SQL source programs 41

D

data collection reports for TPFAR
STREAMDDM 99
data definition language files for SQL 27, 35
data reduction reports for TPFAR
system summary report 99
DATABASE 2 (DB2) 4
bind file 32
bind process 32
coded character set identifier (CCSID) default 16
connecting with TPF for VTAM 19
definition of 111
DSNTIPE installation panel 21
DSNTIPF installation panel 16, 21
DSNTIPR installation panel 18, 21
moving TPF data using TPFAR 4
moving TPF data without TPFAR 3
precompiler 32, 34, 41
relational database 1
requirements for TPFAR 11
database management system (DBMS) 2, 13
definition of 111
database request module (DBRM) 33
Database Request Module (DBRM) 34, 35
COLLECTION-ID option 35
definition of 111
MEM option 35
PACKAGE option 35
RELEASE option 35
DB2 (DATABASE 2) 4
bind file 32
bind process 32
coded character set identifier (CCSID) default 16
connecting with TPF for VTAM 19
definition of 111
DSNTIPE installation panel 21
DSNTIPF installation panel 16, 21
DSNTIPR installation panel 18, 21
moving TPF data using TPFAR 4
moving TPF data without TPFAR 3
precompiler 32, 34, 41
relational database 1
requirements for TPFAR 11, 20
DB2 PLU
defining 12

114 TPF V4R1 Application Requester User's Guide

DB2 PLU (continued)
OSTG definition 12, 18
DBMS (database management system) 2, 13
definition of 111
DBRM (database request module) 33
DBRM (Database Request Module) 34, 35
COLLECTION-ID option 35
definition of 111
MEM option 35
PACKAGE option 35
RELEASE option 35
DBSAC macro 14, 18, 30
DBSDC macro 14, 18, 30
DDF (Distributed Data Facility) of DB2 18, 21
DDL files for SQL 27, 35
DEC parameter of DB2 precompiler 34
decimal (DEC) parameter of DB2 precompiler 34
defining user exits
SQL trace table 16
distributed access capability of SAA 1
distributed access capability of Systems Application
Architecture 1
Distributed Data Facility (DDF) of DB2 18, 21
Distributed Relational Data Architecture (DRDA)
definition of 111

Distributed Relational Database Architecture (DRDA) 1

illustration of implementation 2
DRDA (Distributed Relational Data Architecture)
definition of 111

DRDA (Distributed Relational Database Architecture) 1

illustration of implementation 2
DSNTIPE DB2 installation panel 21
DSNTIPF DB2 installation panel 16, 21
DSNTIPR DB2 installation panel 18, 21
dynamic Structured Query Language (SQL) 30

E

EAS keyword of VTAM APPL statement 18
ECB processing and TPFAR 14, 18, 30, 98
error handling for SQL 32

F

frequent flyer database and transaction logging 6

H

HCT
definition of 111
heap storage 14
host language considerations when using the same
cursor
assembler modifications 43
TPF C modifications 42
HOST parameter of DB2 precompiler 34
HOST parameter of TPF DB2 postprocessor 36
hotcon
benefits 97
cost 97
definition of 13, 111

hotcon (continued)
table 13
hotcons 16

implied ROLLBACK 31, 32

J

JCL to run TPF DB2 postprocessor (TPF DB2PP) 36

K

keypoint 2 (CTK2) 14, 17
keypoint | (CTKI) 22

L

logical unit of work
definition of 111
logical unit of work identifier (LUWID) 97
definition of 111
loosely coupled 12
loosely coupled requirement for TPFAR 17
LU 6.2 conversation 1,5, 30, 97
LU 6.2 requirements for TPFAR 11, 14
conversational security 19
MAXCCB 15
MAXSCB 15
MAXTPI 14
NETID 15
session level security 19
specifying ALREADYV 19
LU 6.2 sessions
establishing 26
LU names connecting to the DB2 system,
specifying 21
Lu parameter of ZSQLD 16
LUNAME field of SYSIBM.SYSUSERNAMES table 22
LUWID (logical unit of work identifier) 97
definition of 111

M

macros
DBSAC 14, 18, 30
DBSDC 14, 18, 30
MSGRTA 12
SIP CONFIG 11
SNAKEY 13, 14, 15
malloc
heap storage 14
malloc blocks 30
MAXCCB parameter of SNAKEY macro 15
Maxhct
parameter of ZSQLD 16
MAXHCT 16
storage area for TPFAR 13
MAXRU 28

MAXSCB parameter of SNAKEY macro 15
MAXSDD 16
storage area for TPFAR 13
MAXSMTB 16
storage area for TPFAR 13
MAXSOCK parameter of SNAKEY macro 15
MAXTPI parameter of SNAKEY macro 14
MEM option of DBRM 35
mixed-byte support 16
mode name 19, 26
RDB APPC mode name 16
SYSLUNAMES table 16
SYSMODENAME 21
moving TPF data to DB2 using TPFAR
advantages of 4
illustration of 4
moving TPF data to DB2 without TPFAR
illustration of 3
MSGRTA macro 12

N

NETID parameter of SNAKEY macro 15
NEWAUTHID field of SYSIBM.SYSUSERNAMES
table 22
NONE
specifying on the VERIFY keyword of VTAM APPL
statement 19

O

OSTG 12,18

P

pacing and RU size considerations for VTAM 19
package (output from DB2 bind process) 35
definition of 111
PACKAGE option of DBRM 35
performance of TPFAR 97
calculation methods for response time 98
data reduction reports 99
segment allocation 99
pools (short term) 30
precompiler (DB2)
bind file 32
bind process 32
DEC parameter 34
HOST parameter 34
VERSION parameter 34
primary index 80
primary key 80
protect key 30
PRTCT keyword of VTAM APPL statement 18

R

RACF checking 22
Rdb (relational database name)
relationship to bootstrap data set (BSDS) 15

Index 115

RDB (relational database) 1 SNAKEY macro (continued)

column 27 MAXSOCK parameter of SNAKEY macro 15
definition of 111 MAXTPI parameter 14
example of 27 MAXTPI parameter of SNAKEY macro 14
row 27 NETID parameter 15
table 27 SNAKEY macro 13
Rdb parameter of ZSQLD 16 SPUFI (SQL Processor Using File Input) 21, 27, 35,
read buffers (CTC) and SNAKEY 98 79
record ID X'FFOF' 14 SQL (structured query language)
registers 30 definition of 112
relational database (RDB) 1 SQL (Structured Query Language) 1
column 27 C language header files 32
definition of 111 considerations 28
example of 27 dynamic 30
row 27 error handling 32
table 27 maximum number of cursors 29
relational database name (Rdb) protect key 30
relationship to bootstrap data set (BSDS) 15 registers 30
RELEASE option of DBRM 35 request unit size 28
remote data access 1 supported commands for TPFAR 101
remote unit of work 1 synchronizing updates 31
request unit time field length, specifying 28
calculating size 28 working storage for TPFAR blocks 30
size requirements 28 SQL COMMIT command 6, 31, 32, 79, 81, 86, 98
response time 97 SQL CONNECT command 6, 79
row 80 SQL CREATE INDEX command 80
and primary key/index 80 SQL CREATE TABLE command 27, 79, 80
definition of 111 SQL database management system directory
explanation of 27 (SDD) 14, 15, 17
in relational databases 27 adding an entry using ZSQLD 16
RU sizes and pacing considerations for VTAM 19 definition of 112

SQL FETCH command 8, 9, 29
SQL INSERT command 5, 31, 32, 79, 98

S SQL OPEN command 9
SAA (Systems Application Architecture) SQL Processor Using File Input (SPUFI) 21, 27, 35,
definition of 112 79
distributed access capability of 1 SQL SELECT INTO command 8
SDD (SQL database management system SQL source programs
directory) 14, 15, 17 host language considerations 41
adding an entry using ZSQLD 16 modifying to use the same cursor 41
definition of 112 SQL trace table 13, 16, 98
SECACPT keyword of VTAM APPL statement defining the user exit 16
specifying ALREADYV 19 SQL trace table user exit 98
security 19 SQL tracing 15
conversational and TPF/APPC 19 SQL UPDATE command 5, 31
session level and TPF/APPC 19 SQLCA (Structured Query Language Communications
segment allocation and TPFAR performance 99 Area) 28
service LUs 12 definition of 112
session level security and TPF/APPC 19 SQLCODE 28, 32
short term pools 14, 30 SQLSTATE 28, 32
single line query method for using TPFAR 8 SQLCODE 28, 32
illustration of 8 definition of 112
SIP CONFIG macro changes for TPFAR 11 SQLSTATE 28, 31, 32
TPFAR option of 11 definition of 112
SIP stage 1 12 storage areas for TPFAR 13
SMIT CCSIDs 16 MAXHCT 13
SNAKEY macro MAXSDD 13
and CTC read buffers 98 MAXSMTB 13
MAXCCB parameter 15 STREAMDDM data collection report for TPFAR 99
MAXSCB parameter 15 structu_r(_egl query language (SQL)
MAXSOCK parameter 15 definition of 112

116 TPF V4R1 Application Requester User's Guide

Structured Query Language (SQL) 1
C language header files 32
considerations 28
dynamic 30
error handling 32
maximum number of cursors 29
protect key 30
registers 30
request unit size 28
supported commands for TPFAR 101
synchronizing updates 31
time field length, specifying 28
working storage for TPFAR blocks 30
Structured Query Language (SQL) trace table 13, 16,
98
Structured Query Language Communications Area
(SQLCA) 28
definition of 112
SQLCODE 28, 32
SQLSTATE 28, 32
subsystem requirements for TPFAR 18
synchronization of SQL updates
application program considerations for 31
SYSIBM.SYSLUNAMES table 21
SYSIBM.SYSLUSERNAMES table
LUNAME field 21
NEWAUTHID field 21
system summary report 99
Systems Application Architecture (SAA)
definition of 112
distributed access capability of 1

T

table 80
definition of 112
in relational databases 27
TCP/IP requirements for TPFAR 15
MAXSOCK 15
time field length for SQL 28
TPF
connecting with DB2 for VTAM 19
TPF application LUs
defining to VTAM 19
TPF application program
precompiling 32
TPF Application Requester (TPFAR)
calculation methods for response time 98
DB2 requirements 11, 20
defining storage areas for in SNAKEY 13
distributed access capability of Systems Application
Architecture 1
ECB processing 14, 18, 30, 98
how it works 4
introduction to 1
loosely coupled requirements 17
Lu 6.2 requirements 11
LU 6.2 requirements 14
methods for using 5
performance and tuning 97
preparing your environment for 11

TPF Application Requester (TPFAR) (continued)
response time 97
role in moving TPF data to DB2 4
SIP CONFIG macro changes for TPF 11
subsystem requirements for TPFAR 18
suggested methods for using 5, 6, 8
supported SQL commands 101
TCP/IP requirements 15
TPF requirements 11
TPF storage requirements 14
tuning and performance 97
using assembler language in applications 79
using TPF C in applications 45
VTAM requirements 18
ZNKEY command 16
ZSQLD command 13, 15, 17, 18, 21
ZSTTD command 16

TPF complex name in CTKI 22

TPF DB2 postprocessor (TPF DB2PP) 34
invoking 36
required parameter 36
sample JCL to run TPF DB2PP 36
strings altered 35

TPF DB2PP (TPF DB2 postprocessor)
sample JCL to run TPF DB2PP 36

TPF DB2PP (TPF DB2 Postprocessor) 34
invoking 36
required parameter 36
strings altered 35

TPF requirements for TPFAR 11
SIP CONFIG macro changes 11

TPF storage requirements for TPFAR
#IBMMP4 records 14
and ECB processing 14
LU 6.2 Fastpath 14
malloc 14
record ID X'FFOF' 14
short term pools 14

TPF/APPC application
defining 12

TPF/APPC Application
defining 12

TPF/APPC resources
defining 12

TPFAR (TPF Application Requester)
calculation methods for response time 98
DB2 requirements 11, 20
defining storage areas for in SNAKEY 13
distributed access capability of Systems Application

Architecture 1

ECB processing 14, 18, 30, 98, 99
how it works 4
introduction to 1
loosely coupled requirements 17
LU 6.2 requirements 11, 14
methods for using 5
performance and tuning 97
preparing your environment for 11
response time 97
role in moving TPF data to DB2 4
SIP CONFIG macro changes for TPF 11

Index 117

TPFAR (TPF Application Requester) (continued)
SNAKEY macro 13
subsystem requirements for TPFAR 18
suggested methods for using 5, 6, 8
supported SQL commands 101
TCP/IP requirements 15
TPF requirements 11
TPF storage requirements 14
using assembler language in applications 79
using TPF C in applications 45
VTAM requirements 18
ZNKEY command 16
ZSQLD command 13, 15, 17, 18, 21
ZSTTD command 16
TPFAR blocks, working storage 30
TPFAR option of SIP CONFIG macro 11
tracing SQL entries 15
transaction logging method for using TPFAR 5
tuning TPFAR
performance of TPFAR 97
response time 97
tuning and performance 97

V

VERIFY keyword of VTAM APPL statement
conversational security 19
specifying NONE 19
VERSION parameter of DB2 precompiler 34
VTAM APPL statement 16, 18
defining 19, 21
EAS keyword 18
PRTCT keyword 18
SECACPT keyword 19
VERIFY keyword 19
VTAM definitions for TPF applications 19
VTAM requirements for TPFAR 18
connecting TPF and DB2 19
RU sizes and pacing considerations 19

Z

ZNCNS command 15, 16, 21, 26
ZNETW command 26
ZNKEY command 16
ZROUT command 26
ZSQLD command for TPFAR 13, 15, 17, 18, 21
Ccsid parameter 16
Lu parameter 16
Maxhct parameter 16
Rdb parameter 16
ZSTTD command for TPFAR 16, 98

118 TPF V4R1 Application Requester User's Guide

File Number: S370/30XX-40
Program Number: 5748-T14

on recycled paper containing 10%

@ Printed in the United States of America
recovered post-consumer fiber.

SH31-0133-04

	Contents
	Figures
	Tables
	Notices
	Trademarks

	About This Book
	Who Should Read This Book
	Conventions Used in the TPF Library
	Related Information
	IBM Transaction Processing Facility (TPF) 4.1 Books
	Miscellaneous IBM Books
	Online Information

	How to Send Your Comments

	The TPF Application Requester (TPFAR) Feature
	Introduction
	Access to Remote Data
	Moving TPF Data to a DB2 Database without TPFAR
	Moving TPF Data to and from a DB2 Database Using TPFAR

	How TPFAR Works
	Methods for Using TPFAR in Your Enterprise
	Transaction Logging
	Bulk Data Transfer
	Single Line Query
	Block Query

	Preparing Your Environment for TPF Application Requester
	TPF Requirements
	Configuring TPFAR
	Defining the Applications for LU 6.2
	Defining the Local TPF/APPC Applications for LU 6.2
	Defining the Remote DB2 PLU Application for LU 6.2
	Attaching to the LU 6.2 Communications Cloud
	Defining the Channel-Attached Link Station for MVS
	Defining the Channel-Attached Link Station for the DB2/6000 System
	Communications Requirements for the RS/6000 System
	Communications Requirements for the PS/2

	Defining the TPFAR Storage Areas
	Other TPF System Storage Requirements
	LU 6.2 Requirements
	TCP/IP Requirements
	Commands
	Coding the SQL Trace Table User Exit
	Character Sets
	Choosing a New Character Set
	Translating Character Sets
	Seeing the Overall Character Flow
	Converting Numbers

	Loosely Coupled Requirements
	Subsystem Requirements

	VTAM Requirements for LU 6.2
	Mode Names
	RU Sizes and Pacing Considerations

	Connecting a TPF System and a DB2 System Using LU 6.2
	Defining the TPF Application LUs to VTAM
	Configuring the TPF System and a DB2/6000 System

	DB2 Requirements
	Putting It All Together
	Starting the TPF/APPC Application for Use with TPFAR

	Setting the Stage with a Telephone Directory Application
	A Few Words about Relational Databases
	Creating the Telephone Directory
	SQL Considerations
	Length of Time Field
	Request Unit Size Considerations
	Number of Cursors
	Protect Key
	Addressing Mode
	Registers
	Dynamic SQL
	Collection Identifiers
	TPFAR Working Storage Blocks
	Synchronizing Updates
	C Language Header Files

	Error Handling
	Preparing an Application
	Using the TPF DB2 Postprocessor (TPF DB2PP)
	Invoking TPF DB2PP
	Sample JCL

	Database Resource Management (DBRM)
	Using the Same Cursor in Multiple Programs
	TARGET C Language Modifications
	Assembler Modifications

	Using TPF C with TPFAR
	The Root Segment for the Telephone Directory Application
	Inserting a Telephone Directory Entry
	Removing a Telephone Directory Entry
	Updating a Telephone Directory Entry
	Displaying Entries in the Telephone Directory

	Using Assembler Language with TPFAR
	Offloading Data from the TPF System
	Setting Up the Application Server

	Assembler Program QXRK
	Assembler Program QXRL

	Performance and Tuning for TPFAR
	Considerations That Are the Same
	Considerations That Are Different
	Communications Overhead and Hotcons
	Application Overhead

	CTC Considerations for LU 6.2
	Specific Performance Considerations
	Methods of Calculating Response Time
	ZSTTD and the SQL Trace Table
	Data Reduction Reports

	Segment Allocation
	TPF Utilization Impact

	SQL Commands Supported by TPFAR
	Appendix. TPFAR SQLCODEs
	Glossary of Terms Related to TPFAR
	Index

