
TPF Database Facility

Programming Concepts
and Reference
Release 1

SH31-0179-09

���

TPF Database Facility

Programming Concepts
and Reference
Release 1

SH31-0179-09

���

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices”.

Tenth Edition (October 2002)

This is a major revision of, and obsoletes, SH31-0179-08.

This edition applies to Version 1 Release 1 Modification Level 3 of IBM Transaction Processing Facility Database
Facility, program number 5706-196, and to all subsequent releases and modifications until otherwise indicated in new
editions or technical newsletters. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. Address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . vii

Tables . ix

About This Book . xi
Before You Begin . xi
Who Should Read This Book . xi
How This Book Is Organized . xi
Conventions Used in the TPFDF Library xi
How to Read the Syntax Diagrams. xii
Related Information . xv

IBM TPF Database Facility (TPFDF) Books xv
IBM Transaction Processing Facility (TPF) 4.1 Books xv
IBM Airline Control System (ALCS) Books xv
Online Information . xv

How to Send Your Comments xvi

Part 1. Application Programming . 1

Application Programming Overview 3
Files and Subfiles . 3
Data Level Usage . 3
Using Extended Logical Records 4
Specifying Algorithm Arguments with TPFDF Macros and Functions 4
Using Basic Indexing with Macros and Functions 5

Using Keys in a Detail File . 5
Adding LRECs to Detail Files Using Basic Indexing 5

Grouping LRECs Together Using the Unique Key Facility 6
Using Unique Keys . 6

Transaction Manager . 7
ALCS Support . 8
Commit Scopes . 8
Programming Conventions . 8
Internal Use of Commit Scopes 10
Checkpoint and Close Processing 10
Benefits of Using Commit Scopes 10

Identifying Return Indicators and Errors 13
Checking for Errors in Assembler Using Equates 14
Checking for Errors Using Structured Programming Macros (SPMs) 14
Checking for Errors Using C Functions 14

Format . 15
Normal Return . 16
Examples . 17

Specifying Logical Records (LRECs) Using Keys 19
Overview of Keys . 19

Differences between Key Lists and Keyn Parameters 19
Using Keys When Reading LRECs 20

Reading LRECs Using Partial Keys 20
Reading LRECs Using a B+Tree Index 21

Using Variable-Length Fields as Keys 22
Specifying File Organization with Keyn Parameters 23

© Copyright IBM Corp. 1997, 2001 iii

Keyn Parameters Examples 24
Setting Up and Using a Key List 26

Setting Up a Key List . 26
Using a Key List . 27
Using Boolean Logic in Key Lists 30
Using Default-Key Key Lists 31
Using Modification Key Lists 31

Sample Applications . 33
Problem and Solution . 33
Member File Definitions DSECT 35
Assembler Application Program Example 39

Processing the Member File Using TPFDF Macros. 39
C Language Application Program Example. 48

Processing the Member File Using TPFDF C Functions 51

Part 2. C Language Functions . 69

TPFDF General-Use C Language Functions: Reference 71
dfadd–Add a Logical Record to a Subfile 73
dfadr–Provide the File Address of a Prime Block 80
dfckp–Checkpoint a Subfile . 83
dfclr–Allow ECB Exit with Open Files. 85
dfcls–Close a Subfile. 86
dfcpy–Copy a Subfile . 92
dfcre–Create a Subfile . 95
dfdel–Delete One or More Logical Records 97
dfdix–Delete Index References to a Subfile 105
dfdsp–Display Logical Records from a Subfile 107
dffrl–Ensure an ECB Data Level Is Free 111
dfidx–Create an Index Reference 112
dfifb–Check a SW00SR Slot 114
dfkey–Activate a Key List. 115
dfmod–Perform or Indicate Logical Record Modifications 117
dfmrg–Merge Logical Records from Two Subfiles 121
df_nbrkeys–Setting Up the Number of Keys 124
dfopn–Open a Subfile . 125
dfopt–Set Optional Information. 130
dfred–Read a Logical Record 134
dfrep–Replace a Logical Record with Another Logical Record 143
dfret–Retain a Logical Record Position. 145
dfrst–Restore a Subfile . 147
df_setkey–Setting Up a Key in a Key List. 150
dfspa–Create Work Space . 156
dfsrt–Sort a Subfile . 157
dftld–Write a Subfile from Main Storage to DASD. 160
dftlg–Write a File or Subfile to Tape 163
dftrd–Read a Subfile from an Input Tape to Main Storage 166
dfuky–Generate a Unique Key for Use in Logical Records 167
member_size–Calculating the Size of a Structure Member 168

TPFDF Restricted C Language Functions: Reference 169
dftab–Access Database Definition Tables 170

Part 3. Assembler Macros . 173

iv TPFDF R1 Programming Concepts and Reference

TPFDF General-Use Assembler Macros: Reference 175
DBADD–Add a Logical Record to a Subfile 176
DBADR–Provide the File Address of a Prime Block 190
DBCKP–Checkpoint a Subfile 196
DBCLR–Allow ECB Exit with Open Files 199
DBCLS–Close a Subfile . 200
DBCPY–Copy a Subfile . 206
DBCRE–Create a Subfile. 211
DBDEL–Delete One or More Logical Records 215
DBDIX–Delete Index References to a Subfile 229
DBDSP–Display Logical Records from a Subfile 232
DBFRL–Ensure an ECB Data Level Is Free 242
DBIDX–Create an Index Reference 243
DBIFB–Check a SW00SR Slot 246
DBKEY–Activate a Key List . 249
DBMOD–Perform or Indicate Logical Record Modifications 251
DBMRG–Merge Logical Records from Two Subfiles 256
DBOPN–Open a Subfile . 262
DBRED–Read a Logical Record 274
DBREP–Replace a Logical Record with Another Logical Record 288
DBRET–Retain a Logical Record Position 292
DBRST–Restore a Subfile . 295
DBSETK–Setting Up a Key in a Key List 300
DBSPA–Create Work Space 306
DBSRT–Sort a Subfile. 309
DBTLD–Write a Subfile from Main Storage to DASD 315
DBTLG–Write a File or Subfile to Tape. 320
DBTRD–Read a Subfile from an Input Tape to Main Storage 325
DBUKY–Generate a Unique Key for Use in Logical Records. 327

TPFDF Restricted Assembler Macros: Reference 329
BLKSZ–Convert a Block Type to a Block Size 330
DBCNT–Calculate the Length of an Assembler Symbol 334
DBTAB–Access Database Definition (DBDEF) Tables 335
DFCAS–TPFDF Case Setup in Fast-link Segments 338
DFCLIB–C Language Interface 340
DFDDA–Distributed Data Access Support 343
DFDLAY–Delay Processing Conditionally 344
DFGDS–General Data Set Support User Exit 345
DFGETC–Get Working Storage Block 346
DFGLVL–Get Resource Level 348
DFGPNL–Get Calling Program Address 349
DFIFB–Check a SW00SR Slot. 350
DFLNK–TPFDF Fast Linkage 352
DFSSU–Handling DBDEF Subtables 354
DFTDC–Dialogue Control Facility Support User Exit 357
DFUEX–Define TPFDF User Exit Point 358
FILTP–Determine File Address Type 359
FMSGS–Set Up Output Messages 361
HELPA–Help Message Text . 364

Index . 367

Contents v

||

vi TPFDF R1 Programming Concepts and Reference

Figures

1. How SubLRECs Are Added to an Extended LREC 4
2. How subLRECs Are Numbered in an Extended LREC 4
3. Example of LRECs Related by Unique Key Fields 7
4. LRECs Organized on Four Key Fields . 20
5. LREC Data Organized on Four Key Fields . 21
6. LRECs on a Keyed File . 22
7. Key Fields in LRECs without a Terminating Character 23
8. Key Fields in LRECs with a Terminating Character 23
9. IR00DF–Member File Definitions DSECT . 35

10. SAM0–File Maintenance Program . 40
11. SAM–Departure Control Interface. 45
12. SAM2–Monthly Maintenance Program . 47
13. ir00df.h–Passenger Record Structure Declaration 49
14. psgr.h–Member File Definitions Header . 51
15. sam0.c–File Maintenance Program . 52
16. sam1.c–Departure Control Interface . 63
17. sam2.c–Monthly Maintenance Program . 65
18. Merging LRECs from Two Subfiles . 122
19. Sorting LRECs from One Subfile into Another . 159
20. Merging LRECs from Two Subfiles . 260
21. Sorting LRECs from One Subfile into Another . 314
22. Areas in the Database Definition (DBDEF) Table Accessed by the DBTAB Macro. 336
23. DFSSU Macro: Create a Copy of the TPFDF and COMMON Subtables 354

© Copyright IBM Corp. 1997, 2001 vii

viii TPFDF R1 Programming Concepts and Reference

Tables

1. Begin and End Transactions . 7
2. Suspend and Resume Transactions . 7
3. Error Conditions . 13
4. Serious Errors . 13
5. Equates For TPFDF Macro Error Checking . 14
6. C Functions for Detecting Errors . 14
7. Values for the cond Parameter . 16
8. Normal Return Values for Error Detection C Functions 17
9. Boolean Equates . 30

© Copyright IBM Corp. 1997, 2001 ix

x TPFDF R1 Programming Concepts and Reference

About This Book

This book contains programming concepts and a reference for the C language
functions and assembler macros that you can use when writing application
programs for the IBM Transaction Processing Facility Database Facility (TPFDF).

In this book, abbreviations are often used instead of spelled-out terms. Every term
is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, structured programming macro (SPM). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in TPFDF
Glossary.

Before You Begin
Before using this book, see TPFDF General Information for an overall
understanding of the TPFDF product. In addition, you must be familiar with the way
your database is designed. See TPFDF Database Administration and your database
administrator for information about defining the files and subfiles for your
environment.

Who Should Read This Book
This book is intended for application programmers who are currently working with
one of the following:

v Transaction Processing Facility (TPF) system and IBM High Level
Assembler/MVS & VM & VSE (HLASM)

v Airline Control System (ALCS), also referred to as TPF/MVS, and IBM Assembler
H or IBM High Level Assembler/MVS & VM & VSE (HLASM).

How This Book Is Organized
This book has three parts as follows:

v Part 1, “Application Programming” provides some programming concepts for
writing TPFDF application programs as well as a sample application program in
assembler and in C language.

v Part 2, “C Language Functions” provides detailed information about the
general-use and restricted C functions.

v Part 3, “Assembler Macros” provides detailed information about the general-use
and restricted assembler macros.

Conventions Used in the TPFDF Library
The TPFDF library uses the following conventions:

Typography Examples of Usage

italic Used for important words and phrases. For example:

A database is a collection of data.

Used to represent variable information. For example:

Enter ZUDFC DISPLAY ID-fileid, where fileid is the file identifier (ID) of the file for which
you want statistics.

© Copyright IBM Corp. 1997, 2001 xi

|
|
|
|
|
|

Typography Examples of Usage

bold Used to represent keywords. For example:

Enter ZUDFC HELP to obtain help information for the ZUDFC command.

monospaced Used for messages and information that displays on a screen. For example:

PROCESSING COMPLETED

Used for C language functions. For example:

dfcls

Used for examples. For example:

ZUDFC DISPLAY ID-J5

bold italic Used for emphasis. For example:

You must type this command exactly as shown.

CAPital LETters Used to indicate valid abbreviations for keywords. For example:

KEYWord=option

How to Read the Syntax Diagrams
This section describes how to read the syntax diagrams (informally called railroad
tracks) used in this book.

v Read the diagrams from left-to-right, top-to-bottom, following the main path line.
Each diagram begins on the left with double arrowheads and ends on the right
with 2 arrowheads facing each other.

�� Syntax Diagram ��

v If a diagram is longer than one line, the first line ends with a single arrowhead
and the second line begins with a single arrowhead.

�� The first line is long and extends the width of the diagram �

� Second Line ��

v A word in all uppercase is a parameter that you must spell exactly as shown.

�� PARAMETER ��

v If you can abbreviate a parameter, the optional part of the parameter is shown in
lowercase. (You must type the text that is shown in uppercase. You can type
none, one, or more of the letters that are shown in lowercase.)

Note: Some TPF commands are case-sensitive and contain parameters that
must be entered exactly as shown. This information is noted in the
description of the appropriate commands.

xii TPFDF R1 Programming Concepts and Reference

�� PARAMeter ��

v A word in all lowercase italics is a variable. Where you see a variable in the
syntax, you must replace it with one of its allowable names or values, as defined
in the text.

�� variable ��

v Required parameters and variables are shown on the main path line. You must
code required parameters and variables.

�� REQUIRED_PARAMETER required_variable ��

v If there is more than one mutually exclusive required parameter or variable to
choose from, they are stacked vertically.

�� REQUIRED_PARAMETER_1
REQUIRED_PARAMETER_2
required_variable_a
required_variable_b

��

v Optional parameters and variables are shown below the main path line. You can
choose not to code optional parameters and variables.

��
OPTIONAL_PARAMETER optional_variable

��

v If there is more than one mutually exclusive optional parameter or variable to
choose from, they are stacked vertically below the main path line.

��
OPTIONAL_PARAMETER_1
OPTIONAL_PARAMETER_2
optional_variable_a
optional_variable_b

��

v An arrow returning to the left above a parameter or variable on the main path line
means that the parameter or variable can be repeated. The comma (,) means
that each parameter or variable must be separated from the next parameter or
variable by a comma.

About This Book xiii

�� �

,

REPEATABLE_PARAMETER �

,

repeatable_variable ��

v An arrow returning to the left above a group of parameters or variables means
that more than one can be selected, or a single one can be repeated.

�� �

,

REPEATABLE_PARAMETER_1
REPEATABLE_PARAMETER_2
repeatable_variable

��

v If a diagram shows a blank space, you must code the blank space as part of the
syntax. In the following example, you must code PARAMETER variable.

�� PARAMETER variable ��

v If a diagram shows a character that is not alphanumeric (such as commas,
parentheses, periods, and equal signs), you must code the character as part of
the syntax. In the following example, you must code PARAMETER=(begin.end).

�� PARAMETER=(begin.end) ��

v Default parameters and values are shown above the main path line. The TPF
system uses the default if you omit the parameter or value entirely.

��
DEFAULT

PARAMETER

0

variable
��

v References to syntax notes are shown as numbers enclosed in parentheses
above the line. Do not code the parentheses or the number.

xiv TPFDF R1 Programming Concepts and Reference

��
(1)

PARAMETER ��

Notes:

1 An example of a syntax note.

v Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in
mixed case and are shown in the diagram and in the heading of the fragment.
The fragment is placed below the main diagram.

�� Reference to Syntax Fragment ��

Syntax Fragment:

1ST_PARAMETER,2ND_PARAMETER,3RD_PARAMETER

Related Information
A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM TPF Database Facility (TPFDF) Books
v TPFDF Database Administration, SH31-0175

v TPFDF General Information, GH31-0177

v TPFDF Installation and Customization, GH31-0178

v TPFDF and TPF Structured Programming Macros, SH31-0183

v TPFDF Utilities, SH31-0185.

IBM Transaction Processing Facility (TPF) 4.1 Books
v TPF Application Programming, SH31-0132

v TPF C/C++ Language Support User’s Guide, SH31-0121

v TPF Database Reference, SH31-0143

v TPF General Macros, SH31-0152.

IBM Airline Control System (ALCS) Books
v ALCS Application Programming Guide, SH19-6948.

Online Information
v TPFDF Commands

v TPFDF Glossary

v TPFDF Messages (System Error, Online, Offline)

v TPFDF Utilities.

About This Book xv

|

|

|

|

|

How to Send Your Comments
Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

v If you prefer to send your comments electronically, do either of the following:

– Go to http://www.ibm.com/tpf/pubs/tpfpubs.htm.

There you will find a link to a feedback page where you can enter and submit
comments.

– Send your comments by e-mail to tpfqa@us.ibm.com

v If you prefer to send your comments by mail, address your comments to:

IBM Corporation
TPF Systems Information Development
Mail Station P923
2455 South Road
Poughkeepsie, NY 12601-5400
USA

v If you prefer to send your comments by FAX, use this number:
– United States and Canada: 1 + 845 + 432 + 9788
– Other countries: (international code) + 845 + 432 +9788

xvi TPFDF R1 Programming Concepts and Reference

http://www.ibm.com/tpf/pubs/tpfpubs.htm

Part 1. Application Programming

Application Programming Overview 3
Files and Subfiles . 3
Data Level Usage . 3
Using Extended Logical Records 4
Specifying Algorithm Arguments with TPFDF Macros and Functions 4
Using Basic Indexing with Macros and Functions 5

Using Keys in a Detail File . 5
Adding LRECs to Detail Files Using Basic Indexing 5

Grouping LRECs Together Using the Unique Key Facility 6
Using Unique Keys . 6

Transaction Manager . 7
ALCS Support . 8
Commit Scopes . 8

Root Commit Scopes . 8
Nested Commit Scopes . 8
Suspended Commit Scopes 8

Programming Conventions . 8
Internal Use of Commit Scopes 10
Checkpoint and Close Processing 10
Benefits of Using Commit Scopes 10

Identifying Return Indicators and Errors 13
Checking for Errors in Assembler Using Equates 14
Checking for Errors Using Structured Programming Macros (SPMs) 14
Checking for Errors Using C Functions 14

Format . 15
Normal Return . 16
Examples . 17

Specifying Logical Records (LRECs) Using Keys 19
Overview of Keys . 19

Differences between Key Lists and Keyn Parameters 19
Using Keys When Reading LRECs 20

Reading LRECs Using Partial Keys 20
Reading LRECs Using a B+Tree Index 21

Using Variable-Length Fields as Keys 22
Specifying File Organization with Keyn Parameters 23

Keyn Parameters Examples 24
Setting Up and Using a Key List 26

Setting Up a Key List . 26
Using a Key List . 27

Processing Using Keyn Parameters 28
Processing Using a Key List 28

Using Boolean Logic in Key Lists 30
Using Default-Key Key Lists 31
Using Modification Key Lists 31

Sample Applications . 33
Problem and Solution . 33
Member File Definitions DSECT 35
Assembler Application Program Example 39

Processing the Member File Using TPFDF Macros. 39
File Maintenance Program. 40

© Copyright IBM Corp. 1997, 2001 1

Departure Control Interface Program 45
Monthly Maintenance Program 47

C Language Application Program Example. 48
Processing the Member File Using TPFDF C Functions 51

File Maintenance Program. 52
Departure Control Interface Program 63
Monthly Maintenance Program 65

2 TPFDF R1 Programming Concepts and Reference

Application Programming Overview

The TPF Database Facility (TPFDF) provides an interface between application
programs requesting access to information in a database and the system software
that physically accesses the stored data. The main interfaces between application
programs and the TPFDF product are provided through a set of C functions and a
set of assembler macros. See Part 2, “C Language Functions” for details about the
TPFDF C functions and Part 3, “Assembler Macros” for details about the TPFDF
macros. In addition, see “Sample Applications” on page 33 for sample application
programs using the TPFDF C functions and TPFDF macros.

See TPFDF General Information for an overall understanding of the TPFDF product.

In addition, work with your database administrator to ensure you know how the files
in your database are defined. See TPFDF Database Administration for more
information about how files are defined for a TPFDF database.

The following provides an overview of some of the general considerations for writing
application programs for the TPFDF product.

Files and Subfiles
Most of the macros and functions operate on logical records (LRECs) in a subfile.
Some macros and functions operate on one or more subfiles, and some on whole
files.

When you call a C function, you identify the subfile you want to access by providing
a pointer to the SW00SR slot created when you call the dfopn function. When you
call a macro, you identify the file you want to access by its DSECT name and you
specify the subfile by using the ALG, FILE, or ORD parameter.

Data Level Usage
The TPFDF product preserves all data levels across TPFDF macro calls with the
following exceptions:

v If you use the DBOPN macro with the DATA and PARAM parameters specified,
the data is returned to the data level specified.

Note: The DATA and PARAM parameters are provided for migration purposes
only.

v If you use the DBDSP macro:

– Data level 1 (D1) and data level 3 (D3) are not data level independent (DLI) if
the WTOPC parameter is specified with the NO value (the default), or the
YES value is not specified, and DBLCL macro symbol &ACPDBAA is set to
zero.

– Data level 2 (D2) is not DLI.

v If you use the dfdsp function:

– Data level 1 (D1) and data level 3 (D3) are not DLI if you do not specify the
DFDSP_WTOPC value and DBLCL macro symbol &ACPDBAA is set to zero.

– Data level 2 (D2) is not DLI.

© Copyright IBM Corp. 1997, 2001 3

|
|

Using Extended Logical Records
In application programs, you can do the following with extended logical records
(LRECs):

v Add an extended LREC, including the userLREC, to a subfile

v Add a subLREC to an extended LREC

v Read a complete extended LREC, including the userLREC and all subLRECs

v Delete one or more subLRECs from an extended LREC

v Replace the subLREC or userLREC (or both) in an extended LREC.

The TPFDF product adds each subLREC immediately after the control part of the
extended LREC. If you add several subLRECs to the same extended LREC, the
subLRECs appear in reverse order in the LREC. This is shown in Figure 1.

The subLRECs are numbered in the order they appear in the extended LREC (see
Figure 2).

See TPFDF Database Administration for more information about defining extended
LRECs.

Specifying Algorithm Arguments with TPFDF Macros and Functions
When you call a TPFDF macro or C function, you can use an algorithm argument to
identify the particular subfile in the file that you are accessing. The way you specify
an algorithm argument depends on the type of algorithm that you have defined in
the DSECT macro for the file. See TPFDF Database Administration for more
information about algorithms, and see “TPFDF General-Use C Language Functions:

Control UserLREC

1. Extended LREC containing no subLRECs

Control UserLREC

2. Extended LREC after adding one subLREC

subLREC A

Control UserLREC

3. Extended LREC after adding another subLREC

subLREC B subLREC A

Control subLREC A

4. Extended LREC after adding a third subLREC

subLREC C subLREC B UserLREC

Figure 1. How SubLRECs Are Added to an Extended LREC

Control subLREC A

subLREC number:

subLREC C subLREC B UserLREC

0 1 2

LASTFIRST

Figure 2. How subLRECs Are Numbered in an Extended LREC

4 TPFDF R1 Programming Concepts and Reference

Reference” on page 71 and “TPFDF General-Use Assembler Macros: Reference” on
page 175 for more information about specifying algorithm arguments with TPFDF
functions and macros.

Using Basic Indexing with Macros and Functions
Applications normally perform all actions on the detail file, not on the index file,
when they use basic indexing.

For example, to read an LREC from a detail file using the TPFDF macros and basic
indexing:

v Open the detail file normally using the REF parameter. For example:
DBOPN REF=GR25DF

v Read an LREC using DBRED. Provide the index key of an index LREC as an
algorithm argument in the ALG parameter. For example, to read the LREC in the
detail file for a passenger with the name of ADLER, you can code:
DBRED REF=GR25DF,ALG==C’ADLER’

See TPFDF Database Administration for more information about basic indexing and
the other forms of TPFDF index support.

Using Keys in a Detail File
An index LREC only points to the prime block of a subfile. The ALG parameter only
defines the detail subfile that contains the LREC you require.

To locate a particular LREC in the subfile, you must also supply keys with the KEYn
parameters or a key list. For example, to read an LREC with an LREC ID defined
by equate #GR25K80 for passenger JONES, you can code:
DBRED REF=GR25DF,ALG==C’JONES’,KEY1=(PKY=#GR25K80)

See “Specifying Logical Records (LRECs) Using Keys” on page 19 for more
information about keys.

Adding LRECs to Detail Files Using Basic Indexing
Using basic indexing, you can add new LRECs to a detail file using the DBADD
macro or dfadd function. Specify the index key as the algorithm argument. The
TPFDF product inserts the LREC in the appropriate place in the detail file.

For example, to add a passenger named Jones to the passenger file, you can code:
DBADD REF=GR23DF,ALG==C’JONES’,NEWLREC=EBW060

In this example, EBW060 contains the LREC to be added with information about
passenger Jones.

If the detail subfile is organized UP or DOWN, specify KEYn parameters or a key
list to place the LREC in an appropriate position in the detail subfile.

If the detail subfile does not exist, the TPFDF product will create the subfile and the
index references automatically. For example, to create a detail subfile, the index
references to that subfile, and add a passenger named Jones, you can code:
DBADD REF=GR23DF,INDEX,ALG==C’JONES’,NEWLREC=EBW060

This has the same effect as the following sequence of macros:

Application Programming Overview 5

DBCRE REF=GR23DF
DBIDX REF=GR23DF,ALG==C’JONES’
DBADD REF=GR23DF,NEWLREC=EBW060

Grouping LRECs Together Using the Unique Key Facility
Suppose you want to store a large quantity of data about customers by using
different LREC types for different parts of the data.

For example, suppose the information is to be stored in a file using three different
types of LRECs:

LREC ID Information held

X'80' Customer name, held in a variable-length field called zzzzNAM.

X'90' Customer address.

X'A0' Additional information, only applicable for certain customers.

You need some method of indicating that all the LRECs for a particular customer
are related. You can implement this requirement in a variety of ways. A simple
method is to repeat the name field (as a fixed-length field) in each LREC, but this
can waste a lot of space. A better way is to use the unique keys.

Using Unique Keys
You can use unique keys to indicate that LRECs are related. To do this, define a
unique key field in each LREC and call the DBUKY macro or dfuky function to
provide you with a unique key to insert in this field in each LREC.

The process is as follows:

1. Before adding a new customer name LREC to the file, call the DBUKY macro or
dfuky function to get a new unique key. The TPFDF product places this 4-byte
key in a field in SW00SR slot SW00UKY.

2. Store the unique key in a user field of each related LREC (for example, all the
LRECs relating to a particular customer).

3. Ensure the DSECT has the additional 18-byte header extension.

The result is shown in Figure 3 on page 7. One 4-byte unique key field exists in
each LREC. This example shows the unique keys in the same relative position in
each LREC, but this is not necessary.

6 TPFDF R1 Programming Concepts and Reference

Transaction Manager
TPFDF product support of the TPF transaction manager (TM) ensures a consistent
view of a database in an application program. This consistent view of the database
ensures that either all or none of the file changes have been completed; there is no
such thing as a partially updated database.

The TM verifies a consistent database view by using a set of application
programming interfaces (APIs) for the application program to define both the scope
of a file transaction as well as actions to be taken for the file transaction.

The TM provides a subset of the TX functions (defined by the X/Open TX interface)
to the application to begin and end (that is, commit or roll back) a transaction:

Table 1. Begin and End Transactions

C Function Assembler Macro

tx_begin TXBGC

tx_commit TXCMC

tx_rollback TXRBC

Additionally, the TM provides the following extension (to X/Open) functions to the
application to suspend or resume a transaction:

Table 2. Suspend and Resume Transactions

C Function Assembler Macro

tx_suspend_tpf TXSPC

tx_resume_tpf TXRSC

Size ID

Unique key (zzzzUKY)

80 A D L E R

80 B R O O K

80 CC C H E S TCC CC CC E R

90 3 1 E L

90 F L A T

90 CC T H E PCC CC CC R I

M L A N E

6

O R Y

A0 Additional information (ADLER) . . .

A0

A0

A0 CC CC CC CC

Additional information (ADLER) . . .

Additional information (ADLER) . . .

Additional information (CHESTER) . . .

BB BB BB BB

AA AA AA AA

AA AA AA AA

AA AA AA AA

AA AA AA AA

AA AA AA AA

BB BB BB BB

Figure 3. Example of LRECs Related by Unique Key Fields

Application Programming Overview 7

ALCS Support
The ALCS environment does not support the TM.

Commit Scopes
The TM groups all database updates into a unit of work called a commit scope. A
current commit scope is defined by a file transaction.

A file transaction refers to all macros, instructions, and functions that are issued on
a file. When a file transaction is completed, you can save (commit) or discard (roll
back) the file updates.

Root Commit Scopes
The first commit scope that is created by the application is a root commit scope.

Nested Commit Scopes
A commit scope that is created after the root scope has been activated is a nested
commit scope. A root commit scope can have many nested commit scopes.

In a commit scope, all database requests are satisfied back through the chain of
nested scopes to the root commit scope. Therefore, none of the nested commit
scopes are satisfied until the root commit scope is satisfied.

Suspended Commit Scopes
You can temporarily suspend a commit scope to make database updates outside
the current commit scope. However, when a commit scope is suspended, you
cannot reference a file that is already referenced in the current commit scope.

See the following for more information about the transaction manager or commit
scopes:

v TPF Application Programming

v TPF Database Reference

v TPF C/C++ Language Support User’s Guide.

Programming Conventions
The TM APIs can be used with TPFDF macros in an application program to ensure
that all file updates are complete before being committed (saved) to the database.
All updates are filed to DASD as one update; that is, all or none of the updates take
effect. TPFDF macros that update the database do not take effect on DASD until a
commit is issued for the root commit scope. If a rollback is issued for the root
commit scope, all updates made by TPFDF macro calls in the commit scope are
discarded.

The following programming conventions provide you with safe and simple use of
commits scopes with TPFDF macros:

v All references to a TPFDF file, from open to close, must be made in the same
commit scope. If a TPFDF file was opened in a commit scope (root or at any
nested level), all references to the file (including the closing) must be done in that
commit scope.

v The rollback of a commit scope discards all updates made as a result of TPFDF
macro calls in that commit scope. You can issue a rollback at any point in the
macro sequence. It is not necessary that a file be closed after a rollback because
it discards the open and any subsequent macros.

8 TPFDF R1 Programming Concepts and Reference

Attention: A rollback has no effect on any updates (nonfile updates) issued
outside of the TPFDF macros; for example, application use of the data levels,
registers, and local variables.

v You cannot reference a TPFDF file that is opened in a suspended commit scope.

v TPFDF macros that reference core resident files (specifically W-type files in
detac mode and T-type files) are not affected by commit scopes. This means that
updates to these files cannot be rolled back.

v Avoid TPFDF transactions that access and modify large amounts of data
because of the impacts to TM resources.

v TPFDF detac mode supports files of all sizes and is available in an ALCS
environment. With TPFDF detac mode, you can roll back a file update without
having to access the commit scope or roll back the commit scope.

The following shows an example of a basic TPFDF transaction that is contained in
a commit scope. The TXBGC macro begins the commit scope that contains the
DBOPN, DBADD, and DBCLS macros issued on FILE1. The TXCMC macro ends
the commit scope and commits FILE1 to the database.
TXBGC

DBOPN REF=FILE1

DBADD REF=FILE1

DBCLS REF=FILE1

TXCMC

The following shows an example of TPFDF transactions contained in a root commit
scope and a nested commit scope. The first TXBGC macro begins the root commit
scope that contains the DBOPN and DBRED macros issued on FILE1. The second
TXBGC macro begins the nested commit scope that contains the DBOPN, DBADD,
and DBCLS macros issued on FILE2 and FILE3. Although the nested commit scope
ends with the subsequent TXCMC macro, it is not until the root commit scope is
ended with the TXCMC macro that FILE1, FILE2, and FILE3 are committed to the
database because nested commit scopes are not satisfied until the root commit
scope is satisfied. Additionally, a file that is outside a nested commit scope cannot
be referenced from within a nested commit scope. If FILE1 is accessed within the
nested commit scope, an error would occur.
TXBGC

DBOPN REF=FILE1

DBRED REF=FILE1

TXBGC

DBOPN REF=FILE2

DBOPN REF=FILE3

DBADD REF=FILE2

DBADD REF=FILE3

DBCLS REF=FILE2

DBCLS REF=FILE3

TXCMC

Application Programming Overview 9

DBCLS REF=FILE1

TXCMC

Internal Use of Commit Scopes
To provide added security against database corruption that results from unplanned
system outages, the TM support of TPFDF transactions includes an option to use
commit scopes internally. This option is valuable when many files are to be filed out
during checkpoint and close processing (for example, detac mode, extensive
B+Tree indexing updates, and requests to pack indexes).

Checkpoint and Close Processing
You can control the use of commit scopes internally by specifying the optional
parameters for the TPFDF macros that use checkpoint and close processing. These
optional parameters can override the database definition (DBDEF) default setting to
enable or disable the internal use of commit scopes. Using commit scopes provides
protection against database corruption, such as when system outages occur during
the large filing of updates.

See the following for additional information about the option to manage TPFDF
macros with commit scopes:

v “DBCKP–Checkpoint a Subfile” on page 196

v “DBCLS–Close a Subfile” on page 200

v “dfcls–Close a Subfile” on page 86

v “dfckp–Checkpoint a Subfile” on page 83.

See TPFDF Database Administration for additional information about the DBDEF
option to manage TPFDF macros with commit scopes.

Benefits of Using Commit Scopes
Using commit scopes with TPFDF macros provides the following benefits:

v Database consistency and integrity

Using commit scopes ensures either all or none of the files updated in a
database are written to DASD. There is no such thing as a partially updated
database when updates are all made in commit scopes.

v Managing TPFDF DASD-resident files and traditional database transactions

Commit scopes support both TPFDF and traditional files, including critical and
internal files; that is, a commit scope can contain updates to both TPFDF and
traditional files.

v Managing application programs

Using commit scopes simplifies your application program designs with a reduced
need for error recovery routines, and shortens your coding and testing phases.
The reliability of your application program is increased because the order of
updates is no longer of paramount importance. At any time, the application
program could stop processing and request that the TPF system ignore all of its
previous updates. Additionally, knowing that you always have a consistent view of
the database affects your application development cycle time. Either all of your
file changes have been completed or none of them have; it is that simple.

v Increasing application program reliability

10 TPFDF R1 Programming Concepts and Reference

The order of updates is no longer of paramount importance. At any time, the
application program could stop processing and request that the TPF system
ignore all of its previous updates.

Application Programming Overview 11

12 TPFDF R1 Programming Concepts and Reference

Identifying Return Indicators and Errors

After you call a macro or function, the TPFDF product indicates the success or
failure of the call by setting indicator bits in the SW00RTN field in the SW00SR slot
for that subfile. The SW00RT1 and SW00RT2 fields provide additional information
about error conditions.

When a macro or function ends successfully, the TPFDF product sets SW00RTN to
zero and the application program continues normally.

Table 3 shows the SW00RTN and SW00RT2 settings that indicate the application
program must take some remedial action.

Table 3. Error Conditions

SW00SR Error Bits Condition

SW00RTN #BIT1 One of the following:

v The logical record (LREC) was not found when using a
DBRED macro, dfred function, DBDEL macro, or dfdel
function.

v An LREC was found with the same keys as the LREC being
added by one of the following:

– DBADD macro with the UNIQUE parameter specified

– dfadd function with the DFADD_UNIQUE value specified
for the options parameter

– DBADD macro or dfadd function for a file with
UNIQUE=YES specified on the DBDEF macro for the file.

SW00RTN #BIT5 End of file occurred during fullfile processing.

SW00RT2 #BIT0 Error in list of logical record numbers. This bit is only meaningful
if bit 1 in SW00RTN is ON.

SW00RT2 #BIT5 The subfile is empty because of the following:

v The next available byte (NAB) value in the prime block
indicates the first byte directly after the header.

v There are no forward chains in the prime block.

Table 4 shows the SW00RTN and SW00RT2 settings that indicate more serious
errors. The TPFDF product may issue a system error when one of these errors
occur.

Table 4. Serious Errors

SW00SR Error Bits Condition

SW00RTN #BIT0 I/O or B+Tree index error.

SW00RTN #BIT2 File address compute program (FACE) error.

SW00RTN #BIT3 One of the following:

v Subfile does not exist in detail file or intermediate index file.

v Incorrect algorithm argument.

SW00RTN #BIT4 Data in block is corrupt.

SW00RTN #BIT6 Sequence error using a DBRST macro or dfrst function.

SW00RTN #BIT7 Sort or merge error.

SW00RT2 #BIT1 Error with the DBDSP macro or dfdsp function.

© Copyright IBM Corp. 1997, 2001 13

Table 4. Serious Errors (continued)

SW00SR Error Bits Condition

SW00RT2 #BIT4 B+Tree index error.

When you use fullfile processing, SW00RT1 contains the number of errors detected
since the file was opened.

Checking for Errors in Assembler Using Equates
Table 5 lists a set of equates for some of the common errors that you can
experience. You can use these equates to test the value of SW00RTN.

Table 5. Equates For TPFDF Macro Error Checking

Equate Hexadecimal
Value

Condition

#TPFDBEX X'AB' Any serious error indicated in SW00RTN except
indexing errors.

#TPFDBER X'BB' Any serious error indicated in SW00RTN.

#TPFDBNR X'44' Any error indicated in SW00RTN requiring remedial
action.

#TPFDBNI X'44' Any error indicated in SW00RTN requiring remedial
action.

#TPFDBOK X'00' No errors indicated in SW00RTN.

Checking for Errors Using Structured Programming Macros (SPMs)
You can also use a short form method to check return codes by using a set of
special parameters with the SPMs.

To check SW00RTN return codes, use the following parameters with the SPMs:
v DBFOUND
v DBERROR
v DBEOF
v DBIDX.

To check a specific SW00RT2 return code, use the DBEMPTY parameter with the
SPMs.

See TPFDF and TPF Structured Programming Macros for more information about
these parameters and how to use them.

Checking for Errors Using C Functions
Table 6 lists a set of C functions that you can use to test a particular condition when
you have called a C function.

Note: Do not use any of these functions after a dfcls function.

Table 6. C Functions for Detecting Errors

Function Condition

DF_OK No errors indicated in SW00RTN.

14 TPFDF R1 Programming Concepts and Reference

Table 6. C Functions for Detecting Errors (continued)

Function Condition

DF_EMPTY Test if a subfile is empty. This function is available only after a delete
operation that does not use fullfile processing and before the next TPFDF
call.

DF_ER Any serious error indicated in SW00RTN.

DF_ERBTR B+Tree index error.

DF_ERX Any serious error indicated in SW00RTN except indexing errors.

DF_NR Record not found (any error indicated in SW00RTN requiring remedial
action).

DF_EF End of file (any error indicated in SW00RTN requiring remedial action).

DF_ERCNT Numbers of errors detected during fullfile processing.

DF_ERLST Error in list of logical record numbers.

DF_ERDSP Error with the dfdsp function.

DF_SERRC System error issued by the TPFDF product.

DF_TEST Test specified bits in SW00RTN.

The following describes the format, parameters, and normal return for these
functions. In addition, there is an example of how you can use these functions.

Format
int DF_OK(dft_fil *file);

int DF_EMPTY(dft_fil *file);

int DF_ER(dft_fil *file);

int DF_ERBTR(dft_fil *file);

int DF_ERX(dft_fil *file);

int DF_NR(dft_fil *file);

int DF_EF(dft_fil *file);

int DF_ERCNT(dft_fil *file);

int DF_ERLST(dft_fil *file);

int DF_ERDSP(dft_fil *file);

int DF_SERRC(dft_fil *file);

int DF_TEST(dft_fil *file, char cond);

Identifying Return Indicators and Errors 15

cond Parameter Values:

�

|

DFC_IOERR
DFC_RCDNF
DFC_FACE
DFC_ALG
DFC_BLOCK
DFC_EOF
DFC_SEQ
DFC_SM

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

cond
is the condition that you want to test. Table 7 describes the values you can
specify:

Table 7. Values for the cond Parameter

Value SW00RTN Bit
Tested

Condition

DFC_IOERR Bit 0 I/O or B+Tree index error.

DFC_RCDNF Bit 1 One of the following:

v The LREC was not found when using a dfred or
dfdel function.

v An LREC was found with the same keys as the
LREC being added by one of the following:

– dfadd function with the DFADD_UNIQUE value
specified for the options parameter

– dfadd function for a file with UNIQUE=YES
specified on the DBDEF macro for the file.

DFC_FACE Bit 2 File address compute program (FACE) error.

DFC_ALG Bit 3 One of the following:

v Subfile does not exist in detail file or intermediate
index file.

v Incorrect algorithm argument.

DFC_BLOCK Bit 4 Data in block is corrupt.

DFC_EOF Bit 5 End of file occurred during fullfile processing.

DFC_SEQ Bit 6 Sequence error using dfrst function.

DFC_SM Bit 7 Sort or merge error.

Normal Return
Function DF_ERCNT returns the count of errors detected during fullfile processing. All
other functions return a nonzero value if the tested condition is true; otherwise, the
return is zero. Table 8 on page 17 lists the conditions tested for each function.

16 TPFDF R1 Programming Concepts and Reference

Table 8. Normal Return Values for Error Detection C Functions

Function Tested Condition

DF_OK All SW00RTN bits are zero.

DF_ER One of the following SW00RTN bits is set to 1:
v #BIT0
v #BIT2
v #BIT3
v #BIT4
v #BIT6
v #BIT7.

DF_ERBTR Both SW00RTN #BIT0 and SW00RT2 #BIT4 are set to 1.

DF_ERX One of the following SW00RTN bits is set to 1:
v #BIT0
v #BIT2
v #BIT4
v #BIT6
v #BIT7.

DF_NR One of the following SW00RTN bits is set to 1:
v #BIT1
v #BIT5.

DF_EF One of the following SW00RTN bits is set to 1:
v #BIT1
v #BIT5.

DF_ERLST Both SW00RTN #BIT1 and SW00RT2 #BIT0 are set to 1.

DF_ERDSP Both SW00RTN #BIT0 and SW00RT2 #BIT1 are set to 1.

DF_SERRC One of the following SW00RTN bits is set to 1:
v #BIT0
v #BIT2
v #BIT4
v #BIT7.

Examples
The following example:

v Reads an LREC from a passenger detail subfile referenced by the member
number contained in a variable (character array) called in_mess.

v Tests for a read error.

v Tests if a particular subfile exists. If the subfile does not exist, a message is sent
to the operator.

psgr_lrec = dfred_acc(psgr_file, DFRED_ALG, 0, in_mess);

if (DF_ERX(psgr_file)) /* if error from read */
subfile_error(); /* perform error processing */

if (DF_TEST(psgr_file, DFC_ALG)) /* if subfile doesn’t exist */
printf("INVALID NUMBER\n"); /* send message to operator */

Identifying Return Indicators and Errors 17

18 TPFDF R1 Programming Concepts and Reference

Specifying Logical Records (LRECs) Using Keys

Once you identify the subfile you are going to work with, you may want to identify
an LREC or group of LRECs in the subfile. You can do this by using keys or by
specifying LREC sequence numbers, or both. The following discusses various
aspects of using key parameters; see the individual macro and function descriptions
for details about the specific key parameters and LREC sequence number
parameters.

Overview of Keys
Specifying keys includes information such as the displacement and length of the
key fields, a comparison operator, and the values to compare the fields against. By
using keys, you can identify an LREC or group of LRECs in a subfile that match
certain criteria. Keys become active when you:

v Specify KEYn parameters on a macro.

v Use a key list with the DBKEY macro or dfkey function, or with the KEYLIST
parameter on a macro.

v Use default keys with the DBADD macro or dfadd function.

Active keys remain in effect and are used by the TPFDF product while the file is
open until one of the following conditions occurs.

v If you specify different keys using one of the previously mentioned methods, the
new keys will be used and remain in active.

v If you use the NOKEY, FAST, or INLINE parameter with another macro that
accesses the subfile, any currently active keys are deactivated.

v If you use the DFxxx_NOKEY, DFxxx_FAST, or DFxxx_INLINE value of the
options parameter for another function that accesses the subfile, any currently
active keys are deactivated (xxx represents the function; for example,
DFADD_NOKEY).

v If you code a DBADD macro or dfadd function and the database definition
(DBDEF) has default keys specified, the default keys become the active keys.

v If you specify a DBREP macro or dfrep function and KEYCHECK=YES is
defined on the DBDEF macro, the active keys cannot be predicted.

Differences between Key Lists and Keyn Parameters
Key lists and the KEYn parameters provide the same function, but the following
operations are only available with key lists:

v Default keys on read operations, or any macro or function that implies a read
operation (for example, the DBDEL macro and dfdel function read the record
before deleting it).

v Boolean OR logic with keys.

v Global modification of LRECs.

In addition, the following are other differences between key lists and KEYn
parameters:

v You can specify as many as 180 keys with a key list, but you can specify only as
many as 6 keys with the KEYn parameters.

v Key lists generate the active keys at run time, but the KEYn parameters generate
the active keys at assembly time.

© Copyright IBM Corp. 1997, 2001 19

|
|
|
|
|
|

See the individual macro descriptions for details about the format of the KEYn
parameters. See “Setting Up and Using a Key List” on page 26 for more information
about using key lists.

Using Keys When Reading LRECs
When keys are active on a read operation, the TPFDF product searches all the
LRECs in the subfile (depending on the options specified) and returns the first
LREC with key fields that match the ones specified in the active keys. The DBRED
macro and dfred function are not the only macro and function that perform read
operations. Other macros and functions perform read operations during internal
processing. For example, the DBDEL macro and dfdel function both do a read
operation to locate the correct LREC and then they do the delete operation.

If the same set of keys is used on multiple read operations, they do not have to be
specified on each macro or function. Once activated by a macro or function, keys
remain active and can be used by subsequent macros or functions (except as noted
in “Overview of Keys” on page 19). Instead of specifying keys each time you read or
delete LRECs, you can specify them when you open a subfile or use the DBKEY
macro or dfkey function. If you then read LRECs without specifying any more key
parameters, the TPFDF product supplies only those LRECs that match the keys
specified with the DBOPN macro, dfopn function, DBKEY macro, or dfkey function.

Reading LRECs Using Partial Keys
You can read LRECs using just some of the keys that are used to organize the
LRECs in each subfile. This is known as using a partial key.

For example, assume that the LRECs shown in Figure 4 are UP organized on fields
PKY and FLD1, DOWN organized on field FLD2, and UP organized on field FLD3.

Figure 5 on page 21 shows the sample contents of such a file.

SIZ PKY

primary key
key 2
key 3
key 4

FLD1 FLD2 FLD3 other data . . .

Figure 4. LRECs Organized on Four Key Fields

20 TPFDF R1 Programming Concepts and Reference

The TPFDF product lets you read LRECs without specifying all the keys used in the
file organization. You can specify only a selection of the key fields in the search. For
example, you could use fields PKY, FLD1 and FLD3. However, because you are
omitting one of the key fields in the search argument, the LRECs must not be
treated as UP or DOWN organized on any of the less-significant key fields (in this
case, field FLD3).

It is essential that you define the organization of the LRECs on these
less-significant key fields as NOORG. Otherwise, you will not locate all the LRECs
matching your criteria. For example:
DBRED REF=zzzzzz, *

KEY1=(PKY=#zzzzK80,UP), *
KEY2=(R=zzzzFLD1,S=EBW000,UP), *
KEY3=(R=zzzzFLD3,S=EBX000,NOORG)

Specifying an organization of NOORG (or not specifying organization) on a file that
has organization can cause the TPFDF product to unnecessarily search for more
LRECs that match the selection criteria. However, the same LRECs will be retrieved
whether organization is specified or not.

Reading LRECs Using a B+Tree Index
Large subfiles can require many DASD accesses for the TPFDF product to search
for a particular LREC. DASD accesses can be minimized by using B+Tree indexing.

The TPFDF product uses a B+Tree index to quickly find an LREC in a B+Tree data
file. The TPFDF product uses the B+Tree index while reading a B+Tree data file
when the active keys match the order, organization, and displacement of the default
keys. The active keys are used until one does not match the default keys.

In the following example, KEY1, KEY2, and KEY4 in the DBRED statement match
KEY1, KEY2, and KEY4 in the DBDEF statement, but KEY3 does not match. In this
example, the TPFDF product uses the B+Tree index to locate the first LREC
matching KEY1 and KEY2. The TPFDF product then searches sequentially through
the subfile until it finds an LREC matching KEY3 and KEY4.
DBDEF FILE=GR91SR,

KEY1=(PKY=#GR91K80,UP),
KEY2=(R=GR91FLD1,UP),
KEY3=(R=GR91FLD3,DOWN),
KEY4=(R=GR91FLD4,UP)

DBRED REF=GR91SR,

PKY FLD1 FLD2 FLD3
80 1000 4000 2000
80 1000 4000 4000
80 1000 3000 1000
80 1000 3000 2000
80 2000 3000 3000
80 2000 3000 4000
80 2000 2000 2000
80 3000 3000 1000
80 3000 3000 3000
80 3000 3000 5000
80 3000 1000 1000
80 3000 1000 4000
80 5000 4000 2000
80 5000 4000 4000

Figure 5. LREC Data Organized on Four Key Fields

Specifying Logical Records (LRECs) Using Keys 21

KEY1=(PKY=#GR91K80,UP),
KEY2=(R=GR91FLD1,S=EBW000,UP),
KEY3=(R=GR91FLD6,S=EBX000,DOWN),
KEY4=(R=GR91FLD4,S=EBW044,UP)

Note: The TPFDF product will not use a key to search the B+Tree index if the key
was defined with one of the following:

v Using the M or D subparameter with a KEYn parameter

v Using a key list when SW01ID1 #BIT5 or #BIT6 is set to 1.

The TPFDF product will use only a previously active key to search the
B+Tree index. This key and any subsequent keys are then used by the
TPFDF product to sequentially search for the requested LREC.

You can read LRECs specifying only the part of the key that is used to organize the
file. For example, suppose we have a file that is organized in the ascending order
of seat number in a flight number as shown in Figure 6.

To extract the customers travelling on flight 1234, you could request the TPFDF
product to read LRECs with a primary key of X'80' and a secondary key (flight
number) of 1234. The TPFDF product would give you the first LREC marked with
an S. On subsequent reads it gives you the next LREC and so on until it has given
you all the matching LRECs.

Now assume that the file uses B+Tree indexing and the flight and seat number were
coded as default keys in the DBDEF, but only flight number 1234 is supplied when
you read the file. The first time DBRED is issued, the B+Tree index is used to find
the first LREC with flight number 1234. The next time DBRED is issued, DBRED
does not use the B+Tree index to find the next LREC with flight number 1234. The
file is searched sequentially.

Applications do not have to be updated to use B+Tree indexing. B+Tree indexing
provides a more effective method for accessing LRECs in large files that have
unusual, unknown, or changing distributions.

Using Variable-Length Fields as Keys
You can use variable-length fields as key fields by indicating how much of the field
must match. You can do this by specifying an L subparameter with a KEYn
parameter or with field SW01LEN in a key list. However, using variable-length fields
as keys can result in false matches. For example, if you use the string "ADAMS" as

LREC ID Flight Seat Customer
(Hex.) number number Name

80 1233 A99 xxxxxx
S 80 1234 C31 xxxxxxxxxx
S 80 1234 C45 xxxxxxxxxxxxx
S 80 1234 D17 xxxxxxx
S 80 1234 E05 xxxxxxxxxx

80 1236 A02 xxxxxx
80 1236 D01 xxxxxx

key of the file (ascending)

Figure 6. LRECs on a Keyed File

22 TPFDF R1 Programming Concepts and Reference

a search key with a length of 5, the TPFDF product matches all the LRECs shown
in Figure 7.

One method of preventing false matches is to use a terminating character at the
end of the variable-length field when each LREC is added to the file. If X'00' was
used as the terminating character in our example, the entries shown in Figure 7
now become those shown in Figure 8.

To find a match for ADAMS, you must add a X'00' character to the end of the
search field.

Specifying File Organization with Keyn Parameters
If you specify the KEYn parameters on a macro, you must also specify the
organization, if there is any, in one of the following ways:

v Specify a general organization that applies to all keys using the UP, DOWN, or
NOORG parameter on the macro. If you use this method, no individual key on
that macro can specify its own organization.

If you specify an M or D subparameter with a KEYn parameter on the macro,
that key and all subsequent keys will have an organization of NOORG.

v Specify the organization for each individual key using the organization
parameters available with the KEYn parameter. If you specify NOORG for a
particular key, all subsequent keys must specify NOORG.

In addition, you must specify an organization of NOORG for any key that uses
the M or D subparameter with the KEYn parameter.

Key field (variable-length)

A D A M S M I T H

A D A M S O N S

A D A M S O N

A D A M S

Figure 7. Key Fields in LRECs without a Terminating Character

A D A M S M I T H

A D A M S O N S

A D A M S O N

A D A M S

00

00

00

00

Key field (variable-length)

Figure 8. Key Fields in LRECs with a Terminating Character

Specifying Logical Records (LRECs) Using Keys 23

If you do not want to assign any organization to the keys, it is possible to have no
organization parameters at all.

If the organization is not specified according to these rules, the TPFDF product
issues one or more assembly messages (called MNOTEs). If an MNOTE is issued,
the code is generated based on the following rules:

1. If an organization is specified, that organization is used.

2. Otherwise, if an organization for KEY1 is specified, the KEY1 organization is
used.

3. Otherwise, if a general organization is specified, that organization is used.

4. Otherwise, NOORG is used for the organization.

Exceptions:

1. If a previous key organization was specified as NOORG, this key becomes
NOORG as well.

2. If the key uses the M or D subparameter, NOORG is used for the organization
and an organization of NOORG is assumed for any subsequent key.

Migration Note
Any applications that do not currently follow the rules for specifying the
organization for keys do not have to be changed until they are reassembled.
In addition, you can control the severity of the MNOTEs that are issued when
the rules are not followed. We strongly recommend that you use the default
severity of 8; however, if you are confident that your applications are working
as designed without following the organization rules, you can choose to ignore
the following MNOTEs (where n represents the key number):

KEYn ORG NOT ALLOWED IF GENERAL ORG GIVEN
KEYn REQUIRES ORG IF NO GENERAL ORG GIVEN
KEYn HAS ORG, BUT NO KEY1 ORG OR GENERAL ORG
UP/DOWN ON KEYn NOT ALLOWED AFTER PREVIOUS NOORG - NOORG ASSUMED

The severity is controlled with the &KMNVAL variable in the DBLCL macro.
See TPFDF Installation and Customization for more information about the
DBLCL macro and associated variables.

In addition, the TPFDF product issues an informational MNOTE at the end of the
macro expansion that summarizes the defined key organization.

Keyn Parameters Examples
The following are examples of macros that are coded by following these key
organization rules. The examples also show the resulting MNOTEs.

Correct Example 1

DBRED REF=GR95SR,REG=R5,DOWN,
KEY1=(PKY=#GR95K80),
KEY2=(R=#GR95SEX,S=EBX004),
KEY3=(R=#GR95AGE,S=EBX008)

Result: *,KEY1 - KEY3 DEFINED: K1-DW K2-DW K3-DW

End of Correct Example 1

24 TPFDF R1 Programming Concepts and Reference

Correct Example 2

DBRED REF=GR95SR,REG=R5,
KEY1=(PKY=#GR95K80,UP),
KEY2=(R=#GR95SEX,S=EBX004,DOWN),
KEY3=(R=#GR95AGE,S=EBX008,NOORG)

Result: *,KEY1 - KEY3 DEFINED: K1-UP K2-DW K3-NO

End of Correct Example 2

Correct Example 3

DBRED REF=GR95SR,REG=R5,
KEY1=(PKY=#GR95K80,DOWN),
KEY2=(R=#GR95SEX,M=X'80',C=Z,NOORG),
KEY3=(R=#GR95AGE,S=EBX008,NOORG)

Result: *,KEY2 TM: NOORG ASSUMED FOR THIS AND FOLLOWING KEYS
*,KEY1 - KEY3 DEFINED: K1-DW K2-NO K3-NO

End of Correct Example 3

The following are examples of macros that are coded without following the
organization rules. The examples also show the resulting MNOTEs.

Incorrect Example 1

DBRED REF=GR95SR,REG=R5,DOWN,
KEY1=(PKY=#GR95K80,UP),
KEY2=(R=#GR95SEX,S=EBX004),
KEY3=(R=#GR95AGE,S=EBX008,NOORG)

Result: 8,KEY1 ORG NOT ALLOWED IF GENERAL ORG GIVEN
8,KEY3 ORG NOT ALLOWED IF GENERAL ORG GIVEN
*,KEY1 - KEY3 DEFINED: K1-UP K2-UP K3-NO

End of Incorrect Example 1

Incorrect Example 2

DBRED REF=GR95SR,REG=R5,
KEY1=(PKY=#GR95K80,UP),
KEY2=(R=#GR95SEX,S=EBX004),
KEY3=(R=#GR95AGE,S=EBX008,DOWN)

Result: 8,KEY2 REQUIRES ORG IF NO GENERAL ORG GIVEN
*,KEY1 - KEY3 DEFINED: K1-UP K2-UP K3-DW

End of Incorrect Example 2

Incorrect Example 3

DBRED REF=GR95SR,REG=R5,
KEY1=(PKY=#GR95K80,UP),
KEY2=(R=#GR95SEX,M=X'80'),
KEY3=(R=#GR95AGE,S=EBX008,DOWN)

Result: 8,KEY2 REQUIRES ORG IF NO GENERAL ORG GIVEN
*,KEY2 TM: NOORG ASSUMED FOR THIS AND FOLLOWING KEYS
8,UP/DOWN ON KEY3 NOT ALLOWED AFTER PREVIOUS NOORG
*,KEY1 - KEY3 DEFINED: K1-UP K2-NO K3-NO

End of Incorrect Example 3

Specifying Logical Records (LRECs) Using Keys 25

Setting Up and Using a Key List
A key list contains information that allows the TPFDF product to search for logical
records (LRECs) by comparing criteria supplied by the application program with
specified data fields in the LREC. The criteria specified in a key list is the same
criteria that you can specify with the KEYn parameters; that is:
v The displacement and length of the LREC key fields
v A comparison operator
v The values to compare the fields against.

As mentioned previously, there are certain operations that you can only use with
key lists, as follows:
v Using default keys on read operations
v Using Boolean operators with keys
v Global modification of LRECs
v Using more than six keys to search a TPFDF database.

The following are the different types of key lists:
v Selection key list
v Default-key key list
v Modification key list
v Sort/merge key list.

A selection key list is used to specify criteria used when searching a subfile. Only
LRECs that match the criteria will be processed.

A default-key key list is used to specify which set of keys defined in the DBDEF
should be used when searching a subfile. A prototype LREC with target values for
the key fields is used to locate LRECs that match the criteria, and only those
LRECs are processed.

A modification key list is used to define rules for updating LRECs in a subfile. Fields
in LRECs in a subfile are updated based on values and modification operations
specified in the key list.

A sort/merge key list is used to specify how to sort LRECs into the output file on a
DBSRT or DBMRG macro, or a dfsrt or dfmrg function.

Setting Up a Key List
You can set up a key list in one of the following ways:

v Specify the number of keys in field SW01NKY of the SW01SR DSECT by using
an assembler instruction and then use the DBSETK macro to set up each key.

See “Using a Key List with the DBSETK Macro” on page 28 for an example of
how to use this method.

v Specify the number of keys by using the df_nbrkeys function and then use the
df_setkey function to set up each key.

See “Using a Key List with the df_setkey Function” on page 29 for an example of
how to use this method.

v Use assembler instructions to fill in the key list structure, which is defined by the
SW01SR DSECT.

See “Processing Using a Key List” on page 28 for an example of how to do this.

26 TPFDF R1 Programming Concepts and Reference

Note: This method is provided only for compatibility with older applications; do
not use this method for new applications or when updating existing
applications.

The first two bytes of a key list (field SW01NKY) specifies the number of keys in the
key list. The maximum value for SW01NKY differs for each type of key list as
follows:

Type of Key List Maximum Number of Keys

Selection key list 180 keys

Default-key key list 1 key

Modification key list 6 keys

Sort/merge key list 180 keys

Field SW01NKY is followed by the keys, each of which is 12 bytes, as follows:

Field Number of
Bytes

Description

SW01DIS 2 bytes Displacement into the LREC

SW01LEN 2 bytes Length of the key

SW01CON 1 byte Condition that must exist for the match to be successful

SW01MSK 1 byte One of the following:

v 1-byte mask

v Default key LREC ID, used with default-key key lists.

SW01SEA 4 bytes One of the following:

v Search argument

v Pointer to prototype LREC, used with default-key key
lists.

SW01ID1 1 byte Option indicators

SW01ID2 1 byte One of the following:

v Boolean connector

v Modification operation, used with modification key lists.

See “DBSETK–Setting Up a Key in a Key List” on page 300 and “df_setkey–Setting
Up a Key in a Key List” on page 150 for information about the values that you can
specify for fields SW01CON, SW01ID1, and SW01ID2.

Using a Key List
The following example describes one possible use of a key list for the DBRED
macro. Use the same coding techniques, as appropriate, for the other macros or
functions that allow the use of key lists.

In many instances an application has to verify the database according to given
conditions. The more options that are available, the more DBRED macros using
KEYn parameters are necessary to handle the requests. Consequently, the program
becomes unstructured and generates many bytes of object code for each DBRED
macro.

The key list technique allows you to define active keys at run time according to
specific needs. The following example shows the advantages of this technique.

Specifying Logical Records (LRECs) Using Keys 27

Processing Using Keyn Parameters
If, for example, you want to compare field EBW000(4) with field IR73FLD at
displacement 6 in an LREC without using a key list, you have to call a DBRED
macro for each condition compared:
#IF CLC MI0ACC+10(2),EQ,=C’GT’

DBRED REF=IR73DF,KEY1=(PKY=#IR73K80), *
KEY2=(R=IR73FLD,S=EBW000,C=GT),UP

#ELIF CLC,M10ACC+10(2),EQ,=C’GE’
DBRED REF=IR73DF,KEY1=(PKY=#IR73K80), *

KEY2=(R=IR73FLD,S=EBW000,C=GE),UP
#ELIF CLC,M10ACC+10(2),EQ,=C’EQ’

DBRED REF=IR73DF,KEY1=(PKY=#IR73K80), *
KEY2=(R=IR73FLD,S=EBW000,C=EQ),UP

#ELIF CLC,M10ACC+10(2),EQ,=C’NE’
DBRED REF=IR73DF,KEY1=(PKY=#IR73K80), *

KEY2=(R=IR73FLD,S=EBW000,C=NE),UP
#ELIF CLC,M10ACC+10(2),EQ,=C’LT’

DBRED REF=IR73DF,KEY1=(PKY=#IR73K80), *
KEY2=(R=IR73FLD,S=EBW000,C=LT),UP

#ELIF CLC,M10ACC+10(2),EQ,=C’LE’
DBRED REF=IR73DF,KEY1=(PKY=#IR73K80), *

KEY2=(R=IR73FLD,S=EBW000,C=LE),UP
#EIF

Processing Using a Key List
If you set up a key list, the amount of object code generated is greatly reduced. As
mentioned previously, you can set up the key list by manually coding the key list
structure or by using the DBSETK macro or df_setkey function.

The following shows the DBRED example using the manual method:
SW01SR REG=R5
LA R5,EBX000 LOAD BASE OF KEY LIST
XC EBX000(L’SW01NKY+2*L’SW01KIT),EBX000 CLEAR KEY LIST AREA
MVC SW01NKY,=H’2’ SET UP 2 KEYS
MVC SW01DIS,=H’2’ DISPLACEMENT TO PRIMARY KEY
MVC SW01LEN,=H’1’ PKY LENGTH=1
MVI SW01CON,#DF_EQ SET EQ MATCH
MVI SW01MSK,#IR73K80 SET MASK=PKY
MVI SW01ID1,#DF_UP+#DF_CONST UP ORG + USE CLI WITH MASK
MVI SW01ID2,#DF_AND AND CONNECTOR
LA R5,L’SW01KIT(,R5) SET TO SECOND KEY
MVC SW01DIS,=H’6’ DISPLACEMENT TO SECOND KEY
MVC SW01LEN,=H’4’ LENGTH OF KEY
LA R14,EBW000 ADDR OF 2ND KEY SEARCH ARG
ST R14,SW01SEA AND STORE
MVI SW01ID1,#DF_UP UP ORGANIZATION
#IF MI0ACC+10(2),EQ,=C’GT’ INPUT = GREATER THAN?

MVI SW01CON,#DF_GT SET UP CONDITION CODE
#ELIF MI0ACC+10(2),EQ,=C’GE’ INPUT = GREATER OR EQUAL?

MVI SW01CON,#DF_GE SET UP CONDITION CODE
#ELIF MI0ACC+10(2),EQ,=C’EQ’ INPUT = EQUAL?

MVI SW01CON,#DF_EQ SET UP CONDITION CODE
#ELIF MI0ACC+10(2),EQ,=C’NE’ INPUT = NOT EQUAL?

MVI SW01CON,#DF_NE SET UP CONDITION CODE
#ELIF MI0ACC+10(2),EQ,=C’LT’ INPUT = LESS THAN?

MVI SW01CON,#DF_LT SET UP CONDITION CODE
#ELIF MI0ACC+10(2),EQ,=C’LE’ INPUT = LESS OR EQUAL?

MVI SW01CON,#DF_LE SET UP CONDITION CODE
#EIF
DBKEY REF=IR73DF,KEYLIST=EBX000 ACTIVATE THE KEY LIST
DBRED REF=IR73DF

Using a Key List with the DBSETK Macro: The following shows the DBRED
example using the DBSETK macro:

28 TPFDF R1 Programming Concepts and Reference

SW01SR REG=R5
LA R5,EBX000 LOAD BASE OF KEY LIST
XC EBX000(L’SW01NKY+2*L’SW01KIT),EBX000 CLEAR KEY LIST AREA
MVC SW01NKY,=H’2’ SET UP 2 KEYS
DBSETK BASE=R5,KEYNUM=1,DIS=I/2,LEN=I/1,CON=#DF_EQ,MSK=#IR73K80, *

ID1=#DF_UP+#DF_CONST,ID2=#DF_AND
DBSETK BASE=R5,KEYNUM=2,DIS=I/6,LEN=I/4,SEA=EBW000,ID1=#DF_UP
LA R5,L’SW01KIT(,R5) POINT TO SECOND KEY SET
#IF MI0ACC+10(2),EQ,=C’GT’ INPUT = GREATER THAN?

DBSETK CON=#DF_GT SET UP CONDITION CODE
#ELIF MI0ACC+10(2),EQ,=C’GE’ INPUT = GREATER OR EQUAL?

DBSETK CON=#DF_GE SET UP CONDITION CODE
#ELIF MI0ACC+10(2),EQ,=C’EQ’ INPUT = EQUAL?

DBSETK CON=#DF_EQ SET UP CONDITION CODE
#ELIF MI0ACC+10(2),EQ,=C’NE’ INPUT = NOT EQUAL?

DBSETK CON=#DF_NE SET UP CONDITION CODE
#ELIF MI0ACC+10(2),EQ,=C’LT’ INPUT = LESS THAN?

DBSETK CON=#DF_LT SET UP CONDITION CODE
#ELIF MI0ACC+10(2),EQ,=C’LE’ INPUT = LESS OR EQUAL?

DBSETK CON=#DF_LE SET UP CONDITION CODE
#EIF
DBKEY REF=IR73DF,KEYLIST=EBX000 ACTIVATE KEY LIST
DBRED REF=IR73DF

Using a Key List with the df_setkey Function: The following example uses the
df_nbrkeys and df_setkey functions to create a key list. The first key is used for the
LREC ID, and the second key searches field ir73fld for string 1234567890.
/* Set up the key list with 2 key */
df_nbrkeys(&keylist,2);

/* Define the two keys using the df_setkey function */
df_setkey(&keylist,1,offsetof(struct ir73df,ir73key),1,DF_EQ,

0,_IR73K80,DF_UPORG,DF_CONST);

df_setkey(&keylist,2,offsetof(struct ir73df,ir73fld),10,DF_EQ,
"1234567890",0,DF_UPORG,0);

/* Activate the key list, and read the record from the subfile */
dfkey(ir73_ptr,&keylist);
dfred(ir73_ptr,DFRED_BEGIN);

Setting up a Key List with Less than Six Keys: The following example shows
how to set up a key list with less than six keys. A key list containing one key (the
primary key of the LREC) is set up and then reads an LREC.
/* set up one key only (primary key of LREC) */

dft_pky pky = 0x80;
dft_kyl keys;
dft_rec *lrec91;

df_nbrkeys(&keys, 1);
df_setkey(&keys, 1, offsetoff(struct gr95sr, gr95key),

1, DF_EQ, &pky, 0, DF_NOORG, DF_CHAR);

/* activate the key list */

dfkey(file_ptr, &keys);

/* read an LREC with matching primary key */
/* (start at the beginning of the subfile) */

lrec91 = dfred(file_ptr, DFRED_BEGIN);

Specifying Logical Records (LRECs) Using Keys 29

Setting up a Key List in the Range 1-180: The following example shows how to
set up a key list in the range 1-180. A key list containing seven keys is set up and
then reads an LREC.
/* set up seven keys */

dft_pky pky = 0x80;
dft_kyl_ext keys;
dft_rec *lrec91;

df_setkey(&keys, 1, offsetoff(struct gr95sr, gr95key),
1, DF_EQ, &pky, 0, DF_UPORG, DF_CHAR);

df_setkey(&keys, 2, offsetoff(struct gr95sr, gr95f01),
1, DF_EQ, &search_arg1, 0, DF_UPORG, DF_CHAR);

df_setkey(&keys, 3, offsetoff(struct gr95sr, gr95f02),
2, DF_EQ, &search_arg2, 0, DF_UPORG, DF_CHAR);

df_setkey(&keys, 4, offsetoff(struct gr95sr, gr95f03),
4, DF_EQ, &search_arg3, 0, DF_DOWNORG, DF_CHAR);

df_setkey(&keys, 5, offsetoff(struct gr95sr, gr95f04),
2, DF_EQ, &search_arg4, 0, DF_DOWNORG, DF_CHAR);

df_setkey(&keys, 6, offsetoff(struct gr95sr, gr95f05),
1, DF_NE, &search_arg5, 0, DF_NOORG, DF_CHAR);

df_setkey(&keys, 7, offsetoff(struct gr95sr, gr95f06),
1, DF_NE, &search_arg6, 0, DF_NOORG, DF_CHAR);

/* activate the key list and set number of keys */

dfkey_nbr(file_ptr, &keys, 7);

/* read an LREC with matching keys */
/* (start at the beginning of the subfile) */

lrec91 = dfred(file_ptr, DFRED_BEGIN);

Using Boolean Logic in Key Lists
By default, each key specified in a key list or KEYn parameter is logically connected
by AND Boolean logic. That is, each criteria must be satisfied for the LREC to be
selected. Using key lists, additional Boolean logic can be specified that allows
LRECs that meet some criteria but not necessarily other criteria to be selected. You
can use any of the equates shown in Table 9 in SW01ID2 to control the connectivity
between a key and the subsequent key:

Table 9. Boolean Equates

Assembler
Connector

C Language
Connector

Description

#DF_AND DF_AND Connects the current key to the next key using AND
to form a group.

#DF_OR DF_OR Connects the current key to the next key using OR to
form a group.

#DF_ANDIF DF_ANDIF Connects the current group to the next group using
AND to form a complex expression.

#DF_ORIF DF_ORIF Connects the current group to the next group using
OR to form a complex expression.

If any key specifies a Boolean connector value in field SW01ID2, all keys (except
the last key in the key list) must specify Boolean values. Any Boolean connector
value specified with the last key will be ignored. If none of these values are
specified in field SW01ID2 of any key, all keys are connected using AND logic.

30 TPFDF R1 Programming Concepts and Reference

This support is not standard Boolean logic but is consistent with the implementation
of the TPFDF structured programming macros (SPMs). See TPFDF and TPF
Structured Programming Macros for more information.

Note: Using any of the Boolean connector values listed in Table 9 on page 30 in
SW01ID2 has the following impact to LREC retrieval time (although the
correct records will still be located):

v Although the organization of the keys must be specified with the key list, it
is not used.

v For B+Tree files, the B+Tree index is not used.

See “dfred–Read a Logical Record” on page 134 and “DBRED–Read a Logical
Record” on page 274 for examples of using Boolean logic on read operations.

Using Default-Key Key Lists
A default-key key list is used to make a set of default keys defined in the database
definition (DBDEF) the active set of selection keys for read operations. The DBDEF
keys specified can be either regular default keys or read-only default keys. Only the
first key is filled in when using a default-key key list.

To use default keys on read operations, you must define a prototype LREC. The
prototype LREC has the same layout as the LREC whose primary key is specified
as the default key to be used. The prototype LREC must contain a search value in
the fields corresponding to each key field in the default key.

The key list must be defined to have one key that must be set up with the
specifications for default keys used on read operations:

v SW01ID1 #BIT2 must be on (set to 1). The #DF_KEYS (for assembler) or
DF_KEYS (for C language) equate can be used to do this.

v SW01MSK must contain the primary key of a key that is defined in the database
definition (DBDEF). This includes (but is not limited to) read-only default keys
and LREC IDs. Read-only keys have LREC IDs X'01'–X'0F'. The remaining range
of nonrestricted default keys (X'10' to X'EF') can be used on either read or add
operations.

v SW01SEA must contain the base address of the prototype LREC containing the
search values.

See “dfred–Read a Logical Record” on page 134 and “DBRED–Read a Logical
Record” on page 274 for examples of using default keys on read operations.

Using Modification Key Lists
Global modifications of LRECs require a modification key list to be defined. This
modification key list contains the same information as a standard selection key list,
including primary keys and field displacements, lengths, and values. It also contains
an operation code that indicates the operation to be performed on the selected
LRECs. This operation code is specified in SW01ID1. See “DBSETK–Setting Up a
Key in a Key List” on page 300 and “df_setkey–Setting Up a Key in a Key List” on
page 150 for information about the values for these operation codes.

You must do the following to perform a global modification of LRECs:

1. If you want to specify a selection criteria to determine which LRECs will be
modified, you must establish selection keys first. Do this by using a key list on a
previous macro or function, or by using KEYn parameters on a previous macro.

Specifying Logical Records (LRECs) Using Keys 31

2. Define a modification key list with the following information:

v The displacement of the field in the LREC to be modified or used in the
modification operation (SW01DIS)

v The length of the field in the LREC to be modified, when appropriate
(SW01LEN)

v A 1-byte value (SW01MSK) or an address (SW01SEA) of the value to be
used in the modification, depending on the modification operation being
performed

v The modification operation (SW01ID2).

Note: Do not use a DBKEY macro or dfkey function with the modification key
list.

3. Do one of the following:

v Call the DBMOD macro with the ALL and MODLIST parameters specified and
specify the base register of the modification key list.

v Call one of the dfmod_all functions and specify a pointer to the modification
key list.

Note: You can specify only 6 keys when using a modification key list.

See “dfmod–Perform or Indicate Logical Record Modifications” on page 117 and
“DBMOD–Perform or Indicate Logical Record Modifications” on page 251 for
examples of using global modification.

32 TPFDF R1 Programming Concepts and Reference

Sample Applications

The following contains examples of a typical application and provides the following:
v A description of the problem and solution
v The solution using the TPFDF assembler macros
v The solution using the TPFDF C functions.

Problem and Solution
Assume that you are in charge of the data processing department of a major airline.
The director of marketing has created a new plan known as the Gold Club.
Members of the Gold Club will have certain benefits not available to the general
public, such as the use of a private lounge at most airports, the ability to
pre-reserve seats, and the availability of special meals with 24 hours notice.

Members join the club by paying a membership fee, which covers one year’s
membership. Once a person is a member, he or she receives an additional month’s
free membership for every 1000 miles flown on the airline.

About 100 000 members are expected to join the club in its first year of operation.
You must design a system to keep track of members, update their mileage credits
from an existing departure control system, and update their membership expiration
dates at regular intervals.

To see what the problem involves, write down all the relevant information for each
member as follows:
v Member number
v Member surname
v Member initials
v Member address
v Meal preference
v Seat preference
v Payment method
v Expiration year
v Expiration month
v Miles credit.

In addition to setting up and maintaining the file, you must create a process that
deducts 1000 miles from the current credit and adds one month to the expiration
date whenever the mileage credit reaches 1000.

The easiest plan is to hold the information for each member in one fixed-length
LREC with all the member LRECs being held in a fixed file.

Although this method could work adequately, it has the following disadvantages:

v The LRECs would have to be expanded as information is updated and changed.

v It is wasteful to have a large fixed file permanently allocated on DASD.

A better solution is to use basic indexing. In the detail file, each subfile holds a
number of different LRECs, but all the LRECs in the subfile relate to one club
member. Each subfile in the detail file is pointed to by an index LREC in the index
file. Each index LREC also contains the member number as the index key.

© Copyright IBM Corp. 1997, 2001 33

|
|
|
|

The member information can be distributed over several variable-length LRECs.
Different LREC types contain different information; for example:

Assembler
LREC ID

C Language
LREC ID

Data fields

X'80' 0x80 Member initials and surname.

X'90' 0x90 Member address. This is as many as six lines,
separated by a delimiter. In our sample assembler
application, an asterisk (*) is used as the delimiter. In
our sample C language application, a null character
(0\n) is used as the delimiter.

X'A0' 0xA0 Meal, seat, and payment method preferences.

X'B0' 0xB0 Mileage credit and current expiration date.

In addition, one subfile indexed using the dummy member number 9999999999,
contains the following LRECs:

Assembler
LREC ID

C Language
LREC ID

Data fields

X'C0' 0xC0 Previously deleted member number.

X'D0' 0xD0 Next available membership number.

This subfile normally contains only one LREC. The LREC has one field (apart from
the LREC ID), which is the next available member number (at startup, this is
0000000001).

However, when a member is deleted, the member number is returned to this subfile
and can be reused. LRECs are organized in the subfile in available member
number order, so any reusable member number LRECs are at the start of the
subfile.

Some advantages of this method are:

v An application program only accesses LRECs that contain relevant information.
Other information is in different LRECs.

v If an application program opens a subfile with hold, the held information only
relates to one member. It is less likely that other applications need to read
LRECs from the held subfile at the same time.

v This solution allows for easy addition to the subfiles. To include additional
information about a member, you can add new LREC types without changing
existing programs.

It might seem expensive in DASD storage to use 100 000 pool blocks for the detail
file. However, you can choose any size from 381 bytes (L1 size) upward to suit your
application. A reasonable size to allow for future expansion is 1055 bytes (L2). If the
information about any member exceeds 1055 bytes, the TPFDF product creates
overflow blocks automatically. You can choose the size of overflow blocks to be the
same as the prime blocks or larger.

Note: To be very economical in the use of DASD, set the overflow blocks to a
larger size (for example L4) and set bit 5 of SW00OP1. The TPFDF product
then uses the smaller (prime block) size for overflow blocks unless they
require the larger size.

34 TPFDF R1 Programming Concepts and Reference

Member File Definitions DSECT
A DSECT macro must be defined for each file that will be accessed by the
application program. This is required for assembler application programs and C
application programs.

Figure 9 shows the DSECT used to define the Gold Club member file.

MACRO
&LABEL IR00DF ®=,&SUFFIX=,&ORG=,&ACPDB=

GBLB &IR00DF1 1ST TIME CALLED SWITCH
COPY DBGBL COPY TPFDF GLOBAL DEFINITIONS
COPY DBLCL COPY TPFDF LOCAL DEFINITIONS

&NAM SETC ’ ’ DOC NAME
&DATE SETC ’06AUG90’ UPDATE DATE
&VERS SETC ’00’ VERSION NUMBER
.***
.* DEFINITIONS FOR TPFDF *
.***
&SW00WID SETC ’S0’ FILE ID
&SW00WRS SETC ’L2’ BLOCK SIZE
&SW00RBV SETC ’#TPFDBFF’ ALGORITHM
&SW02FIL SETC ’IR00DF’ FILE DSECT NAME
&SW00OP1 SETC ’00000000’ OPT BYTE1
&SW00OP2 SETC ’00000110’ OPT BYTE2
&SW00OP3 SETC ’00000000’ OPT BYTE3
&SW00TQK SETC ’15’ HIGHEST TLREC
.***

COPY DBCOD COPY DSECT DEFINITION FUNCTIONS
AIF (’&IR00DF1’ EQ ’1’).NOT1ST

Figure 9. IR00DF–Member File Definitions DSECT (Part 1 of 5)

Sample Applications 35

* *
* *
* DESCRIPTION OF IR00DF *
* *
* 1. DATA AREA NAME *
* *
* GOLD CLUB MEMBER INFORMATION FILE *
* *
* 2. MEMBER NAME *
* *
* IR00DF *
* *
* 3. INVOCATION *
* *
* IR00DF REG=R4, *
* (SUFFIX=X) *
* *
* 4. GENERAL CONTENTS AND USAGE *
* *
* 4.1. ROLE IN SYSTEM *
* *
* DETAIL SUBFILE CONTAINING INFORMATION ON MEMBERS OF THE *
* GOLD CLUB SCHEME. MEMBERS PAY FOR A ONE YEAR MEMBERSHIP *
* AND RECEIVE AN EXTRA MONTH’S MEMBERSHIP FOR EACH 1000 MILES *
* FLOWN WITH THE AIRLINE. *
* *
* 4.2. DATA LAYOUT *
* *
* STANDARD TPFDF FILE HEADER *
* *
* PRIMARY KEY USAGE *
* 80 MEMBER’S NAME *
* 90 MEMBER’S ADDRESS *
* A0 MEAL, SEAT & PAYMENT PREFERENCES *
* B0 MILEAGE CREDIT & EXPIRY DATE OF MEMBERSHIP *
* C0 PREVIOUSLY DELETED MEMBERSHIP NUMBER *
* D0 NEXT MEMBERSHIP NUMBER TO GIVE OUT *
* *
* 4.3. PROGRAMMING ASPECTS *
* *
* 4.3.1. PROGRAMMING RESTRICTIONS *
* *
* NONE. *
* *
* 4.3.2. PROGRAMMING TECHNIQUES AND USAGE *
* *
* STANDARD TPFDF LREC LOCATION TECHNIQUE USING: *
* - PRIMARY KEY *
* *

Figure 9. IR00DF–Member File Definitions DSECT (Part 2 of 5)

36 TPFDF R1 Programming Concepts and Reference

* 5. STORAGE FACTORS *
* *
* 5.1. BLOCK SIZE *
* *
* 1055 BYTES. *
* *
* 5.2. FILE REQUIREMENTS *
* *
* FIXED FILE INDEX (#TPFDB09) REFERENCING 1055-BYTE POOL FOR *
* DETAIL SUBFILE *
* *
* 5.3. ACCESSING SCHEME *
* *
* INDEXING THROUGH FILE IR01DF ACCESSED VIA ALG= STRING OF *
* THE MEMBERSHIP NUMBER. *
* *
* 6. DATA CONTROL *
* *
* 6.1. CHAINING AND OVERFLOW *
* *
* STANDARD TPFDF CHAINING. *
* *
* 6.2. DATA FIELD ADDRESSING *
* *
* OFFSET WITHIN STANDARD TPFDF LREC. *
* *
* *

EJECT
AIF (’&SW00WRS’ EQ ’’).CHECKID

#IR00DFS EQU &SW00WRS BLOCK SIZE
.CHECKID AIF (’&SW00WID’ EQ ’’).NOT1ST
#IR00DFI EQU C’&SW00WID’ FILE ID
.NOT1ST ANOP

* STANDARD TPFDF HEADER *

IR00HDR&CG1 DS CL16 STANDARD FILE HEADER

DS CL10 STANDARD TPFDF HEADER
IR00VAR&CG1 EQU * START OF VARIABLE USER-AREA
IR00HDL&CG1 EQU IR00VAR&CG1-IR00HDR&CG1 HEADER-LENGTH UP TO IR00VAR

ORG IR00HDR&CG1
IR00REC&CG1 DS 0CL1 1ST RECORD START (1=VARIABLE,ELSE SIZE)
IR00SIZ&CG1 DS H SIZE OF LOGICAL RECORD
IR00KEY&CG1 DS X LOGICAL RECORD IDENTIFIER

AIF (’&IR00DF1’ EQ ’1’).KEYEQ GO IF NOT FIRST ISSUE

Figure 9. IR00DF–Member File Definitions DSECT (Part 3 of 5)

Sample Applications 37

* EQUATE OF LOGICAL RECORD KEYS (KEY AND LENGTH) *

.* USE KEY #IR00K80 IF ONLY ONE KEY
.* #IR00K00-#IR00K0F ARE RESERVED FOR TPFDF
.* #IR00KF0-#IR00KFF ARE RESERVED FOR TPFDF
#IR00K80 EQU X’80’ PRIMARY KEY X’80’
#IR00K90 EQU X’90’ PRIMARY KEY X’90’
#IR00KA0 EQU X’A0’ PRIMARY KEY X’A0’
#IR00KB0 EQU X’B0’ PRIMARY KEY X’B0’
#IR00KC0 EQU X’C0’ PRIMARY KEY X’C0’
#IR00KD0 EQU X’D0’ PRIMARY KEY X’D0’
.*
#IR00L80 EQU IR00E80&CG1-IR00REC&CG1 LENGTH OF LOGICAL RECORD X’80’
#IR00L90 EQU IR00E90&CG1-IR00REC&CG1 LENGTH OF LOGICAL RECORD X’90’
#IR00LA0 EQU IR00EA0&CG1-IR00REC&CG1 LENGTH OF LOGICAL RECORD X’A0’
#IR00LB0 EQU IR00EB0&CG1-IR00REC&CG1 LENGTH OF LOGICAL RECORD X’B0’
#IR00LC0 EQU IR00EC0&CG1-IR00REC&CG1 LENGTH OF LOGICAL RECORD X’C0’
#IR00LD0 EQU IR00ED0&CG1-IR00REC&CG1 LENGTH OF LOGICAL RECORD X’D0’
.*
&IR00SR1 SETB (1) INDICATE 1ST TIME THROUGH
.KEYEQ ANOP
IR00ORG&CG1 EQU * START OF LOGICAL RECORD DESCRIPTION
.*

* MEMBER INITIALS AND SURNAME *

.*
IR00NAM&CG1 DS CL20 MEMBER’S SURNAME
IR00INT&CG1 DS CL6 MEMBER’S INITIALS
IR00E80&CG1 EQU * END OF LOGICAL RECORD WITH KEY X’80’

ORG IR00ORG&CG1
.*

* MEMBER ADDRESS *

.*
IR00ADR&CG1 DS CL43 MEMBER’S ADDRESS
IR00E90&CG1 EQU * END OF LOGICAL RECORD WITH KEY X’90’

ORG IR00ORG&CG1
.*

* MEAL, SEAT AND PAYMENT METHOD *

.*
IR00SP0&CG1 DS CL1 SPARE BYTE TO ALIGN ON HALFWORD BOUNDARY
IR00MPR&CG1 DS H MEAL PREFERENCE
IR00SPR&CG1 DS H SEAT REQUIREMENTS
IR00PAY&CG1 DS H PAYMENT METHOD
IR00EA0&CG1 EQU * END OF LOGICAL RECORD WITH KEY X’A0’

ORG IR00ORG&CG1
.*

Figure 9. IR00DF–Member File Definitions DSECT (Part 4 of 5)

38 TPFDF R1 Programming Concepts and Reference

Assembler Application Program Example
This section shows how you might code this example using the TPFDF macros.

Processing the Member File Using TPFDF Macros
The member file requires the following types of processing:

v File maintenance, which consists of adding, deleting, changing, and displaying
information related to a member.

Figure 10 on page 40 shows the file maintenance procedure.

v Departure control interface, which updates the member file with the number of
miles flown after each departure and adjusts the membership expiration date.

* MILEAGE CREDIT AND CURRENT EXPIRATION DATE *

.*
IR00SP1&CG1 DS CL1 SPARE BYTE TO ALIGN ON HALFWORD BOUNDARY
IR00MLS&CG1 DS F CURRENT MILEAGE CREDIT
IR00EXY&CG1 DS H EXPIRATION YEAR
IR00EXM&CG1 DS H EXPIRATION MONTH
IR00EB0&CG1 EQU * END OF LOGICAL RECORD WITH KEY X’B0’

ORG IR00ORG&CG1
.*

* REUSABLE MEMBER NUMBER *

.*
IR00NUM&CG1 DS CL10 REUSABLE MEMBER NUMBER
IR00EC0&CG1 EQU * END OF LOGICAL RECORD WITH KEY X’C0’

ORG IR00ORG&CG1
.*

* CONSECUTIVE NUMBER *

.*
IR00NUC&CG1 DS CL10 CONSECUTIVE MEMBER NUMBER CONTROL
IR00ED0&CG1 EQU * END OF LOGICAL RECORD WITH KEY X’D0’

ORG IR00ORG&CG1
.*

* ALGORITHM DESCRIPTION *

.*

ORG IR00REC&CG1
IR00@0BEG&CG1 EQU * PATH 0 DESCRIPTION
IR00@0NBR&CG1 DS CL10 MEMBERSHIP NUMBER
IR00@0END&CG1 EQU *
.*

AIF (&BG1).MACEXIT GO IF INTERNAL USAGE
&SYSECT CSECT

AIF (’®’ EQ ’’).MACEXIT GO IF REG= NOT SPECIFIED
.GEUSING ANOP GENERATE USING

USING &DSN,®
.MACEXIT ANOP

SPACE 1
MEND

Figure 9. IR00DF–Member File Definitions DSECT (Part 5 of 5)

Sample Applications 39

Figure 11 on page 45 shows the departure control interface.

Note: No errors are issued from this program. Indicators are returned as shown.

v Monthly maintenance, which deletes records that have expired and adds the
membership number to a subfile for reallocation.

Figure 12 on page 47 shows the monthly maintenance procedure.

File Maintenance Program

BEGIN NAME=SAM0,VERSION=00
SPACE ,

* MEMBERSHIP FILE MAINTENANCE *
* Display a member’s record : *member-nbr *
* Delete a member’s number : Dmember-nbr *
* Add a new member : Amember-name *
* Change members details : Cmember-nbr/option/info *
* where option - A address *
* - M meal preference *
* - S seat preference *
* - P payment method *

MI0MI REG=R1 INPUT MESSAGE DSECT
GLOBZ REGR=R2 BASE GLOBALS
L R1,EBCCR0 BASE OF INPUT MESSAGE BLOCK

* CHECK TO SEE IF SUBFILE IS TO BE OPENED WITH HOLD *

#IF CLI,MI0ACC,EQ,C’*’ DISPLAY REQUEST ?
DBOPN REF=IR00DF,REG=R5,DETAC NO NEED FOR HOLD

#ELSE MUST BE TYPE OF MODIFY
DBOPN REF=IR00DF,REG=R5,HOLD,DETAC HOLD REQUIRED

#EIF

* CHECK TO SEE IF MEMBER NUMBER IS TO BE DELETED *

#IF CLI,MI0ACC,EQ,C’D’ DELETE REQUEST ?
DBRED REF=IR00DF,REG=R5,ALG=MI0ACC+1, READ SUBFILE X

ERROR=SUBFILE-ERROR
#IF DBIDX,NO

WTOPC TEXT=’INVALID NUMBER’,PREFIX=SAM0,NUM=001,LET=I
#ELSE

* DBCLS WITH RELFC HAS IMPLIED DEINDEX AND DBDEL,ALL. *
* SPECIFY THE REUSE PARAMETER TO USE THE SAME SW00SR SLOT TO *
* UPDATE THE ’DELETED MEMBERS’ SUBFILE *

DBCLS REF=IR00DF,RELFC,NOKEY,REUSE
DBOPN REF=IR00DF,REG=R5,HOLD,DETAC,ALG==C’9999999999’

* BUILD NEW LREC FOR DELETED MEMBERSHIP NUMBER *

MVC EBW000(L’IR00SIZ),=AL2(#IR00LC0) SET UP SIZE
MVI EBW002,#IR00KC0 PRIMARY KEY
MVC EBW003(L’IR00NUM),MI0ACC+1 DELETED NBR.

Figure 10. SAM0–File Maintenance Program (Part 1 of 5)

40 TPFDF R1 Programming Concepts and Reference

* ADD NEW LREC - DEFAULT KEYS SPECIFIED IN DBDEF. *

DBADD REF=IR00DF,REG=R5,NEWLREC=EBW000, X
ERROR=SUBFILE-ERROR

#EIF
#ELIF CLI,MI0ACC,EQ,C’*’

DBRED REF=IR00DF,REG=R5,ALG=MI0ACC+1, X
ERROR=SUBFILE-ERROR

#IF DBIDX,NO
WTOPC TEXT=’INVALID NUMBER’,PREFIX=SAM0,NUM=001,LET=I

#ELSE

* THIS IS JUST AN EXAMPLE OF THE USE OF DISPLAY, ITS USE IS NOT *
* APPROPRIATE HERE AS SOME OF THE DATA IS NOT IN DISPLAYABLE FORMAT. *
* DBDSP AUTOMATICALLY DELETES THE SIZE FIELDS FROM THE DISPLAY. *

DBDSP REF=IR00DF,STRIP==AL2(L’IR00KEY),NOKEY, X
ERROR=SUBFILE-ERROR

#EIF
#ELIF CLI,MI0ACC,EQ,C’A’

* CHECK THE LENGTH OF THE INPUT MESSAGE DOESN’T EXCEDE MAX. ALLOWED *

#IF MI0CCT,GT,=AL2(L’IR00NAM+1) INPUT MSG > MAXIMUM ?
WTOPC TEXT=’NAME EXCEEDS MAX.’,PREFIX=SAM0,NUM=002,LET=E

#ELSE

* GET NEW MEMBERSHIP NUMBER *

DBRED REF=IR00DF,REG=R5,ALG==C’9999999999’,NOKEY, X
ERROR=SUBFILE-ERROR
#IF DBIDX,NO

* DOESN’T EXIST, SO INITIALIZE THE FILE *

DBADD REF=IR00DF,REG=R5,NEWLREC=SAM0INIT, X
ERROR=SUBFILE-ERROR

MVC EBX000(L’IR00NUM),=C’0000000001’ NEW NBR.
#ELSE

* FILE EXISTS, SO CHECK TO SEE IF PREVIOUSLY DELETED NUMBER *

#IF IR00KEY,EQ,#IR00KC0 PREVIOUSLY DELETED NBR.
MVC EBX000(L’IR00NUM),IR00NUM
DBDEL REF=IR00DF,REG=R5,ERROR=SUBFILE-ERROR

#ELSE

Figure 10. SAM0–File Maintenance Program (Part 2 of 5)

Sample Applications 41

* THIS IS THE CONSECUTIVE LREC, SO MUST UPDATE IT, *

MVC EBX000(L’IR00NUC),IR00NUC
#PERF R7,UPDATE-NEXT-AVAIL-NUMBER

#EIF
DBCLS REF=IR00DF,REUSE
DBOPN REF=IR00DF,REG=R5,HOLD

* CREATE A NEW SUBFILE USING THE NEW MEMBER NBR. AS ALG= STRING. *

DBCRE REF=IR00DF,INDEX,ALG=EBX000, X
ERROR=NEW-ERROR

* BUILD THE NAME LREC FROM THE INPUT MSG. *

LH R4,MI0CCT GET INPUT MESSAGE LENGTH
#STPR R4,-2 ADJUST FOR ’A’ PART & EX
EX R4,SAM0MOV1 START TO BUILD NEW LREC
#STPR R4,L’IR00KEY+l’IR00SIZ SIZ + PRIMARY KEY
STH R4,EBW000 STORE SIZE
MVI EBW002,#IR00L80 SET UP PRIMARY KEY

* ADD THE NAME LREC AND DUMMY LRECS FOR THE OTHER INFORMATION. *

DBADD REF=IR00DF,REG=R5,NEWLREC=EBW000, X
ERROR=NEW-ERROR

DBADD REF=IR00DF,REG=R5,NEWLREC=SAM0ADDR, X
ERROR=NEW-ERROR

DBADD REF=IR00DF,REG=R5,NEWLREC=SAM0MEAL, X
ERROR=NEW-ERROR

DBADD REF=IR00DF,REG=R5,NEWLREC=EBW000, X
ERROR=NEW-ERROR

* UPDATE THE EXPIRATION DATE FOR THE NEW MEMBER, TODAY + A YEAR. *

LH R4,@YEAR
#STPR R4,1
STH R4,IR00EXY
MVC IR00EXM,@MONTH
DBMOD REF=IR00DF
MVC EBW000(L’SAM0MSG1),SAM0MSG1 SKELETON MSG
MVC EBW000+21(L’IR00NUM),EBX000 MOVE IN NEW NBR
WTOPC TEXTA=EBW000,PREFIX=SAM0,NUM=006,LET=I

#EIF
#EIF

Figure 10. SAM0–File Maintenance Program (Part 3 of 5)

42 TPFDF R1 Programming Concepts and Reference

* MODIFY REQUEST *

#ELIF CLI,MI0ACC,EQ,C’C’,AND, CHANGE REQUEST ?
CLI,MI0ACC+11,EQ,C’/’

#IF CLI,MI0ACC+12,EQ,C’A’,AND, ADDRESS ?
MI0CCT,GT,=AL2(L’IR00ADR+L’IR00NUM+4) INPUT OK ?

DBRED REF=IR00DF,ALG=MI0ACC+1,KEY1=(PKY=#IR00K90), X
REG=R5,ERROR=SUBFILE-ERROR

LH R4,MI0CCT LOAD LENGTH OF INPUT
SH R4,=AL2(L’IR00NUM+4) ADJUST FOR EX & NUMBER
EX R4,SAM0MOV2 MOVE
#STPR R4,l’IR00SIZ+l’IR00KEY
STH R4,IR00SIZ
MVI IR00KEY,#IR00K90
DBMOD REF=IR00DF,REG=R5

#ELIF CLI,MI0ACC+12,EQ,C’M’,OR, MEAL ?
CLI,MI0ACC+12,EQ,C’S’,OR, SEAT ?
CLI,MI0ACC+12,EQ,C’P’,ANDIF, PAYMENT ?
MI0CCT,GT,=AL2(L’IR00MPR+L’IR00NUM+4) INPUT OK ?

DBRED REF=IR00DF,ALG=MI0ACC+1,KEY1=(PKY=#IR00KA0), X
REG=R5,ERROR=SUBFILE-ERROR
LH R4,MI0ACC+15 GET NEW INFORMATION
#IF MI0ACC+12,EQ,C’M’ MEAL ?

ST R4,IR00MPR STORE IT IN CORRECT FIELD
#ELIF MI0ACC+12,EQ,C’S’ SEAT ?

ST R4,IR00SPR STORE IT IN CORRECT FIELD
#ELIF MI0ACC+12,EQ,C’P’ PAYMENT ?

ST R4,IR00PAY STORE IT IN CORRECT FIELD
#EIF
DBMOD REF=IR00DF,REG=R5 UPDATE DATABASE
WTOPC TEXT=’DETAILS MODIFIED’,PREFIX=SAM0,NUM=005,LET=E

#EIF
WTOPC TEXT=’INVALID INPUT’,PREFIX=SAM0,NUM=005,LET=E

#EIF
#LOCA EXIT
DBCLS REF=IR00DF,RELEASE CLOSE SUBFILE & RELEASE SW00SR
EXITC ,
SPACE ,

* SUBROUTINE TO INCREMENT CONSECUTIVE MEMBER RECORD BY 1 (DATA PACKED)*

SPACE ,
#SUBR UPDATE-NEXT-AVAIL-NUMBER

PACK EBX010(L’IR00NUC),EBX000(L’IR00NUC) PACK DATA
AP EBX010(L’IR00NUC),=P’1’ ADD ’1’
UNPK EBX000(L’IR00NUC),EBX010(L’IR00NUC) UNPACK DATA
OI EBX009,X’F0’ CLEAR SIGN BIT
#IF EBX000(L’IR00NUC),EQ,=C’9999999999’ NO MORE NBRS

#GOTO DATABASE-FULL
#EIF
MVC IR00NUC,EBX000 UPDATE LREC
DBMOD REF=IR00DF,REG=R5 UPDATE DATABASE

#ESUB

Figure 10. SAM0–File Maintenance Program (Part 4 of 5)

Sample Applications 43

* ERROR HANDLING *

#LOCA SUBFILE-ERROR
WTOPC TEXT=’ERROR IN DETAIL SUBFILE’,PREFIX=SAM0,NUM=006,LET=E
#GOTO EXIT
#LOCA NEW-ERROR
WTOPC TEXT=’ERROR IN NEW SUBFILE’,PREFIX=SAM0,NUM=007,LET=E
#GOTO EXIT
#LOCA DATABASE-FULL
WTOPC TEXT=’DATABASE FULL’,PREFIX=SAM0,NUM=006,LET=E

* EXECUTABLE MOVE INSTRUCTIONS *

SAM0MOV1 MVC EBW003(0),MI0ACC+1 EXECUTABLE MOVE INSTR.
SAM0MOV2 MVC IR00ADR(0),MI0ACC+13 EXECUTABLE MOVE INSTR.

SPACE ,

* LREC TO INITIALIZE NUMBERS SUBFILE, FIRST NUMBER TO BE ADDED IS *
* ’2’ AS WILL ONLY BE INITIALIZED WHEN NBR ’1’ IS ALLOCATED. *

SPACE ,
SAM0INIT DC AL2(#IR00LD0),AL1(#IR00KD0),C’0000000002’

SPACE ,

* DUMMY RECORD TO INITIALIZE NEW MEMBER’S SUBFILE *

SPACE ,
SAM0ADDR DC AL2(#IR00L90),AL1(#IR00K90),CL43’ ’
SAM0MEAL DC AL2(#IR00LA0),AL1(#IR00KA0),CL7’ ’
SAM0INFO DC AL2(#IR00LB0),AL1(#IR00KB0),C’ ’,XL6’00’

SPACE ,
SAM0MSG1 DC AL1(SAM0END1-SAM0MSG1)

DC C’NEW MEMBER CREATED -’
SAM0END1 EQU *

SPACE ,
LTORG
FINIS SAM0
END

Figure 10. SAM0–File Maintenance Program (Part 5 of 5)

44 TPFDF R1 Programming Concepts and Reference

Departure Control Interface Program

BEGIN NAME=SAM1,VERSION=00
SPACE ,

* DEPARTURE CONTROL INTERFACE - UPDATES THE MILEAGE FLOWN AND *
* ADJUSTS THE EXPIRATION DATE OF THE MEMBERSHIP BASED ON AN *
* EXTRA MONTH’S MEMBERSHIP FOR EACH 1000 MILES FLOWN. *
* NO ERRORS ARE ISSUED FROM THIS PROGRAM, INDICATORS ARE *
* RETURNED AS SHOWN BELOW. *

* INPUT CONDITIONS *
* EBW000(L’10) - MEMBERSHIP NUMBER *
* EBW010(L’2) - MILEAGE TO CREDIT *
* *
* OUTPUT CONDITIONS *
* EBSW01 X’80’- NO SUBFILE FOR MEMBER NUMBER SPECIFIED *
* X’40’- NO MILEAGE LREC IN SUBFILE *
* X’20’- SERIOUS ERROR ON READ *
* X’00’- EVERYTHING OK *

SPACE ,

* OPEN SUBFILE USING MEMBER-NBR. AS ALG= STRING *

SPACE ,
DBOPN REF=IR00DF,REG=R5,HOLD
SPACE ,

Figure 11. SAM–Departure Control Interface (Part 1 of 2)

Sample Applications 45

* SEARCH FOR MILEAGE LREC BASED ON ITS UNIQUE PRIMARY KEY *

SPACE ,
DBRED REF=IR00DF,REG=R5,ALG=EBW000, X

KEY1=(PKY=#IR00KB0), X
ERROR=READ-ERROR

#IF DBIDX,NO DETAIL SUBFILE INDEXED
MVI EBSW01,X’80’ INDICATE ERROR

#ELIF DBFOUND,NO MILEAGE LREC NOT FOUND
MVI EBSW01,X’40’ INDICATE ERROR

#ELSE
LH R6,EBW010 MILEAGE TO CREDIT
A R6,IR00MLS ADD TO EXISTING MILEAGE
SRDA R6,32(0) SET UP EVEN-ODD REG. FOR D
D R6,=H’1000’ CALC THE INC. OF EXPIRATION DATE
AH R7,IR00EXM ADD EXTRA MONTHS TO EXP. MONTH
#IF R7,GT,=H’12’ MORE THAN 12 MONTHS

#DO WHILE=(R7,GT,=H’12) WHILE MORE THAN 12 MONTHS
#STPR R7,-12 DELETE A YEAR
#STPH R6,1,IR00EXY ADD A YEAR TO EXPIRATION DATE

#EDO
#EIF
STH R7,IR00EXM STORE NBR OF EXPIRATION MONTHS
DBMOD REF=IR00DF,REG=R5 UPDATE DATABASE
MVI EBSW01,X’00’ EVERYTHING OK

#EIF
#LOCA EXIT
DBCLS REF=IR00DF,RELEASE CLOSE SUBFILE, RELEASE SW00SR SLOT
BACKC , RETURN TO CALLER

* ERROR HANDLING *

#LOCA READ-ERROR
MVI EBSW01,X’20’ INDICATE ERROR
#GOTO EXIT CLOSE FILE & RETURN TO CALLER
LTORG
FINIS SAM1
END

Figure 11. SAM–Departure Control Interface (Part 2 of 2)

46 TPFDF R1 Programming Concepts and Reference

Monthly Maintenance Program

BEGIN NAME=SAM2,VERSION=00
SPACE ,

* MONTHLY MAINTENANCE PROGRAM, DELETES MEMBERS RECORDS WHICH *
* HAVE EXPIRED AND ADDS THE MEMBERSHIP NUMBER TO A SUBFILE *
* SO THAT THEY CAN BE RE-ISSUED. *

GLOBZ REGR=R2 BASE GLOBALS
#IF CLI,@DAY,NE,X’01’ NOT FIRST DAY OF MONTH

WTOPC TEST=’NOT FIRST OF MONTH - UNABLE TO PROCESS’, X
PREFIX=SAM2,NUM=001,LET=I

#ELSE

* OPEN DETAIL SUBFILE FOR FULLFILE PROCESSING (IR00DF) AND OPEN THE *
* SUBFILE WHICH CONTAINS DELETED NUMBERS (ALG==C’9999999999’). *

DBOPN REF=IR00DF,HOLD,REG=R5
DBOPN REF=IR00DFA,HOLD,REG=R6, X

ALG==C’9999999999’,SUFFIX=A
#DO INF INFINITE LOOP - EXIT WHEN EOF
SPACE ,

* READ EACH EXPIRATION DATE LREC, SAVING MEMBER NUMBER FROM INDEX *
* FILE IN EBW000 USING AREA PARAMETER (SETUP IN DBDEF). *

SPACE ,
DBRED REF=IR00DF,REG=R5,FULLFILE, X
AREA=EBW003, X
KEY1=(PKY=#IR00KB0), X
ERROR=READ-ERROR
#DOEX DBEOF,YES EXIT LOOP IF END OF FILE
#IF IR00EXM,LT,@MONTH,AND, EXP. MONTH < CURRENT MONTH
IR00EXY,LE,@YEAR,ORIF, & EXP. YEAR <= CURR. YEAR
IR00EXY,LT,@YEAR EXP. YEAR < CURRENT YEAR

#PERF R7,UPDATE-FREE-SLOT EXPIRED MEMBERSHIP
SPACE ,

* DELETE ALL LOGICAL RECORDS IN DETAIL SUBFILE, DE-INDEX IS AUTOMATIC *

SPACE ,
DBDEL REF=IR00DF,ALL,NOKEY,ALG=EBW003

#EIF
#EDO
WTOPC TEXT=’PROCESSING COMPLETED’,PREFIX=SAM2,NUM=002, X

LET=I

* CLOSE BOTH FILES AND RELEASE SW00SR SLOTS *

#LOCA EXIT
DBCLS REF=IR00DF,RELEASE
DBCLS REF=IR00DFA,RELEASE

#EIF
EXITC ,
SPACE ,

Figure 12. SAM2–Monthly Maintenance Program (Part 1 of 2)

Sample Applications 47

C Language Application Program Example
This section shows how you might code this example using the TPFDF C language
functions.

You must ensure that there is a structure defined for each file that the C language
application program will access. Figure 13 on page 49 shows the structure of the
member file used in this example.

* SUBROUTINE TO UPDATE SUBFILE WITH NUMBERS TO REUSE *

#SUBR UPDATE-FREE-SLOT
MVC EBW000(L’IR00SIZ+L’IR00KEY),SAM2INFO LREC SIZE + KEY
SPACE ,

* ADD LREC CONTAINING DELETED MEMEBER NBR. - ORGANIZATION OF FILE *
* DETERMINED BY THE DEFAULT KEYS DEFINED IN DBDEF. *

SPACE ,
DBADD REF=IR00DFA,NEWLREC=EBW000, X

ERROR=ADD-ERROR
#ESUB ,
SPACE ,

* ERROR HANDLING *

SPACE ,
#LOCA ADD-ERROR
SERRC R,DF0000 ISSUE DUMP & SEND MSG
WTOPC TEXT=’JOB ABORTED - ADD ERROR ON FILE IR00DF’, X

PREFIX=SAM2,NUM=003,LET=E
#GOTO EXIT GO & CLOSE FILES
#LOCA READ-ERROR
SERRC R,DF0001 ISSUE DUMP & SEND MSG
WTOPC TEXT=’JOB ABORTED - READ-ERROR ON FILE IR00DF’, X

PREFIX=SAM2,NUM=004,LET=E
#GOTO EXIT GO & CLOSE FILES
SPACE ,

SAM2INFO DC AL2(L’IR00LC0),AL1(#IR00KC0) LENGTH + PRIMARY KEY
LTORG
FINIS SAM2
END

Figure 12. SAM2–Monthly Maintenance Program (Part 2 of 2)

48 TPFDF R1 Programming Concepts and Reference

1 /*---*
2 * Passenger Record Structure Declaration *
3 *---*/
4 #define _IR00DFI "S0" /* File ID */
5
6 #define _IR00K80 0x80 /* logical record keys */
7 #define _IR00K90 0x90
8 #define _IR00KA0 0xA0
9 #define _IR00KB0 0xB0
10 #define _IR00KC0 0xC0
11 #define _IR00KD0 0xD0
12
13 #define _IR00L80 sizeof(struct ir00psgr) /* passenger name */
14 #define _IR00L90 sizeof(struct ir00addr) /* passenger address */
15 #define _IR00LA0 sizeof(struct ir00info) /* meal, seat, pay */
16 #define _IR00LB0 sizeof(struct ir00stat) /* membership status */
17 #define _IR00LC0 sizeof(struct ir00rnum) /* reusable number */
18 #define _IR00LD0 sizeof(struct ir00cnum) /* consecutive number */
19

Figure 13. ir00df.h–Passenger Record Structure Declaration (Part 1 of 2)

Sample Applications 49

Figure 14 on page 51 shows how you can redefine TPFDF functions so that you
can code them more simply in the application program.

Note: This type of header is not required; you can code the TPFDF functions
directly in your application program if you prefer.

20 struct ir00df
21 ┌{
22 │ short ir00siz; /* LREC size */
23 │ dft_pky ir00key; /* primary key */
24 │ union
25 │ ┌{
26 │ │ struct ir00psgr
27 │ │ ┌{
28 │ │ │ char ir00nam[20]; /* surname */
29 │ │ │ char ir00int[6]; /* initials */
30 │ │ └} psgr;
31 │ │
32 │ │ struct ir00addr
33 │ │ ┌{
34 │ │ │ char ir00adr[43]; /* address */
35 │ │ └} addr;
36 │ │
37 │ │ struct ir00info
38 │ │ ┌{
39 │ │ │ char ir00sp0; /* spare for alignment */
40 │ │ │ char ir00mpr[2]; /* meal preference */
41 │ │ │ char ir00spr[2]; /* seat preference */
42 │ │ │ char ir00pay[2]; /* payment method */
43 │ │ └} info;
44 │ │
45 │ │ struct ir00stat
46 │ │ ┌{
47 │ │ │ char ir00sp1; /* spare for alignment */
48 │ │ │ int ir00mls; /* current mileage credit */
49 │ │ │ short ir00exy; /* expiration year */
50 │ │ │ short ir00exm; /* expiration month */
51 │ │ └} stat;
52 │ │
53 │ │ struct ir00rnum
54 │ │ ┌{
55 │ │ │ char ir00num[10]; /* reusable member number */
56 │ │ └} rnum;
57 │ │
58 │ │ struct ir00cnum
59 │ │ ┌{
60 │ │ │ char ir00nuc[10]; /* consecutive member number */
61 │ │ └} cnum;
62 │ └} lrec;
63 └};

Figure 13. ir00df.h–Passenger Record Structure Declaration (Part 2 of 2)

50 TPFDF R1 Programming Concepts and Reference

Processing the Member File Using TPFDF C Functions
The member file requires the following types of processing:

v File maintenance, which consists of adding, deleting, changing, and displaying
information related to a member.

Figure 15 on page 52 shows the file maintenance procedure.

v Departure control interface, which updates the member file with the number of
miles flown after each departure and adjusts the membership expiration date.

Figure 16 on page 63 shows the departure control interface.

v Monthly maintenance, which deletes records that have expired and adds the
membership number to a subfile for reallocation.

Figure 17 on page 65 shows the monthly maintenance procedure.

1 /*--*
2 * MEMBER FILE DEFINITIONS HEADER *
3 * *
4 * This file contains definitions to support use of the *
5 * Gold Club Passenger (member) file. *
6 *--*/
7 #include "ir00df.h"
8
9 #define HOLD DFOPN_HOLD
10 #define NOHOLD DFOPN_NOHOLD
11 #define RELFC DFCLS_RELFC
12 #define REUSE DFCLS_REUSE
13
14 #define open_psgr(opts) dfopn("PSGRFILE",_IR00DFI,opts)
15 #define create_psgr(file,alg) (void) dfcre_alg(file,0,alg)
16 #define read_psgr(file,alg) dfred_acc(file,DFRED_ALG,0,alg)
17 #define add_psgr(file,rcd) (void) dfadd(file,DFADD_NEWLREC,0,rcd)
18 #define replace_psgr(file,rcd) (void) dfrep(file,DFREP_NEWLREC,rcd)
19 #define modify_psgr(file) (void) dfmod(file)
20 #define close_psgr(file,opts) dfcls(file,opts)
21 #define display_psgr(file) dfdsp_str(file,DFDSP_NOKEY, \
22 offsetof(struct ir00df,ir00key))
23 #define open_del_nbr(opts) dfopn_acc("DELNBRS ",_IR00DFI,DFOPN_ALG, \
24 DFOPN_DETAC|opts, \
25 "9999999999")
26 #define read_del_nbr(file) dfred_acc(file,DFRED_ALG,DFRED_NOKEY, \
27 "9999999999")
28 #define add_del_nbr(file,rcd) (void) dfadd(file,DFADD_NEWLREC,0,rcd)
29 #define delete_del_nbr(file) (void) dfdel(file,0)
30 #define modify_del_nbr(file) (void) dfmod(file)
31 #define close_del_nbr(file) dfcls(file,0)
32
33 #define MEM_NUM_SIZE member_size(struct ir00df,lrec.rnum.ir00num)
34 #define MAX_NAME_SIZE member_size(struct ir00df,lrec.psgr.ir00nam)
35 #define MAX_ADDR_SIZE member_size(struct ir00df,lrec.addr.ir00adr)
36 #define MEAL_SIZE member_size(struct ir00df,lrec.info.ir00mpr)
37 #define SEAT_SIZE member_size(struct ir00df,lrec.info.ir00spr)
38 #define PMNT_SIZE member_size(struct ir00df,lrec.info.ir00pay)

Figure 14. psgr.h–Member File Definitions Header

Sample Applications 51

File Maintenance Program

1 /*--*
2 * MEMBERSHIP FILE MAINTENANCE *
3 * Display a member’s record : *member-nbr *
4 * Delete a member’s number : Dmember-nbr *
5 * Add a new member : Amember-name *
6 * Change members details : Cmember-nbr/Xinfo *
7 * where X is: - A address *
8 * - M meal preference *
9 * - S seat preference *
10 * - P payment method *
11 *--*/
12 #include <stdlib.h> /* standard include files */
12A #include <time.h>
13 #include <cdf.h> /* TPFDF include files */
13A #include <psgr.h>
14
15 #define op_msg(prefix,text) \
16 ((void) time(<ime), \
17 printf("%s %s %s\n",prefix,ctime(<ime),text))
18
19 #define read_psgr_lrec(file,alg,pky) \
20 (df_nbrkeys(&psgr_keys,1), \
21 psgr_pky = pky, \
22 df_setkey(&psgr_keys,1, \
23 offsetof(struct ir00df,ir00key), \
24 1,DF_EQ,&psgr_pky,0,DF_UPORG), \
25 read_psgr(file,alg))
26
27 static time_t ltime; /* used for time conversion in op_msg */
28
29 static dft_kyl psgr_keys; /* passenger file key area */
30 static dft_pky psgr_pky; /* passenger file primary key */
31
32 static char in_msg[128]; /* activation message buffer */
33 static dft_fil *psgr_file; /* passenger file pointer */
34 static dft_fil *del_nbr_file; /* ’deleted numbers’ subfile */
35
36 static void action_delete(void);
37 static void action_display(void);
38 static void action_add(void);
39 static void action_change(void);
40 static void subfile_error(void);
41 static void new_error(void);
42 static void data_base_full(void);
43 static void update_next_available_number(struct ir00df *);
44 static void change_address(void);
45 static void change_info(char);
46

Figure 15. sam0.c–File Maintenance Program (Part 1 of 11)

52 TPFDF R1 Programming Concepts and Reference

47 /*--*
48 * Open the Passenger File and Determine the Required Action *
49 *--*/
50 void samp(void)
51 ┌{
52 │ /* local variables */
53 │ unsigned msg_len;
54 │
55 │ /* Read the activation message and remove any EOM character. */
56 │ (void) gets(in_msg);
57 │ msg_len = strlen(in_msg);
58 │
59 │ if (in_msg[msg_len]== _EOM)
60 │ in_msg[msg_len]= 0x00;
61 │
62 │ /* If it is not a display request, the passenger */
63 │ /* file must be open with the HOLD option. */
64 │ psgr_file = open_psgr(in_msg[0]== ’*’ ? NOHOLD : HOLD);
65 │
66 │ /* Determine the required action. */
67 │ switch (in_msg[0])
68 │ ┌{
69 │ │ /* Delete Passenger Subfile. */
70 │ │ case ’D’:
71 │ │ action_delete();
72 │ │ break;
73 │ │
74 │ │ /* Display Passenger Subfile. */
75 │ │ case ’*’:
76 │ │ action_display();
77 │ │ break;
78 │ │
79 │ │ /* Add New Passenger Subfile. */
80 │ │ case ’A’:
81 │ │ action_add();
82 │ │ break;
83 │ │
84 │ │ /* Change Passenger Information. */
85 │ │ case ’C’:
86 │ │ action_change();
87 │ │ break;
88 │ │
89 │ │ /* Invalid Input. */
90 │ │ default:
91 │ │ op_msg("SAM005E","UNRECOGNIZED ACTION CODE");
92 │ │ break;
93 │ └}
94 │
95 │ /* Close the passenger file, use the RELFC option */
96 │ /* if the action was delete (dfcls with RELFC */
97 │ /* has implied de-index and DBDEL_ALL). */
98 │ close_psgr(psgr_file,in_msg[0]== ’D’ ? RELFC : 0);
99 │
100 │ exit(0);
101 └}
102

Figure 15. sam0.c–File Maintenance Program (Part 2 of 11)

Sample Applications 53

103 /*--*
104 * Read Passenger Record and Verify its Existence *
105 * *
106 * Returns pointer to record if subfile found, *
107 * otherwise returns NULL *
108 *--*/
109 static struct ir00df *verify_number()
110 ┌{
111 │ /* local variables */
112 │ static struct ir00df *psgr_lrec; /* passenger record */
113 │
114 │ /* Read a record from the passenger subfile referenced by the */
115 │ /* member number supplied in the input message. If the subfile */
116 │ /* does not exist, then the member number is incorrect. */
117 │ psgr_lrec = read_psgr(psgr_file,&in_msg[1]);
118 │
119 │ if (DF_ERX(psgr_file)) /* if error from read */
120 │ subfile_error(); /* doesn’t return */
121 │
122 │ if (DF_TEST(psgr_file,DFC_ALG)) /* if subfile doesn’t exist */
123 │ op_msg("SAM001E","INVALID NUMBER"); /* send message to operator */
124 │
125 │ return (psgr_lrec);
126 └}
127
128 /*--*
129 * Delete Passenger Subfile *
130 *--*/
131 static void action_delete(void)
132 ┌{
133 │ /* Verify that the supplied member number exists. */
134 │ if (verify_number())
135 │ ┌{
136 │ │ /* local variables */
137 │ │ /* partially initialized ’deleted number’ LREC */
138 │ │ struct ir00df del_nbr_lrec = { _IR00LC0, _IR00KC0 };
139 │ │
140 │ │ /* Open the ’deleted numbers’ subfile. */
141 │ │ del_nbr_file = open_del_nbr(HOLD);
142 │ │
143 │ │ /* Build a new LREC for the deleted membership number */
144 │ │ /* and add it to the ’deleted numbers’ subfile. */
145 │ │ (void) strncpy(del_nbr_lrec.lrec.rnum.ir00num,
146 │ │ &in_msg[1],
147 │ │ sizeof(del_nbr_lrec.lrec.rnum.ir00num));
148 │ │ add_del_nbr(del_nbr_file,&del_nbr_lrec);
149 │ │
150 │ │ if (DF_ER(del_nbr_file)) /* if error from add */
151 │ │ subfile_error(); /* doesn’t return */
152 │ └}
153 │ return;
154 └}
155

Figure 15. sam0.c–File Maintenance Program (Part 3 of 11)

54 TPFDF R1 Programming Concepts and Reference

156 /*--*
157 * Display Passenger Subfile *
158 *--*/
159 static void action_display(void)
160 ┌{
161 │ /* Verify that the supplied member number exists. */
162 │ if (verify_number())
163 │ ┌{
164 │ │ /* This is just an example of the use of dfdsp. Its use is not */
165 │ │ /* appropriate here as some of the data is not in displayable */
166 │ │ /* format. dfdsp automatically skips the size field. */
167 │ │ display_psgr(psgr_file);
168 │ │
169 │ │ if (DF_ER(psgr_file)) /* if error from display */
170 │ │ subfile_error(); /* doesn’t return */
171 │ └}
172 │ return;
173 └}
174
175 /*--*
176 * Add New Passenger Subfile *
177 *--*/
178 static void action_add(void)
179 ┌{
180 │ /* local variables */
181 │
182 │ /*--*
183 │ * LREC to initialize the ’deleted numbers’ subfile. The first *
184 │ * number to be added is 2, since this subfile will only be *
185 │ * initialized when member number 1 is issued. *
186 │ *--*/
187 │ struct ir00df del_nbr_init = { _IR00LD0, _IR00KD0 };
188 │
189 │ struct ir00df new_psgr_lrec; /*build area for psgr LREC */
190 │ struct tm *tp; /*current time structure */
191 │ char next_num[MEM_NUM_SIZE+1]; /*next member number to use */
192 │ const char done_msg[]= "NEW MEMBER FILECREATED - ";
193 │ char msg_text[MEM_NUM_SIZE+sizeof(done_msg)+1];
194 │
195 │ /* Verify the length of the input message. */
196 │ if (strlen(&in_msg[1]) > MAX_NAME_SIZE)
197 │ op_msg("SAM002E","NAME TOO LONG"); /* send message to operator */
198 │ else
199 │

Figure 15. sam0.c–File Maintenance Program (Part 4 of 11)

Sample Applications 55

200 │ /* Message length is OK, so continue. */
201 │ ┌{
202 │ │ /* local variables */
203 │ │ struct ir00df *del_nbr_rcd;
204 │ │
205 │ │ /* Get new membership number. */
206 │ │ del_nbr_file = open_del_nbr(HOLD);
207 │ │ del_nbr_rcd = read_del_nbr(del_nbr_file);
208 │ │
209 │ │ if (DF_ERX(del_nbr_file)) /* if error from read */
210 │ │ subfile_error(); /* doesn’t return */
211 │ │
212 │ │ if (DF_TEST(del_nbr_file,DFC_ALG)) /* if subfile doesn’t exist */
213 │ │ ┌{
214 │ │ │ /* The ’deleted numbers’ subfile doesn’t exist, so create it. */
215 │ │ │ (void) strncpy(del_nbr_init.lrec.rnum.ir00num,"0000000002",10);
216 │ │ │ add_del_nbr(del_nbr_file,&del_nbr_init);
217 │ │ │
218 │ │ │ if (DF_ER(del_nbr_file)) /* if error from read */
219 │ │ │ subfile_error(); /* doesn’t return */
220 │ │ │
221 │ │ │ (void) strcpy(next_num,"0000000001"); /* new number */
222 │ │ └}
223 │ │ else
224 │ │ ┌{
225 │ │ │ /* ’deleted numbers’ subfile exists, */
226 │ │ │ /* so find an available number */
227 │ │ │
228 │ │ │ /* If the found record is a deleted number, use the number */
229 │ │ │ /* and delete the record from the ’deleted numbers’ file. */
230 │ │ │ if (del_nbr_rcd->ir00key == _IR00KC0)
231 │ │ │ ┌{
232 │ │ │ │ (void) strncpy(next_num,
233 │ │ │ │ del_nbr_rcd->lrec.rnum.ir00num,
234 │ │ │ │ MEM_NUM_SIZE);
235 │ │ │ │ delete_del_nbr(del_nbr_file);
236 │ │ │ └}
237 │ │ │ else
238 │ │ │ ┌{
239 │ │ │ │ /* The found record is a consecutive number, */
240 │ │ │ │ /* so use it and increment it in the file. */
241 │ │ │ │ (void) strncpy(next_num,
242 │ │ │ │ del_nbr_rcd->lrec.cnum.ir00nuc,
243 │ │ │ │ MEM_NUM_SIZE);
244 │ │ │ │ update_next_available_number(del_nbr_rcd);
245 │ │ │ │ modify_del_nbr(del_nbr_file);
246 │ │ │ └}
247 │ │ └}
248 │ │

Figure 15. sam0.c–File Maintenance Program (Part 5 of 11)

56 TPFDF R1 Programming Concepts and Reference

249 │ │ /* Close the ’deleted numbers’ subfile. */
250 │ │ close_del_nbr(del_nbr_file);
251 │ │
252 │ │ /* Create a new subfile using the new member */
253 │ │ /* number as the algorithm argument. */
254 │ │ close_psgr(psgr_file,REUSE);
255 │ │ psgr_file = open_psgr(HOLD);
256 │ │ create_psgr(psgr_file,next_num);
257 │ │
258 │ │ if (DF_ER(psgr_file)) /* if error from create */
259 │ │ new_error(); /* doesn’t return */
260 │ │
261 │ │ /* Build the name LREC from the input */
262 │ │ /* message and add it to the file. */
263 │ │ new_psgr_lrec.ir00siz = (short) (strlen(&in_msg[1]) +
264 │ │ sizeof(new_psgr_lrec.ir00siz) +
265 │ │ sizeof(new_psgr_lrec.ir00key));
266 │ │ new_psgr_lrec.ir00key = _IR00K80;
267 │ │ (void) strncpy(new_psgr_lrec.lrec.psgr.ir00nam,
268 │ │ &in_msg[1],
269 │ │ MAX_NAME_SIZE);
270 │ │
271 │ │ add_psgr(psgr_file,&new_psgr_lrec);
272 │ │
273 │ │ if (DF_ER(psgr_file))
274 │ │ new_error();
275 │ │
276 │ │ /* Build the status LREC, which contains the current */
277 │ │ /* mileage credit (0), and the expiration date */
278 │ │ /* (today + one year). */
279 │ │ new_psgr_lrec.ir00siz = _IR00LB0;
280 │ │ new_psgr_lrec.ir00key = _IR00KB0;
281 │ │ new_psgr_lrec.lrec.stat.ir00mls = 0; /* mileage credit */
282 │ │ (void) ctime(<ime);
283 │ │ tp = gmtime(<ime); /* get date info */
284 │ │ new_psgr_lrec.lrec.stat.ir00exy = tp->tm_year + 1; /* exp. year */
285 │ │ new_psgr_lrec.lrec.stat.ir00exm = tp->tm_mon; /* exp. month */
286 │ │
287 │ │ add_psgr(psgr_file,&new_psgr_lrec);
288 │ │
289 │ │ if (DF_ER(psgr_file))
290 │ │ new_error();
291 │ │
292 │ │ (void) sprintf(msg_text,"%s%s",done_msg,next_num);
293 │ │ op_msg("SAM006I",msg_text);
294 │ └}
295 │ return;
296 └}
297

Figure 15. sam0.c–File Maintenance Program (Part 6 of 11)

Sample Applications 57

298 /*--*
299 * Change Passenger Information *
300 *--*/
301 static void action_change(void)
302 ┌{
303 │ /* A slash must follow the action code */
304 │ /* and the 10-character member number. */
305 │ if (in_msg[11]!= ’/’)
306 │ op_msg("SAM004E","INCORRECT FORMAT FOR CHANGE COMMAND");
307 │ else
308 │
309 │ /* Input format is OK, determine what is to change. */
310 │ ┌{
311 │ │ switch (in_msg[12])
312 │ │ ┌{
313 │ │ │ /* Change Passenger Address. */
314 │ │ │ case ’A’:
315 │ │ │ change_address();
316 │ │ │ break;
317 │ │ │
318 │ │ │ /* Change Meal, Seat, or Payment Preference Information. */
319 │ │ │ case ’M’:
320 │ │ │ case ’S’:
321 │ │ │ case ’P’:
322 │ │ │ change_info(in_msg[12]);
323 │ │ │ break;
324 │ │ │
325 │ │ │ /* Invalid Input. */
326 │ │ │ default:
327 │ │ │ op_msg("SAM003E","UNRECOGNIZED CHANGE CODE");
328 │ │ │ break;
329 │ │ └}
330 │ └}
331 │ return;
332 └}
333

Figure 15. sam0.c–File Maintenance Program (Part 7 of 11)

58 TPFDF R1 Programming Concepts and Reference

334 /*--*
335 * Change Passenger Address *
336 *--*/
337 static void change_address(void)
338 ┌{
339 │ /* local variables */
340 │ struct ir00df *psgr_lrec, new_psgr_lrec;
341 │ const unsigned addr_size = strlen(&in_msg[13]); /* size of address */
342 │
343 │ /* Verify the length of the address from the input message. */
344 │ if (addr_size > MAX_ADDR_SIZE)
345 │ op_msg("SAM007E","ADDRESS TOO LONG"); /* send message to operator */
346 │ else
347 │
348 │ /* Message length is OK, so continue. */
349 │ ┌{
350 │ │ /* Read any existing passenger address record. */
351 │ │ psgr_lrec = read_psgr_lrec(psgr_file,&in_msg[1],_IR00K90);
352 │ │
353 │ │ if (DF_ER(psgr_file)) /* if error from read */
354 │ │ subfile_error(); /* doesn’t return */
355 │ │
356 │ │ /* Build the new Passenger Address LREC. */
357 │ │ new_psgr_lrec = *psgr_lrec; /* copy old LREC */
358 │ │ new_psgr_lrec.ir00siz = (short) (addr_size +
359 │ │ sizeof(new_psgr_lrec.ir00siz) +
360 │ │ sizeof(new_psgr_lrec.ir00key));
361 │ │ (void) strncpy(new_psgr_lrec.lrec.addr.ir00adr,
362 │ │ &in_msg[13],
363 │ │ addr_size);
364 │ │
365 │ │ /* Add or replace the Passenger Address LREC. */
366 │ │ if (DF_NR(psgr_file))
367 │ │ ┌{
368 │ │ │ add_psgr(psgr_file,&new_psgr_lrec);
369 │ │ └}
370 │ │ else
371 │ │ ┌{
372 │ │ │ replace_psgr(psgr_file,&new_psgr_lrec);
373 │ │ └}
374 │ │
375 │ │ if (DF_ER(psgr_file)) /* if error from add or replace */
376 │ │ subfile_error(); /* doesn’t return */
377 │ └}
378 │ return;
379 └}
380

Figure 15. sam0.c–File Maintenance Program (Part 8 of 11)

Sample Applications 59

381 /*--*
382 * Change Miscellaneous Passenger Information (meal, seat, pay). *
383 *--*/
384 static void change_info(char info_code)
385 ┌{
386 │ /* local variables */
387 │ struct ir00df *psgr_lrec, new_psgr_lrec;
388 │ unsigned data_size; /* expected size of data */
389 │ const unsigned actual_data_size = strlen(&in_msg[13]);
390 │ char *data_ptr; /* location of data */
391 │
392 │ /* Set up for specific information. */
393 │ switch (info_code)
394 │ ┌{
395 │ │ case ’M’:
396 │ │ data_size = MEAL_SIZE;
397 │ │ data_ptr = new_psgr_lrec.lrec.info.ir00mpr;
398 │ │ break;
399 │ │
400 │ │ case ’S’:
401 │ │ data_size = SEAT_SIZE;
402 │ │ data_ptr = new_psgr_lrec.lrec.info.ir00spr;
403 │ │ break;
404 │ │
405 │ │ case ’P’:
406 │ │ data_size = PMNT_SIZE;
407 │ │ data_ptr = new_psgr_lrec.lrec.info.ir00pay;
408 │ │ break;
409 │ │
410 │ │ default:
411 │ │ break;
412 │ └}
413 │
414 │ /* Verify the length of the information from the input message. */
415 │ if (actual_data_size != data_size)
416 │ op_msg("SAM008E","INFORMATION INCORRECT LENGTH");
417 │ else
418 │

Figure 15. sam0.c–File Maintenance Program (Part 9 of 11)

60 TPFDF R1 Programming Concepts and Reference

419 │ /* Message length is OK, so continue. */
420 │ ┌{
421 │ │ /* Read any existing passenger information record. */
422 │ │ psgr_lrec = read_psgr_lrec(psgr_file,&in_msg<1>,_IR00KA0);
423 │ │
424 │ │ if (DF_ER(psgr_file)) /* if error from read */
425 │ │ subfile_error(); /* doesn’t return */
426 │ │
427 │ │ /* If a record exists, copy it to the record build */
428 │ │ /* area, otherwise build a new, empty record. */
429 │ │ if (!DF_NR(psgr_file))
430 │ │ new_psgr_lrec = *psgr_lrec;
431 │ │ else
432 │ │ ┌{
433 │ │ │ new_psgr_lrec.ir00key = _IR00KA0;
434 │ │ │ new_psgr_lrec.ir00siz = member_size(struct ir00df,lrec.info)
435 │ │ │ + member_size(struct ir00df,ir00siz)
436 │ │ │ + member_size(struct ir00df,ir00key);
437 │ │ │ (void) memset(new_psgr_lrec.lrec.info.ir00mpr,’ ’,MEAL_SIZE);
438 │ │ │ (void) memset(new_psgr_lrec.lrec.info.ir00spr,’ ’,SEAT_SIZE);
439 │ │ │ (void) memset(new_psgr_lrec.lrec.info.ir00pay,’ ’,PMNT_SIZE);
440 │ │ └}
441 │ │
442 │ │ /* Move the new data into the record build area. */
443 │ │ (void) memcpy(data_ptr,&in_msg<13>,data_size);
444 │ │
445 │ │ /* Add or replace the Passenger Information LREC. */
446 │ │ if (DF_NR(psgr_file))
447 │ │ ┌{
448 │ │ │ add_psgr(psgr_file,&new_psgr_lrec);
449 │ │ └}
450 │ │ else
451 │ │ ┌{
452 │ │ │ replace_psgr(psgr_file,&new_psgr_lrec);
453 │ │ └}
454 │ │
455 │ │ if (DF_ER(psgr_file)) /* if error from add or replace */
456 │ │ subfile_error(); /* doesn’t return */
457 │ │
458 │ │ op_msg("SAM009I","DETAILS MODIFIED");
459 │ └}
460 │ return;
461 └}
462

Figure 15. sam0.c–File Maintenance Program (Part 10 of 11)

Sample Applications 61

463 /*--*
464 * Increment Consecutive Member Number. *
465 *--*/
466 static void update_next_available_number(struct ir00df
*del_nbr_rcd)
467 ┌{
468 │ /* local variables */
469 │ long bin_num; /* binary version of number */
470 │ char str_num<11>; /* string version of number */
471 │
472 │ /* Verify that a number is available. */
473 │ if (strncmp(del_nbr_rcd->lrec.cnum.ir00nuc,"9999999999",10) == 0)
474 │ data_base_full(); /* no number available */
475 │
476 │ /* Convert number to binary and increment it. */
477 │ (void) strncpy(str_num,del_nbr_rcd->lrec.cnum.ir00nuc,10);
478 │ str_num<10>= 0x00;
479 │ bin_num = strtol(str_num,NULL,10) + 1;
480 │
481 │ /* Convert it back to a string and store it back. */
482 │ (void) sprintf(str_num,"%.10ld",bin_num);
483 │ (void) strncpy(del_nbr_rcd->lrec.cnum.ir00nuc,str_num,10);
484 │
485 │ return;
486 └}
487
488 /*--*
489 * Error Handling *
490 *--*/
491 static void subfile_error(void)
492 ┌{
493 │ op_msg("SAM010E","ERROR IN SUBFILE");
494 │ exit(12);
495 └}
496
497 static void new_error(void)
498 ┌{
499 │ op_msg("SAM011E","ERROR IN NEW SUBFILE");
500 │ exit(12);
501 └}
502
503 static void data_base_full(void)
504 ┌{
505 │ op_msg("SAM012E","NO MEMBER NUMBERS AVAILABLE");
506 │ exit(12);
507 └}
508

Figure 15. sam0.c–File Maintenance Program (Part 11 of 11)

62 TPFDF R1 Programming Concepts and Reference

Departure Control Interface Program

1 /*--*
2 * DEPARTURE CONTROL INTERFACE *
3 * Updates the mileage flown and adjusts the expiration *
4 * date of the membership based on an extra month’s *
5 * membership for each 1000 miles flown. No errors are *
6 * issued from this program. Indicators are returned *
7 * as shown below. *
8 *--*
9 * Input Parameters: *
10 * char mem_num[10] - membership number *
11 * short miles - miles to be credited *
12 * *
13 * Return Values (int): *
14 * NO_SUBFILE - no subfile for specified member number *
15 * NO_MILEAGE - no mileage lrec in member’s subfile *
16 * PSGR_ERROR - serious error on read *
17 * 0 - no error *
18 *--*/
19 #include <cdf.h>
20 #include <psgr.h>
22 #define NO_SUBFILE 4
23 #define NO_MILEAGE 8
24 #define PSGR_ERROR 16
25
26 #define read_psgr_lrec(file,alg,pky) \
27 (df_nbrkeys(&psgr_keys,1), \
28 psgr_pky = pky, \
29 df_setkey(&psgr_keys,1, \
30 offsetof(struct ir00df,ir00key), \
31 1,DF_EQ,&psgr_pky,0,DF_UPORG), \
32 read_psgr(file,alg))
33
34 static dft_kyl psgr_keys; /* passenger file key area */
35 static dft_pky psgr_pky; /* passenger file primary key */
36
37 static dft_fil *psgr_file; /* passenger file pointer */
38

Figure 16. sam1.c–Departure Control Interface (Part 1 of 2)

Sample Applications 63

39 /*--*
40 * Update the Passenger File Mileage and Expiration Information. *
41 *--*/
42 int sam1(char *mem_num, short miles)
43 ┌{
44 │ /* local variables */
45 │ static struct ir00df *psgr_lrec; /* passenger record */
46 │ int rc = 0; /* return code */
47 │
48 │ /* Passenger subfile must be opened with the HOLD option. */
49 │ psgr_file = open_psgr(HOLD);
50 │
51 │ /* Search for this member’s mileage lrec. */
52 │ psgr_lrec = read_psgr_lrec(psgr_file,mem_num,_IR00KB0);
53 │
54 │ if (DF_ERX(psgr_file)) /* if error on read */
55 │ rc = PSGR_ERROR;
56 │ if (DF_TEST(psgr_file,DFC_ALG)) /* if subfile doesn’t exist */
57 │ rc = NO_SUBFILE;
58 │ else if (DF_NR(psgr_file)) /* if mileage LREC not found */
59 │ rc = NO_MILEAGE;
60 │ else
61 │ ┌{
62 │ │ /* Update the membership expiration date based on the mileage. */
63 │ │ psgr_lrec->lrec.stat.ir00mls +=miles; /* update miles */
64 │ │ /* add 1 month per 1000 miles */
65 │ │ psgr_lrec->lrec.stat.ir00exm +=psgr_lrec->lrec.stat.ir00mls / 1000;
66 │ │ psgr_lrec->lrec.stat.ir00mls %=1000; /* adjust mileage */
67 │ │ /* add 1 year per 12 months */
68 │ │ psgr_lrec->lrec.stat.ir00exy +=psgr_lrec->lrec.stat.ir00exm / 12;
69 │ │ psgr_lrec->lrec.stat.ir00exm %=12; /* adjust months */
70 │ │
71 │ │ modify_psgr(psgr_file);
72 │ └}
73 │
74 │ /* Close the member file and return to */
75 │ /* the caller with the return code. */
76 │ close_psgr(psgr_file,0);
77 │
78 │ return (rc);
79 └}

Figure 16. sam1.c–Departure Control Interface (Part 2 of 2)

64 TPFDF R1 Programming Concepts and Reference

Monthly Maintenance Program

1 /*--*
2 * MONTHLY MAINTENANCE PROGRAM *
3 * Deletes members records that have expired and adds *
4 * the membership number to a subfile so it can be *
5 * reissued. *
6 *--*/
7 #include <stdlib.h>
8 #include <time.h>
9 #include <cdf.h>
10 #include <psgr.h>
11
12 #define op_msg(prefix,text) \
13 ((void) time(<ime), \
14 printf("%s %s %s\n",prefix,ctime(<ime),text))
15
16 #define close_all() dfcls(NULL,DFCLS_ALL|DFCLS_ABORT)
17
18 #define read_psgr_lrec(file,pky,area) \
19 (df_nbrkeys(&psgr_keys,1), \
20 psgr_pky = pky, \
21 df_setkey(&psgr_keys,1, \
22 offsetof(struct ir00df,ir00key), \
23 1,DF_EQ,&psgr_pky,0,DF_UPORG), \
24 read_psgr_full(file,area))
25
26 static time_t ltime; /* used for time conversion */
27
28 static dft_kyl psgr_keys; /* passenger file key area */
29 static dft_pky psgr_pky; /* passenger file primary key */
30
31 static dft_fil *psgr_file; /* passenger file pointer */
32 static dft_fil *del_nbr_file; /* ’deleted numbers’ subfile */
33
34 static void update_free_slot(char *);
35 static void add_error(void);
36 static void read_error(void);
37

Figure 17. sam2.c–Monthly Maintenance Program (Part 1 of 3)

Sample Applications 65

38 /*--*
39 * Perform Monthly Maintenance on the Member File. *
40 *--*/
41 void sam2(void)
42 ┌{
43 │ /* local variables */
44 │ struct ir00df *psgr_lrec; /* passenger record */
45 │ struct tm *tp; /* current time structure */
46 │ char mem_num.<MEM_NUM_SIZE>; /* member number */
47 │
48 │ /* Restrict operation of this program to the 1st day of the month. */
49 │ (void) ctime(<ime);
50 │ tp = gmtime(<ime); /* get date info */
51 │
52 │ if (tp->tm_mday != 1) /* if not first of month... */
53 │ ┌{
54 │ │ op_msg("SAM201E","NOT FIRST OF MONTH - UNABLE TO PROCESS");
55 │ └}
56 │ else
57 │ ┌{
58 │ │ /* Open the member file and the ’deleted numbers’ subfile. */
59 │ │ psgr_file = open_psgr(HOLD);
60 │ │ del_nbr_file = open_del_nbr(HOLD);
61 │ │
62 │ │ /* Read the member file until the end. */
63 │ │ while (1)
64 │ │ ┌{
65 │ │ │ /* Read each status lrec for the expiration date. */
66 │ │ │ /* The ’area’ parameter provides the member number. */
67 │ │ │ psgr_lrec = read_psgr_lrec(psgr_file,_IR00KB0,mem_num);
68 │ │ │
69 │ │ │ /* Check for error or end of file. */
70 │ │ │ if (DF_ERX(psgr_file))
71 │ │ │ read_error();
72 │ │ │
73 │ │ │ if (DF_EF(psgr_file))
74 │ │ │ break;
75 │ │ │
76 │ │ │ /* If the membership has expired, delete the subfile and add */
77 │ │ │ /* the deleted number to the ’deleted numbers’ subfile. */
78 │ │ │ if ((psgr_lrec->lrec.stat.ir00exm < tp->tm_mon &&
79 │ │ │ psgr_lrec->lrec.stat.ir00exy <= tp->tm_year) ||
80 │ │ │ psgr_lrec->lrec.stat.ir00exy < tp->tm_year)
81 │ │ │ ┌{
82 │ │ │ │ delete_psgr(psgr_file,mem_num);
83 │ │ │ │ update_free_slot(mem_num);
84 │ │ │ └}
85 │ │ └}
86 │ │

Figure 17. sam2.c–Monthly Maintenance Program (Part 2 of 3)

66 TPFDF R1 Programming Concepts and Reference

87 │ │ op_msg("SAM202I","PROCESSING COMPLETED");
88 │ │
89 │ │ /* Close both files. */
90 │ │ close_psgr(psgr_file,0);
91 │ │ close_del_nbr(del_nbr_file);
92 │ └}
93 │
94 │ exit(0);
95 └}
96
97 static void update_free_slot(char*mem_num)
98 ┌{
99 │ static struct ir00df free_slot ={ _IR00LC0, _IR00KC0 };

100 │
101 │ /* Copy the member number into the free slot LREC. */
102 │ (void) memcpy(free_slot.lrec.rnum.ir00num,
103 │ mem_num,
104 │ member_size(struct ir00rnum,ir00num));
105 │
106 │ /* Add the free slot LREC to the deleted numbers subfile. */
107 │ add_del_nbr(del_nbr_file,&free_slot);
108 │
109 │ if (DF_ER(del_nbr_file))
110 │ add_error();
111 │
112 │ return;
113 └}
114
115 /*--*
116 * Error Handling *
117 *--*/
118 static void add_error(void)
119 ┌{
120 │ op_msg("SAM203E","ADD ERROR ON FILE IR00DF - JOB TERMINATED");
121 │ close_all();
122 │ exit(12);
123 └}
124
125 static void read_error(void)
126 ┌{
127 │ op_msg("SAM204E","READ ERROR ON FILE IR00DF - JOB TERMINATED");
128 │ close_all();
129 │ exit(12);
130 └}
131

Figure 17. sam2.c–Monthly Maintenance Program (Part 3 of 3)

Sample Applications 67

68 TPFDF R1 Programming Concepts and Reference

Part 2. C Language Functions

TPFDF General-Use C Language Functions: Reference 71
dfadd–Add a Logical Record to a Subfile 73
dfadr–Provide the File Address of a Prime Block 80
dfckp–Checkpoint a Subfile . 83
dfclr–Allow ECB Exit with Open Files. 85
dfcls–Close a Subfile. 86
dfcpy–Copy a Subfile . 92
dfcre–Create a Subfile . 95
dfdel–Delete One or More Logical Records 97
dfdix–Delete Index References to a Subfile 105
dfdsp–Display Logical Records from a Subfile 107
dffrl–Ensure an ECB Data Level Is Free 111
dfidx–Create an Index Reference 112
dfifb–Check a SW00SR Slot 114
dfkey–Activate a Key List. 115
dfmod–Perform or Indicate Logical Record Modifications 117
dfmrg–Merge Logical Records from Two Subfiles 121
df_nbrkeys–Setting Up the Number of Keys 124
dfopn–Open a Subfile . 125
dfopt–Set Optional Information. 130
dfred–Read a Logical Record 134
dfrep–Replace a Logical Record with Another Logical Record 143
dfret–Retain a Logical Record Position. 145
dfrst–Restore a Subfile . 147
df_setkey–Setting Up a Key in a Key List. 150
dfspa–Create Work Space . 156
dfsrt–Sort a Subfile . 157
dftld–Write a Subfile from Main Storage to DASD. 160
dftlg–Write a File or Subfile to Tape 163
dftrd–Read a Subfile from an Input Tape to Main Storage 166
dfuky–Generate a Unique Key for Use in Logical Records 167
member_size–Calculating the Size of a Structure Member 168

TPFDF Restricted C Language Functions: Reference 169
dftab–Access Database Definition Tables 170

© Copyright IBM Corp. 1997, 2001 69

70 TPFDF R1 Programming Concepts and Reference

TPFDF General-Use C Language Functions: Reference

Note to ALCS Customers
You must enable TPFDF C language support before using the TPFDF C
language functions. See TPFDF Installation and Customization for more
information about enabling TPFDF C language support in an ALCS
environment.

The TPFDF C language functions are set up in groups. All the functions in any one
group perform a similar service. For example, each function in the dfrst function
group restores a subfile that you specify. The specific function in a group that you
use depends on what parameters you want to specify. For example, when you are
restoring a subfile:

v Use the dfrst function if you want to restore the current subfile.

v Use the dfrst_acc function if you want to use an ordinal number, file address, or
pointer to an algorithm argument to access the subfile.

v Use the dfrst_seq function if you want to perform sequence number checking.

v Use the dfrst_acc_seq function if you want to use an ordinal number, file
address, or pointer to an algorithm argument to access the subfile, and perform
sequence number checking.

The following contains an alphabetic listing of the TPFDF C language function
groups that you can use in application programs. The description of each function
group includes the following information:

Format: Provides the function prototype and a description of each parameter and
variable.

Entry Requirements: Lists any special conditions that must be true when you use
the function.

Normal Return: Lists what is returned when the function has completed processing
successfully.

Error Return: Lists what is returned when the function cannot complete processing
successfully.

Programming Considerations: Lists any additional considerations for using the
function, including any restrictions or limitations.

Examples: Provides one or more examples that show you how to code the
function.

Related Functions: Lists where to find information about related functions.

© Copyright IBM Corp. 1997, 2001 71

|
|
|

Include the Correct Header Files
Code the following statement in all your TPFDF C language application
programs:
#include <cdf.h>

This statement causes all the necessary header files to be included in the C
application program in the correct order. The following is a list of these header
files:
v c$cdfeq.h
v c$cdfapi.h
v c$cdfmac.h
v c$cdflnk.h
v c$cdferr.h
v c$sw00sr.h
v c$sw01sr.h
v c$sw02sr.h

For information about the header files needed for TPF C support or ALCS C
support, see TPF Application Programming or the ALCS Application
Programming Guide.

72 TPFDF R1 Programming Concepts and Reference

dfadd–Add a Logical Record to a Subfile
Use this group of functions to:
v Add a fixed- or variable-length logical record (LREC) to a subfile
v Add an empty LREC to a subfile
v Add a subLREC to the current extended LREC
v Add an extended LREC to a subfile
v Add an extended LREC and a subLREC to a subfile.

Format
dft_rec *dfadd(dft_fil *file, dft_opt rec_type, dft_opt options,

dft_rec *rec);

dft_rec *dfadd_acc(dft_fil *file, dft_opt rec_type, dft_opt access,
dft_opt options, dft_rec *rec, dft_xxx acc);

dft_rec *dfadd_nbr(dft_fil *file, dft_opt rec_type, dft_opt options,
dft_rec *rec, dft_nbr nbr);

dft_rec *dfadd_pky(dft_fil *file, dft_opt rec_type, dft_opt options,
dft_rec *rec, dft_pky pky);

dft_rec *dfadd_acc_nbr(dft_fil *file, dft_opt rec_type, dft_opt access,
dft_opt options, dft_rec *rec, dft_xxx acc, dft_nbr nbr);

dft_rec *dfadd_acc_pky(dft_fil *file, dft_opt rec_type, dft_opt access,
dft_opt options, dft_rec *rec, dft_xxx acc, dft_pky pky);

dft_rec *dfadd_nbr_pky(dft_fil *file, dft_opt rec_type, dft_opt options,
dft_rec *rec, dft_nbr nbr, dft_pky pky);

dft_rec *dfadd_acc_nbr_pky(dft_fil *file, dft_opt rec_type,
dft_opt access, dft_opt options, dft_rec *rec, dft_xxx acc,
dft_nbr nbr, dft_pky pky);

dft_rec *dfadd_sub(dft_fil *file, dft_opt options,
dft_rec *sub);

dft_rec *dfadd_usr_pky(dft_fil *file, dft_opt options,
dft_rec usr, dft_pky pky);

dft_rec *dfadd_usr_acc_pky(dft_fil *file, dft_opt access,
dft_opt options, dft_rec usr, dft_xxx acc,
dft_pky pky);

dft_rec *dfadd_usr_nbr_pky(dft_fil *file, dft_opt options,
dft_rec usr, dft_nbr nbr, dft_pky pky);

dft_rec *dfadd_usr_acc_nbr_pky(dft_fil *file, dft_opt access,
dft_opt options, dft_rec usr, dft_xxx acc,
dft_nbr nbr, dft_pky pky);

dft_rec *dfadd_usr_sub_pky(dft_fil *file, dft_opt options,
dft_rec *usr, dft_rec *sub, dft_pky pky);

dft_rec *dfadd_usr_acc_sub_pky(dft_fil *file, dft_opt access,
dft_opt options, dft_rec *usr, dft_xxx acc,
dft_rec *sub, dft_pky pky);

dft_rec *dfadd_usr_sub_nbr_pky(dft_fil *file, dft_opt options,
dft_rec *usr, dft_rec *sub, dft_nbr nbr,
dft_pky pky);

dft_rec *dfadd_usr_acc_sub_nbr_pky(dft_fil *file, dft_opt access,
dft_opt options, dft_rec *usr, dft_xxx acc,
dft_rec *sub, dft_nbr nbr, dft_pky pky);

dfadd

TPFDF General-Use C Language Functions: Reference 73

Access Parameter Values:

DFADD_ALG
DFADD_FADDR
DFADD_ORD

Options Parameter Values:

�

DFADD_AFTER
DFADD_BEFORE

|

DFADD_FAST
DFADD_AFTER | DFADD_INDEX
DFADD_BEFORE | DFADD_INDEX_HOLD

DFADD_INLINE
DFADD_NODUMP
DFADD_NOKEY
DFADD_UNIQUE
DFADD_USEBTREE

0

Rec_Type Parameter Values:

DFADD_NEWLREC
DFADD_NULLREC

acc
is an ordinal number, a file address, or a pointer to an algorithm string that
specifies the subfile you want to access. The type for this parameter is
determined by the value you specify for the access parameter.

access
is the method you want to use to access the subfile. Use one of the following
values:

DFADD_ALG
specifies that you are providing a pointer to an algorithm argument in the
acc parameter. The acc parameter is of type dft_alg. The TPFDF product
uses the algorithm argument to determine the subfile (ordinal number) that
is to be accessed. Specify the algorithm argument based on the type of
algorithm that is defined in the DSECT or DBDEF macro for the file. If the
DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate
index file defined with the #TPFDBFF algorithm, the TPFDF product uses
the algorithm argument to locate the subfile. See TPFDF Database
Administration for more information about how the TPFDF product uses the
algorithm argument to locate the subfile.

DFADD_FADDR
specifies that you are providing a file address in the acc parameter. A file
address is in integer format. The acc parameter is of type dft_fad.

dfadd

74 TPFDF R1 Programming Concepts and Reference

DFADD_ORD
specifies that you are providing an ordinal number in the acc parameter.
Ordinal numbers in a file start at zero and are in integer format. The acc
parameter is of type dft_ord.

If the file is partitioned or interleaved, specify the relative ordinal number
within the partition or interleave. If the file is not partitioned or interleaved,
specify the file address compute program (FACE) ordinal number.

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

nbr
is a variable containing the LREC sequence number in the subfile. (You can
add an LREC or an extended LREC by providing a specific sequence number.)

Notes:

1. Do not use this parameter with files for which default keys are defined.

2. If you use the #TPFDB0D algorithm, you must specify this parameter.

3. LRECs are numbered in increasing order from the start of the subfile (the
first LREC in the prime block has sequence number 1).

4. If you specify this parameter with active keys, only those LRECs that match
the key conditions are included in the sequence numbering; LRECs that do
not match are ignored.

5. When you specify this parameter, the LREC is added immediately after the
specified LREC.

6. If you specify this parameter for an LREC number that does not exist, the
LREC is not added.

options
are the processing options for this function. Use the following values:

DFADD_AFTER
adds the new LREC immediately after the current LREC.

DFADD_BEFORE
adds the new LREC immediately before the current LREC.

DFADD_FAST
used for migration purposes only; use the DFADD_INLINE or
DFADD_NOKEY value instead. If you specify this parameter, the
DFADD_NOKEY parameter is implemented; that is, any currently active
keys are deactivated.

DFADD_INDEX
adds an LREC to a detail subfile or intermediate index subfile where the
index structure does not yet exist. If you specify this value, the algorithm
defined for the new subfile must be #TPFDBFF.

When you specify this parameter, the subfile is created and indexed by
adding an index LREC in the index file referencing the subfile.

DFADD_INDEX_HOLD
potentially holds any index files that reference the subfiles you are
accessing and prevents two or more application programs from modifying
the index files at the same time. Holding occurs if bits 4 and 5 in the
&SW00OP2 global set symbol in the DSECT macro, or the OP2=
parameter in the DBDEF macro, have been set appropriately. Subsequent
TPFDF calls by other ECBs to modify the index file will not occur until the

dfadd

TPFDF General-Use C Language Functions: Reference 75

index file is no longer held. If more than one application can update the
same index file, you must specify this value to ensure the updates are
synchronized.

See TPFDF Database Administration for information about how bits 4 and 5
in the &SW00OP2 global set symbol in the DSECT marco, or the OP2=
parameter in the DBDEF macro, affect hold processing.

DFADD_INLINE
provides a faster method for adding LRECs to a subfile. You cannot use
this value with key parameters or with extended LRECs. Any keys that are
active from previous TPFDF functions are deactivated.

DFADD_NODUMP
specifies that you do not want the TPFDF product to issue any of the
following system errors while processing this function:
v DB0100
v DB0102
v DB0117
v DB0123
v DB0138
v DB0140.

See TPFDF Messages (System Error, Online, Offline) for more information
about these system errors.

Note: Using the DFADD_NODUMP value is not recommended because it
can prevent system errors from being issued that indicate a critical
problem.

DFADD_NOKEY
deactivates any currently active keys.

DFADD_UNIQUE
specifies that the TPFDF product should not add the LREC to the subfile if
an LREC exists with the same key fields. The key fields are those specified
by the currently active keys.

Notes:

1. If UNIQUE=YES was specified in the DBDEF macro for a file, all dfadd
function calls for that file default to DFADD_UNIQUE.

2. If you specify this option for a file that is not organized (that is, defined
as NOORG), you must do one of the following:

v Define default keys for the file being updated

v Ensure there are active keys from a previous dfkey function.

If you do not have default keys defined or have active keys when
adding a unique LREC to a file that is not organized, the TPFDF
product issues a system error. Symbol &DB013E in the DBLCL macro
controls whether the TPFDF product returns control to the application
program or exits the entry control block (ECB) after issuing the error. If
you set &DB013E to 0 (which is the default setting) the ECB exits. If
you set &DB013E to 1, control is returned to the application program.
See TPFDF Installation and Customization for more information about
the DBLCL macro.

dfadd

76 TPFDF R1 Programming Concepts and Reference

|
|

DFADD_USEBTREE
specifies that the B+Tree index is used when adding an LREC to a subfile.
You can use this value only on a B+Tree file. Otherwise, this value is
ignored by the TPFDF product.

0 specifies that you do not want to use any processing options.

pky
is the primary key of the LREC that you are adding. You must specify this
parameter when using the DFADD_NULLREC value of the rec_type parameter.

When adding an extended LREC, this primary key is placed in the zzzzKEY
field in the control area of the extended LREC.

rec
is a pointer to the new LREC that you are adding.

rec_type
is the type of LREC that you are adding. Use one of the following:

DFADD_NEWLREC
adds a new fixed-length or variable-length LREC.

DFADD_NULLREC
adds an empty LREC that can be used as a work area.

Do not use this value for any file that is UP or DOWN organized because it
can destroy the organization of the file.

sub
is a pointer to the subLREC that you are adding.

usr
is a pointer to the userLREC that you are adding.

Entry Requirements
v Before using the DFADD_AFTER or DFADD_BEFORE value, you must first

establish a current LREC (for example, using a dfred function). You can then
specify whether you want to add the new LREC before or after this current LREC
by using the DFADD_BEFORE or DFADD_AFTER value for the options
parameter on the dfadd function. You can add any number of LRECs at this point
in a subfile without reestablishing the current LREC. The last LREC added
becomes the current LREC.

v Before using the dfadd_sub function, you must first establish the extended LREC
to which you want to add the subLREC as the current LREC.

Normal Return
One of the following:
v Pointer to the LREC that was added
v Pointer to the extended LREC that was added
v Pointer to the extended LREC to which a subLREC was added.

Error Return
v See “Identifying Return Indicators and Errors” on page 13 for information about

how to check the error indicators.

v If there are default keys defined in the database definition (DBDEF) and you use
the dfadd function with an LREC ID that has not been defined as a default key, a
system error is issued.

dfadd

TPFDF General-Use C Language Functions: Reference 77

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v Some parameters can be of different types based on the value you specify for
that parameter or a related parameter. In the function format, the type of these
parameters is shown as dft_xxx. See the description of the specific parameter
for information about what type definition to use for that parameter.

v Do not use the following values for B+Tree files:
– DFADD_AFTER
– DFADD_BEFORE
– DFADD_FAST
– DFADD_NOKEY
– DFADD_NULLREC.

v Do not use the DFADD_FAST value with extended LRECs; that is, do not use
this value with the dfadd_sub function or any of the dfadd_usr_ functions.

v Do not use the following values with the dfadd_sub function:
– DFADD_AFTER
– DFADD_BEFORE
– DFADD_UNIQUE.

v If keys are active for an add current file when you call a function from the dfadd
group, the keys will not be used to determine the location of the record being
added to the subfile. However, the keys will remain active for any subsequent
functions. See TPFDF Database Administration for information about add current
files.

v Any active keys are ignored when you use the #TPFDB0D algorithm.

v To add an LREC when no subfile is defined, the TPFDF product obtains a prime
block from pool and inserts the LREC into it. It puts the address of this prime
block in the SW00FAD field of the SW00SR slot and the record code check into
the SW00WCC field.

v If adding an LREC to a subfile block causes the block to overflow, the TPFDF
product gets a new block and chains it to the old one.

Note: How LRECs are added to a subfile depends on the following factors:

– For add current files, the LREC is added to the end of the subfile. See
TPFDF Database Administration for more information about add current
files.

– For pushdown chaining files, the LREC is added as the last LREC in
the prime block of the subfile. See TPFDF Database Administration for
more information about pushdown chaining files.

– For P-type files, a new block is added after the current block or at the
end of the subfile.

– If you specify the DFADD_AFTER or DFADD_BEFORE value, the
LREC is added after or before the current LREC.

– If you have active keys (which can include default keys coded on the
DBDEF macro for the file), the LREC is added to the subfile at the
specified location.

– In all other cases, the LREC is added at the end of the subfile.

v You can use the DFADD_NEWLREC value for the rec_type parameter with a
P-type file to specify the data contents of a new block.

dfadd

78 TPFDF R1 Programming Concepts and Reference

v You can use the DFADD_NULLREC value for the rec_type parameter with a
P-type file to add an empty block, chained to the current block. You can then add
data to this block using the dfmod function.

v Use the dfadd function with the DFADD_NULLREC value for the rec_type
parameter to create a work area for a T-type LREC in the underlying W-type file.
Use the dfdel function to delete the T-type LREC from the underlying W-type file
before exiting the application program.

v If a current LREC does not exist because a previous read operation with keys did
not find an LREC matching the search criteria, and the subfile does not have
default keys, specifying the DFADD_AFTER or DFADD_BEFORE value adds the
new LREC to the target position of the unsuccessful read operation.

Examples
v The following example adds LREC GR95SR to the current subfile. The new

LREC is in lrec.
dft_fil *file_ptr;
struct gr95sr lrec;...
(void) dfadd(file_ptr, DFADD_NEWLREC, 0, &lrec);

v The following example adds LREC GR95SR to a subfile specified with an
algorithm. The new LREC is in lrec. The algorithm argument is in alg_string.
dft_fil *file_ptr;
char alg_string[10] = "JONES";
struct gr95sr lrec;...
(void) dfadd_acc(file_ptr, DFADD_NEWLREC, DFADD_ALG, 0, &lrec, alg_string);

v The following example adds a subLREC to the current extended LREC.
dft_fil *file_ptr;...
dfadd_sub(file_ptr, 0, &sublrec);

v The following example adds an extended LREC to a subfile specified with an
algorithm. The userLREC is in userlrec and the algorithm argument is in
alg_string. The primary key of the extended LREC is hexadecimal 80.
dft_fil *file_ptr;
char alg_string[10]="JONES";
dft_pky pky;
pky=0x80;...
dfadd_usr_acc_pky(file_ptr, DFADD_ALG, 0, &userlrec, alg_string, pky);

v The following example shows how you can add new LRECs to a detail file by
specifying an index key as the algorithm argument. To add passenger MCKAY to
the passenger file, you can code:
dbptr=dfopn("GR45DF ","S0",DFOPN_HOLD);
alg_string="MCKAY";
dfadd_acc(dbptr,DFADD_NEWLREC, DFADD_ALG, DFADD_INDEX, newlrec, alg_string);

Related Information
v “dfdel–Delete One or More Logical Records” on page 97

v “dfmod–Perform or Indicate Logical Record Modifications” on page 117

v “dfopn–Open a Subfile” on page 125

v “dfred–Read a Logical Record” on page 134.

dfadd

TPFDF General-Use C Language Functions: Reference 79

|
|
|
|

dfadr–Provide the File Address of a Prime Block
Use this group of functions to get the file address and ordinal number of a prime
block in a fixed file.

You can also use a dfadr function to specify a range of ordinals to be used in
subsequent fullfile processing.

Format
void dfadr_alg(dft_fil *file, df_opt options, dft_alg *alg);

void dfadr_ord(dft_fil *file, df_opt options, dft_ord ord);

void dfadr_beg(dft_fil *file, df_opt options, dft_alg *beg);

void dfadr_end(dft_fil *file, df_opt options, dft_alg *end);

void dfadr_beg_end(dft_fil *file, df_opt options, dft_alg *beg,
dft_alg *end);

Options Parameter Values:

�

|

DFADR_NODUMP
DFADR_WRAPAROUND

0

alg
is a pointer to an algorithm argument that identifies the subfile.

beg
is a pointer to an algorithm argument that is used to calculate the begin ordinal
of the file. This ordinal is used as the start ordinal during fullfile processing.

end
is a pointer to an algorithm argument that the TPFDF product uses to calculate
the end ordinal of the file. This ordinal is used as the end ordinal during fullfile
processing.

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

options
are the processing options for this function. Use the following values:

DFADR_NODUMP
specifies that you do not want the TPFDF product to issue any of the
following system errors while processing this function:
v DB0100
v DB0102
v DB0117
v DB0123
v DB0138
v DB0140.

dfadr

80 TPFDF R1 Programming Concepts and Reference

|
|

See TPFDF Messages (System Error, Online, Offline) for more information
about these system errors.

Note: Using the DFADR_NODUMP value is not recommended because it
can prevent system errors from being issued that indicate a critical
problem.

DFADR_WRAPAROUND
reads LRECs from the start of the file to the end until it has read the whole
file. Use this parameter value only when you intend to use fullfile
processing.

For example, consider a file that contains five subfiles and the current
subfile is number 3. If you specify DFADR_WRAPAROUND, and then call a
dfred function with DFRED_FULLFILE, LRECs would be read from the
subfiles in the order: 3, 4, 0, 1, 2.

0 specifies that you do not want to use any processing options.

ord
is the ordinal number of the subfile that you want to access.

If the file is partitioned or interleaved, specify the relative ordinal number within
the partition or interleave. If the file is not partitioned or interleaved, specify the
file address compute program (FACE) ordinal number.

Entry Requirements
None.

Normal Return
v The dfadr function does not change the current LREC even if you specify a

different value for the alg or ord parameter with the dfadr function from that
which was used to locate the LREC.

v If you specify the alg or ord parameter, SW00WR1 is set to the file address of
the corresponding prime block and SW00WR2 is set to the ordinal number of the
corresponding prime block. Otherwise, the SW00WR1 and SW00WR2 setting
cannot be predicted.

If you specify the beg parameter, SW00ORD is set to the ordinal number of the
corresponding prime block. Otherwise, SW00ORD is set to zero and subsequent
fullfile processing occurs beginning with the first ordinal in the file.

If you specify the end parameter, SW00END is set to the ordinal number of the
corresponding prime block. Otherwise, SW00END is set to zero and subsequent
fullfile processing occurs ending with the last ordinal in the file.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v You must specify a pointer to an algorithm argument for all the dfadr functions.
The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based

dfadr

TPFDF General-Use C Language Functions: Reference 81

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the algorithm
argument to locate the subfile. See TPFDF Database Administration for more
information about how the TPFDF product uses the algorithm argument to locate
the subfile.

v When you use the dfadr function, subsequent fullfile processing occurs in the
ordinal range SW00ORD–SW00END.

Examples
v The following example finds the file address of ordinal number 3 of a file.

dft_fil *file_ptr;...
dfadr(file_ptr, DFADR_ORD, 0, 3);

v The following example finds the file address of a subfile identified by the
algorithm argument held in member_number.
dft_fil *file_ptr;...
dfadr(file_ptr, DFADR_ALG, 0, member_number);

Related Information
v “dfdel–Delete One or More Logical Records” on page 97

v “dfdsp–Display Logical Records from a Subfile” on page 107

v “dfmod–Perform or Indicate Logical Record Modifications” on page 117

v “dfmrg–Merge Logical Records from Two Subfiles” on page 121

v “dfred–Read a Logical Record” on page 134

v “dfsrt–Sort a Subfile” on page 157

v “dftlg–Write a File or Subfile to Tape” on page 163.

dfadr

82 TPFDF R1 Programming Concepts and Reference

|
|

dfckp–Checkpoint a Subfile
Use this function to checkpoint a subfile; that is, all blocks in main storage that have
been changed are copied to DASD.

Format
dft_rec *dfckp(dft_fil *file, dft_opt options);

Options Parameter Values:

DFCKP_DETAC
DFCKP_NODETAC
DFCKP_TM
DFCKP_NO_TM
0

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

options
are the processing options for this function. Use one of the following values:

DFCKP_DETAC
places the subfile in detac mode after checkpointing the subfile. When the
subfile is in detac mode, all modified blocks are saved in main storage. Any
changes that you make to the LRECs in that subfile are not written to
DASD until the subfile is checkpointed or closed. You can discard modified
LRECs (prevent them from being written to DASD) by using the
DFCLS_ABORT value on the options parameter of the dfcls function.

Note: The TPF system and the ALCS environment issues a 000010
system error if an application program does not give up control in the
time allotted by the application time-out counter. When processing in
detac mode, a TPFDF application program can require more than
the allotted time on a database with a large data structure. To
prevent the 000010 system error, you can change the setting of the
&TPFDBDV symbol in the DBLCL macro.

See TPFDF Installation and Customization for more information
about the &TPFDBDV symbol and the DBLCL macro.

DFCKP_NODET
specifies that you do not want the subfile in detac mode after it has been
checkpointed.

DFCKP_TM
specifies that commit scopes are used during checkpoint processing,
regardless of what the database definition (DBDEF) macro has set as the
default. This option is valuable when you want to file out many files during
checkpoint processing (for example, detac mode, extensive B+Tree indexing
updates, and requests that result in packing).

dfckp

TPFDF General-Use C Language Functions: Reference 83

DFCKP_NO_TM
specifies that commit scopes are not used during checkpoint processing,
regardless of what the DBDEF macro has set as the default.

0 specifies that you do not want to use any processing options.

Entry Requirements
None.

Normal Return
The subfile remains open and the current logical record (LREC) remains the same.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v If you do specify the DFCKP_DETAC or the DFCKP_NODET value, the subfile
remains in the mode currently being used.

v You can use the dfckp function to checkpoint a W-type file to a short-term pool
file.

v For a B+Tree file, the dfckp function checkpoints the index blocks and the data
blocks.

v Processing the dfckp function on a file that is opened in a commit scope is not
visible until the file is committed. If the checkpointed file is rolled back, updates to
the file are discarded. See “Commit Scopes” on page 8 for more information
about commit scopes.

Examples
v The following example checkpoints the current subfile.

dft_fil *file_ptr;...
(void) dfckp(file_ptr, 0);

v The following example checkpoints a subfile and ensures the subfile is in detac
mode after processing:
dft_fil *file_ptr;...
(void) dfckp(file_ptr, DFCKP_DETAC);

Related Information
v “dfcls–Close a Subfile” on page 86

v “dfopn–Open a Subfile” on page 125.

dfckp

84 TPFDF R1 Programming Concepts and Reference

dfclr–Allow ECB Exit with Open Files
Use this function to allow a program to exit without closing any open subfiles and
without generating a dump.

Attention: We do not recommend using this function because it can leave
subfiles in a partially updated condition. Instead, use the dfcls function with the
DFCLS_ABORT value of the options parameter if you want to discard updates
made while a subfile is in detac mode.

Format
void dfclr();

Entry Requirements
None.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
None.

Examples
The following example allows the program to exit with files still open.
dfclr();

Related Information
“dfcls–Close a Subfile” on page 86.

dfclr

TPFDF General-Use C Language Functions: Reference 85

dfcls–Close a Subfile
Use this group of functions to close one or more subfiles. You can also choose
whether you want to write modified blocks that are in detac mode to DASD.

Format
void dfcls(dft_fil *file, dft_opt options);

void dfcls_lst(dft_fil *file, dft_opt list_type, dft_opt options,
dft_rfl *lst);

void dfcls_alg(dft_fil *file, dft_opt options, dft_alg *alg);

void dfcls_new(dft_fil *file, dft_opt options, dft_ref new);

dfcls

86 TPFDF R1 Programming Concepts and Reference

List_Type Parameter Values:

DFCLS_INCLUDE
DFCLS_EXCLUDE

Options Parameter Values:

�

|

DFCLS_ALL
DFCLS_TAPE

Commit Scope Options
Detac Mode Disposition Options
Packing Options
SW00SR Disposition Options

0

Commit Scope Options:

DFCLS_TM
DFCLS_NO_TM

Detac Mode Disposition Options:

DFCLS_COMMIT
DFCLS_ABORT
DFCLS_RELFC

Packing Options:

PACK
NOPACK

SW00SR Disposition Options:

DFCLS_RELEASE
DFCLS_NORELEASE
DFCLS_REUSE

alg
is a pointer to an algorithm argument that identifies the subfile.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the

dfcls

TPFDF General-Use C Language Functions: Reference 87

algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

If you specify the DFCLS_ALL value for the options parameter, specify NULL for
the file parameter.

list_type
specifies which files to close. Use one of the following values:

DFCLS_INCLUDE
closes only the files listed in the structure pointed to by the lst parameter. If
any of the listed files are not open, they are ignored.

DFCLS_EXCLUDE
closes all files except those listed in the structure pointed to by the lst
parameter.

Do not specify DFCLS_INCLUDE or DFCLS_EXCLUDE if you use the
DFCLS_ALL value for the options parameter.

lst is a pointer to a structure that contains a list of files.

new
is a pointer to a new reference name. Specify this parameter only if you specify
the DFCLS_REUSE or DFCLS_NORELEASE values for the options parameter.

options
are the processing options for this function. Use the following values:

DFCLS_ABORT
causes all database updates since the file was opened, or since the last
dfckp function, to be discarded. The updates are not written to DASD.

Note: The DFCLS_ABORT option is ignored if the subfile is not opened in
detac mode because all updates have been written to DASD by
previous TPFDF functions.

DFCLS_COMMIT
writes all blocks that have been modified since the last dfopn or dfckp
function to DASD.

Note: The DFCLS_COMMIT option is ignored if the subfile is not opened in
detac mode because all updates have been written to DASD by
previous TPFDF functions.

DFCLS_RELFC
releases the subfile and deletes it from DASD. All overflow blocks are
released. If the file is a pool file, the prime block is also released. If the file
is a fixed file, the prime block is initialized to empty.

W-type files are automatically released unless they have been sorted,
merged, or checkpointed. In these cases, you must specify the
DFCLS_RELFC value to release W-type files.

DFCLS_RELEASE
releases the SW00SR slot when the subfile is closed.

dfcls

88 TPFDF R1 Programming Concepts and Reference

DFCLS_NORELEASE
prevents the SW00SR slot from being released when the file is closed. Any
key parameters you have defined are also retained. Specify this parameter
if you intend to process the same subfile at a later time.

DFCLS_REUSE
retains the SW00SR slot of the file. Any key parameters you have defined
are also retained. Specify this parameter if you intend to retrieve another
subfile in the same file at a later time.

DFCLS_PACK
packs the subfile.

DFCLS_NOPACK
specifies that you do not want to pack the subfile, even if a block has fallen
below the packing threshold defined by the PIN parameter on the DBDEF
macro. See TPFDF Database Administration for more information about the
packing threshold.

DFCLS_ALL
closes all open files.

Do not specify DFCLS_ALL if you use the DFCLS_INCLUDE or
DFCLS_EXCLUDE value for the list_type parameter.

Note: When you use this parameter, all database interface blocks
(DBIFBs), which contain SW00SR slots, are released. However,
DBIFBs are not released if there are no files open or any of the
following parameters have been specified:

v EXCLUDE

v INCLUDE

v NORELEASE

v REUSE.

DFCLS_TAPE
closes the tape or sequential data set. You must specify this value if you
opened the subfile with a tape name (tpn parameter).

Note: Do not use this value with the DFCLS_TM value because the
integrity of the commit scope could be compromised, and files that
are on tape cannot be rolled back.

DFCLS_TM
specifies that commit scopes are used during close processing, regardless
of what the database definition (DBDEF) macro has set as the default. This
option is valuable when many files are to be filed out during close
processing (for example, detac mode, extensive B+Tree indexing updates,
and requests that result in packing).

DFCLS_NO_TM
specifies that commit scopes are not used during close processing,
regardless of what the DBDEF macro has set as the default.

0 specifies that you do not want to use any processing options.

Entry Requirements
None.

dfcls

TPFDF General-Use C Language Functions: Reference 89

Normal Return
None.

Error Return
None.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v Do not check the error indicators in the SW00RTN field of the SW00SR slot.
When you close a subfile, the dfcls function releases the SW00SR slot for the
file (unless you specify the DFCLS_NORELEASE or DFCLS_REUSE values), so
the error indicators are not available for you to check. When you specify the
DFCLS_NORELEASE or DFCLS_REUSE values the SW00SR slot is not
released, but the error indicators are not valid.

v Deleting LRECs from a subfile leaves empty space in the blocks. If you do not
specify the DFCLS_PACK or DFCLS_NOPACK value and the file is not a B+Tree
file, the subfile is packed if the amount of space occupied by LRECs in any block
falls below the threshold defined in the database definition (DBDEF).

B+Tree files are not packed during close processing unless the DFCLS_PACK
value is specified or there are no nodes in the B+Tree index.

v It is not necessary to close T-type files. In addition, it is not necessary to close
W-type file that are open in detac mode. See TPFDF Database Administration for
more information about T-type and W-type files.

v The dfcls functions do an internal dfdix function when you specify a
DFCLS_RELFC value in the options parameter.

v If you do not specify the DFCLS_INCLUDE value with the dfcls_lst function and
an attempt is made to close a subfile that is not open, the TPFDF product issues
a DB0115 system error.

v If you specify DFCLS_ALL with the DFCLS_TM value and more than one file is
open, the files in a commit scope are processed individually.

Examples
v The following example closes all open subfiles.

dfcls(NULL, DFCLS_ALL);

v The following example closes a specific subfile and commits all changes. The
alternative is to use DFCLS_ABORT.
dft_fil *file_ptr;...
dfcls(file_ptr, DFCLS_COMMIT);

v The following example closes a list of subfiles. If any of the listed subfiles are not
open, the subfiles that are not open are ignored.
struct
{

dft_rfl rl;
char more_refs[5][8]; /* allows a total of 6 references */
char ch; /* room for zero byte */

} close_list;

short int count = 3;

dfcls

90 TPFDF R1 Programming Concepts and Reference

memcpy(&close_list," GR95SR GR91SR GR93SR ",26);
memcpy(&close_list,&count,2);
dfcls_lst(NULL,DFCLS_INCLUDE,0,&close_list);

Related Information
v “dfopn–Open a Subfile” on page 125

v “dfckp–Checkpoint a Subfile” on page 83.

dfcls

TPFDF General-Use C Language Functions: Reference 91

dfcpy–Copy a Subfile
Use this group of functions to copy a subfile. After processing the function, the
TPFDF product closes the subfile and performs all subsequent actions on the copy.

Format
dft_hdr *dfcpy(dft_fil *file, dft_opt options);

dft_hdr *dfcpy_acc(dft_fil *file, dft_opt access, dft_opt options,
dft_xxx acc);

dft_hdr *dfcpy_toa(dft_fil *file, dft_opt options, dft_fad toa);

dft_hdr *dfcpy_acc_toa(dft_fil *file, dft_opt access, dft_opt options,
dft_xxx acc, dft_fad toa);

dft_hdr *dfcpy_acc_pth(dft_fil *file, dft_opt access, dft_opt options,
dft_xxx acc, dft_pth pth);

dft_hdr *dfcpy_acc_toa_pth(dft_fil *file, dft_opt access, dft_opt options,
dft_xxx acc, dft_fad toa, dft_pth pth);

Access Parameter Values:

DFCPY_ALG
DFCPY_FADDR
DFCPY_ORD

Options Parameter Values:

�

|

DFCPY_CREATE
DFCPY_HELD

0

acc
is an ordinal number, a file address, or a pointer to an algorithm string that
specifies the subfile you want to access. The type for this parameter is
determined by the value you specify for the access parameter.

access
is the method you want to use to access the subfile. Use one of the following
values:

DFCPY_ALG
specifies that you are providing a pointer to an algorithm argument in the
acc parameter. The acc parameter is of type dft_alg. The TPFDF product
uses the algorithm argument to determine the subfile (ordinal number) that
is to be accessed. Specify the algorithm argument based on the type of
algorithm that is defined in the DSECT or DBDEF macro for the file. If the
DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate
index file defined with the #TPFDBFF algorithm, the TPFDF product uses
the algorithm argument to locate the subfile. See TPFDF Database

dfcpy

92 TPFDF R1 Programming Concepts and Reference

Administration for more information about how the TPFDF product uses the
algorithm argument to locate the subfile.

DFCPY_FADDR
specifies that you are providing a file address in the acc parameter. A file
address is in integer format. The acc parameter is of type dft_fad.

DFCPY_ORD
specifies that you are providing an ordinal number in the acc parameter.
Ordinal numbers in a file start at zero and are in integer format. The acc
parameter is of type dft_ord.

If the file is partitioned or interleaved, specify the relative ordinal number
within the partition or interleave. If the file is not partitioned or interleaved,
specify the file address compute program (FACE) ordinal number.

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

options
are the processing options for this function. Use the following values:

DFCPY_CREATE
creates a new subfile using pool blocks.

DFCPY_HELD
specifies that the entry control block (ECB) is already holding the file
address specified by the toa parameter. You can use this value only if you
specify a toa parameter.

0 specifies that you do not want to use any processing options.

pth
is the path number for a detail subfile using index support. The value is defined
in the DBDEF macro and is a decimal number (0, 1, 2, and so on). The default
path number is 0.

See TPFDF Database Administration for more information about path indexes.

toa
is an actual file address. The TPFDF product copies the subfile so that the
prime block of the copy is at this address.

If used in a commit scope, the prime block specified by the toa parameter must
be opened in the same commit scope as the subfile that is being copied. See
“Commit Scopes” on page 8 for more information about commit scopes.

Entry Requirements
None.

Normal Return
A pointer to the main storage address of the header of the prime block of the copy
of the subfile.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

dfcpy

TPFDF General-Use C Language Functions: Reference 93

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v Some parameters can be of different types based on the value you specify for
that parameter or a related parameter. In the function format, the type of these
parameters is shown as dft_xxx. See the description of the specific parameter
for information about what type definition to use for that parameter.

v This function sets up a 2-byte sequence number in the SW00SEQ field in the
SW00SR slot. You can specify this sequence number to restore the same subfile
with a subsequent dfrst function.

v When a B+Tree file is copied, the dfcpy function builds the B+Tree index for the
new file.

Examples
The following example copies a subfile to pool blocks. (The TPFDF product sets a
pointer to the header in block_ptr.)
dft_fil *file_ptr;
dft_hdr *block_ptr;...
block_ptr = dfcpy(file_ptr, 0);

Related Information
“dfrst–Restore a Subfile” on page 147.

dfcpy

94 TPFDF R1 Programming Concepts and Reference

dfcre–Create a Subfile
Use this group of functions to create a new subfile, an empty pool subfile, or an
empty indexed pool subfile with its corresponding index file. You can subsequently
add logical records (LRECs) to the empty detail subfile as required.

Format
dft_hdr *dfcre(dft_fil *file, dft_opt options);

dft_hdr *dfcre_alg(dft_fil *file, dft_opt options, dft_alg *alg);

dft_hdr *dfcre_alg_pth_all(dft_fil *file, dft_opt options, dft_alg *alg);

dft_hdr *dfcre_alg_pth(dft_fil *file, dft_opt options, dft_alg *alg
dft_pth pth);

Options Parameter Values:

DFCRE_INDEX
0

alg
is a pointer to an algorithm argument that identifies the subfile.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

options
are the processing options for this function. Use one of the following values:

DFCRE_INDEX
creates an indexed subfile and inserts an index LREC referencing this
subfile into the related index file (or files) defined by the database
administrator.

If you have supplied an algorithm argument when you opened the subfile
(using a dfopn function), you can use DFCRE_INDEX with the dfcre
function. If not, you must use the dfcre_alg function and supply an
algorithm argument in the alg parameter.

If you specify this value, the algorithm defined for the new subfile must be
#TPFDBFF.

0 specifies that you do not want to use any processing options.

dfcre

TPFDF General-Use C Language Functions: Reference 95

pth
is the path number for a detail subfile using index support. The value is defined
in the DBDEF macro and is a decimal number (0, 1, 2, and so on). The default
path number is 0.

See TPFDF Database Administration for more information about path indexes.

Entry Requirements
None.

Normal Return
A pointer to the main storage address of the header of the prime block of the
created subfile.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v Set the options parameter to zero if you do not require any processing options.

v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in
the c$cdfapi.h header file.

v A dfadd function creates a subfile, if one does not exist, before it adds the LREC.
(If you are adding an LREC to an indexed detail file, you must use the
DFADD_INDEX value of the options parameter or use a dfidx function to index
the subfile.)

Alternatively, you can call dfcre before you add an LREC to a subfile to create
the subfile if it does not already exist.

Examples
The following example creates a new indexed subfile using the algorithm argument
member_number.
dft_fil *file_ptr;
char member_number[10];...
(void)dfcre_alg(file_ptr, 0, member_number);

Related Information
v “dfadd–Add a Logical Record to a Subfile” on page 73

v “dfdix–Delete Index References to a Subfile” on page 105

v “dfidx–Create an Index Reference” on page 112.

dfcre

96 TPFDF R1 Programming Concepts and Reference

dfdel–Delete One or More Logical Records
Use this group of functions to delete:
v One or more logical records (LRECs) from an open subfile
v The LRECs in one or more subfiles of a file
v A complete extended LREC
v All of the LRECs in a file
v Some or all of the subfiles referenced from the LRECs that you delete
v One or more subLRECs in an extended LREC.

Format
dft_rec *dfdel(dft_fil *file, dft_opt options);

dft_rec *dfdel_acc(dft_fil *file, dft_opt access, dft_opt options, dft_xxx acc);

dft_rec *dfdel_lst(dft_fil *file, dft_opt list_type, dft_opt options,
dft_idl *lst);

dft_rec *dfdel_nbr(dft_fil *file, dft_opt nbr_type, dft_opt options,
dft_xxx nbr);

dft_rec *dfdel_acc_lst(dft_fil *file, dft_opt list_type, dft_opt access,
dft_opt options, dft_xxx acc, *dft_idl lst);

dft_rec *dfdel_acc_nbr(dft_fil *file, dft_opt nbr_type, dft_opt access,
dft_opt options, dft_xxx acc, dft_xxx nbr);

dft_rec *dfdel_lst_nbr(dft_fil *file, dft_opt list_type, dft_opt nbr_type,
dft_opt options, dft_idl *lst, dft_xxx nbr);

dft_rec *dfdel_acc_lst_nbr(dft_fil *file, dft_opt list_type,
dft_opt nbr_type, dft_opt access, dft_opt options,
dft_xxx acc, dft_idl *lst, dft_xxx nbr);

dft_rec *dfdel_sub(dft_fil *file, dft_opt options,
dft_sno sub, dft_qty qty);

dfdel

TPFDF General-Use C Language Functions: Reference 97

Access Parameter Values:

DFDEL_ALG
DFDEL_FADDR
DFDEL_ORD

List_Type Parameter Values:

DFDEL_INCLUDE
DFDEL_EXCLUDE

Nbr_Type Parameter Values:

DFDEL_LIST
DFDEL_LRECNBR

Options Parameter Values:

�

|

DFDEL_ALL
DFDEL_ALL_DOWNWARD
DFDEL_ALL_UPWARD
DFDEL_BEGIN
DFDEL_FULLFILE
DFDEL_INITIALIZE
DFDEL_LAST
DFDEL_NEXT
DFDEL_NODUMP
DFDEL_NOKEY

0

acc
is an ordinal number, a file address, or a pointer to an algorithm string that
specifies the subfile you want to access. The type for this parameter is
determined by the value you specify for the access parameter.

access
is the method you want to use to access the subfile. Use one of the following
values:

DFDEL_ALG
specifies that you are providing a pointer to an algorithm argument in the
acc parameter. The acc parameter is of type dft_alg. The TPFDF product
uses the algorithm argument to determine the subfile (ordinal number) that
is to be accessed. Specify the algorithm argument based on the type of
algorithm that is defined in the DSECT or DBDEF macro for the file. If the
DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate
index file defined with the #TPFDBFF algorithm, the TPFDF product uses
the algorithm argument to locate the subfile. See TPFDF Database

dfdel

98 TPFDF R1 Programming Concepts and Reference

Administration for more information about how the TPFDF product uses the
algorithm argument to locate the subfile.

DFDEL_FADDR
specifies that you are providing a file address in the acc parameter. A file
address is in integer format. The acc parameter is of type dft_fad.

DFDEL_ORD
specifies that you are providing an ordinal number in the acc parameter.
Ordinal numbers in a file start at zero and are in integer format. The acc
parameter is of type dft_ord.

If the file is partitioned or interleaved, specify the relative ordinal number
within the partition or interleave. If the file is not partitioned or interleaved,
specify the file address compute program (FACE) ordinal number.

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

list_type
specifies which files to delete. Use one of the following values:

DFDEL_INCLUDE
deletes only the files listed in the structure pointed to by the lst parameter.
This is the default value.

DFDEL_EXCLUDE
deletes all files except those listed in the structure pointed to by the lst
parameter.

lst is a pointer to a list of up to 10 subfiles to be included or excluded in the delete
action when the DFDEL_INCLUDE or DFDEL_EXCLUDE value of the list_type
parameter is specified.

The lst parameter is provided so that you can delete, or not delete, subfiles that
are referenced from the LREC that you are deleting.

To delete LRECs in all the referenced subfiles, specify zero as the number of
file identifiers and provide one file identifier consisting of a string of 2 space
characters. For example:
struct id_list ids = {0," "};

nbr
is an LREC number (type dft_nbr) or a pointer to a list (type dft_rcl) of
LRECs to be deleted. The following is deleted based on the value of the
nbr_type parameter:

v A single LREC specified by nbr if the nbr_type parameter is set to
DFDEL_LRECNBR.

v All the LRECs in a list pointed to by nbr if the nbr_type parameter is set to
DFDEL_LIST. Specify the LRECs in this list as character array. For example:
char nbrs[10] = "2/3-6/LAST";

The list contains one or more LREC sequence numbers separated by a slash
(/). You can also specify a range of sequence numbers by separating the
beginning and end of the range by a hyphen (-). You can use LAST to mean
the last LREC of the subfile and ALL to mean all the remaining LRECs. You
can also end the list with a nonnumeric character.

dfdel

TPFDF General-Use C Language Functions: Reference 99

Notes:

1. The ranges must be in ascending order; if one is found out of order, that
range and all subsequent ranges are ignored.

For example, if there are 41 LRECs in a subfile, the following lists all
have the same effect:
20/31/32/33/37/38/39/40/41
20/31/32/33/37-41
20/31-33/37-LAST
20/31-33/37/ALL

2. You cannot specify the number zero in the list of LREC numbers, even if
you specify the ADJUST parameter with a value that would adjust the
number zero to a valid LREC number.

Notes:

1. If you use the #TPFDB0D algorithm, you must specify a specific LREC
number for the value of nbr.

2. LRECs are numbered in increasing order from the start of the subfile (the
first LREC in the prime block has sequence number 1).

3. If you specify this parameter with active keys, only those LRECs that match
the key conditions are included in the sequence numbering; LRECs that do
not match are ignored.

4. In functions that do not include the nbr_type parameter, the value of nbr is a
specific LREC number.

nbr_type
specifies the type of value that you are providing in the nbr parameter. Use one
of the following values:

DFDEL_LIST
specifies that you are providing a pointer to a list of LREC numbers (type
dft_rcl).

DFDEL_LRECNBR
specifies that you are providing the sequence number of a single LREC
(type dft_nbr).

options
are the processing options for this function. Use the following values:

DFDEL_ALL
deletes every LREC in the open subfile that you have specified. If you
currently have keys active, the function deletes only the LRECs that match
the keys.

If you delete LRECs from a fixed file using the DFDEL_ALL value, the
function writes the empty prime block to DASD after deleting the LRECs
(the block header and optional trailer are not deleted). Any blocks
previously chained to the prime block are released. It releases any blocks
previously chained to the prime block.

If you delete all the LRECs from a pool subfile, the function releases both
prime and overflow blocks. However, if you delete all the LRECs from a
pool subfile and add an LREC before you close the subfile, the prime block
is not released.

For B+Tree files, if no keys are specified, DFDEL_ALL releases the index
blocks as well as the data blocks.

If the subfile was opened in detac mode, you cannot recover the subfile
using the dfcls function with DFCLS_ABORT.

dfdel

100 TPFDF R1 Programming Concepts and Reference

If you combine this value with a lst parameter, the TPFDF product deletes
only the LRECs in the lst parameter.

If you specify keys in addition to DFDEL_ALL, this function deletes all the
LRECs in the open subfile that match these keys. If you also specify the
DFDEL_FULLFILE value, the dfdel function deletes all the LRECs that
match the keys in an entire file. In this case, the blocks are not released,
whether they are fixed or pool, because some LRECs can remain in a file
after deletion.

You can use the DFDEL_ALG value on the access parameter with the
DFDEL_ALL value to delete LRECs from an indexed detail file. The DBDEL
macro deletes the index entry for the subfile and releases the indexed
subfile if it is in pool.

DFDEL_ALL_DOWNWARD
deletes all LRECs from (and including) the current LREC to the last LREC
in the subfile. If you currently have keys active, the function deletes only the
LRECs that match the keys.

DFDEL_ALL_UPWARD
deletes all LRECs from (but not including) the current LREC to the first
LREC in the subfile. If you currently have keys active, the function deletes
only the LRECs that match the keys.

DFDEL_BEGIN
specifies that you want to start at the beginning of the file when searching
for LRECs to delete.

DFDEL_FULLFILE
deletes an LREC from every subfile of the file.

If you combine this value with the DFDEL_ALL value, the function deletes
every LREC in every subfile of the file. You can delete LRECs in certain
subfiles only by specifying the beg and end parameters with the dfadr
function.

DFDEL_INITIALIZE
empties the entire subfile apart from the standard TPFDF header in the
prime block. It releases any blocks previously chained to the prime block.

DFDEL_LAST
deletes the last LREC of the subfile. (If you have set keys, the function only
deletes LRECs with matching keys.)

DFDEL_NEXT
deletes the next LREC in sequence from a file. (If you have set keys, the
function only deletes LRECs with matching keys.)

DFDEL_NODUMP
specifies that you do not want the TPFDF product to issue any of the
following system errors while processing this function:
v DB0100
v DB0102
v DB0117
v DB0123
v DB0138
v DB0140.

See TPFDF Messages (System Error, Online, Offline) for more information
about these system errors.

dfdel

TPFDF General-Use C Language Functions: Reference 101

|
|

Note: Using the DFDEL_NODUMP value is not recommended because it
can prevent system errors from being issued that indicate a critical
problem.

DFDEL_NOKEY
deactivates any currently active keys.

Notes:

1. If the file is not open when you specify the DFDEL_NOKEY value, the
dfdel function opens the file and deletes the first LREC.

2. If the file is open when you specify the DFDEL_NOKEY value, the
dfdel function deletes the current LREC.

0 specifies that you do not want to use any processing options.

qty
is the number of subLRECs you want to delete.

sub
is the sequence number of the first subLREC in the extended LREC that you
want to delete.

Entry Requirements
Before using the dfdel_sub function, you must use a dfred function to locate the
extended LREC from which you want to delete the subLREC.

Normal Return
v One of the following:

– Pointer to the next LREC in the subfile (after the last deleted LREC)

– Pointer to the current extended LREC from which the subLREC or subLRECs
were deleted.

v After you use the DFDEL_ALL_DOWNWARD or DFDEL_ALL_UPWARD value,
the SW00REC is set to zero and the SW00RTN is set to X'40'.

Error Return
v See “Identifying Return Indicators and Errors” on page 13 for information about

how to check the error indicators.

v A pointer to protected main storage for all functions except the dfdel_sub
function.

v For the dfdel_sub function, there is no error return when the subLRECs that you
specify to be deleted do not exist. In all cases, the return value is as if the
function was processed successfully.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v Some parameters can be of different types based on the value you specify for
that parameter or a related parameter. In the function format, the type of these
parameters is shown as dft_xxx. See the description of the specific parameter
for information about what type definition to use for that parameter.

v After opening a file, if you use fullfile processing to access or update records,
you must continue to use fullfile processing on any subsequent functions when

dfdel

102 TPFDF R1 Programming Concepts and Reference

available until the file is closed. Accessing or updating subfiles using fullfile
processing cannot be mixed with functions that access or update records without
using fullfile processing.

v If you call the dfcls function with an options value of DFCLS_RELFC, you do not
have to call a dfdel function. In this case, the dfcls function does an internal
delete.

v If you specify the DFDEL_FULLFILE value and the end-of-file indicator is set,
you cannot call additional TPFDF functions until the file is closed. However, you
can specify the DFCLS_REUSE value on the dfcls function. See “Identifying
Return Indicators and Errors” on page 13 for information about the end-of-file
indicator.

v Any active keys are ignored when you use the #TPFDB0D algorithm.

v If you specify the DFDEL_ALL and DFDEL_NOKEY values for a B+Tree file, the
dfdel function will pack the file.

v Before you use the DFDEL_ALL_DOWNWARD or DFDEL_ALL_UPWARD value,
first establish a current LREC (for example, using the dfred function).

Attention: Using the DFDEL_ALL_DOWNWARD or the
DFDEL_ALL_UPWARD value can cause the values that were created previously
for the dfret function to be corrupted.

Examples
v The following example deletes all LRECs in a subfile.

dft_fil *file_ptr;...
(void) dfdel(file_ptr, DFDEL_ALL);

v The following example deletes five subLRECs, starting at the first (subLREC
number 0):
dft_fil *file_ptr;...
dfdel_sub(file_ptr, 0, 0, 5);

v You can delete a number of subLRECs without starting at the first. To delete n
subLRECs from the mth subLREC onward, specify:
dft_fil *file_ptr;...
dfdel_sub(file_ptr, 0, m-1, n);

(The first subLREC in an extended LREC is numbered zero so the mth subLREC
is numbered m-1.)

v To delete all the subLRECs from the mth to the last in the LREC, specify:
dft_fil *file_ptr;...
dfdel_sub(file_ptr, 0, m-1, 99);

(The previous example assumes there is a maximum of 99 subLRECs after the
mth subLREC.)

v Suppose an extended LREC contains six subLRECs. You could delete the two
middle subLRECs (numbers 2 and 3) by specifying:
dft_fil *file_ptr;...
dfdel_sub(file_ptr, 0, 2, 2);

dfdel

TPFDF General-Use C Language Functions: Reference 103

Related Information
v “dfcls–Close a Subfile” on page 86

v “dfmod–Perform or Indicate Logical Record Modifications” on page 117

v “dfred–Read a Logical Record” on page 134.

dfdel

104 TPFDF R1 Programming Concepts and Reference

dfdix–Delete Index References to a Subfile
Use this group of functions to delete index references to the current subfile or a
specific subfile.

Format
void dfdix_alg(dft_fil *file, dft_opt options, dft_alg *alg);

void dfdix_alg_pth(dft_fil *file, dft_opt options, dft_alg *alg,
dft_alg pth);

Options Parameter Values:

DFDIX_PATH_ALL
0

alg
is a pointer to an algorithm argument that identifies the subfile.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

options
are the processing options for this function. Use one of the following values:

DFDIX_PATH_ALL
deletes the index references for all paths.

0 specifies that you do not want to use any processing options.

pth
is the path number for a detail subfile using index support. The value is defined
in the DBDEF macro and is a decimal number (0, 1, 2, and so on). The default
path number is 0.

See TPFDF Database Administration for more information about path indexes.

Entry Requirements
Ensure that the relationship of the index file (or index files, if there are multilevel
indexes) to the detail file has been defined with the DBDEF macro by your
database administrator.

dfdix

TPFDF General-Use C Language Functions: Reference 105

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v The dfcls functions do an internal dfdix function when you specify a
DFCLS_RELFC value in the options parameter.

Examples
The following example deletes an index reference to a subfile (path 1 only).
dft_fil *file_ptr;
char member_number[10];...
dfdix_alg_pth(file_ptr, 0, member_number, 1);

Related Information
v “dfcls–Close a Subfile” on page 86

v “dfcre–Create a Subfile” on page 95

v “dfidx–Create an Index Reference” on page 112.

dfdix

106 TPFDF R1 Programming Concepts and Reference

dfdsp–Display Logical Records from a Subfile
Use this group of functions to display the logical records (LRECs) from a subfile.

Format
void dfdsp(dft_fil *file, dft_opt options);

void dfdsp_acc(dft_fil *file, dft_opt access,
dft_opt options, dft_xxx acc);

void dfdsp_str(dft_fil *file, dft_opt options, dft_str str);

void dfdsp_acc_str(dft_fil *file, dft_opt access,
dft_opt options, dft_xxx acc, dft_str str);

void dfdsp_acc_opm(dft_fil *file, dft_opt access,
dft_opt options, dft_xxx acc, dft_opm *opm);

void dfdsp_str_opm(dft_fil *file, dft_opt options,
dft_str str, dft_opm *opm);

void dfdsp_acc_str_opm(dft_fil *file, dft_opt access, dft_opt options,
dft_xxx acc, dft_str str, dft_opm *opm);

Access Parameter Values:

DFDSP_ALG
DFDSP_FADDR
DFDSP_ORD

Options Parameter Values:

�

DFDSP_FULLFILE
DFDSP_NOCLOSE

|

DFDSP_FULLFILE
DFDSP_FULLFILE | DFDSP_LONGTERM
DFDSP_NOCLOSE | DFDSP_NOCLOSE

DFDSP_NOFINAL
DFDSP_NOKEY
DFDSP_NOUIO
DFDSP_RELFC
DFDSP_WTOPC

0

acc
is an ordinal number, a file address, or a pointer to an algorithm string that
specifies the subfile you want to access. The type for this parameter is
determined by the value you specify for the access parameter.

access
is the method you want to use to access the subfile. Use one of the following
values:

DFDSP_ALG
specifies that you are providing a pointer to an algorithm argument in the
acc parameter. The acc parameter is of type dft_alg. The TPFDF product
uses the algorithm argument to determine the subfile (ordinal number) that

dfdsp

TPFDF General-Use C Language Functions: Reference 107

is to be accessed. Specify the algorithm argument based on the type of
algorithm that is defined in the DSECT or DBDEF macro for the file. If the
DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate
index file defined with the #TPFDBFF algorithm, the TPFDF product uses
the algorithm argument to locate the subfile. See TPFDF Database
Administration for more information about how the TPFDF product uses the
algorithm argument to locate the subfile.

DFDSP_FADDR
specifies that you are providing a file address in the acc parameter. A file
address is in integer format. The acc parameter is of type dft_fad.

DFDSP_ORD
specifies that you are providing an ordinal number in the acc parameter.
Ordinal numbers in a file start at zero and are in integer format. The acc
parameter is of type dft_ord.

If the file is partitioned or interleaved, specify the relative ordinal number
within the partition or interleave. If the file is not partitioned or interleaved,
specify the file address compute program (FACE) ordinal number.

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

opm
is a pointer to the output message transmitter (OPMT) parameters (the 5-byte
indicators for UIO).

options
are the processing options for this function. Use the following values:

DFDSP_FULLFILE
allows you to display LRECs from the whole file instead of from just one
subfile. Do not use this value with W-type files or the DFDSP_NOCLOSE
value.

DFDSP_LONGTERM
instructs the application program to use the MOSG internal program to build
the output message (OMSG) display using long-term pool records. If you do
not specify this value, short-term pool records are used for the display by
the FMSG program.

DFDSP_NOCLOSE
specifies that you do not want to close the subfile displayed with the dfdsp
function. This allows the application program to return to the open subfile
once the function has completed processing. If you specify this value,
ensure you specify that control is returned to the application program after
the function completes its processing.

DFDSP_NOFINAL
indicates that this is only part of a message. The complete output message
is displayed only when you call the dfdsp function without the
DFDSP_NOFINAL value specified.

DFDSP_NOKEY
deactivates any currently active keys.

dfdsp

108 TPFDF R1 Programming Concepts and Reference

DFDSP_NOUIO
prevents the activation of the output edit CRT driver (UIO) and returns to
the application program.

DFDSP_RELFC
releases the subfile and deletes it from DASD. All overflow blocks are
released. If the file is a pool file, the prime block is also released. If the file
is a fixed file, the prime block is initialized to empty.

W-type files are automatically released unless they have been sorted,
merged, or checkpointed. In these cases, you must specify the
DFDSP_RELFC value to release W-type files.

DFDSP_WTOPC
displays the LREC in WTOPC format. (By default, the function uses OMSG
format.) This value indicates that the maximum length displayed for an
LREC will be 255 bytes. The DFDSP_LONGTERM and DFDSP_NOUIO
values and opm parameter are ignored.

0 specifies that you do not want to use any processing options.

str is a variable containing the number of bytes that you want to strip from the start
of each LREC (or from the start of the user portion of an extended LREC).

Variable length LRECs contain a 2-byte size field at the front of the user data
section. The dfdsp function automatically discards this field; do not include it in
the number of bytes you specify with this parameter.

Entry Requirements
None.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v Some parameters can be of different types based on the value you specify for
that parameter or a related parameter. In the function format, the type of these
parameters is shown as dft_xxx. See the description of the specific parameter
for information about what type definition to use for that parameter.

v After opening a file, if you use fullfile processing to access or update records,
you must continue to use fullfile processing on any subsequent functions when
available until the file is closed. Accessing or updating subfiles using fullfile
processing cannot be mixed with functions that access or update records without
using fullfile processing.

v The TPFDF product does not normally return control to the application when you
call dfdsp functions. The application exits unless you specify DFDSP_NOUIO or
DFDSP_NOFINAL, or you specify not to exit using the opm parameter. However,
you must still test SW00RTN for errors because control is returned to the
program if there are no LRECs to display, or if an error condition occurs.

dfdsp

TPFDF General-Use C Language Functions: Reference 109

Note: Although the TPFDF product preserves all data levels across TPFDF
macro calls, the following exceptions exist when you use the dfdsp
function:

– Data level 1 (D1) and data level 3 (D3) are not data level independent
(DLI) if you do not specify the DFDSP_WTOPC value and DBLCL
macro symbol &ACPDBAA is set to zero.

– Data level 2 (D2) is not DLI.

v You can limit the number of output lines displayed by the dfdsp function by using
the #DF_MAX_DSP equate in the ACPDBE macro. See TPFDF Installation and
Customization for more information about the ACPDBE macro.

v You cannot use the dfdsp function in a commit scope. See “Commit Scopes” on
page 8 for more information about commit scopes.

Examples
The following example displays a message consisting of all the LRECs from a
subfile pointed to in file_ptr. The subfile is released after use.
dft_fil *file_ptr;...
dfdsp(file_ptr, DFDSP_RELFC);

Related Information
“dfcls–Close a Subfile” on page 86.

dfdsp

110 TPFDF R1 Programming Concepts and Reference

dffrl–Ensure an ECB Data Level Is Free
Use this function to free an entry control block (ECB) data level. You can specify
the following:
v A specific data level as a number (0x00 to 0x15)
v An open subfile, which frees the data level held by that subfile
v All levels held by SW00SR references.

Format
void dffrl_lev(dft_lvl lev);

lev
is the data level you want to free, which can be in the range D0–DF.

Entry Requirements
None.

Normal Return
The specified data level is freed.

Error Return
The error indicators in the SW00RTN field of the SW00SR slot have no meaning for
this function.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v If you are processing traditional (P-type) files together with TPFDF files, you
cannot be sure whether the required ECB levels are free. To avoid conflict, you
can ensure that a required ECB level is free by specifying a dffrl function
before calling a program or function that uses a specific data level.

Examples
The following example frees level DB.
dffrl_lev(DB);

Related Information
None.

dffrl

TPFDF General-Use C Language Functions: Reference 111

dfidx–Create an Index Reference
Use this group of functions to create one or more index references to a subfile
identified by an algorithm parameter. You can choose to index one or more paths.

Format
void dfidx_alg(dft_fil *file, dft_opt options, dft_alg *alg);

void dfidx_alg_pth(dft_fil *file, dft_opt options, dft_alg *alg,
dft_pth pth);

Options Parameter Values:

DFIDX_PATH_ALL
0

alg
is a pointer to an algorithm argument that identifies the subfile.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

options
are the processing options for this function. Use one of the following values:

DFIDX_PATH_ALL
indexes all paths. Do not use this value when you specify the pth
parameter.

0 specifies that you do not want to use any processing options.

pth
is the path number for a detail subfile using index support. The value is defined
in the DBDEF macro and is a decimal number (0, 1, 2, and so on). The default
path number is 0.

See TPFDF Database Administration for more information about path indexes.

Entry Requirements
v You must have a detail file available.

v Ensure that the relationship of the index file (or index files, if there are multilevel
indexes) to the detail file has been defined with the DBDEF macro by your
database administrator.

dfidx

112 TPFDF R1 Programming Concepts and Reference

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v Set the options parameter to zero if you do not require any processing options.

v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in
the c$cdfapi.h header file.

v The TPFDF product determines the amount of data to move in an index LREC
by calculating the number of bytes between labels xxxxEyy and xxxxAyy in the
DSECT for the index file, where xxxx is the first 4 characters in the name of the
DSECT and yy is the primary key.

v Path 0 is the default path. The dfidx function creates index references for this
path unless you have set one or more different paths using the dfopt function or
specified the DFIDX_PATH_ALL value of the options parameter.

v No actual index structure needs to exist before you index the subfile. All that you
need is an existing index file at the highest level of the index. This must be a
fixed file. If there is no existing index structure, the TPFDF product creates the
required index structure automatically when you call the dfidx function.

v If you index a subfile with the dfidx function in an application program, you must
also remove the index when needed. (You can do this by using the dfdix
function.)

v When running in detac mode, if an application program creates a pool file using
the dfcre function and an index reference using the dfidx function, the
application program must delete the index reference using the dfdix function
before using the DFCLS_ABORT option on the dfcls function. If the index
reference is not deleted, subsequent recoup processing may identify the index
reference as a broken chain.

Examples
The following example creates an index reference to a subfile (path 1 only). The
program provides the algorithm argument in member_number.
dft_fil *file_ptr;
char member_number[10];...
dfidx_alg_pth(file_ptr, 0, member_number, 1);

Related Information
v “dfadd–Add a Logical Record to a Subfile” on page 73

v “dfcre–Create a Subfile” on page 95

v “dfdix–Delete Index References to a Subfile” on page 105

v “dfopn–Open a Subfile” on page 125.

dfidx

TPFDF General-Use C Language Functions: Reference 113

dfifb–Check a SW00SR Slot
Use this group of functions to check if a SW00SR slot exists. If the slot exists, the
function that was called returns the base address of the SW00SR slot.

You can use these functions to test if a particular subfile is open.

Format
dft_fil *dfifb_fst();

dft_fil *dfifb_nxt();

dft_fil *dfifb_ref(dft_ref *ref);

dft_fil *dfifb_ref_new(dft_ref *ref, dft_ref *new);

new
is a pointer to the character string you want to use as the new file reference
name.

ref is a pointer to the reference name of a subfile.

Entry Requirements
None.

Normal Return
The address of the SW00SR slot.

Error Return
NULL pointer.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v Use the dfifb_fst function to get the first SW00SR slot with an open subfile and
then find what other subfiles were opened in sequence by calling the dfifb_nxt
function.

Examples
v The following example checks if a subfile has been opened.

if(dfifb_ref("GR95SR ") != NULL) /* then subfile GR95SR is open */

v The following example returns a pointer to the SW00SR slot of the first open
subfile.
file_ptr = dfifb_fst();

Related Information
“dfopn–Open a Subfile” on page 125.

dfifb

114 TPFDF R1 Programming Concepts and Reference

dfkey–Activate a Key List
Use this function to activate a key list that is used by subsequent functions that
access the specified file. See “Specifying Logical Records (LRECs) Using Keys” on
page 19 for more information about keys.

Format
void dfkey(dft_fil *file,

dft_kyl *key_list)

void dfkey_nbr(dft_fil *file,
dft_kyl *key_list, short int n)

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

key_list
is a pointer to the key list (SW01SR).

n is the number of keys (1–180) that you have set up in the key list.

Entry Requirements
None.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v To avoid the possibility of corrupting the organization of a subfile, do not use
keys (set up with a dfkey function) when adding LRECs to a file. Instead, have
the database administrator set up keys in the database definition (DBDEF) that
defines the file. These are called default keys and override any keys you set up
with the dfkey function. See TPFDF Database Administration for more
information about defining default keys.

v You can define any number of key list structures in your program. Each key list
can have from 1–180 keys. See “Specifying Logical Records (LRECs) Using
Keys” on page 19 for more information about key lists.

Examples
See “Setting up a Key List with Less than Six Keys” on page 29 and “Setting up a
Key List in the Range 1-180” on page 30 for examples of how to set up a key list.

Related Information
v “dfadd–Add a Logical Record to a Subfile” on page 73

v “dfdel–Delete One or More Logical Records” on page 97

v “dfdsp–Display Logical Records from a Subfile” on page 107

v “dfmrg–Merge Logical Records from Two Subfiles” on page 121

dfkey

TPFDF General-Use C Language Functions: Reference 115

v “dfopn–Open a Subfile” on page 125

v “dfred–Read a Logical Record” on page 134

v “dfsrt–Sort a Subfile” on page 157.

dfkey

116 TPFDF R1 Programming Concepts and Reference

dfmod–Perform or Indicate Logical Record Modifications
Use this group of functions to:
v Indicate that the current logical record (LREC) has been modified
v Modify all LRECs in a file or subfile that match previously established keys.

Format
dft_rec *dfmod(dft_fil *file);

dft_rec *dfmod_all(dft_file file, dft_kyl *mod_list)

dft_rec *dfmod_all_opt(dft_file file, dft_opt options,
dft_kyl *mod_list);

dft_rec *dfmod_all_acc(dft_file file, dft_opt access,
dft_opt options, dft_kyl *mod_list, dft_xxx acc);

dft_rec *dfmod_all_key(dft_file file, dft_opt options,
dft_kyl *mod_list, dft_kyl *key_list);

dft_rec *dfmod_all_acc_key(dft_file file, dft_opt access,
dft_opt options, dft_kyl *mod_list, dft_xxx acc,
dft_kyl *key_list);

Access Parameter Values:

DFMOD_ALG
DFMOD_FADDR
DFMOD_ORD

Options Parameter Values:

�

|

DFMOD_BEGIN
DFMOD_FULLFILE
DFMOD_NODUMP
DFMOD_NOKEY

0

acc
is an ordinal number, a file address, or a pointer to an algorithm string that
specifies the subfile you want to access. The type for this parameter is
determined by the value you specify for the access parameter.

access
is the method you want to use to access the subfile. Use one of the following
values:

DFMOD_ALG
specifies that you are providing a pointer to an algorithm argument in the
acc parameter. The acc parameter is of type dft_alg. The TPFDF product
uses the algorithm argument to determine the subfile (ordinal number) that
is to be accessed. Specify the algorithm argument based on the type of
algorithm that is defined in the DSECT or DBDEF macro for the file. If the
DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

dfmod

TPFDF General-Use C Language Functions: Reference 117

If the subfile you are accessing is contained in a detail file or intermediate
index file defined with the #TPFDBFF algorithm, the TPFDF product uses
the algorithm argument to locate the subfile. See TPFDF Database
Administration for more information about how the TPFDF product uses the
algorithm argument to locate the subfile.

DFMOD_FADDR
specifies that you are providing a file address in the acc parameter. A file
address is in integer format. The acc parameter is of type dft_fad.

DFMOD_ORD
specifies that you are providing an ordinal number in the acc parameter.
Ordinal numbers in a file start at zero and are in integer format. The acc
parameter is of type dft_ord.

If the file is partitioned or interleaved, specify the relative ordinal number
within the partition or interleave. If the file is not partitioned or interleaved,
specify the file address compute program (FACE) ordinal number.

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

key_list
is a pointer to the selection key list that determines which LRECs are to be
modified. See “df_setkey–Setting Up a Key in a Key List” on page 150 for
information about how to set up a selection key list.

mod_list
is a pointer to the modification key list that describes how the LRECs are to be
modified. See “df_setkey–Setting Up a Key in a Key List” on page 150 for
information about how to set up a modification key list.

options
are the processing options for this function. Use the following values:

DFMOD_BEGIN
modifies LRECs starting from the beginning of the subfile. If you do not
specify DFMOD_BEGIN, LRECs are modified starting from the current
LREC.

DFMOD_FULLFILE
modifies LRECs in all subfiles of the file, not just the current subfile.

DFMOD_NODUMP
specifies that you do not want the TPFDF product to issue any of the
following system errors while processing this function:
v DB0100
v DB0102
v DB0117
v DB0123
v DB0138
v DB0140.

See TPFDF Messages (System Error, Online, Offline) for more information
about these system errors.

Note: Using the DFMOD_NODUMP value is not recommended because it
can prevent system errors from being issued that indicate a critical
problem.

dfmod

118 TPFDF R1 Programming Concepts and Reference

|
|

DFMOD_NOKEY
deactivates any currently active keys.

0 specifies that you do not want to use any processing options.

Entry Requirements
None.

Normal Return
v If you are using the dfmod functions to indicate that you have modified a record in

storage, a pointer to the current LREC will be returned.

v If a global modification is being done, the value returned is 0 and SW00RTN will
contain a value of DFC_RCDNF or DFC_EOF. This is a normal return condition.

Error Return
None.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v If you locate an LREC or header in a subfile using the dfred function and modify
the LREC data using assembler instructions, you must ensure that the changes
are recorded on DASD. Use the dfmod function to do this.

The dfmod function sets an indicator in the block to say that it has been changed.
The TPFDF product writes this block to DASD when you close or checkpoint the
subfile. You must call the dfmod function while the LREC you modified is still
current. If you allow the program to read other LRECs in the subfile before you
call the dfmod function, some modifications to LRECs can be lost.

Attention: Do not use the dfmod functions if you have changed:

– The size of the existing LREC

– Any key fields

– Any fields in the LREC that are also used as index key fields.

Instead, delete the old LREC with a dfdel function and add a new
LREC with a dfadd function.

v Use one of the dfmod_all functions to perform global modifications. Global
modification allows you to update multiple LRECs with a single dfmod function
call. You must provide the modification key list with the modlist parameter. The
modification key list contains the rules for updating the LRECs. See “Setting Up
and Using a Key List” on page 26 for more information about defining a
modification key list.

v If you use global modification (the dfmod_all functions) when KEYCHECK=YES
is defined on the DBDEF macro and any of the fields being modified overlap any
default key fields for that primary key in the file, the TPFDF product issues a
system error and processing ends. All records that were changed before
processing ended remain changed.

Examples
v The following example shows a global modification that uses an active key list to

select the records to be modified. The code does this by setting up and activating
a selection key list containing a primary key and two additional keys. A

dfmod

TPFDF General-Use C Language Functions: Reference 119

modification key list is then established. The modification key list indicates that
two different fields in the LREC will be modified by adding a halfword value and
replacing a single byte character value respectively. The dfmod_all function is
then called to modify all LRECs that match the selection key list criteria.
/* set up the search keys */
df_nbrkeys(&select_keylist,3);
df_setkey(&select_keylist,1,offsetof(proto_lrec,lrec_id),

member_size(proto_lrec,lrec_id),DF_EQ,NULL,X’80’,
DF_UPORG,DF_CONST);

df_setkey(&select_keylist,2,offsetof(proto_lrec,key1),
member_size(proto_lrec,key1),DF_EQ,search_key1,0,
DF_UPORG,DF_CHAR);

df_setkey(&select_keylist,3,offsetof(proto_lrec,key2),
member_size(proto_lrec,key2),DF_EQ,search_key2,0,
DF_UPORG,DF_CHAR);

/* activate the search key list */
dfkey(file_ptr,&select_keylist);

/* set up the modify keys */
df_nbrkeys(&mod_keylist,2);
df_setkey_mod(&mod_keylist,1,offsetof(proto_lrec,field1),

member_size(proto_lrec,field1),modify_val1,0,
DF_ADD_SHORT);

df_setkey_mod(&mod_keylist,2,offsetof(proto_lrec,field2),
member_size(proto_lrec,field2),0,modify_val2,
DF_MVI);

/* Modify all LRECs matching the established criteria */
dfmod_all_opt(file_ptr,DFMOD_BEGIN,&mod_keylist);

v The following is another example of global modification in C. In this example,
because no key list is active, all LRECs from LREC number 5 to the end of the
file will be modified. This example also shows how a global modification can be
done without using the df_setkey_mod function.
lrec_ptr = dfred_nbr(file,DFRED_LRECNBR, 0,5);

memset(&mod_keylist, 0x00,74);
mod_keylist.sw01nky = 1;
mod_keylist.kit[0].sw01dis = 8;
mod_keylist.kit[0].sw01len = 2;
mod_keylist.kit[0].sw01sea = empname;
mod_keylist.kit[0].sw01id2 = DF_MVC;

lrec_ptr = dfmod_all(file,&mod_keylist);

Related Information
v “dfadd–Add a Logical Record to a Subfile” on page 73

v “dfrep–Replace a Logical Record with Another Logical Record” on page 143.

dfmod

120 TPFDF R1 Programming Concepts and Reference

dfmrg–Merge Logical Records from Two Subfiles
Use this function to merge two subfiles into one subfile.

Format
void dfmrg(dft_fil *file, dft_fil *input,

dft_opt options, dft_kyl *key_list);

Options Parameter Values:

�

|

DFMRG_FULLFILE
DFMRG_RELEASE
DFMRG_RELFC

0

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

input
is a pointer to the SW00SR slot of the input subfile that will be merged into the
subfile referenced by file.

key_list
is a pointer to the key list of the merged output file. See “Specifying Logical
Records (LRECs) Using Keys” on page 19 for more information about key lists.

options
are the processing options for this function. Use the following values:

DFMRG_FULLFILE
merges LRECs from the entire input file to the output subfile referenced by
file.

DFMRG_RELEASE
releases the SW00SR slot of the input file after processing the merge.

DFMRG_RELFC
releases the input subfile and deletes it from DASD. All overflow blocks are
released. If the file is a pool file, the prime block is also released. If the file
is a fixed file, the prime block is initialized to empty.

0 specifies that you do not want to use any processing options.

Entry Requirements
You must open both subfiles before calling dfmrg.

Normal Return
None.

dfmrg

TPFDF General-Use C Language Functions: Reference 121

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v After opening a file, if you use fullfile processing to access or update records,
you must continue to use fullfile processing on any subsequent functions when
available until the file is closed. Accessing or updating subfiles using fullfile
processing cannot be mixed with functions that access or update records without
using fullfile processing.

v Make sure the input file contains LRECs that are in the same order as the output
file. If the input file is not in the same order as the output file, do not merge the
files until they are in the same order. Use the dfsrt function to arrange the input
file in the same order as the output file.

v The keys that you specify with this function are used to sort the LRECs in the
output subfile unless the file is a B+Tree file. The keylist parameter is ignored for
B+Tree files. The output file is organized according default keys defined on the
DBDEF macro for the file. See TPFDF Database Administration for more
information about default keys.

v The output file cannot be in detac mode when you use the dfmrg function.

v You cannot call additional TPFDF functions to the input file until the file is closed
if the following conditions are true:
– You specify the DFMRG_FULLFILE option
– You do not specify the DFMRG_RELEASE option
– The end-of-file indicator is set.

However, you can specify the DFCLS_REUSE value on the dfcls function. See
“Identifying Return Indicators and Errors” on page 13 for information about the
end-of-file indicator.

v When the dfmrg function has completed processing, the output subfile is left
open and must be closed using the dfcls function before the ECB exits. If you
specify the DFMRG_RELEASE value, the dfmrg function will close the input file.

v You cannot use this function with P-type files.

v Figure 18 shows how the dfmrg function merges LRECs from two subfiles.

The merged subfile is in the sequence you specify in the key list pointed to in the
key_list parameter. The function does not modify the input subfile that you
specify with the input parameter. The TPFDF product leaves the entry control
block (ECB) data level for the input subfile free after use.

Before

A (sorted)Input file

After

A (sorted)

B (sorted)Output file A + B (sorted)

Figure 18. Merging LRECs from Two Subfiles. The input file is defined by the input parameter
and the output file is defined by the file parameter.

dfmrg

122 TPFDF R1 Programming Concepts and Reference

v If you use the dfmrg function in a commit scope, open the files or subfiles to be
merged in the same commit scope. See “Commit Scopes” on page 8 for more
information about commit scopes.

Examples
The following example merges the two open subfiles referenced by file_ptr and
input_ptr. All the LRECs go into the file_ptr subfile.
/* first set up keys */

dft_fil *input_ptr;
dft_kyl keys;

df_nbrkeys(&keys, 1);
df_setkey(&keys, 1, offsetoff(struct gr95sr, gr95nam),

member_size(struct gr95sr, gr95nam), 0, NULL, 0, DF_UPORG, DF_CHAR);

dfmrg(file_ptr, input_ptr, 0, &keys);

Related Information
“dfsrt–Sort a Subfile” on page 157.

dfmrg

TPFDF General-Use C Language Functions: Reference 123

df_nbrkeys–Setting Up the Number of Keys
Use this function to set up the number of keys that you want to use in a particular
key list structure.

Format
void df_nbrkeys(dft_kyl *key_list, short int n);

key_list
is a pointer to the key list structure you are setting up.

n is the number of keys (1–180) that you want in the key list.

Entry Requirements
None.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v You can define any number of key list structures in your program. Each key list
can have from 1–180 keys. See “Specifying Logical Records (LRECs) Using
Keys” on page 19 for more information about key lists.

Examples
See “Setting up a Key List with Less than Six Keys” on page 29 and “Setting up a
Key List in the Range 1-180” on page 30 for examples of how to set up a key list.

Related Information
“df_setkey–Setting Up a Key in a Key List” on page 150.

df_nbrkeys

124 TPFDF R1 Programming Concepts and Reference

dfopn–Open a Subfile
Use this group of functions to open a subfile. This is the first TPFDF function you
use with any file. The first dfopn function creates a database interface block
(DBIFB) and reserves a SW00SR slot in the DBIFB. The SW00SR slot contains
control information about the subfile. See TPFDF General Information for more
information about SW00SR and this control information.

Format
dft_fil *dfopn(dft_ref *ref_name, dft_fid *id, dft_opt options);

dft_fil *dfopn_acc(dft_ref *ref_name, dft_fid *id,
dft_opt access, dft_opt options, dft_xxx acc);

dft_fil *dfopn_spa(dft_ref *ref_name, dft_fid *id, dft_opt options,
dft_spc spc, dft_sps sps);

dft_fil *dfopn_are(dft_ref *ref_name, dft_fid *id, dft_opt options,
dft_are *are);

dft_fil *dfopn_tpn(dft_ref *ref_name, dft_fid *id, dft_opt options,
dft_tpn tpn);

dft_fil *dfopn_acc_spa(dft_ref *ref_name, dft_fid *id, dft_opt access,
dft_opt options, dft_xxx acc, dft_spc spc,dft_sps sps);

dft_fil *dfopn_acc_are(dft_ref *ref_name, dft_fid *id, dft_opt access,
dft_opt options, dft_xxx acc,dft_are *are);

dft_fil *dfopn_acc_tpn(dft_ref *ref_name, dft_fid *id,
dft_opt access, dft_opt options, dft_xxx acc, dft_tpn tpn);

dft_fil *dfopn_spa_are(dft_ref *ref_name, dft_fid *id,
dft_opt options, dft_spc spc, dft_sps sps,dft_are *are);

dft_fil *dfopn_spa_tpn(dft_ref *ref_name, dft_fid *id,
dft_opt options, dft_spc spc, dft_sps sps, dft_tpn tpn);

dft_fil *dfopn_are_tpn(dft_ref *ref_name, dft_fid *id,
dft_opt options, dft_are *are, dft_tpn tpn);

dft_fil *dfopn_acc_spa_are(dft_ref *ref_name, dft_fid *id,
dft_opt access, dft_opt options, dft_xxx acc, dft_spc spc,
dft_sps sps, dft_are *are);

dft_fil *dfopn_acc_spa_tpn(dft_ref *ref_name, dft_fid *id,
dft_opt access, dft_opt options,
dft_xxx acc, dft_spc spc, dft_sps sps, dft_tpn tpn);

dft_fil *dfopn_acc_are_tpn(dft_ref *ref_name, dft_fid *id,
dft_opt access, dft_opt options,
dft_xxx acc, dft_are *are, dft_tpn tpn);

dft_fil *dfopn_spa_are_tpn(dft_ref *ref_name, dft_fid *id,
dft_opt options, dft_spc spc,
dft_sps sps, dft_are *are, dft_tpn tpn);

dft_fil *dfopn_acc_spa_are_tpn(dft_ref *ref_name, dft_fid *id,
dft_opt access, dft_opt options, dft_xxx acc,
dft_spc spc, dft_sps sps, dft_are *are, dft_tpn tpn);

dfopn

TPFDF General-Use C Language Functions: Reference 125

Access Parameter Values:

DFOPN_ALG
DFOPN_FADDR
DFOPN_ORD

Options Parameter Values:

�

|

DFOPN_INDEX_HOLD
DFOPN_NOCHK

Detac Mode Options
Hold Options

0

Detac Mode Options:

DFOPN_NODET
DFOPN_DETAC

Hold Options:

DFOPN_NOHOLD
DFOPN_HOLD

acc
is an ordinal number, a file address, or a pointer to an algorithm string that
specifies the subfile you want to access. The type for this parameter is
determined by the value you specify for the access parameter.

access
is the method you want to use to access the subfile. Use one of the following
values:

DFOPN_ALG
specifies that you are providing a pointer to an algorithm argument in the
acc parameter. The acc parameter is of type dft_alg. The TPFDF product
uses the algorithm argument to determine the subfile (ordinal number) that
is to be accessed. Specify the algorithm argument based on the type of
algorithm that is defined in the DSECT or DBDEF macro for the file. If the
DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate
index file defined with the #TPFDBFF algorithm, the TPFDF product uses
the algorithm argument to locate the subfile. See TPFDF Database
Administration for more information about how the TPFDF product uses the
algorithm argument to locate the subfile.

DFOPN_FADDR
specifies that you are providing a file address in the acc parameter. A file
address is in integer format. The acc parameter is of type dft_fad.

dfopn

126 TPFDF R1 Programming Concepts and Reference

DFOPN_ORD
specifies that you are providing an ordinal number in the acc parameter.
Ordinal numbers in a file start at zero and are in integer format. The acc
parameter is of type dft_ord.

If the file is partitioned or interleaved, specify the relative ordinal number
within the partition or interleave. If the file is not partitioned or interleaved,
specify the file address compute program (FACE) ordinal number.

are
is the address of an area where the user information is loaded from index
LRECs on subsequent dfred function calls. The data that will be provided is
specified on the DBDEF macro for the index file.

id is a pointer to the 2-byte file identifier (held in each block of the file). You can
specify this in character form or as 4 hexadecimal digits.

options
are the processing options for this function. Use the following values:

DFOPN_DETAC
opens the subfile in detac mode. When the subfile is in detac mode, all
modified blocks are saved in main storage. No blocks are written to DASD
until you checkpoint the subfile (using the dfckp function) or close the
subfile (using the dfcls function).

If you do not want to keep any modifications that you made to the subfile
opened with DFOPN_DETAC, you can use the DFCLS_ABORT value for
the options parameter of the dfcls function.

Note: The TPF system and the ALCS environment issues a 000010
system error if an application program does not give up control in the
time allotted by the application time-out counter. When processing in
detac mode, a TPFDF application program can require more than
the allotted time on a database with a large data structure. To
prevent the 000010 system error, you can change the setting of the
&TPFDBDV symbol in the DBLCL macro.

See TPFDF Installation and Customization for more information
about the &TPFDBDV symbol and the DBLCL macro.

DFOPN_NODET
specifies that you do not want the subfile opened in detac mode.

DFOPN_HOLD
potentially holds the subfile that you are accessing and prevents two or
more application programs from modifying the subfile at the same time.
Holding occurs on the following TPFDF call that accesses the subfile if bits
4 and 5 in the &SW00OP2 global set symbol in the DSECT macro, or the
OP2= parameter in the DBDEF macro, have been set appropriately.
Subsequent TPFDF calls by other ECBs to modify the subfile will not occur
until the subfile is no longer held. If more than one application can update
the same subfile, or the file is processed in fullfile mode, you must specify
this value to ensure the updates are synchronized.

See TPFDF Database Administration for information about how bits 4 and 5
in the &SW00OP2 global set symbol in the DSECT macro, or the OP2=
parameter in the DBDEF macro, affect hold processing.

dfopn

TPFDF General-Use C Language Functions: Reference 127

DFOPN_NOHOLD
specifies that the TPFDF product does not hold the file blocks and other
applications can read or write blocks. (This implies that you are not going to
modify the subfile.)

DFOPN_INDEX_HOLD
potentially holds any index files that reference the subfiles you are
accessing and prevents two or more application programs from modifying
the index files at the same time. Holding occurs on the following TPFDF call
that accesses the subfile if bits 4 and 5 in the &SW00OP2 global set
symbol in the DSECT macro, or the OP2= parameter in the DBDEF macro,
have been set appropriately. Subsequent TPFDF calls by other ECBs to
modify the index file will not occur until the index file is no longer held. If
more than one application can update the same index file, or the file is
processed in fullfile mode, you must specify this value to ensure the
updates are synchronized.

See TPFDF Database Administration for information about how bits 4 and 5
in the &SW00OP2 global set symbol in the DSECT macro, or the OP2=
parameter in the DBDEF macro, affect hold processing.

DFOPN_NOCHK
specifies that you do not want to check the record code check (RCC) value
of the blocks that are read from DASD with subsequent dfred function calls.
In addition, use this value to prevent the TPFDF product from using a
random RCC value when creating new subfiles. If this value is used, new
subfiles will be created without an RCC value unless you specify the
DFOPT_CHKA value on the dfopt function. In this case, new subfiles are
created with the RCC specified by the dfopt function.

0 specifies that you do not want to use any processing options.

ref_name
is the address of a variable containing the 8-byte reference name of the subfile
to be opened.

spc
is the character that you want to fill the space area you have requested.

sps
is the size of the space area you require, which can be a maximum of 3952
bytes.

tpn
is a pointer to a variable containing a 3-character symbolic name of the tape or
sequential data set you want to use. The TPFDF product then writes all
overflow blocks to tape rather than to DASD.

You cannot open B+Tree files using the tpn parameter.

Entry Requirements
Ensure that the subfile you open was previously defined in a DSECT macro and in
a DBDEF macro instruction by your database administrator.

Normal Return
The address of the SW00SR slot.

dfopn

128 TPFDF R1 Programming Concepts and Reference

Error Return
The error indicators in the SW00RTN field of the SW00SR slot have no meaning for
this function.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v Some parameters can be of different types based on the value you specify for
that parameter or a related parameter. In the function format, the type of these
parameters is shown as dft_xxx. See the description of the specific parameter
for information about what type definition to use for that parameter.

v You cannot use this function with a T-type file because a T-type file is a
temporary logical record (LREC) stored in a W-type file and is not defined in the
DBDEF macro. See TPFDF Database Administration for more information about
T-type files.

v If you use this function with a W-type file, the DFOPN_HOLD value is the default.
See TPFDF Database Administration for more information about W-type files.

v It is not necessary to specify data level independence (DLI) with this function.
The TPFDF product preserves all data levels holding blocks before a macro or
function call. See “Data Level Usage” on page 3 for more information about DLI.

Examples
v The following example opens a subfile that has DSECT name GR91SR. The

TPFDF product sets a pointer to the SW00SR slot in file_ptr. The file ID is "S0".
dft_fil *file_ptr;
file_ptr = dfopn("GR91SR ", "S0", DFOPN_HOLD | DFOPN_DETAC);

v The following example opens a subfile that has a DSECT name of GR91SR and
requests 50 bytes of space. The file ID is X'C701'.
#define file_id "\xC7\x01"
file_ptr = dfopn_spa("GR91SR ", file_id, DFOPN_HOLD, ’ ’, 50);

v The following example opens a subfile that has a DSECT name of GR91SR in
detac mode. The program provides a file address in faddr. The file ID is "S0".
file_ptr = dfopn_acc("GR91SR ", "S0", DFOPN_FADDR, DFOPN_HOLD, faddr);

Related Information
“dfcls–Close a Subfile” on page 86.

dfopn

TPFDF General-Use C Language Functions: Reference 129

dfopt–Set Optional Information
Use this group of functions to set options after opening a file.

Format
void dfopt1(dft_fil *file, dft_opt options, dft_xxx opt1);

void dfopt2(dft_fil *file, dft_opt options, dft_xxx opt1,
dft_xxx opt2);

void dfopt3(dft_fil *file, dft_opt options, dft_xxx opt1,
dft_xxx opt2, dft_xxx opt3);

void dfopt4(dft_fil *file, dft_opt options, dft_xxx opt1,
dft_xxx opt2, dft_xxx opt3, dft_xxx opt4);

void dfopt5(dft_fil *file, dft_opt options, dft_xxx opt1,
dft_xxx opt2, dft_xxx opt3, dft_xxx opt4, dft_xxx opt5);

void dfopt6(dft_fil *file, dft_opt options, dft_xxx opt1,
dft_xxx opt2, dft_xxx opt3, dft_xxx opt4, dft_xxx opt5,
dft_xxx opt6);

Options Parameter Values:

�

|

DFOPT_POOLTYP
DFOPT_CHKA
DFOPT_NOCHK

DFOPT_INTERLEAVE
DFOPT_PARTITION
DFOPT_PATH
DFOPT_ENDORD
DFOPT_BEGORD

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

options
are the processing options for this function. The values you specify indicate
what additional parameters (such as, opt1, opt2, and so on) you are supplying
with the function call.

The number of values you must specify for the options parameter is based on
which dfopt function you use. For example, if you are using dfopt1, specify one
of the following values; if you are using dfopt2, specify two of the following
values; and so on.

DFOPT_POOLTYP
indicates that you are specifying the pool type with the pooltype parameter.
Use this value to override the pool type defined in the DSECT for the
subfile.

DFOPT_CHKA
indicates that you are specifying a record code check (RCC) character with
the chka parameter. Use this value when you want to check the RCC value

dfopt

130 TPFDF R1 Programming Concepts and Reference

of the prime block of the subfile that it opens with dfopn and any blocks that
it reads using dfred. If the RCC values do not match, the TPFDF product
returns an error condition.

DFOPT_NOCHK
indicates that you are specifying a record code check (RCC) character with
the chka parameter. Use this value when you do not want to check the
record code check (RCC) value of blocks that are read with subsequent
dfred functions.

DFOPT_INTERLEAVE
indicates that you are specifying an interleave number with the partition
parameter and you want to access LRECs in this interleave.

DFOPT_PARTITION
indicates that you are specifying a partition number with the partition
parameter and you want to access LRECs in this partition.

DFOPT_PATH
indicates that you are specifying a path number with the path parameter.
Use this value if you are opening an indexed subfile that has more than one
path. See TPFDF Database Administration for more information about index
paths.

DFOPT_ENDORD
indicates that you are specifying an ordinal number for the end of the
subfile with the endord parameter.

DFOPT_BEGORD
indicates that you are specifying an ordinal number for the start of the
subfile with the begord parameter.

optn
are the optional parameters (such as opt1, opt2, and so on) that you are
specifying. Replace the optn parameters with any of the following parameters.

pooltype
is the pool type, which can be one of the following:

0 uses the pool type defined by the PF0 parameter of the DBDEF macro.

1 uses the pool type defined by the PF1 parameter of the DBDEF macro.

2 uses the pool type defined by the PF2 parameter of the DBDEF macro.

Use this parameter if you specified the DFOPT_POOLTYP value with the
options parameter.

chka
is a record code check (RCC) value in the range of 0x00–0xFF. Use this
parameter if you specified the DFOPT_CHKA or DFOPT_NOCHK value
with the options parameter.

partition
is one of the following:

num
is a partition or interleave number, which you can get from your
database administrator.

DFOPT_ALL
specifies all partitions or all interleaves of the file.

dfopt

TPFDF General-Use C Language Functions: Reference 131

Use this parameter if you specified the DFOPT_PARTITION or
DFOPT_INTERLEAVE value with the options parameter.

path
is the path number, which is a decimal value defined with the DBDEF
macro, that you want to use to access detail subfiles. See your database
administrator for this path value and see TPFDF Database Administration
for more information about index paths.

Use this parameter if you specified the DFOPT_PATH value with the
options parameter.

begord
is the beginning ordinal number. Use this parameter if you specified the
DFOPT_BEGORD value with the options parameter.

endord
is the ending ordinal number. Use this parameter if you specified the
DFOPT_ENDORD value with the options parameter.

Entry Requirements
None.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v Some parameters can be of different types based on the value you specify for
that parameter or a related parameter. In the function format, the type of these
parameters is shown as dft_xxx. See the description of the specific parameter
for information about what type definition to use for that parameter.

v Any individual parameter (for example, partition) may or may not be present
when you call a dfopt function. However, you must specify the appropriate
number of optional parameters in total. For example, if you call dfopt4, you must
specify a total of 4 optional parameters.

v Always specify the optional parameters that are present in the order shown,
omitting the ones that you do not want to use.

v See your database administrator for more information about using these
parameters.

Examples
v The following example sets the partition number to 2 and the path number to 1.

dft_fil *file_ptr;...
dfopt2(file_ptr, DFOPT_PARTITION | DFOPT_PATH, 2, 1);

v The following example sets begin ordinal to 100, pool type to 1, and interleave
number to 3. (The parameters must be in the order shown.)

dfopt

132 TPFDF R1 Programming Concepts and Reference

dft_fil *file_ptr;...
dfopt3(file_ptr, DFOPT_POOLTYPE | DFOPT_PARTITION | DFOPT_BEGORD, 1, 3, 100);

Related Information
v “dfadr–Provide the File Address of a Prime Block” on page 80

v “dfcre–Create a Subfile” on page 95

v “dfdix–Delete Index References to a Subfile” on page 105

v “dfidx–Create an Index Reference” on page 112

v “dfopn–Open a Subfile” on page 125.

dfopt

TPFDF General-Use C Language Functions: Reference 133

dfred–Read a Logical Record
Use this group of functions to read a logical record (LREC) or block header and get
the address where the record is stored. You can read the next LREC in sequence
or specify details of the LREC you require.

You can also use these functions to read a sequence of LRECs. In this case, you
perform a sequence of dfred calls and get a different LREC each time.

Format
dft_rec *dfred(dft_fil *file, dft_opt options);

dft_rec *dfred_acc(dft_fil *file, dft_opt access, dft_opt options,
dft_xxx acc);

dft_rec *dfred_nbr(dft_fil *file, dft_opt nbr_type,
dft_opt options, dft_xxx nbr);

dft_rec *dfred_are(dft_fil *file, dft_opt options, dft_are *are);

dft_rec *dfred_pth(dft_fil *file, dft_opt options, dft_pth pth);

dft_rec *dfred_acc_nbr(dft_fil *file, dft_opt nbr_type, dft_opt access,
dft_opt options, dft_xxx acc, dft_xxx nbr);

dft_rec *dfred_acc_are(dft_fil *file, dft_opt access, dft_opt options,
dft_xxx acc, dft_are *are);

dft_rec *dfred_acc_pth(dft_fil *file, dft_opt access, dft_opt options,
dft_xxx acc, dft_pth pth);

dft_rec *dfred_nbr_are(dft_fil *file, dft_opt nbr_type, dft_opt options,
dft_nbr nbr, dft_are *are);

dft_rec *dfred_nbr_pth(dft_fil *file, dft_opt nbr_type, dft_opt options,
dft_xxx nbr, dft_pth pth);

dft_rec *dfred_are_pth(dft_fil *file, dft_opt options, dft_are *are,
dft_pth pth);

dft_rec *dfred_acc_nbr_are(dft_fil *file, dft_opt nbr_type, dft_opt access,
dft_opt options, dft_xxx acc, dft_xxx nbr, dft_are *are);

dft_rec *dfred_acc_nbr_pth(dft_fil *file, dft_opt nbr_type, dft_opt access,
dft_opt options, dft_xxx acc, dft_xxx nbr, dft_pth pth);

dft_rec *dfred_acc_are_pth(dft_fil *file, dft_opt access, dft_opt options,
dft_xxx acc, dft_are *are, dft_pth pth);

dft_rec *dfred_nbr_are_pth(dft_fil *file, dft_opt nbr_type, dft_opt options,
dft_xxx nbr, dft_are *are, dft_pth pth);

dft_rec *dfred_acc_nbr_are_pth(dft_fil *file, dft_opt nbr_type,
dft_opt access, dft_opt options, dft_xxx acc, dft_xxx nbr,
dft_are *are, dft_pth pth);

dfred

134 TPFDF R1 Programming Concepts and Reference

Access Parameter Values:

DFRED_ALG
DFRED_FADDR
DFRED_ORD

Nbr_Type Parameter Values:

DFRED_LIST
DFRED_LRECNBR
DFRED_STACK
DFRED_STACKREF

Options Parameter Values:

�

|

DFRED_FULLFILE
DFRED_INDEX_HOLD
DFRED_NODUMP
DFRED_NOKEY
DFRED_USR

Direction Options
Fast or Header Options

0

Direction Options:

DFRED_BACKWARD
DFRED_BEGIN
DFRED_LAST
DFRED_PREVIOUS

Fast or Header Options:

DFRED_FAST
DFRED_HEADER
DFRED_INLINE

acc
is an ordinal number, a file address, or a pointer to an algorithm string that
specifies the subfile you want to access. The type for this parameter is
determined by the value you specify for the access parameter.

access
is the method you want to use to access the subfile. Use one of the following
values:

DFRED_ALG
specifies that you are providing a pointer to an algorithm argument in the
acc parameter. The acc parameter is of type dft_alg. The TPFDF product
uses the algorithm argument to determine the subfile (ordinal number) that
is to be accessed. Specify the algorithm argument based on the type of

dfred

TPFDF General-Use C Language Functions: Reference 135

algorithm that is defined in the DSECT or DBDEF macro for the file. If the
DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate
index file defined with the #TPFDBFF algorithm, the TPFDF product uses
the algorithm argument to locate the subfile. See TPFDF Database
Administration for more information about how the TPFDF product uses the
algorithm argument to locate the subfile.

DFRED_FADDR
specifies that you are providing a file address in the acc parameter. A file
address is in integer format. The acc parameter is of type dft_fad.

DFRED_ORD
specifies that you are providing an ordinal number in the acc parameter.
Ordinal numbers in a file start at zero and are in integer format. The acc
parameter is of type dft_ord.

If the file is partitioned or interleaved, specify the relative ordinal number
within the partition or interleave. If the file is not partitioned or interleaved,
specify the file address compute program (FACE) ordinal number.

are
is a pointer to an area to which the TPFDF product copies user data from the
index LREC referencing the detail subfile you are accessing. This user data is
defined in the DBDEF macro of the detail subfile. See TPFDF Database
Administration for more information about defining this user data.

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

nbr
is a variable containing one of the following based on the value of the nbr_type
parameter:

v A single LREC number (type dft_nbr) if the nbr_type parameter is set to
DFRED_LRECNBR.

v A pointer to a list of LRECs (type dft_rcl) if the nbr_type parameter is set to
DFRED_LIST. Specify the LRECs in this list as character array. For example:
char nbrs[10] = "2/3-6/LAST";

The list contains one or more LREC sequence numbers separated by a slash
(/). You can also specify a range of sequence numbers by separating the
beginning and end of the range by a hyphen (-). You can use LAST to mean
the last LREC of the subfile and ALL to mean all the remaining LRECs. You
can also end the list with a nonnumeric character.

Notes:

1. The ranges must be in ascending order; if one is found out of order, that
range and all subsequent ranges are ignored.

For example, if there are 41 LRECs in a subfile, the following lists all
have the same effect:
20/31/32/33/37/38/39/40/41
20/31/32/33/37-41
20/31-33/37-LAST
20/31-33/37/ALL

dfred

136 TPFDF R1 Programming Concepts and Reference

2. You cannot specify the number zero in the list of LREC numbers, even if
you specify the ADJUST parameter with a value that would adjust the
number zero to a valid LREC number.

v A stack reference number (type dft_srn) if the nbr_type parameter is set to
DFRED_STACKREF.

v A pointer to a stack area (type dft_stk) if the nbr_type parameter is set to
DFRED_STACK.

Notes:

1. If you use the #TPFDB0D algorithm, you must specify a specific LREC
number for the value of nbr.

2. LRECs are numbered in increasing order from the start of the subfile (the
first LREC in the prime block has sequence number 1).

3. If you specify this parameter with active keys, only those LRECs that match
the key conditions are included in the sequence numbering; LRECs that do
not match are ignored.

4. In functions that do not include the nbr_type parameter, the value of nbr is a
specific LREC number.

nbr_type
is one of the following:

DFRED_LIST
specifies that you are supplying a pointer to a list of LREC numbers (type
dft_rcl) in the nbr parameter. The TPFDF product reads these LRECs in
sequence on subsequent dfred function calls (unless you change the dfred
parameters).

DFRED_LRECNBR
specifies that you are supplying the sequence number of a single LREC
(type dft_nbr) in the nbr parameter. The TPFDF product reads the LREC
with this sequence number.

DFRED_STACK
specifies that you are supplying a pointer to a stack area (type dft_stk) in
the nbr parameter.

DFRED_STACKREF
specifies that you are supplying a stack reference number (type dft_srn) in
the nbr parameter.

The DFRED_STACK and DFRED_STACKREF values allow you to read an
LREC that you have retained with an earlier dfret function.

options
are the processing options for this function. Use the following values:

DFRED_BACKWARD
reads backward through the subfile; that is, the TPFDF product reads the
LREC immediately before the current LREC position.

Notes:

1. You cannot use the DFRED_BACKWARD value with the
DFRED_LRECNBR value or when keys are active.

2. If you use DFRED_BACKWARD and also use the dfret function, you
must specify DFRET_STACK or DFRET_STACKREF with the dfret
function. See “dfret–Retain a Logical Record Position” on page 145 for
more information about these values and the dfret function.

dfred

TPFDF General-Use C Language Functions: Reference 137

|
|

3. If you use DFRED_BACKWARD, the default and recommended setting
for symbol &DB013A in the DBLCL macro is 0. This setting requires
files to use full backward chaining (bit 0 of &SW00OP1 is set) to read
backward. See TPFDF Database Administration for more information
about defining full backward chaining. See TPFDF Installation and
Customization for more information about the DBLCL macro.

Exception: If the file uses add current processing (bit 2 of &SW00OP1 is
set) with no chains (&SW00NOC = 0), you can specify
DFRED_BACKWARD regardless of how bit 0 of &SW00OP1 is
set.

DFRED_BEGIN
reads LRECs from the start of the subfile.

DFRED_LAST
reads the last LREC from the subfile. If you have specified keys with the
read, the TPFDF product reads the last LREC that matches the keys.

DFRED_PREVIOUS
reads the LREC saved with the last dfret function that used a
DFRET_CURRENT value for the ret_type parameter.

DFRED_FAST
used for migration purposes only; use the DFRED_INLINE or
DFRED_NOKEY value instead. If you specify this value, the
DFRED_NOKEY value is implemented; that is, keys that are currently active
are deactivated.

DFRED_HEADER
locates the subfile header in the prime block and returns the address in
field SW00RC rather than the address of an LREC.

If you specify the DFRED_HEADER and DFRED_FULLFILE values on an
open subfile, the dfred function retrieves the header of the next subfile.

DFRED_INLINE
provides inline processing for this function. You can only use this value if
you are reading LRECs sequentially, without any key parameters. This
option also deactivates any keys that are currently active; that is, any
previous key arguments are set to zero.

DFRED_FULLFILE
reads an LREC from any of the subfiles in the file. If you do not specify this
value, you can only read an LREC in the current subfile.

DFRED_INDEX_HOLD
potentially holds any index files that reference the subfiles you are
accessing and prevents two or more application programs from modifying
the index files at the same time. Holding occurs if bits 4 and 5 in the
&SW00OP2 global set symbol in the DSECT macro, or the OP2=
parameter in the DBDEF macro, have been set appropriately. Subsequent
TPFDF calls by other ECBs to modify the index file will not occur until the
index file is no longer held. If more than one application can update the
same index file, or the file is processed in fullfile mode, you must specify
this value to ensure the updates are synchronized.

See TPFDF Database Administration for information about how bits 4 and 5
in the &SW00OP2 global set symbol in the DSECT macro, or the OP2=
parameter in the DBDEF macro, affect hold processing.

dfred

138 TPFDF R1 Programming Concepts and Reference

DFRED_NODUMP
specifies that you do not want the TPFDF product to issue any of the
following system errors while processing this function:
v DB0100
v DB0102
v DB0117
v DB0123
v DB0138
v DB0140.

See TPFDF Messages (System Error, Online, Offline) for more information
about these system errors.

Note: Using the DFRED_NODUMP value is not recommended because it
can prevent system errors from being issued that indicate a critical
problem.

DFRED_NOKEY
deactivates any currently active keys.

DFRED_USR
returns a pointer to the userLREC. Use this option when working with
extended LRECs. See “Using Extended Logical Records” on page 4 for
more information about extended LRECs.

0 specifies that you do not want to use any processing options.

pth
is the path number for a detail subfile using index support. The value is defined
in the DBDEF macro and is a decimal number (0, 1, 2, and so on). The default
path number is 0.

See TPFDF Database Administration for more information about path indexes.

Entry Requirements
If you specify the DFRED_PREVIOUS, DFRED_STACK, or DFRED_STACKREF
values, you must first open the subfile using the DFOPN_DETAC or DFOPN_HOLD
values for the options parameter on the dfopn function.

Normal Return
v If you specify the DFRED_USR value, a pointer to the userLREC portion of the

extended LREC is returned.

v If you specify the DFRED_HEADER value, a pointer to the standard header of
the block is returned.

v In all other cases, a pointer to the LREC that is read is returned.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v Some parameters can be of different types based on the value you specify for
that parameter or a related parameter. In the function format, the type of these

dfred

TPFDF General-Use C Language Functions: Reference 139

|
|

parameters is shown as dft_xxx. See the description of the specific parameter
for information about what type definition to use for that parameter.

v After opening a file, if you use fullfile processing to access or update records,
you must continue to use fullfile processing on any subsequent functions when
available until the file is closed. Accessing or updating subfiles using fullfile
processing cannot be mixed with functions that access or update records without
using fullfile processing.

Note: The DFRED_HEADER value can be used with the DFRED_FULLFILE
value to move from subfile to subfile, which can then be accessed using
the DBRED macros that do not use the DFRED_FULLFILE value.

v If you have set up keys with the file you are reading (using the dfkey function),
the TPFDF product ignores LRECs where the LREC key does not match the
keys.

v If you specify the DFRED_FULLFILE option, and the end-of-file indicator is set,
you cannot issue additional TPFDF functions until the file is closed. However, you
can specify the DFCLS_REUSE option on the dfcls function. See “Identifying
Return Indicators and Errors” on page 13 for information about the end-of-file
indicator.

v Any active keys are ignored when you use the #TPFDB0D algorithm.

v To ensure an LREC is retrieved accurately when you use the dfred function, do
not use the dfret function with the DFRET_STACK and DFRET_STACKREF
values specified on the same open file. If you do, the wrong LREC could be
retrieved. You must close and reopen the file each time you alternate between
specifying the DFRET_STACK and DFRET_STACKREF values.

Examples
v The following example reads an LREC from the current subfile. The new LREC

goes into lrec_ptr.
dft_fil *file_ptr;
struct gr95sr *lrec_ptr;...
lrec_ptr = dfred(file_ptr, 0);

v The following example reads an LREC retained from a subfile. The subfile is
specified with an algorithm. (The program has set up a pointer to the algorithm
argument in member_number.)
dft_fil *file_ptr;
char member_number[10];...
lrec_ptr = dfred_acc(file_ptr, DFRED_ALG, DFRED_PREVIOUS, member_number);

v The following example shows how to read a file using keys, without using default
keys.
struct gr95sr lrec_def;
struct gr95sr *lrec_ptr;
dft_kyl select_keylist;

df_nbrkeys(&select_keylist,4);
df_setkey(&select_keylist,1,offsetof(lrec_def,lrec_id),

member_size(lrec_def,lrec_id),DF_EQ,NULL,X’80’,
DF_UPORG,DF_CONST);

df_setkey(&select_keylist,2,offsetof(lrec_def,key1),
member_size(lrec_def,key1),DF_EQ,search_name,0,
DF_UPORG,DF_CHAR);

df_setkey(&select_keylist,3,offsetof(lrec_def,key2),
member_size(lrec_def,key2),DF_EQ,search_city,0,
DF_UPORG,DF_CHAR);

dfred

140 TPFDF R1 Programming Concepts and Reference

df_setkey(&select_keylist,4,offsetof(lrec_def,key3),
member_size(lrec_def,key3),DF_EQ,search_sal,0,
DF_UPORG,DF_CHAR);

dfkey(file_ptr,&select_keylist);
lrec_ptr = dfred(file_ptr, 0);

v The following example shows how to read a file using read-only and read-write
default keys. After the prototype LREC is initialized to zeros, each of the
selection key values (including the primary key) is copied into the prototype
LREC. A call to the df_setkey_dbdef function sets up the selection key list
structure and a call to the dfkey function copies the default key values from the
key list into the SW00SR. Finally, a call to the dfred function returns the next
LREC that matches the default keys. See “df_setkey–Setting Up a Key in a Key
List” on page 150 for more information.
struct gr95sr proto_lrec;
dft_kyl select_keylist;

memset(&proto_lrec, 0x00, sizeof(proto_lrec));
proto_lrec.lrec_id = 0x80;
memcpy(proto_lrec.key1,search_name,sizeof(proto_lrec.key1));
memcpy(proto_lrec.key2,search_city,sizeof(proto_lrec.key2));
memcpy(proto_lrec.key3,search_sal,sizeof(proto_lrec.key3));
df_setkey_dbdef(&select_keylist,&proto_lrec,0x80);
dfkey(file_ptr,&select_keylist);
lrec_ptr = dfred(file_ptr,0);
df_setkey_dbdef(&select_keylist,&proto_lrec,0x06);
dfkey(file_ptr,&select_keylist);
lrec_ptr = dfred(file_ptr,0);

v The following example shows how to read a file using Boolean logic. It sets up a
key list containing three Boolean logic keys before reading the LREC.

The logic used is equivalent to:
gr95key AND (gr95nam OR gr95adr).

See “df_setkey–Setting Up a Key in a Key List” on page 150 for more information
about setting up a key list for Boolean logic.
dft_rec *lrec91;
dft_pky pky = 0x80;
dft_pky name1 = "Smith";
dft_pky addr1 = "Main Street";
dft_kyl keys;

/* set up the keys */
df_nbrkeys(&keys, 3);
df_setkey_bool(&keys, 1, offsetof(struct gr95sr, gr95key),

1, DF_EQ, &pky, 0, DF_UPORG, DF_CHAR, DF_ANDIF);
df_setkey_bool(&keys, 2, offsetof(struct gr95sr, gr95nam),

10, DF_EQ, &name1, 0, DF_UPORG, DF_CHAR, DF_OR);
df_setkey(&keys, 3, offsetof(struct gr95sr, gr95adr),

10, DF_EQ, &addr1, 0, DF_UPORG, DF_CHAR);

/* activate the key list */
dfkey(file_ptr, &keys);

/* read an LREC with matching primary key and either matching */
/* the name or the address. */
/* (start at the beginning of the subfile) */
lrec91 = dfred(file_ptr, DFRED_BEGIN);

v The following example shows how to read an LREC from a detail file using index
support. First, open the detail file normally, specifying a DSECT name as the first
parameter and then use a dfred function to read the LREC by providing an index
key string as an algorithm argument.

dfred

TPFDF General-Use C Language Functions: Reference 141

dbptr = dfopn ("GR44DF ",.........)
alg_string="ALDER";
dfred_acc (dbptr,DFRED_ALG,alg_string);

Related Information
v “dfadd–Add a Logical Record to a Subfile” on page 73

v “dfkey–Activate a Key List” on page 115.

dfred

142 TPFDF R1 Programming Concepts and Reference

dfrep–Replace a Logical Record with Another Logical Record
Use this group of functions to replace the following:
v A previously read logical record (LREC) with a new LREC
v The userLREC in the current extended LREC with a new userLREC
v The subLREC in the current extended LREC with a new subLREC.

Format
dft_rec *dfrep(dft_fil *file, dft_rec *rcd);

dft_rec *dfrep_sub(dft_fil *file, dft_rec *sub);

dft_rec *dfrep_usr(dft_fil *file, dft_rec usr);

dft_rec *dfrep_usr_sub(dft_fil *file, dft_rec *sub,
dft_rec *usr);

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

rcd
is a pointer to the replacement LREC.

sub
is a pointer to the subLREC that is to replace the subLREC already in the
extended LREC.

usr
is a pointer to the userLREC that is to replace the userLREC already in the
extended LREC.

Entry Requirements
Before using the dfrep_sub, dfrep_usr, or dfrep_usr_sub function, you must use a
dfred function to locate the extended LREC in which you want to replace a
subLREC or userLREC.

Normal Return
One of the following:
v Pointer to the new LREC.
v Pointer to the extended LREC containing the new subLREC, the new userLREC,

or both.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v The dfrep function replaces the current LREC; that is, the dfrep function does
not perform an internal dfred function.

v The new LREC can be larger, smaller, or the same size as the old LREC (if you
have defined variable-length LRECs in the DSECT).

v If the subfile uses block index support, the TPFDF product automatically updates
the block index when you replace an LREC.

v Do not use the dfrep function if you have changed:

dfrep

TPFDF General-Use C Language Functions: Reference 143

– Any key fields

– Any fields in the LREC that are also used as index key fields.

Instead, delete the old LREC with a dfdel function and add a new LREC with a
dfadd function.

v When using a dfrep function that allows a sub parameter the current extended
LREC must contain one (and only one) subLREC. When an extended LREC
contains more than one subLREC, use dfdel_sub to delete one or more
subLRECs then call a dfadd function that allows a sub parameter to add each
new subLREC.

Examples
v The following example replaces an existing LREC with the LREC pointed to by

rec_ptr.
dft_fil *file_ptr;...
(void) dfrep(file_ptr, DFREP_NEWLREC, &rec_ptr);

v The following example replaces the userLREC and the (one) subLREC in the
current extended LREC with a new userLREC and a new subLREC respectively.
dft_fil *file_ptr;
struct zzzzz1 new_userlrec;
struct zzzzz2 new_sublrec;...
dfrep_usr_sub(file_ptr, &new_userlrec, &new_sublrec);

Related Information
v “dfadd–Add a Logical Record to a Subfile” on page 73

v “dfdel–Delete One or More Logical Records” on page 97

v “dfmod–Perform or Indicate Logical Record Modifications” on page 117

v “dfred–Read a Logical Record” on page 134.

dfrep

144 TPFDF R1 Programming Concepts and Reference

dfret–Retain a Logical Record Position
Use this group of functions to retain the file address and displacement in a block of
the current logical record (LREC). You can read the LREC later in your application
program by using a dfred function with the appropriate option parameter value.

Format
void dfret(dft_fil *file, dft_opt options);

void dfret_stk(dft_fil *file, dft_opt stk_type,
dft_opt options, dft_xxx stk);

Options Parameter Values:

DFRET_CURRENT
0

Stk_Type Parameter Values:

DFRET_STACK
DFRET_STACKREF

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

options
are the processing options for this function. Use the following values:

DFRET_CURRENT
specifies that you want to retain the current LREC.

0 specifies that you do not want to use any processing options.

stk
is one of the following based on the value you specify for the stk_type
parameter:

v A stack reference number (type dft_srn) if the stk_type parameter is set to
DFRET_STACKREF.

v A pointer to a stack area (type dft_stk) if the stk_type parameter is set to
DFRET_STACK.

stk_type
is one of the following:

DFRET_STACK
specifies that you are supplying a pointer to a stack area in the stk
parameter.

DFRET_STACKREF
specifies that you are supplying a stack reference number in the stk
parameter.

Both values let you retain a number of LRECs and identify them so that you
can later read them with dfred functions.

dfret

TPFDF General-Use C Language Functions: Reference 145

Entry Requirements
Before using this function, you must open the subfile using the DFOPN_DETAC or
DFOPN_HOLD values for the options parameter of the dfopn function.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v Some parameters can be of different types based on the value you specify for
that parameter or a related parameter. In the function format, the type of these
parameters is shown as dft_xxx. See the description of the specific parameter
for information about what type definition to use for that parameter.

v To ensure an LREC is retrieved accurately when you use the dfred function, do
not use the dfret function with the DFRET_STACK and DFRET_STACKREF
values specified on the same open file. If you do, the wrong LREC could be
retrieved. You must close and reopen the file each time you alternate between
specifying the DFRET_STACK and DFRET_STACKREF values.

Examples
v The following example retains the current LREC.

dft_fil *file_ptr;...
dfret(file_ptr, DFRET_CURRENT);

v The following example retains the current LREC with a reference number of 100.
dft_fil *file_ptr;...
dfret_stk(file_ptr, DFRET_STACKREF, DFRET_CURRENT, 100);

Related Information
“dfred–Read a Logical Record” on page 134.

dfret

146 TPFDF R1 Programming Concepts and Reference

dfrst–Restore a Subfile
Use this group of functions to restore a subfile (previously copied by a dfcpy
function) to a file address that you specify.

Format
void dfrst(dft_fil *file, dft_opt options, dft_fad rstaddr);

void dfrst_acc(dft_fil *file, dft_opt access, dft_opt options,
dft_fad rstaddr, dft_xxx acc);

void dfrst_seq(dft_fil *file, dft_opt options, dft_fad rstaddr,
dft_seq seq);

void dfrst_acc_seq(dft_fil *file, dft_opt access, dft_opt options,
dft_fad rstaddr, dft_xxx acc, dft_seq seq);

Access Parameter Values:

DFRST_ALG
DFRST_FADDR
DFRST_ORD

Options Parameter Values:

�

|

DFRST_FLIP
DFRST_FROMCHAIN
DFRST_HELD
DFRST_SEQ

0

acc
is an ordinal number, a file address, or a pointer to an algorithm string that
specifies the subfile you want to access. The type for this parameter is
determined by the value you specify for the access parameter.

access
is the method you want to use to access the subfile. Use one of the following
values:

DFRST_ALG
specifies that you are providing a pointer to an algorithm argument in the
acc parameter. The acc parameter is of type dft_alg. The TPFDF product
uses the algorithm argument to determine the subfile (ordinal number) that
is to be accessed. Specify the algorithm argument based on the type of
algorithm that is defined in the DSECT or DBDEF macro for the file. If the
DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate
index file defined with the #TPFDBFF algorithm, the TPFDF product uses
the algorithm argument to locate the subfile. See TPFDF Database
Administration for more information about how the TPFDF product uses the
algorithm argument to locate the subfile.

dfrst

TPFDF General-Use C Language Functions: Reference 147

DFRST_FADDR
specifies that you are providing a file address in the acc parameter. A file
address is in integer format. The acc parameter is of type dft_fad.

DFRST_ORD
specifies that you are providing an ordinal number in the acc parameter.
Ordinal numbers in a file start at zero and are in integer format. The acc
parameter is of type dft_ord.

If the file is partitioned or interleaved, specify the relative ordinal number
within the partition or interleave. If the file is not partitioned or interleaved,
specify the file address compute program (FACE) ordinal number.

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

options
are the processing options for this function. Use the following values:

DFRST_FLIP
specifies to flip the subfiles specified in the rstaddr and file parameters.

DFRST_FROMCHAIN
restores only the prime block of the subfile. Any overflow blocks in the
subfile are chained to this new prime block without copying the overflow
blocks to new pool blocks.

DFRST_HELD
restores a subfile that is already held (for example, if you have opened the
subfile with a DFOPN_HOLD value).

DFRST_SEQ
specifies that you want to check the sequence number when it restores the
subfile. This ensures that if there are several copies of a subfile, you restore
the correct one.

If you use this value, you must have supplied a sequence number when
you copied the subfile using a dfcpy function.

rstaddr
is the file address to which you want to restore the subfile.

seq
is an update sequence number. The number you provide must match the
sequence number contained in the subfile that is specified by the rstaddr
parameter.

If the numbers do not match, the dfrst function does not proceed and issues
an error return. If the numbers match, the dfrst function restores the subfile
and increases the sequence number by 1. This sequence number is placed in
the prime block of the restored subfile.

Entry Requirements
Before you can use the dfrst function, you must make a copy of a subfile using the
dfcpy function. You can modify this copy using other TPFDF functions.

Normal Return
The restored file (with any modifications you have made to the copy) becomes the
currently open subfile. You can continue processing it using other TPFDF functions.
The copy is released unless you use the DFRST_FLIP value.

dfrst

148 TPFDF R1 Programming Concepts and Reference

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v Some parameters can be of different types based on the value you specify for
that parameter or a related parameter. In the function format, the type of these
parameters is shown as dft_xxx. See the description of the specific parameter
for information about what type definition to use for that parameter.

v The dfrst function rebuilds the B+Tree index for B+Tree files.

Examples
v The following example restores a subfile that might be being held (by this or

another application).
dft_fad fad;
dft_fil *file_ptr;...
dfrst(file_ptr, DFRST_HELD, fad);

v The following example restores a subfile from a specified file address (contained
in file_address).
dft_fil *file_ptr;
dft_fad file_address;...
dfrst(file_ptr, 0, file_address);

Related Information
“dfcpy–Copy a Subfile” on page 92.

dfrst

TPFDF General-Use C Language Functions: Reference 149

df_setkey–Setting Up a Key in a Key List
Use this group of functions to set up a key list. See “Specifying Logical Records
(LRECs) Using Keys” on page 19 for more information about key lists.

A key list is activated using the dfkey function.

Format
void df_setkey(dft_kyl *key_list, short int nbr,

short int dsp, short int len, char con,
char *sea, char msk, char org, char typ);

void df_setkey_bool(dft_kyl *key_list, short int nbr,
short int dsp, short int len, char con,
char *sea, char msk, char org, char typ,
char bool);

void df_setkey_dbdef(dft_kyl *key_list, char *sea,
char msk);

void df_setkey_mod(dft_kyl *key_list, short int nbr,
short int dsp, short int len, char *sea,
char msk, char oper);

bool
is the type of Boolean connector between the current and subsequent Boolean
slots. Use one of the following values:

DF_OR
specifies the OR connector

DF_AND
specifies the AND connector

DF_ORIF
specifies the ORIF connector

DF_ANDIF
specifies the ANDIF connector.

con
is the condition that must exist for the match to be successful.

Use one of the following values if you specify the DF_CONST, DF_CHAR, or
DF_PACKED value for the typ parameter:

DF_EQ
specifies the LREC key field is equal to the search argument

DF_NE
specifies the LREC key field is not equal to the search argument

DF_GT
specifies the LREC key field is greater than the search argument

DF_LE
specifies the LREC key field is less than or equal to the search argument

DF_LT
specifies the LREC key field is less than the search argument

DF_GE
specifies the LREC key field is greater than or equal to the search
argument

df_setkey

150 TPFDF R1 Programming Concepts and Reference

Use one of the following values if you specify the DF_MASK value for the typ
parameter:

DF_Z
specifies the result is all zeros.

DF_O
specifies the result is all ones.

DF_M
specifies the result is mixed ones and zeros.

DF_NZ
specifies the result is not all zeros.

DF_NM
specifies the result is not mixed ones and zeros.

DF_NO
specifies the result is not all ones.

dsp
is the displacement (in bytes) of the key field in the LREC. For example, if the
LREC is a variable-length LREC and you want to specify the LREC ID as the
key field, the value is 2.

key_list
is a pointer to the key list that will be used to set up the active keys.

len
is the length (in bytes) of the key field in the LREC. For example, if you want to
specify the LREC ID as the key field, the value is 1. If you are using a mask
field (value DF_MASK of the typ parameter), len must be 1.

msk
is one of the following base on the function you are using:

v For the df_setkey, df_setkey_bool, and df_setkey_mod functions, msk is a
1-byte search argument or a 1-byte mask, for example, 0xFF. Set this to zero
when you are using the sea parameter.

v For the df_setkey_dbdef function, msk is the default key LREC ID. For
read-only default keys, use X'01'–X'0F'; for read and add operations, use
X'10'–X'EF'.

nbr
is the key number you are setting up. Use a number from 1–180 for a selection
key list or a sort/merge key list. Use a number from 1–6 for a modification key
list. Use 1 for a default-key key list.

oper
specifies the operation to perform during a global modification of LRECs. The
operation is applied to the key fields in the LRECs using the values in the
modification key list.

Use one of the following values to indicate the operation to be performed on the
LRECs being globally modified:

DF_MVI
moves the value contained in SW01MSK into the LREC at the displacement
specified by SW01DIS.

df_setkey

TPFDF General-Use C Language Functions: Reference 151

DF_MVC
moves the character string whose address is in SW01SEA into the LREC,
starting at the displacement specified by SW01DIS for the length contained
in SW01LEN.

DF_FILL
propagates the character contained in SW01MSK into the LREC, starting at
the displacement specified by SW01DIS for the length contained in
SW01LEN.

DF_OI
performs an OR-Immediate (OI) operation on the byte in the LREC at the
displacement in SW01DIS by using the value specified in SW01MSK.

DF_OC
performs an OR-Character (OC) operation in the LREC beginning on the
byte whose displacement is specified in SW01DIS for a length given in
SW01LEN by using the value whose address is given in SW01SEA.

DF_NI
performs an AND-Immediate (NI) operation on the byte in the LREC at the
displacement in SW01DIS by using the value specified in SW01MSK.

DF_NC
performs an AND-Character (NC) operation in the LREC beginning on the
byte whose displacement is specified in SW01DIS for a length given in
SW01LEN by using the value whose address is given in SW01SEA.

DF_XI
performs an Exclusive OR-Immediate (XI) operation on the byte in the
LREC at the displacement in SW01DIS by using the value specified in
SW01MSK.

DF_XC
performs an Exclusive OR-Character (XC) operation in the LREC beginning
on the byte whose displacement is specified in SW01DIS for a length given
in SW01LEN by using the value whose address is given in SW01SEA.

DF_ADD
adds the fullword value whose address is in SW01SEA to the fullword value
in the LREC whose displacement is specified by SW01DIS.

DF_ADD_SHORT
adds the halfword value whose address is in SW01SEA to the halfword
value in the LREC whose displacement is specified by SW01DIS.

DF_SUB
subtracts the fullword value whose address is in SW01SEA to the fullword
value in the LREC whose displacement is specified by SW01DIS.

DF_SUB_SHORT
subtracts the halfword value whose address is in SW01SEA to the halfword
value in the LREC whose displacement is specified by SW01DIS.

DF_COUNT
increments a fullword counter whose address is in SW01SEA. The
application is responsible for initializing the counter before the global
modification operation.

df_setkey

152 TPFDF R1 Programming Concepts and Reference

DF_COUNT_SHORT
increments a halfword counter whose address is in SW01SEA. The
application is responsible for initializing the counter before the global
modification operation.

DF_SUM
adds the fullword value in the LREC at the displacement specified in
SW01DIS to the fullword sum whose address is in SW01SEA. The sum
must be initialized before the global modification operation.

DF_SUM_SHORT
adds the halfword value in the LREC at the displacement specified in
SW01DIS to the halfword sum whose address is in SW01SEA. The sum
must be initialized before the global modification operation.

DF_MAX
finds the maximum value of the fullword value in the LREC at the
displacement specified by SW01DIS and the current fullword maximum
whose address is in SW01SEA. The new maximum value is stored at the
address in SW01SEA. The value in SW01SEA does not have to be
initialized before the global modification operation.

DF_MAX_SHORT
finds the maximum value of the halfword value in the LREC at the
displacement specified by SW01DIS and the current halfword maximum
whose address is in SW01SEA. The new maximum value is stored at the
address in SW01SEA. The value in SW01SEA does not have to be
initialized before the global modification operation.

DF_MIN
finds the minimum value of the fullword value in the LREC at the
displacement specified by SW01DIS and the current fullword minimum
whose address is in SW01SEA. The new minimum value is stored at the
address in SW01SEA. The value in SW01SEA does not have to be
initialized before the global modification operation.

DF_MIN_SHORT
finds the minimum value of the halfword value in the LREC at the
displacement specified by SW01DIS and the current halfword minimum
whose address is in SW01SEA. The new minimum value is stored at the
address in SW01SEA. The value in SW01SEA does not have to be
initialized before the global modification operation.

org
specifies the organization of the key fields. Use one of the following values:

DF_DOWNORG
specifies that the subfile is DOWN organized on this key field.

DF_UPORG
specifies that the subfile is UP organized on this key field.

DF_NOORG
specifies that the subfile is not organized on this key field.

sea
is one of the following based on the function you are using:

v For the df_setkey, df_setkey_bool, and df_setkey_mod function, sea is the
address of the search argument. Set this to zero when you are using the msk
parameter.

df_setkey

TPFDF General-Use C Language Functions: Reference 153

v For the df_setkey_dbdef function, sea is a pointer to the prototype logical
record (LREC). The LREC ID contained in the prototype LREC must be in
the range of nonread-only default keys (X'10' to X'EF').

typ
is the type of search argument you are specifying. Use one of the following
values to use the contents of the msk parameter for the search:

DF_CONST
specifies that the msk parameter contains a 1-byte search argument.

DF_MASK
specifies that the msk parameter contains a 1-byte mask.

Use one of the following values to use the contents of the string pointed to by
the sea parameter for the search:

DF_CHAR
specifies that the search argument is a variable-length character string.

DF_PACKED
specifies that the search argument is a variable-length packed decimal
string.

Entry Requirements
None.

Normal Return
None.

Error Return
None.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v If any key is set to DF_NOORG, all subsequent keys must be set to
DF_NOORG.

v If you supply a mask (typ set to DF_MASK), the organization must be
DF_NOORG.

v If you specify a mask, the df_setkey and df_setkey_bool functions perform a
bitwise AND (&) operation between the key field in the LREC and the contents of
the msk parameter.

v If you use the df_setkey_bool function for any key in a key list, you must use it
for every key in the key list except for the last. Use the df_setkey function for the
last key.

v When Boolean operators are specified in a key list, the file is treated as NOORG.
That is, it is treated as a file that has no organization even if it has UP or DOWN
organization. This may have an impact on the response time of functions that
use the key list, such as the dfred, dfdel, and dfmod functions. Furthermore, if
the file has a B+Tree index file associated with it, the index file will not be used
when retrieving LRECs.

v The df_setkey_mod function is used to set up the rules for global modifications
but does not select the records to which those rules are applied.

df_setkey

154 TPFDF R1 Programming Concepts and Reference

v You can define any number of key list structures in your program. Each key list
can have from 1–180 keys. See “Specifying Logical Records (LRECs) Using
Keys” on page 19 for more information about key lists.

Examples
v See “Using a Key List with the df_setkey Function” on page 29 and

“df_nbrkeys–Setting Up the Number of Keys” on page 124 for examples of how
to use the df_setkey function.

v See “dfred–Read a Logical Record” on page 134 for an example of how to use
the df_setkey_bool and df_setkey_dbdef functions.

v See “dfmod–Perform or Indicate Logical Record Modifications” on page 117 for
an example of how to use the df_setkey_mod function.

v See “Setting up a Key List with Less than Six Keys” on page 29 and “Setting up
a Key List in the Range 1-180” on page 30 for examples of how to set up a key
list.

Related Information
v “df_nbrkeys–Setting Up the Number of Keys” on page 124

v “dfkey–Activate a Key List” on page 115.

df_setkey

TPFDF General-Use C Language Functions: Reference 155

dfspa–Create Work Space
Use this function to obtain and initialize work space linked to the SW00SR slot for a
subfile. This space is available while the subfile is open.

Format
void *dfspa(dft_fil *file, dft_spc spc, dft_sps sps);

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

spc
is the character you want to use to initialize the work space.

sps
is the size of the space, which can be a maximum of 3952 bytes.

Entry Requirements
None.

Normal Return
The address of the space that the TPFDF product has provided. The TPFDF
product also loads this address in the SW00WKA field of the SW00SR slot.

Error Return
None.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v If you allocate work space with the dfopn function and you then call the dfspa
function for the same file, the TPFDF product returns the space originally
allocated.

v If you set the sps parameter to zero, the TPFDF product releases any space
previously allocated by a dfspa or dfopn function.

Examples
The following example creates a 400-byte area filled with space characters. The
TPFDF product puts a pointer to the space in SW00WKA.
dft_fil *file_ptr;...
dfspa(file_ptr, ’ ’, 400);

Related Information
“dfopn–Open a Subfile” on page 125.

dfspa

156 TPFDF R1 Programming Concepts and Reference

dfsrt–Sort a Subfile
Use this function to sort logical records (LRECs) in an open subfile.

Format
void dfsrt(dft_fil *file, dft_fil *input, dft_opt options, dft_kyl *key_list);

void dfsrt_pty(dft_fil *file, dft_fil *input, dft_opt options,
dft_kyl *key_list, dft_pty pty);

Options Parameter Values:

�

|

DFSRT_FULLFILE
DFSRT_RELEASE
DFSRT_RELFC

0

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

input
is a pointer to the SW00SR slot of the subfile that you want to be sorted.

key_list
is the address of the key list specifying the order into which you want the
TPFDF product to sort the LRECs. See “Specifying Logical Records (LRECs)
Using Keys” on page 19 for more information about key lists.

options
are the processing options for this function. Use the following values:

DFSRT_FULLFILE
sorts LRECs from the entire input file (specified in input), not from a single
subfile.

DFSRT_RELEASE
releases the SW00SR slot of the input subfile (specified in input).

DFSRT_RELFC
releases the input subfile and deletes it from DASD. All overflow blocks are
released. If the file is a pool file, the prime block is also released. If the file
is a fixed file, the prime block is initialized to empty.

0 specifies that you do not want to use any processing options.

pty
is the pool type of the overflow blocks, which can be one of the following:

0 uses the pool type defined by the PF0 parameter of the DBDEF macro.

1 uses the pool type defined by the PF1 parameter of the DBDEF macro.

2 uses the pool type defined by the PF2 parameter of the DBDEF macro.

dfsrt

TPFDF General-Use C Language Functions: Reference 157

Entry Requirements
Both subfiles must be opened before you call the dfsrt function.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v After opening a file, if you use fullfile processing to access or update records,
you must continue to use fullfile processing on any subsequent functions when
available until the file is closed. Accessing or updating subfiles using fullfile
processing cannot be mixed with functions that access or update records without
using fullfile processing.

v Any keys that are active when you call this function are used to select records
from the input file.

v The keys that you specify with this function are used to sort the LRECs in the
output subfile unless the file is a B+Tree file. The keylist parameter is ignored for
B+Tree files. The output file is organized according default keys defined on the
DBDEF macro for the file. See TPFDF Database Administration for more
information about default keys.

v The dfsrt function does not change the input subfile.

v After processing, the original contents of the output subfile are lost.

v When the dfsrt function completes processing, the output subfile is left open
and must be closed using the dfcls function before the ECB exits. If you specify
the DFSRT_RELEASE value, the dfsrt function closes the input file.

v If you sort a large file in detac mode, the TPFDF product puts the sorted output
in a newly created pool file and closes the output file that was originally specified.
You must restore the file to a fixed file to permanently save the results.

v You cannot issue additional TPFDF functions to the input file until the file is
closed if the following conditions are true:
– You specify the DFSRT_FULLFILE option
– You do not specify the DFSRT_RELEASE option
– The end-of-file indicator is set.

However, you can specify the DFCLS_REUSE option on the dfcls function. See
“Identifying Return Indicators and Errors” on page 13 for information about the
end-of-file indicator.

v You cannot use this function with P-type files, add current files, or pushdown
chaining files.

v Figure 19 shows how the dfsrt function sorts LRECs from one subfile into
another.

dfsrt

158 TPFDF R1 Programming Concepts and Reference

v If you use the dfsrt function in a commit scope, both input and output files must
be opened in the same commit scope. See “Commit Scopes” on page 8 for more
information about commit scopes.

v When you use the dfsrt function to sort large input files, use detac mode for the
output files to ensure optimum system performance.

Examples
The following example sorts LRECs from the subfile file_ptr and puts them into the
file out_file_ptr. The sort key is in a key list structure called keys.
/* set up the keys to use to sort the output file */

df_nbrkeys(&sortkeys, 1);

df_setkey(&sortkeys, 1, offsetof(struct gr95sr, gr95nam),
member_size(struct gr95sr, gr95nam),
0, NULL, 0, DF_UPORG, DF_CHAR);

/* set up the keys to use to select the LRECs in the input file */

df_setkey(&keys, 1, offsetof(struct gr95sr, gr95key),
1, DF_EQ, &pky, 0, DF_UPORG, DF_CHAR);

df_nbrkeys(&keys, 1);

dfkey(in_fileptr, &keys);

/* sort the subfile after extracting matching LRECs */
/* release the input file after the sort */
/* (the key list in the command is the sort key specification) */

dfsrt(out_file_ptr, in_fileptr, DFSRT_RELEASE, &sortkeys);

Related Information
“dfmrg–Merge Logical Records from Two Subfiles” on page 121.

Before

AInput file

After

A

BOutput file (sorted)A

Figure 19. Sorting LRECs from One Subfile into Another. The input file is defined by the input
parameter and the output file is defined by the file parameter.

dfsrt

TPFDF General-Use C Language Functions: Reference 159

dftld–Write a Subfile from Main Storage to DASD
Use this function to do one of the following:
v Write the subfile to DASD
v Ignore the subfile.

Format
void dftld(dft_fil *file, dft_opt options);

void dftld_acc(dft_fil *file, dft_opt access, dft_opt options,
dft_xxx acc);

Access Parameter Values:

DFTLD_ALG
DFTLD_FADDR
DFTLD_ORD

Options Parameter Values:

�

|

DFTLD_CREATE
DFTLD_SKIP

0

acc
is an ordinal number, a file address, or a pointer to an algorithm string that
specifies the subfile you want to access. The type for this parameter is
determined by the value you specify for the access parameter.

access
is the method you want to use to access the subfile. Use one of the following
values:

DFTLD_ALG
specifies that you are providing a pointer to an algorithm argument in the
acc parameter. The acc parameter is of type dft_alg. The TPFDF product
uses the algorithm argument to determine the subfile (ordinal number) that
is to be accessed. Specify the algorithm argument based on the type of
algorithm that is defined in the DSECT or DBDEF macro for the file. If the
DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate
index file defined with the #TPFDBFF algorithm, the TPFDF product uses
the algorithm argument to locate the subfile. See TPFDF Database
Administration for more information about how the TPFDF product uses the
algorithm argument to locate the subfile.

DFTLD_FADDR
specifies that you are providing a file address in the acc parameter. A file
address is in integer format. The acc parameter is of type dft_fad.

dftld

160 TPFDF R1 Programming Concepts and Reference

DFTLD_ORD
specifies that you are providing an ordinal number in the acc parameter.
Ordinal numbers in a file start at zero and are in integer format. The acc
parameter is of type dft_ord.

If the file is partitioned or interleaved, specify the relative ordinal number
within the partition or interleave. If the file is not partitioned or interleaved,
specify the file address compute program (FACE) ordinal number.

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

options
are the processing options for this function. Use the following values:

DFTLD_CREATE
writes the subfile to new pool blocks in DASD. (The default is to use the
same file addresses as before.)

DFTLD_SKIP
discards the blocks that were read from tape or sequential data set with the
dftrd function. The dftld function releases all the blocks, both prime and
chained, that the dftrd function retrieved and placed in main storage.

You can use the DFTLD_SKIP value in a restart situation when a number of
blocks need to be read from tape or sequential data set to reach the point
where a system failure occurred. (All the blocks up to the failure point have
already been written to DASD, so you only need to read them without
saving them again.)

The DFTLD_SKIP value is also useful if you want to end the transfer of
information from tape to disk, or if there are unwanted blocks of data on a
tape or sequential data set.

0 specifies that you do not want to use any processing options.

Entry Requirements
You must successfully read a subfile using the dftrd function before calling the
dftld function.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v Some parameters can be of different types based on the value you specify for
that parameter or a related parameter. In the function format, the type of these
parameters is shown as dft_xxx. See the description of the specific parameter
for information about what type definition to use for that parameter.

v You must always call dftld after calling dftrd. No other function calls are
allowed between the dftld and dftrd calls. Ensure your application checks for

dftld

TPFDF General-Use C Language Functions: Reference 161

any error conditions before calling dftld. During dftrd processing, if an error
occurs that causes SW00RTN to be nonzero, invoking dftld is treated as an
incorrect command sequence.

v The dftld function rebuilds the B+Tree index for B+Tree files.

v Because the dftld function requires a significant amount of system resources,
do not use this function in a commit scope. See “Commit Scopes” on page 8 for
more information about commit scopes.

Examples
The following example writes a subfile, specified in alg_ptr, to new pool blocks in
DASD. It ignores any blocks that were read from tape by a dftrd.
dft_fil *file_ptr;
dft_alg *alg_ptr;...
dftld_acc(file_ptr, DFTLD_ALG, DFTLD_SKIP | DFTLD_CREATE, alg_ptr);

Related Information
v “dftrd–Read a Subfile from an Input Tape to Main Storage” on page 166

v “dftlg–Write a File or Subfile to Tape” on page 163.

dftld

162 TPFDF R1 Programming Concepts and Reference

dftlg–Write a File or Subfile to Tape
Use this group of functions to write a file, or part of a file, to a real-time tape, a
general tape, or a sequential data set.

Format
void dftlg(dft_fil *file, dft_opt options, dft_tpn *tape);

void dftlg_acc(dft_fil *file, dft_opt access, dft_opt options,
dft_tpn tape, dft_xxx acc);

void dftlg_inc(dft_fil *file, dft_opt options, dft_tpn *tape,
dft_idl *inc_list);

void dftlg_acc_inc(dft_fil *file, dft_opt access, dft_opt options,
dft_tpn tape, dft_xxx acc, dft_idl *inc_list);

Access Parameter Values:

DFTLG_ALG
DFTLG_FADDR
DFTLG_ORD

Options Parameter Values:

�

|

DFTLG_DELETE
DFTLG_FULLFILE
DFTLG_INITIALIZE

0

acc
is an ordinal number, a file address, or a pointer to an algorithm string that
specifies the subfile you want to access. The type for this parameter is
determined by the value you specify for the access parameter.

access
is the method you want to use to access the subfile. Use one of the following
values:

DFTLG_ALG
specifies that you are providing a pointer to an algorithm argument in the
acc parameter. The acc parameter is of type dft_alg. The TPFDF product
uses the algorithm argument to determine the subfile (ordinal number) that
is to be accessed. Specify the algorithm argument based on the type of
algorithm that is defined in the DSECT or DBDEF macro for the file. If the
DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate
index file defined with the #TPFDBFF algorithm, the TPFDF product uses
the algorithm argument to locate the subfile. See TPFDF Database
Administration for more information about how the TPFDF product uses the
algorithm argument to locate the subfile.

dftlg

TPFDF General-Use C Language Functions: Reference 163

DFTLG_FADDR
specifies that you are providing a file address in the acc parameter. A file
address is in integer format. The acc parameter is of type dft_fad.

DFTLG_ORD
specifies that you are providing an ordinal number in the acc parameter.
Ordinal numbers in a file start at zero and are in integer format. The acc
parameter is of type dft_ord.

If the file is partitioned or interleaved, specify the relative ordinal number
within the partition or interleave. If the file is not partitioned or interleaved,
specify the file address compute program (FACE) ordinal number.

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

inc_list
is a pointer to a list of file IDs that you want to be included in the action of the
function.

options
are the processing options for this function. Use the following values:

DFTLG_DELETE
deletes all the LRECs in the DASD file after the records are written to tape
or sequential data set. Any previously used blocks are returned to pool.

DFTLG_FULLFILE
writes LRECs from the whole input file (not from a single subfile) to tape or
sequential data set.

DFTLG_INITIALIZE
deletes all the LRECs in the DASD file after the records are written to tape
or sequential data set. Any previously used blocks are returned to pool,
except the prime block.

0 specifies that you do not want to use any processing options.

tape
is a pointer to a character array holding the 3-character tape name.

Entry Requirements
None.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v Some parameters can be of different types based on the value you specify for
that parameter or a related parameter. In the function format, the type of these
parameters is shown as dft_xxx. See the description of the specific parameter
for information about what type definition to use for that parameter.

dftlg

164 TPFDF R1 Programming Concepts and Reference

v After opening a file, if you use fullfile processing to access or update records,
you must continue to use fullfile processing on any subsequent functions when
available until the file is closed. Accessing or updating subfiles using fullfile
processing cannot be mixed with functions that access or update records without
using fullfile processing.

v The dftlg function does not write the B+Tree index information to tape because it
is rebuilt when the B+Tree data file is restored.

v If you specify the DFTLG_FULLFILE value and the end-of-file indicator is set,
you cannot issue additional TPFDF functions until the file is closed. However, you
can specify the DFCLS_REUSE option on the dfcls function. See “Identifying
Return Indicators and Errors” on page 13 for information about the end-of-file
indicator.

v If you use the dftlg function in a commit scope, a rollback of the commit scope
will not restore the contents or the position of the tape. See “Commit Scopes” on
page 8 for more information about commit scopes.

Examples
v The following example writes a complete file to tape. A pointer to the 3-character

tape name is in tape_name.
dft_tpn *tape_name;
dft_fil *file_ptr;...
dftlg(file_ptr, 0, tape_name);

v The following example writes a subfile, specified in alg_ptr to tape. A pointer to
the tape name is in tape_name. It deletes LRECs in the subfile after the write.
dft_tpn *tape_name;
dft_alg *alg_ptr;
dft_fil *file_ptr;...
dftlg(file_ptr, DFTLD_ALG, DFTLG_INITIALIZE, tape_name, alg_ptr);

Related Information
v “dftld–Write a Subfile from Main Storage to DASD” on page 160

v “dftrd–Read a Subfile from an Input Tape to Main Storage” on page 166.

dftlg

TPFDF General-Use C Language Functions: Reference 165

dftrd–Read a Subfile from an Input Tape to Main Storage
Use this function to read a subfile from an input tape or sequential data set to main
storage.

Format
void dftrd(dft_fil *file, dft_tpn *tape);

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

tape
is a pointer to a variable containing the 3-character symbolic tape name or
sequential data set.

Entry Requirements
None.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v The dftrd function reads one subfile at a time. After you call the dftrd function,
you must then call the dftld function before reading another subfile. (You can
use the DFTLD_SKIP value with dftld to ignore the subfile.)

v If you use the dftrd function in a commit scope, a rollback of the commit scope
will not restore the position of the tape. See “Commit Scopes” on page 8 for more
information about commit scopes.

Examples
The following example reads a subfile from tape to main storage. A pointer to the
3-character tape name is in tape_name.
dft_tpn *tape_name;
dft_fil *file_ptr;...
dftrd(file_ptr, tape_name);

Related Information
v “dftld–Write a Subfile from Main Storage to DASD” on page 160

v “dftlg–Write a File or Subfile to Tape” on page 163.

dftrd

166 TPFDF R1 Programming Concepts and Reference

dfuky–Generate a Unique Key for Use in Logical Records
Use this function to generate a unique key in the SW00SR slot for the subfile.

Format
char *dfuky(dft_fil *file);

file
is a pointer to the base address of the SW00SR slot (defined in c$sw00sr.h) of
the subfile that you want to access and is returned by the dfopn function.

Entry Requirements
None.

Normal Return
A pointer to the 4-byte unique key value returned by the TPFDF product.

Error Return
v See “Identifying Return Indicators and Errors” on page 13 for information about

how to check the error indicators.

v A zero value in the SW00UKY field of the SW00SR indicates an error.

Programming Considerations
v The type definitions (for example, dft_fil, dft_ref, and dft_kyl) are defined in

the c$cdfapi.h header file.

v The value that is returned in the SW00UKY field of the SW00SR is only valid
immediately after the dfuky function is processed. Subsequent TPFDF functions
reuse and overwrite this field.

v In order to use the unique key feature, the file header must be expanded by 18
bytes.

v See “Grouping LRECs Together Using the Unique Key Facility” on page 6 for
more information about using unique keys.

Examples
The following example generates a unique key value for the file. The value is
placed in the SW00UKY field in the SW00SR slot.
dft_fil *file_ptr;...
dfuky(file_ptr);

The following is an example of a header expanded by 18 bytes so that the unique
key feature can be used.
IRXXHDR& DS CL16 STANDARD FILE HEADER

DS CL10 STANDARD TPFDF HEADER
DS CL18 UNIQUE KEY HEADER EXTENSION

Related Information
“dfkey–Activate a Key List” on page 115.

dfuky

TPFDF General-Use C Language Functions: Reference 167

member_size–Calculating the Size of a Structure Member
Use this function to calculate the size of any member of a structure.

Format
unsigned int member_size(s, m);

m is the member name.

s is the structure or union name.

Entry Requirements
None.

Normal Return
The size (in bytes) of the member.

Error Return
None.

Programming Considerations
None.

Examples
The following example defines various numbers:
#define MEM_NUM_SIZE member_size(struct ir00df,lrec.rnum.ir00num)
#define MAX_NAME_SIZE member_size(struct ir00df,lrec.rnum.ir00nam)
#define PMNT_SIZE member_size(struct ir00df,lrec.rnum.ir00pay)

Related Information
None.

member_size

168 TPFDF R1 Programming Concepts and Reference

TPFDF Restricted C Language Functions: Reference

The functions in this section are TPFDF internal functions used to perform system
functions. There is no guarantee that the programming interface to these functions
will not change. The use of these functions should be restricted to minimize the
effect of any changes.

The following contains an alphabetic listing of the TPFDF restricted C language
functions. The description of each function includes the following information:

Format: Provides the function prototype and a description of each parameter and
variable.

Entry Requirements: Lists any special conditions that must be true when you use
the function.

Normal Return: Lists what is returned when the function has completed processing
successfully.

Error Return: Lists what is returned when the function cannot complete processing
successfully.

Programming Considerations: Lists any additional considerations for using the
function, including any restrictions or limitations.

Examples: Provides one or more examples that show you how to code the
function.

Related Functions: Lists where to find information about related functions.

© Copyright IBM Corp. 1997, 2001 169

|
|

dftab–Access Database Definition Tables

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use the following functions to access the database definition (DBDEF) tables.

Format
SW02SR_PTR dftab(dft_opt opt,

dft_fid *id_ptr, dft_fvn fvn,
dft_rct rct, SW02SR_PTR dfssu_ptr);

SW02SR_PTR dftab_id(dft_fid *id_ptr,
dft_fvn fvn, SW02SR_PTR dfssu_ptr);

SW02SR_PTR dftab_rct(dft_rct rct,
SW02SR_PTR dfssu_ptr);

SW02SR_PTR dftab_base();

opt
is the processing option. Use one of the following values:

DFTAB_ID
locates the database definition (DBDEF) table for the specified file identifier
(ID). If you specify this value, specify 0 for the rct parameter.

DFTAB_RCT
locates the DBDEF table for the specified record type. Record types are
numeric values defined in the TPF SYSEQC macro or ALCS DXCURID
macro. If you specify this value, specify NULL for the id_ptr parameter and
0 for the fvn parameter.

DFTAB_BASE
locates the base of the DBDEF index table. If you specify this value, specify
NULL for the id_ptr parameter and 0 for the fvn and rct parameters.

id_ptr
is a pointer to a 2-byte field containing the file ID.

fvn
is the file version number.

rct is the record type.

dfssu_ptr
is a pointer to a work area for subsystem user (SSU) information. This applies
only to a multiple database function (MDBF) environment in a TPF system. The
work area must be at least 381 bytes.

If you do not have an MDBF environment, specify NULL for this parameter.

Entry Requirements
None.

Normal Return
v If you specify the dftab_id function or the DFTAB_ID value, a pointer to the

DBDEF table for this file ID and file version number is returned.

v If you specify the dftab_rct function or the DFTAB_RCT value a pointer to the
DBDEF table for this record type is returned.

dftab

170 TPFDF R1 Programming Concepts and Reference

v If you specify the dftab_base function or the DFTAB_BASE value a pointer to the
DBDEF index table is returned.

Error Return
NULL.

Programming Considerations
You can use the dftab function with the appropriate value specified for the opt
parameter or you can use the dftab_id, dftab_rct, or dftab_base function to
accomplish the same task.

Examples
The following code checks the existence of database definitions with a file ID of AB
in a non-MDBF environment.
#include <c$cdf.h>

if (dftab_id("AB",0,NULL) == NULL) {
wtopc_text("ID not defined in DBDEF");

}

Related Information
None.

dftab

TPFDF Restricted C Language Functions: Reference 171

dftab

172 TPFDF R1 Programming Concepts and Reference

Part 3. Assembler Macros

TPFDF General-Use Assembler Macros: Reference 175
DBADD–Add a Logical Record to a Subfile 176
DBADR–Provide the File Address of a Prime Block 190
DBCKP–Checkpoint a Subfile 196
DBCLR–Allow ECB Exit with Open Files 199
DBCLS–Close a Subfile . 200
DBCPY–Copy a Subfile . 206
DBCRE–Create a Subfile. 211
DBDEL–Delete One or More Logical Records 215
DBDIX–Delete Index References to a Subfile 229
DBDSP–Display Logical Records from a Subfile 232
DBFRL–Ensure an ECB Data Level Is Free 242
DBIDX–Create an Index Reference 243
DBIFB–Check a SW00SR Slot 246
DBKEY–Activate a Key List . 249
DBMOD–Perform or Indicate Logical Record Modifications 251
DBMRG–Merge Logical Records from Two Subfiles 256
DBOPN–Open a Subfile . 262
DBRED–Read a Logical Record 274
DBREP–Replace a Logical Record with Another Logical Record 288
DBRET–Retain a Logical Record Position 292
DBRST–Restore a Subfile . 295
DBSETK–Setting Up a Key in a Key List 300
DBSPA–Create Work Space 306
DBSRT–Sort a Subfile. 309
DBTLD–Write a Subfile from Main Storage to DASD 315
DBTLG–Write a File or Subfile to Tape. 320
DBTRD–Read a Subfile from an Input Tape to Main Storage 325
DBUKY–Generate a Unique Key for Use in Logical Records. 327

TPFDF Restricted Assembler Macros: Reference 329
BLKSZ–Convert a Block Type to a Block Size 330
DBCNT–Calculate the Length of an Assembler Symbol 334
DBTAB–Access Database Definition (DBDEF) Tables 335
DFCAS–TPFDF Case Setup in Fast-link Segments 338
DFCLIB–C Language Interface 340
DFDDA–Distributed Data Access Support 343
DFDLAY–Delay Processing Conditionally 344
DFGDS–General Data Set Support User Exit 345
DFGETC–Get Working Storage Block 346
DFGLVL–Get Resource Level 348
DFGPNL–Get Calling Program Address 349
DFIFB–Check a SW00SR Slot. 350
DFLNK–TPFDF Fast Linkage 352
DFSSU–Handling DBDEF Subtables 354
DFTDC–Dialogue Control Facility Support User Exit 357
DFUEX–Define TPFDF User Exit Point 358
FILTP–Determine File Address Type 359
FMSGS–Set Up Output Messages 361
HELPA–Help Message Text . 364

© Copyright IBM Corp. 1997, 2001 173

||

174 TPFDF R1 Programming Concepts and Reference

TPFDF General-Use Assembler Macros: Reference

The following contains an alphabetic listing of the TPFDF assembler macros that
you can use in application programs. The description of each macro includes the
following information:

Format: Provides a syntax (railroad track) diagram for the macro and a description
of each parameter and variable. See “How to Read the Syntax Diagrams” on
page xii for more information about syntax diagrams.

Entry Requirements: Lists any special conditions that must be true when you use
the macro.

Normal Return: Lists what is returned when the macro has completed processing
successfully.

Error Return: Lists what is returned when the macro cannot complete processing
successfully.

Programming Considerations: Lists any additional considerations for using the
macro, including any restrictions or limitations.

Examples: Provides one or more examples that show you how to code the macro.

Related Macros: Lists where to find information about related macros.

© Copyright IBM Corp. 1997, 2001 175

|
|
|

DBADD–Add a Logical Record to a Subfile
Use this macro to do the following:
v Add a fixed- or variable-length logical record (LREC) to a subfile
v Add an empty LREC to a subfile
v Add a subLREC to the current extended LREC
v Add an extended LREC to a subfile
v Add an extended LREC and a subLREC to a subfile.

Format

�� DBADD REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

, NEWLREC=newlrec
NULLREC=nullrec
SUBLREC=sublrec
USRLREC=usrlrec
SUBLREC=sublrec,USRLREC=usrlrec

�

�
,AFTER
,BEFORE

,ALG=algarg
,FADDR=faddr
,ORD=ordnum

,NOCHK

,CHKA=rcc
,CHKA=rcc,NOCHK

,ERROR=spmlbl
,ERRORA=asmlbl

,FAST
�

�
,INDEX

,INDEX=NOHOLD

,INDEX=HOLD ,INLINE ,INTERLV=intrlvnum
,PARTITN=partitnum

�

�

�

,
(1)

,KEYn=(Key Subparameters)
,KEYLIST=keyloc
,NOKEY

,LRECNBR=lrecnum ,NODUMP
�

�
,NOPGM ,PATH=pathnum

�

�
,PKY=primarykey ,REG=reg ,REGD=regd ,SUFFIX=char ,UNIQUE

�

�
,USEBTREE

(1)

,UP
,DOWN
,NOORG

��

Notes:

1 See “Specifying File Organization with Keyn Parameters” on page 23 for
information about the rules for using the KEYn parameters and file
organization parameters together.

DBADD

176 TPFDF R1 Programming Concepts and Reference

Key Subparameters:

PKY=primarykey
,C=condition

R =fldname ,D=dynmask,C=condition
T ,M=mask,C=condition

,S=searcharg
,L=length ,C=condition

R = label1 ,D=dynmask,C=condition
T D/absval ,M=mask,C=condition

literal ,S=searcharg,L=length
flddisp ,C=condition

,UP
,DOWN
,NOORG

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

NEWLREC=newlrec
adds a new fixed-length or variable-length LREC, where newlrec is one of the
following:

v A register that contains the address of the LREC to add

v A label in one of the following formats:

newlrec
is the label of a field that contains the LREC.

A/newlrec
is the label of a 4-byte field that contains the storage location of the
LREC.

NULLREC=nullrec
adds an empty LREC to a subfile, where nullrec is one of the following:

v A register that contains the address of a 2-byte field that contains the length
of the LREC

v A label in one of the following formats:

DBADD

TPFDF General-Use Assembler Macros: Reference 177

nullrec
is the label of a 2-byte field that contains the length of the LREC.

A/nullrec
is the label of a 4-byte field that contains the storage location of the
2-byte length of the LREC.

If you specify this parameter, you must also specify the primary key (LREC ID)
of the empty LREC with the PKY parameter.

Notes:

1. Do not use the NULLREC parameter on files that are UP or DOWN
organized because it can destroy the organization of the file.

2. NULLREC is most suitable for W-type files.

3. NULLREC is not allowed for B+Tree files.

SUBLREC=sublrec
adds a subLREC to the current extended LREC or to the extended LREC
specified by the USRLREC parameter, where sublrec is one of the following:

v A register that contains the address of the subLREC

v A label in one of the following formats:

sublrec
is the label of a field that contains the subLREC.

A/sublrec
is the label of a 4-byte field that contains the storage location of the
subLREC.

If you specify this parameter for an LREC that contains existing subLRECs,
the subLREC is added immediately before the existing subLRECs. See
“Using Extended Logical Records” on page 4 for more information about how
subLRECs are added to an extended LREC.

USRLREC=usrlrec
adds an extended LREC to the subfile, where usrlrec is one of the following:

v A register that contains the address of the userLREC

v A label in one of the following formats:

usrlrec
is the label of a field that contains the userLREC.

A/usrlrec
is the label of a 4-byte field that contains the storage location of the
userLREC.

AFTER
adds the new LREC immediately after the current LREC.

BEFORE
adds the new LREC immediately before the current LREC.

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based

DBADD

178 TPFDF R1 Programming Concepts and Reference

on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

FADDR=faddr
identifies the subfile that you want to access, where faddr is one of the
following:

faddr
is the label of a 4-byte field that contains the file address of the prime block
of the subfile.

A/faddr
is the label of a 4-byte field that contains the storage address of the file
address of the prime block of the subfile.

ORD=ordnum
identifies the subfile that you want to access, where ordnum is one of the
following:

ordnum
is the label of a 4-byte field that contains the ordinal number of the subfile.

A/ordnum
is the label of a 4-byte field that contains the storage address of the ordinal
number of the subfile.

If the file is partitioned or interleaved, specify the relative ordinal number within
the partition or interleave. If the file is not partitioned or interleaved, specify the
file address compute program (FACE) ordinal number.

CHKA=rcc
checks the record code check (RCC) value in each block, where rcc is the label
of a 1-byte field that contains the RCC character.

NOCHK
specifies that you do not want to check the record code check (RCC) value of
the blocks.

DBADD

TPFDF General-Use Assembler Macros: Reference 179

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

FAST
used for migration purposes only; use the INLINE or NOKEY parameter instead.
If you specify this parameter, the NOKEY parameter is implemented; that is,
any currently active keys are deactivated.

INDEX
adds an LREC to a detail subfile or intermediate index subfile where the index
structure does not yet exist. If you specify this parameter, the algorithm defined
for the new subfile must be #TPFDBFF.

When you specify this parameter, the subfile is created and indexed by adding
an index LREC in the index file referencing the subfile.

INDEX=HOLD
potentially holds any index files that reference the subfiles you are accessing
and prevents two or more application programs from modifying the index files at
the same time. Holding occurs if bits 4 and 5 in the &SW00OP2 global set
symbol in the DSECT macro, or the OP2= parameter in the DBDEF macro,
have been set appropriately. Subsequent TPFDF calls by other ECBs to modify
the index file will not occur until the index file is no longer held. If more than
one application can update the same index file, you must specify this parameter
to ensure the updates are synchronized.

See TPFDF Database Administration for information about how bits 4 and 5 in
the &SW00OP2 global set symbol in the DSECT macro, or the OP2= parameter
in the DBDEF macro, affect hold processing.

INDEX=NOHOLD
does not hold the index files that reference the subfiles you are accessing.

INLINE
provides inline processing for this macro. You cannot use this parameter with
key parameters or with extended LRECs. Any keys that are active from
previous TPFDF macros are deactivated; that is, previous key arguments are
set to zero.

INTERLV=intrlvnum
specifies the number of the interleave that you want to use, where interlvnum is
one of the following:
v A register that contains the address of the interleave number
v An absolute value representing the interleave number
v The label of a 2-byte field that contains the interleave number.

If you specify this parameter, the maximum interleave number must be defined
in the DSECT or DBDEF macro. See TPFDF Database Administration for more
information about interleaves.

DBADD

180 TPFDF R1 Programming Concepts and Reference

PARTITN=partitnum
specifies the number of the partition that you want to use, where partitnum is
one of the following:
v A register that contains the address of the partition number
v An absolute value representing the partition number
v The label of a 2-byte field that contains the partition number.

If you specify this parameter, the number of partitions and the end ordinal must
be defined in the DSECT or DBDEF macro. See TPFDF Database
Administration for more information about partitions.

Note: Do not use this parameter with the #TPFDB0F algorithm. This algorithm
calculates the partition used from the algorithm argument. See TPFDF
Database Administration for more information about algorithms.

KEYn
specifies the key parameters that you want to use with this macro, where n is a
number from 1–6. You can specify as many as six KEYn parameters and they
must be specified in sequential order beginning with 1. That is, you cannot code
a KEY2 parameter without a KEY1 parameter, a KEY3 parameter without the
KEY1 and KEY2 parameters, and so on.

If you use these parameters, you must also specify the file organization of the
keys. See “Specifying File Organization with Keyn Parameters” on page 23 for
more information about how to do this. Use one or more of the following
subparameters with the KEYn parameter:

PKY=primarykey
specifies a value that will be compared against the primary key of an LREC,
where primarykey is a 1-byte immediate value; for example:
... KEY1=(PKY=#RR00K80)

This has the same effect as:
... KEY1=(R=RR00KEY,S=#RR00K80)

R specifies a field in the LREC to be compared with the search argument
specified with the S subparameter or to be tested against the mask
specified with the M or D subparameter.

T specifies a field in the subLREC of an extended LREC to be compared with
the search argument specified with the S subparameter or to be tested
against the mask specified with the M or D subparameter.

fldname
is the name of a field defined in the DSECT for the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,S=EBW000)

label1
is a 2-byte field containing the displacement into the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=EBX010,S=EBW000,L==H’4’)

D/absval
specifies the displacement into the LREC of the field, where absval is an
absolute value; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=D/2,S=EBW000,L=L’GR00NAM,UP)

You can also specify the absolute value implicitly; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=D/GR00NAM-GR00REC,S=EBW000,L=L’GR00NAM,UP)

DBADD

TPFDF General-Use Assembler Macros: Reference 181

literal
is a halfword literal containing the displacement into the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R==H’2’,S=EBW000,L==H’4’)

flddisp
is the displacement off the field of the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD+2,S=EBW000,L==H’4’)

or
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD+L’GR00FLD,S=EBW000,L==H’4’)

C=condition
specifies the condition to be used when comparing fields in the logical
record (specified with the R subparameter) with the search argument
(specified with the S or PKY subparameter) or with the bit mask (specified
with the M or D subparameter).

If you specify the S or PKY subparameter, use one of the following values:

Value Condition
EQ Equal (this is the default)
E Equal
NE Not equal
GE Greater than or equal
LE Less than or equal
GT Greater than
LT Less than
H High
L Low
NH Not high
NL Not low.

If you specify the M or D subparameter, use one of the following values:

Value Condition
Z Zeros
O Ones
M Mixed
NZ Not zeros
NO Not ones
NM Not mixed.

D=dynmask
specifies the label of a 1-byte field containing a mask to be tested against
the LREC field specified with the R or T subparameter; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,D=EBW000,C=Z)

M=mask
specifies a mask to be tested against the LREC field specified with the R or
T subparameter; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,M=X’80’,C=Z)

S=searcharg
specifies the search argument to be compared with the LREC field specified
with the R or T subparameter, where searcharg is one of the following:

v A register that contains the address of the search argument

v A literal that represents the search argument

v A label in one of the following formats:

DBADD

182 TPFDF R1 Programming Concepts and Reference

searcharg
is the label of the search argument.

A/searcharg
is the label of a 4-byte field that contains the storage address of the
search argument.

P/searcharg
is the label of a field that contains the search argument in packed
decimal format.

If you specify P/searcharg or a literal in the form of =P"...", the LREC
field and search argument are compared as decimal numbers in packed
format. Otherwise, the LREC field and search argument are compared as
character data.

Note: When you use this parameter, you cannot specify the core block
reference word (CBRW) or file address reference word (FARW) fields
in an ECB.

L=length
specifies the length of the search argument, where length is one of the
following:

v The address of a 2-byte field containing the length of the search
argument

v A 2-byte literal

v An absolute value in the form of L'fldname (for example, L=L'GR92FLD).

The default value is the length of the field specified with the R
subparameter.

UP
specifies that the key field is in ascending order in the subfile.

DOWN
specifies that the key field is in descending order in the subfile.

NOORG
specifies that the key field is in no particular order in the subfile.

KEYLIST=keyloc
specifies a key list that you want to use with this macro, where keyloc is one of
the following:

v A register that contains the address of the key list

v A label in one of the following formats:

keyloc
is a label indicating the address of the key list.

A/keyloc
is the label of a 4-byte field that contains the storage address of the key
list.

See “Setting Up and Using a Key List” on page 26 for information about how to
set up a key list.

NOKEY
deactivates any currently active keys.

DBADD

TPFDF General-Use Assembler Macros: Reference 183

|
|
|

LRECNBR=lrecnum
specifies the sequence number of an LREC that you want to add, where
lrecnum is one of the following:

v A register that contains the address of the LREC number

v An immediate value that represents the LREC number

v A label in one of the following formats:

lrecnum
is the label of a 4-byte field that contains the LREC number.

A/lrecnum
is the label of a 4-byte field that contains the storage address containing
the LREC number.

Notes:

1. Do not use this parameter with files for which default keys are defined.

2. LRECs are numbered in increasing order from the start of the subfile (the
first LREC in the prime block has sequence number 1).

3. If you specify this parameter with active keys, only those LRECs that match
the key conditions are included in the sequence numbering; LRECs that do
not match are ignored.

4. When you specify this parameter, the LREC is added immediately after the
specified LREC.

5. If you specify this parameter for an LREC number that does not exist, the
LREC is not added.

NODUMP
specifies that you do not want the TPFDF product to issue any of the following
system errors while processing this macro:
v DB0100
v DB0102
v DB0117
v DB0123
v DB0138
v DB0140.

See TPFDF Messages (System Error, Online, Offline) for more information
about these system errors.

Note: Using the NODUMP parameter is not recommended because it can
prevent system errors from being issued that indicate a critical problem.

NOPGM
specifies not to change the program stamp in a block when filing it.

PATH=pathnum
specifies the path number for a detail subfile using index support, where
pathnum is the path number or the label of a 2-byte field that contains the path
number. The number of index paths used is defined by your database
administrator. If there is only one index path, do not specify this parameter.

See TPFDF Database Administration for more information about path numbers.

PKY=primarykey
specifies the primary key (LREC ID) of the LREC that you are adding, where
primarykey is one of the following:

v An equate that represents the primary key (for example, PKY=#GR00K80)

DBADD

184 TPFDF R1 Programming Concepts and Reference

|
|

v An explicit term that represents the primary key (for example X'80')

v A label in one of the following formats:

primarykey
is the label of a field that contains the primary key (for example,
PKY=EBW000)

A/primarykey
is the label of a 4-byte field that contains the storage address of the
primary key.

You must specify this parameter if you are:

v Adding an empty LREC using the NULLREC parameter

v Adding an extended LREC using the USRLREC parameter. This primary key
is placed in the zzzzKEY field in the control area of the extended LREC.

REG=register
specifies a register in which to return the address of the current LREC (this
address is contained in SW00SR field SW00REC). You must specify this
parameter for T-type files.

REGD=register
specifies a register in which to return the base address of the userLREC part of
an extended LREC.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

UNIQUE
specifies that the TPFDF product should not add the LREC to the subfile if an
LREC exists with the same key fields.

Notes:

1. If UNIQUE=YES was specified in the DBDEF macro for a file, all DBADD
statements for that file default to UNIQUE.

2. If you specify this option for a file that is not organized (that is, defined as
NOORG), you must do one of the following:

v Define default keys for the file being updated

v Specify an organization using the UP or DOWN parameter

v Ensure the KEYn or KEYLIST parameter was specified with a previous
macro; if not, specify the KEYn or KEYLIST parameter with this macro
call.

If you do not have default keys defined or have active keys when adding a
unique LREC to a file that is not organized, the TPFDF product issues a
system error. Symbol &DB013E in the DBLCL macro controls whether the
TPFDF product returns control to the application program or exits the entry
control block (ECB) after issuing the error. If you set &DB013E to 0, which
is the default setting, the ECB exits. If you set &DB013E to 1, control is
returned to the application program. See TPFDF Installation and
Customization for more information about the DBLCL macro.

USEBTREE
specifies that the B+Tree index is used when adding an LREC to a subfile. You
can use this parameter only on a B+Tree file. Otherwise, this parameter is
ignored by the TPFDF product.

DBADD

TPFDF General-Use Assembler Macros: Reference 185

UP
specifies that the LRECs are organized in the subfile in ascending order of key
fields.

DOWN
specifies that LRECs in the subfile are organized in descending order of key
fields.

NOORG
specifies that the LRECs are organized in the subfile in no particular order.
(NOORG is the default if subfile organization has not been defined in the
DBDEF).

Entry Requirements
v Before you use the AFTER or BEFORE parameter, you must first establish a

current LREC (for example, using the DBRED macro). You can then specify
whether you want to add the new LREC before or after this current LREC by
using the BEFORE or AFTER parameter with the DBADD macro. You can add
any number of LRECs at this point in a subfile without having to reestablish the
current LREC. The last LREC added becomes the current LREC.

v Before using the SUBLREC parameter without the USRLREC parameter, you
must first establish the extended LREC to which you want to add the subLREC
as the current LREC.

Normal Return
The address of the new LREC is placed in the SW00REC field of the SW00SR slot.
If you specify the REG parameter, the address of the new LREC is placed in the
specified register and SW00REC.

Error Return
v See “Identifying Return Indicators and Errors” on page 13 for information about

how to check the error indicators.

v If there are default keys defined in the database definition (DBDEF) and you use
the DBADD macro with an LREC ID that has not been defined as a default key,
a system error is issued.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v You cannot specify six KEYn parameters (KEY1–KEY6) when both of the
following conditions are true:

– The S subparameter is used on all six keys

DBADD

186 TPFDF R1 Programming Concepts and Reference

– The length of all keys is greater than 1 (either with an explicit length using the
L subparameter or an implied length from the field used in the R or T
subparameter).

If you need this type of key definition, you must use a key list.

v Any active keys are ignored when you use the #TPFDB0D algorithm.

v The following rules determine the value of the record code check (RCC) value
used when the TPFDF product creates a new subfile:

– If you do not specify the NOCHK parameter, the TPFDF product creates new
subfiles with a random RCC value.

– If you specify the NOCHK parameter without the CHKA parameter, the TPFDF
product creates new subfiles without an RCC value.

– If you specify both the NOCHK and CHKA parameters, the TPFDF product
creates new subfiles with the RCC value specified with the CHKA parameter.

v Do not use the following parameters for B+Tree files:
– AFTER
– BEFORE
– FAST
– KEYn
– KEYLIST
– LRECNBR
– NULLREC

v Do not use the FAST parameter with extended LRECs. That is, do not specify
this parameter with the SUBLREC or USRLREC parameters.

v Do not use the following parameters with the SUBLREC parameter:
– AFTER
– BEFORE
– UNIQUE

v If a file is UP or DOWN organized and does not have default keys defined in the
DBDEF macro, include the KEYn or KEYLIST parameters to preserve the
organization of the LRECs.

v If a file has default keys defined in the DBDEF, do not specify the KEYn or
KEYLIST parameters with the DBADD macro; the TPFDF product inserts the
LREC in the correct place in the subfile. Also, any keys that are active from a
previous TPFDF macro will no longer be active after the DBADD macro call.

v When DBADD is coded for an add current file, the following considerations apply:

– KEYn and KEYLIST parameters cannot be specified on the DBADD macro.

– If keys are active, they will not be used to determine the location of the record
being added to the subfile. However, the keys will remain active for any
subsequent macros.

See TPFDF Database Administration for more information about add current files.

v To add an LREC when no subfile is defined, the TPFDF product obtains a prime
block from pool and inserts the LREC into it. It puts the address of this prime
block in the SW00FAD field of the SW00SR slot and the record code check into
the SW00WCC field.

v If adding an LREC to a subfile block causes the block to overflow, the TPFDF
product gets a new block and chains it to the old one.

Note: How LRECs are added to a subfile depends on the following factors:

DBADD

TPFDF General-Use Assembler Macros: Reference 187

– For add current files, the LREC is added to the end of the subfile. See
TPFDF Database Administration for more information about add current
files.

– For pushdown chaining files, the LREC is added as the last LREC in
the prime block of the subfile. See TPFDF Database Administration for
more information about pushdown chaining files.

– For P-type files, a new block is added after the current block or at the
end of the subfile.

– If you specify the AFTER or BEFORE parameter, the LREC is added
after or before the current LREC.

– If you have active keys (which can include default keys coded on the
DBDEF macro for the file), the LREC is added to the subfile at the
specified location.

– In all other cases, the LREC is added at the end of the subfile.

v You can use the NEWLREC parameter with a P-type file to specify the data
contents of the new block.

v You can use the NULLREC parameter with a P-type file to add an empty block,
chained to the current block. You can then add data to this block using the
DBMOD macro.

v Use the DBADD macro with the NULLREC parameter specified to create a work
area for a T-type LREC in the underlying W-type file. Use the DBDEL macro to
delete the T-type LREC from the underlying W-type file before exiting the
application program.

v If you use the #TPFDB0D algorithm, you must specify one of the following
parameters:
– AFTER
– BEFORE
– LRECNBR

v If a current LREC does not exist because a previous read operation with keys did
not find an LREC matching the search criteria, and the subfile does not have
default keys, specifying the AFTER or BEFORE parameter adds the new LREC
to the target position of the unsuccessful read operation.

Examples
v The following example shows how to store the ECB work areas in two T-type

files, RTEWSR and RTEXSR respectively. This frees the work areas for other
uses.

Each LREC contains 115 bytes made up of:
– Size field (2 bytes)
– LREC ID (1 byte)
– File reference (8 bytes)
– Data from work area (104 bytes).

The files are set up by coding:
DBADD REF=RTEWSR,REG=R4,NULLREC==AL2(115)
MVC 11(104,R4),EBW000
DBADD REF=RTEXSR,REG=R4,NULLREC==AL2(115)
MVC 11(104,R4),EBX000

v The following example shows how you can add an LREC to a subfile using an
algorithm argument. In this example, EBW001 contains the algorithm argument
and EBX000 points to the LREC that will be added.
DBADD REF=GR45DF,ALG=EBW001,NEWLREC=EBX000

DBADD

188 TPFDF R1 Programming Concepts and Reference

|
|
|
|

v The following example adds an empty LREC that has the length of field
GR23L80. The primary key is the value defined for #GR23K80.
DBADD REF=GR23DF,NULLREC==AL2(L’GR23L80),PKY=#GR23K80

v The following example adds a subLREC and a userLREC.
DBADD REF=GR39DF,USRLREC=GR39REC,SUBLREC=A/EBW000,PKY=#GR39K80

v The following example shows the use of the SUFFIX parameter.
GR25DF REG=R6,SUFFIX=X
DBOPN REF=GR25DF,REG=R6,SUFFIX=X
DBADD REF=GR25DF,SUFFIX=X, *

KEY1=(PKY=#GR25K80,UP), *
KEY2=(R=GR25ALCX,S=GR25ALC,DOWN)

v The following example adds an LREC to a detail subfile.
DBADD REF=GR23DF,INDEX,ALG=EBW044

This has the same effect as the following sequence of macros:
DBCRE REF=GR23DF
DBIDX REF=GR23DF,ALG=EBW0044
DBADD REF=GR23DF

Related Information
v “DBDEL–Delete One or More Logical Records” on page 215

v “DBMOD–Perform or Indicate Logical Record Modifications” on page 251

v “DBOPN–Open a Subfile” on page 262

v “DBRED–Read a Logical Record” on page 274.

DBADD

TPFDF General-Use Assembler Macros: Reference 189

DBADR–Provide the File Address of a Prime Block
Use this macro to get the file address and ordinal number of a prime block in a
fixed file.

You can also use the DBADR macro to specify a range of ordinals to be used in
subsequent fullfile processing.

Format

�� DBADR REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

, �

� ALG=algarg
,BEGORD=bordnum
,ENDORD=eordnum

ORD=ordnum
,BEGORD=bordnum
,ENDORD=eordnum

BEGALG=begalgstr
ENDALG=endalgstr
BEGALG=begalgstr,ENDALG=endalgstr
BEGORD=bordnum
ENDORD=eordnum

,WRAPAROUND
�

�
,ERROR=spmlbl
,ERRORA=asmlbl

,INTERLV=intrlvnum
,PARTITN=partitnum

,NODUMP ,NOPGM
�

�
,PATH=pathnum ,SUFFIX=char

��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

DBADR

190 TPFDF R1 Programming Concepts and Reference

|
|

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

ORD=ordnum
identifies the subfile that you want to access, where ordnum is one of the
following:

ordnum
is the label of a 4-byte field that contains the ordinal number of the subfile.

A/ordnum
is the label of a 4-byte field that contains the storage address of the ordinal
number of the subfile.

If the file is partitioned or interleaved, specify the relative ordinal number within
the partition or interleave. If the file is not partitioned or interleaved, specify the
file address compute program (FACE) ordinal number.

BEGALG=begalgstr
calculates the begin ordinal number for use in a subsequent macro that
specifies the FULLFILE parameter, where begalgstr is one of the following:

begalgstr
is the label of a field that contains the algorithm string used to calculate the
ordinal number.

A/begalgstr
is the label of a 4-byte field that contains the storage address of the
algorithm string used to calculate the ordinal number.

DBADR

TPFDF General-Use Assembler Macros: Reference 191

ENDALG=endalgstr
calculates the end ordinal number for use in a subsequent macro that specifies
the FULLFILE parameter, where endalgstr is one of the following:

endalgstr
is the label of a field that contains the algorithm string used to calculate the
ordinal number.

A/endalgstr
is the label of a 4-byte field that contains the storage address of the
algorithm string used to calculate the ordinal number.

BEGORD=bordnum
specifies the begin ordinal number for use in a subsequent macro that specifies
the FULLFILE parameter, where bordnum is one of the following:

bordnum
is the label of a field that contains the ordinal number.

A/bordnum
is the label of a 4-byte field that contains the storage address of the ordinal
number.

If bordnum is specified as SW00WR2, the begin ordinal number is set to the
ordinal of the prime block of the subfile specified using the ORD or ALG
parameter with the DBADR macro call or the previous and corresponding
DBOPN macro call.

Note: This parameter is provided only for migration purposes. Use the
BEGALG parameter to specify the begin ordinal number.

ENDORD=eordnum
specifies the end ordinal number for use in a subsequent macro that specifies
the FULLFILE parameter, where eordnum is one of the following:

eordnum
is the label of a field that contains the ordinal number.

A/eordnum
is the label of a 4-byte field that contains the storage address of the ordinal
number.

If eordnum is specified as SW00WR2, the end ordinal number is set to the
ordinal of the prime block of the subfile specified using the ORD or ALG
parameter with the DBADR macro call or the previous and corresponding
DBOPN macro call.

Note: This parameter is provided only for migration purposes. Use the
ENDALG parameter to specify the end ordinal number.

WRAPAROUND
reads LRECs from the start of the file to the end until it has read the whole file.
Use this parameter value only when you intend to use fullfile processing.

For example, consider a file that contains five subfiles and the current subfile is
number 3. If you specify the WRAPAROUND parameter, and then call a
DBRED macro with the FULLFILE parameter, LRECs would be read from the
subfiles in the order: 3, 4, 0, 1, 2.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing

DBADR

192 TPFDF R1 Programming Concepts and Reference

|
|
|
|

|
|
|
|

the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

INTERLV=intrlvnum
specifies the number of the interleave that you want to use, where interlvnum is
one of the following:
v A register that contains the address of the interleave number
v An absolute value representing the interleave number
v The label of a 2-byte field that contains the interleave number.

If you specify this parameter, the maximum interleave number must be defined
in the DSECT or DBDEF macro. See TPFDF Database Administration for more
information about interleaves.

PARTITN=partitnum
specifies the number of the partition that you want to use, where partitnum is
one of the following:
v A register that contains the address of the partition number
v An absolute value representing the partition number
v The label of a 2-byte field that contains the partition number.

If you specify this parameter, the number of partitions and the end ordinal must
be defined in the DSECT or DBDEF macro. See TPFDF Database
Administration for more information about partitions.

Note: Do not use this parameter with the #TPFDB0F algorithm. This algorithm
calculates the partition used from the algorithm argument. See TPFDF
Database Administration for more information about algorithms.

NODUMP
specifies that you do not want the TPFDF product to issue any of the following
system errors while processing this macro:
v DB0100
v DB0102
v DB0117
v DB0123
v DB0138
v DB0140.

See TPFDF Messages (System Error, Online, Offline) for more information
about these system errors.

Note: Using the NODUMP parameter is not recommended because it can
prevent system errors from being issued that indicate a critical problem.

NOPGM
specifies not to change the program stamp in a block when filing it.

PATH=pathnum
specifies the path number for a detail subfile using index support, where
pathnum is the path number or the label of a 2-byte field that contains the path

DBADR

TPFDF General-Use Assembler Macros: Reference 193

|
|

number. The number of index paths used is defined by your database
administrator. If there is only one index path, do not specify this parameter.

See TPFDF Database Administration for more information about path numbers.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

Entry Requirements
If you specify the BEGORD or ENDORD parameter without specifying the ORD or
ALG parameter, you must specify the ORD or ALG parameter on the previous and
corresponding DBOPN macro call or a system error will occur.

Normal Return
v The DBADR macro does not change the current LREC even if you specify a

different value for the ALG parameter with the DBADR macro from that which
was used to locate the LREC.

v If you specify the ORD or ALG parameter, SW00WR1 is set to the file address of
the corresponding prime block and SW00WR2 is set to the ordinal number of the
corresponding prime block. Otherwise, the SW00WR1 and SW00WR2 setting
cannot be predicted.

If you specify the BEGALG or BEGORD parameter, SW00ORD is set to the
ordinal number of the corresponding prime block. Otherwise, SW00ORD is set to
zero and subsequent fullfile processing occurs beginning with the first ordinal in
the file.

If you specify the ENDALG or ENDORD parameter, SW00END is set to the
ordinal number of the corresponding prime block. Otherwise, SW00END is set to
zero and subsequent fullfile processing occurs ending with the last ordinal in the
file.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v When you use this macro, subsequent fullfile processing occurs in the ordinal
range SW00ORD–SW00END.

DBADR

194 TPFDF R1 Programming Concepts and Reference

|
|
|

|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|
|

Examples
v In the following example, the file is processed during fullfile processing between

the ordinals calculated from the algorithm strings identified with the BEGALG and
and ENDALG parameters.
DBADR REF=GR25DF,BEGALG==C’A’,ENDALG==C’K’
DBRED REF=GR25DF,FULLFILE

v Assume file GR25DF has ordinals 0–5. The following example processes subfiles
5, 0, and 1 (in that order) in file GR25DF.
DBADR REF=GR25DF,ENDORD==F’1’
DBADR REF=GR25DF,BEGORD==F’5’,WRAPAROUND
DBRED REF=GR25DF,FULLFILE

Related Information
v “DBDEL–Delete One or More Logical Records” on page 215

v “DBDSP–Display Logical Records from a Subfile” on page 232

v “DBMOD–Perform or Indicate Logical Record Modifications” on page 251

v “DBMRG–Merge Logical Records from Two Subfiles” on page 256

v “DBRED–Read a Logical Record” on page 274

v “DBSRT–Sort a Subfile” on page 309

v “DBTLG–Write a File or Subfile to Tape” on page 320.

DBADR

TPFDF General-Use Assembler Macros: Reference 195

DBCKP–Checkpoint a Subfile
Use this macro to checkpoint a subfile; that is, all blocks in main storage that have
been changed are copied to DASD.

Format

�� DBCKP REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

,DETAC
,NODET

,ERROR=spmlbl
,ERRORA=asmlbl

�

�
,REG=reg ,REGD=regd ,TM= NO

YES

��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

DETAC
places the subfile in detac mode after checkpointing the subfile. When the
subfile is in detac mode, all modified blocks are saved in main storage. Any
changes that you make to the LRECs in that subfile are not written to DASD
until the subfile is checkpointed or closed. You can discard modified LRECs
(prevent them from being written to DASD) by using the ABORT parameter of
the DBCLS macro.

Note: The TPF system and the ALCS environment issues a 000010 system
error if an application program does not give up control in the time
allotted by the application time-out counter. When processing in detac
mode, a TPFDF application program can require more than the allotted

DBCKP

196 TPFDF R1 Programming Concepts and Reference

time on a database with a large data structure. To prevent the 000010
system error, you can change the setting of the &TPFDBDV symbol in
the DBLCL macro.

See TPFDF Installation and Customization for more information about
the &TPFDBDV symbol and the DBLCL macro.

NODET
specifies that you do not want the subfile in detac mode after it has been
checkpointed.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

REG=register
specifies a register in which to return the address of the current LREC (this
address is contained in SW00SR field SW00REC). You must specify this
parameter for T-type files.

REGD=register
specifies a register in which to return the base address of the userLREC part of
an extended LREC.

TM
specifies one of the following:

NO
specifies that commit scopes are not used during checkpoint processing,
regardless of what the database definition (DBDEF) macro has set as the
default.

YES
specifies that commit scopes are used during checkpoint processing,
regardless of what the DBDEF macro has set as the default. This option is
valuable when many files are to be filed out during checkpoint processing
(for example, detac mode, extensive B+Tree indexing updates, and requests
that result in packing).

Entry Requirements
None.

Normal Return
The subfile remains open and the current logical record (LREC) remains the same.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

DBCKP

TPFDF General-Use Assembler Macros: Reference 197

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v If the DBCKP macro is issued for a W-type file, the file is written to DASD in
short-term pool records.

v For a B+Tree file, the DBCKP macro checkpoints the index blocks and the data
blocks.

v Processing the DBCKP macro on a file that is opened in a commit scope is not
visible until the file is committed. If the checkpointed file is rolled back, updates to
the file are discarded. See “Commit Scopes” on page 8 for more information
commit scopes.

Examples
The following example saves any updates made to the current subfile.
DBCKP REF=GR30SR,ERROR=BFAQER6

Related Information
v “DBCLS–Close a Subfile” on page 200

v “DBOPN–Open a Subfile” on page 262.

DBCKP

198 TPFDF R1 Programming Concepts and Reference

DBCLR–Allow ECB Exit with Open Files
Use this macro to allow a program to exit without closing any open subfiles and
without generating a dump.

If you want to process an EXITC macro when a program still has subfiles open that
you do not want to save, call the DBCLR macro first. The TPFDF product
suppresses the dump that would normally be caused by such an action.

Attention: We do not recommend using this macro because it can leave subfiles
in a partially updated condition. Instead, use the DBCLS macro with the ABORT
parameter if you want to discard updates made while a subfile is in detac mode.

Format

�� DBCLR ��

Entry Requirements
None.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF

macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

Examples
The following example allows the program to exit with files still open.
DBCLR

Related Information
“DBCLS–Close a Subfile” on page 200.

DBCLR

TPFDF General-Use Assembler Macros: Reference 199

DBCLS–Close a Subfile
Use this macro to close one or more subfiles. You can also choose whether you
want to write modified blocks that are in detac mode to DASD.

Format

�� DBCLS

�

REF=dsectvv
REF=ALL

,

,EXCLUDE= (fname)
,INCLUDE= LIST=loc

REF=refname,FILE=dsect
FILE=dsect,R3=address

,ABORT
�

�
,ALG=algarg ,NOPGM ,PACK

,NOPACK
,PATH= pathnumALL

�

�
,RELEASE

,NORELEASE
,REUSE ,NEWREF=newrefn

,RELFC ,SUFFIX=char ,TAPE
�

�
,TM= NO

YES

��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

REF=ALL
closes all open subfiles. If you specify REF=ALL, only those subfiles that you
opened using the DBOPN macro without the R3 parameter specified are
closed.

Note: When you use this parameter, all database interface blocks (DBIFBs),
which contain SW00SR slots, are released. However, DBIFBs are not
released if there are no files open or any of the following parameters
have been specified:

v EXCLUDE

DBCLS

200 TPFDF R1 Programming Concepts and Reference

v INCLUDE

v NORELEASE

v REUSE.

EXCLUDE
closes all files except those specified with this parameter.

INCLUDE
closes only the files specified with this parameter. If any of the listed files are
not open, they are ignored.

fname
is the reference name of the file or files that you want to exclude or include in
the DBCLS macro processing.

LIST=loc
specifies a list of files to be included in or excluded from the DBCLS macro
processing, where loc is one of the following:

v A register that contains the address of the list of files

v A label in one of the following formats:

loc
is the label of a field that contains the list of files.

Aloc
is the label of a 4-byte field that contains the storage location of the list
of files.

For example:
DBCLS REF=ALL,EXCLUDE=(LIST=GR25LST)

The specified location must start with a halfword stating the number of files
listed, followed by a list of 8-byte reference names.

For example, GR25LST can contain the following data:
DC H’3’
DC C’GR25DF ’
DC C’GR25DA ’
DC C’GR25DB ’

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

ABORT
causes all database updates since the file was opened, or since the last
DBCKP macro, to be discarded. The updates are not written to DASD.

Note: Use this option only if the subfile is in detac mode.

DBCLS

TPFDF General-Use Assembler Macros: Reference 201

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

NOPGM
specifies not to change the program stamp in a block when filing it.

PACK
packs the subfile.

NOPACK
specifies that you do not want to pack the subfile, even if a block has fallen
below the packing threshold defined by the PIN parameter on the DBDEF
macro. See TPFDF Database Administration for more information about the
packing threshold.

PATH
specifies the path for a detail subfile using index support. If there is only one
index path, do not specify this parameter. Specify one of the following:

pathnum
is the path number or the label of a 2-byte field that contains the path
number. The number of index paths used is defined by your database
administrator.

ALL
specifies all paths.

See TPFDF Database Administration for more information about path numbers.

RELEASE
releases the SW00SR slot for the subfile after the macro has completed
processing.

DBCLS

202 TPFDF R1 Programming Concepts and Reference

NORELEASE
prevents the SW00SR slot from being released when the file is closed. Any key
parameters you have defined are also retained. Specify this parameter if you
intend to process the same subfile at a later time.

REUSE
retains the SW00SR slot of the file. Any key parameters you have defined are
also retained. Specify this parameter if you intend to retrieve another subfile in
the same file at a later time.

NEWREF=newrefn
changes the reference name of the file specified with the REF parameter, where
newrefn is one of the following:

v An explicit term that represents the new reference name

v A label in one of the following formats:

newrefn
is the label of an 8-byte field that contains the new reference name.

A/newrefn
is the label of a 4-byte field that contains the storage address of the
8-byte field containing the new reference name.

RELFC
releases the subfile and deletes it from DASD. All overflow blocks are released.
If the file is a pool file, the prime block is also released. If the file is a fixed file,
the prime block is initialized to empty.

W-type files are automatically released unless they have been sorted, merged,
or checkpointed. In these cases, you must specify the RELFC parameter to
release W-type files.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

TAPE
closes the tape or sequential data set at the same time as any subfiles are
closed. You must specify this parameter if you specified the TAPE parameter on
a previous DBOPN macro.

Note: Do not use the TAPE parameter with the TM parameter specified with a
value of YES because the integrity of the commit scope could be
compromised, and files that are on tape cannot be rolled back.

TM
specifies one of the following:

NO
specifies that commit scopes are not used during close processing,
regardless of what the database definition (DBDEF) macro has set as the
default.

YES
specifies that commit scopes are used during close processing, regardless
of what the DBDEF macro has set as the default. This option is valuable
when many files are to be filed out during close processing (for example,
detac mode, extensive B+Tree indexing updates, and requests that result in
packing).

DBCLS

TPFDF General-Use Assembler Macros: Reference 203

Entry Requirements
None.

Normal Return
None.

Error Return
None.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v Do not check the error indicators in the SW00RTN field of the SW00SR slot.
When you close a subfile, the DBCLS macro releases the SW00SR slot for the
file (unless you specify the NORELEASE or REUSE parameter), so the error
indicators are not available for you to check. When you specify the NORELEASE
or REUSE parameter, the SW00SR slot is not released but the error indicators
are not valid.

v Deleting LRECs from a subfile leaves empty space in the blocks. If you do not
specify the PACK or NOPACK parameter and the file is not a B+Tree file, the
subfile is packed if the amount of space occupied by LRECs in any block falls
below the threshold defined in the database definition (DBDEF).

B+Tree files are not packed during close processing unless the PACK parameter
is specified or there are no nodes in the B+Tree index.

v It is not necessary to close T-type files. In addition, it is not necessary to close
W-type files that are open in detac mode. See TPFDF Database Administration
for more information about T-type and W-type files.

v If you specify the RELFC parameter on the DBCLS macro, the TPFDF product
issues an internal DBDIX macro.

v If you do not specify the INCLUDE and REF=ALL parameters and an attempt is
made to close a subfile that is not open, the TPFDF product issues a DB0115
system error.

v If you specify both the REF=ALL and TM=YES parameters when there are
multiple files open, the files in a commit scope are processed individually.

Examples
v The following example deletes all the LRECs in the subfile and any

corresponding index LRECs, and releases the subfile. Any overflow blocks are
released and the prime block is initialized to empty (for a fixed file) or released
(for a pool file).
DBCLS REF=GR23DF,RELFC,ALG=EBW044

DBCLS

204 TPFDF R1 Programming Concepts and Reference

Note: This example has the same effect as the following sequence of macro
calls:
DBRED REF=GR23DF,ALG=EBW044
DBDEL REF=GR23DF,ALL,NOKEY
DBDIX REF=GR23DF,ALG=EBW044
DBCLS REF=GR23DF

v The following example shows how you can use a different ALG parameter to
access LRECs in another subfile belonging to the same file without calling
another DBOPN.
DBOPN REF=GR22DF,ALG==C’A’
DBCLS REF=GR22DF,REUSE
DBRED REF=GR22DF,ALG==C’B’

v The following example closes only two files, GR25DA and GR25DB. If GR25DA
or GR25DB (or both) are not open, the files that are not open are ignored.
DBCLS REF=ALL,INCLUDE=(GR25DA,GR25DB)

v The following example closes all files except the two files, GR25DA and
GR25DB.
DBCLS REF=ALL,EXCLUDE=(GR25DA,GR25DB)

Related Information
v “DBOPN–Open a Subfile” on page 262

v “DBCKP–Checkpoint a Subfile” on page 196.

DBCLS

TPFDF General-Use Assembler Macros: Reference 205

DBCPY–Copy a Subfile
Use this macro to copy a subfile. After executing the command, the TPFDF product
closes the subfile and performs all subsequent actions on the copy.

Format

�� DBCPY REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

,ALG=algarg
,FADDR=faddr
,ORD=ordnum

�

�
,NOCHK

,CHKA=rcc
,CHKA=rcc,NOCHK

,ERROR=spmlbl
,ERRORA=asmlbl

,INTERLV=intrlvnum
,PARTITN=partitnum

�

�
,NOPGM ,PATH=pathnum ,POOLTYP= 0

1
2
type

,SUFFIX=char
�

�
,TOADD=(toaddlbl)

,HELD

��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

DBCPY

206 TPFDF R1 Programming Concepts and Reference

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

FADDR=faddr
identifies the subfile that you want to access, where faddr is one of the
following:

faddr
is the label of a 4-byte field that contains the file address of the prime block
of the subfile.

A/faddr
is the label of a 4-byte field that contains the storage address of the file
address of the prime block of the subfile.

ORD=ordnum
identifies the subfile that you want to access, where ordnum is one of the
following:

ordnum
is the label of a 4-byte field that contains the ordinal number of the subfile.

A/ordnum
is the label of a 4-byte field that contains the storage address of the ordinal
number of the subfile.

If the file is partitioned or interleaved, specify the relative ordinal number within
the partition or interleave. If the file is not partitioned or interleaved, specify the
file address compute program (FACE) ordinal number.

DBCPY

TPFDF General-Use Assembler Macros: Reference 207

CHKA=rcc
checks the record code check (RCC) value in each block, where rcc is the label
of a 1-byte field that contains the RCC character.

NOCHK
specifies that you do not want to check the record code check (RCC) value of
the blocks.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

INTERLV=intrlvnum
specifies the number of the interleave that you want to use, where interlvnum is
one of the following:
v A register that contains the address of the interleave number
v An absolute value representing the interleave number
v The label of a 2-byte field that contains the interleave number.

If you specify this parameter, the maximum interleave number must be defined
in the DSECT or DBDEF macro. See TPFDF Database Administration for more
information about interleaves.

PARTITN=partitnum
specifies the number of the partition that you want to use, where partitnum is
one of the following:
v A register that contains the address of the partition number
v An absolute value representing the partition number
v The label of a 2-byte field that contains the partition number.

If you specify this parameter, the number of partitions and the end ordinal must
be defined in the DSECT or DBDEF macro. See TPFDF Database
Administration for more information about partitions.

Note: Do not use this parameter with the #TPFDB0F algorithm. This algorithm
calculates the partition used from the algorithm argument. See TPFDF
Database Administration for more information about algorithms.

NOPGM
specifies not to change the program stamp in a block when filing it.

PATH=pathnum
specifies the path number for a detail subfile using index support, where
pathnum is the path number or the label of a 2-byte field that contains the path
number. The number of index paths used is defined by your database
administrator. If there is only one index path, do not specify this parameter.

See TPFDF Database Administration for more information about path numbers.

POOLTYP
overrides the pool type defined by the database administrator, where:

0 uses the pool type defined by the PF0 parameter of the DBDEF macro.

DBCPY

208 TPFDF R1 Programming Concepts and Reference

1 uses the pool type defined by the PF1 parameter of the DBDEF macro.

2 uses the pool type defined by the PF2 parameter of the DBDEF macro.

type
is the label of a 1-byte field that contains a 0, 1, or 2 to specify to pool type.

Use the POOLTYP parameter as directed by the database administrator.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

TOADD=toaddlbl
copies the subfile to a specified prime block, where toaddlbl is a 4-byte field
containing the address of the prime block.

If you want to create a new pool subfile, do one of the following:

v Do not specify this parameter

v Specify an address of hexadecimal zeros for this parameter.

If you specify the TOADD parameter, the new subfile overwrites any data that is
already there.

If used in a commit scope, the prime block specified by the TOADD parameter
must be opened in the same commit scope as the subfile that is being copied.
See “Commit Scopes” on page 8 for more information about commit scopes.

HELD
specifies that the entry control block (ECB) is already holding the file address
specified by the TOADD parameter.

Entry Requirements
None.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

DBCPY

TPFDF General-Use Assembler Macros: Reference 209

v The following rules determine the value of the record code check (RCC) value
used when the TPFDF product creates a new subfile:

– If you do not specify the NOCHK parameter, the TPFDF product creates new
subfiles with a random RCC value.

– If you specify the NOCHK parameter without the CHKA parameter, the TPFDF
product creates new subfiles without an RCC value.

– If you specify both the NOCHK and CHKA parameters, the TPFDF product
creates new subfiles with the RCC value specified with the CHKA parameter.

v When a B+Tree file is copied, the DBCPY macro builds the B+Tree index for the
new file.

Examples
The following example copies a subfile to the file address specified at label
EBX040. This file address is already being held by the ECB.
DBCPY REF=GR30SR,TOADD=(EBX040,HELD),POOLTYP=1

Related Information
“DBRST–Restore a Subfile” on page 295.

DBCPY

210 TPFDF R1 Programming Concepts and Reference

DBCRE–Create a Subfile
Use this macro to create a new subfile, an empty pool subfile, or an empty indexed
pool subfile with its corresponding index file. You can subsequently add logical
records (LRECs) to the empty detail subfile as required.

Format

�� DBCRE REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

,ALG=algarg
,INDEX

�

�
,CHKA=rcc ,ERROR=spmlbl

,ERRORA=asmlbl
,NOPGM ,PATH= pathnum

ALL

�

�
,POOLTYP= 0

1
2
type

,REG=reg ,SUFFIX=char
��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based

DBCRE

TPFDF General-Use Assembler Macros: Reference 211

on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

INDEX
creates an indexed subfile and inserts an index LREC referencing this subfile
into the related index file (or files) defined by the database administrator.
Specify the index key as the ALG parameter.

If you specify this parameter, the algorithm defined for the new subfile must be
#TPFDBFF.

CHKA=rcc
checks the record code check (RCC) value in each block, where rcc is the label
of a 1-byte field that contains the RCC character.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

NOPGM
specifies not to change the program stamp in a block when filing it.

PATH
specifies the path for a detail subfile using index support. If there is only one
index path, do not specify this parameter. Specify one of the following:

pathnum
is the path number or the label of a 2-byte field that contains the path
number. The number of index paths used is defined by your database
administrator.

DBCRE

212 TPFDF R1 Programming Concepts and Reference

ALL
specifies all paths.

See TPFDF Database Administration for more information about path numbers.

POOLTYP
overrides the pool type defined by the database administrator, where:

0 uses the pool type defined by the PF0 parameter of the DBDEF macro.

1 uses the pool type defined by the PF1 parameter of the DBDEF macro.

2 uses the pool type defined by the PF2 parameter of the DBDEF macro.

type
is the label of a 1-byte field that contains a 0, 1, or 2 to specify to pool type.

Use the POOLTYP parameter as directed by the database administrator.

REG=register
specifies a register that is used to return the address of the header of the prime
block of the created subfile.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

Entry Requirements
None.

Normal Return
The address of the header of the prime block of the created subfile is placed in the
SW00REC field of the SW00SR. If you specify the REG parameter, this address is
placed in the specified register.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v A DBADD macro creates a subfile, if one does not exist, before it adds the
LREC.

DBCRE

TPFDF General-Use Assembler Macros: Reference 213

|
|
|

|
|
|

Examples
v The following example creates an indexed subfile and adds a new LREC to that

subfile.
DBCRE REF=GR45DF,ALG=EBW001,INDEX
DBADD REF=GR45DF,NEWLREC=EBW000

v The following example creates a new subfile, creates the index reference to that
subfile, and adds an LREC to the subfile.
DBCRE REF=GR23DF
DBIDX REF=GR23DF,ALG=EBW0044
DBADD REF=GR23DF

Related Information
v “DBADD–Add a Logical Record to a Subfile” on page 176

v “DBDIX–Delete Index References to a Subfile” on page 229

v “DBIDX–Create an Index Reference” on page 243.

DBCRE

214 TPFDF R1 Programming Concepts and Reference

DBDEL–Delete One or More Logical Records
Use this macro to delete:
v One or more logical records (LRECs) from an open subfile
v The LRECs in one or more subfiles of a file
v A complete extended LREC
v All of the LRECs in a file
v Some or all of the subfiles referenced from the LRECs that you delete
v One or more subLRECs in an extended LREC.

DBDEL

TPFDF General-Use Assembler Macros: Reference 215

Format

�� DBDEL REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

,ALG=algarg
,FADDR=faddr
,ORD=ordnum

�

�
,ALL

,INITIALISE ,DOWNWARD
,UPWARD

,BEGIN

,NOCHK

,CHKA=rcc
�

�
,ERROR=spmlbl
,ERRORA=asmlbl

�

,

EXCLUDE= (fname)
INCLUDE= LIST=loc

INCLUDE=(ALL)

,FULLFILE
�

�
,INTERLV= intrlvnum

ALL
,PARTITN= partitnum

ALL

�

,
(1)

,KEYn=(Key Subparameters)
,KEYLIST=keyloc
,NOKEY

�

�
,LAST ,LRECNBR=lrecnum ,NEXT

,LIST=lreclst
,NODUMP

�

�
,NOPGM ,PATH= pathnum

ALL
,REG=reg

�

�
,REGD=regd ,SUBLREC=(sublrecnum,num)

sublrecnum,LAST
FIRST,num
FIRST
ALL

,SUFFIX=char
�

�
(1)

,UP
,DOWN
,NOORG

��

Notes:

1 See “Specifying File Organization with Keyn Parameters” on page 23 for
information about the rules for using the KEYn parameters and file
organization parameters together.

DBDEL

216 TPFDF R1 Programming Concepts and Reference

Key Subparameters:

PKY=primarykey
,C=condition

R =fldname ,D=dynmask,C=condition
T ,M=mask,C=condition

,S=searcharg
,L=length ,C=condition

R = label1 ,D=dynmask,C=condition
T D/absval ,M=mask,C=condition

literal ,S=searcharg,L=length
flddisp ,C=condition

,UP
,DOWN
,NOORG

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

DBDEL

TPFDF General-Use Assembler Macros: Reference 217

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

FADDR=faddr
identifies the subfile that you want to access, where faddr is one of the
following:

faddr
is the label of a 4-byte field that contains the file address of the prime block
of the subfile.

A/faddr
is the label of a 4-byte field that contains the storage address of the file
address of the prime block of the subfile.

ORD=ordnum
identifies the subfile that you want to access, where ordnum is one of the
following:

ordnum
is the label of a 4-byte field that contains the ordinal number of the subfile.

A/ordnum
is the label of a 4-byte field that contains the storage address of the ordinal
number of the subfile.

If the file is partitioned or interleaved, specify the relative ordinal number within
the partition or interleave. If the file is not partitioned or interleaved, specify the
file address compute program (FACE) ordinal number.

ALL
deletes every LREC in the open subfile specified by the REF parameter. If you
opened the subfile using KEYn parameters, the DBDEL macro deletes only the
LRECs that match these keys.

If you delete all the LRECs from a fixed file, the DBDEL macro writes the empty
prime block to DASD after deleting the LRECs (the block header and optional
trailer are not deleted). Any blocks previously chained to the prime are released.

If you delete all the LRECs from a pool subfile, the DBDEL macro releases both
prime and overflow blocks. However, if you delete all the LRECs from a pool
subfile, and add an LREC before you close the subfile, the prime block is not
released.

For B+Tree files, if no keys are specified, the DBDEL macro with the ALL
parameter releases the index blocks as well as the data blocks.

If the subfile was opened in detac mode, you cannot recover the subfile using
the DBCLS macro with the ABORT parameter specified.

If you specify the FULLFILE parameter in addition to the ALL parameter, the
DBDEL macro deletes every LREC in every subfile of the file. You can delete

DBDEL

218 TPFDF R1 Programming Concepts and Reference

LRECs in certain subfiles only by specifying the BEGORD and ENDORD
parameters with the DBOPN or DBADR macros.

If you specify KEYn parameters in addition to ALL, DBDEL deletes all the
LRECs in the open subfile that match these keys. If you also specify the
FULLFILE parameter, the DBDEL macro deletes all the LRECs that match the
keys in an entire file. In this case, the blocks are not released, whether they are
fixed or pool, because some LRECs can remain in a file after deletion.

You can use the ALG parameter with the ALL parameter to delete LRECs from
an indexed detail file. The DBDEL macro deletes the index entry for the subfile
and releases the indexed subfile if it is in pool.

INITIALISE
empties an entire subfile, apart from the standard TPFDF header in the prime
block. The TPFDF product initializes the subfile (it deletes all LRECs, but leaves
the empty prime block) and releases any blocks previously chained to the prime
block.

Note: If you specify the INITIALISE parameter with the KEYn parameters, the
INITIALISE parameter is ignored.

DOWNWARD
deletes all LRECs from (and including) the current LREC to the last LREC in
the subfile. If you opened the subfile using KEYn parameters, the DBDEL
macro deletes only the LRECs that match these keys.

UPWARD
deletes all LRECs from (but not including) the current LREC to the first LREC in
the subfile. If you opened the subfile using KEYn parameters, the DBDEL
macro deletes only the LRECs that match these keys.

BEGIN
searches from the beginning of the subfile for LRECs to delete.

CHKA=rcc
checks the record code check (RCC) value in each block, where rcc is the label
of a 1-byte field that contains the RCC character.

NOCHK
specifies that you do not want to check the record code check (RCC) value of
the blocks.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

EXCLUDE
prevents the deletion of specific subfiles that are referenced from the LREC that
is being deleted.

INCLUDE
deletes specific subfiles that are referenced by deleted LRECs.

DBDEL

TPFDF General-Use Assembler Macros: Reference 219

|
|

ALL
deletes all subfiles referenced by the LRECs that you are deleting. You can
also use this parameter with the ALL or FULLFILE parameter.

Notes:

1. With INCLUDE=(ALL), if the deleted subfiles contain LRECs that
reference other subfiles, the DBDEL macro also deletes these
referenced subfiles. This process continues to as many levels as
necessary.

2. If the subfile containing the LREC being deleted was opened in detac
mode, the subfiles referenced by the LREC cannot be recovered using
DBCLS ABORT.

Attention: Do not use the INCLUDE parameter with subfiles that you have
opened in detac mode. The TPFDF product deletes any referenced subfiles
when you issue the DBDEL macro. If you subsequently close the subfile using
an ABORT parameter, the subfile will contain LRECs with references to
nonexistent subfiles.

fname
is the name of the subfile or subfiles that you want to exclude or include in the
DBDEL macro processing. You can specify as many as 10 DSECT names.

LIST=loc
specifies a list of subfiles that you want to include or exclude in the DBDEL
macro processing, where loc is the location of a 22-byte field containing a list of
as many as 10 file IDs. Specify one of the following:

loc
is the label of the field that contains the list.

A/loc
is the label of a 4-byte field containing the storage address of the field that
contains the list.

The list starts with a 2-byte field that contains a halfword count of the number of
file IDs referenced, each subsequent 2-byte field contains a file ID.

Note: The location contains the file IDs, not the file names.

FULLFILE
deletes an LREC specified with the ALG and KEYnparameters from any of the
subfiles in the file referenced by the REF parameter. If you do not specify the
FULLFILE parameter, you can only delete an LREC in the current subfile.

Note: If you specified the BEGORD and ENDORD parameters with the
DBOPN macro, the DBDEL macro only deletes the subfiles between the
specified ordinals.

INTERLV
specifies the interleave that you want to use. Specify one of the following:

interlvnum
is one of the following:
v A register that contains the address of the interleave number
v An absolute value representing the interleave number
v The label of a 2-byte field that contains the interleave number.

DBDEL

220 TPFDF R1 Programming Concepts and Reference

ALL
specifies all interleaves. Use this value when you use fullfile processing to
ensure that you do not miss an LREC located in a different interleave.

If you specify this parameter, the maximum interleave number must be defined
in the DSECT or DBDEF macro. See TPFDF Database Administration for more
information about interleaves.

PARTITN
specifies the partition that you want to use. Specify one of the following:

partitnum
is one of the following:
v A register that contains the address of partition number
v An absolute value representing the partition number
v The label of a 2-byte field that contains the partition number.

ALL
specifies all partitions. Use this value when you use fullfile processing to
ensure that you do not miss an LREC located in a different partition.

If you specify this parameter, the number of partitions and the end ordinal must
be defined in the DSECT or DBDEF macro. See TPFDF Database
Administration for more information about partitions.

Note: Do not use this parameter with the #TPFDB0F algorithm. This algorithm
computes the partition used from the algorithm argument. See TPFDF
Database Administration for more information about algorithms.

KEYn
specifies the key parameters that you want to use with this macro, where n is a
number from 1–6. You can specify as many as six KEYn parameters and they
must be specified in sequential order beginning with 1. That is, you cannot code
a KEY2 parameter without a KEY1 parameter, a KEY3 parameter without the
KEY1 and KEY2 parameters, and so on.

If you use these parameters, you must also specify the file organization of the
keys. See “Specifying File Organization with Keyn Parameters” on page 23 for
more information about how to do this. Use one or more of the following
subparameters with the KEYn parameter:

PKY=primarykey
specifies a value that will be compared against the primary key of an LREC,
where primarykey is a 1-byte immediate value; for example:
... KEY1=(PKY=#RR00K80)

This has the same effect as:
... KEY1=(R=RR00KEY,S=#RR00K80)

R specifies a field in the LREC to be compared with the search argument
specified with the S subparameter or to be tested against the mask
specified with the M or D subparameter.

T specifies a field in the subLREC of an extended LREC to be compared with
the search argument specified with the S subparameter or to be tested
against the mask specified with the M or D subparameter.

fldname
is the name of a field defined in the DSECT for the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,S=EBW000)

DBDEL

TPFDF General-Use Assembler Macros: Reference 221

label1
is a 2-byte field containing the displacement into the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=EBX010,S=EBW000,L==H’4’)

D/absval
specifies the displacement into the LREC of the field, where absval is an
absolute value; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=D/2,S=EBW000,L=L’GR00NAM,UP)

You can also specify the absolute value implicitly; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=D/GR00NAM-GR00REC,S=EBW000,L=L’GR00NAM,UP)

literal
is a halfword literal containing the displacement into the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R==H’2’,S=EBW000,L==H’4’)

flddisp
is the displacement off the field of the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD+2,S=EBW000,L==H’4’)

or
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD+L’GR00FLD,S=EBW000,L==H’4’)

C=condition
specifies the condition to be used when comparing fields in the logical
record (specified with the R subparameter) with the search argument
(specified with the S or PKY subparameter) or with the bit mask (specified
with the M or D subparameter).

If you specify the S or PKY subparameter, use one of the following values:

Value Condition
EQ Equal (this is the default)
E Equal
NE Not equal
GE Greater than or equal
LE Less than or equal
GT Greater than
LT Less than
H High
L Low
NH Not high
NL Not low.

If you specify the M or D subparameter, use one of the following values:

Value Condition
Z Zeros
O Ones
M Mixed
NZ Not zeros
NO Not ones
NM Not mixed.

D=dynmask
specifies the label of a 1-byte field containing a mask to be tested against
the LREC field specified with the R or T subparameter; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,D=EBW000,C=Z)

DBDEL

222 TPFDF R1 Programming Concepts and Reference

M=mask
specifies a mask to be tested against the LREC field specified with the R or
T subparameter; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,M=X’80’,C=Z)

S=searcharg
specifies the search argument to be compared with the LREC field specified
with the R or T subparameter, where searcharg is one of the following:

v A register that contains the address of the search argument

v A literal that represents the search argument

v A label in one of the following formats:

searcharg
is the label of the search argument.

A/searcharg
is the label of a 4-byte field that contains the storage address of the
search argument.

P/searcharg
is the label of a field that contains the search argument in packed
decimal format.

If you specify P/searcharg or a literal in the form of =P"...", the LREC
field and search argument are compared as decimal numbers in packed
format. Otherwise, the LREC field and search argument are compared as
character data.

Note: When you use this parameter, you cannot specify the core block
reference word (CBRW) or file address reference word (FARW) fields
in an ECB.

L=length
specifies the length of the search argument, where length is one of the
following:

v The address of a 2-byte field containing the length of the search
argument

v A 2-byte literal

v An absolute value in the form of L'fldname (for example, L=L'GR92FLD).

The default value is the length of the field specified with the R
subparameter.

UP
specifies that the key field is in ascending order in the subfile.

DOWN
specifies that the key field is in descending order in the subfile.

NOORG
specifies that the key field is in no particular order in the subfile.

KEYLIST=keyloc
specifies a key list that you want to use with this macro, where keyloc is one of
the following:

v A register that contains the address of the key list

v A label in one of the following formats:

DBDEL

TPFDF General-Use Assembler Macros: Reference 223

|
|
|

keyloc
is a label indicating the address of the key list.

A/keyloc
is the label of a 4-byte field that contains the storage address of the key
list.

See “Setting Up and Using a Key List” on page 26 for information about how to
set up a key list.

NOKEY
deactivates any currently active keys.

Notes:

1. If the file is not open when you specify the NOKEY parameter, the DBDEL
macro opens the file and deletes the first LREC.

2. If the file is open and you specify the REF and NOKEY parameters, the
DBDEL macro deletes the next LREC.

3. If the file is open and you specify the FILE and NOKEY parameters, the
DBDEL macro deletes the current LREC.

LAST
deletes the last LREC in a subfile.

If you specify KEYn parameters as well, the DBDEL macro deletes the last
LREC that matches these keys.

LRECNBR=lrecnum
specifies the sequence number of an LREC that you want to access, where
lrecnum is one of the following:

v A register that contains the address of the LREC number

v An immediate value that represents the LREC number

v A label in one of the following formats:

lrecnum
is the label of a 4-byte field that contains the LREC number.

A/lrecnum
is the label of a 4-byte field that contains the storage address containing
the LREC number.

Notes:

1. If you use the #TPFDB0D algorithm, you must specify this parameter.

2. LRECs are numbered in increasing order from the start of the subfile (the
first LREC in the prime block has sequence number 1).

3. If you specify the LRECNBR parameter with KEYn parameters, only those
LRECs that match the key conditions are included in the sequence
numbering; LRECs that do not match are ignored.

NEXT
steps through and deletes LRECs from a subfile. If you do not specify any
subparameters with the NEXT parameter, the DBDEL macro deletes the next
LREC in the subfile after the current LREC.

LIST=lreclst
deletes a list of LRECs following the current LREC, where register is a
register that contains the address of the list of the LRECs. The list contains
one or more LREC sequence numbers separated by a slash (/). You can
also specify a range of sequence numbers by separating the beginning and

DBDEL

224 TPFDF R1 Programming Concepts and Reference

end of the range by a hyphen (-). You can use LAST to mean the last
LREC of the subfile and ALL to mean all the remaining LRECs. You can
also end the list with a nonnumeric character.

Notes:

1. The ranges must be in ascending order; if one is found out of order, that
range and all subsequent ranges are ignored.

For example, if there are 41 LRECs in a subfile, the following lists all
have the same effect:
20/31/32/33/37/38/39/40/41
20/31/32/33/37-41
20/31-33/37-LAST
20/31-33/37/ALL

2. You cannot specify the number zero in the list of LREC numbers, even
if you specify the ADJUST parameter with a value that would adjust the
number zero to a valid LREC number.

NODUMP
specifies that you do not want the TPFDF product to issue any of the following
system errors while processing this macro:
v DB0100
v DB0102
v DB0117
v DB0123
v DB0138
v DB0140.

See TPFDF Messages (System Error, Online, Offline) for more information
about these system errors.

Note: Using the NODUMP parameter is not recommended because it can
prevent system errors from being issued that indicate a critical problem.

NOPGM
specifies not to change the program stamp in a block when filing it.

PATH
specifies the path for a detail subfile using index support. If there is only one
index path, do not specify this parameter. Specify one of the following:

pathnum
is the path number or the label of a 2-byte field that contains the path
number. The number of index paths used is defined by your database
administrator.

ALL
specifies all paths.

See TPFDF Database Administration for more information about path numbers.

REG=register
specifies a register in which to return the address of the current LREC (this
address is contained in SW00SR field SW00REC). You must specify this
parameter for T-type files.

REGD=register
specifies a register in which to return the base address of the userLREC part of
an extended LREC.

DBDEL

TPFDF General-Use Assembler Macros: Reference 225

|
|

SUBLREC
deletes some or all of the subLRECs in an extended LREC. Use one of the
following to specify the range of subLRECs you want to delete:

sublrecnum
is the number of the subLREC from which you want to begin deleting.

Note: The first subLREC in an extended LREC is 0.

num
is the number of subLRECs you want to delete.

FIRST
deletes the first subLREC (the latest one added to the extended LREC).

LAST
deletes the subLRECs to the end of the extended LREC (until the first
subLREC added to the extended LREC).

ALL
deletes every subLREC in the LREC you have specified.

If you specify the ALL parameter (not as a subparameter of the SUBLREC
parameter), the TPFDF product deletes the requested subLRECs in all the
LRECs in the open subfile. For example, the following instruction deletes the
first subLREC in every extended LREC in a subfile:
DBDEL REF=GR24DF,SUBLREC=(FIRST),ALL

Note: When you specify the SUBLREC parameter, do not specify any of the
access parameters (ALG, ORD, FADDR).

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

UP
specifies that the LRECs are organized in the subfile in ascending order of key
fields.

DOWN
specifies that LRECs in the subfile are organized in descending order of key
fields.

NOORG
specifies that the LRECs are organized in the subfile in no particular order.
(NOORG is the default if subfile organization has not been defined in the
DBDEF).

Entry Requirements
Before specifying the SUBLREC parameter, you must specify a DBRED macro to
locate the extended LREC from which you want to delete the subLREC.

Normal Return
v Field SW00REC contains one of the following:

– A pointer to the next LREC in the subfile (after the last deleted LREC)

– A pointer to the current extended LREC from which the subLREC or
subLRECs were deleted.

DBDEL

226 TPFDF R1 Programming Concepts and Reference

v After you use the ALL parameter with the DOWNWARD or UPWARD parameter,
the SW00REC is set to zero and the SW00RTN is set to X'40'.

Error Return
v See “Identifying Return Indicators and Errors” on page 13 for information about

how to check the error indicators.

v If you use the LIST parameter, check bit 0 in SW00RT2 in addition to SW00RTN.

v If you use the FULLFILE parameter, check the error count in the SW00RT1 field
because the SW00RTN field has only an end-of-file indicator set.

If you use the FULLFILE parameter, and the end-of-file indicator is set, you
cannot issue additional TPFDF macros until the file is closed. However, you can
specify the REUSE parameter on the DBCLS macro. See “Identifying Return
Indicators and Errors” on page 13 for information about the end-of-file indicator.

v If you specify the SUBLREC parameter, there is no error return when the
subLRECs that you specify to be deleted do not exist. In all cases, SW00RTN
contains X'00' as if the command processed successfully.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v You cannot specify six KEYn parameters (KEY1–KEY6) when both of the
following conditions are true:

– The S subparameter is used on all six keys

– The length of all keys is greater than 1 (either with an explicit length using the
L subparameter or an implied length from the field used in the R or T
subparameter).

If you need this type of key definition, you must use a key list.

v Any active keys are ignored when you use the #TPFDB0D algorithm.

v After opening a file, if you use fullfile processing to access or update records,
you must continue to use fullfile processing on any subsequent macros when
available until the file is closed. Accessing or updating subfiles using fullfile
processing cannot be mixed with macros that access or update records without
using fullfile processing.

v If you do not specify any optional parameters, the DBDEL macro deletes the
current LREC (usually the last LREC read) from the subfile that is currently open.

v If block index support has been defined with a file, DBDEL modifies the block
index of the blocks from which it deletes LRECs.

v If you specify a KEYn parameter or the LRECNBR parameter, a NEXT parameter
is implied, so do not specify NEXT explicitly.

v When you use DBDEL to delete subLRECs, the control fields in the extended
LREC are automatically adjusted.

DBDEL

TPFDF General-Use Assembler Macros: Reference 227

v If you specify the ALL parameter for a P-type file, the whole file is deleted.

Note: Other DBDEL parameters are not supported for P-type files.

v If you specify the ALL and NOKEY parameters for a B+Tree file, the DBDEL
macro will pack the file.

v Before you use the ALL parameter with the DOWNWARD or UPWARD
parameter, first establish a current LREC (for example, using the DBRED macro).

Attention: Using the ALL parameter with the DOWNWARD or UPWARD
parameter can cause the values that were created previously for the DBRET
macro to be corrupted.

Examples
v The following example deletes all the LRECs in the open subfile that match the

specified keys.
DBDEL REF=GR22DF,ALL,KEY1=(R=GR22ALN,S=A/EBW008)

v The following example deletes all the LRECs in file GR22DF.
DBDEL REF=GR22DF,INITIALISE,ALL

v The following example deletes the next LREC in open subfile GR22DF, together
with all subfiles referenced from this deleted LREC.
DBDEL REF=GR22DF,NEXT,INCLUDE=(ALL)

v The following example deletes all the LRECs in open subfile GR22DF, together
with all subfiles referenced from any deleted LRECs.
DBDEL REF=GR22DF,ALL,INCLUDE=(ALL)

v The following example deletes all LRECs in open subfile GR22DF, together with
any subfiles with file ID X'FE30' or X'FE31' referenced from any delete LRECs.
MVC EBX000(2),=H’2’ Count of file IDs in list
MVC EBX002(2),=X’FE30’ Add file ID to list
MVC EBX004(2),=X’FE31’ Add file ID to list
DBDEL REF=GR22DF,ALL,INCLUDE=(LIST=EBX000)

v The following example deletes all LRECs in all subfiles in file GR22DF, together
with all subfiles referenced from any of these LRECs.
DBDEL REF=GR22DF,FULLFILE,ALL,INCLUDE=(ALL)

v The following example deletes subfiles GR21SR and GR22SR, but not GR23SR
(assuming all three subfiles are referenced from LRECs in subfile GR20SR).
DBDEL REF=GR20SR,ALL,INCLUDE=(GR21SR,GR22SR),EXCLUDE=(GR23SR)

v The following example deletes the LREC specified by the 4-byte LREC number
contained in register 4.
DBDEL REF=GR35DF,LRECNBR=R4

Related Information
v “DBCLS–Close a Subfile” on page 200

v “DBMOD–Perform or Indicate Logical Record Modifications” on page 251

v “DBRED–Read a Logical Record” on page 274.

DBDEL

228 TPFDF R1 Programming Concepts and Reference

DBDIX–Delete Index References to a Subfile
Use this macro to delete index references to the current subfile or a specific subfile.
This macro removes the reference to a detail subfile without deleting the LREC in
the detail file.

Format

�� DBDIX REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

,ALG=algarg
�

�
,ERROR=spmlbl
,ERRORA=asmlbl

,NOPGM ,PATH= pathnum
ALL

��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the

DBDIX

TPFDF General-Use Assembler Macros: Reference 229

algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

NOPGM
specifies not to change the program stamp in a block when filing it.

PATH
specifies the path for a detail subfile using index support. If there is only one
index path, do not specify this parameter. Specify one of the following:

pathnum
is the path number or the label of a 2-byte field that contains the path
number. The number of index paths used is defined by your database
administrator.

ALL
specifies all paths.

See TPFDF Database Administration for more information about path numbers.

Entry Requirements
Ensure that the relationship of the index file (or index files, if there are multilevel
indexes) to the detail file have been defined on the DBDEF macro by your database
administrator.

Normal Return
Fields SW00RTN and SW00RT2 are set to 0.

DBDIX

230 TPFDF R1 Programming Concepts and Reference

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v Using the DBDIX macro can result in having a detail file with no corresponding
index file pointing to it.

v If the index subfile LREC is empty after processing, the TPFDF product releases
the block and deletes any reference to it in a higher level index file.

The top-level index file is fixed, so the TPFDF product does not release prime
blocks in this file even if no index LRECs remain in it.

v If you specify the RELFC parameter on the DBCLS macro, the TPFDF product
does an internal DBDIX macro.

Examples
The following example deletes all the LRECs in the subfile and any corresponding
index LRECs, and releases the subfile. Any chained blocks are released and the
prime block is initialized to empty (for a fixed file).
DBRED REF=GR23DF,ALG=EBW044
DBDEL REF=GR23DF,ALL,NOKEY
DBDIX REF=GR23DF,ALG=EBW044
DBCLS REF=GR23DF

Related Information
v “DBCLS–Close a Subfile” on page 200

v “DBCRE–Create a Subfile” on page 211

v “DBIDX–Create an Index Reference” on page 243.

DBDIX

TPFDF General-Use Assembler Macros: Reference 231

DBDSP–Display Logical Records from a Subfile
Use this macro to display the logical records (LRECs) from a subfile.

Format

�� DBDSP REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

,ALG=algarg
,FADDR=faddr
,ORD=ordnum

,CHKA=rcc
�

�
,ERROR=spmlbl
,ERRORA=asmlbl

,FULLFILE ,INTERLV= intrlvnum
ALL

,PARTITN= partitnum
ALL

�

�

�

,
(1)

,KEYn=(Key Subparameters)
,NOKEY

,LONGTERM ,NOCLOSE
�

�
,NOFINAL ,NOPGM ,NOUIO ,OPMT=opmtbits ,PATH=pathnum

�

�
,RELFC ,STRIP=striplen ,SUFFIX=char

�

�
(1)

,UP
,DOWN
,NOORG

,WTOPC=NO

,WTOPC=YES
��

Notes:

1 See “Specifying File Organization with Keyn Parameters” on page 23 for
information about the rules for using the KEYn parameters and file
organization parameters together.

DBDSP

232 TPFDF R1 Programming Concepts and Reference

Key Subparameters:

PKY=primarykey
,C=condition

R =fldname ,D=dynmask,C=condition
T ,M=mask,C=condition

,S=searcharg
,L=length ,C=condition

R = label1 ,D=dynmask,C=condition
T D/absval ,M=mask,C=condition

literal ,S=searcharg,L=length
flddisp ,C=condition

,UP
,DOWN
,NOORG

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

DBDSP

TPFDF General-Use Assembler Macros: Reference 233

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

FADDR=faddr
identifies the subfile that you want to access, where faddr is one of the
following:

faddr
is the label of a 4-byte field that contains the file address of the prime block
of the subfile.

A/faddr
is the label of a 4-byte field that contains the storage address of the file
address of the prime block of the subfile.

ORD=ordnum
identifies the subfile that you want to access, where ordnum is one of the
following:

ordnum
is the label of a 4-byte field that contains the ordinal number of the subfile.

A/ordnum
is the label of a 4-byte field that contains the storage address of the ordinal
number of the subfile.

If the file is partitioned or interleaved, specify the relative ordinal number within
the partition or interleave. If the file is not partitioned or interleaved, specify the
file address compute program (FACE) ordinal number.

CHKA=rcc
checks the record code check (RCC) value in each block, where rcc is the label
of a 1-byte field that contains the RCC character.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

FULLFILE
allows you to display LRECs from the whole file instead of from just one subfile.
Do not use this parameter with W-type files or the NOCLOSE parameter.

DBDSP

234 TPFDF R1 Programming Concepts and Reference

INTERLV
specifies the interleave that you want to use. Specify one of the following:

interlvnum
is one of the following:
v A register that contains the address of the interleave number
v An absolute value representing the interleave number
v The label of a 2-byte field that contains the interleave number.

ALL
specifies all interleaves. Use this value when you use fullfile processing to
ensure that you do not miss an LREC located in a different interleave.

If you specify this parameter, the maximum interleave number must be defined
in the DSECT or DBDEF macro. See TPFDF Database Administration for more
information about interleaves.

PARTITN
specifies the partition that you want to use. Specify one of the following:

partitnum
is one of the following:
v A register that contains the address of partition number
v An absolute value representing the partition number
v The label of a 2-byte field that contains the partition number.

ALL
specifies all partitions. Use this value when you use fullfile processing to
ensure that you do not miss an LREC located in a different partition.

If you specify this parameter, the number of partitions and the end ordinal must
be defined in the DSECT or DBDEF macro. See TPFDF Database
Administration for more information about partitions.

Note: Do not use this parameter with the #TPFDB0F algorithm. This algorithm
computes the partition used from the algorithm argument. See TPFDF
Database Administration for more information about algorithms.

KEYn
specifies the key parameters that you want to use with this macro, where n is a
number from 1–6. You can specify as many as six KEYn parameters and they
must be specified in sequential order beginning with 1. That is, you cannot code
a KEY2 parameter without a KEY1 parameter, a KEY3 parameter without the
KEY1 and KEY2 parameters, and so on.

If you use these parameters, you must also specify the file organization of the
keys. See “Specifying File Organization with Keyn Parameters” on page 23 for
more information about how to do this. Use one or more of the following
subparameters with the KEYn parameter:

PKY=primarykey
specifies a value that will be compared against the primary key of an LREC,
where primarykey is a 1-byte immediate value; for example:
... KEY1=(PKY=#RR00K80)

This has the same effect as:
... KEY1=(R=RR00KEY,S=#RR00K80)

R specifies a field in the LREC to be compared with the search argument

DBDSP

TPFDF General-Use Assembler Macros: Reference 235

specified with the S subparameter or to be tested against the mask
specified with the M or D subparameter.

T specifies a field in the subLREC of an extended LREC to be compared with
the search argument specified with the S subparameter or to be tested
against the mask specified with the M or D subparameter.

fldname
is the name of a field defined in the DSECT for the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,S=EBW000)

label1
is a 2-byte field containing the displacement into the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=EBX010,S=EBW000,L==H’4’)

D/absval
specifies the displacement into the LREC of the field, where absval is an
absolute value; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=D/2,S=EBW000,L=L’GR00NAM,UP)

You can also specify the absolute value implicitly; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=D/GR00NAM-GR00REC,S=EBW000,L=L’GR00NAM,UP)

literal
is a halfword literal containing the displacement into the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R==H’2’,S=EBW000,L==H’4’)

flddisp
is the displacement off the field of the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD+2,S=EBW000,L==H’4’)

or
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD+L’GR00FLD,S=EBW000,L==H’4’)

C=condition
specifies the condition to be used when comparing fields in the logical
record (specified with the R subparameter) with the search argument
(specified with the S or PKY subparameter) or with the bit mask (specified
with the M or D subparameter).

If you specify the S or PKY subparameter, use one of the following values:

Value Condition
EQ Equal (this is the default)
E Equal
NE Not equal
GE Greater than or equal
LE Less than or equal
GT Greater than
LT Less than
H High
L Low
NH Not high
NL Not low.

If you specify the M or D subparameter, use one of the following values:

Value Condition
Z Zeros
O Ones

DBDSP

236 TPFDF R1 Programming Concepts and Reference

M Mixed
NZ Not zeros
NO Not ones
NM Not mixed.

D=dynmask
specifies the label of a 1-byte field containing a mask to be tested against
the LREC field specified with the R or T subparameter; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,D=EBW000,C=Z)

M=mask
specifies a mask to be tested against the LREC field specified with the R or
T subparameter; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,M=X’80’,C=Z)

S=searcharg
specifies the search argument to be compared with the LREC field specified
with the R or T subparameter, where searcharg is one of the following:

v A register that contains the address of the search argument

v A literal that represents the search argument

v A label in one of the following formats:

searcharg
is the label of the search argument.

A/searcharg
is the label of a 4-byte field that contains the storage address of the
search argument.

P/searcharg
is the label of a field that contains the search argument in packed
decimal format.

If you specify P/searcharg or a literal in the form of =P"...", the LREC
field and search argument are compared as decimal numbers in packed
format. Otherwise, the LREC field and search argument are compared as
character data.

Note: When you use this parameter, you cannot specify the core block
reference word (CBRW) or file address reference word (FARW) fields
in an ECB.

L=length
specifies the length of the search argument, where length is one of the
following:

v The address of a 2-byte field containing the length of the search
argument

v A 2-byte literal

v An absolute value in the form of L'fldname (for example, L=L'GR92FLD).

The default value is the length of the field specified with the R
subparameter.

UP
specifies that the key field is in ascending order in the subfile.

DOWN
specifies that the key field is in descending order in the subfile.

DBDSP

TPFDF General-Use Assembler Macros: Reference 237

|
|
|

NOORG
specifies that the key field is in no particular order in the subfile.

NOKEY
deactivates any currently active keys.

LONGTERM
instructs the application program to use the MOSG internal program to build the
output message (OMSG) display using long-term pool records. If you do not
specify this value, short-term pool records are used for the display by the
FMSG program.

NOCLOSE
specifies that you do not want to close the subfile displayed with the DBDSP
macro. This allows the application program to return to the open subfile once
the macro has completed processing. If you specify this parameter, you cannot
specify the FULLFILE parameter. In addition, if you specify the NOCLOSE
parameter, ensure that you specify control be returned to the application
program after the DBDSP macro processes.

NOFINAL
indicates that this is only part of a message. The complete output message is
displayed only when you code the DBDSP macro without the NOFINAL
parameter specified.

NOPGM
specifies not to change the program stamp in a block when filing it.

NOUIO
prevents the activation of the output edit CRT driver (UIO) and returns to the
application program.

OPMT=opmtbits
specifies how you want the FMSG program to format the output message,
where opmtbits is the value of the bit settings as defined in the UI2PF DSECT
(labels UI2INC–UI2CNN). Specify one of the following:

opmtbits
is the label of a 5-byte field that contains the bit settings.

A/opmtbits
is the label of a 4-byte field that contains the storage address of the bit
settings.

If you do not specify this parameter, the default value for these bytes is
X'10F2C20080'. If you specify the LONGTERM parameter, the default value is
X'05F2C20090'.

If you specify a value with the OPMT parameter and do not specify NOUIO,
control is returned to the application program only if an error occurs.

PATH=pathnum
specifies the path number for a detail subfile using index support, where
pathnum is the path number or the label of a 2-byte field that contains the path
number. The number of index paths used is defined by your database
administrator. If there is only one index path, do not specify this parameter.

See TPFDF Database Administration for more information about path numbers.

DBDSP

238 TPFDF R1 Programming Concepts and Reference

RELFC
releases the subfile and deletes it from DASD. All overflow blocks are released.
If the file is a pool file, the prime block is also released. If the file is a fixed file,
the prime block is initialized to empty.

W-type files are automatically released unless they have been sorted, merged,
or checkpointed. In these cases, you must specify the RELFC parameter to
release W-type files.

STRIP=striplen
discards data from the user data area of an LREC that you do not want to
display, where striplen is the length of the part of the LREC that you want to
discard starting from the beginning of the LREC (or of the user portion of an
extended LREC). Specify one of the following:

v A register containing the number of bytes that you want to discard.

v A 2-byte label that contains the number of bytes that you want to discard.

v The number of bytes that you want to discard.

Variable length LRECs contain a 2-byte size field at the front of the user data
section. The DBDSP macro automatically discards this field; do not include it in
the number of bytes you specify with the STRIP parameter.

Do not use registers R14 or R15 with the STRIP parameter.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

UP
specifies that the LRECs are organized in the subfile in ascending order of key
fields.

DOWN
specifies that LRECs in the subfile are organized in descending order of key
fields.

NOORG
specifies that the LRECs are organized in the subfile in no particular order.
(NOORG is the default if subfile organization has not been defined in the
DBDEF).

WTOPC
specifies the format in which the LRECs are displayed, as follows:

YES
specifies to use the WTOPC format. With the WTOPC format, the maximum
length displayed for an LREC is 255 bytes, and the LONGTERM, NOUIO,
and OPMT parameters are ignored.

NO
specifies to use OMSG format will be used.

Entry Requirements
None.

Normal Return
SW00RTN is set to zero.

DBDSP

TPFDF General-Use Assembler Macros: Reference 239

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v You cannot specify six KEYn parameters (KEY1–KEY6) when both of the
following conditions are true:

– The S subparameter is used on all six keys

– The length of all keys is greater than 1 (either with an explicit length using the
L subparameter or an implied length from the field used in the R or T
subparameter).

If you need this type of key definition, you must use a key list.

v After opening a file, if you use fullfile processing to access or update records,
you must continue to use fullfile processing on any subsequent macros when
available until the file is closed. Accessing or updating subfiles using fullfile
processing cannot be mixed with macros that access or update records without
using fullfile processing.

v The subfile you select must contain LRECs with only extended binary code
decimal interchange code (EBCDIC) characters that can be displayed (such as,
letters, numbers, punctuation, and so on).

v The ECB exits after a successful display unless you specify NOUIO or NOFINAL,
or you specify not to exit using OPMT.

v Although the TPFDF product preserves all data levels across TPFDF macro calls,
the following exceptions exist when you specify the DBDSP macro:

– Data level 1 (D1) and data level 3 (D3) are not data level independent (DLI) if
the WTOPC parameter is specified with the NO value (the default), or the
YES value is not specified, and DBLCL macro symbol &ACPDBAA is set to
zero.

– Data level 2 (D2) is not DLI.

v You cannot use this macro with P-type files.

v You can limit the number of output lines displayed by the DBDSP macro by using
the #DF_MAX_DSP equate in the ACPDBE macro. See TPFDF Installation and
Customization for more information about the ACPDBE macro.

v You cannot use this macro in a commit scope. See “Commit Scopes” on page 8
for more information about commit scopes.

Examples
In the following example, the amount of data to be stripped is equal to the length of
the field GR25KEY:

DBDSP

240 TPFDF R1 Programming Concepts and Reference

DBDSP REF=GR25DF,STRIP==AL2(L’GR25KEY)

Related Information
“DBCLS–Close a Subfile” on page 200.

DBDSP

TPFDF General-Use Assembler Macros: Reference 241

DBFRL–Ensure an ECB Data Level Is Free
Use this macro to free an entry control block (ECB) data level.

Format

�� DBFRL LEVEL=ecblvl ��

LEVEL=ecblvl
frees a specific ECB data level, where ecblvl is a hexadecimal number in the
range X'0'–X'F'. Optionally, you can precede this hexadecimal number with a D
to indicate that you are naming a data level.

Entry Requirements
None.

Normal Return
The specified data level is freed.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF

macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v If you are processing traditional files with TPFDF files by using the DBOPN
macro with the DATA or PARAM parameter specified, you can ensure that a
required ECB data level is free by specifying the DBFRL macro before calling a
program or function that uses a specific data level. However, the DATA or
PARAM parameters are used for migration purposes only.

Examples
Each of the following examples free data level C (also called data level DC) in an
ECB. Freeing the data level ensures that the data level is available for use by a
traditional TPF or ALCS program and that no TPFDF program can use this level in
the ECB.
DBFRL LEVEL=C

DBFRL LEVEL=DC

Related Information
None.

DBFRL

242 TPFDF R1 Programming Concepts and Reference

DBIDX–Create an Index Reference
Use this macro to create one or more index references to a subfile identified by an
algorithm parameter. You can choose to index one or more paths.

Format

�� DBIDX ALG=algarg , REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

,NOPGM
�

�
,PATH=0

,PATH= pathnum
ALL

��

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

DBIDX

TPFDF General-Use Assembler Macros: Reference 243

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

NOPGM
specifies not to change the program stamp in a block when filing it.

PATH
specifies the path for a detail subfile using index support. If there is only one
index path, do not specify this parameter. Specify one of the following:

pathnum
is the path number or the label of a 2-byte field that contains the path
number. The number of index paths used is defined by your database
administrator.

ALL
specifies all paths.

See TPFDF Database Administration for more information about path numbers.

Entry Requirements
v You must have a detail file available.

v Ensure that the relationship of the index file (or index files, if there are multilevel
indexes) to the detail file has been defined in the DBDEF macro by your
database administrator.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

DBIDX

244 TPFDF R1 Programming Concepts and Reference

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v The TPFDF product determines the amount of data to move in an index LREC
by calculating the number of bytes between labels xxxxEyy and xxxxAyy in the
DSECT for the index file, where xxxx is the first 4 characters in the name of the
DSECT and yy is the primary key.

v Path 0 is the default path. The DBIDX macro creates index references for this
path unless you have set one or more different paths using the PATH parameter
on the DBIDX or DBOPN macro.

v No actual index structure needs to exist before you index the subfile. All that is
needed is an existing index file at the highest level of the index. This must be a
fixed file. If there is no existing index structure, the TPFDF product creates the
required index structure automatically when you call the DBIDX macro.

v If you index a subfile with the DBIDX macro in an application program, you must
also remove the index when needed. (You can do this by using the DBDIX
macro.)

v When running in detac mode, if an application program creates a pool file using
the DBCRE macro and an index reference using the DBIDX macro, the
application program must delete the index reference using DBDIX macro before
using the ABORT parameter on the DBCLS macro. If the index reference is not
deleted, subsequent recoup processing may identify the index reference as a
broken chain.

Examples
The following example creates a new subfile, creates the index reference to that
subfile, and adds an LREC to the subfile.
DBCRE REF=GR23DF
DBIDX REF=GR23DF,ALG=EBW0044
DBADD REF=GR23DF

Related Information
v “DBADD–Add a Logical Record to a Subfile” on page 176

v “DBCRE–Create a Subfile” on page 211

v “DBDIX–Delete Index References to a Subfile” on page 229

v “DBOPN–Open a Subfile” on page 262.

DBIDX

TPFDF General-Use Assembler Macros: Reference 245

DBIFB–Check a SW00SR Slot
Use this macro to check if a SW00SR slot exists. If the slot exists, the function
returns the base address of the SW00SR slot.

You can use this macro to test if a particular subfile is open.

Format

�� DBIFB FIRST
NEXT
REF=dsectvv
REF=refname,FILE=dsect

,ERROR=spmlbl
,ERRORA=asmlbl

�

�
,NEWREF=newrefn ,REG=reg ,REGD=regd

��

FIRST
inserts the address of the first SW00SR slot with an open subfile in your
application program in register 3 (R3). R14 points to the 8-byte location
containing the reference name for the file.

NEXT
inserts the address of the next SW00SR slot with an open subfile in your
application program in register 3 (R3). R14 points to the 8-byte location
containing the reference name for the file.

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing

DBIFB

246 TPFDF R1 Programming Concepts and Reference

the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

NEWREF=newrefn
changes the reference name of the file specified with the REF parameter, where
newrefn is one of the following:

v An explicit term that represents the new reference name

v A label in one of the following formats:

newrefn
is the label of an 8-byte field that contains the new reference name.

A/newrefn
is the label of a 4-byte field that contains the storage address of the
8-byte field containing the new reference name.

REG=register
specifies a register in which to return the address of the current LREC (this
address is contained in SW00SR field SW00REC). You must specify this
parameter for T-type files.

REGD=register
specifies a register in which to return the base address of the userLREC part of
an extended LREC.

Entry Requirements
None.

Normal Return
The base address of the SW00SR slot is returned in register 3 (R3).

Error Return
If the required SW00SR slot is not found, R3 is set to zero. You can test the return
value of R3 in the program, or use the ERROR or ERRORA parameters to cause
the program to branch if the TPFDF product cannot find a selected SW00SR.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

Examples
The following example locates the open SW00SR slot of IWA3DF (if it exists) and
inserts the address of the current LREC for this SW00SR slot in R2.
DBIFB REF=IWA3DF,REG=R2

DBIFB

TPFDF General-Use Assembler Macros: Reference 247

Related Information
v “DBOPN–Open a Subfile” on page 262

v “DFIFB–Check a SW00SR Slot” on page 350.

DBIFB

248 TPFDF R1 Programming Concepts and Reference

|

|

DBKEY–Activate a Key List
Use this macro to activate a key list that is used by subsequent macros that access
the specified file. See “Specifying Logical Records (LRECs) Using Keys” on page 19
for more information about keys.

Format

�� DBKEY REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

, KEYLIST=keyloc
,NOPGM

��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

KEYLIST=keyloc
specifies a key list that you want to use with this macro, where keyloc is one of
the following:

v A register that contains the address of the key list

v A label in one of the following formats:

keyloc
is a label indicating the address of the key list.

A/keyloc
is the label of a 4-byte field that contains the storage address of the key
list.

See “Setting Up and Using a Key List” on page 26 for information about how to
set up a key list.

DBKEY

TPFDF General-Use Assembler Macros: Reference 249

NOPGM
specifies not to change the program stamp in a block when filing it.

Entry Requirements
None.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v The key list can define as many as 180 key parameters or it can indicate that
default keys will be used. See “Setting Up and Using a Key List” on page 26 for
more information about defining a key list.

v Several macros provide a KEYLIST parameter, which generates an internal
DBKEY macro.

Examples
See “Using a Key List with the DBSETK Macro” on page 28 for an example of
activating key list with the DBKEY macro.

Related Information
v “DBADD–Add a Logical Record to a Subfile” on page 176

v “DBDEL–Delete One or More Logical Records” on page 215

v “DBDSP–Display Logical Records from a Subfile” on page 232

v “DBMRG–Merge Logical Records from Two Subfiles” on page 256

v “DBOPN–Open a Subfile” on page 262

v “DBRED–Read a Logical Record” on page 274

v “DBSRT–Sort a Subfile” on page 309.

DBKEY

250 TPFDF R1 Programming Concepts and Reference

DBMOD–Perform or Indicate Logical Record Modifications
Use this macro to do the following:
v Indicate that the current logical record (LREC) has been modified
v Modify all LRECs in a file or subfile that match previously established keys.

Format

�� DBMOD REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

�

�
,ALL,MODLIST=modreg

,ALG=algarg ,BEGIN ,FULLFILE ,NOKEY
,FADDR=faddr
,ORD=ordnum

�

�
,NODUMP ,NOPGM ,REG=reg ,REGD=regd

��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

ALL
modifies every LREC in the open subfile specified by the REF parameter,
beginning with the current LREC. If selection keys are currently active, the
DBMOD macro only modifies the LRECs that match these keys.

Note: In an ALCS environment, TPFDF C language support must be enabled if
you specify this parameter when KEYCHECK=YES is defined on the
DBDEF macro. See TPFDF Installation and Customization for more
information about enabling TPFDF C language support in an ALCS
environment.

DBMOD

TPFDF General-Use Assembler Macros: Reference 251

MODLIST=modreg
specifies the base register of the modification key list, where modreg is a
register. See “Setting Up and Using a Key List” on page 26 for more information
about defining a modification key list.

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

FADDR=faddr
identifies the subfile that you want to access, where faddr is one of the
following:

faddr
is the label of a 4-byte field that contains the file address of the prime block
of the subfile.

A/faddr
is the label of a 4-byte field that contains the storage address of the file
address of the prime block of the subfile.

ORD=ordnum
identifies the subfile that you want to access, where ordnum is one of the
following:

ordnum
is the label of a 4-byte field that contains the ordinal number of the subfile.

A/ordnum
is the label of a 4-byte field that contains the storage address of the ordinal
number of the subfile.

DBMOD

252 TPFDF R1 Programming Concepts and Reference

If the file is partitioned or interleaved, specify the relative ordinal number within
the partition or interleave. If the file is not partitioned or interleaved, specify the
file address compute program (FACE) ordinal number.

BEGIN
searches from the beginning of the subfile for LRECs to modify.

FULLFILE
modifies LRECs in all subfiles of the file, not just the current subfile.

NOKEY
deactivates any currently active keys.

NODUMP
specifies that you do not want the TPFDF product to issue any of the following
system errors while processing this macro:
v DB0100
v DB0102
v DB0117
v DB0123
v DB0138
v DB0140.

See TPFDF Messages (System Error, Online, Offline) for more information
about these system errors.

Note: Using the NODUMP parameter is not recommended because it can
prevent system errors from being issued that indicate a critical problem.

NOPGM
specifies not to change the program stamp in a block when filing it.

REG=register
specifies a register in which to return the address of the current LREC (this
address is contained in SW00SR field SW00REC). You must specify this
parameter for T-type files.

REGD=register
specifies a register in which to return the base address of the userLREC part of
an extended LREC.

Entry Requirements
None.

Normal Return
v If you are using the DBMOD macro to indicate that you have modified a record in

storage, the address of the current LREC is loaded in the SW00REC field of the
SW00SR slot.

v If a global modification is being done, the SW00REC field of the SW00SR slot
contains 0 and SW00RTN contains a record not found (#BIT1) or end-of-file
(#BIT5) indication. This is a normal return condition.

Error Return
None.

DBMOD

TPFDF General-Use Assembler Macros: Reference 253

|
|

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v If you locate an LREC or header in a subfile using the DBRED macro and modify
the LREC data using assembler instructions, you must ensure that the changes
are recorded on DASD. Use the DBMOD macro without the ALL parameter to do
this.

The DBMOD macro sets an indicator in the block to say that it has been
changed. The TPFDF product writes this block to DASD when you close or
checkpoint the subfile. You must call the DBMOD macro while the LREC you
modified is still current. If you allow the program to read other LRECs in the
subfile before you call the DBMOD macro, some modifications to LRECs can be
lost.

Attention: Do not use the DBMOD macro if you have changed:
– The size of the existing LREC
– Any key fields
– Any fields in the LREC that are also used as index key fields.

Instead, delete the old LREC with a DBDEL macro and add a new LREC with a
DBADD macro.

v Use the ALL parameter to perform global modifications. Global modification
allows you to update multiple LRECs with a single DBMOD call. You must
provide the base register of a modification key list with the MODLIST parameter.
The modification key list contains the rules for updating the LRECs. See “Setting
Up and Using a Key List” on page 26 for more information about defining a
modification key list.

v If you use global modification when KEYCHECK=YES is defined on the DBDEF
macro, and any of the fields being modified overlap any default key fields for that
primary key in the file, the TPFDF product issues a system error and processing
ends. All records that were changed before processing ended remain changed.

v The DBMOD macro does not have a KEYLIST parameter. If necessary, activate
the selection key list using the DBKEY macro before calling the DBMOD macro
with the ALL parameter to perform global modifications of LRECs.

Examples
The following is an example of how to do a global modification of LRECs from an
application written in assembler. In this example, a selection key list is first
established using 3 keys as the selection criteria. Then a modification key list is
defined. The modification key list indicates that for each LREC that meets the
selection criteria, field zzzzFL1 will have the halfword value at EBX020 added to it
and the byte at zzzzFL2 will be set to X'00'. Processing will begin with the first
LREC in the subfile and end with the last LREC in the subfile.

DBMOD

254 TPFDF R1 Programming Concepts and Reference

SW01SR REG=R5
LA R5,EBW000
*
MVC SW01NKY,=H’3’
DBSETK BASE=R5,KEYNUM=1,DIS=I/zzzzPKY-zzzzREC,LEN=L’zzzzPKY, *

CON=#DF_EQ,MSK=I/X’80’,ID1=#DF_UP+#DF_CONST
DBSETK BASE=R5,KEYNUM=2,DIS=I/zzzzKY1-zzzzREC,LEN=L’zzzzKY1, *

CON=#DF_EQ,SEA=EBX000,ID1=#DF_UP
DBSETK BASE=R5,KEYNUM=3,DIS=I/zzzzKY2-zzzzREC,LEN=L’zzzzKY2, *

CON=#DF_NE,SEA=EBX010,ID1=#DF_UP
DBKEY REF=zzzzzz,KEYLIST=EBW000,NOPGM
*
MVC SW01NKY,=H’2’
DBSETK BASE=R5,KEYNUM=1,DIS=I/zzzzFL1-zzzzREC,LEN=L’zzzzFL1, *

SEA=EBX020,ID2=#DF_AH
DBSETK BASE=R5,KEYNUM=2,DIS=I/zzzzFL2-zzzzREC,LEN=L’zzzzFL2, *

MSK=I/X’00’,ID2=#DF_MVI
*
DBMOD REF=zzzzzz,ALL,BEGIN,MODLIST=R5,REG=R6

Related Information
v “DBADD–Add a Logical Record to a Subfile” on page 176

v “DBREP–Replace a Logical Record with Another Logical Record” on page 288.

DBMOD

TPFDF General-Use Assembler Macros: Reference 255

DBMRG–Merge Logical Records from Two Subfiles
Use this macro to merge two subfiles into one subfile.

Format

�� DBMRG �

,

INPUTREF=irefname
INPUT=inputaddr

, REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

�

�
(1)

,UP
,DOWN

,ERROR=spmlbl
,ERRORA=asmlbl

,FULLFILE
�

�

�

,
(1)

,KEYn=(Key Subparameters)
,KEYLIST=keyloc

,NOPGM ,RELEASE
�

�
,RELFC ,SUFFIX=char

��

Key Subparameters:

R = fldname
T ,L=length

label1 ,L=length
D/absval
literal
flddisp

,UP
,DOWN

Notes:

1 See “Specifying File Organization with Keyn Parameters” on page 23 for
information about the rules for using the KEYn parameters and file
organization parameters together.

INPUTREF=irefname
specifies the reference name of the input subfile, where irefname is one of the
following:

v The DSECT name

v A label that references the DSECT name in one of the following formats:

DBMRG

256 TPFDF R1 Programming Concepts and Reference

irefname
is the label of an 8-byte field containing the DSECT name.

A/irefname
is the label of a 4-byte field that contains the storage address of an
8-byte field containing the DSECT name.

INPUT=inputaddr
specifies the base address of the SW00SR slot of the input file.

Note: This parameter is supported for migration purposes only; where possible,
always use the INPUTREF parameter to identify the input subfile.

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

UP
specifies that the LRECs are organized in the subfile in ascending order of key
fields.

DOWN
specifies that LRECs in the subfile are organized in descending order of key
fields.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

DBMRG

TPFDF General-Use Assembler Macros: Reference 257

FULLFILE
merges LRECs from the entire input file to the output subfile specified with the
REF parameter.

KEYn
specifies the key parameters that you want to use with this macro, where n is a
number from 1–6. You can specify as many as six KEYn parameters and they
must be specified in sequential order beginning with 1. That is, you cannot code
a KEY2 parameter without a KEY1 parameter, a KEY3 parameter without the
KEY1 and KEY2 parameters, and so on.

If you use these parameters, you must also specify the file organization of the
keys. See “Specifying File Organization with Keyn Parameters” on page 23 for
more information about how to do this. Use one or more of the following
subparameters with the KEYn parameter:

R specifies a field in the LREC to be used for placing the LRECs in the output
file.

T specifies a field in the subLREC of an extended LREC to be used for
placing the LRECs in the output file.

fldname
is the name of a field defined in the DSECT for the LREC; for example:
... KEY1=(R=GR00FLD)

label1
is a 2-byte field containing the displacement into the LREC; for example:
... KEY1=(R=EBX010,L==H’4’)

D/absval
specifies the displacement into the LREC of the field, where absval is an
absolute value; for example:
... KEY1=(R=D/2,L=L’GR00NAM,UP)

You can also specify the absolute value implicitly; for example:
... KEY1=(R=D/GR00NAM-GR00REC,L=L’GR00NAM,UP)

literal
is a halfword literal containing the displacement into the LREC; for example:
... KEY1=(R==H’2’,L==H’4’)

flddisp
is the displacement off the field of the LREC; for example:
... KEY1=(R=GR00FLD+2,L==H’4’)

or
... KEY1=(R=GR00FLD+L’GR00FLD,L==H’4’)

L=length
specifies the length of the field to be used in placing the LRECs in the
output file, where length is one of the following:

v The label of a 2-byte field containing the length of the field

v A 2-byte literal

v An absolute value in the form of L'fldname (for example, L=L'GR92FLD).

The default value is the length of the field specified with the R
subparameter.

DBMRG

258 TPFDF R1 Programming Concepts and Reference

UP
specifies that the key field is in ascending order in the subfile.

DOWN
specifies that the key field is in descending order in the subfile.

KEYLIST=keyloc
specifies a key list that you want to use with this macro, where keyloc is one of
the following:

v A register that contains the address of the key list

v A label in one of the following formats:

keyloc
is a label indicating the address of the key list.

A/keyloc
is the label of a 4-byte field that contains the storage address of the key
list.

See “Setting Up and Using a Key List” on page 26 for information about how to
set up a key list.

NOPGM
specifies not to change the program stamp in a block when filing it.

RELEASE
releases the SW00SR slot for the input subfile after the macro has completed
processing.

RELFC
releases the input subfile and deletes it from DASD. All overflow blocks are
released. If the file is a pool file, the prime block is also released. If the file is a
fixed file, the prime block is initialized to empty.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

Entry Requirements
You must open both subfiles before calling DBMRG.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

DBMRG

TPFDF General-Use Assembler Macros: Reference 259

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v After opening a file, if you use fullfile processing to access or update records,
you must continue to use fullfile processing on any subsequent macros when
available until the file is closed. Accessing or updating subfiles using fullfile
processing cannot be mixed with macros that access or update records without
using fullfile processing.

v Make sure the input file contains LRECs that are in the same order as the output
file. If the input file is not in the same order as the output file, do not merge the
files until they are in the same order. Use the DBSRT macro to arrange the input
file in the same order as the output file.

v If the output subfile is not a B+Tree subfile, you must specify keys using KEYn
parameters or the KEYLIST parameter when you call this macro. The keys
specify how the TPFDF product sorts the LRECs in the output subfile.

The KEYn and KEYLIST parameters are ignored for B+Tree files. The output file
is organized according default keys defined on the DBDEF macro for the file.
See TPFDF Database Administration for more information about default keys.

v The output file cannot be in detac mode when you use the DBMRG macro.

v You cannot issue additional TPFDF macros to the input file until the file is closed
if the following conditions are true:
– You specify the FULLFILE parameter
– You do not specify the RELEASE parameter
– The end-of-file indicator is set.

However, you can specify the REUSE parameter on the DBCLS macro. See
“Identifying Return Indicators and Errors” on page 13 for information about the
end-of-file indicator.

v When this macro has completed processing, the output subfile is left open and
must be closed using the DBCLS macro before the ECB exits. If you specify the
RELEASE parameter, this macro closes the input subfile.

v You cannot use this macro with P-type files.

v Figure 20 shows how the DBMRG macro merges LRECs from two subfiles.

This macro does not modify the input subfile that you specify with the INPUTREF
parameter. The TPFDF product leaves the ECB data level for the input subfile
free after use.

v If you use the DBMRG macro in a commit scope, the files or subfiles that are
being merged must be opened in the same commit scope. See “Commit Scopes”
on page 8 for more information about commit scopes.

Before

A (sorted)Input file

After

A (sorted)

B (sorted)Output file A + B (sorted)

Figure 20. Merging LRECs from Two Subfiles. The input file is defined by the INPUTREF
parameter and the output file is defined by the REF parameter.

DBMRG

260 TPFDF R1 Programming Concepts and Reference

Examples
The following example merges files GR26DF and GR25DF.
DBMRG REF=GR26DF,INPUTREF=GR25DF, *

KEY1=(R=GR25KEY,L==AL2(L’GR25KEY)) *

Related Information
“DBSRT–Sort a Subfile” on page 309.

DBMRG

TPFDF General-Use Assembler Macros: Reference 261

DBOPN–Open a Subfile
Use this macro to open a subfile. This is the first TPFDF macro you use with any
file. The first DBOPN macro creates a database interface block (DBIFB) and
reserves a SW00SR slot in the DBIFB. The SW00SR slot contains control
information about the subfile. See TPFDF General Information for more information
about SW00SR and this control information.

DBOPN

262 TPFDF R1 Programming Concepts and Reference

Format

�� DBOPN REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

,ALG=algarg
,FADDR=faddr
,ORD=ordnum

�

�
,WRAPAROUND

,BEGORD=bordnum
,ENDORD=eordnum
,BEGORD=bordnum,ENDORD=eordnum

,NOCHK

,CHKA=rcc
,CHKA=rcc,NOCHK

�

� ,DATA= dlevel
R3 ,DETAC

,NOHOLD

,HOLD ,ID=fileid

,INDEX=NOHOLD

,INDEX=HOLD
�

�
,INTERLV= intrlvnum

ALL
,PARTITN= partitnum

ALL

�

,

(1)
,KEYn=(Key Subparameters)

�

�
,NOPGM

,PARAM=AUTO

,PARAM=level ,PATH= pathnum
ALL

,POOLTYP= 0
1
2
type

�

�
,REG=reg ,SPACE= (space)

,SPACEB= ,spacereg

�

�
,SUFFIX=char ,TAPE=tapename (1)

,UP
,DOWN
,NOORG

��

Notes:

1 See “Specifying File Organization with Keyn Parameters” on page 23 for
information about the rules for using the KEYn parameters and file
organization parameters together.

DBOPN

TPFDF General-Use Assembler Macros: Reference 263

Key Subparameters:

PKY=primarykey
,C=condition

R =fldname ,D=dynmask,C=condition
T ,M=mask,C=condition

,S=searcharg
,L=length ,C=condition

R = label1 ,D=dynmask,C=condition
T D/absval ,M=mask,C=condition

literal ,S=searcharg,L=length
flddisp ,C=condition

,UP
,DOWN
,NOORG

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that will contain the address of the SW00SR slot on return from
the macro.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

DBOPN

264 TPFDF R1 Programming Concepts and Reference

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

FADDR=faddr
identifies the subfile that you want to access, where faddr is one of the
following:

faddr
is the label of a 4-byte field that contains the file address of the prime block
of the subfile.

A/faddr
is the label of a 4-byte field that contains the storage address of the file
address of the prime block of the subfile.

ORD=ordnum
identifies the subfile that you want to access, where ordnum is one of the
following:

ordnum
is the label of a 4-byte field that contains the ordinal number of the subfile.

A/ordnum
is the label of a 4-byte field that contains the storage address of the ordinal
number of the subfile.

If the file is partitioned or interleaved, specify the relative ordinal number within
the partition or interleave. If the file is not partitioned or interleaved, specify the
file address compute program (FACE) ordinal number.

BEGORD=bordnum
overrides the default starting ordinal number for use in a subsequent DBRED
macro or other macro statement, where bordnum is a label pointing to a 4-byte
field containing the required ordinal number.

ENDORD=eordnum
overrides the default ending ordinal number for use in a subsequent DBRED
macro or other macro statement, where bordnum is a label pointing to a 4-byte
field containing the required ordinal number.

WRAPAROUND
sets a wraparound bit. If you use other TPFDF macros with the FULLFILE
parameter with this file, the TPFDF product processes the subfiles in order,
returning to the first subfile from the last subfile.

For example, consider a file that contains 5 subfiles. If you specify BEGORD=3
and the WRAPAROUND parameter with the DBOPN macro, and then code a
DBRED macro with the FULLFILE parameter specified, the TPFDF product
processes the subfiles in order 3, 4, 0, 1, 2, then indicates end of file.

DBOPN

TPFDF General-Use Assembler Macros: Reference 265

CHKA=rcc
checks the record code check (RCC) value in each block, where rcc is the label
of a 1-byte field that contains the RCC character.

NOCHK
specifies that you do not want to check the record code check (RCC) value of
the blocks.

DATA
specifies the data level for the data block. Specify one of the following:

dlevel
is the data level.

R3
is for internal TPFDF use only.

Note: Do not use this parameter; it is provided only for migration purposes. In
addition, do not specify the DATA parameter if you have specified the
REF parameter in your application program.

DETAC
opens the subfile in detac mode. When the subfile is in detac mode, all
modified blocks are saved in main storage. No blocks are written to DASD until
you checkpoint the subfile (using the DBCKP macro) or close the subfile (using
the DBCLS macro). Access to LRECs in blocks in main storage can be very
fast.

If you do not want to keep any modifications that you made to the subfile
opened with the DETAC parameter, you can use the ABORT parameter with the
DBCLS macro. This closes the file without saving any modifications to disk.

Each subfile that you open with the DETAC parameter uses up some main
storage, so avoid using this parameter unnecessarily.

Notes:

1. When you are using fullfile processing, each subfile in turn is put in detac
mode, not the entire file.

2. The TPF system and the ALCS environment issues a 000010 system error
if an application program does not give up control in the time allotted by the
application time-out counter. When processing in detac mode, a TPFDF
application program can require more than the allotted time on a database
with a large data structure. To prevent the 000010 system error, you can
change the setting of the &TPFDBDV symbol in the DBLCL macro.

See TPFDF Installation and Customization for more information about the
&TPFDBDV symbol and the DBLCL macro.

HOLD
potentially holds the subfile that you are accessing and prevents two or more
application programs from modifying the subfile at the same time. Holding
occurs on the following TPFDF call that accesses the subfile if bits 4 and 5 in
the &SW00OP2 global set symbol in the DSECT macro, or the OP2= parameter
in the DBDEF macro, have been set appropriately. Subsequent TPFDF calls by
other ECBs to modify the subfile will not occur until the subfile is no longer held.
If more than one application can update the same subfile, or when the file is
processed in fullfile mode, you must specify this parameter to ensure the
updates are synchronized.

DBOPN

266 TPFDF R1 Programming Concepts and Reference

See TPFDF Database Administration for information about how bits 4 and 5 in
the &SW00OP2 global set symbol in the DSECT macro, or the OP=2 parameter
in the DBDEF macro, affect hold processing.

NOHOLD
does not hold the subfile that you are accessing. You can specify this parameter
when you open a subfile and are not going to make modifications to it.

ID=fileid
specifies the ID of the file to be opened, where fileid is a halfword containing
the file ID. This parameter is for use by the database administrator only; for
example, in ZUDFM utilities for performing centralized database routines.

INDEX=HOLD
potentially holds any index files that reference the subfiles you are accessing
and prevents two or more application programs from modifying the index files at
the same time. Holding occurs on the following TPFDF call that accesses the
subfile if bits 4 and 5 in the &SW00OP2 global set symbol in the DSECT
macro, or the OP2= parameter in the DBDEF macro, have been set
appropriately. Subsequent TPFDF calls by other ECBs to modify the index file
will not occur until the index file is no longer held. If more than one application
can update the same index file, or the file is processed in fullfile mode, you
must specify this parameter to ensure the updates are synchronized.

See TPFDF Database Administration for information about how bits 4 and 5 in
the &SW00OP2 global set symbol in the DSECT marco, or the OP2= parameter
in the DBDEF macro, affect hold processing.

INDEX=NOHOLD
does not hold the index files that reference the subfiles you are accessing.

INTERLV
specifies the interleave that you want to use. Specify one of the following:

interlvnum
is one of the following:
v A register that contains the address of the interleave number
v An absolute value representing the interleave number
v The label of a 2-byte field that contains the interleave number.

ALL
specifies all interleaves. Use this value when you use fullfile processing to
ensure that you do not miss an LREC located in a different interleave.

If you specify this parameter, the maximum interleave number must be defined
in the DSECT or DBDEF macro. See TPFDF Database Administration for more
information about interleaves.

PARTITN
specifies the partition that you want to use. Specify one of the following:

partitnum
is one of the following:
v A register that contains the address of partition number
v An absolute value representing the partition number
v The label of a 2-byte field that contains the partition number.

ALL
specifies all partitions. Use this value when you use fullfile processing to
ensure that you do not miss an LREC located in a different partition.

DBOPN

TPFDF General-Use Assembler Macros: Reference 267

If you specify this parameter, the number of partitions and the end ordinal must
be defined in the DSECT or DBDEF macro. See TPFDF Database
Administration for more information about partitions.

Note: Do not use this parameter with the #TPFDB0F algorithm. This algorithm
computes the partition used from the algorithm argument. See TPFDF
Database Administration for more information about algorithms.

KEYn
specifies the key parameters that you want to use with this macro, where n is a
number from 1–6. You can specify as many as six KEYn parameters and they
must be specified in sequential order beginning with 1. That is, you cannot code
a KEY2 parameter without a KEY1 parameter, a KEY3 parameter without the
KEY1 and KEY2 parameters, and so on.

If you use these parameters, you must also specify the file organization of the
keys. See “Specifying File Organization with Keyn Parameters” on page 23 for
more information about how to do this. Use one or more of the following
subparameters with the KEYn parameter:

PKY=primarykey
specifies a value that will be compared against the primary key of an LREC,
where primarykey is a 1-byte immediate value; for example:
... KEY1=(PKY=#RR00K80)

This has the same effect as:
... KEY1=(R=RR00KEY,S=#RR00K80)

R specifies a field in the LREC to be compared with the search argument
specified with the S subparameter or to be tested against the mask
specified with the M or D subparameter.

T specifies a field in the subLREC of an extended LREC to be compared with
the search argument specified with the S subparameter or to be tested
against the mask specified with the M or D subparameter.

fldname
is the name of a field defined in the DSECT for the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,S=EBW000)

label1
is a 2-byte field containing the displacement into the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=EBX010,S=EBW000,L==H’4’)

D/absval
specifies the displacement into the LREC of the field, where absval is an
absolute value; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=D/2,S=EBW000,L=L’GR00NAM,UP)

You can also specify the absolute value implicitly; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=D/GR00NAM-GR00REC,S=EBW000,L=L’GR00NAM,UP)

literal
is a halfword literal containing the displacement into the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R==H’2’,S=EBW000,L==H’4’)

flddisp
is the displacement off the field of the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD+2,S=EBW000,L==H’4’)

DBOPN

268 TPFDF R1 Programming Concepts and Reference

or
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD+L’GR00FLD,S=EBW000,L==H’4’)

C=condition
specifies the condition to be used when comparing fields in the logical
record (specified with the R subparameter) with the search argument
(specified with the S or PKY subparameter) or with the bit mask (specified
with the M or D subparameter).

If you specify the S or PKY subparameter, use one of the following values:

Value Condition
EQ Equal (this is the default)
E Equal
NE Not equal
GE Greater than or equal
LE Less than or equal
GT Greater than
LT Less than
H High
L Low
NH Not high
NL Not low.

If you specify the M or D subparameter, use one of the following values:

Value Condition
Z Zeros
O Ones
M Mixed
NZ Not zeros
NO Not ones
NM Not mixed.

D=dynmask
specifies the label of a 1-byte field containing a mask to be tested against
the LREC field specified with the R or T subparameter; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,D=EBW000,C=Z)

M=mask
specifies a mask to be tested against the LREC field specified with the R or
T subparameter; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,M=X’80’,C=Z)

S=searcharg
specifies the search argument to be compared with the LREC field specified
with the R or T subparameter, where searcharg is one of the following:

v A register that contains the address of the search argument

v A literal that represents the search argument

v A label in one of the following formats:

searcharg
is the label of the search argument.

A/searcharg
is the label of a 4-byte field that contains the storage address of the
search argument.

DBOPN

TPFDF General-Use Assembler Macros: Reference 269

P/searcharg
is the label of a field that contains the search argument in packed
decimal format.

If you specify P/searcharg or a literal in the form of =P"...", the LREC
field and search argument are compared as decimal numbers in packed
format. Otherwise, the LREC field and search argument are compared as
character data.

Note: When you use this parameter, you cannot specify the core block
reference word (CBRW) or file address reference word (FARW) fields
in an ECB.

L=length
specifies the length of the search argument, where length is one of the
following:

v The address of a 2-byte field containing the length of the search
argument

v A 2-byte literal

v An absolute value in the form of L'fldname (for example, L=L'GR92FLD).

The default value is the length of the field specified with the R
subparameter.

UP
specifies that the key field is in ascending order in the subfile.

DOWN
specifies that the key field is in descending order in the subfile.

NOORG
specifies that the key field is in no particular order in the subfile.

NOPGM
specifies not to change the program stamp in a block when filing it.

PARAM
specifies the entry control block (ECB) data level for the SW00SR space to be
allocated. Specify one of the following:

level
is the data level.

AUTO
specifies automatic SW00SR allocation. Use this value if you specified the
DATA parameter.

Note: Do not use this parameter; it is provided only for migration purposes.

PATH
specifies the path for a detail subfile using index support. If there is only one
index path, do not specify this parameter. Specify one of the following:

pathnum
is the path number or the label of a 2-byte field that contains the path
number. The number of index paths used is defined by your database
administrator.

ALL
specifies all paths.

DBOPN

270 TPFDF R1 Programming Concepts and Reference

|
|
|

See TPFDF Database Administration for more information about path numbers.

POOLTYP
overrides the pool type defined by the database administrator, where:

0 uses the pool type defined by the PF0 parameter of the DBDEF macro.

1 uses the pool type defined by the PF1 parameter of the DBDEF macro.

2 uses the pool type defined by the PF2 parameter of the DBDEF macro.

type
is the label of a 1-byte field that contains a 0, 1, or 2 to specify to pool type.

Use the POOLTYP parameter as directed by the database administrator.

REG=register
generates the DSECT macro specified with the REF or FILE parameter and
generates a USING statement to provide addressability to the DSECT, where
register is the register that will be used on the USING statement. If you specify
the SUFFIX parameter as well, the DBOPN macro generates the DSECT using
the specified suffix.

If you do not specify the REG parameter and if the application program needs
access to the DSECT labels, you must code the DSECT in the application
source code directly.

SPACE
provides work space when you open a subfile and initializes the work space to
X'00'

SPACEB
provides work space when you open a subfile and initializes the work space to
X'40'

space
is the number of bytes of space you want, which can be a maximum of 3952
bytes. Specify one of the following:

v An absolute value. For example,
DBOPN REF=GR36DF,SPACE=(400,R5)

v The length of a label. For example,
DBOPN REF=GR36DF,SPACE=(L’GR36REC,R5)

This provides space that is the same length as the field.

v The label of a field. For example,
DBOPN REF=GR36DF,SPACE=(EBW002,R5)

The space is determined by the 2 bytes of data beginning at the specified
label.

spacereg
is the register in which you want the base address of the work space loaded.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

TAPE=tapename
specifies the tape or sequential data set to be used when creating overflow
blocks, where tapename is a 3-character symbolic tape name. When you
specify this parameter, if you are adding LRECs and the prime block overflows,

DBOPN

TPFDF General-Use Assembler Macros: Reference 271

the TPFDF product copies the current prime block to the specified tape or
sequential data set). The TPFDF product then initializes the original prime block
by inserting a new standard TPFDF header and adds the new LREC to this
prime block.

This parameter is useful when you are logging data to a real-time tape.

Note: B+Tree files cannot be opened using the TAPE parameter.

UP
specifies that the LRECs are organized in the subfile in ascending order of key
fields.

DOWN
specifies that LRECs in the subfile are organized in descending order of key
fields.

NOORG
specifies that the LRECs are organized in the subfile in no particular order.
(NOORG is the default if subfile organization has not been defined in the
DBDEF).

Entry Requirements
Ensure that the subfile you open was previously defined in a DSECT macro and in
a DBDEF macro by your database administrator.

Normal Return
The address of the SW00SR slot.

Error Return
The error indicators in the SW00RTN field of the SW00SR slot have no meaning for
this macro.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v You cannot specify six KEYn parameters (KEY1–KEY6) when both of the
following conditions are true:

– The S subparameter is used on all six keys

– The length of all keys is greater than 1 (either with an explicit length using the
L subparameter or an implied length from the field used in the R or T
subparameter).

If you need this type of key definition, you must use a key list.

DBOPN

272 TPFDF R1 Programming Concepts and Reference

v The following rules determine the value of the record code check (RCC) value
used when the TPFDF product creates a new subfile:

– If you do not specify the NOCHK parameter, the TPFDF product creates new
subfiles with a random RCC value.

– If you specify the NOCHK parameter without the CHKA parameter, the TPFDF
product creates new subfiles without an RCC value.

– If you specify both the NOCHK and CHKA parameters, the TPFDF product
creates new subfiles with the RCC value specified with the CHKA parameter.

v When you use the REF parameter to open a file, the TPFDF product
automatically allocates a SW00SR slot and loads the address in register 3 (R3).
The DSECT name you used is put in the SW00SR slot as the file reference. Use
the same REF parameter value with other macros to identify the file.

If you specify the FILE parameter alone, this implies that R3 was set up by the
application program to point to the correct SW00SR slot.

v You can open selected subfiles of a particular file simultaneously. To do this, use
the same 6-character DSECT name for all subfiles, but follow it with different
appendixes (for example, 01, 02, 03, and so on) to identify each subfile.

Keep in mind that each subfile has a different SW00SR. When you access a
subfile you must use the same 8-character reference name that you used to
open the subfile.

v If you specify the BEGORD and ENDORD parameters, subsequent macros (such
as a DBRED macro with the FULLFILE parameter specified) process the file only
between the defined begin and end ordinals.

v You cannot use this macro with a T-type file because a T-type file is a temporary
logical record (LREC) stored in a W-type file and is not defined in the database
definition (DBDEF) macro. See TPFDF Database Administration for more
information about T-type files.

v If you use this macro with a W-type file, the HOLD parameter is the default. See
TPFDF Database Administration for more information about W-type files.

v It is not necessary to specify data level independence (DLI) with this macro. The
TPFDF product preserves all data levels holding blocks before a macro or
function call. However, if you use the DBOPN macro with the DATA and PARAM
parameters specified, the data is returned to the data level specified.

Note: The DATA and PARAM parameters are provided for migration purposes
only.

See “Data Level Usage” on page 3 for more information about DLI.

Examples
The following example opens two different subfiles and then later accesses one of
them.
DBOPN REF=GR00SR01,ALG==C’A’
DBOPN REF=GR00SR02,ALG==C’B’...
DBRED REF=GR00SR01

Related Information
“DBCLS–Close a Subfile” on page 200.

DBOPN

TPFDF General-Use Assembler Macros: Reference 273

DBRED–Read a Logical Record
Use this macro to read a logical record (LREC) or block header and get the
address where the record is stored. You can read the next LREC in sequence or
specify details of the LREC you require.

You can also use this macro to read a sequence of LRECs. In this case, you
perform a sequence of DBRED macro calls and get a different LREC each time.

DBRED

274 TPFDF R1 Programming Concepts and Reference

Format

�� DBRED REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

,ALG=algarg
,FADDR=faddr
,ORD=ordnum

,AREA=arealbl
�

�
,BACKWARD
,BEGIN
,LAST
,PREVIOUS

,NOCHK

,CHKA=rcc ,ERROR=spmlbl
,ERRORA=asmlbl

,FAST ,FULLFILE
�

�
,HEADER

,INDEX=NOHOLD

,INDEX=HOLD ,INLINE ,INTERLV= intrlvnum
ALL

,PARTITN= partitnum
ALL

�

�

�

,
(1)

,KEYn=(Key Subparameters)
,KEYLIST=keyloc
,NOKEY

�

�
,LIST=lreclst

,ADJUST=factor
,LRECNBR=lrecnum ,NODUMP ,NOPGM

�

�
,PATH=pathnum ,REG=reg ,REGD=regd ,STACK=stkloc

,STACKREF=stkval

�

�
,SUFFIX=char

,TLREC=NO

,TLREC=YES

(1)

,UP
,DOWN
,NOORG

��

Notes:

1 See “Specifying File Organization with Keyn Parameters” on page 23 for
information about the rules for using the KEYn parameters and file
organization parameters together.

DBRED

TPFDF General-Use Assembler Macros: Reference 275

Key Subparameters:

PKY=primarykey
,C=condition

R =fldname ,D=dynmask,C=condition
T ,M=mask,C=condition

,S=searcharg
,L=length ,C=condition

R = label1 ,D=dynmask,C=condition
T D/absval ,M=mask,C=condition

literal ,S=searcharg,L=length
flddisp ,C=condition

,UP
,DOWN
,NOORG

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

DBRED

276 TPFDF R1 Programming Concepts and Reference

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

FADDR=faddr
identifies the subfile that you want to access, where faddr is one of the
following:

faddr
is the label of a 4-byte field that contains the file address of the prime block
of the subfile.

A/faddr
is the label of a 4-byte field that contains the storage address of the file
address of the prime block of the subfile.

ORD=ordnum
identifies the subfile that you want to access, where ordnum is one of the
following:

ordnum
is the label of a 4-byte field that contains the ordinal number of the subfile.

A/ordnum
is the label of a 4-byte field that contains the storage address of the ordinal
number of the subfile.

If the file is partitioned or interleaved, specify the relative ordinal number within
the partition or interleave. If the file is not partitioned or interleaved, specify the
file address compute program (FACE) ordinal number.

AREA=arealbl
specifies an area to which the TPFDF product copies user data from the index
LREC referencing the detail subfile you are accessing, where arealbl is one of
the following:

arealbl
is the label of a field to which the user data will be copied.

A/arealbl
is the label of a 4-byte field that contains the storage address of the field to
which the user data will be copied.

The user data is defined in the DBDEF macro of the detail subfile. See TPFDF
Database Administration for more information about defining this user data.

BACKWARD
reads through a subfile backwards. The DBRED macro reads the LREC
immediately preceding the current one.

DBRED

TPFDF General-Use Assembler Macros: Reference 277

Notes:

1. You cannot use the BACKWARD parameter with KEYn or LRECNBR
parameters.

2. If you use the BACKWARD parameter with the DBRED macro and also use
the DBRET macro, you must specify the STACK or STACKREF parameter
with the DBRET macro. See “DBRET–Retain a Logical Record Position” on
page 292 for more information about these parameters and the DBRET
macro.

3. If you use the BACKWARD parameter, the default and recommended
setting for symbol &DB013A in the DBLCL macro is 0. This setting requires
files to use full backward chaining (bit 0 of &SW00OP1 is set) to read
backward. See TPFDF Database Administration for more information about
defining full backward chaining. See TPFDF Installation and Customization
for more information about the DBLCL macro.

Exception: If the file uses add current processing (bit 2 of &SW00OP1 is set)
with no chains (&SW00NOC = 0), you can code the DBRED macro
with the BACKWARD parameter specified regardless of how bit 0
of &SW00OP1 is set.

BEGIN
reads the subfile from the beginning rather than from the current LREC. This
ensures that the DBRED macro locates the first LREC in the file that matches
any search arguments you have specified.

LAST
reads the last LREC in a subfile. If you use the LAST parameter together with
KEYn parameters, the DBRED macro supplies the last LREC that matches the
search arguments.

PREVIOUS
retrieves an LREC that you saved using the DBRET macro.

CHKA=rcc
checks the record code check (RCC) value in each block, where rcc is the label
of a 1-byte field that contains the RCC character.

NOCHK
specifies that you do not want to check the record code check (RCC) value of
the blocks.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

FAST
used for migration purposes only; use the INLINE or NOKEY parameter instead.
If you specify this parameter, the NOKEY parameter is implemented; that is,
keys that are currently active are deactivated.

FULLFILE
reads an LREC (specified using the ALG and KEYn parameters) from any of

DBRED

278 TPFDF R1 Programming Concepts and Reference

the subfiles in the file referenced by the REF parameter. If you do not specify
the FULLFILE parameter, you can only read an LREC in the current subfile.

Note: If the BEGORD and ENDORD parameter were defined on the DBOPN
macro, the DBRED macro with the FULLFILE parameter only accesses
the subfiles between the specified ordinals.

HEADER
locates the subfile header in the prime block and returns the address in field
SW00REC rather than the address of an LREC. The address of the prime block
is also returned in field SW00PCA..

If you specify the HEADER and FULLFILE parameters on an open subfile, the
DBRED macro retrieves the header of the next subfile.

INDEX=HOLD
potentially holds any index files that reference the subfiles you are accessing
and prevents two or more application programs from modifying the index files at
the same time. Holding occurs if bits 4 and 5 in the &SW00OP2 global set
symbol in the DSECT macro, or the OP2= parameter in the DBDEF macro,
have been set appropriately. Subsequent TPFDF calls by other ECBs to modify
the index file will not occur until the index file is no longer held. If more than
one application can update the same index file, or the file is processed in fullfile
mode, you must specify this parameter to ensure the updates are synchronized.

See TPFDF Database Administration for information about how bits 4 and 5 in
the &SW00OP2 global set symbol in the DSECT macro, or the OP2= parameter
in the DBDEF macro, affect hold processing.

INLINE
provides inline processing for this macro. You cannot use this parameter with
the KEYn or LRECNBR parameters. Any keys that are active from previous
TPFDF macros are deactivated.

Use this parameter when you want to read each LREC in a subfile sequentially.

Notes:

1. After a DBRED macro is issued with the INLINE parameter specified, you
cannot be certain that the TPFDF product will check the keys if you issue a
DBMOD macro when KEYCHECK=YES is defined on the DBDEF macro.

2. You cannot use this parameter with P-type files.

INTERLV
specifies the interleave that you want to use. Specify one of the following:

interlvnum
is one of the following:
v A register that contains the address of the interleave number
v An absolute value representing the interleave number
v The label of a 2-byte field that contains the interleave number.

ALL
specifies all interleaves. Use this value when you use fullfile processing to
ensure that you do not miss an LREC located in a different interleave.

If you specify this parameter, the maximum interleave number must be defined
in the DSECT or DBDEF macro. See TPFDF Database Administration for more
information about interleaves.

PARTITN
specifies the partition that you want to use. Specify one of the following:

DBRED

TPFDF General-Use Assembler Macros: Reference 279

partitnum
is one of the following:
v A register that contains the address of partition number
v An absolute value representing the partition number
v The label of a 2-byte field that contains the partition number.

ALL
specifies all partitions. Use this value when you use fullfile processing to
ensure that you do not miss an LREC located in a different partition.

If you specify this parameter, the number of partitions and the end ordinal must
be defined in the DSECT or DBDEF macro. See TPFDF Database
Administration for more information about partitions.

Note: Do not use this parameter with the #TPFDB0F algorithm. This algorithm
computes the partition used from the algorithm argument. See TPFDF
Database Administration for more information about algorithms.

KEYn
specifies the key parameters that you want to use with this macro, where n is a
number from 1–6. You can specify as many as six KEYn parameters and they
must be specified in sequential order beginning with 1. That is, you cannot code
a KEY2 parameter without a KEY1 parameter, a KEY3 parameter without the
KEY1 and KEY2 parameters, and so on.

If you use these parameters, you must also specify the file organization of the
keys. See “Specifying File Organization with Keyn Parameters” on page 23 for
more information about how to do this. Use one or more of the following
subparameters with the KEYn parameter:

PKY=primarykey
specifies a value that will be compared against the primary key of an LREC,
where primarykey is a 1-byte immediate value; for example:
... KEY1=(PKY=#RR00K80)

This has the same effect as:
... KEY1=(R=RR00KEY,S=#RR00K80)

R specifies a field in the LREC to be compared with the search argument
specified with the S subparameter or to be tested against the mask
specified with the M or D subparameter.

T specifies a field in the subLREC of an extended LREC to be compared with
the search argument specified with the S subparameter or to be tested
against the mask specified with the M or D subparameter.

fldname
is the name of a field defined in the DSECT for the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,S=EBW000)

label1
is a 2-byte field containing the displacement into the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=EBX010,S=EBW000,L==H’4’)

D/absval
specifies the displacement into the LREC of the field, where absval is an
absolute value; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=D/2,S=EBW000,L=L’GR00NAM,UP)

You can also specify the absolute value implicitly; for example:

DBRED

280 TPFDF R1 Programming Concepts and Reference

... KEY1=(PKY=#GR00K80),KEY2=(R=D/GR00NAM-GR00REC,S=EBW000,L=L’GR00NAM,UP)

literal
is a halfword literal containing the displacement into the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R==H’2’,S=EBW000,L==H’4’)

flddisp
is the displacement off the field of the LREC; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD+2,S=EBW000,L==H’4’)

or
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD+L’GR00FLD,S=EBW000,L==H’4’)

C=condition
specifies the condition to be used when comparing fields in the logical
record (specified with the R subparameter) with the search argument
(specified with the S or PKY subparameter) or with the bit mask (specified
with the M or D subparameter).

If you specify the S or PKY subparameter, use one of the following values:

Value Condition
EQ Equal (this is the default)
E Equal
NE Not equal
GE Greater than or equal
LE Less than or equal
GT Greater than
LT Less than
H High
L Low
NH Not high
NL Not low.

If you specify the M or D subparameter, use one of the following values:

Value Condition
Z Zeros
O Ones
M Mixed
NZ Not zeros
NO Not ones
NM Not mixed.

D=dynmask
specifies the label of a 1-byte field containing a mask to be tested against
the LREC field specified with the R or T subparameter; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,D=EBW000,C=Z)

M=mask
specifies a mask to be tested against the LREC field specified with the R or
T subparameter; for example:
... KEY1=(PKY=#GR00K80),KEY2=(R=GR00FLD,M=X’80’,C=Z)

S=searcharg
specifies the search argument to be compared with the LREC field specified
with the R or T subparameter, where searcharg is one of the following:

v A register that contains the address of the search argument

v A literal that represents the search argument

DBRED

TPFDF General-Use Assembler Macros: Reference 281

v A label in one of the following formats:

searcharg
is the label of the search argument.

A/searcharg
is the label of a 4-byte field that contains the storage address of the
search argument.

P/searcharg
is the label of a field that contains the search argument in packed
decimal format.

If you specify P/searcharg or a literal in the form of =P"...", the LREC
field and search argument are compared as decimal numbers in packed
format. Otherwise, the LREC field and search argument are compared as
character data.

Note: When you use this parameter, you cannot specify the core block
reference word (CBRW) or file address reference word (FARW) fields
in an ECB.

L=length
specifies the length of the search argument, where length is one of the
following:

v The address of a 2-byte field containing the length of the search
argument

v A 2-byte literal

v An absolute value in the form of L'fldname (for example, L=L'GR92FLD).

The default value is the length of the field specified with the R
subparameter.

UP
specifies that the key field is in ascending order in the subfile.

DOWN
specifies that the key field is in descending order in the subfile.

NOORG
specifies that the key field is in no particular order in the subfile.

KEYLIST=keyloc
specifies a key list that you want to use with this macro, where keyloc is one of
the following:

v A register that contains the address of the key list

v A label in one of the following formats:

keyloc
is a label indicating the address of the key list.

A/keyloc
is the label of a 4-byte field that contains the storage address of the key
list.

See “Setting Up and Using a Key List” on page 26 for information about how to
set up a key list.

NOKEY
deactivates any currently active keys.

DBRED

282 TPFDF R1 Programming Concepts and Reference

|
|
|

LIST=lreclst
reads a list of LRECs, where lreclst is a register that contains the address of a
list of LREC numbers. The TPFDF product reads these LRECs sequentially
when you make a series of DBRED macro calls. The list contains one or more
LREC sequence numbers separated by a slash (/). You can also specify a
range of sequence numbers by separating the beginning and end of the range
by a hyphen (-). You can use LAST to mean the last LREC of the subfile and
ALL to mean all the remaining LRECs. You can also end the list with a
nonnumeric character.

Notes:

1. The ranges must be in ascending order; if one is found out of order, that
range and all subsequent ranges are ignored.

For example, if there are 41 LRECs in a subfile, the following lists all have
the same effect:
20/31/32/33/37/38/39/40/41
20/31/32/33/37-41
20/31-33/37-LAST
20/31-33/37/ALL

2. You cannot specify the number zero in the list of LREC numbers, even if
you specify the ADJUST parameter with a value that would adjust the
number zero to a valid LREC number.

ADJUST=factor
specifies an adjustment factor for the values in the list, where factor is a register
or the label of a field that contains a positive or negative adjustment factor. For
example, if you set the adjustment factor to 1, and the list contains LRECs
1/3/5, the DBRED macro reads LRECs 2/4/6.

LRECNBR=lrecnum
specifies the sequence number of an LREC that you want to access, where
lrecnum is one of the following:

v A register that contains the address of the LREC number

v An immediate value that represents the LREC number

v A label in one of the following formats:

lrecnum
is the label of a 4-byte field that contains the LREC number.

A/lrecnum
is the label of a 4-byte field that contains the storage address containing
the LREC number.

Notes:

1. If you use the #TPFDB0D algorithm, you must specify this parameter.

2. LRECs are numbered in increasing order from the start of the subfile (the
first LREC in the prime block has sequence number 1).

3. If you specify the LRECNBR parameter with KEYn parameters, only those
LRECs that match the key conditions are included in the sequence
numbering; LRECs that do not match are ignored.

NODUMP
specifies that you do not want the TPFDF product to issue any of the following
system errors while processing this macro:
v DB0100
v DB0102
v DB0117
v DB0123

DBRED

TPFDF General-Use Assembler Macros: Reference 283

v DB0138
v DB0140.

See TPFDF Messages (System Error, Online, Offline) for more information
about these system errors.

Note: Using the NODUMP parameter is not recommended because it can
prevent system errors from being issued that indicate a critical problem.

NOPGM
specifies not to change the program stamp in a block when filing it.

PATH=pathnum
specifies the path number for a detail subfile using index support, where
pathnum is the path number or the label of a 2-byte field that contains the path
number. The number of index paths used is defined by your database
administrator. If there is only one index path, do not specify this parameter.

See TPFDF Database Administration for more information about path numbers.

REG=register
specifies a register in which to return the address of the current LREC (this
address is contained in SW00SR field SW00REC). If the HEADER parameter is
specified, the address of the prime block (contained in SW00SR field
SW00PCA) is returned in the register. You must specify this parameter for
T-type files.

REGD=register
specifies a register in which to return the base address of the userLREC part of
an extended LREC.

STACK=stkloc
reads an LREC that you saved using the DBRET macro, where stkloc is the
location of a 10-byte field that contains the details about the LREC. Specify the
same value you used with the STACK parameter on the previous DBRET
macro call. See “DBRET–Retain a Logical Record Position” on page 292 for
more information about saving LRECs.

Note: Where possible, use the STACKREF parameter.

STACKREF=stkval
reads an LREC that you saved using the DBRET macro, where stkval is a
value assigned to the retained LREC. Specify the same value you used with the
STACKREF parameter on the previous DBRET macro call. See “DBRET–Retain
a Logical Record Position” on page 292 for more information about saving
LRECs.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

TLREC
specifies one of the following:

YES
includes technical LRECs (TLREC) when searching for LRECs to be read.

NO
does not include TLRECs when searching for the LRECs to be read.

DBRED

284 TPFDF R1 Programming Concepts and Reference

|
|

UP
specifies that the LRECs are organized in the subfile in ascending order of key
fields.

DOWN
specifies that LRECs in the subfile are organized in descending order of key
fields.

NOORG
specifies that the LRECs are organized in the subfile in no particular order.
(NOORG is the default if subfile organization has not been defined in the
DBDEF).

Entry Requirements
If you specify the PREVIOUS, STACK, or STACKREF parameter, you must first
open the subfile using the DETAC or HOLD parameters.

Normal Return
If the specified LREC is located, the address of that LREC (the current LREC) is
loaded into the SW00REC field of the SW00SR slot. If you specify the REG
parameter, the address is also loaded into the register that you specify. For P-type
files, the current LREC is the address of the block that contains the record.

Error Return
v See “Identifying Return Indicators and Errors” on page 13 for information about

how to check the error indicators.

v If you use the LIST parameter, you must check bit 1 of the SW00RTN field. If bit
1 in SW00RTN is set, bit 0 in SW00RT2 indicates that the TPFDF product could
not process the list successfully.

v If you use the FULLFILE parameter, the TPFDF product does not set any error
indicators in SW00RTN except bit 5. It sets this bit when it has reached the end
of the complete file. The TPFDF product provides an error count in SW00RT1.
You can check this to determine how many errors have occurred since DBOPN
when the FULLFILE parameter has been used.

If you use the FULLFILE parameter, and the end-of-file indicator is set, you
cannot issue additional TPFDF macros until the file is closed. However, you can
specify the REUSE parameter on the DBCLS macro. See “Identifying Return
Indicators and Errors” on page 13 for information about the end-of-file indicator.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v You cannot specify six KEYn parameters (KEY1–KEY6) when both of the
following conditions are true:

DBRED

TPFDF General-Use Assembler Macros: Reference 285

– The S subparameter is used on all six keys

– The length of all keys is greater than 1 (either with an explicit length using the
L subparameter or an implied length from the field used in the R or T
subparameter).

If you need this type of key definition, you must use a key list.

v Any active keys are ignored when you use the #TPFDB0D algorithm.

v After opening a file, if you use fullfile processing to access or update records,
you must continue to use fullfile processing on any subsequent macros when
available until the file is closed. Accessing or updating subfiles using fullfile
processing cannot be mixed with macros that access or update records without
using fullfile processing.

Note: The header parameter can be used with the FULLFILE parameter to move
from subfile to subfile, which can then be accessed using the DBRED
macros that do not use the FULLFILE parameter. For example:
#DO INF

DBRED REF=GR22DF,FULLFILE,HEADER * Start of next subfile *
#DOEX DBEOF,YES * Exit if end of file *

DBRED KEYLIST=EBW0000 * Access record in subfile *
#EDO

v If you do not specify any search parameters with the DBRED macro (and none
are still in effect from the DBOPN macro), the TPFDF product locates the next
LREC in sequence in the subfile.

v Do not use the FAST parameter with P-type files.

v To ensure that an LREC is retrieved accurately when you use the DBRED macro,
do not use the DBRET macro with the STACK and STACKREF parameters
specified on the same open file. If you do, the wrong LREC could be retrieved.
You must close and reopen the file each time you alternate between specifying
the STACK and STACKREF parameters.

Examples
v The following example shows how to read an LREC from a detail file using index

support. First, open the detail file normally, using the REF parameter. Then, use
the DBRED macro to read the LREC by providing the index key string of an
index LREC as an algorithm argument in the ALG parameter.
DBOPN REF=GR44DF
DBRED REF=GR44DF,ALG==C’ALDER’

v The following example shows how to read a subfile using read-only default keys
in an assembler application. The TPFDF product will search through LRECs in
the subfile until it finds a record that matches all of the criteria of the default keys
references in the key list. In this example, read-only key X'06', which uses three
key fields, is specified. See “Using Default-Key Key Lists” on page 31 for more
information about using default keys on read operations.
SW01SR REG=R5 ADDRESSABILITY TO KEY LIST
GR95SR REG=R4 PROTOTYPE LREC STRUCTURE
LA R4,EBW004 BASE OF PROTOTYPE LREC
MVI GR95KEY,X’80’ SEARCH FOR PKY X’80’
MVC GR95NAM(5),=C’SMITH’ SEARCH FOR NAME OF SMITH
MVC GR95CTY(8),=C’NEW YORK’ SEARCH FOR CITY OF NEW YORK
LA R5,EBX000 LOAD BASE OF DBKEY TABLE
XC EBX000(L’SW01NKY+L’SW01KIT),EBX000 CLEAR KEYLIST AREA
MVC SW01NKY,=H’1’ SET UP 1 KEY (READ-ONLY)
DBSETK BASE=R5,KEYNUM=1,MSK=I/X’06’,SEA=EBW004,ID1=#DF_KEYS
DBRED REF=IR73DF,KEYLIST=EBX000 ACTIVATE KEY LIST

DBRED

286 TPFDF R1 Programming Concepts and Reference

v The following example shows how to read a subfile using OR Boolean logic in an
assembler application. The application will read each LREC in the subfile until it
finds a record that contains any of the keys in the key list. See “Using Boolean
Logic in Key Lists” on page 30 for more information about how to use Boolean
operators in key lists.

SW01SR REG=R5
LA R5,EBX000 LOAD BASE OF DBKEY TABLE
XC EBX000(L’SW01NKY+2*L’SW01KIT),EBX000 CLEAR KEYLIST AREA
MVC SW01NKY,=H’2’
DBSETK BASE=R5,KEYNUM=1,DIS=I/2,LEN=I/1,CON=#DF_EQ,MSK=X’80’, *

ID1=#DF_UP+#DF_CONST,ID2=#DF_OR
DBSETK BASE=R5,KEYNUM=2,DIS=I/6,LEN=I/4,SEA=EBW000,ID1=#DF_UP
DBKEY REF=IR73DF,KEYLIST=EBX000 ACTIVATE KEY LIST
DBRED REF=IR73DF

v The following example reads an extended LREC that has:
– A primary key of X'80'
– A specific 4-character department number in the subLREC field PR17DNR
– A specific 10-character employee name in the userLREC field PR17NAM.
MVC EBW000(4),=C’TZ35’ Department number
MVC EBW004(10),=C’HARRISON ’ Name of employee

DBRED ...,KEY1=(PKY=#PR17K80),KEY2=(T=PR17DNR,S=EBW000),KEY3=(R=PR17NAM,S=EBW004)

v The following example reads a variable-length LREC that has:
– A primary key of X'80'
– A specific 7-character flight number in field PR25FLT
– A specific 6-character board and off point in field PR25BRD.
MVC EBW000(L’PR20FLT),PR20FLT Flight number
MVC EBW007(L’PR20BRD),PR20BRD Board and off point

DBRED ...,KEY1=(PKY=#PR25K80),KEY2=(R=PR25FLT,S=EBW000,L=L’PR20FLT+L’PR20BRD)

Related Information
v “DBADD–Add a Logical Record to a Subfile” on page 176

v “DBKEY–Activate a Key List” on page 249.

DBRED

TPFDF General-Use Assembler Macros: Reference 287

DBREP–Replace a Logical Record with Another Logical Record
Use this macro to replace the following:
v A previously read logical record (LREC) with a new LREC
v The userLREC in the current extended LREC with a new userLREC
v The subLREC in the current extended LREC with a new subLREC.

Format

�� DBREP REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

, �

� NEWLREC=newlrec
SUBLREC=sublrec
USRLREC=usrlrec
SUBLREC=sublrec,USRLREC=usrlrec

,ERROR=spmlbl
,ERRORA=asmlbl

,NOPGM
�

�
,REG=reg ,REGD=regd ,SUFFIX=char

��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

NEWLREC=newlrec
replaces a new fixed-length or variable-length LREC, where newlrec is one of
the following:

v A register that contains the address of the LREC

v A label in one of the following formats:

DBREP

288 TPFDF R1 Programming Concepts and Reference

newlrec
is the label of a field that contains the LREC.

A/newlrec
is the label of a 4-byte field that contains the storage location of the
LREC.

SUBLREC=sublrec
replaces a subLREC in the current extended LREC with another subLREC,
where sublrec is one of the following:

v A register that contains the address of the subLREC

v A label in one of the following formats:

sublrec
is the label of a field that contains the subLREC.

A/sublrec
is the label of a 4-byte field that contains the storage location of the
subLREC.

USRLREC=usrlrec
replaces the userLREC in the current extended LREC with another userLREC,
where usrlrec is one of the following:

v A register that contains the address of the userLREC

v A label in one of the following formats:

usrlrec
is the label of a field that contains the userLREC.

A/usrlrec
is the label of a 4-byte field that contains the storage location of the
userLREC.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

NOPGM
specifies not to change the program stamp in a block when filing it.

REG=register
specifies a register in which to return the address of the current LREC (this
address is contained in SW00SR field SW00REC). You must specify this
parameter for T-type files.

REGD=register
specifies a register in which to return the base address of the userLREC part of
an extended LREC.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

DBREP

TPFDF General-Use Assembler Macros: Reference 289

Entry Requirements
Before specifying the SUBLREC parameter, you must specify a DBRED macro to
locate the current LREC.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v When using the DBREP macro with the SUBLREC parameter, the current
extended LREC must contain one (and only one) subLREC. When an extended
LREC contains more than one subLREC, use DBDEL to delete one or more
subLRECs; then call DBADD to add each new subLREC.

v The new LREC can be larger or smaller or the same size as the old LREC (if
you have defined variable-length LRECs in the DSECT).

v If the subfile is UP or DOWN organized, do not use DBREP to insert an LREC
containing key definitions that are different from those in the LREC that it is
replacing. This would destroy the subfile organization. Instead, use DBDEL to
delete the original LREC and DBADD to add the new LREC. DBADD allows you
to specify the keys in the LREC that you add to the subfile.

v If the subfile uses block index support, the TPFDF product automatically updates
the block index when you replace an LREC.

v For P-type files, the data is copied into the current block.

v The DBREP macro replaces the current LREC. That is, the DBREP macro does
not perform an internal DBRED macro.

v Do not use the DBREP macro if you have changed:

– Any key fields

– Any fields in the LREC that are also used as index key fields.

Instead, delete the old LREC with a DBDEL macro and add a new LREC with a
DBADD macro.

Examples
v The following example replaces the current LREC in file GR23DF with the LREC

GR23REC.
DBREP REF=GR23DF,NEWLREC=GR23REC

DBREP

290 TPFDF R1 Programming Concepts and Reference

v The following example replaces a subLREC in the current extended LREC with
the subLREC at the address contained in register 5.
DBREP REF=GR39DF,SUBLREC=R5

v The following example replaces a subLREC at the same time as a userLREC.
DBREP REF=GR39DF,USRLREC=GR39REC,SUBLREC=A/EBW000

Related Information
v “DBADD–Add a Logical Record to a Subfile” on page 176

v “DBDEL–Delete One or More Logical Records” on page 215

v “DBMOD–Perform or Indicate Logical Record Modifications” on page 251

v “DBRED–Read a Logical Record” on page 274.

DBREP

TPFDF General-Use Assembler Macros: Reference 291

DBRET–Retain a Logical Record Position
Use this macro to retain the file address and displacement in a block of the current
logical record (LREC). You can read this LREC later in your application program by
using a DBRED macro with a PREVIOUS, STACK, or STACKREF parameter.

Format

�� DBRET REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

,REG=reg ,REGD=regd
�

�
,STACK=stkloc
,STACKREF=stkval

,SUFFIX=char
��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

REG=register
specifies a register in which to return the address of the current LREC (this
address is contained in SW00SR field SW00REC). You must specify this
parameter for T-type files.

REGD=register
specifies a register in which to return the base address of the userLREC part of
an extended LREC.

STACK=stkloc
retains an LREC, where stkloc is the location of a 10-byte field that contains the
details about the LREC. Specify one of the following:

DBRET

292 TPFDF R1 Programming Concepts and Reference

v A register that points to the location of the field that contains the LREC
details.

v A label in one of the following formats:

stkloc
is the label of the field that contains the LREC details.

A/stkloc
is the label of a 4-byte field that contains the storage address of that
contains the LREC details.

The 10-byte field contains the following information:
v 4 bytes for the current file address
v 4 bytes for the current core address
v 2 bytes for the next available byte (NAB) value.

Note: Where possible, use the STACKREF parameter.

STACKREF=stkval
retains an LREC, where stkval is a value assigned to the LREC. Specify one of
the following:

v A 4-byte value

v A register that contains the 4-byte value

v An absolute value that does not exceed 4-bytes.

The retained information consists of the following 14-bytes:
v 4 bytes for the current file address
v 4 bytes for the current core address
v 2 bytes for the next available byte (NAB) value
v 4 bytes for the STACKREF value.

Note: Where possible, use the STACKREF parameter instead of the STACK
parameter.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

Entry Requirements
Before using this macro, you must open the subfile using the DETAC or HOLD
parameter of the DBOPN macro.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

DBRET

TPFDF General-Use Assembler Macros: Reference 293

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v If you do not specify the STACK or STACKREF parameter, the details of only the
current LREC are retained.

v To ensure that an LREC is retrieved accurately when you use the DBRED macro,
do not use the DBRET macro with the STACK and STACKREF parameters
specified on the same open file. If you do, the wrong LREC could be retrieved.
You must close and reopen the file each time you alternate between specifying
the STACK and STACKREF parameters.

Examples
v The following example retains the file address of file IWA1DF.

DBRET REF=IWA1DF,REG=R5

v The following example retains the address of the current LREC in file GR25DF
and later reads that LREC.
DBRET REF=GR25DF,STACKREF==F’5’...
DBRED REF=GR25DF,STACKREF==F’5’

Related Information
“DBRED–Read a Logical Record” on page 274.

DBRET

294 TPFDF R1 Programming Concepts and Reference

DBRST–Restore a Subfile
Use this macro to restore a subfile (previously copied by the DBCPY macro) to a
file address that you specify.

Format

�� DBRST REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

, RSTRADD=fileaddr
,HELD

�

�
,ALG=algarg
,FADDR=faddr
,ORD=ordnum

,NOCHK

,CHKA=rcc ,ERROR=spmlbl
,ERRORA=asmlbl

,FLIP
�

�
,FROMCHAIN ,INTERLV=intrlvnum

,PARTITN=partitnum
,NODUMP ,NOPGM

�

�
,PATH= ALL

pathnum
,REG=reg ,REGD=regd ,SEQ=seqaddr

�

�
,SUFFIX=char

��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

DBRST

TPFDF General-Use Assembler Macros: Reference 295

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

RSTRADD=fileaddr
specifies where you want to restore the current subfile, where fileaddr is the
label of a 4-byte field containing the address.

If this address is set to X'00000000', the DBRST macro creates a new subfile
and restores the current subfile in the new subfile. The address of the prime
block of the new subfile is placed in the SW00FAD field of the SW00SR.

HELD
restores a subfile that is held; that is, one that was opened using the DBOPN
macro with the HOLD parameter specified.

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

FADDR=faddr
identifies the subfile that you want to access, where faddr is one of the
following:

faddr
is the label of a 4-byte field that contains the file address of the prime block
of the subfile.

A/faddr
is the label of a 4-byte field that contains the storage address of the file
address of the prime block of the subfile.

ORD=ordnum
identifies the subfile that you want to access, where ordnum is one of the
following:

DBRST

296 TPFDF R1 Programming Concepts and Reference

ordnum
is the label of a 4-byte field that contains the ordinal number of the subfile.

A/ordnum
is the label of a 4-byte field that contains the storage address of the ordinal
number of the subfile.

If the file is partitioned or interleaved, specify the relative ordinal number within
the partition or interleave. If the file is not partitioned or interleaved, specify the
file address compute program (FACE) ordinal number.

CHKA=rcc
checks the record code check (RCC) value in each block, where rcc is the label
of a 1-byte field that contains the RCC character.

NOCHK
specifies that you do not want to check the record code check (RCC) value of
the blocks.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

FLIP
exchanges the contents of 2 subfiles rather than overwrites the original subfile
with its modified copy.

If you specify the FLIP parameter, the DBRST macro transfers the subfile
currently located at the file address you specify with the RSTRADD parameter
with the subfile that is currently open.

The SW00SR now references the subfile specified with RSTRADD rather than
the subfile that was originally opened.

FROMCHAIN
restores only the prime block of the subfile. Any overflow blocks in the subfile
are chained to this new prime block without copying the overflow blocks to new
pool blocks.

INTERLV=intrlvnum
specifies the number of the interleave that you want to use, where interlvnum is
one of the following:
v A register that contains the address of the interleave number
v An absolute value representing the interleave number
v The label of a 2-byte field that contains the interleave number.

If you specify this parameter, the maximum interleave number must be defined
in the DSECT or DBDEF macro. See TPFDF Database Administration for more
information about interleaves.

PARTITN=partitnum
specifies the number of the partition that you want to use, where partitnum is
one of the following:

DBRST

TPFDF General-Use Assembler Macros: Reference 297

v A register that contains the address of the partition number
v An absolute value representing the partition number
v The label of a 2-byte field that contains the partition number.

If you specify this parameter, the number of partitions and the end ordinal must
be defined in the DSECT or DBDEF macro. See TPFDF Database
Administration for more information about partitions.

Note: Do not use this parameter with the #TPFDB0F algorithm. This algorithm
calculates the partition used from the algorithm argument. See TPFDF
Database Administration for more information about algorithms.

NODUMP
specifies that you do not want the TPFDF product to issue any of the following
system errors while processing this macro:
v DB0100
v DB0102
v DB0117
v DB0123
v DB0138
v DB0140.

See TPFDF Messages (System Error, Online, Offline) for more information
about these system errors.

Note: Using the NODUMP parameter is not recommended because it can
prevent system errors from being issued that indicate a critical problem.

NOPGM
specifies not to change the program stamp in a block when filing it.

PATH
specifies the path for a detail subfile using index support. If there is only one
index path, do not specify this parameter. Specify one of the following:

pathnum
is the path number or the label of a 2-byte field that contains the path
number. The number of index paths used is defined by your database
administrator.

ALL
specifies all paths.

See TPFDF Database Administration for more information about path numbers.

REG=register
specifies a register in which to return the address of the current LREC (this
address is contained in SW00SR field SW00REC). You must specify this
parameter for T-type files.

REGD=register
specifies a register in which to return the base address of the userLREC part of
an extended LREC.

SEQ=seqaddr
specifies an update sequence number, where seqaddr is the address of a
2-byte field that contains the number. The number you provide must match the
sequence number contained in the subfile that is specified by the RSTRADD
parameter.

DBRST

298 TPFDF R1 Programming Concepts and Reference

|
|

If the numbers do not match, the DBRST macro does not proceed and issues
an error return. If the numbers match, the DBRST macro restores the subfile
and increases the sequence number by 1. This sequence number is placed in
the prime block of the restored subfile.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

Entry Requirements
Before you can use the DBRST macro, you must make a copy of a subfile using
the DBCPY macro. You can modify this copy using other TPFDF macros.

Normal Return
The restored file (with any modifications you have made to the copy) becomes the
currently open subfile. You can continue processing it using other TPFDF macros.
The copy is released unless you use the FLIP parameter.

Error Return
v See “Identifying Return Indicators and Errors” on page 13 for information about

how to check the error indicators.

v When you use the SEQ parameter, the DBRST macro returns an error if the
number specified and the sequence number in the file specified by RSTRADD do
not match. Bit 6 is set in the SW00RTN field and the subfile is not restored.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v The DBRST macro rebuilds the B+Tree index for B+Tree files.

Examples
v The following example exchanges the contents of subfile GR37DF with the

contents of the subfile referenced by EBW030. The SW00SR now references the
subfile at EBW030 rather than the subfile that was originally opened.
DBRST REF=GR37DF,RSTRADD=EBW030,FLIP

v The following example restores a subfile using a sequence number.
DBRST REF=GR19DF,RSTRADD=EBW030,SEQ=EBW020

Related Information
“DBCPY–Copy a Subfile” on page 206.

DBRST

TPFDF General-Use Assembler Macros: Reference 299

DBSETK–Setting Up a Key in a Key List
Use this macro to set up a key list. See “Specifying Logical Records (LRECs) Using
Keys” on page 19 for more information about key lists.

Format

�� �

,

DBSETK BASE=basereg,KEYNUM=keynum
DIS=displacement
LEN=length

MSK=mask
SEA=searchaddr

CON=condition
ID1=optbyte1
ID2=optbyte2

��

Note: Parameters can be entered as labels, registers, or immediate values as
described in the following section. (Immediate values are assumed to be
decimal unless otherwise specified.) For example:

Label DIS=EBW000

Register DIS=R5

Immediate value DIS=I/16

BASE=basereg
specifies the base address of the key list, where basereg is a register that
contains the address. If you do not specify this parameter, it is assumed that
the register with addressability to SW01SR is set up so that the SW01SR
DSECT overlays the key to be updated.

KEYNUM=keynum
specifies the number of the key that you are setting up, where keynum is the
label of an area, a register, or an immediate value that contains a number from
1–180, depending on the type of key list. See “Specifying Logical Records
(LRECs) Using Keys” on page 19 for more information about key lists.

DIS=displacement
specifies the displacement of the key field in the LREC from the start of the
LREC, where displacement is the label of an area, a register, or an immediate
value that contains the displacement in bytes. For example, if the LREC is a
variable-length LREC and you want to specify the LREC ID as the key field, the
value is 2. The maximum displacement you can specify with this macro is 255.

LEN=length
specifies the length of the key field in the LREC, where length is the label of an
area, a register, or an immediate value that contains the length in bytes. For
example, if you want to specify the LREC ID as the key field, the value is 1. If
you are using a mask field, length must be 1.

MSK=mask
specifies a mask value or 1-byte search argument, where mask is the label of
an area, a register, or an immediate value that contains a 1-byte mask or a
1-byte search argument.

DBSETK

300 TPFDF R1 Programming Concepts and Reference

SEA=searchaddr
specifies a search argument, where searchaddr is the label of an area that
contains the search argument or a register that contains the address of the
search argument.

CON=condition
specifies the condition that must exist for the match to be successful, where
condition is the label of an area, a register, or an immediate value that contains
the value. Use one of the following values if you specify the #DF_CONST,
#DF_CHAR, or #DF_PACKED value for the ID1 parameter:

#DF_GT
specifies that the LREC key field is greater than the search argument. The
corresponding hexadecimal value is X'20'.

#DF_GE
specifies that the LREC key field is greater than or equal to the search
argument. The corresponding hexadecimal value is X'40'.

#DF_EQ
specifies that the LREC key field is equal to the search argument. The
corresponding hexadecimal value is X'70'.

#DF_NE
specifies that the LREC key field is not equal to the search argument. The
corresponding hexadecimal value is X'80'.

#DF_LE
specifies that the LREC key field is less than or equal to the search
argument. The corresponding hexadecimal value is X'B0'.

#DF_LT
specifies that the LREC key field is less than the search argument. The
corresponding hexadecimal value is X'D0'.

Use one of the following values if you specify the #DF_MASK value for the ID1
parameter:

#DF_NM
specifies that the result is not mixed ones and zeros (that is, all zeros or all
ones are found). The corresponding hexadecimal value is X'10'.

#DF_NO
specifies that the result is not all ones. The corresponding hexadecimal
value is X'40'.

#DF_Z
specifies that the result is all zeros. The corresponding hexadecimal value
is X'70'.

#DF_NZ
specifies that the result is not all zeros. The corresponding hexadecimal
value is X'80'.

#DF_M
specifies that the result is mixed ones and zeros. The corresponding
hexadecimal value is X'B0'.

#DF_O
specifies that the result is all ones. The corresponding hexadecimal value is
X'E0'.

DBSETK

TPFDF General-Use Assembler Macros: Reference 301

ID1=optbyte1
specifies the settings for the first option byte, where optbyte1 is the label of an
area, a register, or an immediate value that contains the indicators for the first
option byte. Use one or more of the following values:

#DF_DOWN
specifies that the subfile is DOWN organized on this key field (bit 0 = 1).

#DF_UP
specifies that the subfile is UP organized on this key field (bit 1 = 1).

#DF_KEYS
specifies that you want to use default keys (bit 2 = 1).

#DF_USR
specifies the userLREC portion of an extended LREC (bit 3 = 1).

#DF_CONST
specifies that the MSK parameter contains a 1-byte search argument (bit 4
= 1).

#DF_PACKED
specifies that the search argument is a variable-length packed string (bit 5 =
1).

#DF_MASK
specifies that the MSK parameter contains a 1-byte mask (bit 6 = 1).

#DF_NOORG
specifies that the subfile is not organized on this key field. This value is
equated to X'00'.

#DF_CHAR
specifies that the search argument is a variable-length character string. This
value is equated to X'00'.

ID2=optbyte2
specifies either a Boolean connector or a global modification operation, where
optbyte2 is the label of an area, a register, or an immediate value that contains
the indicators for the second option byte.

Use one of the following values for a Boolean connector:

#DF_OR
specifies the OR connector (bit 0 = 1).

#DF_AND
specifies the AND connector (bit 1 = 1).

#DF_ORIF
specifies the ORIF connector (bit 4 = 1).

#DF_ANDIF
specifies the ANDIF connector (bit 5 = 1).

Use one of the following values for a global modification operation:

#DF_MVI
moves the value contained in SW01MSK into the LREC at the displacement
specified by SW01DIS. The corresponding hexadecimal value is X'04'.

#DF_MVC
moves the character string whose address is in SW01SEA into the LREC,

DBSETK

302 TPFDF R1 Programming Concepts and Reference

starting at the displacement specified by SW01DIS for the length contained
in SW01LEN. The corresponding hexadecimal value is X'08'.

#DF_FILL
propagates the character contained in SW01MSK into the LREC, starting at
the displacement specified by SW01DIS for the length contained in
SW01LEN. The corresponding hexadecimal value is X'0C'.

#DF_OI
performs an OR-Immediate (OI) operation on the byte in the LREC at the
displacement in SW01DIS by using the value specified in SW01MSK. The
corresponding hexadecimal value is X'10'.

#DF_OC
performs an OR-Character (OC) operation in the LREC beginning on the
byte whose displacement is specified in SW01DIS for a length given in
SW01LEN by using the value whose address is given in SW01SEA. The
corresponding hexadecimal value is X'14'.

#DF_NI
performs an AND-Immediate (NI) operation on the byte in the LREC at the
displacement in SW01DIS by using the value specified in SW01MSK. The
corresponding hexadecimal value is X'18'.

#DF_NC
performs an AND-Character (NC) operation in the LREC beginning on the
byte whose displacement is specified in SW01DIS for a length given in
SW01LEN by using the value whose address is given in SW01SEA. The
corresponding hexadecimal value is X'1C'.

#DF_XI
performs an Exclusive OR-Immediate (XI) operation on the byte in the
LREC at the displacement in SW01DIS by using the value specified in
SW01MSK. The corresponding hexadecimal value is X'20'.

#DF_XC
performs an Exclusive OR-Character (XC) operation in the LREC beginning
on the byte whose displacement is specified in SW01DIS for a length given
in SW01LEN by using the value whose address is given in SW01SEA. The
corresponding hexadecimal value is X'24'.

#DF_ADD
adds the fullword value whose address is in SW01SEA to the fullword value
in the LREC whose displacement is specified by SW01DIS. The
corresponding hexadecimal value is X'28'.

#DF_AH
adds the halfword value whose address is in SW01SEA to the halfword
value in the LREC whose displacement is specified by SW01DIS. The
corresponding hexadecimal value is X'2C'.

#DF_SUB
subtracts the fullword value whose address is in SW01SEA to the fullword
value in the LREC whose displacement is specified by SW01DIS. The
corresponding hexadecimal value is X'30'.

#DF_SH
subtracts the halfword value whose address is in SW01SEA to the halfword
value in the LREC whose displacement is specified by SW01DIS. The
corresponding hexadecimal value is X'34'.

DBSETK

TPFDF General-Use Assembler Macros: Reference 303

#DF_CNT
increments a fullword counter whose address is in SW01SEA. The
application is responsible for initializing the counter before the global
modification operation. The corresponding hexadecimal value is X'38'.

#DF_CTH
increments a halfword counter whose address is in SW01SEA. The
application is responsible for initializing the counter before the global
modification operation. The corresponding hexadecimal value is X'3C'.

#DF_SUM
adds the fullword value in the LREC at the displacement specified in
SW01DIS to the fullword sum whose address is in SW01SEA. The sum
must be initialized before the global modification operation. The
corresponding hexadecimal value is X'40'.

#DF_SMH
adds the halfword value in the LREC at the displacement specified in
SW01DIS to the halfword sum whose address is in SW01SEA. The sum
must be initialized before the global modification operation. The
corresponding hexadecimal value is X'44'.

#DF_MAX
finds the maximum value of the fullword value in the LREC at the
displacement specified by SW01DIS and the current fullword maximum
whose address is in SW01SEA. The new maximum value is stored at the
address in SW01SEA. The value in SW01SEA does not have to be
initialized before the global modification operation. The corresponding
hexadecimal value is X'48'.

#DF_MXH
finds the maximum value of the halfword value in the LREC at the
displacement specified by SW01DIS and the current halfword maximum
whose address is in SW01SEA. The new maximum value is stored at the
address in SW01SEA. The value in SW01SEA does not have to be
initialized before the global modification operation. The corresponding
hexadecimal value is X'4C'.

#DF_MIN
finds the minimum value of the fullword value in the LREC at the
displacement specified by SW01DIS and the current fullword minimum
whose address is in SW01SEA. The new minimum value is stored at the
address in SW01SEA. The value in SW01SEA does not have to be
initialized before the global modification operation. The corresponding
hexadecimal value is X'50'.

#DF_MNH
finds the minimum value of the halfword value in the LREC at the
displacement specified by SW01DIS and the current halfword minimum
whose address is in SW01SEA. The new minimum value is stored at the
address in SW01SEA. The value in SW01SEA does not have to be
initialized before the global modification operation. The corresponding
hexadecimal value is X'54'.

Entry Requirements
The SW01SR DSECT must be addressable by a register without a suffix. If you
specify the BASE parameter, the SW01SR DSECT must be addressable without a
suffix by the register passed to the BASE parameter.

DBSETK

304 TPFDF R1 Programming Concepts and Reference

Normal Return
None.

Error Return
None.

Programming Considerations
v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF

macro call.

v Registers R14 and R15 cannot be used when a register is specified as a
parameter.

v This macro does not set field SW01NKY. This has to be done on a separate
instruction.

v A key list field in the SW01SR DSECT is modified or filled in only if its
corresponding parameter is supplied.

v If you specify a label for the KEYNUM, DIS, or LEN parameters, TPFDF
assumes the area is a 2-byte location. If you specify a label for the CON, MSK,
ID1, or ID2 parameters, TPFDF assumes the area is a 1-byte location.

Examples
See “Using a Key List with the DBSETK Macro” on page 28 for an example of using
the DBSETK macro.

Related Information
“DBKEY–Activate a Key List” on page 249.

DBSETK

TPFDF General-Use Assembler Macros: Reference 305

DBSPA–Create Work Space
Use this function to obtain and initialize work space linked to the SW00SR slot for a
subfile. This space is available while the subfile is open.

Format

�� DBSPA REF=dsectvv
REF=refname,FILE=dsect

, �

� SPACE= (space)
SPACEB= ,spacereg

SPACEF=(space, ,fillchr)
spacereg

��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

SPACE
allocates work space for an open subfile and initializes the work space to X'00'

SPACEB
allocates work space for an open subfile and initializes the work space to X'40'

SPACEF
allocates work space for an open subfile and initializes the work space to a
specified character.

space
is the number of bytes of space that you want, which can be a maximum of
3952 bytes. Specify one of the following:
v A register that contains the number of bytes of space that you want.
v An absolute value.
v The length of a label.
v The label of a field. The space is determined by the 2 bytes of data

beginning at the specified label.

If you request a zero amount of space, the DBSPA macro releases any space
that was previously allocated for this subfile.

DBSPA

306 TPFDF R1 Programming Concepts and Reference

spacereg
is the register in which you want the base address of the work space loaded.

fillchr
is the character you want to use to initialize the work space. Specify one of the
following:

v The label of a 1-byte field that contains the character.

v An immediate value (for example, =X'FF').

Entry Requirements
None.

Normal Return
The address of the space that the TPFDF product has provided. The TPFDF
product also loads this address into field SW00WKA in the SW00SR slot.

Error Return
None.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v If you specified a SPACE or SPACEB parameter with the DBOPN macro and you
then call the DBSPA macro with the same REF parameter value, the TPFDF
product returns the space originally allocated.

Examples
v The following example creates a 400-byte area filled with space characters

(X'40').
DBSPA REF=GR36DF,SPACEB=(400,R5)

v The following example provides space that is the same length as field
GR36REC.

DBSPA REF=GR36DF,SPACE=(L’GR36REC,R5)

v The following example provides an amount of space determined by the 2 bytes
of data beginning at label EBW002.

DBSPA REF=GR36DF,SPACE=(EBW002,R5)

v The following example releases any space that was previously allocated for
subfile GR33DF.
DBSPA REF=GR33DF,SPACE=(0)

v The following example creates a 400-byte area filled with character X'FF'.
DBSPA REF=GR36DF,SPACEF=(400,,=X’FF’)

DBSPA

TPFDF General-Use Assembler Macros: Reference 307

Related Information
“DBOPN–Open a Subfile” on page 262.

DBSPA

308 TPFDF R1 Programming Concepts and Reference

DBSRT–Sort a Subfile
Use this macro to sort logical records (LRECs) in an open subfile.

Format

�� DBSRT �

,

INPUTREF=irefname
INPUT=inputaddr

, REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

�

�
(1)

,UP
,DOWN

,ERROR=spmlbl
,ERRORA=asmlbl

,FULLFILE
�

�

�

,
(1)

,KEYn=(Key Subparameters)
,KEYLIST=keyloc

,NOPGM
�

�
,POOLTYP= 0

1
2
type

,RELEASE ,RELFC ,SUFFIX=char
��

Key Subparameters:

R = fldname
T ,L=length

label1 ,L=length
D/absval
literal
flddisp

,UP
,DOWN

Notes:

1 See “Specifying File Organization with Keyn Parameters” on page 23 for
information about the rules for using the KEYn parameters and file
organization parameters together.

INPUTREF=irefname
specifies the reference name of the input subfile, where irefname is one of the
following:

v The DSECT name

v A label that references the DSECT name in one of the following formats:

DBSRT

TPFDF General-Use Assembler Macros: Reference 309

irefname
is the label of an 8-byte field containing the DSECT name.

A/irefname
is the label of a 4-byte field that contains the storage address of an
8-byte field containing the DSECT name.

INPUT=inputaddr
specifies the base address of the SW00SR slot of the input file.

Note: This parameter is supported for migration purposes only; where possible,
always use the INPUTREF parameter to identify the input subfile.

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

UP
specifies that the LRECs are organized in the subfile in ascending order of key
fields.

DOWN
specifies that LRECs in the subfile are organized in descending order of key
fields.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

DBSRT

310 TPFDF R1 Programming Concepts and Reference

FULLFILE
sorts LRECs from the entire input file (not from a single subfile) to the output
subfile specified with the REF parameter.

KEYn
specifies the key parameters that you want to use with this macro, where n is a
number from 1–6. You can specify as many as six KEYn parameters and they
must be specified in sequential order beginning with 1. That is, you cannot code
a KEY2 parameter without a KEY1 parameter, a KEY3 parameter without the
KEY1 and KEY2 parameters, and so on.

If you use these parameters, you must also specify the file organization of the
keys. See “Specifying File Organization with Keyn Parameters” on page 23 for
more information about how to do this. Use one or more of the following
subparameters with the KEYn parameter:

R specifies a field in the LREC to be used for placing the LRECs in the output
file.

T specifies a field in the subLREC of an extended LREC to be used for
placing the LRECs in the output file.

fldname
is the name of a field defined in the DSECT for the LREC; for example:
... KEY1=(R=GR00FLD)

label1
is a 2-byte field containing the displacement into the LREC; for example:
... KEY1=(R=EBX010,L==H’4’)

D/absval
specifies the displacement into the LREC of the field, where absval is an
absolute value; for example:
... KEY1=(R=D/2,L=L’GR00NAM,UP)

You can also specify the absolute value implicitly; for example:
... KEY1=(R=D/GR00NAM-GR00REC,L=L’GR00NAM,UP)

literal
is a halfword literal containing the displacement into the LREC; for example:
... KEY1=(R==H’2’,L==H’4’)

flddisp
is the displacement off the field of the LREC; for example:
... KEY1=(R=GR00FLD+2,L==H’4’)

or
... KEY1=(R=GR00FLD+L’GR00FLD,L==H’4’)

L=length
specifies the length of the field to be used in placing the LRECs in the
output file, where length is one of the following:

v The label of a 2-byte field containing the length of the field

v A 2-byte literal

v An absolute value in the form of L'fldname (for example, L=L'GR92FLD).

The default value is the length of the field specified with the R
subparameter.

DBSRT

TPFDF General-Use Assembler Macros: Reference 311

UP
specifies that the key field is in ascending order in the subfile.

DOWN
specifies that the key field is in descending order in the subfile.

KEYLIST=keyloc
specifies a key list that you want to use with this macro, where keyloc is one of
the following:

v A register that contains the address of the key list

v A label in one of the following formats:

keyloc
is a label indicating the address of the key list.

A/keyloc
is the label of a 4-byte field that contains the storage address of the key
list.

See “Setting Up and Using a Key List” on page 26 for information about how to
set up a key list.

NOPGM
specifies not to change the program stamp in a block when filing it.

POOLTYP
overrides the pool type defined by the database administrator, where:

0 uses the pool type defined by the PF0 parameter of the DBDEF macro.

1 uses the pool type defined by the PF1 parameter of the DBDEF macro.

2 uses the pool type defined by the PF2 parameter of the DBDEF macro.

type
is the label of a 1-byte field that contains a 0, 1, or 2 to specify to pool type.

Use the POOLTYP parameter as directed by the database administrator.

RELEASE
releases the SW00SR slot for the input subfile after the macro has completed
processing.

RELFC
releases the input subfile and deletes it from DASD. All overflow blocks are
released. If the file is a pool file, the prime block is also released. If the file is a
fixed file, the prime block is initialized to empty.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

Entry Requirements
Both subfiles must be opened before you call the DBSRT macro.

Normal Return
None.

DBSRT

312 TPFDF R1 Programming Concepts and Reference

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v After opening a file, if you use fullfile processing to access or update records,
you must continue to use fullfile processing on any subsequent macros when
available until the file is closed. Accessing or updating subfiles using fullfile
processing cannot be mixed with macros that access or update records without
using fullfile processing.

v Any keys that are active when you call this macro are used to select records
from the input file.

v If the output subfile is not a B+Tree subfile, you must specify keys using KEYn
parameters or the KEYLIST parameter when you call this macro. The keys
specify how the TPFDF product sorts the LRECs in the output subfile.

The KEYn and KEYLIST parameters are ignored for B+Tree files. The output file
is organized according default keys defined on the DBDEF macro for the file.
See TPFDF Database Administration for more information about default keys.

v The TPFDF product creates the output subfile for you when using a W- or R-type
input file. You can use standard DSECT SR05SR, which is provided with the
TPFDF product, for the output file if the input subfile contains variable-length
LRECs.

If you do not use SR05SR, you must specify a subfile of the same type as the
input file.

v The DBSRT macro does not change the input subfile. The TPFDF product clears
the ECB level for the input subfile once the DBSRT macro has been processed.

v After processing, the original contents of the output subfile are lost.

v When this macro has completed processing, the output subfile is left open and
must be closed using the DBCLS macro before the ECB exits. If you specify the
RELEASE parameter, this macro closes the input subfile.

v If you sort a large file in detac mode, the TPFDF product puts the sorted output
in a newly created pool file and closes the output file that was originally specified.
You must restore the file to a fixed file to permanently save the results.

v You cannot issue additional TPFDF macros to the input file until the file is closed
if:
– You specify the FULLFILE parameter,
– You do not specify the RELEASE parameter, and
– The end-of-file indicator is set.

DBSRT

TPFDF General-Use Assembler Macros: Reference 313

However, you can specify the REUSE parameter on the DBCLS macro. See
“Identifying Return Indicators and Errors” on page 13 for information about the
end-of-file indicator.

v You cannot use this macro with P-type files, add current files, or pushdown
chaining files.

v Figure 21 shows how the DBSRT macro sorts LRECs from one subfile into
another.

v If you use the DBSRT macro in a commit scope, both the input and output files
must be opened in the same commit scope. See “Commit Scopes” on page 8 for
more information about commit scopes.

v When you use the DBSRT macro to sort large input files, use detac mode for
output files to ensure optimum system performance.

Examples
v The following example sorts an input file called IWTLDC into SR05SR and

changes the reference name.
DBOPN REF=SR05SR,HOLD,DETAC
DBSRT REF=SR05SR,ERROR=label,RELFC, *

INPUTREF=IWTLDC,RELEASE, *
KEY1=(R=D/IWTLKEY-IWTLREC,UP), *
KEY2=(R=D/IWTLAPI-IWTLREC,L==AL2(IWTLLDT-IWTLAPI),UP)

DBIFB REF=SR05SR,NEWREF=IWTLDC

v The following example uses an output file other than SR05SR.
DBOPN REF=IR00DFX,HOLD,DETAC,POOLTYP=1
DBSRT REF=IR00DFX,RELFC,ERROR=label, *

INPUTREF=IR00DF,RELEASE, *
KEY1=(PKY=#IR00K80,UP), *
KEY2=(R=IR00FLD,L=EBW000,UP)

v The following is another example using an output file other than SR05SR.
DBOPN REF==C’SR05SR ’,FILE=IWTLDC
DBSRT REF==C’SR05SR ’,INPUTREF=IWTLDC, *

KEY1=(PKY=#IWTKPKY,UP), *
KEY2=(R=IWTLAPI,L==AL2(IWTLLDT-IWTLAPI),UP)

Related Information
“DBMRG–Merge Logical Records from Two Subfiles” on page 256.

Before

AInput file

After

A

BOutput file (sorted)A

Figure 21. Sorting LRECs from One Subfile into Another. The input file is defined by the
INPUTREF parameter and the output file is defined by the REF parameter.

DBSRT

314 TPFDF R1 Programming Concepts and Reference

DBTLD–Write a Subfile from Main Storage to DASD
Use this macro to do one of the following:
v Write the subfile to DASD
v Ignore the subfile.

Format

�� DBTLD REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

,ALG=algarg
,FADDR=faddr
,ORD=ordnum

�

�
,NOCHK

,CHKA=rcc
,CHKA=rcc,NOCHK

,CREATE ,ERROR=spmlbl
,ERRORA=asmlbl

�

�
,INTERLV=intrlvnum
,PARTITN=partitnum

,NOPGM ,PATH= pathnum
ALL

,REG=reg
�

�
,REGD=regd ,SKIP ,SUFFIX=char

��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

DBTLD

TPFDF General-Use Assembler Macros: Reference 315

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

FADDR=faddr
identifies the subfile that you want to access, where faddr is one of the
following:

faddr
is the label of a 4-byte field that contains the file address of the prime block
of the subfile.

A/faddr
is the label of a 4-byte field that contains the storage address of the file
address of the prime block of the subfile.

ORD=ordnum
identifies the subfile that you want to access, where ordnum is one of the
following:

ordnum
is the label of a 4-byte field that contains the ordinal number of the subfile.

A/ordnum
is the label of a 4-byte field that contains the storage address of the ordinal
number of the subfile.

If the file is partitioned or interleaved, specify the relative ordinal number within
the partition or interleave. If the file is not partitioned or interleaved, specify the
file address compute program (FACE) ordinal number.

DBTLD

316 TPFDF R1 Programming Concepts and Reference

CHKA=rcc
checks the record code check (RCC) value in each block, where rcc is the label
of a 1-byte field that contains the RCC character.

NOCHK
specifies that you do not want to check the record code check (RCC) value of
the blocks.

CREATE
creates a new subfile when writing the file blocks to DASD instead of writing the
blocks back to their original file addresses.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

INTERLV=intrlvnum
specifies the number of the interleave that you want to use, where interlvnum is
one of the following:
v A register that contains the address of the interleave number
v An absolute value representing the interleave number
v The label of a 2-byte field that contains the interleave number.

If you specify this parameter, the maximum interleave number must be defined
in the DSECT or DBDEF macro. See TPFDF Database Administration for more
information about interleaves.

PARTITN=partitnum
specifies the number of the partition that you want to use, where partitnum is
one of the following:
v A register that contains the address of the partition number
v An absolute value representing the partition number
v The label of a 2-byte field that contains the partition number.

If you specify this parameter, the number of partitions and the end ordinal must
be defined in the DSECT or DBDEF macro. See TPFDF Database
Administration for more information about partitions.

Note: Do not use this parameter with the #TPFDB0F algorithm. This algorithm
calculates the partition used from the algorithm argument. See TPFDF
Database Administration for more information about algorithms.

NOPGM
specifies not to change the program stamp in a block when filing it.

PATH
specifies the path for a detail subfile using index support. If there is only one
index path, do not specify this parameter. Specify one of the following:

DBTLD

TPFDF General-Use Assembler Macros: Reference 317

pathnum
is the path number or the label of a 2-byte field that contains the path
number. The number of index paths used is defined by your database
administrator.

ALL
specifies all paths.

See TPFDF Database Administration for more information about path numbers.

REG=register
specifies a register in which to return the address of the current LREC (this
address is contained in SW00SR field SW00REC). You must specify this
parameter for T-type files.

REGD=register
specifies a register in which to return the base address of the userLREC part of
an extended LREC.

SKIP
discards the blocks that were read from tape or sequential data set with the
DBTRD macro. The DBTLD macro releases all the blocks, both prime and
chained, that the DBTRD macro retrieved and placed in main storage.

You can use the SKIP parameter in a restart situation when a number of blocks
need to be read from tape or sequential data set to reach the point where a
system failure occurred. (All the blocks up to the failure point have already been
written to DASD, so you only need to read them without saving them again.)

The SKIP parameter is also useful if you want to end the transfer of information
from tape to disk, or if there are unwanted blocks of data on a tape or
sequential data set.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

Entry Requirements
You must successfully read a subfile using the DBTRD macro before calling the
DBTLD macro.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

DBTLD

318 TPFDF R1 Programming Concepts and Reference

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v The following rules determine the value of the record code check (RCC) value
used when the TPFDF product creates a new subfile:

– If you do not specify the NOCHK parameter, the TPFDF product creates new
subfiles with a random RCC value.

– If you specify the NOCHK parameter without the CHKA parameter, the TPFDF
product creates new subfiles without an RCC value.

– If you specify both the NOCHK and CHKA parameters, the TPFDF product
creates new subfiles with the RCC value specified with the CHKA parameter.

v You must always call DBTLD after calling DBTRD. No other macro calls are
allowed between the DBTRD and DBTLD calls. Make sure your application
checks for any error conditions before invoking DBTLD. During DBTRD
processing, if an error occurs that causes SW00RTN to be nonzero, invoking
DBTLD is treated as an invalid command sequence.

v Because the DBTLD macro requires a significant amount of system resources,
do not use this macro in a commit scope. See “Commit Scopes” on page 8 for
more information about commit scopes.

v The DBTLD macro rebuilds the B+Tree index for B+Tree files.

Examples
The following example writes a subfile to new pool blocks in DASD.
DBTLD REF=GR24DF,CREATE

Related Information
v “DBTRD–Read a Subfile from an Input Tape to Main Storage” on page 325

v “DBTLG–Write a File or Subfile to Tape” on page 320.

DBTLD

TPFDF General-Use Assembler Macros: Reference 319

DBTLG–Write a File or Subfile to Tape
Use this macro to write a file, or part of a file, to a real-time tape, a general tape, or
a sequential data set.

Format

�� DBTLG REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

, TAPE=tapename �

�
,ALG=algarg
,FADDR=faddr
,ORD=ordnum

,NOCHK

,CHKA=rcc ,DELETE ,ERROR=spmlbl
,ERRORA=asmlbl

�

�
,FULLFILE

�

,

INCLUDE= (fname)
LIST=loc
ALL

,INTERLV=intrlvnum
,PARTITN=partitnum

�

�
,INITIALISE ,NOPGM ,SUFFIX=char

��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

DBTLG

320 TPFDF R1 Programming Concepts and Reference

TAPE=tapename
specifies the tape or sequential data set to which you want the file to be written,
where tapename is a 3-character symbolic tape name.

ALG=algarg
identifies the subfile that you want to access, where algarg specifies an
algorithm argument.

The TPFDF product uses the algorithm argument to determine the subfile
(ordinal number) that is to be accessed. Specify the algorithm argument based
on the type of algorithm that is defined in the DSECT or DBDEF macro for the
file. If the DSECT or DBDEF macro defines the #TPFDB04 or the #TPFDB0D
algorithm, do not use this parameter.

If the subfile you are accessing is contained in a detail file or intermediate index
file defined with the #TPFDBFF algorithm, the TPFDF product uses the
algorithm argument to locate the subfile. See TPFDF Database Administration
for more information about how the TPFDF product uses the algorithm
argument to locate the subfile.

Specify algarg as one of the following:

v A register that contains the address of the algorithm argument

v A literal value that specifies the algorithm argument (for example,
ALG==C"SMITH")

v A label in one of the following formats:

algarg
is the label of a field that contains the algorithm argument.

A/algarg
is the label of a 4-byte field that contains the storage address of the
algorithm argument.

Note: Do not modify the area of storage containing the algorithm argument
until the subfile is closed.

FADDR=faddr
identifies the subfile that you want to access, where faddr is one of the
following:

faddr
is the label of a 4-byte field that contains the file address of the prime block
of the subfile.

A/faddr
is the label of a 4-byte field that contains the storage address of the file
address of the prime block of the subfile.

ORD=ordnum
identifies the subfile that you want to access, where ordnum is one of the
following:

ordnum
is the label of a 4-byte field that contains the ordinal number of the subfile.

A/ordnum
is the label of a 4-byte field that contains the storage address of the ordinal
number of the subfile.

DBTLG

TPFDF General-Use Assembler Macros: Reference 321

If the file is partitioned or interleaved, specify the relative ordinal number within
the partition or interleave. If the file is not partitioned or interleaved, specify the
file address compute program (FACE) ordinal number.

CHKA=rcc
checks the record code check (RCC) value in each block, where rcc is the label
of a 1-byte field that contains the RCC character.

NOCHK
specifies that you do not want to check the record code check (RCC) value of
the blocks.

DELETE
deletes all the LRECs in the file after the file is written to tape or sequential
data set. Any previously chained blocks are returned to pool. If the file is a pool
file, all prime blocks are released.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing
the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

FULLFILE
writes LRECs from the whole input file (not from a single subfile) to tape or
sequential data set.

INCLUDE
writes additional subfiles to tape or sequential data set. The DBTLG macro
writes the subfiles to tape or sequential data set in sequence.

fname
is the name of the additional subfile or subfiles that you want to write to tape.

LIST=loc
specifies a list of subfiles that you want to write to tape in addition to the file or
subfile specified with the REF parameter, where loc is the location of a 22-byte
field containing a list of as many as 10 file IDs. Specify one of the following:

loc
is the label of the field that contains the list.

A/loc
is the label of a 4-byte field containing the storage address of the field that
contains the list.

The list starts with a 2-byte field that contains a halfword count of the number of
file IDs referenced, each subsequent 2-byte field contains a file ID.

Note: The list contains the file IDs, not the file names.

ALL
writes all the detail subfiles referenced by LRECs in the main subfile or file to
tape.

DBTLG

322 TPFDF R1 Programming Concepts and Reference

INTERLV=intrlvnum
specifies the number of the interleave that you want to use, where interlvnum is
one of the following:
v A register that contains the address of the interleave number
v An absolute value representing the interleave number
v The label of a 2-byte field that contains the interleave number.

If you specify this parameter, the maximum interleave number must be defined
in the DSECT or DBDEF macro. See TPFDF Database Administration for more
information about interleaves.

PARTITN=partitnum
specifies the number of the partition that you want to use, where partitnum is
one of the following:
v A register that contains the address of the partition number
v An absolute value representing the partition number
v The label of a 2-byte field that contains the partition number.

If you specify this parameter, the number of partitions and the end ordinal must
be defined in the DSECT or DBDEF macro. See TPFDF Database
Administration for more information about partitions.

Note: Do not use this parameter with the #TPFDB0F algorithm. This algorithm
calculates the partition used from the algorithm argument. See TPFDF
Database Administration for more information about algorithms.

INITIALISE
initializes the DASD file after writing it to tape. Any blocks that are chained to
the prime block are released.

All the LRECs in the prime block are deleted, and the next available byte (NAB)
in the header indicates the first byte directly after the header.

The TPFDF product retains the prime block of a pool file. The prime block
consists of a block that is empty, apart from the header and file identifier.

NOPGM
specifies not to change the program stamp in a block when filing it.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

Entry Requirements
None.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can

DBTLG

TPFDF General-Use Assembler Macros: Reference 323

code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v After opening a file, if you use fullfile processing to access or update records,
you must continue to use fullfile processing on any subsequent macros when
available until the file is closed. Accessing or updating subfiles using fullfile
processing cannot be mixed with macros that access or update records without
using fullfile processing.

v If you use the FULLFILE parameter, and the end-of-file indicator is set, you
cannot issue additional TPFDF macros until the file is closed. However, you can
specify the REUSE parameter on the DBCLS macro. See “Identifying Return
Indicators and Errors” on page 13 for information about the end-of-file indicator.

v If you specify the INCLUDE and DELETE parameters on the same DBTLG
macro statement, all the subfiles referenced by the INCLUDE parameter are
deleted after they have been written to tape or sequential data set. If you specify
INCLUDE=(ALL) and the DELETE parameter, all the subfiles belonging to a
particular file (as specified by the REF parameter) are deleted after they are
written to tape.

v The DBTLG macro copies the blocks to tape or sequential data set in sequence.

v The DBTLG macro does not write the B+Tree index information to tape because
it is rebuilt when the B+Tree data file is restored.

v If you use the DBTLG macro in a commit scope, a rollback of the commit scope
will not restore the contents or the position of the tape. See “Commit Scopes” on
page 8 for more information about commit scopes.

Examples
v The following example writes file GR54DF to tape VPH.

DBTLG REF=GR54DF,TAPE=VPH

v The following example writes the GR20DF subfile to tape along with the two
additional subfiles specified with the INCLUDE parameter.
DBTLG REF=GR20DF,INCLUDE=(GR21DF,GR22DF)

v The following example writes the GR22DF subfile to tape along with detail
subfiles reference from GR22DF that have file ID X'FE30' or X'FE31'.
MVC EBX000(2),=H’2’ Count of file IDs in list
MVC EBX002(2),=X’FE30’ Add file ID to list
MVC EBX004(2),=X’FE31’ Add file ID to list
DBTLG REF=GR22DF,INCLUDE=(LIST=EBX000)

v The following example writes all the detail subfiles referenced by LRECs in file
GR21DF.
DBTLG REF=GR21DF,INCLUDE=(ALL)

Related Information
v “DBTLD–Write a Subfile from Main Storage to DASD” on page 315

v “DBTRD–Read a Subfile from an Input Tape to Main Storage” on page 325.

DBTLG

324 TPFDF R1 Programming Concepts and Reference

DBTRD–Read a Subfile from an Input Tape to Main Storage
Use this macro to read a subfile from an input tape or sequential data set to main
storage.

Format

�� DBTRD REF=dsectvv
REF=refname,FILE=dsect
FILE=dsect,R3=address

, TAPE=tapename �

�
,ERROR=spmlbl
,ERRORA=asmlbl

,REG=reg ,SUFFIX=char
��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

R3=address
specifies the location of the SW00SR slot for this subfile, where address is the
label of a field that contains the address of the SW00SR slot. Register 3 will be
loaded with this address.

Note: Do not use this parameter; it is provided only for migration purposes.
Use the REF parameter to specify the file that you want to access.

TAPE=tapename
specifies the tape from which you want to read the data, where tapename is a
3-character symbolic tape name or sequential data set.

ERROR=spmlbl
branches to the specified location if a serious error is detected when processing
the macro, where spmlbl is a TPFDF structured program macro (SPM) label
defined with the #LOCA macro. See TPFDF and TPF Structured Programming
Macros for more information about the #LOCA macro. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

ERRORA=asmlbl
branches to the specified location if a serious error is detected when processing

DBTRD

TPFDF General-Use Assembler Macros: Reference 325

the macro, where asmlbl is an assembler label. See “Identifying Return
Indicators and Errors” on page 13 for more information about serious errors.

REG=register
specifies a register in which to return the address of the prime block (this
address is contained in SW00SR field SW00PCA).

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

Entry Requirements
None.

Normal Return
None.

Error Return
See “Identifying Return Indicators and Errors” on page 13 for information about how
to check the error indicators.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v The DBTRD macro reads one subfile at a time. After you call the DBTRD macro,
you must then call the DBTLD macro before reading another subfile. (You can
use the SKIP parameter with the DBTLD macro to ignore the subfile.)

v If you use the DBTRD macro in a commit scope, a rollback of the commit scope
will not restore the position of the tape. See “Commit Scopes” on page 8 for more
information about commit scopes.

Examples
The following example reads subfile GR54DF from tape TST to main storage.
DBTRD REF=GR54DF,TAPE=TST

Related Information
v “DBTLD–Write a Subfile from Main Storage to DASD” on page 315

v “DBTLG–Write a File or Subfile to Tape” on page 320.

DBTRD

326 TPFDF R1 Programming Concepts and Reference

DBUKY–Generate a Unique Key for Use in Logical Records
Use this macro to generate a unique key in the SW00SR slot for the subfile.

Format

�� DBUKY REF=dsectvv
REF=refname,FILE=dsect ,NOPGM ,SUFFIX=char

��

REF=dsectvv
specifies the file or subfile that you want to access, where dsectvv is the
DSECT name and an optional 2-character version.

REF=refname
specifies the file or subfile that you want to access, where refname is a label
that references the DSECT name in one of the following formats:

refname
is the label of an 8-byte field that contains the 6-byte DSECT name and an
optional 2-character version.

A/refname
is the label of a 4-byte field that contains the storage address of the DSECT
name and an optional 2-character version.

FILE=dsect
specifies the file or subfile that you want to access, where dsect is the DSECT
name.

NOPGM
specifies not to change the program stamp in a block when filing it.

SUFFIX=char
allows you to use the same DSECT to map two different areas of storage,
where char is the suffix character.

Entry Requirements
None.

Normal Return
The new unique key value is returned in the 4-byte SW00UKY field of the SW00SR.

Error Return
v See “Identifying Return Indicators and Errors” on page 13 for information about

how to check the error indicators.

v A zero value in the SW00UKY field of the SW00SR indicates an error.

Programming Considerations
v The optional 2-character version on the REF parameter allows you to access

more than one subfile in the same file at the same time. For example, you can
code REF=IR71DF01,ALG==C"A" to access subfile A and
REF=IR71DF02,ALG==C"B" to access subfile B.

v If you specify a label, the label must be more than 3 characters long.

DBUKY

TPFDF General-Use Assembler Macros: Reference 327

v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF
macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v The value that is returned in the SW00UKY field of the SW00SR is only valid
immediately after the DBUKY macro is processed. Subsequent TPFDF macros
reuse and overwrite this field.

v In order to use the unique key feature, the file header must be expanded by 18
bytes.

v See “Grouping LRECs Together Using the Unique Key Facility” on page 6 for
more information about using unique keys.

Examples
The following example generates a unique key value for file GR34DF. The value is
placed in the SW00UKY field in the SW00SR slot.
DBUKY REF=GR34DF

The following is an example of a header expanded by 18 bytes so that the unique
key feature can be used.
IRXXHDR& DS CL16 STANDARD FILE HEADER

DS CL10 STANDARD TPFDF HEADER
DS CL18 UNIQUE KEY HEADER EXTENSION

Related Information
“DBKEY–Activate a Key List” on page 249.

DBUKY

328 TPFDF R1 Programming Concepts and Reference

TPFDF Restricted Assembler Macros: Reference

The macros in this section (with the exception of FMSGS) are TPFDF internal
macros used to perform system functions. There is no guarantee that the
programming interface to these macros will not change. The use of these macros
should be restricted to minimize the effect of any changes.

The FMSGS macro is provided for compatibility with older applications. Use the
TPF or ALCS WTOPC macro instead of the FMSGS macro whenever possible.

The following contains an alphabetic listing of the TPFDF restricted assembler
macros. The description of each macro includes the following information:

Format: Provides a syntax (railroad track) diagram for the macro and a description
of each parameter and variable. See “How to Read the Syntax Diagrams” on
page xii for more information about syntax diagrams.

Entry Requirements: Lists any special conditions that must be true when you use
the macro.

Normal Return: Lists what is returned when the macro has completed processing
successfully.

Error Return: Lists what is returned when the macro cannot complete processing
successfully.

Programming Considerations: Lists any additional considerations for using the
macro, including any restrictions or limitations.

Examples: Provides one or more examples that show you how to code the macro.

Related Macros: Lists where to find information about related macros.

© Copyright IBM Corp. 1997, 2001 329

|
|

BLKSZ–Convert a Block Type to a Block Size

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to set global variables at assembly time based on specified block
types. You can set the following information:
v Block size
v Maximum next available byte (NAB)
v Control bits.

Format

�� BLKSZ
label

0,name,BLKTYP=blktype
1,name
3,WRS=blktype

ARS=blktype

��

label
is a symbolic name assigned to the macro statement.

0 specifies the processing mode that is used to get the physical block size and
control bits corresponding to the specified block type.

1 specifies the processing mode that is used to get the physical block size,
maximum next available byte (NAB), and control bits corresponding to block
types specified by global variables &SW00WRS and &SW00ARS.

3 specifies the processing mode that is used to get the physical block size,
maximum NAB, and control bits corresponding to the block types specified by
the WRS and ARS parameters.

name
is the name of the segment or macro that called the BLKSZ macro. If an error
occurs while processing the BLKSZ macro, the specified name is displayed in
the assembly error message.

BLKTYP
specifies the block type for which the physical block size and control bits will be
set.

WRS
specifies the prime block type for which the physical block size, maximum NAB,
and control bits will be set.

ARS
specifies the overflow block type for which the physical block size, maximum
NAB, and control bits will be set. If you do not specify this parameter or if you
set it to 0, the values set will be the same as those set for the WRS parameter.

blktype
is one of the following block types:

L0 specifies a 128-byte block size. Do not use this value when you specify
processing mode 3.

BLKSZ

330 TPFDF R1 Programming Concepts and Reference

L1 specifies a 381-byte block size.

L2 specifies a 1055-byte block size.

L3 specifies a 4000-byte block size. This block type is available only in an
ALCS environment.

L4 specifies a 4095-byte block size.

L5 specifies a user-defined size. This block type is available only in an ALCS
environment.

L6 specifies a user-defined size. This block type is available only in an ALCS
environment.

L7 specifies a user-defined size. This block type is available only in an ALCS
environment.

L8 specifies a user-defined size. This block type is available only in an ALCS
environment.

Entry Requirements
If you specify processing mode 1, you must set the assembler global variable
&SW00WRS (and optionally, variable &SW00ARS) to a valid block type.

Normal Return
v If you specify processing mode 0, assembler global variables are set as follows

for the specified block type:

Variable Set To

&BLKSZS The physical block size.

&BLKSZPI The control bits.

v If you specify processing mode 1, assembler global variables are set as follows
for the block type specified by assembler global variable &SW00WRS:

Variable Set To

&BLKSZPS The physical block size.

&BLKSZPN The maximum NAB.

&BLKSZPI The control bits.

In addition, assembler global variables are set as follows for the block type
specified by assembler global variable &SW00ARS:

Variable Set To

&BLKSZAS The physical block size.

&BLKSZAN The maximum NAB.

&BLKSZAI The control bits.

Note: If variable &SW00ARS is 0 or not defined, these variables are set to the
same values that were used for &SW00WRS.

v If you specify processing mode 3, assembler global variables are set as follows
for the block type specified by the WRS parameter:

Variable Set To

&BLKSZPS The physical block size.

BLKSZ

TPFDF Restricted Assembler Macros: Reference 331

&BLKSZPN The maximum NAB.

&BLKSZPI The control bits.

In addition, assembler global variables are set as follows for the block type
specified by the ARS parameter:

Variable Set To

&BLKSZAS The physical block size.

&BLKSZAN The maximum NAB.

&BLKSZAI The control bits.

Note: If you do not specify the ARS parameter, these variables are set to the
same values that were used for the WRS parameter.

Error Return
If you specify an incorrect processing mode or block type, an assembler error
(referred to as an MNOTE) with a severity of 8 is issued.

Programming Considerations
v This macro does not generate any object code. All calculations and error

checking are performed at assembly time.

v The value of the control bits are set as follows for each block type:

– In a TPF system:

Block Type Control Bit Setting

L0 X'00'

L1 X'00'

L2 X'10'

L4 X'20'

– In an ALCS environment:

Block Type Control Bit Setting

L0 X'00'

L1 X'00'

L2 X'10'

L3 X'20'

L4 X'30'

L5 X'40'

L6 X'50'

L7 X'60'

L8 X'70'

The control bits are used in field STDCTL in the standard header of blocks. See
the STDHD DSECT or C$STDHD header file for more information.

v Register values are preserved across this macro call.

BLKSZ

332 TPFDF R1 Programming Concepts and Reference

Examples
v The following example returns the physical block size and control bits for an L1

block type.
BLKSZ 0,GRT8SR,BLKTYP=L1

The following assembler global variables will be set by the macro:

Variable Setting

&BLKSZS 381

&BLKSZPI X'00'

v The following example returns the physical block size, maximum NAB, and
control bits for L2 and L4 block types.
&SW00WRS SETC ’L2’
&SW00ARS SETC ’L4’...
BLKSZ 1,IR75DF

The following assembler global variables will be set by the macro:

Variable Setting

&BLKSZPS 1055

&BLKSZPN 1019

&BLKSZPI X'10'

&BLKSZAS 4095

&BLKSZAN 4059

&BLKSZAI X'20' (in a TPF system) or X'30' (in an ALCS environment)

v The following example returns the physical block size, maximum NAB, and
control bits for the L2 block type.
BLKSZ 3,IR80DF,WRS=L2

The following assembler global variables will be set by the macro:

Variable Setting

&BLKSZPS 1055

&BLKSZPN 1019

&BLKSZPI X'10'

&BLKSZAS 1055

&BLKSZAN 1019

&BLKSZAI X'10'

Related Information
None.

BLKSZ

TPFDF Restricted Assembler Macros: Reference 333

DBCNT–Calculate the Length of an Assembler Symbol

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

This macro calculates the length of an assembler symbol.

Note: Do not use this macro in new code; use assembler count attribute K' in new
code.

Format

�� DBCNT symbol
label

��

label
is a symbolic name assigned to the macro statement.

symbol
is an assembler symbol.

Entry Requirements
You must define symbol &KK to the assembler by coding:
GBLA &KK

Normal Return
Symbol &KK is set to the length of the specified symbol.

Error Return
None.

Programming Considerations
Register values are preserved across this macro call.

Examples
The following example sets symbol &KK to the length of symbol &INCLUDE.
DBCNT &INCLUDE

Related Information
None.

DBCNT

334 TPFDF R1 Programming Concepts and Reference

DBTAB–Access Database Definition (DBDEF) Tables

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to access the database definition (DBDEF) tables.

Format

�� DBTAB
label

DBDEF=reg
FASTLINK=reg

ID=fileid,ERROR=errlbl Options
,REG=R15

FILETYP=filetype,ERROR=errlbl
,REG=reg

��

Options:

(1)
,FVN=filever

,SLOT=NO

(1)
,SLOT=YES

,REG=R15

,REG=reg

Notes:

1 If you specify SLOT=YES, you cannot specify the FVN parameter.

label
is a symbolic name assigned to the macro statement.

DBDEF=reg
returns the address of the base of the DBDEF index table to a specified
register, reg.

FASTLINK=reg
returns the address of the base of the fast-link table to a specified register, reg.

ID=fileid
specifies the file identifier (ID) for a specific file, where fileid is the label of a
2-byte field containing the file ID.

ERROR=errlbl
specifies that label to which you want to branch if:

v The specified file ID is not defined in the DBDEF tables.

v The specified file ID is not in the range of valid file IDs. The range is
specified by variable #TPFDBID in the ACPDBE macro. See TPFDF
Installation and Customization for more information about the ACPDBE
macro.

FVN=filever
specifies the file version number of the file ID specified by the ID parameter,
where filever is the label of a 1-byte field containing the file version number.

DBTAB

TPFDF Restricted Assembler Macros: Reference 335

SLOT
specifies one of the following:

YES
returns the address of the slot that contains the address of the DBDEF
table for a specific file ID.

NO
returns the address of the DBDEF table for a specific file ID.

REG=reg
specifies a register, reg, in which the requested address is returned.

FILETYP=filetype
returns the address of a DBDEF table for a specific record type, where filetype
is the label of a 2-byte field containing the record type. The record type is
represented with a numeric value defined in the TPF SYSEQC macro or ALCS
DXCURID macro.

Entry Requirements
None.

Normal Return
The requested address is returned in the specified register.

Error Return
None.

Programming Considerations
v The DBTAB macro modifies register 14 (R14). In addition, if you specify the FVN

parameter, this macro modifies R7.

v Figure 22 shows the different areas that you can access with the DBTAB macro.

DBDEF=REG Database Definition Table Index

C000 C001 C002 C003 C004 C005

ID

C000

C006
ID

addr

SLOT=NO
SLOT=YES

Database Definition (DBDEF) Table
for File ID X’C00A’

Figure 22. Areas in the Database Definition (DBDEF) Table Accessed by the DBTAB Macro

DBTAB

336 TPFDF R1 Programming Concepts and Reference

Examples
v The following example returns the base of the DBDEF index table to R15.

DBTAB DBDEF=R15

v The following example returns the base of a specific file ID to R15. In this
example, the file ID is located in BFAID and the file version of the file is located
in EBX000.
DBTAB ID=BFAID,FVN=EBX000,ERROR=NODBDEF

DBTAB

TPFDF Restricted Assembler Macros: Reference 337

DFCAS–TPFDF Case Setup in Fast-link Segments

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to set up a fast-link case in a fast-link segment.

Format

�� DFCAS case,
label COLLECT,

DESC=desc ��

label
is a symbolic name assigned to the macro statement.

case
is the case number, which is a decimal number in the range 0–7. The case
number is in the segment specified using the DFLNK macro with the prog
parameter.

COLLECT
specifies that the fast-link case is included in the TPFDF data collection.

Note: A data collection case number equate has to be provided when you
specify the COLLECT parameter; for example:
#UWAACASE0 EQU 0

DESC=desc
specifies the description of the function for a case number, where desc is the
description of the function. You can display this description by using the ZUDFM
OAI/DBTAB command with the LINK parameter specified. See TPFDF
Commands for more information about the ZUDFM OAI/DBTAB command.

Entry Requirements
None.

Normal Return
None.

Error Return
None.

Programming Considerations
v You must specify the DFCAS command at the beginning of every fast-link

segment.

v When you specify the DFCAS command, you must provide an assembler equate
to mark the start of the case; for example:
#CASE0 EQU *

DFCAS

338 TPFDF R1 Programming Concepts and Reference

|
|

Examples
The following example defines case numbers 0 to 3; case number 1 and case
number 2 are included in the TPFDF data collection:
DFCAS 0,DESC=’SEARCH DATA BLOCK’
DFCAS 1,COLLECT,DESC=’FILNC DD’
DFCAS 2,COLLECT,DESC=’FILEC DD’
DFCAS 3,DESC=’UPDATE TRAILER’

Related Information
None.

DFCAS

TPFDF Restricted Assembler Macros: Reference 339

DFCLIB–C Language Interface

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

This macro provides an interface from TPFDF assembler programs to TPFDF C
language programs. Use this macro in TPFDF assembler programs to make a
single line call to TPFDF C language code. This macro simplifies coding and
provides one central point that can be updated if the interface changes.

Format

�� DFCLIB
label

FUNCTION= �

� IBT_DELETE,PARAM1= reg
label1
I/value

IBT_INSERT,PARAM1= reg ,PARAM2= reg
label1 label1
I/value I/value

IBT_REPLACE,PARAM1= reg ,PARAM2= reg ,PARAM3= reg
label1 label1 label1
I/value I/value I/value

IBT_SEARCH,PARAM1= reg ,RETURN= reg
label1 label1
I/value

IBT_CLOSE,PARAM1= reg
label1
I/value

IBT_BUILD,PARAM1= reg ,PARAM2= reg
label1 label1
I/value I/value

ICD_KEYCHK

��

label
is a symbolic name assigned to the macro statement.

reg
is a register that contains the appropriate value based on the specified
parameter.

label1
is a label that contains the appropriate value based on the specified parameter.

I/value
specifies an immediate value based on the specified parameter.

IBT_DELETE
deletes a key from the B+Tree index when the last logical record (LREC) in the
block is deleted, where:

PARAM1
specifies the core address of the first LREC in the block that is being
deleted.

IBT_INSERT
inserts a key into the B+Tree index when a data block is split or when a new
data block is added, where:

DFCLIB

340 TPFDF R1 Programming Concepts and Reference

PARAM1
specifies the core address of the first LREC in the new data block.

PARAM2
specifies the file address of the new data block.

The default keys contained in the first LREC of the new data block are inserted
into the B+Tree index.

IBT_REPLACE
replaces a key in the B+Tree index when the first LREC in a data block is
deleted and there are more LRECs in the same data block, or when a new
LREC becomes the first LREC in the data block, where:

PARAM1
specifies the core address of the old first LREC in the data block; that is,
the LREC that is to be replaced.

PARAM2
specifies the file address of the data block.

PARAM3
specifies the core address of the new first LREC in the data block; that is,
the LREC that is to replace the LREC specified by the PARAM1 parameter.

IBT_SEARCH
locates a data block using the B+Tree index, where:

PARAM1
specifies the core address of the LREC that is being added or deleted
during an add or delete operation. If this is not an add or delete operation,
the parameter is ignored.

RETURN
specifies the location of the data block file address or zero.

IBT_CLOSE
specifies one of the following:
v Commit or stop DETAC mode updates to B+Tree index nodes.
v Close an entire B+Tree index for a subfile following a DBCLS macro.

PARAM1
specifies one of the following values:

IBT_CLOSE_FINAL
commits DETAC mode updates.

IBT_CLOSE_ABORT
stops DETAC mode updates and prevents any updates made in DETAC
mode from being written to DASD.

IBT_CLOSE_SUBFILE
closes a B+Tree index.

IBT_BUILD
inserts one data block into a B+Tree index when rebuilding the entire B+Tree
index, where:

PARAM1
specifies the core address of the first LREC in the data block.

PARAM2
specifies the file address of the data block.

DFCLIB

TPFDF Restricted Assembler Macros: Reference 341

ICD_KEYCHK
Verifies that global modification does not attempt to change the default keys of
a logical record (LREC).

Entry Requirements
SW00SR REG=R3 must be declared before the macro call with register 3 (R3) set
to be the base of the SW00SR DSECT.

Normal Return
SW00RET bit 0 and SW00RT2 bit 4 return zero.

Error Return
SW00RET bit 0 and SW00RT2 bit 4 return an error indicator.

Programming Considerations
v The contents of R0–R7 are preserved across this macro call.

v The contents of R14 and R15 cannot be predicted.

v You must code a DFCLIB macro with the IBT_BUILD parameter for every data
block in a subfile when rebuilding a B+Tree index. In addition, the data blocks
must be passed to the DFCLIB macro in a specific order. Overflow blocks must
be passed first, in order, according to their forward chain fields. The prime block
must then be passed as the last data block to the DFCLIB macro.

Examples
v The following example deletes a key from the B+Tree index. R5 contains the core

address of the first LREC in the block being deleted.
DFCLIB FUNCTION=IBT_DELETE,PARAM1=R5

v The following example inserts a key in the B+Tree index. R5 contains the core
address of the first LREC in the new data block. Field EBW000 contains the file
address of the new data block.
DFCLIB FUNCTION=IBT_INSERT,PARAM1=R5,PARAM2=EBW000

v The following example commits any DETAC mode updates to the B+Tree index
nodes.
DFCLIB FUNCTION=IBT_CLOSE,PARAM1=I/IBT_CLOSE_FINAL

Related Information
None.

DFCLIB

342 TPFDF R1 Programming Concepts and Reference

DFDDA–Distributed Data Access Support

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to implement the TPFDF Distributed Data Access (TPFDF/DDA)
feature.

Format

�� DFDDA
label

CASE=casenum
(1)

,NBR=num
(1)

,LOC=loc

��

Notes:

1 If you specify CASE=2, you must code this parameter. If you do not specify
CASE=2, this parameter is ignored.

label
is a symbolic name assigned to the macro statement.

CASE=casenum
specifies the case number passed with the macro call, where casenum is a
decimal number.

NBR=num
specifies the intercept number, where num is a decimal number from 0–4.

LOC=loc
specifies the intercept location, where loc is a decimal number from 0–4.

Entry Requirements
None.

Normal Return
None.

Error Return
None.

Programming Considerations
Register values are preserved across this macro call.

Examples
The following example calls DFDDA case 3.
DFDDA CASE=3

Related Information
None.

DFDDA

TPFDF Restricted Assembler Macros: Reference 343

DFDLAY–Delay Processing Conditionally

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to conditionally delay an entry control block (ECB), forcing it to give
up control. The delay occurs if the following is true:

v The ECB is close to an application time-out (system error CTL-000010)

v Symbol &TPFDBDV in the DBLCL macro is set to a non-zero value.

This macro generates specific code for your environment that can be release
dependent.

Format

�� DFDLAY
label

��

label
is a symbolic name assigned to the macro statement.

Entry Requirements
None.

Normal Return
None.

Error Return
None.

Programming Considerations
v If symbol &TPFDBDV in the DBLCL macro is set to 0, processing of the ECB will

never be delayed. See TPFDF Installation and Customization for more
information about the DBLCL macro.

v This macro is for use in TPFDF service routines. Do not use the DFDLAY macro
in application programs because it can prevent valid CTL-000010 system errors.

Examples
The following example conditionally delays processing of an ECB.

DFDLAY

Related Information
None.

DFDLAY

344 TPFDF R1 Programming Concepts and Reference

DFGDS–General Data Set Support User Exit

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to implement general data set support or to obtain the necessary
code from a third party.

Format

�� DFGDS
label

CASE=casenum ��

label
is a symbolic name assigned to the macro statement.

CASE=casenum
specifies the case number passed with the macro call, where casenum is a
decimal number.

Entry Requirements
None.

Normal Return
None.

Error Return
None.

Programming Considerations
Register values are preserved across this macro call.

Examples
The following example calls GDS case 4.
DFGDS CASE=4

Related Information
None.

DFGDS

TPFDF Restricted Assembler Macros: Reference 345

DFGETC–Get Working Storage Block

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to get a working storage block that can be used by multiple entry
control blocks (ECBs). This macro generates specific code for your environment
that can be release dependent.

Format

�� DFGETC
label

LVL=level , TYPE=blktype ��

label
is a symbolic name assigned to the macro statement.

LVL=level
specifies the data level, where level is a free data level from D0–DF.

TYPE=blktype
specifies the block type, where:

L0 specifies a 128-byte block size.

L1 specifies a 381-byte block size.

L2 specifies a 1055-byte block size.

L3 specifies a 4000-byte block size. This block type is available only in an
ALCS environment.

L4 specifies a 4095-byte block size.

L5 specifies a user-defined size. This block type is available only in an ALCS
environment.

L6 specifies a user-defined size. This block type is available only in an ALCS
environment.

L7 specifies a user-defined size. This block type is available only in an ALCS
environment.

L8 specifies a user-defined size. This block type is available only in an ALCS
environment.

Entry Requirements
None.

Normal Return
Register 14 (R14) contains the address of the assigned storage block.

Error Return
None.

DFGETC

346 TPFDF R1 Programming Concepts and Reference

Programming Considerations
On return from this macro, the contents of R15 are unknown.

Examples
The following example will get a 1055-byte working storage block on data level 5
that can be shared by multiple ECBs.
DFGETC LVL=D5,TYPE=L2

Related Information
None.

DFGETC

TPFDF Restricted Assembler Macros: Reference 347

DFGLVL–Get Resource Level

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to query system resource levels. This macro generates specific
code for your environment that can be release dependent.

Format

�� DFGLVL
label

LEVEL=MAXECB ��

label
is a symbolic name assigned to the macro statement.

LEVEL=MAXECB
returns the maximum number of entry control blocks (ECBs) that can be active
for a TPF system or ALCS environment to process deferred ECBs. If the
number of active ECBs exceeds this value, the TPF system or ALCS
environment will stop processing deferred ECBs. Deferred ECBs are maintained
on the TPFor ALCS defer list.

Entry Requirements
None.

Normal Return
Register 15 (R15) contains the maximum number of ECBs that can be active for a
TPF system or an ALCS environment to process deferred ECBs.

Error Return
None.

Programming Considerations
On return from this macro, the contents of R14 are unknown.

Examples
The following example will return the maximum number of ECBs that can be active
for the TPF system or ALCS environment to process ECBs on the defer list.
DFGLVL LEVEL=MAXECB

Related Information
None.

DFGLVL

348 TPFDF R1 Programming Concepts and Reference

DFGPNL–Get Calling Program Address

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to get the address of the application program that issued the
TPFDF macro or function call. This macro generates specific code for your
environment that can be release dependent.

Format

�� DFGPNL
label

��

label
is a symbolic name assigned to the macro statement.

Entry Requirements
None.

Normal Return
Register 14 (R14) contains the calling program address.

Error Return
R14 contains 0.

Programming Considerations
On return from this macro, the contents of R15 are unknown.

Examples
The following example returns the address of the application program that issued
the TPFDF macro or function call.
DFGPNL

Related Information
None.

DFGPNL

TPFDF Restricted Assembler Macros: Reference 349

DFIFB–Check a SW00SR Slot

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro in TPFDF internal processing to check if a SW00SR slot exists. If
the slot exists, the function returns the base address of the SW00SR slot.

You can use this macro to test if a particular subfile is open.

Format

�� DFIFB FIRST
NEXT

��

FIRST
inserts the address of the first SW00SR slot with an open subfile in your
program in register 3 (R3). R14 points to the 8-byte location containing the
reference name for the file.

NEXT
inserts the address of the next SW00SR slot with an open subfile in your
program in register 3 (R3). R14 points to the 8-byte location containing the
reference name for the file.

Entry Requirements
None.

Normal Return
The base address of the SW00SR slot is returned in R3.

Error Return
If the required SW00SR slot is not found, R3 is set to zero. You can test the return
value of R3 in the program to cause the program to branch if the TPFDF product
cannot find a selected SW00SR slot.

Programming Considerations
v The contents of register 14 (R14) and R15 cannot be predicted across a TPFDF

macro call.

v The contents of R3, which contains the storage address of the SW00SR slot, are
used by TPFDF macro calls. Do not change the value of R3 between macro calls
unless you save the value after each macro call and restore the value before
each macro call.

v The DFIFB macro uses the ALASC macro internally and cannot be called from a
segment that has another ALASC macro call. Programs that call the DFIFB
macro need to consider restrictions involving the ALASC macro and program
nesting levels. See TPF General Macros for more information about the ALASC
macro.

DFIFB

350 TPFDF R1 Programming Concepts and Reference

|
|

|
||||

|
|

|

|

|

||||||||||||||||||

|
|

|
|
|
|

|
|
|
|

|

|

|

|

|

|
|
|

|

|
|

|
|
|
|

|
|
|
|
|

v If a program calls the DFIFB macro with the NEXT parameter specified, another
DFIFB macro with the FIRST parameter specified must be called in the same
program.

Examples
The following example inserts the address of the first SW00SR slot with an open
subfile in R3.
DFIFB FIRST

Related Information
v “DBOPN–Open a Subfile” on page 262

v “DBIFB–Check a SW00SR Slot” on page 246

DFIFB

TPFDF Restricted Assembler Macros: Reference 351

|
|
|

|

|
|

|

|

|

|

DFLNK–TPFDF Fast Linkage

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to support TPFDF fast-link segments. Parameters are provided to
do the following:

v Call a fast-link segment

v Return from a fast-link segment

v Reestablish the program base

v Call the TPFDF error handler.

Format

�� DFLNK
label

BASE
RETURN
ERROR,dump
prog,case

��

label
is a symbolic name assigned to the macro statement.

BASE
reestablishes register (R8) as the program base.

RETURN
specifies that control is returned to the TPFDF macro call.

ERROR
specifies the error code condition.

dump
is the dump number assigned for the central error handler.

prog
is the name of the fast-link segment that gets control.

case
is the case number, which is a decimal number in the range 0–7. The case
number is in the segment specified with the prog parameter.

Entry Requirements
R1 must point to the current TPFDF stack area.

Normal Return
None.

Error Return
None.

DFLNK

352 TPFDF R1 Programming Concepts and Reference

Programming Considerations
If you specify the prog parameter value with a UWAx segment and the calling
segment is not a UWxx program, all data levels are preserved and registers in the
range R0–R7 are saved and restored. If the calling segment is a UWxx program, an
internal fast-link call is used and registers in the range R0–R7, R14, or R15 are not
saved.

Examples
v The following example provides a fast link to case number 4 of segment UWB0:

DFLNK UWB0,4

v The following example calls the case for DB0100 in the central error handler:
DFLNK ERROR,DB0100

v The following example issues a GETCC macro on level DD and restores the
correct program base:
GETCC DD
DFLNK BASE

Related Information
None.

DFLNK

TPFDF Restricted Assembler Macros: Reference 353

DFSSU–Handling DBDEF Subtables

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to create a copy of the TPFDF and common subtables in a working
storage block. The TPFDF subtable is the portion of the database definition
(DBDEF) table that contains TPFDF-specific information such as item length and
next available byte (NAB). The common subtable is the portion of the DBDEF table
that contains information common to all entry control blocks (ECBs) accessing the
file.

The DFSSU macro takes the multiple database function (MDBF) environment into
consideration. Any values with subsystem user (SSU) overrides for the specified
SSU are modified as appropriate. See TPFDF Database Administration for more
information about SSU overrides.

Note: The MDBF environment is available only in a TPF system.

Figure 23 shows how the parameters for the DFSSU macro allow access to the
copy. The DBDEF parameter points to the base of the DBDEF table to be copied.
The BASE parameter specifies which register points to the base of the working
storage. The SW02SR DSECT has a set of labels suffixed by the character M to
identify fields in the copy area.

Note: SUFFIX=M in SW02SR is reserved for TPFDF product use.

DBDEF=
DBDEF Table Layout

Subtable Index

Common

File Information

TPFDF

TPFDF Recoup

Default Keys

Basic Indexing

GDS

DDA

ALCS Recoup

BASE=
Copy Table Layout

Subtable Index

Common

TPFDF

DFSSU Macro

Figure 23. DFSSU Macro: Create a Copy of the TPFDF and COMMON Subtables

DFSSU

354 TPFDF R1 Programming Concepts and Reference

Format

�� DFSSU
label

SETUP
REUSE

,LEVEL=DF

,LEVEL=level
, BASE=reg , �

� DBDEF=reg
,ERROR=spmlbl
,ERRORA=asmlbl

��

label
is a symbolic name assigned to the macro statement.

SETUP
allocates working storage (using a GETCC macro) on the data level specified
by the LEVEL parameter.

REUSE
uses previously allocated working storage on the data level specified by the
LEVEL parameter.

LEVEL=level
specifies the entry control block (ECB) data level, where level is the TPF or
ALCS ECB data level to which the DBDEF subtables will be copied.

BASE=reg
specifies the register that will contain the address of the area to which the
DBDEF subtables were copied, where reg is R0–R7, R14, or R15.

DBDEF=reg
specifies the location of the DBDEF to be copied, where reg is a register that
points to the base of the DBDEF. Use register 0–7 (R0–R7), R14, or R15 for
the value of reg.

ERROR=spmlbl
specifies where control is returned if the subsystem user of the ECB is excluded
from the file whose DBDEF is being copied, where spmlbl is a symbolic name
defined with the #LOCA structured programming macro (SPM). See TPFDF and
TPF Structured Programming Macros for more information about SPMs.

ERRORA=asmlbl
specifies where control is returned if the subsystem user of the ECB is excluded
from the file whose DBDEF is being copied, where asmlbl is an assembler
label.

Entry Requirements
v If you specify the SETUP parameter, the data level specified by the LEVEL

parameter must be free.

v If you specify the REUSE parameter, the data level specified by the LEVEL
parameter must refer to a core block that is at least 381 bytes.

v The register that you specify with the DBDEF parameter must contain the
address of the DBDEF table to be copied.

DFSSU

TPFDF Restricted Assembler Macros: Reference 355

Normal Return
v The contents of R0–R7 are preserved across this macro call, except for the

register specified with the BASE parameter.

v R14 contains the address of the DBDEF copy.

v The contents of R15 cannot be predicted unless R15 was specified with the
BASE parameter.

v The register specified by the BASE parameter contains the address of the
DBDEF copy.

v If you specify the SETUP parameter, a 381-byte block containing the DBDEF
copy is attached to the data level specified by the LEVEL parameter.

v If you specify the REUSE parameter, the contents of the block on the data level
specified by the LEVEL parameter is changed to contain the DBDEF copy.

Error Return
If the subsystem user of the ECB is excluded from the file whose DBDEF is being
copied, control is passed to the label specified by the ERROR or ERRORA
parameter. If you did not specify the ERROR or ERRORA parameter, control is
returned to the next sequential instruction.

Programming Considerations
You can specify the same register for the BASE and DBDEF parameters.

Examples
The following example will make a copy of the DBDEF subtables in the block
already attached to data level F (DF). The copy will also be updated with
information that is specific to the subsystem user of the ECB. R15 contains the
address of the original DBDEF table on entry to the macro and it will contain the
address of the DBDEF copy on return from the macro.
DFSSU REUSE,LEVEL=DF,DBDEF=R15,BASE=R15

Related Information
None.

DFSSU

356 TPFDF R1 Programming Concepts and Reference

DFTDC–Dialogue Control Facility Support User Exit

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to implement dialogue control facility support or to obtain the
necessary code from a third party.

Format

�� DFTDC
label

CASE=casenum ��

label
is a symbolic name assigned to the macro statement.

CASE=casenum
specifies the case number passed with the macro call, where casenum is a
decimal number.

Entry Requirements
None.

Normal Return
None.

Error Return
None.

Programming Considerations
None.

Examples
The following example shows how to include case number 5.

DFTDC CASE=5

Related Information
None.

DFTDC

TPFDF Restricted Assembler Macros: Reference 357

DFUEX–Define TPFDF User Exit Point

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to define a TPFDF user exit point.

Format

�� DFUEX
label

CASE=casenum ��

label
is a symbolic name assigned to the macro statement.

CASE=casenum
specifies the case number passed with the macro call, where casenum is one
of the following:

1 initializes customer database definition (DBDEF) tables.

2 excludes multiple database function (MDBF) subsystems from using the
TPFDF product.

Entry Requirements
If you specify case 1, register 7 (R7) must contain a return address to segment
UWA1.

Normal Return
v If you specify case 1, the contents of R2, R14, and R15 cannot be predicted. All

other registers are preserved across this macro call.

v If you specify case 2, symbol &SKPUF00 is set to one of the following:

0 indicates the subsystem was not excluded.

1 indicates the subsystem was excluded.

Error Return
None.

Programming Considerations
You can code this macro only in TPFDF segments UWA0 and UWA1.

Examples
The following example shows how to include case number 1:

DFUEX CASE=1

Related Information
None.

DFUEX

358 TPFDF R1 Programming Concepts and Reference

|
|

|

FILTP–Determine File Address Type

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to determine if a specified file address is a fixed file address or a
pool file address. If the file address is a pool address, it can be further classified as
short-term or long-term duplicated. This macro then branches to a specified label
according to the file type that is determined.

Format

�� FILTP
label

�

� �

,

fileaddr, POOL=poolbl
FIX=fixlbl ,ERROR=errlbl
SHORTTP=shortlbl
DPPOOL=dpplbl

PSEUDST=pslbl

��

label
is a symbolic name assigned to the macro statement.

fileaddr
is the location of a 4-byte field that contains the file address.

POOL=poolbl
specifies where to branch if the file address is a pool address, where poolbl is
the label for that location.

FIX=fixlbl
specifies where to branch if the file address is a fixed address, where fixlbl is
the label for that location.

SHORTTP=shortlbl
specifies where to branch if the file address is a short-term pool address, where
shortlbl is the label for that location.

DPPOOL=dpplbl
specifies where to branch if the file address is a long term duplicated pool
address, where dpplbl is the label for that location.

PSEUDST=pslbl
places the dummy file address used for TPFDF W-type files at the label
specified by pslbl.

ERROR=errlbl
specifies where to branch if the specified file address is not valid, where errlbl is

FILTP

TPFDF Restricted Assembler Macros: Reference 359

the label for that location. If you do not specify the ERROR parameter and the
specified file address is not valid, control is passed to the next sequential
instruction (NSI).

Entry Requirements
When you specify any parameter except the PSEUDST parameter, the file address
to be checked must be at the label specified by fileaddr.

Normal Return
v When you specify any parameter except the PSEUDST parameter, the contents

of register 0 (R0), R14, and R15 cannot be predicted.

v When you specify the PSEUDST parameter, the dummy file address used for
TPFDF W-type files is placed at the label specified by pslbl.

Error Return
When you specify any parameter except the PSEUDST parameter, control is
passed to the label specified by the ERROR parameter if the specified file address
is not valid.

Programming Considerations
v If you are running in an ALCS environment, do not assemble programs using the

version of the FILTP macro that is shipped with the TPFDF product. Use the
version of the FILTP macro that is provided with the ALCS product.

v The SHORTTP and DPPOOL parameters take precedence over the POOL
parameter. That is, if the file address is a short-term pool address, control will be
passed to the label specified by shortlbl, not the label specified by poolbl.

Examples
The following example checks the file address at label EBCFA0.
FILTP EBCFA0,SHORTTP=STLABEL,POOL=LTLABEL,DPPOOL=LDLABEL

The following shows where control will be passed based on the type of file address:

File Address Control Passed To

Short-term pool Label STLABEL

Long-term duplicated pool Label LDLABEL

Long-term non duplicated pool Label LTLABEL

Fixed file address Next sequential instruction

Not valid Next sequential instruction

Related Information
None.

FILTP

360 TPFDF R1 Programming Concepts and Reference

FMSGS–Set Up Output Messages

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to generate code to set up:

v A work block with output message transmission (OPMT) information

v A blanked-out line area (FMSLNA) of 64 bytes

v The code for activating the TPF or ALCS FMSG program, including:
– Saving the general registers
– Calculating the character count (UI2CNF).

Format

�� FMSGS
label

WORKBLOCK=level Options
WORKBLK=level

RELEASE
,WORKBLOCK=level

��

Options:

,OPMT=X'10F2C20080'

,OPMT=list

,ERROR=E

,ERROR=R ,SPLIT=Y ,BLOCKSIZE=size
,BLKSIZE=size

label
is a symbolic name assigned to the macro statement.

WORKBLOCK
specifies a data level that is free to set up the work block.

WORKBLK
specifies a data level that is free to set up the work block.

level
is the data level number. Do not use level number 2.

OPMT=list
specifies an OPMT parameter (UI2INC–UI2CNN), where list is a 5-byte
hexadecimal number. The hexadecimal number is used to set indicators in the
UI2PF structure starting at UI2INC–UI2CNN.

ERROR
specifies where to return control if an error occurs.

R returns control to the calling program. Register 14 (R14) contains the return
code.

E exits the program with a system error.

BLOCKSIZE
specifies the block size.

FMSGS

TPFDF Restricted Assembler Macros: Reference 361

BLKSIZE
specifies the block size.

size
is one of the following block sizes:

L1 specifies a 381-byte block. This is the default when you do not specify the
SPLIT=Y parameter.

L2 specifies a 1055-byte block. This is the default when you specify SPLIT=Y.

SPLIT=Y
generates code to support scrolling. The line number (1–7) is set up in
FMSHLN. This code (which also activates FMS3) is activated only if WA0ET1
BIT 2 indicates an RO request (T-ENTRY).

RELEASE
cleans up and releases any storage obtained by previous iterations of the
FMSGS macro.

Entry Requirements
v You must activate the subroutines by using the #PERF structured programming

macro (SPM). Two subroutines are required:
– One for FMSGS
– One for FMSGS RELEASE.

Note: Register 7 (R7) is used for subroutine linkage.

v The initial call to this subroutine:
– Sets up the work block on the indicated (and free) level
– Blanks out the line area
– Returns to the caller.

v On subsequent entries, R1 must point to the next available byte in the line area
(FMSLNA) and R2 must still be the base of OPMT.

v If you specify the SPLIT=Y parameter, you must:
– Set R2 to point to DSECT UI2PF
– Set up a branch to UI2PF.

This is required to allow the header line information to be set up in FMSHLN.

v If a user-supplied end message is requested (instead of the standard ENDPARTx
message), set up FMSEND and FMSENS.

The AAA/CAA/MAA/RCB must be on level 1 because the FMSGS macro will
interrogate the RO indicator.

v Set the respective bits in UI3CNN to signal that the last line is being submitted.

Normal Return
v The work block is set up and the line area is blanked out.

v R1 points to first available byte of the 64-byte line area (FMSLNA).

v Register 2 (R2):
– Is the base of OPMT.
– Is unchanged if you do not specify ERROR=R.
– Contains minus one (-1) if you specify ERROR=R.

v The contents of R14–R0 and R3–R7 are unchanged unless an error occurs.

v If you specify the RELEASE parameter:

– Any OMSG (and chains) on level 2 are released and the core blocks are no
longer held

FMSGS

362 TPFDF R1 Programming Concepts and Reference

– If you specify the WORKBLOCK parameter, that core block is released on
entry to the subroutine.

Error Return
The contents of R2 and R14 are changed if an error occurs. If you specify
ERROR=R and an error occurs, R14 contains the error code.

Programming Considerations
v If an exit to UIO is performed, do not use levels 1, 2, 4, 5, or 6 for a work block

because the UIO programs use these levels.

v This macro uses approximately 85 to 160 bytes of storage depending on the
options selected.

Examples
FMSGS WORKBLOCK=0
FMSGS WORKBLOCK=3,OPMT=18F2C80040
FMSGS WORKBLOCK=C,ERROR=R
FMSGS WORKBLOCK=C,SPLIT=Y
FMSGS WORKBLOCK=C,BLKSIZE=L2
FMSGS RELEASE
FMSGS RELEASE,WORKBLOCK=C

Related Information
None.

FMSGS

TPFDF Restricted Assembler Macros: Reference 363

HELPA–Help Message Text

Product-sensitive programming inferface
The following documents Product-sensitive Programming Interface information.

Use this macro to build the output messages for the ZUDFM OAH (help) command.

Format

�� HELPA
label

ENTRY=cmdtext , HEADER=hdrtext , �

� �

,

DESCRv=destext , �

,

RESTRw=restext , �

,

REFERx=reftext , �

� �

,

ENTRy=entrtext , �

,

ENTTz=enttext
��

label
is a symbolic name assigned to the macro statement.

ENTRY=cmdtext
specifies the command for which you want to build the help message, where
cmdtext is a 2- to 10-character string.

HEADER=hdrtext
specifies the header for the help message, where hdrtext is a 1- to 30-character
string.

DESCRv=destext
specifies the command description that will be displayed in the help message,
where v is a number from 1–7 and destext is a 1- to 45-character string.

RESTRw=restext
specifies any restrictions that will be displayed in the help message, where w is
a number from 1–5 and restext is a 1- to 45-character string.

REFERx=reftext
specifies any references that will be displayed in the help message, where x is
1 or 2 and reftext is a 1- to 45-character string.

ENTRy=entrtext
specifies the different parameters that will be displayed in the help message,
where y is a number from 1–20 and entrtext is a 1- to 25-character string.

ENTTz=enttext
specifies the description of the parameters specified with the ENTRy parameter,
where z is a number from 1–20 and entrtext is a 1- to 45-character string.

HELPA

364 TPFDF R1 Programming Concepts and Reference

Entry Requirements
None.

Normal Return
The help message is displayed.

Error Return
None.

Programming Considerations
v Register values are preserved across this macro call.

v You must code all spaces in the text strings as an underscore character (_).

v The lines of text are displayed in sequential order based on the parameters. That
is, the text defined for DESCR1 displays first, followed by the text for DESCR2,
and so on. For example, to display the following:

FIRST LINE OF TEXT
SECOND LINE OF TEXT
THIRD LINE OF TEXT

code the parameters as follows:
DESCR1=FIRST_LINE_OF_TEXT,
DESCR2=SECOND_LINE_OF_TEXT,
DESCR3=THIRD_LINE_OF_TEXT

Examples
The following example shows how to code a help message for the ZUDFM
OAI/FILE command.
HELPA ENTRY=OAI/FILE, -

HEADER=DSECT_LABEL_DISPLAY, -
DESCR1=THE_DSECT_EQUATES_AND_LABELS_WRITTEN, -
DESCR2=ONTO_MLS_BY_OFFLINE_PGMS_CAN_BE_DISPLAYED, -
DESCR3=ONLINE_WITH_OAI/FILE_ENTRIES, -
RESTR1=NONE, -
REFER1=SEE_UFB_DOCUMENTATION, -
ENTR01=OAI/FILE_, -
ENTT01=INDEX_OF_ALL_DSECTS_WRITTEN_ONTO_MLS, -
ENTR02=OAI/FILE/ID, -
ENTT02=DISPLAY_DETAILED_INFORMATION_OF_SPECIFIED_ID., -
ENTT03=LREC-KEYS_VALIDATION/EQUATES/LABELS_WITH, -
ENTT04=DISPLACEMENT_AND_LENGTH

This example produces the following display:

HELPA

TPFDF Restricted Assembler Macros: Reference 365

User: ZUDFM OAHOAI/FILE

System: UDFM0243I TPFDF HELP FACILITY
O A - H E L P - OAI/FILE DSECT LABEL DISPLAY

DESCRIPTION: THE DSECT EQUATES AND LABELS WRITTEN
ONTO MLS BY OFFLINE PGMS CAN BE DISPLAYED
ONLINE WITH OAI/FILE ENTRIES

RESTRICTION: NONE
REFERENCE: SEE UFB DOCUMENTATION

ENTRIES:
OAI/FILE INDEX OF ALL DSECTS WRITTEN ONTO MLS
OAI/FILE/ID DISPLAY DETAILED INFORMATION OF SPECIFIED ID.

LREC-KEYS VALIDATION/EQUATES/LABELS WITH
DISPLACEMENT AND LENGTH

Related Information
None.

HELPA

366 TPFDF R1 Programming Concepts and Reference

Index

Special characters
DF_EF function 14
DF_EMPTY function 14
DF_ER function 14
DF_ERBTR function 14
DF_ERCNT function 14
DF_ERDSP function 14
DF_ERLST function 14
DF_ERX function 14
df_nbrkeys function 124
DF_NR function 14
DF_OK function 14
DF_SERRC function 14
df_setkey_bool function 150
df_setkey_dbdef function 150
df_setkey_mod function 150
df_setkey function 150
DF_TEST function 14
dfadd function 73
dfadr function 80
dfckp function 83
dfclr function 85
dfcls function 86
dfcpy function 92
dfcre function 95
dfdel function 97
dfdix function 105
dfdsp function 107
dffrl function 111
dfidx function 112
dfifb function 114
dfkey function 115
dfmod function 117
dfmrg function 121
dfopn function 125
dfopt function 130
dfred function 134
dfrep function 143
dfret function 145
dfrst function 147
dfspa function 156
dfsrt function 157
dftab function 170
dftld function 160
dftlg function 163
dftrd function 166
dfuky function 167
member_size function 168

A
activating a key list 115, 249
adding

dfadd function 73
DBADD macro 176
extended LRECs 73, 176
LRECs 73, 176

adding (continued)
subLRECs 73, 176
userLRECs 73, 176

algorithm argument
specifying 4

application program
sample 33

assembler 39
C language 48

application programming
overview 3

B
begin transaction 7
BLKSZ macro 330
block header

dfred function 134
DBRED macro 274
reading 134, 274

block type
BLKSZ macro 330
converting 330

Boolean logic
example of using 141, 287
using in key lists 30

C
C language interface

DFCLIB macro 340
calculating

member_size function 168
DBCNT macro 334
set symbol length 334
size of a member 168

checkpointing
dfckp function 83
DBCKP macro 196
open subfiles 83, 196

closing
dfclr function 85
dfcls function 86
DBCLR macro 199
DBCLS macro 200
subfile 86, 200
subfile without a dump 85, 199

commit scopes
benefits 10
checkpoint processing 10
close processing 10
examples 9
internal uses 10
nested 8
programming conventions 8
root 8
suspended 8

© Copyright IBM Corp. 1997, 2001 367

commit transaction 7
conventions for transaction manager (TM) 8
copying

dfcpy function 92
DBCPY macro 206
subfile 92, 206

creating
dfcre function 95
dfidx function 112
dfopn function 125
dfspa function 156
database interface block (DBIFB) 125, 262
DBCRE macro 211
DBIDX macro 243
DBOPN macro 262
DBSPA macro 306
detail file 95, 211
empty subfile 95, 211
index reference 112, 243
pool subfile 95, 211
work space 125, 156, 262, 306

current LREC 77, 186

D
DASD

dfckp function 83
dfcls function 86
dftld function 160
DBCKP macro 196
DBCLS macro 200
DBTLD macro 315
writing a subfile to 160, 315
writing blocks to 83, 86, 196, 200

data level independence (DLI)
dfopn function 129
DBOPN macro 273
specifying 129, 273

data levels 3
database definition (DBDEF) table

dftab function 170
accessing 170, 335
DBTAB macro 335
DFUEX macro 358
user-specific entries 358

database interface block (DBIFB)
dfifb function 114
dfopn function 125
checking 114, 246, 350
creating 125, 262
DBIFB macro 246
DBOPN macro 262
DFIFB macro 350

DBADD macro 176
DBADR macro 190
DBCKP macro 196
DBCLR macro 199
DBCLS macro 200
DBCNT macro 334
DBCPY macro 206
DBCRE macro 211

DBDEL macro 215
DBDIX macro 229
DBDSP macro 232
DBEMPTY parameter 14
DBEOF parameter 14
DBERROR parameter 14
DBFOUND parameter 14
DBFRL macro 242
DBIDX macro 243
DBIDX parameter 14
DBIFB macro 246
DBKEY macro 249
DBMOD macro 251
DBMRG macro 256
DBOPN macro 262
DBRED macro 274
DBREP macro 288
DBRET macro 292
DBRST macro 295
DBSETK macro 300
DBSPA macro 306
DBSRT macro 309
DBTAB macro 335
DBTLD macro 315
DBTLG macro 320
DBTRD macro 325
DBUKY macro 327
default keys

example of reading with 141, 286
specifying LRECs with 19

default-key key list
df_setkey_dbdef function 150
DBSETK macro 300
definition of 26
example of using 141, 286
setting up a key 150, 300
using 31

deleting
dfdel function 97
dfdix function 105
DBDEL macro 215
DBDIX macro 229
extended LRECs 97, 215
index reference 105, 229
LRECs 97, 215
subLRECs 97, 215

detac mode
dfckp function 83
dfcls function 86
dfopn function 127
committing updates to DASD 83, 86, 196, 200
DBCKP macro 196
DBCLS macro 200
DBOPN macro 266
discarding updates 86, 200
opening a subfile in 127, 266
placing a subfile in 83, 196
taking a subfile out of 83, 196

detail file
dfcre function 95
creating 95, 211

368 TPFDF R1 Programming Concepts and Reference

detail file (continued)
DBCRE macro 211

DFCAS macro 338
DFCLIB macro 340
DFDDA macro 343
DFDLAY macro 344
DFGDS macro 345
DFGETC macro 346
DFGLVL macro 348
DFGPNL macro 349
DFIFB macro 350
DFLNK macro 352
DFSSU macro 354
DFTDC macro 357
DFUEX macro 358
diagrams for macro models xii
dialogue control facility 357
displaying

dfdsp function 107
DBDSP macro 232
LRECs 107, 232

E
entry control block (ECB)

dffrl function 111
DBFRL macro 242
free a level 111, 242

errors
checking

using C functions 14
using equates 14
using structured programming macros

(SPMs) 14
checking SW00RT1 13
checking SW00RT2 13
checking SW00RTN 13
identifying 13
type of 13

extended LREC
dfadd function 73
dfdel function 97
dfred function 134
dfrep function 143
adding 73, 176
DBADD macro 176
DBDEL macro 215
DBRED macro 274
DBREP macro 288
deleting 97, 215
reading 134, 274
replacing 143, 288
subLREC

adding 73, 176
deleting 97, 215
how TPFDF product adds 4
how TPFDF product numbers 4
replacing 143, 288

userLREC
adding 73, 176
replacing 143, 288

extended LREC (continued)
using 4

F
fast-link segments

DFCAS macro 338
DFLNK macro 352
supporting 338, 352

file address type
determining 359
FILTP macro 359

file organization
rules for 23
specifying with keys 23

FILTP macro 359
finding base address of a SW00SR 114, 246, 350
FMSGS macro 361
free an ECB data level 111, 242
fullfile processing

dfadr function 80
dfdel function 101
dfdsp function 108
dfmod function 118
dfmrg function 121
dfred function 138
dfsrt function 157
dftlg function 164
DBADR macro 190
DBDEL macro 220
DBDSP macro 234
DBMOD macro 253
DBMRG macro 258
DBRED macro 279
DBSRT macro 311
DBTLG macro 322
deleting LRECs 101, 220
displaying LRECs 108, 234
merging LRECs 121, 258
modifying LRECs 118, 253
reading LRECs 138, 279
sorting LRECs 157, 311
specifying range of ordinals 80, 190
writing LRECs to tape 164, 322

G
general C functions

DF_EF function 14
DF_ER function 14
DF_ERBTR function 14
DF_ERCNT function 14
DF_ERDSP function 14
DF_ERLST function 14
DF_ERX function 14
df_nbrkeys function 124
DF_NR function 14
DF_OK function 14
DF_SERRC function 14
df_setkey function 150
DF_TEST function 14

Index 369

general C functions (continued)
dfadd function 73
dfadr function 80
dfckp function 83
dfclr function 85
dfcls function 86
dfcpy function 92
dfcre function 95
dfdel function 97
dfdix function 105
dfdsp function 107
dffrl function 111
dfidx function 112
dfifb function 114
dfkey function 115
dfmod function 117
dfmrg function 121
dfopn function 125
dfopt function 130
dfred function 134
dfrep function 143
dfret function 145
dfrst function 147
dfspa function 156
dfsrt function 157
dftld function 160
dftlg function 163
dftrd function 166
dfuky function 167
member_size function 168
checking for errors with 14
using basic indexing with 5

general data set support
DFGDS macro 345
implementing 345

general macros
DBADD macro 176
DBADR macro 190
DBCKP macro 196
DBCLR macro 199
DBCLS macro 200
DBCPY macro 206
DBCRE macro 211
DBDEL macro 215
DBDIX macro 229
DBDSP macro 232
DBFRL macro 242
DBIDX macro 243
DBIFB macro 246
DBKEY macro 249
DBMOD macro 251
DBMRG macro 256
DBOPN macro 262
DBRED macro 274
DBREP macro 288
DBRET macro 292
DBRST macro 295
DBSETK macro 300
DBSPA macro 306
DBSRT macro 309
DBTLD macro 315

general macros (continued)
DBTLG macro 320
DBTRD macro 325
DBUKY macro 327
DFIFB macro 350
using basic indexing with 5

generating a unique key 167, 327
global modification

df_setkey_mod function 150
dfmod function 117
DBMOD macro 251
DBSETK macro 300
example of using 119, 254
modification key list 26, 31
performing 31, 117, 251

H
HELPA macro 364

I
index reference

dfdix function 105
dfidx function 112
creating 112, 243
DBDIX macro 229
DBIDX macro 243
deleting 105, 229

index support
adding LRECs using 5
reading an LREC using 5
using basic indexing 5
using keys 5

K
key list

df_nbrkeys function 124
df_setkey_bool function 150
df_setkey_dbdef function 150
df_setkey_mod function 150
df_setkey function 150
dfkey function 115
activating 115, 249
DBADD macro 176
DBDEL macro 215
DBKEY macro 249
DBMRG macro 256
DBRED macro 274
DBSETK macro 300
DBSRT macro 309
example of using 27
setting up 26
setting up a key 150, 300
setting up the number of keys 124
specifying LRECs with 19
types 26

default-key 31
modification 31

using 26

370 TPFDF R1 Programming Concepts and Reference

key list (continued)
using Boolean logic in 30

KEYn parameters
DBADD macro 176
DBDEL macro 215
DBDSP macro 232
DBMRG macro 256
DBOPN macro 262
DBRED macro 274
DBSRT macro 309
file organization 23
specifying LRECs with 19

keys
activating 19
Boolean logic 30
default-key key list 31
file organization 23
modification key list 31
partial keys 20
specifying LRECs with 19
using a key list 26
using when opening subfile 20
using with a B+Tree index 21
variable-length fields 22

L
logical record (LREC)

dfadd function 73
dfdel function 97
dfdsp function 107
dfmod function 117
dfmrg function 121
dfred function 134
dfrep function 143
dfret function 145
dfsrt function 157
adding 73, 176
current 77, 186
DBADD macro 176
DBDEL macro 215
DBDSP macro 232
DBMOD macro 251
DBMRG macro 256
DBRED macro 274
DBREP macro 288
DBRET macro 292
DBSRT macro 309
deleting 97, 215
displaying 107, 232
global modification of 31
grouping together 6
indicating a change to 117, 251
merging 121, 256
reading 134, 274

using a B+Tree index 21
using keys 20
using partial keys 20

replacing 143, 288
retaining current address 145, 292
sorting 157, 309

logical record (LREC) (continued)
specifying with keys 19
using unique keys 6
using variable-length key 22

M
macro model diagrams xii
merging

dfmrg function 121
DBMRG function 256
LRECs 121, 256
subfiles 121, 256

models of macro invocations xii
modification key list

df_setkey_mod function 150
DBSETK macro 300
definition of 26
example of using 119, 254
setting up a key 150, 300
using 31

modifying
dfmod function 117
DBMOD macro 251
LRECs 117, 251

N
nested commit scope 8

O
opening

dfopn function 125
DBOPN macro 262
subfile 125, 262

ordinal number
dfadr function 80
DBADR macro 190
specifying range 80, 190

P
pool subfile

dfcre function 95
creating 95, 211
DBCRE macro 211

prime block
dfadr function 80
DBADR macro 190
getting file address of 80, 190

program address
DFGPNL macro 349
getting 349

programming conventions for transaction manager
(TM) 8

R
railroad tracks xii

Index 371

reading
dfred function 134
dftrd function 166
block header 134, 274
DBRED macro 274
DBTRD macro 325
extended LRECs 134, 274
LRECs 134, 274
subfiles from tape 166, 325

replacing
dfrep function 143
DBREP macro 288
extended LRECs 143, 288
LRECs 143, 288
subLRECs 143, 288
userLRECs 143, 288

resource level
DFGLVL macro 348
getting 348

restoring
dfrst function 147
DBRST macro 295
subfile 147, 295

restricted C functions
dftab function 170

restricted macros
BLKSZ macro 330
DBCNT macro 334
DBTAB macro 335
DFCAS macro 338
DFCLIB macro 340
DFDDA macro 343
DFDLAY macro 344
DFGDS macro 345
DFGETC macro 346
DFGLVL macro 348
DFGPNL macro 349
DFLNK macro 352
DFSSU macro 354
DFTDC macro 357
DFUEX macro 358
FILTP macro 359
FMSGS macro 361
HELPA macro 364

resume transaction 7
retaining

dfret function 145
DBRET macro 292
LREC address 145, 292

rollback transaction 7
root commit scope 8
rules for using keys 19

S
sample application program 33

assembler 39
C language 48
solution using basic indexing 33

selection key list
df_nbrkeys function 124

selection key list (continued)
df_setkey function 150
DBSETK macro 300
definition of 26
setting up a key 150, 300

sort/merge key list
df_setkey function 150
dfmrg function 121
dfsrt function 157
DBMRG macro 256
DBSETK macro 300
DBSRT macro 309
definition of 26
setting up a key 150, 300

sorting
dfsrt function 157
DBSRT macro 309
LRECs 157, 309
subfiles 157, 309

structure
member_size function 168
calculating size of member 168

structured programming macros (SPMs)
checking for errors 14

subfile
dfckp function 83
dfclr function 85
dfcls function 86
dfcpy function 92
dfcre function 95
dfdix function 105
dfdsp function 107
dfmrg function 121
dfopn function 125
dfopt function 130
dfrst function 147
dfsrt function 157
dftld function 160
dftlg function 163
dftrd function 166
checkpointing 83, 196
closing 86, 200
closing without a dump 85, 199
copying 92, 206
creating 95, 211
DBCKP macro 196
DBCLR macro 199
DBCLS macro 200
DBCPY macro 206
DBCRE macro 211
DBDIX macro 229
DBDSP macro 232
DBMRG macro 256
DBOPN macro 262
DBRST macro 295
DBSRT macro 309
DBTLD macro 315
DBTLG macro 320
DBTRD macro 325
deleting an index reference to 105, 229
displaying LRECs from 107, 232

372 TPFDF R1 Programming Concepts and Reference

subfile (continued)
identifying 3, 4
merging LRECs in 121, 256
opening 125, 262
opening in detac mode 127, 266
placing in detac mode 83, 196
reading from tape 166, 325
restoring 147, 295
setting options after opening 130
sorting LRECs in 157, 309
writing to DASD 160, 315
writing to tape 163, 320

suspend transaction 7
suspended commit scope 8
SW00RT1 13
SW00RT2 13
SW00RTN 13
SW00SR

dfifb function 114
DBIFB macro 246
DFIFB macro 350
finding base address 114, 246, 350

syntax diagrams xii

T
tape

dftlg function 163
dftrd function 166
DBTLG macro 320
DBTRD macro 325
reading a subfile from 166, 325
writing a file or subfile to 163, 320

TPFDF Distributed Data Access (TPFDF/DDA)
DFDDA macro 343
implementing 343

transaction manager (TM)
ALCS support 8
commit scopes 8

benefits 10
checkpoint processing 10
close processing 10
examples 9
internal uses 10
nested 8
programming conventions 8
root 8
suspended 8

overview 7
transactions 7

begin 7
commit 7
resume 7
rollback 7
suspend 7

U
unique key

dfuky function 167
DBUKY macro 327

unique key (continued)
generating 167, 327
using 6

user exit point 358

W
work space

dfopn function 125
dfspa function 156
creating 125, 156, 262, 306
DBOPN macro 262
DBSPA macro 306

working storage block
DFGETC macro 346
getting 346

writing
dfckp function 83
dfcls function 86
dftld function 160
dftlg function 163
blocks to DASD 83, 86, 196, 200
DBCKP macro 196
DBCLS macro 200
DBTLD macro 315
DBTLG macro 320
files to tape 163, 320
subfiles to DASD 160, 315
subfiles to tape 163, 320

Index 373

374 TPFDF R1 Programming Concepts and Reference

����

File Number: S370/30XX-40
Program Number: 5706-196

Printed in U.S.A.

SH31-0179-09

	Contents
	Figures
	Tables
	About This Book
	Before You Begin
	Who Should Read This Book
	How This Book Is Organized
	Conventions Used in the TPFDF Library
	How to Read the Syntax Diagrams
	Related Information
	IBM TPF Database Facility (TPFDF) Books
	IBM Transaction Processing Facility (TPF) 4.1 Books
	IBM Airline Control System (ALCS) Books
	Online Information

	How to Send Your Comments

	Part 1. Application Programming
	Application Programming Overview
	Files and Subfiles
	Data Level Usage
	Using Extended Logical Records
	Specifying Algorithm Arguments with TPFDF Macros and Functions
	Using Basic Indexing with Macros and Functions
	Using Keys in a Detail File
	Adding LRECs to Detail Files Using Basic Indexing

	Grouping LRECs Together Using the Unique Key Facility
	Using Unique Keys

	Transaction Manager
	ALCS Support
	Commit Scopes
	Root Commit Scopes
	Nested Commit Scopes
	Suspended Commit Scopes

	Programming Conventions
	Internal Use of Commit Scopes
	Checkpoint and Close Processing
	Benefits of Using Commit Scopes

	Identifying Return Indicators and Errors
	Checking for Errors in Assembler Using Equates
	Checking for Errors Using Structured Programming Macros (SPMs)
	Checking for Errors Using C Functions
	Format
	Normal Return
	Examples

	Specifying Logical Records (LRECs) Using Keys
	Overview of Keys
	Differences between Key Lists and Keyn Parameters

	Using Keys When Reading LRECs
	Reading LRECs Using Partial Keys
	Reading LRECs Using a B+Tree Index

	Using Variable-Length Fields as Keys
	Specifying File Organization with Keyn Parameters
	Keyn Parameters Examples

	Setting Up and Using a Key List
	Setting Up a Key List
	Using a Key List
	Processing Using Keyn Parameters
	Processing Using a Key List

	Using Boolean Logic in Key Lists
	Using Default-Key Key Lists
	Using Modification Key Lists

	Sample Applications
	Problem and Solution
	Member File Definitions DSECT
	Assembler Application Program Example
	Processing the Member File Using TPFDF Macros
	File Maintenance Program
	Departure Control Interface Program
	Monthly Maintenance Program

	C Language Application Program Example
	Processing the Member File Using TPFDF C Functions
	File Maintenance Program
	Departure Control Interface Program
	Monthly Maintenance Program

	Part 2. C Language Functions
	TPFDF General-Use C Language Functions: Reference
	dfadd–Add a Logical Record to a Subfile
	dfadr–Provide the File Address of a Prime Block
	dfckp–Checkpoint a Subfile
	dfclr–Allow ECB Exit with Open Files
	dfcls–Close a Subfile
	dfcpy–Copy a Subfile
	dfcre–Create a Subfile
	dfdel–Delete One or More Logical Records
	dfdix–Delete Index References to a Subfile
	dfdsp–Display Logical Records from a Subfile
	dffrl–Ensure an ECB Data Level Is Free
	dfidx–Create an Index Reference
	dfifb–Check a SW00SR Slot
	dfkey–Activate a Key List
	dfmod–Perform or Indicate Logical Record Modifications
	dfmrg–Merge Logical Records from Two Subfiles
	df_nbrkeys–Setting Up the Number of Keys
	dfopn–Open a Subfile
	dfopt–Set Optional Information
	dfred–Read a Logical Record
	dfrep–Replace a Logical Record with Another Logical Record
	dfret–Retain a Logical Record Position
	dfrst–Restore a Subfile
	df_setkey–Setting Up a Key in a Key List
	dfspa–Create Work Space
	dfsrt–Sort a Subfile
	dftld–Write a Subfile from Main Storage to DASD
	dftlg–Write a File or Subfile to Tape
	dftrd–Read a Subfile from an Input Tape to Main Storage
	dfuky–Generate a Unique Key for Use in Logical Records
	member_size–Calculating the Size of a Structure Member

	TPFDF Restricted C Language Functions: Reference
	dftab–Access Database Definition Tables

	Part 3. Assembler Macros
	TPFDF General-Use Assembler Macros: Reference
	DBADD–Add a Logical Record to a Subfile
	DBADR–Provide the File Address of a Prime Block
	DBCKP–Checkpoint a Subfile
	DBCLR–Allow ECB Exit with Open Files
	DBCLS–Close a Subfile
	DBCPY–Copy a Subfile
	DBCRE–Create a Subfile
	DBDEL–Delete One or More Logical Records
	DBDIX–Delete Index References to a Subfile
	DBDSP–Display Logical Records from a Subfile
	DBFRL–Ensure an ECB Data Level Is Free
	DBIDX–Create an Index Reference
	DBIFB–Check a SW00SR Slot
	DBKEY–Activate a Key List
	DBMOD–Perform or Indicate Logical Record Modifications
	DBMRG–Merge Logical Records from Two Subfiles
	DBOPN–Open a Subfile
	DBRED–Read a Logical Record
	DBREP–Replace a Logical Record with Another Logical Record
	DBRET–Retain a Logical Record Position
	DBRST–Restore a Subfile
	DBSETK–Setting Up a Key in a Key List
	DBSPA–Create Work Space
	DBSRT–Sort a Subfile
	DBTLD–Write a Subfile from Main Storage to DASD
	DBTLG–Write a File or Subfile to Tape
	DBTRD–Read a Subfile from an Input Tape to Main Storage
	DBUKY–Generate a Unique Key for Use in Logical Records

	TPFDF Restricted Assembler Macros: Reference
	BLKSZ–Convert a Block Type to a Block Size
	DBCNT–Calculate the Length of an Assembler Symbol
	DBTAB–Access Database Definition (DBDEF) Tables
	DFCAS–TPFDF Case Setup in Fast-link Segments
	DFCLIB–C Language Interface
	DFDDA–Distributed Data Access Support
	DFDLAY–Delay Processing Conditionally
	DFGDS–General Data Set Support User Exit
	DFGETC–Get Working Storage Block
	DFGLVL–Get Resource Level
	DFGPNL–Get Calling Program Address
	DFIFB–Check a SW00SR Slot
	DFLNK–TPFDF Fast Linkage
	DFSSU–Handling DBDEF Subtables
	DFTDC–Dialogue Control Facility Support User Exit
	DFUEX–Define TPFDF User Exit Point
	FILTP–Determine File Address Type
	FMSGS–Set Up Output Messages
	HELPA–Help Message Text

	Index

