<|lI!

TPF Database Facility

Database Administration

Release 1

SH31-0175-09

<|lI!

TPF Database Facility

Database Administration

Release 1

SH31-0175-09

Note!
FBefore using this information and the product it supports, be sure to read the general information under “Notices”.

Tenth Edition (October 2002)
This is a major revision of, and obsoletes, SH31-0175-08.

This edition applies to Version 1 Release 1 Modification Level 3 of IBM Transaction Processing Facility Database
Facility, program number 5706-196, and to all subsequent releases and modifications until otherwise indicated in new
editions or technical newsletters. Make sure you are using the correct edition for the level of the product.

IBM welcomes your comments. Address your comments to:

IBM Corporation

TPF Systems Information Development
Mail Station P923

2455 South Road

Poughkeepsie, NY 12601-5400

USA

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures. iX
Tables . . Xi
About This Book . Xiii
Before You Begin . . Xiil
Who Should Read This Book . Xiii
How This Book Is Organized. . Xiil
Conventions Used in the TPFDF L|brary . Xiii
How to Read the Syntax Diagrams . Xiv
Related Information .) . XVii
IBM TPF Database FaC|I|ty (TPFDF) Books) . XVii
IBM Transaction Processing Facility (TPF) Books . . XVii
Online Information S G . XVii
How to Send Your Comments . . XVii
Part 1. Tutorial for Planning and Designing a Database . .1
Organizing a Database . .3
Normalization . .3
Primary Key .4
Dependency .4
Business Application .4
First Normal Form . .5
Second Normal Form . .5
Removing Independent Attrlbutes .5
Third Normal Form . . 6
Resulting Tables . . 8
Duplicating Data across Tables .9
Optimizing the Database Design. 11
Duplicating Data to Improve Performance . .11
Assessing the Normalized Tables . .11
Checking Seat Availability . .12
Booking a Passenger on a Flight . . .14
Displaying Passengers Booked on a Flight. .14
Displaying All Flights Booked for a Passenger . 15
Displaying an Aircraft Configuration . . 16
Canceling Passenger Bookings . .17
Improving Access to the Data . . 18
Displaying Passenger Information by Name or Number . . 18
Accessing Flight Information . .19
Accessing Passengers from the Seat Table . . 20
Accessing Aircraft Configurations from the Flight Table . .21
Final Database Design Structure . 22
Mapping Tables to TPFDF Files . . 25
Before You Begin . .o . 25
Data Requirements . 25
Data Field Lengths . 25
Passenger LRECs .27
Calculating the Number of Subflles Needed . 27
Block Size . . 28

© Copyright IBM Corp. 1997, 2001

iV TPFDF R1 Database Administration

Chaining . . 28
Overflow Blocks . 29
Mapping the Passenger Name F|Ie . . 29
Distributing the Passenger Name LRECs . . 30
File Structure .31
Mapping the Passenger Number F|Ie .31
Distributing the Passenger Number LRECs . 32
Ensuring a Good Distribution. . 32
File Structure . 32
Mapping the Aircraft File . . 33
Distributing the Aircraft LRECs . . 33
Allowing for Expansion . . 33
File Structure . 33
Mapping the Flight File . . 34
Distributing the Flight LRECs. . 34
Allowing for Expansion . . 35
File Structure . 35
Mapping the Seat File . . 35
Distributing the Seat File LRECs . 36
Mapping the Passenger File . . 36
Spreading Data over Several LRECs . 37
Coding the DSECT and DBDEF Macros . . 39
DSECT and DBDEF for the Passenger Name F|Ie . 40
DSECT. . 40
DBDEF. . . 42
DSECT and DBDEF for the Passenger Number Frle . . 44
DSECT. C e e e . 44
DBDEF. . 46
DSECT and DBDEF for the Flrght FrIe . 48
DSECT. e . 48
DBDEF. . 51
DSECT and DBDEF for the Seat F|Ie . 52
DSECT. . 52
DBDEF. . 55
DSECT and DBDEF for the Passenger F|Ie . 56
DSECT. e . 56
DBDEF. . 59
DSECT and DBDEF for the Arrcraft Frle . 62
DSECT. . 62
DBDEF. . 64
Part 2. Creating the DSECT and DBDEF Macros . . 67
Creating a DSECT Macro Definition . 69
Sample DSECT Macros Supplied with the TPFDF Product . 69
File Names . Coe e . 69
Modifying the Sample DSECT Macros . . 70
Modifying the Beginning DSECT Macro Statements .71
Assigning Values to Global Set Symbols .71
File Description. . 82
Block Header . 83
Defining the LREC Srze and LREC ID Frelds . 83
Defining Different LREC IDs in the Same File . . 84
DSECT Instructions for Defining User Fields in LRECs . . 85
Algorithm DSECT Statements . . 85

Ending DSECT Statements86

Creating C Structures for Files with Exrstrng DSECT Defrnrtrons86
Creating a DBDEF Macro Definition89
DBDEF Macro Parameter Syntax89
Global DSECT Override Parameters90
Default Key Parameters .9
Basic Index Parameters .98
Data Extraction Parameters. . . P i 2
Parameters for TPFDF Recoup and TPFDF CRUISE Processrng for
Customer-Format Files.12
TPFDF Recoup User Exits15
B*Tree File Parameters .120
Miscellaneous Parameters121
Part 3. Examplesand Concepts129
Database Optimization Examples.131
Reducing I/O Processing. .13
Reducing File Accesses .. 132
Combining Files 1 ¥4
Using Algorithms instead of Indexmg RS
Indexing .. .13
BasicIndexing .135
Simple Indexing . . . e e136
Multiple Indexing to a Srngle Detarl Subfrle e e e38
Multiple-Level Indexing . . . A |
Single Indexing to Multiple Detail Frles e ¥
Block Indexing . . C e e e46
Implementing Block Index Support e 4
Block Index File Characteristics 148
B*Tree Indexing . . . P ¢
B*Tree Index File Node Blocks P
B*™Tree Data File Data Blocks149
B*Tree Data File Characteristics150
Additional Considerations When Using B* Tree Indexrng150
Structure of a Data File That Uses B*Tree Indexing 152
Defining the DSECT and DBDEF for a Data File That Uses B Tree Indexmg 152
Defining the DSECT and DBDEF for a B*Tree Index File. 153
Multiple ECB Chain Chasing154
Partitioning and Interleaving.157
Partitions . . . T Y 4
Advantages of Partrtroned Flles e Y 4
Example of Partitioning . . . e158
Coding the DSECT for Partrtroned Frles . e158
Adding a New Partiton .1589
Interleaves . . . Y £ 51°)
Advantages of Interleaved Frles S e59
Coding the DSECT Macro for Interleaved Flles59
Adding Blocks to an Interleave160
Database Design Hintsand Tips16l
File Integrity .162
Problem. .. .162

Contents V

Solution
DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Selecting an Optimum Block Slze
Problem .
Solution . .
DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Reducing the Number of Overflow Blocks
Problem .
Solution
DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Setting Different Sizes for Overﬂow Blocks :

Problem .

Solution . .

DSECT Set Symbols .

DBDEF Statements.

Application Coding .
Packing Files Regularly .

Problem . .

Solution . .

DSECT Set Symbols .

DBDEF Statements.

Application Coding . .
Reducing Overflow by Frequent Packlng

Problem .

Solution

DSECT Set Symbols .

DBDEF Statements.

Application Coding .

Packing Subfiles after Replacmg an LREC .

Problem .

Solution . .
DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Using New Pool Blocks for Overflow Blocks.

Problem .

Solution

DSECT Set Symbols .

DBDEF Statements.

Application Coding . .
Specifying a Lower Packlng L|m|t

Problem . e

Solution . .

DSECT Set Symbols .

DBDEF Statements.

Application Coding . .
Logging Data at Optimum Intervals .

Problem .

Solution . .

DSECT Set Symbols .

Vi TPFDF R1 Database Administration

. 162
. 162
. 162
. 162
. 163
. 163
. 163
. 163
. 164
. 164
. 165
. 165
. 165
. 165
. 165
. 165
. 166
. 166
. 166
. 166
. 166
. 166
. 167
. 167
. 167
. 167
. 167
. 167
. 168
. 168
. 168
. 168
. 168
. 168
. 169
. 169
. 169
. 169
. 169
. 169
. 170
. 170
. 170
. 170
. 170
. 170
. 171
. 171
. 171
. 171
. 171
. 171
. 172
. 172
. 172
. 172

DBDEF Statements.
Application Coding .
Maintaining a Log File.
Problem .
Solution . .
DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Balancing Updating Speed agalnst Accessmg Speed

Problem .

Solution . .

DSECT Set Symbols .

DBDEF Statements.

Application Coding . .

Getting the Right Amount of Worklng Storage .
Problem .
Solution . .

DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Specifying a Display Order for LRECs
Problem . e e
Solution . .

DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Linking Logically Related Data
Problem . S
Solution . .

DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Managing a First-In-First-Out (FIFO) F|Ie
Problem . e .
Solution

DSECT Set Symbols .
DBDEF Statements.
Application Coding .

Using Customer-Format Files

NAB-Type Files with Fixed-Length Items :
NAB-Type Files with Variable-Length Items .
ADD/DEL-Type Files with Fixed-Length Items .

ADD/DEL-Type Files with Variable-Length Items .

CNT Files Using the CNT Parameter
CNT Files Using the CPT Parameter
Files Containing Fixed-Position References .

Index .

. 172
. 172
. 173
. 173
. 173
. 173
. 173
. 173
. 174
. 174
. 174
. 174
. 174
. 174
. 175
. 175
. 175
. 175
. 176
. 176
. 177
.77
.77
. 177
. 177
. 177
. 178
. 178
. 178
. 178
. 178
. 178
. 179
. 179
. 179
. 179
. 179
. 179

. 181
. 182
. 183
. 184
. 185
. 186
. 187
. 188

. 191

Contents Vii

Viii TPFDF R1 Database Administration

Figures

©CoNoO WD

Four Normalized Tables .
Read Process for Checking Seat Avarlabrlrty Before Optlmrzatron .
Altering the Tables to Improve Availability Checking .

Read Process for Displaying Passengers Booked on a Fllght
Duplicating Names to Display Passengers Booked on a Flight .
Duplicating Flights and Dates to Improve Flight Display

Read Process for Canceling Passenger Bookings.

Four Revised Tables

Adding Pointer Tables to Improve Access to the Passenger Table
Adding a Pointer to Improve Access between the Flight and Seat Tables .
Adding a Pointer to Improve Access between the Seat and Passenger Tables
Adding a Pointer to Improve Access between the Flight and Aircraft Tables
Final Tables Showing the Database Structure

Number of LRECs Required for Each File

Spreading Data over Several LRECs

TPFDF Files: DSECT Names, Algorithms, and Paths

DSECT to Define the Passenger Name File .

Position of IR20DF in the File Structure

DSECT to Define the Passenger Number File .

Position of IR21DF in the File Structure

DSECT to Define the Flight File

Position of IR22DF in the File Structure

DSECT to Define the Seat File.

Position of IR23DF in the File Structure

DSECT to Define the Passenger File .

Index Key Definitions for Path 0, IR20DF to IR24DF

Index Key Definitions for Path 1, IR21DF to IR24DF .

Index Key Definitions for Path 2, IR23DF to IR24DF .

Position of IR24DF in the File Structure

DSECT to Define the Aircraft File.

Position of IR25DF in the File Structure

Syntax of a DSECT Macro File Name .

Instructions Always Required at the Start of a DSECT Macro Deflnmon
Instructions to Assign Values to Global Set Symbols .

Instructions Always Required after Setting the Global Symbols in a DSECT Macro.

Instructions to Define the File Header in a DSECT Macro .
Instructions to Define the LREC Size and LREC ID Fields.
Defining Two Different LREC Types in a DSECT .

Defining User Fields in a DSECT .

DSECT Code to Define the Algorithm String Srze .
Instructions Always Required at the End of a DSECT Macro
C Structure for a File with Existing DSECT Definitions .
Read-Only Default Keys in the DBDEF.

QUE=NO Parameter .

Using the CDR Parameter to Overnde PIT Parameter Value
Index File Pointing to Detail Subfiles .

Subfile Data Moved to Index File

Index File Pointing to Different Subfiles .

Index File Pointing to Combined Subfiles

Subfiles Accessed from an Index File .

Subfiles Accessed Using Algorithm #TPFDBO05

File Description for Simple Indexing .

File Description for Multiple Indexing to a Slngle Detall Subflle

© Copyright IBM Corp. 1997, 2001

.11
. 13
. 13
.14
. 15
. 16
.17
. 18
.19
. 20
.21
.22
. 23
.27
. 37
. 39
. 40
. 43
. 44
.47
. 48
. 51
. 52
. 55
. 56
. 60
. 60
. 60
. 60
. 62
. 65
. 69
.71
.71
. 83
. 83
. 84
. 84
. 85
. 85
. 86
. 87
.97
. 105
. 118
. 131
. 132
. 132
. 133
. 133
. 134
. 136
. 138

54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.

Algorithm String for the Update Path . .

Reading the Detail File through Index File GRYlDF

Reading the Detail File through Index File GRY2DF

File Description for Multiple-Level Indexing .

Addressing Argument and Index Key for the Top- Level Index F|Ie

Addressing Argument and Index Key for the Intermediate-Level Index File .

Separate Entries for One Passenger Name

One Index File Pointing to Two Detall Files.

Index TLREC.

Block Indexing .

Sample B Tree File

B*Tree Data File DSECT and DBDEF

B*Tree Index File DSECT and DBDEF

DBDEF for Multiple ECB Chain Chasing.

Partitioning: &SWO00xxx: PTN, BOR, EOR, and EO#
Interleaving: &SWO0O0xxx: ILV, BOR, EOR, and EO#.
NAB-Type File with Fixed-Length Iltems (CBV=1)
NAB-Type File with Variable-Length Items (CBV=4).
ADD/DEL-Type File with Fixed-Length Items (CBV=1).
ADD/DEL-Type File with Variable-Length Items (CBV=4).
CNT-Type File (CBV=2): Using the CNT Parameter.
CNT-Type File (CBV=2): Using the CPT Parameter.

File Containing Only Fixed-Position References (CBV=3)

X TPFDF R1 Database Administration

. 139
. 139
. 139
. 141
. 142
. 142
. 144
. 144
. 146
. 147
. 152
. 153
. 154
. 155
. 157
. 159
. 182
. 183
. 184
. 185
. 186
. 187
. 188

Tables

©CoNO WD

Flight Table (Nonnormalized Form).
Flight Table (Nonnormalized Form).
Passenger Table .

Flight Table (Second Normal Form)
Aircraft Table. .

Flight Table (Second Normal Form)
Seat Table. .
Flight Table (Third Normal Form)

Flight Table (Third Normal Form)
Passenger Table .o
Aircraft Table.

Seat Table. .

Seat Table (Revised)

Seat Table (Updated) .

Passenger Table (Revised) .

Aircraft Table (Revised)

Passenger Name Table

Passenger Number Table.

Comparative Terms for Tables and Frles
Data Requirements .

Data Field Lengths .

TPF Block Sizes .

ALCS Block Sizes

LREC Fields for the Passenger Name Flle
Algorithms Using Alphabetic Characters

LREC Fields for the Passenger Number File.

Manipulating the Algorithm String .
LREC Fields for the Aircraft File
LREC Fields for the Flight File .
LREC Fields for the Seat File .
LREC Fields for the Passenger File .
Passenger File Coe
Sample DSECT Macros .
Algorithms .

Using CDR to Overrlde the CNT PNB NAB PIT Values at Run Tlme

Algorithm Groups for Overriding .
Allocation in Partitioned File

© Copyright IBM Corp. 1997, 2001

OO0 NN~NOO 01D

Xi

Xil TPFDF R1 Database Administration

About This Book

This book will help you:

* Plan and design a database

* Define DSECT macros

* Define DBDEF macros

* Know how DSECT and DBDEF macro statements affect the way TPFDF macros,
functions, and utilities work.

In this book, abbreviations are often used instead of spelled-out terms. Every term
is spelled out at first mention followed by the all-caps abbreviation enclosed in
parentheses; for example, structured programming macro (SPM). Abbreviations are
defined again at various intervals throughout the book. In addition, the majority of
abbreviations and their definitions are listed in the master glossary in

Before You Begin

Before using this book, see [TPFDF General Information| for an overall
understanding of the TPFDF product.

Who Should Read This Book

This book is intended for database administrators, application programmers, and
system programmers who are currently working with Transaction Processing Facility
(TPF) Version 4 Release 1 (or a subsequent release), or Airline Control System
Version 2 (ALCS V2) systems.

How This Book Is Organized

The body of this book is divided into three parts. The first part is a tutorial for
planning and designing a database. The second part gives the parameter
descriptions to code the DSECT and DBDEF macros. The third part gives examples
and more detailed information about the use of the DSECT and DBDEF macros.

Conventions Used in the TPFDF Library

The TPFDF library uses the following conventions:

Typography Examples of Usage

italic Used for important words and phrases. For example:
A database is a collection of data.

Used to represent variable information. For example:

Enter ZUDFC DISPLAY ID-fileid, where fileid is the file identifier (ID) of the file for which
you want statistics.

bold Used to represent keywords. For example:
Enter ZUDFC HELP to obtain help information for the ZUDFC command.

© Copyright IBM Corp. 1997, 2001 Xiil

Typography Examples of Usage

monospaced Used for messages and information that displays on a screen. For example:

PROCESSING COMPLETED

Used for C language functions. For example:

dfcls

Used for examples. For example:

ZUDFC DISPLAY ID-J5

bold italic Used for emphasis. For example:

You must type this command exactly as shown.

CAPital LETters Used to indicate valid abbreviations for keywords. For example:

KEYWord=option

How to Read the Syntax Diagrams

This section describes how to read the syntax diagrams (informally called railroad
tracks) used in this book.

Read the diagrams from left-to-right, top-to-bottom, following the main path line.
Each diagram begins on the left with double arrowheads and ends on the right

with 2 arrowheads facing each other.

>>—] Syntax Diagram i >

If a diagram is longer than one line, the first line ends with a single arrowhead
and the second line begins with a single arrowhead.

»—| The first 1ine is long and extends the width of the diagram |—>

>—| Second Line i >«

* Aword in all uppercase is a parameter that you must spell exactly as shown.

»>—PARAMETER ><

If you can abbreviate a parameter, the optional part of the parameter is shown in
lowercase. (You must type the text that is shown in uppercase. You can type
none, one, or more of the letters that are shown in lowercase.)

Note: Some TPF commands are case-sensitive and contain parameters that
must be entered exactly as shown. This information is noted in the
description of the appropriate commands.

XV TPFDF R1 Database Administration

»>—PARAMeter

A\
A

A word in all lowercase italics is a variable. Where you see a variable in the
syntax, you must replace it with one of its allowable names or values, as defined
in the text.

»»—variable > <

Required parameters and variables are shown on the main path line. You must
code required parameters and variables.

»>—REQUIRED_PARAMETER—required_variable

\4
A

If there is more than one mutually exclusive required parameter or variable to
choose from, they are stacked vertically.

v
A

REQUIRED_PARAMETER_1
REQUIRED_PARAMETER_2
required_variable a
required_variable_b

Optional parameters and variables are shown below the main path line. You can
choose not to code optional parameters and variables.

[N
»p

|—OPTIONAL_PARAMETER—opt ional variabl e—|

If there is more than one mutually exclusive optional parameter or variable to
choose from, they are stacked vertically below the main path line.

OPTIONAL_PARAMETER 1
OPTIONAL_PARAMETER 2
ptional_variable a
ptional_variable_b

An arrow returning to the left above a parameter or variable on the main path line
means that the parameter or variable can be repeated. The comma (,) means
that each parameter or variable must be separated from the next parameter or
variable by a comma.

About This Book XV

XVi

B B

»»—Y REPEATABLE_PARAMETER———repeatable variable >

* An arrow returning to the left above a group of parameters or variables means
that more than one can be selected, or a single one can be repeated.

Y —REPEATABLE_PARAMETER 1 ><
EREPEATABLE_PARAMETER_Z—

repeatable_variable

» If a diagram shows a blank space, you must code the blank space as part of the
syntax. In the following example, you must code PARAMETER variable.

»»>—PARAMETER— —variable >«

» If a diagram shows a character that is not alphanumeric (such as commas,
parentheses, periods, and equal signs), you must code the character as part of
the syntax. In the following example, you must code PARAMETER=(begin.end).

»»—PARAMETER= (begin.end) ><

» Default parameters and values are shown above the main path line. The TPF
system uses the default if you omit the parameter or value entirely.

DEFAULT 0
- I I o

|—PARAMETER—| variable—

* References to syntax notes are shown as numbers enclosed in parentheses
above the line. Do not code the parentheses or the number.

TPFDF R1 Database Administration

(1)
»»—PARAMETER >

Notes:

1 An example of a syntax note.

* Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in
mixed case and are shown in the diagram and in the heading of the fragment.
The fragment is placed below the main diagram.

A\
A

»—-I Reference to Syntax Fragment i

Syntax Fragment:

|—IST_PARAMETER ,2ND_PARAMETER, 3RD_PARAMETER I

Related Information

A list of related information follows. For information on how to order or access any
of this information, call your IBM representative.

IBM TPF Database Facility (TPFDF) Books

TPFDF General Information, GH31-0177

« [TPFDF Installation and Customization] GH31-0178

« [TPFDF Programming Concepts and Reference] SH31-0179

IBM Transaction Processing Facility (TPF) Books
+ [TPF System Generation|, SH31-0171.

Online Information
+ [TPFDF Commands|
+ [TPFDF Glossary|
+ [TPFDF Messages (System Error, Online, Offline)|

» |TPEDF Utilities

How to Send Your Comments

Your feedback is important in helping to provide the most accurate and highest
quality information. If you have any comments about this book or any other TPF
information, use one of the methods that follow. Make sure you include the title and
number of the book, the version of your product and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

About This Book XVili

» If you prefer to send your comments electronically, do either of the following:
— Go to |http://www.ibm.com/tpf/pubs/tpfpubs.htm|

There you will find a link to a feedback page where you can enter and submit
comments.

— Send your comments by e-mail to tpfqa@us.ibm.com
» If you prefer to send your comments by mail, address your comments to:

IBM Corporation

TPF Systems Information Development
Mail Station P923

2455 South Road

Poughkeepsie, NY 12601-5400

USA

* If you prefer to send your comments by FAX, use this number;
— United States and Canada: 1 + 845 + 432 + 9788
— Other countries: (international code) + 845 + 432 +9788

XViil TPFDF R1 Database Administration

http://www.ibm.com/tpf/pubs/tpfpubs.htm

Part 1. Tutorial for Planning and Designing a Database

© Copyright IBM Corp. 1997, 2001

2 TPFDF R1 Database Administration

Organizing a Database

The following describes the process of data normalization. Normalization is a
method of logical data organization that minimizes data redundancy and maximizes
data independence.

Data normalization is commonly used in the design of relational databases.
Although a TPFDF database is hierarchical, it can still benefit from data
normalization in the first stage of its design. In later stages, you will need to move
away from rigid normalization to achieve the performance standards necessary for a
high-volume transaction processing system. These stages are described in
[Optimizing the Database Design| and [Mapping Tables to TPFDF Files]

Normalization reduces the data to a minimal form, providing a clearer path for
subsequent stages in the design process. The normalization process is always
preceded by an analysis of the data to be stored. For now, it is assumed that you
have already determined the following:

* The entities for which data will be stored
* The attributes (data fields) that will be stored for each entity.

Note: The mapping of tables to physical files is discussed in [‘Mapping Tables to|
[TPFDF Files” on page 25|

In the following, you can assume that each table will map to a physical TPFDF file,
and each row in a table to a TPFDF logical record (LREC).

TPFDF databases have the following characteristics:
e Many users

* Alarge number of files

» Different means of accessing files

* A high transaction rate.

Consider these characteristics as you work through the design of your TPFDF
database.

Normalization

The purpose of normalization is to create tables (also known as relations) for all the
entities on which the system holds data. Through the process of normalization, the
structure of a table is progressively refined through first, second, and finally third
normal form. The following guidelines may be of some help as you develop your
tables:

First normal form
Every attribute in the table must have only one value for each row. Each
row must be independent of all the others.

Second normal form
Every attribute in the table must be either directly or indirectly dependent on
the primary key.

Third normal form
Every attribute in the table must be directly dependent on the primary key.
There must be no unnecessary duplication of data in the table.

Note: The terms primary key and dependency are important in data normalization.

© Copyright IBM Corp. 1997, 2001 3

Primary Key

Dependency

In the context of data normalization, the purpose of the primary key is to identify a
unique row in a table. The value of the primary key is always unique.

Each table can have only one primary key, though the primary key itself may be
made from more than one attribute.

Unless otherwise stated, the attributes making up the primary key are shown in bold
type in the tables.

Note: The primary key that identifies a table in a database is not the same as the
TPFDF LREC ID (also known as a primary key).

The concept of the primary key is explained in more detail with the example tables
provided later in this information.

Dependency refers to the relationship of an attribute with the primary key of a table.

To say that an attribute is dependent on the primary key means that, given a
particular value for the primary key, there is only one corresponding value for that
attribute.

An attribute may be either directly or indirectly dependent on the primary key.

A directly dependent attribute depends on the value of the primary key itself. An
indirectly dependent attribute depends on the value of another attribute, which is
itself dependent on the primary key. This indirect dependency is sometimes called
transitive dependency.

The concept of dependency is further explained with the example tables provided
later in this information. See especially ['Second Normal Form” on page

Business Application

Assume that you want to keep passenger and flight information on the database.

To do this, you could have a single table containing rows holding all the necessary
information resulting from your data analysis. A table of this kind is shown in

Table 1. Flight Table (Nonnormalized Form)

Date |Flight Start Destination | Aircraft Seat Seat Passenger |Passenger |Passenger |Passenger
number type number |class number name address facts
Dal Fl1 Stl Del Atl Sel Cl2 Pnl Nal Ad1l Ft1
Se2 Cl2 Pn2 Na2 Ad2 Ft2
Se3 Cl2 Pn3 Na3 Ad3
Se4 CI3 Pn4 Nad Ad4
Dal Fl2 St2 De2 Atl Se5 Cl2 Pn3 Na3 Ad3

This table is not in normalized form and has several undesirable features. For
example:

4 TPFDF R1 Database Administration

* The size of each row is not fixed. As the number of booked seats increases, the
number of attribute values in the row increases. The indeterminate size of this
row would create difficulties if the table were mapped to a physical file.

* Some of the data (for instance, the name and address of customer Na3) is
repeated unnecessarily. The same data is likely to be repeated in other tables as
well. In practice, duplicated data is often inconsistent. For example, a customer’s
name and address could be recorded slightly differently at different times.

Restructuring the table into first normal form eliminates the first of these
problems. You will need to progress to a higher level of normalization to eliminate
the second.

First Normal Form

To get a table into first normal form, remove multiple occurrences of attribute values
from the same row by creating a new row for each value. This ensures that every
attribute in the table has only one value for each row.

is in first normal form and contains the same data as the nonnormalized
table.

Table 2. Flight Table (Nonnormalized Form)

Date |Flight Start Destination | Aircraft Seat Seat Passenger | Passenger |Passenger |Passenger
number type number |class number name address facts
Dal Fl1 Stl Del Atl Sel Cl2 Pnl Nal Adl Ftl
Se2 Cl2 Pn2 Na2 Ad2 Ft2
Se3 Cl2 Pn3 Na3 Ad3
Se4 CI3 Pn4 Na4d Ad4
Dal FI2 St2 De2 Atl Seb Cl2 Pn3 Na3 Ad3

Second Normal Form

To get a table into second normal form, remove all attributes that are not
dependent, either directly or indirectly, on the value of the primary key and put them
into other tables.

In the attribute destination directly depends on the primary key. Given the
value of the primary key, especially the date and flight number, you can see that the
aircraft will be flying to a particular destination. Without the primary key value, it
would not make sense to speak of a flight destination at all.

In contrast, the seat class attribute is only indirectly dependent on the primary key.
It really depends on the aircraft type and seat number attributes. Aircraft type is not
part of the primary key, though it is itself dependent on the primary key. Because
seat class is dependent on aircraft type, it is said to be indirectly dependent on the
primary key.

Removing Independent Attributes

Looking back to the flight table in first normal form (Table 2), you can see that it
contains some attributes that are not dependent, either directly or indirectly, on the
primary key. The primary key in this table is the combination of the date, flight
number, and seat number attributes.

Even if the flight table’s primary key had no value at all, the following attributes
would still be meaningful:

* Passenger name

» Passenger address

Organizing a Database 5

» Passenger facts.

Because they are not dependent on the primary key, you can remove these
attributes from the flight table and put them into a separate table of their own.

shows an example of such a table. Note that the primary key for this table
is passenger number. This has been included in the new table because its value is
always unique. For example, there may be more than one passenger named Smith,
or more than one vegetarian passenger, but there can never be more than one
passenger number Pnl.

Because it is unique, passenger number becomes the primary key of the new table.
It also remains in the flight table because it is dependent on the primary key.

is already in second normal form because every attribute in the table is
either directly or indirectly dependent on the primary key.

Table 3. Passenger Table

Passenger number |Passenger name Passenger address Passenger facts
Pnl Nal Adl Ft1

Pn2 Na2 Ad2 Ft2

Pn3 Na3 Ad3

Pn4 Na4 Ad4

Now that you have removed the attributes that are independent on the primary key
and have put them in the passenger table dTabIe 3|D, the flight table is in second
normal form, as you can see in|TabIe Z_l] The primary key is still the combination of
the date, flight number, and seat number attributes that are shown in bold type.

Table 4. Flight Table (Second Normal Form)

Date Flight Start Destination Aircraft Seat Seat Passenger
number type number |class |number

Dal Fl1 Stl Del Atl Sel Cl2 Pnl

Dal Fl1 Stl Del Atl Se2 CI2 Pn2

Dal Fl1 Stl Del Atl Se3 Cl2 Pn3

Dal Fl1 Stl Del Atl Se4 CI3 Pn4

Dal Fl2 St2 De2 Atl Se5 CI2 Pn3

Third Normal Form

The flight table (Table 4) has been improved by being put into second normal form,
but it still contains some indirect dependencies, and also some duplicate data.

For example, the seat class attribute depends on aircraft type and seat number. It
does not depend directly on the other two attributes of the primary key. Because of
this, you can remove seat class and record it in a separate table.

The new table will also include the aircraft type and seat number attributes.
Toiether, they form the primary key of the new table, which is shown in

6 TPFDF R1 Database Administration

Table 5. Aircraft Table

Aircraft type Seat number Seat class
Atl Sel ClI2
Atl Se2 Cl2
Atl Se3 ClI2
Atl Se4 CI3
Atl Seb5 ClI2

The primary key here is the combination of aircraft type and seat number.

The indirect dependency has now been removed from the flight table, but with the
table in second normal form, there is still some duplication, as you can see in

Table 6. Flight Table (Second Normal Form)

Date Flight Start Destination | Aircraft Seat Passenger
number type number number

Dal Fl1 Stl Del Atl Sel Pnl

Dal Fl1 Stl Del Atl Se2 Pn2

Dal Fl1 Stl Del Atl Se3 Pn3

Dal Fl1 Stl Del Atl Se4 Pn4

Dal Fl2 St2 De2 Atl Seb5 Pn3

Because the values for seat number and passenger number must be unique for
each row, the table must contain a separate row for each of these values. To
accommodate this, the other values in the table must be duplicated. For example,
flight number FI1 is repeated four times when only once would be enough.

Because seat number is already held in the aircraft table dTabIe §|) and passenger
number is held in the passenger table (Table 3 on page 6), and there is no indirect
dependency through either of these attributes, you can remove them both from the
flight table.

Because you need a table to record the passengers who are on any particular
flight, you could place these removed attributes in a seat table. This table would
show the seats booked on the flight and the passenger number for the person
booked on each seat. is an example of this kind of table:

Table 7. Seat Table

Date Flight number Seat number Passenger number
Dal Fl1 Sel Pnl
Dal Fl1 Se2 Pn2
Dal Fl1 Se3 Pn3
Dal Fl1 Se4 Pn4
Dal FI2 Se5 Pn3

The primary key in this table is the combination of date, flight number, and seat
number.

Organizing a Database 7

The flight table is now in third normal form. Each of its attributes is directly
dependent on the primary key and there is no unnecessary duplication of data in

the table.

As you can see in[Table 8} the value for date is the same in both rows of the table.
This duplication is necessary because there will certainly be more than one flight

each day.

Table 8. Flight Table (Third Normal Form)

Date Flight number | Start Destination Aircraft type
Dal Fl1 Stl Del Atl

Dal Fl2 St2 De2 Atl

The passenger number attribute has been removed from the flight table along with
seat number and seat class because passenger number was dependent on seat
number and, without the seat number, no passenger number can be assigned.

The primary key in the flight table is now the combination of the date and flight
number attributes.

Resulting Tables

You now have four complete and related tables (Table 9HTable 12) in third normal
form:

* Flight table

* Passenger table

» Aircraft table

e Seat table.

Table 9. Flight Table (Third Normal Form)

Date Flight number | Start Destination Aircraft type
Dal Fl1 Stl Del Atl
Dal FI2 St2 De2 Atl

Table 10. Passenger Table

Passenger number |Passenger name Passenger address Passenger facts
Pnl Nal Adl Ftl
Pn2 Na2 Ad2 Ft2
Pn3 Na3 Ad3

Pn4 Na4 Ad4

Table 11. Aircraft Table

Aircraft type Seat number Seat class
Atl Sel ClI2

Atl Se2 CI2

Atl Se3 ClI2

Atl Se4 CI3

Atl Se5 Cl2

8 TPFDF R1 Database Administration

Table 12. Seat Table

Date Flight number Seat number Passenger number
Dal Fl1 Sel Pnl
Dal Fl1 Se2 Pn2
Dal Fl1 Se3 Pn3
Dal Fl1 Se4 Pn4
Dal FI2 Seb5 Pn3

Duplicating Data across Tables

Looking back at the four normalized tables (Table 9HTable 12), you may notice that
there is some duplication of data across them. For example, the passenger number
attribute is held in both the passenger table and the seat table. Seat number is held
in the seat table and the aircraft table, and there are further duplications as well.

This duplication occurs in normalized tables because they are generally being
developed to be used in a relational database. Relational systems use these
common attributes as links between one table and the next. The links provide paths
around the database so that every table can access the data held in every other
table. This means that, apart from the linking attributes, no data needs to be
duplicated in the database.

In the example hierarchical database discussed in this publication, links of this kind
are not needed because the tables are joined by pointers. Pointers provide a
means of linking one table or file with another. Use the [DBIDX| and [DBDIX| TPFDF
macros to maintain pointers.

Organizing a Database 9

10 TPFDF R1 Database Administration

Optimizing the Database Design

As you have seen in ['Normalization” on page 3} the process of normalization has
imposed a preliminary order on your data. Unnecessary duplications have been
removed and the data is clearly set out in a readily comprehensible form.

However, tables that are rigidly normalized do not always produce the best results
from a performance point of view. Retrieval speeds can often be improved when the
same data is held in different tables.

shows the current structure of the database.

Flight Table Aircraft Table Seat Table Passenger Table

Da| FI | St | De | At At | Se | ClI Da| FI | Se| Pn Pn | Na| Ad | Ft

Figure 1. Four Normalized Tables

Duplicating Data to Improve Performance

Because duplicating data can improve retrieval speeds, you may choose to
reintroduce some data duplication in the tables you have been working on.

Note: Data should be duplicated for performance reasons only. Data duplication
can result in extra updating, which in turn requires more 1/O processing. You
must ensure that the extra 1/0 processing for updating does not outweigh the
1/0 processing saved through the duplication itself. Because I/O processing
can represent a major part of the lifetime of a transaction lifetime, it is
important to minimize /O processing.

Data duplication can also lead to inconsistent data being held. However,
some data fields are more suitable for duplication than others. There is less
risk of data inconsistency if you duplicate fields whose values do not change
often. For example, a passenger’s name is unlikely to change whereas seat
availability changes with every seat sold.

You must balance these factors against the potential improvement in retrieval
speeds.

In the examples that follow, you can see how selected duplication of data can
improve the performance of your database.

Assessing the Normalized Tables

In this section, whether the existing design performs adequately in a realistic setting
is assessed. The design is changed wherever necessary to ensure a good real-time
performance level.

Note: When developing your design, you must also consider frequency of

operation. A 10% performance gain in an operation performed several times
per second is better overall than a 50% gain in a daily operation.

© Copyright IBM Corp. 1997, 2001 11

The following list shows six common requirements for an airline reservation system:
» Checking seat availability

* Booking a passenger on a flight

» Displaying all passengers booked on a flight

» Displaying all flights booked for a passenger

» Canceling a passenger’s booking on one flight or more

» Displaying the configuration of an aircratft.

The four tables in [Figure 1 on page 11| show that all this information can be
extracted from them. However, if you consider the tables carefully, you can see that
some of these operations would involve substantial 1/0O processing. For example, to
display all flights booked for a passenger, you would need to read through the
entire seat table for each flight. Because of this, it is more sensible to reintroduce
some duplication of data in the tables. This data must be carefully selected. There
should be no arbitrary data duplication.

In the following pages, each of the common requirements for an airline reservation
system is analyzed.

Checking Seat Availability

12

Before booking a seat, check whether there is a seat of the required class available
on the flight specified. To check seat availability using these tables:

1. Read the flight table to find the aircraft type (At).
2. Read the aircraft table to find a seat number (Se) in the required class.

3. Read the passenger number field (Pn) in the seat table to find whether that seat
has already been booked.

4. If that seat number is already booked, read the aircraft table again to find the
next seat in the required class.

5. Repeat steps 3 and 4 until an available seat is found, or until all seats in the
required class are found to be booked.

This read process is shown in [Figure 2 on page 13| You can see the seat table and
the aircraft table will probably have to be read many times, which would involve a
significant amount of 1/0 processing. Performance would be much improved if some
changes were made to these two tables.

TPFDF R1 Database Administration

!

Flight Table
Da| FI | St | De | At
<
Aircraft Table
At | Se | ClI
Seat Table
Da| FI | Se | Pn

Passenger Table

Pn

Na | Ad

Ft

Seat already booked

—

Figure 2. Read Process for Checking Seat Availability Before Optimization

Figure 3[shows how the tables have been changed.

In the aircraft table, the seat number (Se) attribute has been changed to seat range
(Sr). The table is now more compact because you do not have to store every seat
on a separate row.

The class (CI) attribute has been duplicated in the seat table. Availability (Av), in the
flight table, is a new attribute.

Flight Table Aircraft Table Seat Table Passenger Table

Da | FI | St | De | At At | Se | Cl Da| Fl | Se | Pn Pn| Na| Ad | Ft
New

Flight Table Aircraft Table Seat Table Passenger Table

Da| FI | St | De | At | Av At | Sr Cl Da| FI | Se| CI | Pn Pn| Na| Ad | Ft

Figure 3. Altering the Tables to Improve Availability Checking

After improving these tables, the revised seat table (shown in[Table 13 on page 14)
contains all the data needed to check seat availability. Every flight is recorded there,
and you can see at once whether a seat has been booked or not.

Optimizing the Database Design

13

Table 13. Seat Table (Revised)

Date Flight number | Seat number Class Passenger
number

Dal Fl1 Sel Cl2 Pn1

Dal Fl1 Se2 CI2 Pn2

Dal Fl1 Se3 Cl2 Pn3

Dal Fl1 Se4d CI3 Pn4

Booking a Passenger on a Flight

Note: When working through the following example, refer to [Figure 3 on page 13}

Now that you have checked seat availability on a particular flight, you can make a
booking for the passenger as follows:

1. Add the new details to the passenger table.
2. Add the new details to the seat table.
3. Update availability information in the flight table.

Displaying Passengers Booked on a Flight
To display all the passengers booked on a particular flight:
1. Read the seat table to find every passenger number for a particular flight.

2. Read the passenger table to find the corresponding passenger name for each
passenger number.

shows this read process.

|

Seat Table Flight Table Aircraft Table

Da| FI | Se| Pn Da| FI | St | De | At At | Se | ClI

Passenger Table

Pn| Na| Ad | Ft

Figure 4. Read Process for Displaying Passengers Booked on a Flight

You can eliminate reading the passenger table if the passenger name attribute is
duplicated in the seat table. [Figure 5 on page 15| shows this duplication.

14 TPFDF R1 Database Administration

Flight Table Aircraft Table Seat Table Passenger Table
Da| FI | St | De | At | Av At | Sr Cl Da| FI | Se| ClI | Pn Pn | Na| Ad | Ft
Flight Table Aircraft Table Seat Table Passenger Table
Da| FI | St | De | At | Av At | Sr Cl Da| FI | Se| Cl | Pn| Na Pn | Na| Ad | Ft

Figure 5. Duplicating Names to Display Passengers Booked on a Flight

After this duplication, the new seat table (Table 14) contains all the data needed to
display passengers booked on a flight. You do not need to refer to any other table.

Table 14. Seat Table (Updated)

Date Flight Seat number | Class Passenger Passenger
number number name

Dal Fl1 Sel Cl2 Pn1 Nal

Dal Fl1 Se2 Cl2 Pn2 Na2

Dal Fl1 Se3 Cl2 Pn3 Na3

Dal Fl1 Se4d CI3 Pn4 Pn4

Displaying All Flights Booked for a Passenger

To display all the flights booked for a particular passenger, read the seat table

able 14) for each flight, checking for a match between each flight and your

passenger.

You can avoid this 1/O intensive search of the seat table if you add flight and date
attributes to the passenger table.

[Figure 6 on page 16| shows how date (Da) and flight (FI) have been duplicated in

the passenger table.

Optimizing the Database Design 15

Flight Table Aircraft Table Seat Table Passenger Table

Da| FI | St | De| At | Av At | Sr Cl Da| FI | Se| Cl | Pn| Na Pn | Na| Ad | Ft

Flight Table Aircraft Table Seat Table Passenger Table

Da| FI | St | De| At | Av At | Sr Cl Da| FI | Se| CI | Pn| Na Pn| Na| Ad| FI | Da| Ft

Figure 6. Duplicating Flights and Dates to Improve Flight Display

The revised passenger table (Table 15) shows all the flights booked for each
passenger. You do not need to refer to any other table.

Table 15. Passenger Table (Revised)

Passenger Passenger Passenger Flight Date Passenger
number name address facts
Pnl Nal Adl Fl1 Dal Ftl
FI2
FI3
Pn2 Na2 Ad2 Fl1 Dal Ft2
Pn3 Na3 Ad3 FI2 Dal
Pn4 Na4 Ad4 Fl1 Dal

Displaying an Aircraft Configuration

The revised aircraft configuration shows how many seats each aircraft holds in each
class. In the original aircraft table (see |Figure 1 on page 11), every seat in every
aircraft is listed in a separate row.

Now that the seat number attribute has been changed to seat range, configurations
for different aircraft in the same table are shown in the revised aircraft table

(Table 16). You can now quickly display the number of seats in each class for each
aircraft.

Table 16. Aircraft Table (Revised)

Aircraft type Seat range Seat class
Al Sel-Sel2 Cl2
Al Sel3-Sel20 CI3
A2 Sel-Se4 Cl1
A2 Sel3-Se23 Cl2
A2 Se28-Se70 Cl2
A3 Sel-Se23 Cl2
A3 Se26-Se40 Cl2

16 TPFDF R1 Database Administration

Canceling Passenger Bookings
To cancel a passenger’s booking:

1.

4.

Read the seat table to search for the passenger number and name. Delete

these if found.

After deleting the number and name, continue reading the seat table to find any
more occurrences of that number and name. If found, delete these as well.

When no more occurrences are found, delete the appropriate details from the

passenger table.

Finally, delete the appropriate details from the flight table.

Figure 7| shows the process for canceling passenger bookings.

|

Seat Table

Da

FI | Se| Cl | Pn| Na

Figure 7. Read Process for Canceling Passenger Bookings

Aircraft Table

At | Sr Cl

Passenger Table
Pn| Na| Ad| FI | Da| Ft
Flight Table
Da| FI | St | De | At | Av

Looking at the process outlined in you can see that it would require

substantial I/O processing to read through these three tables to check every flight

for every day against a particular passenger number. The date and flight data

duplicated in the revised passenger table (see [Figure 6 on page 16)) has, in fact,
increased updating times because you must now update the passenger table as

well as the flight and seat tables.

However, the performance benefits gained for the previous five queries outweigh

the losses incurred in this query. Overall, the optimization has improved the
performance of the database.

Optimizing the Database Design

17

Improving Access to the Data

The duplication of some data in the tables has considerably improved the
performance of the database. However, there are still some areas where poor
access is slowing down the retrieval of data. You will need to improve these access
paths before the database can achieve the performance level required of a
real-time system.

The following list shows four common requirements that the database must be able
to meet quickly:

» Display passenger information by passenger name or number
» Access flight information

* Access passengers from the seat table

» Access aircraft configurations from the flight table.

The revised tables, as shown in do not yet provide easy access paths for
these requirements.

Flight Table

Aircraft Table Seat Table Passenger Table

Da

FI | St

De

At

Av At | Sr Cl Da| FI | Se| Cl | Pn| Na Pn| Na| Ad| FI | Da| Ft

Figure 8. Four Revised Tables

method of improving access times. See [Figure 8 when working through these
requirements.

The following pages explain each of the previously outlined requirements and a

Displaying Passenger Information by Name or Number

18

Once you have input a passenger name or number, you need to be able to access
the passenger table directly. At present, there is no direct access from either of
these inputs to the passenger table.

However, the addition of pointers would improve access times significantly. Because
pointers provide a means of linking one table or file with another, you can use them
to achieve direct access to tables. In the TPFDF product, you can use the [DBIDX]
and macros to maintain pointers between files. Files containing pointers are
index files.

[Table 17| and [Table 18| directly access the passenger table.

Table 17. Passenger Name Table

Passenger name Pointer to passenger table
Nal Pointerl
Na2 Pointer2
Na3 Pointer3
Na4 Pointer4

TPFDF R1 Database Administration

Table 18. Passenger Number Table

Passenger number Pointer to passenger table
Pnl Pointerl
Pn2 Pointer2
Pn3 Pointer3
Pn4 Pointer4

shows the two pointer tables (passenger number and passenger name)
pointing to the passenger table.

Number Table Name Table Flight Table Aircraft Table
Pn Pt Na Pt Da| FI | St | De | At | Av At | Sr Cl

Passenger Table

Seat Table

Pn | Na| Ad | FI

Da

Ft

Da| FI | Se| CI | Pn | Na

Figure 9. Adding Pointer Tables to Improve Access to the Passenger Table

Accessing Flight Information

Flight information is held in the flight table and the seat table (see
page 18). Between them, these two tables contain all the information you need to

know about a flight.

However, at present there is no direct way of accessing the seat table from the
flight table. You can overcome this difficulty if you include a pointer in the flight

table.

Figure 10| shows how the pointer has created a direct access path from the flight

table to the seat table.

Optimizing the Database Design

19

Name Table

Number Table

Flight Table

Table

Aircraft Table

Na

Pt

Pn

Pt

Da

FI

St

De

At

Av

Pt

At

Sr

Cl

¢—I

Passenger Table

Pn

Na

Ad

Fl

Da

Ft

Seat Table

Da

Fl

Se

Cl

Pn

Na

Figure 10. Adding a Pointer to Improve Access between the Flight and Seat Tables

Now that the flight table and the seat table are linked by the pointer, you can

remove the resulting data duplication (date and flight). Because the TPFDF product
reads the flight table before reading the seat table, you should remove the

duplicated data from the seat table.

Accessing Passengers from the Seat Table

There is still no direct access from the seat table to the passenger table (see

Figure 10).

An added pointer in the seat table provides the access path you need.

shows how the added pointer in the seat table creates a direct access
path to the passenger table. (Note that the duplicated attributes, date and flight,

have been removed from the seat table, as discussed in [‘Accessing Flight]

[Information” on page 19})

20 TPFDF R1 Database Administration

v

Name Table Number Table Flight Table Aircraft Table
Na Pt Pn Pt Da| FI | St | De | At | Av | Pt At | Sr Cl
Seat Table

Se | Cl | Pn| Na| Pt

Passenger Table

Pn

Na

Ad

Fl

Da

Ft

Figure 11. Adding a Pointer to Improve Access between the Seat and Passenger Tables

Accessing Aircraft Configurations from the Flight Table

There is still no direct access from the flight table to the aircraft table (see
Figure 11). You can overcome this difficulty by including an additional pointer in the

flight table.

Figure 12| shows how the second pointer in the flight table creates a direct access

path to the aircraft table.

Optimizing the Database Design 21

Name Table Number Table Flight Table
Na Pt Pn Pt Da| FI | St | De | At | Av| Pt Pt
v o v
Seat Table Aircraft Table
Se | Cl | Pn| Na| Pt At | Sr Cl

v v l

Passenger Table

Pn| Na|Ad| Fl | Da| Ft

Figure 12. Adding a Pointer to Improve Access between the Flight and Aircraft Tables

Final Database Design Structure

22

The four original tables (see [Figure 1 on page 11) have now been optimized to be
used in a real-time database. Two new tables have been added to improve data
access by using pointers. These six logical tables are now ready to be mapped to
physical TPFDF files.

Figure 13| shows the database tables arranged hierarchically. The tables are shown
in their relative sizes. Some attributes (for example, passenger name) are longer
than others (for example, date).

The two pointer tables (passenger name and passenger number) that are at the top
left of the diagram contain no detail data. [Mapping Tables to TPFDF Files| shows
how the tables are mapped to TPFDF index files.

TPFDF R1 Database Administration

Passenger Name

Passenger Number

Flight

L l

Seat Table

Aircraft

Passenger Table

Figure 13. Final Tables Showing the Database Structure

Optimizing the Database Design

23

24 TPFDF R1 Database Administration

Mapping Tables to TPFDF Files

The following describes how to map the logical tables developed in the previous

chapter to physical TPFDF files.

Before working through the following, make sure you are familiar with the concepts
and terminology of TPFDF files. For more information about concepts and

terminology of TPFDF files, see [TPFDF General Information|

In the transfer from logical to physical data, some of the terms used will change.
able 19| shows the changes to be aware of.

Table 19. Comparative Terms for Tables and Files

Logical term (tables)

Physical term (files)

attribute

data field

attribute value

data field value

row

LREC

table

file

Before You Begin

The tables used for mapping are those developed in [‘Organizing a Database” on|

[page 3| and [‘Optimizing the Database Design” on page 11} They are as follows:

Passenger name table (index file)
» Passenger number table (index file)
» Aircraft table (detail file)
* Flight table (index file)
» Seat table (intermediate-level index)
» Passenger table (detall file).

Data Requirements

able 20| shows the data requirements for the tables that are to be stored on the
database. The requirements shown here are examples only. They are the result of
the initial data analysis carried out before the start of the design process.

Table 20. Data Requirements

Data Amount
Flights each day 100
Days stored 366

Passengers on each flight (min=50, max=300)

150 (average)

Flights for each passenger (max=20)

3 (average)

Flight classes

3

Aircraft types

50

Note: Because leap years must be accommodated, 366 days can be stored.

Data Field Lengths

Before mapping the tables to TPFDF files, you must estimate the amount of data
for each file. To do this, assign a length to each data field (attribute).

© Copyright IBM Corp. 1997, 2001

25

Many data fields (for example, the flight number or the destination code) have a
fixed length. However, you cannot always be precise when assigning a length to a
data field. For example, you cannot be sure how long a passenger’s name will be.

Because of this, always allow for future expansion when you are assigning data
field lengths. Where possible, use variable length LRECs, and set the variable
length portion of the LREC in the DSECT to zero. This makes it easier to expand
the field length later.

able 21| shows the length of each data field from the tables developed in the
previous chapters.

Table 21. Data Field Lengths

Table Data field Length in bytes

Aircraft aircraft type 4
seat range
seat class

(e¢]

Passenger name passenger name 2
pointer

Passenger number passenger number
pointer

Flight date

time

flight number
start
destination
aircraft type
availability
pointerl
pointer2

(airline=3, flight=4)

GO~ WWNNN|OIO |00

Seat seat number 4
seat class 1
passenger number 8
passenger name 25
pointer 5

Passenger passenger number 8
passenger name 25
passenger address 50
flight information (flight, date, 17
time, start, destination)
passenger facts 4

Note: In the flight file, the date field has now been divided into two fields, date and
time. This is done to provide a clearer display for the reservation agent.

[Figure 14 on page 27| shows the number of LRECs required for each of these six
files.

26 TPFDF R1 Database Administration

1 825 000 LRECs

1 825 000 LRECs 36 600 LRECs

Passenger Name Passenger Number Flight
|
5 490 000 LRECs 50 LRECsl
Seat Table Aircraft
1 825 000 LRECs w v l

Passenger Table

Figure 14. Number of LRECs Required for Each File

Passenger LRECs

Before mapping the tables to TPFDF files, you must calculate the number of

passenger LRECs required overall. From the Data Requirements table (Table 20 on
H

ge 25)), you can see that the following amounts are held:
* Flights each day = 100
» Days stored = 366
» Passengers on each flight (average) = 150
* Flights for each passenger (average) = 3

Calculate the number of required passenger LRECs as follows: (flights each day x
days stored x passengers on each flight) + flights for each passenger

The calculation is:
(100 x 366 x 150) + 3 = 1.825 million

The calculation shows that the database must be able to accommodate 1.825
million passenger LRECs.

Calculating the Number of Subfiles Needed

The following points will help you determine how many subfiles you need to
accommodate the data in your file:

» Calculate the number of bytes needed for each data field (for example,
passenger name). Each character requires 1 byte.

» Calculate the total number of bytes needed for all the data fields in the file.

Mapping Tables to TPFDF Files 27

Block Size

Chaining

» Divide this by the number of bytes in your chosen block size.
e The resulting number is the number of subfiles you need.

The TPF system offers four different block sizes. [Table 22| shows the amount of
user data allowed for each block (assuming you are using optional trailers):

Table 22. TPF Block Sizes

Block type Bytes of user data
LO 127

L1 319

L2 993

L4 4033

The Airlife Control System (ALCS) offers eight different block sizes as detailed in
|iable 23

Table 23. ALCS Block Sizes

Block type Bytes of user data
LO 127 (max.)

L1 319 (max.)

L2 993 (max.)

L3 4000 (min.)

L4 4033 (max.)

L5 32K (max.)

L6 32K (max.)

L7 32K (max.)

L8 32K (max.)

Though TPF block sizes are fixed, ALCS block sizes show the maximum number of
bytes for each size. In practice, ALCS blocks can be any size you choose. For
easier data transfer between TPF and ALCS, blocks L1, L2, and L4 are the same
size in both systems.

Note: Block size affects performance. A large block size can reduce the amount of
overflow blocks required but may waste DASD space.

When deciding on the number of subfiles you need, you must also consider the
number of overflow blocks (chains). A large number of blocks slows down data
retrieval, hindering the performance of the database.

In general, you should have no more than 3 blocks in a subfile. However, if the file
is not likely to be accessed frequently, you may be able to use more blocks.

Note: For files with a large number of data blocks, B*Tree indexing will speed data
retrieval and the performance of the database.

28 TPFDF R1 Database Administration

Overflow Blocks

Overflow blocks do not need be the same size as the prime block. Because of this,
you can save DASD space by having small overflow blocks when the data overflow
is slight.

[‘Database Design Hints and Tips” on page 161] discusses how to define the size of
overflow blocks.

Mapping the Passenger Name File

Note: The example in this section is theoretical. It shows an even distribution of
LRECSs. In practice, an even distribution is unlikely to occur.

Each LREC in the passenger name file contains the fields shown in|Table 24}
able 24| also shows the number of bytes in each field.

Table 24. LREC Fields for the Passenger Name File

Field No. of bytes
size 2

key 1

passenger name 25

pointer to passenger file 5

Total 33

From this example, you can see that each LREC in the passenger name file
contains 33 bytes.

Each LREC must be stored in a block. In this example, a block size of 4-K is used.
A 4-K block can hold 4033 bytes of user data, assuming you use optional block
trailers.

The following calculation shows how many LRECs from the passenger name file
can be held in a 4-K block:

4033 + 33 = 122 LRECs in
each block

The calculations made in [‘Passenger LRECs” on page 27| showed that the database
must be able to accommodate 1.825 million passenger LRECs. Because of this,
allow for 1.825 million LRECs in the passenger name file. Each 4-K block can hold
122 LRECs.

The calculation that follows shows how many blocks are needed to accommodate
the 1.825 million LRECs. (The calculation assumes an even distribution of LRECS):

1.825 million + 122 = 14959 blocks

Each TPFDF subfile contains one prime block and, if necessary, a number of
overflow blocks. You can see that it would not be feasible to allocate all the
passenger name LRECs to a single subfile because there would be 14 959 overflow
blocks.

Mapping Tables to TPFDF Files 29

For performance reasons, distribute the 1.825 million LRECs over a number of
subfiles. Because you are dealing with a passenger name file, distribute the LRECs
by passenger name.

Distributing the Passenger Name LRECs

The TPFDF product provides predefined algorithms for distributing LRECs evenly
across a range of ordinals. Some of these methods are designed for alphabetic
data or alphanumeric data mapping. Others calculate an ordinal number using a
hashing technique to distribute the LRECs. The method of distributing the LRECs is
specified by an algorithm number in the &SWOORBV symbol of the file DSECT.

In TPFDF macros, you can use the ALG parameter to specify the location of an
input string for an algorithm.

The TPFDF product provides the following three algorithms for distributing data by
alphabetic characters:

* #TPFDBO1
* #TPFDBO02
* #TPFDBO3.

#TPFDBO1 distributes data by the first character of the algorithm string. #TPFDB02
uses the first 2 characters, and #TPFDBO03 uses the first 3 characters.

uses SMITH as the example passenger name. It shows the characters
used by each algorithm. The table also shows the number of subfiles created by
each algorithm and the number of blocks required in each subfile to hold the
passenger name LRECSs.

Table 25. Algorithms Using Alphabetic Characters

Algorithm Characters used No. of subfiles No. of blocks

resulting required
#TPFDBO1 S 26 576
#TPFDB02 SM 676 23
#TPFDBO03 SMI 17576 1

Note: assumes a perfect distribution of LRECs over the subfiles. In
practice, this is unlikely to occur. For example, names beginning with S are
more common than names beginning with X. However, you could improve
the distribution by basing the algorithm on a character that is not the first in
the name; for example, the second consonant.

If you cannot get a good distribution using any of the predefined TPFDF algorithms,
ﬁu can create a unique user-defined algorithm in the user exit UWBD. See page

for more information about creating user-defined algorithms.

In you can see that algorithm #TPFDBO01 would require chaining for 676
blocks. In a real-time system, this would create a substantial I/O overhead.
Algorithm #TPFDBO02 requires 23 blocks. It would clearly take less time to read only
23 blocks but the response would still be too slow.

30 TPFDF R1 Database Administration

However, with a perfect distribution of LRECs, algorithm #TPFDB03 would require
no overflow blocks at all. All the LRECs could be contained in a single block. Even
with an actual (real world) distribution, #TPFDBO03 would probably produce no more
than 5 blocks.

File Structure

The passenger name file has a classic index structure which the TPFDF product
can maintain easily. The passenger name is the index key. Each LREC contains a
pointer to the passenger detall file. The TPFDF product maintains these indexes for
you.

In TPFDF macros, you can use the ALG parameter to specify the location of an
input string for an algorithm. In this example, the string passed with the ALG
parameter is the passenger name. Algorithm #TPFDBO03 uses this to access the
subfiles.

The LREC structure for the passenger name file is as follows:

size | key | pointer | passenger name

The size and key fields shown in this LREC are for the TPFDF product use.

Mapping the Passenger Number File

Each LREC in the passenger number file contains the fields shown in|Table 26|
able 26| also shows the number of bytes in each field.

Table 26. LREC Fields for the Passenger Number File

Field No. of bytes
size 2

key 1

passenger number 8

pointer to passenger file 5

Total 16

From this, you can see that each LREC in the passenger number file contains 16
bytes.

The following calculation shows how many LRECs from the passenger number file
can be held in a 4-K block:

4033 + 16 = 252 LRECs in
each block

The database must be able to hold 1.825 million passenger LRECs.

The calculation that follows shows how many blocks you would need to
accommodate the 1.825 million passenger number LRECs. (The calculation
assumes an even distribution of LRECSs):

1.825 million + 252 = 7243 blocks

Again, the number of overflow blocks required is too many for a real-time system.
Choose an algorithm to distribute the LRECs over subfiles.

Mapping Tables to TPFDF Files 31

Distributing the Passenger Number LRECs

The algorithms used with the passenger name file cannot be used here because
passenger numbers are not alphabetic. However, the TPFDF product provides a
hashing algorithm that distributes LRECs numerically.

The hashing algorithm (#TPFDBO09) distributes the LRECs evenly. They do not need
to be stored in any particular order, because you will never need to access more
than one at a time. For instance, you will not need to access a range of passenger
numbers all at once.

Algorithm #TPFDBO09 uses the algorithm string as a seed. It divides the result of the
calculation by the number of subfiles in the file. The remainder is the ordinal
number of the destination subfile.

Note: Because you need a remainder in every division process, choose an odd
number (ideally a prime number) for the number of subfiles.

To ensure the least number of overflow blocks possible, choose the prime number
nearest to 7243 (the number of blocks required for the passenger number file).

Ensuring a Good Distribution

File Structure

Because the LRECs in this file are distributed by passenger number, you need to
ensure that this field gives a good distribution over the subfiles.

The passenger number is the algorithm seed from which the pseudo-random
number is calculated. Because many passenger numbers begin with zeros, the
resulting distribution is not likely to be even. You can improve the distribution by
manipulating the algorithm string before it is used.

For example, if the first 4 bytes of the passenger number are swapped with the
second 4 bytes, the difficulty is overcome as you can see in[Table 27|

Table 27. Manipulating the Algorithm String

Passenger number Algorithm string
00087628 76280008
00987653 76530098

Manipulating the algorithm string has given a good distribution of LRECSs. If there is
any overflow, it is likely to be small. Because of this, 1-K overflow blocks will
probably be adequate. (You can change the size of overflow blocks by changing the
value of the DBDEF ARS parameter and entering the command.)

The passenger number file has a classic index structure that the TPFDF product
can maintain easily. Here the ALG string is the passenger number, which algorithm
#TPFDBO09 uses to access the subfiles.

The LREC structure for the passenger number file is as follows:

size | key | pointer | passenger number

32 TPFDF R1 Database Administration

Mapping the Aircraft File

Each LREC in the aircraft file contains the fields shown in [Table 28| [Table 28| also
shows the number of bytes in each field.

Table 28. LREC Fields for the Aircraft File

Field No. of bytes

size

key

aircraft type

seat range

RO,]|DN

seat class
Total 16

Each LREC in the aircraft file therefore contains 16 bytes.

Because the database must be able to accommodate 50 aircraft types and three
classes, you can calculate the required amounts of data as follows:

no. of aircraft types x no. of classes x LREC size = amount of data

The calculation is:
50 x 3 x 16 = 2400 bytes

This comparatively small number of bytes fits comfortably into a fixed block of size
L4 (4095 bytes, including header and trailer). Because only one block is required,
you can use a miscellaneous file.

Distributing the Aircraft LRECs

The aircraft file contains only one block of data. Because of this, all the data can be
held in a single subfile, and you do not need to distribute the aircraft LRECs over
many subfiles. Because you are using a single subfile, use the single-subfile
algorithm (#TPFDBO04) to distribute the LRECs in the file.

Note: The flight file (see [Figure 14 on page 27) contains a pointer to the aircraft
file. However, because the aircraft file contains only 1 block, the aircraft file
address always locates the correct block. Because of this, you can remove
the pointer from the flight file.

Allowing for Expansion

File Structure

Although the aircraft file is small at the moment, it may well need to expand in the
future. Therefore, consider now how a data overflow might be accommodated.

Because the aircraft LRECs are only 16 bytes long, there is already some room for
expansion in the existing L4 (4095 bytes) block. Overflow blocks of L2 size (1055
bytes) should be adequate for future needs.

When deciding the structure of the LRECSs, consider how the TPFDF product will
interrogate the file. The aircraft file is not an index file, so the LRECs do not need to
contain pointers. The TPFDF product needs only the aircraft type, so the aircraft

Mapping Tables to TPFDF Files 33

LREC structure can be as follows:

size | key aircraft type

seat range

class

Mapping the Flight File

Each LREC in the flight file contains the fields shown in[Table 29| [Table 29| also
shows the number of bytes in each field.

Table 29. LREC Fields for the Flight File

Field No. of bytes

size

key

date

flight number

time

start

destination

aircraft type

availability

OO || W|IW[IN|N[IN[FLDN

pointer to seat file

Total

w
)]

The pointer to the aircraft table has been removed from this file (see [‘Distributing
[the Aircraft LRECS” on page 33). Each LREC in the flight file now contains 35 bytes.

As shown previously in the Data Requirements table (Table 20 on page 25), the
database must be able to accommodate 100 flights each day. You can calculate the
amount of data as follows:

no. of
flights each day x LREC size = amount of data

The calculation is:
100 x 35 = 3500 bytes

Therefore, use 4-K blocks to store the LRECs. Because the database must hold
records for 366 days, you need 366 blocks to store the flight information.

Distributing the Flight LRECs

The structure of the flight file is simple; there is one subfile for each day’s flights.
One fast method of accessing the subfiles is to assign a relative number to each
day of the year.

The application translates the day directly into an ordinal matching a subfile. For
example, 1 Jan=1st, 2 Jan=2nd 31 Dec=366th. The ordinal serves as a value
for the string passed with the ALG parameter. You can use algorithm #TPFDBO05 to
retrieve the ordinal directly.

For a more detailed explanation, see [Figure 51 on page 134}

34 TPFDF R1 Database Administration

Note: Because leap years must be accommodated, you must define 366 blocks,
although one of them will be redundant most of the time.

Allowing for Expansion

File Structure

Although the size of the flight file is fixed at the moment, you may need to expand it
in the future. Because of this, consider how a data overflow might be
accommodated.

There is room for some expansion in the blocks already assigned, and 4-K blocks
are likely to be large enough to accommodate an increased number of flights. If the
number of flights increase greatly, increase the size of the overflow blocks b
changing the value of the DBDEF ARS parameter and then using the
command. An increase in block size would mean a reduction in I/O processing,
therefore maintaining good performance levels despite the increase in data.

Because the flight file is an index file, its LRECs must contain pointers. The
structure of the flight file LRECs is as follows:

size | key | date | time flt no start dest airc type avail pntr to seat file

Mapping the Seat File

Each LREC in the seat file contains the fields shown in[Table 30} [Table 30| also
shows the number of bytes in each field.

Table 30. LREC Fields for the Seat File

Field No. of bytes
size 2

key 1

seat number 4

seat class 1

passenger name 25
passenger number

pointer to passenger file

Total 46

From this table, you can see that each LREC in the seat file contains 46 bytes.

Because the average number of passengers on each flight is 150, you can
calculate the amount of data as follows:

no. of passengers on each
flight x LREC size = amount of data

The calculation is:
150 x 46 = 6900 bytes

Some aircraft can carry as many as 300 passengers while others can carry only 50.

Because data must be kept for all the different aircraft types, you must also
calculate the maximum and minimum data requirements.

Mapping Tables to TPFDF Files 35

The calculations are as follows:

300 x 46 = 13800 bytes (maximum)
50 x 46 = 2300 bytes (minimum)

Because the seat file is referenced from the flight file (Table 29 on page 34), you

should create it as a pool file. As a pool file, it is allocated only as needed. If you
create the seat file as a fixed file, it is permanently allocated and must be defined
for every file. Therefore, you must consider the size of the file as well.

Distributing the Seat File LRECs

Because 4-K blocks hold only 4033 bytes of user data, some chaining is needed in
this file. The chain lengths vary from 1 to 4. You need 4 blocks to accommodate the
number of seats in the largest aircraft.

When you distribute the seat file LRECs, use algorithm #TPFDBFF to indicate that
the seat file is an index file.

Mapping the Passenger File

Each LREC in the passenger file contains the fields shown in[Table 31} This table
also shows the number of bytes in each field.

Table 31. LREC Fields for the Passenger File

Field No. of bytes
size 2

key 1

passenger number 8

passenger name 25
passenger address n (10-50)
flight information 17
passenger facts 4

Total 107

From this table, you can see that each LREC in the passenger file contains from
57-97 bytes. (The passenger address field has a minimum of 10 bytes and a
maximum of 50 bytes.)

Data requirements for the passenger file must be calculated twice. You need to
know the requirements for the average number of flights (3) and for the maximum
number of flights (20).

You can calculate the data requirements for the average number of flights as
follows:

number + name + address + facts + (average no. of flights
x flight information) = amount of data

The calculation is:
8+25+n+ 4+ (3 x17) = 88 + n bytes

The calculation for the maximum number of flights is as follows:
8+ 25+ n+ 4+ (20 x 17) = 377 + n bytes

36 TPFDF R1 Database Administration

From these calculations, you can see that most passenger LRECs fit into a single
block of L1 size (320 bytes). However, you need 1 overflow block for each LREC
where passengers are taking 14 flights or more.

Spreading Data over Several LRECs

Some of the passenger LRECs contain too much data to fit into a single 381-byte
block. Moreover, the data held in variable length LRECs is likely to vary in size.

Because the TPFDF product does not allow you to spread a single LREC over
more than 1 block, you must spread the data over several LRECs. The alternative
of using larger blocks for the passenger LRECs is wasteful because only a few of
the LRECs need the larger size block.

Looking at the passenger file again (Table 32), you can see that the data can be
split into five separate LRECs.

Table 32. Passenger File

Passenger Passenger Passenger Flight Date Passenger
number name address facts
Pnl Nal Ad1l Fl1 Dal Ftl
FI2 Dal
FI3 Da2
Pn2 Na2 Ad2 Fl1 Dal Ftl
Pn3 Na3 Ad3 Fl1 Dal
Pn4 Na4 Ad4 Fl1 Dal

shows the five new LRECs and the number of bytes held in each LREC.

size | keyl | name
size | key2 | number
size | key3 | address
size | key4 | flight info.
size | key5 | fact

2+ 1+ 25 =28 bytes
2+1+8=11Dbytes

2+1+n=3+nbytes
2+1+17 =20 bytes

(can be repeated up to 20 times)

2+1+4=7bytes

Figure 15. Spreading Data over Several LRECs

Because the data is now spread over several LRECs, the database must hold
slightly more data. (Each LREC holds 3 bytes of identifying data.) However, the
data is easier to manipulate in this form so that performance is improved overall.

Note: Name and number are kept as two separate LRECs in case the name field

needs to be expanded in the future.

Mapping Tables to TPFDF Files 37

38 TPFDF R1 Database Administration

Coding the DSECT and DBDEF Macros

Each of the files mapped in the previous chapter requires a DSECT macro and a
DBDEF macro. The following describes how to set the global symbols for each
DSECT and gives examples of possible DBDEF statements for each file.

It is assumed that you already know how to create DSECT and DBDEF macros. If
you are not sure how to do this, see the following:

» [‘Creating a DSECT Macro Definition” on page 69
» [‘Creating a DBDEF Macro Definition” on page 89

Only the backward path is shown in the sample DBDEFs. The forward path (recoup
information) is not shown.

Figure 16| shows the DSECT names, algorithms, and paths for each of the six

mapped files.
IR20DF | #TPFDB03 IR21DF | #TPFDBO09 | IR22DF | #TPFDB05 IR25DF | #TPFDB04
Passenger Name Passenger Number Flight Aircraft
Path 2: Date and flight
IR23DF | #TPFDBFF Path 3: All LRECs
Seat Table
Path 0: Name Path 1: Number Path 2: Name
Path 3: FULLFILE
IR24DF | #TPFDBFF w v
Passenger Table
Name
Number
——————— 1
Address |

Flight information

Facts

Figure 16. TPFDF Files: DSECT Names, Algorithms, and Paths

© Copyright IBM Corp. 1997, 2001 39

IR20DF

DSECT and DBDEF for the Passenger Name File

Macro IR20DF is the DSECT for the passenger name file. The following example
shows the DSECT and the DBDEF for this index file.

DSECT
shows the DSECT used to define the passenger name file.

MACRO
&LABEL IR20DF ®=,&SUFFIX=,&0RG=,&ACPDB=
Lx

LR Rk

* *
% IR20DF PASSENGER NAME FILE (INDEX) *
* DATE: 11 APRIL 1991 *
* *
KRR R AR A AR A IRk hhhhhhhhhhkhkhkhdxk
GBLB &IR20DF1 1ST TIME CALLED SWITCH
COPY DBGBL COPY TPFDF GLOBAL DEFINITIONS
COPY DBLCL COPY TPFDF LOCAL DEFINITIONS
&NAM SETC 'IR20DF ' DOC NAME
&DATE SETC 'O6FEB91' UPDATE DATE
&VERS SETC '00" VERSION NUMBER
.**
o DEFINITIONS FOR TPFDF *
CEEKKRR KRR KR KRR KRR KRR KRR AR AR AR AR A hhhhhhhhhhhhhhhhhhhhhhhhhhhrhhrrhhrrhrrrdsx
&SWOOWID SETC '20" FILE ID
&SWOOWRS SETC 'L1' BLOCK SIZE
&SWOORCT SETC '#IR20DF' FACE FILE TYPE
&SWOORBV SETC '#TPFDBO3' FILE ALGORITHM
&SWOOBOR SETC '0" BASE ORDINAL NUMBER
&SWOOEOR SETC '-1' END ORDINAL NBR
&SWOOILV SETC 'O MAXIMUM INTERLEAVING FACTOR IF APPLIC
&SWOOPTN SETC 'O NUMBER OF PARTITIONS
&SWO1EO# SETC '&SWOOEOR' RECOUP END ORDINAL
&SWO2FIL SETC 'IR20DF' FILE DSECT NAME

&SWOO0P1 SETC '00000000' OPT BYTE1
&SWO00P2 SETC '00000110° OPT BYTE2
&SWOOOP3 SETC '00000000' OPT BYTE3
&SWOOTQK SETC '15' HIGHEST TLREC

B o o o o o o e e e R R R R R R R R R R R ok ok ok ok ok ok ok R ok ok R ok ok R kR R
COPY DBCOD COPY DSECT DEFINITION FUNCTIONS
AIF ('&IR20DF1' EQ '1').NOT1ST

Kok ko k k Kk ok ok k k ok k Kk K k Kk K k Kk ok k Kk Kk k k Kk k k Kk k * % k *x
DESCRIPTION OF IR20DF
1. DATA AREA NAME
PASSENGER NAME FILE
. MEMBER NAME
IR20DF
3. INVOCATION
IR20DF REG=RGD,

(SUFFIX=X),
(ORG=IR20HDR)

L I I I N G I
nN
£ %k X X ok ok 3k X X X X X X X X %

Figure 17. DSECT to Define the Passenger Name File (Part 1 of 3)

40 TPFDF R1 Database Administration

9

ECEE I R R R R I I R R R R N N I I R N G R R T N S S N N I N R R

8.

. GE

1.

3.

3.1,

.3.2.

. ST

1.

.3.

NERAL CONTENTS AND USAGE
ROLE IN SYSTEM
THE PASSENGER NAME FILE CONTAINS INDEX POINTERS TO THE

PASSENGER FILE. THIS ALLOWS FAST ACCESS TO A PASSENGER
BY THE NAME.

. DATA LAYOUT

STANDARD TPFDF FILE HEADER

ABV.: CREATOR (C), USERS (U), AND PURGER (P) OF EACH LREC.

PRIMARY KEY USAGE
80 PASSENGER NAME LOGICAL RECORD

PROGRAMMING ASPECTS

PROGRAMMING RESTRICTIONS

NONE.

PROGRAMMING TECHNIQUES AND USAGE

STANDARD TPFDF LREC LOCATION TECHNIQUE USING:
- PRIMARY KEY

ORAGE FACTORS
BLOCK SIZE

DEFINED IN DBDEF.

. FILE REQUIREMENTS

THE #TPFDBO3 ALGORITHM REQUIRES 17576 FIXED FILES
ACCESSING SCHEME

(DESCRIBE ALGORITHM, PATHS, UP/DOWN ORGANIZATION AND
CROSS RELATION OF LRECS ETC)

THE FILE IS UP ORGANIZED. IT IS ACCESSED BY THE PATH=0

DEFINITION OF THE PASSENGER FILE.

. DATA CONTROL

1.

2.

CHAINING AND OVERFLOW

STANDARD TPFDF CHAINING.

DATA FIELD ADDRESSING

OFFSET WITHIN STANDARD TPFDF LREC.

. IMPLEMENTATION REQUIREMENTS

RE

FERENCES

. COMMENTS

* k k k¥ k¥ k¥ k¥ k¥ k¥ k k¥ k¥ k¥ k¥ k¥ k Kk *k k¥ Kk Kk *k k& *k *k *k *k * *x *x *x *x *x

Figure 17. DSECT to Define the Passenger Name File (Part 2 of 3)

EE T T R R R R N I I N R G R R R I R R S N N I N R N N N S S

IR20DF

Coding the DSECT and DBDEF Macros 41

IR20DF

DBDEF

EJECT

AIF
#IR20DFS EQU
.CHECKID AIF
#IR20DFI EQU

('&SWOOWRS' EQ '').CHECKID

&SWOOWRS

BLOCK SIZE

('&SWOOWID' EQ '').NOT1ST

C'&SWOOWID'

.NOTIST ANOP

R o o o T R T T T R R S R T S R T Rt L Lt E E E E L L

* STANDARD TPFDF HEADER *

B o o T T T R T S R R S S R L Rt L e e L L L

IR20HDR&CG1

IR20VAR&CG1
IR20HDL&CG1

IR20REC&CG1
IR20SIZ&CG1
IR20KEY&CG1

DS CL16
DS CL1O
EQU ~

FILE ID

STANDARD FILE HEADER
STANDARD TPFDF HEADER
START OF VARIABLE USER-AREA

EQU IR20VAR&CG1-IR20HDR&CG1 HEADER-LENGTH UP TO IR20VAR

ORG IRZ0HDR&CG1

DS 0CL1
DS H
DS X

1ST RECORD START (1=VARIABLE,ELSE SIZE)
SIZE OF LOGICAL RECORD
LOGICAL RECORD IDENTIFIER

AIF ('&IR20DF1' EQ '1').KEYEQ GO IF NOT FIRST ISSUE

EE R R R R R R R R e R R R T T R T R R e S Tt S Lt L T

* EQUATE OF LOGICAL RECORD KEYS (KEY AND LENGTH) *
dhkkhkhkhkhkhkhkhhkhkhhkhhhhhhhhhhhdhhddhhdhhhhhhhhhhhhhhhhkhhhhhhhdrhhhhhhhhhhdxkx
o USE KEY #IR20K80 IF ONLY ONE KEY

o #IR20K00-#IR20KOF ARE RESERVED FOR TPFDF

o #IR20KFO-#IR20KFF ARE RESERVED FOR TPFDF
#IR20K80 EQU X'80" LOGICAL RECORD KEY X'80'

#IR20L80 EQU IR20E8ORCG1-IR2OREC&CG1 LENGTH OF LOGICAL RECORD X'80'
&IR20DF1 SETB (1) INDICATE 1ST TIME THROUGH

.KEYEQ ANOP
IR200RG&CG1 EQU *

K

START VARIABLE DATA PER LREC

B R R R R R R R R R R R R R R R R T R R T R R S S S R S Tt

* DESCRIPTION OF F I RS T LOGICAL RECORD TYPE *
dhkkhkhkhkhkhkhkhkhkhhhkhkhhhhhhhhhhdhhdhdhhdhdhdhhdhdhdhhhhhhhhhhhhhhhhhhhhhhkhhhhhhkkdxkx
IR20FAD&CGL DS OAL4 F.A. OF POINTER USED BY DBDEF
IR20FA1&CGL DS AL4 F.A. OF POINTER TO DETAIL/LOWER LEVEL IN
IR20RCC&CGL DS OAL1 CHECK BYTE USED BY DBDEF
IR20RC1&CG1 DS AL1 CHECK BYTE
IR20A80&CG1 DS 0CL25 KEYAREA
IR20PNM&CGL DS CL25 PASSENGER NAME
IR20E80&CG1 EQU * END OF LOGICAL RECORD WITH KEY = X'80'
*
ORG IR200RG&CG1
K
B o o o o o o R e R R R R R R Rk Rk kR Rk ok ok ok ok ok ok ok ok ok ok ok ok ko ok
AIF (&BG1).MACEXIT GO IF INTERNAL USAGE
&SYSECT CSECT
AIF ('®' EQ '').MACEXIT GO IF REG= NOT SPECIFIED
.GEUSING ANOP GENERATE USING
USING &DSN,®
.MACEXIT ANOP
SPACE 1
MEND

Figure 17. DSECT to Define the Passenger Name File (Part 3 of 3)

Figure 18| shows the position of IR20DF in the file structure.

42 TPFDF R1 Database Administration

IR20DF

i | i | i |
IR20DF | IR21DF | | IR22DF | | IR25DF |
—— e —] —— e —] —— e —]
1I- -1
| IR23DF |
—— e —]
IR24DF

Figure 18. Position of IR20DF in the File Structure

DBDEF FILE=IR20DF, -
(ITK=#IR20K80, ID2=, -
INDEX= (IR24DF,0))

Note: IR20DF and IR21DF both contain references to IR24DF. Specify RCI
processing for these files. (See [Figure 53 on page 138 for more details of
RCI processing.)

Coding the DSECT and DBDEF Macros 43

IR21DF

DSECT and DBDEF for the Passenger Number File

Macro IR21DF is the DSECT for the passenger number file. The following example
shows the DSECT and the DBDEF for this index file.

DSECT
shows the DSECT used to define the passenger number file.

MACRO
&LABEL IR21DF ®=,&SUFFIX=,&0RG=,&ACPDB=
Lx

EE R R R R R R R R R R R R R R R R R R e R R R R R R R R R R R R R R R R R R Rk

* *
« IR21DF PASSENGER NUMBER FILE (INDEX) *
* DATE:11APR91 *
* *
AR R AR AR AR AR A KKKk hkhhhhhhhkkk
GBLB &IR21DF1 1ST TIME CALLED SWITCH
COPY DBGBL COPY TPFDF GLOBAL DEFINITIONS
COPY DBLCL COPY TPFDF LOCAL DEFINITIONS
&NAM SETC 'IR21DF ' DOC NAME
&DATE SETC 'O8FEB91' UPDATE DATE
&VERS SETC '00' VERSION NUMBER
B o o o o e o o o R R R R R R R Rk R ok ok R ok ok ok ok ok ok ok ok ok ok R R R R R R R R R R
DEFINITIONS FOR TPFDF *
B o o o o o o o e R R R R R Rk Rk R ok R R ok ok ok ok ok ok ok ok R R R R R R R R R R
&SWOOWID SETC '21° FILE ID
&SWOOWRS SETC 'L4' BLOCK SIZE
&SWOOARS SETC 'L2' ALTERNATE BLOCK SIZE
&SWOORCT SETC '#IR21DF' FACE FILE TYPE
&SWOORBV SETC '#TPFDBO9' FILE ALGORITHM
&SWOOBOR SETC '0° BASE ORDINAL NUMBER
&SWOOEOR SETC '-1' END ORDINAL NBR
&SWOOILV SETC 'O MAXIMUM INTERLEAVING FACTOR IF APPLIC
&SWOOPTN SETC '0° NUMBER OF PARTITIONS
&SWO1EO# SETC '&SWOOEOR' RECOUP END ORDINAL
&SWO2FIL SETC 'IR21DF' FILE DSECT NAME

&SWOOOP1 SETC '00000000" OPT BYTE1
&SWO00P2 SETC '00000110° OPT BYTE2
&SWOO0P3 SETC '00000000' OPT BYTE3

&SWOOTQK SETC '15' HIGHEST TLREC
R e R T R e R T T T
COPY DBCOD COPY DSECT DEFINITION FUNCTIONS

AIF ('&IR21DF1' EQ '1').NOTIST

* k% k% k k k¥ k¥ k¥ *¥ k¥ ¥ k¥ * k* k * k Kk *k Kk *k Kk Kk *k *k *k *k * * *x *x * *x

DESCRIPTION OF IRZ21DF

—_

. DATA AREA NAME

PASSENGER NUMBER INDEX FILE

N

. MEMBER NAME

IR21DF

EEE R R R
* Ok 3k X X ok ok X X X X

Figure 19. DSECT to Define the Passenger Number File (Part 1 of 3)

44 TPFDF R1 Database Administration

9

LR I R R S R R T R R R R N N N N N S R R R T T R T N R . R T I I N R N R S S N

7.

8.

. INVOCATION
IR21DF REG=RGD,
(SUFFIX=X),
(ORG=IR21HDR)
. GENERAL CONTENTS AND USAGE
.1. ROLE IN SYSTEM

THE IR21DF CONTAINS INDEX POINTERS TO THE PASSENGER FILE
BASED ON THE UNIQUE PASSENGER NUMBER.

.2. DATA LAYOUT
STANDARD TPFDF FILE HEADER
ABV.: CREATOR (C), USERS (U), AND PURGER (P) OF EACH LREC.

PRIMARY KEY USAGE
80 PASSENGER NUMBER LOGICAL RECORD

.3. PROGRAMMING ASPECTS
.3.1. PROGRAMMING RESTRICTIONS
NONE.
.3.2. PROGRAMMING TECHNIQUES AND USAGE

STANDARD TPFDF LREC LOCATION TECHNIQUE USING:
- PRIMARY KEY

. STORAGE FACTORS
.1. BLOCK SIZE
DEFINED IN DBDEF.
.2. FILE REQUIREMENTS
THE NUMBER OF FILES ALLOCATED IS 7999.
.3. ACCESSING SCHEME
(DESCRIBE ALGORITHM, PATHS, UP/DOWN ORGANIZATION AND
CROSS RELATION OF LRECS ETC)
THE IR21DF IS ACCESSED BY PATH=1 OF THE PASSENGER FILE.
. DATA CONTROL
.1. CHAINING AND OVERFLOW
STANDARD TPFDF CHAINING.
.2. DATA FIELD ADDRESSING
OFFSET WITHIN STANDARD TPFDF LREC.
IMPLEMENTATION REQUIREMENTS
REFERENCES

. COMMENTS

* k k k k k k k ¥ k ¥ k¥ k¥ k¥ k k* k k k k k k %k *k Kk *k *k * *x *x % *x *x

Figure 19. DSECT to Define the Passenger Number File (Part 2 of 3)
Coding the DSECT and DBDEF Macros 45

LR R R R S R I I S R R R T G R I R N N N R R G G I I N

IR21DF

IR21DF

DBDEF

EJECT
AIF ('&SWOOWRS' EQ '').CHECKID
#IR21DFS EQU &SWOOWRS BLOCK SIZE

.CHECKID AIF ('&SWOOWID' EQ '').NOTIST
#IR21DFI EQU C'&SWOOWID' FILE ID
.NOTIST ANOP

R o e e o T T R R R R S R T R R T R R L Rt R E L L

* STANDARD TPFDF HEADER *
KKIKKKRKRKRKRKRKRRRKRRRKRRRRRRXhhkhkhkhkhhkkhkhkhkhkhkhkkhkhkkhkhkkkhkkkhkhkkhkhkkhkhkkkhkkkhkkkk%x
IR21HDR&CG1 DS CL16 STANDARD FILE HEADER

DS CL10 STANDARD TPFDF HEADER
IR21VAR&CG1 EQU * START OF VARIABLE USER-AREA
IR21HDL&CG1 EQU IR21VAR&CG1-IR21HDR&CG1 HEADER-LENGTH UP TO IR21VAR

ORG IRZ1HDR&CG1
IR21REC&CG1 DS 0OCL1 1ST RECORD START (1=VARIABLE,ELSE SIZE)
IR21S17&CG1 DS H SIZE OF LOGICAL RECORD
IR21KEY&CG1 DS X LOGICAL RECORD IDENTIFIER

AIF ('&IR21DF1' EQ '1').KEYEQ GO IF NOT FIRST ISSUE

B R R R R R R R R e R R R R S R R R R e S S T S L Lt Lt L

* EQUATE OF LOGICAL RECORD KEYS (KEY AND LENGTH) *
hhkkhkhkkhhkhkhhhhhhhhhhhhhhhhhhhdhdhhhhhhhhhhhhhkhhhkhhhhhhhhhhhhhhhhhkhhkhhhhkdixdx
o USE KEY #IR21K80 IF ONLY ONE KEY

o #IR21K00-#IR21KOF ARE RESERVED FOR TPFDF

* #IR21KFO-#IR21KFF ARE RESERVED FOR TPFDF

#IR21K80 EQU X'80° LOGICAL RECORD KEY X'80'

#IR21L80 EQU IR21E80&CG1-IR2IREC&CG1 LENGTH OF LOGICAL RECORD X'80'
&IR21DF1 SETB (1) INDICATE 1ST TIME THROUGH

.KEYEQ ANOP

IR210RG&CGL EQU * START VARIABLE DATA PER LREC

R e e e e R T e T T S R S S e S S e S L L e L e L s L L

* DESCRIPTION OF FIRST LOGICAL RECORD TYPE *
""""""" R R a3
IR21FAD&CG1 DS OAL4 F.A. OF POINTER USED BY DBDEF

IR21FA1&CG1 DS AL4 F.A. OF POINTER TO DETAIL/LOWER LEVEL INDX
IR21RCC&CG1 DS OAL1 CHECK BYTE USED BY DBDEF

IR21RC1&CG1 DS ALl CHECK BYTE

IR21A80&CG1 DS 0OCL8 KEYAREA

IR2INBR&CG1 DS CL8 UNIQUE PASSENGER NUMBER

IR21E80&CG1 EQU = END OF LOGICAL RECORD WITH KEY = X'80'

K

ORG IR210RG&CG1
J*
LRk ook ko ek ok ek ko ek ok ek ok ek ok ok ke ke ko ko
AIF (&BG1).MACEXIT GO IF INTERNAL USAGE
&SYSECT CSECT
AIF ('®' EQ '').MACEXIT GO IF REG= NOT SPECIFIED
.GEUSING ANOP GENERATE USING
USING &DSN,®
.MACEXIT ANOP
SPACE 1
MEND

Figure 19. DSECT to Define the Passenger Number File (Part 3 of 3)

Figure 20| shows the position of IR21DF in the file structure.

46 TPFDF R1 Database Administration

IR21DF

i | i | i |
| IR20DF | IR21DF | IR22DF | | IR25DF |
[—— [—— [——
1I- -1
| IR23DF |
[——
IR24DF

Figure 20. Position of IR21DF in the File Structure

DBDEF FILE=IR21DF, -
(ITK=#IR21K80,1D2=, -
INDEX=(IR24DF,0))

Note: IR20DF and IR21DF both contain references to IR24DF. Specify RCI
processing for these files. (See [Figure 53 on page 138 for more details of
RCI processing.)

Coding the DSECT and DBDEF Macros

47

IR22DF

DSECT and DBDEF for the Flight File

Macro IR22DF is the DSECT for the flight file. The following example shows the
DSECT and the DBDEF for this index file.

DSECT
shows the DSECT used to define the flight file.

MACRO
&LABEL IR22DF ®=,&SUFFIX=,&0RG=,&ACPDB=
Lx

EE R R R R R R R R R R R R R R R R R R e R R R R R R R R R R R R R R R R R R Rk

* *
« IR22DF FLIGHT FILE (INDEX) *
* DATE: 11APRI1 *
* *
AR R AR AR AR AR A KKKk hkhhhhhhhkkk
GBLB &IR22DF1 1ST TIME CALLED SWITCH
COPY DBGBL COPY TPFDF GLOBAL DEFINITIONS
COPY DBLCL COPY TPFDF LOCAL DEFINITIONS
&NAM SETC 'IR22DF ' DOC NAME
&DATE SETC 'O8FEB91' UPDATE DATE
&VERS SETC '00" VERSION NUMBER
_**
o DEFINITIONS FOR TPFDF *
CEE KRR KRR R KRR KRR AR AR AR AR AR A A A hhhhhhhhhhhhhhhhhhhhhhhhhdhdhhrdhddhdxxxx%x%
&SWOOWID SETC '22" FILE ID
&SWOOWRS SETC 'L4' BLOCK SIZE
&SWOORCT SETC '#IR22DF' FACE FILE TYPE
&SWOORBV SETC '#TPFDBO5' FILE ALGORITHM
&SWOOBOR SETC '0° BASE ORDINAL NUMBER
&SWOOEOR SETC '-1' END ORDINAL NBR
&SWOOILV SETC 'O MAXIMUM INTERLEAVING FACTOR IF APPLIC
&SWOOPTN SETC 'O NUMBER OF PARTITIONS
&SWO1EO# SETC '&SWOOEOR' RECOUP END ORDINAL
&SWO2FIL SETC 'IR22DF' FILE DSECT NAME

&SWOO0P1 SETC '00000000' OPT BYTE1
&SWO00P2 SETC '00000110° OPT BYTE2
&SWOOOP3 SETC '00000000" OPT BYTE3
&SWOOTQK SETC '15' HIGHEST TLREC

B o o o o R R R R R R Rk Rk R ok ok R ok ok ok ok ok ok ok ok ok R R R R R R R R R
COPY DBCOD COPY DSECT DEFINITION FUNCTIONS
AIF ('&IR22DF1' EQ '1').NOTIST

Kok ko k ok Kk ok ok Kk k ok k Kk K k % K k Kk Kk k Kk Kk k k Kk k k K k * * k *x
DESCRIPTION OF IR22DF
1. DATA AREA NAME
FLIGHT FILE

2. MEMBER NAME
IR22DF

3. INVOCATION
IR22DF REG=RGD,

(SUFFIX=X),
(ORG=IR22HDR)

EE I I SR R I R I I
* Ok Sk X Xk ok 3k X X X X X X X X %

Figure 21. DSECT to Define the Flight File (Part 1 of 3)

48 TPFDF R1 Database Administration

E R R N S N T R R R T N N N T N S N S R G R R R . N N N R N N N N N S N T G
[S]

* k Kk k k k k k k k k ¥ k¥ ¥ *¥ k¥ ¥ ¥ ¥ ¥ ¥ k¥ k¥ ¥ ¥ Kk ¥ & % % %k % * *

8.

9.

. GENERAL CONTENTS AND USAGE
.1. ROLE IN SYSTEM

THIS FILE CONTAINS ALL THE FLIGHTS FOR A PARTICULAR DAY
WITH POINTERS TO THE SEAT FILE.

.2. DATA LAYOUT
STANDARD TPFDF FILE HEADER
ABV.: CREATOR (C), USERS (U), AND PURGER (P) OF EACH LREC.

PRIMARY KEY USAGE
80 FLIGHT INFORMATION LOGICAL RECORD

.3. PROGRAMMING ASPECTS
.3.1. PROGRAMMING RESTRICTIONS
NONE.
.3.2. PROGRAMMING TECHNIQUES AND USAGE

STANDARD TPFDF LREC LOCATION TECHNIQUE USING:
- PRIMARY KEY

. STORAGE FACTORS

.1. BLOCK SIZE
DEFINED IN DBDEF.

.2. FILE REQUIREMENTS

REQUIRES 366 FIXED FILES, 1 PER DAY

.3. ACCESSING SCHEME
(DESCRIBE ALGORITHM, PATHS, UP/DOWN ORGANIZATION AND
CROSS RELATION OF LRECS ETC)
IS ACCESSED BY PATH=3 AND PATH=4 OF THE PASSENGER FILE.
. DATA CONTROL
.1. CHAINING AND OVERFLOW
STANDARD TPFDF CHAINING.
.2. DATA FIELD ADDRESSING
OFFSET WITHIN STANDARD TPFDF LREC.
. IMPLEMENTATION REQUIREMENTS
REFERENCES

COMMENTS

Figure 21. DSECT to Define the Flight File (Part 2 of 3)

L I T R N S N N N . B I R T G R R R R N T I S I G T R N

IR22DF

Coding the DSECT and DBDEF Macros 49

IR22DF

EJECT
AIF ('&SWOOWRS' EQ '').CHECKID
#IR22DFS EQU &SWOOWRS BLOCK SIZE

.CHECKID AIF ('&SWOOWID' EQ '').NOTIST
#IR22DFI EQU C'&SWOOWID' FILE ID
.NOTIST ANOP

B o o T e T T R e S e e S L e e L e s L e L

* STANDARD TPFDF HEADER *
KRR AR KA T A AT FRA AT A AR K AT H A AT H R A KA AR H AR FAK AT KA KA R AT F R AT AT A XK
IR22HDR&CGL DS CL16 STANDARD FILE HEADER

DS CL10 STANDARD TPFDF HEADER
IR22VAR&CGL EQU = START OF VARIABLE USER-AREA

IR22HDL&CG1 EQU IR22VAR&CG1-IR22HDR&CG1 HEADER-LENGTH UP TO IR22VAR
ORG IRZ22HDR&CG1

IR22REC&CGL DS OCL1 1ST RECORD START (1=VARIABLE,ELSE SIZE)
IR22SI1Z&CG1 DS H SIZE OF LOGICAL RECORD
IR22KEY&CGL DS X LOGICAL RECORD IDENTIFIER

AIF ('&IR22DF1' EQ '1').KEYEQ GO IF NOT FIRST ISSUE
hhkhkhkhkhkhkhkhhhkhhhkhhhhhhhhhhhdhhdhddhhdhdhhhhhhhhhkhhhkhhhhhhhhhhhdhhhhdhhhhkkkkkkkx
* EQUATE OF LOGICAL RECORD KEYS (KEY AND LENGTH) *
ER R
o USE KEY #IR22K80 IF ONLY ONE KEY
o #IR22K00-#IR22KOF ARE RESERVED FOR TPFDF
o #IR22KFO-#IR22KFF ARE RESERVED FOR TPFDF
#IR22K80 EQU X'80" LOGICAL RECORD KEY X'80'
#IR22L80 EQU IR22E80&CG1-IR22REC&CG1 LENGTH OF LOGICAL RECORD X'80"
&IR22DF1 SETB (1) INDICATE 1ST TIME THROUGH
.KEYEQ ANOP
IR220RG&CG1 EQU * START VARIABLE DATA PER LREC
*
khkkhkhkhkhkhkhkhkhkhkhhkhkhhhhhhhhhhdhhhdhdhhdhdhdhhdhhhhhhhhhhhhhhhhhkhhhhhhhkhhhhkhkhkkkkdkkx
* DESCRIPTION OF F I RS T LOGICAL RECORD TYPE *
hhkkhkhkkhhkhhhkhhhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhkhhhhkhhhkhdhhhdhhhhdhhhhhkkkkhkkx
IR22FAD&CGL DS OAL4 F.A. OF POINTER USED BY DBDEF
IR22FA1&CGL DS AL4 F.A. OF POINTER TO DETAIL/LOWER LEVEL INDX
IR22RCC&CG1 DS OALL CHECK BYTE USED BY DBDEF
IR22RC1&CG1 DS AL1 CHECK BYTE
IR22A80&CG1 DS 0CL27 KEYAREA
IR22FLN&CGL DS CL7 FLIGHT NUMBER
IR22DAT&CGL DS XL2 DATE OF FLIGHT
IR22TIM&CGL DS XL2 TIME OF FLIGHT
IR22BRD&CGL DS CL3 BOARDING POINT
IR22DES&CGL DS CL3 DESTINATION
IR22ACT&CGL DS CL4 AIRCRAFT TYPE
IR22AVL&CGL DS XL6 AVAILABILITY COUNTS FOR THE 3 CLASSES
IR22E80&CGL EQU * END OF LOGICAL RECORD WITH KEY = X'80°

J*
ORG IR220RG&CG1
J*
Lk o ek ek ko ek ek ek ke ko
AIF (&BG1).MACEXIT GO IF INTERNAL USAGE
&SYSECT CSECT
AIF ('®' EQ '').MACEXIT GO IF REG= NOT SPECIFIED
.GEUSING ANOP GENERATE USING
USING &DSN,®
.MACEXIT ANOP
SPACE 1
MEND

Figure 21. DSECT to Define the Flight File (Part 3 of 3)

50 TPFDF R1 Database Administration

IR22DF

DBDEF

Figure 22| shows the position of IR22DF in the file structure.
171 171 171
1 IR20DF 1| 1 IR21DF | IR22DF 1 IR25DF 1|
—— e —] —— e —] l —— e —]

IR23DF
|-~ T T |
| IR24DF |

e oo o o e e e e e e e

Figure 22. Position of IR22DF in the File Structure
DBDEF FILE=IR22DF, -

(ITK=#IR22K80,ID2=, -
INDEX=(IR23DF,0))

Coding the DSECT and DBDEF Macros 51

IR23DF

DSECT and DBDEF for the Seat File

Macro IR23DF is the DSECT for the seat file. The following example shows the
DSECT and the DBDEF for this index file.

DSECT
shows the DSECT used to define the seat file.

MACRO
&LABEL IR23DF ®=,&SUFFIX=,&0RG=,&ACPDB=
s
oS oK R R KR K R ek ek

* *
« IR23DF SEAT FILE (INDEX) *
* DATE: 11APR91 *
* *
hhkhkhkhkkhhkhhhhhhhhhhhhhhhhhdhhddhhhhhhhhhhhhhkhhhkhhhhkhhhhdhdhhhhhkhhkkhkdkkx
GBLB &IR23DF1 1ST TIME CALLED SWITCH
COPY DBGBL COPY TPFDF GLOBAL DEFINITIONS
COPY DBLCL COPY TPFDF LOCAL DEFINITIONS
&NAM SETC 'IR23DF ' DOC NAME
&DATE SETC 'O8FEB91' UPDATE DATE
&VERS SETC '00" VERSION NUMBER
B o o o o o o e R R R R R R R Rk R R R R ok ok ok ok ok ok ok ok ok ok R R R R R R R R
o DEFINITIONS FOR TPFDF *
B o o o o o o o o e e R R R R R R R R Rk kR ok R ok ok ok ok ok ok ok ok R R R R R R R R R R
&SWOOWID SETC '23" FILE ID
&SWOOWRS SETC 'L4' BLOCK SIZE
&SWOORBV SETC '#TPFDBFF' FILE ALGORITHM
&SWO2FIL SETC 'IR23DF' FILE DSECT NAME

&SWOOOP1 SETC '00000000' OPT BYTE1
&SWO00P2 SETC '00000110° OPT BYTE2
&SWOO0P3 SETC '00000000' OPT BYTE3

&SWOOTQK SETC '15' HIGHEST TLREC
""""""" R R R R R S P e
COPY DBCOD COPY DSECT DEFINITION FUNCTIONS

AIF ('&IR23DF1' EQ '1').NOT1ST

Kok ok ok k Kk ok ok k Kk K k Kk Kk k Kk Kk k Kk k X k Kk K k % K * * K x * *

DESCRIPTION OF IR23DF

1. DATA AREA NAME
SEAT FILE

2. MEMBER NAME
IR23DF

3. INVOCATION
IR23DF REG=RGD,

(SUFFIX=X),
(ORG=IR23HDR)

E o R I R
F ook 3k X X ok o 3k X X X X X X X X X 3k

Figure 23. DSECT to Define the Seat File (Part 1 of 3)

52 TPFDF R1 Database Administration

IR23DF
4. GENERAL CONTENTS AND USAGE

4.1. ROLE IN SYSTEM

CONTAINS THE PASSENGER NAMES, NUMBERS, CLASSES AND SEAT
NUMBERS FOR A PARTICULAR FLIGHT.

4.2. DATA LAYOUT
STANDARD TPFDF FILE HEADER
ABV.: CREATOR (C), USERS (U), AND PURGER (P) OF EACH LREC.

PRIMARY KEY USAGE
80 SEAT ALLOCATION LOGICAL RECORD

4.3. PROGRAMMING ASPECTS
4.3.1. PROGRAMMING RESTRICTIONS
NONE.
4.3.2. PROGRAMMING TECHNIQUES AND USAGE

STANDARD TPFDF LREC LOCATION TECHNIQUE USING:
- PRIMARY KEY

5. STORAGE FACTORS
5.1. BLOCK SIZE
DEFINED IN DBDEF.
5.2. FILE REQUIREMENTS
POOL FILES (VARIES WITH NUMBER OF FLIGHTS AND AIRCRAFT TYPE)
5.3. ACCESSING SCHEME
(DESCRIBE ALGORITHM, PATHS, UP/DOWN ORGANIZATION AND
CROSS RELATION OF LRECS ETC)
THIS FILE IS ACCESSED BY PATH=3 AND PATH=4 METHODS OF FILE
IR24DF (PASSENGER FILE).
6. DATA CONTROL
6.1. CHAINING AND OVERFLOW
STANDARD TPFDF CHAINING.
6.2. DATA FIELD ADDRESSING
OFFSET WITHIN STANDARD TPFDF LREC.
7. IMPLEMENTATION REQUIREMENTS
8. REFERENCES

9. COMMENTS

L I T R T R I N N S . N N N S O SR R R I R R S T I I S S T N I R G T
L I I S R T B S N N N I N N I R G I I N T R R I I

* k% k% k k k k¥ k *¥ k¥ ¥ k¥ k¥ k¥ k* k¥ k Kk *k *k %k *k Kk %k *k %k *k %k * *x *x *x *x

Figure 23. DSECT to Define the Seat File (Part 2 of 3)

Coding the DSECT and DBDEF Macros 53

IR23DF

EJECT
AIF ('&SWOOWRS' EQ '').CHECKID
#IR23DFS EQU &SWOOWRS BLOCK SIZE

.CHECKID AIF ('&SWOOWID' EQ '').NOTIST
#IR23DFI EQU C'&SWOOWID' FILE ID
.NOTIST ANOP

B o o e e T T T S S T S R S S R L R L L R e E L L

* STANDARD TPFDF HEADER *
Kok AR KRR A AR AR KA TR A KA A AT F R A AT H A AR KA F R A AR F R KA T AT TR R AT A KRR
IR23HDR&CGL1 DS CL16 STANDARD FILE HEADER

DS CL10 STANDARD TPFDF HEADER
IR23VAR&CGL EQU = START OF VARIABLE USER-AREA

IR23HDL&CG1 EQU IR23VAR&CG1-IR23HDR&CG1 HEADER-LENGTH UP TO IR23VAR
ORG IRZ23HDR&CG1

IR23REC&CGL DS 0OCLI 1ST RECORD START (1=VARIABLE,ELSE SIZE)
IR23S1Z&CG1 DS H SIZE OF LOGICAL RECORD
IR23KEY&CGL DS X LOGICAL RECORD IDENTIFIER

AIF ('&IR23DF1' EQ '1').KEYEQ GO IF NOT FIRST ISSUE
hhkhkhkhkhkhhkhhhkhhhhhhhhhhhhhhdhhddhhhhhhhhhkhhhhhhhhhhhkhhhhdhhhhhhhhhkhhkkkkx
* EQUATE OF LOGICAL RECORD KEYS (KEY AND LENGTH) *
R R
o USE KEY #IR23K80 IF ONLY ONE KEY
o #IR23K00-#IR23KOF ARE RESERVED FOR TPFDF
o #IR23KFO-#IR23KFF ARE RESERVED FOR TPFDF
#IR23K80 EQU X'80" LOGICAL RECORD KEY X'80'
#IR23L80 EQU IR23E80&CG1-IR23REC&CG1 LENGTH OF LOGICAL RECORD X'80°
&IR23DFL SETB (1) INDICATE 1ST TIME THROUGH
.KEYEQ ANOP
IR230RG&CG1 EQU * START VARIABLE DATA PER LREC
*
khkkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhdhdhdhdhhdhhdhhhhhhhhhhhhhhhhhkhhhhhhhkhhkkkhkhkkkkxkx
* DESCRIPTION OF FIRST LOGICAL RECORD TYPE *
hhkkhkhkhkhhkhhhhhhhhhhhhhhhhhdhhddhhhhhhhhhkhkhhkhkhhhkhdhhhkdhhhhdhhhhhhhhhkhkkdkkx
IR23FAD&CGL DS OAL4 INDEX FILE ADDRESS
IR23FA1&CG1 DS AL4
IR23RCC&CG1 DS OALL INDEX RECORD CODE CHECK
IR23RC1&CG1 DS ALl
IR23A80&CG1 DS 0CL38 USER DEFINED AREA
IR23PNA&CGL DS CL25 PASSENGER NAME
IR23PNN&CGL DS CL8 PASSENGER NUMBER
IR23SNB&CGL DS XL2 SEAT NUMBER
IR23SCL&CG1 DS CL1 SEAT CLASS
IR23E80&CG1 EQU * END OF LOGICAL RECORD WITH KEY = X'80'

oK
ORG IR230RG&CG1

B R R R R Rk R R R R R kR R R R R R R R R R R R R R R R R R Rk ko

* ALGORITHM DESCRIPTION *
khkkhkkhkhkhkhkhkkkhhhhkhhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhhhhkhhhkhkhhkkhhhhkikx
ORG IR23REC&CG1
IR23@2BEGACG] EQU * PATH 2 DESCRIPTION
IR23@2FLN&CG1 DS CL7
IR23@2END&CG1 EQU *
ORG IR23REC&CG1

IR23@3BEG&CG1 EQU =* PATH 3 DESCRIPTION

IR23@3END&CGL EQU =*

LR Rk R R Rk Kok Rk R KRRk KRR KRR Rk
AIF (&BG1).MACEXIT GO IF INTERNAL USAGE

&SYSECT CSECT

AIF ('®' EQ '').MACEXIT GO IF REG= NOT SPECIFIED
.GEUSING ANOP GENERATE USING

USING &DSN,®
.MACEXIT ANOP

SPACE 1

MEND

Figure 23. DSECT to Define the Seat File (Part 3 of 3)

54 TPFDF R1 Database Administration

IR23DF

DBDEF
Figure 24| shows the position of IR23DF in the file structure.
171 1T 71 171
1 IR20DF 1| 1 IR21DF | IR22DF 1 IR25DF 1|
—— e —] —— e —] l —— e —]
IR23DF

v

IR24DF

Figure 24. Position of IR23DF in the File Structure

DBDEF FILE=IR23DF, -
(ITK=#IR22K80, ID2=, -
INDEX=(IR24DF,0)), -
(11D=IR22DF,PTH=2,1KY=80,1PA=7,ILA=2, IPK=0,ILK=9,-
KEY1=(PKY=#IR22K80,UP), -
KEY2=(R=IR22FL,S$=0,UP)), -
(11D=IR22DF,PTH=3,1KY=80, -
KEY1=(PKY=#IR22K80,UP), -
KEY2=(R=IR22FLN, $=0,UP))

Coding the DSECT and DBDEF Macros 55

IR24DF

DSECT and DBDEF for the Passenger File

Macro IR24DF is the DSECT for the passenger file. The following example shows
the DSECT and the DBDEF for this detail file.

DSECT
shows the DSECT used to define the passenger file.

MACRO
&LABEL IR24DF ®=,&SUFFIX=,&0RG=,&ACPDB=
Lx

EE R R R R R R R R R R R R R R R R R R e R R R R R R R R R R R R R R R R R R Rk

* *
« IR24DF PASSENGER FILE *
* DATE: 11APRI1 *
* *
AR R AR AR AR AR A KKKk hkhhhhhhhkkk
GBLB &IR24DF1 1ST TIME CALLED SWITCH
COPY DBGBL COPY TPFDF GLOBAL DEFINITIONS
COPY DBLCL COPY TPFDF LOCAL DEFINITIONS
&NAM SETC 'IR24DF ' DOC NAME
&DATE SETC '11APR91' UPDATE DATE
&VERS SETC '00" VERSION NUMBER
.***
o DEFINITIONS FOR TPFDF *
I KRRR KRR KRR R KRR KRR RRKAAA AR AR A A A A hhhhhhhhhhhhhhhhhhhhhhhrhhrhhrrhrrrdsx
&SWOOWID SETC '24" FILE ID
&SWOOWRS SETC 'L1' BLOCK SIZE
&SWOOARS SETC 'L1' ALTERNATE BLOCK SIZE
&SWOORBV SETC '#TPFDBFF' FILE ALGORITHM
&SWO2FIL SETC 'IR24DF' FILE DSECT NAME

&SWOOOP1 SETC '00000000' OPT BYTE1
&SWO00P2 SETC '00000110° OPT BYTE2
&SWOO00P3 SETC '00000000' OPT BYTE3

&SWOOTQK SETC '15' HIGHEST TLREC
""""""" R R R R R E LT S T
COPY DBCOD COPY DSECT DEFINITION FUNCTIONS

AIF ('&IR24DF1' EQ '1').NOTIST

Mok ok ok k k k ok ok ok Kk ok ok ok kK Kk ok k ok Kk Kk ok kK kK Ak kK
DESCRIPTION OF IR24DF
1. DATA AREA NAME
PASSENGER FILE
2. MEMBER NAME
IR24DF
3. INVOCATION
IR24DF REG=RGD,
(SUFFIX=X),
(ORG=IR24HDR)
4. GENERAL CONTENTS AND USAGE

4.1. ROLE IN SYSTEM

EE I I R R R R T I N R R
* ook Sk 3k X X o S X X X ok %k Sk X X X ok 3k X X X X

THIS FILE CONTAINS ALL PASSENGER RELATED INFORMATION.

Figure 25. DSECT to Define the Passenger File (Part 1 of 4)

56 TPFDF R1 Database Administration

IR24DF

4.2. DATA LAYOUT
STANDARD TPFDF FILE HEADER
ABV.: CREATOR (C), USERS (U), AND PURGER (P) OF EACH LREC.

PRIMARY KEY USAGE

70 NAME LOGICAL RECORD
80 PASSENGER NUMBER

90 ADDRESS

A0 FLIGHT INFORMATION
BO FACTS

4.3. PROGRAMMING ASPECTS
4.3.1. PROGRAMMING RESTRICTIONS
NONE.
4.3.2. PROGRAMMING TECHNIQUES AND USAGE

STANDARD TPFDF LREC LOCATION TECHNIQUE USING:
- PRIMARY KEY

5. STORAGE FACTORS

5.1. BLOCK SIZE
DEFINED IN DBDEF.

5.2. FILE REQUIREMENTS
POOL FILE (NUMBER OF FILES VARIES)

5.3. ACCESSING SCHEME
(DESCRIBE ALGORITHM, PATHS, UP/DOWN ORGANIZATION AND
CROSS RELATION OF LRECS ETC)
THE ACCESS PATHS 2,3 ARE USED TO RETRIEVE THE PASSENGER
FILE BY FLIGHT NUMBER AND DATE, PATH=0 BY PASSENGER NAME
AND PATH=1 BY PASSENGER NUMBER.

6. DATA CONTROL

6.1. CHAINING AND OVERFLOW
STANDARD TPFDF CHAINING.

6.2. DATA FIELD ADDRESSING
OFFSET WITHIN STANDARD TPFDF LREC.

7. IMPLEMENTATION REQUIREMENTS

8. REFERENCES

9. COMMENTS

L R R GRS N N I N G N S I N N T N I A S N T N N N N N N S S
L R R I N I N N R R N N S I N I I R ST G R I R

* k k k k k k k ¥ k ¥ k¥ k¥ k¥ k k* k k k k k k %k *k Kk *k *k * *x * % * *x

Figure 25. DSECT to Define the Passenger File (Part 2 of 4)

Coding the DSECT and DBDEF Macros 57

IR24DF

58

#IR24DFS

EJECT

ATF
EQU

.CHECKID AIF

#IR24DFI
NOTIST

EQU
ANOP

("&SWOOWRS' EQ '').CHECKID
&SWOOWRS BLOCK SIZE
('&SWOOWID' EQ '').NOT1ST
C'&SWOOWID' FILE ID

B o o e e T T T S S T S R S S R L R L L R e E L L

STANDARD TPFDF HEADER

B e e T T T e S e e E S R R L R e L R e L e e L 2 L

*

IR24HDR&CG1 DS CL16 STANDARD FILE HEADER
DS CL10 STANDARD TPFDF HEADER
IR24VAR&CG1 EQU * START OF VARIABLE USER-AREA
IR24HDL&CG1 EQU IR24VAR&CG1-IR24HDR&CG1 HEADER-LENGTH UP
ORG IRZ24HDR&CG1
IR24REC&CG1 DS 0OCL1 1ST RECORD START (1=VARIABLE,
IR24S1Z&CG1 DS H SIZE OF LOGICAL RECORD
IR24KEY&CG1 DS X LOGICAL RECORD IDENTIFIER
AIF ('&IR24DF1' EQ '1').KEYEQ GO IF NOT FIRST

*

TO IR24VAR

ELSE SIZE)

ISSUE

E R o e e T R T T R T R R S S S R L R R L L

EQUATE OF LOGICAL RECORD KEYS (KEY AND LENGTH)

B o o e T T T T R T e R T S R L R e L R e L e L L L

*

oK
K
*

#IR24K70

USE KEY #IR24K80 IF ONLY ONE KEY

*

#I1R24K00-#IR24KOF ARE RESERVED FOR TPFDF
#IR24KFO-#IR24KFF ARE RESERVED FOR TPFDF

EQU X'70' LOGICAL RECORD KEY X'70'
#IR24K80 EQU X'80' LOGICAL RECORD KEY X'80'
#IR24K90 EQU X'90' LOGICAL RECORD KEY X'90'
#IR24KAO EQU X'A0' LOGICAL RECORD KEY X'AO'
#IR24KBO EQU X'BO' LOGICAL RECORD KEY X'BO'
#IR24L70 EQU IR24E70&CG1-IR24REC&CG1 LENGTH OF LOGICAL
#IR24L80 EQU IR24E80&CG1-IR24REC&CG1 LENGTH OF LOGICAL
#IR24L90 EQU IR24E90&CG1-IR24REC&CG1 LENGTH OF LOGICAL
#IR24LA0 EQU IR24EAO&CG1-IR24REC&CG1 LENGTH OF LOGICAL
#IR24LBO EQU IR24EBO&CG1-IR24REC&CG1 LENGTH OF LOGICAL
&IR24DF1 SETB (1) INDICATE 1ST TIME THROUGH
.KEYEQ ANOP
IR240RG&CG1 EQU = START VARIABLE DATA PER LREC

K

RECORD X'70'
RECORD X'80'
RECORD X'90'
RECORD X'AO'
RECORD X'BO'

B R R R Rk R Rk R R Rk o R o R R R R R R R R R R R R R Rk kR ko

PASSENGER NAME LOGICAL RECORD

B Rk Rk

IR24NAM&CG1 DS CL25 PASSENGER NAME

*

IR24E70&CG1 EQU *

X

*

IR24E80&CG1 EQU *

X

*

IR24E90&CG1 EQU *

WX

ORG IR240RG&CG1

B R R R R Rk R R R R R kR R R R R R R R R R R R R R R R R R Rk ko

PASSENGER NUMBER LOGICAL RECORD

B R S R R R R R R R R R R Rk Rk

IR24NUM&CG1 DS CL8 PASSENGER NUMBER

ORG IR240RG&CG1

B R R R Rt Rk

ADDRESS LOGICAL RECORD

B R

IR24ADR&CG1 DS CL50 PASSENGER ADDRESS

ORG IR240RG&CG1

Figure 25. DSECT to Define the Passenger File (Part 3 of 4)

TPFDF R1 Database Administration

*

END OF LOGICAL RECORD WITH KEY = X'70'

*

END OF LOGICAL RECORD WITH KEY = X'80'

*

END OF LOGICAL RECORD WITH KEY = X'90'

DBDEF

EE R

* FLIGHT INFORMATION LOGICAL RECORD *
khkkhkhkhkhkhkkhhkhhhhhhhkhhkhdhhhdhdhhhdhdhhdhhhhhhhhhhhhhhhhhkhkhhhkhhkhkhhkkhkkkkhkhkhdkxkx
IR24FLI&CGL DS OCL17 FLIGHT INFORMATION

IR24FLT&CGL DS CL7 FLIGHT NUMBER

IR24DAT&CGL DS XL2 DATE

IR24TIM&CGL DS XL2 TIME

IR240RI&CGL DS CL3 ORIGIN (START)

IR24DES&CGL DS CL3 DESTINATION

IR24EA0&CGL EQU * END OF LOGICAL RECORD WITH KEY = X'AO'

K
ORG IR240RG&CG1

EE R R R R R R R R R R Rk R R R R R R R R R R R R S R R R R R R R R Rk

* FACTS LOGICAL RECORD *
S e e o ook o ko ke ok ko ek ok ek ok ek ok ko ke
IR24FAC&CG1 DS CL4 FLIGHT INFORMATION

IR24EBO&CGL EQU = END OF LOGICAL RECORD WITH KEY = X'BO'

Lx
ORG TR240RG&CG1

EE R S R R R R R R R R R R Rk

* ALGORITHM DESCRIPTION *

khkkhkkhkhkhkhkhkhkkhhhkhkhhhkhkhkhkhhhhhhhdhdhhdhhhhhhhhhhhhhhhhhkhkhhhkhhhhhhhhhhkkhhkhikxkx
ORG IR24REC&CG1

IR24@OBEGACG] EQU * PATH © DESCRIPTION

IR24@GONAM&CGL DS CL25 PASSENGER NAME

IR24@OEND&CG1 EQU =

ORG IR24REC&CG1
IR24@1BEG&CG1 EQU = PATH 1 DESCRIPTION
IR24@1NUM&CG1 DS CL8 PASSENGER NUMBER
IR24@1END&CG1 EQU =

ORG IR24REC&CG1

IR2402BEG&CG1 EQU = PATH 2 DESCRIPTION
IR24@2DAY&CG1 DS XL4 DAY

IR24@2FLN&CG1 DS CL7 FLIGHT NUMBER
IR24@2PAN&CG1 DS CL25 PASSENGER NAME

IR24@2END&CG1 EQU =*
ORG IR24REC&CGL
IR24@3BEG&CGL EQU =* PATH 3 DESCRIPTION
IR24@3END&CG1 EQU =*
L ke e o o e ek e ek
AIF (&BGI1).MACEXIT GO IF INTERNAL USAGE
&SYSECT CSECT
AIF ('®' EQ '').MACEXIT GO IF REG= NOT SPECIFIED
.GEUSING ANOP GENERATE USING
USING &DSN,®
.MACEXIT ANOP
SPACE 1
MEND

Figure 25. DSECT to Define the Passenger File (Part 4 of 4)

IR24DF

[Figure 26} [Figure 27, and [Figure 28| show the index key definitions for paths 0, 1,

and 2 respectively.

Coding the DSECT and DBDEF Macros 59

IR24DF
Index Keys for Each Path

222
2 3 4 Offsetin the ALG= string

IPK=0
ILK=25

Figure 26. Index Key Definitions for Path 0, IR20DF to IR24DF

01234567 Offsetinthe ALG= string

IPK=0
ILK=8

Figure 27. Index Key Definitions for Path 1, IR21DF to IR24DF

3
2 3 Offset in the ALG= string

Figure 28. Index Key Definitions for Path 2, IR23DF to IR24DF

Figure 29| shows the position of IR24DF in the file structure.

i | i |
IR20DF IR21DF : IR22DF 1 : IR25DF 1
—— e] —— e =]
IR23DF
Path 0 Path 1 l Path 2, Path 3
IR24DF

Figure 29. Position of IR24DF in the File Structure

DBDEF FILE=IR24DF, Passenger File -
(PKY=#IR24K70, -
KEY1=(PKY=#IR24K70,UP), -
KEY2=(R=IR24NAM,UP)), Passenger Name -
(PKY=#IR24K80, -
KEY1=(PKY=#I1R24K80,UP), -
KEY2=(R=IR24NUM,UP)), Passenger Number -
(PKY=#IR24K90, -
KEY1=(PKY=#IR24K90,UP)), -
(PKY=#IR24KAO, -
KEY1=(PKY=#IR24KAO,UP), -

KEY2=(R=IR24DAT,UP), Date -
KEY3=(R=IR24TIM,UP), Time -
KEY4=(R=IR24FLT,UP)), Flight -

(PKY=#IR24KBO, -
KEY1=(PKY=#IR24KBO,UP)), -
(IID=IR20DF,PTH=0,I1KY=80,IPA=0,ILA=1,IPK=0,ILK=25, -
KEY1=(PKY=#IR20K80,UP), -
KEY2=(R=IR20PNM,S=0,UP)), Passenger Name -

60 TPFDF R1 Database Administration

IR24DF

(IID=IR21DF,PTH=1,IKY=80,IPA=0,ILA=8,I1PK=0,ILK=8, -
KEY1=(PKY=#IR21K80,UP), -
KEY2=(R=IR21NBR,S=0,UP)), Passenger Number -
(IID=IR23DF,PTH=2,1KY=80,IPA=0,ILA=0,IPK=9,ILK=25, -
KEY1=(PKY=#IR23K80,UP), -

KEY2=(R=IR23PNA,S=7,UP)), Passenger Name -
(IID=IR23DF,PTH=3,IKY=80, -
KEY1=(PKY=#IR23K80,UP)) A11 Passengers

Coding the DSECT and DBDEF Macros 61

IR25DF

DSECT and DBDEF for the Aircraft File

Macro IR25DF is the DSECT for the aircraft file. The following example shows the
DSECT and the DBDEF for this index file.

DSECT
shows the DSECT used to define the aircraft file.

MACRO
&LABEL IR25DF ®=,&SUFFIX=,&0RG=,&ACPDB=
Lx

EE R R R R R R R R R R R R R R R R R R e R R R R R R R R R R R R R R R R R R Rk

* *
« IR25DF AIRCRAFT FILE *
* DATE: 14JUL90 *
* *
AR R AR AR AR AR A KKKk hkhhhhhhhkkk
GBLB &IR25DF1 1ST TIME CALLED SWITCH
COPY DBGBL COPY TPFDF GLOBAL DEFINITIONS
COPY DBLCL COPY TPFDF LOCAL DEFINITIONS
&NAM SETC 'IR25DF ' DOC NAME
&DATE SETC 'O8FEB91' UPDATE DATE
&VERS SETC '00" VERSION NUMBER
_**
o DEFINITIONS FOR TPFDF *
CEE KRR KRR R KRR KRR AR AR AR AR AR A A A hhhhhhhhhhhhhhhhhhhhhhhhhdhdhhrdhddhdxxxx%x%
&SWOOWID SETC '25' FILE ID
&SWOOWRS SETC 'L2' BLOCK SIZE
&SWOOARS SETC 'L2' ALTERNATE BLOCK SIZE
&SWOORCT SETC '#MISCA4' FACE FILE TYPE

&SWOOBOR SETC '#IR25DFF' BASE ORDINAL NUMBER

&SWOOEOR SETC '#IR25DFL' END ORDINAL NBR

&SWOORBV SETC '#TPFDBO4' RBV TYPE

&SWO1EQ# SETC '&SWOOEOR' RECOUP END ORDINAL

&SWO2FIL SETC 'IR25DF' FILE DSECT NAME

&SWOOOP1 SETC '00000000' OPT BYTEL

&SWOOOP2 SETC '00000110' OPT BYTE2

&SWOOOP3 SETC '00000000' OPT BYTE3

&SWOOTQK SETC '15' HIGHEST TLREC

L FR KRRk koo R kR ko R ok ko Rk ke ok kR Rk ek ko
COPY DBCOD COPY DSECT DEFINITION FUNCTIONS
AIF ('&IR25DF1' EQ '1').NOTIST

Kok ok ok k Kk k Kk Kk ok ok k Kk X k Kk K k ok Kk ok ok Kk ok ok Kk kK ok x ok kK K
DESCRIPTION OF IR25DF
1. DATA AREA NAME

ATRCRAFT FILE
2. MEMBER NAME
IR25DF
3. INVOCATION
IR25DF REG=RGD,

(SUFFIX=X),
(ORG=IR25HDR)

L I I R S
£ %k X X ok ok 3k X X X ok 3k X X X F %

Figure 30. DSECT to Define the Aircraft File (Part 1 of 3)

62 TPFDF R1 Database Administration

4

4

L T R N S R N R N N S . S N I O SR R R R S S N S S N R T R S N

4.

4.

8.

9.

. GENERAL CONTENTS AND USAGE
1. ROLE IN SYSTEM

CONTAINS CONFIGURATION INFORMATION FOR THE VARIOUS AIRCRAFT
TYPES.

.2. DATA LAYOUT
STANDARD TPFDF FILE HEADER
ABV.: CREATOR (C), USERS (U), AND PURGER (P) OF EACH LREC.

PRIMARY KEY USAGE
80 AIRCRAFT TYPE LOGICAL RECORD

.3. PROGRAMMING ASPECTS
3.1. PROGRAMMING RESTRICTIONS
NONE.
.3.2. PROGRAMMING TECHNIQUES AND USAGE

STANDARD TPFDF LREC LOCATION TECHNIQUE USING:
- PRIMARY KEY

. STORAGE FACTORS
.1. BLOCK SIZE
DEFINED IN DBDEF.
.2. FILE REQUIREMENTS
1 #MISCELLANEOUS FILE
.3. ACCESSING SCHEME
(DESCRIBE ALGORITHM, PATHS, UP/DOWN ORGANIZATION AND
CROSS RELATION OF LRECS ETC)
THERE IS NO SPECIAL ACCESS METHOD REQUIRED. THERE IS ONLY
ONE FILE.
. DATA CONTROL
.1. CHAINING AND OVERFLOW
STANDARD TPFDF CHAINING.
.2. DATA FIELD ADDRESSING
OFFSET WITHIN STANDARD TPFDF LREC.
. IMPLEMENTATION REQUIREMENTS
REFERENCES

COMMENTS

* k% k% k k k k¥ k¥ *¥ k¥ ¥ ¥ *¥ k¥ *k * k Kk k& k& %k *k Kk *k *k *k *k * * *x *x *x *x

Figure 30. DSECT to Define the Aircraft File (Part 2 of 3)

L I R T N S N R T N T N N I S R R G R R R N T N S N TN I I T A G

IR25DF

Coding the DSECT and DBDEF Macros 63

IR25DF

DBDEF

EJECT
AIF ('&SWOOWRS' EQ '').CHECKID
#IR25DFS EQU &SWOOWRS BLOCK SIZE

.CHECKID AIF ('&SWOOWID' EQ '').NOTIST
#IR25DFI EQU C'&SWOOWID' FILE ID
.NOTIST ANOP
KAKAA KK h Ak hhkhhhhhhhhhhhhhhhhhhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhhkhdhhhkhhhhhhhhhhhkkx
* STANDARD TPFDF HEADER *
AR AR A AR R A AR A AR Ak hhhhhhhhhkkk
IR25HDR&CGL DS CL16 STANDARD FILE HEADER

DS CL10 STANDARD TPFDF HEADER
IR25VAR&CG1 EQU * START OF VARIABLE USER-AREA
IR25HDL&CG1 EQU IR25VAR&CG1-IR25HDR&CGL HEADER-LENGTH UP TO SAM2VAR

ORG IR25HDR&CG1
IR25REC&CGL DS OCL1 1ST RECORD START (1=VARIABLE,ELSE SIZE)
IR25SIZ&CG1 DS H SIZE OF LOGICAL RECORD
IR25KEY&CGL DS X LOGICAL RECORD IDENTIFIER

AIF ('&IR25DF1' EQ '1').KEYEQ GO IF NOT FIRST ISSUE

E R o e e T R T T R T R R S S S R L R R L L

* EQUATE OF LOGICAL RECORD KEYS (KEY AND LENGTH) *
R R
o USE KEY #IR25K80 IF ONLY ONE KEY

o #IR25K00-#IR25KOF ARE RESERVED FOR TPFDF

* #IR25KFO-#IR25KFF ARE RESERVED FOR TPFDF

#IR25K80 EQU X'80" LOGICAL RECORD KEY X'80'

#IR25L80 EQU IR25E808CG1-IR25REC&CGL LENGTH OF LOGICAL RECORD X'80°
&IR25DF1 SETB (1) INDICATE 1ST TIME THROUGH

.KEYEQ ANOP
IR250RG&CG1 EQU *

. x

START OF LOGICAL RECORD DESCRIPTION

B R o o e T T T R R R R R T R R T R L L

* DESCRIPTION OF F I RS T LOGICAL RECORD TYPE *
hhkkhkhkhkhhkhhhhhhhhhhhhhhhhhdhhddhhhhhhhhhkhkhhkhkhhhkhdhhhkdhhhhdhhhhhhhhhkhkkdkkx
IR25ACT&CGL DS CL4 AIRCRAFT TYPE

IR25STR&CGL DS OXL4 SEAT RANGE

IR25SOR&CG1 DS XL2 START OF RANGE

IR25EOR&CG1 DS XL2 END OF RANGE
IR25CLARCGL DS CL1 CLASS INFORMATION
IR25E80&CG1 EQU * END OF LOGICAL RECORD X'80'
J*
LRk ook ook ko ke ko ok ek ok ok ek kR ek
AIF (&BG1).MACEXIT GO IF INTERNAL USAGE
&SYSECT CSECT
AIF ('®' EQ '').MACEXIT GO IF REG= NOT SPECIFIED
.GEUSING ANOP GENERATE USING
USING &DSN,®
.MACEXIT ANOP
SPACE 1
MEND

Figure 30. DSECT to Define the Aircraft File (Part 3 of 3)

shows the position of IR25DF in the file structure.

64 TPFDF R1 Database Administration

IR25DF

IR25DF

i | i | i |

| IR20DF | | IR21DF | | IR22DF |
—— e —] —— e —] —— e —]
1T 71

| IR23DF |

—— e —]

|
| IR24DF I

e o o o e e e e

Figure 31. Position of IR25DF in the File Structure

DBDEF FILE=IR25DF, -
(PKY=#IR25K80, -
KEY1=(PKY=#IR25K80,UP), -
KEY2=(R=IR25CLA, UP))

Coding the DSECT and DBDEF Macros

65

IR25DF

66 TPFDF R1 Database Administration

Part 2. Creating the DSECT and DBDEF Macros

© Copyright IBM Corp. 1997, 2001

67

68 TPFDF R1 Database Administration

Creating a DSECT Macro Definition

You must create a DSECT macro definition to describe each file that you are going
to access with an application program. Some sample DSECT macro definitions that
can help you in this task are included as part of the TPFDF product. Copy these
DSECTs and modify one or more of the copies to create DSECTs of your own.

Sample DSECT Macros Supplied with the TPFDF Product

able 33| lists the sample DSECT macros that are provided with the TPFDF product.

Table 33. Sample DSECT Macros

Fixed-Length LRECs or |Extended LRECs Extended LRECs
Variable-Length LRECs with Unique Key
Support

R-type B*Tree index file SAMTSR

R-type fixed file SAM1SR SAM6SR SAMESR

R-type pool file SAM2SR SAM7SR SAMFSR

W-type file SAM3SR SAM8SR

T-type file SAMCSR

R-type top-level index file (fixed) SAM4SR SAMISR SAMHSR

R-type lower-level indexed file (pool) SAM5SR SAMKSR SAMGSR

File Names

The TPFDF product uses the DSECT name to identify a file in application

programs. [Figure 32| shows a convention for the 6-character file (and DSECT) name
that is based on the International Passenger Airline Reservation System (IPARS)
standard. While you do not have to use the IPARS standard, the TPFDF product
DSECT names must be 6 characters long and each character must adhere to any
rules stated in the descriptions that follow.

Each character is defined as follows:

N|NJO]JO|C|C

Company code
Any 2 unique characters

File type
Application type

Figure 32. Syntax of a DSECT Macro File Name

15t The first character can be any alphabetic character that defines the
application type. If you are using the International Passenger Airline
Reservation System (IPARS) standard, the first character identifies
one of the following application types:

A Accounting

C Cargo

© Copyright IBM Corp. 1997, 2001 69

Fare quote/ticketing
General functions
Message switching

Operation

Passenger reservation
System software

F
G

M

@)

Q Communication middleware
R

S

w Departure control system
X,

Y, and Z
Reserved for future use.

Optionally, you can set the first character of the DSECT macro
name to any alphanumeric character and use the DBDEF APL
parameter to specify the type of application. See the APL parameter
description on page

2nd The second character is alphabetic. It identifies the type of file:

P P-type files are customer-format files that do not have to
follow the same standards as standard-format files (R, W,
and T). Because P-type files do not have to follow one
standard format, you must include more information when
coding TPFDF macros, functions, and utilities than with
standard-format files. P-type files do not contain logical
records (LRECS); an entire block acts as an LREC.

R Real-time files. This means all types of application data files
(whether stored in fixed or in pool prime blocks), excluding
W-type files.

W Work file that only lasts the lifetime of the entry control block
(ECB).

T Temporary LREC stored in a W-type file.

Optionally, you can set the second character of the DSECT macro
name to any alphanumeric character and use global set symbol
&SWOOTYP to specify the file category. See the &SWOOTYP
description on page

3 and 4™ The third and fourth characters can be any combination of
alphanumeric characters that you choose to identify the file
uniquely. You can set these to the file ID (if this consists of 2
alphanumeric characters).

5t and 6" The fifth and sixth characters can be any combination of
alphanumeric characters that you choose to identify the file. If you
are using the IPARS standard, the fifth and sixth characters
represent a 2-character company code.

Modifying the Sample DSECT Macros

This section describes how to copy and modify one of the sample DSECTS to
create a DSECT to match your own requirements.

70 TPFDF R1 Database Administration

Modifying the Beginning DSECT Macro Statements

Figure 33| shows the beginning macro statements in the sample code for SAM3SR.
The beginning statements, before the Definitions for TPFDF section, are always
required. Do not change or delete them, except to:

* Change the name of the DSECT macro according to naming conventions

* Modify the &NAM, &DATE, and &VERS symbols as necessary.

MACRO LIBR NAME = SAM3SR09
&LABEL SAM3SR ®=,&SUFFIX=,&0RG=,&ACPDB=
S e S e o ook oo ko e o ek e e ke ke ke ke
*

*

x $TITLES SAMPLE DSECT FOR TPFDF W-TYPE BASIC *
« CREATED EX: $CREATES$ DATE: $CDATES *
* *
* *
* CHANCE HISTORY DATE DESCRIPTION *
* *
AR R A AR R A R R A A A A A A A A A A A A A A A KI AR hhhhhhhhhhhhhhhhhhhdhdhhdhdhdhdhdhdhdhdhdhdhdkdx*x

GBLB &SAM3SR1 1ST TIME CALLED SWITCH

COPY DBGBL COPY TPFDF GLOBAL DEFINITIONS

COPY DBLCL COPY TPFDF LOCAL DEFINITIONS
&NAM SETC ' DOC NAME
&DATE SETC '17DEC85' UPDATE DATE
&VERS SETC '03' VERSION NUMBER

Figure 33. Instructions Always Required at the Start of a DSECT Macro Definition

Assigning Values to Global Set Symbols

As shown in |Figure 34f after the Definitions for TPFDF section in the SAM3SR
sample code, there are a series of instructions that assign values to several global
set symbols. Assign values to each global set symbol that you need to define. For

example:

&SWOOWID SETC FILE ID

&SWOOWRS SETC BLOCK SIZE

&SWOOARS SETC ALTERNATE BLOCK SIZE
&SWO2FIL SETC 'SAM3SR' FILE DSECT NAME

&SWOO0P1 SETC '00000000" OPT BYTEL
&SWO00P2 SETC '00000110" OPT BYTE2
&SWOO0P3 SETC '00000000" OPT BYTE3
&SWOOTQK SETC '15' HIGHEST TLREC

Figure 34. Instructions to Assign Values to Global Set Symbols

The global set symbols are described here in alphabetic order.

Notes:

1. Do not assign a value to a particular global set symbol if it is not required. For
example, do not assign values to &SWO00BOR, &SWO0OEOR, and &SWOORCT
for pool files.

2. Do not change any values except &SWO0OWID and &SWOOWRS in the B*Tree
index file sample, SAMTSR.

3. You can override some of the global set symbol values assigned in a DSECT
macro by using a corresponding parameter in the DBDEF instructions or with a
TPFDF macro or function.

Creating a DSECT Macro Definition 71

72

&SWOOARS: Specify the Block Size of Overflow Blocks

&SWOO0ARS is optional. Use it to specify the size of any overflow blocks that
are chained to the prime blocks of the file; for example:

&SWOOARS SETC 'L4'

Because overflow blocks are always pool blocks, &SWOOARS is the only
definition of the overflow block size and does not have to correspond with any
other value defined elsewhere (see the description for &SWO0OP1 bit 5 on

page [75).

If you do not specify &SWO0O0ARS, the TPFDF product assigns a value equal to
the value set for prime blocks, &SWOOWRS.

For add current processing, when the number of chains (NOC) is greater than
0, &SWO00ARS must be equal to the value defined for &SWOOWRS.

For B*Tree index files, &S WOOARS is ignored. &SWOOWRS supplies the block
size of the nodes.

&SWO0BOR: Specify the Begin Ordinal

&SWOOBOR is required for fixed or miscellaneous files. Use &S W00BOR to

specify the beginning ordinal for the file.

 |If this is a fixed file, always set the base ordinal nhumber to zero.
&SWOOBOR SETC '0'

 If this is a miscellaneous file, specify the symbol (usually defined in SYSEQ)
that defines where the miscellaneous file starts in the miscellaneous fixed file
type.
By convention, this symbol is "#", followed by the DSECT macro name,
followed by "F":

&SWOOBOR SETC '#dsnameF'

&SWOOEOR: Specify the End Ordinal

&SWOOEOR s required if this is a fixed or miscellaneous file. Use &SWOOEOR
to specify the end ordinal number for the fixed file.
 If this is a nonpartitioned fixed file, specify -1 (minus 1):

&SWOOEOR SETC '-1'

The TPFDF product resolves the correct value when the file is opened.

 If this is a miscellaneous file, specify the symbol (usually defined in SYSEQ),
that defines where the miscellaneous file ends in the miscellaneous fixed file
type. By convention, this symbol is "#", followed by the DSECT macro name,
followed by "L":
&SWOOEOR SETC '#dsnamel'

 |If this is a partitioned file, specify the number of prime blocks in each
partition, not the total number of prime blocks in all partitions. For example, if
there are 10 ordinals in each partition, specify:
&SWOOEOR SETC '10'

&SWO1EO#: Specify the End Ordinal for TPFDF Recoup

&SWO1EO# specifies the FACE-type end ordinal (for TPFDF recoup).
 If this is a nonpartitioned, noninterleaved fixed file, set as follows:
SWO1EQ# SETC '-1'

 If the file is partitioned, set SWO1EO# to —1 or the total number of prime
blocks in all the partitions of the file.

TPFDF R1 Database Administration

 If the file is interleaved, set SWO1EO# to —1 or the total number of prime
blocks in all the interleaves of the file.

» If the file is miscellaneous, specify the symbol (usually defined in SYSEQ),
which defines where the miscellaneous file ends in the miscellaneous fixed
file type. By convention, this symbol is "#", followed by the DSECT macro
name, followed by "L":

&SWO1EO# SETC '#dsnamel'

Notes:

1. If &SWO1EO# is not specified in the DSECT or the DBDEF EO# parameter
override, -1 is used for fixed file types.

2. If &SWO1EO# is not specified in the DSECT or the DBDEF EO# parameter
override, the &SWOOBOR value or the DBDEF BOR parameter override, is
used for miscellaneous files.

3. Miscellaneous file type prefixes are defined in the TPFDF product with the
&MISTYPE(n) array in segment DBLCL. You can define as many as 20
prefixes (including those shipped with the TPFDF product). For more
information about the DBLCL segment, see [TPFDF Installation and|

&SWO2FIL: Specify the File Name
Set &SWOO02FIL to the DSECT macro name. For example:

&SWOO2FIL SETC 'dsname'

&SWOOILV: Specify the Number of Interleaves
&SWOOILV is optional. If you set this to a nonzero value, it implies that the file
is interleaved. The number you assign defines the number of interleaves. For
example:

&SWOOILV SETC '3'

&SWOONLR: Specify Number of Fixed-Length LRECs in Each Block
&SWOONLR is optional. Only assign a value to &SWOONLR when the file uses
algorithm #TPFDBOD. With this algorithm, the file contains only prime blocks. All
LRECs must be fixed-length. Set &SWOONLR to the maximum number of
LRECs that can fit into each prime block of the file.

Notes:
1. The global set symbol &SWOONLR is not allowed for B"Tree data files.

2. Using the global set symbol &SWOONLR will result in an MNOTE being
issued because the TPFDF product automatically calculates this value, and
any value specified is ignored.

&SWOONOC: Specify the Number of Blocks to Use in Implementing Add

Current Files
Only assign a value to &SWOONOC when bit 2 of &SWOO0OPL1 is set on. Setting
bit 2 of &SWO0O0OPL1 instructs the TPFDF product to limit the number of overflow
blocks used when adding LRECs to the subfile. You can set the limit (using
&SWOONOC) from zero to a maximum of 255 blocks. When this limit is reached
in the subfile, the TPFDF product discards the contents of the oldest chain
block and copies the LRECs from the first chain block to the prime block. The
first (empty) chain block is moved to the last chain block with an initial next
available byte (NAB) setting. A new LREC is added to the last (empty) chain
block. For example:

&SWOONOC SETA 5

instructs the TPFDF product to use the prime block and 5 overflow blocks.

Creating a DSECT Macro Definition 73

If global set symbol &SWOONOC is set to zero, the TPFDF product uses only
the prime block of the subfile.
Note: The &SWOONOC parameter is not allowed for B*Tree data files.

&SWO0OP1: Specify Processing Options
&SWOO0OP1 contains 8 bits that specify TPFDF processing options.

Notes:
1. In the TPFDF product, bit O is the most significant and bit 7 is the least
significant.

2. Bit fields labeled 'reserved' have no meaning in the system. Do not set
them.

Bit 0: Implement Full Backward Chaining
Setting bit 0 of &SWOO0OPL1 indicates that you want full backward chaining.

Backward chaining causes extra I/O overhead each time an overflow block
is inserted or deleted. Backward chaining is required if the DBDEF
DELEMPTY parameter is coded as YES. Backward chaining is
recommended if an application program uses the macro with the
BACKWARD parameter or the function with the DFRED_BACKWARD
option. If backward chaining is not defined, and an attempt is made to read
the file backwards, the action taken by the TPFDF product is determined by
the &DB013A symbol in the DBLCL macro.

Note: The value of &SWO00OP1 bit 0 has no meaning for files that use add
current processing (&SWO0O0OPL1 bit 2 set to 1) with no chains
(&SWOONOC equal to 0).

See [TPFDF Programming Concepts and Reference| for more information
about reading backward. See [TPFDF Installation and Customization| for
more information about the DBLCL macro.

Bit 1: Implement Automatic Chain Correction
If you set bit 1 of &SWO00OP1, the TPFDF product performs automatic
chain correction if it detects a broken chain when you use a macro or
function to access an LREC.

If you have set this indicator and the TPFDF product detects an incorrect
forward chain pointer, it truncates the chain. Data may be lost in these
circumstances, so set bit 1 of &SWO0O0OPL1 only for files where missing data
is not critical.

Bit 2: Implement Add Current Files (Discarding Old Chain Blocks)
Setting bit 2 of &SWOO0OOPL1 indicates that you want to limit the number of
overflow blocks used when adding LRECs.

When this limit is reached, the TPFDF product discards the contents of the
oldest chain block and copies the LRECs from the first chain block to the
prime block. The empty first chain block is moved to the last chain block
with an initial next available byte (NAB) setting. You can set the limit using
the &SWOONOC global set symbol from zero to 255.

If you set the &SWOONOC global set symbol to zero, the TPFDF product
restricts processing to the prime block only. This feature is useful if you
want to keep a limited amount of current data; for example, a log of the last
series of macros issued by the program.

74 TPFDF R1 Database Administration

Notes:
1. Setting bit 2 of &SWO00OP1 is not allowed with B*Tree data files.

2. Do not set bit 2 of &SWOO0OP1 for a file that has index LRECs in a
basic indexing structure.

Bit 3: Implement Pushdown Chaining
If you set bit 3 of &SWO00OP1, this specifies pushdown chaining. This works
as follows:

1. When an application program uses the [DBADD| macro to add a new
LREC, the TPFDF product stores the LREC starting at the next
available byte in the prime block if there is room.

2. If the prime block does not have enough room left for the new LREC,
the TPFDF product gets a new overflow block. It copies the contents of
the prime block into the new overflow block, initializes the prime block,
and puts the next LREC into the start of the prime block which is now
empty.

Notes:

1. If you use this feature, the file cannot be UP or DOWN organized.
2. Setting bit 3 of &SWO00OP1 is not allowed with B*Tree data files.

Bit 4: Checkpoint after Each Macro
If you set bit 4 of &SWO00OP1, the TPFDF product performs a checkpoint
automatically whenever the application program uses the macro. A
checkpoint after each macro call is often useful because application
programs typically call as the first step of a sequence of related
updates to a file.

Bit 5: Specify Variable Sizes of Overflow Block
If bit 5 of &SWO00OP1 is not set, the TPFDF product uses the value you set
in parameter &SWOOARS to determine the size of all overflow blocks.

If you set bit 5 of &SWO00OP1, the TPFDF product uses the size you have
specified for prime blocks (&SWOOWRS) for the first overflow block and the
size you have specified for overflow blocks (&SWOOARS) for all other
overflow blocks.

You must have specified the size of overflow blocks (&SWO00OARS) to be
greater than the size of prime blocks (&SWOOWRS) for this bit setting to be
effective.

Bit 6: Check Whether Blocks Should Be Packed
If you set bit 6 of &SWO0OP1, the TPFDF product always checks for the
packing criteria specified by &SWOOPIN in every block that has been
modified, regardless of whether the |DBDEE| macro or |dfde1|function has
been used to delete LRECs. For example, the |DBREP| macro or|dfrep|
function may have been used to replace an LREC with a smaller LREC.

Notes:

1. This bit setting creates processing overhead.

2. Setting bit 6 of &SWO00OP1 is not allowed with B*Tree data files.
Bit 7: Maintain a File Sequence Update Counter

If you set bit 7 of &SWO00OP1, the TPFDF product maintain a file sequence
update counter in the prime block of the file.

Use this option with the [DBRST] command or [dfrst] function and sequence

parameters.

Creating a DSECT Macro Definiton 75

76

&SWO0OP2: Specify Processing Options
&SWO00OP?2 contains 8 bits that specify TPFDF processing options.

Notes:
1. In the TPFDF product, bit O is the most significant and bit 7 is the least
significant.

2. Bit fields labeled ‘'reserved' have no meaning in the system. Do not set
them.

Bit 0: Validate Next Available Byte (NAB)
When this bit is on, the TPFDF product validates the next available byte
(NAB) every time it files a block.

Note: Using this feature creates processing overhead.

Bit 1: New Pool Option When a File Is Packed
By default, when the TPFDF product packs a file (when you close a file or
use themcommand, or a ZFCRU command with the pack
function), it packs the file into the existing blocks, releasing any overflow
blocks that are no longer required.

If you set bit 1 of &SWO00OP2, new overflow blocks are used and old
overflow blocks are released when a pack operation is completed
successfully.

Bit 2: New Pool Option When a File Is Restored
By default, when the TPFDF product restores a file, it restores the file into
existing blocks releasing any overflow blocks that are no longer required.

If you set bit 2 of &SWO00OP2, new overflow blocks are used and old
overflow blocks are released when a restore operation completes
successfully.

Note: A B*Tree index is always rebuilt using new pool records regardless
of the bit setting.

Bit 3: New Pool Option When a File Is Loaded from Tape
By default, when the TPFDF product loads a file from tape (or for ALCS
users, from sequential file), it loads the file into the existing blocks releasing
any overflow blocks that are no longer required.

If you set bit 3 of &SWO00OP2, new overflow blocks are used and old
overflow blocks are released when a tape load operation completes
successfully.

Bit 4: Retrieve Prime Blocks
Bit 4 should normally be set to zero. When bit 4 is set to zero and a hold is
specified on a TPFDF call (for example, with the HOLD parameter on the
m macro or the DFRED_INDEX_HOLD value on the [dfred] function),
the TPFDF product issues the FIWHC macro to find and hold the prime
block. Because open file processing does not perform an 1/O, the FIWHC
macro is processed on the subsequent TPFDF call that accesses the
subfile.

When bit 4 is set to 1, the TPFDF product issues the FINWC macro to find
the prime block regardless of whether a hold is specified or not, and the
prime block is not held.

Note: Setting bit 4 to 1 allows two ECBs to update a file at the same time.

TPFDF R1 Database Administration

Bit 5: Retrieve Overflow Blocks
Bit 5 should normally be set to 1. When bit 5 is set to zero and a hold is
specified on a TPFDF call (for example, with the HOLD parameter on the
macro or DFRED_INDEX_HOLD value on the function), the
TPFDF product issues the FIWHC macro to find and hold the overflow
blocks. Because open file processing does not perform an I/O, the FIWHC
macro is processed on the subsequent TPFDF call that accesses the
subfile.

When bit 5 is set to 1, the TPFDF product issues the FINWC macro to find
the overflow blocks regardless of whether a hold is specified or not, and the
overflow blocks are not held.

Bit 6: Issue an OPR-DB010C System Error if the File is Modified without
HOLD
Setting bit 6 to 1 causes the TPFDF product to issue an OPR-DB010C
dump and return to the application program when a file that was opened
without the HOLD parameter is modified and then closed. This prevents two
ECBs from updating a file at the same time.

Note: If a file is opened with the HOLD parameter and &SWOOOP?2 bit 4 is
set to 1, setting bit 6 to 1 will not prevent two ECBs from updating
the file at the same time.

Bit 7: Reserved
This bit is reserved for IBM use.

&SWO0OP3: Specify Processing Options
&SWO00OP3 contains 8 bits that specify TPFDF processing options.

Notes:

1. In the TPFDF product, bit O is the most significant and bit 7 is the least
significant.

2. Bit fields labeled 'reserved' have no meaning in the system. Do not set
them.

Bit 0: LRECs Are of Extended Type
If you set bit 0 of &SWO0O0OP3, this indicates to the TPFDF product that all
LRECs in the file are extended LRECSs.

Bit 1: Reserved
This bit is reserved for IBM use.

Bit 2: Reserved
This bit is reserved for IBM use.

Bit 3: File Is an Indexed Fixed File
You must set bit 3 of &SWOOOP3 if the file you are specifying is a fixed file
and it has one or more index files referencing it. See [‘Simple Indexing” on|

Bit 4: Checkpoint When an Index LREC Is Added or Deleted
When the TPFDF product updates index LRECs, the LRECs are updated in
main storage only. The TPFDF product only writes the index file to disk
when the detail file is closed.

If you set bit 4 of &SWO00OP3, the TPFDF product performs a checkpoint
automatically whenever an index LREC is added or deleted from an index
file.

Creating a DSECT Macro Definiton 77

Bit 5: Implement B*Tree Indexing
Set bit 5 of &SW00OP3 for files using B*Tree indexing. See [‘B*Tree]
[Indexing” on page 149|

Note: Before you can implement B*Tree indexing in an ALCS environment,

enable C language support. See [TPFDF Installation and|
for more information.
Bit 6: Default DETAC Mode
When this bit is set, each time you open a subfile, the TPFDF product
opens it in DETAC mode (as if you had used the DETAC parameter with

the [DBOPN| macro or function).

Bit 7: Unique Key Feature
Set this bit if you want to allow application programs to generate unique
keys using the [DBUKY|macro or [dfuky| function.

&SWOOPIN: Specify the Packing Threshold in a Block
When you close a subfile after deleting LRECs, the TPFDF product packs the
subfile if the number of bytes used for LRECs in any block falls below the
percentage (as indicated by &SWOOPIN) of total bytes available for LRECs and
the optional block trailer. If any block falls below the packing threshold, the
subfile is packed to the level defined by the PLI value in the DBDEF. Always
specify a PLI value greater than the &SWOOPIN value; otherwise, the file is
always below the packing threshold and is packed continuously.

For example:
&SWOOPIN SETC '60'

For non-B*Tree files, the default setting is 75% if either &SWOOWRS or
&SWOO0ARS is set to L4. Otherwise the default is 50%. If the PLI parameter is
not specified in the DBDEF, the blocks are packed to 100%.

Note: B*Tree files have the following considerations:

» For B*Tree index files, the &SWOOPIN value (defined in the DBDEF
statement of the data file) applies to node blocks. If a node block
drops below the specified percentage, the node block is balanced or
combined with an adjacent node. The default value, which is the
maximum for a B™Tree index file, is 50%.

» For B*™Tree index files, the &SWOOPIN value should be set to 0 in the
DSECT or by using the PIN parameter on the DBDEF macro so node
blocks are not accidentally packed by a utility.

- B*Tree data files are only packed using a utility or when the file is
closed, there are no nodes in the B*Tree structure, and there are
overflow blocks in the data file.

&SWOOPTN: Specify the Number of Partitions
&SWOOPTN is required for partitioned files. It specifies the number of partitions.
For example:

&SWOOPTN SETC '4'

&SWOORBV: Specify the Addressing Algorithm
&SWOORBY defines the algorithm you want to use with this file.

If the file is a detail pool file, set it to "#TPFDBFF" as follows:
&SWOORBV SETC '#TPFDBFF'

78 TPFDF R1 Database Administration

Table 34. Algorithms

Direct Translation Algorithms
There are eight TPFDF algorithms that distribute LRECs to subfiles
using a direct relation between the algorithm argument and the subfile
(ordinal) number.

Using Your Own Distribution Method
If you want to allocate LRECs over subfiles yourself, there are two
TPFDF algorithms that let you use your own distribution method.

Hashing Algorithms
Hashing algorithms distribute LRECs across any number of subfiles in a
file. To get an even distribution:
* Use a prime number for the number of subfiles.
* Use a wide a range of numbers or characters in the algorithm
argument.

Algorithm for Files Requiring No Overflow
The TPFDF product provides one algorithm, #TPFDBOD, which
distributes LRECs across prime blocks only. Use this algorithm if you
want to avoid chaining.

Because the TPFDF product does not have to search through a chain
of overflow blocks, this algorithm provides one of the fastest ways of
retrieving data, but only works with fixed-length LRECs. You access the
data in this type of file using the LRECNBR parameter.

Single-Subfile Algorithm
The TPFDF product provides the #TPFDBO04 algorithm for files that
have a single subfile.

Algorithm for Basic and B*Tree Index Support
The TPFDF product provides the #TPFDBFF algorithm for basic and
B*Tree index support.

Create Your Own Algorithm
To create your own (user-defined) algorithm, do the following:
* Specify an equate value in the range 256-511 in the ACPDBE macro
* Specify the user-defined algorithm in user exit UWBD
» Set the &SWOORBYV symbol.

Note: See [Table 34|for a list of the previously mentioned algorithms.

Direct Translation

#TPFDBO1 Distributes LRECs across subfiles according to the first alphabetic character in the algorithm
argument. It requires 26 subfiles; one for each letter of the alphabet.

#TPFDB02 Distributes LRECs among subfiles according to the first 2 alphabetic characters in the algorithm
argument. It requires 676 subfiles, one for each combination of 2 alphabetic characters:

AA, AB, AC,...ML, MM, MN,...ZX, ZY, ZZ

#TPFDBO03 Distributes LRECs across subfiles according to the first 3 alphabetic characters in the algorithm
argument. It requires 17 576 subfiles, one for each combination of 3 alphabetic characters:

AAA, AAB, AAC,...MOL, MOM, MON,...ZZX, ZZY, 771

#TPFDBO06 Distributes LRECs across subfiles according to the first alphabetic or numeric character in the
algorithm argument. It requires 36 subfiles, one for each letter of the alphabet and one for each
numeric character (0-9).

Creating a DSECT Macro Definition 79

Table 34. Algorithms (continued)

#TPFDBO7

Distributes LRECs across subfiles according to the first 2 alphabetic or numeric characters in the
algorithm argument. It requires 1296 subfiles, one for each combination of 2 alphabetic or numeric
characters:

AA,...AO,...A9,...7A,...20,...29,...12,...5M,...99

#TPFDBO08

Distributes LRECs across subfiles according to the first 3 alphabetic or numeric characters in the
algorithm argument. It requires 46 656 subfiles, one for each combination of 3 alphabetic or numeric
characters:

AAA,...AAZ,...AAO,...AA9,...A0O,...AO9,...A99,...M56,...790,...123,...4T6,...999

#TPFDBOA

Distributes LRECs among subfiles according to the first alphabetic, numeric, or special character in
the algorithm argument. It requires 43 subfiles, one for each letter of the alphabet, one for each
numeric character, and one for each of the following special characters:
. (x'aB")
$ (X'5B')
(x'5C")
(x'60")
(x'61")
(x'78")
(x'7C").

*

D I~ 1

(The characters represented by these hexadecimal values can be different in some countries, so the
TPFDF product uses the hexadecimal value not the character value (for example X'5B' not $).

#TPFDBOB

Distributes LRECs among subfiles according to the first 2 alphabetic, numeric, or special characters
in the algorithm argument. The special characters are as listed above for #TPFDBOA. It requires
1849 subfiles, one for each possible combination of 2 alphabetic, numeric, or special characters:

ces.$,...AA,...BB,...B5,...B9,.. . #A,....M,...%Z,...$3,.../6,...99

Your Own Distribution Method

#TPFDBO05

Use #TPFDBO5 if the ordinal number that you specify will be held in a 4-byte field.

#TPFDBOC

Use #TPFDBOC if the ordinal number that you specify will be held in a 2-byte field.
Note: These two algorithms use absolute ordinal values, not ordinals relative to &SWO0OBOR.

Hashing

#TPFDBO09

This hashing algorithm uses the first 8 bytes of data in the algorithm argument to determine in which
subfile the LREC should be placed.

The algorithm argument can contain any hexadecimal values. The TPFDF product divides the first
half of the 8-byte string by the number of subfiles, then divides the second half by the number of
subfiles. The two remainders are added together and then divided again by the number of subfiles.
The remainder is the subfile to be retrieved. This produces an even distribution of LRECs among the
subfiles.

#TPFDBOF

This algorithm is for partitioned files. It uses a 10-byte algorithm argument. The TPFDF product
processes the first 8 bytes in the algorithm argument in the same way as #TPFDBO09. It uses the
next 2 bytes in the algorithm argument to distribute LRECs between partitions on a similar basis.

#TPFDB10

This hashing algorithm uses the first 8 bytes of data in the algorithm argument to determine in which
subfile the LREC should be placed.

The calculated ordinal is the remainder of an 8-byte algorithm argument divided by a 4-byte number
of subfiles. The algorithm argument can contain any hexadecimal value. The result is achieved as
follows: The TPFDF product divides the first 4 bytes of the 8-byte string by the number of subfiles.
The second 4 bytes of the string are appended to the end of the remainder of the first division, and
the entire resulting number is divided by 4 times the number of subfiles. The remainder of this
division is then divided by the number of subfiles. The remainder is the subfile to be retrieved. This
produces an even distribution of LRECs among the subfiles.

Files Requiring No Overflow

80 TPFDF R1 Database Administration

Table 34. Algorithms (continued)

#TPFDBOD

#TPFDBOD is suitable for applications that process data sequentially by number or in circumstances
where no pool storage is available. #TPFDBOD is not allowed for B*Tree data files. #TPFDBOD uses
4 bytes of data from the LREC number to determine where the LREC should be stored. It divides
the 4-byte value by the number of LRECs in each block. The result is the relative ordinal number of
the subfile in which the LREC is placed. The remainder gives the LREC number in the block. An
example of such a file is shown in the following:

0 1 2 nn
Irec
Irec
Irec

Irec
Irec

Irec 10
Irec 11

Irec
Irec
Irec
Irec
Irec

AWON—=2O
©©oo~NoO O

You do not need to specify how many LRECs are in each block when you use this algorithm. The
TPFDF product calculates the number of LRECs in each block by dividing the length of the
fixed-length LRECs into the block size.

Single Subfile

#TPFDBO04

Use this algorithm with files consisting of a single fixed subfile. #TPFDB04 does not perform any
calculations to obtain a block ordinal number because there is only 1 prime block.

Basic and B*Tree Index Support

#TPFDBFF

For basic indexing, this algorithm is used to access detail files. For B*Tree indexing, node files are
defined using this algorithm.

&SWOORCT: Specify the Record Type for Fixed Files
&SWOORCT is required for fixed or miscellaneous files. Use &SWOORCT to
specify the file’s record type.

&SWOORCT SETC '#IDFCS'

&SWOOREF: Specify the Work Area Reference Name
&SWOOREF is valid for T-type files only. Use it to specify the reference name of
the W-type file that contains the T-type file. The default is GWO1SR.

&SWOOREF SETC 'dsname'

Where dsname is the W-type file reference name.

&SWOOSKE: Specify Block Index Support
To implement block index support, set &SWOOSKE equal to the length in bytes
of the key fields to be removed from the first LREC of each overflow block. The
TPFDF product stores this in a TLREC (LREC ID = X'02"). The length you
specify must include the zzzzKEY field (the LREC ID). For example, if the last
field in the key is zzzzlabel, you would specify:

&SWOOSKE SETC 'zzzzlabel-zzzzKEY+L''zzzzlabel!'

Notes:

1. Make &SWOOSKE large enough to hold any field used as a key field by any
application program that might use this file.

2. If the file contains several different formats of LRECs, each identified by a
separate LREC ID, set &SWOOSKE equal to the size of the largest key that
needs to be used.

3. Do not use block index support with add current files (these are indicated by
bit 2 of &SWO00OP1 being set).

4. &SWOOSKE is not allowed for B*Tree data files.

5. To set up a block indexed index file, set the length of &SWOOSKE from the
LREC ID to the last key field; for example:

Creating a DSECT Macro Definition 81

&SWOOSKE SETC 'GR25E80-GR25KEY' EXTRACT FOR BLOCK INDEX
GR25REC&CG1 DS 0OCL1
GR25S1Z&CG1 DS H
GR25KEY&CGL DS XL1
GR25FAD&CG1 DS CL4
GR25RCC&CG1 DS XL1
GR25A80&CG1 DS 0OXL6
GR25FID&CG1 DS XL2
GR25FVN&CG1 DS XL1
GR25IND&CG1 DS XL1
GR25SSU&CGL DS XL2
GR25E80&CG1 EQU *

&SWO0TQK: Specify the Highest Technical LREC (TLREC) ID that the TPFDF
Product Can Use
You can use &SWOOTQK to set the value of the highest technical LREC ID that
the TPFDF product can use for this file. For block indexed files, it must be set
to a value greater than 2. For B*Tree data files, it must be set to a value
greater than 4. For B*Tree index files, it must be set to a value less than 3.

&SWOOTQK SETC '15'

Note: Technical LREC IDs 1-15 are reserved for IBM. Except for B*Tree index
files, set TQK=15 to avoid conflicts with the TPFDF product.

&SWOOTYP: Specify the File Type
&SWOOTYP is optional. If you omit it, the TPFDF product takes the file type
from the second character of the DSECT macro name. These characters are
listed in [‘File Names” on page 69|

You can set &SWOOTYP equal to "R", "W", "T", or "P". B"Tree data files must
be R-type files, whether specified or taken from the second character of the
DSECT macro name.

If you are defining a DSECT macro to access a P-type file, set &SWOOTYP
equal to "P", as follows:

&SWOOTYP SETC 'P'

&SWOOWID: Specify the File ID
&SWOOWID is always required. It specifies the file ID, which is a 2-byte value in
the standard header of every block. Use a unique file ID for every DSECT
macro. The range of valid file IDs is from #TPFDBID to X'FFFF' (where the
value of #TPFDBID is defined in ACPDBE). For example:

&SWOOWID SETC X'C000'

See [TPFDF Installation and Customization| for more information about
#TPFDBID values.

&SWOOWRS: Specify the Size of Prime Blocks
&SWOOWRS is required. Set it to the size of the prime blocks used in the file.
For example, to use a 1055-byte (L2) prime block, set &SWOOWRS as follows:

&SWOOWRS SETC 'L2'

File Description

82

The Description of SAM3SR section of the SAM3SR sample DSECT allows you to
document your DSECT macro. Do not change the instructions that immediately
follow the Description of SAM3SR section except to rename the DSECT to your
new DSECT name. See [Figure 35 on page 83}

TPFDF R1 Database Administration

Block Header

* k% k k k¥ k¥ k¥ k¥ x¥x k¥ k¥ k¥ k¥ k¥ k¥ ¥ ¥ k¥ ¥k k& k¥ k& *k *k *k *k *k *k *k *k *x *x *x *x *x

DESCRIPTION OF SAM3SR

A standard prolog follows that contains the following headings
which allow you to document information about the DSECT

DATA AREA NAME

MEMBER NAME

INVOCATION

GENERAL CONTENTS AND USE
STORAGE FACTORS

DATA CONTROL

IMPLEMENTATION REQUIREMENTS
REFERENCES

COMMENTS

OOoO~NOUTH WN —

EE I I R R R N S R N T
EE I R T R R I TR T R R R

* k% k k k¥ k¥ k¥ *¥ x¥ k¥ k¥ k¥ k¥ ¥ k¥ ¥ ¥ ¥ ¥ *k k& K« ¥k ¥k *k %k *k %k *k *k *x *x *x %

EJECT
AIF ('&SWOOWRS' EQ '').CHECKID
#SAM3SRS EQU &SWOOWRS BLOCK SIZE

.CHECKID AIF ('&SWOOWID' EQ '').NOT1ST
#SAM3SRI EQU C'&SWOOWID' FILE ID
.NOT1ST ANOP

Figure 35. Instructions Always Required after Setting the Global Symbols in a DSECT Macro

Note: The #SAM3SRI equate in|Figure 35|is set for a file ID that is in character
format. If the file ID is in hexadecimal format, change the equate to:

#SAM3SRI EQU X'&SWOOWID' FILE ID

Do not change the instructions that define the block header unless you want to put
extra information in the extended header in each prime block (see [‘Optimizing the

[Database Design” on page 11). You can do this after the standard TPFDF header

field.

Figure 36| shows a block header for a DSECT that uses fixed-length or
variable-length LRECs.

EE R R R R e e R T T S e S R R L R L R S e e L e L e L 2 L e e

* STANDARD TPFDF HEADER *
N R L, Kok kKK kK AR Kk AR AR R AR AR F R AT R TR AR IR AT RK KK
SAM3HDR&CG1 DS CL16 STANDARD FILE HEADER

DS CL10 STANDARD TPFDF HEADER
SAM3VAR&CG1 EQU = START OF VARIABLE USER-AREA

SAM3HDL&CG1 EQU SAM3VAR&CG1-SAM3HDR&CG1 HEADER-LENGTH UP TO SAM3VAR

Figure 36. Instructions to Define the File Header in a DSECT Macro

Defining the LREC Size and LREC ID Fields

[Figure 37 on page 84| shows an example of the instructions needed to define the

logical record (LREC) size and the LREC ID fields for a file.

Creating a DSECT Macro Definition

83

ORG SAM3HDR&CG1

SAM3REC&CG1 DS 0OCL1 1ST RECORD START (1=VARIABLE,ELSE SIZE)
SAM3SIZ&CG1 DS H SIZE OF LOGICAL RECORD
SAM3KEY&CG1 DS X LOGICAL RECORD IDENTIFIER

AIF ('&SAM3SR1' EQ '1').KEYEQ GO IF NOT FIRST ISSUE

Figure 37. Instructions to Define the LREC Size and LREC ID Fields

The instructions are explained as follows:

SAM3REC&CG1
indicates the size of the LRECs for a file using fixed-length LRECs or it
indicates that the file is is using variable-length LRECs.

repetition factor must be 0

SAM3REC&CG1 DS 0CL1

T
length, 1 indicates variable-length LRECs,
otherwise specify the fixed length

must match the first 4 characters
of the DSECT macro name

SAM3SIZ&CG1
creates a 2-byte field that is used in each LREC to hold the actual length of the
LREC (used for variable-length LRECs only). Make sure that you include the
length of the SIZ field (2 bytes) and the KEY field (1 byte) when calculating the
total length of the LREC.

SAM3KEY&CG1
creates a 1-byte field that contains the LREC ID. Its meaning and use are the
same for fixed-length and variable-length LRECs.

Note: Because the SAM3REC definition occurs only once in a DSECT, you can
define fixed-length or variable-length LRECs in a file, but not both.

Defining Different LREC IDs in the Same File

Every LREC contains an LREC ID, or primary key, that identifies it in the file. More
than one LREC in a file can have the same ID. (It is possible for all LRECs in a file
to have the same ID.) Different LREC IDs are used in a file to differentiate between
different types of LREC.

Figure 38/ shows how you can define two LREC IDs, X'80"' and X'90'. The two
equates are used later in the DSECT to define the two individual LREC IDs.

R e e e e T T T S e SR S L R e e S e L2 e L e 2 e

* EQUATE OF LOGICAL RECORD KEYS (KEY AND LENGTH)

"""""""" Kok kAR R AR E KA R AT R I AR R T AR AT AR R AR HR AT XK K
#SAM3K80 EQU X'80' LOGICAL RECORD KEY X'860'

#SAM3K90 EQU X'90' LOGICAL RECORD KEY X'960'

Figure 38. Defining Two Different LREC Types in a DSECT

Note: Do not use LREC IDs X'00'-X'0F' and X'FO'-X'FF'. LREC ID X'00' cannot be
used and the other LREC IDs are reserved by the TPFDF product.

84 TPFDF R1 Database Administration

DSECT Instructions for Defining User Fields in LRECs

Define user fields by using DSECT instructions similar to those shown in|Figure 39|
defines a member number field that contains 10 characters of data and
a surname field that contains 20 characters of data.

SAM30RG&CG1 EQU =* START OF LOGICAL RECORD DESCRIPTION #%%%x
EE R
* DESCRIPTION OF F I RS T LOGICAL RECORD TYPE *
AR R AR A AR ARk hhhkhhhhhhkhkk
SAM3A80&CG1 DS 0CL30 KEYAREA

SAM3NUM&CG1 DS CL10 member number

SAM3NAM&CG1 DS CL20 surname

SAM3E80&CG1 EQU =* END OF LOGICAL RECORD WITH KEY = X'80'

Figure 39. Defining User Fields in a DSECT

Note: For index files, the TPFDF product determines how much data to move into
an index LREC when a macro or [dfidx] function is issued by
calculating the number of bytes between the beginning of the key area and
the end of the key area. In this would be 30 bytes (SAM3ES80
minus SAM3AS80).

Algorithm DSECT Statements

The algorithm area size must be defined for each detail file and any
intermediate-index files, but is not required for top-level index files or files that are
not part of a basic indexing structure. The size of the algorithm string is normally
calculated using information in the DSECT of the detail or intermediate-index file.
The reserved labels dsnd@nBEG&CG1 and dsnd@nEND&CG1 are used to indicate the
beginning and end of the algorithm string.

Notes:

1. dsnd indicates the first 4 characters of the DSECT macro name of a detail or
intermediate-index file.

2. nidentifies the path number to which the definition applies.
Figure 40| shows these labels used in the SAM5SR sample DSECT.

EEE R S R R R R R R R R

* ALGORITHM DESCRIPTION *

kkkhkkkhkhkkhkhkkhkhhkhkhkhkhkkhkhkhkhhhhhhkhkhhhkhhhkhhhkhkhkhkhhhkhhhkhhhkhkhkhkkhkhkkhkhhkkdhkkkx
ORG SAM5REC&CG1

SAM5@OBEG&CG1 EQU * PATH O DESCRIPTION

SAM5@0. . .&CG1 DS

SAM5@0. ..&CG1 DS

SAM5@0. . .&CG1 DS

SAM5@OEND&CG1 EQU *

Figure 40. DSECT Code to Define the Algorithm String Size

Notes:
1. @O indicates that this applies to path zero (0).

2. The labels between the BEG and the END labels can be used to define parts of
the algorithm string.

Creating a DSECT Macro Definiton 85

Ending DSECT Statements

See [Figure 41] for the instructions required at the end of each sample DSECT
macro. Do not change them.

J*
LRk ek koo kR ko ook ko ek ok oo Rk ek ke ko
AIF (&BG1).MACEXIT GO IF INTERNAL USAGE
&SYSECT CSECT
AIF ('®' EQ '').MACEXIT GO IF REG= NOT SPECIFIED
.GEUSING ANOP GENERATE USING
USING &DSN,®
.MACEXIT ANOP
SPACE 1
MEND

Figure 41. Instructions Always Required at the End of a DSECT Macro

Creating C Structures for Files with Existing DSECT Definitions

To allow a C program to access a file, create a C structure that reflects the LREC
definitions in an existing DSECT. [Figure 42 on page 87| shows an example of the

LREC definitions for the IR71DF file and a C structure that allows a C program to
access the file.

86 TPFDF R1 Database Administration

khkkkkkkhkkhkkhkhkhkkhkkhkhkkhkhhkhkhkhhkhkhkkhkhhkhkhhkhkhhkhkhhkhkhkhhkhhhkhhhkhkhhkhkhkhkhhhkhkkhhkhkhkhkk
* IR71DF DSECT Definitions *
khkkkkkkkkhkkhkkhkkhkhkhkkhkkkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhhkhkhkhkhkhkhkkhkhkhkkhhkhhkhkhkkhkkhkhkhkhkkhkkkx
Khhkhhkkhhkhkhhhhhhhhhhhdhhhhhhhhhrhhhhhhdhhdrhhrhhhhhhdkx dkhkkkkhkhkkhhkhhhhhrkhk
* STANDARD TPFDB HEADER *
kkhkkkkhkkhkkhkkhkhkhkkhhkhkhkkhhhkhhkhkhkkhhkkhhkkhhkhkhhkhhkkhhkhkkhhkkhhkhkhkkhkhkhkkhhkhkhkkhkhkkhkhkkhkkkk*x
IR71HDR&CGL DS CL16 STANDARD FILE HEADER

DS CL10O STANDARD TPFDB HEADER
IR71VAR&CGL EQU =* START OF VARIABLE USER-AREA
IR71HDL&CG1 EQU IR71VAR&CG1-IR71HDR&CG1 HEADER-LENGTH UP TO IR

ORG IR71HDR&CG1

IR71REC&CG1 DS 0OCL1 1ST RECORD START (1=VARIABLE,ELSE
IR71SIZ&CG1 DS H SIZE OF LOGICAL RECORD
IR71KEY&CG1 DS X LOGICAL RECORD IDENTIFIER

AIF ('&IR71DF1' EQ '1').KEYEQ GO IF NOT FIRST ISSUE

EE R R R R e e R R T T R S R R T R e L S e LR e L e L 2 Lt e

* EQUATE OF LOGICAL RECORD KEYS (KEY AND LENGTH) *
AR AR AR R A R R A A A A A A A A A A A A A A A KA KA ARk hhhhhhhhhhhhhhhdhdhhdhdhdhdhdhdhdhdhdhdhdkdx*x
#IR71K80 EQU X'80" LOGICAL RECORD KEY X'80'

#IR71L80 EQU IR71E80&CG1-IR71REC&CG1 LENGTH OF LOGICAL RECORD X'80"
&IR71DFL SETB (1) INDICATE 1ST TIME THROUGH

.KEYEQ ANOP

IR710RG&CG1 EQU * START OF LOGICAL RECORD DESCRIPTION
dhkkhkhkkhkhkhkhkhkhhhkhhhhhhhhhhhdhhhdhdhhdhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhkhkkkkkkkhhkxkx
* DESCRIPTION OF F I RS T LOGICAL RECORD TYPE *
dhkhkhkhkhhkhkhhhhhhhhhhhhhhhhhdhhdhhdhhhhhhhhhkhhhkhkhhhhhhhkhhhhdhhhdhdhhhdhkkhkxkx
IR71A80&CG1 DS OCL25 KEYAREA

IR71AK&CG1 DS CL25 A" KEY

IR71AL&CG1 DS CL1 ALGORITHM BYTE

IR71TXT&CGL DS OCL25 FIXED TEXT

IR71DAT&CGL DS CL23 FIXED DATA

IR71RCN&CGL DS CL2 SEQUENTIAL RECORD NUMBER

IR71E80&CG1 EQU * END OF LOGICAL RECORD WITH KEY = X'80'

ORG IR710RG&CG1

/**/

/* IR71DF File C Structure Definitions */

/**/
_Packed struct ir71df

short ir7lsiz; /* Size of the record */
dft_pky ir71lkey; /* Primary key */
char ir71ak[25]; /%= "A" key */
char ir7lal; /* Algorithm byte %/
char ir71dat[23]; /* Fixed data */
short ir71rcn; /* Record sequence number =*/

i;***/
/* Miscellaneous Equates */
/**/
#define _IR71DFI "\xBO\x71"

#define _IR71K80 0x80

#define _IR71L80 (sizeof(struct ir71df))

Figure 42. C Structure for a File with Existing DSECT Definitions

Creating a DSECT Macro Definition

87

88 TPFDF R1 Database Administration

Creating a DBDEF Macro Definition

The DBDEF macro (along with the DSECT macro) defines the characteristics of a
file; for example, whether the file uses an algorithm, indexed files, B*Tree indexing,
or a combination of attributes. Segments UF2A-UF89 are reserved for customer
DBDEF macro statements. To use the DBDEF macro statements that you code in
these segments, include ENTRC statements in case 1 of thesegment. For
example, if you have DBDEF macro statements coded in UF2A and UF2F, include
the following statements in

ENTRC UF2A USER SPECIFIC DB DEFINITIONS FOR UF2A
BR R7 RETURN TO ROUTINE
ENTRC UF2F USER SPECIFIC DB DEFINITIONS FOR UF2F
BR R7 RETURN TO ROUTINE

Notes:

1. Reassemble UWAO and UWAL1 to use the changes made to |IDFUEX|

2. Except for segments UF90-UF9Z, if a file ID is used more than once on DBDEF
statements, UWA1 sends a DB0131 system error and ignores the second file
ID.

3. If afile ID is used twice and the second DBDEF statement is in segment
UF90-UF9Z, the second DBDEF statement overrides the first.

It is not necessary to specify data level independence (DLI) with the DBDEF macro.
The TPFDF product preserves all data levels holding blocks before a macro or
function call. See [TPFDF Programming Concepts and Reference| for more
information about DLI.

DBDEF Macro Parameter Syntax

This section describes DBDEF macro statements according to the following
functions:

* Global DSECT overrides

* Default keys

* Indexing

» Data extraction

» Exits from TPFDF recoup to user code

e B™Tree files

* Miscellaneous.

The description of each function provides a syntax (railroad track) diagram for the
macro and a description of each parameter and variable. See [*How to Read the]
[Syntax Diagrams” on page xiv| for more information about syntax diagrams.

© Copyright IBM Corp. 1997, 2001 89

»»—DBDEF —FILE=dsname Y >
l—G]oba] DSECT Over‘rides—l |—Defau]t Keys—|

A

|—For‘war‘d Index Path—| |—Backwar‘d Index Path—| |—Da\ta Extraction—|

\
4

y

|—Recoup Ex1'ts—I |—B+Tr*ee Fﬂes—| |—M1'sce11aneous—|

Global DSECT Override Parameters

These parameters override the equivalent SW0Ovar statements found in the DSECT
macro, where var equals the 3-digit global parameter (for example, ARS. See
[‘Assigning Values to Global Set Symbols” on page 71| for more information about
these parameters.

>

l—,ARS=blktype—| l—,BOR=baseord—| l—,E0R=endord—|

\
v

I—,EO#=faceendord—| l—,ILV=innum—| I—,NLR=maxlre¢:s—|

\

I—,NOC=maxchains—| I—,0P1=op1—| I—,0P2=op2—| I—,0P3=op3—|

\
v

I—,PIN=pack1.‘hresh—| l—,PTN=p1.‘nnum—| l—,RBV=athype—|

,REF=GWO1SR

Yy

I—,RCT=recordtype—| [,REF=refnameJ l—,SKE=ske—| l—,TQK=mathrec—|

A\
v

I—,TYP=fiZetype—|

Yy

l—,WID=fi leid—I l—,WRS=bZktype—|

ARS=blktype
specifies the overflow block size for the referenced file, where blktype is one of
the following block types:

LO specifies a 128-byte block size.

90 TPFDF R1 Database Administration

L1
L2
L3

L4
L5

L6

L7

L8

Fo

specifies a 381-byte block size.
specifies a 1055-byte block size.

specifies a 4000-byte block size. This block type is available only in an
ALCS environment.

specifies a 4095-byte block size.

specifies a user-defined size. This block type is available only in an ALCS
environment.

specifies a user-defined size. This block type is available only in an ALCS
environment.

specifies a user-defined size. This block type is available only in an ALCS
environment.

specifies a user-defined size. This block type is available only in an ALCS
environment.

r example:

ARS=L4

BOR=baseord
specifies the base relative ordinal for the file, where the value of baseord is as
follows:

If this is a fixed file, set baseord to zero.

If this is a miscellaneous file, baseord is a symbol (usually defined in
SYSEQ) that defines where the miscellaneous file starts in the miscellaneous

fixed file type.

By convention, this symbol is "#", followed by the DSECT macro name,

followed by "F":

BOR=#dsnameF

EOR=endord
specifies the end ordinal for the file, where the value of endord is as follows:

If this is a nonpatrtitioned fixed file, set endord to -1 (minus 1). The TPFDF
product resolves the correct value when the file is opened.

If this is a miscellaneous file, endord is a symbol (usually defined in SYSEQ),

that defines where the miscellaneous file ends in the miscellaneous fixed file
type. By convention, this symbol is "#", followed by the DSECT macro name,
followed by "L":

EOR=#dsnamel

If this is a partitioned file, specify the number of prime blocks in each
partition, not the total number of prime blocks in all partitions. For example, if

there are 10 ordinals in each partition, specify:

EOR=10

Note: For more information about partitioning and interleaving, see [‘Partitioning

[and Interleaving” on page 157|

EO#=faceendord
specifies the FACE-type end ordinal (for TPFDF recoup), where the value of
faceendord is as follows:

If this is a nonpartitioned, noninterleaved, fixed file, set faceendord equal to
-1.

Creating a DBDEF Macro Definition 91

92

 If the file is partitioned, set faceendord to -1 or the total number of prime
blocks in all the partitions of the file.

» If the file is interleaved, set faceendord to —1 or the total number of prime
blocks in all the interleaves of the file.

 If the file is miscellaneous, set faceendord equal to the symbol (usually
defined in SYSEQ) that defines where the miscellaneous file ends in the
miscellaneous fixed file type. By convention, this symbol is "#", followed by
the DSECT macro name, followed by "L":

EO#=#dsnamel

Notes:

1. If &SWO1EO# is not specified in the DSECT or the DBDEF EO# parameter
override, -1 is used for fixed file types.

2. If &SWO1EO# is not specified in the DSECT or the DBDEF EO# parameter
override, the &SWOOBOR value or the DBDEF BOR parameter override, is
used for miscellaneous files.

3. Miscellaneous file type prefixes are defined in the TPFDF product with the
&MISTYPE(n) array in segment DBLCL. You can define as many as 20
prefixes (including those shipped with the TPEDF product). For more
information about the DBLCL segment, see [TPFDF Installation and|

4. For more information about partitioning and interleaving, see |‘Patrtitioning
[and Interleaving” on page 157|

ILV=ilvhum

specifies the interleaving number, where ilvnum is a nonnegative decimal
number. If ilvnum is a nonzero value, it implies that the file is interleaved. The
number you assign defines the number of interleaves. For example:

ILV=3

Note: For more information about interleaving, see [‘Interleaves” on page 159|

NLR=maxlrecs

specifies the number of LRECs that can fit into each prime block of a file, where
maxlirecs is a nonnegative decimal number. Only assign a value to &SWOONLR
when the file uses algorithm #TPFDBOD. With this algorithm, the file contains
only prime blocks. All LRECs must be fixed-length. Set NLR to the maximum
number of LRECs that can fit into each prime block of the file.

Notes:
1. The NLR parameter is not allowed for B*Tree data files.

2. Using the NLR parameter will result in an MNOTE being issued because the
TPFDF product calculates this value, and any value specified is ignored.

NOC=maxchains

specifies the number of overflow blocks to use in implementing add current
files, where maxchains is a nonnegative decimal number. Only assign a value
to NOC when bit 2 of &SWOO0OOPL1 is set on. Setting bit 2 of &SWO000P1
instructs the TPFDF product to limit the number of overflow blocks to use when
adding LRECs to the subfile. You can set the limit (using NOC) from zero to a
maximum of 255 blocks. When this limit is reached in the subfile, the TPFDF
product discards the contents of the oldest chain block and copies the LRECs
from the first chain block to the prime block. The first (empty) chain block is
moved to the last chain block with an initial next available byte (NAB) setting. A
new LREC is added to the last (empty) chain block. For example:

NOC=5

TPFDF R1 Database Administration

instructs the TPFDF product to use the prime block and 5 overflow blocks.

If NOC is set to zero, the TPFDF product uses only the prime block of the
subfile.

Note: The NOC parameter is not allowed for B*Tree data files.

OP1=0pl
specifies TPFDF processing options, where opl is a bit setting that overrides
the &SWOOOPL1 bit setting. For example,

0P1=10000000

sets OP1 bit 0 to indicate the file uses backward chaining. See
[Values to Global Set Symbols” on page 71| for more information about
&SWOOOP1 processing options.

OP2=0p2

specifies TPFDF processing options, where op2 is a bit setting that overrides
the &SWOOOP2 bit setting. For example,

0P2=00010000

sets OP2 bit 3 so the file uses new overflow blocks and releases old overflow
blocks when a tape load operation completes successfully. See
[Values to Global Set Symbols” on page 71| for more information about
&SWO00OP?2 processing options.

OP3=0p3

specifies TPFDF processing options, where op3 is a bit setting that overrides
the &SWOOOP3 bit setting. For example,

0P2=00000100

sets OP3 hit 5 to indicate that the file uses B*Tree indexing. See
[Values to Global Set Symbols” on page 71| for more information about
&SWOO0OP3 processing options.

PIN=packthresh
specifies the packing threshold, where packthresh is a decimal number from
0-100. For example:

PIN=60

PTN=ptnnum
specifies the number of partitions, where ptnnum is a nonnegative decimal
number. If ptnnum is a nonzero value, it implies that the file is partitioned. The
number you assign defines the number of partitions. For example:

PTN=4

Note: For more information about partitioning, see [‘Partitions” on page 157}

RBV=algtype
specifies the algorithm you want to use with this file, where algtype is one of the
following:
* #TPFDBO1
* #TPFDBO02
* #TPFDBO03
* #TPFDBO0O4
* #TPFDBO05
* #TPFDBO06
* #TPFDBO7

Creating a DBDEF Macro Definiton 93

* #TPFDBO08
* #TPFDBO09
* #TPFDB10
* #TPFDBOA
* #TPFDBOB
* #TPFDBOC.

For example:
RBV=#TPFDBOC

You can also create a unique user-defined algorithm and specify it as algtype
See the &SWOORBYV description on page [78| for more information about
specifying an algorithm.

RCT=recordtype
specifies the record type for fixed or miscellaneous files, where recordtype is a
defined record type. For example:

RCT=#USREC

SKE=ske
specifies the search key extract for block index support, where ske equals the
length, in bytes, of the key fields to be removed from the first LREC of each
overflow block. The TPFDF product stores this in a TLREC (LREC ID = X'02").
The length you specify must include the primary key (the LREC ID). For
example, if the last field in the key is GR21SRLAST, you would specify:

SKE="'GR21SRLAST-GR21SRKEY+L'GR21SRLAST'

Notes:

1. Make SKE large enough to hold any field used as a key field by any
application program that might use this file.

2. If the file contains several different formats of LRECSs, each identified by a
separate LREC ID, set SKE equal to the size of the largest key that needs
to be used.

3. Do not use block index support with add current files (these are indicated by
bit 2 of &SWO0OP1 being set).

4. SKE is not allowed for B*Tree data files.

TQK=maxtlrec
specifies the highest technical LREC ID that the TPFDF product can use for this
file, where maxtlrec is a decimal number from 1-15. For block indexed files,
maxtlrec must be set to a value greater than 2. For B*Tree data files, maxtirec
must be set to a value greater than 4. For B*Tree index files, it must be set to a
value less than 3. For example:

TQK=2

Note: Technical LREC IDs 1-15 are reserved for IBM. Except for B*Tree index
files, set TQK=15 to avoid conflicts with the TPFDF product.

TYP=filetype
specifies the file type, where filetype is R, W, T, or P. B*Tree data files must be
R-type files. For example:

TYP=R

Note: See [‘File Names” on page 69| for more information about file types.

WID=fileid
specifies the file identifier, where fileid is a 2-character alphanumeric value (for

94 TPFDF R1 Database Administration

example, WID=AB), or a 4-character hexadecimal value (for example,
WID=B075). Use a unique file ID for every file.

WRS=blktype
specifies the size of the prime block, where blktype is one of the following block
types:

LO specifies a 128-byte block size.
L1 specifies a 381-byte block size.
L2 specifies a 1055-byte block size.

L3 specifies a 4000-byte block size. This block type is available only in an
ALCS environment.

L4 specifies a 4095-byte block size.

L5 specifies a user-defined size. This block type is available only in an ALCS
environment.

L6 specifies a user-defined size. This block type is available only in an ALCS
environment.

L7 specifies a user-defined size. This block type is available only in an ALCS
environment.

L8 specifies a user-defined size. This block type is available only in an ALCS
environment.

For example:
WRS=L4

Default Key Parameters

Default keys are used by the TPFDF product to maintain file organization when
adding LRECs to a subfile. They can also be used by application programs when
reading LRECs from a subfile. Default keys are optional in a DBDEF macro for all
TPFDF files except B*Tree data files. Default keys are required for B*Tree data files
because they are used by the TPFDF product to organize the B*Tree index.

If a default key is defined for one LREC ID, all LREC IDs in that file must have
default keys defined. If a file has the default keys subtable defined and the
application tries to add an LREC of an LREC ID that is not defined, an
OPR-DBO0117 system error is issued and the ECB exits.

Default keys are only appropriate for files that have UP or DOWN organization and
should not be defined for:

* P-type files

* T-type files

* Add current files

* Index files (including B*Tree index files)

* Pushdown chaining files.

Creating a DBDEF Macro Definition 95

96

>>_:(

»—,KEY1=(—PKY=primarykey |_) >
N ORG= UPjJ
WN

»
>

\/

PKY=primaryke)
g l—,FLD=dataid—| l—,ORG= UP——|

—EDONN—
NOORG—

DO

-

A\
A

T)
I—,KEYn=(—R=userfield)—|
N

l—, Up
oo
NOORG

PKY=primarykey

specifies the characteristics of the primary key (LREC ID) of the LREC, where
primarykey is one of the following:

* An equate that represents the primary key (for example, PKY=#GRO0O0K80)
* An explicit term that represents the primary key (for example, X'80'").

Read-only default keys must be in the range X'01' to X'OF' and can be used
only for read operations. Read-only default keys can be used to read any
combination of keys in an LREC. Therefore, you do not have to read LRECs
using the same default keys that you used to create the file. See
[Programming Concepts and Reference| for more information about using default
keys to read LRECs.

[Figure 43 on page 97| shows a DBDEF that has two default keys defined. The
first key, which has an LREC ID of X'80, is the default key that defines the
layout and organization of the file that is created when records are added to the
file. This key can also be used for read operations.

The second key has a primary key of X'06', which identifies it as a read-only
default key. Primary key X'06' does not affect the layout or organization of the
file.

TPFDF R1 Database Administration

* FILE ID X'B073'

DBDEF FILE=IR73DF,
(PKY=#IR73K80,0RG=UP, READ/ADD DEFAULT KEY
KEY1=(PKY=#IR73K80),
KEY2=(R=IR73NAM),
KEY3=(R=IR73CTY),
KEY4=(R=IR73SAL)),
(PKY=#IR73K06,0RG=UP, READ-ONLY DEFAULT KEY
KEY1=(PKY=#IR73K06),
KEY2=(R=IR73NAM),
KEY3=(R=IR73CTY))

£ %k X X ok 3k X X X F

Figure 43. Read-Only Default Keys in the DBDEF

Note: Do not use LREC IDs X'00'-X'0F' and X'FO'-X'FF'. LREC ID X'00' cannot
be used and the other LREC IDs are reserved by the TPFDF product.

FLD=dataid

specifies the 2-byte data identifier (secondary key) of an extended LREC, where
dataid is one of the following:

* An equate that represents the 2-byte data identifier (for example,
FLD=#GR00D1000)

* An explicit term that represents the 2-byte data identifier (for example,
X'1000").

Notes:

1. The dataid value must resolve to a value from X'0000'-X'FFFF'.

2. The DID=dataid value in the detail or intermediate-index file must be the
same as the FLD=dataid value in this index file.

ORG

upP

specifies the default organization for all fields for the specified primary key
(PKY) in an LREC. If you specify an organization for KEY1, that organization
overrides the ORG value and becomes the default. If you specify an
organization for any other KEYn value, that organization overrides any previous
defaults for that field. If you specify a NOORG value for any key, all keys that
follow must be NOORG. For example, you cannot specify the following:

KEY1=(PKY=#IR73DF,NOORG),
KEY2=(R=IR73NAM, UP)

arranges the fields in ascending order.

DOWN

arranges the fields in descending order.

NOORG

does not arrange the fields in any order.

KEYn

specifies the organization of the specified key, where n is a number from 2-6.

Note: Keys must be specified sequentially; that is, if KEY1 and KEY4 are
specified, you must specify KEY2 and KEY3.

R=userfield
specifies the name of a user field, where userfield was previously defined in
the DSECT macro. For example,

KEY2= (R=GROONAM, UP)

Creating a DBDEF Macro Definition 97

Basic Index Parameters

The following must be coded before index parameters are used in the DBDEF
macro:

* The DSECT macro to define the index file, which includes:
— Definitions of the fields in the index LRECs

— Global symbols that specify how the index file is contained in physical
records, including &SWOORBYV to specify the algorithm used to access the top
level of the index file.

* The DSECT macro to define the indexed file, which includes:
— &SWOORBYV set to "#TPFDBFF" for an indexed file
— Bit 3 of &SWO00OP3 set to 1 for an indexed fixed file or 0 for an indexed pool
file
— The statements that define the fields in the ALG string associated with each
indexing path (see [Figure 40 on page 85).

Forward Index Path Parameters

The definitions for the forward path are used by TPFDF recoup, the TPFDF
capture/restore utility, information and statistics environment (CRUISE), and some
TPFDF macros. Included with the forward index path parameters are descriptions of
how the parameters work and some brief examples. For more complete examples
of basic indexing, see [‘Basic Indexing” on page 135}

98 TPFDF R1 Database Administration

>>- R #1T=-1, (>
I—,ID1=(NOREC0UP)—| —[(ITK=indexpky,—|

1D2= r >

ID3=JL (1) (2) L (1)
()

CHKF
CHKO!

I—NORECOUP—|

Loro]
Leerd
Lsu]

,FAL=4

>—,—|:INDEX=(dsndet,sZot) _| I_ |_ _| >
RID=dsndet ,ADR=addressloc,RCP=rccloc ,FAL=—-1 ,DIT=dataid

|5

,CORE=NO ,DIS=0
1 [

T T Cooreoves] L
,BASE=globalbase,FIELD=globalfield: ,CORE=YES ,DIS=disloc—

,LEV=0

,MPFSTD=NO

I—,INB=initnab—| I—,LEV=levval— I—,MPFSTD=YESJ I—,MPNXTD=nextid—|

,QUE=NO:
r Q

I—,MPPRCD=—|:cpuid:|—I I—,MPRECD=previousid—| I—,PFC=fwdchain—| l—,QUE=YES—|

PRIME

I—,RCIDID=rcitag—|

,RECOUP=YES ,RFC=YES —,STP=0 , TIMEOUT=900——— ,CT1=250
-l 1 [] 1 [[

I—,RECOUP=N0J I—,RFC=N0J —,STP=nJ I—,TIMEOUT=seconds— I—,CT1=maxgrouprec—

,CT2=4000—— ,CBV=5—
[[

I—, CT2=maxstructrec— I—, CBV=n—

Notes:

1 If one parenthesis is specified, both parentheses must be specified. If you
do not specify any subparameters with the ID2 or ID3 parameter,
parentheses () are not required. For example:

ID2=,...

2 If CHKF or CHKO is not specified, the record code check (RCC) of the
indexed file is in the RCP field of the index LREC.

Creating a DBDEF Macro Definiton 99

ID1=(NORECOUP)
inhibits chain chasing during recoup, but allows TPFDF CRUISE to use the
recoup subtable (assuming RECOUP=YES was specified to generate the
subtable); that is, when ID1=(NORECOUP) is specified in a file DBDEF
statement, the ZRECP command does not recoup the file.

#IT=-1
specifies that all primary keys (for example, LREC IDs X'80', X'90', and X'AQ")
forward index the same file with the same TPFDF recoup and TPFDF CRUISE
processing attributes (specified by the ID2 parameter).

ITK=indexpky
specifies the primary key (LREC ID) of this index file, where indexpky is one of
the following:

* An equate that represents the primary key (for example, ITK=#GR00K80)
* An explicit term that represents the primary key (for example, X'80").

You need only one ITK parameter for each primary key. All records that follow
with the same primary key (for example, all LREC IDs of X'80") forward index
the same file with the same TPFDF recoup and TPFDF CRUISE processing
attributes (specified by the ID2 parameter).

Notes:

1. The attributes specified with the ITK parameter remain in effect for a
specified primary key until a new ITK parameter with the same primary key
is specified.

2. The ITK parameter can forward index more than one file by entering
address slot arguments with the INDEX parameter.

ID2
specifies options that affect TPFDF recoup and TPFDF CRUISE processing.
ID2 is used to describe references held in items. The position of the references
is defined only once because the same description applies to each item. ID2
references are defined using CBV=1, CBV=2, CBV=4, or CBV=5. If a block
contains a mixture of ID2 and ID3 references, TPFDF recoup processes:
1. All the ID2= references (specified in items)
2. All the ID3= references (fixed position).

ID3
specifies options that affect TPFDF recoup and TPFDF CRUISE processing.
ID3 is used to describe references held in fixed locations. Each reference is
described separately because the reference is not held as a part of an item. If
the block contains only ID3 references, CBV=3 is used to identify the structure.
If a block contains a mixture of ID2 and ID3 references, they are defined using
CBV=1, CBV=2, CBV=4, or CBV=5. In this case, TPFDF recoup processes:
1. All the ID2= references (specified in items)
2. All the ID3= references (fixed position).

CHKF
specifies that the record code check (RCC) of the indexed file is the same as
the record code check of this index file.

Note: The RCP parameter must be set to —1, or omitted.

CHKO
specifies that TPFDF recoup should use a record code check (RCC) of X'00'.

Note: The RCP parameter must be set to -1, or omitted.

100 TPFDF R1 Database Administration

NORECOUP
allows the definition of the reference to be used by TPFDF CRUISE, but the
reference is not chain chased by TPFDF recoup.

ORD
specifies that the reference is an ordinal number and not a file address.

RCI
specifies that this file contains a reference to a detail file and will use recoup
chain-chasing indicator (RCI) processing to avoid unnecessary chain chasing.

RCI processing for a file is specified as follows:

* For each top-level index file in the structure, specify RCIDID=rcitag.

* For each file that contains a reference to a detall file, specify, ID2=(RCI),...).
SuUB

indicates that there are subitems in items.

Notes:

1. Subitems can be defined only in customer-format files. Seem
TPFDF Recoup and TPFDF CRUISE Processing for Customer-Format
Files” on page 112|
SUB is not allowed with the ID3 parameter.

SUB is not allowed if CBV=5 is specified or used as a default.
Subitems must have a fixed size and start at a fixed location in the item.
Each subitem contains a reference.

Specify the number of subitems using the CNT parameter or specify the
location of a count field using the CPT parameter.

7. Specify the size of the subitem count field using the SSZ parameter.

INDEX=(dsndet,slot)
identifies the file you are forward indexing, where dsndet is a 6-character file
(and DSECT) name of the detail or intermediate-index file to which this index
file is chained, and slot is the number of an index slot that contains a reference
to the detail or intermediate-index file to which this index file is chained. This
number must be the same as the index slot coded with the IFR parameter in
the detail or intermediate-index file. See the IFR parameter in[‘Backward Index|
[Path Parameters” on page 107}

Use INDEX if the RID, ADR, and RCP definitions are in the standard positions
in the index LRECs. For example, specifying:
INDEX=(SAM5SR, 0)

o0k wN

has the same effect as specifying:
RID=SAM5SR, ADR=SAM4FAD-SAMAREC ,RCP=SAMARCC-SAM4REC
RID=dsndet
identifies the file you are forward indexing, where dsndet is one of the following:

* A 2-character decimal record ID of the detail or intermediate-index file (for
example, RID=10).

* A 4-character hexadecimal record ID of the detail or intermediate-index file
(for example, RID=FDFD).

* A5 or 6-character DSECT name of the detail or intermediate-index file (for
example, RID=SAM5SR).

* The relative location of a field in the index file that contains the record ID of
the detail or intermediate-index file (for example, RID=SAM4LAB-SAM4REC).

Creating a DBDEF Macro Definiton 101

ADR=addressloc
specifies the relative position of the address field, where addressloc is
expressed as the location of the field that contains the file address (FAD) minus
the location of the start of the first record (REC). For example,

ADR=SAM4FAD-SAM4REC

RCP=rccloc
specifies the relative position of the record code check, where rccloc is
expressed as the location of the field that contains the record code check
(RCC) minus the location of the start of the first record (REC). For example,

RCP=SAM4RCC-SAMAREC

Note: When ID2=CHKO, ID2=CHKF, ID3=CHKO, or ID3=CHKEF is specified, the
RCP parameter must be set to —1, or omitted.

FAL

specifies the number of bytes used to hold the ordinal number when 1D2=(ORD)
or ID3=(ORD) is specified.

DIT=dataid
for extended LRECS, specifies the 2-byte data identifier (secondary key) of this
index file, where dataid is one of the following:

* An equate that represents the 2-byte data identifier (for example,
DIT=#GR00D1000)

* An explicit term that represents the 2-byte data identifier (for example,
X'1000").

Notes:

1. The dataid value must resolve to a value from X'0000'—X'FFFF".

2. The DID=dataid value in the detail or intermediate-index file must be the
same as the DIT=dataid value in this index file. See the DID parameter in
[‘Backward Index Path Parameters” on page 107|

BASE=globalbase
specifies the global base for recoup chain chasing, where globalbase is the
name of a global area. BASE, FIELD, and STP=1 are required together to
specify that a subfile is referenced from a global field, for example:
STP=1, * Special monitor
BASE=GLOBZ, * Global area
FIELD=@KRPCA® =* Global field

Note: BASE and BASECOD are not allowed together.

FIELD=globalfield
specifies the global field for recoup chain chasing, where globalfield is the name
of a global field. BASE, FIELD, and STP=1 are required together to specify that
a subfile is referenced from a global field, for example:
STP=1, * Special monitor
BASE=GLOBZ, * Global area
FIELD=GKRPCA® =* Global field

CORE
specifies whether the file is located in main storage or on DASD.

YES specifies that TPFDF recoup and TPFDF CRUISE will retrieve a core
block and copy the contents of the main storage file into the core block
and pass it to the monitor.

102 TPFDF R1 Database Administration

The reference defined by the BASE parameter and the FIELD
parameter (or defined by the BASECOD parameter) is a reference to a
block in main storage, and not a file address.

NO specifies that the file is located on DASD and uses normal TPFDF
recoup and TPFDF CRUISE processing.

DIS=disloc
specifies the location of a displacement field, which contains a displacement to
be added to the ADR value in any ID3 reference, where disloc is the label of an
area, a register, or an immediate value. If this is a CNT-type file, the
displacement is also added to the value specified by the PIT parameter.

INB=initnab
specifies the initial next available byte (NAB), where initnab is a numeric value.

Notes:
1. INB can only be specified for P-type files.

2. Although it cannot be specified for standard-format files (R-type, W-type,
and T-type), the initial NAB value for standard-format files is X'1A' (the
standard-format header is 26 bytes).

LEV=levval
specifies the ECB level control, where levval is a number in the range 0-7,
which specifies the number of levels over which CRUISE will distribute available
ECBs.

CRUISE does not recalculate the ECB distribution when the actual level count
is less than the last recalculated level value. This may lead to less-effective
ECB usage during chain chasing for some data structures. The use of LEV can
help to prevent this.

When the LEV parameter value equals 0 (by default or if specified), the TPFDF
product uses the following formula to distribute available ECBs over the levels
(where actuallevels equals the actual number of levels at run time and maxecbs
is the maximum number of ECBs you allow the TPFDF product to use):

for n = 0 to (actuallevels - 1)

Level (actuallevels - n) = .8 * maxechs * .5"

For example, if LEV=0 was specified and actuallevels equals 4 and maxecbs
equals 200, the TPFDF product distributes ECBs as follows:

Level 4 = 160 *x% Data Tevel Heokok ok
Level 3 = 80 *x% Intermediate-index level ***x*
Level 2 = 40 *x%x Intermediate-index level #x**
Level 1 = 20 *%% Top-index Tevel HhAK

This distribution assumes that each level gets progressively larger. If your data
structure progresses differently, use the LEV parameter to change the
distribution.

When levval is less than the actual levels in the structure (for example, if levval
equals 3 and the actual levels in the structure at run time equal 5 and maxecbs
equals 200), the TPFDF product uses the following formula to distribute
available ECBs over the levels.

for n = 0 to (levval - 1)

Level (levval- n) = .8 * maxecbs * .5"

Creating a DBDEF Macro Definiton 103

Level 3 = 160 *x%x Intermediate-index level *x*x
Level 2 = 80 *x% Intermediate-index level **x*
Level 1 = 40 **%% Top-index Tevel Hkkok

for n = 1 to (actuallevels - levval)

Level (levval+ n) = 1.1" % Level levval ECBs

Level 4 = 1.1 % 160
Level 5 = 1.1 = 1.1 * 160
Level 4 = 176 **%% Intermediate-index Tevel *x*x
Level 5 = 194 *+% Data Tevel *okkk
MPFSTD
specifies the priority for chain chasing a record.
YES

specifies that this record and any other records with MPFSTD=YES
specified must be chain chased before other records are chased.

NO
specifies that this record will be chain chased after all records with
MPFSTD=YES specified.

MPNXTD=nextid
specifies the ID of the record for which chain chasing will start when chain
chasing is completed for this record, where nextid is a 2-character alphanumeric
value (for example, MPNXTD=AB), or a 4-character hexadecimal value (for
example, MPNXTD=B075).

Note: If you specify the MPNXTD parameter, you must specify the MPPRCD
parameter.

MPPRCD
specifies the ID of the processor that will chain chase this record. If the
specified processor is not active, the primary processor chain chases the record
at the end of recoup phase 1 processing.

cpuid
is a 1-character processor identifier.

PRIME
specifies that this record will be chain chased on the primary recoup
processor.

MPRECD=previousid
specifies the ID of the record for which chain chasing must be completed before
chain chasing can begin for this record, where previousid is a 2-character
alphanumeric value (for example, MPRECD=AB), or a 4-character hexadecimal
value (for example, MPRECD=B075).

PFC=fwdchain
specifies the position of forward chain, where fwdchain equals the address of
the forward chain minus the address of the beginning of the file. For example:

PFC=dsniFCH-dsniBID

Notes:

1. PFC or CPF is necessary if FCH is present.

2. PFC is not allowed with CPF.

3. PFC=-1is used for a no forward chain file.

4. The value can also be specified as an absolute displacement.

104 TPFDF R1 Database Administration

QUE
specifies whether the data structure is processed in recoup QUE-inhibited
mode.

NO specifies that the file is not recoup QUE-inhibited; that is, the file
address can pass references between subfiles during recoup.

If a file is accessed by passing its file address from one subfile to
another, the file can be missed during recoup processing.
shows how access to the "PR" file is controlled by passing its file
address from one subfile to another (and setting the unused reference
to X'0000". If QUE=NO is specified, recoup is not QUE-inhibited and
the "PR" file is not chain chased as explained in the following:

The subfile addressed by "AAC" is chain chased.

H The subfile ("ZRH") has the file address of "PR".

El The file address of "PR" is passed from "ZRH" to "AAC".
[The subfile addressed by "ZRH" is then chain chased.

Note: The "PR" file is not chain chased because the file address
"ZRH" no longer has the reference to "PR".

2] B 4]
‘AAC’ EE ZRH ‘AAC’ E ZRH
[0000 | | | [o000 | ||| adar | SRR [agar | || [o000 | |] [o000 |

| Chain chasi —T
Chain chasing ain chasing

Figure 44. QUE=NO Parameter

YES specifies that the file is recoup QUE-inhibited; that is, the file address
cannot pass references between subfiles during recoup. Recoup
QUE-inhibited mode is specific to the airline QUEUING function and
assumes the application environment is using the @BRCPQ global as
the queue control indicator. While TPFDF recoup is performing the
gueuing phase, BITO of the @BRCPQ global is set on. Applications
should not pass references while this bit is set. The bit is turned off at
the end of the queuing function.

Note: QUE=YES is not valid for ALCS.

RCIDID=rcitag
specifies that this top-level index file will use recoup chain-chasing indicator
(RCI) processing to avoid unnecessary chain chasing, where rcitag is a
4-character alphanumeric value (for example, RCIDID=AB12). The rcitag can be
specified to identify top-level index files that are in the same structure.

Creating a DBDEF Macro Definiton 105

RCI processing for a file is specified as follows:
* For each top-level index file in the structure, specify RCIDID=rcitag.

» For each file that contains a reference to a detalil file, specify,
(ID2=(RCI),RID=....)).

RECOUP
specifies whether the table used by the recoup utility and TPFDF CRUISE is
built for this data structure

YES specifies that a recoup table is built for the data structure; therefore, the
ZRECP commands and TPFDF CRUISE process this file.

NO specifies that a recoup table is not built for the data structure; therefore
the ZRECP commands and TPFDF CRUISE do not process this file.
RECOUP=NO can be specified for ALCS and non-TPFDF files that do
not contain embedded references or forward chaining.

RFC
specifies whether TPFDF recoup verifies that the record code check (RCC) in
an overflow block is the same as the RCC in the prime block.

YES specifies that TPFDF recoup checks the RCC of the prime block and
overflow blocks.

NO specifies that TPFDF recoup does not check the RCC of the prime
block and that overflow blocks are retrieved with an RCC of zero.

STP=n

specifies the type of chain chasing monitor, where n is one of the following:

0 causes TPFDF recoup and TPFDF CRUISE to chain chase all the
ordinals defined in the FACE file type for this file, starting with the
lowest ordinal number (BOR) and ending with the highest ordinal
number (EO#).

1 specifies that references to this subfile are in a global location or core
field.

2-50 Reserved for IBM use.

51-255

Reserved for customer-specific chain chasing monitors.

Note: BASE and BASECOD require STP=1.

TIMEOUT=seconds
specifies the time-out value for chain-chasing a file structure, where seconds is
a number of seconds.

Timeouts can be related to timing problems caused by a faulty structure that
causes loops in forward chain processing or by too many embedded references
at the lower levels of a file structure. If there are too many embedded
references, not enough ECBs are allocated to the lower levels and a timeout
can occur. The LEV parameter can be used to adjust the number or ECBs that
are allocated for each level during CRUISE processing.

CT1=maxgrouprec
specifies the maximum number of records read for an ALCS group, where
maxgrouprec is a nonnegative number.

Note: The CT1 and CT2 parameters only affect ALCS recoup processing if the
TPFDF sample ALCS recoup user exit code (ARDO, ARD1, and ARD2)

106 TPFDF R1 Database Administration

has been installed. For more information about installing the TPFDF

sample ALCS recoup user exit code, see [TPFDF Installation and|

CT2=maxstructrec
specifies the maximum number of records read for an ALCS structure that
contains all groups chained from any one record in an ALCS prime group,
where maxstructrec is a honnegative number.

Note: The CT1 and CT2 parameters only affect ALCS recoup processing if the
TPFDF sample ALCS recoup user exit code (ARDO, ARD1, and ARD2)
has been installed. For more information about installing the TPFDF

sample ALCS recoup user exit code, see [TPFDF Installation and|

CBvspr:ecifies the type of chain chasing monitor, where n is one of the following:
1 Fixed-length type items in NAB or ADD/DEL files.
2 CNT type file.
3 Fixed-position-only references.
4 Variable-length type items in NAB or ADD/DEL files.
5 Specifies that the file is a standard-format file with LRECs with

embedded pointers and a logical record ID.
6-50 Reserved for IBM use.
>50 Reserved for customer-specific chain chasing monitors.
Note: If CBV does not equal 5 (for example, CBV=4), see [‘Parameters for]
TPEDF Recoup and TPFDF CRUISE Processing for Customer-Format]

Files” on page 112|to include parameters that specify the location of
fields.

Backward Index Path Parameters
The definitions for the backward path are used to access the detall file. Included

with the backward index path parameters are descriptions of how the parameters
work and some brief examples. For more complete examples of basic indexing, see
[‘Basic Indexing” on page 135}

Creating a DBDEF Macro Definiton 107

108

,PTH=0—— —, IMI=#BITO
[[

»»—, (-IID=dsnidx

I-,PTH=path— I-,IMI- #BITO

#BIT2

#,#BITI;I
,#BIT2

#BITl—————

, IKY=indexpky——>»

».

|—, IPA=offset,ILA=ZengthJ |—, IPK=o0ffset, ILK=ZengthJ I—,IPE=off$etJ

L (1)

».

,KEY1————=(PKY=indexpky-
SUP—
, DOWN—
,NOORG—

)

L (1)
,KEYn =(R=indexkey

l—,S=0

|

,S=offset— L
,L=L"indexkey

» IFR=0——

(2)

» UP—
» DOWN—
NOORG—

)

>«

Notes:

follows:

l—,ALG=n—I l—,DID=dataid—| l, IFR=slot—

KEY1=(PKY=#dsniK80,UP),
KEY2=(R=dsniA80,5=0,L=L"'dsniA80,UP)

1 KEY parameters are only required when a search other than
required. If KEY parameters are not supplied, the default key fields are as

the default is

2 If you do not specify the L parameter, L defaults to the length of the R
parameter.

[ID=dsnidx

identifies the backward path of the file whose index LRECs point to this file,
where dsnidx is a 6-character file (and DSECT) name of the index file to which
this detall or intermediate-index file is chained.

Note: If the index LRECs are extended, the DID parameter is used to specify
the secondary key.

PTH

specifies a path to an index file, where path is a nonnegative decimal number.

Note: All of the parameters that follow the PTH parameter define the
characteristics of the specified path.

IMI

specifies one of the following:

#BITO

specifies that a path is read only. Read-only paths cannot be used to add
indexes. #BITO is a system equate that can be specified in binary form. For

example:

IMI=10000000

TPFDF R1 Database Administration

#BIT1
specifies FULLFILE processing from the ordinal defined by BOR to the
ordinal defined by EOR. #BIT1 is a system equate that can be specified in
binary form. For example:

IMI=01000000

Note: If #BIT1 is specified, the addressing arguments (IPA and ILA) are
ignored.

#BIT2
specifies FULLFILE processing from the ordinal located using the
addressing argument defined by IPA and ILA parameters to the ordinal
defined by EOR. #BIT2 is a system equate that can be specified in binary
form. For example:

IMI=00100000

IKY=indexpky
specifies the primary key (LREC ID) of the index file to which this detail or
intermediate-index file is chained, where indexpky is one of the following:

* An equate that represents the primary key (for example, IKY=#GRO0K80)
* An explicit term that represents the primary key (for example, X'80").

Notes:

1. Set the IKY parameter value equal to the ITK parameter value of the index
file to which this detail or intermediate-index file is chained. Do not use
LREC IDs X'00'-X'0F' and X'FO'-X'FF'. LREC ID X'00' cannot be used and
the other LREC IDs are reserved by the TPFDF product.

IPA=offset,ILA=L'length
specifies the offset into and length to use of a string passed with the ALG
parameter on a or other TPFDF macro, where offset and length are
nonnegative decimal numbers. This string is used to extract, according to the
IPA and ILA parameter, an addressing argument that is used to locate a prime
block of an index file.

The following example shows how the IPA and ILA parameter settings defined
in a detail file, IR24DF, are used to locate an argument string in an index file,
IR25DF.

DBDEF FILE=IR24DF

(IID=IR25DF,
IPA=0,ILA=1,

DBOPN| REF=IR24DF,ALG=C'SMITH'

In this example, when the macro is processed, the TPFDF product
accesses the S prime block in the first-level index file, IR25DF. The S prime
block is determined by extracting, for a length of 1 bytes (ILA=1), the value
found at offset 0 (IPA=0) into SMITH (ALG='SMITH").

IPK=0ffset,ILK=length
specifies the offset into and length to use of a string passed with the ALG
parameter on a or other TPFDF macro, where offset and length are
nonnegative decimal numbers. This string is used to extract, according to the
IPK and ILK parameters, an index key that is used to locate an index record in
an index file.

In the following example, when the [DBRED| macro is processed, the TPFDF
product reads the SM prime block in the first-level index file, IR20DF.

Creating a DBDEF Macro Definiton 109

110

DBDEF FILE=IR24DF

(IID=IR20DF,

IPA=0,ILA=2

IPK=0,ILK=5

KEY1=(PKY=#IR20K80,UP), search keys for index
KEY2=(R=IR20ONAM,DOWN))

DBRED| REF=IR24DF,ALG=C'SMITH'

The SM prime block of the first-level index file (IR20DF) is determined by
extracting, for a length of 2 bytes (ILA=2), the value found at offset O (IPA=0)
into SMITH (ALG="SMITH'). The TPFDF product then reads the first index
record in the IR20NAM field ((KEY2=(R=IR20NAM,DOWN)) that contains the
name SMITH. SMITH is determined by extracting, for a length of 5 bytes
(ILK=5) the value found at offset 0 (IPK=0) into SMITH. The TPFDF product
then uses the SMITH index record to locate the SMITH detail subfile.

|IPE=0ffset

specifies an offset into a string passed with the ALG parameter on a or
other TPFDF macro, where offset is a nonnegative decimal number. IPE is used
with the IPA and ILA parameter, to extract the addressing argument for the end
ordinal used in FULLFILE processing. This end ordinal addressing argument
starts at the first byte after the starting ordinal addressing argument for a length
specified by the ILA parameter.

The following shows how the IPA, ILA, and IPE parameter settings are used by
the macro to read all of the detail subfiles indexed by ordinal 0 ("A") to
ordinal 4 ("E"). The #DO loop is executed until all of the detail subfiles have
been read.

IPA=0,ILA=1
IPE=1

REF=GROOSR,REG=R4
#D0_INF
FULLFILE REF=GROOSR,REG=R4,ALG=C'AE"
#DOEX TM, SWOORTN,, #BITA,NZ
#ELOP
#EDO

Beginning ordinal 0 ("A") is determined by extracting, for a length of 1 byte
(ILA=1), the value found at offset 0 (IPA=0) into AE (ALG=C'AE"). Ending ordinal
4 ("E") is determined by extracting, for a length of 1 byte (ILA=1), the value
found at offset 1 (IPE=1) into AE (ALG=C'AE").

Note: The IPE parameter should not be used when the hashing algorithms
(#TPFDBO09, #TPFDBOF, and #TPFDB10) are used to address the
top-level index file.

KEY

specifies the position of the index keys in a string passed with the ALG
parameter on a|[DBRED] or other TPFDF macro.

Note: Default keys are not valid for T-type files.

PKY
specifies the primary key of the index LREC.

Note: Do not use LREC IDs X'00'-X'0F' and X'FO'-X'FF'. LREC ID X'00'
cannot be used and the other LREC IDs are reserved by the TPFDF
product.

TPFDF R1 Database Administration

R=indexkey
specifies the position in the index LREC of the index key, where indexkey is
field that contains the index key.

S=offset
specifies the offset in the algorithm string of the data to compare with the
index key located by the R parameter, where offset is a honnegative
decimal number.

L=L'indexkey
specifies the length of the index key, where indexkey is field that contains
the index key.

ALG=n
For indexed detail files, but not top-level index files, n specifies the size of the
algorithm string for each index path, where n is a decimal value. If the algorithm
string size is not defined in the DSECT (using the &BEG and &END statements),
the ALG parameter must be used to specify the length of the algorithm string.

The following example defines an algorithm string as 4 bytes long:
(11D=IR23DF,PTH=1,1PA=0,ILA=0,1PK=0,1LK=4,ALG=4)

Notes:

1. The ALG parameter in the DBDEF macro does not have the same meaning
as the ALG parameter in other TPFDF macros and functions.

2. The ALG parameter must be used in the DBDEF for any file that requires
the area to be specified.

3. The ALG parameter cannot be used with a read-only path (IMI=#BIT0).

DID=dataid
for extended LRECS, specifies the 2-byte data identifier (secondary key) of the
index file that refers to this detail or intermediate-index file, where dataid is one
of the following:

* An equate that represents the 2-byte data identifier (for example,
DID=#GR00D1000)

* An explicit term that represents the 2-byte data identifier (for example,
X'1000".

Notes:

1. The dataid value must resolve to a value from X'0000'-X'FFFF'.

2. The DIT=dataid value in the index file must be the same as the DID=dataid

value in this detail or intermediate-index file. See the DIT parameter in
[‘Forward Index Path Parameters” on page 98]

IFR=slot
specifies the index slot, where slot is the number of an index slot that contains
a reference to the index file to which this detail or intermediate-index file is
chained. This number must be the same as the index slot coded with the
INDEX parameter in the index file. See the INDEX parameter in
[Path Parameters” on page 98}

Creating a DBDEF Macro Definition 111

Data Extraction Parameters

,ADI=0 ,LDI=0 ,LLE=0
[[[

>>-

l—,ADI=adival— l—, LDI=Idival— l—, LLE=lleval—

ADI=adival
specifies a displacement value, where adival is a decimal value.

Note: The ADI displacement value is used by the AREA parameter in the
DBRED| macro to identify where to put an extracted data string.

LDI=Idival
The displacement (in an index LREC) of the start of the data to extract, where
Idival is a decimal value.

LLE=adival
The number of bytes to extract, where lleval is a decimal value.

Parameters for TPFDF Recoup and TPFDF CRUISE Processing for
Customer-Format Files

Besides support for TPFDF files used in recoup and CRUISE, the DBDEF
parameters support the following type of customer-format files:

* Next available byte (NAB) type files with:
— Fixed-length items
— \Variable-length items.

* Add and delete (ADD/DEL) type files with:
— Fixed-length items
— Variable-length items.

These files are also known as add index and delete index files.
* Count (CNT) type files
* Files that contain only fixed-position references
* Files that use forward chains.

Note: For more information and examples of customer-format files, see
[Customer-Format Files” on page 181}

112 TPFDF R1 Database Administration

,357=2
|_

vy
\4

—,RCO=(FNR=versionref)——— l—,SSZ=subsize—
L,RCO=(TYP=END, FNR=versionref)—

\

NAB-Type Files with Fixed-Length Items |}
NAB-Type Files with Variable-Length Items |
ADD/DEL-Type Files with Fixed-Length Items |
ADD/DEL-Type Files with Variable-Length Items |—
CNT-Type Files i

NAB-Type Files with Fixed-Length Items:

JFS7=0———
r

|—,NAB=firstitem—,PNB=nabfieZd—, ITS=itemsize [

,FSZ=nabsize—

NAB-Type Files with Variable-Length Items:

|—,NAB=firstitem—,PNB=nabfield—,PIS=itemsizeptr

,1S7=2———
|_

>
»

v

—

,ISZ=itemsize—

ADD/DEL-Type Files with Fixed-Length Items:

|—,RAD=addptr—,RDE=delptr—,ITS=itemsize

ADD/DEL-Type Files with Variable-Length Items:

|—, RAD=addptr—,RDE=delptr—,PIS=itemsizeptr

CNT-Type Files:

,CNT=itemnbr ,PIT=firstitem J
,CPT=cntptr,FSZ=nabsize,PIT=firstitem

The following parameters are used with the CBV parameter to describe the basic
characteristics of a customer-format file when CBV=1, CBV=2, CBV=3, or CBV=4 is

[Parameters” on page 98}

specified. For more information about the CBV parameter, see [‘Forward Index Path|

specifies the recoup concatenation value.

(FNR=versionref)
specifies the next file version to chain chase, where versionref is a

number from 0-255.

Creating a DBDEF Macro Definition

113

(TYP=END,FNR=versionref)
specifies the last file version for this file and the file version where the
chain chasing starts again, where versionref is a number from 0-255.

Complicated customer-format data structures such as a mixture of CNT
(CBV=2) and fixed-position references (CBV=3) require different file versions for
each structure. Each file version has a different recoup table associated with it.
The recoup concatenation order (RCO) parameter avoids separate chain
chasing for each of the tables, as shown in the following example:

DBDEF FILE=GR21SR,FVN=0, FILE VERSION 0 X
CBV=3,..... s THE CBV=3 LAYOUT X
...... s X
RCO=(FNR=1) CHAIN CHASE FILE VERSION 1 NEXT

DBDEF FILE=GR21SR,FVN=1, FILE VERSION 1 X
CBV=2,..... , THE CBV=2 LAYOUT, NAB TYPE X
...... s X
RCO=(FNR=2) CHAIN CHASE FILE VERSION 2 NEXT

DBDEF FILE=GRZ21SR,FVN=2, FILE VERSION 2 X
CBV=2,..... s THE CBV=2 LAYOUT, CNT TYPE X
...... , X

RCO=(TYP=END, FNR=0) END OF LIST, GO BACK TO FVN 0

RAD=addptr
specifies the location of the ADD field in an ADD/DEL type record, where addptr
equals the address of the ADD field minus the address of the beginning of the
file. For example:

RAD=GPO1FLD-GPO1BID
RDE=delptr
specifies the location of the DEL field in an ADD/DEL type record, where delptr

equals the address of the DEL field minus the address of the beginning of the
file. For example:

RAD=GPO1FLD-GPO1BID

Note: The value can also be specified as an absolute displacement.

ITS=itemsize
specifies the item size for fixed length items in CBV=1 or CBV=2 type files.
where itemsize equals the length of an item. For example:

ITS=L'GPOLITM

Notes:

1. All items must be the same size.

2. The value can also be specified as an absolute displacement.
NAB=firstitem

specifies the position of the first item in the block in a CBV=1 or CBV=4 type

file, where firstitem equals the address of the first item minus the address of the
beginning of the file. For example:

NAB=GPO1ITM-GPO1BID
PNB=nabfield
specifies the position of the NAB field in a CBV=1 or CBV=2 type file, where

nabfield equals the address of the NAB field minus the address of the beginning
of the file. For example:

PNB=GPO1NAB-GPO1BID

Note: The value can also be specified as an absolute displacement.

114 TPFDF R1 Database Administration

FSZ=nabsize
for CBV=1, CBV=2, or CBV=3 type files, FSZ specifies the length in bytes of
the CNT or NAB field, where nabsize equals 1, 2, 3, or 4. For example:

FSz=1

PIS=itemsizeptr
specifies the location of the field in each item that contains the item size for
CBV=4 type files, where itemsizeptr equals the address of the SIZ field minus
the address of the beginning of the item. For example:

PIS=GPO1SIZ-GPO1ITM

Note: The value can also be specified as an absolute displacement.

ISZ=itemsize
for CBV=4 type files, I1SZ specifies the length (in bytes) of the item size field,
where itemsize equals 1, 2, 3, or 4. For example:

1SZ=3

CNT=itemnbr
specifies the number of items in the record for a CBV=2 type file, where itemnbr
is a decimal number. For example:

CNT=3

PIT=firstitem
for CBV=2 type files, PIT specifies the position of the first item, where firstitem
equals the address of the first item minus the address of the beginning of the
file. For example:

PIT=GPO1ITM-GPO1BID

Note: The value can also be specified as an absolute displacement.

CPT=cntptr
specifies the location of the CNT field for CBV=2 type files, where cntptr equals
the address of the CNT field minus the address of the beginning of the file. For
example:

CPT=GPO1CNT-GPO1BID

SSZ=subsize
for CBV=1, CBV=2, CBV=3, or CBV=4 type files, SSZ specifies the length, in
bytes, of the subitem count, where subsize equals 1, 2, 3, or 4. For example:
SSZ=1

TPFDF Recoup User Exits

The TPFDF product has recoup and CRUISE user exits that allow you to run
user-defined code:

» If a forward index pointer causes an error (CDE)

» Before a forward index pointer is retrieved (CDO)

» To override the CNT, PNB, NAB, or PIT value at run time (CDR)

» Before a block is referenced (CEB)

» After a block is referenced (CEE)

» After a block is retrieved (COA)

» If there is an error when a block is retrieved (COE)

» To determine the location of the forward chain field (CPF).

Creating a DBDEF Macro Definition 115

[N >

l—,BASEC0D=Zabel—| I—,CDE=ZabeZ—| l—,CD0=label—| l—,CDR=Zabel—|

l—,CEB=label—| l—,CEE=Zabel—| l—,COA=ZabeZ—| l—,COE=label—|

|—,CPF=labeZJ |—CDLBL=labeZJ

label
specifies a user-supplied name that identifies user-defined code that starts at
the CDLBL parameter. A user exit label must match the label specified with the
CDLBL parameter.

BASECOD
specifies the label of installation-wide exit code to determine the location of the
file. The installation-wide exit code:

* Is coded in a corresponding DBDEF CDLBL=label statement.
» Stores the location of the referenced file in register 15 (R15) before returning.
» Uses the BR R7 statement to return to TPFDF recoup.

Notes:
1. BASE and BASECOD are not allowed together.
2. BASECOD requires STP=1.

3. Ensure that register R15 contains the file address or core address of the
user code.

4. If the reference itself is a main storage address rather than a file address,
specify CORE=YES.

CDE
specifies code to be used when the retrieval of the forward index pointer
caused an error.
Notes about the user code:
1. The CDE parameter is not valid for ALCS.

2. The address of the block that contains the forward index pointer is
contained in level DO (field name EBCFAOQ) of the ECB.

3. The address of the block that caused the retrieval error (forward index
pointer) is in level D1 (field name EBCFAL) of the ECB.

4. EBCFAL might be changed for a second attempt of retrieval.

5. The user code must include one of the following statements to return to
TPFDF recoup:

e To inhibit TPFDF recoup from continuing, use:
B 0(,R6)

(The current ECB exits, forcing a time-out in the main monitor.)

» To allow the TPFDF product to retry the retrieval of this reference for a
second time, use:

B 4(,R6)

CDO
specifies code to be used before the forward index pointer is retrieved.

116 TPFDF R1 Database Administration

Notes about the user code:
1. The address of the block that contains the forward index pointer is in level
DO (field name EBCFAOQ) of the ECB.

2. Register 5 (R5) is pointing to the LREC where the forward index pointer is
located.

3. The user code must include one of the following statements to return to
TPFDF recoup:
» To inhibit TPFDF recoup from chain chasing all references, use:
B 0(,R6)
= To inhibit TPFDF recoup from chain chasing this reference, use:
B 4(,R6)
» To allow TPFDF recoup to continue with this reference, use:
B 8(,R6)

CDR
User code to override the following values at run time:
« CNT
* PNB
* NAB
* PIT.

You can use CDR to specify an exit to user code that overrides various values
at run time.

Notes about the user code: shows how the installation-wide exit
code should write values into fields in the ECB
(EBWO050 and EBWO054), or into register 5 (R5) to
override the values used by TPFDF recoup.

Table 35. Using CDR to Override the CNT, PNB, NAB, PIT Values at Run Time

CBv=1 * The maximum NAB value is used for ADD/DEL-type files and NAB-type files.
r
cc):BV=4 * The location of the NAB is determined using dsndNAB-dsndBID
* EBWOS50 is used to override the maximum NAB value.
* The value in R5 replaces the initial NAB value (INB) Use register 5 (R5) to
change the INB. INB=X'1A'" is for TPFDF files (The TPFDF header is 26
bytes).
CBV=2 * The user code stores the position of the first item in register R5.
* TPFDF recoup takes the value in R5 and adds it to the value specified by
PIT= (for example, see [Figure 45 on page 118).
» The user code can also put the number of items in the work area EBW054.
» Because you can modify EBWO054, the value is not added to the value in
CNT field.
CBVv=3 The user code places the number of references in R5.
Notes:

1. The CDR parameter is not valid for ALCS.

2. The address of the block that contains the reference is in level DO (field
name EBCCRO) of the ECB.

3. EBCCRO is the main storage reference word of level DO.
4. CELCCO is the 2-byte area which contains the block size of DO.
5. EBCFAQ is the file address of DO.

Creating a DBDEF Macro Definition 117

6. The user code must use the following statement to return to TPFDF recoup:
B 0(,R6)

Figure 45/ shows an example of how the CDR parameter is used.

DBDEF FILE=dsnidx,

WID=DA,
dsniBID

ACPDB=NO,

1 .
DA _ RCT=#DAODA,
dsniDIS BOR-=0,

0030 EO#=-1
note 2 | ’

cBV=2,
CPT= CPT=yyyCTR-yyyB

5 CDR=label
3
DBDEF CDLBL=label

L R14,EBCCRO
dsnidx REG=R14

—_

D B| AH R5, DAODIS
B 0(,R6)

Figure 45. Using the CDR Parameter to Override PIT Parameter Value

Notes:
1. The COA parameter is not valid for ALCS.

2. shows a CNT-type file in which the position of the first item is not
fixed and cannot be determined when the DBDEF is defined.

3. Each block contains a displacement field (dsniDIS), which contains the
position of the first item in the block.

4. User code is required to override the PIT value.
5. Register 5 (R5) points to the first item (based on the PIT parameter), so the
PIT parameter is zero (0).

CEB
User code to be run before references in the block are processed.
Notes about the user code:
1. The CDE parameter is not valid for ALCS.

2. The address of the block about to be processed is in level DO (field name
EBCFAO) of the ECB.

3. The user code must use one of the following statements to return to TPFDF
recoup:

* To inhibit TPFDF recoup from processing this block, use:
B 0(,R6)

* To allow TPFDF recoup to process this block, use:
B 4(,R6)

118 TPFDF R1 Database Administration

CEE
User code to be run after references in the block are processed.
Notes about the user code:

1. The address of the block to be processed is in level DO (field name
EBCFAO) of the ECB.

2. The user code must use the following statement to return to TPFDF recoup:
B 0(,R6)
COA
User code to be run just after a block is retrieved.
Notes about the user code:
1. The COA parameter is not valid for ALCS.

2. The address of the block that has just been retrieved is in level DO (field
name EBCCRO) of the ECB.

3. The user code must include one of the following statements to return to
TPFDF recoup:

* To inhibit TPFDF recoup from chain chasing a block, use:
B 0(,R6)
* To allow TPFDF recoup to process this block, use:
B 4(,R6)
COE
User code to be run if there is an error when retrieving a block.
Notes about the user code:

1. The address of the block retrieved is in level DO (field name EBCFAOQ) of the
ECB.

2. The user code must use one of the following statements to return to TPFDF
recoup:

* To inhibit TPFDF recoup from trying to retrieve the block again, use:
B 0(,R6)
» To retrieve this block again, use:
B 4(,R6)
CPF
User code to determine the location of the forward chain field.
Notes about the user code:
1. CPF is not allowed with PFC.
2. PFC or CPF is necessary if FCH is present.

3. The user code should write the location of the forward chain field into
EBWO030.

4. The address of the block that contains the reference is in level DO (field
name EBCCRO) of the ECB.

5. The user code must use the following statement to return to TPFDF recoup:
B 0(,R6)
CDLBL
specifies an assembler label that defines the start of user code.
Notes:

1. CDLBL must be the last DBDEF macro statement coded in a segment or
the DBDEF table will be corrupted.

Creating a DBDEF Macro Definiton 119

2. If a work area is required, the following sequence is recommended:

GETCC Dx,Lx
DBDEF CDLBL=RAP

3. If there is an SVC in the user code, it must be followed by a
DBDEF CDLBL=RAP statement to reinstall the program base. For example:

DBDEF CDLBL=label

*

User code
More user code
(example of a macro that issues an SVC)

*

GETCC DE,L1

*

DBDEF CDLBL=RAP
. * More user code (continued)
B 0(,R6) * (return to TPFDF recoup)
4. If the following registers that are used to return to TPFDF recoup have been
modified, restore them:
* R6, for all user code parameters except the BASECOD parameter
* R7, for the BASECOD parameter.

5. All TPFDF recoup user code is entered in 31-bit mode.

B*Tree File Parameters

The following describes DBDEF parameters that are used exclusively for B*Tree
files. B™Tree indexing requires other DBDEF parameters and has other
considerations than are listed here. For more information, see [‘B*Tree Indexing” on|

,NODE=NO

[>
<

I—,NODE=YES———I l-—,NODEID=fiZeid—-|

NODE
specifies one of the following:

NO
specifies that this file is not a B*Tree index file.

YES
specifies that this file is a B*Tree index file.

NODEID=fileid
specifies the fileid, where fileid is the file ID of a B*Tree index file associated
with this data file. You can find this value in the DSECT of the selected B*Tree
index file.

Note: NODE=YES and NODEID cannot be used in the same DBDEF
statement.

120 TPFDF R1 Database Administration

Miscellaneous Parameters

,ACPDB=YES ,DDA=NO ,DELEMPTY=NO
] 1 []

>>-

I-,ACPDB=NOJ l—,APL=C'appl’—| I-,DDA=YESJ I-,DELEMPTY=YES—I

,DEV=A
|_

l,DEV= B l,FVN=versionnbr— l,FNR=versionref— {,GREG=REGCj
—ECEI ,GREG=REGS
D

JFUN=0——— —,FNR=6—— —,GREG=REGR
[[[]

v
v

,KEYCHECK=NO ,PFO=LS ,PF1=SS
[] [1 []

I—,KEYCHECK=YESJ |?,PACKINHI=COND— {,PFO=SSj {,PF1=LSj

| 2

» PACKINHI=NO—— ,PFO=LD ,PF1=LD
»PACKINHI=YES—

,PF2=LS ,PLI=100 ,SIZECHK=NO ,SSU=N
1 [[1 [

Y

{,PF2=SS:‘ I—,PLI=packlimit— I—,SIZECHK=YESJ I—,SSU=—|:C:|—

,PF2=LD U

v
v

(1)

L, (MDBF, EXCLUDE, SSU=(ssunames))

r

I—, (MDBF, SSU=(ssunames) ,overri des)—|

\
v

, TM=NO

v

A\

l—,SUFFIX=suffix—I l,TM=YESJ l—,TRS=tr‘ailer5ize—|

I—,UNIQUE= \(Es;,J
NO

A\
A

\

Notes:

1 MDBF parameter statements are only used if SSU=U.

ACPDB
specifies whether this is a TPFDF file.

NO specifies that this a non-TPFDF file. The TPFDF product uses the

Creating a DBDEF Macro Definiton 121

122

DBDEF macro definitions for chain chasing during the processing of
recoup and CRUISE, but cannot access or manipulate the file using
other macros and functions.

YES specifies that this is a TPFDF file. The TPFDF product uses the DBDEF
macro definitions for chain chasing during the processing of recoup and
CRUISE, and can access and manipulate the file using other macros
and functions. The file type must be R, W, T, or P. See [‘File Names” on|
[page 69| for more information about file types.

APL=C'appl'

overrides any application type that was specified in the first character of the
6-character DSECT name, where appl is a one-character type of application.
For example:

APL=C'G'

See [‘File Names” on page 69| for more information about application types.

DDA

specifies the distributed data access support.

Note: DDA is not allowed for P-type files.

DELEMPTY

specifies one of the following:

YES
specifies that the TPFDF product will delete empty blocks without packing
the subfile. Setting DELEMPTY=YES requires the following:

* The file must be R-type.

» Backward chaining must be indicated by bit O of global set symbol
&SWOO0OP1.

* The DBDEF NODE parameter must be NO.
* The DBDEF FVN parameter must be O.
NO

specifies that the TPFDF product will delete empty blocks only when the
subfile is packed.

DEV

specifies the device type used by CRUISE with the TPF GETFC macro. The
DEV parameter has no effect on ALCS systems.

Note: A, B, C, and D refer to different DASD types defined at system
initialization. See [TPF System Generation| for more information.

FVN=versionnbr

identifies the version of a file, where versionnbr is a number from 0-255. For
example,

FVN=3

identifies the file as version 3. Other versions of the file can be defined with a
different block layout.

Note: The DBDEF macro statements for the different versions of a file should
be defined contiguously using increasing file version numbers. Only the
first file version (FVN=0) is indexed in the DBDEF index table.

TPFDF R1 Database Administration

FNR=versionref
identifies the version of a file that this file refers to, where versionref is a
number from 0-255. The FNR value equals the FVN value of the referenced
file. For example,

FNR=3

refers to version 3 (FVN=3) of the referenced file.

GREG
specifies the register call for global base.

REGR
specifies that R14 is the base register for global area 1.

REGC
specifies that R14 is the base register for global area 3.

REGS
specifies that R14 is the base register for global area 3.

KEYCHECK
specify YES to validate the default keys before replacing or modifying an LREC,
which will prevent corruption of the file organization.

Notes:

1. If you use global modification when KEYCHECK=YES, and any of the fields
being modified overlap any default key fields for that primary key in the file,
the TPFDF product issues a system error (DB0139) and processing ends.
All records that were changed before processing ended remain changed.

2. Before you can use global modification with KEYCHECK=YES in an ALCS
environment, enable C language support. See [TPFDF Installation and|
[Customization] for more information.

3. If you enter the DBREP|macro with KEYCHECK=YES, any keys in effect
from previous TPFDF macros become unpredictable.

4. If you enter the DBMOD| macro without the ALL parameter after you have
entered the [DBRED| INLINE macro with KEYCHECK=YES, the TPFDF
product may not check the keys.

PACKINHI
specifies if packing should be inhibited for this file during recoup phase 1:

COND packing is inhibited only if this file includes a forward index path (see
[‘Forward Index Path Parameters” on page 98) and bit 1 of &S W00OP2
is 0, indicating that pool blocks are reused during a pack operation.
Packing is inhibited for these files because it is possible for recoup to
miss index LRECs if they are moved to a block that has already been
chain chased.

NO packing is not inhibited for this file during recoup phase 1.
YES packing is inhibited for this file during recoup phase 1.

Notes:

1. The default for the PACKINHI parameter is specified by set symbol
&INHIDEF in the DBLCL macro. See [TPFDF Installation and Customization|
for more information about the DBLCL macro.

2. This parameter has no affect in an ALCS environment.

PFO
specifies the type of pool blocks that are associated with pool file 0 (PF0). The

Creating a DBDEF Macro Definiton 123

pool block type associated with PFO is used by a TPFDF macro or function
when the POOLTYP=0 parameter is specified with that macro or function. For
example, when PFO=SS:

DBOPN| REF=IROODFX,POOLTYP=0
opens a short-term pool block.

Note: For W-type files, the default is always short-term (SS) and must not be
changed.

LS Long-term nonduplicated pool.
SS Short-term pool.
LD Long-term duplicate pool.

PF1
specifies the type of pool blocks that are associated with pool file 1 (PF1). The
pool block type associated with PF1 is used by a TPFDF macro or function
when the POOLTYP=1 parameter is specified with that macro or function. For
example, when PF1=SS:

DBOPN| REF=IROODFX,POOLTYP=1

opens a short-term pool block.

PF2
specifies the type of pool blocks that are associated with pool file 2 (PF2). The
pool block type associated with PF2 is used by a TPFDF macro or function
when the POOLTYP=2 parameter is specified with that macro or function. For
example, when PF2=SS:

DBOPN| REF=IROODFX,POOLTYP=2

opens a short-term pool block.

PLI=packlimit
specifies the packing limit in percentage, where packlimit is a decimal number
from 50-100.

You can use PLI to specify the amount of space to which each block in the
subfile should be packed. The value of PLI can be specified between 50% and
100%.

A value of 50% results in half of the space in each block being taken up. A
value of 100% results in all of the space being taken up. The values for PLI are:
50-100, for L1 and L2 size blocks
75-100, for L4 size blocks.

Always specify a PLI value greater than the PIN value; otherwise, the file is
always below the packing threshold and is packed continuously.

Note: Using the PLI parameter does not ensure that B*Tree files are packed
unless there are no nodes in the B™Tree index. To ensure that B*Tree
files are packed, use one of the following:

e The|ZUDFM OAP|command

* A ZFCRU command with the pack option

e The [DBCLS|macro with the pack option
+ The function with the pack option.

124 TPFDF R1 Database Administration

SIZECHK
specifies one of the following:

NO specifies that TPFDF macros and functions that use search keys,
search each LREC in the current core block.

YES specifies that TPFDF macros and functions that use search keys, obtain
a core block and copy the current LREC into that core block before
searching the LREC in the copied core block. Specifying
SIZECHK=YES prevents the TPFDF product from comparing a search
key past the end of a data block, which could cause a TPF system
error. Comparing a search key past the end of a data block could occur
if any of the following are true:

* The last field in an LREC of the data block has a variable length.
» Short variable length LRECs are used in the data block.

* Along variable length search key is specified with a TPFDF macro or
function.

* A search key that is longer than than the length of the searched
LREC is specified with a TPFDF macro or function.

Note: While specifying SIZECHK=YES prevents the unlikely possibility
of a system error, it significantly impacts system performance
and additional system resources are required.

SsuU
specifies the subsystem user.

N ignores MDBF parameter statements coded in the DBDEF.
C The file is common; MDBF parameter statements cannot be coded.

U The file is unique. The U parameter only applies for the TPF system.

To aid in migrating database definitions from an MDBF system to a non-MDBF
system, the SSU parameter can be set to N to override any MDBF parameter
statements that are coded in the DBDEF.
DBDEF FILE=zzzzzZ, standard DBDEF

......... . additional DBDEF parameters

SSU=N, ignore any MDBF parameters

(MDBF,SSU=(DF,LH,AE) ,WRS=L4),

(MDBF,SSU=(RF) ,WRS=L1,E0#=99),

(MDBF,SSU=(RT) ,WRS=L1,E0#=9)

(MDBF,EXCLUDE,SSU=(ssunames))
prevents the specified subsystem users from issuing TPFDF macros and
functions, where ssunames is a list of valid SSUs such as AF,LH,BA,AA. For
example,
DBDEF FILE=zzzzzZz, standard DBDEF

......... s additional DBDEF parameters

SSu=u, file is not common

(MDBF, SSU=(AA,BA,UA) ,RBV=#TPFDBO3),

(MDBF, EXCLUDE, SSU=(RF))

Notes:
1. The MDBF parameter only applies for the TPF system.

2. If an application program issues a TPFDF macro or functions from an
excluded subsystem user, the application will end with a DB0137 system
error.

Creating a DBDEF Macro Definiton 125

Therefore, in the previous example, if an application program issues a
TPFDF macro when it is in SSU RF, the application will end with a DB0137
system error.

It is important to code the EXCLUDE information so TPFDF utilities run only
on the subsystem users that you select. The ZUDFM, ZFCRU, and ZRECP
commands will not run on files in a subsystem user that has been excluded.

The specified subsystem user must be defined in the SSUDEF copy
member or the DBDEF macro will send an error when it is assembled.

(MDBF,SSU=(ssunames),overrides)
provides unique parameters for the specified subsystem users.

ssunames

specifies a list of valid SSUs such as AF,LH,BA,AA.

overrides

specifies a list of override values for the specified subsystem users (SSUs).
The ARS, BOR, EO#, EOR, ILV, INB, NLR, NOC, OP1, OP2, OP3, PFO,
PF1, PF2, PIN, PLI, PTN, RBV, RCT, and WRS DBDEF parameters are
allowed.

Note: Because of the different characteristics of algorithms, algorithms can
only be overridden (using the RBV override parameter) by specific
algorithms that share similar characteristics (are in the same group).
For example, #TPFDB09 cannot override #TPFDBO01 because the
expected algorithm arguments are different. #TPFDBO01 expects an
alphabetic character while #TPFDB09 expects 8 bytes of data.

shows the groups of algorithms that can override each
other. The size of the algorithm string (defined by the DBDEF ALG
parameter or in the DSECT macro for the file) must be large enough
to allow the algorithm to be overridden. For example, if ALG=1 was
specified in the detail file, you cannot override the #TPFDBO01
algorithm with the #TPFDBO02 algorithm in the index file (even though
they are in the same group) because the file was defined to allow
only a one-bhyte algorithm. To avoid this problem, define the algorithm
to be as large as the maximum length of the algorithm group.

Table 36. Algorithm Groups for Overriding

Group Maximum
Length

1 #TPFDBO1 #TPFDBO02 #TPFDBO03 3
#TPFDBO06 #TPFDBO7 #TPFDBO08

2 #TPFDBOA #TPFDBOB 2

3 #TPFDBO04 N/A

4 #TPFDBO5 4

5 #TPFDBOC 2

6 #TPFDBOD N/A

7 #TPFDBO09 #TPFDB10 8

8 #TPFDBOF 10

More than one MDBF definition can be defined for a particular file. For example:

126 TPFDF R1 Database Administration

DBDEF FILE=dsname, standard DBDEF
......... . additional DBDEF parameters
(MDBF, SSU=(AA,BA,UA) ,RBV=#TPFDB0O3),
(MDBF,SSU=(DF,LH,AE) ,WRS=L4),
(MDBF,SSU=(RF) ,WRS=L1,E0#=99),
(MDBF,SSU=(RT) ,WRS=L1,E0#=9)

Each SSU takes one of the following values for the file (in order of precedence):
1. The SSU override values (if they are specified)

2. The standard DBDEF override values (if they are specified), RBV, WRS and
S0 on.

3. The &SWO0O... values specified in the file DSECT.

If you want to code a DBDEF subsystem user override, the name of the
subsystem user must be listed in SSUDEF. The SSUDEF copy member is
installation specific and lists the subsystem users that can be included in an
override.

For each subsystem user, a variable is added to SSUDEF as follows:

&SSUV(1) SETC 'RED' SSU mnemonic name (MUONAM in MSOUT)
&SSUV(2) SETC 'BLUE' SSU mnemonic name (MUGNAM in MSOUT)
&SSUV(3) SETC 'OR' SSU mnemonic name (MUONAM in MSOUT)
&SSUV(n) SETC 'GOLD' SSU mnemonic name (MUGNAM in MSOUT)

If the variable to define a particular subsystem user is not set up, the DBDEF
macro issues an MNOTE at assembly time.

Notes:
1. The MDBF parameter only applies for the TPF system.
2. A maximum of 128 subsystem users can be listed in SSUDEF.

3. The DBDEF EXCLUDE parameter, which specifies subsystem users that
cannot issue TPFDF macros on a particular file, is considered an override.
Therefore, these subsystem users must also be listed in SSUDEF.

4. SSUDEF can be updated to include subsystem users from systems with
different MDBF configurations. This allows the DBDEFs to be assembled
once against the common SSUDEF and loaded to the two different systems.

SUFFIX=suffix
specifies the suffix that can make a file unique, where suffix is an alphanumeric
character or characters. Some P-type file definitions can generate the same
symbols for different files or file versions. Use the SUFFIX parameter to add a
suffix to the labels to make the labels exclusive to a file version.

If you code the SUFFIX parameter with a DBDEF macro statement, ensure that
the DSECT for the P-type file also supports a SUFFIX parameter because the
DSECT for the P-type file is invoked internally by the DBDEF macro with the
supplied suffix. For example,
DBDEF FILE=FRED1,FVN=0,
generates

FREDID DS H
FREDFCH DS F

DBDEF FILE=FRED1,FVN=1,SUFFIX=A,

Creating a DBDEF Macro Definiton 127

also generates FREDID and FREDFCH, but adds an 'A' to them
FREDIDA DS H
FREDFCHA DS F

™
specifies one of the following:

NO specifies that commit scopes are not used during checkpoint and close
processing.

YES specifies that commit scopes are used during checkpoint and close
processing. This option is valuable when many files are to be filed out
during checkpoint and close processing (for example, detac mode,
extensive B'Tree indexing updates, and requests to pack indexes). See
[TPFDF Programming Concepts and Referencel for more information
about commit scopes.

Note: The application can override the DBDEF TM value by specifying

a TM value with the [DBCKP] or [DBCLS] macros, or the [dfckp| or
dfcls|functions. See [TPFDF Programming Concepts and|
Reference| for more information about these macros and
functions.

TRS=trailersize
specifies the trailer size at the bottom of each block, where trailersize is a
nonnegative number.

Notes:

1. Standard-format files that do not use algorithm #TPFDBOD have a default
TRS value of TRS=36.

2. Standard-format files that use algorithm #TPFDBOD have a default TRS
value of TRS=0.

3. For customer-format files, the TRS value has no meaning.

UNIQUE
specify YES to ensure that all LRECs added to a file are unigue even if the
UNIQUE parameter is not specified with a|DBADD| macro or |dfadd| function
statement. See [TPFDF Programming Concepts and Reference| for more
information about the UNIQUE parameter of the |DBADD| macro 0r|dfadd|
function. The default for non-B*Tree data files is UNIQUE=NO. The default for
B*Tree data files is UNIQUE=YES.

Note: UNIQUE=NO is not allowed for B*Tree data files.

128 TPFDF R1 Database Administration

Part 3. Examples and Concepts

© Copyright IBM Corp. 1997, 2001 129

130 TPFDF R1 Database Administration

Database Optimization Examples

In [Optimizing the Database Design| data tables are optimized through data
duplication. The following discusses a number of additional points that you may find
helpful.

When optimizing, your aim should always be to reduce the amount of physical 1/0
processing. This ensures the greatest possible performance gains.

Reducing I/O Processing

You can reduce I/O processing in a number of ways. The following are the most
common methods:

* Duplicate selected data

» Use block indexing

* Use B*Tree indexing

* Reduce the number of file accesses

* Combine 2 or more files

* Use an algorithm instead of an index.

Optimizing the Database Design| discusses data duplication at length.
page 135|discusses block and B*Tree indexing. The following discusses the
remaining methods of reducing I/O processing.

Reducing File Accesses

You may be able to reduce the number of file accesses by moving data from detail
subfiles into the index file. |[Figure 46| shows a TPFDF index file with a number of
detail subfiles.

Note: The Name fields refer to the passenger name.

size |80| addr | RCC | Name1

size |80| addr | RCC | Name2

size |80| addr | RCC | Name3

| Detail Subfile 1 Detail Subfile 2 Detail Subfile 3
» | TDFDF Header TDFDF Header —» | TDFDF Header
Name1 details Name2 details Name3 details

Figure 46. Index File Pointing to Detail Subfiles

The number of file accesses could be reduced considerably if the data in the
subfiles were moved to the index file. shows the resulting single file.

© Copyright IBM Corp. 1997, 2001 131

size |80 | Name1| Name1 details

size |80 | Name2| Name?2 details

size |80 | Name3| Name3 details

Figure 47. Subfile Data Moved to Index File

The original index file contained pointers to the detail subfiles. Now that these have
been removed, the pointers are no longer needed. As you can see here, they have
been removed from the index file.

Note: If the detail subfiles contain a lot of data, it may not be feasible to move this
data to the index file. Working from the requirements of your application, you
will need to estimate how much data can be stored in the index file without
lowering performance levels.

Combining Files

When combining files, you may need to increase the number of ordinals in the
top-level index file to prevent a large overflow in the upper levels of the files.

shows a TPFDF index file with pointers to different detail subfiles.

size 80| addr | RCC | addr | RCC | Key

[
Detail Subfile 1 Detail Subfile 2
» | TDFDF Header TDFDF Header
size |80| addr | RCC | addr | RCC | Key Data1l Data2
[
Detail Subfile 3 Detail Subfile 4
» | TDFDF Header TDFDF Header
Data3 Data4

Figure 48. Index File Pointing to Different Subfiles
In[Figure 49} the two detail subfiles have been combined to reduce 1/O processing:

132 TPFDF R1 Database Administration

size |80| addr | RCC| Key Detail Subfile 1

I » | TDFDF Header

Datat Data2

size [80| addr | RCC | Key Detail Subfile 2

I » | TDFDF Header

Data3 Data4

Figure 49. Index File Pointing to Combined Subfiles

Using

Algorithms instead of Indexing

This method of reducing 1/O is especially useful where some parts of a file are more
frequently accessed than others. For example, it may not be efficient to index every
date in a flight file when only the earlier dates are being accessed frequently.

You can code a mathematical function to translate the index key (for example, date)
and then use TPFDF algorithm #TPFDBO5 to locate the ordinal directly.
Alternatively, you could use TPFDF user exit UWBD to define an algorithm of your
own. See pagefor more information about creating user-defined algorithms.

Figure 50[shows an index file with each date pointing to a separate detail subfile:

size |80| addr | RCC| Date1 Detail Subfile 1
I » | TDFDF Header

size (80| addr | RCC | Date2 Date1 data Detail Subfile 2
I » | TDFDF Header

size (80| addr | RCC| Date3 Date2 data Detail Subfile 3
I » | TDFDF Header

Date3 data
Figure 50. Subfiles Accessed from an Index File

In the index file is replaced by a calculated value, which is passed to the
#TPFDBO5 algorithm to locate the ordinal directly.

Database Optimization Examples 133

pars date

User code to translate
pars date to ordinal

[
000 through 365
|
#TPFDBO5 Algorithm

l Ordinal 000 through 365

Ordinal 0 Ordinal 1 Ordinal 2 Ordinal 365

TDFDF Header TDFDF Header TDFDF Header :_TDFDF Header : TDFDF Header
CTTTTTTTTA

Date1 data Date2 data Date3 data : Daten data 1 | Date366 data

Figure 51. Subfiles Accessed Using Algorithm #TPFDBO05

Note: Where an uneven distribution of LRECs is likely, user-defined algorithms can
generate a better distribution. For example, where passenger names are
being distributed alphabetically, there are a greater number of names
beginning with S than with X.

The distribution will probably be very uneven if you use algorithms #TPFDBO01,
#TPFDBO02, or #TPFDBO03. However, if you define your own algorithm, you can
accommodate this difficulty by creating extra ordinals for the more common
characters. Seefor more information about user-defined algorithms.

134 TPFDF R1 Database Administration

Indexing

TPFDF index support allows you to split large amounts of data into logical groups.
This reduces the amount of physical 1/0 processing required, allowing faster access
to data.

However, with small files, sequential accessing may provide a more effective means
of accessing data.

TPFDF index support consists of the following:
* Basic indexing

* Block indexing

« B*Tree indexing.

Basic Indexing

There is no real limit to the number of different basic indexing methods available in
the TPFDF product. However, the methods that follow are adequate for most
applications:

» Simple indexing

» Multiple indexing to a single detail subfile

* Multiple-level indexing

» Single indexing to multiple detail files.

Note: In the sample DBDEFs in this section, the forward path defines the indexing

structure for recoup purposes. The backward path defines the relationship
between files in the index structure.

© Copyright IBM Corp. 1997, 2001 135

Simple Indexing

Figure 52| shows an index file containing index LRECs. These LRECs reference the
subfiles in a detall file.

In this example, there is only one ordinal in the index file, so algorithm #TPFDB04
is used. The detail file contains two sets of LRECSs. It is organized in ascending
order (UP organized) by the LREC ID (PKY=).

The LRECs in LREC ID X'80' are further organized in ascending order on field
GR25DF2. The LRECs in LREC ID X'90' are organized in descending order
(DOWN organized).

File GR50DF (Algorithm #TPFDB04)

#GR50K80 Key1 is UP organized
4 - GR50DF1 Key2 is UP organized

size |80| addr | RCC
[[
size |80| addr | RCC

[[4
size |80| addr | RCC

L File GR25DF (Algorithm #TPFDBFF)

v

#GR25K80 Key1 is UP organized
#GR25K90 Key1 is UP organized

|m———- GR25DF2 Key?2 is UP organized
1
b1
size |80
' N
[[
size |80
[[4
size |80
A 4 I I
size |90
[[!
size |90
[[
size |90 A4
? A
e == GR25DF3 Key 2 is DOWN organized
Figure 52. File Description for Simple Indexing
DBDEFs
Top-level index file
DBDEF FILE=GR50DF, file GR50DF -
(PKY=#GR50K80, primary key X'80' -
KEY1=(PKY=#GR50K80,UP), - default keys -

KEY2=(R=GR50DF1,UP)), -

136 TPFDF R1 Database Administration

(ITK=#GR50K80, forward path, index LREC -
1D2=, type of reference -
INDEX=(GR25DF,0)) indexed file, index slot 0

Detail file

DBDEF FILE=GR25DF, file GR25DF -
(PKY=#GR25K80, primary key X'80' -
KEY1=(PKY=#GR25K80,UP), - default keys -
KEY2=(R=GR25DF2,UP)), -
(PKY=#GR25K90, primary key X'90' -
KEY1=(PKY=#GR25K90,UP), - default keys -
KEY2=(R=GR25DF3,DOWN)), -
(IID=GR50DF, backward path, default path 0 -
IKY=#GR50K80, index LREC -
IPA=0, offset of addressing argument -
ILA=0, length of addressing argument -
1PK=0, offset of index key -
ILK=4, length of index key -
KEY1=(PKY=#GR50K80,UP), search keys for index -
KEY2=(R=GR50DF1,S=0,UP)) default length assumed

Indexing 137

Multiple Indexing to a Single Detail Subfile

shows an example of a file indexed by 2 files. One index file uses a
6-byte field as an index key. The other file uses a different 8-byte field as an index
key.

The detail file (GR25DF) is indexed by two files, so any chain chasing in the
structure GRY1DF to GR25DF is repeated for the structure GRY2DF to GR25DF.
The duplicate processing is avoided when RCIDID=1234 (and ID2=(RCI)) is
specified in the forward path.

File GRY1DF (Algorithm #TPFDBO01) File GRY2DF (Algorithm #TPFDB04)
#GRY1K70 Key1 is UP organized #GRY2KCO Key1 is UP organized
----- GRY1DF4 Key2 is ----- GRY2DF5 Key2 is
4 | f_ DOWN organized 4 | UP organized
v vy
size |70| addr | RCC size |CO| addr | RCC 1
[[Y [[
size |70| addr | RCC size |CO| addr | RCC
[[[[4
size |70| addr | RCC Y size |CO| addr | RCC
L L |
Path 1: 8-byte key
Path 0: 6-byte key Path 2: 8-byte key
4 File GR25DF (Algorithm #TPFDBFF)
#GR25K80 Key1 is UP organized
el GR25DF6 Key2 is UP organized
1
|
v {
size |80
' N
[[
size |80
[[
size |80
[[4
size |80
v L

Figure 53. File Description for Multiple Indexing to a Single Detail Subfile

Paths 0 and 1

The index files (GRY1DF and GRY2DF) must be updated each time the detail file
(GR25DF) is changed. The DBDEF statements for path 0 and path 1 specify partial
update paths. The two paths are combined when PATH=ALL is specified in a macro
or function. This ensures that both index paths are updated at the same time.

shows how the IPK and ILK parameters are defined in the detail file

DBDEF. IPK and ILK define the offset into and the length to use of an algorithm
string passed with the ALG parameter in a macro or function. The algorithm string

138 TPFDF R1 Database Administration

contains both index keys. For more information, see [‘Creating a DBDEF Macro|
[Definition” on page 89

1111
012345678901 23 Offset in the algorithm string

Path 0 Path 1
IPK=0 IPK=6
ILK=6 ILK=8

Figure 54. Algorithm String for the Update Path

Read Paths
shows how path 0 is used to update or read the detail file (GR25DF).

Path 0 uses the first part of the algorithm string, passed with the ALG parameter in
a macro or function, as an index key to read the GRY1DF file, which locates the
detail file.

01 2 3 4 5 Offset in the algorithm string

Path 0
IPK=0
ILK=6

Figure 55. Reading the Detail File through Index File GRY1DF

shows how path 2 is used to read the detail file (GR25DF). (In the
definition for path 2, IMI=#BITO specifies that path 2 is a read-only path.) Path 2
also uses the first part of the algorithm string, passed with the ALG parameter in a
macro or function, as an index key to read the GRY2DF file, which locates the
detail file.

012 3 456 7 Offset in the algorithm string

Path 2
IPK=0
ILK=8

Figure 56. Reading the Detail File through Index File GRY2DF
DBDEFs

Top-level index file 1

DBDEF FILE=GRY1DF, file GRY1DF -
RCIDID=1234, RCI processing in this structure -
(PKY=#GRY1K70, primary key X'70' -
KEY1=(PKY=#GRY1K70,UP), - default keys -
KEY2=(R=GRY1DF4,DOWN)), -
(ITK=#GRY1K70, forward path, index LREC -
1D2=(RCI), type of reference -
INDEX=(GR25DF,0)) indexed file

Top-level index file 2

DBDEF FILE=GRY2DF, file GRY2DF -
RCIDID=1234, RCI processing in this structure -
(PKY=#GRY2KCO, primary key X'CO' -

Indexing 139

KEY1=(PKY=#GRY2KCO,UP),
KEY2=(R=GRY2DF5,UP),
(ITK=#GRY2KCO,
ID2=(RCI),
INDEX=(GR25DF,0))

Detail file

DBDEF FILE=GR25DF,
(PKY=#GR25K80,
KEY1=(PKY=#GR25K80,UP),
KEY2=(R=GR25DF6,UP) ,
(11D=GRY1DF,
IKY=#GRY1K70,

IPA=0,
ILA=1,
IPK=0,
ILK=6,
KEY1=(PKY=#GRY1K70,UP),

- default keys

forward path, index LREC
type of reference
indexed file

file GR25DF

primary key X'80'
- default keys

backward path, default path 0
index LREC

offset of addressing argument
length of addressing argument
offset of index key

length of index key

search keys for index

KEY2=(R=GRY1DF4,S=0,DO0WN)),

(IID=GRY2DF,PTH=1,
IKY=#GRY2KCO,

IPA=0,

ILA=0,

IPK=6,

ILK=8,
KEY1=(PKY=#GRY2KCO,UP),

KEY2=(R=GRY2DF5,S=6,UP)),

(IID=GRY2DF,PTH=2,
IMI=#BITO,

IKY=#GRY2KCO,

IPA=0,

ILA=0,

IPK=0,

ILK=8,
KEY1=(PKY=#GRY2KCO,UP),
KEY2=(R=GRY2DF5,5=0,UP))

140 TPFDF R1 Database Administration

backward path, path 1

index LREC

offset of addressing argument
length of addressing argument
offset of index key

length of index key

search keys for index

backward path, path 2
read-only path

index LREC

offset of addressing argument
length of addressing argument
offset of index key

length of index key

search keys for index

Multiple-Level Indexing

Figure 57| shows a two-level index structure where

TPFDF algorithm #TPFDBO02 is used to locate the required prime block in the
top-level index file. The #TPFDBO02 algorithm is used only as an example here, but
the #TPFDBFF algorithm must be used for the lower-level files because they are
indexed by another file.

File GR10DF

(Algorithm #TPFDB02)

#GR10K40 Key1 is DOWN organized
————— GR10DF7 Key2 is DOWN organized

f 1
| f_
v
size (40| addr | RCC
I I A 4
size (40| addr | RCC
| |
size 40| addr | RCC y File GR50DF (Algorithm #TPFDBFF)
f . #GR50K80 Key1 is UP organized
. > - GR50DF8 Key2 is UP
4 | +_ organized
v
size |80| addr | RCC 1
| |
size |80| addr | RCC
| | A
size (80| addr | RCC
v L
File GR25DF (Algorithm #TPFDBFF)
—> #GR25K90 Key1 is DOWN organized
#GR25K60 Key1 is DOWN organized
T GR25DFA Key2 is DOWN
organized
bof
size |90
I I A 4
size |90
[|
size |90 Y
r 3 |
GR25DF9 Key2 is DOWN
+ f organized
size |60
I I A 4
size |60
| |
size |60 Y
+ |

Figure 57. File Description for Multiple-Level Indexing

Indexing 141

142

Addressing Argument and Index Keys for File GR10DF
The top-level index file is addressed using the #TPFDBO02 algorithm. #TPFDB02

requires a 2-byte alphabetic input argument (addressing argument). The addressing
hiure 58

argument part of the string is defined by IPA= and ILA=.

shows how the

IPA and ILA parameters are used in the DBDEF for the GR50DF file to specify the
addressing argument part for the fle GR10DF.

012 3456 7 Offset in the algorithm string

L
IPA=0
ILA=2

Addressing argument

L | Indexkey for the GR10K40 field

IPK=0
ILK=8

Figure 58. Addressing Argument and Index Key for the Top-Level Index File

01 2 3 456 7 Offset in the algorithm string

L The addressing argument. See note.
IPA=0
ILA=0
L1 Index key for the GR10K80 field
IPK=2
ILK=6

Figure 59. Addressing Argument and Index Key for the Intermediate-Level Index File

Note: The addressing argument is not used by files that are not indexed by a
top-level index, but the IPA and ILA parameters must be specified.

DBDEFs

Top-level index file

DBDEF FILE=GR10DF,
(PKY=#GR10K40,
KEY1=(PKY=#GR10K40,DOWN) ,
KEY2=(R=GR1ODF7,DOWN)) ,
(ITK=#GR10K40,
1D2=,

INDEX= (GR50DF, 0))

Intermediate-level index file

DBDEF FILE=GR50DF,
(PKY=#GR50K80,
KEY1=(PKY=#GR50K80,UP) ,
KEY2= (R=GR50DF8,UP)),
(ITK=#GR50K80,
1D2=,

INDEX=(GR25DF,0)),
(11D=GR10DF,

IKY=#GR10K40,

IPA=0,

ILA=2,

IPK=0,

ILK=8,
KEY1=(PKY=#GR10K40,UP),
KEY2= (R=GR10ODF7,S=0,DOWN))

TPFDF R1 Database Administration

file GR1ODF -

primary key X'40' -
- default keys -

forward path, index LREC -
type of reference -
indexed file -

file GR50DF -

primary key X'80' -
- default keys -

forward path, index LREC -
type of reference -
indexed file -
backward path, default path 0 -
index LREC -
offset of addressing argument -
length of addressing argument -
offset of index key -
length of index key -
search keys for index -

Detail file

DBDEF FILE=GR25DF, file GR25DF -
(PKY=#GR25K60, primary key X'60' -
KEY1=(PKY=#GR25K60,D0WN), - default keys -
KEY2=(R=GR25DF9,DOWN)), -
(PKY=#GR25K90, primary key X'90' -
KEY1=(PKY=#GR25K90,DOWN) , - default keys -
KEY2= (R=GR25DFA, DOWN)) , -

(IID=GR50DF, backward path, default path 0 -
IKY=#GR50K80, index LREC -
IPA=0, offset of addressing argument -
ILA=0, length of addressing argument -
I1PK=2, offset of index key -
ILK=6, length of index key -

KEY1=(PKY=#GR50K80,UP), search keys for index -
KEY2=(R=GR50DF8,S=2,UP))

Indexing 143

Single Indexing to Multiple Detail Files

Figure 60| shows a file structure where a passenger name is used to refer to a
passenger detail file and another detail file. The duplicate passenger name can be
avoided if you have two pointers in the same file related to the same passenger

name.
Algorithm #TPFDB03 Algorithm #TPFDB03
Name Name Flight
size |80| addr | RCC size |80| addr | RCC
size |80| addr | RCC size |80| addr | RCC
size |80| addr | RCC size |80| addr | RCC
L File GRZ1DF L File GRZ2DF
#GR25K50 Key1 is UP organized #GR25K70 Key1 is UP organized
—————— GR25DFE Key2 is UP — — — — — — GR25DFD Key2 is DOWN
+ ¢ organized + # organized
size |50 size |70
size |50 size |70
size |50 size |70
v L] v L]
Figure 60. Separate Entries for One Passenger Name
File GR50DF (Algorithm #TPFDBO03)
#GR50K80 Key1 is UP organized
----- GR50DFB Key2 is
| DOWN organized
Slot 0 Slot 1 v +_
size |80| addr | RCC | addr | RCC
[LY
size |80| addr | RCC | addr | RCC
[[
size |80| addr | RCC | addr | RCC Y
L
File GRZ1DF (Algorithm #TPFDBFF) L File GRZ2DF (Algorithm #TPFDBFF)
—> #GRZ1K50 Key1 is UP organized #GRZ2K70 Key1 is UP organized
|m——— GRZ1DFE Key2 is UP |m——— GR25DFD Key2 is DOWN
4 1 +_ organized 4 1 organized
v vV A
size |50 size |70
[[[[
size |50 size |70
[[[[
size |50 size |70
v L v L

Figure 61. One Index File Pointing to Two Detail Files

144 TPFDF R1 Database Administration

DBDEFs

Top-level index file

DBDEF=GR50DF, file GR50DF -
(PKY=#GR50K80, primary key X'80' -
KEY1=(PKY=#GR50K80,UP), - default keys -
KEY2=(R=GR50DFB,DOWN)), -
(ITK=#GR50K80, forward path, index LREC -
1D2=, type of reference -
INDEX=(GRZ1DF,0)), indexed file, slot 0 -
(1D2=, type of reference -
INDEX=(GRZ2DF,1)) indexed file, slot 1

Detail files

DBDEF FILE=GRZZ2DF, file GRZ2DF -
(PKY=#GRZ2K70, primary key X'70' -
KEY1=(PKY=#GRZ2K70,UP), - default keys -
KEY2= (R=GRZ2DFD,DOWN)) , -
(IID=GR50DF, backward path, default path 0 -
IKY=#GR50K80, index LREC -
1PA=0, offset of addressing argument -
ILA=3, length of addressing argument -
1PK=0, offset of index key -
ILK=25, length of index key -

KEY1=(PKY=#GR50K80,UP), search keys for index -
KEY2=(R=GR50ODFB,DOWN))

DBDEF FILE=GRZ1DF, file GRZ1DF -
(PKY=#GRZ1K50, primary key X'50' -
KEY1=(PKY=#GRZ1K50,UP), - default keys -
KEY2=(R=GRZ1DFE,UP)), -
(I1D=GR50DF, backward path, -
IKY=#GR50K80, index LREC -
IFR=1, index slot 1 -
IPA=0, offset of addressing argument -
ILA=3, length of addressing argument -
1PK=0, offset of index key -
ILK=25, length of index key -

KEY1=(PKY=#GR50K80,UP), search keys for index -
KEY2=(R=GR50DFB, DOWN))

Indexing 145

Block Indexing

Block indexing considerably reduces 1/O processing when files are being read but
can make updating slower.

The prime block of a block index subfile contains technical LRECs (TLRECS), which
are maintained internally by the TPFDF product.

As you can see in each index TLREC contains the following:
* Primary key (always 02)

» File address of the overflow block

* Record code check (RCC) of the prime block

» Data identifying the keys of the first LREC in an overflow block.

size |02]| addr | RCC identifying data

Figure 62. Index TLREC

Note: Not all TLRECs hold the same amount of user data. Use the DSECT to
define how much data a TLREC can hold.

To avoid having to look at every LREC in every block, the TPFDF product stores
indexing data in the TLRECs. The TLRECs hold data extracted from the first LREC
in each overflow block.

The TPFDF product compares each TLREC with the LREC keys that the application
program is searching for. If the LREC keys that the application program is searching
for are less than or equal to the keys of the first LREC in the current block, the
TPFDF product looks back to the previous block to find the matching LREC.

[Figure 63 on page 147| shows an example of this process. In this example, the
application program is searching for the key, SMITH. The search process is as
follows:
The TPFDF product looks at the TLREC for overflow block 1 (DAVIDSON).
The key held there is less than SMITH.
H The TPFDF product looks at the TLREC for overflow block 2 (FREEMAN).
The key held there is less than SMITH.
The TPFDF product looks at the TLREC for overflow block 3. The key held
there is equal to SMITH .
I} The TPFDF product searches the previous overflow block (2) for SMITH and
finds the first instance of it.

146 TPFDF R1 Database Administration

02| addr |80 DAVIDSON| +— [l

02| addr |80|FREEMAN | +— B}

02| addr |8o[smiTH....| +—]

02| addr |80| YOUNG....
80| ADAMS....

80| ADAMSON.

80| BAXTER ..

Overflow 1

80| DAVIDSON

80| DAVISON

80| EALEY ...

80| EVANS ...

Overflow 2

80| FREEMAN

80| SMITH ...

80| SMITH ...

80| SMITH ...

Overflow 3
go| suH ...| «— |1

80| SMITH ...

80| STEVENS.

80| TATLER...

Overflow 4

80| YOUNG ...

80| YOUNG ...

Figure 63. Block Indexing

Implementing Block Index Support

To implement block index support, set global set symbol &SWOOSKE in the file
DSECT macro definition to the size, in bytes, of the key fields of the LRECs. If
there are different types of LRECs in the file, set &SWOOSKE to the longest key
field.

If you update an existing file to use block indexing, the change is not immediate.
The database administrator must first reassemble the DBDEF macro. The TPFDF
product adds block index support LRECs to the file when LRECs are deleted from
the file or when the file is packed and closed.

Indexing 147

Note: The TPFDF product uses X'02' as the LREC ID in LRECs that it uses for

block index support. Ensure the value for global symbol &SWO00TQK is
greater than X'02'".

Block Index File Characteristics
Block index files have the following characteristics:

LRECs must be variable-length.

LRECs must be organized UP or DOWN. Do not use NOORG (no organization
specified). If you do, the TPFDF product might not locate the correct LREC.

Every key field in the LREC must have some organization (for example, if KEY1
is UP organized, KEY2 must be UP or DOWN organized). Do not use NOORG
(no organization specified). If you do, the TPFDF product might not locate the
correct LREC.

TLRECSs are not immediately generated if a file expands and overflow blocks are
added. During a pack of the subfile, the TPFDF product determines how many
chains there are and stores this number in the first TLREC. During the next pack,
the TPFDF product generates this many TLRECS, initializes them, and
determines the number of chains (which may have changed since the previous
pack). Therefore, the number of TLRECs does not always accurately reflect the
number of overflow blocks in a file.

You must pack a block index file to validate the file references after CRUISE
capture and restore processing because CRUISE capture and restore processing
nullifies the validation of block index technical LRECs (TLRS).

TLRECSs are only held in the prime block of the subfile. If the prime block
becomes full, only those overflow blocks that have corresponding TLRECs are
accessed with two physical block accesses. For example, if the prime block
containing LRECs pointing to overflow blocks A, B, and C was full, and there
were overflow blocks for A—Z, it would take two accesses to access the B
overflow block but 24 accesses to access the Z overflow block.

LREC keys should be unique (for performance reasons).

148 TPFDF R1 Database Administration

B*Tree Indexing

B*Tree indexing is a method of accessing and maintaining data. It should be used
for large files that have unusual, unknown, or changing distributions because it
reduces I/O processing when files are read. Also consider B*Tree indexing for files
with long overflow chains.

Note: Unlike block indexing, where the number of 1/0Os can increase substantially
as the file gets larger, the number of I/Os using B*Tree indexing remains
minimal regardless of the size of the file.

A B*Tree file consists of a data file, which contains logical records (LRECs), and an
index file, which contains technical logical records (TLRECSs). The B*Tree index file,
which consists of blocks (also called nodes), is maintained internally by the TPFDF
product. The index file has its own file ID, DSECT, and DBDEF statements. The
prime block of the B*Tree index file (also called the root node) is pointed to by the
header in the prime block of the B*Tree data file.

B*Tree indexing is similar to block indexing but has the following advantages:

* Dynamically updates TLRECs

* Has an unlimited number of TLRECs

» Can use mixed key organization for file operations

» |s used for all LREC searches when the specified keys entirely or partially match
the default keys in the DBDEF statement.

Notes:

1. If the distribution of overflows can be predicted, you may want to use an
algorithm. A well-distributed algorithm that has one or two overflows for each
subfile will probably outperform a B*Tree index.

2. You can define a file to use an algorithm and B*Tree indexing. The algorithm
accesses the subfile and B*Tree indexing accesses the record in the subfile.

B Tree Index File Node Blocks

B*Tree index file node blocks contain TLRECs that contain file addresses of the
blocks at a lower level of a file. Those lower-level blocks may be other node blocks
or data blocks. TLRECs in node blocks have the following layout:

» Size of the TLREC (2 bytes).

* Primary key (1 byte).
— Key 03 for a node pointing to another node
— Key 04 for a node pointing to a data block.

* File address of the lower-level node or data block (4 bytes).

» Record code check (RCC) equal to X'00' for leaf nodes, or the last byte of the
data file ID for nonleaf nodes (1 byte).

* The concatenation of the primary key and its associated default keys found in the
DBDEF of the data file. These keys point to the first TLREC of a child node or
the first LREC of a block in the B*Tree data file.

B*Tree Data File Data Blocks

B*Tree data blocks are the same for B*Tree files as they are for other files except
the STDSBA field in the prime block header points to the root node of the B™Tree
index.

Indexing 149

B*Tree Data File Characteristics

To use B*Tree indexing, set the DBDEF macro parameters, equivalent DSECT
parameters, or equivalent default values for a B*Tree data file as follows:

OP1 bits 2, 3, and 6 must be off.

OP3 bit 5 must be on.

The RBV algorithm value cannot be #TPFDBOD.

The TQK value must be greater than 4.

If present, the PIN value must be less than or equal to 50.
The TYP value must be R.

The NOC variable cannot be present.

The SKE variable cannot be present.

The NLR variable cannot be present.

Also, the B*Tree data file DBDEF must have the following:

A PKY statement to define default keys

NODEID=fileid (where fileid is the &SWOOWID value shown in the associated
B*Tree index file)

KEYCHECK=YES
UNIQUE=YES

DELEMPTY=YES if the DBDEF includes statements for recoup to perform
multiple ECB chain chasing (see ['‘Multiple ECB Chain Chasing” on page 154] for
information about multiple ECB chain chasing).

Note: Before you can implement B*Tree indexing in an ALCS environment, enable

C language support. See [TPFDF Installation and Customization| for more
information.

Additional Considerations When Using B*Tree Indexing
If you decide to use B*Tree indexing support, keep the following points in mind:

The sum of all keys, including the primary key, must be unique. Individual keys
do not have to be unique. For example, in [Figure 64 on page 152} there is more
than one LREC with a salary of $90000 but only one with a salary of $90000 and
the name ADAMS.

Each subfile has its own B*Tree index. For example, a file using algorithm
#TPFDBO1 (26 subfiles) would have 26 separate B*Tree structures.

More than one file can use the same B*Tree index file DSECT. Each file would
have its own B*Tree index structure. For example, data files IR26DF and IR27DF
can both have a DBDEF statement for NODEID=B070.

Packing a B*Tree data file builds or rebuilds the B*Tree structure unless the file
contains only a prime block with no overflow blocks.

You must pack a B*Tree file to validate the file references after CRUISE capture
and restore processing because CRUISE capture and restore processing
releases B*Tree files.

If a file is changed from block indexing to B*Tree indexing, existing TLRECs of
the block index file are deleted when the file is packed.

B*Tree indexing does not support extended LRECs.
Each B*Tree node block must be large enough to contain at least four TLRECSs.

The number of TLRECSs that can fit into a node block depends on the size of the
blocks and the size of the keys that are used. Because each node header file is

150 TPFDF R1 Database Administration

26 bytes, and each TLREC uses 8 bytes in addition to the key size, use the
following formula to calculate the number of TLRECS that will be in your node
blocks.
Number of TLRECs = (block size - 26) / (8 + key size)

* If you convert an existing file to allow it to use B*Tree indexing, reassemble any
assembler applications that use it, to flag any incompatible options. Applications
that assemble cleanly do not have to be reloaded.

« A B"Tree index file should never be packed.

Indexing 151

Structure of a Data File That Uses B*Tree Indexing

A data file that uses B*Tree indexing has a B*Tree index file associated with it. The
data file consists of data blocks that contain LRECs. The B*Tree index file consists
of node blocks that contain TLRECs.

shows data file, GR91SR, which uses B*Tree index file IR70SR. The
figure only shows a portion of the index and data files and is not intended to show a
complete B*Tree structure. Data file GR91SR shows 4 data blocks. B*Tree index
file IR70SR shows a root node and 4 leaf nodes.

Figure 65 on page 153
Figure 66 on page 154

shows the DSECT and the DBDEF statements for GR91SR.
shows the DSECT and the DBDEF statements for IR70SR.

IR70SR (B+Tree TLREC Index Blocks)

0014 | 03 [adar [73 | s090000ADAMS
0014 [03 eygr 73 | 8080000TAYLOR | Root
0014 addr | 73/8060000BENSON | Node
3 [adar [/3 s&s@ooYOUNG
0014 | 04 |addr | 00 | 8090000ADAMS 0014 | 04 |addr WSOBOOOOTAYLOR 0014 | 04 |addr B8060000BENSON 0014 | 04 |addr 8050000YOUNG
0014 | 04 [adar [00 | s0s0000BRADY 0014 04 [agar] 00 [s070000aDAMS 0014 | 04 [adar [00 | s050000J0NES 0014 04 [adar [00 | s040000aNTON | [eaf
0014 | 04 [adar [00 | 8080000BAKER 0014 ,o:(addr 00{8065000BRADY 0014 |04 [adar [00 [8050000MONROE | [0014 [04 [adar [00 [8040000cRANE | Nodes
0014 | 04 [adar [00 | 8080000SMITH 196774 [04 |adar | of [80S5ag0GARNER | - [0014] 04 adar | 00 | s0s0000quINGY | [0014] 04 [adar | 0o | soaooooLERCH
/ GR91SR (Data LREC Blocks)
0012 | 80 | 80000 [MR27| TAYLOR 0012 | 80 | 70000 [MR27| ADAMS 0012 | 80 | 65000 [LM30 | BRADY 0012 | 80 | 65000 [MR27| GARNER
0012 80 | 80000 [MR27| TYLER 0012 | 80 | 70000 | DK3s | BENTLY 0012 | 80 | 65000 [MR27| Coni 001280 | 65000 [DK3s |GRANT | Data
001280 | 75000 [Lm30 | BAKER 001280 | 70000 [Lm30 | DODGE 001280 | 65000 [MR27| DEEGAN 001280 [62500 [MR27[JANSEN | Blocks
0012 |80 | 75000 [MR27[smiTH 0012 |80 [65000 [MR27| ACKNER 0012 |80 [65000 [DK38 | FRANK 001280 | 60000 |LM30 [HOOVER

Figure 64. Sample B*Tree File

Defining the DSECT and DBDEF for a Data File That Uses B*Tree

Indexing

152

[Figure 65 on page 153| shows part of the DSECT and DBDEF for data file GR91SR,
which uses B*Tree indexing. No matter what data is in an LREC, it is organized
according to this definition.

The DBDEF includes statements that are necessary for recoup to perform
single-ECB chain chasing. Chain chasing a B*Tree file involves chasing a normal
chain of data blocks and a companion chain of node blocks.

TPFDF R1 Database Administration

&SWOOWID SETC 'B0O73'
&SWOOTQK SETC '15'

GRI1SIZ
GRI1KEY
#GRI1K80
GRI1O0RG
GRI1SAL
GRI1DPT
GRIINAM
GRI1E80O

DS H

DS X

EQU X'80'
EQU =

DS CL5

DS CL4

DS CL6
EQU =

DBDEF FILE=GRI1SR,
NODEID=B070,
KEYCHECK=YES,

UNIQUE=YES,

*%
%

**
%
**
%
*%
%
*%

%
%
**

FILE ID
HIGHEST TLREC

SIZE OF LOGICAL RECORD

LOGICAL RECORD IDENTIFIER

LOGICAL RECORD KEY X'80'

START OF LOGICAL RECORD DESCRIPTION
SALARY

DEPARTMENT

LAST NAME

B+TREE INDEX FILE
REQUIRED FOR A B+TREE FILE
REQUIRED FOR A B+TREE FILE

(ID3=(CHKO) ,RID=B0O70,ADR=STDSBA-STDREC) ,
(PKY=#GR91K80,

KEY1=(PKY=#GRI1K80,UP),
KEY2=(R=GR9I1SAL ,DOWN) ,
KEY3=(R=GRIINAM,UP)), ...

**
%
*%
%

KEY x'80'

UP ORG ON PKY

DOWN ORG ON SALARY
UP ORG ON LAST NAME

Figure 65. B"Tree Data File DSECT and DBDEF

Defining the DSECT and DBDEF for a B*Tree Index File
Use the sample B*Tree index file DSECT, SAMTSR, to build your own DSECT. You

can add statements to define a B*Tree index file with its own characteristics (for

example, file ID, WRS size, and so on), but do not change the existing statements.
The only DBDEF override values that you can use are:

WRS Sets the block size of the nodes. WRS can be set to any value.

PFO Sets the type of pool record used to create node blocks; LS (long-term

nonduplicated pool), SS (short-term pool), or LD (long-term duplicate pool).
PFO defaults to LS.

PF1 Sets the type of pool record used to create temporary node blocks.
Temporary node blocks are used by B*Tree indexing if the number of
changed nodes exceeds the number of nodes defined in #TPFNODE in the
ACPDBE segment. PF1 defaults to SS.

[Figure 66 on page 154| shows part of the DSECT and DBDEF for B*Tree index file

IR70SR.

Indexing

153

&SWOOWID SETC 'B0O70' ** FILE ID
&SWOORBV SETC '#TPFDBFF' % FILE ALGORITHM
&SWOOOP1 SETC '00000000' ** OPT BYTEL
&SWOO0P2 SETC '00000110"' =+ OPT BYTE2
&SWOOOP3 SETC '00000000' ** OPT BYTE3

&SWOOTQK SETC '02' ** HIGHEST TLREC

&SWOONOC SETA 0 *+ NUMBER OF CHAINS -FOR ADD CURRENT ONLY-
&SWOOPIN SETC '00' =% ENSURE NODES ARE NEVER PACKED

IR706SIZ DS H x% SIZE OF VARIABLE LEN LREC

IR70KEY DS X %% PRIMARY KEY

IR700RG EQU = *x% START OF LOGICAL RECORD DESCRIPTION
IR70FA1 DS XL4 %% LOWER LEVEL FADDR

IR706RC1 DS XL1 x+ RECORD CODE CHECK

IR706A03 DS OCL1 %% KEY FIELDS

IR70EO3 EQU = x+ END OF LOGICAL RECORD WITH KEY = X'03'
IR70FA2 DS XL4 x% LOWER LEVEL FADDR

IR706RC2 DS XL1 *+ RECORD CODE CHECK

IR70A04 DS OCL1 *x+ KEY FIELDS

IR70E04 EQU = *+ END OF LOGICAL RECORD WITH KEY = X'04'

DBDEF FILE=IR70SR,TRS=0,NODE=YES

Figure 66. B*Tree Index File DSECT and DBDEF

Multiple ECB Chain Chasing

The DBDEF shown in|Figure 65 on page 153includes statements necessary for
recoup to perform single ECB chain chasing. This may not be adequate for large
data files. As an alternative, you can define the DBDEF for the B*Tree data and
index files to allow multiple ECB chain chasing. [Figure 67 on page 155 shows one
example of how multiple ECB chain chasing can be defined. Depending on the size
of the chains and their location in the overall data structure, different methods of
chain chasing might be necessary in each customer environment.

154 TPFDF R1 Database Administration

DO_FCH

STDHD

DBDEF

DBDEF

DBDEF

DBDEF

DBDEF

STDHD

REG=R14

FILE=GR91SR,PFC=-1,DELEMPTY=YES,
NODEID=B070,

KEYCHECK=YES,

UNIQUE=YES,

(PKY=#GR91K80,

KEY1=(PKY=#GR91K80,UP),

KEY2= (R=GR91SAL ,DOWN) ,
KEY3=(R=GRIINAM,UP)),

(1ID3=(CHKO) ,RID=B0O73, FNR=2,ADR=STDFCH-STDREC, CDO=CHK) ,
(1D3=(CHKO) ,RID=BO70,ADR=STDSBA-STDREC)
FILE=GR91SR,FVN=1,PFC=-1,
RCT=0,BOR=0,E0#=0,EOR=0
FILE=GR91SR,FVN=2,
RCT=0,BOR=0,E0#=0, EOR=0

FILE=IR70SR,TRS=0,NODE=YES,
(ITK=X'04"',1ID2=,FNR=1,RID=STDSBA-STDREC,ADR=IR70FA1-IR70REC)

CDLBL=CHK

L R14,EBCCRO Load base of block

REG=R14

0C STDSBA,STDSBA Is root node there ?

BZ DO_FCH No - chain chase forward chains
B 4(,R6) Yes - don't chain chase fch

B 8(,R6) Chain chase forward chains

Figure 67. DBDEF for Multiple ECB Chain Chasing

The chain chasing of the structure in [Figure 67| is as follows:
* The prime block of GR91SR is found.

* Consider GR91SR as a no forward chain file (PFC=-1).

» Evaluate the CHK code. If there are no nodes, chain chase the remaining data
blocks via STDFCH using file version 2.

 Start chain chasing the nodes via STDSBA by going to X'B070' (IR70SR). If it is
zero (no nodes), this will stop immediately.

* IR70SR will invoke file version 1 of the data file with a new ECB whenever a
X'04' TLREC is found (thus in a leaf node).

» File version 1 of the data file will only cause the current block to be chain chased
because it has no forward chains (PFC=-1).

Note: To chain chase a B*Tree index and data file using multiple ECBs, you must
code the DELEMPTY parameter as YES on the DBDEF of the B*Tree data
file.

Indexing 155

156 TPFDF R1 Database Administration

Partitioning and Interleaving

You can subdivide the ordinals in a fixed file into groups called partitions or
interleaves. Each collection of blocks in a partition or interleave is still referred to as
a file. An application program normally processes a single file, that is a single
partition or interleave, but it need not specify the partition or interleave until run time
(it sets a PARTITN or INTERLV parameter in the program to define which partition
or interleave it is to access). The total number of prime blocks (ordinals) required is:

Number of partitions or interleaves x Number of prime blocks in each file

In each partition or interleave, each file contains the same number of prime blocks
(ordinals) as the other files in the partition or interleave. Partitioning and interleaving
is not available with miscellaneous files.

With partitioned or interleaved files, you can specify the total number of blocks
required by setting the EO# parameter in the DBDEF macro.

Partitions

Figure 68 shows an example of three partitioned files. Seventy-eight blocks of a
fixed file are subdivided into three partitions. The relative ordinal numbers in each
partition are numbered starting at zero.

FACE ordinal number —» 0

5
o

26 51 52

3-8 B-
mok

--EOR—T ----EO#f ———————

Figure 68. Partitioning: &SWO00xxx: PTN, BOR, EOR, and EO#

IEDC“H’

1
Partition 2
3

Relative ordinal

.

--BOR

Note: For partitioned files, EOR must be set to the number of ordinals in the
partition. EO# can be set to —1 or to a specific ordinal.

Advantages of Partitioned Files

You can easily add a new partition (for example, to accommodate a new set of
customers) by doing the following:

1. Increase the number of ordinals in the fixed file

2. Reset the parameter EO# to the new number of ordinals (if not —1)

3. Redefine the number of partitions in the DSECT macro (using &SWOOPTN).

It is more difficult to increase the number of blocks in each partition. This requires a
reorganization of the files.

Partitioning is appropriate when the number of subfiles in each table is likely to stay
the same but the number of files might change.

© Copyright IBM Corp. 1997, 2001 157

Example of Partitioning

Suppose you maintain a set of customer name files. The customers live in three
cities. Sometimes you need to access the customer LRECs directly and sometimes
you need to process a set by city.

Assume that the number of customers is such that algorithm #TPFDBO1 is
appropriate. This means that you need 26 prime blocks for each file (partition).

able 37| shows the customers allocated to ordinals in each file on the basis of the
first character in their surname (algorithm #TPFDBO01) and to a partition on the
basis of which city they live in (Rome=1, Paris=2, London=3).
The total number of ordinals (blocks) required for all 3 partitions is 78 (26 x 3).

Table 37. Allocation in Partitioned File

Customer name | City Partition number |Ordinal number |Ordinal number
in the file in the fixed file
(partition)

Adams Rome 1 0

Andrews Rome 1 0

Bernoulli Rome 1 1

Rodriquez Rome 1 17 17

Zerlini Rome 1 25 25

Andrews Paris 2 0 26

Zeisel Paris 2 25 51

Alans London 3 52

Zimmerman London 3 77

Coding the DSECT for Partitioned Files

The following statements are needed in the DSECT macro of a file, to allow
application programs to access data in any of three partitions.

&SWOOPTN SETC '3 Number of partitions

&SWOOEOR SETC '25' Ending ordinal of partition 0

&SWOORBV SETC '#TPFDBO1' Addressing algorithm
&SWOOEO# SETC '77'

Note: &SWOOPTN defines a set of three partitioned files. Code the remaining
&SWO00xxx fields, including &SWOORBY, as if the file were not partitioned.

The application program can specify which partition it is to access by using the
PARTITN parameter in a|DBOPN| macro. For example:

DBOPN| REF=zzzzzz,...,PARTITN=2

Alternatively, the program can omit the PARTITN parameter with the [DBOPN| macro
and specify the partition by using the PARTITN parameter with other macros (for
example, [DBRED]| or [DBADD). This is less controlled and is not recommended.

For C applications, a program accesses a partition using the function with the
DFOPT_PARTITION option.

158 TPFDF R1 Database Administration

Adding a New Partition

To add a new partition to the fixed file (in the example, to add another city), allocate
another 26 blocks and reset the EO# parameter in the DBDEF to 104:

EO0#=104 Set total number of blocks in the fixed file

Also, update the &SWOOPTN setting in the DSECT macro to 4:
&SWOOPTN SETC '4' Number of partitions (override)

Alternatively, you could override any DSECT setting of &SWOOPTN by setting a
parameter PTN in the DBDEF:

PTN=4 Set number of partitions

Interleaves

shows the same 78 blocks of a fixed file divided into three interleaves.
The ordinal numbers in each interleave start at zero.

FACE ordinal number —» 0

0
Interleave | 1
2

Relative ordinal

—---BOR—T ----EO# 4——

----EOR +—
Figure 69. Interleaving: &SWO00xxx: ILV, BOR, EOR, and EO#

Note: For interleaved files, EO# and EOR can be set to —1 or to a specific number
of ordinals.

Advantages of Interleaved Files

With interleaved files, it is easy to increase the size of each interleave (that is, the
number of blocks in each file).

In the previous example (relating to customers in three cities) interleaving would be
appropriate if the number of cities is unlikely to change, but the number of
customers in each city is likely to change substantially. This would require a change
in the number of prime blocks (ordinals) in each interleave.

It is difficult to add a new file to an interleaved fixed file. This requires
reorganization of the files.

Interleaving is appropriate when the number of files is likely to stay the same but
the number of subfiles in each file might change.

Coding the DSECT Macro for Interleaved Files

The following statements are needed in the DSECT of any program that accesses
data in any of the three interleaves:

Partitioning and Interleaving 159

&SWOOILV SETC '3! Number of interleaves
&SWOOEOR SETC '77! Ending ordinal
&SWOORBY SETC '#TPFDBO1' Addressing algorithm
&SWOOEO# SETC '77'

&SWOOILV defines a set of three interleaved files. Code the remaining &SWOO0xxx
fields, including &SWOORBYV as if the file were non-interleaved.

The application program can specify the interleave by coding the INTERLV
parameter in a[DBOPN[macro. For example:

DBOPN| REF=zzzzzz,...,INTERLV=1abel

In this example, store the interleave number in location label before coding the

DBOPN| macro statement.

Alternatively, the program can specify the interleave by using the INTERLV
parameter when it calls other macros (for example, [DBRED| or [DBADD). This is less
controlled, and is not recommended.

For C applications, a program accesses an interleave using the function with
the DFOPT_INTERLEAVE option.

Adding Blocks to an Interleave

With interleaved files, it is easy to increase the number of blocks in each interleave.
For example, to add one subfile to each interleave in the previous diagram, add 3
blocks to the fixed file. Set the DBDEF EO# parameter to the new number of
blocks:

EO#=80 Set end ordinal number in the fixed file
Change the DSECT statements for the interleaved file, as follows:

&SWOOEOR SETC '80'
&SWOOEO# SETC '80'

160 TPFDF R1 Database Administration

Database Design Hints and Tips

The following contains a number of hints and tips that may be of some help to you
when designing your TPFDF database.

The material is presented in the form of a number of problems, each with its

appropriate TPFDF solution. Where applicable, DSECT settings, DBDEF
statements, and application code samples are provided with the solution.

© Copyright IBM Corp. 1997, 2001 161

File Integrity

Problem

Solution

The following scenario addresses file integrity.

An application has destroyed an UP organized file because the program did not
specify key parameters correctly when LRECs were added to the file.

With UP or DOWN organized files, always define the update keys as default keys in
the DBDEF macro. The DBDEF statement overrules any key specifications in the

DBADD| macro or [dfadd| function. This maintains file integrity and eliminates the risk

of application programs using incorrect key parameters when adding LRECs to a
subfile.

The default keys are also used by the various ZUDFM commands. This prevents
accidental corruption of the file organization. See [TPFDF Utilities| and [TPFDF|

[Commands] for more information about the ZUDFM commands.

The TPFDF product checks that the primary key of the LREC to be added to the file
is defined in the DBDEF. A mismatch results in a system error.

Note: You can use any keys that you want, including partial keys, to read LRECs
from a subfile. However, if you are adding LRECs, use the keys defined in
the DBDEF.

DSECT Set Symbols

Not applicable.

DBDEF Statements

DBDEF FILE=zzzzzz, -
(PKY=#z222zK80, -
KEY1=(PKY=#zzzzK80,UP), -
KEY2=(R=zzzzFLD,UP))

or

DBDEF FILE=zzzzzz, -
(PKY=#2z2zzK80, -
ORG=UP, -
KEY1=(PKY=#z2zzK80), -
KEY2=(R=zzzzFLD))

Application Coding

DBADD| REF=zzzzzz ,NEWLREC=1ocation
TPFDF uses the keys defined in the DBDEF.

DBRED| REF=zzzzzz ,KEY1=(PKY=#2222k80)
TPFDF uses the keys specified in the application program

162 TPFDF R1 Database Administration

Selecting an Optimum Block Size

Problem

Solution

The following scenario addresses selecting an optimum block size.

A TPFDF file contains subfiles that require about 800 bytes each. Some subfiles are
much larger, requiring about 3800 bytes each. Select an optimum block size to
balance performance considerations against storage considerations.

For good performance, the number of overflow blocks in a subfile should be as
small as possible. It would be a waste of DASD space to allocate 4095-byte prime
blocks to each subfile, because most of the blocks would contain only about 800
bytes of data.

However, if you are expecting a large overflow, it is probably better to use one large
overflow block than to use many smaller blocks, even if this means that you may
waste some DASD space. This is because the same amount of I/O processing is
required to access each block, regardless of its size. The fewer blocks there are,
the less 1/0 processing there is to be done.

You should be particularly aware of this where a high performance level is required
because heavy I/0 demands can reduce performance levels significantly.

If you need to check how fully the blocks are being utilized, use the ZRECP STA
command.

The TPFDF product lets you define different sizes for prime blocks and overflow
blocks.

Set the prime block size using the set symbol &SWOOWRS. Set the overflow block
size using the set symbol &SWOOARS. These set symbols are both specified in the
file DSECT.

Set the prime blocks to L2 and the overflow blocks to L4. Both types of block are
then of optimum size. This also ensures that the large subfiles have only 1 overflow
block. If you had set the same size for overflow blocks and prime blocks, the large
subfiles would have had 3 overflow blocks.

Note: You can use the DBDEF macro WRS and ARS parameters to override the
defaults in the DSECT.

If you change block sizes after the file has been used, the TPFDF product gradually

adjusts to the new block sizes as the file is changed and packed. If you want to
change the block sizes immediately, use the |ZUDFM OAP|command.

DSECT Set Symbols

&SWOOWRS SETC 'L2'
&SWOOARS SETC 'L4'

If you do not set &SWO00ARS, the TPFDF product uses the prime block size
(&SWOOWRS) for the overflow blocks as well as for the prime blocks.

Database Design Hints and Tips 163

DBDEF Statements

DBDEF FILE=zzzzzz, (WRS=L1,ARS=L4)

Application Coding
Not applicable.

164 TPFDF R1 Database Administration

Reducing the Number of Overflow Blocks

The following scenario addresses reducing the number of overflow blocks.

Problem
A fixed file has been defined as containing 1055-byte prime blocks. This has
resulted in a large number of chained overflow blocks. Reduce this by changing the
prime block size to 4095.

Solution

Reorganize the file by copying the 1055-byte prime blocks into 4095-byte prime
blocks. (The application must not modify the file during the reorganization process.)
You can then change the prime block size by resetting the set symbol &SWOOWRS
in the file DSECT. If necessary, you can also change the overflow block size by
resetting &SWOOARS.

When you have done this, update the DSECT with the new &SWOOWRS value, and

check that the DBDEF table is ready to be loaded. Load the new DBDEF before
any application accesses the data.

DSECT Set Symbols

&SWOOWRS SETC 'L4'
&SWOOARS SETC 'L2'

Note: If you omit the &SWOOARS setting, the TPFDF product uses the prime block
size (&SWOOWRS) value for the overflow block size.

DBDEF Statements

DBDEF FILE=zzzzzz, (WRS=L4,ARS=L2)

Note: The DBDEF statement overrides any DSECT values.

Application Coding
Not applicable.

Database Design Hints and Tips 165

Setting Different Sizes for Overflow Blocks

Problem

Solution

The following scenario addresses setting different sizes for overflow blocks.

Nearly all (90%) of the subfiles in a file contain about 1200 bytes. The remaining
subfiles are much larger, each containing approximately 5000 bytes.

You do not want to allocate 4095-byte overflow blocks because this means that
most (90%) of the overflow blocks will have 2895 bytes of wasted DASD space.

In this example, set the prime block size (&§&SWOOWRS) to L2, the overflow block
size (&SWOOARS) to L4, and set &SWOOOP1 #BIT5.

The &SWOO0OPL1 indicator tells the TPFDF product to process overflow blocks in an
economical way. If the overflow data fits into blocks the same size as the prime
blocks (L2), the TPFDF product will use overflow blocks of this size. This is an
economical solution for the 90% of the subfiles that contain about 1200 bytes.

If the TPFDF product cannot fit the overflow data into these small blocks, it uses
overflow blocks of a size specified by the &SWO0O0ARS set symbol. In this example,
the larger subfiles (10%) use 4095-byte blocks (size L4).

DSECT Set Symbols

&SWOOWRS SETC 'L2'
&SWOOARS SETC 'L4'
&SWOOOP1 SETC '..... 1..! (bit 5 set)

DBDEF Statements

No changes are necessary if the changes are made in the DSECT macro.

Application Coding

Not applicable.

166 TPFDF R1 Database Administration

Packing Files Regularly

The following scenario addresses packing files regularly.

Problem
A TPFDF file is updated frequently in high-performance transactions. It contains
300-byte LRECs in 1055-byte blocks in the subfile. Each LREC that is deleted
causes an internal pack operation that creates substantial processing overhead.
Solution

Use the NOPACK parameter when closing the subfile to disable the packing
operation. Write a small application to reorganize and pack the file or use the
ZUDFM OAP|command.

DSECT Set Symbols
Not applicable.

DBDEF Statements
Not applicable.

Application Coding

DBCLS| REF=zzzzzz ,RELEASE,NOPACK

Database Design Hints and Tips

167

Reducing Overflow by Frequent Packing

The following scenario addresses reducing overflow by frequent packing.

Problem
A TPFDF subfile is often read but rarely updated. It contains small LRECs (20
bytes). Because the LRECs are small in comparison with the block size, the
subfiles are not usually repacked when an LREC is deleted. As a result, LRECs are
eventually scattered over a large number of blocks. This makes reading the subfile
unnecessarily slow.

Solution

You could use the PACK parameter every time a subfile is closed. However, this
would involve a substantial processing overhead. When closing a subfile, the
TPFDF product packs it if any block is less than the threshold specified in global set
symbol &SWOOPIN.

If the LRECs in the block occupy less than the percentage specified in &SWOOPIN,
the TPFDF product packs the block up to the level defined in the DBDEF PLI
parameter. If the PLI parameter is not specified, the blocks are packed until they
are full.

You can override the &SWOOPIN set symbol with the DBDEF PIN parameter. If you
increase the PIN value to a higher figure, the TPFDF product packs the file more
frequently. This reduces the number of overflow blocks in the subfile.

DSECT Set Symbols

No changes are necessary if the changes are made in the DBDEF macro.

DBDEF Statements

DBDEF FILE=zzzzzz,PIN=80

Application Coding
Not applicable.

168 TPFDF R1 Database Administration

Packing Subfiles after Replacing an LREC

Problem

Solution

The following scenario addresses packing subfiles after replacing an LREC.

DBREP| macros and functions can result in LRECs occupying less space in a
block than that specified in the packing threshold. (The packing threshold is either

the TPFDF default for the block type, a value specified in a &SWOOPIN DSECT
statement, or a value specified with the DBDEF PIN parameter.)

However, the TPFDF product normally packs subfiles only after deleting LRECs, not
after replacing LRECs. As a result, the number of blocks in a subfile can become
unnecessarily high.

Set indicator &SWOO0OP1, #BIT6 in the DSECT to 1. When the TPFDF product
closes a subfile, it packs the subfile if the LRECs in any block are below the
packing threshold.

Note: Subfile packing results in significant /O processing. This can affect system
performance.

DSECT Set Symbols

&SWOOOP1 SETC '...... 1.!

DBDEF Statements

No changes are necessary if the changes are made in the DSECT macro.

Application Coding

Not applicable.

Database Design Hints and Tips 169

Using New Pool Blocks for Overflow Blocks

The following scenario addresses using new pool blocks for overflow blocks.

Problem
The pack operation can require heavy processing of LRECs between 1 pool block
and another. This can be a problem for a file with high integrity requirements if the
system fails during the pack operation.

Solution

When packing a subfile, the TPFDF product normally uses the same block chain as
the subfile. It releases any pool blocks that it no longer needs.

Set the option in the DSECT (&SWO00OP2 #BIT1) to tell the TPFDF product to use
new pool blocks for the new compressed chain of overflow blocks.

As the last activity in the pack operation, the TPFDF product updates the prime
block’s forward chain pointer to the new chain reference. If the pack operation fails,
the pointer will still point to the old chain.

Note: This has potential implications for virtual file assist (VFA) performance. The
new addresses need new slots in VFA, which will reduce its effectiveness.
Because new pool storage is used every time a file is packed, be sure to
allocate enough pool storage. You should also run PDU and RECOUP
frequently.

DSECT Set Symbols

&SWeeop2 SETC '.1...... '

DBDEF Statements

No changes are necessary if the changes are made in the DSECT macro.

Application Coding
Not applicable.

170 TPFDF R1 Database Administration

Specifying a Lower Packing Limit

The following scenario addresses specifying a lower packing limit.

Problem

A TPFDF file is heavily read and updated. Because there are frequent[DBDEL
macros, each subfile is packed to 100%.

This is efficient for reading LRECSs, but unsatisfactory when an application is adding
new LRECs to the middle of a subfile. Because the subfile is so fully packed, when
the TPFDF product adds or replaces an LREC, it may have to move some of the
LRECs to an overflow block. This creates an unnecessary processing overhead.

Solution

When the TPFDF product packs this subfile, it normally packs each block to 100%.
You can use the PLI parameter in the DBDEF to override this by specifying that the
TPFDF product should pack blocks only up to a particular limit, not to 100%. Each
block then has some space available for subsequent [DBADD] macros or [dfadd|
functions.

In the DBDEF, specify a PLI value between the default packing limit for the subfile
and 100%. The default packing density is 50% for L2 blocks, and 75% for L4
blocks.

DSECT Set Symbols
Not applicable.

DBDEF Statements

DBDEF FILE=zzzzzz,PLI1=80

Application Coding
Not applicable.

Database Design Hints and Tips 171

Logging Data at Optimum Intervals

The following scenario addresses logging data at optimum intervals.

Problem

An application requires data to be logged to a tape. Writing each modified LREC to
tape would create an unacceptably high overhead.

Solution

Specify the TAPE parameter with the macro or function for the file.
When an LREC is added to the prime block, the TPFDF product does not write it to
tape but waits until the block is full. When the prime block is full, the TPFDF
product writes the block to the tape specified in the TAPE parameter and
reinitializes the prime block.

Notes:

1. The application can read data in the prime block between tape logging
operations.

2. B*Tree files cannot be opened using the TAPE parameter.

DSECT Set Symbols
Not applicable.

DBDEF Statements
Not applicable.

Application Coding

DBOPN| REF=zzzzzz ,HOLD,....,TAPE=XxxX
DBADD| REF=zzzzzz ,NEWLREC=1ocation

172 TPFDF R1 Database Administration

Maintaining a Log File

The following scenario addresses maintaining a log file.

Problem
You want to log transaction data to a file for online access. The data becomes
obsolete after a short time, so you want to keep only recent data. You do not want
to write special maintenance and cleanup programs to maintain the log file.
Solution

The TPFDF product lets you control the number of overflow blocks by defining add
current files. Each subfile consists of a prime block and a maximum number of
overflow (pool) blocks. You specify the maximum number of overflow blocks in the
DSECT (the range is 0 to 255).

The TPFDF product adds LRECs normally until it has allocated and filled all the
allowed blocks. It then overwrites the oldest LREC with the new LREC that it is
adding.

Implement this option by setting the number of blocks in the DSECT set symbol
(&SWOONOC) and by setting &SWO00OP1,#BIT2.

Caution: Do not set this indicator for normal files. If you do, data will be lost when
the wraparound process starts.

DSECT Set Symbols

&SWOONOC SETC '3
&SWOe0P1 SETC '..l1..... '

DBDEF Statements

No changes are necessary if the changes are made in the DSECT macro.

Application Coding

DBADD| REF=zzzzzz ,NEWLREC=1ocation

Database Design Hints and Tips 173

Balancing Updating Speed against Accessing Speed

Problem

Solution

The following scenario addresses balancing updating speed against accessing
speed.

The application requires a file that can be updated frequently. It also needs frequent
access to the latest data in the file. You need to balance the accessing speed
against the updating speed.

Fast accessing

You can organize the file so that the latest LRECs are inserted at the start of a
subfile, ideally in the prime block. To do this, use a transaction number or date as
the key, and specify DOWN organization.

This provides fast access for DBRED| macros and functions. However, each
time you insert a new LREC in the prime block, the TPFDF product has to shuffle
LRECs to a new block. This results in poor update performance.

Fast updating
You can organize the file so that new LRECs are added to the end of a subfile. To
do this, use a transaction number or date as the key, and specify UP organization.

This provides fast updating, but[DBRED| macros and functions might be slow.
In the prime block, the TPFDF product maintains a backward chain to the last

overflow block to ensure fast updates. However, as the TPFDF product has to read
through the whole chain to get the latest LREC, [DBRED| macros or functions
could create a considerable overhead.

You could solve the problem by following the fast updating process and using
B*Tree or block indexing as well. Alternatively, you could specify “pushdown
chaining” for the file by setting &SWO00OP1,#BIT3.

The TPFDF product then maintains the latest LRECs in the prime block. When the
prime block is full the TPFDF product pushes the data into an overflow block and
then clears the prime block and makes it available for new LRECs.

Pushdown chaining requires minimal data shuffling on updates. In addition,
macros and functions always find the latest information in the prime block of
the subfile. The TPFDF product does not need to read through long chains.
However, older LRECs are still available in overflow blocks, in case they should be
needed.

DSECT Set Symbols

&SWOOOP1 SETC '...Il....'

DBDEF Statements

No changes are necessary if the changes are made in the DSECT macro.

Application Coding

Not applicable.

174 TPFDF R1 Database Administration

Getting the Right Amount of Working Storage

The following scenario addresses getting the right amount of working storage.

Problem
An application using the TPFDF product requires working storage. This can be for
TPFDF macros or functions, such as building LRECs, or for functions unrelated to
the TPFDF product, such as saving application data.

Solution

Use TPFDF T-type files for working storage. The application can then use
assembler or C language instructions to manipulate whatever working storage it
needs without considering the amount of space available.

Each T-type DSECT describes one particular LREC. TPFDF macros and functions
handle T-type DSECTSs as if they were TPFDF LRECs.

You can add multiple T-type DSECTSs, describing different LRECs, to a common file.
This common file must be a W-type file using short-term pool records. The T-type
LREC DSECT contains a reference to the underlying W-type file by using the
&SWOOREF symbol.

There are several advantages of using T-type and underlying W-type files for

applications:

* An application can use larger block sizes without the need for reprogramming.

» If program changes lead to a block overflow, the TPFDF product supports the
overflow chaining automatically.

* The application can be ported to a system using smaller block sizes without the
need for reprogramming. However, the T-type LREC size must not exceed the
block size defined for the W-type file.

If a[DBOPN| macro is coded for the underlying W-type file in the TPFDF UFOB
program, the application can directly add, read, and delete T-type LRECs without
opening the file. If the macro is not coded in UFOB, the application must
open the W-type file. For better performance, use the DETAC parameter when
opening the W-type file.

Note: If there are storage constraints, do not use the DETAC parameter when
opening the W-type file.

When the application performs a|DBADD| macro or function, the TPFDF
product adds 11 bytes (containing the reference name of the T-type file plus the
LREC size and primary key) to the beginning of the LREC. This LREC is then
inserted into the W-type file.

Note: The TPFDF product is shipped with one predefined W-type file (GW01SR)
that is automatically opened in UFOB.

DSECT Set Symbols

&SWOOREF SETC 'GWOISR'

Database Design Hints and Tips 175

zzzz7zFL1 DS CL104 labell (example)
22277FL2 DS CL104 label2 (example)

z2727ECO EQU * (example)

GWO1SR is a default W-type file included in the TPFDF product. Customers can
use it or define multiple W-type files to be used with T-type files based on
applications or packages.

DBDEF Statements
Not applicable.

Application Coding

zzzzzz REG=reg

REF=222777 ,NULLREC==AL2 (#2222LC0) ,REG=reg
The #zzzzLCO identifies the defined
length of a particular LREC defined in
the T-type DSECT.

MVC zzzzFL1(104),EBWOOO

save the EBWOOO-104 work area in the T-type LREC
MVC zzzzFL2(104),EBX000

save the EBX000-104 work area in the T-type LREC

176 TPFDF R1 Database Administration

Specifying a Display Order for LRECs

The following scenario addresses specifying a display order for LRECs.

Problem
You want to display LRECs from a TPFDF subfile. However, you want to display the
LRECs in a different order from their order in the subfile. The [DBDSP| macro and
dfdsp| function can only display LRECs in the order in which they have been
organized in the subfile.

Solution

Create a work file with a DSECT describing the order that you want. To do this,
read the TPFDF file and add the data fields into LRECs in a W-type work file. The
LRECs of the work file then represent the required display layout.

The final [DBDSP|macro or |[dfdsp| function will display the file and release the work
blocks.

If you need to display the data several times, use an R-type file as the intermediate
file for storing the data between displays. An R-type file can use short-term or
long-term pool blocks.

DSECT Set Symbols
Not applicable.

DBDEF Statements
Not applicable.

Application Coding

DBOPN| REF=zzzzzz ,REG=reg
DBOPN| REF=zzzzzz ,REG=reg,HOLD
#DO_INF

DBRED| REF=zzzzzz

set up new LREC by rearranging the fields from zzzzzz

DBADD| REF=zzzzzz ,NEWLREC=1ocation
#EDO
DBCLS| REF=zzzzzz ,RELEASE
DBDSP| REF=zzzzzz,STRIP=...

Database Design Hints and Tips 177

Linking Logically Related Data

The following scenario addresses linking logically related data.

Problem
A file contains different LREC types. The contents of an LREC depend on the LREC
ID, as follows:
LREC ID Contents of LREC
X'80" Surname and first name
X'90' Address
X'AQ' Salary details
X'BO' Telephone number, and so on.
Generally, information is requested by type rather than specifically (for example, by
name, address, or telephone information). However, there must be a unique link
connecting the address, salary, and telephone information to the name. To make
this link, you could use a unique value based on the person’s name. However, this
would waste space because you would have to repeat the value for all LREC types
(90, A0, BO) related to a particular name.

Solution

The TPFDF product supports a unique key generator that returns a unique value for
a file. You can store this value in LRECs that are related to each other. The unique
key can define relationships in a file, between files, between subsystems, between
systems, and between companies.

The unique key is a 4-byte hexadecimal value.

DSECT Set Symbols

&SWOOOP3 SETC '....... 1!

To hold the unique key, you must define a 4-byte field in each LREC.

Note: UKY needs an expanded header. Use a sample DSECT (SAMESR,
SAMFSR, SAMHSR, or SAMGSR) for UKY.

DBDEF Statements

No changes are necessary if the changes are made in the DSECT macro.

Application Coding

In this example, a subfile is created. Name, address, and salary records are then
added:

DBOPN| REF=zzzzzz ,HOLD
DBUKY| REF=zzzzzz

TPFDF puts the unique value in field SWOOUKY

To set up the LREC (including size and primary key fields):

MVC zzzzUKY, SWOOUKY
Insert the unique key value into the LREC

DBADD| REF=zzzzzz ,KEY1=(PKY=#222zK80,UP)

178 TPFDF R1 Database Administration

Managing a First-In-First-Out (FIFO) File

The following scenario addresses managing a first-in-first-out (fifo) file.

Problem

Afile is treated as a first-in-first-out (FIFO) queue, where LRECs are always deleted
from the beginning and added to the end of each subfile. As records are deleted,
when the prime block falls below the packing threshold (&SWOOPIN), the subfile is
packed even though the overflow blocks are still full. This packing operation is not
necessary and causes a large amount of unnecessary inputs and outputs (1/0s).

Setting the packing threshold to zero is not adequate because the pack still occurs
when the prime block becomes empty. Using the NOPACK parameter on the
macro prevents the pack, but as records are deleted, the number of empty
blocks grows. This increases search time unnecessarily when the subfile is read.

Solution

Set the DELEMPTY parameter on the DBDEF macro to YES, which causes empty
blocks to be deleted without a pack operation. Using DELEMPTY=YES with a

packing threshold (&SWOOPIN) of zero prevents packing while removing empt
blocks that increase search time. You can still pack these files by using the [ZUDFM

OAP|command or a ZFCRU command with the pack function specified.

Note: Coding DELEMPTY=YES requires that you define backward chains by
setting bit 0 of set symbol &SWOOOP1.

DSECT Set Symbols

&SWOOPIN SETC '00' Packing threshold
&SWOOOP1 SETC '1....... ' Backward chains required

DBDEF Statements

DBDEF FILE=zzzzzz ,DELEMPTY=YES

Application Coding

Not applicable.

Database Design Hints and Tips 179

180 TPFDF R1 Database Administration

Using Customer-Format Files

Customer-format files are files that do not follow the same layout as
standard-format files (R, W, and T). Customer-format files can be P-type files or
non-TPFDF files.

Non-TPFDF files are files that can use the TPFDF recoup and TPFDF
capture/restore utility, information and statistics environment (CRUISE), but cannot
use other TPFDF macros, commands, and functions to open, close, read, or do
other operations on a file.

Notes:
1. Specify ACPDB=NO on a DBDEF statement for a non-TPFDF file.
2. Specify ACPDB=YES on a DBDEF statement for a P-type file.

The following contains examples of customer-format files that can be chain chased
using the monitors that are provided with the TPFDF product. A monitor is specified
using the CBV parameter on a DBDEF macro statement. If you have
customer-format files that cannot be chain chased using the monitors that are
provided with the TPFDF product, you can code your own monitor. See
[Index Path Parameters” on page 98| for more information about the CBV parameter.

© Copyright IBM Corp. 1997, 2001 181

NAB-Type Files with Fixed-Length Items

Figure 70| shows an example of the DBDEF statements to describe a NAB-type file
with fixed-length items.

* FILE ID C'PO’
DBDEF FILE=yyyyy, « File Name
WID=PO, + File ID
WRS=L2, * Block size
ACPDB=NO, * Non-TPFDF file
yyyyBID APL=_C'R‘, * Application
j JBLOI RCT=#PGORI, * Record Type
T BOR=0, * Begin Ordinal
3.9| PFC= EO#=-1, * End of FACE
yyyyFCH —
PNB= CBV=1, * This is a NAB-type file
yyyyINX] PFC=yyyyFCH-yyyyBID, * The position of the forward chain pointer
L | NAB=yyyyITM-yyyyBID, = Initial NAB value
| PNB=yyyyINX-yyyyBID, * The position of the NAB location
+— [J[S—/» ITS=L'yyyylTM, * The length of each item
ADR= RCP=
yyyyltmM=> (ID2=,RID=PR, + The ID of the referenced file
First ADR=yyyyADD-yyyyITM,RCC=yyyyPRC-yyyyITM

item L
yyyyADDj yyyyRCC

* FILE ID C'PR'
22278l WID=PR, * File identifier
Dj T WRS=L1, * Block size
T AR ACPDB=NO, + Non-TPFDF file
PR PFC= APL=C'R', * Application
ZZZZFCH:] PFC=zzzzFCH-zzzzBID, = The position of the

+ forward chain pointer

Figure 70. NAB-Type File with Fixed-Length Items (CBV=1)

Notes:
1. This figure shows a file ("PO") which contains a field called yyyyINX.

2. yyyyINX contains a next available byte (NAB) pointer, which defines where the
last item in the block is located.

3. The items have a fixed-length, and each contain a reference to a "PR" block.
4. The reference is in an item, so the ID2 parameter is specified.

182 TPFDF R1 Database Administration

NAB-Type Files with Variable-Length Items

Figure 71 shows an example of the DBDEF statements to describe a NAB-type file
with variable-length items.

yyyyBID
W

N ere-

i m—

PNB=

N]
L |

yyyylITM=» T

L yyyyLEN

« FILE ID C'IN'

DBDEF FILE=yyyyy, » File Name
WID=IN, = File ID
WRS=L2, + Block size
ACPDB=NO, » Non-TPFDF file
APL=C'R', = Application
RCT=#IRCRI, = Record Type
BOR=0, = Begin Ordinal
| CBV=4, = This is a NAB-type file (variable length) |

PFC=yyyyFCH-yyyyBID,
NAB=yyyyITM-yyyyBID,
PNB=yyyyINX-yyyyBID,

*

*

*

The position of the forward chain pointer
Initial NAB value
The position of the NAB location

| PIS=yyyyLEN-yyyyITM

The position of the length field |

(ID2=(CHKO0), RID=EC,

RCC=0, referenced file ID is 'EC'

| ADR=0)

The address is at offset 0 |

zzzzBID
1 [

EC

zzzzFCH :

Figure 71. NAB-Type File with Variable-Length Items (CBV=4)

Notes:

1. This example shows a NAB-type file ("IN") which contains variable-length items.

S A

Each item contains a reference at location O.

The size of each item is in a halfword field (yyyyLEN) in each item.
The reference is in an item, so the ID2 parameter is specified.

In this example ID2=(CHKO), so a record code check (RCC) of X'00' is used by

TPFDF recoup and the TPFDF capture/restore utility, information and statistics
environment (CRUISE). Therefore, the RCP parameter is not needed.

Using Customer-Format Files

183

ADD/DEL-Type Files with Fixed-Length Items

ADD/DEL-type files with fixed-length items have 2 NAB pointers. One NAB value
identifies the start of the active items, the other identifies the end. |Figure 72 shows
an example of the DBDEF statements to describe this type of file.

yyyyBID * FILEID C'YQ
V[|
l:gl bFoo DBDEF FILE=yyyyy, * File Name
WID=YQ, * File ID
yyyFeH— WRS=L2, « Block size
B ACPDB=NO, * Non-TPFDF file
yyyyADP% APL=C'W', * Application
| | RCT=##YQ1Y, * Record Type
| BOR=0, * Begin Ordinal
yynyEP% CBv=1, » ADD/DEL fixed-length type
L]_] PFC=yyyyFCH-yyyyBID, * The position of the forward chain pointer

L.

+——Ts—>

RDE=yyyyDEP-yyyyBID,

*

The position of the delete (DEL) pointer

*

RAD=yyyyINX-yyyyBID, The position of the add (ADD) pointer

ITS=L"yyyyITM, * The length of each item
L—
(ID2=,RID=YR, * The ID of the referenced file
yyyyADR yyyyRCC ADR=yyyyADD-yyyyITM, RCP=yyyyRCC-yyyyITM)

zzzzBID
_l IYI RI WID=YR, + File identifier

: WRS=L1, * Block size
Y R PFC= ACPDB=NO, * Non-TPFDF file
2z2zFCH— APL=CR|, + Application

PFC=zzzzFCH-zzzzBID, * The position of the
+ forward chain pointer

Figure 72. ADD/DEL-Type File with Fixed-Length Items (CBV=1)

Not
1.

es:
This figure shows a file ("YQ"), which contains 2 fields (yyyyADP, and
yYyyyDEP).

yyyyADP contains an ADD pointer, which defines where the next item should be
added.

yyyyDEP contains a DEL pointer, which defines the next item to be deleted.
The items are fixed-length, and contain a reference to another file ("YR").

184 TPFDF R1 Database Administration

ADD/DEL-Type Files with Variable-Length Items

ADD/DEL-type files with variable-length items have 2 NAB pointers. One NAB value
identifies the start of the active items, the other identifies the end.

Figure 73| shows an example of the DBDEF statements to describe this type of file.

* FILE ID C'YA'
yyyyBID

3 [y Al DBDEF FILE=yyyyy, + File Name
T ! WID=YA, * File identifier

YA PFC= WRS=L2, * Block size

YynyCH: ACPDB=NO, * Non-TPFDF file

RAD= APL=C'W', * Application
yyyyADP RCT=##YQ1Y, = Record Type
:I BOR=0, * Begin Ordinal

RDE= CBV=4, » ADD/DEL variable-length type
(e w—
—— PFC=yyyyFCH-yyyyBID, * The position of the forward chain pointer
Ly —PIS= RDE=yyyyDEP-yyyyBID, * The position of the delete (DEL) pointer
yyyylTM—> T RAD=yyyyADP-yyyyBID, * The position of the add (ADD) pointer
|
| PIS=yyyyLEN-yyyyITM * The position of the length field
LT
yyyyRCC (ID2=,RID=YB, * The ID of the referenced file
yyyyLEN ADR=0,RCP=yyyyRCC-yyyyITM)
zzzzBID
1
T
Y,B PFC=
zzzzFCH :

Figure 73. ADD/DEL-Type File with Variable-Length Items (CBV=4)

Notes:

1. This figure shows a file ("YA"), which contains 2 fields (yyyyADP, and yyyyDEP).
2. yyyyADP contains an ADD pointer, which defines where the next item should be

added.

3. yyyyDEP contains a DEL pointer, which defines where next item to be deleted.
4. The items are variable-length, and contain a reference to another file ("YR").

185

Using Customer-Format Files

CNT Files Using the CNT Parameter

Figure 74| shows an example of the DBDEF statements to describe a CNT file using
the CNT parameter.

* FILE ID C'FH'
DBDEF FILE=yyyyy, * File Name
WID=FH, * File Identifier
yyyyBlD—l : WRS=L2, « Block size
[F H| ACPDB=NO, + Non-TPFDF file
F H PFC= APL=C'F', » Application
yyyyFCH 1 RCT=#MISCL, * Record Type
BOR=#LFCUR, * Begin ordinal
< ITS » EO#=#HFCUR, * End ordinal
ADR= PFC=yyyyFCH-yyyyBID, * The position of the forward chain pointer
yyyylITM=»
1 CBV=2, = This is a count-type file
2 CNT=3, * The number of items in the record
4 3 PIT=yyyylITM-yyyyBID, * The position of the first item
ITS=L'yyyyITM, * The length of one item
yYYyyTXT—

(ID2=(CHKO),RID=FI,ADR=yyyy TXT-yyyyITM)

zzzzBI
"1 F

1
Fl PFC=

ZZZZFCH:

Figure 74. CNT-Type File (CBV=2): Using the CNT Parameter

Notes:

1. This example shows a file "FH".

2. CNT specifies the number of items in the block

3. The items have a fixed-length, and each contain a reference to a "FI" record.
4

In this example ID2=(CHKO), so a record code check (RCC) of X'00' is used by
TPFDF recoup and the TPFDF capture/restore utility, information and statistics
environment (CRUISE). Therefore, the RCP parameter is not needed.

186 TPFDF R1 Database Administration

CNT Files Using the CPT Parameter

Figure 75| shows an example of the DBDEF statements to describe a CNT file using
the CPT parameter.

* FILE ID C'FH'
DBDEF FILE=yyyyy, * File Name
WID=FH, * File Identifier
yyyyBlD—l : WRS=L2, * Block size
|F.H| ACPDB=NO, * Non-TPFDF file
F H PFC= APL=C'F, » Application
yyyyFCH — RCT=#MISCL, * Record Type
BOR=#LFCUR, * Begin ordinal
CPT= EO#=#HFCUR, * End ordinal
yyyyCNT . PFC=yyyyFCH-yyyyBID, * The position of the forward chain
CBV=2, * This is a count-type file
< ITS > CPT=yyyyCNT-yyyyBID, * The position of the count field
ADR= PIT=yyyylTM-yyyyBID, * The position of the first item
yyyylTM—> ’ ITS=L'yyyylTM, * The length of one item
g (ID2=(CHKO),RID=FI,ADR=yyyy TXT-yyyyITM)
A

YYyyTXT—

zzzzBI
G

Lﬂ PFC=

zzzzFCH :

Figure 75. CNT-Type File (CBV=2): Using the CPT Parameter

Notes:

1. This example shows file "FH", which contains a field named yyyyCNT.

2. yyyyCNT contains a value equal to the number of items in the block

3. The items have a fixed-length, and each contain a reference to a "FI" record.
4

In this example ID2=(CHKO), so a record code check (RCC) of X'00' is used by
TPFDF recoup and the TPFDF capture/restore utility, information and statistics
environment (CRUISE). Therefore, the RCP parameter is not needed.

Using Customer-Format Files 187

Files Containing Fixed-Position References

Figure 76| shows the DBDEF statements required to define this type of file structure.
This example includes the FVN parameter because the overflow blocks are in a

different format from the prime blocks.

HF PFC= DBDEF FILE=zzzzz, File Name
zzzzBID—l yyyyFCH — WID=HF, File Identifier
WRS=L2, Block size
H |:| ADR= RCT=##HF3F, Record Type
yyyyFCH BOR=0, Begin ordinal
(I EO#=-1, End of FACE
yyyyFA1 APL=C'W', Application '
:I ACPDB=NO, Non-TPFDF file
e I PFC=1, + NoFCH pointer (note 1)
| CBV=3, NOITEM (no-item type) file

FILE ID C'HF' prime blocks

(ID3=(CHKO),RID=HF,ADR=zzzzFA1-zzzzBID),
(ID3=(CHKO0),RID=HF,ADR=zzzzFA2-zzzzBID)

* FILE ID C'HF' overflow blocks (note 2)

I
I
I
T T !
v |HF PFC= HF PFC= |
zzzzBIDj zzzzFCH : zzzzBle zzzzFCH : |
I
T T 1
H F| ADR= HF ADR= I
zzzzFCH : zzzzFCH : |
I
I
zzzzFA1 : zzzzFA1 : :
I
zzzzFA2 : zzzzFA2 : :
I
I
I
I
I
I

DBDEF FILE=zzzzz, * File Name :

WID=HF, * File Identifier ¥
LEVN=T, _________ x Fileversion number _,

WRS=L2, * Block size
APL=C'W', * Application
ACPDB=NO, = Non-TPFDF file

PFC=zzzzFCH-zzzzBID * Location of the forward

Figure 76. File Containing Only Fixed-Position References (CBV=3)

Notes:

1. The overflow blocks have a different format (no embedded addresses). If the
PFC parameter is used, the overflow block would be identical to the prime
block. The PFC parameter is set to -1 (no forward chain pointer), but
ADR=zzzzFCH-zzzzBID defines the position of the pointer.

188 TPFDF R1 Database Administration

A separate definition is used for the overflow blocks. The FVN parameter is
used to identify the definition. The FNR parameter is used in the ID3 statement
to refer to that definition.

This example shows a file ("HF") which contains 2 references, at fixed locations
in the file (zzzzFA1 and zzzzFA2).

Both references point to more "HF" files.

The "HF" overflow records use standard forward chaining, but contain no
embedded references.

Using Customer-Format Files 189

190 TPFDF R1 Database Administration

Index

Special characters

&SWOOARS

&SWOO0OP1 bit5 75

See PARM
&SWO00BOR
&SWOOEOR

72
72

&SWOOILV 73

&SWOONLR

&SWOONOC 73, 173
&SWOO0OP1 bit5 74
&SWO000OP1 166, 173, 174

bito 74
bitl 74
bit2 74
bit3 75
bit4 75
bit5 75
bité 75
bit7 75
&SWO000P2
bit0 76
bitl1 76
bit2 76
bit3 76
bit4 76
bit5 77
bite 77
bit7 77
&SWO000P3
bito 77
bit1 77
bit2 77
bit3 77
bit4 77
bit5 78
bit6 78
bit7 78
&SWOOPIN

&SWOO0OP1 bit6 75

See PARM
&SWOOPTN
&SWOORBV
&SWOORCT
&SWOOREF
&SWOO0SKE
&SWO00TQK
&SWOOTYP
&SWO0OWID
&SWOOWRS

&SWO0OP1 bit5 75

See PARM

73

170

78
30, 78
81
81
81
82
82
82

&SWO1EOQ 72
&SWO2FIL 73

#1T=-1 parameter
#TPFDBO1 algorithm 30, 134
#TPFDBO02 algorithm 30, 134
#TPFDBO3 algorithm 30, 134

© Copyright IBM Corp. 1997, 2001

100

#TPFDBO5 algorithm 34, 133
#TPFDBO09 algorithm 32
dfadd function 162, 171, 175
dfdel function
packing a file 75
packing before deleting 122
dfdsp function
displaying LRECs in any order 177
dfmod function
corrupting file organization 123
dfopn function
defaulting to DETAC mode 78
opening with DETAC parameter 175
using the HOLD parameter 76, 77
dfopt function
using the PARTITION option 158
dfred function
fast access 174
using the BACKWARD parameter 74
dfrep function
corrupting file organization 123
packing a file 75
packing files using 169
dfrst function
sequence parameters 75
dfuky function
&SWO0OP1 bit4 75
checkpoint when using 75
enabling 78

A

ACPDB 121
add
blocks to an interleave 160
add current files
using 73,74
ADD field location
defined with the RAD parameter 114
ADD/DEL-type files 184, 185
addressing argument 142
ADI parameter 112
ADR parameter 102, 182
ALG parameter
DBDEF statement 111
TPFDF macros (not DBDEF) 30, 31
algorithm seed 32
algorithm size
defining in the DSECT macro 85
algorithm string size 85
algorithms
basic and B*Tree index support algorithm
#TPFDBFF 81
description 79
character 30
direct translation algorithms
#TPFDBO1 30, 79, 134
#TPFDBO0O2 30, 79, 134

191

algorithms (continued)
direct translation algorithms (continued)
#TPFDB03 30, 79, 134
#TPFDB0O5 34, 133
#TPFDB06 79
#TPFDB0O7 80
#TPFDB08 80
#TPFDB09 32
#TPFDBOA 80
#TPFDBOB 80
description 79
the size of the algorithm string 85
for single subfile 79, 81
hashing 32
hashing algorithms
#TPFDBO09 80
#TPFDBOF 80
#TPFDB10 80
description 79
input string for 31
instead of indexing 131, 133
manipulating the string 32
no-overflow algorithm
#TPFDBOD 79, 81
description 79
ordinal algorithms
#TPFDBO0O5 80
#TPFDBOC 80
description 79
single-subfile algorithm
description 79, 81
user-defined 134
user-defined algorithms
creating your own 79, 133
APL parameter 122
applications
porting 175
ARS parameter 90, 164, 165
attribute dependency 3
attributes 3
common 9
dependent 3

B

B*Tree indexing 78, 120, 131
backward chaining
allowing 74
backward path 135
BASE parameter 102
BASECOD parameter 116
basic indexing 3, 98
begin ordinal
defining in the DSECT macro 72
block header
defining in the DSECT macro 83
block indexing 131
defining in the DSECT macro 81
block references user code
defined with the CEB parameter 118
defined with the CEE parameter 119

192 TPFDF R1 Database Administration

block retrieval error user code

defined with the COE parameter 119
block retrieval user code

defined with the COA parameter 119
block size

ALCS 28

changing immediately 163

optimum 163

TPF 28
blocks

overflow 163, 165, 166

packing limit 168

prime 163, 165

using pool for overflow 170
BOR parameter 91

C

CBV parameter 107, 182, 183, 184, 185, 186, 187

CBV=1, fixed size
ADD/DEL-type file 184
CBV=2, CNT-type files 186, 187
CBV=3, reference in fixed position 188
CBV=4, variable size
ADD/DEL-type file 185
NAB-type file 183
CDE parameter 116
CDLBL parameter 119
CDO parameter 116
CDR parameter 117, 118
CEB parameter 118
CEE parameter 119
chain correction
automatic 74
chaining
affecting performance 28
automatic 175
pushdown 174
chains 28
character algorithms 30
CHKO parameter 100
CHKF parameter 100
CNT field location
defined with the CPT parameter 115
CNT field size
defined with the FSZ parameter 115
defined with the SSZ parameter 115
CNT parameter 115, 186
CNT run-time override
defined with the CDR parameter 117
CNT-type files 186, 187
COA parameter 119
code samples 161
COE parameter 119
CORE parameter 102
core storage 175
CPF parameter 119
CPT parameter 115, 187
CRO parameter 117, 119
CT1 parameter 106, 107

customer-format files
ADD/DEL-type
fixed-length 184
variable-length 185
CNT-type 186, 187
general description 181
NAB-type
fixed-length 182
variable-length 183
P-type 70

D

DASD space 29, 163
data
dependency 4
duplication 3, 8,9, 11, 131
entites 3
grouping 135
inconsistency 5
independence 3
linking 178
logging 172, 173
normalization 3
organization 3
overflow 33, 35
redundancy 3
requirements 25
retrieval 28
shuffling 174
spreading over LRECs 37
transfer 28
data fields
length of 25
data level independence (DLI) 89
databases
example design structure 22
hierarchical 3
relational 3, 9
TPFDF 3
DB0131 89
DBADD macro 162, 171, 175
DBCLS macro 167
DBDEF functions
B*Tree indexing 120
backward index path 108
basic indexing 98
data extraction 112
default keys 95
forward index path 100
global DSECT overrides 90
miscellaneous 121
TPFDF recoup
See DBDEF functions, forward index path
TPFDF recoup user exits 115
DBDEF parameters
#T=-1 100
ACPDB 121
ADI 112
ADR 102, 182
ALG 111

DBDEF parameters (continued)

APL 122

ARS 90, 164, 165
BASE 102
BASECOD 116
BOR 91

CBV 107, 182, 183, 184, 185, 186, 187
CDE 116
CDLBL 119
CDO 116

CDR 117, 118
CEB 118

CEE 119

CHKO 100
CHKF 100

CNT 115, 186
COA 119

COE 119
CORE 102

CPF 119

CPT 115, 187
CT1 106, 107
DDA 122
DELEMPTY 122
DEV 122

DID 111

DIS 103

DIT 102

EO 91

EOR 091

FIELD 102

FNR 114, 123
FSZ 115

FVN 114, 122
GREG 123
ID1=(NORECOUP) 100
ID2 100

ID3 100

IFR 111

IID 108

IKY 109

ILA 109, 142
ILK 109

ILV 92

IMI 108

INB 103

INDEX 101

IPA 109, 142
IPE 110

IPK 109

ISz 115

ITK 100

ITS 114, 182, 184, 186, 187
KEY 110
KEYCHECK 123
KEYn 97

LDl 112

LEV 103

LLE 112

MDBF 125
MPFSTD 104

Index

193

DBDEF parameters (continued) DBIDX macro 9, 18

MPNXST 104 DBMOD macro
MPPRCD 104 corrupting file organization 123
MPRECD 104 DBOPN macro
NAB 114, 182, 183 defaulting to DETAC mode 78
NLR 92 opening a W-type file 175
NOC 92 opening with DETAC parameter 175
NODE 120 using the HOLD parameter 76, 77
NODEID 120 using the PARTITN parameter 158
NORECOUP 101 using the TAPE parameter 172
OP1 93 DBRED macro
OoP2 93 fast access 174
OP3 93 using the BACKWARD parameter 74
ORD 101 DBREP macro
ORG 97 corrupting file organization 123
PACKINHI 123 packing a file 75
PFO 123 packing files using 169
PF1 124 DBRST macro
PF2 124 sequence parameters 75
PFC 104, 182 DBUKY macro
PIN 93, 168 &SWO0OP1 bit4 75
PIS 115, 183, 185 checkpoint when using 75
PIT 115, 186, 187 enabling 78
PKY 96 DDA parameter 122
PLI 124, 168, 171 defining multiple structures in the same file 114
PNB 114, 182, 183 DEL field location
PTH 108 defined with the RDE parameter 114
PTN 93 DELEMPTY parameter 122
QUE 105 dependency
R 97 direct 4
RAD 114, 184 indirect 4
RBV 93 transitive 4
RCI 101, 105 DEV parameter 122
RCO 113, 114 diagrams for macro models xiv
RCP 102 DID parameter 111
RCT 94 direct dependency 4
RDE 114, 184 DIS parameter 103
RECOUP 106 DIT parameter 102
RFC 106 DLI
RID 101 See data level independence (DLI)
SIZECHK 125 DSECT macro
SKE 94 algorithm size 85
SSU 125 block header 83
SSz 115 coding for interleaved files 159
STP 106 creating 69
SUFFIX 127 ending statements 86
TIMEOUT 106 file description 82
™ 128 global set symbols 71
TQK 94 LREC IDs 83
TRS 128 LREC size 83
TYP 94 LREC user fields 85
UNIQUE 128 modifying sample DSECT macros 70
WID 94 naming 71
WRS 95, 164, 165 samples 69
DBDEL macro duplicate labels
packing a file 75 SUFFIX parameter 127
packing before deleting 122 duplication of data 3, 8, 9, 11

packing files using 167, 169
DBDIX macro 9, 18
DBDSP macro

displaying LRECs in any order 177

194 TPFDF R1 Database Administration

E

EBCxxx
CRO 117,119
FAO 116, 117, 118, 119
FA1 116
end ordinal
defining in the DSECT macro 72
entities 3
EO 91
EOR parameter 91
extended LRECs
defining 77

F

field length

expanding 25
FIELD parameter 102
fields 3
file accesses

reducing 131
file description

defining in the DSECT macro 82
file ID

defining in the DSECT macro 82
file name

convention 69

defining in the DSECT macro 73

defining using DSECT name default 69, 70
file type

defining in the DSECT macro 82
file versions

FNR parameter 114, 122

FVN parameter 114, 122
files

combining 131, 132

expanding 33, 35

fixed 165

index 18

integrity of 162

interrogating 33

loading from tape 76

miscellaneous 33

organization of 162, 165

packing 75, 76

referencing 135

regular packing of 167

restoring 76

updating with 2 ECBs 76, 77
first normal form 3,5
fixed file type

defining in the DSECT macro 81
fixed files 165
fixed-length DBDEF parameter 182
fixed-length LRECs

algorithm for 79, 81

defining the number per block in the DSECT

macro 73

FNR parameter 114, 122, 123

forward chain field location
defined with the CPF parameter 119
forward path 135
FSZ parameter 115
FVN parameter 114, 122

G

GETCC 175
global set symbols
defining in the DSECT macro 71
GREG parameter 123
GWO1SR 176

H

hashing algorithms 32
highest LREC ID for TPFDF
defining in the DSECT macro 82

1/O processing
reducing 35, 131, 135, 146, 149, 163
ID1=(NORECOUP) parameter 100
ID2 parameter 100
ID3 parameter 100
IFR parameter 111
IID parameter 108
IKY parameter 109
ILA parameter 109, 142
ILK parameter 109
ILV parameter 92
IMI parameter 108
IMI= 108
INB parameter 103
index files 18
index keys
example 31
translating 133
index LRECs
checkpoint when adding 77
checkpoint when deleting 77
example 136
INDEX parameter 101
indexed fixed files
defining 77
indexing
B*Tree 78, 120, 131, 149
block 131, 146
multiple 138
multiple-level 141
simple 136
single 144
to multiple detail files 144
indirect dependency 4,5
interleave
adding blocks to 160
benefits of using 159, 160
coding the DSECT 159
example of 157, 159

Index

195

interleaved files

defining in the DSECT macro 73
IPA parameter 109, 142
IPE parameter 110
IPK parameter 109
ISZ parameter 115
item count

defined with the CNT parameter 115
item position

defined with the PIT parameter 115
item size

defined with the ITS parameter 114
item size field

defined with the 1ISZ parameter 115
item size location

defined with the PIS parameter 115
ITK parameter 100
ITS parameter 114, 182, 184, 186, 187

K

key parameters

specifying 97, 110, 162
KEYCHECK parameter 123
keys

index 31, 133

partial 162

primary 3,4

unique 178

update 162

L

LDI parameter 112
leap years 25, 35
LEV parameter 103
links 9
LLE parameter 112
log files
maintaining 173
using 73,74
logical data groups 135
LREC contents 178
LREC fields
key 31
size 31
LREC ID
defining in the DSECT macro 83
description 4
LREC keys
unique 148, 150
LREC size
defining in the DSECT macro 83
LREC structure 33
LREC types 175, 178
LREC user fields
defining in the DSECT macro 85
LRECs
calculating required number of 27
displaying order for 177
distribution of 30

196 TPFDF R1 Database Administration

LRECs (continued)
alphabetic 30
even 29, 30
numerical 32
pseudo-random 32
uneven 134
expansion of 26
fixed-length 79, 81
index 136
organization of 148, 150, 174
scattered over blocks 168
spreading over blocks 37
variable length 26, 37

M

macro model diagrams Xiv
macro parameters (non-DBDEF)

ALG 30, 31

PARTITN 158
macros

DBDEF 39

DSECT 39
mapping

logical to physical 25

rows to LRECs 3

tables to files 3, 25
MDBF

defining overrides in a file 126

defining SSUs 127

multiple definitions 126
MDBF parameter 125
models of macro invocations xiv
MPFSTD parameter 104
MPNXTD parameter 104
MPPRCD parameter 104
MPRECD parameter 104

N

NAB
defined with the NAB parameter
NAB field location
defined with the PNB parameter
NAB field size
defined with the FSZ parameter
defined with the SSZ parameter
NAB parameter 114, 182, 183
NAB run-time override
defined with the CDR parameter
next available byte (NAB)
validating 76
NLR parameter 92
no overflow, algorithm for 79, 81
NOC parameter 92
NODE parameter 120
NODEID parameter 120
non-TPFDF files 106, 181
NOPACK 167
NORECOUP parameter 101

114
114
115
115

117

normalization
first normal form 3,5
second normal form 3,5
third normal form 3, 6

O

OP1 parameter 93

OP2 parameter 93

OP3 parameter 93

optimization 11, 131

optional trailers 28

ORD parameter 101

ordinals
algorithms for locating 133
preventing large overflows 132
retrieving 34

ORG parameter 97

overflow
reducing 168

overflow blocks
affecting performance 28, 29
changing size of 32, 35, 163
checking utilization of 163
defining the size in the DSECT macro 72
defining variable sizes in the DSECT macro 75
holding 77
limiting 73, 74
processing 166
reducing number of 165
releasing on pack 76
releasing on restore 76
releasing on tape load 76
setting different sizes for 163, 166
using pool for 170

P

P-type files
define using DSECT name default 70
PACK parameter 167, 170
packing a file 167
packing limit
default values 171
PLI parameter 124, 168, 171
processing overhead 168
packing threshold
defined with the PIN parameter 93
defining in the DSECT macro 78
PACKINHI parameter 123
partial keys 162
partial update paths 138
partition
benefits of using 157
example of 157, 158
partitioned files
algorithm for 80
partitions
accessing 158
adding 159
coding the DSECT 158

partitions (continued)
defining in the DSECT macro 78
performance
block indexing 174
block size 28
duplicating data 11
improving access 18, 174
overflow blocks 28, 163
pointers 174
reducing I/O 35, 131, 135, 146, 149
retrieval speed 11
spreading data 37
updating 146, 149, 174
PFO parameter 123
PF1 parameter 124
PF2 parameter 124
PFC parameter 104, 182
PIN parameter 93, 168
PIS parameter 115, 183, 185
PIT parameter 115, 186, 187
PIT run-time override
defined with the CDR parameter 117, 118
PKY parameter 96
PLI parameter 124, 168, 171
PNB parameter 114, 182, 183
PNB run-time override
defined with the CDR parameter 117
pointers 9, 18, 31
pool blocks
using for overflow 170
primary key
B*Tree indexing 149
block indexing 146
in normalization 4
TPFDF LREC ID 4
unique value of 4, 6
prime blocks
changing size of 165
holding 76
setting the size 29, 163
prime numbers 32
PTH parameter 108
PTN parameter 93
pushdown chaining
improving data access 174
using 75

Q

QUE parameter 105
queries
example 12

R

R parameter 97

R-type files
define using DSECT name default 70
getting working storage 177

RAD parameter 114, 184

railroad tracks xiv

Index

197

RBV parameter 93 tape logging 172

RCC parameter 146, 149 third normal form 3, 6, 8
RCIDID parameter 101, 105, 138 TIMEOUT parameter 106
RCO parameter 113, 114 TLRECs 146
RCP parameter 102 TM parameter 128
RCT parameter 94 TPFDF recoup
RDE parameter 114, 184 defining the end ordinal in the DSECT macro 72
record code check 146, 149 TQK parameter 94
records transitive dependency 4
pool 175 TRS parameter 128
recoup concatenation order TYP parameter 94

RCO parameter 114
RECOUP parameter 106

relational databases 3, 9 U
relations 3 UFOH 175
RFC parameter 106 unique keys 178
RID parameter 101 UNIQUE parameter 128
row size 5 update keys 162
rows UWBD user exit
identifying 4 creating your own algorithm 30, 133
S V
SAPR 163 variable-length LRECs 26
second normal form 3, 5, 6
seed 32
sequence update counter 75 W
single-subfile algorithm 79, 81 W-type files
SIZECHK parameter 125 define using DSECT name default 70
SKE parameter 94 defining in the DSECT macro 81
specifying block indexing 94 getting working storage 175, 176, 177
SSU parameter 125 opening 175

SSZ parameter 115 WID parameter 94

storage . work area reference name
core constraints 175 defining in the DSECT macro 81

working 175 working storage 175
STP parameter 106 wraparound 173
subfiles

. WRS parameter 95, 164, 165
accessing 31

calculating required number of 27, 28
contents of 29 Z
packing 168, 169 ZUDEM 162

size of 166
specifying the number of 32 ZUDFM OAP 163

system 166
SUFFIX parameter 127
SWO00

EO 157

ILV 159

PTN 157
syntax diagrams xiv
system subfiles 166

T

T-type files
define using DSECT name default 70
defining in the DSECT macro 81
getting working storage 175, 176
tables
mapping 3, 25

198 TPFDF R1 Database Administration

File Number: S370/30XX-34
Program Number: 5706-196

Printed in U.S.A.

SH31-0175-09

	Contents
	Figures
	Tables
	About This Book
	Before You Begin
	Who Should Read This Book
	How This Book Is Organized
	Conventions Used in the TPFDF Library
	How to Read the Syntax Diagrams
	Related Information
	IBM TPF Database Facility (TPFDF) Books
	IBM Transaction Processing Facility (TPF) Books
	Online Information

	How to Send Your Comments

	Part 1. Tutorial for Planning and Designing a Database
	Organizing a Database
	Normalization
	Primary Key
	Dependency

	Business Application
	First Normal Form
	Second Normal Form
	Removing Independent Attributes
	Third Normal Form
	Resulting Tables
	Duplicating Data across Tables

	Optimizing the Database Design
	Duplicating Data to Improve Performance
	Assessing the Normalized Tables
	Checking Seat Availability
	Booking a Passenger on a Flight
	Displaying Passengers Booked on a Flight
	Displaying All Flights Booked for a Passenger
	Displaying an Aircraft Configuration
	Canceling Passenger Bookings

	Improving Access to the Data
	Displaying Passenger Information by Name or Number
	Accessing Flight Information
	Accessing Passengers from the Seat Table
	Accessing Aircraft Configurations from the Flight Table
	Final Database Design Structure

	Mapping Tables to TPFDF Files
	Before You Begin
	Data Requirements
	Data Field Lengths
	Passenger LRECs
	Calculating the Number of Subfiles Needed
	Block Size
	Chaining
	Overflow Blocks

	Mapping the Passenger Name File
	Distributing the Passenger Name LRECs
	File Structure

	Mapping the Passenger Number File
	Distributing the Passenger Number LRECs
	Ensuring a Good Distribution
	File Structure

	Mapping the Aircraft File
	Distributing the Aircraft LRECs
	Allowing for Expansion
	File Structure

	Mapping the Flight File
	Distributing the Flight LRECs
	Allowing for Expansion
	File Structure

	Mapping the Seat File
	Distributing the Seat File LRECs

	Mapping the Passenger File
	Spreading Data over Several LRECs

	Coding the DSECT and DBDEF Macros
	DSECT and DBDEF for the Passenger Name File
	DSECT
	DBDEF

	DSECT and DBDEF for the Passenger Number File
	DSECT
	DBDEF

	DSECT and DBDEF for the Flight File
	DSECT
	DBDEF

	DSECT and DBDEF for the Seat File
	DSECT
	DBDEF

	DSECT and DBDEF for the Passenger File
	DSECT
	DBDEF
	Index Keys for Each Path

	DSECT and DBDEF for the Aircraft File
	DSECT
	DBDEF

	Part 2. Creating the DSECT and DBDEF Macros
	Creating a DSECT Macro Definition
	Sample DSECT Macros Supplied with the TPFDF Product
	File Names
	Modifying the Sample DSECT Macros
	Modifying the Beginning DSECT Macro Statements
	Assigning Values to Global Set Symbols
	File Description
	Block Header
	Defining the LREC Size and LREC ID Fields
	Defining Different LREC IDs in the Same File
	DSECT Instructions for Defining User Fields in LRECs
	Algorithm DSECT Statements
	Ending DSECT Statements

	Creating C Structures for Files with Existing DSECT Definitions

	Creating a DBDEF Macro Definition
	DBDEF Macro Parameter Syntax
	Global DSECT Override Parameters
	Default Key Parameters
	Basic Index Parameters
	Forward Index Path Parameters
	Backward Index Path Parameters

	Data Extraction Parameters
	Parameters for TPFDF Recoup and TPFDF CRUISE Processing for Customer-Format Files
	TPFDF Recoup User Exits
	B+Tree File Parameters
	Miscellaneous Parameters

	Part 3. Examples and Concepts
	Database Optimization Examples
	Reducing I/O Processing
	Reducing File Accesses
	Combining Files
	Using Algorithms instead of Indexing

	Indexing
	Basic Indexing
	Simple Indexing
	DBDEFs

	Multiple Indexing to a Single Detail Subfile
	Paths 0 and 1
	Read Paths
	DBDEFs

	Multiple-Level Indexing
	Addressing Argument and Index Keys for File GR10DF
	DBDEFs

	Single Indexing to Multiple Detail Files
	DBDEFs

	Block Indexing
	Implementing Block Index Support
	Block Index File Characteristics

	B+Tree Indexing
	B+Tree Index File Node Blocks
	B+Tree Data File Data Blocks
	B+Tree Data File Characteristics
	Additional Considerations When Using B+Tree Indexing
	Structure of a Data File That Uses B+Tree Indexing
	Defining the DSECT and DBDEF for a Data File That Uses B+Tree Indexing
	Defining the DSECT and DBDEF for a B+Tree Index File
	Multiple ECB Chain Chasing

	Partitioning and Interleaving
	Partitions
	Advantages of Partitioned Files
	Example of Partitioning
	Coding the DSECT for Partitioned Files
	Adding a New Partition

	Interleaves
	Advantages of Interleaved Files
	Coding the DSECT Macro for Interleaved Files
	Adding Blocks to an Interleave

	Database Design Hints and Tips
	File Integrity
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Selecting an Optimum Block Size
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Reducing the Number of Overflow Blocks
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Setting Different Sizes for Overflow Blocks
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Packing Files Regularly
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Reducing Overflow by Frequent Packing
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Packing Subfiles after Replacing an LREC
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Using New Pool Blocks for Overflow Blocks
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Specifying a Lower Packing Limit
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Logging Data at Optimum Intervals
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Maintaining a Log File
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Balancing Updating Speed against Accessing Speed
	Problem
	Fast accessing
	Fast updating

	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Getting the Right Amount of Working Storage
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Specifying a Display Order for LRECs
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Linking Logically Related Data
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Managing a First-In-First-Out (FIFO) File
	Problem
	Solution
	DSECT Set Symbols
	DBDEF Statements
	Application Coding

	Using Customer-Format Files
	NAB-Type Files with Fixed-Length Items
	NAB-Type Files with Variable-Length Items
	ADD/DEL-Type Files with Fixed-Length Items
	ADD/DEL-Type Files with Variable-Length Items
	CNT Files Using the CNT Parameter
	CNT Files Using the CPT Parameter
	Files Containing Fixed-Position References

	Index

