Configuring the Reporting Groups and Monitors in RTT MS for CAT and WRM Workspaces

To configure WRM and CAT to work properly with the TEP workspaces, the following configuration guidelines should be adhered to:

- A separate listening monitor should be created for each of the transactions being monitored for the application.

- A separate reporting group should be created for each monitored application. The listening monitors for that application should be assigned to the application reporting group.

- "Collect All Instance Records" should be selected for the each listening monitor. Aggregate data is not visible in the CAT and WRM workspaces.

- "Hourly Average for Each Unique Transaction" should be selected for the listening monitor, so that only one transaction will be generated for each monitor.

- WRM monitors should have either "Web View" or "Classic View" uniformly set for all monitors. The option "Web View|Classic View" should not be used.

[image: image1.png]
[image: image2.png]
NOTE:

- All Reporting Groups for CAT or WRM will appear as Application Name in the TEP Workspace

- All Monitors for CAT or WRM will appear as Transactions in the TEP Workspace.

WRM TEP DISPLAY TIMEOUT WITH LARGE NUMBER OF ROWS IN INSTANCE (APAR IY96515 (DB2))

A SQL script has been provided to solve this issue. There is one script that applies to MS DB running on DB2 (wrm_APAR.db2) and one for MS DB running on ORACLE (oracle_APAR.sql). They are included in 6.1.0.0-TIV-RTT-FP0002_TEMA_WRMDBConfigScript.zip.
STEPS TO IMPLEMENT FIX ON DB2:
1. Copy the corresponding script (wrm_APAR.db2) to a directory on the database server box (i.e. db2\sqllib\bin as wrm_proc.db2)
2. Connect to DB2 RTT MS database as the schema owner of RTT MS Database and run the following command:

db2 -td@ -f wrm_APAR.db2

3. Make sure you examine the output for any errors. If there are errors, they need to be resolved first before proceeding.

4. Schedule the script to run in a loop:

The basic function of the script would be to call the enduser_insert procedure and set it to run in a loop with appropriate sleep time.

This can be done using the GUI of the Task Center of DB2 (look at DB2 manuals) or it could be achieved by a simple shell script set to run as a background job.

As an example lets assume that we create a small shell script - and call it loop.sh (this is to be created by the RTT MS DB owner)

while :

do

db2 connect to $RTTMSDBNAME$

db2 call enduser_insert

sleep 60

done

Note, it sleeps for 60 sec between runs and obviously 2 calls to the same procedure cannot be made (This is important - we do not want to have this in any scenario).

You can start this script as a background job and redirect the error and output to a log file (i.e. loop.log). Also make sure that you add it to the machine startup parameters so that is starts up automatically on machine startup.

5. Wait for 1-2 hours and then take a look at the Web Response Monitor node on the Tivoli Enterprise Portal. Data should start appearing. You should also have the row count of the following tables incrementing:

wrm_app

wrm_server

NOTE: Rate of increment of row count could vary depending on web traffic.

STEPS TO CHECK THAT THE DATABASE JOBS FOR THIS FIX ARE RUNNING IN THE BACKGROUND:

As the job needs to be scheduled to run, steps to check if the job would be running essentially means:
1. Check if the background job is running.

2. Check that the record count of the instancedata_snap_log table is being incremented (select count(*) from instancedata_snap_log)
STEPS TO STOP THE BACKGROUND JOB FOR PURPOSE OF MAINTENANCE
Make sure that the script is stopped. A standard way could be using the kill syntax.
STEPS TO RESTART THE BACKGROUND JOB FOR PURPOSE OF MAINTENANCE
Make sure that script is restarted.
STEPS DURING DB2 DATABASE SHUTDOWN /RESTART
Make sure that the script is stopped before the database shutdown and restarted after database restart.
TROUBLESHOOTING
When in doubt do the following:
1. Do a 'select * from enduser_messages' for any error messages and go through it for details of error messages and when they occurred.

2. Also check the loop.log as mentioned above for other errors which may not have been captured in the enduser_messages table.

TUNNING THE SCRIPT

This document is intended for System Programmers with SQL knowledge. Needless to say that before any changes are made to the procedure the scheduled job needs to be stopped. After making the changes to the procedure it is to be recompiled and the schedule job restarted again.
By design, the WRM data shown in the TEP (under the WRM navigator entry) will be a little over
1 hour behind the current time. Else we may have a scenario where we are not able to 'catch and report' a WRM transaction in TEP.

Why is this?

WRM data is not persisted in the RTT MS as you see it in the TEP. Each WRM transaction as persisted in the instancedata table is actually 4 rows-->

· 1 row for over all response time

· 1 row for network time

· 1 row for server time

· 1 row for client time

The WRM procedure running in the background scans through the data and sees them as 1 'WRM ROW' and reports on it. Now, the procedure scanning in the background only scans forward (else it would be very expensive) looking for new data. So, the order in which data is persisted becomes very important.

The RTT MS persister is not designed to guarantee that all the 4 rows above will be persisted together. Given several dependencies that come in to play around this - along with other user configurable settings - it is wise that we stay about 1 hour behind always as the 4 rows may come in anywhere within this time. Else, as stated earlier, we may have a scenario where we are not able to 'catch and report' a WRM transaction in TEP.

For this, it may be necessary to customize the script according to the amount of WRM data being generated.

Values that can be adjusted:
Instance data collection starting point

Starting at line 50 from the wrm_APAR.db2, this code determines the starting point for the script to get the data. Remember that only instance data that is collected in the format specified above will be collected. If it is necessary, determine the first instance id collected in the format specified above (see the monitor configuration instructions) and change these lines accordingly to start at that specific instance id.
insert into instancedata_snap_log (instance_id) select max(instance_id) - 100000 from instancedata
The 100000 number can be adjusted depending on the number of existing rows in the instancedata table. If there are 1000000 records, this can be changed to -800000, so that the script starts getting the last 800000 instance data records. On the other hand, if currently there are less than 100000, this value may be changed to a number that is smaller than the current amount of instance data records. Also keep in mind that by default only the last 8 hrs of instance data available will be displayed in the TEP, if the instance data in the database is older that 8 hrs, it won’t be displayed on the TEP. This value can be changed during agent configuration if necessary.
Maximum number of instance data records to get at one time
There are three places where this needs to be changed. The first is in the following block starting at line 133 from the wrm_APAR.sql
JOIN instancedata inst

ON (inst.relationmap_id = r.relationmap_id AND

inst.instance_type >= 8

AND INST.INSTANCE_ID > v_instanceid_log

AND INST.INSTANCE_ID <= v_instanceid_log+1000

AND parent_iter_cnt=x'00'

AND parent_thread_id = 0)
The second block is starting at line 352 from the wrm_APAR.sql
if (v_instanceid_log + 1000) < v_instanceid_act

then

insert into instancedata_snap_log (instance_id)

values (v_instanceid_log + 1000);
Currently, the maximum number of instance data records to get at one time is set to 1000. This can be increased or decreased depending on site’s web traffic.

Instance data records delay
As explained above WRM data shown in the TEP (under the WRM navigator entry) will be a little over 1 hr behind the current time. Else we may have a scenario where we are not able to 'catch and report' a WRM transaction in TEP. To keep this 1 hr data delay, it is important to determine the approximate number of instance data records that are generated in one hour at the current site. Monitor the number of instance data records that are generated every hour for about 3 hours to determine this number. This value is currently set to 10000, but needs to be adjusted to keep this one hour delay. If the number of records goes from 10000 to 20000, is better to set it at the higher limit which is 20000 or more to leave a safer margin.
This can be changed at the block starting at line 169
if (v_instanceid_act - v_instanceid_log) > 10000

then

select metric_def_id INTO v_metric_def_id

from metric_def where metric_name='Source IP';
IMPORTANT NOTE - PLEASE READ:

The wrm_app, wrm_server tables cannot have data for the days which are not in the instancedata table.

The wrm_app and wrm_server table will contain 1 transaction for every WRM transaction so it can grow big if the site activity is high.

It is advisable therefore to partition these tables using the services of a DBA and then create/drop partitions to purge the data in an efficient manner.

If the site activity is not high, a simple procedure with conditional deletes will work as well.

