
Vallent, An IBM Company Generic CSV User Guide

 Uncontrolled when printed, controlled version held electronically Page 1 of 13

 © Copyright IBM Corporation 2008. All rights reserved.
Commercial-in-Confidence

Generic CSV

User Guide

Date: 24 March 2009

Vallent, An IBM Company Generic CSV User Guide

 Uncontrolled when printed, controlled version held electronically Page 2 of 13

 © Copyright IBM Corporation 2008. All rights reserved.
Commercial-in-Confidence

 1 Overview

 1.1 The Gateway Framework

The Generic CSV Gateway Kit uses the Gateway Framework as a container for the

execution of its engine and post parser stages. The Gateway Framework and Generic
CSV Gateway Kit are de-coupled into two separate installations. The Gateway
Framework consists of a library of perl modules that provide functionality such as:
- a container for the execution of the Generic CSV Gateway Kit and Post Parser

rules for of data transformation

- Intermediate (PIF) and output data (LIF,CSV,XML) storage and management

- logging utilities

- cleanup and crash recovery

- statistics gathering

The Generic CSV Gateway Kit simply plugs into the Gateway Framework and extends
this base functionality to provide the final Gateway that parses a specific vendor’s

ASCII data.
More information on the standard Gateway configuration is contained in the Gateway
Framework User Guide.
Only Generic CSV Gateway Kit configuration details will be described in this

document.

 1.2 Generic CSV Gateway Kit Overview

 1.2.1 Data Types

The Generic CSV Gateway Kit can be configured to parse any ASCII data type
through the use of both its native functions and optionally its pre-parser extension
(Pre-Parser Configuration element).

The native functions provide all the basic rules for building a parser to work on most
delimited data formats from the ground up, without needing to know perl language.

To use the more advanced features such as the Pre-Parser element, (e.g. for more
esoteric formats) you will need to have basic to intermediate knowledge of perl.

The formats allowed, ranges from basic CSV [or delimited] data (ideally suited to this

Gateway for native, minimal configuration) to any other multi-line ASCII report
format. Most data types/formats can be converted into a delimited representation by
using the Pre-Parser element. The range of formats that have already been
supported by the native functions is already large enough to consider the Generic

CSV Gateway Kit the solution to most ASCII report data. Though there are some
complex cases where a dedicated parser may be more appropriate.

The Pre-Parser element could be used to call external pre-parsers to parse other

forms of data so long as the output sent back to the Engine is delimited data.

Included with the CSV Gateway Kit is the Pre Parser Simulator that enables you to
develop the pre-parser solution outside of the Parser Framework.

Vallent, An IBM Company Generic CSV User Guide

 Uncontrolled when printed, controlled version held electronically Page 3 of 13

 © Copyright IBM Corporation 2008. All rights reserved.
Commercial-in-Confidence

 1.2.2 Data Version Support

These are examples of systems currently using the Generic CSV Gateway Kit (up to

v3.0.1.82) that exist and have been validated against the gateway without
requiring the use of the Pre-Parser Config element.

Motorola SQL GSR 7.0 SQL Informix multi-line

Nokia SQL NetAct OSS 3.x SQL Oracle multi-line

Alcatel SDH 1394 CSV + Topology

Lucent IN 8.5, 10.3 CSV data

Motorola IDEN 9.8, 10.5, 11.0

Ericsson J20

Alcatel CN -

Nortel SDM IP CSV Data

Metrica/NPR Transfer Unload NPR CSV Format

These are examples of systems that have been developed with the Generic CSV
Gateway Kit 3.0.1.82 and above requiring the use of the Pre-Parser Config element.

Huawei GSM NSS - Non-CSV ASCII report

Vallent, An IBM Company Generic CSV User Guide

 Uncontrolled when printed, controlled version held electronically Page 4 of 13

 © Copyright IBM Corporation 2008. All rights reserved.
Commercial-in-Confidence

 1.2.3 Data/File Formats

The Generic CSV Gateway Kit was developed on the basis of experience of PM report

systems and allows any ASCII Format PM file (with delimited fields and line breaks)
to be simply incorporated into a reusable and maintainable gateway.

It can be used in most cases without using the Pre Parser element where delimited
records appear in the following formal format specification below. (In practical terms,

the parser is highly optimised for this data format and can handle large data blocks
up to the available RAM/SWAP limitation per process)

CSV File Format Formal Syntax:

{} - group

[] - optional

<> - element

| - sequence (followed by)

inf - [theoretical] infinite number of

|| - or

&& - and

<fileformat> := { [inf <commentline>|<headerline>]

 inf <datasection> }

<delimiter> := <string constant>

<headerline> := { <string> | [inf <headerblock>] }

<headerblock> := { <delimiter><string> }

<dataline> := { <string> | [inf <datablock>]

<datablock> := { <delimiter><string> }

 1.2.4 Architectural extensions

This parser adds 2 new files that have to exist for the correct operation of the

parser though the functionality they provide can be turned off by not using them in
the EngineConfig.pm. (providing back compatibility with versions of the CSV parser
from v2 onwards)
• PreParserConfig.pm

This file contains a set of perl subroutines (implemented as a hash of
subroutines) that can be applied to input data to convert it into a delimited re-

presentation of itself in RAM.

Each subroutine defined in here should correspond to a particular data format
that is to be converted. Details are provided in the supplied documentation and

examples. This is provided to allow the user to define powerful functions to parse
specific formats that would otherwise be impossible to use with the parser, or
require new parsers to be written.

Vallent, An IBM Company Generic CSV User Guide

 Uncontrolled when printed, controlled version held electronically Page 5 of 13

 © Copyright IBM Corporation 2008. All rights reserved.
Commercial-in-Confidence

• PreParserSimulator

This is provided to simulate a selected pre parser action on a raw data file and
reproduce the RAM representation on your standard terminal. Use this when
developing new pre-parsers. Your format will be output as delimited data and the
field positions chosen in the EngineConfig.pm should reflect this output when

using the PRE_PARSER directive in the EngineConfig.pm

 1.3 Processing Diagram

File type A is a normal CSV or delimited file, File type B is a complex file type that

requires further processing to turn it into CSV data. Two “rules” are defined for File
type “A” & “B” in the EngineConfig.pm. The File type “B” is a complex non-CSV
format and the EngineConfig.pm employs the PRE_PARSE directive to modify the

state of the loaded file type “B” in memory and then process them according to the
EngineConfig.pm “B” rule. Then the PIF objects are created & processed by the
framework’s Post Parser which uses UserConfig.pm to convert the generic format
PIF’s into LIF, CSV or XML output.

Raw Data

Directory

Files
A

Files
B

GENERIC CSV

GATEWAY

MODULE

Pre

Parser

PIF

Intermediate

Objects

Directory
A

A

B

B

PreParserConfig.pm
Special PreProcessing
for file type “B”

GENERIC

FRAMEWORK

LIF Loader

Input Files

Objects

Directory
LIF

LIF

UserConfig.pm
[processing
rules]

C

LIF

LIF

EngineConfig.pm
Raw File Processing
Rules

NPR / MPM /

PROSPECT /

ORACLE /

Object Data Flow
Config Data Flow

Vallent, An IBM Company Generic CSV User Guide

 Uncontrolled when printed, controlled version held electronically Page 6 of 13

 © Copyright IBM Corporation 2008. All rights reserved.
Commercial-in-Confidence

 2 Engine Rules and Configuration
Each file format you want to parse with the Generic CSV Gateway Kit must have its
own Engine Rule entry containing the set of Engine Configuration options described
below. Some Engine Configuration options are mandatory and some will be optional

depending on the file format that the Engine Rule is based upon.

 2.1 RULE_TYPE

Describes the Engine Rule (gateway) to use to parse a specific file format. If set to

“GENERIC_CSV_GATEWAY”, the Engine Configuration tells the gateway framework to
use the generic csv gateway engine. After this is set correctly the other Engine
Configuration Options listed below then apply to the generic csv gateway only.

Any Single Rule Type entry calls a specific gateway engine to convert a particular
input file format to the parser intermediate format (PIF). Each Configuration will be
different for different input formats.

 2.1.1 Rule Configuration
The following details the vendor specific rule entries for the Generic CSV engine rule.

• RULE_TYPE: Mandatory entry.

RULE_TYPE => ‘GENERIC_CSV_GATEWAY’,

• RULE_DESC: Simple Free form text to describe what format this Rule Entry will
cater for. Mandatory entry.

RULE_DESC => ‘(free text) file format of this data’,

• INPUT_FILE_DESCRIPTION: Mandatory entry. Specification for Input files in the

specified property network raw data directory “IN_DIR” (e.g. '^.*.csv$') is a
regular expression which denotes all files which end in the “.csv” extension which
are present in the input directory. More than one set can be specified in the []’s

INPUT_FILE_DESCRIPTION => [‘^.*.csv$’],

• INPUT_DIR_DEPTH: Specification for how deep the gateway framework will
search for files in directory trees in the specified property “IN_DIR”. 0 is the
default. Mandatory entry.

INPUT_DIR_DEPTH => ‘0’,

• NUMBER_OF_FILES_TO_PROCESS: Specification for how many files from

“IN_DIR” the gateway framework will attempt to run through the gateway in any
single run. E.g. 20 = 20 files at a time. This parameter is a tuning parameter.
Mandatory entry.

NUMBER_OF_FILES_TO_PROCESS => ‘20’,

• ORDER_OF_FILES: Specification for what order the gateway framework will
attempt to parse the data through the gateway. No ordering is fastest, oldest first
is best for PM files due to NC re-parenting. Mandatory entry.

Valid options: YOUNGEST_FIRST, OLDEST_FIRST, DIRECTORY_ORDER (comment

Vallent, An IBM Company Generic CSV User Guide

 Uncontrolled when printed, controlled version held electronically Page 7 of 13

 © Copyright IBM Corporation 2008. All rights reserved.
Commercial-in-Confidence

out this configuration option to speed up the first stage of the parser at expense
of data presentation contiguity to the loader). This parameter is a tuning

parameter.

ORDER_OF_FILES => ‘YOUNGEST_FIRST’,

• HEADER_FIELDS: HEADER_FIELDS numbers the fields in the raw input data that
the user wants to appear in the header of PIF/LIF. It is using an array of numbers
to represent the header field positions in the input data counting from left to right

from zero.

Header fields are usually those that are common to every block under it

All fields start from 0
 e.g. if you want nodeid in header and nodeid is field 0, then
 specify [0], If you want nodeid, day and day is field 1, then
 specify [0, 1], or [0 .. 1],

 (required in non-topology mode) (optional in topology mode)

HEADER_FIELDS => [0 .. 1],

• DATA_FIELDS: DATA_FIELDS numbers the fields that the user wants to appear in

the blocks of the PIF/LIF by using an array of numbers to represent the header
field positions in the input data format. If no DATA_FIELDS specified, then all

fields will appear in the PIF.

Data field numbers the fields that you want to appear in blocks of lif

All fields start from 0
e.g. if you want time in lif block and time is field 4, then
specify [4], if you want all fields from 10-15 and 1-4 then
specify [1 .. 4, 10 .. 15],

 (required)

DATA_FIELDS => [1 .. 4, 10 .. 15]

Vallent, An IBM Company Generic CSV User Guide

 Uncontrolled when printed, controlled version held electronically Page 8 of 13

 © Copyright IBM Corporation 2008. All rights reserved.
Commercial-in-Confidence

• FIELDS_TO_KEY_PIF_FILENAME: FIELDS_TO_KEY_PIF_FILENAME numbers the
fields that the user wants to use as the PIF filename key. PIFs appear in the

intermediate directory “INT_DIR” property directory as individually named files.
This controls what the intermediate filename will be named as.

This allows you to batch all data into one file, or split it up into several smaller
ones depending on the fields you choose. The more fields you add, the more PIF

files you produce per input file (up to the max open files per process parameter).
In Metrica/NPR it’s better to have NODEID, DAY and match the retrieval key
index of the loadmap to the pif filename, and put NODEID, DAY into the
HEADER_FIELDS option also. (This is normally required for best operation,

though it can be commented out to use the original filename as the PIF name)
Assuming NODEID is in FIELD 0 and DAY is in FIELD 1 in the data file PM.csv:

FIELDS_TO_KEY_PIF_FILENAME => [0 , 1],

We created a file called NODEID-#-DAY-#-PM.csv-#-I.pif in “INT_DIR”
FIELDS_TO_KEY_PIF_FILENAME => []

We created a file called PM.csv-#-I.pif in “INT_DIR”

• HEADER_INFO_TO_KEY_PIF_FILENAME: An optional entry in addition to
FIELDS_TO_KEY_PIF_FILENAME entry above. Allows users to define an array of
header info fields to use as part of the PIF filename key after the keys defined in

FIELDS_TO_KEY_PIF_FILENAME entry.

HEADER_INFO_TO_KEY_PIF_FILENAME => ['STARTDATE', 'STARTTIME'],

• HEADER_FIELD_FOR_BLOCKNAME: An optional entry that allows the user to
define a scalar with the name of a header field for the data block name in the
output files.

HEADER_FIELD_FOR_BLOCKNAME => 'OMTYPE',

• DATE_TIMESTAMP_FIELD: This option has to be configured along with its

complimentary options:

• DATE_TIMESTAMP_FIELD: Array of fields to process (array of field numbers)

• DATE_TIMESTAMP_TYPE: Array of corresponding field type identifier strings

• DATE_TIMESTAMP_OPTS: Array of corresponding field type conversion strings

This allows the user to use the built-in functions to modify a date field from one
date or time format into standard Metrica/NPR / Performance Manager date &
time formats. They can be mixed and matched as required, though all 3 elements

are usually necessary.
POSIX - The option POSIX is limited to converting posix (unix) time stamps to
standard date/time string representations. The below example takes fields 1 and
2 and creates new header records in the LIF. The contents of fields 1 and 2 in the

input data are a posix time. An example resulting header counter output is
POSIX0_0 14May01 and POSIX0_1 12:00 which processed column 0 below, and
POSIX1_0 14May01 and POSIX1_1 11:00 for column 1 below. The option
DATE_TIMESTAMP_OPTS needs to be set to GMTIME if you want no local time

zone offset from the POSIX timestamp, or it will apply the time zone to the
POSIX time using the local time zone by default. (Desirable in some cases)

DATE_TIMESTAMP_FIELD => [1, 2],

DATE_TIMESTAMP_TYPE => ['POSIX', 'POSIX'],

Vallent, An IBM Company Generic CSV User Guide

 Uncontrolled when printed, controlled version held electronically Page 9 of 13

 © Copyright IBM Corporation 2008. All rights reserved.
Commercial-in-Confidence

DATE_TIMESTAMP_OPTS => ['NONE','GMTIME'],

TIMEROUND – The option TIMEROUND rounds integer durations up/down to
nearest n seconds where n=OPTS) The example below would round 901 to 900,
850 to 900, and 1805 to 1800. This is useful when data is reported by crontab, or

there is a script that runs that collects data and doesn’t quite report its start time
correctly.

DATE_TIMESTAMP_FIELD => [1],

DATE_TIMESTAMP_TYPE => ['TIMEROUND'],

DATE_TIMESTAMP_OPTS => [900],

STRINGDMY, STRINGMDY, STRINGYMD – These options are for dealing with
dates in the form "10-05-2004" or "10_05_04" or other delimited string date
formats. Pick the correct order for your date string. UK dates would be DMY for

example and YMD for US. Output is transformed to preferred format (e.g.
10May2004) The delimiter is a mandatory option and can be as complex as you
need to break up the string into its components.

DATE_TIMESTAMP_FIELD => [1 , 2 , 3],

DATE_TIMESTAMP_TYPE => ['STRINGDMY', 'STRINGMDY', 'STRINGYMD'

],

DATE_TIMESTAMP_OPTS => ["-" , "_" , "."],

• INVALID_VALUE_MATCH: Removes all the items from the raw input data file

which match the characters listed before the gateway engine processes it.

INVALID_VALUE_MATCH => ["'", '"'],

• FIELD_SEPARATOR: This is the Key to the field splitting process and controls the
fields that are used internally. The field separator delimits your data. Mandatory
entry.

FIELD_SEPARATOR => ‘,’,

If you have "A;B;C" then use ";" .. if you have "1,3,65,2" then use "," .. if you

have a weird format such as "ABC##456##928" then use "##".. most things
are possible.. including tabs "\t". See the documentation provided with the parser
for more details.

• WHITESPACE_MODIFIER: This option allows the user to change any “ “ (space)

characters to underscores or other more useful character.

WHITESPACE_MODIFIER => '_',

• HEADERLINES_TO_SKIP: This option allows the user to throw out any number of
header lines from the top of the file, to discard unwanted information, such as
report dates and times etc.

HEADERLINES_TO_SKIP => 2,

This would skip two blank or unwanted lines before the “real” data started in the
file.

• FAST_VALIDITY & SECURE_VALIDITY: This checks the file before processing and

only processes the 1st two lines or the whole structure (if SECURE_VALIDITY is
used). Optional entries.

FAST_VALIDITY => '.*;.*',

Vallent, An IBM Company Generic CSV User Guide

 Uncontrolled when printed, controlled version held electronically Page 10 of 13

 © Copyright IBM Corporation 2008. All rights reserved.
Commercial-in-Confidence

SECURE_VALIDITY => '.*;.*',

Fast checks are performed before the optional header line is placed is placed onto
the top of the file by the HEADER_OPTION. Secure checks are performed on all
lines. multiple checks can be added by using the | operator within the regular

expression.

• HEADER_OPTION: This option allows the user to add in the description (counter
names) of the data fields if they are not present. (if they are present, please do

not use it!). The array contains the names of the counters that you want to
represent your field positions. Optional entry.

HEADER_OPTION => ['SCHEDTIME', 'ACTUALTIME', 'DURATION',

'MOUNTED_ON', 'KBYTES', 'USED', 'SCP'],

• LINE_DELIMITER: Optional field. This allows you to split the file into records
based on a different delimiter than new line (\n) e.g. setting it to ';' would read
multi-lines ending with a semi-colon. Setting invalid value match to "\n" allows

complex multiline datasets to be read in, in one pass.

LINE_DELIMITER => '\n',

• NORM_DELIMITER: Optional Field. (Norm means: “normal”, i.e. what it should be

set to normally) This is needed if using LINE_DELIMITER to restore the original

linefeed character “\n”. You can also parse strange records by using combinations
of the LINE_DELIMITER and NORM_DELIMITER.

NORM_DELIMITER => '\n',

• GLOBAL_SUBSTITUTION: Global substitution applies to every line in the data file
before parsing occurs. The example below will replace occurrences of DURATION

with TIMESPAN and NECELLID with CELLID in the file. You can keep adding
substitutions without affecting too much the performance of the engine itself.

GLOBAL_SUBSTITUTION => { DURATION => 'TIMESPAN',

 NECELLID => 'CELLID', },

Note: Only word characters are supported as keys in the
GLOBAL_SUBSTITUTION hash.(i.e word characters are [a-z][A-Z][0-9]_)
If you gateway requires more complex substitutions, please implement in

PreParserConfig.pm.

• UPPERCASE_COUNTERS: Uppercase counters should be set to True for all

previous parser releases to V3.0.073 to maintain compatibility. On Performance
manager systems you may not want the uppercase function (as the loadmap is
case sensitive). Set to ‘0’ to disable, and ‘True’ to enable.

UPPERCASE_COUNTERS => 'True',

• PIF_FILENAME_EXTRACT: PIF FILENAME EXTRACT operates on the raw filename
and extracts a new PIF filename based on the regular expression you choose. The
fields you choose in brackets "()" which match will be joined with "." characters.

This rule is mainly for cutting the size of the file down or making new filenames
from existing name and user fields.

Vallent, An IBM Company Generic CSV User Guide

 Uncontrolled when printed, controlled version held electronically Page 11 of 13

 © Copyright IBM Corporation 2008. All rights reserved.
Commercial-in-Confidence

PIF_FILENAME_EXTRACT => '(\w+)\.',

E.g: File = bss_statistics.omcsys2.02Jul2004.21:50:49.27873.Z
Rule = 'PIF_FILENAME_EXTRACT' => '(\w+)\.(\w+)\..*'

PIF Name = <FIELDS_TO_KEY_PIF_FILENAME>-#-bss_statistics.omcsys2-#-I.pif
(Note that the date and time has been removed from the PIF)

• JUNK_MATCH: This rule will remove entire comment lines containing the regular

expression before parsing starts. Without affecting the input file contents. The
example below removes any comment line starting with “#”

JUNK_MATCH => '^#.*$',

• TOPOLOGY_MODE: Will turn on the new TOPOLOGY mode which emulates the

behaviour of the CSV_GENERIC_TOPOLOGY_GATEWAY.pm parser which used to
ship with versions prior to 3.0.175. Now you must use GENERIC_CSV_GATEWAY
for all RULE_TYPE entries in your parser. There are no longer separate parser
engines for the CSV data and Topology data.

If converting Engine Configurations from releases prior to 3.0.175 you must
specifically set the data fields to output by adding 'DATA_FIELDS' to the

EngineConfig entry for your parser. There is no need to have 'HEADER_FIELDS'
set when TOPOLOGY_MODE is used as HEADER_FIELDS is now an optional
element when in topology mode.

TOPOLOGY_MODE => 'True',

• PRE_PARSE: This rule executes the selected pre parser function (from the

PreParserConfig.pm) on all input files that are specified by this Engine Rule’s
INPUT_FILE_DESCRIPTION. This will process your input file before it is processed
by the main CSV engine. To see the output of the pre parser you will need to use

the PreParserSimulator command.

PRE_PARSE => 'MYVENDOR_VER',

More technical documentation is located in the accompanying documentation.
3.0.1.80 & 3.0.1.81 versions of the parser should be migrated to use the new
PreParserConfig.pm and any subroutines should be sent to the gateways group

for possible product inclusion.

• QUICK_DATA_SPLIT: This rule will speed up parsing provided the data is simple

CSV:
• the field separator consists of a simple character e.g. ‘,’
• quoted strings are escaped with pairs of ‘”’ e.g. “here, this is an example”

QUICK_DATA_SPLIT => 'True',

• OVERWRITE_PIF: Enable this rule if existing PIFs are to be overwritten (this

overrides the default framework behaviour). This rule is helpful when parsing
configuration files which are retained whose PIF files are retained. The PIFs are
then replaced when fresh configuration files are available.

Vallent, An IBM Company Generic CSV User Guide

 Uncontrolled when printed, controlled version held electronically Page 12 of 13

 © Copyright IBM Corporation 2008. All rights reserved.
Commercial-in-Confidence

OVERWRITE_PIF => 'True',

Vallent, An IBM Company Generic CSV User Guide

 Uncontrolled when printed, controlled version held electronically Page 13 of 13

 © Copyright IBM Corporation 2008. All rights reserved.
Commercial-in-Confidence

 3 Post Parser Rules and Configuration
Only standard Post Parser Rules Are Supplied. There are no vendor specific rules as
the parser is not vendor specific, only the configurations of the Gateway engine are
vendor specific.

 4 Installation Specific Information
The parser (for speed & functionality purposes) sometimes keeps many files open at

once during the process of parsing each input file. It will not report when it goes over
the user limit of maximum open files per process in this release. Normally this will
not be a problem unless as a user you have set FIELDS_TO_KEY_PIF filename to

generate many PIF files per input file. It is better to keep the PIF files to minimum as
it reduces the parsing overhead at the POST PARSER stage.
There are ways to increase the maximum user limit (which is normally 256):
On HP-UX systems within the bourne shell the maximum files per process limit can

be increased by using ulimit –n X, where X is the no of files per process. You can set
this in the gateway_start.sh script.

On Solaris, the OS contains a bug that limits its interoperability to 256 files and any

changes to the ulimit will be ineffective.

