
Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 1 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

Nokia ASCII Gateway

User Guide

Release: 3.4.0

Date: January 29, 2008

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 2 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

Contents

CONTENTS __ 2

REFERENCES___ 4

GLOSSARY __ 4

PREFACE__ 5

ABOUT THIS GUIDE__5

CONVENTIONS ___5

1. OVERVIEW ___ 6

1.1 THE GATEWAY FRAMEWORK __6

1.2 NOKIA ASCII OVERVIEW__6

1.2.1 Network Details __6

1.2.2 Data Types __6

1.2.3 Data Version Support __7

1.2.4 Data/File Formats ___7

1.2.5 Architectural extensions ______________________________________9

2. ENGINE RULES AND CONFIGURATION________________________ 9

2.1 NOKIA_ASCII __9

2.1.1 PIF Naming __9

2.1.2 Rule Configuration ___10

2.2 NOKIA_MML __14

2.2.1 PIF Naming ___14

2.2.2 Rule Configuration ___15

3. POST PARSER RULES AND CONFIGURATION __________________ 18

3.1 CNAME_MANIP __18

3.1.1 Rule Configuration ___18

3.1.2 Sample Usage___18

3.2 VALIDATE_AGGREGATE _______________________________________19

3.2.1 Rule Configuration ___19

3.2.2 Sample Usage___20

4. TECH PACK SUPPORT ____________________________________ 21

5. HIERARCHY INFORMATION _______________________________ 21

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 3 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 4 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

References

Name Description

Gateway Framework User Guide This use guide describes in detail the functionality

of the Gateway Framework, and the standard

suite of tools available.

Glossary

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 5 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

Preface

About this Guide

This guide details the vendor specific information on the 3GPP XML

Gateway. It contains the following information:
• Chapter 1. Overview. This chapter gives a brief description of the

3GPP XML Gateway and the raw data format it parses.
• Chapter 2: Engine Rules and Configuration. This chapter details

the vendor specific rules for parsing the raw data and their

configuration.
• Chapter 3: Post Parser Rules and Configuration. This chapter

describes any vendor specific Post Parser rules and their
configuration.

• Chapter 4: Tech Pack Support. This chapter describes any
standard support for Tech Packs included with the Gateway.

• Chapter 5: Installation specific information. This chapter contains
the customer installation specific information.

Conventions

The following conventions are used in this guide:
Fixed width Highlights a block of example code, a configuration

entry, or a command line instruction

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 6 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

1. Overview

1.1 The Gateway Framework

The Nokia ASCII uses the Gateway Framework as a container for the

execution of its engine and post parser stages. The Gateway
Framework and Vendor Gateway are decoupled into two separate

installations. The Gateway Framework consists of a library of perl
modules that provide functionality such as:

• a container for the execution of the Vendor Engine and Post

Parser rules for of data transformation
• Intermediate (PIF) and output data (LIF) storage and

management
• logging utilities

• cleanup and crash recovery
• statistics gathering

The Vendor Gateway plugs into the Gateway Framework and extends

this functionality to provide the final Gateway that parses the vendor
data.

More information on the standard Gateway configuration is contained

in the Gateway Framework User Guide.

Only vendor specific configuration details will be described in this

document.

1.2 Nokia ASCII Overview

1.2.1 Network Details

This Gateway supports raw performance and hierarchy data from a

number of different sources:
• NSS, BSS and SGSN performance data from the Nokia NetAct

Performance Management system, using the NOKIA_ASCII.pm
engine.

• SGSN configuration data, provided in ASCII MML report format,
which is parsed by the NOKIA_MML.pm engine.

1.2.2 Data Types

The types of data supported are:

• For NSS, BSS and SGSN performance data the Gateway supports
performance data from the Nokia NetAct Performance

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 7 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

Management System. This includes an extensive list of

measurement object types within each network type.
• For SGSN configuration data, the MML type output is supported.

1.2.3 Data Version Support

• For NSS, BSS and SGSN performance data. the version

supported are T12 and OSS3.1
• For SGSN configuration data, version information is not relevant.

1.2.4 Data/File Formats

1.2.4.1 NSS, BSS and SGSN performance data

For the performance data, the standard performance data format from
the Nokia ASCII netact system is supported. The performance data

consists of:
• A File Header: The first line in the raw file, the file header is

formatted as follows:
<NE_TYPE><NE_ID>,<meas_type>,<meas time>,<duration>;

where

NE_TYPE – the type of network element, such as HLR or MSC for

NSS data.

NE_ID – The identifier of the network element, a 6 digit number.

Meas type – the type of measurement that follows.

Meas time – starting time of the measurement period.

Duration – length of measurement period in minutes.

The following format is then repeated:

• The Object ID: This identifies the measurement target, which is
made up of 0 or more numeric object identifications. The

combination of this line and the NE is unique for all elements in
the network.

• Counter name, counter value: Each subsequent line, until

delimited by a “;” to indicate the end of record consists of a
counter name and counter value associated with the object ID.

A sample of the file header and one measurement object:
BSC30936,90,200403311900,60;

36,11,

INT_ID,21,

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 8 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

PERIOD_START_TIME,20040331190000,

PERIOD_STOP_TIME,20040331200000,

PERIOD_REAL_STOP_TIME,20040331200113,

PERIOD_REAL_START_TIME,20040331190000,

PERIOD_DURATION,60,

SEGMENT_ID,36,

QOS_PRIORITY_CLASS,11,

NBR_OF_TBF_ALLOCATIONS,11,

TOTAL_NBR_OF_RLC_BLOCKS,11,

TOTAL_DURATION_OF_TBFS,27,

DROPPED_DL_LLC_PDUS_OVERFLOW,0,

DROPPED_DL_LLC_PDUS_LIFETIME,0,

AVE_MS_BSSGP_FLOW_RATE_SUM,0,

AVE_MS_BSSGP_FLOW_RATE_DEN,1;

1.2.4.2 SGSN Configuration data.

SGSN configuration is in the format of MML report output. The format

of the report can be broken into:
• A report header, containing the date and time the report was

generated.

• A set of header lines, which identify the hierarchy information for

the following configuration entries. These are mapped to header
output in the PIF.

• A set of data lines, which containing the individual configuration
entries.

This set of header and data lines are then repeated for each network
element.

A sample of the MML report format:
EJL:PAPU=0;

DX 220 16-23-0201 2002-05-23 15:11:57

NETWORK CONFIGURATION DATA OUTPUTTED

NSEI-02750

 PAPU-00

 LAC-00252

 RAC-002

 CI-23382 BVCI-10005 STATE-WO

 CI-25152 BVCI-10018 STATE-WO

 CI-07202 BVCI-10002 STATE-WO

 CI-39872 BVCI-10059 STATE-WO

 CI-25122 BVCI-10015 STATE-WO

 CI-27802 BVCI-10022 STATE-WO

 CI-31682 BVCI-10053 STATE-WO

 CI-39662 BVCI-10055 STATE-WO

 CI-31822 BVCI-10041 STATE-WO

 CI-32202 BVCI-10045 STATE-WO

 CI-39722 BVCI-10048 STATE-WO

 CI-25062 BVCI-10009 STATE-WO

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 9 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

 CI-25072 BVCI-10010 STATE-WO

1.2.5 Architectural extensions

None

2. Engine Rules and Configuration

2.1 NOKIA_ASCII

The NOKIA_ASCII engine process the performance data files for NSS,
BSS and SGSN data. There are several steps involved in the

processing of the raw file:
1. Process the file header, extracting the network element id, and

measurement type. The appropriate configuration is then used to
ensure that the measurement is supported. The configuration of the

measurement types is contained in configuration files
NOKIA_BSS_Config.pm, NOKIA_NSS_Config.pm and

NOKIA_SGSN_Config.pm. The format of these files is described
below.

2. The object id line is then parsed.

3. The secondary hierarchy data, from the hierarchy configuration files

is inserted based on the key from the object id line.

4. The counter names and values are mapped to a single row in the

output PIF.

2.1.1 PIF Naming

The naming format of the PIF files is configurable. This section

describes the standard naming supported by the default configuration.
This should be sufficient unless there is a specific requirement to

rename the PIF files differently.

The PIF naming consists of:
• the name of the measurement type, derived from a lookup on

the object identifier in the configuration file. e.g.
P_NBSC_PBCCH_AVAIL.

• The startdate from the file header, e.g. 20040331.

• The NODEID derived from lookup of the hierarchy file.

• The starttime from the file header.

• The network type derived from the file header.

• The object instance derived from the file header.

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 10 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

• The object identifier derived from the file header.

An example of a PIF file name for measurement 90, P_NBSC_QOS.
P_NBSC_QOS-#-20040331-#-TBD0004BSC1-#-19:00-#-BSC-#-30936-#-90-#-I.pif

Significant performance improvement can be achieved by using fewer

keys for the file header. This should generate larger PIF files.

2.1.2 Rule Configuration

The configuration of the NOKIA_ASCII rule is split into 2 separate files

due to its complexity:
• EngineConfig.pm which as normal describes the main

configuration of the rule.

• NOKIA_<Network Type>_Config.pm that contains the

configuration of the measurement types handled for a particular
Network Type e.g. Nokia_BSS_Config.pm. This configuration is

then referenced within the appropriate rule in EngineConfig.pm.
The configuration of these measurement objects will be

described but in general should not need to be changed during
installation.

2.1.2.1 EngineConfig.pm

EngineConfig.pm contains the main configuration of the NOKIA_ASCII

rule. In addition to the standard entries, the NOKIA_ASCII rule

mandatory entries are:
• HEADER_LINE_DESCRIPTION: A regular expression detailing the

format of the header line in the input file.

HEADER_LINE_DESCRIPTION => '^(BSC)\w+\,\w+\,\w+\,\w+\;.*$',

• FIELD_DELIMITER: Describes the delimiter used within the
configuration files from which the hierarchy information is read.

FIELD_DELIMITER => ',',

• HEADER_FIELDS: A list header field names which represents the
number of fields in the HEADER_LINE_DESCRIPTION separated

by FIELD_DELIMITER.

HEADER_FIELDS => [qw(ASCII_ID OMTYPE DATE DURATION)],

• HEADER_PROCESSING: The names and values of the header

counters to be extracted from the line matched in the
HEADER_LINE_DESCRIPTION.

HEADER_PROCESSING => {

 DATE => {

 STARTDATE => '^(\d{8}).+',

 STARTTIME => '^\d{8}(\d{4})',

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 11 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

 },

 ASCII_ID => {

 OBJECT_INSTANCE => '^[a-zA-Z]+(\d+).*',

 NETWORK_TYPE => '^([a-zA-Z]+).*',

 },

},

• HEADER_INFO_FOR_PIF_FILENAME: An array, listing the fields
derived from the header line that will be used to create the PIF

filename:

HEADER_INFO_FOR_PIF_FILENAME => [qw(STARTDATE NETWORK_TYPE

BSCID OMTYPE)],

• OBJECTID_LINE_DESCRIPTION: At the beginning of each record
is an object id description. This configuration describes the valid

format of this line that will consist of up to 5 comma separated
keys.

OBJECTID_LINE_DESCRIPTION => '^(\d*\,*){0,5}.*',

• RECORD_DELIMITER_DESCRIPTION: At the end of each record is
delimiter. This configuration describes the valid format of this

line that will consist of a comma separated values with a semi
column at the end.

RECORD_DELIMITER_DESCRIPTION => '^\w+\,[\w\-]*\;.*',

• OBJECT_TYPES: A hash that describes the information associated

with each different measurement type. This is quite a large hash

as there can be many different objects for each network
component. In this section the possible values configured for

each are described.

The subroutine and configuration are stored in the module

associated with that network type, NOKIA_BSS_Config.pm,
NOKIA_NSS_Config.pm and NOKIA_SGSN_Config.pm.

See the next section on the format of these configuration files.

OBJECT_TYPES => nokia_nss(),

The optional entries are:
• HEADER_INFO_FOR_DATA_RECORD: For certain installations,

input files can contain measurements for the same om type for
several different BSCs etc. This option allows you to configure

the header info that you want inserted per record rather than as
normal in the header. For example NODEID, BSCID etc can be

inserted in every record to create larger PIFs, which will be
faster for post parser rules. It is configured empty by default.

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 12 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

HEADER_INFO_FOR_DATA_RECORD => []

• CONFIGURATION_DATA_FOR_HEADER: The fields, extracted
from the lookup in of the hierarchy data that should be inserted

into the PIF header.

CONFIGURATION_DATA_FOR_HEADER => {

 NODEID => "NODEID",

 },

• IGNORE_LINE_IF_NETWORK_CONFIG_DATA_MISSING: This

scalar specifies whether or not to ignore lines for which the
hierarchical data cannot be found. If it is set to true, then any

data lines for which the lookup of key data fails will be removed
from the PIF output. By default it is configured as false.

IGNORE_LINE_IF_NETWORK_CONFIG_DATA_MISSING => '0',

• CONFIGURATION_DETAILS: A complex hash containing details

on the network configuration files. Hierarchy data from these

files is integrated into PIF output records. There are 4 possible
entries:

HIERARCHY, TRXHIER, SGSN and OBJECT.

Each has entry contains the following configuration elements:

� DIR: The path name that is pointing to the hierarchy files.

� FILENAME: The regular expression of hierarchy filename. These files store

the hierarchy data.

� FIELDS: An array mapping the fields in the input file to counter names.

� KEYS: The sets of simple and complex keys to generate for lookup. These

keys are then used while processing the performance files, to insert the

relevant hierarchy data into each PIF row.

CONFIGURATION_DETAILS => {

 HIERARCHY => {

 DIR => '../hier/',

 FILENAME => ['^hierarchy.*\.dat$',],

 FIELDS => [qw(BSCID BTSID BSCNAME BTSNAME BSNAME

LACID CELLID DEFTCH DEFCCH MSCNAME)],

 KEYS => {

 LAC_CELL_KEY => [qw(LACID CELLID)],

 LAC_KEY => 'LACID',

 },

 },

 OBJECT => {

 DIR => '../hier/',

 FILENAME => ['^objects.*\.dat$',],

 FIELDS => [qw(OBJECT_INSTANCE NAME)],

 KEYS => {

 OBJ_KEY => 'OBJECT_INSTANCE',

 OBJ_NAME_KEY => 'NAME',

 },

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 13 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

 },

},

• DEFAULT_CONCATENATION_CHAR: A single character scalar

with the string to be used when concatenating values which are
being used to create a single counter value in the output PIF.

DEFAULT_CONCATENATION_CHAR => '/',

• USE_PIF_FILENAME_COUNTER: Is set a unique number will be
inserted in the PIF filename to ensure that the output PIFs are

unique and do not overwrite each other, especially when large
raw files are being used, which have previously been

concatenated together.

USE_PIF_FILENAME_COUNTER => "True",

• INPUT_NULL_VALUE: A scalar with the string for null data value.

INPUT_NULL_VALUE => '-1',

2.1.2.2 Network Measurement Object Configuration

As stated above, the Nokia_<XXX>_Config.pm files detail the mapping
of each measurement object within each network type. Each file has

the same format. A hash detailing the configuration for each network
type.

Each element within this hash details the configuration for mapping

from the measurement object to the PIF. The hash key is the
measurement object value e.g. 160.

The configuration entries for each measurement object are detailed

below:
• NAME: The actual name that the measurement type maps to.

Used in the output PIF filename.

NAME => 'P_NBSC_TRAFFIC',

• OBJECT_ID_NAMES: An array with the names of the expected

entries in the object id line.

OBJECT_ID_NAMES => [qw(BTSID TRX_TYPE)],

• RECORD_KEY: An array with the names of the keys that are to

be used when searching the network configuration information.

RECORD_KEY => [qw(BSCID BTSID)],

• HIERARCHY_KEY_SET: A scalar referring to the hierarchy key

from the hierarchy configuration in the engine which is to be
used for lookups for this OM type. This key set must be

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 14 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

configured in the hierarchy configuration in

CONFIGURATION_DETAILS for the rule.

HIERARCHY_KEY_SET => 'BSCID_BTSID_KEY',

• OUTPUT_COUNTERS: The OUTPUT_COUNTERS is a hash entry
whose keys contain the network configuration counter names to

be integrated into the current record. The corresponding hash
values contain the names of the network configuration column

counters or object ID line entries. This may be a single or a list

of counter names. In the event of a list of names, the output
counter value will be the concatenation of all these.

OUTPUT_COUNTERS => {

 NODEID => 'NAME',

},

2.2 NOKIA_MML

Due to the report format of the MML output files parsed by the

NOKIA_MML rule, the parsing of the input files is based upon parsing
of a file header and then multiple blocks each of which contains a block

header and a list of data blocks.

It may be useful to examine the raw input files that are parsed by this

rule while reading the description. They are contained in
example/data/nokia_mml directory of the release package.

The format of the file consists of:

• a report header line, extracted and mapped to the PIF header
and filename.

• a repeating set consisting of:

o report header lines, which detail hierarchy configuration

information. This set of lines maps to the header in the
output PIF.

o Report detail lines, which detail the configuration data.
Each line is mapped to a data row in the output PIF.

2.2.1 PIF Naming

The naming of the PIF file is controlled by 2 configuration entries, one

detailing the elements extracted from the raw file and the other

detailing the block information from the PIF header to be included in
the PIF filename.

The PIF filename typically contains hierarchy information and the date

and time the MML command was executed to ensure uniqueness.

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 15 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

2.2.2 Rule Configuration

This section details the non-standard entries for the NOKIA_MML rule.
• OUTPUT_FILENAME_START: An optional string to prepend to the

PIF filename

OUTPUT_FILENAME_START => 'ZFWO',

• BLOCK_NAME: The name of the block to use in the PIF

BLOCK_NAME => 'ZFWO_BLOCK',

• FILE_HEADER_DESC: This is an array of hash elements each of

that describes an expected file header line in the input. Each
entry consists of a LINE_DESC, a RE to match the line on, and

FIELDS that is an array of counter names to assign the extracted
values to.

FILE_HEADER_DESC =>

 [

 {

 LINE_DESC =>

 'DX\s+\d+\s+([\d\-]+)\s+([\d\-]+)\s+([\d:]+)',

 FIELDS => [qw (FILE_BSC MML_DATE MML_TIME)],

 },

],

• FILE_HEADER_INFO_FOR_PIF_FILENAME: An array containing
the names of the counters extracted in FILE_HEADER_DESC that

are be to used in the PIF filename.

FILE_HEADER_INFO_FOR_PIF_FILENAME =>

 [qw (FILE_BSC MML_DATE MML_TIME)]

• BLOCK_INFO_FOR_PIF_FILENAME: Similar to above this

describes the counters, extracted from the report headers that is
to be used in the PIF filename.

BLOCK_INFO_FOR_PIF_FILENAME => [qw (NSEI BSCU PCU)],

• FILE_HEADER_INFO_FOR_PIF_HEADER: This array contains the
list of counters, extracted in the FILE_HEADER_DESC that are to

be put in the PIF header.

FILE_HEADER_INFO_FOR_PIF_HEADER =>

 [qw (FILE_BSC MML_DATE MML_TIME)]

• BLOCK_INFO_FOR_PIF_HEADER: The names of the counters,
extracted from the report block header to be written to the PIF

header.

BLOCK_INFO_FOR_PIF_HEADER => [

 qw (NSVCI NSEI BSCU PCU NSVC_NAME)

 qw (NSVC_OP_STATE DLCI DLCI_OP_STATE CIR BEARER CHANNEL)

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 16 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

],

• BLOCK_DESCRIPTION: This hash describes the core processing
of the report details lines in the MML input file.

It contains a number of sub-elements described below:

o BEGIN_DESCRIPTION: A scalar RE, describing the RE to match which

marks the start of a report block.

BEGIN_DESCRIPTION => 'NSEI\-\d+',

o LINE_DESC: An array of hash elements, each of which describes a

report line to be matched during processing. Any lines that are not

matched by one of the RE's in this list are ignored. With each

LINE_DESC element a number of configuration fields are used:

o LINE_DESC: A RE to use to match the line. Once the RE is true for a

line the other line configuration is used to control what happens to the

line. These options are detailed below. Fields can be extracted from

the matched RE either by bracketing them as normal in LINE_DESC, or

by specifying the LINE_SEPARATOR (see below).

LINE_DESC => '^NSEI-(\d+)\s+BCSU-(\d+)\s+PCU-(\d+)’

o LINE_SEPARATOR:The string used to split the fields in the matched

line.

LINE_SEPARATOR => '\s+',

o FIELDS: The names of the counters that are extracted from the

matched line. In the case ZFWO files mutiple name-value pairs exist

on a single report line and so one report line can map to multiple rows

in the PIF.

FIELDS => [qw(NSEI BSCU PCU)],

o LINE_TYPE: This defines the type of report line which has been

matched, which can be either HEADER, in which case it will be mapped

into the PIF header, or DATA in which case the value is mapped into

the next row written.

LINE_TYPE => 'DATA’

o WRITE_LINE: (Only applies to LINE_TYPE 'DATA') A boolean used to

define whether the matched line is to be written out as a line in the

PIF. If not, the counter value will be stored to be used in the next

rows written to the PIF.

WRITE_LINE => 'TRUE',

Given the report extract below:

NSEI-02750

 PAPU-00

 LAC-00252

 RAC-002

 CI-23382 BVCI-10005 STATE-WO

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 17 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

 CI-25152 BVCI-10018 STATE-WO

 CI-07202 BVCI-10002 STATE-WO

The NSEI, LAC, RAC are not written directly to the PIF but are

used as counter values in the real data rows, which start with
the CI marker.

A line description to match the main report details line above is:
 {

 LINE_DESC => '^\s+CI-(\d+)\s+BVCI-(\d+)\s+STATE-(\w+)',

 FIELDS => [qw (CI BVCI STATE)],

 LINE_TYPE => 'DATA',

 WRITE_LINE => '1',

 },

• NEW_COUNTERS: This is an array containing descriptions of new
counters to be derived from the counters extracted from the

input report. Each array element contains a hash with the
following elements:

o COUNTER: The name of the counter to be transformed

COUNTER => 'MML_ID',

o NEW_COUNTER: The name of the new counter to insert.

NEW_COUNTER => 'BSNAME',

o COUNTER_DESC: A RE describing the fields to be extracted from the

original counter value. The values to be extracted are bracketed ().

COUNTER_DESC => ‘(\d{4})(\d{2})(\d{2})(\d{1})',

o NEW_COUNTER_DESC: A scalar to describe the new format of the

counter, using the extracted values above to recreate the counter. The

format is the same as the normal format used in REs to match text.

NEW_COUNTER_DESC => '$1-$2-$3/$4',

• CONFIGURATION_DETAILS: Similar to NOKIA_ASCII this
consists of the configuration required for the insertion of the

hierarchy data into each row of the pif. This hash consists of a

series of hash entries, each of which defines a hierarchy file and
key mapping.

The fields in each entry are:

o DIR: The name of the path that is pointing to the hierarchy file.

DIR => '../hierarchy/',

o FILENAME: An array of regular expressions of the hierarchy file name.

The hierarchy information is stored in those files.

FILENAME => ['^hierarchy.*\.dat$',],

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 18 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

o FIELDS: An array describing the list of fields contained on each row

of the file.

FIELDS => [qw(BSCID BTS_ID BSCNAME BTSNAME BSNAME

 LACID CELLID DEFTCH DEFCCH MSCNAME)],

o KEYS: An array describing the keys used to map between the raw

data and the hierarchy data.

KEYS => ['BSNAME'],

o FIELDS_TO_INSERT: The fields from the hierarchy data to insert into

the PIF when the key is matched.

FIELDS_TO_INSERT => [qw(BTSNAME BSCNAME)],

3. Post Parser Rules and Configuration

3.1 CNAME_MANIP

The CNAME_MANIP is used for counter manipulation. Part of the Nokia

ASCII requirements is that counter names must be prepended with
certain values.

This rule will prepend either a default or custom string, based on the

current counter name, to rename the counter in the output PIF.

3.1.1 Rule Configuration

The non-standard configuration entries associated with this rule are:
• DEFAULT_PREPEND_STR: A scalar describing the default string

to be used to prepend all strings with.
'DEFAULT_PREPEND_STR' => "BSC_",

• CUSTOM_PREPEND_STR: A hash mapping a counter name to an

value to prepend it with.
'CUSTOM_PREPEND_STR' => {

 'PERIOD_START_TIME' => 'PP_',

 'NOPERIOD_' => 'QS_',

 'PERIOD_STOP_TIME' => 'PS_',

}

NOTE: Either DEFAULT_PREPEND_STR or CUSTOM_PREPEND_STR
must be configured. If both are, DEFAULT_PREPEND_STR takes

precedence and all counters will be prepended with that value.

3.1.2 Sample Usage

Given the following input PIF:
Parser Intermediate File

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 19 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

##START|HEADER

Network_FileType|BSCID|NODEID|STARTTIME|OMTYPE|DURATION|NETWORK_TYPE|STA

RTDATE

BSC|30936|TBD0004BSC1|19:00|90|60|BSC|20040331

##END|HEADER

##START|P_NBSC_QOS

AVE_MS_BSSGP_FLOW_RATE_SUM|INT_ID|SEGMENT_ID

1|3|5

1|7|9

each counter name will be prefixed with BSC to produce the following

output:
Parser Intermediate File

##START|HEADER

Network_FileType|BSCID|NODEID|STARTTIME|OMTYPE|DURATION|NETWORK_TYPE|STA

RTDATE

BSC|30936|TBD0004BSC1|19:00|90|60|BSC|20040331

##END|HEADER

##START|P_NBSC_QOS

BSC_AVE_MS_BSSGP_FLOW_RATE_SUM|BSC_INT_ID|BSC_SEGMENT_ID

1|3|5

1|7|9

The configuration required to produce this output is below:
{

 'RULE_TYPE' => 'CNAME_MANIP',

 'RULE_DESC' =>

 'Alternative counter names P_NBSC_LOAD',

 'INPUT_FILE_DESCRIPTION'=>

 ['^P_NBSC_LOAD-#-(\d{8}-#-.*-#-\d{2}:\d{2}-#-BSC-#-\d+-#-\d+)-#-

I.pif'],

 'PRODUCE_PIF' => 'True',

 'PRODUCE_LIF' => 0,

 'DEFAULT_PREPEND_STR' => "BSC_",

},

3.2 VALIDATE_AGGREGATE

This rule is used to accumulate configured counters over a number of

records within a PIF. It is also configured with validating counters that
are used to identify from which PIF data row all other non-accumulated

counter values should be taken. In this way as well as combining a
number of rows via accumulation, the correct non-accumulated

counter values can also be inserted into the output PIF data.

3.2.1 Rule Configuration

The non-standard configuration entries for this rule are:
• COUNTERS_TO_ACCUMULATE: An array list of counters to be

accumulated over all records.
COUNTERS_TO_ACCUMULATE => ['LOC_AREAS_IN_USE'],

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 20 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

• COUNTERS_TO_VALIDATE_ON: The names of the counters to

use within each record to check for nulls, while looking for the
valid record.

COUNTERS_TO_VALIDATE_ON => ['ROAM_DB_OP'],

• VALID_NULL_VALUES: An array describing the values that are to

be interpreted as null values within each row.
'VALID_NULL_VALUES' => [''],

In this case the counters above would be considered nulls when they

are equal to ''.
• COUNTERS_TO_SORT_ON: If specified the counters in this array

will be used to sort the records and a new record will be created
in the output pif for each unique key.

COUNTERS_TO_SORT_ON => [‘CELLID’]

NOTE:
1. All counters must be non null for a record to be considered valid.

2. The accumulate counters are accumulated over all matching null and non null

records.

3. If no record is found with all COUNTERS_TO_VALIDATE_ON with non null values,
a warning will be logged. The values in first record read in will be used as the

output counters.

3.2.2 Sample Usage

Given the following PIF:
Parser Intermediate File

##START|HEADER

Network_FileType|BSCID|NODEID|STARTTIME|OMTYPE|DURATION|NETWORK_TYPE

BSC|30936|TBD0004BSC1|19:00|90|60|BSC

##END|HEADER

##START|CELLDATA

CELLID|ROAM_DB_OP|LOC_AREAS_IN_USE

333333||10

333333|45|20

333333||80

222222||800

222222|50|200

The following output is produced:
##START|HEADER

Network_FileType|BSCID|NODEID|STARTTIME|OMTYPE|DURATION|NETWORK_TYPE

BSC|30936|TBD0004BSC1|19:00|90|60|BSC

##END|HEADER

##START|CELL1

CELLID|ROAM_DB_OP|LOC_AREAS_IN_USE

333333|45|100

222222|50|1000

Vallent, an IBM Company Nokia ASCII Gateway User Guide

 Uncontrolled when printed, controlled version held electronically Page 21 of 21

 © Copyright International Business Machines Corporation, 2008. All rights reserved.

Commercial-in-Confidence

The counter LOC_AREAS_IN_USE is accumulated for each CELLID, and

the value of ROAM_DB_OP considered valid, in this case any non ‘’
value, is output in the accumulated row.

The following rule configuration would achieve the above
{

 'RULE_TYPE' => 'VALIDATE_AGGREGATE',

 'RULE_DESC' => 'Validate MSC files',

 'INPUT_FILE_DESCRIPTION' => ['^P_MSC_VLR-#-(\d{8}-#-.*)I.pif'],

 'OUTPUT_BLOCK_NAME' => 'CELL1',

 'PRODUCE_LIF' => 'TRUE',

 'PRODUCE_PIF' => ‘TRUE’,

 'COUNTERS_TO_VALIDATE_ON' => ['ROAM_DB_OP'],

 'VALID_NULL_VALUES' => [''],

 'COUNTERS_TO_ACCUMULATE' => ['LOC_AREAS_IN_USE']

 ‘COUNTERS_TO_SORT_ON’ => [‘CELLID’]

},

NOTE: Using the PERLIZE rule, now included in the Gateway

Framework, will be able to fulfil the requirement of DLCI data
normalisation (for certain TechPacks).

4. Tech Pack Support

Gateway configurations currently available for the following Tech

Packs:
• Nokia BSS S11.5

5. Hierarchy Information

Hierarchy information is produce by customer or vendor using a set of
extraction tools. The extraction tools will query the NetAct database to

extract the necessary config data. An example of the extraction tool is
provided with this vendor gateway.

