
Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 1 of 32

 Copyright IBM Corporation 2007

Alcatel NSS Gateway

User Guide

Gateway Release: 3.3.1

Date: 26 October 2007

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 2 of 32

 Copyright IBM Corporation 2007

Contents

CONTENTS __ 2

REFERENCES___ 4

GLOSSARY __ 4

PREFACE__ 5

ABOUT THIS GUIDE__5

CONVENTIONS ___5

1. OVERVIEW ___ 6

1.1 THE GATEWAY FRAMEWORK __6

1.2 ALCATEL NSS GATEWAY OVERVIEW___________________________________6

1.2.1 Network Details __6

1.2.2 Data Version Support __7

1.2.3 Data/File Formats ___7

1.2.4 File Naming Convention _____________________________________10

1.2.5 Architectural extensions _____________________________________11

1.2.6 Log Messages ___11

2. ENGINE RULES AND CONFIGURATION_______________________ 11

2.1 ALCATEL_RCP___11

2.2 ALCATEL_OCB __12

2.3 ALCATEL_LM__12

2.4 ALCATEL ENGINE RULE CONFIGURATIONS ______________________________12

2.4.1 Common Rule Entries _______________________________________12

2.4.2 Alcatel RCP Rule Configuration ________________________________13

2.4.3 Alcatel OCB Rule Configuration________________________________16

2.4.4 Alcatel LM Rule Configuration_________________________________19

3. POST PARSER RULES AND CONFIGURATION __________________ 25

3.1 HEADER_2_RECORD_TRANSFER ________________________________25

3.1.1 Rule Configuration ___25

3.1.2 Sample Usage___26

3.2 TRANSPOSE __27

3.2.1 Rule Configuration ___27

3.2.2 Sample Usage___28

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 3 of 32

 Copyright IBM Corporation 2007

3.3 ROTATE ___29

3.3.1 Rule Configuration ___29

3.3.2 Sample Usage___29

4. TECH PACK SUPPORT ____________________________________ 32

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 4 of 32

 Copyright IBM Corporation 2007

References

[Gateway Framework User Guide]

Glossary

PIF Parser Intermediate File

LIF Loader Input File

HLR Home Location Register

VLR Visitor Location Register

SSB Service Switching Point

RCP Routing Core Platform

MMC Man-Machine-Communication

SCCP Signalling Connection Control Part

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 5 of 32

 Copyright IBM Corporation 2007

Preface

About this Guide

This guide details the vendor specific information on the Gateway release for Alcatel

NSS. It contains the following information:

� Chapter 1. Overview. This chapter gives a brief description of the vendor gateway

and the raw data format it parses.

� Chapter 2: Engine Rules and Configuration. This chapter details the vendor

specific rules for parsing the raw data and their configuration.

� Chapter 3: Post Parser Rules and Configuration. This chapter describes any

vendor specific Post Parser rules and their configuration.

� Chapter 4: Tech Pack Support. This chapter describes any standard support for

Tech Packs included with the Gateway.

� Chapter 5: Installation specific information. This chapter contains the customer

installation specific information.

Conventions

The following conventions are used in this guide:
fixed width Highlights a block of example code, a configuration entry, or a

command line instruction

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 6 of 32

 Copyright IBM Corporation 2007

1. Overview

1.1 The Gateway Framework

The Alcatel NSS Gateway uses the Gateway Framework as a container for the

execution of its transfer, engine and post parser stages. The Gateway Framework

and the Alcatel NSS Gateway are decoupled into two separate installations. The

Gateway Framework consists of a library of perl modules that provide functionality

such as:

- a container for the execution of the Vendor Engine and Post Parser rules for of

data transformation

- Intermediate (PIF) and output data (LIF) storage and management

- logging utilities

- cleanup and crash recovery

- statistics gathering

The Alcatel NSS Gateway plugs into the Gateway Framework and extends this

functionality to provide the Gateway functionality that processes the vendor data.

More information on the standard Gateway configuration is contained in the

[Gateway Framework User Guide].

Only vendor specific configuration details will be described in this document.

1.2 Alcatel NSS Gateway Overview

This section contains an overview of the Alcatel NSS Gateway and the network

components, whose data the Gateway processes.

1.2.1 Network Details

The Alcatel NSS Gateway is design to transfer, parse, and further process data from

Alcatel NSS components, for loading in the Tivoli performance management systems.

The specific components of interest are the HLR/RCP, SSB/OCB and LM contained in

the Alcatel NSS system.

This Alcatel NSS Gateway is specific to the French switch of the Alcatel NSS

components.

1.2.1.1 HLR/RCP

The Gateway processes performance data from the Alcatel 900 and 1800 NSS format

for the HLR Routing Core Platform (RCP) R5, R6 and R8 component.

1.2.1.2 OCB/SSP

The Alcatel OCB Service Switching Point (SSP) series of switches are used for PSTN

and transit application and they have given the name S12 for their switches, which

are being using in wireless network mainly GSM. The Alcatel NSS Gateway processes

performance data from the Alcatel OCB v24.

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 7 of 32

 Copyright IBM Corporation 2007

1.2.1.3 LM

The Alcatel NSS Gateway processes performance data from the LM switch for version

7 and version 9.

1.2.2 Data Version Support

This gateway supports data from the following Alcatel NSS switches.

• Alcatel NSS HLR/RCP R5, R6 and R8

• Alcatel NSS OCB/SSP R24

• Alcatel NSS LM R7 and R9, Flexible ADL Measurement

1.2.3 Data/File Formats

All data from HLR/RCP, SSP/OCB and LM are in binary format. Their respective

layouts are described here.

1.2.3.1 Data Layout – RCP

The binary data contained in the RCP binary files is organized into blocks of data.

Each block of data consists of a header record and multiple data records. The header

record is described in table 1.

Counter name Size Description

Year 1 byte integer Date year; i.e. 04

Month 1 byte integer Date month; i.e. 12

Date 1 byte integer Date day of month; i.e. 29

Hour 1 byte integer Date hour; i.e. 10

Minute 1 byte integer Date minutes; i.e. 15

Second 1 byte integer Date seconds; i.e. 00

Hd_disp 1 byte integer

Hd_noofticket 1 byte integer Header number of ticket

Hd_ticketno 1 byte integer Header ticket number

Table 1 – RCP Header Record fields description

RCP data records are either 10 or 12 bytes, depending on the size of the rank

counter. This is determined by the value of the counter type integer (3rd byte). RCP

records are described in table 2.

Counter name Size Description

Observation

Record family ID

2 byte

unsigned

integer.

ID that determines the family group, the record

belongs to. Used to generate the counter name.

Counter type 1 byte Determines rank ID size. 1,2 is a 2 byte rank. 3,4

is a 4 byte rank.

Rank ID within

family

2 or 4 byte

hex string

depending

on counter

type.

Counter value 4 byte big

endian

integer

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 8 of 32

 Copyright IBM Corporation 2007

Counter validation

value

1 byte char

Table 2 – RCP Data Record field description

1.2.3.2 Data Layout – OCB

Each OCB file is composed of a series of block structures. Each block is identified by

a block header entry, as described in table 3. The block header is follow by a series

of data records, each starting with a record header. The header record is described in

table 4.

Counter name Size Description

Block length Two byte big

endian integer

 Block length

Reserved Two bytes

Table 3 – OCB block header record fields description

Counter name Size Description

Record length Two byte big

endian integer

 Header record length

Reserved Two bytes

Record code 1 byte integer Header class ID

Year Two byte big

endian integer

Date year day; i.e. 0419

Month 1 byte integer Date month; i.e. 12

Hour 1 byte integer Date hour; i.e. 10

Minute 1 byte integer Date minutes; i.e. 15

Second 1 byte integer Date seconds; i.e. 00

Exchange number 1 byte integer Exchange number

Table 4 – OCB header record fields description

OCB data record byte allocation is dependent on the record class ID. Table 5 is an

example of a byte allocation for a permanent observation class C record.

Counter name Size Description

CI (in tenths of an ERLANG) Four byte big

endian integer

CD (in tenths of an ERLANG) Four byte big

endian integer

CA (in tenths of an ERLANG) Four byte big

endian integer

CT (in tenths of an ERLANG) Four byte big

endian integer

CC (in tenths of an ERLANG) Four byte big

endian integer

CV (in tenths of an ERLANG) Four byte big

endian integer

Table 5 – OCB class C record fields description

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 9 of 32

 Copyright IBM Corporation 2007

1.2.3.3 Data Layout – LM

The arrangement of data structure in LM record is illustrated as below:

Diagram 1: LM raw data layout

An LM raw file must have one or more file blocks (with fixed length) in it. Multiple

record blocks are sharing a single file block. Within a record block, there will be

always a record header with at least one data record.

Table 6 shows the field descriptions of a file block header. Note that the Block length

does not include the first 6 bytes of this file block header.

Counter name Size Description

Block number Two byte little

endian integer

Block number

Reserved Two bytes Reserve byte and Spanned flag

Last used byte Two byte little

endian integer

Block length

Table 6 – LM file block header field description

A record block always contains a record header, followed by multiple data records.

Table 7 shows the example of a record header field description that belongs to record

block type SCPHIST of file type SCCP.

Counter name Size Description

Record length Two byte little

endian integer

Header record length

LM raw file

.

.

.

File block 1

.

.

.

Record block 1

Record header

Data Record 1

Data Record 2

Data Record n

.

.

.

.

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 10 of 32

 Copyright IBM Corporation 2007

MMC number Two byte little

endian integer

Record type

Reserved 26 bytes

Year Two byte little

endian integer

Date Year; i.e. 2004

Month 1 byte little

endian integer

Date month; i.e. 12

Day 1 byte little

endian integer

Date day; i.e. 25

Hour 1 byte little

endian integer

Date hour; i.e. 10

Minute 1 byte little

endian integer

Date minutes; i.e. 15

Reserved 6 bytes

Table 7 – Sample LM record header field description (SCCP SCPHIST header)

Each different MMC number (from record header) has its own unique data record

byte allocation. It is possible to have multiple data records within a single record

block. Table 8 is an example of data record for record block type SCPHIST.

Counter name Size Description

Reserved 8 bytes

SSN One byte integer

Threshold One byte integer

Hour One byte integer

Minute One byte integer

Second One byte integer

Tenth_of_second One byte integer

Table 8 – SCPHIST data record byte allocation

1.2.4 File Naming Convention

1.2.4.1 HLR/RCP and OCB/SSP File Naming

For HLR/RCP and OCB/SSP Alcatel NSS raw files must follow the naming convention

as below:

<OMC>.<NODE>

where,

<OMC> : 3 digit hexadecimal followed by the OMC.

<NODE> : this is the switch name who’s generated the raw file.

1.2.4.2 LM File Naming

For LM Alcatel NSS raw files must follow the naming convention as below:

<MSCID>.<TYPE>

where,

<MSCID> : the MSC ID and name.

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 11 of 32

 Copyright IBM Corporation 2007

<TYPE> : this the type (file type) of the raw file.

1.2.5 Architectural extensions

There are no specific architectural extensions to the Alcatel NSS Gateway, such as

XML parsing etc.

1.2.6 Log Messages

The log messages will be recorded in the log file as configured inside the properties.

Basically there are 3 general types of log messages.

a. Informative messages

� General informative description about parser current state.

Example: the information about current block read

(byteReadCount, blockSize, recordLength)

o Warning messages

� Informing the abnormalities during parsing. The warning

messages are not critical and can safely be ignore at point of

existence. The messages mostly used during debugging process

if there are problem arises during parsing activities.

Example: Warning: -get_pif_key - record_type missing from

binary data.

(In this case, the record_type [MMC number] is missing

when the gateway trying to use it as a PIF key record)

o Error messages

� Pointing out the problem during parsing. This is critical

messages as it describes the reason of why the parser failed to

parse the data. Most of the time the parser will the stop the

processing and skip the raw data.

Example: Unexpected end of file or error reading file.

2. Engine Rules and Configuration

This section describes the Alcatel NSS engine rules and rule configurations.

2.1 ALCATEL_RCP

The binary parsing of the Alcatel RCP data is handled by the ALCATEL_RCP engine

rule. The rule is designed to parse through each individual RCP performance data file

and produce unique PIF files for each block of data.

The ALCATEL_RCP engine is designed to be a flexible tool, which can be used to map

every byte in the binary RCP file. The header and record byte mappings for each

block are contained in the configuration file entries HEADER_MAPPING and

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 12 of 32

 Copyright IBM Corporation 2007

RECORD_MAPPING respectively. These two record mapping configurations are

sufficient to map and parse the entire file. If a change in the record design occurs,

the new mapping can be achieved by updating the configuration accordingly.

2.2 ALCATEL_OCB

This is the engine rule to parse Alcatel NSS OCB data. This is a one-to-many

relationship where a single raw OCB file will generate many PIF files. PIF files will be

generated whenever an OCB ‘class_id’ matches the configured

OBSERVATION_RECORDS for the rule.

Note that the header information shall be shared among these records, if there is

only one header available for multiple records (it can be multiple sections in the raw

file, where each section has its own header information). For OCB, each record has

its own vital information in the record header.

2.3 ALCATEL_LM

ALCATEL_LM parses LM data. Each input file will generate multiple PIF files

depending on the record type it contains. Similar to ALCATEL_OCB, a PIF file will be

generated whenever the LM ‘class_id’ matches one of the entries in

OBSERVATION_RECORDS.

Some of the input files contain records that do not have a record header, for

example MNEM record type. Only the first record block has a header. All subsequent

record blocks will share the header information in the PIF output files.

2.4 Alcatel Engine Rule Configurations

The following details the Alcatel engine RCP, OCB and LM rule configurations. The

configurations are divided up into entries common to all rules and individual rule

specific entries.

Entries such as HEADER_MAPPINGS and RECORD_MAPPINGS are common to all

rules, but the configured value structures are different, and so these entries are

documented in both the Alcatel RCP, Alcatel OCB and Alcatel LM sections.

2.4.1 Common Rule Entries

The following details proprietary rule entries common to all ALCATEL_RCP,

ALCATEL_OCB and ALCATEL_LM rules.

• HEADER_FIELDS_FOR_PIF_NAME: This is a mandatory entry with an array value.

The values for the array of header counter names that are contained in the array

shall be included in the output PIF filename. The values appear in the filename in

accordance with the sequence of counter names configured.

HEADER_FIELDS_FOR_PIF_NAME =>

 [qw(OMC NODE hd_ticketno StartDate StartTime)],

• HEADER_FIELDS_FOR_UNIQUE_PIF: This is a mandatory entry containing an

array value. The header counter values for these counter name entries are used

to create a key for the data records. This key serves the purpose of identifying

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 13 of 32

 Copyright IBM Corporation 2007

uniqueness of each of the PIF records. If the key is always unique, then all raw

data shall be processed and outputted. If it is duplicated, only the final record in

the duplication will be retained.

HEADER_FIELDS_FOR_UNIQUE_PIF =>

 [qw(OMC NODE hd_ticketno StartDate StartTime)],

• PIF_OBJ_ID: A mandatory entry containing an array value. The counter names

specified here are used to configure what counter names in the current data

record contain the observation record family object ID. This object ID is then

used to search the configured group record ID’s configured in the

OBSERVATION_RECORDS entry to see if a match is found. IF a match is found

the group name is used in the data output. If not the record is discarded.

(RCP) PIF_OBJ_ID => ['COUNTER_FID']

(OCB) PIF_OBJ_ID => ['class_id'],

(LM) PIF_OBJ_ID => ['class_id'],

• PIF_RECORD_ID: A mandatory entry containing an array value. The counter

names specified here are used to configure what counter values in the current

data record are used as the current PIF record key.

(RCP) PIF_RECORD_ID => ['rank']

(OCB) PIF_RECORD_ID =>

['class_id', 'rec_num', 'routeid', 'rank', 'intrecno', 'index'],

(LM) PIF_RECORD_ID => ['class_id'],

• ENABLE_FILENAME_TIMESTAMP: An optional entry with a ‘True’ or ‘False/0’ value

(True – to turn it on and False/0 to turn it off). This entry allows the pif filename

to be appended with a binary file processing timestamp. Enabling this entry will

ensure the uniqueness of the pif filename during pif creation.

2.4.2 Alcatel RCP Rule Configuration

The section details rule entries specific to the Alcatel RCP rule.

• OBSERVATION_RECORDS: A mandatory entry containing a hash value. Each hash

key entry is the name of a family of objects ID’s. Each object family name key

points to another hash, which contains the ID’s, either as discrete numbers, or

regular expression number ranges. If the record COUNTER_FID (record object ID)

in each data record does not match any of the values specified in the

OBSERVATION_RECORDS COUNTER_GROUPS, it shall be ignored.

OBSERVATION_RECORDS => {

 VLR_SS => {

 COUNTER_GROUPS => ['2300[1,2]'],

 },

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 14 of 32

 Copyright IBM Corporation 2007

 VLR_E212 => {

 COUNTER_GROUPS => ['20454'],

 },

 VLR_E164 => {

 COUNTER_GROUPS => ['20606'],

 },

 VLR_GLOBAL => {

 COUNTER_GROUPS => ['2030[1-8]',

 '20402',

 '2040[4-9]',

 },

}

• HEADER_MAPPING: This is a mandatory entry containing an array of hashes. The

array will contains a sequence of entries, each of which represents a byte (or

bytes) mapping for a field of the header record. Each hash in the array shall

contain a mandatory key called COUNTER_TYPE. The value of COUNTER_TYPE

decides the byte(s) description and byte(s) allocation. The codes used to

describe the byte data are those defined in the Perl template for the pack/unpack

function. These codes determine how the byte(s) are translated, or unpacked.

For example, “C” represents an unsigned character, whereas “N” represents a 4

byte big-endian integer. There are two optional keys in the hash entry. They are

ATTR and COUNTER_NAME.

- ATTR is used to describe the function of the data, and this is currently only

used to describe if the byte is part of a date definition. The ALCATEL_RCP

collects all “Date” bytes and further processes into a suitable date format.

- If the COUNTER_NAME is included in the hash entry for each byte(s)

allocation, then the entity will be outputted as a full counter name/value in

the PIF record. The absence of the COUNTER_NAME suggests that the byte(s)

entity will be further processed elsewhere, or else is of no interest and is

ignored.

 HEADER_MAPPING => [

 { COUNTER_TYPE => 'C', ATTR => "Date" }, # year

 { COUNTER_TYPE => 'C', ATTR => "Date" }, # month

 { COUNTER_TYPE => 'C', ATTR => "Date" }, # day

 { COUNTER_TYPE => 'C', ATTR => "Date" }, # hour

 { COUNTER_TYPE => 'C', ATTR => "Date" }, # min

 { COUNTER_TYPE => 'C', ATTR => "Date" }, # sec

 { COUNTER_TYPE => 'C', COUNTER_NAME => 'hd_disp' },

 { COUNTER_TYPE => 'C', COUNTER_NAME => 'hd_noofticket'},

 { COUNTER_TYPE => 'C', COUNTER_NAME => 'hd_ticketno' },

],

• RECORD_MAPPING: This is a mandatory entry, containing an array of hashes,

and works in the same way as header mapping for records in terms of a

sequence of byte(s) allocation using COUNTER_TYPE, and optionally

COUNTER_NAME to describe a complete counter name/value pair.

RECORD_MAPPING includes an extra feature for COUNTER_TYPE, as it allows for

dynamic allocation of bytes for a single entity in the RECORD_MAPPING array

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 15 of 32

 Copyright IBM Corporation 2007

sequence, based on counter values. This is done by configuring the

COUNTER_TYPE value as a hash entry with the following entries:

- Default: This hash entry describes the default mapping of byte(s) for the

current hash entry in terms of counter type mapping and counter name,

and is used for initial sizing of the record when parsing the binary data.

- Index: The value of Index contains the parsed record array subscript,

whose value contains the integer that will determine the current entities

dynamic counter type and byte allocation. This integer must exist in the

COUNTER_TYPE hash for a successful mapping.

- 1,2,3,4 etc.: These hash entries describe the mapping of byte(s) for the

current RECORD_MAPPING hash entry, which the counter value retrieved

by Index, will output, in terms of counter type mapping and counter

name, and is used for the final sizing of the record when parsing the

binary data.

This dynamic mapping is designed to handle the fact that the rank counter, as

described in table 2, is either a 2 byte or a 4 byte integer, depending on the

value of the counter type record field.

RECORD_MAPPING => [

 { COUNTER_TYPE => 'S', COUNTER_NAME =>'COUNTER_FID' },

 { COUNTER_TYPE => 'C' },

 { COUNTER_TYPE => {

 Index => 1,

 Default => {COUNTER_TYPE =>'H16',COUNTER_NAME =>'rank'},

 1 => {COUNTER_TYPE =>'H16',COUNTER_NAME =>'rank'},

 2 => {COUNTER_TYPE =>'H16',COUNTER_NAME =>'rank'},

 3 => {COUNTER_TYPE =>'H32',COUNTER_NAME =>'rank'},

 4 => {COUNTER_TYPE =>'H32',COUNTER_NAME =>'rank'},

 },

 },

 { COUNTER_TYPE => 'N' },

 { COUNTER_TYPE => 'C' },

]

• HEADER_RECORD_PROCESSING: An optional entry whose value points to a

configured Perl subroutine. The purpose of this entry is to add custom processing

for a deployment, such as add a new counter. But it could be any processing on

the header record. This entry only deals with counter name/value pairs in the

current header record and is invoked for each header record encountered.

The ALCATEL_RCP default rule configuration uses the

HEADER_RECORD_PROCESSING to perform the following tasks on the header

record:

- Hard code the duration time in seconds for the measurement period.

- Insert the FILE_START_DATE counter, if not already present.

- Insert the FILE_START_TIME counter, if not already present.

HEADER_RECORD_PROCESSING => sub {

 my ($rec_ref, $op_hash_ref) = @_;

 my @time = split (/:/, $op_hash_ref->{StartTime});

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 16 of 32

 Copyright IBM Corporation 2007

 if (!exists($op_hash_ref->{FILE_START_DATE})) {

 $op_hash_ref->{FILE_START_DATE} =

 $op_hash_ref->{StartDate};

 $op_hash_ref->{FILE_START_TIME} = $time[0].":00";

 }

 $op_hash_ref->{Duration} = 60;

 return 0;

},

• DATA_RECORD_PROCESSING: An optional entry whose value points to a

configured Perl subroutine. The purpose of this entry is to add custom processing

for a deployment, such as add a new counter. But it could be any processing on

the data record. This entry only deals with counter name/value pairs in the

current data record and is invoked for each data record.

The ALCATEL_RCP default rule configuration uses the

DATA_RECORD_PROCESSING to perform the following tasks on each data record:

- Creates a new counter name by concatenating “C” and the record

FID_COUNTER field value.

- Assign the new counter name to the counter value contained in the record.

- Creates a new counter name by concatenating “VAL_C” and the record

counter, validation field value.

- Assign the new counter name to the validation counter field value contained

in the record.

DATA_RECORD_PROCESSING => sub {

 my ($rec_ref, $op_hash_ref) = @_;

 $op_hash_ref->{"C$rec_ref->[0]"} = $rec_ref->[3];

 $op_hash_ref->{"VAL_C".$rec_ref->[0]} = $rec_ref->[4];

 return 0;

},

• HEADER_DATA_TO_REMOVE: An optional entry whose value points to a

configured Perl subroutine. The purpose of this entry is to add custom processing

for a deployment such as stripping off extra header. FIELD_TERMINATOR is used

to identify the field to be stripped off.

HEADER_DATA_TO_REMOVE => [

 { FIELD_NAME => 'ERROR_CODE', FIELD_TERMINATOR => "\n", },

 { FIELD_NAME => 'SYSTEM_NAME', FIELD_TERMINATOR => "\n", },

 { FIELD_NAME => 'LENGTH', FIELD_TERMINATOR => "\n",

 RECURRING => 'True',

 BLOCK_LENGTH => 'True',

 },

],

2.4.3 Alcatel OCB Rule Configuration

The section details rule entries specific to the Alcatel OCB rule.

• OBSERVATION_RECORDS: A mandatory entry containing a hash value. This has

the same role as the ALCATEL_RCP OBSERVATION_RECORDS, but with an added

feature. Erroneous raw data block can be detected earlier by using two optional

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 17 of 32

 Copyright IBM Corporation 2007

entries, HEADER_LENGTH, and RECORD_LENGTH. When a block of raw data is

read, it should contain the length of the block. To check whether this block is

correct, the formula below should give a result of 0:

(raw_data_block_length – HEADER_LENGTH) mod RECORD_LENGTH

Related to CONSOLIDATE_FILES, an optional entry RECORD_GROUP is introduced

here. This entry notifies the engine as to how many records should be expected

for a certain record type.

OBSERVATION_RECORDS => {

 PERM_OBS_CLASS_R => { COUNTER_GROUPS => ['7'],

 HEADER_LENGTH => 25,

 RECORD_LENGTH => 16,

 },

 PERM_OBS_CLASS_T => { COUNTER_GROUPS => ['8'],

 HEADER_LENGTH => 13,

 RECORD_LENGTH => 16,

 RECORD_GROUP => 64,

 },

}

• HEADER_MAPPING: This is a mandatory entry, containing an array of hashes,

and works in the same way as header mapping in the ALCATEL_RCP rule in terms

of a sequence of byte(s) allocation using COUNTER_TYPE, and optionally

COUNTER_NAME to describe a complete counter name/value pair. ALCATEL_OCB

also includes dynamic byte allocation for the header record, based on the value of

a particular counter in the current header, which is used to index into the

HEADER_MAPPING COUNTER_TYPE hash to fetch the correct byte mapping for

the current header record. This is done by configuring the COUNTER_TYPE value

as a hash entry with the following entries:

- Default: This hash entry describes the default mapping of byte(s) for the

current hash entry in terms of counter type mapping and counter name,

and is used for initial sizing of the record when parsing the binary data.

- Index: The value of Index contains the parsed record array subscript

entry, whose value contains the integer that will determine the current

entities dynamic counter type and byte allocation. This integer must exist

in the COUNTER_TYPE hash keys for a successful mapping.

- 1,4,5,6,7 etc.: The numeric record codes contained in the current header

record are actually OCB class ID’s and are configured here as hash keys.

The corresponding hash values are arrays of hashes, reflecting the

variable nature of OCB headers. Some of these mappings will be single

entity hash mappings, where others will have multiple hash entities in the

array.

HEADER_MAPPING => [

 { COUNTER_TYPE => 'n', RECORD_LENGTH => 'True', },

 { COUNTER_TYPE => 'n' },

 { COUNTER_TYPE => 'C', COUNTER_NAME => 'record_code' },

 { COUNTER_TYPE => 'n', ATTR => 'Date' }, # year day

 { COUNTER_TYPE => 'C', ATTR => 'Date' }, # hour

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 18 of 32

 Copyright IBM Corporation 2007

 { COUNTER_TYPE => 'C', ATTR => 'Date' }, # minute

 { COUNTER_TYPE => 'C', ATTR => 'Date' }, # second

 # Permanent Observation Measurement Mappings (OBS)

 { COUNTER_TYPE => {

 Default => { COUNTER_TYPE =>'C' },

 Index => 2,

 # PERM_OBS_START

 1 => [{ COUNTER_TYPE => 'C',COUNTER_NAME => 'xchg_num'},],

 # PERM_OBS_CLASS_A

 6 => [{COUNTER_TYPE => 'C',COUNTER_NAME => 'xchg_num' },

 { COUNTER_TYPE => 'n' },

 { COUNTER_TYPE => 'n' },

 { COUNTER_TYPE => 'n' },

],

 # PERM_OBS_CLASS_C

 4 => [{ COUNTER_TYPE => 'C',COUNTER_NAME => 'xchg_num'},],

� RECORD_MAPPING: This is a mandatory array entry. Similar to ALCATEL_RCP

but with an extra feature. A new key named COUNTER_OPERATION is

introduced. This entry will tell the engine to generate a sequence number for

each record of a particular record type. However, this entry only accepts two

values, i.e. ‘+’ and ‘++’. When ‘+’ is used, the sequence number shall be reset

back to 1 whenever a single raw data block is processed, whereas ‘++’ is reset

after the raw file is processed.

RECORD_MAPPING=> [

 { COUNTER_TYPE =>

 {

 Default => { COUNTER_TYPE =>'C' },

 33 => [

 { COUNTER_TYPE => 'C', COUNTER_NAME => 'rank'},

 { COUNTER_TYPE => 'C' },

 { COUNTER_TYPE => 'n' },

 { COUNTER_TYPE => 'N', COUNTER_NAME => 'ine_i'},

 { COUNTER_TYPE => 'N', COUNTER_NAME => 'inr_i'},

 { COUNTER_OPERATION => '+',

 COUNTER_NAME => 'intrecno' },

],

 8 => [

 { COUNTER_TYPE => 'N', COUNTER_NAME => 'ta' },

 { COUNTER_TYPE => 'N', COUNTER_NAME => 'tt' },

 { COUNTER_TYPE => 'N', COUNTER_NAME => 'td' },

 { COUNTER_TYPE => 'N', COUNTER_NAME => 'ti' },

 { COUNTER_OPERATION => '++',

 COUNTER_NAME => 'index' },

],

 },

 },

]

� PARTIAL_FILE_DIR: This is an optional entry containing a directory entry. In

some cases the records for a group are not within a single raw file. When this

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 19 of 32

 Copyright IBM Corporation 2007

happens, the partial PIF cannot be processed to LIF yet. It is being stored in the

directory path specified by this entry.

PARTIAL_FILE_DIR => ‘../../partial’,

� CONSOLIDATE_FILES: This is an optional scalar entry. As mentioned above,

when a partial PIF is generated, and this entry is set to ‘true’, the engine shall go

to match the other portion of PIF in PARTIAL_FILE_DIR. If there are matching

partial PIF, they will be joined together and consolidates counters if necessary.

CONSOLIDATE_FILES => ‘True’

� INDEX_HOLDER: This is an optional array entry. When COSOLIDATE_FILES is

set to ‘true’, there is an option to consolidate any sequence number within the

PIFs. This array holds all possible counter names contain sequence number.

INDEX_HOLDER => [qw(rank rec_num intrecno index)]

� CHARACTER_MAP: This is an optional entry. This is used to map the character in

the raw file to a specific character map, i.e. from EBCDIC to ASCII. It points to

an array of characters.

CHARACTER_MAP => char_map()

2.4.4 Alcatel LM Rule Configuration

The section details rule entries specific to the Alcatel LM rule.

Mandatory Entries

� OBSERVATION_RECORDS: A mandatory entry containing a hash value. This

entry is similar to Alcatel RCP. The extra configuration for Alcatel LM is the

UNIQUE_HEADER_KEY. Some of the record types have different sets of

header/record structure, depending on the indicator in the raw data itself. This

has to be determined at runtime. This optional entry (UNIQUE_HEADER_KEY)

tells the engine where to find the value of the indicator. The indicator tells which

header/record structure to take from the configuration. Below shows the

example of the MTP record type. Note that the counter ‘repetitions’ is defined in

the HEADER_MAPPING for the MTP record type.

 OBSERVATION_RECORDS => {

 N7T1 => {

 COUNTER_GROUPS => ['1565'],

 UNIQUE_HEADER_KEY => 'repetitions',

 },

 N7T2 => {

 COUNTER_GROUPS => ['1566'],

 UNIQUE_HEADER_KEY => 'repetitions',

 },

 N7T3 => {

 COUNTER_GROUPS => ['1567'],

 UNIQUE_HEADER_KEY => 'repetitions',

 },

 N7T4a => {

 COUNTER_GROUPS => ['1568'],

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 20 of 32

 Copyright IBM Corporation 2007

 UNIQUE_HEADER_KEY => 'repetitions',

 },

 N7T4b => {

 COUNTER_GROUPS => ['1589'],

 },

 N7T5 => {

 COUNTER_GROUPS => ['1569'],

 },

 N7T6 => {

 COUNTER_GROUPS => ['1570'],

 },

 },

� HEADER_MAPPING: This is a mandatory entry containing an array of hashes. The

usage is exactly the same as for the Alcatel OCB rule. Below shows the example

mapping for the CPU record type:

 HEADER_MAPPING => [

 { COUNTER_TYPE => 'v', RECORD_LENGTH => 'True' }, # rec len

 { COUNTER_TYPE => 'v', COUNTER_NAME => 'record_type' },

 { COUNTER_TYPE => {

 Index => 1,

 Default => {COUNTER_TYPE => 'C'},

 1560 => [# CPU

 { COUNTER_TYPE => 'a16', }, # unused

 { COUNTER_TYPE => 'v', ATTR => "Date",}, #year

 { COUNTER_TYPE => 'C', ATTR => "Date" }, # month

 { COUNTER_TYPE => 'C', ATTR => "Date" }, # day

 { COUNTER_TYPE => 'C', ATTR => "Date" }, # hour

 { COUNTER_TYPE => 'C', ATTR => "Date" }, # min

 { COUNTER_TYPE => 'C', COUNTER_NAME => "end_hour" },

 { COUNTER_TYPE => 'C', COUNTER_NAME => "end_min" },

 { COUNTER_TYPE => 'a6', }, # unused

],

 },

 },

],

Below shows the example mapping for the TRUNKGROUP record type for Flexible

ADL. Gateway will do counter name mapping from counter id given in the data

file.

 7403 => [# TRUNKGROUP

 { COUNTER_TYPE => 'a12', }, # unused

 { COUNTER_TYPE => 'v', ATTR => "Date",}, #year

 { COUNTER_TYPE => 'C', ATTR => "Date" }, # month

 { COUNTER_TYPE => 'C', ATTR => "Date" }, # day

 { COUNTER_TYPE => 'a4', }, # unused

 { COUNTER_TYPE => 'C', ATTR => "Date" }, # hour

 { COUNTER_TYPE => 'C', ATTR => "Date" }, # min

 { COUNTER_TYPE => 'C', COUNTER_NAME => "end_hour" },

 { COUNTER_TYPE => 'C', COUNTER_NAME => "end_min" },

 { COUNTER_TYPE => 'a2', }, # unused

 { COUNTER_TYPE => 'C', COUNTER_NAME => 'ind' },

 { COUNTER_TYPE => 'a5' }, # unused

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 21 of 32

 Copyright IBM Corporation 2007

 { COUNTER_TYPE => 'v', NAME_REF => 'COUNTERNAME1' },

 { COUNTER_TYPE => 'v', NAME_REF => 'COUNTERNAME2' },

 { COUNTER_TYPE => 'v', NAME_REF => 'COUNTERNAME3' },

 { COUNTER_TYPE => 'v', NAME_REF => 'COUNTERNAME4' },

 { COUNTER_TYPE => 'v', NAME_REF => 'COUNTERNAME5' },

 { COUNTER_TYPE => 'v', NAME_REF => 'COUNTERNAME6' },

 { COUNTER_TYPE => 'v', NAME_REF => 'COUNTERNAME7' },

 { COUNTER_TYPE => 'v', NAME_REF => 'COUNTERNAME8' },

 { COUNTER_TYPE => 'v', NAME_REF => 'COUNTERNAME9' },

 { COUNTER_TYPE => 'v', NAME_REF => 'COUNTERNAME10'},

 { COUNTER_TYPE => 'a40', }, # unused

],

� RECORD_MAPPING: This is a mandatory entry containing an array of hashes.

The usage is similar to HEADER_MAPPING described above, but it is for data

record field mappings. Below shows the example mapping for the CPU record

type:

 RECORD_MAPPING => [

 { COUNTER_TYPE => {

 Default => {COUNTER_TYPE =>'C'},

 1560 => [# CPU

 { COUNTER_TYPE =>'a2', }, # unused

 { COUNTER_TYPE =>'v', COUNTER_NAME => 'CE_ID' },

 { COUNTER_TYPE =>'V', COUNTER_NAME => 'INTERRUPTS' },

 { COUNTER_TYPE =>'V', COUNTER_NAME => 'EVENTS' },

 { COUNTER_TYPE =>'V', COUNTER_NAME => 'PROC_SE' },

 { COUNTER_TYPE =>'V', COUNTER_NAME => 'IDLE' },

 { COUNTER_TYPE =>'v', COUNTER_NAME => 'CPU_LOAD' },

],

 },

 },

],

Below shows the example mapping for the TRUNKGROUP record type for Flexible

ADL. Gateway will do counter name mapping from counter id given in the data

file.

 ‘7403_IN' => [# TRUNKGROUP

 { COUNTER_TYPE =>'v', COUNTER_NAME=> 'OBJECTINDEX' },

 { COUNTER_TYPE => 'a2' },

 { COUNTER_TYPE =>'N', NAME_REF => 'COUNTERVALUE1' },

 { COUNTER_TYPE =>'N', NAME_REF => 'COUNTERVALUE2' },

 { COUNTER_TYPE =>'N', NAME_REF => 'COUNTERVALUE3' },

 { COUNTER_TYPE =>'N', NAME_REF => 'COUNTERVALUE4' },

 { COUNTER_TYPE =>'N', NAME_REF => 'COUNTERVALUE5' },

 { COUNTER_TYPE =>'N', NAME_REF => 'COUNTERVALUE6' },

 { COUNTER_TYPE =>'N', NAME_REF => 'COUNTERVALUE7' },

 { COUNTER_TYPE =>'N', NAME_REF => 'COUNTERVALUE8' },

 { COUNTER_TYPE =>'N', NAME_REF => 'COUNTERVALUE9' },

 { COUNTER_TYPE =>'N', NAME_REF => 'COUNTERVALUE10' },

],

� FILE_BLOCK_SIZE: this is a scalar entry. It tells the engine the size of a single

file block (refer Diagram 1) in bytes. The vendor engine will read the amount of

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 22 of 32

 Copyright IBM Corporation 2007

bytes from the raw file specified by this entry for each iteration, until the whole

raw file is processed.

 FILE_BLOCK_SIZE => 2048,

Optional Entries

� SKIP_UNKNOWN_RECORD: This is a scalar entry. It is an entry that decide

whether to skip the unknown block when the parser already reach at the end of

the record as describe in the record header. The calculation on the number of

bytes to skip is based on block data size and current record length. The trigger

for the skipping is based on errors when parsing the next record block. Without

this entry or setting it to false, the parser will assume that the raw data file is

corrupted.

 SKIP_UNKNOWN_RECORD => ‘TRUE’,

� RECORD_BLOCK_LENGTH_BYTE_SIZE: This is a scalar entry. In ‘overflow’ cases,

where a single 2KB file block is not sufficient to contain all data records, these

data records will overflow to the next file block. The first record block in the next

file block will not contain any record header, but only record length information

(the length of the overflowed data record). The engine needs to skip these bytes

in order to continue reading the data record. This entry tells the engine how

many bytes to skip for the length information. It is defaulted to 2 bytes if this

entry is not set.

 RECORD_BLOCK_LENGTH_BYTE_SIZE => 2,

� ADD_RUNNING_SEQUENCE: This is a scalar entry. Most of the LM data records

do not contain any unique key. This entry, if set to true, will result in a counter

name called ‘OBJECT’, with a numeric value incremented for each record, in the

output PIF data records.

 ADD_RUNNING_SEQUENCE => 'True',

� CONFIG_FILE: This is a hash entry. An external file is required when the

indicator of a dynamic header/record structure is not within the raw file. These

indicators are stored within an external file. The Alcatel LM rule provides this

facility where the data (content of external file) is read into its internal data

structures. This information will be read at the beginning of the rule execution

and updated back to the file at the end of the execution. Any new entry added

during execution shall be added to these external files. The key of this hash is

string containing the directory path and filename of the external configuration

file.

Within the hash, DELIMITER and KEY_INDEX are optional. If they do not exist,

the engine defaults the value of DELIMITER to ‘ ’ (space) and the KEY_INDEX to 0

(first index of array). Note that the DELIMITER value is a Perl regular expression.

COLUMN_NAMES is a mandatory array entry. It lists out the sequence of column

names in the external configuration file. Note that there is always a ‘key’ in this

array. The index of its position must match with KEY_INDEX (or defaults at index

0).

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 23 of 32

 Copyright IBM Corporation 2007

 CONFIG_FILE => {

 './GSconfigfile' => {

 DELIMITER => ',',

 KEY_INDEX => 0,

 COLUMN_NAMES => ['key','num_objs','is_nsta'],

 },

 './attrfile' => {

 DELIMITER => '\s+',

 KEY_INDEX => 0,

 COLUMN_NAMES => ['key','name','group'],

 },

 },

� COMMON_HEADER_COUNTERS: This is an array entry. As some of the record

header types (MNEM file type) do not have date time information, it needs to

take that information from another record header, i.e. only the very first record

header has the information. This entry tells the engine to copy these common

header counters to the remaining record headers that require it.

 COMMON_HEADER_COUNTERS => [qw(StartDate StartTime)],

� HEADER_RECORD_PROCESSING: This is the same entry as described in the

Alcatel RCP rule. The only difference for Alcatel LM is that there are three

parameters passed into this subroutine instead of the two in the Alcatel RCP rule.

The added parameter is the reference to the object parent. This gives the

subroutine access to some of the information needed from the engine code for

processing.

 HEADER_RECORD_PROCESSING => sub {

 my ($parent_ref, $rec_ref, $op_hash_ref) = @_;

 # format end time

 if (exists($op_hash_ref->{end_hour}) &&

 exists($op_hash_ref->{end_min})) {

 $op_hash_ref->{'end_time'} =

 sprintf("%02d:%02d",

 $op_hash_ref->{end_hour},

 $op_hash_ref->{end_min});

 delete $op_hash_ref->{end_hour};

 delete $op_hash_ref->{end_min};

 }

 # Handover (4684), header byte 13 to determine blocks

 if ($op_hash_ref->{class_id} eq '4684') {

 $parent_ref->{HOD_Ind} = $op_hash_ref->{indicator};

 $parent_ref->{HOD_cnt1} = $op_hash_ref->{cnt1};

 $parent_ref->{HOD_rec_count} = 0;

 }

 return 0;

 },

� DATA_RECORD_PROCESSING: This is same as described above, but it is for the

data record part. The example subroutine is as below:

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 24 of 32

 Copyright IBM Corporation 2007

 DATA_RECORD_PROCESSING => sub {

 my ($parent_ref, $rec_ref, $op_hash_ref) = @_;

 # change record block when cnt1 is hit

 if ($parent_ref->{HOD_rec_count}==$parent_ref->{HOD_cnt1}) {

 if ($parent_ref->{current_class_id} eq '4684') {

 if ($parent_ref->{HOD_Ind} == 0 ||

 $parent_ref->{HOD_Ind} == 1) {

 $parent_ref->{current_class_id} = '4684_block';

 }

 else {

 $parent_ref->{current_class_id} = '4684_notused';

 }

 }

 }

 # increase record count

 if (exists($parent_ref->{HOD_rec_count})) {

 $parent_ref->{HOD_rec_count}++;

 }

 return 0;

 },

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 25 of 32

 Copyright IBM Corporation 2007

3. Post Parser Rules and Configuration

In order to produce the LIF that matches the requirement for SSP/OCB, two vendor

specific, post parser rules are created. They are HEADER_2_RECORD_TRANSFER

and ROTATE.

3.1 HEADER_2_RECORD_TRANSFER

This rule transfers the selective values of header/record from an existing PIF to a

new PIF. Maximum value of a counter is populated into the new PIF if specify. Hard

coded value is also made available by specifying it in the rule.

3.1.1 Rule Configuration

� FILENAME_PREFIX: This is an optional scalar entry. When this is specified, it will

become the prefix of the new PIF filename.

FILENAME_PREFIX => ‘MAX’

� OUTPUT_BLOCK_NAME: This is an optional scalar entry. If this is not specified,

the block name of the existing PIF shall be used in the new PIF.

OUTPUT_BLOCK_NAME => 'PERM_OBS_CLASS_R_MAX'

� HEADER_DATA_FOR_TRANSFER: This is a mandatory array entry. This array

contains the header counter name of the existing PIF. Values of these counters

shall be copied to the new PIF’s record part.

HEADER_DATA_FOR_TRANSFER => []

� RECORD_DATA_FOR_TRANSFER: This is a mandatory array entry. This array

contains the record counter name of the existing PIF. Values of these counters

shall be copied to the new PIF’s record part.

RECORD_DATA_FOR_TRANSFER => ['rpa_i', 'rra_i', 'rec_num','NODEID']

� MAX_SEQUENCE_COUNTER: This is an optional scalar entry. This is the counter

name in the existing PIF that holds the running sequence number. When this is

specified, all other records in the existing PIF are ignored except the record with

maximum running number. This will only happens if SET_MAX_COUNTER is

specified.

MAX_SEQUENCE_COUNTER => 'rec_num'

� SET_MAX_COUNTER: This is an optional hash entry. This hash contains the new

counter names (to new PIF) and the existing counter name (from existing PIF).

If the value specify in this hash cannot be found (i.e. no such counter name in

existing PIF), it shall be treated as hard coded value.

SET_MAX_COUNTERS => { rpx => 'rpa_i',

 rrx => 'rra_i',

 NODEID => 'NODEID',

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 26 of 32

 Copyright IBM Corporation 2007

 REFER_TO => 'PERM_OBS_CLASS_R',

 },

A full sample configuration is included below:

{

 RULE_TYPE => 'HEADER_2_RECORD_TRANSFER',

 RULE_DESC => 'Get summary info for CLASS_R',

 INPUT_FILE_DESCRIPTION

 => '^(PERM_OBS_CLASS_R-#-.*-#-I)\.pif',

 PRODUCE_PIF => 'True',

 FILENAME_PREFIX => 'MAX',

 OUTPUT_BLOCK_NAME => 'PERM_OBS_CLASS_R_MAX',

 HEADER_DATA_FOR_TRANSFER => [],

 RECORD_DATA_FOR_TRANSFER =>

 ['rpa_i', 'rra_i', 'rec_num','NODEID'],

 MAX_SEQUENCE_COUNTER => 'rec_num',

 SET_MAX_COUNTERS => { rpx => 'rpa_i',

 rrx => 'rra_i',

 NODEID => 'NODEID',

 REFER_TO => 'PERM_OBS_CLASS_R',

 },

 }

3.1.2 Sample Usage

Given the following PIF:

Parser Intermediate File

##START|HEADER

OMC|record_code|StartTime|class_id|NODE|Date|StartDate|xchg_num

760OBTS0|7|22:00|7|SSP01|13722025|2004May16|1

##END|HEADER

##START|PERM_OBS_CLASS_R

NODEID|OBJ_GROUP_NAME|rpa_i|rrd_i|class_id|rra_i|rpd_i|rec_num

SSP01|PERM_OBS_CLASS_R|109|0|7|0|3304192244|1

SSP01|PERM_OBS_CLASS_R|0|0|7|3253860597|0|2

SSP01|PERM_OBS_CLASS_R|3304192245|3879747648|7|121|0|3

SSP01|PERM_OBS_CLASS_R|550172|0|7|0|0|4

##END|PERM_OBS_CLASS_R

Using the sample configuration, the outputted data is as below:

Parser Intermediate File

##START|HEADER

OMC|record_code|StartTime|class_id|NODE|Date|StartDate|xchg_num

760OBTS0|7|22:00|7|SSP01|13722025|2004May16|1

##END|HEADER

##START|PERM_OBS_CLASS_R_MAX

max_seq|rpx|NODEID|rrx|REFER_TO

4|550172|SSP01|0|PERM_OBS_CLASS_R

##END|PERM_OBS_CLASS_R_MAX

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 27 of 32

 Copyright IBM Corporation 2007

3.2 TRANSPOSE

The objective of this rule is to transpose the data matrix by exchanging the rows

from PIF data block to columns. The counter names for the header and value will be

defined in the configuration.

3.2.1 Rule Configuration

� NEW_NAME_FOR_COUNTER_NAMES: This is a mandatory scalar entry. This shall

be the counter name that will be use to group counter names which will come in

rows.

NEW_NAME_FOR_COUNTER_NAMES => 'HEADERS',

� COUNTER_NAME_FOR_DATA_ROWS: This is a mandatory scalar entry. This shall

be the counter name that will be use to group all the counter values which map

according its counter name.

COUNTER_NAME_FOR_DATA_ROWS => ‘VALUE’,

� COLUMN_DATA_TO_REPLACE_CTRS: This is an optional scalar entry. The

value/data for the named counter will be promote as a counter name to group all

the counter value.

COLUMN_DATA_TO_REPLACE_CTRS => ‘OBJ_GROUP_NAME’,

� REDUNDANT_COLUMNS: This is an optional array entry. The named columns will

be removed from the data block before transposing the data matrix. The features

similar to REDUNDANT_DATA_COUNTERS entry in other post parser rule.

REDUNDANT_COLUMNS => ‘CA_OR’,

A full sample configuration is included below:

{

 RULE_TYPE => 'TRANSPOSE',

 RULE_DESC => ‘Transpose the ADL result to produce counter/value

 pair’,

 INPUT_FILE_DESCRIPTION => [

 '^\w+-#-\w+_A900_ADL-#-\w+-#-\d{2}\w{3}\d{4}-#-\d{2}:\d{2}-

#-\d{2}:\d{2}-#-\d+-#-I.pif',

],

 NEW_NAME_FOR_COUNTER_NAMES => 'HEADERS',

 COUNTER_NAME_FOR_DATA_ROWS => 'VALUE',

 COLUMN_DATA_TO_REPLACE_CTRS => ‘OBJ_GROUP_NAME’,

 REDUNDANT_COLUMNS => [‘CA_OR’],

 PRODUCE_PIF => 'True',

 PRODUCE_LIF => 0,

 OUTPUT_FORMAT => 0,

 },

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 28 of 32

 Copyright IBM Corporation 2007

3.2.2 Sample Usage

Given the following PIF record (there are 20 columns):

Parser Intermediate File

##START|HEADER

StartTime|record_type|MSC_AREA|end_time|class_id|TYPE|StartDate|du

ration|MSCID

23:00|8362|ASTRAKHAN|00:00|8362|VFS_A900_ADL|28Feb2007|60|ASTRAKHA

N

##END|HEADER

##START|STUNDLICHE

ORIGIN_TERM_TRF|OBJ_GROUP_NAME|SEQUENCE|ORIGINATING_OUTGOING_TRF|I

NCOMING_TERM|CC_OG|CALL_ATTEMPTS|class_id|MOB_MOB_TRF|CA_MORTR_MSC

|INCOMING_TERM_MOBILE_TRF|CA_OR|CA_MICTR_MSC|INCOMING_OUTGOING_TRF

|CA_TERM|ORIG_TRF_MOBILE_TERM_TRF|MS_OUTGOING_TRF|BEHAVIOUR_INDICA

TOR|PA_START|MOBILE_TERM_TRF

0|STUNDLICHE|0|0|0|55608|34654|8362|36630|52826|32026|0|19232|4301

2|0|0|52759|83|44078|0

##END|STUNDLICHE

Using the sample configuration, new PIFs is generated according to the

configuration.

Parser Intermediate File

##START|HEADER

end_time|MSC_AREA|record_type|duration|MSCID|StartTime|class_id|TY

PE|StartDate

00:00|ASTRAKHAN|8362|60|ASTRAKHAN|23:00|8362|VFS_A900_ADL|28Feb200

7

##END|HEADER

##START|STUNDLICHE

HEADERS|STUNDLICHE

ORIGIN_TERM_TRF|0

SEQUENCE|0

ORIGINATING_OUTGOING_TRF|0

INCOMING_TERM|0

INCOMING_TERM_MOBILE_TRF|32026

CC_OG|55608

CA_OR|0

CALL_ATTEMPTS|34654

CA_MICTR_MSC|19232

class_id|8362

INCOMING_OUTGOING_TRF|43012

MOB_MOB_TRF|36630

CA_TERM|0

CA_MORTR_MSC|52826

ORIG_TRF_MOBILE_TERM_TRF|0

MS_OUTGOING_TRF|52759

BEHAVIOUR_INDICATOR|83

PA_START|44078

MOBILE_TERM_TRF|0

##END|STUNDLICHE

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 29 of 32

 Copyright IBM Corporation 2007

3.3 ROTATE

As the name suggested, this rule turns the row of records of a PIF into columns. The

counter names of the new PIF shall be suffix with running number. The

FILENAME_PREFIXES shall be populated into the new PIF as ‘prefix’.

3.3.1 Rule Configuration

� FILENAME_PREFIXES: This is a mandatory array entry. It consists the prefix of

each new PIFs that are going to be generated.

FILENAME_PREFIXES => ['ALINCT','ALORGO','ALTRA','ALINT']

� COLUMNS_TO_ROTATE: This is a mandatory array entry. This array contains the

counter names in the existing PIF that is going to be rotated. Note that the

sequence of the counter name must match the one specified in

FILENAME_PREFIXES.

COLUMNS_TO_ROTATE => ['td', 'tt', 'ti', 'ta']

� NEW_COLUMN_PREFIXES: This is a mandatory array entry. This shall be the

prefix of the counters in new PIF. Again, the sequence of this array must match

the one specified in FILENAME_PREFIXES and COLUMNS_TO_ROTATE.

NEW_COLUMN_PREFIXES => ['t', 't', 't', 't']

� SEQUENCE: This is an optional scalar entry. This is the counter name in the

existing PIF that holds the running number of records. When this is specified, the

value of this counter shall be combined with the NEW_COLUMN_PREFIXES to

form the complete counter name. If this is not specified, an internal running

number is used to make the counter name in new PIF unique.

SEQUENCE => 'index',

A full sample configuration is included below:

{

 RULE_TYPE => 'ROTATE',

 RULE_DESC => 'Turn rows of rec in CLASS T to columns',

 INPUT_FILE_DESCRIPTION => '^PERM_OBS_CLASS_T-#-.*-#-I\.pif',

 PRODUCE_PIF => 'True',

 PRODUCE_LIF => '0',

 FILENAME_PREFIXES => ['ALINCT','ALORGO','ALTRA','ALINT'],

 COLUMNS_TO_ROTATE => ['td', 'tt', 'ti', 'ta'],

 NEW_COLUMN_PREFIXES => ['t', 't', 't', 't'],

 SEQUENCE => 'index',

},

3.3.2 Sample Usage

Given the following PIF record (there are 64 rows):

Parser Intermediate File

##START|HEADER

OMC|record_code|StartTime|class_id|NODE|Date|StartDate|xchg_num

760OBTS0|8|22:00|8|SSP01|13722025|2004May16|1

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 30 of 32

 Copyright IBM Corporation 2007

##END|HEADER

##START|PERM_OBS_CLASS_T

NODEID|td|tt|index|OBJ_GROUP_NAME|ti|class_id|ta

SSP01|0|0|11|PERM_OBS_CLASS_T|0|8|0

SSP01|24744|1473|12|PERM_OBS_CLASS_T|746|8|1

SSP01|17|133|13|PERM_OBS_CLASS_T|2|8|0

SSP01|0|0|30|PERM_OBS_CLASS_T|0|8|0

SSP01|21|223|14|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|31|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|15|PERM_OBS_CLASS_T|0|8|1

SSP01|0|0|32|PERM_OBS_CLASS_T|0|8|0

SSP01|361|939|16|PERM_OBS_CLASS_T|3|8|0

SSP01|0|0|33|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|17|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|50|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|34|PERM_OBS_CLASS_T|0|8|0

SSP01|27854|25216|18|PERM_OBS_CLASS_T|12548|8|0

SSP01|0|0|51|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|35|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|19|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|52|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|36|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|53|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|37|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|54|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|38|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|55|PERM_OBS_CLASS_T|0|8|0

SSP01|8|0|39|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|56|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|57|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|58|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|59|PERM_OBS_CLASS_T|0|8|0

SSP01|52503|44315|1|PERM_OBS_CLASS_T|12381|8|108

SSP01|0|0|2|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|3|PERM_OBS_CLASS_T|0|8|0

SSP01|89845|82724|4|PERM_OBS_CLASS_T|29446|8|109

SSP01|159228|82724|5|PERM_OBS_CLASS_T|29446|8|110

SSP01|0|82571|6|PERM_OBS_CLASS_T|29446|8|0

SSP01|81035|70500|7|PERM_OBS_CLASS_T|20293|8|110

SSP01|0|0|8|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|9|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|20|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|21|PERM_OBS_CLASS_T|0|8|0

SSP01|6293|6331|22|PERM_OBS_CLASS_T|1736|8|0

SSP01|754|1240|23|PERM_OBS_CLASS_T|582|8|0

SSP01|0|0|40|PERM_OBS_CLASS_T|0|8|0

SSP01|0|11|24|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|41|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|25|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|42|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|26|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|43|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|27|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|60|PERM_OBS_CLASS_T|0|8|0

SSP01|53|1605|44|PERM_OBS_CLASS_T|1230|8|0

SSP01|0|0|28|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|61|PERM_OBS_CLASS_T|0|8|0

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 31 of 32

 Copyright IBM Corporation 2007

SSP01|0|132|45|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|29|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|62|PERM_OBS_CLASS_T|0|8|0

SSP01|0|4|46|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|63|PERM_OBS_CLASS_T|0|8|0

SSP01|46593|912|47|PERM_OBS_CLASS_T|209|8|0

SSP01|33|189|64|PERM_OBS_CLASS_T|7|8|0

SSP01|0|0|48|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|49|PERM_OBS_CLASS_T|0|8|0

SSP01|0|0|10|PERM_OBS_CLASS_T|0|8|0

##END|PERM_OBS_CLASS_T

Using the sample configuration, 4 new PIFs are generated for each specified counter

names:

Parser Intermediate File

##START|HEADER

OMC|record_code|StartTime|class_id|NODE|Date|StartDate|xchg_num

760OBTS0|8|22:00|8|SSP01|13722025|2004May16|1

##END|HEADER

##START|PERM_OBS_CLASS_T_ALINCT

t46|t47|t48|t49|t10|t11|t12|t13|t14|t15|t16|t17|t50|t18|t51|t19|pr

efix|t52|t53|t54|t55|t56|t57|t58|t59|t20|t21|t22|t23|t24|t25|t26|t

27|t60|t28|t61|t29|t62|t63|t64|t30|t31|t32|t33|t34|t35|t36|t37|t38

|t39|t01|t02|t03|t04|t05|t06|t07|t08|t40|t09|t41|t42|t43|t44|t45

0|46593|0|0|0|0|24744|17|21|0|361|0|0|27854|0|0|ALINCT|0|0|0|0|0|0

|0|0|0|0|6293|754|0|0|0|0|0|0|0|0|0|0|33|0|0|0|0|0|0|0|0|0|8|52503

|0|0|89845|159228|0|81035|0|0|0|0|0|0|53|0

##END|PERM_OBS_CLASS_T_ALINCT

Parser Intermediate File

##START|HEADER

OMC|record_code|StartTime|class_id|NODE|Date|StartDate|xchg_num

760OBTS0|8|22:00|8|SSP01|13722025|2004May16|1

##END|HEADER

##START|PERM_OBS_CLASS_T_ALORGO

t46|t47|t48|t49|t10|t11|t12|t13|t14|t15|t16|t17|t50|t18|t51|t19|pr

efix|t52|t53|t54|t55|t56|t57|t58|t59|t20|t21|t22|t23|t24|t25|t26|t

27|t60|t28|t61|t29|t62|t63|t64|t30|t31|t32|t33|t34|t35|t36|t37|t38

|t39|t01|t02|t03|t04|t05|t06|t07|t08|t40|t09|t41|t42|t43|t44|t45

4|912|0|0|0|0|1473|133|223|0|939|0|0|25216|0|0|ALORGO|0|0|0|0|0|0|

0|0|0|0|6331|1240|11|0|0|0|0|0|0|0|0|0|189|0|0|0|0|0|0|0|0|0|0|443

15|0|0|82724|82724|82571|70500|0|0|0|0|0|0|1605|132

##END|PERM_OBS_CLASS_T_ALORGO

Parser Intermediate File

##START|HEADER

OMC|record_code|StartTime|class_id|NODE|Date|StartDate|xchg_num

760OBTS0|8|22:00|8|SSP01|13722025|2004May16|1

##END|HEADER

##START|PERM_OBS_CLASS_T_ALTRA

t46|t47|t48|t49|t10|t11|t12|t13|t14|t15|t16|t17|t50|t18|t51|t19|pr

efix|t52|t53|t54|t55|t56|t57|t58|t59|t20|t21|t22|t23|t24|t25|t26|t

27|t60|t28|t61|t29|t62|t63|t64|t30|t31|t32|t33|t34|t35|t36|t37|t38

|t39|t01|t02|t03|t04|t05|t06|t07|t08|t40|t09|t41|t42|t43|t44|t45

Vallent, an IBM Company Alcatel NSS Gateway User Guide

T2 v5.0 Uncontrolled when printed, controlled version held electronically Page 32 of 32

 Copyright IBM Corporation 2007

0|209|0|0|0|0|746|2|0|0|3|0|0|12548|0|0|ALTRA|0|0|0|0|0|0|0|0|0|0|

1736|582|0|0|0|0|0|0|0|0|0|0|7|0|0|0|0|0|0|0|0|0|0|12381|0|0|29446

|29446|29446|20293|0|0|0|0|0|0|1230|0

##END|PERM_OBS_CLASS_T_ALTRA

Parser Intermediate File

##START|HEADER

OMC|record_code|StartTime|class_id|NODE|Date|StartDate|xchg_num

760OBTS0|8|22:00|8|SSP01|13722025|2004May16|1

##END|HEADER

##START|PERM_OBS_CLASS_T_ALINT

t46|t47|t48|t49|t10|t11|t12|t13|t14|t15|t16|t17|t50|t18|t51|t19|pr

efix|t52|t53|t54|t55|t56|t57|t58|t59|t20|t21|t22|t23|t24|t25|t26|t

27|t60|t28|t61|t29|t62|t63|t64|t30|t31|t32|t33|t34|t35|t36|t37|t38

|t39|t01|t02|t03|t04|t05|t06|t07|t08|t40|t09|t41|t42|t43|t44|t45

0|0|0|0|0|0|1|0|0|1|0|0|0|0|0|0|ALINT|0|0|0|0|0|0|0|0|0|0|0|0|0|0|

0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|108|0|0|109|110|0|110|0|0|0|

0|0|0|0|0

##END|PERM_OBS_CLASS_T_ALINT

4. Tech Pack Support

Tech pack support is included in the Alcatel NSS Gateway for the following

Performance Manager solutions:

• Alcatel RCP

• Alcatel OCB

• Alcatel LM (GSM Alcatel NSS LM9 TP v1.2.13)

The EngineConfig.pm and UserConfig.pm configurations for these Tech Packs are

located in the tech_pack_support kit sub directory.

