
Tivoli Intelligent Orchestrator

Using the Automation Package Development Environment
August 3, 2004

IBM Tivoli Intelligent Orchestrator is an automated resource management solution for
corporate and Internet data centers. Tivoli Intelligent Orchestrator configures resources
among applications in a multi-application environment to balance end-user traffic
demands, excess capacity, and service level targets.

Tivoli Intelligent Orchestrator uses historical and current demand and performance data,
as well as defined business policies and service level objectives to determine where and
when to allocate resources. Once a deployment decision is made, Tivoli Intelligent
Orchestrator runs workflows to automatically make the required configuration and
allocation changes.

Workflows automate processes from configuring and allocating servers, to installing,
configuring, and patching software. For example, modifications to data center
infrastructure (route changes, VLAN assignments), configuration and allocation of
servers (software installation, configuration), and specific command actions (reboot
server, power off device, install image) can all be accomplished using workflows.

Workflow components
Logical operations define an action that should be implemented by an automation
package for a particular resource of that type.

For example, IPSystem.AddNetworkInterface is a logical operation that adds an IP
address to a device. It is a logical operation in that it makes no assumptions about the
operating environment that will contain the new IP address. For example, you may want
to add an IP address to a Linux environment or to Windows environment, and you can
accomplish this task starting with the same logical operation.

From there, you will run a specific workflow for you Linux or Windows environment
that will actually add the IP address.

A device driver, also referred to as a device model, represents different manufacturers'
products and versions and is identified by its own make and model number. For example,
all Cisco CSS 11050 switches in a data center can perform the same action using the
same workflow. This workflow, in turn, is dependent on the make and model of the
switch and not a specific instance of it. Each data center device can either inherit all of its
workflows from the associated device driver or can override one or more with its own
custom workflows.

Workflow composer
Full editing capabilities for workflow design are provided in the workflow composer. The
workflow composer is a powerful toolset that is designed to allow you to create and
maintain workflows in Tivoli Intelligent Orchestrator. The workflow composer supports
standard programming elements: parameters, variables, assignments, expressions, loops,
iterators, conditionals, comments, try, catch, catch all, finally and throw as well as the
following elements:

Element Description
Scriptlet

A scriptlet represents a list of commands that can be
run without user interaction. The workflow
composer supports scripts written in Bash, Perl, and
Expect.

Check Device Locale

Check the language (locale) for the device. If a
locale has been specified, a workflow will fail if the
target device for the workflow does not match the
locale.

DCM Insert

A data center model insert statement represents a
call to the data center model to insert new
information into the database.

DCM Update

A data center model update statement represents a
call to the data center model to update new
information into the database.

DCM Delete

A data center model delete statement represents a
call to the data center model to delete information
from the database.

Log

A log element logs details associated with the
workflow when it is run. You can choose to log
messages of type: Info, Warning, or Error.

For more information on these elements, refer to the online help.

Installing the Automation Package Development Environment

Prerequisites:

1. Install IBM J2RE 1.4.1, if you have not already done so. If you have WSAD
installed, the JRE is located here: <WSAD_HOME> /runtimes/base_v51/java/.

2. If you are installing Eclipse on the same machine as Tivoli Intelligent
Orchestrator and WebSphere Application Server, then the Java Development Kit
(JDK) is available in (WAS _Install_directory)/java.

3. Your JRE executables must be defined as a PATH environment variable or
Eclipse will not start. If you have more than one JRE installed, make sure the
IBM JRE is the first one in your path:
PATH=%PATH%;C:\IBM\WebSphere\AppServer\java\jre\bin

4. The Automation Package Development Environment has only been tested on the
Windows platform.

To install and configure the Automation Package Development Environment:

1. Set the JAVA_HOME variable to your IBM JRE installation directory. For
example, /IBM/WebSphere/AppServer/java. The Automation Package
Development Environment will only work with the IBM JRE.

2. Install the latest version of Eclipse. The latest version is available at:
http://www.eclipse.org/downloads/index.php. You will need to download the

http://www.eclipse.org/downloads/index.php

Eclipse SDK, and not just the platform runtime. Select the appropriate Eclipse
build for your platform.

3. Extract the eclipse zip file to a directory called APDE_HOME.
4. Point your browser to: http://www-18.lotus.com/wps/portal/automation/.
5. In the Search field, type Automation Package Development Environment.
6. Download the com.ibm.tivoli.orchestrator.tcdriverdevelopment.zip file.
7. Extract the com.ibm.tivoli.orchestrator.tcdriverdevelopment.zip file to the

APDE_HOME/eclipse directory
8. Navigate to the APDE_HOME /eclipse directory and double-click the

eclipse.exe file to start Eclipse.

Configuring the Automation Package Development Environment
To compile and run workflows from the Automation Package Development
Environment, you need to configure the location of your configuration files and specify
the name of the Tivoli Intelligent Orchestrator server.
To configure the Automation Package Development Environment:

1. From the Eclipse menu, select Window -> Preferences.
2. Select Automation Package.
3. In the Server Name field, type the name or IP address of the Tivoli Intelligent

server that you will use to compile and run your workflows.
4. In the Directory field, specify the directory that will contain your configuration

files.
5. Before you can start the Automation Package Development Environment, copy

the dcm.xml file from the <TIO_HOME>\config directory of your Tivoli
Intelligent Orchestrator server installation to the directory that you specified in
Step 4. Alternatively, if the Automation Package Development Environment is
installed on the same machine as your Tivoli Intelligent Orchestrator server, click
Window > Preferences > Automation Package and type
\IBM\tivoli\thinkcontrol\config in the Directory field.

6. If you have not already configured your database, modify dcm.xml by replacing
YourDBUserName and YourDBPassword with the correct values. Contact your
database administrator for the URL specified in the dcm.xml file if you do not
have it. You may need to install the database client if the database you are using is
not installed on the same machine as the Automation Package Development
Environment. The database that is being used should be the same database as the
one used by Tivoli Intelligent Orchestrator.

7. Ensure that the database being used is correctly defined in dcm.xml.

Setting preferences

To set for the preferences for the workflow composer:

1. Click Window and select Preferences. The Preferences window is displayed.
2. In the Preferences window, select Automation Package.

http://www-18.lotus.com/wps/portal/automation/

3. Set your preferences on the Automation Package window.
4. Click Workflow Editor Preference to set your preferences for the workflow

composer.

Using the Automation Package Development Environment
Make sure you are in the Automation Package perspective when developing automation
packages. To switch perspectives, click Window > Open Perspective and select
Automation Package.

Creating a new automation package
To create a new automation package in the Automation Package Development
Environment:

1. From the Eclipse menu, select File > New > Other.
2. Expand Automation Package Development and select Automation Package

Project.
3. Type the new project name on the New Automation Package Project window.
4. Click Finish. The new project is created in the Navigator view.

Using the workflow composer
Once you have created a new Automation Package project, you can write new workflows
using the workflow composer. The workflow composer is used to create and edit
workflow (.wkf) files that contain the information that is needed to operate a specific
physical device.

In the workflow composer, type a name for the workflow with the following naming
convention: workflow <workflow name>, For example:

workflow DCM_Delete (out long_string1, out long_string2, out
long_string3) LocaleInsensitive

Type LocaleInsensitive if you are not concerned with a particular locale. If a locale has
been specified, a workflow will fail if the target device for the workflow does not match
the locale.

You must also specify any output variables that you need to declare for your workflow.
In the example below, long_string1, long_string2, and long_string3 represent
output variables.

The workflow composer supports the Jython programming language and you should
follow common programming techniques when creating a new workflow. It also supports
if...then , if...then...else, foreach, and while statements conditional statements and
try...catch...catchall...finally and throw error handling techniques.

Content assist
The Workflow Composer uses content assist to help you write your workflows. Content
assist proposes possible text choices relative to the current position in the document to
complete a line in the editor view.

Note: Content assist will only show workflows from the dependent automation package.
This is specified when you create the project. You can also modify tc-driver.xml to add
more dependencies.

To use content assist in the Workflow Composer:

1. Place your cursor in a valid position on a line of code in the Workflow Composer.
2. Hold down the Ctrl key and press the space bar on your keyboard. If the

Workflow Composer finds valid candidates for this position, a list of possible
completions is shown.

Forming data center model query language expressions
The data center model is a representation of all of the physical and logical assets that
Tivoli Intelligent Orchestrator manages, such as servers, switches, load balancers,
application software, VLANs, and security policies. It keeps track of the data center
hardware and associated allocations to applications, as well as changes to configuration.

Using the data center model query language, you can select, insert, update, and delete
objects in the data center model. When a workflow that contains a data center model

query successfully completes a requested change to the data center, the data center model
is updated to reflect the current data center infrastructure.

In the example below, the data center model query language and conditional statements
are used to delete the service access points associated with a switch.

For more information on the data center model query language and its syntax , refer to
the online help.

Sample workflow: Display the contents of a working directory
The objective of this tutorial is to create a simple workflow that will display the contents
of a current working directory using the ls -l command.

Prerequisites: These above requirements should have already been done as part of your
Tivoli Intelligent Orchestrator installation

1. Create a server representing the Tivoli Intelligent Orchestrator server. The server
name must be the same as the return value from hostname.

2. This server must be configured for an execute-command service access point
(SAP).

Step 1: Create a new workflow
1. Click File -> New -> Workflow File
2. Type DisplayContents as the name for the new workflow
3. A logical device operation does not have to be selected for this workflow. Click

Finish.

Step 2: Retrieve the device ID of the Tivoli Intelligent Orchestrator host server

This workflow will run a command on the Tivoli Intelligent Orchestrator host. For that to
happen, the Deployment Engine will search for the name of the host on which it is
running and will search for a server device ID of that same name. To configure your
workflow to do this, add the following line to your workflow:

java:com.s.kanaha.de.javaplugin.datacentermodel.FindDEDeviceId(DeviceID
)

Step 3: Create a local variable for the server’s device ID

In the expression above, the Java plug-in is looking for the device ID of the server. To
retrieve this ID from the deployment engine, we will need a variable to hold that value.
To do this, add the following line to your workflow:

var DeviceID

Your workflow should now look like this:

Step 4: Create a transition to run the ls –l command

The Tivoli Intelligent Orchestrator has a logical device that is designed to run a command
that we specify. To add this logical device to your workflow, include the following line in
your workflow:

Device.ExecuteCommand(DeviceID, cmd, null, "default", "120", "error",
<null>, <null>, <null>)

If you look at the properties of the Device.ExecuteCommand, you can see the parameters
that need to be defined for the logical device to run. The parameters for our workflow are
defined in the image above.

Step 5: Create local variables for the ls -l command

You now need to create local variables for the ls -l command and the working directory.
The ExecuteCommand and WorkingDirectory variables are required variables in the
Device.Execute Command transition, so local variables must be created for them. We can
also assign the ls –l command directly to our new variable. To do this, add the following
lines to your workflow:

var null

var cmd = ”ls –l”
cmd = "dir"

Your completed workflow should look like this:

Step 6: Compile and run your workflow

To compile your workflow, select Workflow > Compile Workflow from the Eclipse
menu.

Sample workflow: Cisco Turn Port ON
Let's examine an existing workflow in the Tivoli Intelligent Orchestrator product for a
better understanding of how a workflow is constructed and runs. We will assume, for this
example, that a workflow for this operation does not exist and we will need to create it.
The Cisco Turn Port ON workflow when run will turn a port associated with a Cisco
switch on. To do this, we need to follow five basic steps:

1. Acquire the switch ID associated with the Cisco switch and the port number that
we want to turn on.

2. Lock the switch. When you turn a port on, the switch should not be accessible so
that it is not interfered with while you are changing its status.

3. Change the port status from OFF (shutdown) to ON (active).
4. Save the current configuration.
5. Unlock the switch.

Note: This tutorial assumes that you have already created a new project for your
automation package.

Step 1: Create a new workflow
The first step involves creating a new workflow file and associating that with the logical
device operation to turn a switch off. The logical device operation that will do this is:
Switch.TurnPortOFF. To create a new workflow file:

1. Click File -> New -> Workflow File
2. Type a name for the new workflow
3. Expand Switch
4. Select TurnPortOFF
5. Click Finish

Step 2: Lock the switch using an existing workflow

We will have to lock our switch before we can change its state from ON to OFF. To do
this, we can use an existing workflow that will lock the data center model object that we
want to work with. To insert the Lock_DCM_Object workflow into your new workflow,
you can do one of the following:

• If you know the name of the workflow, type it in the workflow composer,
including all required variables. You can check the list of workflows in Tivoli
Intelligent Orchestrator for this information.

• When you find the workflow that you need, export the workflow file and copy
and paste the information into your new workflow. Select Edit > Export within
Tivoli Intelligent Orchestrator to export the workflow.

Your workflow should look like this:

Step 3: Declare your variables
The workflow that we introduced above has three variables that must be declared in the
new workflow. To do this, we will have to declare a variable for the time the port should
remain locked and a variable for when that lock state should expire. Assign values to the
Lock_Expiry and Lock_Timeout variables. The value should be declared in seconds.

Step 4: Change the port state from ON to OFF
Creating, configuring, and managing Java plug-ins and logical device operations are
required to configure, customize, and successfully run workflows to meet your data
center process requirement. Java plug-ins provide the interface for interaction with data
center devices. Particular actions performed in the data center can be implemented by the
deployment engine using a Java plug-in.

Tivoli Intelligent Orchestrator provides a Java plug-in to change the start of a Cisco
switch which can be used with this workflow. To use this Java plug-in, include the
following line in the workflow:

java:com.s.kanaha.de.javaplugin.hardware.switches.Cisco.ChangePortStatu
s("write", SwitchID, "1", New_Port_Status, PortNumber)

Step 5: Add the New_Port_Status variable

The Java plug-in that was added in Step 3 has introduced a new variable that must be
declared in the workflow. Add the New_Port_Status variable to your workflow and
assign it a value of OFF:

var New_Port_Status = "OFF"

Your workflow should now look like this:

Step 6: Save the configuration
A Java plug-in is available to save your new configuration. Include the following line in
your workflow:

java:com.s.kanaha.de.javaplugin.hardware.switches.Cisco.SaveConfigurati
on("write", SwitchID)

Step 7: Unlock the Cisco switch
To unlock the switch that you had locked in Step 2, we can use an existing workflow that
will unlock the data center model object that we want to work with. To insert the
Unlock_DCM_Object workflow into your new workflow, follow the steps outlined in
Step 2 to retrieve the workflow.

Your completed workflow should look like this:

The automation package
Automation packages are single packages with a .tcdriver file extension that contain all
of the workflows, database table entries, JAR files, and external scripts that are necessary
to operate a physical device, such as a Cisco CSS11000 switch. They represent a logical
grouping of entities that together provide a complete solution for a specific device driver.

All automation packages are located in the $TIO_HOME/drivers directory on the Tivoli
Intelligent Orchestrator or Tivoli Provisioning Manager server. By using automation
packages, you can assemble the full suite of logical operations and associate all the
behavior of a device-model into one unit.

A default set of automation packages are installed when you install Tivoli Intelligent
Orchestrator and Tivoli Provisioning Manager.

When you create a new set of drivers for managing a resource, you should include all the
high level logical operations for that device model that apply. Include only those
components in the driver that uniquely apply to this solution. There may be other
dependencies, but these should be referenced by specifying the dependencies in the tc-
driver manifest. For example:

<dependencies>

 <dependency name="Core"/>
 <dependency name="Image-Software-Stack"/>
 </dependencies>

There may not always be a one to one relation in between device drivers and packages. If
there are operations that are shared between device drivers consider packaging them
together. For example, when packaging the drivers for the load balancer BipIP, the 3.3
and 4.1 versions were packaged together.

Automation package structure
The structure of an automation package includes the following directories:

bin
This directory contains any script files that are run on the deployment engine server.
They are not copied to the target.

doc
This directory contains the your_workflow_name.html file. This file contains information
on installing the automation package, as well as information about configuration and
troubleshooting.

This directory contains all of the Java plug-ins that are installed and used on that specific
physical device.

TC-INF
This directory contains the manifest file for the automation packages.

workflow
This directory contains a collection of workflows that have been developed to operate
that specific physical device.

repository
This directory contains scripts that are copied to the target system and run from there.

The tc-driver.xml file
The manifest file for an automation package is an XML file that contains the name and
the version number of the automation package, the version number of the automation
package template, and describes all of the driver's dependencies on other automation
packages. The manifest file must include the following main sections:

<dependencies>

This section lists all of the other drivers the current automation
package depends on.

<actions>

This section lists all of the separate classes that are necessary to
install separate items like Java drivers, commands, and so on.

<items>

This section lists all the items to be installed on the automation
package. Each item identifies a certain operation that will be
performed on that automation package.

<device-models>

This section lists all the items to be installed on the automation
package. Each item identifies a certain operation that will be
performed on that automation package.

<post-install-workflows>

This optional section names a workflow along with its parameters
to run after all the items are installed. This workflow could be
one that was installed by the current automation package, or one
that had been previously installed.

<property> This optional section defines a macro substitution that can be
used for any strings that are referred to in the manifest file. For
example, if we have the following entry:

<property
name="tc.pkg"location="com.s.kanaha.tcdrivermanager.action"/>

then, wherever ${tc.pkg} occurs in an attribute string inside tc-
driver.xml, a substitution is made.

<software-products>

This section defines any software product entries to install in the
data center model database. The syntax is identical to the
<software> element in the XML format used by the xmlimport
utility, but has been extended to allow for ${xxx}property
substitutions within attribute values.

<driver-name>

Name of the driver. This name must exactly match the name of
the automation package.

<driver-version>

The version number (optional).

<description>

Describes the purpose of the automation package.

<documentation>

Specifies the name of an html file in the automation package that
provides a description of the automation package as well as
installation and troubleshooting details.

The order of items in your XML file
The order that the <items> are listed in your XML file is very important and needs to
follow a specific pattern. This pattern reflects the order that each item will be installed
and uninstalled. Flat files are installed first, followed by Java plug-ins, and workflows.
The uninstall of the automation package follows a reverse order: workflows are
uninstalled first, followed by Java plug-ins, and all flat files.

Creating the automation package

Step 1: Name your XML file
The name of your XML manifest file must be named: tc-driver.xml. A sample tc-
driver.xml file is already provided for you. The name of your automation package must
be specified between the <driver-name> </driver-name> tags in your tc-driver.xml file.
For example: <driver-name>extreme-48i</driver-name>.

Step 2: Create the automation package documentation
An html file has been provided that includes sample details associated with installing an
automation package.

1. Use the sample provided and create the documentation for your automation
package.

2. Save the file with a name that matches the name of your automation package:
tcdriver_name.html. For example, if your automation package is called extreme-
48i.tcdriver, your html should be named: extreme-48i.html.

Package the automation package
Currently, there are a collection of files and folders that make up your automation
package. You will have to build this project to make one single .tcdriver.xml file. To do
this:

1. In the Navigator view, right-click on the build.xml file.

2. Click Run Ant .
3. Click Run.

4. The <automation package name>.tcdriver file is created and appears in the
Navigator view.

Copy and install the driver

1. Export the <automation package name>.tcdriver file to the
%TIO_HOME%/drivers directory.

2. Change the directory to: %TIO_HOME%/tools
3. Run tc-driver-manager.cmd installDriver <automation package name>.

On non-Windows systems, run the tc-driver-manager.sh command.

	Workflow components
	Workflow composer
	Installing the Automation Package Development Environment
	Configuring the Automation Package Development Environment
	Setting preferences
	Using the Automation Package Development Environment
	Sample workflow: Display the contents of a working directory
	Sample workflow: Cisco Turn Port ON
	The automation package
	Automation package structure
	The tc-driver.xml file
	Creating the automation package

