

Five Nines is the Gold Standard of Availability

- 99.999% availability is sometimes referred to as "continuous operation"
 - ▶ 5 minutes downtime per year out of 24x365
- Survey of 28 companies with mixed environments*
 - Average mainframe system availability = 99.993% or 36 minutes per year downtime
 - Average distributed server availability = 99.909% or 8 hours per year per server downtime
- Small improvements in the "nines" become more and more difficult to achieve
- Comprehensive design for availability is required for continuous operation

*March 12, 2007 IDC Survey

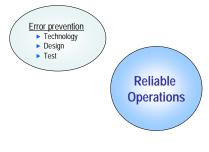
05 - Continuous Availability v2.5.ppt

_

How is Continuous Operation Achieved?

A comprehensive four part strategy is required:

- 1. Hardware reliability and serviceability
- 2. Cluster redundancy supported by middleware
- Concurrent software maintenance eliminates planned outages
- 4. Disaster recovery

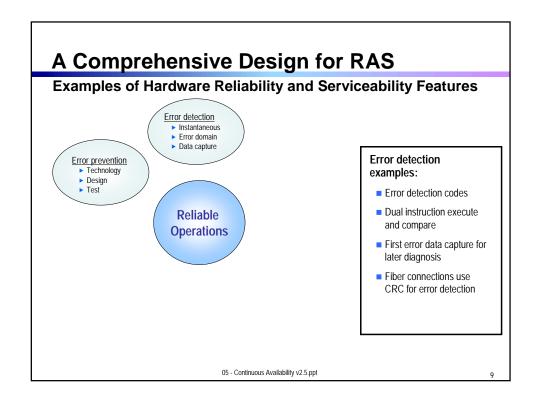

The mainframe parallel sysplex plays a key role in these capabilities

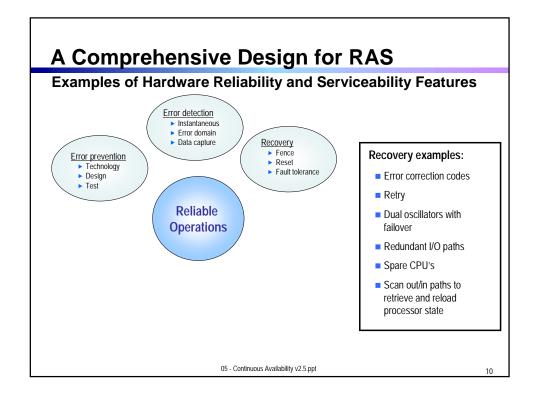
05 - Continuous Availability v2.5.ppt

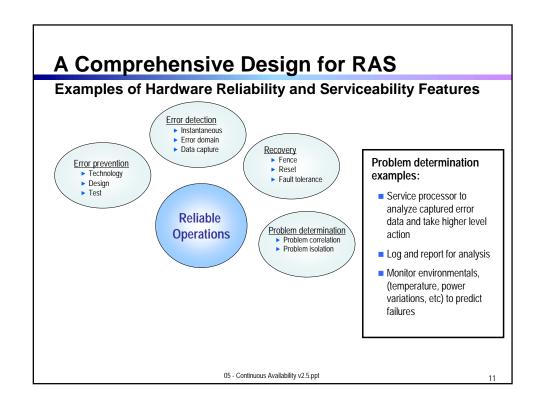
7

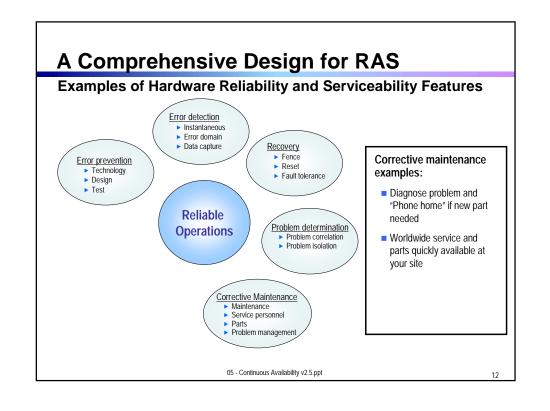
A Comprehensive Design for RAS

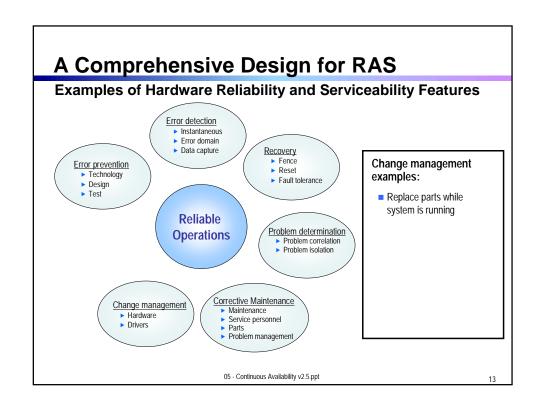
Examples of Hardware Reliability and Serviceability Features

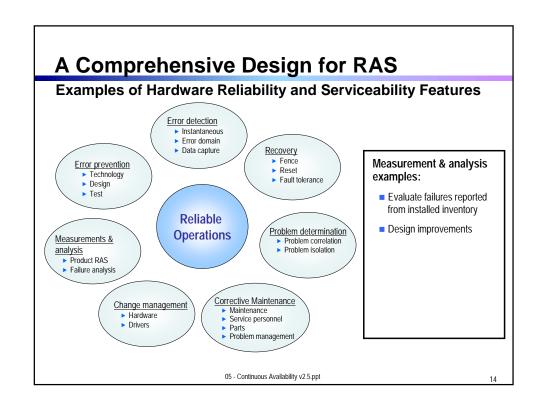


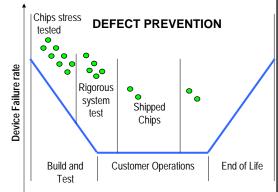

Error prevention examples:


- Burn-in beyond "bath tub" curve
- Test at variance power, voltage, clock, etc
- Ship the best components
- Comprehensive hardware logic testing
- Comprehensive system stack testing


05 - Continuous Availability v2.5.ppt

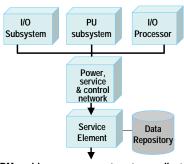

Ω





Rigorous Testing Beyond the "Bathtub Curve"

- Device Failures are more likely early in life
- Stress testing is designed to accelerate device aging
 - All chips are stress tested under extreme conditions
 - Burn in at 150% of the typical voltage- millions of test patterns
 - Power on hours tested at over 140 degrees Fahrenheit
- Result: Shipped chips have 10X more reliability than other industry standard components


Device life time

05 - Continuous Availability v2.5.ppt

15

Error Detection: First Error Data Capture

- First error data capture (FEDC) is a diagnostic feature used to gather data for analysis when there is any failure in the system
- Early detection up to 70% of all testfloor-found problems for the z990 were found through FEDC
- Customer Value obtain the right data up front if a problem occurs, to avoid asking customers to re-create a problem
- All subsystems send logs, traces, and dumps to the service processor
- Common infrastructure to collect and store data

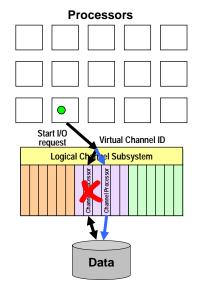
IBM problem management system collects logs and traces from multiple elements

05 - Continuous Availability v2.5.ppt

Spare Central Processing Units (CPU's) are Shipped Pre-Installed

- CPU Sparing –Transparently substitute a good processor for one that is suspected of being defective
- This on-line switch is seamless, applications are not impacted
- Sparing is performed if a CPUs fails and instruction retry is unsuccessful
- CPU Sparing copies state information from the failed CPU to the spare
- Between 10 to 100 spare replacements are reported worldwide each year

Service Processor automatically finds a new "spare"


- Uses spare PU on the same book
- If none are available uses an adjacent book
- Uses any available spare in the server.
- If no spares are available, recovers the application onto another CP and automatically phones home for a replacement.

05 - Continuous Availability v2.5.ppt

13

Virtualization of I/O Channels Enables Redundant I/O Paths

- Large number of physical I/O channels are available
- Logical channels subsystem provides virtual channel identifiers
- Virtualization enables an alternative physical I/O channel to be used
 - Dynamic channel paths
 - ▶ Logical channel subsystem
 - Protection against channel processor failure
- Recover I/O operations in progress
 - I/O subsystem transparently processes I/O with built in checks

05 - Continuous Availability v2.5.ppt

Hardware Repair and Upgrade While Running

Capability	System z9
ECC on Memory Control Circuitry	Transparent While Running
Oscillator Failure	Transparent While Running
Microcode Driver Updates	Replace While Running
Book Replacement	Replace While Running
Memory Replacement	Replace While Running (Book Offline)
Memory Bus Adapter (MBA) Replacement	Replace While Running Connectivity to I/O Domain remains
Self Timed Interface Failure to I/O	Replace While Running Connectivity to I/O Domain remains
Processor Upgrades	Replace While Running
Memory Upgrades	Replace While Running
I/O Upgrades	Replace While Running
Spare CPU's	2 Pre-installed per System

05 - Continuous Availability v2.5.ppt

19

DEMO: How Does Hardware Repair and Upgrade Work?

- Example video of a memory upgrade while the system continues to run
- Service engineer dispatched through "phone home"
- Service engineer has part already ordered through our global parts replacement program
- Notice book is removed while the system is operational
- Even the service tray is included!
- Memory cards can be added easily similar to PC servicing

Types of Replacements:

- Add a single book for processors, memory, and I/O Connections
- 2. Remove and replace a book
- 3. Allocate physical resources on other books

05 - Continuous Availability v2.5.ppt

2. Cluster Redundancy Supported by Middleware

- Clusters of CICS, IMS, DB2, WebSphere, or MQ exploit parallel sysplex
 - ▶ Multiple images behave like a single, logical image via clustering
 - ▶ The loss of any one image does not bring down the cluster
- Applications are enabled for data sharing to allow for workload balancing
 - I/O subsystems support multiple I/O paths with dynamic switching to shared data
- Dynamic workload balancing; workloads can run on any image in the sysplex
 - ▶ Failover and recovery processes are fully automated
- The result is a fault-tolerant system

05 - Continuous Availability v2.5.ppt

21

3. Concurrent Software Maintenance Eliminates Planned Outages

- IBM middleware is designed to keep running during upgrades and patches
 - Use Parallel Sysplex to take image offline
 - ▶ Multiple software versions can co-exist in the same sysplex
 - ▶ Enables rolling upgrades, one node at a time
 - Patches as well as releases can be applied without causing disruption to application availability

05 - Continuous Availability v2.5.ppt

)5

Perform Other Maintenance While the Software Keeps Running

DB2

- Data Backup
- Image copy
- > Add or modify a table schema
- Reorganize the database
- Partition a secondary index

CICS

- ▶ CICS backup while open allows for file backup while CICS has it open for update.
- CICS Auto-install provides the ability for support resources to be defined dynamically on their first use
- CICS RDOcan dynamically add or change resource definitions and have them immediately usable without the need for a scheduled outage

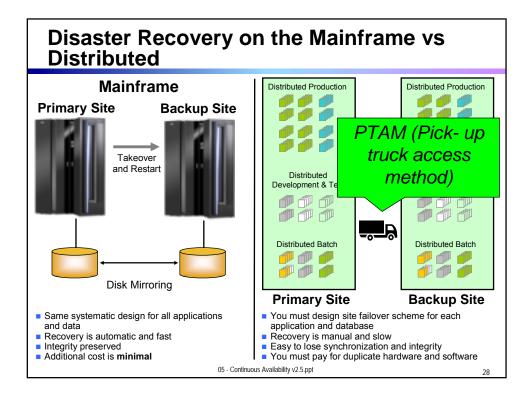
IMS

- Update Type 2 and Type 4 SVC's without requiring an IPL
- ▶ IMS V9 Dynamic Resource Definition
- IMS V9 provides a dynamic resource manager which is implemented without having to IPL
- IMS ACBLIB online change

05 - Continuous Availability v2.5.ppt

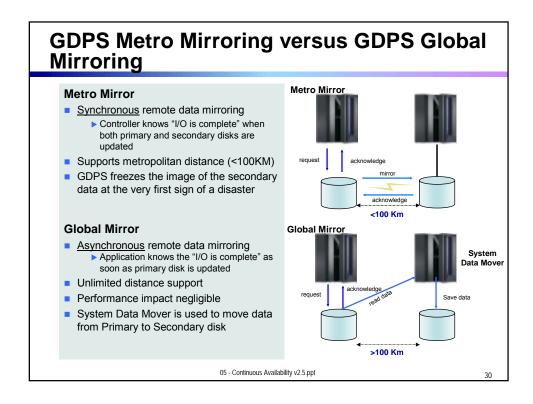
26

4. Systematic Disaster Recovery – The Last Layer of Protection



What's needed:

- ▶ Backup site capable of sustaining business operations
- ▶ Automated, systematic site failover with data integrity preserved


05 - Continuous Availability v2.5.ppt

Geographically Dispersed Parallel Sysplex (GDPS) – Disaster Recovery

- GDPS provides systematic site failover capabilities in the event of data center disaster
 - Uses disk mirroring to failover site
- GDPS supports different recovery time requirements and different site distances with several options available
 - Metro Mirror
 - Global Mirror
- GDPS provides automation of site failover tasks to expedite recovery
- GDPS is comprised of IBM products and technologies delivered along with service components

05 - Continuous Availability v2.5.ppt

How is Continuous Operation Achieved?

A comprehensive four part strategy is required:

- 1. Hardware reliability and serviceability
- Cluster redundancy supported by middleware
- Concurrent software maintenance eliminates planned outages
- 4. Disaster recovery

05 - Continuous Availability v2.5.ppt

TD Bank Best Practices

D Bank Financial Group

Background

- ▶ TD Bank has been running Parallel Sysplex
 - Sysplex-wide availability 99.998% over 10 years
 - Only 1.5 hours planned outage
- System z is used for Customer Account Data for applications supporting Tellers, Internet Banking and ATMs

■ TD Bank Recommendations

- ▶ Keep sysplex up do not bring it down
- ▶ Practice Rolling IPLs
- ▶ Exploit concurrent hardware upgrades
- ▶ Use automation
- Configure your sysplex for availability
 - IMS/DB2 Data-sharing
 - Transaction routing
 - Sysplex Distributor for TCP/IP
 - Online database reorganizations
 - Clone each image
 - Ensure applications exploit parallel sysplex

05 - Continuous Availability v2.5.ppt

Client Environment

- ≻System z
- ≽z/OS
- ≻DB2
- ≻IMS
- >WMQ >GDPS

Parallel Sysplex Deployment consists of five System z across two sites running 42 M business transactions a day

33

Service Oriented Finance Needs a World Class Availability Solution

Service Oriented Finance CIO

Other vendors who fail to deliver this four part strategy will fall short of System z continuous availability

ΙBΝ

05 - Continuous Availability v2.5.ppt

