
Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 1

Lab Exercise 1
Lab Setup: Create your lab files

In this exercise you will:

 Run the LABSETUP program to create your own copies of sample files that will be
used during the Debug Tool exercises

 Check that your files have been created

1. Log on to TSO (if you are not already logged on).

2. Navigate to the ISPF command shell. On most systems, this is Option 6 from the main ISPF
menu.

3. Run the LabSetup program:

a. On the command line, enter the lab setup command that your instructor or training
coordinator has given to you. The command will have the format:

EX ‘xxxx.ADLAB.INSTALL(LABSETUP)’

4. You will see the message “SETUP FOR HANDS-ON TRAINING” message.

a. If you do not see this message, check the spelling of the command and try again.

b. Press the ENTER key repeatedly until the LabSetup program completes.

 Note: Many screens full of messages will be displayed. Continue to press Enter. There
may be times when three asterisks appear in the bottom left corner of the screen or the
process just stops. Keep pressing Enter. You will end up at the Command Shell panel
once again.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 2

5. Note: In the next steps, you will verify that your files have been created.

6. Navigate to the system 3.4 panel (Data Set List).

 Type =3.4 on the command line, then ENTER:

7. Enter a Dsname level of: your-tso-id.ADLAB, then press ENTER .

8. You should see a list of data sets that begin with your ID, with a middle qualifier of ADLAB.

It is OK if your list of
files is different from
the list shown here.

a. If you have ADLAB data sets, then you are ready for the Debug Tool exercises.

b. If you do not have the ADLAB datasets, then return to step 1. Ask for help if you aren’t
sure why you don’t have the sample files.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 3

Lab Exercise 2

In this exercise you will:

 Use a web browser to locate the Debug Tool manuals on the IBM web site.
 Open the “Debug Tool Reference and Messages” manual for your reference.
 Learn how to download any of the Debug Tool manuals to your workstation.

1. Start an Internet Browser window.
2. Open URL:

http://www.ibm.com/software/awdtools/deployment
3. Click on the Select a Product pull-down.
4. Click on Debug Tool

http://www.ibm.com/software/awdtools/deployment

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 4

5. Click on Library

6. You can browse manuals online. For the “Reference and Messages” manual, click on the link

under the BookManager column.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 5

7. The contents page for the Reference and Messages manual appears. You can use the navigation

links to get to specific sections.
8. Click on the browser’s BACK button until you are back to the Debug Tool Library page.
9. You can download Debug Tool manuals to your workstation from this web site.

RIGHT CLICK on the link next to the “Reference and Messages” manual in the PDF
column.

RIGHT
CLICK

10. This will let you download the manual to your workstation. Click on SAVE TARGET AS .
11. A dialog is displayed where you can select any valid directory on your workstation to download

the manual in PDF format. If you would like a softcopy of the manual, you can download it now.
Otherwise, press Escape.

12. Close your Internet Browser window.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 6

Lab Exercise 3

In this exercise you will:

 Submit a job to compile a COBOL program.
 See an example of compiler options you use to prepare a program for debugging with

Debug Tool.
 See where the compiler stores information needed by Debug Tool.

1. Log on to TSO.

2. Open the following dataset in an EDIT session:

’your-tso-id.ADLAB.JCL(BDTDEMO)’

3. Customize the JCL to run on your system by making the following changes:

a. Add a JOB card.
b. The instructor may tell you about other customizations needed for your system.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 7

4. Notice the parameter string specified in the compile step. The TEST parm tells the compiler to

prepare the program for debugging.

 What are the sub-parameters specified in the TEST parm?
 __

5. The SEPARATE sub-parameter tells the compiler to store information needed by Debug Tool in

a “separate” file. The debug information will be written to the SYSDEBUG file.

6. Submit the job. (type SUB on the command line, then ENTER).

7. View the output of your compile and ensure that the return code from the compile step is 4 or

less. If not, fix any errors and re-submit the job.

8. Browse data set ‘your-tso-id.ADLAB.SYSDEBUG(DTDEMO)’. This is the debug information

that Debug Tool will use.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 8

Lab Exercise 4a

In this exercise you will:

 Use the TSO “CALL” command to run a program
 Specify a TEST run-time parameter to start Debug Tool.
 Get ready for exercise 4 (by starting a Debug Tool session).

IMPORTANT NOTES:

 Do either exercise 4A (this exercise), or exercise 4B. You do not need to do both.
This exercise (4A) is preferred. Only do exercise 4B if exercise 4A will not work
on your system.

 This exercise will walk you through a fast and easy way to start a Debug Tool
session to get ready for exercise 5. This is NOT the method you will normally use
to start Debug Tool.

1. Log on to TSO.

2. Navigate to the ISPF Command shell panel. (This is usually OPTION 6 from the main menu).

3. Next, you will run a program, WITHOUT starting Debug Tool. You will use the TSO “CALL”
command, which can be used to run any program from a load library. Type in the following
command:

CALL ‘your-tso-id.ADLAB.LOAD(ADSTAT)’

 Press ENTER.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 9

4. The program will run. You may see the program display “Hello” and “Goodbye” messages.
Press ENTER to clear the messages.

Note: It’s OK if you do not see the “Hello” and “Goodbye” messages. They do not appear on
certain TSO systems, depending on how your system is configured.

5. Next, you will run the program WITH Debug Tool. Debug Tool will start when you pass the
TEST parameter to Language Environment. Type in the following command:

CALL ‘your-tso-id.ADLAB.LOAD(ADSTAT)’ ‘/TEST’

 Press ENTER.

6. When the program executes, Debug Tool will appear on your TSO terminal.

SUCCESS! Debug Tool appears.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 10

Note: You may see error messages in the log window (bottom window) as Debug Tool tries to
open the Preferences file (INSPPREF) and the Log file (INSPLOG). IGNORE these errors,
since these files will not be needed yet.

7. At this point, you have an active Debug Tool session, and you are ready for exercise 5.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 11

Lab Exercise 4b

In this exercise you will:

 Use the Debug Tool Setup Utility (DTSU).
 Create a “Setup File”.
 Add program and DD information to the Setup File needed to run the application.
 “Run” the setup file to execute the application and start Debug Tool.
 Get ready for exercise 4 (by having a Debug Tool session).

IMPORTANT NOTE:

 Do either exercise 4A, or exercise 4B (this exercise). You do not need to do both.
Exercise 4A is preferred, if it will work on your system.

1. Log on to TSO.

2. Navigate to the Debug Tool Utilities panel.

3. Select the “Manage and Use Debug Tool Setup Files” option.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 12

4. A panel will appear that requests the name of a “setup file”. A setup file is used to save
information about an application. It contains information similar to JCL, such as the name of a
program to run, and a list of datasets that the application needs.

5. Type in the name of a new setup file: your-tso-id.ADLAB.DTSF and member name
ADSTAT.

6. Press ENTER. You have just created a new setup file.

7. The “Edit Setup File” panel will appear. This panel allows the specification of the program to
run, and datasets to be allocated (similar to DD statements in JCL).

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 13

8. The name of the program you will execute is “ADSTAT”. Type ADSTAT in the Load
Module Name field. Also ensure that 1 is specifed next to the text: LE COBOL Default:

9. Next, you will add a STEPLIB DD statement so the system will know where to find the program.
Follow these steps to insert it:

 Type I (for Insert) in the field under the Cmd label:, then ENTER.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 14

 In the line that was added, type in information for the new file:

o DD Name: STEPLIB
o Name: ‘your-tso-id.ADLAB.LOAD’
o Disp: SHR

10. Press ENTER to accept the file information.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 15

11. Next, you will run the program, WITHOUT starting Debug Tool.

 Type RUN on the command line, then ENTER .

12. The program will run. You will see the program display “Hello” and “Goodbye” messages.

 Press ENTER to clear the messages.

Note: It’s OK if you do not see the “Hello” and “Goodbye” messages. They do not appear on
certain TSO systems, depending on how your system is configured.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 16

13. Next, you will run the program WITH Debug Tool. Debug Tool will start when you pass the
TEST parameter to Language Environment.

 Type ‘/TEST’ in the parameters field .

 Type RUN on the command line, then ENTER .

14. When the program executes, Debug Tool will appear on your TSO terminal.

SUCCESS! Debug Tool appears.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 17

Note: You may see error messages as Debug Tool tries to open the Preferences file
(INSPPREF) and the Log file (INSPLOG). IGNORE these errors, since these files will not be
needed this exercise.

15. At this point, you have an active Debug Tool session, and you are ready for exercise 5.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 18

Lab Exercise 5

In this exercise you will:

 Learn the basic Debug Tool commands.

1. Before you do this exercise, you must first do either exercise 4A (preferred) or exercise 4B to
start a Debug Tool session. Before you continue, you must have a Debug Tool session started in
program ADSTAT.

2. Get help with commands using the “?” command.

 Type ZOOM LOG on the command line, then ENTER.

 The log window will be displayed in full screen mode.

o Type ? on the command line and ENTER. (The “?” command by itself displays a
list of all commands.)

 You can type “?” into any command to get a list of valid options for the command. This next
command will display the different options of the “AT” command (used to set breakpoints):

o Type AT ? on the command line, then ENTER . A list of the things that you can
type after the word “AT” is displayed.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 19

3. PF10 is set to the ZOOM command. It will zoom in, and will also zoom out.

 Press PF10 to zoom out of the log window.

 All three windows should be displayed again.

4. The STEP command can be used to execute statements. Try these different methods:

 Type STEP on the command line, then ENTER

 PF2

5. Set breakpoints. Try these different methods:

 Place the cursor on statement 31 in the Source window and then PF6.

 Type AT 32 on the command line (where 32 is a valid statement number) then ENTER.

 Type A in the prefix area (the numbered area to the left of the program) of statement 33
in the Source window, then ENTER.

6. You should have some breakpoints set now. Notice that the colors are reversed in the prefix area
(on the left side of the screen) next to the statements with breakpoints. Also notice that all of
your commands have been written to the log (the bottom window).

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 20

7. You can display (List) your breakpoints:

 Type LIST AT on the command line, then ENTER.

 Your breakpoints are displayed in the log window. You may need to use PF11 (or the
“Zoom Log” command) to enlarge the log window. If you do, you can use PF11 again to
re-display all windows.

8. Clear breakpoints. Try these different methods:

 Place the cursor on statement 33, and press PF6. Notice that PF6 will toggle breakpoints
on and off.

 Type CLEAR AT 31 on the command line (where 31 is a valid statement number)
then ENTER.

 Type C (for Clear) in the prefix area (the numbered area to the left of the program) of a
statement with a breakpoint, then ENTER.

 To clear all breakpoints with a single command, type CLEAR AT on the command
line, then ENTER.

9. Set breakpoints at statements 62 and 64. It’s OK if you have other breakpoints set. You can
scroll forward (PF8) to see these statements.

10.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 21

11. Run the program until it reaches a breakpoint.

 Type GO on the command line, then ENTER.

o The program should be stopped at a breakpoint.

o If the program ended, then you probably did not have a breakpoint set where it
would be reached. If that happened, re-run the program (see exercise 4a or 4b) to
start Debug Tool again. Re-run the program as many times as needed throughout
this exercise.

 PF9 is set to the GO command. Make sure you have a breakpoint that will be reached.
Then, press PF9 to GO.

12. Practice setting, clearing, and running to breakpoints at statements until you are familiar with:

 the “AT #” and “CLEAR AT #” commands
 PF6 as a toggle to turn breakpoints on or off
 the “A” (At) and “C” (Clear) line commands
 PF9 or the “GO” command to run to a breakpoint

13. You can use the JUMPTO command to “jump” to a statement and continue execution at this
statement. This is sometimes helpful to re-execute a few statements in the program. Try the
following:

 Make sure you have breakpoints at statements 62 and 64.

 Run the program (GO or PF9) until it is stopped at statement 64 or later.

 Type JUMPTO 61 on the command line, then ENTER.

 The program should be stopped at statement 61.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 22

14. You can use the GOTO command instead of JUMPTO. It is similar to JUMPTO, but it does
not stop at the statement. It jumps to the statement and immediately continues to run. The
program will automatically run to the next breakpoint (or the end of the program).

 Make sure you have breakpoints at statements 62 and 64.

 Run the program until it is stopped at statement 64.

 Type GOTO 61 on the command line, then ENTER.

 Notice that statement 61 executed, but Debug Tool did NOT stop at 61. A GOTO
command will not stop at the target statement unless you have a breakpoint there. The
program is stopped at statement 62, which was the next breakpoint that it reached.

15. Display the value of a program variable in the Log. Try these different methods:

 Type LIST PROGRAM-STATUS on the command line and ENTER.
(‘PROGRAM-STATUS’ is a variable name.)

 Type LIST on the command line, then place the cursor directly on any variable that
appears in the Source window, then ENTER.

 Place the cursor on a variable in the Source window, then PF4.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 23

16. Display a variable in the monitor window. Try different methods:

 Type MONITOR LIST PROGRAM-STATUS then ENTER. Try
abbreviating this command... For example: MON LI variable-name

 Type MON LIS (an abbreviation for MONITOR LIST) on the command line, then
place the cursor on any variable that appears in the Source window, then ENTER.

17. Note: Most items that you can display in the log with a LIST command, you can also display in
the monitor window with MONITOR LIST command.

18. Remove items from the Monitor Window:

 Type C (for Clear) next to a variable in the prefix area (the numbers on the left) of the
Monitor window, then ENTER .

 To remove all items from the Monitor Window: Type CLEAR MONITOR on the
command line, then ENTER. (Or abbreviate this command, such as : CLE MON

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 24

19. Using MONITOR LIST commands, as described in the last few steps, put the following
variables in the Monitor Window:

- PROGRAM-STATUS
- WORK-MAX
- NUM

20. Modify a variable value.

 Tab to the data area of the WORK-MAX variable in the Monitor window.

 Change the data to 12345, clear out the rest of the field, then ENTER.

 Notice that a command was placed on the command line. ENTER to execute the
command.

21. Automatically display active variables in the Monitor window.

 Turn on the Automonitor: Type SET AUTO ON on the command line, then
ENTER.

 The “Automonitor” appears at the bottom of the Monitor window. You may have to
scroll forward in the Monitor to see it. This will automatically display variables
referenced by the current statement in the program.

 Use PF2 (or the STEP command) a few times. Notice that as you step, the Automonitor
changes to show variables referenced by the current statement.

22. You can set a breakpoint that will stop when a variable changes.

 First, clear ALL of your breakpoints:

o Type CLEAR AT on the command line, then ENTER.

 For your reference, add variable SUB-A to the Monitor:

o Type MON LIST SUB-A on the command line, then ENTER.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 25

 Set the breakpoint:

o Type AT CHANGE SUB-A on the command line, then ENTER.

 Notice the value of SUB-A in the monitor.

 Press PF9 (the GO command).

 Notice that the value of SUB-A has changed. Debug Tool has stopped at a statement
immediately AFTER a statement that changed variable SUB-A.

 Tip: You can stop when a condition is true, using a “WHEN” clause. For example:
AT CHANGE SUB-A WHEN SUB-A > 2 .

Here’s another example. If a program reads a file, and a variable named RECORD-KEY
is in the record, you could stop when the program gets to the right record by setting a
breakpoint such as:

AT CHANGE RECORD-KEY WHEN RECORD-KEY = ‘ABCD’

23. Clear the AT CHANGE breakpoint:

 For your reference, list your breakpoints. Type LIST AT on the command line, then
ENTER.

 Notice that the AT CHANGE breakpoint is listed in the log.

 Type CLEAR AT CHANGE SUB-A on the command line, then ENTER.

 Type LIST AT on the command line again, then ENTER. Notice that the second
LIST AT command in the log does not show the breakpoint.

24. You can set a breakpoint to stop at a sub-program. In this example program, the main program
ADSTAT calls a sub-program named ADSORT.

 Set a breakpoint to stop when execution reaches (enters) sub-program ADSORT:

o Type AT ENTRY ADSORT on the command line, then ENTER.

 Run the program:

o Press PF9 (the GO command) .

 The program should be stopped in sub-program ADSORT. If your Debug session ended,
re-start the program and try again.

 You can step into the sub-program with PF2 (or the STEP command) .

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 26

25. Zoom in on the Source Window, by placing the cursor anywhere in the Source Window, then
PF10.

26. Zoom back out with PF10.

27. Use the same method to Zoom in and out of the other windows.

o Note: Instead of using a PF key, you could also use the ZOOM command (or just Z).

28. You can easily locate the current statement:

 First , scroll forward in the Source window by pressing PF8 a few times.

 Type QUALIFY RESET on the command line, then ENTER. (can be abbreviated,
such as QUAL RES).

29. You can copy one or more executed commands from the log window to the command line and re-
execute them:

 Put the cursor on any logged command in the log window. Overtype any character on that
command.

- Hint: You can overtype a character with the same character. For example, change
MOVE to mOVE

 ENTER.

 The command is copied to the command line. You can make changes (if desired), and
ENTER to execute.

30. You can copy one or more program statements to the command line, and execute them.

 Put the cursor on any MOVE or COMPUTE statement in the source window, and
overtype any character on that statement.

- Hint: You can overtype a character with the same character. For example, change
MOVE to mOVE

 ENTER.

 The statement is copied to the command line. If the command is long, or if you overtype
multiple statements, they may be placed into a temporary expanded command area below
the command line. You can make changes (if desired).

 If the statement contains a period, you must remove it.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 27

 Press ENTER to execute the statement.

31. You can continue a long command with a dash (-). This can be helpful if you need to type a
command that is too long to fit on the command line.

 On the command line type MONITOR LIST – then ENTER.

 Debug Tool will prompt for the rest of the command.

 On the command line, type any valid variable name, such as: NUM , then ENTER.

32. End the Debug Tool session:

 Type QUIT on the command line, then ENTER.

 When you receive the “Do you really want to …” prompt, type Type Y on the command
line, then ENTER.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 28

Lab Exercise 6

In this exercise you will:

 Customize Debug Tool so that it will automatically save and restore your Breakpoints
and Settings.

1. Note: Debug Tool will use two files to save Breakpoints and Settings. The files must be pre-
allocated before Debug Tool will use them. The files are:

o userid.DBGTOOL.SAVESETS
 This is a sequential file where your Debug Tool settings will be stored.

o userid.DBGTOOL.SAVEBPS
 This is a PDSE (or PDS) file where breakpoints will be saved. The member

names will be the names of the high-level program of each application.

2. Run a sample batch job to allocate the files:

 Edit the JCL in member ‘your-user-id.ADLAB.JCL(DTSAVSET)’.

 Add a valid job card.

 Submit the job.

 Verify that the job ran correctly, and that the files were allocated.

3. Start a Debug Tool session. If you aren’t sure how to do this, refer to exercise 4A (preferred) or
exercise 4B to start a Debug Tool session.

4. In the next step, you will specify the settings that will make Debug Tool automatically restore
settings and breakpoints at the beginning of each session, and automatically save settings and
breakpoints at the end of each session.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 29

Tip: You can abbreviate
the commands:

 SET SAV S A
 SET SAV B A
 SET SAV M A
 SET RES S A
 SET RES B A
 SET RES M A

Tip: Use PF12 to retrieve

commands.

5. Enter each of these Debug Tool commands:

 SET SAVE SETTINGS AUTO

 SET SAVE BPS AUTO

 SET SAVE MONITORS AUTO

 SET RESTORE SETTINGS AUTO

 SET RESTORE BPS AUTO

 SET RESTORE MONITORS AUTO

6. Debug Tool will remember your settings and breakpoints now. Enter these commands to
permanently save these settings:

 SET AUTO ON (turn on the Automonitor)

 SET DEFAULT SCROLL CSR (scroll based on you cursor position)

 SET WARNING OFF (allows you to update variable values,
even in programs compiled with the
OPTimize option)

 SET PF16 "MONITOR" = MON LOCAL %CU LIST CURSOR
(allows you add a variable to the monitor
with cursor selection and PF16)

7. Exit Debug Tool:

 Type QUIT on the command line, then ENTER.

 When you receive the “Do you really want to …” prompt, type Type Y on the command
line, then ENTER.

8. Restart a Debug Tool session (refer to execise 3A or 3B if you aren’t sure how).

9. Debug Tool should have automatically restored your settings. One indication is that you will see
the message: “SETTINGS restored from userid.DBGTOOL.SAVESETS” in the log. If you
aren’t sure, you can use the command: QUERY SET to see a list of your current Debug Tool
settings.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 30

10. Exit Debug Tool:

 Type QUIT on the command line, then ENTER.

 When you receive the “Do you really want to …” prompt, type Type Y on the command
line, then ENTER.

Tip: If you ever need to re-create your SAVE files, you can use the
sample JCL in ‘userid.ADLAB.JCL(DTSAVSET)’ to easily re-
allocate them. This job also enables the needed settings for auto
save and restore.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 31

Lab Exercise 7

In this exercise you will:

 Learn to start Debug Tool for an application running in a batch job.

1. Log on to TSO.

2. Open the following dataset in an EDIT session:

’your-tso-id.ADLAB.JCL(XSAM)’

3. Customize the JCL to run on your system by making the following changes:

1. Add a valid job card as needed for your system(s).
2. The instructor may have told you about other JCL customizations needed for your system.

Leave your TSO edit session active.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 32

4. Start a second terminal emulator window. We will call this your “Debug Tool terminal”. Your
instructor will have shown you how do this in class. DO NOT LOG ON to this second emulator
window. To make it work, your Debug Tool terminal must NOT be connected to ANY
application. Not even a session manager.

 Find the Terminal ID of your Debug Tool terminal. FYI… Technically, the “Terminal
ID” is the “VTAM LU” (Logical Unit) ID.

 What is the Terminal ID? ______________________________________

5. You now have 2 terminal emulator windows active:
1. One where you are logged on to TSO, with the JCL open in an Edit session.
2. Your Debug Tool terminal, where you are not logged on.

Your TSO
Terminal

Your Debug Tool
Terminal

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 33

6. Click on your TSO terminal. Notice the commented parameter strings in the lines immediately
after the EXEC statement.

 UN-comment the first parameter line (This is the one that contains the string “MFI%”).
 Change the terminal id in the TEST parm to the Terminal ID of your Debug Tool

terminal. Be careful not to change the format of the TEST string. The line with the TEST
parm should be similar to:

// PARM='/TEST(,,,MFI%TRMLU012:)',

(Instead of TRMLU012, you should the name of your Debug Tool terminal specified.

Important Note: The special characters % and : are required!).

7. Your JCL should look similar to this example, although it will have your unique job card, your
dataset names, and (most importantly) your Debug Tool Terminal ID:

8. Submit the job (use the SUBMIT command). Then click on your Debug Tool terminal.

9. When the job runs, Debug Tool will automatically appear on your Debug Tool terminal.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 34

SUCCESS! Debug Tool appears.

 If Debug Tool does not appear, check your JCL for errors and try again. Use a JES
viewing facility (such as SDSF) to check on the status of your job. Here are some
common problems that you should check on:

o The jobcard is coded incorrectly.
o The job has a JCL error, due to an invalid dataset name, or some other error.
o The Terminal ID was coded incorrectly.
o The TEST parm was coded incorrectly.

10. Click on your Debug Tool session. Use STEP commands to verify that you can step into the
program.

11. Use the QUIT command to end your Debug Tool session.

12. Click on your TSO window. Save your JCL changes. You will use this JCL again in later
exercises.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 35

Lab Exercise 8

In this exercise you will:

 Use the Debug Tool Setup Utility (DTSU) to start Debug Tool under TSO for a batch
application.

 Create a “Setup File”, which is used to run Debug Tool under TSO.
 Copy information from existing JCL into the Setup File.
 “Run” the setup file to start Debug Tool.

1. Log on to TSO.

2. Open the following dataset in an EDIT session:

’your-tso-id.ADLAB.JCL(XSAMDTU)’

3. In a few steps, you will “COPY” this JCL into a Debug Tool “setup file”. But first, customize the

JCL by making the following changes:
a. Change all occurrences of “your-tso-id” to your actual TSO ID or personal file prefix.
b. The instructor may have told you about other JCL customizations needed for your system.

Note: You DO NOT need to customize the job card for this exercise.

4. Save your JCL changes and exit from the editor.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 36

5. Navigate to the Debug Tool Utilities panel.

6. Select the “Manage and Use Debug Tool Setup Files” option.

7. A panel will appear that requests the name of a “setup file”. A setup file is used to save
information about an application. A setup file contains information similar to JCL, such as the
name of a program to run, and a list of datasets that the application needs.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 37

8. Type in the name of your setup file: your-tso-id.ADLAB.DTSF and member name SAM1.

9. Press ENTER. You have just created a new setup file named “SAM1” in the dataset: your-tso-
id.ADLAB.DTSF.

10. The “Edit Setup File” panel will appear. This panel allows the specification of the program to
run, and datasets to be allocated (similar to DD statements in JCL).

11. An easy way to get the needed information is to “COPY” it from existing JCL. That’s what we
will do in the next few steps.

12. Type COPY on the command line, then ENTER.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 38

13. A panel will appear where you can specify the location of JCL that you want to copy. Type in
dataset name: your-tso-id.ADLAB.JCL and member name XSAMDTU, then ENTER.

14. A “Copy from JCL” Panel will appear. “Select” the following statements by typing S next to
them:

o The EXEC statement
o STEPLIB
o CUSTFILE
o SYSPRINT
o SYSOUT
o CUSTRPT
o CUSTOUT
o TRANFILE

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 39

15. Press PF3. The “Edit Setup File” panel appears again. You should see the DD statements you
selected on the bottom of the panel. If not, use the COPY command again to copy information
from JCL.

16. You can modify the dataset information on the bottom of the panel by overtyping. You can also
delete or insert files. Follow these steps to insert a file:

 Type an I (for Insert) next to an existing file, then ENTER.

 On the new line that was added, type in information for the new file:

o DD: INSPPREF
o Name: ‘your-tso-id.ADLAB.DTPREF’
o Disp: SHR

17. Press ENTER to accept the file information.

18. Next, you must specify a TEST run-time parameter. Keep in mind that the TEST parm makes
Debug Tool start. If you RUN the setup file without a TEST parm, the application will run, but

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 40

Debug Tool will not be invoked. The next few steps will show you an easy way to specify a
TEST parm.

19. Type a / (slash) on the panel next to the text “Enter / to modify parameters”. Then ENTER.

20. The “Modify Parameter String” panel appears. This panel allows you to modify the run-time
parameters.

21. Press PF3 to accept the default values.

22. The “Edit Setup File” panel appears again. Notice that a TEST parm string has been added.

23. At this point you are ready to run the application (and Debug Tool will start). But first, save your
Setup File. Type SAVE on the command line, then ENTER.

24. Now, run the application. Type RUN on the command line, then ENTER.

25. When the program executes, Debug Tool will appear on your TSO terminal.

SUCCESS! Debug Tool appears.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 41

26. QUIT out of Debug Tool.

27. Exit from the Debug Tool Utilities panels.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 42

Lab Exercise 9

In this exercise you will:

 Learn some helpful commands used to customize Debug Tool.
 Add a log file to your JCL.
 Create your own Preferences File. To do this you will:

o start a Debug Tool session, enter commands to customize your session, and
save your log file.

o copy the log file into your preferences file.
o start another Debug Tool session, using your new preferences file.

1. Log on to TSO.

2. Open the JCL member ’your-tso-id.ADLAB.JCL(XSAM)’ in an EDIT session.

3. One way to use a Log file is to add it to your JCL with the special DD name “INSPLOG”.

 UN-comment the INSPLOG DD statement in your JCL.

4. Note: Another way to use a log file is to use the Debug Tool command:
SET LOG ON FILE ‘file-name’ after your Debug Tool session starts.

5. Start a Debug Tool session:

 Prepare a Debug Tool terminal, then update and SUBMIT the JCL in ‘your-tso-
id.ADLAB.JCL(XSAM)’.

 Refer back to exercise 7 if you are not sure how to start a Debug Tool session.

6. You must have a Debug Tool session open before you continue.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 43

7. Ensure that the setting to write to the log file is on:

 Type SET LOG ON on the command line, then ENTER.

8. You can open and close the windows.

 Type CLOSE LOG on the command line, then ENTER.

o The Log window will disappear.

 You can still “Zoom” to the log window, even though it is closed. Type ZOOM LOG
on the command line, then ENTER.

o The Log window will appear.

 Type ZOOM on the command line, then ENTER.

o The Monitor and Log windows will appear.

 Type OPEN LOG on the command line, then ENTER.

o The Log window will reappear.

 Note: You can open or close any window with the commands: OPEN MON, CLOSE
MON, OPEN SOURCE, CLOSE SOURCE, OPEN LOG, CLOSE LOG.

9. You can change the size of the windows.

 Type SIZE on the command line, then place your cursor where you want either the top or
bottom of the Source window to be, then ENTER.

 You can also specify the number of lines in the SIZE command:
Type SIZE 10 SOURCE on the command line, then ENTER.

10. You can change the screen colors:

 Type COLOR on the command line, then ENTER.
o The Color Settings screen will appear.

 If you want to, change the colors of some of the items shown. Then use PF3 to return to
the Debug Tool display and see the results.

 Try some different color combinations.

11. You can change the window layout:

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 44

 Type LAYOUT on the command line, then ENTER.

 Type the letters M, L, and S into the 3 boxes in layout #2. Use PF3 to return to the
Debug Tool display and see the results.

 Try some different layouts.

12. To make the following steps easier, make sure that your log window is at least partially visible

(open).

13. On the command line, enter the following commands one at a time:

 SET AUTO ON (To turn on the Automonitor)

 SET DEF SCROLL CSR (To make Debug Tool scroll based on the
cursor position)

 SET PF16 ‘Monitor’ = MON LOCAL %CU LIST CURSOR
(To set PF16 to a cursor-selected
MONITOR LIST function)

 PLAYBACK ENABLE (To turn on the Playback recorder)

 SET FREQ ON (To turn on the frequency counter)

14. Use the Quit command to end the Debug Tool session.

15. Click on your TSO window, and navigate to the editor.

16. Open dataset ’your-tso-id.ADLAB.DTLOG’ in an EDIT session (this is the log file you just

generated):

17. The data in this file will become your new Preferences file. Make the following changes:

 Delete any lines that you don’t want or need.
 If you had any “mistakes” in your commands, fix them or delete them.

18. Save your changes and exit from the editor.

19. Using any method you choose, copy the contents of your Log file into your Preferences file.
Copy all records from: ‘your-tso-id.ADLAB.DTLOG’

 to: ‘your-tso-id.ADLAB.DTPREF’.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 45

20. At this point, you have created a Preferences file! In the next steps, you will start a Debug Tool
session using your new Preferences file.

21. Update your JCL to use the new preferences file.

 Click on your TSO window, and navigate to the editor.

 Edit the JCL in member ‘your-tso-id.ADLAB.JCL(XSAM)’.

22. An easy way to use a Preferences file is to add it to your JCL with the special DD name
“INSPPREF”.

 UN-comment the INSPPREF DD statement in the JCL.

23. Note: Another way to use a Preferences file or a Command file is to use the Debug Tool
command: USE ‘file-name’ after your Debug Tool session starts.

24. Verify that you have a Debug Tool terminal available, and that the Terminal ID in the TEST parm
of your JCL is the name of that terminal.

25. Submit the JCL. Click on your Debug Tool window.

26. A Debug Tool session will appear on your Debug Tool terminal. If it does not, determine the
problem and re-submit the job.

27. In Debug Tool, look in the log window. You should see that the commands from your
Preferences file were automatically executed.

o If not, determine and fix the problem, exit from Debug Tool, and submit the job
again.

28. Exit from Debug Tool.

29. Save your JCL changes.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 46

30. Take a look at the following examples of Preferences files. You may get some ideas about
commands that you would like to have in your Preferences file. Browse these datasets:

a. ‘your-tso-id.ADLAB.FILES(INSPPREF)
b. ‘your-tso-id.ADLAB.FILES(INSPPRE2)
c. ‘your-tso-id.ADLAB.FILES(INSPPRE3)

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 47

Lab Exercise 10

In this exercise you will:

 Learn to continue running a program after it has abended.

7. Start a Debug Tool session:

 Prepare a Debug Tool terminal, then customize and SUBMIT the JCL in ‘your-tso-
id.ADLAB.JCL(XSAM)’ that you customized in Exercise 7.

 Refer back to exercise 7 if you are not sure how to start a Debug Tool session.

7. You must have a Debug Tool session open before you continue.

7. If you have any breakpoints, clear them.

 Type CLEAR AT on the command line, then ENTER.

o This removes all breakpoints.

7. Run the program. It will abend (this sample program tries to do a calculation on some bad

data)

 Type GO on the command line, then ENTER.

 Debug Tool shows the abending statement.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 48

7. Display the variables referenced by the abending statement.

 If the automonitor is not already on, then type SET AUTO ON on the command line,
then ENTER.

o This turns on the automonitor, and shows the variable values.

7. Notice that the variable CUST-ACCT-BALANCE has bad data (it caused the abend). Debug
Tool automatically displays in Hex variables that contain bad data.

7. Fix the bad data. Overtype the bad data with a valid number, like 1234 (and clear the rest of
the field). Then ENTER (to format a MOVE statement). Then ENTER again (to execute
the MOVE statement).

7. The CUST-ACCT-BALANCE variable should show a valid data value.

7. Set a breakpoint at the statement immediately after the abending statement:

 Type AT 166 on the command line, then ENTER. (Verify that this is the statement
after the abending statement).

 You should have a breakpoint set as shown here:

7. Bypass the abend:

 Type GO BYPASS on the command line, then ENTER.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 49

7. Debug Tool passes control to the next statement. It stopped there because of the breakpoint.
At this point, the abend has been bypassed, and the program can continue to run.

7. Next, re-execute the statement that abended:

 Type JUMPTO 164 on the command line, then ENTER. (Verify that this is the line
number of the abending statement).

7. Re-execute the statement that abended:

 Type STEP on the command line, then ENTER.

7. At this point, you have bypassed the abend, repaired the data, and re-executed the abending
statement! The program can continue running.

7. QUIT out of Debug Tool.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 50

Lab Exercise 11

In this exercise you will:

 Set an AT ENTRY breakpoint to stop when a subprogram is reached.
 Set a breakpoint in a subprogram.
 Use the STEP RETURN command to return from a subprogram.
 Use the QUALIFY PROGRAM command to select which program is displayed in the

Source window.

1. Start a Debug Tool session:

 Prepare a Debug Tool terminal, then customize and SUBMIT the JCL in ‘your-tso-
id.ADLAB.JCL(XSAM)’ that you customized in Exercise 7.

 Refer back to exercise 7 if you are not sure how to start a Debug Tool session.

2. You must have a Debug Tool session open before you continue.

3. This sample application will CALL a subprogram named SAM2. You will set an “AT ENTRY”

breakpoint that will make Debug Tool stop when subroutine SAM2 is entered.

 Type AT ENT SAM2 on the command line, then ENTER.

 Type GO on the command line, then ENTER.

 Debug Tool stops when program SAM2 is entered.

4. Step into the subprogram.

 Type STEP on the command line, then ENTER.

 Debug Tool steps into the subprogram.

 STEP again to step into SAM2 processing.

5. One way to return back to the calling program is to just continue to STEP until you get there.
However, there is an easier way:

 Type STEP RETURN on the command line, then ENTER.

 The program continued to execute until it returned to the calling program. It stops at the
statement after the CALL statement.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 51

6. This sample application will CALL the subprogram SAM2 more than once. Run the program, to
get to the breakpoint that you already set in SAM2.

 Type GO on the command line, then ENTER.

 Debug Tool will stop again at the entry of SAM2.

7. Sometimes, you may want to work with programs that are not the current program. Next, you
will tell Debug Tool to show you the main program (SAM1).

 Type QUALIFY PROG SAM1 on the command line, then ENTER.

 SAM1 is displayed in the source window.

8. At this point, you could set other breakpoints in SAM1 and look at variables in SAM1.

9. Next, you will return to the active program.

 Type QUALIFY RESET on the command line, then ENTER.

 The active program (SAM2) is displayed.

10. QUIT out of Debug Tool.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 52

Lab Exercise 12

In this exercise you will:

 Learn to start Debug Tool in a CICS environment using the DTCN transaction.
 Use the Debug Tool Setup Utility (DTSU).
 Create and save a debugging “profile” that will trigger a Debug Tool session.
 Run a sample application and start Debug Tool.

1. Connect to CICS. If you normally log on to CICS, then log as well.

 Your instructor may direct you to connect to a specific CICS region

2. You may need to “route” to another CICS region. On some systems, you log on to a CICS
“Terminal Owning Region” (TOR), and the demo transaction will run on a different region. In
this sort of CICS environment, you can “route” to an “Application Owning Region” (AOR). One
way to do this is with the CICS “CRTE” (CICS Route) transaction.

 If needed, “route” to the correct Application Owing Region.

o Clear the screen.

o Type CRTE SYSID=xxxx and ENTER (where XXXX is the Sysid of the
AOR where the demo transaction “CDAT” is defined).

Part 1: Become familiar with the
demo “CDAT” transaction

3. Start the sample transaction:

 Clear the screen.

 Type CDAT and ENTER .

4. The CDAT birthday application screen is displayed. Take a minute to become familiar with this
application.

o It is a pseudo-conversational CICS application written in COBOL.

o All application functions are performed under transaction id “CDAT”.

o The main program is named CDAT1.

o If you run the “B” function, CDAT1 performs an EXEC CICS LINK to run
subprogram CDAT2.

o If you run the “R” function, program CDAT1 performs a CALL to run subprogram
CDAT3.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 53

5. Familiarize yourself with the CDAT application.

 Enter your birth date, select the B function, and ENTER .

 Enter your birth date, select the R function, and ENTER .

 Select the C function, and ENTER .

 PF3 or CLEAR to exit the application.

Part 2: Use the DTCN transaction to
create a Debugging Profile

6. Start the Debug Tool transaction:

 Clear the screen.

 Type DTCN and ENTER .

7. The DTCN screen is displayed. Review the options on the screen. DTCN is used to define a
debugging “profile”. The profile defines the application that you want to debug, and where the
debugger is to be displayed.

o You define the application that you want to trap for debugging. If needed you can use
a wildcard of * (asterisk) to make entries generic. For example, you can specify a
program name of: ABC*. If you leave any entry blank, then it will match any name.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 54

For example, leave the transaction field blank to trap any transaction code. You can
specify any combination of:

• The CICS terminal ID where the application will run (usually your terminal).

 The default is your terminal ID.

 Important note: To debug a “background” transaction (a transaction
that is not executed from a terminal), leave the terminal ID blank.

• The Transaction ID

• Up to 8 program names where the debugging session will start.

 Important note: Once the debugging session starts, Debug Tool will
follow the application logic into other programs as well, not just
programs in the list.

• The user ID (usually your ID)

• The Network name. This is the VTAM LU name of the CICS terminal. In
most cases this is not used, but it gives you an alternate method of identifying
the terminal (in addition to the CICS terminal ID).

• The IP address of the network node that initiated a “background” transaction.
In some cases, the IP address is know to CICS, and this information can be
used to identify a specific instance of a transaction.

o You also define where the Debug Tool session is to be displayed. You can specify
either an MFI (3270 interface) session, or a GUI debugger such as WDDz.

• To define an MFI (3270 interface) session:

 Specify “Session type”: MFI

 Specify “Port number”: (leave blank)

 Specify “Display id”: a CICS terminal id (usually your terminal)

• To define an GUI interface (such as WDDz) session:

 Specify “Session type”: TCP

 Specify “Port number”: the TCP port number you set up in your GUI
debugging software (usually 8000 or 8001).

 Specify “Display id”: the TCP address or TCP netname of your
workstation

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 55

8. Specify information for your debugging profile. Notice the defaults: your terminal ID is assumed
for the application to be debugged, and also for where Debug Tool will be displayed. You User
ID is the default for the application to be trapped.

 Type CDAT1 in the first program id field.

 IF YOU USING THE MFI (3270 INTERFACE):

o Leave the rest of the fields unchanged. The default settings will trap only when a
transaction is running on your terminal and with your user ID.

 IF YOU ARE USING A GUI DEBUGER (WDDZ, etc.):

o Start the GUI debugger software on your workstation now.

o Type TCP in the “Session type” field.

o In the “Port number” field, specify the TCP port address you configured (or took the
default for) in your GUI debugger. This is normally 8000 or 8001 .

o In the “Display ID” field, type the TCP address of your workstation, where the GUI
debugger software is listening.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 56

9. Next, you will review the settings on the LE TEST parm. Debug Tool is started when the TEST
parm is passed to LE. By setting up a debugging profile in DTCN, CICS will automatically pass
the TEST parm at the appropriate time when your application executes.

 Notice that a TEST parm has already been generated. It is displayed on the bottom of the
screen. You can make changes to it.

 Press PF9.

10. A screen is displayed where you can modify the options in the TEST parm. For example, if you
want to automatically run a Command File or Preferences file, you can type in the names of the
files here. These fields need fully qualified file names, without quotes. Note: These files do
NOT need to be defined to CICS. However, the CICS region must have read authorization to the
files.

 In CICS, it is recommended change the “Test Level” option to ERROR. With the default,
Debug Tool will stop at every EXEC CICS RETURN in the program, which many people do
not prefer.

o Type ERROR in the “Test Level” field.

o Press PF3 to return.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 57

11. The DTCN main panel is displayed again. Save your profile:

 Press PF4 .

 Verify that a “Debug Tool profile saved” message was displayed. At this point, Debug Tool
is activated, and will trap your application the next time it runs.

12. Notice some of the other PF keys available:

o You can delete your profile with PF6.

o You can see a list of active profiles in the CICS region with PF7.

o You can temporarily inactivate and reactivate your profile with PF5.

o You can delete the profile with PF6. But don’t do this now!

13. Exit from DTCN:

 Press PF3 .

 A blank screen is displayed.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 58

Part 3: Run the demo transaction
and start Debug Tool

14. Run the demo transaction again:

 Clear the screen.

 Type CDAT and ENTER .

15. Debug Tool should start !

 If Debug Tool did not start, use the DTCN transaction again to review your profile. Some
common mistakes are:

o The wrong program name was entered (should be CDAT1).

o For the MFI, you had the wrong terminal ID coded (it should be your term id).

o For WDDz, you had the wrong TCP address or port coded.

o You forgot to SAVE the profile (PF4).

o You accidentally “Inactivated” the profile with PF5. If so, activate it by pressing PF5
again.

 Ask you instructor for help if you can’t get a Debug Tool session started.

Part 4: Practice using Debug Tool
with the demo transaction

16. Here are some other things to try:

a. Run the program to completion several time to see the interaction between the application and
Debug Tool. As the program executes and terminates, you will see both application screens
and the debugger. Practice running the CDAT transaction to become familiar with this
interaction.

o In the MFI interface, run the program with the GO command.

o In WDDz, run the program with the RESUME button.

b. Try setting a breakpoint at the entry of subprogram CDAT2, then run until program CDAT2
is trapped. CDAT2 is executed as a subprogram when you select the B function on the CDAT
application screen.

o In the MFI interface, set the breakpoint with the command: AT ENTRY SAM2.

o Or in WDDz, to set the entry breakpoint:

 Right-click in the breakpoints window

 Select “Entry” breakpoint.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 59

 Set a breakpoint in load module CDAT2, csect CDAT2, entry point CDAT2.

c. Change the DTCN profile to trap program CDAT2 instead of CDAT1. As you run the
transaction, notice that Debug Tool does not start for the main menu in CDAT, but only when
program CDAT2 is executed.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 60

Lab Exercise 13

In this exercise you will:

 Learn to start Debug Tool in a CICS environment using the CADP transaction.
 Create and save a debugging “profile” that will trigger a Debug Tool session.
 Run a sample application and start Debug Tool.

1. Connect to CICS. If you normally log on to CICS, then log as well.

 Your instructor may direct you to connect to a specific CICS region

2. You may need to “route” to another CICS region. On some systems, you log on to a CICS
“Terminal Owning Region” (TOR), and the demo transaction will run on a different region. In
this sort of CICS environment, you can “route” to an “Application Owning Region” (AOR). One
way to do this is with the CICS “CRTE” (CICS Route) transaction.

 If needed, “route” to the correct Application Owing Region.

 Clear the screen.
 Type CRTE SYSID=xxxx and ENTER (where XXXX is the Sysid of the AOR

where the demo transaction “CDAT” is defined).

Part 1: Become familiar with the
demo “CDAT” transaction

3. Start the sample transaction:

 Clear the screen.
 Type CDAT and ENTER .

4. The CDAT birthday application screen is displayed. Take a minute to become familiar with this
application.

o It is a pseudo-conversational CICS application written in COBOL.

o All application functions are performed under transaction id “CDAT”.

o The main program is named CDAT1.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 61

o If you run the “B” function, CDAT1 performs an EXEC CICS LINK to run
subprogram CDAT2.

o If you run the “R” function, program CDAT1 performs a CALL to run subprogram
CDAT3.

5. Familiarize yourself with the CDAT application.

 Enter your birth date, select the B function, and ENTER .
 Enter your birth date, select the R function, and ENTER .
 Select the C function, and ENTER .
 PF3 or CLEAR to exit the application.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 62

Part 2: Use the CADP transaction to
create a Debugging Profile

6. Start the Debug Tool transaction:

 Clear the screen.
 Type CADP and Press ENTER .

7. Specify information for your debugging profile. As you can see from the column headings, your
debugging profile will be added to a table of profiles. The headings tell you who owns the profile
and which transactions and programs are being trapped.

 Press “PF5” to create your profile. This will bring up the following screen:

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 63

8. Notice where you can modify the options in the TEST parm. For example, if you want to
automatically run a Command File or Preferences file, you can type in the names of the files here.
These fields need fully qualified file names, without quotes. Note: These files do NOT need to be
defined to CICS. However, the CICS region must have read authorization to the files.

 In CICS, it is recommended change the “Test Level” option to ERROR. With the default,
Debug Tool will stop at every EXEC CICS RETURN in the program, which many people do
not prefer.

9. Fill in the information for your profile:

 Type your initials in the “Create Compiled Debugging Profile” field so that your profile
has a name. You can give your profile any name, it just has to be unique (not already used by
an existing profile).

 Enter cdat* as a wild card selection for the programs you want to test using the Debug
Tool.

 Type Error in the “Test Level” Field.

 Press ENTER to create the profile

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 64

10. Return to the main panel.

 PRESS “PF12” to return.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 65

Notice that your new profile is displayed in the list now. It has an “I” (inactive) in the S (Status)
column. When you first create a profile, it is inactive. Activate the profile so Debug Tool will
be invoked when any program starting with CDAT begins:

 Enter the A line command next to your profile.

 PRESS ENTER. This will bring up this screen:

 On this screen, you select the 3270 session or TCP session where you want Debug Tool to
appear once the program starting with CDAT executes. By default, Debug Tool will appear
on your current CICS terminal. For purposes of this exercise leave it as the default.

 Press Enter. This will save the updated profile information and return to the primary
CADP screen

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 66

11. Notice some of the other PF keys that are available:

o You can filter the profile with PF2. This can be important if there are multiple profiles
created by a lot of different people. Pressing PF2 repeatedly will filter by owner, by
status, or display all profiles.

o You can view a profile with PF4. This is done by placing the cursor next to the profile
you want to view and pressing PF4.

 12. You can also use Line Commands to modify the profiles

o You can temporarily inactivate a profile by placing the letter “I” next to the profile
you want to inactivate. Do not do this now.

o You can delete a profile by placing the letter “D” next to the profile you want to
delete. But don’t do this now!

12. Exit from CADP:

o Press “PF3” . A blank screen is displayed.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 67

Part 3: Run the demo transaction
and start Debug Tool

13. Run the demo transaction again:

 Clear the screen

 Type CDAT .
 ENTER .

14. Debug Tool should start !

 If Debug Tool did not start, use the CADP transaction again to review your profile. Some
common mistakes are:

o The wrong program name was entered (should be CDAT* or CDAT1).

o For the MFI, you had the wrong terminal ID coded (it should be your term id).

o For WDDz, you had the wrong TCP address or port coded.

o You accidentally “Inactivated” the profile with I command. If so, activate it by
entering “A” next to the profile and pressing enter again.

 Ask you instructor for help if you can’t get a Debug Tool session started.

Part 4: Practice using Debug Tool
with the demo transaction

15. Here are some other things to try:

d. Run the program to completion several times to see the interaction between the application
and Debug Tool. As the program executes and terminates, you will see both application
screens and the debugger. Practice running the CDAT transaction to become familiar with
this interaction.

o In the MFI interface, run the program with the GO command.

o In WDDz, run the program with the RESUME button.

e. Try setting a breakpoint at the entry of subprogram CDAT2, then run until program CDAT2
is trapped. CDAT2 is executed as a subprogram when you select the B function on the CDAT
application screen.

o In the MFI interface, set the breakpoint with the command: AT ENTRY SAM2.

o Or in WDDz, to set the entry breakpoint:

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 68

 Right-click in the breakpoints window

 Select “Entry” breakpoint.

 Set a breakpoint in load module CDAT2, csect CDAT2, entry point CDAT2.

f. Change the CADP profile to trap program CDAT2 instead of CDAT1. As you run the
transaction, notice that Debug Tool does not start for the main menu in CDAT1, but only
when program CDAT2 is executed.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 69

Lab Exercise 14

In this exercise you will:

 Learn to start Debug Tool for an Assembler application running in a batch job.

13. Log on to TSO.

14. Open the following dataset in an EDIT session:

’your-tso-id.ADLAB.JCL(XASAM1)’

15. Customize the JCL to run on your system by making the following changes:

1. Add a valid job card as needed for your system(s).
2. The instructor may have told you about other JCL customizations needed for your system.

Leave your TSO edit session active.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 70

16. Start a second terminal emulator window. We will call this your “Debug Tool terminal”. Your
instructor will have shown you how do this in class. DO NOT LOG ON to this second emulator
window. To make it work, your Debug Tool terminal must NOT be connected to ANY
application. Not even a session manager.

 Find the Terminal ID of your Debug Tool terminal. FYI… Technically, the “Terminal
ID” is the “VTAM LU” (Logical Unit) ID.

 What is the Terminal ID? ______________________________________

17. You now have 2 terminal emulator windows active:
1. One where you are logged on to TSO, with the JCL open in an Edit session.
2. Your Debug Tool terminal, where you are not logged on.

Your TSO
Terminal

Your Debug Tool
Terminal

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 71

18. Click on your TSO terminal. Notice the parameter string on the line immediately after the EXEC
statement.

 The first parameter is the name of the assembler program, which is ASAM1 in this

example. To start Debug Tool for an assembler main program, you execute Debug Tool
(program EQANMDBG) on the EXEC statement, and pass the name of the assembler
program as the first parm.

 Change the terminal id in the TEST parm to the Terminal ID of your Debug Tool
terminal. Be careful not to change the format of the TEST string. The line with the TEST
parm should be similar to:

// PARM='ASAM1,TEST(,,,MFI%TRMLU006:)',

(Instead of TRMLU006, you should use the name of your Debug Tool terminal specified.

Important Note: The special characters % and : are required!).

19. Your JCL should look similar to this example, although it will have your unique job card, your
dataset names, and (most importantly) your Debug Tool Terminal ID:

20. Submit the job (use the SUBMIT command). Then click on your Debug Tool terminal.

21. When the job runs, Debug Tool will automatically appear on your Debug Tool terminal.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 72

SUCCESS! Debug Tool appears.

 If Debug Tool does not appear, check your JCL for errors and try again. Use a JES
viewing facility (such as SDSF) to check on the status of your job. Here are some
common problems that you should check on:

o The job card is coded incorrectly.
o The job has a JCL error, due to an invalid dataset name, or some other error.
o The Terminal ID was coded incorrectly.
o The TEST parm was coded incorrectly.

22. Click on your Debug Tool session. Use STEP commands to verify that you can step into the
program.

23. Use the QUIT command to end your Debug Tool session.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 73

24. Click on your TSO window. Save your JCL changes. You will use this JCL again in later
exercises.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 74

Lab Exercise 15

In this exercise you will:

 Learn the basic Debug Tool commands used in debugging Assembler.

33. Before you do this exercise, you must first do exercise 14 to start a Debug Tool session.
Before you continue, you must have a Debug Tool session started in program ASAM1.

34. Get help with commands using the “?” command.

 Type ZOOM LOG on the command line, then ENTER.

 The log window will be displayed in full screen mode.

o Type ? on the command line and ENTER. (The “?” command by itself displays
a list of all commands.)

 You can type “?” into any command to get a list of valid options for the command. This next
command will display the different options of the “AT” command (used to set breakpoints):

o Type AT ? on the command line, then ENTER . A list of the things that you
can type after the word “AT” is displayed.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 75

35. PF10 is set to the ZOOM command. It will zoom in, and will also zoom out.

 Press PF10 to zoom out of the log window.

 All three windows will be displayed again.

36. The SET ASSEMBLER ON and SET DISASSEMBLY ON commands can be used to set up
the Assembler Debug Tool environment.

Note: Consider the types of programs you will be debugging when deciding which setting to
use. The following guidelines can help you decide which command to use:

• You must turn on EITHER the ASSEMBLY or DISASSEMBLY setting to work with
assembler programs.

• The ASSEMBLER or DISASSEMBLY settings are mutually exclusive. You can only
be in Assembler or Disassembly mode, not both.

• An advantage of DISASSEMBLY is that if you do not have source information saved
for Debug Tool to use (a LANGX file), then the DISASSEMBLY setting allows you to
see the machine instructions in the program. However, even in DISASSEMBLY
mode, source statements will be displayed if you have a LANGX file.

• The SET ASSEMBLER ON setting enables these Debug Tool commands with
assembler programs:

o AT APPEARANCE *
o AT APPEARANCE program-name

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 76

o AT ENTRY name
o DESCRIBE PROGRAM
o LIST assembler-variable-name and MONITOR LIST assembler-variable-name
o LIST NAMES PROGRAMS
o QUERY SOURCE

• The SET DISASSEMBLY ON setting gives you ALL OF THE CAPABILITIES of the
SET ASSEMBLER ON setting, PLUS enables the commands:

o STEP INTO (to step into an assembler subroutine)
o AT ENTRY *

• Many people prefer the DISASSEMBLY setting, since it is more powerful. You may
want to choose the ASSEMBLER setting is if you want to avoid accidentally stepping
into, or having breakpoints in, system routines and other assembler routines.

• If you are debugging in ASSEMBLER mode and later decide you want to debug in
DISASSEMBLY mode, you can enter the SET DISASSEMBLY ON command after
you enter the SET ASSEMBLER ON command.

Type SET DISASSEMBLY ON on the command line and hit Enter.

37. Note: In the next step, you will “load” source information for the program into debug tool.
Before you do that, you must tell Debug Tool the name of the PDS where your EQALANGX
files have been stored. (EQALANGX files contain source information in a format that Debug
Tool can use. They must be created when you assemble the program). The best ways to give
Debug Tool the name of your EQALANGX library (or libraries) are:

• Type a “SET DEFAULT LISTINGS library-name” command, or

• Code an EQADEBUG DD statement in the execution JCL. IMPORTANT: The JCL
that you submitted to start Debug Tool contained this DD statement.

38. THE LDD program name loads the source information for the program into Debug Tool
environment. Specifically, it is loading an EQALANGX file that was created when the
program was assembled.

Enter LDD ASAM1 on the command line and hit Enter. This loads the source
information that’s in member ASAM1 from the EQALANGX library (PDS). You’ll
see the program source information as shown here:

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 77

5. Use the STEP command to enter into the program ASAM1:

 Type STEP on the command line, then Enter.

 Enter PF2.

39. Set breakpoints. Try these different methods:

 Place the cursor in the Source Window and then Enter PF10. This will open the
Source Window.

 Place the cursor on statement 3 in the Source window and then Press PF6.

 Type AT 5 on the command line (where 5 is a valid statement number) then ENTER.

 Type A in the prefix area (the numbered area to the left of the program) of statement
12 in the Source window, then ENTER.

40. You should have some breakpoints set now. Notice that the colors are reversed in the prefix
area (on the left side of the screen) next to the statements with breakpoints.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 78

41. You can display (List) your breakpoints:

 Press PF10 (Zoom) to un-zoom and display all 3 windows again.

 Type LIST AT on the command line, then ENTER.

 Notice that your breakpoints are displayed in the log window.

 Press PF10 (Zoom) again to zoom the source window.

42. Clear breakpoints. Try these different methods:

 Place the cursor on statement 12, and Press PF6. Notice that PF6 will toggle
breakpoints on and off.

 Type CLEAR AT 5 on the command line (where 5 is a valid statement number)
then ENTER.

 Type C (for Clear) in the prefix area for source line 3 (the numbered area to the left of
the program), then ENTER.

 To clear all breakpoints with a single command, you can type CLEAR AT on the
command line, then ENTER.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 79

43. Set breakpoints at statements 22 and 25. It’s OK if you have other breakpoints set. With the
Source Window zoomed open (place the cursor in the Source Window and use the PF10 key),
you can scroll forward (PF8) to see these statements.

44. Run the program until it reaches a breakpoint.

 Type GO on the command line, then ENTER.

o The program should be stopped at a breakpoint.

o If the program ended, then you probably did not have a breakpoint set where it
would be reached. If that happened, re-run the program to start Debug Tool again.
Re-run the program as many times as needed throughout this exercise.

 PF9 is set to the GO command. Make sure you have a breakpoint that will be reached.
Press PF9 to GO.

45. Practice setting, clearing, and running to breakpoints at statements until you are familiar with:

 the “AT #” and “CLEAR AT #” commands
 PF6 as a toggle to turn breakpoints on or off
 the “A” (At) and “C” (Clear) line commands
 PF9 or the “GO” command to run to a breakpoint

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 80

46. You can use the JUMPTO command to “jump” to a statement and continue execution at this
statement. This is sometimes helpful to re-execute a few statements in the program. Try the
following:

 Make sure you have breakpoints at statements 22 and 25.

 Run the program (GO or PF9) until it is stopped at statement 25 or later.

 Type JUMPTO 21 on the command line, then ENTER.

 The program should be stopped at statement 21.

47. You can use the GOTO command instead of JUMPTO. It is similar to JUMPTO, but it
does not stop at the statement. It jumps to the statement and immediately continues to run.
The program will automatically run to the next breakpoint (or the end of the program).

 Make sure you have breakpoints at statements 22 and 25.

 Run the program (GO or PF9) until it is stopped at statement 25.

 Type GOTO 21 on the command line, then ENTER.

 Note that statement 21 executed, but Debug Tool did NOT stop at 21. A GOTO
command will not stop at the target statement unless you have a breakpoint there. The
program is stopped at statement 22, which was the next breakpoint that it reached.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 81

48. Display the address and length of a program in the Log.

 Type DESCRIBE ATTRIBUTES ASAM1 on the command line and ENTER.

 In the log window you will see the address and length information of ASAM1.

16. Display the address and length of a variable in the Log Window.

Enter DESCRIBE ATTRIBUTES SAVEAREA on the command line and then
Enter.

(Note: Try DE AT SAVEAREA which is an abbreviation of the same command).

17. Display a variable in the monitor window. Try different methods:

 Type MONITOR LIST SAVEAREA then Enter. Try abbreviating this
command... For example: MON LI SAVEAREA

 Type MON LIS (an abbreviation for MONITOR LIST) on the command line, then
place the cursor on any variable that appears in the Source window (for example
EYECATCH), then Enter.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 82

18. Note: Most items that you can display in the log with a LIST command, you can also display in
the monitor window with MONITOR LIST command.

19. Remove items from the Monitor Window:

 Type C (for Clear) next to a variable in the prefix area (the numbers on the left) of the
Monitor window, then ENTER .

 To remove all items from the Monitor Window: Type CLEAR MONITOR on
the command line, then ENTER. (Or abbreviate this command, such as : CLE MON

20. Using MONITOR LIST command, as described in the last few steps, put the following
variables in the Monitor Window:

- MAINLSAV
- SAVEAREA

21. Modify a variable value.

 Tab to the data area of the MAINLSAV variable in the Monitor window.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 83

 Change the data to 1, clear out the rest of the field, then ENTER.

 The value in MAINSLAV is now 1.

22. Along with variables, Debug Tool will allow you to monitor and list the General Purpose
Registers and special variables associated with General Purpose registers.

Type LIST REGISTERS on the command line and hit enter. In the log window you will
see:

Type MO LIST REGISTERS on the command line and hit ENTER. In the log window you
will see the General Purpose Registers in the Monitor Window and the values in the General Purpose
Registers which can be modified like a variable. Try both LIST and MONITOR LIST commands on
Storage locations as part of this exercise.

23. Add a single variable in the Monitor window.

 Type MON LIST %GPR1 and Enter.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 84

Notice that register 1 was added to the Monitor Window. You may have to scroll forward in the
monitor window to see it (put your cursor in the monitor window, then press PF8). You can modify
register values in the Monitor Window when they have been added this way.

24. You can display storage in the Log Window with a LIST Storage command. Try these
commands.

• LIST STOR(INREC) to display 16 bytes of storage (the default) starting with the address
of the INREC variable.

• LIST STOR(X’7848’) to display 16 bytes of storage (the default) starting with an address.

• LIST STOR(X’7848’,64) to display 64 bytes of storage starting with an address.

25. You can display storage in the monitor window with a MON LIST STORAGE command. Try
these commands:

• MON LIST STOR(INREC) to display 16 bytes of storage (the default) starting with the
address of the INREC variable.

• Note: You can change any of the above LIST STOR(…) commands to a MON LIST
STOR(…) command to view the same result in the monitor window, instead of the log
window.

26. Automatically display active variables in the Monitor Window.

 Turn on the Automonitor: Type SET AUTO ON on the command line, then
ENTER.

 The “Automonitor” appears at the bottom of the Monitor window. You may have to
scroll forward in the Monitor to see it. This will automatically display variables
referenced by the current statement in the program.

Debug Tool Mentor Workshop
Lab Exercises

__

__
Last Update: 7/23/2007 © 2006 IBM Corporation Page 85

 Use PF2 (or the STEP command) a few times. Notice that as you step, the Automonitor
changes to show variables referenced by the current statement.

27. End the Debug Tool session:

 Type QUIT on the command line, then ENTER.

 When you receive the “Do you really want to …” prompt, Type Y on the command
line, then ENTER.

Note: If you were to just continue to run the program with the GO command (or PF9), the
program would eventually terminate on its own, and the Debug Tool session would end when
the program terminates.

