
Whitepaper
IBM Software Group Information Management

Small Steps to Big Gain DB2
10 helps save CPU resources

2 Small Steps to Big Gain DB2 10 helps save CPU resources

PART 1 - DB2 10 for z/OS Conversion Mode
This first part is limited to a discussion of DB2 10 Conversion
Mode, in which it is still possible to fallback to the prior release
(either DB2 VERSION 8 or DB2 9). Conversion mode is the
state that DB2 is in when you first migrate from DB2 Version
8 or DB2 Version 9. During that time, you will not be allowed
to use new functions that would cause incom-patibilities if you
fell back to a prior release. In the next section of this whitepaper,
we will talk about further CPU savings that one can achieve in
DB2 10 New Function Mode.

New function is usually associated with new externals and
application changes. Once those changes are made, the
customer can often reduce DB2’s CPU consumption.
However, new functions occasionally require infrastructure
changes. While circumstances vary depending on specific
configurations, such new infrastructure typically causes an
average “CPU regression” of as much as 5 percent when the
new function isn’t yet exploited. This is illustrated in Figure 1,
where a negative CPU improvement indicates CPU regression.
There was greater average CPU regression (typically 5 to 10
percent) when DB2 Version 8 introduced 64-bit support and
long-name support in the DB2 catalog. Catalog infrastructure
change is one of the causes for CPU regression in DB2 Version 8.

-15

-10

-5

0

5

10

15

V3 V4 V5 V6 V7 V8 V9 V10V3 V4 V5 V6 V7 V8 V9 V10

Figure 1. Average percent CPU improvement version to version

Contents

 2 PART 1 - DB2 10 for z/OS Conversion Mode
 3 Large z/OS page frames
 3 RELEASE(DEALLOCATE)
 3 Distributed applications
 4 Capacity improvements
 4 I/O Improvements
 4 zIIP and zAAP exploitation
 4 Query performance
 5 Insert Performance
 5 Utilities
 5 Large Objects (LOBS)
 5 Conclusion

 6 PART 2 - DB2 10 for z/OS New Function Mode (NFM)
 6 Inline Large Objects (LOBS) and HASH

ACCESS – CPU Performance Enhancements
 7 Bi-temporal and DB2 10
 7 Summary – DB2 10 and Savings CPU Resources

 7 About the author

IBM Software Group 3

Saving CPU Resources Using IBM DB2 10 for z/OS -15 -10
-505 10 15 V3 V4 V5 V6 V7 VERSION 8 9 10 Figure 1.
Average Percent CPU Improvement Version to Version.

The 64-bit structures in DB2 Version8 enabled much larger
buffer pools and enabled other structures to grow, yielding
better I/O performance and better CPU performance in
some cases. DB2 9 made modest improvements in 64-bit
exploitation, but DB2 10 is considered to be almost full
exploitation. By that, we mean that in DB2 10 there are very
few data structures below the bar. You will have to rebind
packages in order to create the new 64-bit thread structures.

Large z/OS page frames
Among the infrastructure changes is the way that PGFIX(YES)
buffer pools are managed on a z10™ or z196 processor. The
z10 processor with z/OS 1.10 introduced 1MB page frames.
Large page frames help z/OS improve the CPU performance
as the amount of memory increases. IBM laboratory testing
has measured CPU improvements of a few percent for specific
transaction workloads. The only customer actions needed
to exploit large frames are to define the buffer pools with
PGFIX(YES) and to specify the LFAREA z/OS system
parameter. LFAREA is the amount of real storage that z/OS
will use for large frames.

RELEASE(DEALLOCATE)
RELEASE(DEALLOCATE) has been part of DB2 for a
long time, but DB2 10 makes the function more useful. The
dramatic DBM1 virtual storage constraint relief in DB2 10
that you can achieve with rebind makes it possible to use
RELEASE(DEALLOCATE) more. This change has been
shown to save up to 10 percent CPU time for high volume
transactions with short running SQL without changing
applications or DDL.

Distributed applications
For Distributed Data Facility (DDF) work, after rebinding
packages with RELEASE(DEALLOCATE), the customer
must issue the MODIFY DDF PKGREL(BINDOPT)
command to allow DB2 to use RELEASE(DEALLOCATE)
processing for packages bound with RELEASE(DEALLOCATE).
DDF inactive thread processing (CMTSTAT=INACTIVE)
takes advantage of new “high performance Database Access
Threads (DBATs)” to increase distributed DBAT reuse. MODIFY
DDF PKGREL(COMMIT) can be used to use commit behavior
when, for example, you need to allow utilities to break in. With
DB2 Logical Unit of Work (LUW) 9.7 Fixpack 3, the Call-
Level Interface (CLI) and Java Database Connectivity (JDBC)
packages are bound with RELEASE(DEALLOCATE) by
default. RELEASE(DEALLOCATE) depends upon having
very well debugged, well behaved applications that are careful
with locking and committing frequently.

DB2 further improves overall Distributed Relational Database
Architecture (DRDA) application performance for result sets
from SELECT statements that contain the FETCH FIRST 1
ROW ONLY clause by combining the OPEN, FETCH and
CLOSE requests into a single network request. DB2 10 also
offers improved DDF performance through restructuring
distributed processing on the server, particularly the inter-
action between the DDF address space and the DBM1
address space.

All together, simply migrating to DB2 10 Conversion Mode,
rebinding packages, exploiting large page frames and exploiting
RELEASE(DEALLOCATE) can typically save from 5 to 10
percent of the CPU for transaction workloads, and up to 20
percent for native SQL procedure applications. Much greater
CPU savings is possible for queries that contain large numbers
of index stage 1 predicates, as well as IN-list predicates. Also,
more stage 2 predicates can be pushed down to stage 1.

4 Small Steps to Big Gain DB2 10 helps save CPU resources

Capacity improvements
Since most of the thread storage is moved above the bar, DB2
10 can support more threads than DB2 9, thereby making it
possible to reduce the number of DB2 data sharing members
or, at least, hold the number of members constant while
increasing transaction throughput.

If you were previously unable to increase the MAXKEEPD
zparm value due to a DBM1 virtual storage constraint in
DB2 9, you may be able to increase MAXKEEPD since
the local statement cache is moved above the bar. This may
provide CPU savings by avoiding prepares for more dynamic
SQL statements.

I/O Improvements
Other CPU improvements apply in more specific scenarios.
Some of these are related to I/O improvements since I/Os
are one of the significant contributors to CPU time. These
improvements include an improved dynamic prefetch sequential
detection algorithm. List prefetch support for indexes helps
minimize index I/Os when scanning a disorganized index. The
number of log I/Os also is reduced, and long term page fixing
of the log buffers saves CPU time, as well.

zIIP and zAAP exploitation
Buffer Pool prefetch and deferred write SRBs ordinarily
are not big CPU consumers, but DB2 10 makes this specific
processing eligible for System z® Integrated Information
Processors (zIIPs). This CPU savings is more significant
when using index compression.

As in DB2 9, DB2 can direct up to 80 percent of CPU
intensive parallel query processing to run on an available
zIIP. DB2 10 makes more queries eligible for query
parallelism, which can result in more zIIP exploitation.

In DB2 10, portions of the RUNSTATS utility are eligible
to run on a zIIP. XML schema validation and non-validation
parsing of XML documents is eligible for zIIP or System z
Application Assist.

Processor (zAAP). If XML parsing is done under DDF enclave
threads, it is eligible for zIIP processing. If the XML parsing is
done under a batch utility, it is eligible for zAAP processing.

Query performance
Range-list index scan is a new type of access path used by
DB2 10 to significantly improve the performance of certain
scrolling-type applications in which the returned result set is
only part of the complete result set. The alternative in DB2 9
was to use multi-index access (index ORing) which is not as
efficient as single-index access. Prior to DB2 10, list prefetch
could not be used for matching IN-list access. In DB2 10, list
prefetch can be used for IN-list table access
ACCESSTYPE=’IN’.

The process of putting rows from a view or nested table
expression into a work file for additional processing by a query
is called “physical materialization.” Physical materialization
itself is an overhead; in addition, it limits the number of join
sequences that can be considered and can limit the ability to
apply predicates early in the processing sequence. The join
predicates on materialization work files also are not indexable.
In general, avoiding materialization is desirable. In DB2 10,
there are additional areas where materialization can be
avoided, particularly for view and table expressions involved
in outer joins.

IBM Software Group 5

The processing of stage 1 and non-index matching predicates
has been enhanced. DB2 now processes non-Boolean predicates
more efficiently when accessing an index and stage 1 data
access predicates. You do not need to rebind your static
applications to take advantage of some of these optimization
improvements. However, a rebind is required to take
full advantage.

More complex queries with many predicates show higher
improvement. Queries that scan large amounts of data also
show a higher saving in CPU.

DB2 10 also contains some SQL sorting enhancements.
DB2 10 introduces hash support for large sorts, which
potentially reduces the number of merge passes needed to
complete them. Hashing can be used to identify duplicates
on input to sort if functions such as DISTINCT or GROUP
BY are specified. There also are some additional cases where,
when FETCH FIRST N ROWS is used, DB2 10 can avoid
the sort process altogether.

Insert Performance
The processing of stage 1 and non-index matching predicates
has been enhanced. DB2 now processes non-Boolean predicates
more efficiently when accessing an index and stage 1 data
access predicates. You do not need to rebind your static
applications to take advantage of some of these optimization
improvements. However, a rebind is required to take
full advantage.

When a series of Inserts are sequential with respect to the
cluster key, but where the key is less than the highest key in
the index, a new page selection algorithm helps minimize
getpages, which can help reduce CPU cost.

DB2 10 contains some referential integrity checking improve-
ments on Inserts that may help reduce CPU utilization and
I/O processing.

Utilities
Generally speaking, DB2 utility CPU performance in DB2 10
is equivalent to that of DB2 9, but DB2 9 already introduced
performance improvements of 5 to 50 percent CPU savings
compared to DB2 VERSION 8 for various utilities processing.

Large Objects (LOBS)
DB2 10 contains numerous Large Objects (LOB) enhance-
ments, and one of them applies to Conversion Mode: namely
LOB materialization avoidance. For large LOBs, we have
observed up to a 16-percent reduction in CPU consumption
for DDF Inserts.

Conclusion
All of CPU savings that we have examined here apply to
Conversion Mode. Some of the performance improvements
are available upon installation of DB2 10, without additional
changes, while others require minimal changes such as a change
to installation parameters. Some require a z10 processor and
perhaps changing the buffer pool parameters. Most require
appropriate rebinds to fully realize the benefits. In section 2
of this report, we will start to look at the CPU benefits of
migrating to New Function Mode.

6 Small Steps to Big Gain DB2 10 helps save CPU resources

PART 2 - DB2 10 for z/OS New Function
Mode (NFM)
This is the second part of the report and focuses on reducing
CPU resources or MIPS using IBM® DB2® 10 for z/OS®.
The previous section summarized Conversion Mode.

Above we outlined how you can save CPU resources using
Conversion Mode when migrating to DB2 10 for z/OS. This
article will examine the CPU savings you may achieve when
you migrate to New Function Mode (NFM) and begin to
exploit the new functions.

There are two new functions that require universal table spaces
and will help with CPU performance. These are inline large
objects (LOBs) and hash access.

Inline Large Objects (LOBS) and HASH ACCESS — CPU
Performance Enhancements
Small LOBs can be inlined with the other columns in the row.
If a LOB is small enough to be completely inlined, the aux
index and LOB table space aren’t used, eliminating a lot of
getpages and I/Os, as well as simplifying space management.
The smaller the LOBs are, the greater the CPU savings,
especially when sequential processes are involved. Tests with
200-byte inline LOBs yielded the following CPU savings:

•	 93 percent for UNLOAD
•	 86 percent for LOAD and a table scan
•	 70 percent for sequential inserts
•	 40 percent for random selects and deletes
•	 21 percent for random updates

These CPU savings are in addition to significant elapsed time
and DASD space savings.

Hash access is a new table-space organization that can save
CPU costs when a clustering index isn’t needed. Hash access
is applicable when the data doesn’t need to be clustered
according to a clustering key, and where the queries involve
equal predicates or an IN list predicate. IBM designers applied
a hash access to the IBM Relational Warehouse Workload
(IRWW), an IBM laboratory transaction workload that uses
IBM IMS™ as a front end. IBM researchers determined that
55 percent of the tables merited conversion to hash access,
and this resulted in a 10-percent CPU savings.

Non-key index columns are a new method of enabling index-
only access, while at the same time minimizing the number of
indexes and enforcing key uniqueness. By reducing the number
of indexes, IBM researchers have observed a 10-to 30-percent
CPU reduction for Inserts.

Dynamic Statement Literal Replacement is a new method
of helping to improve the hit ratio in the global dynamic-
statement cache, which reduces the CPU time when
query statements differ only with respect to the particular
literal value.

For LOBs, Copy and Recover can use IBM FlashCopy® to
create and restore Virtual Storage Access Method (VSAM)
image copies, thereby saving all of the CPU time associated
with copying a DB2 object the old-fashioned way. Measure-
ments have shown that FlashCopy saves CPU time for
objects bigger than 7 MB: the bigger the object, the greater
the savings.

IBM Software Group 7

Previous to DB2 10, a stored procedure could only return
result sets to the intermediate caller. If the stored procedure is
in a chain of nested calls, the result sets must be materialized at
each intermediate nesting level, typically through a Dynamic
Global Temp Table (DGTT) or Create Global Temp Table
(CGTT). With the new Return to Client Result Set support, a
result set can be returned from a procedure at any nesting level
directly to the calling client application. No materialization
through a DGTT or CGTT is required. By recoding the
application to use the new support, IBM researchers have
observed 96-percent CPU savings for nested stored procedures.

Bi-temporal and DB2 10
Bi-temporal is a feature of DB2 10 for z/OS that allows
time-period attributes to be defined for a table: both
BUSINESS_TIME (application-managed time period) and
SYSTEM_TIME (DB2-managed time period). This not only
gives users the flexibility in querying data based upon time
periods, but also greatly reduces the development complexity
for doing this type of functionality in user applications.
Previously, applications have included temporal logic outside
of DB2 by using triggers or stored procedures. Exploiting the
bi-temporal support in DB2 10, these triggers and stored
procedures may be removed, allowing some CPU savings.

Binary XML (formally called Extensible Dynamic Binary
XML–DB2 Client/Server Binary XML Format) is an inter-
change format that DB2 understands. It can help reduce DB2
CPU time spent parsing XML. Java applications that parse
XML can use binary XML objects and send data to the DB2
application in a pre-parsed format so the application doesn’t
have to parse the XML again. IBM researchers have seen
binary XML save up to 51 percent of the CPU time for an
XML insert SQL statement.

XMLMODIFY (also called sub-document update) is a new
function that allows updates to a portion of an XML document
instead of the whole thing. This can save both CPU time and
elapsed time. IBM researchers have seen 34-to 44-percent
CPU savings for small updates (10KB), 72-to 84-percent
savings for medium-size updates (100KB), and more than
99-percent savings for large updates (25MB), compared to
full document updates.

Summary – DB2 10 and Savings CPU Resources
DB2 10 delivers significant benefits that save CPU resources.
Many customers will be able to enjoy them with little or no
effort. The benefits associated with the log latch require no
administrative actions. However, other new functions do
require some effort. The effort begins with some workload
analysis to ensure the new function is applicable and will
actually improve performance. For inline LOBs and hash
access, existing data needs to be reorganized. For other
enhancements, the application itself needs some modification
or development. Collectively, these features help to deliver
real and quantifiable business benefit.

About the author
Jeff Berger has worked for IBM for 33 years and is an expert
on hardware and software synergy between DB2 and IBM’s
storage products.

© Copyright IBM Corporation 2012

IBM Corporation
Software Group
Route 100
Somers, NY 10589

Produced in the United States of America
August 2012

IBM, the IBM logo, ibm.com, DB2, z/OS, IMS and FlashCopy are
trademarks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks
is available on the web at “Copyright and trademark information”
www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

This document is current as of the initial date of publication and may be
changed by IBM at any time.

The performance data discussed herein is presented as derived under
specific operating conditions. Actual results may vary. It is the user’s
responsibility to evaluate and verify the operation of any other products or
programs with IBM products and programs.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING WITHOUT ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND ANY WARRANTY OR CONDITION OF NON-
INFRINGEMENT. IBM products are warranted according to the
terms and conditions of the agreements under which they are provided.

Actual available storage capacity may be reported for both uncompressed
and compressed data and will vary and may be less than stated.

Please Recycle

SWW14013-USEN-00

http://www.ibm.com/legal/copytrade.shtml

