
IBM Cúram Social Program Management
Version 7.0.2

Cúram Server Developer's Guide

IBM

Note

Before using this information and the product it supports, read the information in “Notices” on page
205

Edition

This edition applies to IBM® Cúram Social Program Management v7.0.2 and to all subsequent releases unless otherwise
indicated in new editions.

Licensed Materials - Property of IBM.
© Copyright International Business Machines Corporation 2012 , 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

List of Figures... vi
List of Tables.. ix

Chapter 1. Cúram Server Developer... 1
Server Development Environment Overview.. 1

Overview of compliant development artifact changes..1
Building and Configuring a Cúram Application ... 3
SDEJ Development and Application Programming Interfaces... 3
Cúram Runtime Behavior... 4

Directory Structure...4
Application Components..4
Application directory structure.. 5
Artifacts of the SDEJ...11

Build files and their targets..12
How to initiate the build... 12
Overriding default JUNIT.JAR.. 13
How to configure the build... 13
What is happening under the hood..18
Extra Targets...22
Clover Targets...25
Rules Targets.. 25
IEG Targets... 27
Application Configuration Import and Export Targets.. 27
Workflow Targets..28
Deployment Targets... 29
Extending the Build.. 30
Overridden Targets... 31
Application Targets...31

Cúram Configuration Settings..33
Application Properties..33
Support for multiple time zones.. 37
Dates and date/times in Cúram... 39

Data Manager... 39
Intended Data Manager process..39
Invocation...41
Database artifacts.. 41
Database Object Naming... 57
Data Manager configuration...59
Database Synchronization... 60
Statistics... 61
LOB Manager.. 61

SQL Checker...63
Under the Hood.. 63
Limitations.. 63

Eclipse.. 63
Cúram projects to import into Eclipse... 64
Eclipse configuration files.. 64
Access Rules option... 65
Working Sets...66

Logging that uses Apache log4j API..67
Logging usage... 67

 iii

Logging hierarchy... 67
Logging level... 68
Configuration of the Apache log4j Java-based logging utility...69
Logging statistics..74
Localization of log messages... 75
How to enable dynamic UIM tracing..75

How to use exceptions...75
Constructing an exception... 76
Creating messages with argument placeholders.. 78
Handling exceptions...78
Logging exceptions...80
General exception guidelines...80
Coding Conventions for Exceptions... 81
How to use the Record Not Found indicator..81
Localized output... 82
Use of the Informational Manager... 82

Message and Code Table Files.. 85
Message Files... 85
Code Table Files... 91

Specialized readmulti operations..112
When to Use Readmulti Operations.. 113
How to define your own readmulti operations..113
Extra features of readmulti operations..114
An alternative... 117
Summary.. 117

Deprecation... 117
Overview...117
Effect of Deprecation on a Custom Application.. 118
Scope.. 119
Running a Deprecation Report...121
Analyzing Deprecation Warnings... 123

User Preferences... 124
User Preferences Definition... 124
Development support.. 126
External users...126
Localizing display names... 127
Localizing infrastructure preferences display names... 128

Transaction control..128
Developer's View..129
Underlying design...129

Use of the transaction SQL query cache... 130
How results get stored in the query cache..130
How the cache gets invalidated...131
How to set the property for the transaction SQL cache..132
SQLQueryCacheAdmin API..132
SQLQueryCacheUtil API...132
Logging... 132

Deferred processing.. 133
Model your deferred processes... 133
Deferred process enactment... 133
Offline Unit-Testing of Deferred Processes... 135
Configuration of Deferred Processing Table..135
Error Handling.. 136
Security...137
Deferred Processing summary.. 137

Cúram Timer.. 137
Java Platform, Enterprise Edition Bean Definition.. 137
Development Support.. 138

iv

Rules for using SDEJ Timers.. 140
Timer Behavior... 141
FAQ... 141

Events and event handlers.. 143
The Format of Event Files.. 143
How to merge event files... 145
Artifacts produced by generate events... 146
How to raise an event...148
Event handlers... 149
Event filters.. 149

Unique IDs... 150
What Unique IDs are used for..150
The limit of allocating Unique IDs... 151
When Unique IDs need to be used.. 151
When not to use Unique IDs.. 151
Do keys need to be human-readable?...151
When contiguous human-readable Unique IDs are required... 151
The way to design Unique IDs... 152
Overview of the Range Aware Key Server... 153

Cúram Configuration Parameters..154
Bootstrap.properties..154
Application.prx - Dynamic properties..160
Application.prx - Static properties.. 175
Variable Property Settings... 178

Infrastructure Auditing Settings..180
Default table-level audit setting.. 180

Notices..205
Privacy Policy considerations..206
Trademarks.. 206

 v

List of Figures

1. Cúram application structure... 6
2. The Cúram application build structure... 9
3. SDEJ structure...11
4. Example Web Services Configuration...18
5. Before/After Target usage... 31
6. PRX entry... 33
7. SERVER_COMPONENT_ORDER example..34
8. Sample main Application.prx file..35
9. Sample merge Application.prx file..35
10. Resulting Application.prx File...36
11. Bootstrap.properties...37
12. Bootstrap.properties in an EAR file.. 37
13. Table definitions..42
14. Foreign key constraints...42
15. Primary key constraints.. 42
16. Index constraints.. 42
17. Unique constraints.. 43
18. Batch metadata...43
19. Security metadata...43
20. Field level security metadata..43
21. Data contents file.. 44
22. Example 1 - Core DMX file.. 48
23. Example 1 - Custom DMX file... 48
24. Example 1 - Resulting Merge DMX file... 48
25. Example 2 - Core DMX file.. 50
26. Example 2 - Custom DMX file... 50
27. Example 2 - Resulting merge file..50
28. Example 3 - Core DMX file.. 51
29. Example 3 - Custom DMX file... 52
30. Example 3 - Resulting merge file..52
31. Example 4 - Core DMX file.. 54
32. Example 4 - Custom DMX file... 54
33. Example 4 - Resulting merge file..54
34. Locale Fallback Example...56
35. Set tracing for DMX files..57
36. Data Manager configuration..60
37. BLOB Data Contents File...61
38. CLOB Data Contents File...62
39. CLOB Data Contents File in encoded format.. 62

vi

40. Usage of the loggers..67
41. Tracing a Cúram struct.. 67
42. Logging example in application code... 69
43. Configuring log4j... 70
44. Configuring log4j to log to a socket.. 73
45. Localizable logging example in application code...75
46. Constructing an AppException... 77
47. Using the arg method with a primitive type..77
48. Using the arg method with a complex type.. 77
49. Exception message with argument placeholders.. 78
50. Incorrect usage of hard-coded literals...81
51. A typical read operation that might throw a RecordNotFoundException..81
52. The overloaded version of the one previous, using the NotFoundIndicator... 82
53. A typical read operation for update that might throw a RecordNotFoundException..............................82
54. The overloaded version of the one previous, using the NotFoundIndicator... 82
55. Use of LocalisableString..82
56. Use of the Informational Manager..84
57. Example of Message text file.. 86
58. SERVER COMPONENT ORDER example... 87
59. Sample main message file.. 88
60. Sample merge message file..88
61. Resulting Message File... 89
62. Java file produced from merged message file... 90
63. Sample (UK) Properties produced from message file..90
64. Message File Search... 90
65. Sample Main Code Table File 1...99
66. Sample Merge Code Table File 1.. 99
67. Resulting Code Table File 1.. 101
68. Sample Main Code Table File 2.. 102
69. Sample Merge Code Table File 2.. 103
70. Resulting Code Table File 2.. 104
71. Sample Java file produced from code table file...106
72. Sample SQL file produced from code table file..107
73. CarMake_en_US.properties.. 108
74. CarMake_fr.properties.. 108
75. CarMake_en_GB.properties..108
76. CarMake_lt.properties.. 108
77. CarMake_en.properties...108
78. CarModel_en.properties... 108
79. Usage of hierarchy_name attribute.. 109
80. Usage of parent_codetable attribute... 109
81. Usage of parent_code attribute..109
82. Code Table Hierarchy Example...110

 vii

83. Code File Search... 111
84. Datamanager entry for the code table SQL artefacts location.. 112
85. Specialized readmulti example.. 116
86. Getting a Summary Report... 122
87. Example: override of a deprecated artifact..123
88. Example: reference to a deprecated artifact... 124
89. Example of user preference definition... 125
90. wmdpactivity stereotype method.. 133
91. Using DeferredProcessing startProcess...134
92. DPCallback.dpHandleError implementation example...137
93. Event definition file... 143
94. Event handler registration file.. 144
95. Generated event class database script..146
96. Generated event type database script... 147
97. Generated event Java constants.. 148
98. Raising an event.. 148
99. Event handler interface...149
100. Event filter interface... 150

viii

List of Tables

1. Cúram Development Artifact Compliant Changes..2
2. Cúram application installation structure.. 6
3. Build directory structure... 9
4. SDEJ structure at installation... 11
5. Build Configuration Settings... 13
6. Java Compiler Settings..15
7. Java Task Settings... 17
8. Generator Settings.. 17
9. Components of the table element.. 44
10. Attributes of the column element...44
11. Attributes of the row element...45
12. Attributes of the attribute element...45
13. Attributes of the value element.. 46
14. Attribute values...46
15. Transaction settings..64
16. Logging hierarchy.. 68
17. Diagnostic tracing options.. 69
18. Application properties examined when the {user} and {alternateuserid} parameters are populated... 71
19. Use case scenarios for online transactions..71
20. Use case scenarios for deferred process transactions.. 72
21. Statistics file elements..74
22. Attributes of the messages Element.. 86
23. Attributes of the message Element.. 86
24. Attributes of the locale Element...87
25. Attributes of the codetables Element...92
26. Attributes of the codetable Element.. 92
27. Attributes of the codetabledata Element... 93
28. Attributes of the locale Element...93
29. Attributes of the name Element... 94
30. Attributes of the locale Element...94
31. Attributes of the code Element...94
32. Attributes of the locale Element...95
33. Attributes of the <views> Element... 96
34. Attributes of the <code> Element.. 97
35. Address Hierarchy...109
36. Artifact types that can be deprecated..120
37. Out-of-the-box user preferences... 124
38. User Preference options... 125
39. WMInstanceData Properties.. 135

 ix

40. DPProcess Properties... 136
41. Example DPProcess Table.. 136
42. Types of timers..138
43. List of API's in TimerInfo Class...138
44. List of parameters from TimerTask Class...139
45. KeyServer Database Table..152
46. Database settings... 154
47. Environment settings..158
48. Test settings.. 159
49. Custom settings.. 160
50. Environment settings..160
51. JMX settings..162
52. Test settings.. 163
53. Rules settings..164
54. IEG settings...165
55. Custom settings.. 166
56. Trace settings..167
57. Security settings... 169
58. SMTP settings... 170
59. XML Server settings.. 170
60. Database settings... 171
61. KeyServer settings.. 171
62. BatchLauncher settings.. 172
63. Workflow settings... 175
64. CTM settings..175
65. Custom settings.. 176
66. Security settings... 176
67. Trace settings..178
68. Environment settings..178
69. Transaction settings..179
70. Audit settings.. 179
71. Audit settings 1... 181
72. Audit settings 2... 192

x

Chapter 1. Cúram Server Developer
Use this information to learn about the server development environment, which enables the development
of high-quality, low-cost client/server applications through model driven code generation. This generation
facilitates client/server development by taking a UML model and producing generated Java code; a data
definition language which describing the database entities in the model, and support for remote
invocation.

Server Development Environment Overview
Use this information to understand how the various components of the IBM Cúram Server Development
Environment (SDEJ) fit together, and how to develop compliantly with it.

Model-driven generation facilitates client and server development by taking a Unified Modeling Language
(UML) model and producing the following generated artifacts:

• Generated Java™ code
• Data Definition Language (DDL) describing the database entities in the model, enabling instances of a

database to be defined in a human and machine-readable form
• Support for remote invocation

This document provides details on a number of areas that can be grouped under three main headings:

• Building and configuring a Cúram application
• SDEJ development and application programming interfaces (APIs)
• Cúram runtime behavior

This document describes how to develop the custom code in Cúram server applications, and how to build
the resultant applications. It is not intended as an introductory document, or as guide on how to deploy a
Cúram application on an application server.

While the fundamental elements of a server application are supplied by the Cúram Generator, certain
custom coding and configuration tasks are required. The Cúram Solution Architecture document provides
an introduction to the Cúram Generator and its outputs.

Consult the Cúram Security Handbook for all aspects of security when developing and deploying a Cúram
enterprise application; for example, authentication and authorization of users.

Application deployment is described in the Cúram Deployment Guide.

For exact information on versions of supported software and tooling, refer to the published system
requirements on the IBM support portal.

Overview of compliant development artifact changes
You can modify the uncustomized Cúram application, in addition to including custom development tasks,
such as adding message files, code tables, and events.

The following table summarizes the range of compliant changes you can make to the uncustomized
Cúram development artifacts.

© Copyright IBM Corp. 2012 , 2018 1

Table 1: Cúram Development Artifact Compliant Changes

Type of Change Initial Artifacts Reference

Change an existing
message file

Message file (externalized server
informational, warning, and error
messages - .xml files in the
message directory)

“Message Files” on page 85

Remove an existing
message

Message file (externalized server
informational, warning, and error
messages - .xml files in the
message directory)

“Message Files” on page 85

Add additional locale (that
is, language) support to an
existing message

Message file (externalized server
informational, warning, and error
messages - .xml files in the
message directory)

“Localizing SDEJ Message Files” on
page 91

Change an existing code
table name

Code Table file (code value pairs
- .ctx files in the codetable
directory)

“Code Table Files” on page 91

Add a code table item into
an existing code table

Code Table file (code value pairs
- .ctx files in the codetable
directory)

“Code Table Files” on page 91

Change the description of
an existing code table

Code Table file (code value pairs
- .ctx files in the codetable
directory)

“Code Table Files” on page 91

Disable an existing code
table item

Code Table file (code value pairs
- .ctx files in the codetable
directory)

“Code Table Files” on page 91

Remove an existing code
table item

Code Table file (code value pairs
- .ctx files in the codetable
directory)

“Code Table Files” on page 91

Add additional locale (that
is, language) support to an
existing code table

Code Table file (code value pairs
- .ctx files in the codetable
directory)

“Localizing SDEJ Code Table Files”
on page 112

Add an event registration
(to augment initial Cúram
functionality

Event Definition file (.evx files in
the events directory) and Event
Handler Registration file
(handler_config.xml in the
events directory)

“Events and event handlers” on
page 143

Disable an existing event
handler

Event Definition file (.evx files in
the events directory) and Event
Handler Registration file
(handler_config.xml in the
events directory)

“Events and event handlers” on
page 143

2 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 1: Cúram Development Artifact Compliant Changes (continued)

Type of Change Initial Artifacts Reference

Override an existing user
preference

User Preference file
(DefaultPreferences.xml file in
the userpreferences directory

“User Preferences Definition” on
page 124

Override an existing
application property

Application Property File
(Application.prx file in the
properties directory)

“Application prx” on page 33

Add initial demo or test
data (rows) to an existing
database table

DMX File (script for populating the
database with data - .dmx files in
the relevant data subdirectory)

“Data contents DMX files” on page
44

Building and Configuring a Cúram Application
Use this information as a starting point for building and configuring a Cúram application, to find out what
is supported in the build, and See how to configure the infrastructure. You can use the Data Manager tool
to create a database. Use the SQL Checker to check the correctness of handcrafted SQL.

• – “Directory Structure” on page 4 provides an introduction to the layout of the application.
– “Build files and their targets” on page 12 details the build support provided.
– “Cúram Configuration Settings” on page 33 enumerates the various configuration settings

supported by the infrastructure.
– “Data Manager” on page 39 details the Data Manager tool that can be used to create a database to

support the Cúram application.
– “SQL Checker” on page 63 details the SQL Checker tool that can be used to ensure the semantic

and syntactic correctness of SQL which has been handcrafted by an Application Developer.

SDEJ Development and Application Programming Interfaces
Use this information as a starting point for developing compliantly with Application Programming
Interfaces (APIs) in the Cúram Server Development Environment (SDEJ). Learn about how to use Eclipse,
how logging and tracing works, and what "deprecation " means in the context of Cúram development.

• “Eclipse” on page 63 describes relevant aspects of Eclipse usage, in addition to providing some tips
and tricks.

• “Logging that uses Apache log4j API” on page 67 details the infrastructure support for the logging/
tracing of status and error information.

• “How to use exceptions” on page 75 details the infrastructure support for the creation, tracing,, and
display of exceptions.

• “Message and Code Table Files” on page 85 details the format of the message files and code table files
that are used within Cúram.

• “Specialized readmulti operations” on page 112 explains the usage of Specialized Readmulti Operations
which can be used to replace standard readmulti operations with specialized processing.

• “Deprecation” on page 117 describes deprecation in Cúram: what it is, how it can affect custom code,
what it means for support and the associated build infrastructure that helps pinpoint custom artifact
dependencies on deprecated Cúram artifacts.

• “User Preferences” on page 124 describe how to define and use User Preferences for a Cúram
application.

Cúram Server Developer 3

Cúram Runtime Behavior
Use the information as a starting point for learning about how the Cúram application behaves at runtime,
including what you need to know about transaction control, how a cache stores the results of an SQL
query, and how deferred processing works in Cúram.

• – “Transaction control” on page 128 details the aspects of Transaction Control within a Cúram
application that must be understood by a developer.

– “Use of the transaction SQL query cache” on page 130 outlines the details of a cache that can store
the results of any SQL queries that do a SELECT on a database table for the duration of the
transaction in which the operation was invoked.

– “Deferred processing” on page 133 describes how to achieve deferred processing in a Cúram
application

– “Cúram Timer” on page 137 describes the functions that allows timers to be defined to start client-
visible methods at a specified time.

– “Events and event handlers” on page 143 describes Events, a mechanism for loosely coupled parts of
the Cúram application to communicate information about state changes in the system.

– “Unique IDs” on page 150 details the infrastructure support for Unique Identifier numbers generated
by the Cúram infrastructure for use as unique database keys.

Directory Structure
Use this information to learn about the directory structure for the server side IBM Cúram Social Program
Management application, and the underlying Server Development Environment.

Application Components

Component Folders

The Cúram server application is organized into collections of artifacts called components. Each
component has its own folder within the <EJBServer>/components folder. The core component
always is present. This contains all of the artifacts needed for the core functionality of the IBM Cúram
Social Program Management Platform. The name of the component folder is used as the name of the
component.

Component Order

There can be any number of application components, but they are processed in a strict component order.
This order determines the priority that will be given to artifacts that share the same name but appear in
different components. This is fundamental to the manner in which server artifacts are customized.

The component order is defined by the SERVER_COMPONENT_ORDER environment variable. This is a
comma-separated list of component names. Use only commas; do not use spaces. You must place the
component with the highest priority first in the list and continue in descending order of priority. The core
component always has the lowest priority and implicitly is assumed to be at the end of the list. You do not
need to add it explicitly.

For example, setting the component order to MyComponentOne,MyComponentTwo will give the highest
priority to artifacts in the MyComponentOne folder within <EJBServer>/components, a lower priority to
artifacts in the MyComponentTwo folder, and the lowest priority to artifacts in the core folder. Any
component folder not listed in the component order will not will automatically be added to the end of the
component order in alphabetical order. If you do not set the component order at all, the default
component order will include all components in alphabetical order.

Localized Components

Localized components contains translated artifacts for the base components and are of the format
<component name>_<locale>. It is not necessary for these to be added to the

4 IBM Cúram Social Program Management: Cúram Server Developer's Guide

SERVER_COMPONENT_ORDER environment variable as the tooling that processes this environment
variable will prepend any available components that match entries in the SERVER_LOCALE_LIST
environment variable. Localized components are matched both on complete locale entry and on the two-
character, lower-case language code. Localized components are prepended before the base component in
the complete component order.

Application directory structure
Use this information to understand two aspects of the Cúram application directory structure.

Two aspects of the Cúram application directory structure are described. These aspects are the structure
that is related to the source artifacts associated with an application, and the resultant structure when the
application is built.

Source artifacts of the Cúram application
Use this information to understand the directory structure for the source artifacts of a Cúram application
project.

Source artifacts of the Cúram application shows the directory structure for the source artifacts of a Cúram
application project; for instance, the structure before it runs a build. The details that follow describe in
more detail each directory within the directory structure, includes the SERVER_DIR, ProjectPackage,
and CodePackage as place holders.

.

• The SERVER_DIR is the root of the server directory structure, the location of the EJBServer directory
within the Cúram application.

• The ProjectPackage is a global setting, set at build time. It is set to Cúram in the reference
application that is included with Cúram.

• The CodePackage is based on a model setting that is described in the Cúram Modeling Reference
Guide. It allows individual components to be scoped within their own logical packages. Any number of
Code Packages might be nested inside each other.

Cúram Server Developer 5

SERVER_DIR
 + project
 + config
 + properties
 + components
 + core
 + codetable
 + data
 + doc
 + events
 + lib
 + message
 + model
 + properties
 + rulesets
 + sample
 + webservices
 + workflow
 + wsdl
 + custom
 + source
 + <Project Package>
 + impl
 + <Code Package>
 + impl
 + wsdl
 + build.bat
 + build.sh
 + build.xml
 + buildhelp.bat
 + deprecationreport.xml
 + .classpath
 + .project

Figure 1: Cúram application structure

Table 2: Cúram application installation structure

Name Contents

project A top-level directory that contains all information that is relevant
to the entire project rather than specific components.

project/config Configuration information related to the project, including top-
level configuration files for the data manager and web services
connector.

project/properties Properties that relate to the project as a whole.

components Each project is made up of a number of components. This
directory is a place holder for those components.

components/core A pre-defined component that is used by all other components.

6 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 2: Cúram application installation structure (continued)

Name Contents

components/core/codetable Codetable XML (ctx) files that are created by the developer are
kept here. These files are used to define codetables for a Cúram
application. The outputs that are produced from a codetable file
consist of an SQL script to populate the code table in the
database, and a Java file that provides the necessary constants
to the application. For more information, see “Message and Code
Table Files” on page 85.

components/core/data The Data Manager for this component.

components/core/doc The JavaDoc for this component.

components/core/events Event XML (evx) files that are created by the developer are kept
here. These files are used to define event classes and event
types for a Cúram application. The outputs that are produced
from an event file consist of an SQL script to populate the event
class and event type tables in the database, and a Java file that
provides the necessary constants to the application. For more
information, see “Events and event handlers” on page 143 .

components/core/lib Contains the built component code packaged in a compressed
file: such as core.jar.

Additionally, any third-party Java Archive (JAR) files that are
specified here automatically are included in the class path used
during compilation or a Batch Launcher run. Files that are listed
here also are added to any Enterprise ARchive (EAR) file that is
created and an entry added to the manifest file to reference this
file.

components/core/message Message (.xml) files that are created by the developer are
stored here. The Java artifacts that are produced from a message
file are a Java file and a properties file. For more information, see
“Message and Code Table Files” on page 85 .

components/core/model The elements of a Cúram application Unified Modeling Language
(UML) model that relate to this component are available here.

components/core/properties The component-specific application property definitions are
stored here.

components/core/rulesets Rules (.xml) files that are created by the developer are stored
here. These files might be hand-crafted or created by way of an
online client (Rules Editor).

components/core/sample An optional directory that contains a compressed file of a set of
sample java source files that match the component built code
within the lib directory. Used for debugging or reference,

components/core/webservices An optional directory that contains the .xsd schema files that
are referenced by web services in this component.

Cúram Server Developer 7

Table 2: Cúram application installation structure (continued)

Name Contents

components/core/workflow Workflow process definition (.xml) files that are created by the
developer are stored here. These files might be hand-crafted or
created by way of an online client (Process Definition Tool). The
Cúram Workflow Reference Guide describes these files in some
detail.

components/core/wsdl An optional directory that contains the .wsdl Web Service
Description Language (WSDL) files that are started from this
component. A WSDL description can be spread over several files
that reference each other possibly in some arbitrary directory
structure. These references can be resolved when they are
relative

components/custom Any number of new components might be added. They all have
the same structure as the core component.

components/custom/source All handcrafted Java source code, produced by the developer, is
located here.

build.bat, build.sh A command file that builds your project. This command file
wraps the build.xml file (an Apache Ant build file) that is
contained within the EJBServer. The build structure and use of
this file is described in “Build files and their targets” on page 12

build.xml An Ant build file that extends the Cúram Server Development
Environment (SDEJ) build scripts to enhance a number of
targets.

deprecationreport.xml An Ant build file that provides deprecation reporting.

buildhelp.bat A command file that displays project help. This command file
wraps the build.xml file. The use of this file is described in
“Build files and their targets” on page 12.

Cúram application build structure
Use this information to understand the directory structure that is created when a Cúram application is
built.

The directory structure that is created when a Cúram application is built is described in the example and
table that follow. The“Cúram application build structure” on page 8 presents the new directories that are
created during the build process while “Cúram application build structure” on page 8 gives more details
on the contents of each directory.

8 IBM Cúram Social Program Management: Cúram Server Developer's Guide

SERVER_DIR
 + build
 + datamanager
 + ear
 + WAS
 + WLS
 + jar
 + sqlcheck
 + svr
 + cls
 + codetable
 + cls
 + gen
 + scp
 + sql
 + events
 + cls
 + gen
 + scp
 + gen
 + message
 + cls
 + gen
 + scp
 + webservices
 + workflow
 + wsc
 + wsc2
 + buildlogs

Figure 2: The Cúram application build structure

Table 3: Build directory structure

Name Contents

build/datamanager Contains intermediate files produced by the Data Manager and
the resulting merge Data Mining Extensions (DMX) files from the
initial demonstration and test directories. The Data Manager
creates the intermediate files when it is converting the database
independent files into a format that can be loaded onto the
database. Five database-dependent .sql files are produced in
addition to one database-independent .xml file that is
responsible for loading the Large Objects (LOBs) onto the
database.

build/ear/WAS The .ear file produced for WebSphere Application Server.

build/ear/WLS The .ear file produced for WebLogic.

build/jar JAR files that are created by the command line project build.

build/sqlcheck A database-dependent sqlj file that contains a subset of the
dynamic SQL statements from the model and the inserts from
the Data Manager collated together.

build/svr All build artifacts for the server side.

build/svr/cls All of the compiled class files for the application.

Cúram Server Developer 9

Table 3: Build directory structure (continued)

Name Contents

build/svr/gen Generated server-side sources.

build/svr/gen/ddl Database independent definition scripts that establish the
structure of a Cúram server application's database tables are
generated into this directory. Some intermediate files (including
a representation that is used to build to database-dependent
sqlj file) are also generated into this directory.

build/svr/gen/<ProjectPackage> Root of the generated server source code hierarchy.

build/svr/gen/int Intermediate files produced during the build.

build/svr/codetable/cls The compiled codetable files.

build/svr/codetable/gen The generated codetable file artifacts.

build/svr/codetable/scp A copy of the results of merging the individual codetable files
according to the component order
(SERVER_COMPONENT_ORDER).

build/svr/events/cls The compiled event class and event type files. These files can be
used as constants in the Cúram application.

build/svr/events/gen The generated events file artifacts that include the .java files
that contain the event class, event type constants and .dmx files
to be used to populate the event class, and event type tables on
the database.

build/svr/events/scp A copy of the results of merging the individual event files
according to the component order
(SERVER_COMPONENT_ORDER).

build/svr/message/cls The compiled message files.

build/svr/message/gen The generated message file artifacts.

build/svr/message/scp A copy of the results of merging the individual message files
according to the component order
(SERVER_COMPONENT_ORDER).

build/svr/webservices Compiled class files for the web service support elements of the
application.

build/svr/workflow A copy of the results of determining the individual workflow
process definition files to be loaded onto the database according
to the component order (SERVER_COMPONENT_ORDER)

.

build/svr/wsc2 Compiled class files for the Apache Axis2-generated client stubs
for each registered outbound web service connector.

10 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 3: Build directory structure (continued)

Name Contents

<app.xml> Extracted Unified Modeling Language (UML) model contents,
which are named according to model.

buildlogs A log file is created each time that a build is run and is stored
here. This log file can be used to investigate any problems with
the build process.

Artifacts of the SDEJ
Use this information to understand the directory structure of the SDEJ after installation is complete.

Artifacts of the SDEJ shows the directory structure of the Cúram Server Development Environment (SDEJ)
when installation is complete, while Artifacts of the SDEJ gives more details on the contents of each
directory. The CURAMSDEJ is the root of the directory structure - the name that is given to wherever the
SDEJ is set up or installed.

CURAMSDEJ
+ bin
+ codetable
+ doc
+ drivers
+ ear
+ lib
+ message
+ rsa
+ scripts
+ util
+ xmlserver

Figure 3: SDEJ structure

Table 4: SDEJ structure at installation

Name Contents

bin This directory contains all Ant build scripts necessary to build,
verify, and configure a Cúram application. The build.bat script
file that is delivered with the Cúram application hooks into this
directory to start the build.xml file contained here. Use of this
file is described in “Build files and their targets” on page 12

codetable This directory contains the set of codetable files included with
the SDEJ. These files use the file extension .itx. Each of these
files can be customized, see “Localizing SDEJ Code Table Files”
on page 112 for more details.

doc This directory contains the Javadoc information included with
the SDEJ.

drivers This directory contains the drivers that are used by the SDEJ to
access the database.

Cúram Server Developer 11

Table 4: SDEJ structure at installation (continued)

Name Contents

ear This directory contains the deployment descriptors and
templates necessary to build application ear (enterprise archive)
files for the chosen application server.

lib This directory contains the compiled SDEJ source, Third-Party
JAR files, XML schemas, and stylesheets necessary to fulfill all
SDEJ functions.

message This directory contains the set of message files included with the
SDEJ. Unlike the Cúram application message files, these
infrastructure message files use the file extension .iml. Each of
the files can be customized. See “Localizing SDEJ Message Files”
on page 91 for more details.

rsa This directory contains the Eclipse plug-in artifacts that are used
to provide Cúram functions in IBM Rational® Software Architect.
See the Working with the Cúram Model in Rational Software
Architect for more details.

scripts This directory contains the database independent XML files
necessary to create the database required by the SDEJ.

util This directory contains useful utilities included with the SDEJ.

xmlserver This directory contains the artifacts and build scripts necessary
to run the xmlserver. For more information, see Cúram XML
Infrastructure Guide.

Build files and their targets
Use this information to understand how the Cúram Server Development Environment (SDEJ) uses Ant to
process its build files and how to build a Cúram application after it is installed. The optional parameters
that can be specified when you perform a build also are described.

The Ant build files are in the /bin directory of the SDEJ. The build files are started through build.bat
and buildhelp.bat.

How to initiate the build
Starting buildhelp at the command line (in SERVER_DIR) shows all available targets. A single build
target is required to build the Cúram application for development from its initial configuration. The user
needs to initiate these actions:

• Start a command prompt and change directory to the top level of the Cúram project (the SERVER_DIR).
• Set up any environment variables that were not set as system properties during the installation process

(for example, JAVA_HOME, J2EE_JAR, and ANT_HOME). This process is described in the Cúram Third-
Party Tools Installation Guide.

• Set up SERVER_DIR to point to the top level of your Cúram project.
• Set up SERVER_MODEL_NAME to be the name of your Cúram project.
• Type build server and hit Return to start this build target.

12 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Overriding default JUNIT.JAR
The junit.jar file is set by default relative to the JUNIT_HOME environment variable; for example, $
{sysenv.JUNIT_HOME}/junit.jar. To override the location or naming of the junit.jar file, a new
system property JUNIT_JAR is available for this purpose. If the JUNIT_JAR system property is set, this
setting takes precedence over the default. An example of its usage (for example, Microsoft Windows): set
JUNIT_JAR = c:\junit-4.8.jar

How to configure the build
Optional parameters that can be provided when you build the Cúram application are explained.

Cúram Build Settings

A number of parameters may be passed when performing the build. They should be passed in the
following way build server -Dsome.setting=somevalue. These parameters are:

Table 5: Build Configuration Settings

Parameter Values Description

dir.sde directory name The name of the directory containing the installed
SDEJ that you want to use for this build. The
default is the directory referred to by the
CURAMSDEJ environment variable.

prp.loglevel info

warn

error

verbose

debug

The logging level used when recording build
progress to the build log. The default is info.

prop.file.location directory name Override the location of the directory that is used
to pick up the property files. By default the
<ProjectName>/properties directory is used.

prp.maxcodetable
codelength

number Override the maximum length of a code table
code. This is used for validation of codetables
during generation, where it is desired to ensure
that the code length defined in the codetables
being generated do not exceed the length
specified. This is to ensure, you catch errors
before entering codetables onto the database.
This does not override the maximum length on the
database “Cúram Build Settings” on page 13.

prp.maxcodetable
namelength

number Override the maximum length of a code table
name. This is used for validation of codetables
during generation, where it is desired to ensure
that the name length defined in the codetables
being generated do not exceed the length
specified. This is to ensure, you catch errors
before entering codetables onto the database.
This does not override the maximum length on the
database “Cúram Build Settings” on page 13.

Cúram Server Developer 13

Table 5: Build Configuration Settings (continued)

Parameter Values Description

prp.maxcodetable
descriptionlength

number Override the maximum length of a code table
description. This is used for validation of
codetables during generation, where it is desired
to ensure that the description length defined in
the codetables being generated do not exceed the
length specified. This is to ensure, you catch
errors before entering codetables onto the
database. This does not override the maximum
length on the database “Cúram Build Settings” on
page 13.

prp.warningstoerrors true

false

Indicates that warnings thrown when extracting
and generating from the model, code table and
message files should be treated as errors (an
error typically terminates the process). The
default is false.

prp.forcegen "-force:modelgen" Indicates that the build should progress even if
errors are found when generating code from the
model. The default is that this should not occur.

This means that if this flag is set and errors are
found during generation, the build is not
interrupted after the modelgen build target is
executed. Once this target is complete it will
eventually pass onto the compile.generated
target. See “What is happening under the hood”
on page 18 for more details.

Note: The errors are still reported.

prp.noninterned
strings

true

false

Indicates whether code table artefacts should be
generated with strings which will not be interned.
This is described in more detail in “ctgen” on page
20. The default is true.

curam.using.dbcs true

false

Should be set if the Cúram model contains DBCS
(Double Byte Character Set) characters. If defined
the Cúram application model is first processed by
the utility native2ascii. The Model Extractor then
uses this new reworked model to produce
<project>.xml file. If this property is not specified
the Model Extractor takes original model file as its
input.

curam.using.nonascii true

false

Should be set if the Cúram model contains non
ascii characters. If defined the application model
is first processed by the utility native2ascii. The
Model Extractor then uses this new reworked
model to produce <project>.xml file. If this
property is not specified the Model Extractor
takes original model file as its input.

14 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 5: Build Configuration Settings (continued)

Parameter Values Description

extra.generator
.options

String Specifies additional command line parameters for
the server code generator. These settings are
described in “Generator Settings” on page 17.

portability.warnings BUILD,

DMX

Specifies whether the SQL Checker should
determine if the build is portable to other
database platforms and whether the Data
Manager files are valid. The default is to check all
of these.

enablefacade true

false

Specifies that the build should generate the
session beans and their corresponding
deployment artefacts for model elements
identified as facades. The default is false which
means they will not be generated.

prp.genschema
validation

true

false

Indicates that the.xml file produced by the model
extractor will be validated against a schema when
it is being parsed and used by the code generator
to generate the application code. The default is
false.

appserver.failonerror true

false

Indicates whether the application server
command will trigger an error if the start/stop
command fails. The default is true.

Database update for code table property changes: The relevant database column lengths must be
altered to support the changes made by using the prp.maxcodetablecodelength,
prp.maxcodetablenamelength, or prp.maxcodetabledescriptionlength properties.

The columns should be altered using the Data Manager. In each case a handcrafted SQL script that alters
the relevant column's length should be added to the custom database scripts folder. This script should
then be added as an entry to the datamanager_config.xml file before loading the code tables into the
database. Please refer to “Data Manager” on page 39 for further information on using the Data Manager.

Java Compiler Settings
These parameters can be passed when performing the build and they control the behavior of the Java
compiler.

The parameters are passed in the following way: build server -Dcmp.debug=on. The settings are:

Table 6: Java Compiler Settings

Parameter Values Description

cmp.debug on

off

Indicates whether the source should be compiled
with debug information. The default is on.

cmp.maxmemory Number The maximum size of the memory for the
underlying VM. The default is 768.

Cúram Server Developer 15

Table 6: Java Compiler Settings (continued)

Parameter Values Description

cmp.nowarn on

off

Indicates whether the -nowarn switch should be
passed to the compiler. The default is off.

cmp.maxwarnings Number Asks the compiler to set the maximum number of
warnings to print. The default is 10000.

cmp.optimize on

off

Indicates whether source should be compiled
with optimization The default is off.

cmp.deprecation on

off

Indicates whether source should be compiled
with deprecation information. The default is off.

cmp.verbose true

false

Asks the compiler for verbose output. The default
is false.

cmp.include.AntRuntime yes

no

Indicates whether the Ant run-time libraries
should be included on the classpath. The default
is yes.

cmp.include.JavaRuntime yes

no

Indicates whether the default run-time libraries,
from the executing VM (Virtual Memory), should
be included on the classpath. The default is no.

cmp.failonerror true

false

Indicates whether compilation errors will fail the
build. The default is true.

cmp.listfiles yes

no

Indicates whether the source files to be compiled
will be listed. The default is no.

PRE_CLASSPATH Filename An environment variable to allow jar files to be
added to the start of the classpath used during
compilation or a Batch Launcher run. Files listed
here will be added to any EAR (Enterprise
ARchive) file created and an entry added to the
manifest file to reference this file. Files should be
separated with the relevant Path separator for
your operating system.

POST_CLASSPATH Filename An environment variable to allow jar files to be
added to the end of the classpath used during
compilation or a Batch Launcher run. Files listed
here will be added to any EAR file created and an
entry added to the manifest file to reference this
file. Files should be separated with the relevant
Path separator for your operating system.

16 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Java Task Settings

The following parameters may be passed when performing the build and control the behavior of the Java
runtime used by the build scripts. They should be passed in the following way build server -
Djava.fork=true. These settings are:

Table 7: Java Task Settings

Parameter Values Description

java.fork true

false

Specifies whether any external classes are
executed in another VM. The default is true.

java.maxmemory Number The maximum size of the memory to allocate to
the forked VM. The default is 768m.

java.failonerror true

false

Specifies whether the build process should be
stopped if an external java command exits with a
return code other than 0. The default is true.

java.jvmargs String Specifies the arguments to pass to the forked VM
The default is the empty string.

Generator Settings

The following parameters may be passed when performing the build and control the behavior of the
Cúram Generator. These parameters should be passed in the following way build server -
Dextra.generator.options=-setting1 -setting2.

These settings are:

Table 8: Generator Settings

Option Meaning

-nomessage <nnnnn> Prevent the message with this number from being
displayed or acted upon. Note that this can be used
to suppress errors which would normally cause the
generator to terminate. Doing so can cause the
generator to behave unpredictably or produce code
which cannot be built.

-primarykeyconstraintprefix <prefix> Specify a prefix to be applied to primary key
constraint names in IBM DB2® and Oracle
Database. See the Cúram Modeling Reference Guide
for more details.

-primarykeyindexprefix <prefix> Specify a prefix to be applied to primary key index
names in DB2. See the Cúram Modeling Reference
Guide for more details.

-progresslevel <n> Specify the level of progress to be reported by the
generator.

-nonamedprimarykeyconstraint Specify that names should not be provided for the
primary keys. This is off by default i.e. primary keys
are named. See the Cúram Modeling Reference
Guide for more details.

Cúram Server Developer 17

Table 8: Generator Settings (continued)

Option Meaning

-nonamedforeignkeyconstraint Specify that names should not be provided for the
foreign keys. This is off by default, i.e., foreign keys
are named. See the Cúram Modeling Reference
Guide for more details

Other Environment Settings

If you are building on Red Hat Linux you may get this error during compilation:

<errortext>unmappable character for encoding UTF8</errortext>

This is due to an encoding mismatch between Windows and Linux and can be worked around by setting
theLANG environment variable as follows:

LANG=en_US.ISO-8859-1

What is happening under the hood
While building the application is as simple as invoking the default target listed above, it is useful for the
reader to understand the steps that are involved. Each of these are ant targets which may be invoked
separately:

generated

This target generates and compiles the code for use in an IDE and wraps the following targets:

• wsconnector step generates client stub connectors for outbound web services from .wsdl (WSDL is
an acronym for Web Service Definition Language) files registered in the configuration file,
<SERVER_DIR>/project/config/webservices_config.xml.

• wsconnector2 Generates client stub connectors for outbound Axis2 web services from the registered
WSDL files.

• emx2xml - this extracts an intermediate XML representation from a Cúram application UML model.
• modelgen - this generates source code and other artefacts from the XML representation of a Cúram

application model. It also deletes any artefacts that are no longer represented in the model.
• msggen - this merges the message file definitions according to the component order and generates

source code and properties from the resultant message definitions.
• ctgen - this merges the code table definitions according to the component order and generates source

code from the resultant code table definitions.
• evgen - this merges the event definitions according to the component order and generates source code

from the resultant event definitions.
• compile.generated - this compiles any generated source code that doesn't depend on the impl

directory.

wsconnector

The wsconnector step generates client stub connectors for outbound web services from .wsdl files
registered in the configuration file, <SERVER_DIR>/project/config/webservices_config.xml.

An example is shown in “wsconnector” on page 18

<services>
 <service location=
 "components/<component_name>/wsdl/some_service/TopLevel.wsdl"
 />
</services>

Figure 4: Example Web Services Configuration

18 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The location attribute is the location of the top level WSDL file relative to the SERVER_DIR. This
configuration file also gives the ability to turn a particular Web Service Connector on and off at will
(bearing in mind that business code that accesses the connector would be affected by this). It is
acceptable to have no service elements in this file.

The generated connector client stubs must not be treated as source. They are intended to be overwritten
during each build, based on the WSDL files provided, to ensure the connectors are always synchronized
with the web services they represent.

emx2xml

The emx2xml step transforms the UML model (which is located in the <SERVER_DIR>components/*/
model directory) into an intermediate XML representation. The intermediate representation is stored at
the top level of the directory tree.

modelgen

The modelgen step transforms the intermediate XML representation into the final Java code, deployment
support artefacts, web service support artefacts and a set of Data Definition XML files.

Data Definition XML Files

The Data Definition XML files are placed in the build/svr/gen/ddl directory and are typically made up
of a number of files:

• <SERVER_MODEL_NAME>_Tables.xml
• <SERVER_MODEL_NAME>_Indices.xml
• <SERVER_MODEL_NAME>_PrimaryKeys.xml
• <SERVER_MODEL_NAME>_UniqueConstraints.xml
• <SERVER_MODEL_NAME>_ForeignKeys.xml
• <SERVER_MODEL_NAME>_Batch.xml
• <SERVER_MODEL_NAME>_Fids.xml
• <SERVER_MODEL_NAME>_FieldsReturned.xml
• <SERVER_MODEL_NAME>_SQLJ.xml

The first five of these files contain database independent definitions for creating tables on the database
and placing constraints on these tables. <SERVER_MODEL_NAME>_Batch.xml describes the persistent
data that is necessary to support the batch process related information that has been captured in the UML
model. <SERVER_MODEL_NAME>_fid.xml describes the persistent data that is necessary to support the
security related information that has been captured in the UML model.
<SERVER_MODEL_NAME>_FieldsReturned.xml describes the persistent data that is necessary to
support Field Level Security. <SERVER_MODEL_NAME>_SQLJ.xml contains a representation of all the
hand-crafted SQL in the model and is used by the checksql target. More information on the contents of
these files is provided in “Data Manager” on page 39.

Foreign Keys and Cúram: The Cúram application is responsible for enforcing referential integrity and
foreign keys are generated to support testing of this. The use of declarative referential integrity (foreign
keys) in a production system will impact the performance of that system and is consequently not
supported.

Java Code

A large number of Java code artefacts are generated as part of this model generation build. They are
generated according into a number of categories (and are all located under the /build/svr/gen/
<ProjectPackage>/ and /build/svr/gen/<ProjectPackage>/<CodePackage> directories). A
CodePackage may be empty or there may be a number of CodePackage elements within each other (for
example, <ProjectPackage>/intf and <ProjectPackage>/<CodePackageA>/<CodePackageB>/
intf may both be generated depending on the options that have been chosen).

Cúram Server Developer 19

• intf - Defines the interface for the objects that have been modeled.
• fact - Provides factory wrappers for the objects identified in bizinterface.
• base - Ensures the developer provides implementations for those methods which must be hand

crafted.
• remote - Provides remote interfaces for the objects which can be exposed to the client.
• struct - Defines the classes which model parameters between the objects.
• rules/rdo - Defines the classes for the rules data objects. RDOs cannot be stored in code packages

so the rules folder is always at the top level. As well as the classes this directory contains a file named
rdoindex.properties which contains a listing of all the generated objects.

Deployment Artefacts

A number of deployment artefacts are also generated by the model build. This section does not attempt
to detail the meaning of these files but simply introduces the files and their locations. These artefacts are
used when building an application .ear file where they are passed into the XDoclet tool. They are
generated according to the following categories:

• IBM Specific Metadata:

provides support for deployment on WebSphere Application Server. These artefacts are generated into
the /build/ear/WAS directory and contain the necessary .xml, .xmi and policy files.

• Oracle Specific Metadata:

provides support for deployment on WebLogic. These artefacts are generated into the /
build/ear/WLS directory and contain the necessary .xml files .

Web Service Artefacts

Finally a number of Web Service artefacts are generated. This section does not attempt to detail the
meaning of these files but simply introduces the files and their locations. These artefacts are used when
building an .ear file that supports Web Service invocation. The artefacts consist of special structs which
contain web service conversion routines and a web service configuration file (server-config.wsdd)
and are generated into the /build/svr/gen/webservices directory.

msggen

Cúram message files allow a Cúram application to be localized without needing manipulation of hand-
crafted code. These files should be used in preference to hard-coded strings within hand-crafted code.

Message files are located in the /message directory of a component. The IBM Cúram Social Program
Management Platform is shipped with a set of message files. These files may be overridden by placing
new message files in the SERVER_DIR/components/<custom > directory, where <custom> is any new
directory created under components that conforms to the same directory structure as components/
core. The override process involves merging all message files of the same name according to a
precedence order where the order is based on the SERVER_COMPONENT_ORDER environment variable.
This variable lists the components in a delimited list in order of priority from most to least important.

The msggen build target performs the merge of message files and then translates the resultant merged
message file (which is stored in /build/svr/message/scp directory) into Java source code and
property files so it can be accessed at runtime.

The generated Java code is then compiled and packed into /build/jar/messages.jar.

ctgen

Cúram code table files allow an application to use a level of indirection when storing commonly used
constants on the database. This level of indirection enables efficient database storage. Codetable files are
located in the source/codetable directory of a component. Like message files, code table files are
shipped with the IBM Cúram Social Program Management Platform and may be customized through the
merge behavior.

20 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The ctgen build target merges Cúram code table (.ctx) files and then translates the resultant merged
code table file (which is stored in /build/svr/codetable/scp directory) into Java source code and
SQL files which are used to return codes from the database at runtime.

The prp.noninternedstrings parameter indicates whether code table artefacts should be generated
with strings that are not interned. The use of interned strings in Java avoids the creation of duplicate
java.lang.String objects. Consequently memory usage may be reduced as there will be only one
String object created for a string value, irrespective of how many references to that string value exist.

Note: The default value for this property is true. Setting prp.noninternedstrings to false means
that strings will be interned. Although this may result in decreased memory usage by the final application,
dependency checking will operate incorrectly when .ctx files are changed.

The generated Java code is then compiled and packed into /build/jar/codetable.jar.

evgen

Events provide a mechanism for loosely-coupled parts of a Cúram application to communicate
information about state changes in the system. When one module in the application raises an event, one
or more other modules receive notification of that event having occurred provided they are registered as
listeners for that event. Event files are located in the events directory of a component.

The evgen build target merges Cúram event (.evx) files and then translates the resultant merged event
file (which is stored in /build/svr/events/scp directory) into Java source code which can be
subsequently used as constants in the application and also .dmx files which are used to populate the
event class and event type database tables.

The generated Java code is then compiled and packed into /build/jar/events.jar.

compile.generated

The compile.generated target compiles any generated source code that doesn't depend on the impl
directory. This includes the classes with the following patterns from the build/svr/gen directory:

/struct//*.java
/intf//*.java
<Project Package>/*.java

This step uses an augmented version of Ant 's dependency checker to minimize the build time.

implemented

This target completes the build and wraps the following targets:

• compile.implemented - this compiles all hand-crafted source code and any generated code that
wasn't built during the compile.generated step. Again this step uses an augmented version of Ant 's
dependency checker to minimize the build time.

compile.implemented

The compile.implemented step simply compiles all hand-crafted source code and any generated code
that wasn't built during the compile.generated step. This includes the classes with the following
patterns from the build/svr/gen directory:

/base//*.java
/fact//*.java
**/rules/loaders/*.java
**/rules/rdo/*.java
/remote//*.java

From the components/*/source directory -

/impl//*.java
**/rules/loaders/*.java
/webservice//*.java

Cúram Server Developer 21

Extra Targets
A number of extra Ant targets are provided which are not necessary to build a server. Some of the more
useful targets are listed below:

• clean - Delete all the generated and compiled files to ensure all generated and compiled artefacts are
removed and the next build is fresh and clean. It is useful to periodically perform clean builds because
of limitations in the dependency checker provided by Ant.

• encrypt - Encrypt a plain-text password (e.g. for curam.db.password) so the encrypted password
can be safely stored in a property file. None of the Cúram property files contain plain-text passwords so
the passwords contained within them are automatically decrypted. See the Cúram Security Handbook
for more information regarding cryptographic settings for encrypted passwords. The mandatory
argument password that denotes the plain-text password has to be specified when invoking the target.

For example:

encrypt -Dpassword=passw0rd

in this example, the output of this execution is displaying the encrypted password in the console.

The encrypt target can be also used to encrypt a plain-text password for a property in a properties file
using two optional arguments, property and properties.file.path respectively.

For example:

encrypt -Dpassword=passw0rd -Dproperty=curam.db.password -
Dproperties.file.path=c:\bootstrap.properties

In this example, the output of this execution is the property value is updated with the encrypted
password in the specified properties file. If the property does not exist, then the specified property will
be added to the properties file along with the encrypted password as the property value.

• digest - Digest a plain-text user password. When you change cryptographic digest settings, for internal
and external Cúram users, you may need to update digested password values in DMX (e.g. USERS.DMX)
and SQL files for passwords to be stored on the database. To make these updates you will need the new
digest password values, which you can obtain via this target. Care should be used in creating these
passwords and should only be done for test users. See the Cúram Security Handbook for more
information regarding cryptographic settings for digested passwords.

• database - This transforms the database independent xml files into DDL files and places the contents
of these DDL files on the database. The database target also provides support for applying rule sets to
the database (more detail on this is provided in “Rules Targets” on page 25).

• mergeshortnames - Merges file ShortNames.properties from all components
• extractdata - This extracts the contents of all or some of the tables on the database and transforms

them into database independent XML files. More detail on this target is provided in “Data Manager” on
page 39.

• reloadextracteddata - This reloads data that was extracted using the extractdata command
back onto the database. This is dependent on the insertextracteddata and the extracteddata
targets existing in the datamanager_config.xml file. If these targets do not exist in your
datamanager_config.xml file, the OOTB datamanager_config.xml file should be used as a
reference for adding them.

• checksql - This validates the hand-crafted SQL and test data against the actual database. If this step
is not run syntactical (and semantic) mistakes in hand-crafted SQL will not be determined until run-time
because of the dynamic nature of JDBC (Java Database Connectivity)1. This step operates by producing
an SQLJ file and completely relies on the syntax checking provided by the particular database. The
checksql target uses the output that is built during the database target. So it is a pre-requisite to
have run database target before running checksql. Any errors that are discovered while running the

1 JDBC (Java Database Connectivity) is part of the Java Development Kit which defines an application
programming interface for Java for standard SQL access to databases from Java programs.

22 IBM Cúram Social Program Management: Cúram Server Developer's Guide

checksql target are logged to the console and to a timestamped log file in the buildlogs directory. More
detail on this target is provided in “SQL Checker” on page 63.

• deprecationreport - The command-line Java compiler deprecation warnings have been extended to
apply to certain Cúram builds and validations. This helps to quickly pinpoint where custom
dependencies exist on deprecated out-of-the-box artefacts. This target combines all the Cúram builds
and validations that support deprecation warnings. As such, the build output from this target provides a
comprehensive overview of all deprecation warnings for all supported builds (server and client builds,
workflow validations, rules validations, etc). Please note that this target starts with a clean (as the Java
compiler does not produce warnings for incremental builds). See “Deprecation” on page 117 for more
information.

• foreignkeycheck - In a production environment it is not desirable to enable foreign keys on the
database because of the result performance degradation. As a result it is possible for referential
integrity to be violated as a result of program bugs or manual intervention by a Database Administrator.
This target validates that the Referential Integrity has not been violated. It performs this task by loading
the generated foreign key constraints for the application and verifying that for each child record of each
foreign key the referenced parent key exists. The key values of any missing parent key records are
reported.

• test - Execute the tests associated with the application.

– If Clover is available a code coverage report can also be generated. More details on the usage of
Clover are available in “Clover Targets” on page 25.

– The JUnit forkmode controls the number of Java Virtual Machines that gets created if you want to
fork some tests; and it can be set dynamically by specifying junit.fork.mode property, while executing
the test target.

For Example:

build test -Djunit.fork.mode=once

Possible values for this property are:

perTest - creates only a single Jav Java VM for all tests.

perBatch - creates a Java VM for each nested batch test and one collecting all nested tests.

once - creates only a single Java VM for all tests.

Default value of perTest is used if junit.fork.mode property is not set.
– It is possible to exclude or include set of tests while running the test target. To Exclude/Include

tests, copy the ExcludeTests.txt or IncludeTests.txt file located in the CuramSDEJ\util\
directory. This new file can then be modified to add the tests that you want to exclude or include and
can be reference using the property override.

For Example:

build test
 -Dexclude.test.file=<PATH_TO_THE_FILE>\ExcludeTests.txt
build test
 -Dinclude.test.file=<PATH_TO_THE_FILE>\IncludeTests.txt

• configtest - Examines the current environment to ensure that the various environment settings and
property files have been established correctly. This tool attempts to diagnose any problems in the
environment which would be an impact. It checks the validity of:

– versions of third party tools including Java SE Runtime Environment (JRE), Ant, application server and
database.

– Bootstrap.properties including properties: curam.db.name or curam.db.oracle.servicename,
curam.environment.bindings.location, curam.db.username, curam.db.password and curam.db.type

– database connectivity by attempting to connect to the database described by properties in
Bootstrap.properties and ensures it is a valid database.

Cúram Server Developer 23

– database configuration; e.g. for DB2: buffer pools, tablespaces, etc.; and for Oracle: privileges for the
Cúram user. If DB2 is remote the configuration check for LOCKSIZETIMEOUT will fail. This check can
be bypassed by setting the db2.is.remote property.

– application server variables: WAS_HOME and WLS_HOME dependencies are also checked i.e. if using
WebSphere the IBM JDK and IBM Java EE must be used.

– Ant variables i.e. ANT_HOME and ANT_OPTS
– server and client environment variables

• configreport - Creates a config_report.zip file, which contains information to assist with
diagnostics gathering, and can be used if remote support is required. The file is created in the
<CURAM_DIR>/EJBServer directory, and contains a copy of:

– Environment settings for Cúram specific and system environment variables, and software versions on
the machine.

– The installer logs, which also provide the version of Cúram being used.
– Properties files - all properties files that are located in the <CURAM_DIR>/EJBServer/project/
properties directory.

– A copy of the deployment_packaging.xml file.
– The output from the configtest build target, as detailed above.
– The log files from the application server being used. Note that these log files will only be copied if:

- the application server is installed on the same machine as Cúram.
- the application is running on a standalone server.
- the default location where the log files are written to has not been changed.

• javadoc - Produce the Java Documentation (JavaDoc) from the application. To produce useful
JavaDoc, comments must have been placed in the model as well as in the code.

• apijavadoc - Generates the javadoc for black/grey box components, this is based on the
javadoc.properties files.

• release - Gathers all the files together that are necessary to run IBM Cúram Social Program
Management on another machine in the <SERVER_DIR>/release directory. The release target is
used to build the application for a target platform, for example, to build the application in Windows for
deployment on IBM z/OS®, or to move the application between machines. If you move the release
directory to another machine, you must place the Bootstrap.properties file and the
AppServer.properties file in a release/project/properties directory. Also, before you use
any of the scripts, you must set the following environment variables:

– Set SERVER_DIR to the release directory.
– Set SERVER_MODEL_NAME to the name of the application model.
– Set CURAMSDEJ to the location of the SDEJ.
– Set SERVER_COMPONENT_ORDER in your target environment where you plan to work with the

resulting release directory. The value must be the same as the value that is used in your source
environment.

The appropriate SetEnvironment.bat and SetEnvironment.sh files are also generated into the
release deliverable for a specified environment. The files are in the root directory of the release delivery
and contain commands to set the standard environment variables, including the environment variables
for the development environment, the locale list, and component orders. The files that are copied are:

– Ant build files
– Project JAR files
– DDL files
– SQL files
– Code tables files
– Batch launcher

24 IBM Cúram Social Program Management: Cúram Server Developer's Guide

– Data manager
– Application EAR files
– XML server files

To generate a compressed zip file for the release, use the following command:

build release -Dcreate.zip=true

• insertproperties - Merges all the properties (.prx) files defined under the properties directory for
each of the application's components, and inserts them into the database. See “Application Properties”
on page 33 for more details.

• extractproperties - Extracts the properties from the database, and stores them into a database
independent prx file. The generated prx file is stored at <SERVER_DIR>/build/
propertiesextractor/

• mergeuserpreferenceproperties - Merge the user preference properties files.
• model - Extract the model and generate source code and other artefacts from the XML representation

of a Cúram application. The model target combines the modelext and modelgen targets.
• runbatch - Runs the Batch Launcher. For more information refer to the Cúram Batch Processing Guide.
• runstatistics - Runs statistics for the database. For more information refer to “Statistics” on page

61.
• supplement - Compiles and jars all the Java files contained within any supplementary directory
specified by the -Dsupplement=<DIRECTORY_NAME> parameter. A <DIRECTORY_NAME>.jar file will
be created and stored in the <SERVER_DIR>/build/jar/ directory.

• police.access.restrictions - Provides a report of accesses to restricted APIs within the Cúram
application. The APIs that are restricted are marked by annotations within the Javadoc and indicate
areas that should not be accessed by custom code. This policing tool highlights any code that accesses
restricted APIs and out-of-the-box code containing a restricted annotation. During development these
restrictions are further backed by the non-delivery of sample Java files, Eclipse access restrictions and
that there is no JavaDoc available.

Clover Targets
Clover is a code coverage tool that can easily be integrated into the Cúram build environment. A number
of Ant targets are provided to aid in the integration of Clover. For these targets to work correctly the
clover.jar and clover.license files must be obtained and installed in the <ANT_HOME>/lib
directory. More information on obtaining and using Clover can be found at http://www.atlassian.com/
software/clover/overview.

• clover.server - This is the equivalent of the server target and also includes instrumenting the
compiled .java files with the necessary Clover information.

• clover.supplement - This is the equivalent of the supplement target and also includes
instrumenting the compiled .java files with the necessary Clover information.

• clover.report.html - This target will generate a html report detailing code coverage. The report is
generated into the <SERVER_DIR>/clover/clover_html folder.

• clover.report.viewer - This target will launch the Clover viewer with details of the code coverage.

Rules Targets
A rule set is the fundamental structure which describes the rules within a Cúram application. It is the
database that is the system of record for rule sets. This allows the rule sets to be changed at run-time via
an administration client. However, support is also provided for representing rule sets as .xml files.
These .xml files can be used for source control management. To allow for the synchronization between
these .xml files and the database a number of extra targets have been introduced:

Cúram Server Developer 25

http://www.atlassian.com/software/clover/overview
http://www.atlassian.com/software/clover/overview

Representing Rulesets as XML Files: Support for ruleset import and export is only there to allow source
control management and to exchange rulesets between machines. Direct editing of the ruleset XML files
is not supported in any way.

• listrulesets - Produce a listing of the names and identifiers of the rulesets that are present on the
database.

• exportruleset - This target exports a ruleset definition (.xml file) from database to the file system.
This command takes two parameters - rulesetid and component. Exported ruleset will be saved as
[specified rulesetid].xml in <SERVER_DIR>/components/[specified component]/rulesets
folder.

rulesetid - Identifier of the ruleset that is to be exported from the database.

component - Name of the component to which the rule set has to be exported (copied).

For example:

build exportruleset
-Drulesetid=PRODUCT_1
-Dcomponent=custom

Where 'PRODUCT_1' denotes the identifier of the ruleset that is to be exported from the database and
'core' denotes the name of the component to which the rule set has to be exported (copied).

• importruleset - This target imports a ruleset definition (.xml file) from a file system to the database.
It validates the rule set ID for uniqueness before importing the rule set, it does this by searching for
existing IDs in the SERVER_DIR/components/../rulesets directories. This command takes two
parameters- ruleset.file and overwrite.

ruleset.file - This parameter denotes the path of the ruleset that is to be placed on the database.

overwrite (Optional) - This is an optional flag with the default value as false, indicating whether
the database should be overwritten if the ruleset already exists.

For example:

build importruleset
-Druleset.file=
 <SERVER_DIR>/components/core/rulesets/PRODUCT_1.xml
-Doverwrite=true

Where <SERVER_DIR>/components/core/rulesets/PRODUCT_1.xml denotes the path of the
ruleset definition file and true denotes the flag to overwrite the database, if ruleset already exists.

• validateallrulesets - Validates all the rule sets in the Cúram application. This target has to be
invoked from the SERVER_DIR directory, where it scans all the components for rule set files and
validates them. For schema validation this target uses the rule set schema located in CURAMSDEJ/lib
directory by default, unless another schema is specified by using an optional property 'schema.file'.

The validator ensures that the rule set ID is unique by searching for existing IDs in the SERVER_DIR/
components/../rulesets directories.

schema.file (Optional) - This optional parameter specifies the rule set schema that has to be
used for validating the rule sets.

For example:

ant validateallrulesets
ant validateallrulesets
 -Dschema.file=C:/Rules/ruleset.xsd

• validaterulesets - Validates all the rule sets in the specified directory. The property 'rulesets.dir'
has to be specified when invoking the target. For schema validation this target uses the rule set schema
located in CURAMSDEJ/lib directory by default, unless another schema is specified by using an
optional property 'schema.file'.

The validator ensures that the rule set ID is unique by searching for existing IDs in the SERVER_DIR/
components/../rulesets directories.

26 IBM Cúram Social Program Management: Cúram Server Developer's Guide

schema.file (Optional) - This optional parameter specifies the rule set schema that has to be
used for validating the rule sets.

rulesets.dir - This parameter specifies the directory within which rule sets are to be validated.

For example:

ant validaterulesets
 -Drulesets.dir=
 <SERVER_DIR>/components/core
ant validaterulesets
 -Drulesets.dir=
 <SERVER_DIR>/components/core
 -Dschema.file=C:/Rules/ruleset.xsd

• validateruleset - Validates the specified rule set. The property 'ruleset.file' that denotes the rule
set path and file name has to be specified when invoking the target. For schema validation this target
uses the rule set schema located in CURAMSDEJ/lib directory by default, unless another schema is
specified by using an optional property 'schema.file'.

The validator ensures that the rule set ID is unique by searching for existing IDs in the SERVER_DIR/
components/../rulesets directories.

schema.file (Optional) - This optional parameter specifies the rule set schema that has to be
used for validating the rule set.

ruleset.file - This parameter specifies the rule set path and file name.

For example:

ant validateruleset
 -Drulesets.file=
 <SERVER_DIR>/components/core/rulesets/PRODUCT_1.xml
ant validateruleset
 -Drulesets.file=
 <SERVER_DIR>/components/core/rulesets/PRODUCT_1.xml
 -Dschema.file=C:/Rules/ruleset.xsd

• rulesfunctionsmerge - Merge rules custom function meta-data from.xml files.

IEG Targets
The validateieg2scripts command validates the intelligent evidence gathering (IEG) scripts in the
specified directory.

Application Configuration Import and Export Targets
The application configuration information for the Cúram web client is stored as a series of XML and
properties files in the server source directory. It is merged and loaded into the database at build time
from where it is read by the client tier at run time.

The rules for merging are as follows:

• Files in the clientapps directory take precedence over files in the tab directory, regardless of
component order. E.g: if a file named CaseHome.nav exists in the clientapps directory of any
component of the application, then any files named CaseHome.nav which exist in the tab directory of
any component are ignored.

• Files in the clientapps directory are selected (not merged) based on the component order. E.g: if a file
name CaseHome.nav exists in the clientapps directory of components Custom1 and Custom2, and
Custom1 is ahead of Custom2 in the component order, then the version of CaseHome.nav from
Custom1 is used and the version from Custom2 is ignored.

• Files in the tab directory are merged according to the component order - provided that a corresponding
file in a clientapps directory does not exist. E.g: if a file named SearchTab.nav exists in the tab
directory of components CustomA and CustomB, but not in the clientapps directory of any
component, then the contents of the two files are merged together.

Cúram Server Developer 27

Note: Note that only OOTB Cúram components may use the tab directory to store application
configuration files; this directory may not be used by custom components. Custom components may
use only the clientapps directory for application configuration files.

One target controls the import and export of application configuration to and from the database:

inserttabconfiguration

Merges application configuration files from disk and inserts the data into the database. The default action
of this target is to insert the application configuration data onto the database but it can also be used to:

• Merge the application configuration files and write the merged files to a directory on disk.

If property dir.tab.merge is set then it denotes a directory into which the application configuration files
from the various components of your application will be merged. In this mode, nothing is written to the
database. E.g: build inserttabconfiguration -Ddir.tab.merge=C:/EJBServer/
tabExtract

• Extract the application configuration data from the database and write it to a directory on disk.

If property dir.tab.extract is set then it denotes a directory into which the application configuration data
from the database will be extracted. In this mode the application configuration data is read from the
database and nothing is written to the database. E.g: build inserttabconfiguration -
Ddir.tab.extract=C:/EJBServer/tabExtract

Workflow Targets
The Cúram Workflow Reference Guide provides an introduction to the support for workflow in Cúram. A
workflow process definition is the fundamental structure which describes the workflow process within a
Cúram application. Workflow process definitions are stored on the database, but can also be represented
as .xml files and loaded onto the database as needed. A number of targets exist to allow for the
validation of workflow process definition .xml files:

Prerequisites for validating workflow process definition files: Workflow process definitions can make
reference to rule sets and Cúram events (See “Events and event handlers” on page 143) in the process
xml files. Therefore, all rule sets and events that are referenced in workflow process definitions being
validated must already be loaded onto the database before the associated workflow process definition
files can be validated using the targets outlined below.

• validateworkflows - supports validation of the workflow process definition files in the specified
directory. The property 'workflow.dir' has to be specified when invoking the target.

workflow.dir - This parameter denotes the directory within which workflow process definition files
are to be validated.

validate.schema.only - This optional parameter, if set to true, only performs schema validation on
the workflow xml files and bypasses the full semantic validation that would otherwise be performed.

For example:

ant validateworkflows
 -Dworkflow.dir=
 <SERVER_DIR>/path to workflow directory

• validateallworkflows - performs validation of all workflow process definitions files in the Cúram
application.

validate.schema.only - This optional parameter, if set to true, only performs schema validation on
the workflow xml files and bypasses the full semantic validation that would otherwise be performed.

For example:

ant validateallworkflows
• validateworkflow - supports validation of the specified workflow process definition file. The

property 'workflow.file' has to be specified when invoking this target.

28 IBM Cúram Social Program Management: Cúram Server Developer's Guide

workflow.file - This parameter denotes the full path to the workflow process definition file that is to
be validated.

validate.schema.only - This optional parameter, if set to true, only performs schema validation on
the workflow xml file and bypasses the full semantic validation that would otherwise be performed.

For example:

ant validateworkflow
 -Dworkflow.file=
 <SERVER_DIR>/path to workflow file to be validated

• importworkflow - Import a workflow process definition (use -Dworkflow.file= -Doverwrite=).

workflow.file - This parameter denotes the full path to the workflow process definition file that is to
be imported.

overwrite (Optional) - This is an optional flag with the default value as false, indicating whether
the database should be overwritten if the workflow process definition already exists.

• importworkflows - Import the workflow definitions in the specified directory (use -Dworkflow.dir= -
Doverwrite=).

workflow.dir - This parameter denotes the directory from which the workflow definitions should be
imported.

overwrite (Optional) - This is an optional flag with the default value as false, indicating whether
the database should be overwritten if the workflow process definitions already exist.

• listworkflows - List all process definitions available in the database.

Deployment Targets
A number of extra targets exist which allow an application to be deployed on an application server. These
commands are fully described in the Cúram Deployment Guide2, but a summary is provided here.

Note: Generic Search Server is deprecated. For more information, see Deprecated features

• weblogicEAR - Produce an .ear file that can be deployed on WebLogic.
• websphereEAR - Produce an .ear file that can be deployed on WebSphere Application Server.
• weblogicWebServices - Produce an .ear file that can be deployed on WebLogic that supports Web

Services invocation.
• websphereWebServices - Produce an .ear file that can be deployed on WebSphere that supports

Web Services invocation.
• weblogicEARGSS - Build GSS ear for WebLogic
• websphereEARGSS - Build GSS ear for WebSphere Application Server
• configure - Automatically configures the application server.
• installapp - Installs and starts a specified EJB application. (Note: the EAR file (Curam.ear)

containing the server module must be deployed before installing any other (client-only) EAR files.)
• precompilejsp - Precompiles all JSPs in the specified .ear file.
• prepare.application.data - Must be run after the database target is run and before starting the

application server for the first time. Failing to run this sequence will likely result in transaction timeouts
during first login and a failure to initialize and access the application. Whenever the database target is
rerun (e.g. in a development environment) this target must also be rerun.

• startserver - Starts an application server.
• restartserver - Restarts an application server.

2 For your particular application server, i.e. WebSphere and WebLogic. The deployment guides are named
Cúram Deployment Guide for WebSphere Application Server, Cúram Deployment Guide for WebSphere
Application Server on z/OS, and Cúram Deployment Guide for WebLogic Server.

Cúram Server Developer 29

• stopserver - Stops an application server.
• uninstallapp - Stops and uninstalls the specified EJB application.

Extending the Build
This section describes how Ant can be used to introduce new targets, enhance existing targets or override
OOTB build targets.

This is achieved by creating a script hierarchy using Ant 's import task and can be seen in the OOTB
application. Examples include the build.xml files found in the webclient and EJBServer directories
that extend, through an import, the build.xml files from the CuramCDEJ and CuramSDEJ directories
respectively.

The delivered build.bat or.sh files invoke Ant against the webclient or EJBServer build.xml.
This allows for these build.xml files to introduce new targets not available in the scripts delivered in the
CDEJ and SDEJ. It also allows these targets to be enhanced as required due to the principal of the import
task, which is that "If a target in the main file is also present in at least one of
the imported files, the one from the main file takes precedence".

Introducing a new script

The following section details the steps to create a new top level script which can be used to introduce
new targets, enhance existing targets or override OOTB build targets.

Two Environment variables CDEJ_BUILDFILE and SDEJ_BUILDFILE are used to control the script that is
invoked by the build.bat or.sh files. A new script can be invoked by setting the appropriate
environment variable. For example:

Introducing a new server script:

 SDEJ_BUILDFILE=%SERVER_DIR%/components/custom/scripts/build.xml

This script must then import it's parent in the hierarchy EJBServer\build.xml, for example:

<?xml version="1.0" encoding="UTF-8"?>
<project name="custom">

 <!-- Relative path to EJBServer\build.xml -->
 <import file="./../../../../build.xml"/>

</project>

New targets can then be added to the script as required. These targets can also utilize existing targets or
properties in the inherited script hierarchy.

To enhance or override an existing target the same target name is chosen as that which is being enhanced
or overriden. When enhancing a target, the existing target is then either added as a dependency of the
new target or invoked during a point in the new target. The previous target's name used is formed from
the project name of the script where the target being enhanced exists. For example:

30 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Enhancing the database target, where the project name of the SDEJ script containing the database
target is app_database.

Before target usage:

<target name="database" >
 <!-- Some further processing before the SDEJ database target -->
 ...
 <antcall target="app_database.database"/>
</target>

After target usage:

<target name="database" depends="app_database.database">
 <!-- Some further processing after the SDEJ database target -->
 ...
</target>

Figure 5: Before/After Target usage

Target API: Only targets that are documented i.e. those visible through the -projecthelp for a script
should be enhanced, overriden or invoked. Other targets are considered internal are subject to change
without notice.

Overridden Targets
Some targets in the SDEJ are overridden by application build scripts. Such targets appear in the report
produced by the -projecthelp command qualified by the SDEJ sub project name such as
app_auxiliary, serverbuild, etc. Only the unqualified version of these targets should be used,
otherwise the target may not work correctly. E.g. always use websphereEAR instead of
serverbuild.websphereEAR.

This applies to the following targets:

• app_auxiliary.ctgen
• app_auxiliary.msggen
• app_runtimewas.configure
• serverbuild.clean
• serverbuild.generated
• serverbuild.implemented
• serverbuild.model
• serverbuild.release
• serverbuild.weblogicEAR
• serverbuild.websphereEAR

Application Targets
This section lists targets which are available in the OOTB application and which are displayed when the -
projecthelp command is given.

BI App

• biapp.BIRTViewerEARs - Builds deployable EAR files for WebSphere and WebLogic
• biapp.configure.birtviewer - Configures the Cúram Business Intelligence and Reporting Tools

(BIRT) Viewer application (use -Dserver.name= -Dear.file= -Dapplication.name=)

server.name - The name of the server to deploy the application onto.

application.name - The name of the BIRT Viewer application.
• biapp.release - Copies BIRT build files required to run biapp.configure.birtviewer (post install step

for WebSphere)

Cúram Server Developer 31

CREOLE

• creole.check.initial.database - Checks the structure of rule set XML data uploaded from DMX
files and runs lax validation.

• creole.compile.test.classes - Compiles the test classes generated from the CREOLE rule sets.
• creole.consolidate.resource - Consolidates together resource bundles for CREOLE rule sets.
• creole.consolidate.rulesets - Inlines any included CREOLE rule sets and consolidates the rule

sets into one build directory.
• creole.copyresourceto.cls - Copies resource files for CREOLE rule sets into the build\svr\cls

directory.
• creole.generate.catalog - Generates an XML catalog file for CREOLE rule sets.
• creole.generate.ruledoc - Generates rule documentation for all CREOLE rule sets.
• creole.generate.schema - Generates an XML schema file for CREOLE rule sets.
• creole.generate.test.classes - Generates test classes from the CREOLE rule sets.
• creole.report.coverage - Reports CREOLE rule set coverage information gathered from CREOLE

rule executions.
• creole.report.unused.attributes - Reports CREOLE rule attributes which are not used directly

by any other rule attributes.
• creole.upload.rulesets - Uploads new CREOLE rule sets and/or changes to existing CREOLE rule

sets to the database.
• creole.validate.rulesets - Performs full validation of all CREOLE rule sets.

Evidence Generation

• egtools.assign.resourceID - Allocate resourceID values for the Create Wizard AppResource.dmx.
• egtools.clean - Calls on the EG Tool to delete all generated components.
• egtools.client.clean - Calls on the EG Tool to delete all generated client evidence screens on the

product.
• egtools.client.generate - Generate target for client evidence generation.
• egtools.generate - Main generate target for evidence generator. Generates all evidence

components.
• egtools.server.clean - Calls on the EG Tool to delete all generated components on the server.
• egtools.server.generate - Generate target for server evidence generation.
• egtools.wizard.dmx - Generate target for creation of AppResource.dmx for Create Wizard pages.
• post.modelgen - Calls on the EG Tool to perform any steps required after the modelgen.
• add.rootnode.to.appresource.dmx - APPRESOURCE.dmx gets appended to by each product's

evidence generation. This adds the root node 'table'.
• add.rootnode.to.initialappresource.dmx - INITIALAPPRESOURCE.dmx gets appended to by

each product's evidence generation. This adds a root node to make a valid xml file.
• add.rootnode.to.products.xml - Product.xml gets appended to by each product's evidence

generation. This adds the root node 'products'.
• build.all.component.dirs - Builds all components.
• build.all.evidence.dirs - Builds all evidence directories.
• build.evidencebroker.resources - Builds the evidencebroker resources for domains and labels.
• call.egtools.transformer - Calls on the XSLT transformer.
• generate.resolve.scripts - Calls any XSLT transformations that require the cross products

summary defined in Products.xml.
• makedir - Creates directory structure for an evidenceEntities.xml file in the EJBServer/build folder if

none exists. Should only be necessary if an appbuild clean has been performed.

32 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Cúram Configuration Settings
Use this information to understand how you can configure environment variables in your IBM Cúram
Social Program Management environment.

Application properties are set in application.prx and bootstrap.properties. Support for
multiple time zones can be configured. Dates and date/time behavior can be configured.

Application Properties
This section describes the property files associated with developing or running a Cúram application.

Application prx
Use this information to understand the properties that are used in the Application.prx file when you
run a Cúram application.

The Application.prx contains the properties that are used when you run a Cúram application. The
properties that are contained in this file are loaded to the database during the build database target
and at run time are cached from the database for use by the Application. An Application.prx can be
loaded separately by way of the build insertproperties target.

The properties that are defined in Application.prx can be "dynamic" or "static". Dynamic properties
take effect immediately if changed and published by using the administration interface during run time.
Modifying static properties has no effect until a restart of the server is performed.

<property name="curam.trace" dynamic="true">
 <type>STRING</type>
 <value>trace_ultra_verbose</value>
 <default-value>trace_ultra_verbose</default-value>
 <category>CODETABLE</category>
 <locales>
 <locale language="en" country="US">
 <display-name>Trace Property</display-name>
 <description>Details of the Trace Property</description>
 </locale>
 </locales>
 </property>

Figure 6: PRX entry

The file is organized as follows:

Property Element
A property element is used for each property.
Name Attribute

Attribute specifying the name of the property.
Dynamic Attribute

Indicator whether a change to the property value requires an Application restart.
Type Element

Refers to a code entry on the codetable DomainType.
Value Element

The property value.
Default-Value Element

The default value of a property that is used when properties are reset.
Category Element

Refers to a code entry on the codetable EnvPropertyCategory.
Locales Element

Contains one or more locale-specific elements for the display name and description.

Cúram Server Developer 33

Language Attribute
Language Code for this locale-specific entry.

Country Attribute
(Optional) Country Code for this locale-specific entry.

Display Name Element
Locale-specific display name for the property.

Description Element
Locale-specific entry for the property.

How to merge an application prx file
Use this information to understand how to merge prx files into your Cúram application.

Prx files are in the /properties directory of a component and the root /project/properties
directory. The IBM Cúram Social Program Management Platform includes a set of prx files. These files
might be overridden by placing new prx files in the SERVER_DIR/components/<custom>/
properties directory, where <custom> is any new directory that is created under components that
conforms to the same directory structure as components/core. This mechanism avoids the necessity to
change directly the initial, unmodified application, which would complicate later upgrades.

This override process involves merging all prx files according to a precedence order. The order is based
on the SERVER_COMPONENT_ORDER environment variable. This environment variable contains a comma-
separated list of component names: the leftmost has the highest priority, and the rightmost the lowest.

SERVER_COMPONENT_ORDER=custom,Appeal,ISProduct,sample

Figure 7: SERVER_COMPONENT_ORDER example

The order shows that the precedence of Appeal is higher than the sample component. The core
component always has the lowest priority and does not need to be specified. Any components that are
not specified are placed alphabetically above core and below those components that are specified.

Note: After changing the component precedence order in SERVER_COMPONENT_ORDER, it is necessary
to initiate a reinsert of the merged properties. This action is done by calling build insertproperties.

When you merge prx files, the components that are listed in the SERVER_COMPONENT_ORDER are taken
in order of highest to lowest priority. In the preceding example, the Application.prx file from the
sample component is merged with the Application.prx in the core component. The
Application.prx from ISProduct is then merged into the intermediate results and the merge process
continues until the Application.prx in the custom component is merged.

Rules of PRX Merges

PRX files are merged based on precedence order. As it is shown in the preceding example, a more
important main/source Application.prx file exists, and a file that is being merged into it. The second
file is called the merge file in the following sections.

An Application.prx file can be customized by:

• Adding a property that provides mandatory property values.
• Overriding an existing properties description.
• Overriding an existing properties display name.
• Override an existing properties value or default value.
• Adding a locale to provide a new display name and description for that locale.
• Removing a property by setting the property tag removed to be true.

An Application.prx file cannot be customized by:

• Changing an existing property name.
• Changing an existing properties type.

34 IBM Cúram Social Program Management: Cúram Server Developer's Guide

• Changing an existing properties category.
• Changing the static or dynamic setting of a property.

Duplicate property nodes always are overwritten by the Application.prx file in the component with
the highest precedence order. The main Application.prx example file and the merge
Application.prx file that follow illustrate these rules:

<property name="curam.trace" dynamic="true">
 <type>STRING</type>
 <value>trace_ultra_verbose</value>
 <default-value>trace_ultra_verbose</default-value>
 <category>CODETABLE</category>
 <locales>
 <locale language="en" country="US">
 <display-name>Trace Property</display-name>
 <description>Details of the Trace Property</description>
 </locale>
 </locales>
 </property>

Figure 8: Sample main Application.prx file

<property name="curam.trace" dynamic="true">
 <type>STRING</type>
 <value>trace_off</value>
 <default-value>trace_off</default-value>
 <category>CODETABLE</category>
 <locales>
 <locale language="en" country="GB">
 <display-name>New Trace Display Name</display-name>
 <description>New Description</description>
 </locale>
 </locales>
 </property>
 <property name="property2" dynamic="true">
 <type>STRING</type>
 <value>value</value>
 <default-value>default</default-value>
 <category>CODETABLE</category>
 <locales>
 <locale language="en" country="GB">
 <display-name>Display Name</display-name>
 <description>Description</description>
 </locale>
 </locales>
 </property>

Figure 9: Sample merge Application.prx file

As a result of the merge process, the new Application.prx produced would be:

Cúram Server Developer 35

<property name="curam.trace" dynamic="true">
 <type>STRING</type>
 <value>trace_off</value>
 <default-value>trace_off</default-value>
 <category>CODETABLE</category>
 <locales>
 <locale language="en" country="US">
 <display-name>Trace Property</display-name>
 <description>Details of the Trace Property</description>
 </locale>
 <locale language="en" country="GB">
 <display-name>New Trace Display Name</display-name>
 <description>New Description</description>
 </locale>
 </locales>
 </property>
 <property name="property2" dynamic="true">
 <type>STRING</type>
 <value>value</value>
 <default-value>default</default-value>
 <category>CODETABLE</category>
 <locales>
 <locale language="en" country="GB">
 <display-name>Display Name</display-name>
 <description>Description</description>
 </locale>
 </locales>
 </property>

Figure 10: Resulting Application.prx File

Bootstrap.properties
Use this information to learn about the Bootstrap.properties file that contains the minimum set of
properties necessary for obtaining a connection to the database.

The Bootstrap.properties file mainly contains the minimum set of properties necessary for obtaining
a connection to the database. Generally, these properties have no effect if set in the Application.prx
file and only are picked up directly from the Bootstrap.properties file.

The Bootstrap.properties file also might contain properties that can be defined in
Application.prx file. If such a property is defined in the Bootstrap.properties file and is a
dynamic property, it can be overridden by setting it on database by using the administration interface.

Note: Properties that are defined in the following are cached: Application.prx,
Bootstrap.properties, and Java System properties at run time. Properties that are defined in
Application.prx are loaded into the database and can be updated at run time by using the
administration interface. A publish is required to rebuild the property cache and allow the changes to take
effect.

The property cache loads its contents with the following priority:

1. Java System properties,
2. Application.prx,
3. Bootstrap.properties;

For example, if a property is set in the Java system properties (either by using the Application Server or by
using java.lang.System.setProperty()) and also in Application.prx
curam.util.resources.Configuration.getProperty(), the value of the property that is defined
in the Java system properties always is returned when it uses the Application.prx and
Bootstrap.properties, the value of the property in Application.prx is what takes effect.

36 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Tnameserv Port
curam.environment.tnameserv.port=900
curam.environment.bindings.location=C:/Bindings

curam.db.username=db2admin
curam.db.password=wWw5UTMnFOe1SeCBEQy/Zg==
curam.db.type=DB2
curam.db.name=CURAM
curam.db.serverport=50000
curam.db.servername=localhost

property to specify Oracle service name.
curam.db.oracle.servicename=orcl.<host_name>

Properties specific to H2
Mode remote|embedded
curam.db.h2.mode=embedded
For remote mode also specify:
curam.db.serverport=9092
curam.db.servername=localhost
Lock Time Out in ms. Default is 1000, i.e. 1 second. (Optional)
curam.db.h2.locktimeout=20000
Property to disable MVCC. Default: true. (Optional)
curam.db.h2.mvcc=true

Figure 11: Bootstrap.properties

An automatically generated version of Bootstrap.properties is packed in the Enterprise Archive
(EAR) when the EAR file is built. This file chooses its properties from the default
Bootstrap.properties and is extended with extra properties that are related to the Application Server
being used.

curam.db.type=DB2
curam.environment.as.vendor=IBM

Figure 12: Bootstrap.properties in an EAR file

Note: The EAR file cannot be built for H2 database.3

Support for multiple time zones
Use this information to understand how to enable multiple time zone support in your Cúram application.

To enable multiple time zone support, the time zone ID must be specified for each user in the user
preferences.

Only Date/Times are processed and displayed in the user's preferred time zone. Date only and Time only
fields are not affected and for these fields it is the responsibility of the business logic to ensure that the
time zone is not relevant. If the time zone is relevant, then a Date/Time field is to be used. An example of
a date where the time zone is not relevant is someone's date of birth. It does not vary regardless of the
time zone that person was born. An example of a date where the time zone is relevant is the current date.
This DAT is different for two users who are working either side of the International Date Line, in this case a
Date/Time must be used.

The server's time zone is basically the underlying operating system's configured time zone. However, the
server stores date/times in a time-zone independent manner; that is, the number of milliseconds since
1/1/1970 00:00 GMT (also known as the epoch). It is the responsibility of the web tier to convert all Date/
Times passed to it from the server into the user's preferred time zone and also to convert all Date/Times
to be passed back to the server into milliseconds since the epoch.

3 For more information on the H2 database, see the Cúram Third-Party Tools Installation Guide for Windows.

Cúram Server Developer 37

The preferred time zone for each user is configured based on the time zone ID specified in the user
preferences for the particular user. The time zone ID must conform to one of the time zones returned from
the Java method java.util.TimeZone.getAvailableIDs().

Some of the Java supported time zones that are returned by
java.util.TimeZone.getAvailableIDs() method are in the following list:

• GMT+x, where x can take value from 1 to 12.
• GMT-x, where x can take value from 1 to 12.
• America/Chicago
• America/Mexico_City
• America/Indiana/Indianapolis
• America/New_York
• America/Los_Angeles
• Australia/Canberra
• Australia/North
• Australia/South
• Australia/West
• Australia/Adelaide
• Australia/Melbourne
• Australia/Brisbane
• Africa/Casablanca
• Africa/Johannesburg
• Brazil/West
• Canada/Pacific
• Canada/Saskatchewan
• Canada/Eastern
• Canada/Atlantic
• Canada/Central
• Canada/Eastern
• Europe/London
• Europe/Dublin
• Europe/London
• Europe/Paris
• Europe/Vatican
• Europe/Moscow
• Europe/Amsterdam
• Indian/Chagos
• Indian/Cocos
• NZ
• Pacific/Auckland

For more information on server time zone configuration, see the Time Zone Configuration chapter in the
Cúram Deployment Guide for the appropriate application server.

38 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Dates and date/times in Cúram
Use this information to understand the behavior of dates and time/dates in your Cúram application.

How the Cúram application describes the behavior of dates and date/times is covered here.

Look at these examples:

• The server is in the Greenwich mean time (GMT)time zone. A user is in time zone GMT -01. At 15:00
GMT the user registers a new person, and the server-side processing time stamps a resulting database
record with the time 15:00. Twenty seconds later the user initiates a query and sees the time stamp
displayed in the client user interface as 14:00. The user's clock is showing 14:00:20 - the new record's
time stamp is twenty seconds in the past - just what the user expected.

• The user registers a new case at 23:30 local time on 01-Jul-2003. The server's local time is 00:30 on
02-Jul-2003, so it creates the case with a case start date of 02-Jul-2003. The user immediately
performs a query on all cases registered on 01-Jul-2003. The newly registered case is not found.

In the second example, the server processing that records the current date as the case start date must
convert from the current date (which is time zone dependent) to some fixed value that afterward is taken
as the case start date. On the grounds of both simplicity and higher likelihood of meeting requirements,
the server's local date is recorded.

The basis for how dates and date/times are handled is as follows:

• Dates are processed and displayed in a time zone-independent manner.
• Date/times are processed and displayed in the user's preferred time zone.
• The time zone of the server is used when the information is converted from a date/time to a date (or

vice versa).

The second issue was mentioned with an earlier example: - the fact that the user, on performing a search
for today's cases, fails to find a record that is just registered. What caused this situation is as follows:

• The user carried out a transaction just before midnight, local time, on day 1. The server recorded a start
date of day 2, based on converting its current local date/time to a date.

• The user requested a list of transactions with a start date of day 1. Because this information is a date,
not a date/time, the server treats it in a time zone independent manner. The newly registered record
does not match the search criteria.

Searches on date/time ranges (such as the start/end of the user's local day) are only feasible if the
column that is being searched on is itself date/time. Users need to be aware that the current business day
might not be the same date as the date in their local time zone. Fortunately, such situations likely are to
be rare.

Data Manager
Use the Data Manager tool to create a database that contains a set of initial data, test data or both.

The Data Manager is based around database independent .xml files. Any setup that is done by a
developer can be applied to any of the supported databases.

Intended Data Manager process
The Data Manager helps the overall process for initial database creation. At a high level, that process
includes the following three main steps:

1. Create the database, tablespaces, and so on.
2. Use the Data Manager to create tables and complete initial data loading.
3. Data Base Administration (DBA) tasks to complete database creation, such as handcrafting scripts to

tune the tables (ALTER) and set constraints.

Cúram Server Developer 39

The aim of the Data Manager is to help establish a skeletal database. Subsequently, a DBA can then write
handcrafted scripts to complete the database by modifying tables and settings, such as LOCKSIZE or
BUFFERPOOL.

Note: The SQL generated by the Data Manager is not intended to replace the role of a DBA. It is expected
that there would be site-specific tweaking that is required to achieve production readiness.

A DBA would not be expected to manipulate the Cúram model to define extra entity options, such as
LOCKSIZE, BUFFERPOOL, and similar commands, in order for the wanted SQL to be generated. This
behavior is due to a number of factors. The modeling tools are unaware of the final deployment
environment, and DBAs would not be expected to have the skill-sets for using the modeling environment.

The Data Manager is not intended to be used to upgrade an existing database. It exists only to reset the
database to a known state.

Planning for MBCS data

The use of multi-byte character set (MBCS) data with Oracle, DB2, or IBM DB2 for z/OS® has specific
database considerations, which are covered in the Cúram Third-Party Tools Installation Guide for Windows
and Cúram Third-Party Tools Installation Guide for UNIX. Specific Cúram configuration is required when
using MBCS data with DB2 or DB2 for z/OS so that the Data Manager functions compatibly. This
configuration is enabled for Cúram as it is configured initially.

Cúram support for MBCS data with DB2 and DB2 for z/OS is enabled in its initial configuration to ensure
error-free operation for users with languages that require MBCS data and for users who find they require
MBCS data when copying or pasting data from other applications. This support entails expanding the size
of string columns in the database because DB2 column sizes are based on bytes, which is not necessarily
the length that is required when MBCS data is used. This procedure is explained in more detail in the
Cúram Third-Party Tools Installation Guide for Windows and Cúram Third-Party Tools Installation Guide for
UNIX. However, these default expansion settings might not be appropriate in the following circumstances:

• If your data requirements do not necessitate the maximum expansion (as explained as follows) you can
reduce the amount of expansion.

• If you are using only single-byte data (a Western language, such as English) and not using any other
MBCS data (for example, by a browser copy or paste), disable multi-byte expansion support. However,
this procedure is not recommended due to the likelihood of MBCS data that is introduced from external
sources (for example, browser copy or paste) and later causing errors.

Whether database expansion is applied by the Data Manager is controlled by the
curam.db.multibyte.expansion property in Bootstrap.properties. The amount of expansion (a
factor of 1.0 to 4.0) is set with the curam.db.multibyte.default.factor property in
Bootstrap.properties. These properties are described in “Cúram Configuration Parameters” on page
154.

To be certain of not receiving any processing errors when processing MBCS data, the default expansion
factor is set to the maximum. However, for many languages and data profiles it is unlikely that every
database column character would require MBCS data or that all characters would require the maximum
size of 4 bytes. A cost is associated with using the maximum expansion factor in terms of disk space used,
network processor usage, memory usage, buffer pool performance, CPU usage, and so on. Therefore, it is
best to use an expansion factor that balances resource usage and performance while avoiding or
minimizing the possibility of application errors caused by data overruns. There are no strict rules for
achieving this balance between resource usage and the possibility of application errors, but
considerations, such as those that follow, can help you choose a reasonable expansion factor and your
testing should confirm your choice.

Depending on your language, locale, and encoding, the number of required MBCS characters vary. For
instance, if you are using English with only a few special characters (for example, smart quotation marks),
you require little expansion. Or, if you are using a language that shares the Latin alphabet with some
additional characters (for example, German), then you need more space for MBCS data. A language (for
example, Chinese) that uses characters at the higher end of the Unicode range requires more space per
character, which needs to be tempered by the number of characters that are required per word; that is,
the language might convey more information in each character than a typical Latin alphabetic character.

40 IBM Cúram Social Program Management: Cúram Server Developer's Guide

In other words, consider the average bytes required per character, word, and so on. Typically this average
is only a rough estimate because, as studies show, character usage can vary depending on a number of
factors; for example, data context, data that is more numeric (phone numbers), versus more textual data
(names) and even free-form comments. So, some additional safety factor needs to be considered in
choosing your expansion factor.

You also are able to control the expansion factor at a more fine-grained level in the modeling environment
by specifying theMultibyte_Expansion_Factor option for a string domain, an entity string attribute, or both,
which might be appropriate for your customizations. For more information, see the Cúram Modeling
Reference Guide for setting these options. You might need to set these fine-grained expansions at this
level due to various limits within DB2 and DB2 for z/OS regarding the size of rows, indexes, and so on, that
can be exceeded by large expansion factors.

For more information on these limits, refer to the relevant DB2 or DB2 for z/OS SQL reference.

Invocation
The Data Manager is started by running a build command of build database.

DB2 development database optimization tip: During iterative development with DB2 on distributed
operating systems, the dropping and creation of tables that are performed during the build database
target can be optimized to run quicker by running the following script once per database:

ant -f %CURAMSDEJ%\util\db2_optimizedbrecreation.xml

Internally this command runs:

ALTER TABLESPACE USERSPACE1 DROPPED TABLE RECOVERY OFF;

ALTER TABLESPACE CURAM_L DROPPED TABLE RECOVERY OFF;

This step is not to be not be taken on a production database.

Database artifacts
Use this information to understand how the Data Manager works and how to use it and handcrafted
artifacts to set up the database.

The Data Manager uses generated and handcrafted artifacts to set up the database. Those handcrafted
artifacts are explained in the pages of the following sections.

• Data Definition XML files - The .xml files describe the database tables and the constraints that are
placed on them.

• Data Contents Data Mining Extensions (DMX) files - In addition to creating the tables on the database,
the Data Manager allows the developer to specify sample and test data that is to be placed on the
database. The format of the .DMX file is introduced in “Data contents DMX files” on page 44. The
developer typically edits this file by using a standard XML editor.

– The Table element
– How to customize a DMX file
– Retrieving values from DMX files
– Validation of DMX files
– Tracing information for the DMX merging process

Cúram Server Developer 41

Data definition XML files
The .xml files describe the database tables and the constraints that are placed on them. For an
introduction to these files, see the related information.

The code example that follows shows a sample table definition. An entity can have any number of
attribute elements. Not all elements have all the attributes (the size attribute is only present for
strings and Large Objects).

<entities>
 <entity tablename="Fully qualified tablename"
 <attribute ddltype="DD Type from the UML Model"
 notnull="Indicator whether Nulls are allowed"
 size="Size qualifier for the DDL Type"
 />
 </entity>
</entities>

Figure 13: Table definitions

The code example that follows shows a sample foreign key constraint. Any number of key,
association, and foreignkeypair elements are possible.

Note: If foreign keys are applied to a DB2 for z/OS database by the Data Manager, manual intervention is
required to move the tables from the check_pending state. Consult with your local Database
Administrator (DBA) to resolve this issue.

<foreignkeys>
 <key>
 <association tablename="Local Table name"
 othertablename="Remote table name"
 >
 <foreignkeypair localfield="Local field name"
 remotefield="Remote field name"/>
 </association>
 </key>
</foreignkeys>

Figure 14: Foreign key constraints

The code example that follows shows a sample primary key constraint. Any number of key and
attribute elements can be included.

<primarykeys>
 <key tablename="Fully qualified tablename">
 <attribute keyname="Field name"/>
 </key>
</primarykeys>

Figure 15: Primary key constraints

The code example that follows shows a sample index constraint. Any number of index and
indexattribute elements can be included.

<indices>
 <index>
 <indexdetails tablename="Fully qualified tablename"
 indexname="Name for the Index" >
 <indexattribute attribute="Field name"/>
 </indexdetails>
 </index>
</indices>

Figure 16: Index constraints

42 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The code example that follows shows a sample Unique Constraint. Any number of constraint,
association, and attribute elements can be included as necessary.

<uniqueconstraints>
 <constraint>
 <association tablename="fully qualified tablename">
 <attribute field="field name on table for constraint">
 </association>
 </constraint>
</uniqueconstraints>

Figure 17: Unique constraints

The code example that follows shows a sample of the metadata that is generated to support the batch
processes that were modeled by the developer. Any number of batch processes that have any number of
parameters can be included.

<batches>
 <batch process="Process Name"
 operation="Operation Name"
 application="Application Name"
 >
 <parameter name="Parameter name"
 type="Domain Type"/>
 </batch>
</batches>

Figure 18: Batch metadata

The code example that follows shows a sample of the metadata that is generated to support the security
that was modeled by the developer. Any number of function identifiers (FIDs) can be included.

<fids>
 <fid
 name="Function identifier name"
 operation="Operation to allow access to"
 fidenabled="Indicate whether enabled by default or not"
 iswebservice="Indicate whether this is a web service"
 />
</fids>

Figure 19: Security metadata

The code example that follows shows a sample of the metadata that is generated to support the field
level security that was modeled by the developer. Any number of fields that are returned can be included.

<fieldsreturned>
 <fieldreturned
 operationname="Function identifier name"
 fieldname="Field name"
 sidname="Associated SID"
 />
</fieldsreturned>

Figure 20: Field level security metadata

Cúram Server Developer 43

Data contents DMX files
In addition to creating the tables on the database, the Data Manager allows the developer to specify
sample and test data to be placed on the database.

In addition to creating the tables on the database, the Data Manager allows the developer to specify
sample and test data to be placed on the database. The developer typically edits this file by using a
standard XML editor.

<table name = fully qualified tablename>
 <column name = column name
 type = One of:
 number
 text
 bool
 id
 blob
 clob
 date
 timestamp
 >
 </column>
 <row>
 <attribute name = field name>
 <value>Field value</value>
 </attribute>
 </row>
</table>

Figure 21: Data contents file

The data contents Data Mining Extensions (DMX) file is made up of a number of elements that are
described in the following sections, some of these elements and attributes are necessary to enable
customization of DMX files, described in further detail in “How to customize a DMX file” on page 46.

The table element
Use this information to understand the table element, along with a description of its attributes and
default settings.

The <table> element has the following components:

Table 9: Components of the table element

Attribute name Required Default Description

name Yes None Specifies the name of the database table.

override No false Used to customize or completely override existing
DMX files from within a component lower down in
the SERVER_COMPONENT_ORDER.

The <column> element

The <column> element has the following attributes:

Table 10: Attributes of the column element

Attribute name Required Default Description

name Yes None Specifies the name of the column.

type Yes None Specifies the data type of a column. Table 14 on
page 46 describes the type that a column can
be set to.

44 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 10: Attributes of the column element (continued)

Attribute name Required Default Description

encoding No UTF-8 Specifies the CLOB data file encoding type. Check
“LOB Manager” on page 61.

The <row> element

The <row> element has the following attributes:

Table 11: Attributes of the row element

Attribute Name Required Default Description

remove No false Enables the removal of a row from a DMX file from
within a component lower down in the
SERVER_COMPONENT_ORDER.

locales No None If omitted, the row is applicable to all locales.

If present, this attribute must be set to a comma-
separated list of locales, ensuring that there are no
spaces between each locale. The following
example indicates the <row> is applicable for the
en and en_US locales: <row
locales="en,en_US">.

The row element also encapsulates a collection of attribute elements.

The <attribute> element

The <attribute> element has the following attribute:

Table 12: Attributes of the attribute element

Attribute Name Required Default Description

name Yes None Specifies the name of the column.

encoding No UTF-8 Specifies the CLOB data file encoding type. Check
“LOB Manager” on page 61.

Note: If the number of attributes that are defined for a row does not match the number of columns
defined the Data Mining Extensions (DMX) processing fails.

Note: Therefore, also, when processing DMX files, the name of each attribute is not taken into account.
The order is taken from the column definition at the start of the file. The ordering of the attributes should
match the ordering of the columns.

The attribute element has a required subelement: value.

The <value> Element

The <value> element is the value to be inserted into the column for this row. For a Binary Large Object
Block (BLOB), the value is a pointer to a file. To be meaningful, the name attribute of the attribute
element takes its value from one of the column elements' name attributes within the same DMX file.
Ordering also is important as when the database is being built. Database columns are updated with
content defined by the row elements in the order the column elements are listed within the DMX file.

The <column> elements' type attribute determines the valid attribute values. Table 14 on page 46,
describes the relation between the column type and attribute value.

Cúram Server Developer 45

The <value> element has the following attributes:

Table 13: Attributes of the value element

Attribute Name Required Default Description

language No None The language attribute, along with the
country attribute, make up the locale for
an <attribute> element.

country No, but if the language
attribute is specified
this attribute must also
be specified.

None The country attribute, along with the
language attribute, make up the locale
for an <attribute> element.

Important: The primary key or the composite key for a record never must be localized within the DMX file
for that record. For example, if AddressID is the primary key for the Address table, the AddressID value
element within the Address.DMX file must not be localized.

Table 14: Attribute values

Column Type Attribute Value

number Value must be numeric.

text Value must be text or multi-line text.

bool Value must be TRUE or FALSE.

id Value must be numeric.

blob Value must be a relative path from the DMX file to the BLOB
file.

clob Value must be a relative path from the DMX file to the CLOB
file.

date Value must be a valid date or system date. For system date,
value must be represented as SYSDATE.

timestamp Value must be a valid time or system time. For system time,
value must be represented as SYSTIME.

How to customize a DMX file
Use this information to understand how to customize DMX files. You also can use this information to learn
how to modify the elements of a DMX file and add DMX files to new components of your Cúram
application.

The Data Manager processing allows for the customization of Data Mining Extensions (DMX) files for the
initial, demo, and test targets. Supported customizations include the ability to add a row, update a
row, remove a row, localize at a row or attribute level, and completely override a DMX file. This process
allows for DMX files that are included with the Cúram application to be customized easily by adding new
DMX files to new components in the relevant directory.

The DMX files to be customized must be in the following directory structure:

• <SERVER_DIR>/components/<custom>/data/initial
• <SERVER_DIR>/components/<custom>/data/demo

46 IBM Cúram Social Program Management: Cúram Server Developer's Guide

• <SERVER_DIR>/components/<custom>/data/test

To customize DMX files that are delivered without customization, new DMX files must be created and
added to new components in the relevant directory within SERVER_DIR/components/<custom>/
data/initial (or /demo or /test).

This mechanism avoids the need to change directly the uncustomized application, which would
complicate later upgrades.

The customization process involves the merging of DMX files of the same name within the specified
directory structure according to a precedence order. The order is based on the
SERVER_COMPONENT_ORDER environment variable that contains a comma-separated list of component
names, the leftmost having the highest priority.

Note: It is possible that more than one DMX file contains data for a particular database table. As the
merging of DMX files is based on file names, it might be necessary to customize multiple DMX files to
achieve a wanted data customization for an individual entity.

Only DMX files that are placed within the structure as shown in the previous example are included in the
merging process for DMX files. If subdirectories are used within the initial, demo and test directories,
then these directories are not included in the merging process.

The merged DMX file is output to the %SERVER_DIR%/build/datamanager/data/initial(or /
demo or /test) directory.

Rules of merging DMX files

DMX files are merged based on precedence order. A more important main or source DMX file always
exists, and other files are merged into it. The second file is called the merge file in the following sections.

The merging rules that are described in the list that follows are applied to decide whether the rows,
attributes, or DMX files need to be merged into the new DMX file.

• A DMX file is considered for merging if the new DMX file does not have the override attribute on the
<table> element set to true.

• A <row> is inserted into the new DMX file if it is determined, by using the primary key information for
the record, that the <row> is not present already in the new file.

• If a <row> exists in the new DMX file and the remove attribute is set to true, then no merging occurs.
If the remove attribute is set to false or is not present, then the attribute values for that row are
considered for merging.

– If the <value> element does not exist in the new DMX file, then the <value> element is copied.
– If the <value> contains a different locale, then this <value> entry is copied into the new file. The

locale is specified by the language and country attributes on the <value> element.

All examples that follow assume that custom is before core in the SERVER_COMPONENT_ORDER.

Example 1 that follows illustrates how merging works when the process uses the <table> level
override attribute. To use the override attribute, copy the contents of the existing DMX file; that is,
the core DMX file and place it in a DMX file of the same name in a <custom> component. Then, add the
following to the table element:

<table override="true">

Cúram Server Developer 47

This element indicates that only DMX files in this <custom> component or in a component higher up in the
SERVER_COMPONENT_ORDER is included in the merged DMX file output produced from the Data Manager
processing.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
 <column name="CONCERNID" type="id"/>
 <column name="NAME" type="text"/>
 <column name="COMMENTS" type="text"/>
 <row>
 <attribute name="CONCERNID">
 <value>22</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 1 record</value>
 </attribute>
 </row>
 <row>
 <attribute name="CONCERNID">
 <value>23</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 2 record</value>
 </attribute>
 </row>
</table>

Figure 22: Example 1 - Core DMX file

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN" override="true">
 <column name="CONCERNID" type="id"/>
 <column name="NAME" type="text"/>
 <column name="COMMENTS" type="text"/>
 <row>
 <attribute name="CONCERNID">
 <value>55</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>My custom comment</value>
 </attribute>
 </row>
</table>

Figure 23: Example 1 - Custom DMX file

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN" override="true">
 <column name="CONCERNID" type="id"/>
 <column name="NAME" type="text"/>
 <column name="COMMENTS" type="text"/>
 <row>
 <attribute name="CONCERNID">
 <value>55</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>My custom comment</value>
 </attribute>
 </row>
</table>

Figure 24: Example 1 - Resulting Merge DMX file

48 IBM Cúram Social Program Management: Cúram Server Developer's Guide

In the resulting merge file, no rows are taken from the core DMX file as the custom DMX file is overriding
completely the core DMX file through the following variable: <table override="true">, resulting in all
entries in the core file to be excluded.

Cúram Server Developer 49

Example 2 that follows illustrates how the merging process works when the <row> level remove attribute
is set. To remove a row, copy the row from the existing DMX file and place it in a DMX file of the same
name in a <custom> component. Then, set the remove attribute on that row to true.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
 <column name="CONCERNID" type="id"/>
 <column name="NAME" type="text"/>
 <column name="COMMENTS" type="text"/>
 <row>
 <attribute name="CONCERNID">
 <value>1</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 1 core</value>
 </attribute>
 </row>
 <row>
 <attribute name="CONCERNID">
 <value>2</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 2 core</value>
 </attribute>
 </row>
</table>

Figure 25: Example 2 - Core DMX file

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
 <column name="CONCERNID" type="id"/>
 <column name="NAME" type="text"/>
 <column name="COMMENTS" type="text"/>
 <row>
 <attribute name="CONCERNID">
 <value>1</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 1 custom</value>
 </attribute>
 </row>
 <row remove="true">
 <attribute name="CONCERNID">
 <value>2</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value language="en">Concern 2 en custom</value>
 </attribute>
 </row>
 <row>
 <attribute name="CONCERNID">
 <value>5</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 5 custom</value>
 </attribute>
 </row>
</table>

Figure 26: Example 2 - Custom DMX file

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
 <column name="CONCERNID" type="id"/>
 <column name="NAME" type="text"/>
 <column name="COMMENTS" type="text"/>
 <row>
 <attribute name="CONCERNID">
 <value>1</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 1 custom</value>
 </attribute>
 </row>
 <row remove="true">
 <attribute name="CONCERNID">
 <value>2</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value language="en">Concern 2 en custom</value>
 </attribute>
 </row>
 <row>
 <attribute name="CONCERNID">
 <value>5</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 5 custom</value>
 </attribute>
 </row>
</table>

Figure 27: Example 2 - Resulting merge file

50 IBM Cúram Social Program Management: Cúram Server Developer's Guide

For Example 2, the <row> where the CONCERNID is set to 2, does not merge the <row> from the core
DMX file. When the application is processing the merged DMX file in Example 2, the <row> where the
CONCERNID is set to 2 are not included when it creates the SQL insert statements, thus ensuring no entry
exists on the database for this <row>.

Example 3 that follows illustrates the setting and merging of the language and country attributes on
the <value> element.

In this example, the COMMENTS attribute for the CONCERNID=2 has a value for the fr and the en_GB
locales.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
 <column name="CONCERNID" type="id"/>
 <column name="NAME" type="text"/>
 <column name="COMMENTS" type="text"/>
 <row>
 <attribute name="CONCERNID">
 <value>1</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 1 core</value>
 </attribute>
 </row>
 <row>
 <attribute name="CONCERNID">
 <value>2</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value language="fr">Concern 2 French core</value>
 <value language="en"
 country="GB">Concern 2 en_GB core</value>
 </attribute>
 </row>
</table>

Figure 28: Example 3 - Core DMX file

Cúram Server Developer 51

In this example, the COMMENTS attribute for the CONCERNID=2 has a value for the en locale only. The
COMMENTS attribute for the CONCERNID=5 has a value for the en_US locale only.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
 <column name="CONCERNID" type="id"/>
 <column name="NAME" type="text"/>
 <column name="COMMENTS" type="text"/>
 <row>
 <attribute name="CONCERNID">
 <value>1</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 1 custom</value>
 </attribute>
 </row>
 <row remove="true">
 <attribute name="CONCERNID">
 <value>2</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value language="en">Concern 2 en custom</value>
 </attribute>
 </row>
 <row>
 <attribute name="CONCERNID">
 <value>5</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value language="en"
 country="US">Concern 5 en_US custom</value>
 </attribute>
 </row>
</table>

Figure 29: Example 3 - Custom DMX file

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
 <column name="CONCERNID" type="id"/>
 <column name="NAME" type="text"/>
 <column name="COMMENTS" type="text"/>
 <row>
 <attribute name="CONCERNID">
 <value>1</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 1 custom</value>
 </attribute>
 </row>
 <row remove="true">
 <attribute name="CONCERNID">
 <value>2</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value language="en">Concern 2 en custom</value>
 <value language="fr">Concern 2 French core</value>
 <value language="en"
 country="GB">Concern 2 en_GB core</value>
 </attribute>
 </row>
 <row>
 <attribute name="CONCERNID">
 <value>5</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value language="en"
 country="US">Concern 5 en_US custom</value>
 </attribute>
 </row>
</table>

Figure 30: Example 3 - Resulting merge file

52 IBM Cúram Social Program Management: Cúram Server Developer's Guide

In Example 3 shown previously, for the <row> where the CONCERNID is set to 2, the resulting merge file
has values for the en, fr, and the en_GB locales; that is, a merge of both core and custom <value>
elements.

Cúram Server Developer 53

Example 4 that follows illustrates the <row> level locales attribute.

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
 <column name="CONCERNID" type="id"/>
 <column name="NAME" type="text"/>
 <column name="COMMENTS" type="text"/>
 <row>
 <attribute name="CONCERNID">
 <value>1</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 1 core</value>
 </attribute>
 </row>
 <row locales="en_GB">
 <attribute name="CONCERNID">
 <value>2</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value language="fr">Concern 2 French core</value>
 <value language="en"
 country="GB">Concern 2 en_GB core</value>
 </attribute>
 </row>
</table>

Figure 31: Example 4 - Core DMX file

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
 <column name="CONCERNID" type="id"/>
 <column name="NAME" type="text"/>
 <column name="COMMENTS" type="text"/>
 <row>
 <attribute name="CONCERNID">
 <value>1</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 1 custom</value>
 </attribute>
 </row>
 <row locales="en,en_US">
 <attribute name="CONCERNID">
 <value>2</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value language="en">Concern 2 en custom</value>
 </attribute>
 </row>
</table>

Figure 32: Example 4 - Custom DMX file

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
 <column name="CONCERNID" type="id"/>
 <column name="NAME" type="text"/>
 <column name="COMMENTS" type="text"/>
 <row>
 <attribute name="CONCERNID">
 <value>1</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 1 custom</value>
 </attribute>
 </row>
 <row locales="en,en_US">
 <attribute name="CONCERNID">
 <value>2</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value language="en">Concern 2 en custom</value>
 <value language="fr">Concern 2 French core</value>
 <value language="en"
 country="GB">Concern 2 en_GB core</value>
 </attribute>
 </row>
</table>

Figure 33: Example 4 - Resulting merge file

54 IBM Cúram Social Program Management: Cúram Server Developer's Guide

In Example 4 shown previously, the value for the locales attribute is taken from the row in the
component that is higher up in the SERVER_COMPONENT_ORDER; that is, the custom component.

The primary key or composite key for a record is used to determine the overriding or merging process for
DMX files. DMX files are merged based on the definition of the primary key for the table or entity the DMX
file represents. For all modeled entities, the primary key information is stored in the generated
<SERVER_MODEL_NAME>_PrimaryKeys.xml file in the build directory; that is, %SERVER_DIR%/
build/svr/gen/ddl. For all non-modeled components, the primary key information for entities must
be stored in a file called <SomeName>_PrimaryKeys.xml within the %SERVER_DIR%/components/
<custom>/data/ddl directory. If this file is named correctly in the specified location, the DMX
processing contains the relevant primary key information for the non-modeled component.

Retrieving values from DMX files for database insertion

The Data Manager uses the <row> level remove attribute to determine whether an entry is inserted onto
the database for that row. If the remove attribute is set to true, then the Data Manager does not insert
an entry for that row. The row is ignored.

Data Mining Extensions (DMX) files store the locale information for the attributes for the database table.
As the database must be built for only one locale, the Data Manager uses the curam.dmx.locale
property to determine the locale that must be used when data that is specified in DMX files is inserted
onto the database. This property can be set in either the Bootstrap.properties file or as a system
variable. If set in both the Bootstrap.properties file and as a system variable, the system variable
overrides the setting in the Bootstrap.properties file. This property must be set to a valid locale; that
is, in the format language_Country, where language is mandatory and country is optional. For example,

curam.dmx.locale=en_US

If this property is not set, the infrastructure will fallback on the en locale.

As mentioned, the Data Manager processing uses the curam.dmx.locale file to determine the value to
insert for an attribute in a DMX file. The locale can be specified at a <row> or <attribute> level. If
specified at a row level, then this value takes precedence over the attribute level.

For example:

<?xml version="1.0" encoding="UTF-8"?>
<table name="CONCERN">
 <column name="CONCERNID" type="id"/>
 <column name="NAME" type="text"/>
 <column name="COMMENTS" type="text"/>
 <row>
 <attribute name="CONCERNID">
 <value>1</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value>Concern 1 core</value>
 </attribute>
 </row>
 <row locales="en_GB">
 <attribute name="CONCERNID">
 <value>2</value>
 </attribute>
 <attribute name="NAME">
 <value/>
 </attribute>
 <attribute name="COMMENTS">
 <value language="fr">Concern 2 French core</value>
 <value language="en"
 country="GB">Concern 2 en_GB core</value>
 </attribute>

Cúram Server Developer 55

 </row>
</table>

In this example, if the curam.dmx.locale environment variable is set to the fr locale, then entry is
inserted for the record where CONCERNID is set to 2, as the locales attribute for the <row> is only
applicable for the en_GB locale, even though the attribute for COMMENTS has an entry for the fr locale.

The Data Manager attempts to match the locale that is specified by the curam.dmx.locale environment
variable with the locales attribute for the <row> element within a DMX file. If this attribute is not set,
then the Data Manager attempts to match on the <value> for an <attribute>; that is, it tries to match
on the language and country attributes of the <value> element.

Since DMX files are not guaranteed to contain an entry for every locale, a fall back mechanism is in place.
This fallback mechanism is applicable only to the attribute <value> element; that is, it is not applicable
to the <row> locales attribute. After a <value> is found and no direct match is found with the locale
specified by curam.dmx.locale, the rules for fall back are as follows:

• If the curam.dmx.locale is set to include a language and country part, the processing looks for an
attribute where the language and country attributes are set on the <value> element. If this element is
not found, then the countryattribute is removed and the search looks for a <value> where the language
attribute matches, if this attribute is not found, then the search looks for a <value> that does not have
the language and country attributes set; that is, a default match. If this attribute is not found, then no
entry is inserted onto the database for this <value>.

<row>
 <attribute name="ADDRESSELEMENTID">
 <value>3227</value>
 </attribute>
 <attribute name="ELEMENTTYPE">
 <value language="en">EN_TYPE</value>
 <value country="US" language="en">EN_US_TYPE</value>
 </attribute>
 <attribute name="ELEMENTVALUE">
 <value language="fr">French Value</value>
 </attribute>
 </row>

Figure 34: Locale Fallback Example

In “Retrieving values from DMX files for database insertion” on page 55, assume the
curam.dmx.locale is set to en. The following variables are set for each attribute:

• ELEMENTTYPE - EN_TYPE is the value that is inserted onto the database for this attribute, as this
element is the value set for the en locale.

• ELEMENTVALUE - null is inserted onto the database for this attribute. This attribute has the language
attribute set to fr. The locale that is being searched for is en. A value for en is not found, so a <value>
that contains no language or country attributes is searched for; that is, the default value, as this variable
does not exist, null is inserted for this attribute.

Validation of DMX files

All Data Mining Extensions (DMX) files in %SERVER_DIR%/components/componentName/data
directories are validated against a DMX schema file when the build database target is run. This
schema file is in %CURAMSDEJ%/lib/DMX.xsd. For any DMX file that is not in the correct format, a
warning is displayed. The validation of DMX files is controlled by the curam.dmx.disable.validation
system variable. Validation is enabled by default, to disable the validation, this system variable is passed
into the database build setting it to true, as follows:

build database -Dcuram.dmx.disable.validation="true"

56 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The ability to treat these warnings as errors is available by setting the prp.warningstoerrors
property. If this variable is set to true, the warnings are treated as errors and the build database fails.

Tracing Information for the DMX Merging Process

It is possible to turn on tracing for the Data Mining Extensions (DMX) merging process. This action can
assist in debugging any issues that might occur as a result of merging DMX data. The system property
curam.dmx.tracing, if set to true, produces tracing information to the console for the DMX file being
processed. This property is false by default.

The tracing output includes:

• The name of the file being processed.
• The key value for a row that is being merged (only where duplicate rows exist).
• Information indicating the merging process has finished for a DMX file.

The following is an example of setting this property:

build database -Dcuram.dmx.tracing=true

Figure 35: Set tracing for DMX files.

Therefore, when set to true, this property outputs a large amount of data to the console to be used for
debugging.

Database Object Naming
Typically the names of the objects on the database are visible clearly from the Data Manager XML files (for
example, table names and column names). The Data Manager provides support for the naming of objects
that are not visible directly in these files.

Short Name Substitution

The Short Name Substitution feature will be removed in a future version of IBM Cúram Social Program
Management. The third-party databases now supported no longer have the SQL identifier limitations that
necessitated the feature originally. Consequently, it no longer is necessary to use this feature and it has
been removed from the product documentation. If you still require this feature, contact your IBM support
representative for the information that was available previously in this document.

Primary key indices
By default the primary key index has the same name as its corresponding table.

If required, a prefix can be specified for the primary key index name by using the generator command line
option -primarykeyindexprefix. For example, by setting the property
extra.generator.options=-primarykeyindexprefix PI_ in Bootstrap.properties results
in the primary key index for a table named Person being named PI_Person. If the index name length is
greater than the SQL identifier limit supported by your database, you encounter an error during SQL
processing.

Primary key constraints
Use this information to understand the constraints for assigning options to primary keys.

By default, the generated Data Definition Language (DDL) for adding a primary key to a table takes the
form:alter table TTTT add primary key (AAAA), where:

• TTTT is the table name.
• AAAA is a comma-delimited list of the primary key attributes.

Cúram Server Developer 57

By specifying the command line option -usenamedprimarykeyconstraint through the
extra.generator.options, this DDL can be made to take the form:

alter table TTT add constraint CCCC primary key
 (AAAA)

where CCCC is the name of the primary key constraint.

In this case, the name of the primary key constraint defaults to the same as the name of its corresponding
table. Also, like primary key index names, a prefix can be applied to this name by using the -
primarykeyconstraintprefix command line option. If the constraint name length is greater than the
SQL identifier limit supported by your database, you encounter an error during SQL processing.

Automatic index generation
An automatic index creation feature supplements the manual addition of indexes to the model. The
automatic index creation feature is enabled by default.

The automatic index creation feature discovers non-indexed fields that are included in the following
operation types:

• Readmulti
• NsModify
• NsRead
• NsReadmulti
• NsRemove

If the non-indexed field is based on one of the domain types in the following list, excluding codetable
domains and strings that are longer than 255 characters, an index is generated by the model generation
process for the non-indexed field:

• SVR_INT64
• SVR_DATE
• SVR_DATETIME
• SVR_STRING

To facilitate repeatable naming, the generated index is named IND_Hashcode of Table +
FieldName.

Disabling the automatic index creation feature

To disable the automatic index creation feature, specify the following command line parameter in the
server build:

-Dgenerator.options=-disableautoindexgeneration

Tablespaces
Use this information to understand the exceptions when table spaces are not created automatically
during table creation.

Note: The following instructions are specific to DB2 for z/OS.

By default the behavior is for tablespaces to be created implicitly during table creation. The exceptions
to this behavior are:

• The tablespace that is named by the curam.db.zos.32ktablespace property is created explicitly by the
datamanager and tables that exceed the 4K row limit are placed in this tablespace.

• Tablespaces in the Tablespace.properties file are created explicitly by the datamanager. If the
table specified for the tablespace exceeds the 4K row limit, the tablespace is defined in the 32K
BUFFERPOOL. Otherwise, it takes the default setting.

58 IBM Cúram Social Program Management: Cúram Server Developer's Guide

When the operation uses the Tablespace.properties file, the format of the entries is:

tablename=tablespacename

Comments are specified by the # character in column one.

Note: If the tablespaceTablespace.properties, then this tablespace is used over the one
defined in the property curam.db.zos.32ktablespace.

Note: When you are using DB2 for z/OS version 8, the use of the default 32K tablespace
(curam.db.zos.32ktablespace) can result in SQLCODE -913 errors during login, but might also
occur in other contexts. To avoid these errors, you take one of the following actions:

• Ensure that your Cúram default 32K tablespace is segmented (SEGSIZE. For more information, see
DB2 Universal Database for z/OS SQL Reference Version 8.

• Explicitly define tablespaces for each Cúram table that defaults to the 32K tablespace (for
example, SELECT * FROM SYSIBM.SYSTABLESPACE WHERE NAME =
<curam.db.zos.32ktablespace value>) and assign each table to a specific tablespace by using
the Tablespaces.properties file. (This complication is not an issue when you use DB2 for z/OS
version 9 because tablespaces are segmented by default.)

Note: In DB2 for z/OS version 9, the behavior of the ALTER TABLE DROP PRIMARY KEY SQL statement
is changed as follows: "If the table space was implicitly created, the corresponding enforcing index is
dropped if the primary key is dropped." Most production users would typically explicitly create their
tablespaces and would not be impacted by this change, but in test environments this condition might
not be the case. The symptom of this issue is an SQLCODE -551 error on a DROP INDEX statement that
follows the ALTER TABLE DROP PRIMARY KEY statement. To avoid this error, you can either:

• Manually remove the generated DROP INDEX SQL statement from the Data Manager -generated SQL
to take into account the new behavior; or

• Explicitly define the tablespace and specify it in the Tablespace.properties file. For example, for
the USERS table, your Tablespace.properties file would contain:

USERS=USERSTS

Data Manager configuration
Use this information to understand how to use the Data Manager to properly set up database
configuration.

Typically the Data Manager sets up the database from a number of different components:

• IBM Cúram Server Development Environment (SDEJ) Tables
• Application Tables
• Initial Data
• Demo Data
• Test Data

The selection of which set of data to apply effectively depends on the task the developer wants to
complete.

The Data Manager is configured by using the datamanager_config.xml configuration file. The file is
at:

SERVER_DIR\project\config\datamanager_config.xml

Cúram Server Developer 59

The structure of datamanager_config.xml is shown in the following example:

<datamanager>
 <compositetarget name="target name">
 <subtarget name="subtarget name"/>
 </compositetarget>
 <target name="subtarget name">
 <entry name="relative filename or relative directory"
 type="sql, DMX or xml"
 base="sdejscripts or basedir"/>
 </target>
</datamanager>

Figure 36: Data Manager configuration

The file is organized as follows:

Target Tag
This tag has a name attribute that specifies the name of the target and a set of associated entry tags.

Entry Tag
This tag has three attributes that are associated with it.
Name Attribute

This specifies the file or directory associated with this attribute and its offset from the base
attribute.

Type Attribute
This attribute specifies whether the file is an SQL script, a .DMX file, or an .xml file.

Base Attribute
This attribute specifies the system-dependent offset of the file on the local computer. It can be
specified as one of basedir (the directory above the Data Manager) or sdescripts (the location
of the SDEJ installation).

Any of the targets that are listed in this configuration file can be passed to the build database target.

The datamanager_config.xml file is used when the application is running the build database
target. When this target is run, composite targets that are specified within the
datamanager_config.xml can be called. By default, the all composite target is called within the
datamanager_config.xml file. To call a different composite target, the prm.target can be passed to
the build database target that specifies the composite target to be called. For example, to call the
initial composite target, the following command might be run:

build database -Dprm.target=initial

New composite targets can be added to the datamanager_config.xml file. The composite target can
contain any number of subtargets. The following block of code is an example of specifying a new
composite target mycompositetarget that calls mynewtarget.

<target name="mynewtarget">
 <entry base="basedir"
 name="components/core/data/initial/
 handcraftedscripts/NewScript.sql"
 type="sql"
 />
 </target>
 <compositetarget name="mycompositetarget">
 <subtarget name="mynewtarget"/>
 </compositetarget>

Database Synchronization
Typically the Data Contents XML files are hand-crafted by a developer. However, the infrastructure
provides Ant targets to create a Data Contents XML file from the database. The Data Extractor is invoked

60 IBM Cúram Social Program Management: Cúram Server Developer's Guide

by running a build command of build extractdata. By default the full database is extracted and DMX
files are created for any tables that contain data. An optional parameter of tablename can be passed to
specify that only one or more tables are to be extracted; for example, build extractdata -
Dtablename=Users. If you want to extract multiple tables during the one run, pass a comma-separated
list of tables to the tablename parameter.

The generated .DMX files are placed in a %SERVER_DIR%/build/dataextractor folder. Under this
folder the contents of any Character Long Object (CLOB) or Binary Large Object Block (BLOB) also are
extracted and stored in a file that is based on the naming format: <tablename><rownumber>.

Statistics
Databases use an optimizer to determine the most efficient access path to data on the database. The
optimizer uses statistics about the physical characteristics of a table and the associated indexes to
determine this information. These characteristics include number of records, number of pages, and
average record length. If no statistics are available on the database, then the optimizer makes a guess as
to the best access path to use. This guess often can lead to performance issues, including unnecessary
deadlock and timeout exceptions. The runstatistics target is available to gather these necessary
statistics on the database and is run against all Cúram database tables.

Note: The runstatistics target is not supported by DB2 for z/OS due to the architectural differences of
this application. Consult with your local database administrator in regard to engaging the equivalent DB2
for z/OS functions.

LOB Manager
The Large Object Block (LOB) Manager is part of the Data Manager that enables Character Long Object
(CLOB) and Binary Large Object Block (BLOB) to be loaded onto the database.

In the data contents, file BLOB and CLOB fields are handled differently to a degree from other fields, in
that the value element does not contain the literal data, but instead contains a reference to a file that
contains the data.

The “LOB Manager” on page 61, illustrates how a table with a numeric and BLOB column can be
populated with one record that uses a binary file from disk.

<table name = "BlobEntity">
 <column name = "imageID" type = "number"/>
 <column name = "imageData" type = "blob"/>
 <row>
 <attribute name = "imageID">
 <value>1</value>
 </attribute>
 </row>
 <row>
 <attribute name = "binaryData">
 <value>./images/1.jpg</value>
 </attribute>
 </row>
 </table>

Figure 37: BLOB Data Contents File

To load BLOBs, the LOB Manager can be used only on tables for which the primary key fields are known.
This restriction is because inserting a LOB involves an SQL insert followed by an SQL update, and the SQL
update must be capable of addressing a single record by using its primary key.

The “LOB Manager” on page 61, illustrates how a table with a numeric and CLOB column can be
populated with one record by using a character data file from disk. Here, the CLOB data file is encoded
with UTF-16 format, and this information is specified in the attribute element with encoding as UTF-16 for
that row, so the CLOB content gets encoded before it gets inserted.

Cúram Server Developer 61

<table name = "Entity">
 <column name = "ID" type = "number"/>
 <column name = "content" type = "clob"/>
 <row>
 <attribute name = "ID">
 <value>1</value>
 </attribute>
 </row>
 <row>
 <attribute name = "content" encoding = "UTF-16">
 <value>./clobcontentdir/1.txt</value>
 </attribute>
 </row>
 </table>

Figure 38: CLOB Data Contents File

The “LOB Manager” on page 61, illustrates how a table with a numeric and CLOB column can be
populated with two records by using the character data files from disk. Here, if all the CLOB data files are
encoded in UTF-16 format, then this information can be specified at the column level, by using encoding
attribute, so all the rows for CLOB type use the same encoding type of that column. To override action this
for a single row, the encoding type can be specified as in previous example at the attribute element level
of that row element.

<table name = "Entity">
 <column name = "ID" type = "number"/>
 <column name = "Data" type = "clob"
 encoding = "UTF-16"/>
 <row>
 <attribute name = "ID">
 <value>1</value>
 </attribute>
 </row>
 <row>
 <attribute name = "Data">
 <value>./clobcontentdir/4.txt</value>
 </attribute>
 </row>
 <row>
 <attribute name = "ID">
 <value>2</value>
 </attribute>
 </row>
 <row>
 <attribute name = "Data">
 <value>./clobcontentdir/2.txt</value>
 </attribute>
 </row>
 </table>

Figure 39: CLOB Data Contents File in encoded format

The LOB manager identifies primary keys by using the datamanager_config.xml file, so this file must
contain a reference to the generated _PrimaryKeys.xml relating to the table that contains the LOB.

62 IBM Cúram Social Program Management: Cúram Server Developer's Guide

SQL Checker
Use this information to understand how the SQL Checker can validate Java Data Base Connectivity (JDBC)
SQL statements.

The IBM Cúram Social Program ManagementServer Development Environment (SDEJ) produces a
database access layer which is based around JDBC. JDBC is dynamic SQL from the viewpoint of database
and as such there is no ability to check the syntax and semantics of the statements prior to their first
execution. The SQL checker provides a method of validating the syntax and semantics of these SQL
statements before they are first exercised.

Under the Hood
The SQL checker is invoked by an Ant target and generates a simple Java program that uses SQL For Java
(SQLJ) rather than Java Data Base Connectivity (JDBC). This program is generated into /build/
sqlcheck/SQLJTemp.sql. This Java program contains all the elements that should be checked,
namely the handcrafted SQL in the model and the Data Manager. Because SQLJ is static SQL the program
can be compiled in advance of deployment, provided the database is already created and populated.

The SQL checker also can check the contents of the model for database portability. This is useful in
situations where primary development is against one type of database (for example DB2) but final
deployment is against another database (for example DB2 for z/OS). The elements checked for include:

• Comparison of Host Variables to NULL

This check is performed because handcrafted SQL can use the SQL is Null keyword on a host variable.
If this is done, the Cúram Generator automatically produces a cast to the correct fundamental SQL
datatype for the database that is being built against. However, this means that the resultant .ear file
cannot be deployed against a database of a different type unless it is completely re-built.

Limitations
The SQL Checker reduces the number of syntax and portability errors that remain until deployment as this
reduces the effort expended in testing for and removing these errors. However, it is not a replacement for
a comprehensive test suite as it does not catch all the possible errors. There are a number of reasons for
this:

Reliance on the SQLJ Check
The SQL Checker is only as good as the SQL For Java (SQLJ) compiler that it invokes. Any syntactical
or semantic errors that are not reported by the compiler will not be reported by the SQL Checker.

Portability Warnings
The SQL Checker is designed to capture and report only the most common portability errors. It is not a
replacement for early and comprehensive testing on the final target database.

Limitation with H2
H2 does not provide an implementation of an SQLJ checker; therefore, it only performs a portion of
the perceived checks that the SQL Checker does.

Eclipse
Use this information to understand how to use the Eclipse Integrated Development Environment (IDE)
with the Cúram Server Development Environment (SDEJ).

Eclipse is the underlying technology that is used in:

• IBM Rational Application Developer for WebSphere;
• Rational Software Architect; and
• Rational Software Architect for WebSphere.

Cúram Server Developer 63

This chapter describes relevant aspects of Eclipse in addition to providing some tips and tricks. It does
not attempt to describe the general features or usage of Eclipse; for example, the Java Editor or
debugging as that information is provided by the vend. For more information, go to http://
www.eclipse.org/.

The term Eclipse, which is used throughout this chapter, applies to all supported tooling based on Eclipse;
for example, Rational Software Architect.

Cúram projects to import into Eclipse
Use this information to learn about the four Cúram projects that need to be imported into Eclipse.

Four projects are provided that need to be imported into Eclipse:

Table 15: Transaction settings

Project Name File System
directory

Contents

CuramSDEJ CuramSDEJ The Server Development libraries.

CuramCDEJ CuramCDEJ The Client Development libraries, depends on
the CuramSDEJ project.

EJBServer EJBServer The Cúram Server application, depends on
the CuramSDEJ project.

Curam webclient The Cúram Client application, depends on the
CuramCDEJ project.

Dependencies allow for exposed compressed libraries in referenced projects to be used in code
developed in the dependent project.

The CuramCDEJ and CuramSDEJ are non-development projects that are only containers for libraries. All
development needs to be done within the EJBServer and Curam projects.

Eclipse configuration files
Use this information to learn about Eclipse configuration files.

Each Eclipse project is configured through two XML files - a .project and a .classpath file. Also, a
number of preferences and settings can be configured at a project level rather than workspace level. The
effect of setting these preferences and settings at a project level is that this configuration, which forms
files and entries in a.Settings folder under the project, can be distributed with the project in a team
environment.

The configuration is maintained by right-clicking on a project within the Project Explorer view in Eclipse
and selecting Properties.

.project file
Use this information to understand the .project file.

The .project file holds the project nature and builders and for a typical Java project holds a single
nature and builder corresponding a Java project. Additionally, in the Curam project, there is an Apache
Tomcat nature to signify the project can be configured for and deployed on Tomcat. The project's
dependencies are also maintained in the .project file.

64 IBM Cúram Social Program Management: Cúram Server Developer's Guide

http://www.eclipse.org/
http://www.eclipse.org/

The .classpath file
Use this information to understand how the .classpath file maintains the project's source and target
references for Java compilation and compressed file or project dependencies

The .classpath maintains the project's source and target references for Java compilation and
compressed file or project dependencies.

This configuration is maintained through the Java Build Path page in the project's properties. Source
entries can be added, ordered, or new JAR file dependencies can all be managed through the Java Build
Path page.

Optionally, Access Rules and JavaDoc references can be configured on JAR files. Access Rules are
discussed further in “Access Rules option” on page 65.

Eclipse .classpath generation
Use this information to understand about Eclipse .classpath file generation.

The Eclipse .classpath files for the EJBServer and webclient projects can be generated from a build
target - build createClasspaths that can be run from the EJBServer directory. This action allows
for the class paths to tailor to the contents in your environment and avoids the need for manual
maintenance of this file.

It is advised that you add the invocation of this target to your default build invocation wrapper to ensure
that it gets run with each build. Example in the EJBServer\.build.bat file. The class path is not
regenerated unless changes are made in your environment.

The class paths are formed from:

• source directories under the EJBServer\components directories
• tests directories under the EJBServer\components directories
• JAR files in the lib directories under the EJBServer\components directories
• javasource directories under the webclient\components directories
• JAR files under the webclient\components directories
• Standard build output directories
• JAR files on the PRE_CLASSPATH, POST_CLASSPATH, and J2EE_JAR environment variables
• CuramCDEJ and CuramCDEJ project references.

.settings directory
Use this information to understand the .settings directory folder.

The .settings folder contains a number of the other preferences that can be maintained at the project
level; for example, compiler warning/error levels or code style settings. The preference pages that offer
this ability to maintain at a project level can be seen to have an Enable project specific settings at the top
of the page.

This directory can be added to SCM control and settings distributed to team members as required.

Access Rules option
Use this information to understand the Access Rules option and how it works with compressed files in an
Eclipse project.

TheAccess Rules option allows compressed files within an Eclipse project .classpath to define an
access level for packages and classes. Three different levels of access exist: non-accessible, discouraged,
and accessible. When the compiler within Eclipse detects access to a type that ought not be accessed, it
creates a problem marker rather than compile failure:

• Non-accessible rules define types that must not be referenced. The compiler typically creates an error
marker for accesses to these types.

• Discouraged rules define types that ought not be referenced. The compiler typically creates a warning
marker for accesses to these types.

Cúram Server Developer 65

• Accessible rules define types that can be referenced.

Access rules are applied and provided rules for a number of the compressed files in the .classpath files
of the Eclipse projects. These access rules complement each compressed file's application programming
interfaces (APIs) and through theaccessible rule indicate access that is compliant4 per the Cúram
Development Compliancy Guide. Classes that are defined asnon-accessible ordiscouraged are not
supported for usage and are subject to change without notice and might not respect their API. Hence,
they can affect the ability to easily integrate IBM Cúram Social Program Management upgrades.

Note: Many discouraged accesses exist in the unmodified IBM Cúram Social Program Management
Platform that might be copied into your codebase as part of subclassing or extension work. In a future
release, it is expected that these accesses are to be removed and appropriate alternative APIs provided
where none currently exist. To reduce future impact to your codebase, in regard to access to discouraged
code, you need to treat these accesses as non-accessible and work to seek a different API.

Working Sets
A common issue in Eclipse is that as the content in your workspace grows it can be overwhelming to
navigate through all the directories and difficult to focus on the areas of interest to you. Eclipse solves this
through Working Sets, a method to specify, in a global location, which working set you are interacting with
currently. The following views and dialogs in Eclipse support the concept of working sets:

• The Navigator;
• The Package Explorer;
• The Projects View;
• The Packages View;
• The Types View;
• The Problems View;
• The Open Type Dialog.

For example, working sets can be useful especially on the Problems View, in terms of viewing which
issues relate to your owned code. The following steps detail how to set a working set on the Problems
View to display issues only related to thecustom component:

1. From the Problem View menu, select Configure Contents.
2. In the Configure Contents dialog you must first add a filter from the Configurations panel. Click the

New... button and name this filter (for example, Custom) and click OK. This will create the filter
checking it in the Configurations: list. Under Scope:, select the On Working Set: Window Working
Set radio button and click the Select... button to add a new working set.

3. In the Select Working Set dialog box, select the Selected Working Sets radio button and click the
New... button.

4. The New Working Set wizard then can be used to add types to the working sets. In this instance we
want to add a Java type and select the custom source directory.

5. In the Select a working set type panel, select Java from the Working set type: and click the Next >
button. In the Java Working Set panel, select items in the Workspace content: list and add them to
the Working set content: list using the Add --> button. Use the other buttons in the list to manage the
Workspace content: list. Specify a name in the Working set name: text box. Click the Finish button.
You can invoke the New Working Set wizard again to create more working sets. Before clicking the OK
button to exit the Wizard, ensure your Selected Working Sets are checked.

6. On clicking OK to exit the Configure Contents dialog box, your Problems View will be updated to
display only errors, warnings, or informationals relating to the newly created Custom filter.

4 Access Rules can be applied only to compressed files, so are not be treated as a complete solution to police
compliancy.

66 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Logging that uses Apache log4j API
Use this information to understand logging in Cúram. Logging in the Cúram application is provided by the
curam.util.resources.Trace class that provides a convenient wrapper onto the Apache log4j
application programming interface (API).

log4j is a logging framework that is provided by the Apache Jakarta project (see The complete manual -
log4j, Gulcu).

Logging allows developers to log any information without concerning themselves with whether the
program is being run in online or batch mode. The final destination of the trace information is highly
configurable. It can be a log file associated with the application server, a stand-alone log file, a console, or
even a database.

Logging usage
Use this information to understand how to use logging information in the tracing application API.

The main interface into the tracing application programming interface (API) is through an instance of the
org.apache.log4j.Logger class. The infrastructure provides a number of named instances that
match the categories described in “Logging hierarchy” on page 67. The top-level category is accessed
through curam.util.resources.Trace.kTopLevelLogger as shown in the following example:

curam.util.type.DateTime timeNow;
timeNow = curam.util.type.DateTime.getCurrentDateTime();
curam.util.resources.Trace.kTopLevelLogger.info(
 "This function was called at ");
curam.util.resources.Trace.kTopLevelLogger.info(timeNow);

Figure 40: Usage of the loggers

Note: The previous example of code produces two trace records. These records are not visible easily if
log4j is configured to use a flat file or the console. However, if a log4j viewer is used, then the two trace
records result in a needless entry that complicates the view without any added benefit. As such, it is
recommended that trace statements that contain logically dependent data be recorded in a single call.

A formatted textual representation of a Cúram struct class object can be obtained through a call to the
class curam.util.resources.Trace.objectAsTraceString call. For example:

curam.util.struct.ProcessNameKey someKey =
 new curam.util.struct.ProcessNameKey;
someKey.processName="someValue";

curam.util.resources.Trace.kTopLevelLogger.info("DEBUG\n");
curam.util.resources.Trace.kTopLevelLogger.info(
 curam.util.resources.Trace.objectAsTraceString(someKey));

Figure 41: Tracing a Cúram struct

Logging hierarchy
Use this information to understand the logging hierarchy for trace records and learn about the categories
and levels of the records.

The Cúram infrastructure produces trace records in specific categories with specific levels. This recording
allows the records to be filtered easily in a log4j viewer. The categories and levels that are supported are
described in the following table where <BPO>, <Entity>, and <Facade> are the names of the relevant
Cúram classes. The <CodePackage> field is left empty if the class is not in a code package.

Cúram Server Developer 67

Table 16: Logging hierarchy

Category Level Meaning

Trace Error Loggable exceptions that were
detected in the code.

Trace.BatchLauncher Info Progress of batch launcher

Trace.BatchLauncher Error Errors in batch launcher

Trace.CodeTable Debug Tracing information about code table
lookups

Trace.DataAccess.<Entity> Info SQL statements run by entity objects

Trace.DataAccess.<Entity> Debug Results of SQL select statements

Trace.Methods.<CodePackage>
.<BPO>

Info Business object method invocation

Trace.Methods.<CodePackage>
.<BPO>

Debug Arguments and types of arguments
for Business Object method
invocation

Trace.Rules Info Progress of rules engine.
<For classic rules only>

Trace.ServerCalls.<CodePackage>
.<Facade>

Info Server method invocations by
remote clients

Trace.ServerCalls.<CodePackage>
.<Facade>

Debug Arguments and types of arguments
for server method invocation.

Trace.Tools Info Progress of build time tools; for
example, configtest

Trace.Tools Warning Warnings from build time tools

Trace.Tools Error Errors from build time tools

Logging level
Use this information to learn about trace levels when you are logging information to the Cúram server and
to learn how to use trace options.

When you are logging to the Cúram server, trace level needs to be considered. These settings can be used
to guard the calls that are made into log4j to improve the performance in environments where tracing is
not required5.

The current level of tracing can be checked by calling the method:

curam.util.resources.Trace.atLeast(Trace t)

5 While log4j imposes a minimal memory allocation, it cannot avoid the cost of the parameter construction
inside the method invocation. Application developers must take this operation into consideration.

68 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Where the parameter to this method can be one of the following options:

• curam.util.resources.Trace.kTraceOff
• curam.util.resources.Trace.kTraceOn
• curam.util.resources.Trace.kTraceVerbose
• curam.util.resources.Trace.kTraceUltraVerbose

The trace level for your application can be specified by setting the curam.trace property as defined in
“Cúram Configuration Settings” on page 33. Valid values for this property are:

• trace_on
• trace_verbose
• trace_ultra_verbose

The amount of logging done by your application code reflects the current logging level of the application.
The following code extract demonstrates this operation:

if (curam.util.resources.Trace.atLeast(
 curam.util.resources.Trace.kTraceOn)) {
 curam.util.resources.Trace.kTopLevelLogger.info(
 "hello world.");
}

Figure 42: Logging example in application code

The Cúram infrastructure supports a number of standard trace options that provide a convenient view on
top of the trace levels. All of the options result in significant information to be written to the log and has a
significant impact on the performance of the application. The following are the properties that might be
set as described in “Cúram Configuration Settings” on page 33, and the level at which they are set at
default (O is On, V is Verbose, U is Ultra).

Table 17: Diagnostic tracing options

Property Name Meaning Enabled

curam.trace.servercalls Trace server method invocations by remote clients.
This information includes the name of the user who
is requesting the invocation.

O

curam.trace.methods Trace all business object method invocation. V

curam.trace.method_args Memory dump arguments, including their types, to
business object method invocations.

U

curam.trace.sql Trace SQL statements run by entity objects. V

curam.trace.sql_args Memory dump results of SQL select statements. U

curam.trace.rules Enables logging of rules U

curam.trace.smtp Trace the messages that are sent to the mail server.

Configuration of the Apache log4j Java-based logging utility
Use this information to understand how to use the Apache log4j Java-based logging utility in the context
of the Cúram Social Program Management environment.

The Apache log4j Java-based logging utility provides extensive support for configuring the destination of
the trace information. The documentation that follows does not attempt to duplicate the log4j

Cúram Server Developer 69

documentation but places this information in the context of IBM Cúram Social Program Management. The
configuration information needs to be placed in a file pointed at by the
curam.trace.configfile.location property.

If the curam.trace.configfile.location property is not set, the default log4j setting is to use a
Console Appender. The Console Appender outputs everything output at the default (or higher) log4j level
to System Out. The default log4j level for the top-level logger (and all inherited loggers) is set to DEBUG.6

Configuration results in trace information to be written to a rolling file appender. This operation means
that the output is placed in a file until it reaches a specified size. After it reaches this size it is "rolled-
over", and it is renamed by appending a .1 to the file name. If a .1 file exists, it first is renamed to .2, and
so on.

This procedure is suitable for development environments where a historical trace can be useful.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<!--
 | For more configuration information and examples
 | see the Jakarta Log4j website:
 | http://jakarta.apache.org/log4j
-->

<log4j:configuration
 xmlns:log4j="http://jakarta.apache.org/log4j/"
 debug="false">

 <!-- ========================== -->
 <!-- Append messages to a File -->
 <!-- ========================== -->
 <appender name="OutputToFile"
 class="org.apache.log4j.RollingFileAppender">
 <param name="File"
 value="d:/CuramProps/CuramAppLog.log" />
 <param name="Threshold"
 value="debug"/>
 <param name="MaxBackupIndex"
 value="3"/>

 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern"
 value="[%-5p] [%X{user}] [%X{alternateuserid}] [%d{dd MMM yyyy
HH:mm:ss}] [%c] - %m%n"/>
 </layout>
 </appender>

 <!-- ======================= -->
 <!-- Setup the Root category -->
 <!-- ======================= -->
 <root>
 <level value="INFO"/>
 <appender-ref ref="OutputToFile"/>
 </root>

</log4j:configuration>

Figure 43: Configuring log4j

A number of customizable values exist in this file:

• The name of the log file is set to be d:/CuramProps/CuramAppLog.log.

6 The set of possible levels (in order of priority) defined by log4j is ALL, DEBUG, INFO, WARN, ERROR, FATAL,
and OFF. Only those items that are logged at the specified level or higher levels are included in the log.

70 IBM Cúram Social Program Management: Cúram Server Developer's Guide

• The maximum number of previously rolled back files that are preserved is set to 3.
• The maximum file size is not explicitly set so the default of 10 Mb is used.
• The conversion pattern has several parameters that results in the following output:

– %-5p - The level of the trace message after it is left padded to be a five character string.
– %X{user} - This operation adds the user name associated with a transaction to the logs.
– %X{alternateuserid}- This operation adds the alternate login ID for the user associated with a

transaction to the logs. If the user is not logged on using the alternate login ID, then the user who is
associated with the transaction is added.

– %c - The category of the trace message.
– %m - The trace message itself.
– %n- A platform-specific line separator.

• The log4j level is set to INFO, which means that all items that are logged at the DEBUG level are ignored.
This operation overwrites the default level of DEBUG set by the infrastructure.

Two application properties examined when the process populates the {user} and {alternateuserid}
parameters:

Table 18: Application properties examined when the {user} and {alternateuserid} parameters are
populated

Property Name Explanation

curam.security.altlogin.enabled A Boolean flag to indicate that users can log in to
the application by using their alternate login ID

curam.trace.deferred.user.name A Boolean flag for deferred processing transactions
which, when set to true, indicates that the name of
the user who initiates the deferred process
transaction is made available for logging purposes

The tables that follow represent use cases that can be achieved with the new feature. The feature
contains two aspects - online transactions and deferred process transactions.

Depending on the values that are specified for the two properties that were described previously, the
following data is made available for logging in the {user} and {alternateuserid} parameters:

Table 19: Use case scenarios for online transactions

curam.security
.altlogin.enab
led

User Name Alternate Login ID Login Used Available Values

TRUE caseworker caseworkeralt caseworker user=caseworker

alternateuserid=ca
seworkeralt

TRUE caseworker caseworkeralt caseworkeralt user=caseworker

alternateuserid=ca
seworkeralt

TRUE caseworker - caseworker user=caseworker

alternateuserid=ca
seworker

Cúram Server Developer 71

Table 19: Use case scenarios for online transactions (continued)

TRUE caseworker - caseworkeralt ERROR

FALSE caseworker caseworkeralt caseworker user=caseworker

alternateuserid=””

FALSE caseworker caseworkeralt caseworkeralt ERROR

FALSE caseworker - caseworker user=caseworker

alternateuserid=””

Table 20: Use case scenarios for deferred process transactions

curam.tr
ace.defe
rred.use
r.name

curam.se
curity.a
ltlogin.
enabled

Username Alternate
Login ID

Deferred
User Name

Deferred
User Name
Alternate
Login ID

Login Used Available
Values

TRUE TRUE SYSTEM - beantest
er

beantest
eralt

beantest
er

user=beant
ester

alternateus
erid=beant
esteralt

TRUE FALSE SYSTEM - beantest
er

beantest
eralt

beantest
er

user=beant
ester

alternateus
erid=””

FALSE TRUE SYSTEM - beantester beantester
alt

beantester user=SYST
EM

alternateus
erid=””

FALSE FALSE SYSTEM - beantest
er

beantest
eralt

beantest
er

user=SYST
EM;

alternateus
erid=””

72 IBM Cúram Social Program Management: Cúram Server Developer's Guide

However, direct access to a file might not be an ideal mechanism if the trace output needs to be
monitored. Configuration results in trace information to be written to a socket. A listener (such as Apache
Chainsaw that is delivered with log4j) can then be used to display the resultant information.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">
<!--
 | For more configuration information and examples
 | see the Jakarta Log4j website:
 | http://jakarta.apache.org/log4j
-->

<log4j:configuration
 xmlns:log4j="http://jakarta.apache.org/log4j/"
 debug="false">

 <!-- =========================== -->
 <!-- Append messages to a Socket -->
 <!-- =========================== -->
 <appender name="OutputToSocket
 class="org.apache.log4j.net.SocketAppender">
 <param name="RemoteHost"
 value="localhost" />
 <param name="Port"
 value="4445"/>

 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern"
 value="[%-5p] [%X{user}] [%d{dd MMM yyyy HH:mm:ss}] [%c] - %m%n"/>
 </layout>
 </appender>

 <!-- ======================= -->
 <!-- Setup the Root category -->
 <!-- ======================= -->
 <root>
 <level value="INFO"/>
 <appender-ref ref="OutputToSocket"/>
 </root>

</log4j:configuration>

Figure 44: Configuring log4j to log to a socket

The conversion pattern that is used in this file is the same, but some extra customizable values have been
introduced:

• The host name and port of the remote server are set to localhost for the host name and 4445 for the
port of the remote server.

Numerous other possibilities exist for this configuration and the explanation that is presented here does
not attempt to duplicate the existing log4j documentation. However, it is worth noting that Nested
Diagnostic Contexts are not currently supported.

Related concepts
Alternate Login IDs
Trace

Cúram Server Developer 73

Logging statistics
Use this information to understand how to collect performance information about client visible Cúram
server functions and how to use the data.

Tracing facilities are provided to allow server-related information and diagnostics to be output to a central
location. It is possible to use this information to collect performance information about client visible
Cúram server functions; that is, any operations started by the Cúram web client. However, writing trace
informational typically has an impact on performance because the log4j appender always needs to be
configured to maintain the contents after a server crash (for example, do not use buffered file access). For
performance benchmarking, it is highly desirable that the benchmarking process does not itself impose a
performance processor issue on the application that is being measured. For this reason, a way to collect
server function performance statistics is provided that imposes less processor usage than server tracing.
The process also produces output in a format more amenable for automated processing as part of
benchmark analysis.

To avoid performance processor usage issues on the server, output is written to separate log files, one per
session bean (Cúram Facade) in the application. Each log file has an associated 4Kb memory buffer, so a
memory usage limit imposed by the collection of server benchmarks. It is assumed that a realistic
benchmark configuration involves application servers with a significant amount of physical memory.

The statistics files are created in the directory that is specified by the
curam.test.trace.statistics.location property if the curam.test.trace.statistics
property is set. They are named <MachineName>_<SessionBeanName>_0.<TimeStamp>. Each (tab-
delimited) entry in the file contains the following format:

Table 21: Statistics file elements

Summary Meaning

Timestamp This time stamp is in a sortable format (ISO 8601 complete) and
indicates the time at which the method was started. The
International Standard for the representation of dates and times
is ISO 8601. It displays the time stamp with the accuracy to
seconds. The format of the time stamp is YYYYMMDDTHHMMSS.

Note: The "T" appears literally in the string to indicate the
beginning of the time element, as specified in ISO 8601.

Machine name The name of the application server on which this function ran.

Session bean name The name of the statistics class, Statistics, is always printed.

Process ID Currently hardcoded to zero.

Server function signature The function signature that includes class and method name,
and method argument types.

Success indicator A flag that indicates whether the server function succeeded with
no errors returned to the client. A value of 1 indicates success. A
value of 0 indicates0 failure. The specific error message is not
recorded

Elapsed time in milliseconds This number is the time (in milliseconds) that is spent running
this function that excludes time that is spent by the middleware
software in dispatching the function call and marshalling
arguments

74 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Localization of log messages
Use this information to understand how to create and when to use localized log messages.

In cases where log messages need to be localizable, class LocalisableString can be used. For more
information, see “Localized output” on page 82. However, it is important to note that logged messages
typically are targeted at a system administrator who might have a different locale to the current user. For
example, if the user uses English and the administrator uses French, then the Cúram default locale is
French and the log message is written in French. In the following example, the default server locale
explicitly is passed into getMessage, otherwise getMessage returns a string corresponding to the users
locale rather than the Cúram server locale.

import curam.util.resources.ProgramLocale;

// Create a localizable message
curam.util.exception.LocalisableString e =
 new LocalisableString(EXAMPLE.ID_EXAMPLE_MESSAGE);
e.arg(someIdentifier);

// WRONG! This logs the message in the current users locale,
// not that of the Cúram server.
curam.util.resources.Trace.kTopLevelLogger.info(e.getMessage());

// RIGHT: The message is logged using the Cúram server locale.
curam.util.resources.Trace.kTopLevelLogger.info(
 e.getMessage(ProgramLocale.getDefaultServerLocale()));

Figure 45: Localizable logging example in application code

Note: To display the localized content (in languages other than English) correctly on a command line, you
need to change the system locale. (Change the language setting in Control Panel > Region and Language
Administrative > Formats > Format and Control Panel > Region and Language Administrative >
Language for non-Unicode programs > Change system locale)

How to enable dynamic UIM tracing
Use this information to understand how to enable dynamic UIM tracing, which is unavailable by default,
and how to set properties to enable logging.

Logging of a missing Dynamic User Interface Metadata (UIM) resource is unavailable by default. To enable
this logging, the Tracing Level property must be set to trace_on or higher and the Enable
tracing of Dynamic UI property must be set to true.

Both of these properties can be set by using the System Administration application. From the Shortcuts
Panel of the System Configuration section, select Application Data > Property Administration.

How to use exceptions
Exceptions are the recommended mechanism for handling errors in a Cúram application. Exceptions save
the developer from having to check the status of each attempted operation. A single try..catch
construct can enclose many statements, each of which can raise an exception.

In a Cúram application, exceptions can originate from various parts of generated code. For example, the
Database Access Layer (DAL) throws exceptions when a database error occurs, application developers
can throw pre-defined exceptions or customized exceptions. Two basic forms of exceptions are used -
checked and unchecked.

Checked exceptions are subclasses of curam.util.exception.AppException and
curam.util.exception.InformationalException. These exceptions must be explicitly caught or
listed in the throws clause of the method.

Cúram Server Developer 75

Unchecked exceptions are subclasses of curam.util.exception.AppRuntimeException. These
exceptions do not have to be explicitly handled as they inherit from the Java Exception and
RuntimeException classes. Typically, database problems (such as a RecordLockedException) are
thrown as unchecked exceptions. This action means that no need exists for code to tediously check for a
RecordLockedException each time the database is accessed.

In a Cúram application, checked exceptions can arrive at the Remote Interface Layer (RIL), despite being
checked, a throws clause can unwind all the way to the RIL. After exceptions reach the RIL, they are
converted to a different form of exception that is thrown to the client, and might write information from
the exception to the log file. To avoid this problem, a developer can write code to catch exceptions and
handle them, rethrow them before the exception reaches the RIL, or both.

The following actions occur when the RIL catches a checked exception:

• The text for the exception is loaded from a message catalog file.
• If the exception is loggable, then the text is formatted, with arguments inserted and written to the log
file in the default server language.

• If the exception is loggable and includes a stack trace, this information is written to the log file.
• An exception is created and thrown to the client. This exception contains the name of the message

catalog, the ID of the message, and the exception arguments if any.
• The client receives the exception and uses the catalog name and message ID to look up a localized

version of the message. It then inserts and formats the arguments into a message and displays the
message.

The RIL also catches unchecked exceptions to run default actions.

• The text for the exception is loaded from a message catalog file.
• The text is formatted with arguments inserted and written to the log file in the default server language.
• A stack trace is written to the log file.
• A new exception is created and thrown to the client. This exception states that the original exception

was "Unhandled." The original exception is mapped because the descriptive text is at too low a level to
make sense to a user.

The newly created exception contains a nested exception that has the details of the original exception.
Specifically, the exception includes the name of the message catalog, the ID of the message, and the
exception arguments if any.

This mapping happens for all but four unchecked exceptions. These exceptions are left untouched
because the descriptive text produced is readable to a user. These exceptions are
RecordChangedException. RecordDeletedException, RecordLockedException, and
ReadmultiMaxException.

• When the client receives the exception and uses the catalog name and message ID to look up a
localized version of the message. It then inserts and formats the arguments into the message and
displays the message.

Constructing an exception
Use this information to understand how to construct an exception.

Exceptions7are created typically with a catalog name and message identifier. If these are not specified
default values are used. The server infrastructure will take care of delivering the message text to the
client or log file or both. For example:

7 The following sections focus on use of AppException rather than AppRuntimeException as this is
typical of production code. However, AppRuntimeException can be created and manipulated in the same
way.

76 IBM Cúram Social Program Management: Cúram Server Developer's Guide

if (DatabaseFieldIsNull()) {
 curam.util.exception.AppException e = new
 AppException(MAINTENANCE.ID_NULL_INDICATOR);
 throw e;
}

// This can also be written as follows
if (DatabaseFieldIsNull()) {
 throw new curam.util.exception.AppException
 (INFRASTRUCTURE.ID_NULL_INDICATOR);
}

Figure 46: Constructing an AppException

The purpose of exceptions is to communicate that an error has occurred and to communicate information
about that error. Often it is necessary to include additional information in addition to the error code. This
can be done using arguments.

Arguments are attached to an exception before it is thrown and are intended ultimately to be included in
the error message displayed at the client or the server log file or both.

To attach an argument to an exception, the arg method (.arg()) is used. “Constructing an exception” on
page 76 shows a code example of how to use the arg method to attach an argument to an exception.

// set a status code for the error which occurred
long lngErrorCode = -1;

// create the exception.
curam.util.exception.AppException e = new
 AppException(MAINTENANCE.ID_SYSTEM_ERROR);

// Include this status code with the exception.
e.arg(lngErrorCode);

// now throw the exception
throw e;

Figure 47: Using the arg method with a primitive type

The arg method supports the addition of many different types of arguments to an exception. Such
primitive types include long, boolean or double while complex types; for instance, Date, DateTime,
Money, and CodeTableItemIdentifier objects can also be added. For more information, see the
JavaDoc for curam.util.exception.AppException.

// Create a codetable identifier to describe domain type.
curam.util.type.CodeTableItemIdentifier aCodeIdentifier =
 new CodeTableItemIdentifier
 (DOMAINTYPE.TABLENAME, DOMAINTYPE.INT32);

// create the exception to flag an invalid data type
curam.util.exception.AppException e = new
 AppException(WORKFLOW.ERR_ANSWER_NOT_VALID_DATATYPE);

// Include the domain type code with the exception.
e.arg(aCodeIdentifier);

// now throw the exception
throw e;

Figure 48: Using the arg method with a complex type

Cúram Server Developer 77

Creating messages with argument placeholders
Use this information to understand argument place holders.

Argument place holders are tokens which are included in the error message source text and are replaced
by an argument at runtime.

Place holders are of the form %nc, where n is the argument number (of 1 or more), and c is a single
character denoting the argument type as follows:

• s - string
• n - numeric
• d - date
• t - time
• z - date/time
• c - code table item

For example, the source message:

"The first name is %1s and the surname is %2s"

would be displayed as:

"The first name is John and the surname is Smith"

The fact that the place holders are numbered means that they can appear in the message in any order. For
example, the source message:

"The second name is %2s and the first name is %1s"

would be displayed as:

"The second name is Smith and the first name is John"

The exception would be constructed and thrown as shown in “Creating messages with argument
placeholders” on page 78.

curam.util.exception.AppException e = new
 AppExeption(EXAMPLE.ID_EXAMPLE_MESSAGE);
e.arg(Person.FirstName);
e.arg(Person.Surname);
throw e;

Figure 49: Exception message with argument placeholders

Handling exceptions
Use this information to understand how exceptions are handled, particularly in try..catch constructs.

When an exception is thrown in an application, it might be caught within a try..catch construct or it
can be allowed to filter up to the Radio Interface Layer (RIL).

The try..catch construct typically handles the exception in one of the following ways:

• Ignore it and carry on with the next processing step.

An example of this operation is where the program must check for the existence of a record on the
database. If the Data Access Layer (DAL) throws a RecordNotFoundException, then this action
indicates that the record does not exist. This exception is not allowed to reach the client, instead it
controls how processing is done.

78 IBM Cúram Social Program Management: Cúram Server Developer's Guide

bPersonExists = true;
try {
 dtls = myPerson.read(key);
}
catch(RecordNotFoundException rnfe) {
 bPersonExists = false;
}

• Pass it upwards to a higher try..catch construct by rethrowing the actual exception.

An example of this action is a try..catch construct that is interested in only a specific exception. If
any other exception is caught, then it can be passed on upwards for some other handler to deal with.

try {
 myPerson.checkCompleteness(dtls);
}
catch(curam.util.exception.AppException e) {
 if(e.equals(APP.ID_INCOMPLETE_DATA)) {
 // set this flag and continue
 bIncompleteData = true;
 } else {
 // do not know how to handle this exception,
 // pass it straight through.
 throw e;
 }
}

• Create an exception and throw the new exception.

An example of this situation is where the handler would replace a generated DAL exception with an
application exception that contains an application-specific error message.

catch(RecordNotFoundException rnfe)
{
 curam.util.exception.AppException e = new
 AppException(APP.NO_SUCH_PERSON);
 // substitute the message for the exception.
 // (The new message includes the ID number of
 // the record we searched for.)
 e.arg(dtls.personIDNumber);
 throw e;
}

• Create an exception, attach the original exception to this new exception, and raise the new exception.

An exception can be constructed with a pointer to another exception as follows:

catch(curam.util.exception.AppException
origException) {
 curam.util.exception.AppException newException = new
 AppException(MYAPP.ID_MYMESG, origException);
 throw newException;
}

This action has the effect of creating a linked list of exceptions with the most recent exception at the
head of the list and allows a detailed history of an exception to be built up for auditing or debugging
purposes.

Cúram Server Developer 79

Logging exceptions
Use this information to understand how to use loggable exceptions that use the setLoggable method.

Exceptions optionally can be logged to the application log file by setting its loggable flag to use the
setLoggable method.

Loggable exceptions are written to the application log file by the Radio Interface Layer (RIL). The
exception message is read from the error message catalog file. If any exception arguments exist, they are
inserted into the text and this parsed text is written to the log file.

An exception is treated as loggable if its loggable flag is set or if the loggable flag is set on any attached
exceptions.

If the exception that is being logged includes any other attached exceptions, then these exceptions also
are logged.

General exception guidelines
Use this information to understand general exception guidelines.

• Follow the processing specification for the method, this should describe the error situations that can be
encountered. When actually writing and testing the code, look out for sources of errors that might have
been overlooked.

• Do not try to add a "catch-all" for unanticipated errors. The server infrastructure can handle these better
than you can. Do not wrap entire operations with error handlers.

• Do handle exceptions where you are in a position to add more specific information about what has
happened, such as converting "record not found" into" bank account not found."

• Do gain an understanding of the standard exceptions defined in the core infrastructure. Be aware of the
types of exceptions that can be thrown by generated database manipulation operations of entity
objects:

– RecordNotFoundException can be thrown by singleton reads, updates and removes of the
database (entity read, nsread, modify, nsmodify, remove, and nsremove operations). A non-
standard operation (for example, nsmodify and nsremove) will throw this exception irrespective of
the uniqueness of the key that is passed into it.

– RecordNotFoundException can be thrown by non-keyed updates and removes of the database
(entity nkremove and nkmodify).

– RecordDeletedException is always thrown in precedence to a RecordNotFoundException.
– RecordDeletedException can be thrown when an optimistic update fails because the target

record has been deleted. With optimistic locking enabled the record is re-read to obtain the version
number. If the record is no longer present this exception is thrown.

– DuplicateRecordException can be thrown by insert and update operations (entity insert,
nsinsert, modify, nsmodify, and nkmodify operations).

– RecordChangedException and RecordDeletedException can be thrown by update operations
with optimistic locking. RecordDeletedException is thrown by entities which have optimistic
locking enabled in preference to RecordLockedException.

– MultipleRecordException can be thrown by singleton reads of the database (entity read,
nsread, and nkread operations) if multiple records are found which meet the specified selection
criteria.

– ReadmultiMaxException can be thrown by multiple reads of the database (entity readmulti,
nsmulti, and nkreadmulti operations) if more record are retrieved than the maximum specified in
the application model.

– RecordLockedException can be thrown by any of the entity operations if a deadlock or lock
timeout occurs.

– OtherDatabaseException can be thrown by any of the entity operations if the database reports an
error which does not map to one of the previously outlined exceptions.

80 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Coding Conventions for Exceptions
• Under normal circumstances don't create your own subclasses of AppException or
AppRuntimeException.

• Use exception chaining and exception logging when handling serious errors (the definition of "serious" is
application-specific).

• When writing the text of errors in a message file, be aware of localization issues. Do not write code
which simply replaces placeholders with hard-coded literals as shown in “Coding Conventions for
Exceptions” on page 81.

//Check that BankAccount entity exists:
bankAccountKey.accountNumber = argIn.accountNumber;
try {
 bankAccountDtls = bankAccount.read(bankAccountKey);
} catch (RecordNotFoundException rnf) {
 //This is a SERIOUS error
 curam.util.exception.AppException e = new AppException(
 COOKBOOK.ID_NO_SUCH_ACCOUNT, rnf);
 e.setLoggable(true); //make sure it gets logged
 e.arg("not found"); // NOT LOCALIZABLE!!!
 throw e;
}

Figure 50: Incorrect usage of hard-coded literals

How to use the Record Not Found indicator
Use this information to understand how to use the Record Not Found indicator variable.

Each of the singleton reads of the database (entity read, nsread, and nkread operations) that
potentially can throw a RecordNotFoundException has overloads added to take a Record Not Found
Indicator variable.

The reasons for providing a Record Not Found Indicator are as follows:

• To save the processor usage of creating and throwing an exception whenever a record cannot be found,
as this process is expensive in some Java virtual machines (JVMs).

• To make it easier to write code that checks for the existence of a record.

This indicator (curam.util.type.NotFoundIndicator) wraps a Boolean value that indicates whether
the required record might not be found. When this indicator is passed into one of the previously outlined
read operations, the operation never throws a RecordNotFoundException if the record does not exist
but instead sets the Boolean flag inside NotFoundIndicator to true, and return a value of null. If the
record is found, the Boolean flag inside NotFoundIndicator is set to false, and the record is returned.

Whenever a developer wants to pass a NotFoundIndicator into a singleton read operation, it is always
passed in as the first argument. This operation is shown in the following examples:

try {
 bankAccountDtls = bankAccount.read(bankAccountKey);
} catch (RecordNotFoundException rnf) {
 // record was not found...
}

Figure 51: A typical read operation that might throw a RecordNotFoundException

Cúram Server Developer 81

final NotFoundIndicator notFoundInd =
 new curam.util.type.NotFoundIndicator();
bankAccountDtls = bankAccount.read(notFoundInd, bankAccountKey);
if (notFoundInd.isNotFound()) {
 // record was not found...
} else {
 // record was found...
}

Figure 52: The overloaded version of the one previous, using the NotFoundIndicator

try {
 bankAccountDtls = bankAccount.read(bankAccountKey, true);
} catch (RecordNotFoundException rnf) {
 // record was not found...
}

Figure 53: A typical read operation for update that might throw a RecordNotFoundException

bankAccountDtls =
 bankAccount.read(notFoundInd, bankAccountKey, true);
if (notFoundInd.isNotFound()) {
 // record was not found...
} else {
 // record was found...
}

Figure 54: The overloaded version of the one previous, using the NotFoundIndicator

Localized output
Use this information to understand when it is necessary to use the
curam.util.exception.LocalisableString class to present data to the client for localization.

In IBM Cúram Social Program Management, the client is responsible for converting the text of an
exception into the language that a user chooses. However, certain situations exist where the server must
present data to the client for localization. To facilitate these situations, the
curam.util.exception.LocalisableString class was created. This class is used in a similar
manner to AppException, as shown in the following example:

curam.util.type.CodeTableItemIdentifier someIdentifier =
 new CodeTableItemIdentifier("someTable", "someCode");
curam.util.exception.LocalisableString e =
 new LocalisableString(EXAMPLE.ID_EXAMPLE_MESSAGE);
e.arg(someIdentifier);
return e.toClientFormattedText();

Figure 55: Use of LocalisableString

This string can be passed back to the client as an output parameter to be localized by the client.

Use of the Informational Manager
Use this information to understand how and when to use the Informational Manager function.

The standard exception handling and string presentation features described in the "Using exceptions"
chapter do not address one scenario. In a number of situations, it is useful to present multiple
informational messages at one time. For example, during validation a number of warnings, or errors, can
occur independently as they are based on different elements of the user input. These errors need to be
reported together to simplify the corrective actions that a user must take. The InformationalManager

82 IBM Cúram Social Program Management: Cúram Server Developer's Guide

class allows for exceptions and informationals to be grouped in this manner. “Use of the Informational
Manager” on page 82 shows the use of this class to group informational messages for presentation:

Cúram Server Developer 83

import curam.util.exception.InformationalElement;
import curam.util.exception.InformationalException;
import curam.util.exception.InformationalManager;
import curam.util.exception.LocalisableString;
import curam.util.internal.security.struct.LoginMessage;
import curam.util.internal.security.struct.LoginMessageList;
import curam.util.message.INFRASTRUCTURE;
import curam.util.resources.GeneralConstants;

class InformationalManagerDemo {

 public LoginMessageList checkLoginStatus()
 throws InformationalException {

 // Create an informational manager to store the
 // results of the validation checks. A transaction wide
 // version can be obtained via
 // TransactionInfo.getInformationalManager().
 final InformationalManager informationalManager =
 new InformationalManager();

 // Informational #1
 // Create an informational string for presentation to
 // the client: this specifies the password will expire
 // in 6 days
 LocalisableString infoMessage1 = new LocalisableString(
 INFRASTRUCTURE.INFO_ID_PASSWORD_EXPIRING);
 infoMessage1.arg(6);
 // Add this informational string to the informational
 // manager
 informationalManager.addInformationalMsg(infoMessage1,
 GeneralConstants.kEmpty,
 InformationalElement.InformationalType.kWarning);

 // Informational #2
 // Create an informational string for presentation to
 // the client: this specifies the user will be locked
 // out if they do not change their password in the next
 // 10 logins.
 LocalisableString infoMessage2 = new LocalisableString(
 INFRASTRUCTURE.INFO_ID_LOG_ATTEMPTS_EXPIRING);
 infoMessage1.arg(10);
 // Add this informational string to the informational
 // manager
 informationalManager.addInformationalMsg(infoMessage2,
 GeneralConstants.kEmpty,
 InformationalElement.InformationalType.kWarning);

 // The informationals must now be converted to a format
 // suitable for return to the client.
 final String[] informationalArray = informationalManager
 .obtainInformationalAsString();
 // The array of informational strings must be
 // transferred to an array of structs because we
 // cannot return an array of strings directly. Each
 // string goes into one struct (LoginMessage) and
 // this is aggregated into a list by struct
 // LoginMessageList.
 // LoginMessage : A struct containing one string
 // named 'message'.
 // LoginMessageList : A struct which aggregates
 // LoginMessage as member 'dtls'.
 final LoginMessageList result = new LoginMessageList();
 for (int i = 0; i != informationalArray.length; i++) {
 LoginMessage warning = new LoginMessage();
 warning.message = informationalArray[i];
 result.dtls.addRef(warning);
 }
 return result;
 }

}

Figure 56: Use of the Informational Manager

84 IBM Cúram Social Program Management: Cúram Server Developer's Guide

A number of points are worth emphasizing in this code fragment:

• This sample is based around the presentation of informationals to the client. It does not throw an
exception, it is a successful invocation of the method. This action means that the transaction is be
committed and any database updates is made permanent. It is the responsibility of the client screen for
this sample to handle the return value of the operation as a collection of informationals.

• InformationalManager. failOperation() can be used to fail the invocation that depends on
whether the informational manager contains any warnings or errors. If the informational manager
contains an error or warning, then this method throws an exception that means the transaction is rolled
back. Otherwise, this method does nothing and the transaction is allowed to continue. The full details of
this operation are described in the API documentation (JavaDoc) included with IBM Cúram Social
Program Management.

• The second parameter to InformationalManager.addInformationalMsg currently populated
with GeneralConstants.kEmpty (as in “Use of the Informational Manager” on page 82) is intended
to name a field. However, this feature is not supported in the current release

The Cúram Web Client Reference Manual needs to be consulted to determine the client-side configuration
that is necessary to use the InformationalManager. At its simplest, the field in the struct that contains
the informationals must be named in the UIM.

The InformationalManager logs informationals to the Curam log. Please see “Logging” on page 132
for details on Logging.The informationals are logged in the following way:

• Logging of the informationals is only performed at the time when they are added to the
InformationalManager (i.e. when calling InformationalManager. addInformationalMsg()).

• Fatal errors and errors are logged at the top level logger using the error level.
• Warnings are logged at the top level logger using the info level.

Message and Code Table Files
Use this information to understand how message catalog and code table files are used in the Cúram
application. Cúram message catalogs allow an application to be localized without manipulating hand-
crafted code. Cúram code table files allow an application to use a level of indirection when storing
commonly used constants on the database.

This chapter introduces message and code table fundamentals, and explains how they can be augmented
to produce customized messages and code tables in a Cúram application.

Message Files
Traditionally message files or catalogs are binary files used for holding text messages associated with an
application. Each message catalog had a one-to-one association with a symbol definition file. The symbol
definition file was examined at compile time and the message catalog at run-time. Using this form of
indirection allows an application to be localized without a re-compilation being necessary.

In keeping with this approach, Cúram message catalogs are generated from message .xml files using a
command-line build utility called msggen (build msggen). Generating from a message .xml file
produces two outputs: a message catalog file (one Java .properties file is generated for each locale
specified) and a symbol definition file (a standard Java class file). The symbol definition file is a Java file
containing constants (in Java terms, a constant is a static final) for message identifiers enumerated
in the message. xml file, and the name of the message file itself. This file should be imported into any
Java source files which use that catalog. The message catalog is a properties file opened by the Cúram
application at runtime.

The msggen build target performs the merge of message files and then translates the resultant message
file (which are stored in /build/svr/message/scp) into symbol definition (Java code) and message
catalog (property) files.

msggen is automatically invoked by the provided build scripts, against those message files which are
placed in the suggested source locations, i.e., the /message directory of a component.

Cúram Server Developer 85

The Format of Message Files

The message .xml file is an XML document which is made up of a number of distinct elements combined
with the core message elements; see “The Format of Message Files” on page 86.

As a standard XML document, the encoding attributed indicates that the file is encoded in UTF-8. It
should be noted that this encoding will be respected and maintained by an XML aware editor. However,
other editors (such as TextPad) do not maintain this encoding by default. A file which contains UTF-8
characters may have to be specifically saved as UTF-8 with these editors.

<?xml version="1.0" encoding="UTF-8"?>
<!-- A sample message file. -->
<messages package="curam.message">
 <message name="ERR_XRV_EXISTING_OVERLAP">
 <locale country="US" language="en">
 More than 1 overlapping Assessment has been found.
 </locale>
 </message>
 <message name="ERR_CREATION_DATE_EMPTY">
 <locale country="US" language="en">
 You must enter a creation date
 </locale>
 </message>
</messages>

Figure 57: Example of Message text file

The following sections detail the message.xml file elements and attributes.

The <messages> Element

The <messages> element is the root element of a message file, and it groups all other elements together.
The messages element has the following attribute:

Table 22: Attributes of the messages Element

Attribute Name Required Default Description

package Yes None The Java package name to use for the generated
Java file.

The <message> Element

The <message> element groups a number of <locale> elements together. The message element has
the following attributes:

Table 23: Attributes of the message Element

Attribute Name Required Default Description

name Yes None Uniquely identifies the message.

removed No false Set to true to indicate if the message is to be
removed and hence not included in the generated
artefacts.

The <locale> Element

The <locale> element details the text of the message for one of the supported locales. Since the
message files are XML, it is not necessary to use Java escape characters. Special characters can be
inserted by using the XML entity references in the message files. These will be converted to the actual
characters in the properties file. For example ¢ and $ will result in the cent and dollar symbols,

86 IBM Cúram Social Program Management: Cúram Server Developer's Guide

respectively, being put in the properties file. Care must be taken to only specify characters that can be
supported by the target properties file on your platform and for your operating system locale.

The locale element has the following attributes:

Table 24: Attributes of the locale Element

Attribute Name Required Default Description

language Yes None To be included during generation of the message
artefacts each <locale> element must specify a
language (and optional country) attribute that
corresponds to a supported locale. The
SERVER_LOCALE_LIST environment variable is a
comma separated list defining the set of locales
that are supported, where the locale is either
simply language or language_country. For
example: SERVER_LOCALE_LIST=en, en_US,
en_GB.

country No None Set to the country relevant to the locale language
attribute.

Customizing a Message File

Message text files are located in the /message directory of a component. The IBM Cúram Social Program
Management Platform is shipped with a set of message files. These may be overridden by placing new
message files in the SERVER_DIR/components/<custom >/message directory, where <custom> is any
new directory created under components that conform to the same directory structure as components/
core. This mechanism avoids the need to make changes directly to the out-of-the-box application, which
would complicate later upgrades.

Note: If the package attribute in the overridden message file is modified, then the customization will not
work.

This override process involves merging all message files of the same name according to a precedence
order. The order is based on the SERVER_COMPONENT_ORDER environment variable. This environment
variable contains a comma separated list of component names: the left most has the highest priority, and
the right most the lowest.

SERVER_COMPONENT_ORDER=custom,Appeal,ISProduct,sample

Figure 58: SERVER COMPONENT ORDER example

The order in “Customizing a Message File” on page 87, shows that the precedence of Appeal is higher
than that of the sample component. The core component always has the lowest priority and as such
does not need to be specified. Any components that are not specified are placed alphabetically above
core and below those that are specified.

Note: After changing the component precedence order in SERVER_COMPONENT_ORDER it is necessary to
perform a clean build to ensure that you are using the appropriate files. This is done by invoking build
clean server.

When merging message files, the components listed in the SERVER_COMPONENT_ORDER are taken in
order of highest to lowest priority. In “Customizing a Message File” on page 87 message files from the
sample component are merged with the message files located in the core component. The message files
from ISProduct are then merged into the intermediate results and the merge process continues until the
messages in the custom component are merged.

Cúram Server Developer 87

Rules of Message Merges

Message files are merged based on precedence order. As described above there is always a more
important main/source message file, and a file which is being merged into it. The second file is called the
merge file in the following sections.

The merging rules described below are applied to decide if the <message> and <locale> elements
should be merged into the new message file.

• A <message> will be merged into a new message file if the <message> is not already present in the
new file.

• A <locale> will be merged into a named <message> element in the new message file if the <locale>
is not already present in the <message> of the new message file.

Duplicate messages will always be overwritten by the message file in the component with the highest
precedence order. The main message file of “Rules of Message Merges” on page 88, and the merge file of
“Rules of Message Merges” on page 88, illustrate these rules:

<messages package="curam.message">
 <message name="ERR_SAMPLE_VALIDATION_MSG">
 <locale country="US" language="en">
 The specified color is not valid.
 </locale>
 </message>
 <message name="ERR_SAMPLE_ERROR_MSG">
 <locale country="US" language="en">
 An external resource is not available.
 </locale>
 </message>
</messages>

Figure 59: Sample main message file

<messages package="curam.message">
 <message name="ERR_SAMPLE_VALIDATION_MSG">
 <locale country="GB" language="en">
 The specified colour is not valid.
 </locale>
 </message>
 <message name="ERR_SAMPLE_NEW_MSG">
 <locale country="GB" language="en">
 An example of localisation.
 </locale>
 </message>
 <message name="ERR_SAMPLE_REMOVED_MSG" removed="true">
 <locale language="en">
 This message will be removed.
 </locale>
 </message>
</messages>

Figure 60: Sample merge message file

As a result of the merge process the new message file produced would be:

88 IBM Cúram Social Program Management: Cúram Server Developer's Guide

<messages package="curam.message">
 <message name="ERR_SAMPLE_VALIDATION_MSG">
 <locale country="GB" language="en">
 The specified colour is not valid.
 </locale>
 <locale country="US" language="en">
 The specified color is not valid.
 </locale>
 </message>
 <message name="ERR_SAMPLE_ERROR_MSG">
 <locale country="US" language="en">
 An external resource is not available.
 </locale>
 </message>
 <message name="ERR_SAMPLE_NEW_MSG">
 <locale country="GB" language="en">
 An example of localisation.</locale>
 </locale>
 </message>
 <message name="ERR_SAMPLE_REMOVED_MSG" removed="true">
 <locale language="en">
 This message will be removed.
 </locale>
 </message>
</messages>

Figure 61: Resulting Message File

Artefacts Produced by msggen Build Target

The Java artefacts (symbol definition and message catalog files) produced from a merged message file,
are placed in the / build/svr/message/gen/<package> directory, where <package> is the package
attribute specified in the message file. For example, package="curam.message" would result in the Java
artefacts being placed in the / build/svr/message/gen/curam/message directory.

The directory contains the Java files (which are locale independent) and the property files (which are
locale dependent) which are named <Message File name>_<specific language>_<specific
country>.properties.

Note: If message files of the same name exist in different components with a different package attribute
value, then the generated artefacts (symbol definition and message catalog files) produced are placed in
the package specified by the message file of the component with the highest precedence order (as listed
in the SERVER_COMPONENT_ORDER environment variable).

These artefacts are best illustrated by example:

Cúram Server Developer 89

package curam.message;
import curam.util.message.CatEntry;
import curam.util.message.MessageCatalog
public final class SampleMessages {

 private static final MessageCatalog kCat =
 new MessageCatalog("curam.message.SampleMessages");

 /**
 * BpoActivity:ERR_SAMPLE_VALIDATION_MSG
 * en_UK = The specified colour is not valid.
 * en_US = The specified color is not valid.
 */
 public static final CatEntry ERR_SAMPLE_VALIDATION_MSG

 = kCat.entry("ERR_SAMPLE_VALIDATION_MSG");

 /**
 * BpoActivity:ERR_SAMPLE_ERROR_MSG
 * en_US = An external resource is not available.
 */
 public static final CatEntry ERR_SAMPLE_ERROR_MSG
 = kCat.entry("ERR_SAMPLE_ERROR_MSG");

 /**
 * BpoActivity:ERR_SAMPLE_NEW_MSG
 * en_GB = An example of localisation.
 */
 public static final CatEntry ERR_SAMPLE_NEW_MSG
 = kCat.entry("ERR_SAMPLE_NEW_MSG");
}

Figure 62: Java file produced from merged message file

ERR_SAMPLE_VALIDATION_MSG=The specified colour is not valid.
ERR_SAMPLE_NEW_MSG=An example of localisation.

Figure 63: Sample (UK) Properties produced from message file

At the end of the msggen step these property files are placed into a .jar file which is used by the client
to localize the messages that are returned to it.

Retrieving Messages from Message Files

A message file can contain any number of locales for a named message, and as a result a mechanism
needs to be in place to return the correctly localized message for a running instance of Cúram. Messages
are retrieved from a message file based on the locale property which includes a language and, optionally,
a country. The message file look up returns a matching localized message for a named message identifier.
For example, if the runtime locale is set to en_US where "en" is the language and "US" is the country, a
message look up for the message named A_MESSAGE with the example below will return the text "The
message". If however the runtime locale was set to "fr" the text "Le message" would be returned.

<messages package="curam.message">
<message name="A MESSAGE">
 <locale country="US" language="en">The message</locale>
 <locale language="fr">Le message</locale>
 <locale language="en">The en message</locale>
</message></messages>

Figure 64: Message File Search

Since message files are not guaranteed to contain an entry for each message that matches the runtime
locale, a fall back mechanism is in place to guarantee that if possible a localized message is returned
when a look up is performed. Once a message of a given name has been found, and there is no direct
match with the specified locale, the rules for fall back are as follows:

90 IBM Cúram Social Program Management: Cúram Server Developer's Guide

• If the runtime locale is set to include a language and country, the country is removed and the search
looks for a matching language only. Looking up the message named A_MESSAGE in the example above
with runtime locale en_US will return the message text "The message".

• If nothing is found for the runtime locale, then a lookup will be performed using the fall back locale of
en. Looking up the message named A_MESSAGE in the example above with runtime locale es will
return the message text "The en message", i.e. the lookup will revert to the fall back locale of en as
nothing can be found for es.

If nothing can be found for either the runtime locale or the fall back locale, then the search will be
determined based on the underlying message lookup mechanism provided by the JDK class
java.util.ResourceBundle. Please refer to the relevant JDK JavaDoc for details of this classes
functionality and further details of the fall back mechanism provided.

If the runtime locale does not find a match in the message file and no match can be found using the fall
back locale of en, and no match can be found after applying the fall back rules described by
java.util.ResourceBundle, a MissingResourceException is returned and server logs are
updated if appropriate.

Writing Messages To Server Logs

Messages from message catalogs are used in many instances in Cúram and localized at runtime as
described in “Retrieving Messages from Message Files” on page 90. Localization of server log messages is
different in that it is performed by the server infrastructure based on the default server locale. In this
case, the locale used when writing to Cúram server logs is set by configuring the
curam.environment.default.locale property in Application.prx.

Localizing SDEJ Message Files

It is possible to localize or modify the message files shipped with the Cúram SDEJ. These message files
are located in the message directory of the SDEJ and are in the same format as Cúram application
message files but with the extension .iml.

To localize these files copy the particular .iml message file to be modified from the SDEJ to the message
directory of a component in your Cúram application, for example, SERVER_DIR/components/custom/
message. The .iml message file can then be modified in the same way as any message file, overriding a
message or adding a new locale for all the messages.

Note: If the package attribute in the message file is modified the localization will not work.

The msggen target, when run, will merge the localized .iml message file with the original one located in
the SDEJ. The localized message file will have the higher precedence order. It will then generate the
properties files only and include them in the messages.jar file created. The messages.jar file will
always be on the classpath before the default SDEJ messages in a runtime application.

Code Table Files
Code table files allow a Cúram application to use a level of indirection when storing commonly used
constants on the database. Like message files, code table files are shipped with Cúram and can be
customized by adding new code table files to new components in the SERVER_DIR/components/
<custom>/codetable directory, where <custom> is any new directory created under components that
conforms to the same directory structure as components/core. Code table files can contain one code
table or a number of code tables that are linked as a hierarchy.

Generating code tables produces two outputs: a code table SQL file to place the codes on the database,
and a symbol definition file (a standard Java class file). The symbol definition file is a Java file containing
constants for code table identifiers used in the code table XML file. The generation of code table
hierarchies also produces.properties files as described in “Artifacts Produced by ctgen Build Target” on
page 104.Generating code tables is supported by the build target ctgen.

For more information on code tables also consult the Domain Definitions chapter in the Cúram Modeling
Reference Guide and the Cúram Web Client Reference Manual.

Cúram Server Developer 91

The Format of Code Table Files

The code table file is an XML document which is made up of a number of distinct elements. “Rules of
Code Table Merges” on page 97, shows a sample code table.

As a standard XML document, the encoding attributed indicates that the file is encoded in UTF-8. It
should be noted that this encoding will be respected and maintained by an XML aware editor. However,
other editors (such as TextPad) do not maintain this encoding by default. A file which contains UTF-8
characters may have to be specifically saved as UTF-8 with these editors.

The following sections detail the elements and attributes of a code table file.

The <codetables> Element

The <codetables> element is the root element of a code table file and it groups all other elements
together. The codetables element has the following attributes:

Table 25: Attributes of the codetables Element

Attribute Name Required Default Description

package Yes None Specifies the package the generated symbol
definition Java file will be part of.

hierarchy_name No None Identifies the code table file as containing a
hierarchy of code tables.

The <description> Element

The <description> element is an optional sub-element below the <codetables> root. It is used to
define a description for the code tables. It should be listed first, before the other sub-element,
<codetable>, of <codetables>. It should only be listed once. There are no attributes for the
description element.

The <codetable> Element

The <codetable> element is a sub-element below the <codetables> root. The <codetable> element
should follow the <description> element, if it's specified. For an ordinary code table file definition only
a single <codetable> element can be defined. If a hierarchy_name attribute has been specified in the
<codetables> multiple <codetable> elements are allowed as long as they are linked correctly in a
hierarchy.

The codetable element groups a number of <code> elements together and an optional
<codetabledata> element.

The <codetable> element has the following attributes:

Table 26: Attributes of the codetable Element

Attribute Name Required Default Description

name Yes None A unique identifier for the code table.
The name attribute is trimmed of
leading and trailing spaces on code
table generation. Some restrictions
apply to the name attribute when the
<displaynames> element is specified.
Please see “Artifacts Produced by ctgen
Build Target” on page 104 for further
details.

92 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 26: Attributes of the codetable Element (continued)

Attribute Name Required Default Description

java_identifier Yes None The name of the generated symbol
definition Java file. This identifier
cannot be duplicated for code tables
with different names.

parent_codetable No None Used to define the name of the parent
code table in the hierarchy, where the
code table file has been defined as a
hierarchy of code tables.

The <codetabledata> Element

The <codetabledata> element is an optional sub-element of <codetable> that groups the locale-
specific comments for a codetable. Each <codetable> element can have one optional
<codetabledata> element. The <codetabledata> element can contain multiple optional <locale>
elements.

Note: The <codetabledata> element and its child elements are optional elements.

The <codetabledata> element has the following attributes:

Table 27: Attributes of the codetabledata Element

Attribute Name Required Default Description

language Yes None Specifies the language portion of the locale for the
codetabledata element.

country No None Specifies the country portion of the locale for the
codetabledata element.

The <locale> Element

The optional <locale> element can occur multiple times for the <codetabledata> element. Each
<locale> element can contain one optional <comments> element.

The locale element has the following attributes:

Table 28: Attributes of the locale Element

Attribute Name Required Default Description

language Yes None Specify a language that corresponds to a
supported locale.

country No None Specify a country that corresponds to a supported
locale and language.

The <comments> Element

The optional <comments> element is used to store the locale-specific comments for a code table.

The comments element has no attributes.

Cúram Server Developer 93

The <displaynames> Element

The <displaynames> element groups a number of code table hierarchy <name> elements together, and
it also groups a number of code table name<locale> elements together. It is an optional element.
However, if present it can contain any one <name> element or <locale>, having a <locale> element
helps the client to display codetable name in the locale set for the current user. The displaynames
element has no attributes.

The <name> Element

The <name> element is optional when the <displaynames> element is present. When displaying the
<name> values on the client, the name that contains the locale for the current user is displayed. However,
if the current user's locale does not match any of the locales specified within the <name> element, then
the <codetable> name attribute is displayed.

The name element has the following attributes:

Table 29: Attributes of the name Element

Attribute Name Required Default Description

language Yes None Specifies the language portion of the locale for the
name element.

country No None Specifies the country portion of the local for the
name element.

The <locale> Element

The <locale> element is optional and is used to add localisable display names to represent the
codetable table name when the <displaynames> element is present. When displaying the
<codetable> name attribute on the client, the name that contains the locale for the current user is
displayed. However, if the current user's locale does not match any of the locales specified within the
<locale> element, then the <codetable> name attribute is displayed.

The locale element has the following attributes:

Table 30: Attributes of the locale Element

Attribute Name Required Default Description

language Yes None Specifies the language portion of the locale for the
name element.

country No None Specifies the country portion of the local for the
name element.

The <code> Element

The <code> element is a sub-element of <codetable> and groups a number of <locale> elements
together. The code element has the following attributes:

Table 31: Attributes of the code Element

Attribute Name Required Default Description

value Yes None A unique identifier for the code in the code table.

94 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 31: Attributes of the code Element (continued)

Attribute Name Required Default Description

status Yes None Indicates if the code table is enabled and
selectable in the list of codes as displayed on the
client. It can be set to either ENABLED or
DISABLED and if set to anything else it is
considered to be DISABLED.

default No None Indicates if this is the default code for the code
table. There should only ever be one default
specified. The default code is used to define the
initially selected value in an editable code table
list in the client. For more information consult the
Cúram Web Client Reference Manual.

java_identifier No None Used as part of the generated symbol definition
Java file

removed No false Set to true to indicate if the code is to be
removed and hence not included in the generated
artefacts

parent_code No None Used to define the name of the code in the
specified parent code table in the hierarchy that
this code is linked to. See “Code Table Hierarchy”
on page 108 for more information on defining a
code table hierarchy.

The <locale> Element

The <locale> element contains two mandatory sub-elements (<description> and <annotation>)
and one optional sub-element <comments>, which are used to describe the code.

To be included during generation of the code table artefacts, each <locale> element must specify a
language (and optional country) attribute that corresponds to a supported locale. The
SERVER_LOCALE_LIST environment variable is a comma separated list of locales that are supported,
where the locale is either simply of the form language or language_country as shown in this
example:

SERVER_LOCALE_LIST=en, en_US, en_GB

The locale element has the following attributes:

Table 32: Attributes of the locale Element

Attribute Name Required Default Description

language Yes None Specifies a language that corresponds to a
supported locale.

country No None Specifies a country that corresponds to a
supported locale and language.

sort_order No None Specifies the order in which the codes in a code
table will be displayed in the drop-down list on an
edit page in the client.

Cúram Server Developer 95

The <description> Element

The <description> element is used to provide a description for the code. The description element
has no attributes.

The <annotation> Element

The <annotation> element is used to provide an annotation to the code. The annotation element has
no attributes.

The <comments> Element

The optional <comments> element is used to store the locale-specific comments for a code table item.
This element can be used to provide localized information to aid in understanding the usage for a code
table item, and any implication of change to it.

The comments element has no attributes.

The <views> Element

The <views> element is an optional sub-element of the <codetable> element that groups together one
or more views of the codetable. Each child view corresponds to a specific application context. For more
information, see Application Definition.

The <views> element has no attributes.

Related reference
Application definition

The <view> Element

The <view> element is a sub-element of the <views> element. Each view corresponds to a specific
application context. The <view> element groups a number of view <code> elements together. The
<code> elements in the <view> element are structurally different from the elements that are defined in
the <code table> element. The view <code> element contains the code of a code table item that is
displayed when the application is running in a context defined by the parent <view> element.

The <view> element has the following attributes.

Table 33: Attributes of the <views> Element

Attribute Name Required Default Description

context Yes None The application context code table code value
taken from the ApplicationContext code table. For
more information, see Application Definition.

default_code No None A code table code value defined in the <code
table> element and should be one of the codes
defined by the child code elements of the current
view element. This code table item of this code is
displayed as the default code table in the user
interface when this code table view is accessed.

overwrite No False Boolean value that indicates if this view overwrites
a view located in another code table in a different
component when the code tables are merged.
When two code tables are merged, the views in
them which have the same application context are
merged. For more information, see Rules of Code
Table Merges for more information on code table
view merging.

96 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Related reference
Application definition
Rules of Code Table Merges

The <code> Element in <view> Element

The <code> element is a sub-element of <view> element. The <view> element groups one or more
<code> elements together. Each <code> element holds the code of a codetable item that is displayed
when the application is running in a context defined by the parent <view> element. This <code> element
in the <view> element is structurally different from the one that is defined for the <codetable>
element.

The <code> element has the following attributes:

Table 34: Attributes of the <code> Element

Attribute Name Required Default Description

value Yes None A codetable code value defined in the
<codetable> element.

Customizing a Code Table File

Code table files are located in the /codetable directory of a component. The IBM Cúram Social Program
Management Platform is shipped with a set of code table files. These may be overridden by placing new
code table files in the SERVER_DIR/components/<custom>/codetable directory, where <custom> is
any new directory created under components that conforms to the same directory structure as
components/core.

This mechanism avoids the need to make changes directly to the out-of-the-box application, which would
complicate later upgrades. Typically code table files are customized to add new entries, localize
descriptions or to add new locales.

This override process involves merging all code table files of the same name according to a precedence
order. The order is based on the SERVER_COMPONENT_ORDER environment variable which contains a
comma-separated list of component names: the left most has the highest priority, and the right most the
lowest8

Rules of Code Table Merges

Code table files are merged based on precedence order, there is always a more important main/source
code table file, and a file that is being merged into it. The second file is called the merge file in the
following sections.

The merging rules that are described are applied to decide whether the <code>, <locale>,
<displaynames>, <name>, <views> and <view> elements are merged into the new code table file.

• A <code> is merged into a new code table file if its associated <codetable> is present in the new file
and its value attribute is not already present in the new file.

• The <codetabledata> element is merged into the <codetabledata> element in the new code table
file if the <locale> element is not already present in the <codetabledata> element of the new code
table. The <codetabledata> element is added into the new code table file even if the
<codetabledata> is not already present in the new code table file.

• A <locale> is merged into a named <code> element in the new code table file if the <locale> is not
already present in the <code> of the new code table.

• A <displaynames> element is merged into a new code table file if its associated <codetable> is
present in the new file and it is not already present in the new file.

8 See “Customizing a Message File” on page 87, for further explanation of SERVER_COMPONENT_ORDER.

Cúram Server Developer 97

• If the <displaynames> element is already present in the new file, then the <name> elements need to
be merged. If the <name> element with its language and country attributes is not already present in
the new file, then it is merged into the new file.

• A <views> element is merged into a new code table file if its associated <views> element is present in
the new file and the child <view> element is not already present in the new file.

• A <view> element is merged into a new code table file if its associated <view> with the same
application context is present in the new file with a set of different child <code> elements.

If the overwrite attribute of the <view> is set to true, the view overwrites the contents of the associated
view in the new codetable file.

If a <view> element has the default_code attribute set, the deafult_code of the associated <view> in
the new file is overwritten if it exists.

A <code> element is merged into a <view> element that has the same application context in the new
code table file if the <code> is not already present in that <view> of the new code table.

98 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The main code table file of “Rules of Code Table Merges” on page 97, and the merge code table file of
“Rules of Code Table Merges” on page 97, illustrate the rules of merging <code>, <codetabledata>
and <locale> elements.

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="curam.codetable">
 <codetable java_identifier="ACCEPTANCESTATUS"
 name="AcceptanceStatus">
 <code default="true" java_identifier="ACCEPTED"
 status="ENABLED" value="ACS1">
 <locale language="en" country="US" sort_order="0">
 <description>Accepted</description>
 <annotation></annotation>
 </locale>
 </code>
 <code default="false" java_identifier="PROVISIONAL"
 status="ENABLED" value="ACS2">
 <locale language="en" country="US" sort_order="0">
 <description>Provisional</description>
 <comments>Comments for PROVISIONAL in EN_US</comments>
 <annotation></annotation>
 </locale>
 </code>
 <code default="false" java_identifier="REJECTED"
 status="ENABLED" value="ACS3">
 <locale language="en" country="US" sort_order="0">
 <description>Rejected</description>
 <comments>Comments for Rejected in EN_US</comments>
 <annotation></annotation>
 </locale>
 </code>
 <code default="false" java_identifier="REMOVED" removed="true"
 status="ENABLED" value="ACS3">
 <locale language="en" country="US" sort_order="0">
 <description>Removed</description>
 <annotation>This message will be removed</annotation>
 </locale>
 </code>
 <codetabledata>
 <locale language="en">
 <comments>Code table comments for
 Country in EN.</comments>
 </locale>
 <locale> language="en" country="US">
 <comments>Code table comments for
 Country in US.</comments>
 </locale>
 </codetabledata>

 <views>
 <view context="CTX1" default_code="ACS1">
 <code value="ACS1"/>
 <code value="ACS2"/>
 <code value="ACS3"/>
 </view>
 <view context="CTX2">
 <code value="ACS1"/>
 <code value="ACS3"/>
 </view>

 <view context="CTX4" overwrite="true">
 <code value="ACS2"/>
 <code value="ACS3"/>
 </view>
 </views>

 </codetable>
</codetables>

Figure 65: Sample Main Code Table File 1

Figure 66: Sample Merge Code Table File 1

Cúram Server Developer 99

As a result of the merge process the resulting code table file would be:

<?xml version="1.0" encoding="UTF-8"?>
<codetables package="curam.codetable">
 <codetable java_identifier="ACCEPTANCESTATUS"
 name="AcceptanceStatus">
 <code default="true" java_identifier="ACCEPTED"
 status="ENABLED" value="ACS1">
 <locale language="en" country="GB" sort_order="0">
 <description>Passed</description>
 <annotation></annotation>
 </locale>
 </code>
 <code default="false" java_identifier="PROVISIONAL"
 status="ENABLED" value="ACS2">
 <locale language="en" country="GB" sort_order="0">
 <description>Pending</description>
 <comments>Comments for PROVISIONAL in EN_GB</comments>
 <annotation></annotation>
 </locale>
 </code>
 <code default="false" java_identifier="REJECTED"
 status="ENABLED" value="ACS3">
 <locale language="en" country="GB" sort_order="0">
 <description>Failed</description>
 <comments>Comments for REJECTED in EN_GB</comments>
 <annotation></annotation>
 </locale>
 </code>
 <code default="false" java_identifier="UNKNOWN"
 status="ENABLED" value="ACS4">
 <locale language="en" sort_order="0">
 <description>Unknown</description>
 <annotation></annotation>
 </locale>
 </code>
 <codetabledata>
 <locale language="en">
 <comments>Code table comments for
 Country in EN.</comments>
 </locale>
 <locale language="en" country="GB">
 <comments>Code table comments for
 Country in GB.</comments>
 </locale>
 </codetabledata>
 <views>
 <view context="CTX1" default_code="ACS4">
 <code value="ACS1"/>
 <code value="ACS2"/>
 <code value="ACS4"/>
 </view>
 <view context="CTX2">
 <code value="ACS3"/>
 </view>
 <view context="CTX3">
 <code value="ACS3"/>
 <code value="ACS4"/>
 </view>
 <view context="CTX4">
 <code value="ACS4"/>
 <code value="ACS3"/>
 </view>
 </views>

100 IBM Cúram Social Program Management: Cúram Server Developer's Guide

 </codetable>
</codetables>

<codetables package="curam.codetable">
 <codetable java_identifier="ACCEPTANCESTATUS"
 name="AcceptanceStatus">
 <code default="true" java_identifier="ACCEPTED"
 status="ENABLED" value="ACS1">
 <locale language="en" country="US" sort_order="0">
 <description>Accepted</description>
 <annotation></annotation>
 </locale>
 <locale language="en" country="GB" sort_order="0">
 <description>Passed</description>
 <annotation></annotation>
 </locale>
 </code>
 <code default="false" java_identifier="PROVISIONAL"
 status="ENABLED" value="ACS2">
 <locale language="en" country="US" sort_order="0">
 <description>Provisional</description>
 <comments>Comments for PROVISIONAL in EN_US</comments>
 <annotation></annotation>
 </locale>
 <locale language="en" country="GB" sort_order="0">
 <description>Pending</description>
 <comments>Comments for PROVISIONAL in EN_GB</comments>
 <annotation></annotation>
 </locale>
 </code>
 <code default="false" java_identifier="REJECTED"
 status="ENABLED" value="ACS3">
 <locale language="en" country="US" sort_order="0">
 <description>Rejected</description>
 <comments>Comments for REJECTED in EN_US</comments>
 <annotation></annotation>
 </locale>
 <locale language="en" country="GB" sort_order="0">
 <description>Failed</description>
 <comments>Comments for REJECTED in EN_GB</comments>
 <annotation></annotation>
 </locale>
 </code>
 <code default="false" java_identifier="UNKNOWN"
 status="ENABLED" value="ACS4">
 <locale language="en" sort_order="0">
 <description>Unknown</description>
 <annotation></annotation>
 </locale>
 </code>
 <code default="false" java_identifier="REMOVED" removed="true"
 status="ENABLED" value="ACS3">
 <locale language="en" country="US" sort_order="0">
 <description>Removed</description>
 <annotation>This message will be removed</annotation>
 </locale>
 </code>
 <codetabledata>
 <locale language="en">
 <comments>Code table comments for
 Country in EN.</comments>
 </locale>
 <locale> language="en" country="US">
 <comments>Code table comments for
 Country in US.</comments>
 </locale>
 <locale language="en" country="GB">
 <comments>Code table comments for
 Country in GB.</comments>
 </locale>
 </codetabledata>
 <views>
 <view context="CTX1" default_code="ACS1">
 <code value="ACS1"/>
 <code value="ACS2"/>
 <code value="ACS3"/>
 <code value="ACS4"/>
 </view>
 <view context="CTX2">
 <code value="ACS1"/>
 <code value="ACS3"/>
 </view>
 <view context="CTX3">
 <code value="ACS3"/>
 <code value="ACS4"/>
 </view>
 <view context="CTX4" overwrite="true">
 <code value="ACS2"/>
 <code value="ACS3"/>
 </view>
 </views>
 </codetable>
</codetables>

Figure 67: Resulting Code Table File 1

Cúram Server Developer 101

The main code table file of “Rules of Code Table Merges” on page 97, and the merge code table file of
“Rules of Code Table Merges” on page 97, illustrate the rules of merging <displaynames> and <name>
elements.

<codetables
 hierarchy_name="CarHierarchy"
 package="curam.codetable">
 <codetable java_identifier="CarMake" name="CarMake">
 <displaynames>
 <name country="GB" language="en">Car Make CustomGB</name>
 <name language="lt">Masinos Gamintojas</name>
 <name language="en">Car Make Custom</name>
 </displaynames>
 <code default="false" java_identifier="MITS"
 status="ENABLED" value="CMK1">
 <locale language="en" sort_order="0">
 <description>Mitsubishi</description>
 <annotation/>
 </locale>
 </code>
 <code default="false" java_identifier="AUDI"
 status="ENABLED" value="CMK2">
 <locale language="en" sort_order="0">
 <description>Audi</description>
 <annotation/>
 </locale>
 </code>
 </codetable>
 <codetable java_identifier="CarModel" name="CarModel"
 parent_codetable="CarMake">
 <code default="false" java_identifier="COLT"
 parent_code="CMK1" status="ENABLED" value="CML1">
 <locale language="en" sort_order="0">
 <description>Colt</description>
 <annotation/>
 </locale>
 </code>
 <code default="false" java_identifier="LANCER"
 parent_code="CMK1" status="ENABLED" value="CML2">
 <locale language="en" sort_order="0">
 <description>Lancer</description>
 <annotation/>
 </locale>
 </code>
 </codetable>
</codetables>

Figure 68: Sample Main Code Table File 2

102 IBM Cúram Social Program Management: Cúram Server Developer's Guide

<codetables
 hierarchy_name="CarHierarchy"
 package="curam.codetable"
>
 <codetable java_identifier="CarMake" name="CarMake">
 <displaynames>
 <name country="US" language="en">Car Make US</name>
 <name language="fr">Marque</name>
 <name language="en">Car Make Core</name>
 <name language="en" country="GB">Car Make CoreGB</name>
 </displaynames>
 <code default="false" java_identifier="MITS"
 status="ENABLED" value="CMK1">
 <locale language="en" sort_order="0">
 <description>Mitsubishi</description>
 <annotation/>
 </locale>
 </code>
 <code default="false" java_identifier="AUDI"
 status="ENABLED" value="CMK2">
 <locale language="en" sort_order="0">
 <description>Audi</description>
 <annotation/>
 </locale>
 </code>
 </codetable>
 <codetable java_identifier="CarModel" name="CarModel"
 parent_codetable="CarMake">
 <displaynames>
 <name language="en">Car Model</name>
 </displaynames>
 <code default="false" java_identifier="COLT"
 parent_code="CMK1" status="ENABLED" value="CML1">
 <locale language="en" sort_order="0">
 <description>Colt</description>
 <annotation/>
 </locale>
 </code>
 <code default="false" java_identifier="LANCER"
 parent_code="CMK1" status="ENABLED" value="CML2">
 <locale language="en" sort_order="0">
 <description>Lancer</description>
 <annotation/>
 </locale>
 </code>
 </codetable>
</codetables>

Figure 69: Sample Merge Code Table File 2

As a result of the merge process, the resulting code table file would be:

Cúram Server Developer 103

<codetables
 hierarchy_name="CarHierarchy"
 package="curam.codetable">
 <codetable java_identifier="CarMake" name="CarMake">
 <displaynames>
 <name country="GB" language="en">Car Make CustomGB</name>
 <name language="lt">Masinos Gamintojas</name>
 <name language="en">Car Make Custom</name>
 <name country="US" language="en">Car Make US</name>
 <name language="fr">Marque</name>
 </displaynames>
 <code default="false" java_identifier="MITS"
 status="ENABLED" value="CMK1">
 <locale language="en" sort_order="0">
 <description>Mitsubishi</description>
 <annotation/>
 </locale>
 </code>
 <code default="false" java_identifier="AUDI"
 status="ENABLED" value="CMK2">
 <locale language="en" sort_order="0">
 <description>Audi</description>
 <annotation/>
 </locale>
 </code>
 </codetable>
 <codetable java_identifier="CarModel" name="CarModel"
 parent_codetable="CarMake">
 <displaynames>
 <name language="en">Car Model</name>
 </displaynames>
 <code default="false" java_identifier="COLT"
 parent_code="CMK1" status="ENABLED" value="CML1">
 <locale language="en" sort_order="0">
 <description>Colt</description>
 <annotation/>
 </locale>
 </code>
 <code default="false" java_identifier="LANCER"
 parent_code="CMK1" status="ENABLED" value="CML2">
 <locale language="en" sort_order="0">
 <description>Lancer</description>
 <annotation/>
 </locale>
 </code>
 </codetable>
</codetables>

Figure 70: Resulting Code Table File 2

Artifacts Produced by ctgen Build Target

The artifacts that are produced from the code table file of “Rules of Code Table Merges” on page 97, are a
symbol definition file (Java class) and an SQL file.

The symbol definition file is a Java file that contains constants for code table identifiers that are used in
the code table XML file. This file can be used with the curam.util.CodeTable interface to access code
table information programmatically.

The Java file is generated to /build/svr/codetable/gen/<package> directory, where <package> is
the package attribute that is specified in the codetable file. For example, package="curam.codetable"
would result in the Java artifacts being placed in the /build/svr/codetable/gen/curam/
codetable directory.

104 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The code table SQL file contains inserts for the CodeTableHeader, CodeTableItem, CodeTableView
and CodeTableViewCode database tables. All SQL file artifacts are placed in a common directory: /
build/svr/codetable/sql/.

Note: If code table files of the same name exist in different components with different package attribute
values, then the symbol definition file (Java class) artifacts are placed in the package that is specified by
the code table file of the component with the highest precedence order (as listed in the
SERVER_COMPONENT_ORDER environment variable).

These artifacts are best illustrated by example:

Cúram Server Developer 105

package curam.codetable;

/**
 * Generated AcceptanceStatus codetable file.
 *
 */
public final class ACCEPTANCESTATUS {

 /**
 * TABLENAME=AcceptanceStatus.
 */
 public static final String TABLENAME
 = new String("AcceptanceStatus");

 /**
 * DEFAULTCODE=ACS1.
 */
 public static final String DEFAULTCODE
 = new String("ACS1");

 /**
 * Retrieves the defaultCode from the cache.
 *
 * @returns the default code value
 *
 * @throws curam.util.exception.AppException
 * Generic Exception Signature.
 * @throws curam.util.exception.InformationalException
 * Generic Exception Signature.
 */
 public static String getDefaultCode()
 throws curam.util.exception.AppException,
 curam.util.exception.InformationalException {
 return curam.util.type.CodeTable.getDefaultItem(TABLENAME);
 }

 /**
 * ACS1=Accepted.
 */
 public static final String ACCEPTED
 = new String("ACS1");
 /**
 * ACS2=Provisional.
 */
 public static final String PROVISIONAL
 = new String("ACS2");
 /**
 * ACS3=Rejected.
 */
 public static final String REJECTED
 = new String("ACS3");
 /**
 * ACS4=Unknown.
 */
 public static final String UNKNOWN
 = new String("ACS4");
}

Figure 71: Sample Java file produced from code table file

This pattern of generation means that the Strings are not interned by the Java compiler. This allows the
dependency checking in the build scripts to operate correctly. If an empty string is provided for a Java
Identifier the code is only mapped into persistent data (SQL file) and is not reflected in the Java artifacts.

106 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The persistent data that is associated with code tables is generated into the common /build/svr/
codetable/sql/ directory.

--
-- Cúram Code Table SQL Data File
--

--
-- CODETABLE AcceptanceStatus
--
INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION, ANNOTATION,
ISENABLED, SORTORDER, LOCALEIDENTIFIER,
 LASTWRITTEN)
 VALUES ('AcceptanceStatus', 'ACS1', 'Accepted', '', '1', 0, 'en_US',
CURRENT_TIMESTAMP(''));
INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION, ANNOTATION,
ISENABLED, SORTORDER, LOCALEIDENTIFIER,
 LASTWRITTEN)
 VALUES ('AcceptanceStatus', 'ACS2', 'Provisional', '', '1', 0, 'en_US',
CURRENT_TIMESTAMP(''));
INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION, ANNOTATION,
ISENABLED, SORTORDER, LOCALEIDENTIFIER,
 LASTWRITTEN)
 VALUES ('AcceptanceStatus', 'ACS3', 'Rejected', '', '1', 0, 'en_US',
CURRENT_TIMESTAMP(''));
INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION, ANNOTATION,
ISENABLED, SORTORDER, LOCALEIDENTIFIER,
 LASTWRITTEN)
 VALUES ('AcceptanceStatus', 'ACS1', 'Passed', '', '1', 0, 'en_GB',
CURRENT_TIMESTAMP(''));
INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION, ANNOTATION,
ISENABLED, SORTORDER, LOCALEIDENTIFIER,
 LASTWRITTEN)
 VALUES ('AcceptanceStatus', 'ACS2', 'Pending', '', '1', 0, 'en_GB',
CURRENT_TIMESTAMP(''));
INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION, ANNOTATION,
ISENABLED, SORTORDER, LOCALEIDENTIFIER,
 LASTWRITTEN)
 VALUES ('AcceptanceStatus', 'ACS3', 'Failed', '', '1', 0, 'en_GB',
CURRENT_TIMESTAMP(''));
INSERT INTO CodeTableItem (TABLENAME, CODE, DESCRIPTION, ANNOTATION,
ISENABLED, SORTORDER, LOCALEIDENTIFIER,
 LASTWRITTEN)
 VALUES ('AcceptanceStatus', 'ACS4', 'Unknown', '', '1', 0, 'en',
CURRENT_TIMESTAMP(''));
INSERT INTO CodeTableHeader (TableName, TimeEntered, DefaultCode, LASTWRITTEN)
 VALUES ('AcceptanceStatus', CURRENT_TIMESTAMP(''), 'ACS1',
CURRENT_TIMESTAMP(''));
INSERT INTO CodeTableView (TABLENAME, CONTEXT, DEFAULTCODE, LASTWRITTEN)
 VALUES (‘AcceptanceStatus’, ‘CTX1’, ‘ACS1’, CURRENT TIMESTAMP);
INSERT INTO CodeTableViewCode (TABLENAME, CONTEXT, CODE, LASTWRITTEN)
 VALUES (‘AcceptanceStatus’, ‘CTX1’, ‘ACS1’, CURRENT TIMESTAMP);
INSERT INTO CodeTableViewCode (TABLENAME, CONTEXT, CODE, LASTWRITTEN)
 VALUES (‘AcceptanceStatus’, ‘CTX1’, ‘ACS2’, CURRENT TIMESTAMP);
INSERT INTO CodeTableView (TABLENAME, CONTEXT, DEFAULTCODE, LASTWRITTEN)
 VALUES (‘AcceptanceStatus’, ‘CTX2, ‘ACS3’, CURRENT TIMESTAMP);
INSERT INTO CodeTableViewCode (TABLENAME, CONTEXT, CODE, LASTWRITTEN)
 VALUES (‘AcceptanceStatus’, ‘CTX2, ‘ACS3, CURRENT TIMESTAMP);
INSERT INTO CodeTableViewCode (TABLENAME, CONTEXT, CODE, LASTWRITTEN)
 VALUES (‘AcceptanceStatus’, ‘CTX2, ‘ACS4’, CURRENT TIMESTAMP);

Figure 72: Sample SQL file produced from code table file

Cúram Server Developer 107

Note: If any <locale> entries specify a language (and optional country) which are not contained in the
SERVER_LOCALE_LIST environment variable, they are ignored during generation and a warning is
produced.

Also, while generating the codetable SQL artifacts containing the contents for the CodeTableItem and
CodeTableHeader database tables, the LASTWRITTEN field with an initial value is populated. The initial
value is a time stamp that is set to the time when the data is inserted into the database.

The same artifacts are produced for the code table file of “Rules of Code Table Merges” on page 97, also,
because the file contains a <displaynames> element, additional artifacts are created, i.e. a properties
file is generated for each <name> element it contains.

The ctgen target produces one properties file for each locale (composite of language and country
attributes) and <name> element within the <displaynames> element of a code table definition. Locale is
defined by the language and country attributes of the <name> element. These properties files define
the display names associated with each code table in a code table hierarchy.

The properties files are generated into /build/svr/codetable/gen/. If no <displaynames>
element is specified for a code table hierarchy, no properties file is generated, and a warning will be
displayed. The name of the generated properties file consists of the code table name along with the
locale. Since a code table name with spaces renders a properties file invalid and unlocalizable, any spaces
specified in the code table name will be replaced with the underscore character.

The warning, i.e. warning where a <displaynames> element is not specified, is only treated as a warning
and never an error, regardless of the setting of the property prp.warningstoerrors.

If the locale specified for the <name> element is not supported, then the ctgen displays a warning and no
properties file for that locale is generated.

The following is an example of properties files that are produced by the ctgen on the “Rules of Code Table
Merges” on page 97. Each properties file is generated to /build/svr/codetable/gen/

CarMake=Car Make US

Figure 73: CarMake_en_US.properties

CarMake=Marque

Figure 74: CarMake_fr.properties

CarMake=Car Make CustomGB

Figure 75: CarMake_en_GB.properties

CarMake=Masinos Gamintojas

Figure 76: CarMake_lt.properties

CarMake=Car Make Custom

Figure 77: CarMake_en.properties

CarModel=Car Model

Figure 78: CarModel_en.properties

Code Table Hierarchy

Code table files can define a single code table or a hierarchy of code tables. A hierarchy is where multiple
code tables are linked into a number of levels. Selecting a code at a particular level will reduce the
number of selections available at the next level. Any number of levels in a code table hierarchy is
supported.

For example, “Code Table Hierarchy” on page 108 shows a sample hierarchy. Selecting Ireland as the
country will return a sub-list of Meath and Wexford and selecting Meath as the county will return sub-list
of Trim and Navan. Alternatively, selecting England will return a sub-list of Stafford and London, etc.

108 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 35: Address Hierarchy

Level 1 Level 2 Level 3

Country County Town

Ireland Meath Navan

Trim

Wexford Gorey

Enniscorthy

England Stafford Bednall

Stone

London Earlsfield

Eltham

To define a code table hierarchy a code table (CTX) file should be created with a code table defined for
each level in the hierarchy. To indicate that the code table file contains a hierarchy, the hierarchy_name
attribute should be defined on the <codetables> element.

<codetables package="curam"
 hierarchy_name="AddressHierarchy">
<description>
 A description of the hierarchy.
</description>

Figure 79: Usage of hierarchy_name attribute

Each <codetable> defined must then be linked using the parent_codetable attribute of the
<codetable> element. The parent_codetable value should be set to the name of an existing
<codetable> in the file, where the specified code table is the parent in the hierarchy. All code tables
defined in the file, excluding the top level code table, must have a valid parent_codetable attribute
defined for them. A <codetable> can be linked to only one parent <codetable> and cannot be used in
more than one code table hierarchy.

<codetable java_identifier="COUNTY"
 name="County" parent_codetable="Country">

Figure 80: Usage of parent_codetable attribute

Each <code> entry in a code table is finally linked to a <code> entry in the parent code table, using the
parent_code attribute. The parent_code value must be the value of a <code> existing in the specified
parent code table. A child <code> cannot be linked to more than one parent <codetable>.

<code java_identifier="MEATH"
 value="MEATH" parent_code="IRELAND" status="ENABLED">

Figure 81: Usage of parent_code attribute

The hierarchy defined in “Code Table Hierarchy” on page 108 can be represented as follows in a code
table file.

Cúram Server Developer 109

<?xml version="1.0" encoding="UTF-8" ?>
<codetables package="curam" hierarchy_name="AddressHierarchy">
 <description>
 A description of the hierarchy.
 </description>

 <codetable java_identifier="COUNTRY" name="Country">
 <displaynames>
 <name language="en">Country</name>
 <displaynames>
 <code java_identifier="IRL" value="IRLND" default="true"
 status="ENABLED">
 <locale language="en" sort_order="1">
 <description>Ireland</description>
 </locale>
 </code>
 <code java_identifier="GB" value="ENGLND" status="ENABLED">
 <locale language="en" sort_order="2">
 <description>England</description>
 </locale>
 </code>
 </codetable>

 <codetable java_identifier="COUNTY" name="County"
 parent_codetable="Country">
 <displaynames>
 <name language="en">County</name>
 </displaynames>
 <code java_identifier="MEATH" value="MTH"
 parent_code="IRLND" status="ENABLED">
 <locale language="en" sort_order="1">
 <description>Meath</description>
 </locale>
 </code>
 <code java_identifier="WEXFORD" value="WXFD"
 parent_code="IRLND" status="ENABLED">
 <locale language="en" sort_order="1">
 <description>Wexford</description>
 </locale>
 </code>
 <code java_identifier="STAFFORD" value="STFFRD"
 parent_code="ENGLND" status="ENABLED">
 <locale language="en" sort_order="1">
 <description>Stafford</description>
 </locale>
 </code>
 <code java_identifier="LONDON" value="LNDN"
 parent_code="ENGLND" status="ENABLED">
 <locale language="en" sort_order="2">
 <description>London</description>
 </locale>
 </code>
 </codetable>

 <codetable java_identifier="TOWN" name="Town"
 parent_codetable="County">
 <code java_identifier="NAVAN" value="NVN"
 parent_code="MTH" status="ENABLED">
 <locale language="en" sort_order="2">
 <description>Navan</description>
 </locale>
 </code>
 <code java_identifier="TRIM" value="TRM"
 parent_code="MTH" status="ENABLED">
 <locale language="en" sort_order="2">
 <description>Trim</description>
 </locale>
 </code>
 <code java_identifier="GOREY" value="GRY"
 parent_code="WXFD" status="ENABLED">
 <locale language="en" sort_order="2">
 <description>Gorey</description>
 </locale>
 </code>
 <code java_identifier="ENNISCORTHY" value="ENC"
 parent_code="WXFD" status="ENABLED">
 <locale language="en" sort_order="2">
 <description>Enniscorthy</description>
 </locale>
 </code>
 <code java_identifier="ELTHAM" value="ELTM"
 parent_code="LNDN" status="ENABLED">
 <locale language="en" sort_order="2">
 <description>Eltham</description>
 </locale>
 </code>
 <code java_identifier="EARLSFIELD" value="ELFD"
 parent_code="LNDN" status="ENABLED">
 <locale language="en" sort_order="2">
 <description>Earlsfield</description>
 </locale>
 </code>
 <code java_identifier="BEDNALL" value="BDNL"
 parent_code="STFFRD" status="ENABLED">
 <locale language="en" sort_order="4">
 <description>Bednall</description>
 </locale>
 </code>
 <code java_identifier="STONE" value="STN"
 parent_code="STFFRD" status="ENABLED">
 <locale language="en" sort_order="4">
 <description>Stone</description>
 </locale>
 </code>
 </codetable>
</codetables>

Figure 82: Code Table Hierarchy Example

110 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The artefacts listed in “Artifacts Produced by ctgen Build Target” on page 104 are also generated for code
table files that define a hierarchy.

Properties files are generated for <displaynames> elements. A symbol definition Java file is generated
for each code table in the hierarchy. A single SQL file is generated, containing the relevant inserts to the
CodeTableHeader and CodeTableItem database tables for all defined code tables. These insert
statements will include the population of the parentCode field in the CodeTableItem table and the
parent_codetable field in the CodeTableHeader table. An insert entry is also generated for the
CodeTableHierarchy database table. This table is used for administration purposes only.

Note: The code table hierarchies can only be created through code table (CTX) files and not through the
admin screens. The admin screens can only be used to maintain the code table hierarchies.

Note: Code table views are not supported by code table hierarchies. Code tables that are used in code
table hierarchies must not contain views.

Retrieving Codes from Code Table Files

Since a code table file can contain any number of locales for a named code a mechanism needs to be in
place to return the correctly localized code for a running instance of Cúram. Codes are retrieved from a
code table file based on the locale property which includes a language and, optionally, a country. The
code table file look up returns a matching localized code for a named value. For example, if the runtime
locale is set to en_US where "en" is the language and "US" is the country, a code look up for the code
named ACODE in the example below, will return the text "The code". If, however, the runtime locale was
set to "fr", the text "Le code" would be returned.

<codetables package="curam.codetable">
 <codetable java_identifier="AN_ID" name="ANAME">
 <code default="true" java_identifier="ACODE"
 status="ENABLED" value="ACODE">
 <locale language="en" country="US" sort_order="0">
 <description>The code</description>
 <annotation></annotation>
 </locale>
 <locale language="en">
 <description>The en code</description>
 <annotation></annotation>
 </locale>
 <locale language="fr">
 <description>Le code</description>
 <annotation></annotation>
 </locale>
 </code>
 </codetable
</codetables>

Figure 83: Code File Search

Since code table files are not guaranteed to contain an entry for every country, a fall back mechanism is in
place. Once a code of a given name has been found and there is no direct match with the specified locale,
the rules for fall back are as follows:

• If the runtime locale is set to include a language and country, the country is removed and the search
looks for a matching language only. Looking up the code named ACODE in the example above, with
runtime locale fr_CN would return the text "Le code".

• If nothing is found for the runtime locale for either language and country or language only, then a search
using the fall back locale of en will be used. Looking up the code named ACODE in the example above,
with runtime locale es would return the text "The en code".

For example, if the runtime locale is set to fr_CA, then the following will be the search path:

• Search on fr_CA,
• Search on fr
• Search on en

Cúram Server Developer 111

If nothing is found for either the runtime locale or the fallback locale of en, then an empty string is
returned.

Localizing SDEJ Code Table Files

It is possible to localize or modify the codetable files shipped with the SDEJ. These codetable files are
located in the codetable directory of the SDEJ and are in the same format as Cúram application
codetable files but with the extension .itx.

To localize these files copy the particular .itx codetable file to be modified from the SDEJ to the
codetable directory of a component in your Cúram application, for example, SERVER_DIR/components/
custom/codetable. The .itx codetable file can then be modified in the same way as any codetable
file; overriding a code or adding a new locale for all the codes.

Note: If the package attribute in the codetable file is modified the localization will not work.

The ctgen target, when run, will merge the localized .itx codetable file with the original one located in
the SDEJ. The localized codetable file will have the higher precedence order. It will then generate the sql
files only. No Java artefacts will be generated for codetable files with the extension .itx.

The datamanager_config.xml file, located in the project/config directory specifies the location of
the common directory for generated SQL artefacts. There is no requirement to update this entry for
localized code tables as all .sql files are generated to the same location.

< entry
 name="build/svr/codetable/sql/"
 type="sql"
 base="basedir"/>

Figure 84: Datamanager entry for the code table SQL artefacts location

Note: The <description> sub-element is an optional element for the <codetables> element in the
codetable (CTX) files. The <description> element is mainly used to define a description for the code tables
for developers information. The description is not saved into any database tables for normal code tables.
However, for Code Table Hierarchies, if the description is defined in the CTX file, then the <description>
value is saved to the description attribute in the CODETABLEHIERARCHY table. This value will be
displayed on the Code Table Hierarchy page of the Cúram Administration screens.

Specialized readmulti operations
Use generated readmulti operations to run SQL SELECT statements and return the resulting record sets
as an ArrayList. Readmulti operations consist of a Data Access Layer function and a Business Object
Layer function.

Readmulti operations are implemented as two distinct pieces:

• A Data Access Layer function that establishes the result set, through building up the statement, running
an executeQuery on it, then a series of getResultObject statements, and

• A Business Object Layer function that assembles the results into the required in-memory vector of
structures.

The Business Object Layer function is a specialization of a general class of functions called readmulti
operations, which can perform arbitrary processing on the contents of SQL cursors. You can view the
definitions of these function classes in curam.util.dataaccess.ReadMultiOperation. This
ReadMultiOperation is the parent abstract class, while
curam.util.dataaccess.StandardReadMultiOperation is a concrete subclass that provides an
implementation of "normal" readmulti functions.

"Specialized readmulti operations" are handcrafted functions "plugged into" the Data Access Layer that
uses generated helper classes. The pattern in use here is similar to the "Visitor" design pattern described
in Design Patterns. Readmulti operations are "plugged into" the appropriate Data Access Layer functions
by generated readmulti helper classes, which insulate the operation from knowledge about the specific
Data Access Layer functions used.

112 IBM Cúram Social Program Management: Cúram Server Developer's Guide

When to Use Readmulti Operations
"Normal" readmulti operations return a set of database records as an ArrayList. There are several
situations in which you might want to replace this type of standard "normal" readmulti operation with your
own specialized processing.

An example is in batch processing where you want to iterate across a large number of records on a
database table, and process each record in turn. It is not feasible to use a standard readmulti operation to
assemble an in-memory vector of all of the records read before processing. Another common example is
where you want to lock or delete records from the result set as they are processed. In each of these
examples you can write your own readmulti operations to process records individually as they are
retrieved from the database rather than relying on the standard processing supplied by
StandardReadMultiOperation.

How to define your own readmulti operations
The steps that you follow to define your own specialized readmulti operations are as follows:

1. Add the readmulti operation to your Unified Modeling Language (UML) application model. For this
example, assume that you add a standard readmulti operation that is called readmulti to an entity
called E. The standard readmulti operation whose "details" structure is called EDtls. However, this
example applies equally to readmulti, nsreadmulti, multithread, and nsmulti operations in the UML
application model, where the "details" structure might not be a generated entity details structure.

2. Write the specialized readmulti operation class, as follows:

static class MyReadmultiOperation extends
curam.util.dataaccess.ReadmultiOperation {

 public boolean operation(Object objDtls) throws
 AppException, InformationalException {

 // No implementation for the moment

 return true;

 }

}

Note: If the readmulti operation specifies a 'Post Data Access' or 'On-fail' operation, then your
readmulti operation must be a subclass of
curam.util.dataaccess.StandardReadMultiOperation. This specification is because this
class builds up an in-memory list of the that isstructs read by the readmulti operation to make it
available to thePost Data Access andOn-fail operations.

If your readmulti operation processes large numbers of records, then this operation might cause an
excessive memory usage. Cution is advised if you are using specialized readmulti operations withPost
Data Access orOn-fail operations.

3. Implement MyReadMultiOperation. operation to initiate your specific processing. This method is
called automatically for each record retrieved from the database.

In general, always return true from readmulti operations. In unusual cases, where you want to stop
processing before you reach the end of the record set, return false. This instruction means that the
operation method is not be called again.

4. Write the code that starts the readmulti operation. This code appears in a Business Process Object
(BPO) implementation and looks like the following:

Cúram Server Developer 113

// instance of specialized operation class
MyReadMultiOperation op = new MyReadMultiOperation();

// instance of readmulti key structure
EReadmultiKey key;

// set key fields for search
key.id = 99;

// construct helper and call operation
E.newInstance().readmultiHelper(key, op);

Each generated readmulti function is associated with a generated "helper" class that exists solely for use
in code such as displayed previously. The helper class is scoped inside the entity class and has a run
method that begins a readmulti.

Extra features of readmulti operations
• The READMULTI_MAX option in the model limits the number of records processed by a standard

"normal" readmulti operation. However, it has no effect when you hand-craft your own operations. As a
result none of the overrides for this option (defined in “Cúram Configuration Settings” on page 33) has
any effect. To limit the number of records that are returned within your readmulti subclass, you must
override the following method:

public int getMaximum();
• You can filter out records from the database result set by overriding the following method of your

readmulti subclass:

public boolean filter(Object dtls) throws AppException,
InformationalException;

Each record is passed to filter before it is passed to your operation method. Any record that
results in filter returning false is not passed to operation. The default filter always returns
true.

• If you want to write code that is called before the first row is passed to operation, you can override:

public void pre() throws AppException, InformationalException;

If you want to write code that is called with the first row read from the database, you can override:

public void first(Object dtls) throws AppException, InformationalException;

The same record is also passed to the operation method.

Note: The first is called if there is at least one row in the result set, regardless of whether filter
returns true for this row.

• If you want to write code that is called after the last call to operation, you can override:

public void post() throws AppException, InformationalException;

Be aware. This function is called always once, regardless of the value returned by the operation
method.

• An optional third parameter to the execute method of readmulti helper classes is a boolean that
specifies whether records that are read from the database are updated later in the transaction. This
parameter can be used as in:

E.newInstance().readmultiHelper(key, op, true);

This process means that each record that is read from the database is locked for write access as it is
read.

114 IBM Cúram Social Program Management: Cúram Server Developer's Guide

You can use a combination of the previously shown methods, with your own data members, to achieve
many common styles of readmulti operation. For instance, “Extra features of readmulti operations” on
page 114 shows a readmulti operation that produces a report grouped by department:

Cúram Server Developer 115

static class MyReadmultiOperation
 extends curam.util.dataaccess.ReadmultiOperation
{
 // Remember last dept, for grouping
 private String lastDepartment;

 // Department salary accumulator
 private curam.util.type.Money salaryDeptTotal;

 // Total Salary Accumulator
 private curam.util.type.Money salaryGrandTotal;

 public void pre()
 throws AppException, InformationalException {
 // initialization
 lastDepartment = "";
 salaryGrandTotal = 0.0;
 }

 public void first (Object dtls)
 throws AppException, InformationalException {
 // per-department group initialization
 salaryDeptTotal = 0.0;

 // remember last department for grouping.
 lastDepartment = dtls.department;
 }

 public boolean operation(Object dtls)
 throws AppException, InformationalException {

 // Change of department group
 if (!(lastDepartment.equals(dtls.department))) {
 printGroupTotals();

 // redo per-dept initialization
 first(dtls);
 }

 // detail report line
 curam.util.resources.Trace.kTopLevelLogger.info("Emp ");
 curam.util.resources.Trace.kTopLevelLogger.info(
 dtls.employeeId);
 curam.util.resources.Trace.kTopLevelLogger.info(
 " salary: ");
 curam.util.resources.Trace.kTopLevelLogger.info(
 dtls.salary);

 // accumulate dept salary
 salaryDeptTotal += dtls.salary;

 // accumulate total salary
 salaryGrandTotal += dtls.salary;

 return true;
 }

 public void post()
 throws AppException, InformationalException {
 // only if there was at least one department
 if (!(lastDepartment.empty())) {
 printGroupTotals();
 // final group
 // Grand total report line:
 curam.util.resources.Trace.kTopLevelLogger.info(
 "Grand total salary: ");
 curam.util.resources.Trace.kTopLevelLogger.info(
 salaryGrandTotal);
 }
 }

 public int getMaximum() {
 // Explicitly enforce that all matching records are
 // considered. Any number other than zero would limit
 // the number of records.
 return 0;
 }

 private void printGroupTotals() {
 // group report line
 curam.util.resources.Trace.kTopLevelLogger.info(
 "Department ");
 curam.util.resources.Trace.kTopLevelLogger.info(
 lastDepartment);
 curam.util.resources.Trace.kTopLevelLogger.info(
 " total salary: ");
 curam.util.resources.Trace.kTopLevelLogger.info(
 salaryDeptTotal);
 }
}

Figure 85: Specialized readmulti example

116 IBM Cúram Social Program Management: Cúram Server Developer's Guide

An alternative
Specialized Readmulti operations and non-standard operations allow the developer a greater level of
freedom when handcrafting database access code. However in certain situations this may prove to be too
limiting. For example where the SQL string will be derived from the input parameters to a method; parts of
the 'where' clause will be optional or expressed differently depending on the input. In these situations the
developer can obtain the Connection being used for database communication through the
TransactionInfo. getInfoConnection interface. Once this connection has been obtained it is
possible to execute any form of handcrafted JDBC in the context of the Cúram transaction.

To enable this style of database access to be visible in the model it should be placed in an entity which
has theNO_SQL option enabled. This is detailed in the Cúram Modeling Reference Guide.

Summary
The order your readmulti operation methods are called is as follows:

1. pre - always called once before anything else.
2. first - called once with the first record, provided at least one record exists.
3. filter - called for each record (including the first).
4. operation - called for each record for which filter returns true;
5. post - always called once after everything else.
6. getMaximum - specifies the maximum number of records that are matched.

If you are designing processing that maintains locks, remember performance implications when you do
so.

Deprecation
Use this information to understand how deprecation is used to reduce the impact of change on custom
applications.

This chapter describes deprecation in Cúram: what it is, how it can affect custom code, and what it means
for support and the build infrastructure that helps pinpoint custom artifact dependencies on deprecated
Cúram artifacts.

Overview
In enhancing Cúram, the necessity occasionally arises where a feature or API is deprecated. This can
result from the need to replace the feature or API with an updated version or to remove the feature where
a better alternative is available, or where features are unused or no longer consistent with the strategic
direction of the product.

When a feature or API is deprecated, IBM will continue to support but no longer plans to enhance and
might remove this capability in a subsequent release of the product. Deprecation may happen in code, in
documentation, or in both, with all methods being valid and equivalent.

At a technical level, deprecation means that an artifact will no longer be enhanced and may be removed in
a future release. In java terms it frequently means the API will be replaced by an alternative, in which
case all out-of-the-box calls to the deprecated API will be replaced by calls to the replacement API.
Deprecation can also mean notice to remove without replacement. In all circumstances a deprecation
comment will reflect the intended action.

Deprecation in documentation means that within the Knowledge Center, references to the deprecated
feature will be indicated as deprecated in all guides that discuss the feature. This is done by prepending
'(deprecated)' to the names of deprecated sections, as well as including the icon within sections that
discuss other functionality but refers to the deprecated feature.

Cúram Server Developer 117

Features may be deprecated in any major or minor release, and may then be removed in a major or minor
release following the release in which they are deprecated. The period between the two releases will be
no less than twelve months, providing time for customer movement to an alternative, where one is
available. For example, if a feature was deprecated in Version 7 (released December 2016), then IBM can
remove the deprecated feature in a major or minor release on or after December 2017, such as Version 8
or Version 7.5, respectively.

No further notice will be given after deprecation before the feature is removed, though in some cases this
may not happen for a number of releases.

If customers have concerns about the removal of a feature because they need more time to either find an
alternative solution, or break their dependency on the deprecated feature due to their project timelines,
they should raise this concern through the usual support channels.

Other Sources of Information

Information about specific deprecated artifacts can be found in the artifact itself and also in the 'Notes on
Deprecation' section of the Cúram release notes.

In the artifact itself, the deprecated element will be marked as described in Artifact Types That Can Be
Deprecated. This marker includes space for a short 'deprecation comment' about the replacement
functionality for the deprecated item and a reference to any associated release note containing more
context. To make your analysis easier, Cúram validation and compilation steps will include this comment
in the build warning, to save you from looking up the deprecated artifact. However, this enhanced build
warning is only available from Cúram compilers and validations, the command-line Java compiler does
not have equivalent functionality. It is recommended you view Java warnings in your Integrated
Development Environment (IDE) for fast navigation between artifacts.

If the information in the artifact's deprecation comment does not provide enough context, additional
information can be found in the Cúram Release Notes. You can search these by the name of the
deprecated artifact or by the release note ID referenced in its deprecation comment.

Effect of Deprecation on a Custom Application
In Cúram, a deprecated artifact means an artifact that will be removed in a later version of the product.
Artifacts can be deprecated if there is a new better alternative, however, they can also be deprecated if
they form part of a feature that IBM intends to remove from Cúramo for which there is no replacement. In
both scenarios, the deprecated artifacts will no longer form part of the default flow within Cúram.
Deprecated artifacts remain present in the application codebase, but they are not referenced by the out-
of-the-box runtime application.

To quickly pinpoint where custom dependencies exist on deprecated Cúram artifacts, the command-line
Java compiler has been extended to provide deprecation warnings to Cúram builds and validations. This
will be described in more detail later in this chapter.

Customizations and References

Custom artifacts can depend on deprecated Cúram artifacts either by referencing them, or by customizing
(overriding) them. Reference and customization dependencies have different characteristics and it is
important to understand the difference. To illustrate:

• Examples of References

– A custom method can call a deprecated Cúram server interface method
– A custom workflow can reference a deprecated Cúram method as an automatic activity
– A custom User Interface Metadata (UIM) client page can link to a deprecated Cúram UIM page

• Examples of Customizations

– A custom class can subclass a Cúram class and replace (override) deprecated Cúram methods
– A custom UIM client page can customize (override) a deprecated Cúram UIM client page

118 IBM Cúram Social Program Management: Cúram Server Developer's Guide

The impact of deprecation on custom code depends on whether that code is referencing or customizing a
deprecated artifact.

Where code references a deprecated Cúram artifact (for example, calls a deprecated method), the
deprecated artifact still exists and functions in a backwardly-compatible way. This is the same as for
regular Java deprecation where the immediate impact is minimal or nil.

Where code customizes (overrides) a deprecated Cúram artifact, the base Cúram application no longer
invokes that artifact - it is no longer part of the default flow of the base application. It is reasonably likely
that it has been removed from the default flow of custom applications. In short, customizations of
deprecated artifacts do not function as before and there is a strong likelihood that some corrective action
will be needed. That action could include dropping the customization (for example, if equivalent
functionality has since been implemented), re-applying the customization to the artifact that replaces the
deprecated one, and so on.

The deprecation build infrastructure provided uses special tags in deprecation warnings to help
distinguish between references-to and customizations-of deprecated artifacts. This will be described in
more detail later in this chapter.

Support for Deprecated artifacts

Deprecation of an artifact is an indication of the intent to remove it in a future version. Deprecated
artifacts will be supported as long as they exist in the product. If customers have concerns about the
removal of an artifact, because they need more time to break the dependency on that artifact, for
example, they should raise this concern as soon as possible through the usual support channels.

You are advised to address any dependencies from custom code on deprecated Cúram artifacts at the
earliest opportunity. When deprecated artifacts are removed in a future release, it can cause compilation
failures and this seriously can hamper effective planning of upgrade tasks.

Effect of Deprecation on the User Interface

When client pages are deprecated, this changes the default flow of the client application to include the
replacement functionality. The default flow is also affected when client pages are deprecated and not
replaced. This has two results that do not occur when other artifacts are deprecated:

Consistency of the User Interface: If existing client pages have been customized or new pages added
that are used in conjunction with deprecated pages, then the resultant user experience may be changed
with the replacement pages. If this is the case, it will be necessary to consider updating the
customizations to be consistent with the replacement pages, or reverting the default flow to use the
deprecated pages.

If out-of-the-box client pages have been deprecated and are not being replaced, that is, they form part of
a feature that will be removed in the future, the links to those pages are removed from the user interface
and not replaced.

Documentation/Training Materials: If descriptions or screen shots, or both, of the deprecated pages
have been included in custom documentation or training materials, these may need to be updated to
describe or show the replacement pages. If links to deprecated pages have been removed from the user
interface, new screen shots may be required to reflect that fact.

Reinstating Deprecated Functionality

For features that have been deprecated without replacement, links to deprecated pages within those
features will have been removed from the user interface.

Customers wanting to reinstate these links can do so by overriding the necessary application
configuration files and re-adding the necessary links. For customers who already had the feature in an
earlier release, the use of a diff utility will help expedite this process.

Scope

Cúram Server Developer 119

Artifact types that can be deprecated
Use this information to understand the types of artifacts that can be deprecated.

The following artifact types can be deprecated:

Table 36: Artifact types that can be deprecated

Area Artifact Type

Modeled Artifacts Process Class, Struct Class, Process Method, Entity Method

Java Code Identical to Java deprecation (Class, Interface, Method, Attribute,
and so forth)

Javascript The javascript class or operation can be tagged as deprecated.

Client Artifacts UIM Page, VIM file, Page Property (.property that is associated with a
UIM or VIM file)

Application Configuration files Tab, Menu, Nav, Section and Shortcut files can be deprecated if they
relate to features that are intended to be removed in the future. The
same goes for their associated properties, or for properties that
relate to entries that have been removed from an application
configuration file.

Messages Message Catalog Entry

DMX DMX files or entries that relate to features that will be removed in the
future.

Rules Rule-sets, and their associated properties

Properties Environment Variables - for these a comment is added to the
description and the display name is updated to make it obvious that
this property relates to deprecated functionality, for example,
<Existing display name> - Deprecated.

For entries inside adapter.properties and ShortNames.properties, a
comment highlighting the fact that this property relates to a
deprecated entity is added. At the point that the entity is removed
from the application, the property will also be removed.

Events Event Handlers, .evx entries relating to features that will be removed
in the future.

Workflow Process definitions

All of these artifact types support explanatory comments attached to the deprecation tag. These artifacts
can be found easily by searching for the string "deprecated" within the artifact in question. For .java files
(and model artifacts), the @deprecated JavaDoc tag is used in the normal way. For XML files such as
User Interface Metadata UIM/VIM files and message catalog entries, the <?curam-deprecated XML
processing instruction is used. Finally, in property files, the string .deprecated is appended to the name
of a property to denote that the property is deprecated.

Entity Classes: Entities are not listed above as modeled artifacts that can be deprecated. The rationale
for this has to do with the fact that the DDL is not generated for entities which have been tagged as
deprecated in the model. This can result in unwanted impact. For example, existing unit tests that write to
those entities will fail to execute if the tables do not exist on the system. Even though the entities are not
physically tagged as deprecated in the model, they will be listed as deprecated in the external release
notes if the intention is to remove the entity in the future. Deprecation of an entity relates to the entity
itself, which includes its generated entity and key structs as well as its entity operations. It does not refer
to data associated with the entity. As with all other deprecated artifacts, customers should remove
dependencies on deprecated entities at their earliest convenience.

120 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Limitations of the deprecation infrastructure
Use this information to understand the limitations of the deprecation infrastructure.

Users need to be aware of certain limitations of the deprecation infrastructure, which are:

• No build warnings are produced for non-typed references to deprecated artifacts. For example, if the
User Interface Metadata (UIM) page Participant_viewAddress.uim was deprecated and a Java
method contained a Participant_viewAddress string literal - this string would not be picked up by
the build warnings because the reference is not typed - the compiler cannot know that the String refers
to a UIM page.

• The deprecation infrastructure is composed of a deprecation tagging capability and build/validation
warning capability (reporting dependencies on tagged artifacts). The build/validation warning capability
is intended for customer use. Therefore, the deprecation tagging capability is not intended for customer
use and is not supported. For example, the <?curam-deprecated processing instruction in custom
XML files is not supported.

Running a Deprecation Report
Cúram has developed infrastructure that extends Java's command-line compiler deprecation warnings to
certain Cúram builds. This helps pinpoint dependencies in custom applications on deprecated Cúram
artifacts. It also helps distinguish between references-to and customizations-of deprecated artifacts in
custom code.

Configuring the Deprecation Report

Deprecation reporting in Cúram is controlled by two properties:

• Ensure the prp.warningstoerrors build property, is set to false or the build may be unable to
complete (false is the default for this property, so if you do not override the property then the default is
fine).

• The curam.deprecation.reporting property in the bootstrap.properties file controls the
reporting of deprecation warnings. Warnings are not displayed if this property is set to false. The
property defaults to true so if it is not specified deprecation warnings will be displayed.

• It is recommended you remove "Sample" components (Sample, CPMSample, etc) from the
CLIENT_COMPONENT_ORDER environment variable before running the commands below. These
components may generate spurious warnings that are not relevant to identifying your exposure to
deprecated Curam artefacts.

Prerequisites for running the Deprecation Report

The deprecationreport build target calls a sequence of Cúram build targets in order to provide build
output containing a complete set of deprecation warnings. As there are dependencies between some of
the build steps, the following builds should complete successfully before running the
deprecationreport target.

• build clean server
• build clean client
• build database

Generating the Deprecation build output

Execute the build target that follows to capture the build output to a %SERVER_DIR\buildlogs\
%Deprecation<timestamp>.log file for further analysis.

• cd %SERVER_DIR%
• build deprecationreport

Cúram Server Developer 121

Identifying deprecation warnings in the build output

Since the build output has all been directed into the Deprecation<timestamp>.log file, check that file
to ensure that the overall build succeeded. Ant prints either a BUILD SUCCESSFUL marker in the last few
lines of that file if all parts of the build completed (or BUILD FAILED if any failed).

Since you already have confirmed that the server, client, and database builds completed successfully, the
only issues that are expected to cause this target to fail are validation issues. Since the validation of one
file has no bearing on the next, these targets do not stop on a failed validation. They aim to provide as
complete a picture as possible by validating all files and only reporting success or failure at the end of the
build, so the deprecation information still will be produced for all files that pass validation.

Finally, to get a summary report of all exposure to deprecated artifacts, filter the deprecation.log for
the [deprecation] tag. You can use grep or the Windows find utility for this, or your preferred text editor.

For example:

grep "\[deprecation\]" Deprecation<timestamp>.log
1> deprecation_summary.log 2>&1
or
find "[deprecation]" Deprecation<timestamp>.log
1> deprecation_summary.log 2>&1

Figure 86: Getting a Summary Report

Tip: The resulting deprecation_summary.log file will contain only the deprecation warnings produced
by the build.Since some warnings can be broken over more than one line, it also is useful to hold on to the
original deprecation.log.

Notes on running the Deprecation Report

• This build can take some time to run, as it has to do a clean build followed by server and client builds, in
order to identify all dependencies. The target also does the validations for several artifact types.

• Although the deprecationreport target generates the deprecation build log, it is not always
necessary to rerun the entire build in case it fails. If the build fails due any validation, the validation
target can be run in isolation. After fixing all the validation issues, the deprecationreport target
should be executed to ensure the deprecation build log is complete.

• The deprecationreport calls the validation target. For example, the deprecationreport will
fail if the validateallworkflows target reports an error, as the build output from other builds is not
available.

[deprecation] The client has not been built and therefore it
cannot be determined if UIM pages referenced are
deprecated.

• By default the Java compiler limits the number of compiler warnings displayed. The Cúram build
specifies this limit as 10,000, which means that the compiler will display 10,000 warnings followed by a
message that there were further warnings. This value can be overridden by passing -
Dcmp.maxwarnings to the build.

• Intelligent Evidence Gathering (IEG) scripts also can contain dependencies on server or client artifacts
or both that have become deprecated. However, this scenario is not covered by validation targets at
this time. If you have IEG scripts, you will need to inspect manually the User Interface Metadata (UIM)
page and server interface references to identify any dependencies on deprecation pages or interfaces.

Note: Since some warnings can be broken over more than one line, it also is useful to hold on to the
original deprecation.log.

122 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Analyzing Deprecation Warnings
Once you have produced a summary deprecation build log, you need to identify the deprecation warnings
contained in it. This section describes how to identify and categorize the deprecation warnings.

Identifying overrides of deprecated artifacts

As described in “Customizations and References” on page 118, there are significant differences between
the effects of deprecation on references and on customizations. Identifying overrides of deprecated
artifacts relatively is simple. The deprecation summary report you produced in “Running a Deprecation
Report” on page 121 pinpoints all dependencies on deprecated artifacts using the standard Java
[deprecation] tag in the build log. Cúram code generators and command-line validations also check for
dependencies on deprecated artifacts and produce the same build warning as Java (using the same
[deprecation] tag).

In addition to this, Cúram code generators augment the [deprecation] tag with an additional
[customization] tag where your custom artifact is overriding a Cúram artifact, rather than referencing it.

Any lines in your deprecation summary report tagged with [deprecation] [customization] indicate places
where you are overriding an artifact that Cúram has since deprecated (that is, removed from the default
flow of the base application). Since Cúram has removed this artifact from the default flow of the out-of-
the-box application, it reasonably is likely that it also has been removed from the flow of your custom
application. Where this happens, it will be necessary to address the override.

The example that follows shows a custom VIM file that is overriding an out-of-the-box Cúram VIM file.
The Cúram VIM file has become deprecated, so the client build is producing this warning. The warning
follows the Java deprecation message format: the first part is the path of the file that references the
deprecated artifact, followed by the [deprecation] tag and, in this case, a [customization] tag also. This is
followed by the name of the artifact that has been deprecated. Finally (and this differs from the Java
format) where possible, any comments attached to the deprecated artifact are also printed. This saves
you having to locate the file and look up the associated comments.

[processUim]
C:/webclient/components/custom/Case_listView.vim warning:
[deprecation] [customization]
C:/webclient/components/core/Case_listView.vim has been
deprecated. [deprecation comment] Since Cúram 6.0,
replaced with Case_listAnotherView.vim. See release note:
CR12345

Figure 87: Example: override of a deprecated artifact

In the preceding example, the VIM file no longer is used in the default flow of the out-of-the-box Cúram
application. If your application relies on the out-of-the-box flow, your customization of this file no longer
will appear in that flow.

Addressing overrides of deprecated artifacts

There is no single approach to addressing overrides of deprecated artifacts. You must analyze the
modifications you made to the original (now-deprecated) artifact and determine a suitable course of
action for your customization. Some options are to drop the customization (for example, if Cúram has
since implemented equivalent functionality), to re-apply the customization to the artifact that replaces
the deprecated one, and so on. There are sources of information that can help when deciding the
appropriate course for your customization.

For more information, see, “Other Sources of Information” on page 118

Identifying references to deprecated artifacts

References (for example, calls to) to deprecated artifacts also can be easily identified in your deprecation
log - they are lines tagged with a [deprecation] marker, but no [customization] marker.

Cúram Server Developer 123

[processUim] C:\Curam\webclient\components\custom\
Custom Benefit\Deduction\listThirdPartyDeduction.uim
warning: [deprecation] UIM ProductDelivery_cancelDeduction
has been deprecated. [deprecation comment]
Since Cúram 6.0, replaced with ProductDelivery_cancelDeduction1

Figure 88: Example: reference to a deprecated artifact

In the previous example, the UIM page is no longer used in the default flow of the out-of-the-box Cúram
application and is deprecated.

Notes on analyzing deprecation warnings

• You should not see any deprecation warnings from out-of-the-box Curam files. However, there are
instances where a deprecation issue in your custom file can appear, as if it came from an out-of-the-box
Curam file. If you overrode a.VIM client file that is being used by an out-of-the-box.UIM page, any
warnings from your VIM file will appear as if they came from the out-of-the-box UIM page. This is
because the client build imports.VIM content into UIM pages before validating it. If you see deprecation
warnings from out-of-the-box UIM pages, please be aware that they may be referring to issues in a
custom VIM file.

• If you have included sample components in your build (such as Sample, CPMSample, etc), you may also
see deprecation warnings from these components. Curam does not recommend including sample
components in your builds.

• You will find [deprecation comment] marker, if the tag @depreceted in documentation field has a
comment. This save you having to look up the file and then look up the file it's referencing and then get
the comment.

• Please be aware that any deprecation warnings marked [bopigen] in the build log are duplicates of
warnings produced earlier in the log and marked as [servercodegenerator]. You can safely ignore
deprecation warnings marked as [bopigen].

• Warnings coming from generated java classes (those in build/svr/gen) are by-products of the
[customization] warnings produced by the generator and can generally be ignored. Resolving the
"[deprecation] [customization]" issues should also resolve these generated file warnings.

Note: It is easier to work with java deprecation warnings in Eclipse, than it is to use the command-line
deprecation build logs.

User Preferences
To specify settings that can be customized for a particular user, configure user preferences. A set of
DefaultPreferences is assigned to each user of the Cúram application.

A user preferences editor is available in the web client. This editor allows each user to update values for
the preferences. Examples of user preference usage include setting the time zone, or providing a flag to
turn a custom option on or off.

A set of user preferences are defined out-of-the-box in Cúram:

Table 37: Out-of-the-box user preferences

Name Description Default Value

Time Zone The user's time zone. Europe/Dublin

User Preferences Definition

Data definition XML file

It is possible to create new user preferences, or override existing user preferences, by creating a custom
DefaultPreferences.xml file.

124 IBM Cúram Social Program Management: Cúram Server Developer's Guide

A custom DefaultPreferences.xml file should be placed in the EJBServer\components
\<component_name>\userpreferences directory, where <component_name> is the name of a
component within the component directory.

The following sample DefaultPreferences.xml file illustrates how a user preference is defined:

<Preferences>
 <PreferenceSet id="default"
 description="The default preferences">
 <Preference name="sample.pref" category="DefaultPreferences">
 <type>SVR_BOOLEAN</type>
 <value>false</value>
 <readonly>false</readonly>
 <visible>true</visible>
 <externalVisible>false</externalVisible>
 </Preference>
 </PreferenceSet>
</Preferences>

Figure 89: Example of user preference definition

In the user preferences definition example above the preference "sample.pref" is defined in an XML
document with a root Preferences node.

The Preferences document may contain only one <PreferenceSet> element, with the id attribute
set to "default". The <PreferenceSet> contains any number of <Preference> elements, each defining
a new preference or overriding an existing one.

The name attribute of <Preference> defines the internal name of the user preference. This attribute
forms a unique name for the preference stored in the database. In the example above the name is
"sample.pref".

A <Preference> element contains a number of child elements, listed in the table below.

Table 38: User Preference options

Element Description Mandatory Default
Value

type Indicates the preference type, which should be a
valid Domain Definition type.

yes N/A

value The initial default value of the user preference. yes N/A

readonly A boolean value (true or false) that indicates
whether the preference should be editable in the
user preference editor in the web client.

no false

visible A boolean value (true or false) that indicates
whether the preference should be displayed in the
user preference editor in the web client for an
internal user, i.e. a user on the Users table.

no true

externalVisible A boolean value (true or false) that indicates
whether the preference should be displayed in the
user preference editor in the web client for an
external user.

no false

If multiple DefaultPreferences.xml files exist (in different components), the contents of these files
are merged together during a server build. The files are merged according to the
SERVER_COMPONENT_ORDER. Duplicated preferences in a component with higher precedence in the
SERVER_COMPONENT_ORDER will take priority over those duplicates in components with lower
precedence.

Cúram Server Developer 125

The results of the merged user preferences are added to the database by the database build target for
usage at runtime.

Note: Only the default value of the out of the box user preferences in Cúram should be overridden.

Although the ability to override all elements of a user preference exists it is strongly recommended that
only the actual value, as defined by the <value> some_value </value> element, should be updated.

Properties files

When defining a user preference in the DefaultPreferences.xml file a corresponding entry should
also be made in an accompanying DefaultPreferences_<locale>.properties file. where,
<locale> represents the intended locale of the properties. This file specifies the display name that will
be displayed when accessing the user preferences in the web client user preferences editor. The ability to
localize the display name for each of the user preferences is possible by creating a
DefaultPreferences_<locale>.properties file for each supported user locale. See “Localizing display
names” on page 127 for more details on localizing user preferences display names.

A DefaultPreferences_<locale>.properties file should be created if it does not already exist.
The DefaultPreferences_<locale>.properties should be placed in the EJBServer
\components\<component_name>\userpreferences directory with the corresponding
DefaultPreferences.xml.An entry for the user preference defined in the previous example would be:

sample.pref=Sample Preference Display Name:

DefaultPreferences_<locale>.properties files in multiple components will be merged using the
same SERVER_COMPONENT_ORDER merge rules that apply to DefaultPreferences.xml files.

Development support
User Preferences can be accessed at development time by using the getValue() and setValue()
methods in the curam.util.userpreference.impl.UserPreference class.

A user preference must have been created previously prior to starting the setValue() method. For more
details on creating user preferences, see “User Preferences Definition” on page 124 .

External users
To make user preferences available to an external user, you need to make both client and server changes.
These changes are described as follows.

For the client, you need to set the USER_PREFS_PAGE attribute to true within a <link> element. For
more information about setting this element, refer to the Cúram web client reference.

The ExternalAccessSecurity interface is used to retrieve information for an external user. This class
contains two new methods, getUserPreferenceSetID() that reads user preferences for an external
user and modifyUserPreferenceSetID() that updates user preferences for an external user. These
methods must be implemented to retrieve user preferences for an external user. For more information on
the ExternalAccessSecurity interface, see the Customizing External User Applications chapter in the
Cúram Security Handbook.

After the client and server changes are implemented, you must ensure that the relevant user preferences
are visible to the external user. The <externalVisible> element within the DefaultPreferences.xml
allows you to manage the visibility of each user preference to an external user. This element is described
in “User Preferences Definition” on page 124.

If you want to make user preferences available for external users and <externalVisible> is set to false or is
not defined for all user preferences, then user preferences are not displayed for an external user. If you do
not want to display any user preferences for external users, it is suggested that the User Preferences link
not be available within the external user application.

126 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Localizing display names
Localized display names can be added by creating new
DefaultPreferences_<locale>.properties files for each DefaultPreferences.xml file
created under directory EJBServer\components\<component_name>\userpreferences. The
<locale> component represents the intended locale of the properties file and <component_name> is the
name of a component within the component directory.

For example, to support the en_US locale, create the following default preference properties file

 DefaultPreferences_en_US.properties

As there can exist multiple DefaultPreferences_<locale>.properties files in different
components, the contents of these default preference properties are merged to a
MergedDefaultPreferences_<locale>.properties file according to the
SERVER_COMPONENT_ORDER9. This merging happens when running either the
mergeuserpreferenceproperties, or server targets.

Before merging the .properties files, the following validations cause an error during a build where:

• The specified <locale> is not present in the SERVER_LOCALE_LIST10.
• More than one display name is specified for the same locale.

For example, two display names are specified for locale en_US.

DefaultPreferences_en_US.properties:
 Timezone=TimeZone:
 Timezone=TimeZone US:

• The <locale> in the property file name includes a country part with more than 2 characters.

For example:

DefaultPreferences_en_USA.properties

• The <locale> in the property file name includes a language part with more than 2 characters.

For example:

DefaultPreferences_eng_US.properties

• The .properties file is empty.
• The .properties file contains invalid properties.

For example:

DefaultPreferences_en_US.properties:
 Timezone

The infrastructure attempts to display the correct localized name by matching the country part and
language part of the user's locale. If the country component of the user's locale does not exist, the
infrastructure attempts to match the language part only. If this data does not exist, it falls back to a
default language. The localization of display names is illustrated in the example that follows.

9 See “Customizing a Message File” on page 87, for further explanation of SERVER_COMPONENT_ORDER.
10 See “The Format of Message Files” on page 86, for further explanation of SERVER_LOCALE_LIST.

Cúram Server Developer 127

If the user is associated with the locale fr_CA, then the application searches the
MergedDefaultPreferences_<locale>.properties files for the display names in the following
order:

1. MergedDefaultPreferences_fr_CA.properties
2. MergedDefaultPreferences_fr.properties
3. MergedDefaultPreferences_en.properties
4. MergedDefaultPreferences.properties

The system first attempts to locate the correct display name for the fr_CA locale in a
MergedDefaultPreferences_fr_CA.properties file. If this file does not exist, or if the display
name for the user preference does not exist within this file, then the system looks for
MergedDefaultPreferences_fr.properties. If this file does not exist, then the system searches
for a MergedDefaultPreferences_en.properties file where locale is set to the default system
locale. If the display name is not present, the system falls back to the
MergedDefaultPreferences.properties file.

In the case where the display name is not found in any of the properties files (or the properties files do not
exist), the value that is defined for the name attribute for a user preference in the
DefaultPreferences.xml file is used as the display name. For more information on the name
attribute, see “User Preferences Definition” on page 124 .

Similarly, if the user is associated with the locale en_US, then the application searches for the display
names in MergedDefaultPreferences_<locale>.properties files with the following priority:

1. MergedDefaultPreferences_en_US.properties
2. MergedDefaultPreferences_en.properties
3. MergedDefaultPreferences.properties

Localizing infrastructure preferences display names
The application uses a number of Infrastructure Preferences and their display names can be localized in a
manner similar to User Preference's display names. Localized display names can be added by creating
new InfrastructurePreferences_<locale>.properties files under the directory EJBServer
\components\<component_name>\userpreferences. Where <locale> represents the intended
locale of the properties file and <component_name> is the name of a component within the component
directory.

A sample file, containing all the properties available for localization, can be found in SDEJ\lib
\InfrastructurePreferences.properties.

Transaction control
Use this information to understand how the Cúram Server Development Environment (SDEJ) abstracts
transaction management from the developer.

This section provides a brief overview for the developer and then details what is happening "under the
hood". This task is difficult task because of multiple database support, which provides different ways of
supporting the ACID nature of a transaction. A transaction might be Atomic. Its result seen to be11 be
Consistent12, Isolated13, and Durable14.

11 Atomicity requires that all of the operations of a transaction are carried out successfully for the transaction
to be considered complete. If all of a transaction's operations cannot be completed, then none of them can
be carried out.

12 Consistency refers to data consistency. A transaction must move the data from one consistent state to
another. The transaction must preserve the data's semantic and physical integrity.

13 Isolation requires that each transaction seem to be the only transaction currently manipulating the data.
Other transactions might run concurrently. However, a transaction should not see the intermediate data
manipulations of other transactions until and unless they successfully complete and commit their work.

128 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Developer's View

Transactions and method invocations
Use this information to understand how Cúram maps Facade method invocations to transactions.

Typically in Cúram a Facade method invocation maps to a single transaction. The exception to this action
is where the method starts a deferred process or workflow. See the Cúram Workflow Management System
Developers Guide for more details. The single transaction starts at the beginning of the Facade method
invocation and finishes at the end.

The transaction demarcation in Cúram is bean-managed rather than container-managed and as such the
developer must use the APIs in the infrastructure to checkpoint transactions.

One exception to this general rule is the Key Server. When a Unique ID block is obtained from the Key
Server a separate transaction is started to govern this database access. This check ensures that long
running transactions do not place locks on the Key Server tables as this condition would provide an
unacceptable bottleneck.

Optimistic locking and the forUpdate flag

When a developer creates operations on an entity they first must determine whether that entity supports
optimistic locking. Optimistic locking is described in the Cúram Modeling Reference Guide and provides a
suitable method of ensuring that transactions are ACID. However, situations occur when the use of
optimistic locking can impact unnecessarily on the performance of a transaction. If a record is read and
then modified later in the transaction, it is unlikely (though not impossible) that the record changed
underneath the developer. Rather than using the version number, it often is more suitable to lock the
record when it is read. This precaution means that it is impossible for another transaction to change the
record, so the modified record does not need to be guarded with a version number. However, it also
means that the possibility increases for locks and deadlocks.

This form of locking is supported in Cúram by way of an extra parameter that can be passed to any of the
standard read operations. This parameter (forUpdate), when set to true, results in an update lock to be
taken on the records that are being accessed as part of this query. These locks are not released until the
end of a transaction.

General guidelines

The golden rule that is related to locking and performance in database transactions is that any records
that you lock need to remain locked for the minimum possible time to reduce database contention that is
caused by other users who are seeking the same records. This rule means that operations that take out
locks might be called as late as possible in your transactions. For example, if you read several records to
validate a transaction, followed by updates to several more records, always validation the transactions
first followed by the updates. Try to defer update operations (or reads with locks) until as late as possible.
Do not scan a million-record table after you take out a record lock that ought to be short-lived.

Underlying design
The information in this explanation describes the underlying design of transaction management.

Transaction management happens on the server, rather than the client side. Client-initiated transactions
would involve complicated and largely unnecessary communication processor load. However, this
condition imposes a requirement on the application to ensure that the database data remains consistent
across a series of client/server calls. In practice, this condition usually involves deferring the database
updates done by a business function until the last client/server interaction in a series.

Because of interdependencies among updates, a transaction might get an inconsistent view of the database
were it to see just a subset of another transaction's updates. Isolation protects a transaction from this sort
of data inconsistency.

14 Durability means that updates that are made by committed transactions persist in the database regardless
of failures that occur after the commit operation and it also ensures that databases can be recovered after a
system or media failure.

Cúram Server Developer 129

Transactions typically must encompass interactions with more than one resource manager even if older
systems are not used. The server database is one resource manager and the queues that are used for
deferred processing and workflow are another. To ensure atomicity of a transaction that is distributed
across multiple resource managers, a two-phase-commit protocol is required to coordinate the
distributed transaction.

DB2

At the beginning of a transaction, Cúram obtains a single connection to the database. This connection
runs at a specific isolation level:

• Repeatable Read - This connection ensures that dirty data is not read and that a second read returns
the same data as a first.

Specific categories of statements that run at a lower isolation level:

• Cursor Stability - Cursor stability is the DB2 implementation of the SQL standard Read Committed
isolation level. This statement ensures that a transaction cannot read a row with uncommitted changes
in it. It does not ensure that a second read returns the same data as a first.

This connection is not a separate connection to the database, rather the DB2 keyword WITH CS is
appended automatically to the SELECT statement.

All queries that do not have the forUpdate flag set run at the Cursor Stability isolation level. All modifies
and queries with the forUpdate flag set run at the Repeatable Read isolation level. This check means
that they place a lock on the row or rows that were read so that they cannot be updated by anyone else. In
the case of modify operations be read by anyone else. This lock is not released until the transaction
commits.

Oracle

Oracle does not really support the Java Data Base Connectivity (JDBC) Isolation levels (mainly because its
underlying support does not truly map to these levels). For this reason, Oracle 's default isolation level is
used for all statements. In Oracle, a dirty read occurring is not possible.

Use of the transaction SQL query cache
Use this information to understand the transaction SQL query cache in the Cúram Server Development
Environment (SDEJ).

Benchmarking shows that the same database query often is run numerous times during a single
transaction in the Cúram application. This behavior is costly in performance terms. The transaction SQL
query cache in the SDEJ counteracts this .

The transaction SQL query cache, when enabled, operates at the data access layer and endures for the
lifetime of any one transaction. The cache stores the results of any SELECT SQL queries during the
transaction in which the operation was started. Subsequent calls in the same transaction retrieve the
required results from the SQL query cache and does not read the results from the database.

How results get stored in the query cache
Use this information to understand how SQL query results get stored in the query cache.

The SQL query cache stores the results in memory of any SQL query that runs a SELECT statement on a
database table. Invocation of the following entity operation stereotypes results in the responses to that
query that is stored in the cache:

• read
• nsread
• nkread
• readmulti
• nsreadmulti

130 IBM Cúram Social Program Management: Cúram Server Developer's Guide

• nkreadmulti
• nsmulti
• ns with handcrafted SQL containing a SELECT statement

Two exceptions to this rule are:

• SQL queries that have the FOR UPDATE flag set to true do not have their results cached. These queries
always result in direct database access. This action is because this data is being read for modification
and the subsequent update operation results in that cache entry to be invalidated.

• The results of specialized readmulti operations, where the operation is not an instance of
StandardReadMultiOperation class, are not cached. This action is because a customized
ReadMultiOperation can modify the result set for an SQL query that is run. Since these results are
not yet present in the cache, the cache cannot be invalidated which results in invalid data in the cache
(that is, the data that is cached for the SQL query does not reflect the data for that SQL query on the
database).

How the cache gets invalidated
Use this information to understand when an SQL query cache that is associated with a transaction is
invalidated

The SQL query cache is associated with a transaction and is not global. When any specified transaction is
committed or rolled back, the SQL query cache that is associated with that transaction is invalidated.

Any time an update (that is, an insert, modify, or remove operation) is made to a table associated with
a transaction SQL query cache entry, that entry is invalidated from the cache. For most update operations
(that is, modify, nsmodify, remove, and similar commands), the invalidation of cache entries is partially
intelligent. The table that is affected by the update is determined from the SQL statement that is run and
used to directly invalidate only the cache entries that are related to the table. However, for ns operations
that are run and contain anything other than a SELECT SQL statement, the complete SQL query cache that
is associated with that transaction is invalidated.

Therefore, the following entity operations cause the cache entries that contain the table that is affected
by that operation to be invalidated:

• insert
• nsinsert
• modify
• nsmodify
• nkmodify
• remove
• nsremove
• nkremove
• ns operation with handcrafted SQL that does not contain a SELECT statement
• batchinsert
• batchmodify

As detailed previously, the transaction SQL query cache endures for the lifetime of a transaction only.
Database updates result in the invalidation of associated entries in the local transaction cache only. As a
result, any subsequent reads within a different transaction returns data from the cache and not as
updated on the database.

Cúram Server Developer 131

How to set the property for the transaction SQL cache
Use this information to understand how to set the property for the transaction SQL cache.

The transaction SQL cache is enabled by default, meaning that the results of SQL queries are cached. To
disable it, the curam.transaction.sqlquerycache.disabled property must be set to true in the
Application.prx file.

Storing the results of SQL queries that return large result sets can lead to memory problems in
transactions that endure for a long period. The most likely queries that might lead to such problems are
those queries that return data of type Character Long Object (CLOB) and Binary Large Object Block
(BLOB). To cater for SQL queries that return large result sets, a property is available to control the size of
fields of type CLOB or BLOB that might be stored in the transaction SQL query cache. This property is
called curam.sqlquerycache.lob.max.size and its default size is set to 500KB.

Further details that concern these properties can be found in “Cúram Configuration Parameters” on page
154.

SQLQueryCacheAdmin API
A public API is available for the transaction SQL query cache. The class,
curam.util.transaction.SQLQueryCacheAdmin, provides functions that allow developers to
manipulate the transaction SQL query cache at runtime. These methods include the following:

• enableSQLQueryCache(): this function enables the SQL query cache for the current transaction.
• disableSQLQueryCache(): this function disables the SQL query cache for the current transaction.
• clearSQLQueryCacheForTable(String tableName): this function flushes all entries from the transaction

SQL cache that contain the specified table name for the current transaction.
• clearSQLQueryCache(): this function flushes all of the entries from the transaction SQL cache for the

current transaction.

SQLQueryCacheUtil API
A public API is available which contains utility methods for the transaction SQL query cache. The class,
curam.util.transaction.SQLQueryCacheUtil, provides utility methods for the transaction SQL
query cache. These methods include the following:

• isSQLQueryCacheEnabled(): This function returns a flag to indicate if the transaction SQL query cache
has been enabled or not.

• runWithSQLQueryCacheDisabled(Runnable run): This function runs the runnable bypassing the SQL
query cache. SQLQueryCache may be needed to be disabled when there is a need to read the same row
multiple times in a transaction to see if it has changed. For example, in the batch infrastructure it is
required to read the same row multiple times in a transaction to see if it has changed.

Logging
Use this information to understand how lifecycle events that concern the transaction SQL query cache are
logged under certain tracing levels for the Cúram application.

When the tracing level for the Cúram application is set to
curam.util.resources.Trace.kTraceUltraVerbose (see “Logging level” on page 68 for more
details on logging), various lifecycle events that concern the transaction SQL query cache are logged.
These entries might be diagnosed in the logs by the following starting statement: Transaction SQL
Query Cache:. The following events are logged during the lifecycle of the SQL query cache:

• When an entry is added to the transaction SQL query cache.
• When an entry is invalidated from the transaction SQL query cache.
• When the complete SQL query cache is invalidated as a result of a transaction that is either committed

or rolled back.

132 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Deferred processing
Use this information to learn how to implement deferred processing for appointed Business Process
Objects (BPOs) in your Cúram application.

Before reading the following chapter, you need to be familiar with the Cúram Modeling Reference Guide
and the Server Development Environment (SDEJ).

In Cúram, describing a business process method as a "deferred process" means that this method is
started asynchronously. A BPO within your Cúram application that calls a method of another BPO,
configured for deferred processing, does not wait for it to return. Deferred processing is accomplished, in
part, by configuring queues in the middleware. Any request over the queued enactment interface is
deferred.

Model your deferred processes
A deferred process is identified in your application model by selecting the <<wmdpactivity>>
stereotype on a method of a <<process>> class. Each deferred processing method must be defined to
take the following input parameters:

Note: The application does not start a deferred process method by using these parameters. These
parameters are passed to the method by the deferred processing server after the process is enacted.

• The ticket ID of the DPTicket record generated by the deferred processing engine (long datatype).
• The instance data ID (type of long) of the WMInstanceData record associated with the deferred

process method at the time of enactment. This parameter gives the deferred process method access to
any information it requires to initiate the required processing (long datatype).

• A boolean flag. This parameter is internal to the deferred processing infrastructure. It needs to be
ignored, but must be part of the signature of the method (boolean datatype).

public void sampleDeferredMethod(long ticketID,
 long instDataID,
 boolean flag)
{
 // Method logic goes here
}

Figure 90: wmdpactivity stereotype method

The previous example shows the code that is generated for a method that is stereotyped as
<<wmdpactivity>>. The required parameters must be specified in the model by the developer. You are
not concerned with how these parameters are provided to the deferred process (that is taken care
internally by the deferred processing engine after the enactment request). Still, you must code the logic of
your deferred process into this method.

Note: Your deferred process should not attempt to initiate any begin, commits, or rollbacks by using the
TransactionInfo class or attempt any other forms of Java EE Transactional Control. This restriction
also applies to any methods that are started by workflows or deferred processes, regardless of how deep
in the call stack. In addition to deferred processes, examples of the methods include implementations of
workflow or deferred processing interfaces (such as NotificationDelivery, WorkResolver,
curam.util.deferredprocessing.impl.DPCallback, and similar) and any methods called by
either of the previously referenced commands.

Deferred process enactment
Deferred processes are enacted by way of the Deferred Processing Enactment Service.

Consider the situation where a Business Process Object (BPO) within your Cúram application needs to call
a deferred process in order for it to do some other processing. The call must be made as shown in

Cúram Server Developer 133

“Deferred process enactment” on page 133. Within the calling BPO, populate a WMInstanceData record
(see “WMInstanceData” on page 135 for how to define this entity) with the information that you want to
be accessible to the deferred process.

The class DeferredProcessing is available to you from the IBM Cúram Server Development
Environment (SDEJ).

import curam.util.AppException;
import curam.core.fact.WMInstanceDataFactory;
import curam.core.intf.WMInstanceData;
import curam.core.struct.UsersDtls;
import curam.core.struct.WMInstanceDataDtls;
import curam.util.fact.DeferredProcessingFactory;
import curam.util.intf.DeferredProcessing;
import curam.util.resources.GeneralConstants;
import curam.util.resources.KeySet;
import curam.util.type.UniqueID;

public class MyBPO extends curam.core.base.MyBPO {

 public void doOnlineOperation(int caseID,
 UsersDtls usersDtls)
 throws AppException {

 DeferredProcessing deferredProcessingObj
 = DeferredProcessingFactory.newInstance();
 WMInstanceData wmInstanceDataObj=
 WMInstanceDataFactory.newInstance();

 WMInstanceDataDtls wmInstanceDataDtls
 = new WMInstanceDataDtls();

 // Create a new instance data record
 wmInstanceDataDtls.wmInstDataID
 = UniqueID.nextUniqueID(KeySet.kKeySetDefault);
 wmInstanceDataDtls.caseID = caseID;
 wmInstanceDataDtls.enteredByID = usersDtls.userName;
 wmInstanceDataDtls.enteredByName = usersDtls.firstName
 + GeneralConstants.kSpace
 + usersDtls.surname;
 wmInstanceDataObj.insert(wmInstanceDataDtls);
 deferredProcessingObj.startProcess(
 "DO_DEFERRED_OPERATION",
 wmInstanceDataDtls.wmInstDataID);
}

Figure 91: Using DeferredProcessing startProcess

“Deferred process enactment” on page 133 shows a Cúram application BPO that calls a deferred process
method. The key points to note are that the WMInstanceData record is set up as part of the calling BPO
implementation. The DeferredProcessing.startProcess() command then is used to request the
enactment of the deferred process method. The parameters of this method are as follows:

1. The name of the deferred process method that is being requested. This string value is configured by
you in the DPProcess table. The exact configuration of the DPProcess table for deferred processing
is dealt with in “Configuration of Deferred Processing Table” on page 135.

2. The instance data ID of the WMInstanceData record that is populated with information that you deem
necessary to be used by the deferred process.

3. If an error occurs, the error handler that implements the
curam.util.deferredprocessing.impl.DPCallback interface must be started. If the
parameter is not provided, the global error handler that is configured through the
curam.custom.deferredprocessing.dpcallback property is started.

134 IBM Cúram Social Program Management: Cúram Server Developer's Guide

WMInstanceData

WMInstanceData allows the definition of application data that is particular to each deferred process, so
that values can be supplied for that data for each instance of the deferred process.

Consider the situation where you want to develop a deferred method for processing a Case. The deferred
processing engine has no knowledge of any cases (or even what a case is), so it cannot supply the ID of
the case to your deferred method. It does, however, know about WMInstanceData and supplies the ID of
a WMInstanceData record to every deferred method it invokes. This record should be created and
populated by you before enacting the deferred process and the ID of the populated record should then be
supplied to the enactment API. When the deferred processing engine invokes your deferred method, it
will pass in that ID as a parameter.

“WMInstanceData” on page 135 shows the WMInstanceData entity class and its properties. As you can
see, apart from the unique identifier attribute of this class, all other information must be defined by you.
This is done using the modeling environment. The WMInstanceData entity should be created in your
model, in a package of your choice. WMInstanceData facilitates in the definition of your application
specific information.

Table 39: WMInstanceData Properties

Property Description Type Requirement

wmInstDataID The unique identifier of the
instance data.

WM_INST_DATA_ID M

myInstanceData1 Property to be included as
instance data

Your application domain
definition for the property.

O

myInstanceData2

etc.

Property to be included as
instance data

Your application domain
definition for the property.

O

Offline Unit-Testing of Deferred Processes
If the application is deployed in an Application Server, the deferred methods will be invoked
asynchronously. However, if the Application is not executing in an Application Server container (for
example, for off-line unit-testing), you may wish to invoke the deferred method synchronously (i.e. not
deferred). This can be done by setting the property curam.test.stubdeferredprocessing to true.

Note: The invocation of the deferred method is dependent on a successful commit of the the caller's
transaction context. If the calling method's transaction rolls back, the deferred process will not be
invoked.

Setting curam.test.stubdeferredprocessinsametransaction property to true ensures that the deferred
processes gets invoked in the same transaction. If this property is not set, the deferred processes will still
be invoked, but in a different transaction.

Configuration of Deferred Processing Table
When using deferred processing functionality in your Cúram application, you need to configure the
DPProcess table prior to runtime in order for it to work correctly.

The DPProcess table, provided as part of the SDEJ, must contain names for the methods within your
application that have been modeled and defined as being deferred using the <<wmdpactivity>>
stereotype. For each deferred method, you must define a name that describes it, for the processName
field. This string value is what must be used when requesting for a deferred process method to be
enacted. The primary key of this table is a processName field.

“Configuration of Deferred Processing Table” on page 135 details the properties of the DPProcess table.

Cúram Server Developer 135

Table 40: DPProcess Properties

Property Description Type Requirement

processName Name that describes your deferred
processing method.

String M

interfaceName Fully-qualified interface name of a
BPO with a <<wmdpactivity>>
method corresponding to the
deferred process.

String M

methodName The name of the
<<wmdpactivity>> method
corresponding to the deferred
process.

String M

ticketType Code table value describing the type
of deferred process. The meaning of
this is Application-defined, for
example, see the Cúram
TicketType code table.

String O

subject Short description of what the
deferred process method does.

String O

“Configuration of Deferred Processing Table” on page 135 shows an example of how a DPProcess table
might be populated.

Table 41: Example DPProcess Table

processName interfaceName methodName ticketType Subject

DO_DEFERRED_
OPERATION

server.curam.
bizinterface.
SomeProcess

doSomething CLAIM This method
does something.

DO_ANOTHER_
DEFERRED
_OPERATION

server.curam.
bizinterface
.SomeOther
Process

doSomethingElse CASEREVIEW This method
does something
else.

Error Handling
The Deferred Processing Engine provides an error handling callback mechanism for when deferred
processes fail (i.e. the deferred method you defined throws an exception). The
curam.util.deferredprocessing.impl.DPCallback interface is provided with the infrastructure.
It has a single method definition: dpHandleError.

Note: The curam.util.deferredprocessing.impl.DPCallback interface should not be confused
with the curam.core.impl.DPCallback interface.

dpHandleError() gives application developers control over error handling when the invocation of a
deferred process fails. This callback is invoked once the deferred processing message has been moved to
the DPError queue (usually after the failing process has been retried several times).

There are two ways an error handler can be configured. Firstly, a single (global) error handler callback can
be defined for deferred processing by setting the curam.custom.deferredprocessing.dpcallback

136 IBM Cúram Social Program Management: Cúram Server Developer's Guide

property to the fully- qualified name of a class that implements the
curam.util.deferredprocessing.impl.DPCallback interface. The dpHandleError() method
on that class will then be invoked when any deferred method fails. Alternately, you can supply the fully-
qualified name of any class that implements the
curam.util.deferredprocessing.impl.DPCallback interface when enacting a deferred process.
This allows you to specify a specific error handler for a single deferred process, or even a subset of the
instances a deferred process.

The following figure shows an implementation example:

void dpHandleError(String processName, long instDataID)
 throws AppException {
 // Method logic goes here
}

Figure 92: DPCallback.dpHandleError implementation example

This callback operation could be used to:

• Notify the client that a deferred process failed.
• Take some remedial action.

Security
Deferred processes run under the user name SYSTEM, so the effective locale for deferred processes is the
default locale for this user as specified in defaultLocale field on the Users table.

In the case of offline unit-testing of deferred processes, the user name is blank and the effective locale is
the default locale for the Cúram server.

Deferred Processing summary
• The incorporation of Deferred Processing into your application is achieved largely by:

– Modeling appointed Business Process Object (BPO) methods with <<wmdpactivity>> stereotype.
– Configuring the DPProcess table in your database.
– Using the DeferredProcessing to request deferred process methods.

• The appropriate deferred processing queues must be set up before run time by following the steps
given in the Cúram Installation Guide15.

• Application-specific error handling can be achieved by using the DPCallback.dpHandleError()
method. An error handler then can be targeted in the code by passing the error handler class name
when you start the DeferredProcessing.startProcess() method.

Cúram Timer
You can use the Cúram timer bean to start timers that start client-visible methods at a specified point in
the future.

For deployed applications, Cúram timers use the Java Platform, Enterprise Edition timer service that is
provided by the EJB container. For applications that are within the development environment, Cúram
timers use the java.util.Timer JDK class. The java.util.Timer class is for development and
testing only. For more information about the java.util.Timer class, see the JDK documentation.

Java Platform, Enterprise Edition Bean Definition
The EJB container provides the timer service, which is the infrastructure for the registration and callbacks
of timers and, hence, provides the methods for creating and canceling them. You can use the timer service
of the enterprise bean container to schedule timed notifications for all types of enterprise beans except

15 Refer to the installation guide for your particular operating system; that is, Windows or UNIX.

Cúram Server Developer 137

for stateful session beans. You can schedule a timed notification to occur at a specific time, after duration
of time, or at timed intervals. For example, you might set timers to go off at 10:30 AM on May 23, in 30
days, or every 12 hours.

The EJB container provides different types of timers. The timer can be a single-event timer, which can
occur at a specific time or after a specific elapsed duration, or an interval timer, which can occur on a
regular schedule. Essentially, three types of timers are possible, as outlined in the following table:

Table 42: Types of timers

Type of Timer Description

Single-event timer Create a single-action timer that expires after a specified
duration.

Single event with expiration date Create a single-action timer that expires at a given point in time.

Interval timer with initial expiration
Duration

Create an interval timer whose first expiration occurs after a
specified duration, and whose subsequent expirations occur
after a specified interval.

Interval timer with initial expiration
Date

Create an interval timer whose first expiration occurs at a given
point in time and whose subsequent expirations occur after a
specified interval.

Development Support
The Cúram infrastructure provides the following classes and interface to develop Timer Bean
functionality.

• curam.util.transaction.TimerInfo
• curam.util.timer.TimerTask
• curam.util.timer.TimerCallback

TimerInfo Class

The class curam.util.transaction.TimerInfo contains methods for starting and stopping timers.
This class also contains a number of internal methods and methods reserved for future use. The following
table describes the API's that are currently supported by the infrastructure:

Table 43: List of API's in TimerInfo Class

Method Name Description

startTask(long, TimerTask) Create a single-action timer that expires after a specified
duration.

startTask(long, long,
TimerTask)

Create an interval timer whose first expiration occurs after a
specified duration, and whose subsequent expirations occur
after a specified interval.

startTask(DateTime,
TimerTask)

Create a single-action timer that expires at a given point in time.

startTask(DateTime, long,
TimerTask)

Create an interval timer whose first expiration occurs at a given
point in time and whose subsequent expirations occur after a
specified interval.

cancel() Cancels the timer which invoked the current method. Should
only be called by methods which were invoked by a timer, calling
this method from a non-timed method will have no effect.

getID() Gets the identifier for the timer which is running the current
thread.

138 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 43: List of API's in TimerInfo Class (continued)

Method Name Description

isTimerTransaction() Indicates whether the current transaction is being run by a timer.

TimerTask Class

The class curam.util.timer.TimerTask contains information about the timed operation, such as
which server operation to invoke, parameters to pass into it, whether a callback is required, etc. The
following table describes the parameters that are available in this class.

Table 44: List of parameters from TimerTask Class

Name Description

methodName Mandatory. The name of the method to invoke when timer
expires.

argument Optional. A struct parameter for the method being invoked.

timerName Optional. A name for this timer. This can be used as an identifier
to query or cancel a timer.

errorHandlerName Optional. The name of a class, which implements interface
TimerCallback which will get called if the timed method fails.

userID Read-only. The ID of the user who started off the task. This gets
automatically populated when the timer is started.

taskID Read-only. A unique identifier for each task. This is automatically
populated when the timer is requested.

creationTime Read-only. The time at which this timer was requested. This is
automatically populated when the timer is requested.

initialDelay Read-only. The initial delay time in milliseconds which was
specified when this timer was created.

initialEventTime Read-only. The absolute time of the first event for this timer, or
null if none was specified when this timer was created.

Interval Read-only. The repeat interval which was specified when this
timer was created, or zero if it is a one event timer.

TimerCallback Interface

This is an interface for which developers can provide an implementation and which will get invoked if a
timed operation fails. The interface curam.util.timer.TimerCallback has only one method
handleError(Exception, TimerTask) defined and uses can provide implementation to this
method.

Cúram Server Developer 139

Code sample:
// Create the task, specifying the name of the server
 // operation to invoke:
 final TimerTask task = new TimerTask();
 task.methodName =
 "curam.core.facade.intf.ProductDelivery.close";

 // This operation takes one struct parameter,
 // so instantiate the struct and add it to the task:
 final curam.core.facade.struct.CloseCaseDetails caseDetails
 = new curam.core.facade.struct.CloseCaseDetails();
 caseDetails.caseID = 12345;
 task.argument = caseDetails;

 // Start off the timer, specifying that it invokes the
 // method in 10 seconds time:
 final long timerID = TimerInfo.startTask(10000, task);

 // Every timer is assigned a unique ID which can be used
 // to manipulate it and also to help track the timer
 // in any diagnostic logs.
 System.out.println("Created a timer with ID " + timerID);

Rules for using SDEJ Timers
There are some considerations and limitations to Generic Timer Bean provided as part of Cúram
infrastructure and they are listed below.

1. SDEJ timers can invoke any client visible operation in the application meta-model, provided that:

a. The operation has zero or one parameter.
b. The operation has its Transactional option set to No.
c. The user has access rights to that operation.

2. SDEJ timers do not have any facility to return a value from an operation.
3. When deployed in an application server, timer creation and cancellation are transactional. For

example, if you create a timer, it only becomes active after the transaction gets committed. Similarly
if you cancel a timer, it only gets cancelled when that transaction gets committed.

4. Transactions invoked by timers execute using the same Cúram user ID as the user who created that
timer.

5. The transaction type of a timer transaction is reported by
TransactionInfo.getTransactionType() as being 'online'. (i.e. not deferred/batch/etc)

6. Timers should only be started by online transactions or other timer transactions. i.e. deferred
processes, workflows or batch programs cannot start timers.

7. When deployed in an application server, timers are persistent and remain active until they are
canceled by the user, even if the application server is stopped and restarted.

8. If the application server is stopped for a time and then restarted later, all timers which were active
before the shutdown will resume following the restart but the timer will not try to 'catch up' with any
missed ticks. Instead it will tick at the next scheduled time.

9. If a timed operation throws an exception, the transaction will be rolled back. If the developer has
specified a callback handler for the exception, the callback handler will get called if it has been
configured, but it cannot be used to prevent the transaction from being rolled back.

10. If a timed operation throws an exception, the timer does not get cancelled and will continue to tick as
before until it is cancelled from within a transaction which gets committed.

Therefore it is important for developers to ensure that timed operations cannot repeatedly throw
exceptions, as otherwise they could continue to be attempted indefinitely.

140 IBM Cúram Social Program Management: Cúram Server Developer's Guide

11. Timers should not be used to drive batch style processing. A timer driven transaction will have the
same timeout as a deferred processing transaction (30 seconds by default) and should therefore be
used only for reasonably short running pieces of processing.

12. To enable developers to use and test timer related functionality, when the application is deployed
timers in the SDEJ are provided by the J2EE javax.ejb.TimerService class. Similarly, when the
application runs in the development environment, timers in the SDEJ are provided by the JDK
java.util.Timer class for testing purposes only. However, the java.util.Timer class has the
following limitations:

• The java.util.Timer class is not transactional. For example, if you start a timer and then roll
back the transaction, the timer stays active instead of being rolled back.

• The java.util.Timer class is not persistent. For example, the java.util.Timer class does
not resume if you stop and restart the JVM.

Timer Behavior
Timer can behave differently depending on the scenario at with they are started. Some of the scenarios
and Timer behavior is as described below.

• For a repeating timer, if a timed transaction continues past the point at which the next tick is due, then
that tick is discarded and the next due tick will be used.

For example:

A timer is configured to tick every 20 seconds. So this means that the timer will normally tick at the
following times:

20, 40, 60, 80, 100, etc

Now let's say that on the second tick, the timed transaction took 25 seconds to complete. This means
that the transaction which started at the 40 second mark completed at the 65 second mark, and is
therefore deemed to have 'missed' the 60 second mark. So the next time the timer will tick will be at the
80 second mark. So the actual times the timer will have ticked are:

20, 40, 80, 100
• When a timer is specified with an initial duration, that duration is relative to the time at which the timer

was created. It is not relative to the time at which the transaction was committed - even though the
timer cannot actually begin ticking until the transaction in which it was created has been committed.

For example, the user invokes a rather long online transaction which does the following:

– Creates Timer A with an initial duration of 60 seconds.
– Does some processing which takes 20 seconds.
– Creates timer B with an initial duration of 60 seconds.
– Commits the transaction.

Next the following will happen:

– 60 seconds after it was created, Timer A will start ticking.
– 20 seconds later, Timer B will start ticking.

i.e. even though these timers were committed at the same time, each retains its own individual start
time.

FAQ
• How do I see which timers are active?

Different Java EE application servers implement their timer mechanism in different ways and there is no
standard way to administer timers via their admin consoles. The TimerInfo API provides a number of
functions to find and query active timers.

• How do I stop a timer?

Cúram Server Developer 141

A single-event timer will stop automatically after one successful execution. (i.e. if it executes a
transaction which committed successfully.) For repeating timers, the TimerInfo class contains a number
of methods for stopping these timers. Note that stopping a timer will only take effect when the
transaction which requested the stop is committed.

• Can I ensure that my operation will be invoked only by a timer?

Cúram timer beans can only invoke methods which are in the model and are client visible, therefore it is
possible for the HTML client to also access these methods, which may not be desirable.

If you want to ensure that only a timer transaction executes your method, you can use the TimerInfo
API to check for this at run time as illustrated by the following sample code extract:

// Ensure that this transaction is a timer:
 if (!TimerInfo.isTimerTransaction()) {
 // throw an exception to report that an
 // invalid attempt was made to execute
 // this operation outside of a timer.
 throw new AppException(....);
 }

• How many timers can be active at a time?

The Cúram timer bean API is a wrapper for the Java EE Timer API and it is worth noting that the Java EE
Timer API uses arrays of timers and as such is not designed for dealing with very large volumes of
timers.

As an extreme example: if an application contained several million customer records on the database, it
would be unadvisable to use timers as the mechanism for controlling when an invoice is issued to each
customer, because this would result in having several million timer objects active in memory.

In general it is recommended that timers be kept as few and as short lived as possible.
• How accurate is a timer?

The parameters used when creating a timer allow a developer to specify a granularity of milliseconds
with regard to when and how often the timer will fire. However the application server cannot guarantee
to fire the timer at exactly the expected time because there may be conditions which prevent this from
being achieved. For example the server may be down at the scheduled time, it may be delayed by other
transactions, a large number of timers may be scheduled to fire at exactly the same moment, etc. The
rule of thumb is that the application server will fire the timer event as close to the designated time as
possible, so the developer should not assume that the timer will fire at an exact time.

• Can I use timers in the development environment?

Yes. However, when you use timers inside the development environment, the timer is provided by the
JDK java.util.Timer class that has the following differences to the Java Platform, Enterprise Edition
timer:

– The java.util.Timer class is not transactional.
– The java.util.Timer class is not persistent.

• How can I debug timers?

Cúram timers can output extensive logging data if required. The fact that each timer has a unique
identifier means that its execution and life cycle can be traced through the log output.

This logging data can be captured by configuring a log4j appender for category 'Trace.TimerInfo'.
• Can a timer be configured to start automatically?

No. The life cycle of a timer is controlled by the developer. i.e. the developer is responsible for starting
each timer and for ensuring that it stops.

142 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Events and event handlers
Use this information to understand events and event handlers. Events provide a mechanism for loosely
coupled parts of the Cúram application to communicate information about state changes in the system.
When one module in the application raises an event, one or more other modules receive notification of
that event that occurred, provided they are registered as listeners for that event.

To use this function, some events need to be defined, some application code must raise these events, and
some event handlers need to be defined and registered as listeners to such events. Developers must write
and register event handlers (classes that initiate an action when an event is raised) and optionally event
filters (logic that determines whether to start the handler for a specified event). Event handlers and filters
are classes that implement callback interfaces in much the same way as in the classic observer pattern16.

The Format of Event Files

Event definition
Events are defined in Cúram in XML files that specify both the event classes and the event types. Use this
information to understand how to events are used.

Events are defined in Cúram in XML files that specify both the event classes and the event types. These
files are created with a .evx extension and are placed in the events of a Cúram component from where
they are picked up and processed by the build scripts. The format of an event file is shown in the example
that follows:

<events package="curam.util.events">
 <event-class identifier="EVENT_CLASS_ONE" value="CLASS1">
 <annotation>Some event class.</annotation>
 <event-type identifier="EVENT_TYPE_ONE" value="EVENT1"/>
 <event-type identifier="EVENT_TYPE_TWO" value="EVENT2"/>
 </event-class>
 <event-class identifier="EVENT_CLASS_TWO" value="CLASS2">
 <event-type identifier="EVENT_TYPE_ONE" value="EVENT1">
 <annotation>Some event type.</annotation>
 </event-type>
 <event-type identifier="EVENT_TYPE_TWO" value="EVENT2"/>
 <event-type identifier="EVENT_TYPE_THREE" value="EVENT3"/>
 </event-class>
 </events>

Figure 93: Event definition file

events
This element is the root tag of an event definition file under which all the event classes and types are
defined.
package

This element specifies the Java code package into which the Java constants for event classes and
their types are generated.

annotation
This element is optional and is specified for both event classes and types intended for descriptive text
for the element. The text that is specified in an annotation is generated into the Java constant files as
javadoc comments.

event-class
Defines an event class, which qualifies all the event types associated with that class.

16 The observer pattern is one of the design patterns made popular by the landmark book Design Patterns:
Elements of Reusable Object-Oriented Software. It describes a generic listener framework.

Cúram Server Developer 143

identifier
This element is the identifier of the event class for code generation and is the class name for the
constant class that contains all the event types in the class. Since this element is a Java class
name, it must be a valid Java identifier.

value
This element represents how an event class is referenced at run time and it is this value that event
handlers are registered against. This value needs to be unique in the system and is a 100-
character string.

event-type
Defines an event type within a specified class. Since an event is identified by its own name and that of
its parent class, an event type needs to be unique only within a specified class.
identifier

This element is the identifier of the event type for code generation and is the field name for the
constant containing the value of the event type. Since this element is a Java field name, it needs to
be a valid Java identifier.

value
This element is how an event type is referenced at run time and the value needs to be unique
within a specified event class and is a 100-character string.

Event handler registration
Use this information to understand event handlers and how to register them against a particular event
class.

Event handlers and their associated (optional) filters need to be registered against a particular event class
to be started when an event of the specified class is raised. This operation is done in file named
handler_config.xml placed in the events folder of a Cúram component.

<registrations>
 <event-registration handler="curam.impl.SomeEventHandler">
 <event-classes>
 <event-class identifier="CLASS1"/>
 </event-classes>
 </event-registration>
 <event-registration handler="curam.impl.AnotherEventHandler"
 filter="curam.impl.AnotherEventFilter">
 <event-classes>
 <event-class identifier="CLASS2"/>
 </event-classes>
 </event-registration>
 <event-registration handler="curam.impl.RemovedEventHandler"
 removed="true">
 <event-classes>
 <event-class identifier="CLASS2"/>
 </event-classes>
 </event-registration>
 </registrations>

Figure 94: Event handler registration file

registrations
This element is the root tag of an event handler registration file under which individual registrations
are defined.

event-registration
Specifies an event handler registration.
handler

The fully qualified name of an event handler class (see: “Event handlers” on page 149).

144 IBM Cúram Social Program Management: Cúram Server Developer's Guide

filter
The fully qualified name of an optional event filter class (see: “Event filters” on page 149).

removed
An optional attribute that is used by components of a higher precedence to disable previously
registered event handlers, (see: “Rules of event handler merges” on page 145).

event-classes
This element is a list of all the event classes against which the handler is registered.

event-class
A specific event class against which the specified handler is registered. When any event with the
specified class is raised the event handler (providing the event filter approves) is started.
identifier

This element identifies the event that the handler is registered against. This value corresponds to
the value attribute of an event-class element in the event definition files.

How to merge event files
Use this information to understand how to merge event files with files included with your Cúram
application.

Both event definition and handler registration files are in the /events directory of a component. The
Cúram reference application includes a set of event files. These files can be augmented by placing new
event files in the SERVER_DIR/components/<custom>/events directory, where <custom> is any new
directory that is created under components that conforms to the same directory structure as
components/core. This mechanism avoids the need to modify directly to the unmodified application,
which would complicate later upgrades.

The override process involves merging all event files of the same name according to a precedence order.
The order is based on the SERVER_COMPONENT_ORDER environment variable. This environment variable
contains a comma-separated list of component names: the leftmost has the highest priority, and the
rightmost the lowest.

After changes are made to the component precedence order in SERVER_COMPONENT_ORDER, it is
necessary to run a clean build to ensure that you are using the appropriate files. This procedure is done by
starting build clean server.

Rules of event definition merges
For event definitions to be merged, the files that are provided to customize the events need to be named
the same as the existing files that contain the event classes to customize. Use this information to
understand how to merge event definitions.

For event definitions to be merged, the files that are provided to customize the events need to be named
the same as the existing files that contain the event classes to customize. Placing event classes with the
same name in files with different names results in errors that occur when the application loads the event
definitions onto the database.

The customizing behavior for events is simple - events cannot be removed as existing functions might be
using an event that other components then decide to remove. As a result, such code would fail to compile.
This being the case the only change that can be made to existing event definitions is that event types can
be added to an event class by other components.

Rules of event handler merges
The event handler (and filter) configurations that are used at run time are from the component with the
highest precedence that specifies the event handler in question. Use this information to understand the
rules for event handler merges.

The event handler (and filter) configurations that are used at run time are from the component with the
highest precedence that specifies the event handler in question (for merging the event handler is the
identifier). Event classes that are to be processed by each handler as specified in the handler
configuration in all the components are amalgamated into a merged configuration. It is also possible for

Cúram Server Developer 145

higher precedence components to disable handler that is specified by lower precedence components by
setting the removed attribute of the event-registration element to true.

Artifacts produced by generate events
Use this information to understand two types of output generated by the evgen command.

Two types of output are generated by the evgen command: .java files (for code constants that use
events less error prone) and .dmx files (database scripts for loading event definitions onto the database).

The Java artifacts that are produced from merged event files are placed in the /build/svr/
events/gen/[package] directory. Where [package] is the package attribute specified in the event
definition file. For example, package="curam.events" would result in the Java artifacts to be placed in
the /build/svr/events/gen/curam/events directory.

The database scripts that are produced from a merged event file are placed in the /build/svr/
events/gen/dmx directory.

Database Scripts

Events are primarily a development time concept they are defined in XML files, raised in application code
and handled by application defined call-backs. However some administration utilities in the application
need access to the list of events defined and available in a running system; thus they are also loaded onto
the data base.

Below are examples of the DMX files generated from the event definitions for the two entities used to
store the event definitions.

<?xml version="1.0" encoding="UTF-8"?>
 <table name="EVENTCLASS">
 <column name="EVENTCLASS" type="text"/>
 <row>
 <attribute name="EVENTCLASS">
 <value>CLASS1</value>
 </attribute>
 </row>
 <row>
 <attribute name="EVENTCLASS">
 <value>CLASS2</value>
 </attribute>
 </row>
 </table>

Figure 95: Generated event class database script

146 IBM Cúram Social Program Management: Cúram Server Developer's Guide

<?xml version="1.0" encoding="UTF-8"?>
 <table name="EVENTTYPE">
 <column name="EVENTCLASS" type="text"/>
 <column name="EVENTTYPE" type="text"/>
 <row>
 <attribute name="EVENTCLASS">
 <value>CLASS1</value>
 </attribute>
 <attribute name="EVENTTYPE">
 <value>EVENT1</value>
 </attribute>
 </row>
 <row>
 <attribute name="EVENTCLASS">
 <value>CLASS2</value>
 </attribute>
 <attribute name="EVENTTYPE">
 <value>EVENT2</value>
 </attribute>
 </row>
 </table>

Figure 96: Generated event type database script

Java event code example
Use this information to learn about how to generate a Java code generated constants file for an event
class.

Events are identified in the system by their names as specified by the value attribute of the event-
class and event-type elements. However, just using text in application code to reference events might
be error prone. In particular, an event is fully identified by its type in addition to its class. Thus, using
string literals to refer to an event might be ambiguous, as an event type is unique only when qualified by
its associated event class.

The following code is an example of the generated constants file for an event class. The class name is the
same as the event class. The attributes are the event types. This procedure prevents the use of
incompatible values.

Cúram Server Developer 147

package curam.util.testmodel.events;
 /**
 * Generated EVENT_CLASS_ONE events file.
 * Some event class.
 *
 */
 public final class EVENT_CLASS_ONE {

 /** Some event type. */
 public static final
 curam.util.events.struct.EventKey EVENT_TYPE_ONE
 = new curam.util.events.struct.EventKey();

 static {
 EVENT_TYPE_ONE.eventClass = "CLASS1";
 EVENT_TYPE_ONE.eventType = "EVENT1";
 }

 /** Another event type. */
 public static final
 curam.util.events.struct.EventKey EVENT_TYPE_TWO
 = new curam.util.events.struct.EventKey();

 static {
 EVENT_TYPE_TWO.eventClass = "CLASS1";
 EVENT_TYPE_TWO.eventType = "EVENT2";
 }
 }

Figure 97: Generated event Java constants

How to raise an event
Raising an event is a matter of creating an event struct, populating it with data, then calling the event
service API to raise the event. Use this information to learn how to raise an event

Raising an event is a matter of creating an event struct, populating it with data, then calling the event
service application programming interfaces (API) to raise the event. The event infrastructure notifies any
registered handlers that the event is being raised. How to raise an event is shown in the example that
follows.

import curam.util.events.struct.Event;
 import curam.util.events.impl.EventService;
 curam.util.events.EVENT_CLASS_ONE;

 ...

 Event event = new Event();
 event.eventKey = EVENT_CLASS_ONE.EVENT_TYPE_TWO;
 event.primaryEventData = 12300838;
 event.secondaryEventData = 23413081;

 EventService.raiseEvent(event);

Figure 98: Raising an event

eventKey
This element is the unique identifier of the event within the system. It is made up of two constituent
parts: the event class and the event type. As mentioned earlier and as shown in the example, though
the event key is two parts, it is best to specify it using one generated constant to avoid mismatching
event classed and types.

148 IBM Cúram Social Program Management: Cúram Server Developer's Guide

eventClass
The class of the event that is being raised: this element is the value on which handlers are
registered.

eventType
The type of the event that is being raised: this element identifies the specific type of the event in
the specific class.

primaryEventData
This element is the primary payload of the event and is a 64-bit integer. Typically this element is
(though not necessarily) the identifier of an entity in Cúram, the entity in question that is being
identified by the class of the event. The event type commonly is used to indicate the action that takes
place on the entity.

secondaryEventData
This element is any additional data that might be associated with an event when it is raised. Unlike the
primary event data, the secondary event data is optional.

Event handlers
Use this information to understand how to create an event handler.

How to register handlers was described previously. To create an event handler one needs to implement
the interface: curam.util.events.impl.EventHandler, which is shown in the example that follows.

The action that is taken by an event handler when the event is raised is up to the developer. Event
handlers are started synchronously when the event is raised (and hence run within the same transaction
context as the code that raises the event). This action has two implications:

• Throwing exceptions from an even handler results in the transaction from which the event was raised
being rolled back.

• Long running actions need to be avoided in event handlers as they affect the running time of the code
that raises the event.

package curam.util.events.impl;

 import curam.util.events.struct.Event;
 import curam.util.exception.AppException;
 import curam.util.exception.InformationalException;

 public interface EventHandler {
 void eventRaised(Event event)
 throws AppException, InformationalException;
 }

Figure 99: Event handler interface

Event filters
The purpose of a filter is to decide whether the handler needs to be notified about the event that is being
raised. Use this information to understand how to create an event filter.

As mentioned, an event handler can be configured to have a filter. The purpose of a filter is to decide
whether the handler needs to be notified about the event that is being raised. To create an event filter, the
user needs to implement the interface: curam.util.events.impl.EventFilter, which is shown in
the example that follows.

If the accept method returns true the event is passed on to the event handler (that is the eventRaised
method of the associated event handler is started), otherwise the event is ignored.

Cúram Server Developer 149

package curam.util.events.impl;

 import curam.util.events.struct.Event;
 import curam.util.exception.AppException;
 import curam.util.exception.InformationalException;

 public interface EventFilter {
 boolean accept(Event event)
 throws AppException, InformationalException;
 }

Figure 100: Event filter interface

Unique IDs
Use this information to understand what Unique IDs are in the context of Cúram and how to use them in
your application.

Unique IDs are numbers that are generated by the Cúram infrastructure for use as unique database keys.
They come in two types:

• Human-readable Unique IDs are ascending sequences of numbers, usually starting at 1, and are used
as database keys where the key value might need to be presented in a User Interface to a human user.

• Non-human-readable Unique IDs are typically large positive or negative values in the approximate
range 1E-19 to 1E+19. The sequence of non-human-readable Unique IDs does not repeat (for 2^64 key
values), but is random in a way that can improve database performance in some circumstances.

A Unique ID key set is a named non-repeating set of 2^64 Unique ID key values. Key sets can be
configured by developers and used to generate Unique IDs for a particular purpose. Each key set can be
configured to be human-readable or non-human-readable. The infrastructure uses a number of
predefined key sets that must be configured as part of a Cúram installation.

What Unique IDs are used for
Use this information to understand the purpose of Unique IDs and how to use them.

Cúram-generated Unique IDs address a perennial problem in application design - how to co-ordinate
multiple processes each of which needs to allocate a number that is ensured to be unique throughout the
application. One classic approach that is involved locking and updating a key control database table each
time a key needs to be allocated. Unfortunately, this approach can lock the control table during long-lived
transactions, preventing other processes from accessing it. This technique is almost always the source of
serious database contention problems in an application (see "Allocating Sequence Numbers" from
Chapter 12 of High Performance Client/Server, Loosley and Douglas).

Unique IDs are served out in blocks of 256 keys that use a unique ID generator, also known as the Key
Server17. A process requests a block of Unique IDs by calling the key server. This action updates a
database control table each time it returns a block of Unique IDs to a requesting process. After a block is
allocated, the requesting process can allocate keys from this block locally; that is, without calling the
server again until the Unique ID block is exhausted. Furthermore, the key server operates in its own
transaction so it never locks the key control table for longer than it takes to allocate and update a next
Unique ID block value.

However, it needs to be noted that a process that requests a Unique ID block might or might not use the
keys from that block. If it does not, then the unused keys represent holes in the key sequence. For
instance, processes that use one key value before they shut down leave large holes in the key sequence.
Note also that no time limit exists on how long a process can wait between allocating a Unique ID block by
using the key values in it. Thus, even for human-readable keys that are in an ascending sequence that

17 The design is loosely based on the Sequence Block pattern described by Floyd Marinescu in EJB Design
Patterns (ISBN: 0471208310).

150 IBM Cúram Social Program Management: Cúram Server Developer's Guide

starts at 1, the sort order of keys on the database has no direct bearing on the chronological order in
which they were inserted. Obviously, programs are better to not assume that this condition is the case.

The limit of allocating Unique IDs
Use this information to learn about the allocation of Unique IDs.

A process that used only one key out of each Unique ID block, and allocated 1000 of these IDs per second
non-stop, would take more than 2 million years to exhaust one Unique ID key set. For all practical
purposes, the set of Unique IDs in a key set can be considered to be inexhaustible.

When Unique IDs need to be used
Use this information to understand when Unique IDs need to be used in your design.

Use Unique IDs in your design when each of the following criteria is met:

• You need a unique key for a database entity.
• The database key has no "business meaning".
• Instances of the entity might be created by multiple contending online or batch functions.
• Holes in the key sequence are acceptable (which always need to be true if the key has no business

meaning).

When not to use Unique IDs
Use this information to understand Unique IDs are not to be used.

Do not use Unique IDs in your design when:

• You need a unique key for a database entity, but have a business requirement for an ascending
sequence without holes (Cúram-generated Unique IDs are not guaranteed to be contiguous).

• Your key requires a specification other than a simple numeric format.
• Contending processes do not create instances of the entity (in which case no need exists for key control

at all).

Do keys need to be human-readable?
Use this information toil your keys need to be human-readable.

This decision is up to you. The general rule is that Unique ID values that are displayed to a user need to be
human-readable. Otherwise, you can choose to use non-human readable Unique IDs. The advantage of
these is that their values are spread across a large range, so that database indexes are not always being
extended at the end, as for ascending sequences.

When contiguous human-readable Unique IDs are required
Use this information to understand when contiguous human-readable Unique IDs are required.

Human-readable IDs allocated by the key server are sequential, but can have gaps for two reasons:

• The IDs are allocated in blocks of 256 keys. When the server is restarted, the remaining values in any
block for any key set that is loaded are discarded.

• If a transaction that requests a human-readable ID from the key server is rolled back, the ID that was
served up is discarded (as the key server runs in a separate transaction, its transaction commits
irrespective of what happens to the application transaction - this action is important for performance
reasons).

In instances where a requirement exists to generate human-readable IDs, where the numbers must be
both sequential and have no gaps, Cúram uses an application-defined key table for each set of IDs (for
example, InternalPersonID or InternalEmployerID). An example of such a business requirement
is the issuing of Social Security numbers. These tables are read and updated in the context of the
application transaction, meaning the ID is allocated only if the record bearing that ID is committed to the
database. Otherwise, the whole business transaction, including the ID allocation, is rolled back. It is

Cúram Server Developer 151

worth noting that this process causes performance high processor usage, as the single row ID table is a
database hot spot that must be updated every time the record bearing that ID is committed to the
database.

Thus it is recommended that:

• This method of ID generation is used only when necessary and
• Your design needs to strive to ensure that transactions the use this mechanism are kept as short as

possible to minimize contention on the key table.

The way to design Unique IDs
Use this information to understand the method for designing Unique IDs.

Designing Unique IDs into your Cúram application is straightforward. In your Unified Modeling Language
(UML) application model, set the appropriate domain definitions to be of the data type SVR_INT64. The
developer's view of this data type is as a Java Long primitive. To allocate a new Unique ID call
UniqueID.nextUniqueID(), passing a key set name as a string. This call transparently allocates a new
Unique ID block if necessary. If no key set name is passed to the nextUniqueID() method the default
key set, curam.util.resources.KeySet.kKeySetDefault, is used. This key set allocates non-
human-readable Unique IDs.

Key sets are defined by configuring entries in the KeyServer database table. This configuration can be
done by creating a Data Mining Extensions (DMX) file that defines all key entries. “The way to design
Unique IDs” on page 152 details the fields of the KeyServer database table.

Table 45: KeyServer Database Table

Field Description

keySetCode An identifier for the key set; for example, MYKEYSET.

nextUniqueIdBlock The next Unique ID block t0 be allocated. For human-readable IDs, this
field can be used to skip preallocated Unique IDs.

humanReadable True if the Unique IDs are to be human-readable.

lastUpdated The time stamp for when the entry was last updated.

strategy Represents the strategy that is used to generate next Unique ID block
for a particular key set.

Annotation A description of the key set.

If you are using human-readable Unique IDs, and non-Cúram-generated keys already have been
allocated, then you can ensure that these values are never reallocated by Cúram (that is, Unique IDs
never "clash"). This condition is achieved by setting the nextUniqueIdBlock field on the KeyServer
database table to be Ceiling(N/256), where "N" is the number of Unique IDs that were allocated
previously.

The strategy field is used to specify whether the standard Key Server or the Range Aware Key
Server is used for the key set. If the field is set to null, the standard Key Server is used. If the field is
set to a specific value KB1002, then the Range Aware Key Server is used to generate next Unique ID
block for the key set. The Range Aware Key Server is explained in more detail in “Overview of the
Range Aware Key Server” on page 153.

Warning: Care needs to be taken when custom key sets are defined and used. The same key set always is
used when Unique IDs are used as the primary key for a particular database table. If two key sets are
used to generate Unique IDs for the same database table, duplicate record problems might occur. Unique
IDs are only unique within a particular key set.

152 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Note: The conversion routine for hexadecimal numbers that are used as Unique IDs on a DB2 for z/OS
database only can support numbers between Long.MAX_VALUE and Long.MIN_VALUE + 1.

Overview of the Range Aware Key Server
Use this information to understand how to use the Range Aware Key Server.

The Range Aware Key Server is a new Key Server implementation introduced to support Configuration
Transport Manager (CTM). CTM is used to transport administrative configuration data (Business Objects)
between systems. Each Business Object is composed of a number of entities. Each of these entities has a
primary key. The standard Key Server implementation ensures uniqueness of a primary key within a single
system installation. This action means that when a Business Object is transported from a Source System
and applied on a Target System, a strong possibility exists for key clashes between the transported
entities and the existing entities on the system.

The Range Aware Key Server implementation is responsible for creating primary keys to meet the
following requirements:

• Prevent clashes in primary keys between new entities transported to a system and existing entities on
that system.

• Identify where there is an existing version of a transported entity on a system that the existing entity is
updated with the transported entity data.

Overview of the Range Aware Key Server
Use this information to understand how to use the Range Aware Key Server.

The Range Aware Key Server is a new Key Server implementation introduced to support Configuration
Transport Manager (CTM). CTM is used to transport administrative configuration data (Business Objects)
between systems. Each Business Object is composed of a number of entities. Each of these entities has a
primary key. The standard Key Server implementation ensures uniqueness of a primary key within a single
system installation. This action means that when a Business Object is transported from a Source System
and applied on a Target System, a strong possibility exists for key clashes between the transported
entities and the existing entities on the system.

The Range Aware Key Server implementation is responsible for creating primary keys to meet the
following requirements:

• Prevent clashes in primary keys between new entities transported to a system and existing entities on
that system.

• Identify where there is an existing version of a transported entity on a system that the existing entity is
updated with the transported entity data.

How the Range Aware Key Server generates primary keys
Use this information to understand the approach that is used by the Range Aware Key Server to generate
primary key.

The approach that is used by the Range Aware Key Server to generate primary keys hinges on ensuring
that non-overlapping key ranges are allocated to every system. The Range Aware Key Server then ensures
that all of the primary keys on a particular system are generated from the range or ranges assigned to that
system. Therefore, the primary keys that are generated by each system are unique.

At system installation (or upgrade) time, the system administrator allocates a unique primary keyrange
from which all primary keys that are provided by the Range Aware Key Server implementation is
generated. Refer to the CTM Setup Guide chapter in the Configuration Transport Manager guide for
information on how the range allocations are configured.

Where to use the Range Aware Key Server
Use this information to understand where it is needed to use Range Aware Key Server.

The Range Aware Key Server is used only for Key Sets that are created specifically for the entities that
form part of transportable Business Objects. Existing Key Sets continue to use the current Cúram Server
Development Environment (SDEJ) Key Server implementation, unchanged.

Cúram Server Developer 153

Note: it is important that existing Key Sets are not changed to use the Range Aware Key Server - the
Range Aware Key Server should be used only with new Key Sets.

The Range Aware Key Server supports both non-human readable and human-readable generated keys, so
the value of the humanReadable attribute in the KeyServer table is set to either "0" or "1" depending on
the entity's requirements.

Cúram Configuration Parameters
You can set configuration parameters for Curam applications that control characteristics of how the
application is run. Generally, and unless otherwise noted, these parameters are set in .property and .prx
files associated with your application.

The following configuration parameter descriptions are organized according to the file that they should be
set in and also in functionally-related groups. Some parameters are of a "BOOLEAN" type, where noted.
This means that the value "true" or "yes" in upper-, lower-, or mixed-case, equates to a "true" value; all
other values (or none) equate to "false." The configuration parameter descriptions are grouped into
functionally-related groups.

Bootstrap.properties
The following properties relate to the

Bootstrap.properties

file.

Database

These settings configure Curam for database communication.

Table 46: Database settings

Property Name Type Meaning

curam.db.type STRING The property that specifies the database type.
Suggested: DB2/ORA/ZOS.

curam.db.password STRING The encrypted password that corresponds to
the user name specified above. The database
password is never stored in plaintext in the
various Curam property files.

curam.db.username STRING A valid database username.

curam.db.oracle.cachesiz
e

INT32 The size of the prepared statement cache
used by batch programs when run against
Oracle (the prepared statement cache is
based around implicit caching).

c

uram.db.oracle.
connectioncache.enabled

BOOLEAN Turn on connection caching for Oracle outside
of an Application Server.

154 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 46: Database settings (continued)

Property Name Type Meaning

curam.db.oracle.
connectioncache.minlimit

INT32 Set Min Limit for the Cache. This sets the
minimum number of PooledConnections that
the cache maintains. This guarantees that the
cache will not shrink below this minimum
limit.

curam.db.oracle.
connectioncache.maxlimit

INT32 Set Max Limit for the Cache. This sets the
maximum number of PooledConnections the
cache can hold. There is no default MaxLimit
assumed meaning connections in the cache
could reach as many as the database allows.

curam.db.oracle.
connectioncache.initiall
imit

INT32 Set the Initial Limit. This sets the size of the
connection cache when the cache is initially
created or reinitialized. When this property is
set to a value greater than 0, then that
number of connections are pre-created and
are ready for use.

curam.db.oracle.
connectioncache.name

STRING The name used to identify the cache uniquely.

curam.db.zos.32ktablespa
ce

STRING Property that specifies the name of the table
space used for 32k storage on DB2 z/OS.

curam.db.zos.enable
foreignkeys

BOOLEAN Controls whether foreign keys are generated
for a z/OS database when running the Data
Manager. Note on usage - If Foreign Keys are
used against a z/OS database, the tables are
put in a CHECK_PENDING state, causing
failures when the tables are accessed. The
state can only be changed through direct DBA
intervention on the target platform (hence it
cannot be scripted into the Data Manager
which can run on remote clients). In normal
usage the Data Manager invokes LOB
Manager after applying the foreign keys. This
means the LOB Manager should be re-run
after the this CHECK_PENDING state has
been resolved.

curam.db.disableforeignk
eys

BOOLEAN Controls whether foreign keys are generated
in SQL statements. By default this property is
false, which means foreign key generation is
enabled. However, for z/OS foreign keys will
not be generated if

curam.db.zos.enableforeignkey

s is set to false.

Cúram Server Developer 155

Table 46: Database settings (continued)

Property Name Type Meaning

curam.db.disableInvalid
LobFileError

BOOLEAN This property controls the reporting of invalid
LOB file paths in DMX files. The default value
is FALSE. By default a build exception will be
thrown, when set to TRUE a warning will be
reported.

curam.db.zos.encoding STRING Property which specifies whether the
database being used on z/OS requires
processing for EBCDIC, ASCII, or UNICODE
encoding. This should be set to EBCDIC,
ASCII, or UNICODE depending on the
appropriate database encoding in use.
EBCDIC is the default value.

curam.db.zos.dbname STRING The name of the database on z/OS.

curam.database.shortname
s

BOOLEAN It is recommended strongly that this property
be set to false. The functionality for this
property is planned for removal in a future
version of Curam. If you have utilized this
property in previous versions of Curam,
contact Curam Support for more information.

curam.db.oracle.servicen
ame

STRING The Oracle database service name. Setting
this will create database connection using
Oracle service name.

curam.db.name STRING The database name. This setting will be
overridden if property

curam.db.oracle.servicename

is set for Oracle database.

curam.db.servername STRING The database server name.

curam.db.serverport INT32 Suggested: 1521 (Oracle)/ 50000 (DB2). The
database server TCP/IP port.

156 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 46: Database settings (continued)

Property Name Type Meaning

curam.db.enable
.bindings.generation

BOOLEAN Suggested: false. Causes a bindings file to be
generated for the Java Database Connectivity
(JDBC) data source when a database
connection is made outside of the application
server, e.g. by the Batch Launcher. Has no
effect if property

curam.db.disable.bindings.genera
tion

is set. It is intended to be used to produce a
starter bindings file which can then be
customized.

curam.db.disable
.bindings.generation

BOOLEAN Suggested: false. Prevents re-generation of
the JDBC data source bindings file and
instead causes the data source to be looked
up from a customized bindings file when a
database connection is made outside of the
application server, for instance by the Batch
Launcher.

curam.dmx.locale STRING Default: en. Property that specifies the locale
that will be used when inserting DMX data
onto the database. The locale should be
specified in the format:

language_country

, for example

en_US

.

curam.db.multibyte.expan
sion

BOOLEAN Enables the multi-byte expansion feature for
DB2 and DB2 for z/OS. Default value is true.

curam.db.multibyte
.default.factor

FLOAT Specifies the default expansion factor for
multi-byte string fields if the multi-byte
expansion feature is enabled. The value must
be a float between the values of 1 and 4.
Default value is 4.

curam.db2.ssl BOOLEAN Default: false. Indicates that Secure Sockets
Layer (SSL) is to be used for DB2 database
communications.

Cúram Server Developer 157

Table 46: Database settings (continued)

Property Name Type Meaning

curam.db2.purescale BOOLEAN Default: false. Indicates that the DB2
pureScale property,

 enableSysplexWLB

, will be set for the DB2 DataSource and
WebSphere configuration.

Environment

These settings configure the environment for your Curam application.

Table 47: Environment settings

Property Name Type Meaning

curam.environment.as.ven
dor

STRING Suggested: Should be set to BEA or IBM to
reflect the Application Server being used. If
running outside an application server, this
should be empty. This defines the Application
Server in which Curam will be deployed. This
is setup automatically when the EAR file is
built using the build targets.

curam.environment.
tnameserv.port

INT32 Suggested: 900. Port on which the

tnameserv

is running.

curam.environment.
bindings.location

STRING Suggested: C:/Temp. Name of the file system
location containing data sources.

curam.environment.
default.dateformat

STRING Default: yyyy MM dd. The date format. Can be
set to one of: "d M Ayyubid," "M d Ayyubid,"
"yyyy M d," "dd MM Ayyubid," "MM dd
Ayyubid," "yyyy MM dd," "d MMM Ayyubid,"
"MMM d Ayyubid," "yyyy MMM d," "d MMM
Ayyubid," "MMMM d Ayyubid," "yyyy MMMM
d," "dd MMM Ayyubid," "MMM dd Ayyubid," or
"yyyy MMM dd."

curam.environment.
default.dateseparator

STRING The date separator. Can be set to one of: ".",
",", "/", "-".

curam.disable.
dynamic.properties

BOOLEAN This indicates if dynamic properties should be
enabled or disabled. This is used by
command line tools that require access to
properties but cannot access the database.

158 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 47: Environment settings (continued)

Property Name Type Meaning

curam.deprecation.report
ing

BOOLEAN This indicates if deprecation reporting should
be enabled or disabled. This is used by all
tools (both online and offline) that report
deprecation warnings to the user (for
example, rules and workflow validation).

curam.entity.struct.depr
ecation

BOOLEAN Indicates if generated entity standard structs
should be deprecated if an entity is
deprecated. This is used by generators which
generate standard entity structs.

curam.environment.
roundingprecision.enable

STRING Indicates if when rounding money types in
Curam, the HALF_UP algorithm will be used.
This means that all Money will be rounded up.
If set to true, the HALF_UP algorithm will be
used. If not set, a default of true is used.

Test

These settings configure those elements of Curam which are useful for Unit Testing. None of these
settings should be used in a deployed application as they will either degrade performance or cause
failures.

Table 48: Test settings

Property Name Type Meaning

curam.test.
override.date

STRING This property allows the date and time to be
set to a known value for testing. In order to
override the date and time the property
should be in the format
YYYYMMDDThhmmss. The 'T' character is the
separator between the date and the time. It is
valid only to specify the date. If the time
portion of the property is not set explicitly the
time will be default automatically to midnight
(00:00:00). For example, the string value
'20070101T175930' represents 17:59:30 on
Jan. 1, 2007. The string value '20070101'
represents 00:00:00 on Jan. 1, 2007.

curam.test.
treatreadmultimaxaserror

BOOLEAN Default: false. Specifies that a run time error
should be thrown in addition to a log message
when the result size of Readmulti operation
exceeds the maximum. This does not apply
when the Treat readmulti-max as
InformationalException option is enabled

Custom

These settings allow a developer to replace elements of the Curam infrastructure with their own
customized handlers.

Cúram Server Developer 159

Table 49: Custom settings

Property Name Type Meaning

curam.custom.
workflow.webservicebpo

STRING The name of the application Business process
Objecs (BPO) that workflow process
enactment web services go through.

Application.prx - Dynamic properties
The following properties relate to the available dynamic properties in the Application.prx file.

Environment

These settings configure the environment for your Curam application.

Table 50: Environment settings

Property Name Type Meaning

curam.environment.
default.locale

STRING Default: en. The default value of the language
code for the server.

curam.environment.
recordlocked.
systemexception

BOOLEAN Specifies whether a

RecordLockedException

should be set to a System exception. The
default is false here, that it is a Application
exception.

curam.environment.
readmultimax.
systemexception

BOOLEAN Specifies whether a configparam should be
set to a System exception. The default is false
here, that it is a Application exception.

curam.transaction.
sqlquerycache
.disabled

BOOLEAN Specifies whether any SQL queries that do a
SELECT on a database table will have their
results cached for the duration of the
transaction in which the operation was
invoked. Subsequent calls using the same
SQL query then will retrieve the results from
this thread local transaction SQL query cache
and not read the results from the database.
The default setting for disabling this cache is
false so that the results of SQL queries will be
cached.

curam.sqlquerycache
.lob.max.size

INT64 Specifies the maximum size of a field of type
Character Long Object (CLOB) or type Binary
Large Object Block BLOB) in a result set that
is allowed to be cached in the transaction SQL
query cache.

160 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 50: Environment settings (continued)

Property Name Type Meaning

curam.enable.
logging.client.
authcheck

BOOLEAN Default: false. When set to true, all client
authorization checks will be logged to the

AuthorisationLog

database table.

curam.audit.
audittrail.
datacompressionthreshold

INT32 Specifies the size of the audit data stored in
the

detailinfo

column of the

audittrail

database table that causes data compression
to be invoked. Default: -1 (off). This value is
checked per audit operation. To turn
compression on for all

audittrail detailinf

o data set this value to 0. When turned on
rows that contain compressed data have the
boolean attribute ISCOMPRESSED set to true.
Note that short audit data is not likely to see
performance gains, but will for large data
rows. The performance of Curam auditing Out
Of The Box (OOTB) should not require
compression, but if you add additional
auditing you should evaluate your auditing
selections for performance to determine the
best setting for this value. Compression is
done by way of the
curam.util.resources.

ByteArrayUtil.byteArrayToBase64
EncodedString

method and decompression can be done by
way of the corresponding
ByteArrayUtil.base64

EncodedStringToByteArray

method.

JMX

These settings configure the Java Management Extensions (JMX) infrastructure for your Curam
application.

Cúram Server Developer 161

Table 51: JMX settings

Property Name Type Meaning

curam.jmx.monitoring_
enabled

BOOLEAN Whether JMX monitoring is enabled or not in
the application.

curam.jmx.transaction_tr
acing
_enabled

BOOLEAN Whether transaction tracing is enabled or not
in the application. When this is enabled, in-
flight data collection is enabled also.

curam.jmx.transaction_tr
acing
_url_filter

STRING Regular expression to identify URLs for which
transaction tracing data is collected.

curam.jmx.transaction_tr
acing
_max_recorded_threads

INT32 The maximum number of threads for which
transaction tracing data is collected. Note
that at any one moment there could be more
than this number of threads in the transaction
tracing data but a significant amount of
entries will be preserved only for this number
of threads.

curam.jmx.transaction
_tracing_purge_period

INT32 The period of time, in seconds, between
checks to ensure that only the number of
threads specified in

curam.jmx.transaction
_tracing_max_recorded_threads

are preserved in the transaction tracing data.

curam.jmx.transaction
_tracing_max_thread_idle
_time

INT32 The maximum amount of time, in seconds, a
thread is allowed to be idle before its
transaction tracing data can be cleared.

curam.jmx.configured
_mbeans_ejb

STRING The list of MBeans configured in the EJB
container.

curam.jmx.configured
_mbeans_web

STRING The list of MBeans configured in the WEB
container.

curam.jmx.pe
r_user_statistics_filter

STRING Regular expression to identify users for which
individual statistics are collected.

curam.jmx.in_
flight_statistics_enable
d

BOOLEAN Whether or not statistics about in-flight
transactions are collected.

162 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 51: JMX settings (continued)

Property Name Type Meaning

curam.jmx.sql_statement
_statistics_enabled

BOOLEAN Whether or not SQL statement statistics
collection is enabled.

curam.jmx.download
_statistics_allowed

BOOLEAN Whether or not the download of JMX
statistics is allowed.

curam.jmx.download
_statistics_username

STRING The username of the user who is allowed to
download the JMX statistics.

curam.jmx.end_user
_statistics_enabled

BOOLEAN Whether or not end user statistics collection
is enabled.

curam.jmx.end_user
_statistics_user_filter

STRING Regular expression that selects users for
which end user statistics are collected.

curam.jmx.end_user
_statistics_display_enab
led

BOOLEAN Whether or not the end user statistics are
displayed in the browser. If true, the statistics
for the current page are displayed in the top
left corner of the page.

curam.jmx.end_user_
statistics_upload_delay

INT32 The delay in seconds between the page
reporting being loaded and the moment the
statistics are uploaded.

Test

These settings configure those elements of Curam which are useful for Unit Testing. None of these
settings should be used in a deployed application as they will either degrade performance or cause
failures.

Table 52: Test settings

Property Name Type Meaning

curam.test.store.entityk
eys

BOOLEAN Default: false. Specifies that the values
written to the database should be stored in
memory for retrieval by tests. They can be
accessed through

curam.util.DataAccess.KeyReposit
ory

.

curam.test.trace.statist
ics

BOOLEAN Default: false. Place a compact trace of BO
method invocations in a buffered log. This
representation is suitable for obtaining
performance measurements.

Cúram Server Developer 163

Table 52: Test settings (continued)

Property Name Type Meaning

curam.test.trace.
statistics.location

STRING The name of the file that has the statistics
information generated into it.

curam.test.singleuser BOOLEAN Indicates whether only a single user will be
active. This is the only mode supported if an
IDE is used to execute Curam as a standalone
Java program.

curam.test.
stubdeferredprocessing

BOOLEAN Default: false. Specifies that it needs to use
deferred processing without en-queuing in
App Server.

curam.test.stubdeferred
processinsametransaction

BOOLEAN Default: false. Specifies that stubbed deferred
process calls should be run in the current
transaction using the current database
connection. If true, a new transaction will not
be started for each stubbed deferred process
call.

Rules

These settings configure the rules infrastructure of Curam.

Table 53: Rules settings

Property Name Type Meaning

curam.rules.file.access.
location

STRING The directory where the XML representation
of rule sets will be created.
<Cannot be used for Cúram express rules
(CER) rules>

curam.rules.file.access.
multilocation

BOOLEAN Specifies that rule set files exist in multiple
locations.
<Cannot be used for CER rules>

curam.rules.model.file
.rdo.access

BOOLEAN Specifies that Remote Data Objects (RDOs)
should be retrieved from a Curam model file.
<Cannot be used for CER rules>

curam.rules.default.loca
le

STRING Default:

en_US

. Default locale used when creating the XML
representation of rule sets.
<Cannot be used for CER rules>

164 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 53: Rules settings (continued)

Property Name Type Meaning

curam.rules.globals.desc
ription

STRING The display/user friendly name associated
with the pre-defined Globals Rules Data
Object. The default value is the localized
message text associated with the
infrastructure catalog entry:

RULES:ID_GROUP_DISPLAY_
NAME_GLOBALS

<Cannot be used for CER rules>

curam.rules.enable
.optimization

BOOLEAN Specifies the rules optimization.
<Cannot be used for CER rules>

curam.rules.enable.fullt
ext

BOOLEAN Specifies the rules engine construction of full
result text.
<Cannot be used for CER rules>

curam.debug.rules BOOLEAN Default: false. Specify whether the rules
debugging should be enabled.
<Cannot be used for CER rules>

curam.disable.empty
.objectivelistgroups

BOOLEAN Default: true. Specify whether the rules
decision should include empty Objective list
groups.

curam.rules.date.range.
includes.calculation.dat
e

BOOLEAN Specifies the new objective calculation.
<Cannot be used for CER rules>

IEG

These settings configure the proprties that relate to the Intelligent Evidence Gathering (IEG) Environment.

Table 54: IEG settings

Property Name Type Meaning

curam.iegeditor.
callback.class

STRING Specifies the IEG Editor Application Callbacks
class.

curam.iegruntime.
questionpage.
separatequestionsforloop
style

BOOLEAN Specifies whether to use separate question
pages when "for" looping.

Custom

These settings allow a developer to replace elements of the Curam infrastructure with their own
customized handlers.

Cúram Server Developer 165

Table 55: Custom settings

Property Name Type Meaning

curam.custom.
deferredprocessing.dpcal
lbac

k

STRING The name of the application class that
implements the DPTicketCallback interface.

curam.custom.
workflow.workresolver

STRING The name of the application class that
implements the WorkResolver interface.

curam.custom.
workflow.processcachesiz
e

INT32 Default: 250. Specifies the maximum size of
the process definition cache.

curam.audit.
audittrail.noxmlaudit

BOOLEAN If set to true this property will disable the
existing audit writer.

curam.custom.
notifications.notificati
on
delivery

STRING Specifies the name of the application class
that implements the NotificationDelivery
interface.

curam.custom.
dataaccess.database
writecallback

STRING The name of the application class that
implements the DatabaseWriteCallback
interface.

curam.custom.
dataaccess.transactionca
llback

STRING The name of the application class that
implements the TransactionCallback
interface.

curam.custom.
disable.database.callbac
k

BOOLEAN If set to true this property will disable the
database callback.

Trace

These control what diagnostic information (in addition to errors which are always logged) is written to the
application server's diagnostics file. Note that you can set the "curam.trace.*" settings independently of
the "curam.trace" settings, resulting in the union of these settings.

166 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 56: Trace settings

Property Name Type Meaning

curam.trace STRING Default:

trace_off

. Tracing is off by default. Turn tracing on by
setting the property to

trace_on

,

trace_verbose

or

trace_ultra_verbose

. The value

trace_on

is equivalent to setting

curam.trace.servercalls

to true. The value

trace_verbose

is equivalent to setting

curam.trace.servercalls

,

curam.trace.methods

and

curam.trace.sql

to true, while the highest trace level "

trace_ultra_verbose

" is equivalent to setting

curam.trace.*

to true

curam.trace.servercalls BOOLEAN Default: false. Trace server method
invocations by remote clients.

Cúram Server Developer 167

Table 56: Trace settings (continued)

Property Name Type Meaning

curam.trace.methods BOOLEAN Default: false. Trace all business object (BO)
method invocations.

curam.trace.method_args BOOLEAN Default: false. Dump arguments to BO method
invocations, including the argument type. This
option is only valid if

curam.trace.methods

is set to true or

curam.trace

is set to at least

trace_verbose

.

curam.trace.sql BOOLEAN Default: false. Trace SQL statements
executed by entity objects.

curam.trace.sql_args BOOLEAN Default: false. Dump results of SQL select
statements.

curam.trace.rules BOOLEAN Default: false. Trace Curam rules execution.
<For classic rules only>

curam.trace.smtp BOOLEAN Default: false. Trace the calls to the SMTP
server.

curam.trace.configfile.location STRING The location of the ".xml" configuration file
that controls the output of logging within
Curam.

curam.trace.oracle.cachehits BOOLEAN Default: false. An indicator as to whether the
cache hits and misses of the Oracle prepared
statement cache should be output.

curam.trace.ejb.
invocation_differentiators

STRING Comma separated list of invocation
differentiator implementations.

curam.trace.suppress
_optimistic_locking_detail

BOOLEAN Default: false. Suppress SQL detail from being
dumped when optimistic locking exceptions
occur.

curam.trace.suppress
_database_exception_detail

BOOLEAN Default: false. Suppress SQL detail from being
dumped when database exceptions occur.

168 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 56: Trace settings (continued)

Property Name Type Meaning

curam.trace.deferred.user.name BOOLEAN A Boolean flag that indicates which user
name will be available for logging purposes
for transactions of type Deferred. Either the
Deferred User Name (the user that initiates
the deferred process) or the name of the
currently logged in user for that transaction is
made available depending for logging on the
value of this property.

true When set to true, then the name of the
user who initiated the deferred process will
be available to be added to the logs.

false When set to false, then the user
associated with the current transaction will
be available to be added into the logs.

By default, the property is set to true.

Security

These settings configure the authentication behavior of Curam.

Table 57: Security settings

Property Name Type Meaning

curam.security.
breakInThreshold

INT32 Default: 3. The number of consecutive break-
in attempts that are allowed before an
account is locked out.

curam.security.
passwordexpiry.warningpe
riod

INT32 The number of days, in advance, that a user
should be warned (on login) that their
password is about to expire.

curam.security.
loginattempts.warningper
iod

INT32 Default: 1. The number of logins, in advance,
that a user should be warned (on login) that
they have a limited number of logins in which
they must change their password.

curam.security.
cache.failure.callback

STRING Specifies the security cache failure callback
class.

curam.security.
disable.cache.failure.ca
llback

BOOLEAN If set to true this property will disable the
security cache failure callback.

curam.security.
identifier.minsearch.
stringlength

INT32 Specifies the security Identifier Minimum
Search String Length.

Cúram Server Developer 169

SMTP

These settings configure the environment in which the Simple Mail Transport Protocol (SMTP) client
element of Curam operates.

Table 58: SMTP settings

Property Name Type Meaning

curam.mail.smtp.serverho
st

STRING The default mail server that is used by Curam.

curam.mail.smtp.serverpo
rt

INT32 The port on which the default mail server is
addressed.

curam.mail.smtp.
connectiontimeout

INT32 The socket connection timeout value (in
seconds) of the mail server.

curam.mail.smtp.timeout INT32 The socket I/O timeout value (in seconds) of
the mail server.

XML Server

These settings configure the environment in which the XML Server will be used.

Table 59: XML Server settings

Property Name Type Meaning

curam.xmlserver.host STRING The host on which the XML Print Server
resides. The property also may be specified
as a slash (/) separated list of host names in
order to use multiple XML Servers. For further
information, refer to the Curam XML
Infrastructure Guide.

curam.xmlserver.port STRING The port on which the XML Print Server is
listening. The property may also be specified
as a slash (/) separated list of ports in order to
use multiple XML Servers. For further
information, refer to the Curam XML
Infrastructure Guide.

curam.xmlserver.printer STRING The printer name that will be provided to the
XML Server.

curam.xmlserver.tray STRING The printer tray that will be provided to the
XML Server.

curam.xmlserver.fileenco
ding

STRING The encoding that should be used for the
encoding of files provided to the XML Server.

170 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 59: XML Server settings (continued)

Property Name Type Meaning

curam.xmlserver.
serializelocaleneutral

BOOLEAN Specify that XML Server data will be serialized
in a locale-neutral way instead of being based
on the locale properties on the server.

Database

These settings configure Curam for database communication.

Table 60: Database settings

Property Name Type Meaning

curam.db.readmultimax INT32 Default: 100. This allows the developer to
override the default maximum number of
records returned by the readmulti (readmulti,
nsreadmulti, multithread, and nsmulti)
operations in an application. This default
value is only used if an explicit value is not set
in the model. Unless the
Readmulti_Informational option is set in
the model there is no enforcement of this
limit.

curam.db.locktimeout INT32 Default: 30. This allows the developer to set
the lock timeout in seconds on an Oracle
database when performing a singleton select
FOR UPDATE. The syntax here is to append a
WAIT XX clause to the statement. This default
value only is used if an explicit value is not
set.

curam.db.batch.limit INT32 Default: 10. Globally defines the number of
updates that can be grouped together as part
of a batch update.

KeyServer

These settings allow a customer to configure the behavior of the KeyServer.

Table 61: KeyServer settings

Property Name Type Meaning

curam.keyserver.
default.unique.set

STRING The name of the default key set used by the
application.

curam.keyserver.retry INT32 Default: 5. The number of retries that will be
performed if there is a problem
communicating with the key server before
that problem is reported to the user.

Cúram Server Developer 171

Table 61: KeyServer settings (continued)

Property Name Type Meaning

curam.keyserver.support BOOLEAN Default: false. The range aware key server
algorithm allows usage of group from 3 to
32,768. But as group 2 is to allocated for
Cúram support. This property can be set to
true to state keys generated are for Cúram
support purpose.

curam.keyserver.remainin
g.
keyblock.notification

INT64 Default: 100000000. The range aware key
server algorithm supply a notification to
administrators when a particular key set is
nearing the end of the systems allocated
range. This notification would be sent
repeatedly at defined magnitude intervals
before exhaustion, for instance, the first
message sent when there are X key blocks
remaining for the key set, the next when there
are X/10 key blocks remaining etc. Range
Aware Key Server send these notifications
only in case if there are no further ranges
allocated to the system.

curam.keyserver.keyset.
cachesize

INT32 Default: 1 : Specifies the number of unique ID
keysets to be consumed and cached per Key
Server transaction.

BatchLauncher

These settings configure the behavior of Curam when problems occur invoking batch programs.

Table 62: BatchLauncher settings

Property Name Type Meaning

curam.batchlauncher
.erroremail.recipient

STRING The email address of the recipient of error
emails from Curam.

curam.batchlauncher.
erroremail.nostacktrace

BOOLEAN Default: false. Suppress the stack trace in the
error emails.

curam.batchlauncher.
default.error.code

INT32 Default: 1. The default error code returned by
a batch program.

172 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 62: BatchLauncher settings (continued)

Property Name Type Meaning

curam.batchlauncher.
dbtojms.enabled

BOOLEAN Default: false. Specifies whether deferred
processing and workflow functionality for
batch programs should be enabled. When set
to true, the

curam.batchlauncher.dbtojms.
notification.host

and

curam.batchlauncher.
dbtojms.notification.port

properties also must be set.

curam.batchlauncher.
dbtojms.notification.hos
t

String Default:

localhost

. Specifies whether the host on which the
database-to-JMS listener is available. This
property must be set when the

curam.batchlauncher.dbtojms.enab
led

property is set to true.

curam.batchlauncher.
dbtojms.contextroot

STRING The context root used by the Curam web
client. Default value = 'Curam'.

curam.batchlauncher.
dbtojms.notification.por
t

INT32 Default: 9044. Specifies whether the port on
which the database-to-JMS notification
listener is available. This property must be set
when the

curam.batchlauncher.dbtojms.enab
led

property is set to true.

curam.batchlauncher.
dbtojms.notification.ssl

BOOLEAN Default: true. Specifies that the database-to-
JMS notification listener on the application
server is using SSL.

Cúram Server Developer 173

Table 62: BatchLauncher settings (continued)

Property Name Type Meaning

curam.batchlauncher.
dbtojms.notification.ssl
.
protocol

String Default: SSL. The protocol name appropriate
and valid for your environment, which is
dependent on your JDK and application
server; e.g.: SSL, TLS, etc. For this property to
be used

curam.batchlauncher.dbtojms
.notification.ssl

must be set affirmatively.

curam.batchlauncher.
dbtojms.notification.enc
oding

String Specifies the encoding of the database-to-
JMS listener.

curam.batchlauncher.
dbtojms.notification.
batchlaunchermode

String Specifies the db-to-jms mode for the batch
launcher. 0=none, 1=once per batch launcher
session, 2=once per batch job.

curam.batchlauncher.
dbtojms.notification.dis
abled.
in.standalone

BOOLEAN Specifies that the batch launcher should not
perform a db-to-jms notification when run in
standalone mode.

curam.batchlauncher.
dbtojms.notification.tes
t.
stubtrigger

BOOLEAN Default: false. For debugging batch jobs which
use DBtoJMS: stubs out

DBtoJMS.beginTransfer()

to prevent it from creating deferred
processes.

JMSLiteEngine

must be started to process the messages.

curam.batchlauncher.
dbtojms.messagesper
transaction

INT32 Default: 512. The number of messages per
transaction processed by the database-to-
JMS conversion.

Workflow

These settings configure the properties which relate to the Workflow Environment.

174 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 63: Workflow settings

Property Name Type Meaning

curam.workflow.disable.a
udit.
wdovalueshistory.before.
activity

BOOLEAN When specified to true, this flag will ensure
that no WDO values history audit information
will be written before an activity is executed.

curam.workflow.disable.a
udit
.wdovalueshistory.after.
activity

BOOLEAN When specified to true, this flag will ensure
that no WDO values history audit information
will be written after an activity is executed.

curam.workflow.disable.a
udit.
wdovalueshistory.transit
ion.
evaluation

BOOLEAN When specified to true, this flag will ensure
that no WDO values history audit information
will be written before the transitions from an
activity are evaluated.

CTM

These settings configure the properties which relate to Configuration Transport Manager (CTM).

Table 64: CTM settings

Property Name Type Meaning

curam.ctm.landscape.name STRING Default:

nolandscape

. The landscape name for CTM to transport
change set from source to target systems with
in the configured landscape.

Application.prx - Static properties
The following properties relate to the available static properties in the Application.prx file.

Custom

These settings allow a developer to replace elements of the Curam infrastructure with their own
customized handlers.

Cúram Server Developer 175

Table 65: Custom settings

Property Name Type Meaning

curam.custom.audit.write
r

STRING Default:

curam.util.internal.misc.
StandardDatabaseAudit

.
The name of the class which will handle the
generated audit information. This class must
extend

curam.util.audit.AuditLogInterfa
ce

.

curam.util.audit.DisabledAudit

may be used to globally disable auditing.

curam.custom.
predataaccess.hook

STRING The name of the class that implements the
interface

curam.util.audit.DataAccessHook

.

curam.custom.
external.operation.hook

STRING Specifies the fully qualified class name of the
customized external operation Hook which
implements

curam.util.audit.
ExternalOperationHook

. An external operation is an operation
callable as a remote, batch, webservice or
deferred process call.

Security

These settings configure the authentication behavior of Curam.

Table 66: Security settings

Property Name Type Meaning

curam.security.
disable.authorisation

STRING Default: false. Suppress the authorization
checks normally performed by Curam.

176 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 66: Security settings (continued)

Property Name Type Meaning

curam.security.
casesensitive

BOOLEAN Authentication and authorization of user
names is case sensitive by default. When this
property is set to false the authentication and
authorization mechanisms will ignore the
case of the user. If duplicate case insensitive
user names exist (for instance, caseworker,
CaseWorker), authentication will fail due to an
ambiguous user name. Such duplicate names
also will cause the security cache to fail to
initialize.

curam.custom.
externalaccess.implement
ation

STRING The fully qualified name of the class
implementing the

curam.util.security.
ExternalAccessSecurity

interface.
This class implements the custom
authentication mechanism for External Users.

curam.custom.
authentication.implement
ation

STRING The fully qualified name of the class
implementing the

curam.util.security.
CustomAuthenticator

interface.
This class implements custom authentication
verifications that will be invoked during the
authentication process.

curam.custom.
userscope.implementation

STRING The fully qualified name of the class
implementing the

 curam.util.security.UserScope

interface. This class determines the type of
User logging into the application, for example,
INTERNAL or EXTERNAL.

Related concepts
Configuring security

Trace

These control what diagnostic information (in addition to errors which are always logged) is written to the
application server's diagnostics file.

Cúram Server Developer 177

Table 67: Trace settings

Property Name Type Meaning

curam.trace.method_handl
er

STRING Default:

curam.util.resources.Trace.Curam
MethodInvocationHandlerDefault

.
Name of a class implementing

curam.util.resources.Trace.
CuramMethodInvocationHandler

to perform custom method tracing.

curam.trace.
dataaccess.maxstringleng
th

STRING Default: 1000. Maximum length of a String or
CLOB logged by the Data Access Layer when
SQL tracing is enabled.

Environment

These settings configure the environment for your Curam application.

Table 68: Environment settings

Property Name Type Meaning

curam.project.name STRING This parameter is required by the Rules and
Workflow engines to dynamically invoke
methods in the application.

curam.disable.tab.cache BOOLEAN Default: false. This indicates if tab caching
should be disabled. Note: this only applies to
caching on the server side.

Variable Property Settings
The following properties whose name is defined variably.

Transaction
Use this information to understand the properties connected with the runtime setting of transactional
options.

Contains properties connected with the runtime setting of transactional options.

178 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 69: Transaction settings

Property Name Type Meaning

<fully qualified code
package>.intf.<class
name>.<method
name>.transaction.timeout

INT32 Used to control the transaction timeout for a
single operation. The value is the number of
seconds before the transaction times out.
Format: PROJECTNAME.CODEPACKAGE.
intf.CLASSNAME.
OPERATIONNAME.transaction.timeout;
for example,
curam.core.facade.intf.Person.
createAddress.transaction.
timeout=60

LoginBeanTransaction.
transaction.timeout

INT32 Used to control the transaction timeout for
the user login operation. The value is the
number of seconds before the user login
transaction times out.

If this property is not specified, the login
transaction timeout defaults to the JTA
timeout value that is for the application
server.

Audit
Use this information to understand properties that are connected with the editing options with runtime
setting

Contains properties connected with the runtime setting of auditing options.

Table 70: Audit settings

Property Name Type Meaning

curam.audit.opaudittrail BOOLEAN Specify whether operation level auditing for
the operation OPERATIONNAME, within the
client visible class CLASSNAME' of the code
package CODEPACKAGE is enabled or
disabled. Format:
curam.audit.opaudittrail.
PROJECTNAME.CODEPACKAGE.
CLASSNAME.OPERATIONNAME
Default: determined by the option set in the
model.

curam.audit.audittrail BOOLEAN Specify whether table level auditing for the
operation OPERATIONNAME of entity
CLASSNAME' within the code package
CODEPACKAGE' is enabled or disabled.
Format:
curam.audit.audittrail.PROJECTNAME
.CODEPACKAGE.
CLASSNAME.OPERATIONNAME
Default: determined by the option set in the
model.

Cúram Server Developer 179

Table 70: Audit settings (continued)

Property Name Type Meaning

curam.custom.external.
operation.hook

STRING Specify the name of a class that implements
curam.util.audit.DataAccessHook and
that is used to audit client-visible operation
calls.

curam.custom.
predataaccess.hook

STRING Specify the name of the class that
implements
curam.util.audi.DataAccessHook and
is used to audit data access calls.

curam.custom.audit.writer STRING Specify the name of a class that implements
curam.util.audit.AuditLogInterface
and is used to capture and write audit
information.

curam.audit.
audittrail.noxmlaudit

BOOLEAN Specify whether the XML audit writer is
disabled for data access operations. This
property saves XML from being generated for
each invocation of the operation done so far.
Default: false.

Note: Two methods to turn off auditing can be used:

• Set the curam.custom.predataaccess.hook property in the Application.prx to be blank and
set the curam.audit.audittrail.noxmlaudit property to be true.

• Set the value of the property curam.custom.audit.writer to be
curam.util.audit.DisabledAudit. The curam.util.audit.DisabledAudit is a class that is
provided by the Infrastructure that contains empty methods. Therefore, the class is called but no
auditing takes place. This action ensures the Audit.logDataAccess class gets called and builds up
the XML that forms part of the auditing but it does not insert any audit records onto the database.

The first option is the preferred option.

Infrastructure Auditing Settings
Use this information to understand the database operations that are available in Cúram and the default
value of their table-level auditing flag.

Default table-level audit setting
Information that is listed in the tables on this page show the operations names and their default audit
settings for database operations in the Cúram application. Use this information to learn the operation
names and understand the default settings for each operation.

The tables that follow list the database operations in the IBM Cúram Social Program Management
infrastructure and the default value of their table-level auditing flag. This value might be overridden by
setting application properties. For more information, see the Cúram Modeling Reference Guide. Certain
database operations do not support auditing; for example, operations with stereotype ns with
handcrafted SQL. These settings are listed with a default value of N/A

180 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 71: Audit settings 1

Operation Name Default
Auditing
Setting

ActivityInstance.getActivityVersionDetailsByTaskID N/A

ActivityInstance.getTaskID False

ActivityInstance.insert False

ActivityInstance.modify False

ActivityInstance.read False

ActivityInstance.readActivityInstanceByTaskID False

ActivityInstance.readByActivityInstanceCompoundKey N/A

ActivityInstance.readByTaskID False

ActivityInstance.readIterationID False

ActivityInstance.remove False

ActivityInstance.searchByProcessInstanceID False

ActivityInstance.searchByProcessInstanceIDAndStatus False

ActivityInstance.setActivityInstanceStatusAndEndDate False

ActivityInstance.setTaskID False

ActivityOccurrence.insert False

ActivityOccurrence.read False

ActivityOccurrence.remove False

AppResource.insert False

AppResource.modify False

AppResource.read False

AppResource.readAllResources False

AppResource.readByCategory False

AppResource.readByEmptyCategory N/A

AppResource.readByIEGScriptDefinitionID N/A

AppResource.readByLikeName N/A

Cúram Server Developer 181

Table 71: Audit settings 1 (continued)

Operation Name Default
Auditing
Setting

AppResource.readByName False

AppResource.readByNameAndLocale N/A

AppResource.readResourceNameByID False

AppResource.remove False

AppResource.removeByIEGScriptDefinitionID N/A

AppResource.removeByName False

AppResource.removeByNameAndLocale N/A

AuditTrail.insert False

AuditTrail.readAll False

AuthenticationLog.countEntries N/A

AuthenticationLog.insert False

AuthenticationLog.modify True

AuthenticationLog.read False

AuthenticationLog.readmulti False

AuthenticationLog.remove True

AuthorisationLog.countEntries N/A

AuthorisationLog.insert False

AuthorisationLog.readmulti False

BPOMethodLibrary.insert False

BPOMethodLibrary.modify False

BPOMethodLibrary.read False

BPOMethodLibrary.remove False

BPOMethodLibrary.searchBPOMethodReferences N/A

BPOMethodLibrary.searchByCompoundKey False

BatchErrorCodes.getAllErrorCodes N/A

182 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 71: Audit settings 1 (continued)

Operation Name Default
Auditing
Setting

BatchErrorCodes.insert False

BatchErrorCodes.modify False

BatchErrorCodes.read False

BatchErrorCodes.remove False

BatchGroupDesc.insert True

BatchGroupDesc.read False

BatchGroupDesc.readmulti False

BatchGroupDesc.remove True

BatchGrpGrpAssoc.insert False

BatchGrpGrpAssoc.readmulti False

BatchGrpGrpAssoc.readmultichildid False

BatchGrpGrpAssoc.remove False

BatchParamDef.read False

BatchParamDef.readmulti False

BatchParamDesc.insert True

BatchParamDesc.modify True

BatchParamDesc.read False

BatchParamDesc.readmulti False

BatchParamDesc.remove True

BatchParamValue.insert False

BatchParamValue.read False

BatchParamValue.readmulti False

BatchParamValue.remove False

BatchProcDef.read False

BatchProcDef.readAllProcesses False

Cúram Server Developer 183

Table 71: Audit settings 1 (continued)

Operation Name Default
Auditing
Setting

BatchProcDesc.insert True

BatchProcDesc.modify True

BatchProcDesc.read False

BatchProcDesc.readAll False

BatchProcDesc.remove True

BatchProcGrpAssoc.insert True

BatchProcGrpAssoc.readmulti False

BatchProcGrpAssoc.readmultionprocessname False

BatchProcGrpAssoc.remove True

BatchProcRequest.insert False

BatchProcRequest.read False

BatchProcRequest.readallrequests False

BatchProcRequest.readmulti False

BatchProcRequest.readmultiuserid False

BatchProcRequest.remove False

BizObjAssociation.countOpenTasksByBizObjectTypeAndID N/A

BizObjAssociation.insert False

BizObjAssociation.modify False

BizObjAssociation.modifyBusinessObjectID False

BizObjAssociation.read False

BizObjAssociation.remove False

BizObjAssociation.searchByBizObjectTypeAndID False

BizObjAssociation.searchByTaskID False

CacheVersion.insert False

CacheVersion.modify False

184 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 71: Audit settings 1 (continued)

Operation Name Default
Auditing
Setting

CacheVersion.read False

CodeTableData.changeTableName False

CodeTableData.insert True

CodeTableData.modify False

CodeTableData.read False

CodeTableData.removeOneCodeTable False

CodeTableHeader.getChildCode False

CodeTableHeader.insert True

CodeTableHeader.joinCTHeaderCTItem N/A

CodeTableHeader.modifyDefaultCode False

CodeTableHeader.modifyParentCodetable False

CodeTableHeader.modifyTableName False

CodeTableHeader.modifyTimestamp False

CodeTableHeader.read False

CodeTableHeader.readChildCodeTable False

CodeTableHeader.readDefaultCode False

CodeTableHeader.readEntireTable False

CodeTableHeader.readTableName False

CodeTableHeader.remove True

CodeTableHeader.searchByCodeTableName N/A

CodeTableHierarchy.insert False

CodeTableHierarchy.modify False

CodeTableHierarchy.modifyCodetable False

CodeTableHierarchy.read False

CodeTableHierarchy.readAll False

Cúram Server Developer 185

Table 71: Audit settings 1 (continued)

Operation Name Default
Auditing
Setting

CodeTableHierarchy.readByCodetable False

CodeTableHierarchy.remove False

CodeTableItem.changeTableName False

CodeTableItem.countCodeTableItems N/A

CodeTableItem.countDescriptionSameParentCodeDifferentCode N/A

CodeTableItem.countDescriptionSameParentCodeOnTable N/A

CodeTableItem.countDescriptionsOnTable N/A

CodeTableItem.countDescriptionsWithDifferentCodeOnTable N/A

CodeTableItem.insert True

CodeTableItem.insertWithoutTimestamp True

CodeTableItem.listUnlinkedCodesExcludeLocale N/A

CodeTableItem.read False

CodeTableItem.readAllLocales False

CodeTableItem.readAllWithoutAnnotations False

CodeTableItem.readChildren False

CodeTableItem.readChildrenOneLocale False

CodeTableItem.readChildrenOneLocaleExcludeDuplicates N/A

CodeTableItem.readDisabled False

CodeTableItem.readEnabled False

CodeTableItem.readOneLocale False

CodeTableItem.readOneLocaleExcludeDuplicates N/A

CodeTableItem.readUnlinkedCodes False

CodeTableItem.readmulti False

CodeTableItem.remove True

CodeTableItem.removeOneCodeTable False

186 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 71: Audit settings 1 (continued)

Operation Name Default
Auditing
Setting

CodeTableItem.update True

CodeTableItem.updateWithCommentWithoutParentCode True

CodeTableItem.updateWithoutParentCode True

DPErrorInformation.insert False

DPErrorInformation.read False

DPErrorInformation.remove False

DPProcess.insert False

DPProcess.nkreadmulti False

DPProcess.read False

DPProcess.remove False

DPProcessInstance.insert False

DPProcessInstance.nkreadmulti False

DPProcessInstance.read False

DPProcessInstance.setFinishTime False

DPTicket.insert False

DPTicket.modify False

DPTicket.nkreadmulti False

DPTicket.read False

EventClass.insert False

EventClass.modify False

EventClass.read False

EventClass.readAllEventClasses False

EventClass.remove False

EventType.insert False

EventType.modify False

Cúram Server Developer 187

Table 71: Audit settings 1 (continued)

Operation Name Default
Auditing
Setting

EventType.modifyByEventClass N/A

EventType.read False

EventType.remove False

EventType.removeByEventClass False

EventType.searchByEventClass False

EventWait.countEventWaitsByActivityInstanceID N/A

EventWait.countEventWaitsByEventMatchKey N/A

EventWait.insert False

EventWait.readByActivityInstanceID False

EventWait.readByEventMatchKey False

EventWait.readEventMatchDataByActivityInstanceID False

EventWait.remove False

EventWait.removeByActivityInstanceID False

FailedMessage.getAllMessages False

FailedMessage.insert False

FailedMessage.read False

FailedMessage.remove False

FailedMessage.searchByMessageType False

FailedMessage.searchByProcessInstID False

FieldLevelSecurity.getAllOperations N/A

FieldLevelSecurity.getAllReturnedFieldNamesByOperation False

FieldLevelSecurity.getAllReturnedFieldsAndSidsByOperation False

FieldLevelSecurity.getAllSecuredFields N/A

FieldLevelSecurity.getSidForReturnedField False

FieldLevelSecurity.getSidVersionNoForReturnedField False

188 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 71: Audit settings 1 (continued)

Operation Name Default
Auditing
Setting

FieldLevelSecurity.insert True

FieldLevelSecurity.setSidForReturnedField True

FunctionIdentifier.joinFidSecurityFidSid N/A

FunctionIdentifier.read False

FunctionIdentifier.readAllFids False

GroupInformation.getVersionNoForGroup False

GroupInformation.insert False

GroupInformation.listExcludingScript N/A

GroupInformation.modify False

GroupInformation.nkreadmulti False

GroupInformation.read False

GroupInformation.remove False

GroupRange.insert False

GroupRange.readAll False

GroupRangeValid.insert False

GroupRangeValid.readAll False

GroupRangeValid.removeAll False

IEGDefinitionInfo.insert False

IEGDefinitionInfo.nsmultiGroupByType N/A

IEGDefinitionInfo.nsmultiGroupWithoutType N/A

IEGDefinitionInfo.nsmultiScriptByType N/A

IEGDefinitionInfo.nsmultiScriptWithoutType N/A

IEGDefinitionInfo.readmulti False

IEGDefinitionInfo.remove N/A

IEGExecutionInfo.insert False

Cúram Server Developer 189

Table 71: Audit settings 1 (continued)

Operation Name Default
Auditing
Setting

IEGExecutionInfo.modify False

IEGExecutionInfo.nkreadmulti False

IEGExecutionInfo.read False

IEGExecutionInfo.readExec False

IEGExecutionInfo.remove False

IEGExecutionInfo.searchBeforeDate N/A

Iteration.insert False

Iteration.modifyEndDateTime False

Iteration.read False

Iteration.readIterationID False

Iteration.readIterationSummary False

Iteration.remove False

JMSLiteMessage.insert False

JMSLiteMessage.read False

JMSLiteMessage.readAllByType False

JMSLiteMessage.remove False

JoinInstance.insert False

JoinInstance.modify False

JoinInstance.readByJoinMetaID False

JoinInstance.remove False

KeyServer.insert False

KeyServer.modify False

KeyServer.read False

KeySetRange.insert False

KeySetRange.modify False

190 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 71: Audit settings 1 (continued)

Operation Name Default
Auditing
Setting

KeySetRange.read False

MatchedEvtArchive.getMatchedEventsForActivityInstance False

MatchedEvtArchive.insert False

MatchedEvtArchive.read False

MatchedEvtArchive.readByActivityInstanceID False

MatchedEvtArchive.searchByActivityInstanceID False

OpAuditTrail.insert False

ProcEnactEvtData.insert False

ProcEnactEvtData.modify False

ProcEnactEvtData.read False

ProcEnactEvtData.readByProcessStartEventID False

ProcEnactEvtData.remove False

ProcEnactEvtData.removeByProcessStartEventID False

ProcEnactmentEvt.insert False

ProcEnactmentEvt.modify False

ProcEnactmentEvt.read False

ProcEnactmentEvt.readAllRecords False

ProcEnactmentEvt.readByEnabled False

ProcEnactmentEvt.readByEvent False

ProcEnactmentEvt.readByProcessToStart False

ProcEnactmentEvt.remove False

ProcInstOverflow.getWDOSnapshot False

ProcInstOverflow.insert False

ProcInstOverflow.removeAllRecordsForProcessInstanceWDO False

ProcInstWDOData.getAllContextWDOForActivity False

Cúram Server Developer 191

Table 71: Audit settings 1 (continued)

Operation Name Default
Auditing
Setting

ProcInstWDOData.getAllWDODataForOneProcessInstance False

ProcInstWDOData.insert False

ProcInstWDOData.modify False

ProcInstWDOData.read False

ProcInstWDOData.readAllRecords False

ProcInstWDOData.readOverflowInd False

ProcInstWDOData.remove False

ProcInstWDOData.removeAllContextWDOForActivity N/A

ProcessDefinition.countDefinitionsByName N/A

ProcessDefinition.countDefinitionsByNameAndVersion N/A

Table 72: Audit settings 2

Operation Name Default
Auditing
Setting

ProcessDefinition.countUnreleasedDefinitionsByID N/A

ProcessDefinition.countUnreleasedDefinitionsByName N/A

ProcessDefinition.getHighestReleasedVersionNumber N/A

ProcessDefinition.getHighestUnReleasedVersionNumber N/A

ProcessDefinition.getHighestVersionNumber N/A

ProcessDefinition.insert False

ProcessDefinition.modify False

ProcessDefinition.modifyByNameAndVersion False

ProcessDefinition.read False

ProcessDefinition.readByNameAndVersion False

ProcessDefinition.readDefinitionByID N/A

ProcessDefinition.readDefinitionByName N/A

192 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 72: Audit settings 2 (continued)

Operation Name Default
Auditing
Setting

ProcessDefinition.readLatestVersionDefinitionDetailsByName N/A

ProcessDefinition.readProcessIdentifier False

ProcessDefinition.readProcessReleased False

ProcessDefinition.readUnreleasedDefinitionByName N/A

ProcessDefinition.remove False

ProcessDefinition.removeByNameAndVersion False

ProcessDefinition.searchAllDefinitionsSummaryDetails N/A

ProcessDefinition.searchAllVersions False

ProcessDefinition.searchAllVersionsByName False

ProcessDefinition.searchByNameAndReleasedInd False

ProcessDefinition.searchByReleasedIndicator False

ProcessDefinition.searchDefinitions False

ProcessDefinition.searchLatestDefinitions N/A

ProcessDefinition.searchLatestReleasedProcesses N/A

ProcessDefinition.searchProcesses False

ProcessInstance.countProcessInstancesByProcessDefinitionDetails N/A

ProcessInstance.insert False

ProcessInstance.modify False

ProcessInstance.modifyStatus False

ProcessInstance.read False

ProcessInstance.readOne False

ProcessInstance.readStatus False

ProcessInstance.remove False

ProcessInstance.searchByBizObject N/A

ProcessInstance.searchByEventWaitDetails N/A

Cúram Server Developer 193

Table 72: Audit settings 2 (continued)

Operation Name Default
Auditing
Setting

ProcessInstance.searchByParentProcessInstanceID N/A

ProcessInstance.searchByProcessDetails N/A

ProcessInstance.searchByProcessIDAndVersion N/A

ProcessInstance.searchByTaskID N/A

ProcessInstance.searchByTaskUser N/A

PropDescription.countDescriptions N/A

PropDescription.insert True

PropDescription.modify True

PropDescription.read False

PropDescription.readDescriptionByID False

PropDescription.remove True

PropDescription.removeAllDescriptionsByPropertyID False

Properties.countOccurrencesOfName N/A

Properties.insert True

Properties.modify True

Properties.read False

Properties.readAllByLocaleOrCategory N/A

Properties.readName False

Properties.readNameAndValueList N/A

Properties.readbyName False

Properties.readlAllPropertiesTable False

Properties.remove True

Properties.resetAllProperties N/A

Reminders.clearSentRemindersByActivityInstanceID False

Reminders.clearSentRemindersByReminderAndActivityInstanceID False

194 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 72: Audit settings 2 (continued)

Operation Name Default
Auditing
Setting

Reminders.insertReminder False

Reminders.scanReminders N/A

RuleSetInformation.insert False

RuleSetInformation.listByType False

RuleSetInformation.modify False

RuleSetInformation.read False

RuleSetInformation.readDetailsWithoutDefinition False

RuleSetInformation.remove False

RuleSetLink.insert False

RuleSetLink.read False

RuleSetLink.readmultiByMasterRuleSet False

RuleSetLink.readmultiBySubRuleSet False

RuleSetLink.remove False

ScriptGroupRels.dropGroupsForScript N/A

ScriptGroupRels.insert False

ScriptGroupRels.read False

ScriptGroupRels.readmulti False

ScriptGroupRels.readmultiForScript False

ScriptInformation.insert False

ScriptInformation.modify False

ScriptInformation.nkreadmulti False

ScriptInformation.read False

ScriptInformation.remove False

SecurityFidSid.insert True

SecurityFidSid.joinFidSidFunctionIdentifier N/A

Cúram Server Developer 195

Table 72: Audit settings 2 (continued)

Operation Name Default
Auditing
Setting

SecurityFidSid.modifySid True

SecurityFidSid.readAllFid False

SecurityFidSid.readAllFidSid False

SecurityFidSid.readAllSid False

SecurityFidSid.readFid False

SecurityFidSid.readSid False

SecurityFidSid.remove True

SecurityFidSid.removeSid True

SecurityGroup.insert True

SecurityGroup.modify True

SecurityGroup.read False

SecurityGroup.readAllGroups False

SecurityGroup.readGroupsInRole N/A

SecurityGroup.readGroupsNotInRole N/A

SecurityGroup.remove True

SecurityGroupSid.getFunctionSIDsForGroup N/A

SecurityGroupSid.getNonFunctionSIDsForGroup N/A

SecurityGroupSid.getUnlinkedFunctionSIDsForGroup N/A

SecurityGroupSid.insert True

SecurityGroupSid.modifyGroup True

SecurityGroupSid.modifySid True

SecurityGroupSid.read False

SecurityGroupSid.remove True

SecurityGroupSid.removeGroupName True

SecurityGroupSid.removeSid True

196 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 72: Audit settings 2 (continued)

Operation Name Default
Auditing
Setting

SecurityIdentifier.insert True

SecurityIdentifier.modify True

SecurityIdentifier.modifyNameAndDescription True

SecurityIdentifier.read False

SecurityIdentifier.readAllSids False

SecurityIdentifier.readMatchSid False

SecurityIdentifier.readSidType False

SecurityIdentifier.readSidsInGroupSid N/A

SecurityIdentifier.readSidsNotInGroupSid N/A

SecurityIdentifier.remove True

SecurityRole.getNonUsersRoles N/A

SecurityRole.getRolesAndFunctionSIDs N/A

SecurityRole.getRolesAndNonFunctionSIDs N/A

SecurityRole.getUnlinkedFunctionSIDs N/A

SecurityRole.insert True

SecurityRole.modify True

SecurityRole.read False

SecurityRole.readAllRoles False

SecurityRole.readRolesNotInGroup N/A

SecurityRole.remove True

SecurityRoleGroup.insert True

SecurityRoleGroup.modifyAllOccurrencesOfARoleName True

SecurityRoleGroup.modifyGroup True

SecurityRoleGroup.read False

SecurityRoleGroup.readRolesInGroup False

Cúram Server Developer 197

Table 72: Audit settings 2 (continued)

Operation Name Default
Auditing
Setting

SecurityRoleGroup.remove True

SecurityRoleGroup.removeGroupName True

SecurityRoleGroup.removeRole True

SuspendedActivity.insert False

SuspendedActivity.read False

SuspendedActivity.readmulti False

SuspendedActivity.remove False

SuspendedActivity.removeActivitiesForProcessInstance False

TabSession.insert False

TabSession.modify False

TabSession.read False

TabSession.remove False

Task.countAllByBizObjectAndStatus N/A

Task.countAllByBizObjectDueDateAndStatus N/A

Task.countAssignedByBizObjectAndStatus N/A

Task.countAssignedByBizObjectDueDateAndStatus N/A

Task.countByUserAndPriority N/A

Task.countByUserAndStatus N/A

Task.countByUserDueDateAndStatus N/A

Task.countReservedByCategory N/A

Task.countReservedByStatus N/A

Task.countReservedByUsername N/A

Task.countReservedByUsernameAndDueDate N/A

Task.countReservedByUsernameAndPriority N/A

Task.countReservedByUsernameAndStatus N/A

198 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 72: Audit settings 2 (continued)

Operation Name Default
Auditing
Setting

Task.countReservedByUsernameBizObjectAndStatus N/A

Task.countReservedByUsernameBizObjectStatusAndDueDate N/A

Task.countTasksForReservedByUser N/A

Task.insert False

Task.modify False

Task.modifyAssignedDateTime False

Task.modifyPriority False

Task.modifyReservedBy False

Task.modifyRestartTime False

Task.modifyStatus False

Task.modifyTotalTimeWorked False

Task.read False

Task.readAllTasks False

Task.readAssignedDateTime False

Task.readReservedBy False

Task.readStatus False

Task.readSummaryDetails False

Task.readTaskWithDueDate N/A

Task.readTotalTimeWorked False

Task.readVersionNo False

Task.searchAllByBizObjectAndStatus N/A

Task.searchAllByBizObjectDueDateAndStatus N/A

Task.searchAssignedByBizObjectAndStatus N/A

Task.searchAssignedByBizObjectDueDateAndStatus N/A

Task.searchReservedByCategory N/A

Cúram Server Developer 199

Table 72: Audit settings 2 (continued)

Operation Name Default
Auditing
Setting

Task.searchReservedByDueOnDate N/A

Task.searchReservedByPriority N/A

Task.searchReservedByStatus N/A

Task.searchReservedByUsername N/A

Task.searchReservedByUsernameAndDueDate N/A

Task.searchReservedByUsernameAndPriority N/A

Task.searchReservedByUsernameAndStatus N/A

Task.searchReservedByUsernameBizObjectAndStatus N/A

Task.searchReservedByUsernameBizObjectStatusAndDueDate N/A

Task.searchTasksByBizObject N/A

Task.searchTasksByBizObjectAndDueDate N/A

Task.searchTasksByBizObjectAndReservationStatus N/A

Task.searchTasksByBizObjectUserAndStatus N/A

Task.searchTasksByDueDate N/A

Task.searchTasksDueInTheNextWeek N/A

Task.searchTasksReservedDueInTheNextTimePeriod N/A

TaskHistory.insert False

TaskHistory.read False

TaskHistory.search False

TaskHistory.searchByTaskID N/A

TaskWDOOverflow.getWDOSnapshot False

TaskWDOOverflow.insert False

TaskWDOOverflow.removeAllEntriesForTask False

TransitionInstance.insert False

TransitionInstance.modify False

200 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 72: Audit settings 2 (continued)

Operation Name Default
Auditing
Setting

TransitionInstance.read False

TransitionInstance.remove False

TransitionInstance.removeByTransitionID False

TransitionInstance.searchByProcessInstanceID False

UserPreferenceInfo.getAllUserPrefNamesForPrefSetID N/A

UserPreferenceInfo.getAllUserPreferences False

UserPreferenceInfo.getAllUserPreferencesForUser N/A

UserPreferenceInfo.getUserPreference False

UserPreferenceInfo.insertUserPreference False

UserPreferenceInfo.modifyUserPreference False

UserPreferenceInfo.removeUnusedUserPreferences N/A

UserPreferenceInfo.removeUserPreferencesForUser False

Users.countOccurrencesOfRole N/A

Users.modify True

Users.modifyAllOccurrencesOfARoleName True

Users.read False

Users.readAllUsers False

Users.readCaseInsensitiveUser N/A

Users.readLocale False

Users.readUserAndRoleNames N/A

Users.readUsersByRole False

Users.remove True

WDOTemplateLibrary.countTemplatesByName N/A

WDOTemplateLibrary.insert False

WDOTemplateLibrary.modify False

Cúram Server Developer 201

Table 72: Audit settings 2 (continued)

Operation Name Default
Auditing
Setting

WDOTemplateLibrary.read False

WDOTemplateLibrary.readAll False

WDOTemplateLibrary.readTemplateByName False

WDOTemplateLibrary.remove False

WDOTemplateLibrary.searchByCategory False

WDOValuesHistory.insert False

WDOValuesHistory.modify False

WDOValuesHistory.read False

WDOValuesHistory.readByActivityInstanceIDAndExecutionPeriod False

WDOValuesHistory.remove False

WDOValuesHistory.searchByActivityInstanceID False

WDOValuesHistory.searchByProcessInstanceID False

WDOValuesHistory.searchByProcessInstanceIDAndCreationTime N/A

WorkflowDeadline.insert False

WorkflowDeadline.modify False

WorkflowDeadline.modifySuspended False

WorkflowDeadline.read False

WorkflowDeadline.readDeadlineDetailsByActivityInstanceID False

WorkflowDeadline.readDeadlineDetailsByTaskID False

WorkflowDeadline.readDeadlineIDAndTimeByTaskID False

WorkflowDeadline.readDeadlineIDByTaskID False

WorkflowDeadline.remove False

WorkflowDeadline.scanWorkflowDeadlines N/A

WorkflowHistory.insert False

WorkflowHistory.modify False

202 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Table 72: Audit settings 2 (continued)

Operation Name Default
Auditing
Setting

WorkflowHistory.read False

WorkflowHistory.readmulti False

WorkflowHistory.remove False

WorkflowHistory.searchByEvent False

WorkflowHistory.searchByProcessInstanceIDAndEventTime False

WorkflowHistory.searchByProcessInstanceIDAndUserID False

WorkflowHistory.searchByUser False

WorkflowHistory.searchByUserAndEvent False

XMLArchiveDoc.insert False

XMLArchiveDoc.read False

XSLTemplate.insert False

XSLTemplate.modify False

XSLTemplate.read False

XSLTemplate.readAllByType False

XSLTemplate.readByIDCode False

XSLTemplate.readByName False

XSLTemplate.readLatestVersionAndTemplateName False

XSLTemplate.readLatestVersionByTemplateID False

XSLTemplate.readmulti False

XSLTemplate.remove False

XSLTemplateInst.deleteUsingTemplateIDAndLocale False

XSLTemplateInst.getAllTemplateInstDetailsForTemplateIdAndLocale False

XSLTemplateInst.getAllVersionDetails False

XSLTemplateInst.insert False

XSLTemplateInst.modify False

Cúram Server Developer 203

Table 72: Audit settings 2 (continued)

Operation Name Default
Auditing
Setting

XSLTemplateInst.read False

XSLTemplateInst.remove False

204 IBM Cúram Social Program Management: Cúram Server Developer's Guide

Notices

This information was developed for products and services offered in the United States.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing Legal and Intellectual Property Law IBM Japan Ltd. 19-21, Nihonbashi-
Hakozakicho, Chuo-ku Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing IBM Corporation North Castle Drive, MD-NC119 Armonk, NY 10504-1785 US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

© Copyright IBM Corp. 2012 , 2018 205

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Privacy Policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies or other
similar technologies that collect each user’s name, user name, password, and/or other personally
identifiable information for purposes of session management, authentication, enhanced user usability,
single sign-on configuration and/or other usage tracking and/or functional purposes. These cookies or
other similar technologies cannot be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at http://www.ibm.com/privacy and IBM’s Online Privacy Statement at http://
www.ibm.com/privacy/details the section entitled “Cookies, Web Beacons and Other Technologies” and
the “IBM Software Products and Software-as-a-Service Privacy Statement” at http://www.ibm.com/
software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“ Copyright and trademark information ” at http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

206 Notices

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 207

IBM®

Part Number:

(1
P)
 P

/N
:

	Contents
	List of Figures
	List of Tables
	Chapter 1. Cúram Server Developer
	Server Development Environment Overview
	Overview of compliant development artifact changes
	Building and Configuring a Cúram Application
	SDEJ Development and Application Programming Interfaces
	Cúram Runtime Behavior

	Directory Structure
	Application Components
	Component Folders
	Component Order
	Localized Components

	Application directory structure
	Source artifacts of the Cúram application
	Cúram application build structure

	Artifacts of the SDEJ

	Build files and their targets
	How to initiate the build
	Overriding default JUNIT.JAR
	How to configure the build
	Cúram Build Settings
	Java Compiler Settings
	Java Task Settings
	Generator Settings
	Other Environment Settings

	What is happening under the hood
	generated
	wsconnector
	emx2xml
	modelgen
	msggen
	ctgen
	evgen
	compile.generated

	implemented
	compile.implemented

	Extra Targets
	Clover Targets
	Rules Targets
	IEG Targets
	Application Configuration Import and Export Targets
	Workflow Targets
	Deployment Targets
	Extending the Build
	Introducing a new script

	Overridden Targets
	Application Targets
	BI App
	CREOLE
	Evidence Generation

	Cúram Configuration Settings
	Application Properties
	Application prx
	How to merge an application prx file

	Bootstrap.properties

	Support for multiple time zones
	Dates and date/times in Cúram

	Data Manager
	Intended Data Manager process
	Planning for MBCS data

	Invocation
	Database artifacts
	Data definition XML files
	Data contents DMX files
	The table element
	The <attribute> element

	How to customize a DMX file
	Retrieving values from DMX files for database insertion
	Validation of DMX files
	Tracing Information for the DMX Merging Process

	Database Object Naming
	Short Name Substitution
	Primary key indices
	Primary key constraints
	Automatic index generation
	Tablespaces

	Data Manager configuration
	Database Synchronization
	Statistics
	LOB Manager

	SQL Checker
	Under the Hood
	Limitations

	Eclipse
	Cúram projects to import into Eclipse
	Eclipse configuration files
	.project file
	The .classpath file
	Eclipse .classpath generation

	.settings directory

	Access Rules option
	Working Sets

	Logging that uses Apache log4j API
	Logging usage
	Logging hierarchy
	Logging level
	Configuration of the Apache log4j Java-based logging utility
	Logging statistics
	Localization of log messages
	How to enable dynamic UIM tracing

	How to use exceptions
	Constructing an exception
	Creating messages with argument placeholders
	Handling exceptions
	Logging exceptions
	General exception guidelines
	Coding Conventions for Exceptions
	How to use the Record Not Found indicator
	Localized output
	Use of the Informational Manager

	Message and Code Table Files
	Message Files
	The Format of Message Files
	The <messages> Element

	Customizing a Message File
	Rules of Message Merges

	Artefacts Produced by msggen Build Target
	Retrieving Messages from Message Files
	Writing Messages To Server Logs
	Localizing SDEJ Message Files

	Code Table Files
	The Format of Code Table Files
	The <codetables> Element
	The <description> Element
	The <codetable> Element
	The <codetabledata> Element
	The <locale> Element
	The <comments> Element
	The <displaynames> Element
	The <name> Element
	The <locale> Element
	The <code> Element
	The <locale> Element
	The <description> Element
	The <annotation> Element
	The <comments> Element
	The <views> Element
	The <view> Element
	The <code> Element in <view> Element

	Customizing a Code Table File
	Rules of Code Table Merges

	Artifacts Produced by ctgen Build Target
	Code Table Hierarchy
	Retrieving Codes from Code Table Files
	Localizing SDEJ Code Table Files

	Specialized readmulti operations
	When to Use Readmulti Operations
	How to define your own readmulti operations
	Extra features of readmulti operations
	An alternative
	Summary

	Deprecation
	Overview
	Other Sources of Information

	Effect of Deprecation on a Custom Application
	Customizations and References
	Support for Deprecated artifacts
	Effect of Deprecation on the User Interface
	Reinstating Deprecated Functionality

	Scope
	Artifact types that can be deprecated
	Limitations of the deprecation infrastructure

	Running a Deprecation Report
	Configuring the Deprecation Report
	Prerequisites for running the Deprecation Report
	Generating the Deprecation build output
	Identifying deprecation warnings in the build output
	Notes on running the Deprecation Report

	Analyzing Deprecation Warnings
	Identifying overrides of deprecated artifacts
	Addressing overrides of deprecated artifacts

	Identifying references to deprecated artifacts
	Notes on analyzing deprecation warnings

	User Preferences
	User Preferences Definition
	Data definition XML file
	Properties files

	Development support
	External users
	Localizing display names
	Localizing infrastructure preferences display names

	Transaction control
	Developer's View
	Transactions and method invocations
	Optimistic locking and the forUpdate flag
	General guidelines

	Underlying design
	DB2
	Oracle

	Use of the transaction SQL query cache
	How results get stored in the query cache
	How the cache gets invalidated
	How to set the property for the transaction SQL cache
	SQLQueryCacheAdmin API
	SQLQueryCacheUtil API
	Logging

	Deferred processing
	Model your deferred processes
	Deferred process enactment
	WMInstanceData

	Offline Unit-Testing of Deferred Processes
	Configuration of Deferred Processing Table
	Error Handling
	Security
	Deferred Processing summary

	Cúram Timer
	Java Platform, Enterprise Edition Bean Definition
	Development Support
	TimerInfo Class
	TimerTask Class
	TimerCallback Interface
	Code sample:

	Rules for using SDEJ Timers
	Timer Behavior
	FAQ

	Events and event handlers
	The Format of Event Files
	Event definition
	Event handler registration

	How to merge event files
	Rules of event definition merges
	Rules of event handler merges

	Artifacts produced by generate events
	Database Scripts
	Java event code example

	How to raise an event
	Event handlers
	Event filters

	Unique IDs
	What Unique IDs are used for
	The limit of allocating Unique IDs
	When Unique IDs need to be used
	When not to use Unique IDs
	Do keys need to be human-readable?
	When contiguous human-readable Unique IDs are required
	The way to design Unique IDs
	Overview of the Range Aware Key Server
	Overview of the Range Aware Key Server
	How the Range Aware Key Server generates primary keys
	Where to use the Range Aware Key Server

	Cúram Configuration Parameters
	Bootstrap.properties
	Database
	Environment
	Test
	Custom

	Application.prx - Dynamic properties
	Environment
	JMX
	Test
	Rules
	IEG
	Custom
	Trace
	Security
	SMTP
	XML Server
	Database
	KeyServer
	BatchLauncher
	Workflow
	CTM

	Application.prx - Static properties
	Custom
	Security
	Trace
	Environment

	Variable Property Settings
	Transaction
	Audit

	Infrastructure Auditing Settings
	Default table-level audit setting

	Notices
	Privacy Policy considerations
	Trademarks

