
IBM Cúram Social Program Management

Cúram Batch Performance Mechanisms
Version 6.0.5

���

IBM Cúram Social Program Management

Cúram Batch Performance Mechanisms
Version 6.0.5

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 21

Revised: May 2013

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures v

Tables vii

Chapter 1. Introduction 1
1.1 Introduction 1

1.1.1 Intended Audience 1
1.2 What Batch Performance Mechanisms does the
application Provide? 1

1.2.1 Batch Streaming 1
1.2.2 Caching of Batch Process Data. 1

1.3 Cúram Batch Processes using Batch Streaming . . 2
1.4 Operation of Streamed Batch Processes 2

Chapter 2. Batch Streaming Architecture 3
2.1 Introduction 3
2.2 Architectural Details 3

2.2.1 The Chunker 4
2.2.2 The Stream 4
2.2.3 Additional Information 4

Chapter 3. Data Caching. 7
3.1 Introduction 7
3.2 Core Cúram Entity Caches 7

Chapter 4. Cúram Batch Processes
using Streaming. 11
4.1 Introduction 11

4.2 DetermineProductDeliveryEligibility 11
4.3 GenerateInstructionLineItems 11
4.4 GenerateInstruments 11
4.5 CREOLEBulkCaseChunkReassessmentByProduct 11
4.6 ApplyProductReassessmentStrategy 12
4.7
PerformBatchRecalculationsFromPrecedentChangeSet 12

Chapter 5. Operation of Streamed
Batch Processes 15
5.1 Introduction 15
5.2 Running Batch Executables 15
5.3 Environment variables 15

5.3.1 General Batch streaming 16
5.3.2 General Caching 16
5.3.3 Determine Product Delivery Eligibility . . 16
5.3.4 Generate Instruction Line Items 16
5.3.5 Generate Instruments 17
5.3.6 CREOLE Bulk Case Chunk Reassessment By
Product. 17
5.3.7 Apply Product Reassessment Strategy . . . 18
5.3.8 Perform Batch Recalculations From
Precedent Change Set 18

5.4 Error handling 18

Notices 21
Trademarks 23

© Copyright IBM Corp. 2012, 2013 iii

iv IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

Figures

1. Streaming Architecture Overview 3 2. Streaming Architecture Details 6

© Copyright IBM Corp. 2012, 2013 v

vi IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

Tables

1. Method Names for batch executables 15

© Copyright IBM Corp. 2012, 2013 vii

viii IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

Chapter 1. Introduction

1.1 Introduction
This document gives an overview of the application functionality which allows both caching of batch
data and execution of multiple instances of a single batch process. These enhancements were designed to
improve the efficiency and scalability of Cúram batch processing.

Note that this guide should be read in conjunction with the Cúram Batch Processing Guide, which
provides a description of all other aspects of Cúram Batch Processing.

1.1.1 Intended Audience
This document is intended for people interested in batch process performance mechanisms in the
application.

1.2 What Batch Performance Mechanisms does the application
Provide?
Over and above good design and development paradigms, the application provides two primary
mechanisms for improving the performance and scalability of Batch Processes:
v Batch Streaming
v Caching of Batch Process Data

1.2.1 Batch Streaming
Batch Streaming refers to the application support for the concurrent execution of multiple instances of
batch processes. Each logical batch process in the application (for example, GenerateInstructionLineItems)
is represented by two physical batch executables. The first, the 'Chunker', divides the record set to be
processed into a number of subsets or 'chunks', based on a 'chunk size' parameter set via system
properties. The second, the 'Stream', processes these chunks. The Stream processes each record in a
chunk, commits the result, and then looks for another chunk to process. Multiple instances of the Stream
can execute in parallel.

By utilizing this Batch Streaming mechanism, Cúram batch processes can employ all of the available
processing power of their host machine(s). Ultimately, this allows for the processing of more records in a
given time period than a single instance of a batch process would allow.

Chapter 2 discusses the architecture of this mechanism.

1.2.2 Caching of Batch Process Data
Cúram batch processes can also avail of transaction level data caching. Utilization of this mechanism can
greatly reduce the volume of database I/O required for batch process execution. A good example of the
performance savings that this provides is when an error is encountered when processing a record,
requiring it to be skipped or excluded. Caching of data in such situations (where processing effectively
needs to restart without including a particular record) greatly improves operational efficiency.

Chapter 3 provides a description of the caches available to Cúram batch process developers.

© Copyright IBM Corp. 2012, 2013 1

1.3 Cúram Batch Processes using Batch Streaming
The above streaming and caching mechanisms are used in the processing of the following batch
programs:
v Determine Product Delivery Eligibility
v Generate Instruction Line Items
v Generate Instruments
v CREOLE Bulk Case Chunk Reassessment By Product
v Apply Product Reassessment Strategy
v Perform Batch Recalculations From Precedent Change Set

Chapter 4 details the structure of these batch programs with respect to Batch Streaming.

1.4 Operation of Streamed Batch Processes
Batch Streaming introduces a number of operational considerations, including:
v Command-line execution of streamed batch processes
v Properties introduced by Batch Streaming
v Exception processing in streamed batch processes

Chapter 5 discusses these considerations.

2 IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

Chapter 2. Batch Streaming Architecture

2.1 Introduction
This chapter describes the architecture underlying batch streaming in the application.

A simple overview of the architecture is included in the figure below. The mechanism is based on the
concept of segmenting data to be processed into subsets or 'chunks'. Once segmented, an arbitrary
number of batch processes then can operate in parallel on these chunks, performing identical processing
on each constituent record in each chunk. In this way, with the appropriate configuration of the number
and distribution of the batch processes, the use of resources used can be maximized in the most efficient
manner for each process.

2.2 Architectural Details
As mentioned in the introduction, each logical Batch Process in composed of two physical batch
executables: the 'Chunker' and the 'Stream'.

Figure 1. Streaming Architecture Overview

© Copyright IBM Corp. 2012, 2013 3

2.2.1 The Chunker
The 'Chunker' is the batch process executable which identifies the records to be processed. This process
constructs 'chunks' of these records and writes them to the database, in effect assembling them in a
queuing table called BatchProcessChunk. This table is populated at the beginning of batch processing,
and each set of records to be processed is identified on this table by a chunk ID. Note that this assembly
is transactional, and must succeed before any Streams can start their processing.

In addition to creating the chunks, the Chunker waits for all chunks to be processed by the Stream(s) and
produces a summary report when they are all complete. In most cases only one instance of the Chunker
is required for each batch process. Note that if the chunker fails after chunk assembly, it is possible to just
restart it even if streaming has already commenced.

2.2.2 The Stream
The Stream is the batch process executable which performs the appropriate business functionality on each
chunk. Each instance of a Stream operates on one chunk at a time, executing business processing on each
record in the chunk in turn, and updating the chunk record with summary information once processing
is complete. When complete, the records are marked as processed. If further chunks are available,
processing starts again and the streams pick up another chunk.

Two important elements of this processing are as follows:
1. Each chunk is processed in a separate database transaction providing commit-point processing. This

ensures that once a chunk is successfully processed, there will be no need to reprocess its constituent
records if other chunks do not succeed for any reason.

2. Because processing of chunks is transactional, problem records can be excluded from the chunk
during processing. For instance, if there is a lock contention during the processing of a chunk, one of
the records may not be able to be processed at that point in time. In this instance, the work done by
the chunk will be rolled back and the problem record removed. Processing of the chunk can then start
again. Note that use of transaction level caching can greatly reduce the database I/O in this type of
situation (see Chapter 3, “Data Caching,” on page 7 for more details).
When all the chunks have been processed, a final search is done for any remaining unprocessed
records. One final attempt is made to process these. These unprocessed chunks are processed serially.
Streaming is not supported here to mitigate as far as possible against database contention and
concurrency problems. This final search is optional, and is controlled by the 'chunkMainParameters'
parameter of the runChunkMain method on the BatchStreamHelper in question.
When this process is completed, a notification containing the details of those records processed and
those not processed is sent. The recipient of this notification is defined by appropriate coding of the
sendBatchReport method of the chunker batch process.

Note: No differentiation is made by the Batch Streaming environment between records remaining
unprocessed because of technical issues, and those which were skipped for business reasons by the batch
process. It will be left up to the batch administrator or user to examine all outputs to determine any
cause of failures.

2.2.3 Additional Information
A more detailed diagram of the batch streaming architecture is included below. Two additional elements
are of note here:
1. Chunk Key

This table (called BatchChunkKey) is essentially used as a key server, allowing chunks to be "served"
up to individual streams without creating contention on the chunk table itself. It is also worth noting
that the value of the next key available can be examined to determine the progress of the batch
program.

2. Batch params

4 IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

The details of the parameters passed into the Chunker batch process are stored to make them
available to each stream without being re-entered. This table, called BatchProcess, also contains the
total number of chunks written, along with some other information about the Batch Process.

Note: The batch streaming architecture also supports the dynamic addition of streams while the batch
process is being run, subject to the appropriate hardware being available to execute them.

Chapter 2. Batch Streaming Architecture 5

Figure 2. Streaming Architecture Details

6 IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

Chapter 3. Data Caching

3.1 Introduction
The second batch performance mechanism provided by the application addresses the issue of database
I/O contention. Improvements to database I/O in batch processing are always worth making, especially
as batch windows reduce and the case and client loads increase. To this end a number of in-memory
caches have been introduced for core Cúram entities which are available for re-use by Cúram batch
processes.

Note that data which is accessed repeatedly during the eligibility processing is not limited to that stored
in core Cúram entities. As a result, consideration should be given by customers to the caching of custom
entities (e.g. evidence) which are accessed as part of this process.

It is also worth noting that these caches have been constructed so that they cannot be used in on-line
mode. When on-line, because the application server is in control of the thread scheduling, the consistency
between the cached data and that on the database cannot be guaranteed.

3.2 Core Cúram Entity Caches
Caches have been implemented for the following core Cúram Entities:
v CaseEvidenceTree

This entity is one of the constituents of the Case Evidence Tree evidence maintenance solution. The
caching of this entity has been incorporated into the CaseEvidenceAPI class and should not need to be
accessed directly.

v CaseEvidenceGroupLink
This entity is one of the constituents of the Case Evidence Tree evidence maintenance solution. The
caching of this entity has been incorporated into the CaseEvidenceAPI class and should not need to be
accessed directly.

v AttributedEvidence
This entity is part of the Evidence maintenance solution. The caching of this entity has been
incorporated into the Evidence Controller class and should not need to be accessed directly.

v CaseHeader
This stand alone cache is implemented in the CachedCaseHeader class. Referencing this class rather
than the CaseHeader entity directly will allow your processing take advantage of this cache.

v ConcernRole
This stand alone cache is implemented in the CachedConcernRole class. Referencing this class rather
than the ConcernRole entity directly will allow your processing take advantage of this cache.

v CaseNomineeProdDelPattern
This stand alone cache is implemented in the CachedCaseNomineeProdDelPattern class. Referencing
this class rather than the CaseNomineeProdDelPattern entity directly will allow your processing take
advantage of this cache.

v CaseParticipantRole
This stand alone cache is implemented in the CachedCaseParticipantRole class. Referencing this class
rather than the CaseParticipantRole entity directly will allow your processing take advantage of this
cache.

v CaseRelationship

© Copyright IBM Corp. 2012, 2013 7

This stand alone cache is implemented in the CachedCaseRelationship class. Referencing this class
rather than the CaseRelationship entity directly will allow your processing take advantage of this
cache.

v CaseStatus
This stand alone cache is implemented in the CachedCaseStatus class. Referencing this class rather than
the CaseStatus entity directly will allow your processing take advantage of this cache.

v ConcernRoleRelationship
This stand alone cache is implemented in the CachedConcernRoleRelationship class. Referencing this
class rather than the ConcernRoleRelationship entity directly will allow your processing take advantage
of this cache.

v FinancialCalendar
This stand alone cache is implemented in the CachedFinancialCalendar class. Referencing this class
rather than the FinancialCalendar entity directly will allow your processing take advantage of this
cache.

v Person
This stand alone cache is implemented in the CachedPerson class. Referencing this class rather than the
Person entity directly will allow your processing take advantage of this cache.

v Product
This stand alone cache is implemented in the CachedProduct class. Referencing this class rather than
the Product entity directly will allow your processing take advantage of this cache.

v ProductDelivery
This stand alone cache is implemented in the CachedProductDelivery class. Referencing this class
rather than the ProductDelivery entity directly will allow your processing take advantage of this cache.

v ProductDeliveryCertDiary
This stand alone cache is implemented in the CachedProductDeliveryCertDiary class. Referencing this
class rather than the ProductDeliveryCertDiary entity directly will allow your processing take
advantage of this cache.

v ProductDeliveryPattern
This stand alone cache is implemented in the CachedProductDeliveryPattern class. Referencing this
class rather than the ProductDeliveryPattern entity directly will allow your processing take advantage
of this cache.

v ProductDeliveryPatternInfo
This stand alone cache is implemented in the CachedProductDeliveryPatternInfo class. Referencing this
class rather than the ProductDeliveryPatternInfo entity directly will allow your processing take
advantage of this cache.

v ProductRulesLink
This stand alone cache is implemented in the CachedProductRulesLink class. Referencing this class
rather than the ProductRulesLink entity directly will allow your processing take advantage of this
cache.

v ProviderLocation
This stand alone cache is implemented in the CachedProviderLocation class. Referencing this class
rather than the ProviderLocation entity directly will allow your processing take advantage of this
cache.

v RateTable
This cache has been incorporated into the RateTable service layer class and should not need to be
accessed directly.

v SupplierReturnHeader

8 IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

This stand alone cache is implemented in the CachedSupplierReturnHeader class. Referencing this class
rather than the SupplierReturnHeader entity directly will allow your processing take advantage of this
cache.

Chapter 3. Data Caching 9

10 IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

Chapter 4. Cúram Batch Processes using Streaming

4.1 Introduction
This chapter describes the Core Cúram batch processes which implement streaming and caching, together
with their operational characteristics. Each process has been provided as two executables, as described in
the previous two chapters.

4.2 DetermineProductDeliveryEligibility
This batch process takes "Approved" cases and runs the determine eligibility process. Two batch
executables are provided for this batch process:
v DetermineProductDeliveryEligibility

This executable is the Chunker for this process. It identifies all cases which are “Approved” and writes
their caseIDs to the chunks. This process also accepts a product identifier as an optional input
parameter, which is used to limit the cases selected to those which are instances of a particular
product.

v DetermineProductDeliveryEligibilityStream
This program is the Stream for this process. It runs the determine eligibility process for each case and
stores the results on the database.

4.3 GenerateInstructionLineItems
This batch program takes Financial Components due to be processed, reassesses the case for the period to
be paid and generates the appropriate Instruction Line Item records. Two batch executables are provided
for this program:
v GenerateInstructionLineItems

This executable is the Chunker for this process. It identifies all cases with Financial Components due to
be processed and writes their caseIDs to the chunks. This process also accepts a set of optional input
parameters, a 'from' date, a 'to' date and a delivery method, which are used to limit the cases selected
to be processed.

v GenerateInstructionLineItemsStream
This program is the Stream for this process. It runs the determine eligibility process for the period to
be paid for each case and generates all relevant Instruction Line Items.

4.4 GenerateInstruments
This batch program takes Instruction Line Items due to be processed and generates Payment Instrument
records. Two batch executables are provided for this program:
v GenerateInstruments

This executable is the Chunker for this process. It identifies all nominees with Instruction Line Items
due to be processed and writes their nomineeIDs to the chunks.

v GenerateInstrumentsStream
This program is the Stream for this process. It generates Payment Instruments for each nominee.

4.5 CREOLEBulkCaseChunkReassessmentByProduct
This batch process takes "Active" CER cases and runs the case reassessment process on them. Two batch
executables are provided for this batch process:

© Copyright IBM Corp. 2012, 2013 11

Important: As this process will cause reassessment of all cases of the specified type, it may cause a lot of
unneccessary reassessments. Where appropriate, a new batch process should be written in order to more
precisely identify the cases that require reassessment, especially when the cases are spread across a range
of products. For a full explanation of how to write an appropriate batch process see the Inside Cúram
Eligibility and Entitlement Using Cúram Express Rules guide.
v CREOLEBulkCaseChunkReassessmentByProduct

This executable is the Chunker for the bulk case reassessment process. It identifies all cases which are
“Active” and writes their caseIDs to the chunks. The bulk case reassessment also accepts a product
identifier as an optional input parameter, which is used to limit the cases selected to those which are
instances of a particular product.

v CREOLEBulkCaseChunkReassessmentStream
This program is the Stream for the bulk case reassessment process. It runs the case reassessment
process for each case and, if the determination has changed, it stores the new determination and
supersedes the previous one.

4.6 ApplyProductReassessmentStrategy
This batch process checks all the cases for a CER-based product whose reassessment strategy has
changed.
v ApplyProductReassessmentStrategy

This executable is the Chunker for the Apply Product Reassessment Strategy process. It takes a product
ID as input, and for that product identifies all product delivery cases and writes their caseIDs to the
chunks.

v ApplyProductReassessmentStrategyStream
This program is the Stream for the Apply Product Reassessment Strategy process. For each product
delivery case, the program checks to see if the case's support for reassessment has changed due to the
change in the product's reassessment strategy.

For each product delivery case for the product:
v if the case was not reassessable under the old strategy but becomes reassessable under the new

strategy, then an assessment is performed on the case to build up the dependency records for the case's
determination result;

v if the case was reassessable under the old strategy but is no longer reassessable under the new strategy,
then the dependency records for the determination result are removed;

v otherwise no action is performed on the case.

See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide for more detail.

4.7 PerformBatchRecalculationsFromPrecedentChangeSet
This batch process analyzes a set of changes to precedent data and recalculates all dependents potentially
affected by any of those precedent changes.
v PerformBatchRecalculationsFromPrecedentChangeSet

This executable is the Chunker for the Perform Batch Recalculations From Precedent Change Set
process. It takes a dependent type as input, examines the most-recent precedent change set which has
been submitted for batch processing, identifies the unique set of dependents (for the type input)
potentially affected by any of the precedent change items in the submitted precedent change set, and
writes their dependent IDs to the chunks.

v PerformBatchRecalculationsFromPrecedentChangeSetStream
This program is the Stream for the Perform Batch Recalculations From Precedent Change Set. For each
dependent identified, the dependent is recalculated in a manner appropriate to its type, e.g. if the
dependent identifies a CER-based case, the case will be reassessed.

12 IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

For full details on this batch process, see "The Dependency Manager" in the Cúram Express Rules
Reference Guide.

Chapter 4. Cúram Batch Processes using Streaming 13

14 IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

Chapter 5. Operation of Streamed Batch Processes

5.1 Introduction
This chapter details various operational considerations which apply when deploying the streamed batch
processes in the application. Note that similar considerations should also apply to customer-written
streamed batch processes.

5.2 Running Batch Executables
To launch the batch executables on a machine the following command can be used:

ant -f app_batchlauncher.xml -Dbatch.username=superuser -Dbatch.program=<method name>

Where the method name is the appropriate one from the list below:

Table 1. Method Names for batch executables

Executable Method Name

DetermineProductDeliveryEligibility curam.core.intf.DetermineProductDeliveryEligibility.process

DetermineProductDeliveryEligibilityStream curam.core.intf.DetermineProductDeliveryEligibilityStream.process

GenerateInstructionLineItems curam.core.intf.GenerateInstructionLineItems.processAllFinancialComponentsDue

GenerateInstructionLineItemsStream curam.core.intf.GenerateInstructionLineItemsStream.process

GenerateInstruments curam.core.intf.GenerateInstruments.processInstructionLineItemsDue

GenerateInstrumentsStream curam.core.intf.GenerateInstrumentsStream.process

CREOLEBulkCaseChunkReassessmentByProduct curam.core.sl.infrastructure.assessment.intf.CREOLEBulkCaseChunkReassessmentByProduct.process

CREOLEBulkCaseChunkReassessmentStream curam.core.sl.infrastructure.assessment.intf.CREOLEBulkCaseChunkReassessmentStream.process

ApplyProductReassessmentStrategy curam.core.sl.infrastructure.assessment.intf.ApplyProductReassessmentStrategy.process

ApplyProductReassessmentStrategyStream curam.core.sl.infrastructure.assessment.intf.ApplyProductReassessmentStrategyStream.process

PerformBatchRecalculationsFromPrecedentChangeSet curam.dependency.intf.PerformBatchRecalculationsFromPrecedentChangeSet.process

PerformBatchRecalculationsFromPrecedentChangeSetStream curam.dependency.intf.PerformBatchRecalculationsFromPrecedentChangeSetStream.process

So for example to run the DetermineProductDeliveryEligibilityStream process the command would be:

ant -f app_batchlauncher.xml -Dbatch.username=superuser
-Dbatch.program=curam.core.intf.DetermineProductDeliveryEligibilityStream.process

Note that it is possible to use the BatchLauncher to run the batch executables; however the queued
processes will be run sequentially.

5.3 Environment variables
The environment variables listed below control the operation of the various batch performance
mechanisms described in the previous chapters. It is important to note that while the tuning of these
parameters is key to achieving the best performance when running batch processes, it is also possible to
compromise their performance by incorrect tuning of these parameters. It is therefore advised that the
impact of changes to each parameter be assessed individually to ensure that it has the expected affect on
performance.

© Copyright IBM Corp. 2012, 2013 15

5.3.1 General Batch streaming
The following environment variables control the generic batch streaming infrastructure behavior:
v curam.batch.streams.batchprocessreadwaitinterval

The interval (in milliseconds) for which a batch stream will wait before retrying when reading the
batch process table.

v curam.batch.streams.chunkkeyreadwaitinterval
The interval (in milliseconds) for which a batch stream will wait before retrying when reading the
chunk key table.

v curam.batch.streams.scanforunprocessedchunkswaitinterval
The interval (in milliseconds) for which the main batch process (chunker) will wait before trying to
scan for unprocessed chunks, once the value in the chunk key table has exceeded the number of
chunks.

5.3.2 General Caching
The following environment variables control generic caching behavior:
v curam.batch.caching.buffersize

Batch process caches using circular buffers will use this value to set the initial buffer size.

5.3.3 Determine Product Delivery Eligibility
The following environment variables control the behavior of the Determine Product Delivery Eligibility
program:
v curam.batch.determineproductdeliveryeligibility.chunksize

The number of cases in each chunk that will be processed by the Determine Product Delivery
Eligibility batch program.

v curam.batch.determineproductdeliveryeligibility.dontrunstream
Indicates whether the Determine Product Delivery Eligibility batch program should sleep while waiting
for processing to be completed.

v curam.batch.determineproductdeliveryeligibility.chunkkeywaitinterval
The interval (in milliseconds) for which the Determine Product Delivery Eligibility batch program will
wait before retrying when reading the chunk key table.

v curam.batch.determineproductdeliveryeligibility.unprocessedchunkwaitinterval
The interval (in milliseconds) for which the Determine Product Delivery Eligibility batch program will
wait before retrying when reading the chunk table.

v curam.batch.determineproductdeliveryeligibility.processunprocessedchunk
Indicates whether the Determine Product Delivery Eligibility program should attempt to process any
unprocessed chunks found after all the streams have completed.

5.3.4 Generate Instruction Line Items
The following environment variables control the behavior of the Generate Instruction Line Items process:
v curam.batch.generateinstructionlineitems.chunksize

The number of cases in each chunk that will be processed by the Generate Instruction Line Items batch
process.

v curam.batch.generateinstructionlineitems.dontrunstream
Indicates whether the Generate Instruction Line Items batch program should sleep while waiting for
the processing to be completed.

v curam.batch.generateinstructionlineitems.chunkkeywaitinterval
The interval (in milliseconds) for which the Generate Instruction Line Items batch process will wait
before retrying when reading the chunk key table.

16 IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

v curam.batch.generateinstructionlineitems.unprocessedchunkwaitinterval
The interval (in milliseconds) for which the Generate Instruction Line Items batch process will wait
before retrying when reading the chunk table.

v curam.batch.generateinstructionlineitems.processunprocessedchunk
Indicates whether the Generate Instruction Line Items program should attempt to process any
unprocessed chunks found after all the streams have completed.

v curam.batch.generateinstructionlineitems.dontreassesscase
Indicates whether the Generate Instruction Line Items program should skip reassessment of the case
prior to payment.

5.3.5 Generate Instruments
The following environment variables control the behavior of the Generate Instruments process:
v curam.batch.generateinstruments.chunksize

The number of cases in each chunk that will be processed by the Generate Instruments batch process.
v curam.batch.generateinstruments.dontrunstream

Indicates whether the Generate Instruments batch process should sleep while waiting for the
processing to be completed.

v curam.batch.generateinstruments.chunkkeywaitinterval
The interval (in milliseconds) for which the Generate Instruments batch process will wait before
retrying when reading the chunk key table.

v curam.batch.generateinstruments.unprocessedchunkwaitinterval
The interval (in milliseconds) for which the Generate Instruments batch process will wait before
retrying when reading the chunk table.

v curam.batch.generateinstruments.processunprocessedchunk
Indicates whether the Generate Instruments program should attempt to process any unprocessed
chunks found after all the streams have completed.

5.3.6 CREOLE Bulk Case Chunk Reassessment By Product
The following environment variables control the behavior of the CREOLE Bulk Case Chunk Reassessment
By Product program, and its associated Stream process (CREOLE Bulk Case Chunk Reassessment
Stream):
v curam.batch.creolebulkcasechunkreassessment.chunksize

The number of cases in each chunk that will be processed by the CREOLE Bulk Case Chunk
Reassessment Stream program.

v curam.batch.creolebulkcasechunkreassessment.dontrunstream
Indicates whether the CREOLE Bulk Case Chunk Reassessment By Product batch program should
sleep while waiting for processing to be completed.

v curam.batch.creolebulkcasechunkreassessment.chunkkeywaitinterval
The interval (in milliseconds) for which the CREOLE Bulk Case Chunk Reassessment By Product batch
program will wait before retrying when reading the chunk key table.

v curam.batch.creolebulkcasechunkreassessment.unprocessedchunkwaitinterval
The interval (in milliseconds) for which the CREOLE Bulk Case Chunk Reassessment By Product batch
program will wait before retrying when reading the chunk table for unprocessed chunks.

v curam.batch.creolebulkcasechunkreassessment.processunprocessedchunk
Indicates whether the CREOLE Bulk Case Chunk Reassessment By Product program should attempt to
process any unprocessed chunks found after all the streams have completed.

Chapter 5. Operation of Streamed Batch Processes 17

5.3.7 Apply Product Reassessment Strategy
The following environment variables control the behavior of the Apply Product Reassessment Strategy
program, and its associated Stream process (Apply Product Reassessment Strategy Stream):
v curam.batch.applyproductreassessmentstrategy.chunksize

The number of cases in each chunk that will be processed by the Apply Product Reassessment Strategy
batch program.

v curam.batch.applyproductreassessmentstrategy.dontrunstream
Indicates whether the Apply Product Reassessment Strategy batch program should sleep while waiting
for the processing to be completed (rather than run a stream in its context)

v curam.batch.applyproductreassessmentstrategy.chunkkeywaitinterval
The interval (in milliseconds) for which the Apply Product Reassessment Strategy batch program will
wait before retrying when reading the chunk key table.

v curam.batch.applyproductreassessmentstrategy.unprocessedchunkwaitinterval
The interval (in milliseconds) for which the Apply Product Reassessment Strategy batch program will
wait before retrying when reading the chunk table for unprocessed chunks.

v curam.batch.applyproductreassessmentstrategy.processunprocessedchunk
Indicates whether the Apply Product Reassessment Strategy program should process any unprocessed
chunks found after all the streams have completed.

5.3.8 Perform Batch Recalculations From Precedent Change Set
The following environment variables control the behavior of the Perform Batch Recalculations From
Precedent Change Set program, and its associated Stream process (Perform Batch Recalculations From
Precedent Change Set Stream):
v curam.batch.performbatchrecalculationsfromprecedentchangeset.chunksize

The number of dependents in each chunk that will be processed by the Perform Batch Recalculations
From Precedent Change Set batch program.

v curam.batch.performbatchrecalculationsfromprecedentchangeset.dontrunstream
Indicates whether the Perform Batch Recalculations From Precedent Change Set batch program should
sleep while waiting for the processing to be completed (rather than run a stream in its context)

v curam.batch.performbatchrecalculationsfromprecedentchangeset.chunkkeywaitinterval
The interval (in milliseconds) for which the Perform Batch Recalculations From Precedent Change Set
batch program will wait before retrying when reading the chunk key table.

v curam.batch.performbatchrecalculationsfromprecedentchangeset.unprocessedchunkwaitinterval
The interval (in milliseconds) for which the Perform Batch Recalculations From Precedent Change Set
batch program will wait before retrying when reading the chunk table for unprocessed chunks.

v curam.batch.performbatchrecalculationsfromprecedentchangeset.processunprocessedchunk
Indicates whether the Perform Batch Recalculations From Precedent Change Set program should
process any unprocessed chunks found after all the streams have completed.

5.4 Error handling
Two key types of errors can occur when running the streamed batch programs:
v Skipped chunks

These are reported when the batch process completes, together with an estimate of the total number of
records which may have been affected. Re-running the batch process should process these chunks
correctly, unless some fatal error is occurring during the batch processing. Note that skipped chunks
are a relatively rare phenomenon; skipped records are far more likely.

v Skipped records

18 IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

These are also reported when the batch program completes, and entries are added to the log files for
the stream(s) which encountered the errors, detailing the error that occurred and the stack trace. There
are two possible scenarios for this:
1. Some business error was encountered processing the record

The status of the record will have been changed to remove it from the set of records to be
processed and a task will have been created for the business owner. This takes the form of
suspending the case and sending a task to the case owner.

2. Some technical error was encountered processing the record
The status of the record will not have been changed by this event. The log file(s) should be
examined to determine the problem, and the batch process re-run to process these records, once the
issue has been resolved.

Chapter 5. Operation of Streamed Batch Processes 19

20 IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM
may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012, 2013 21

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you. Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

22 IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 23

http://www.ibm.com/legal/us/en/copytrade.shtml

24 IBM Cúram Social Program Management: Cúram Batch Performance Mechanisms

����

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	1.1 Introduction
	1.1.1 Intended Audience

	1.2 What Batch Performance Mechanisms does the application Provide?
	1.2.1 Batch Streaming
	1.2.2 Caching of Batch Process Data

	1.3 Cúram Batch Processes using Batch Streaming
	1.4 Operation of Streamed Batch Processes

	Chapter 2. Batch Streaming Architecture
	2.1 Introduction
	2.2 Architectural Details
	2.2.1 The Chunker
	2.2.2 The Stream
	2.2.3 Additional Information

	Chapter 3. Data Caching
	3.1 Introduction
	3.2 Core Cúram Entity Caches

	Chapter 4. Cúram Batch Processes using Streaming
	4.1 Introduction
	4.2 DetermineProductDeliveryEligibility
	4.3 GenerateInstructionLineItems
	4.4 GenerateInstruments
	4.5 CREOLEBulkCaseChunkReassessmentByProduct
	4.6 ApplyProductReassessmentStrategy
	4.7 PerformBatchRecalculationsFromPrecedentChangeSet

	Chapter 5. Operation of Streamed Batch Processes
	5.1 Introduction
	5.2 Running Batch Executables
	5.3 Environment variables
	5.3.1 General Batch streaming
	5.3.2 General Caching
	5.3.3 Determine Product Delivery Eligibility
	5.3.4 Generate Instruction Line Items
	5.3.5 Generate Instruments
	5.3.6 CREOLE Bulk Case Chunk Reassessment By Product
	5.3.7 Apply Product Reassessment Strategy
	5.3.8 Perform Batch Recalculations From Precedent Change Set

	5.4 Error handling

	Notices
	Trademarks

