
IBM Cúram Social Program Management

Cúram Express Rules Reference Manual
Version 6.0.5

���

IBM Cúram Social Program Management

Cúram Express Rules Reference Manual
Version 6.0.5

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 249

Revised: May 2013

This edition applies to IBM Cúram Social Program Management v6.0.5 and to all subsequent releases unless
otherwise indicated in new editions.

Licensed Materials - Property of IBM.

© Copyright IBM Corporation 2012, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

© Cúram Software Limited. 2011. All rights reserved.

Contents

Figures vii

Tables ix

Chapter 1. Introduction to Reference
Manual 1
1.1 Purpose 1
1.2 Audience 1
1.3 Related Reading 1
1.4 Structure of this Reference Manual 1

Chapter 2. CER at a Glance 3
2.1 What Is CER? 3

2.1.1 Rules Language 3
2.1.2 Authoring and Testing Environment 4
2.1.3 Runtime Environment 5

2.2 What Are Its Benefits? 5
2.3 How Can It Be Used? 5
2.4 Guiding Principles 6

Chapter 3. CER Development and
Testing Tools 9
3.1 Introduction 9
3.2 CER Rules Editor 9
3.3 Localization Support 9

3.3.1 Localization of calculated data. 9
3.3.2 Localization of CER rule artefact
descriptions 13

3.4 The Rule Set Validator 13
3.5 The Rule Set Interpreter 13

3.5.1 Read in the Rule Set. 15
3.5.2 Start a CER Session 15
3.5.3 Create a New Rule Object 15
3.5.4 Execute Rules 16

3.6 CER Test Code Generator 16
3.6.1 How to Generate Code 18

3.7 Rule Set Coverage Tool 19
3.8 CER Publication Area 19
3.9 Schema and Catalog Generation 20
3.10 RuleDoc 20

3.10.1 A Simple Example 20
3.10.2 A More Useful Example 21
3.10.3 How to Generate RuleDoc 23

3.11 SessionDoc 23
3.12 Unused rule attributes 26
3.13 CER Rule Set Consolidator. 27

3.13.1 Example 27

Chapter 4. Handling Data 29
4.1 Introduction 29
4.2 CER Sessions 29
4.3 External and Internal Rule Objects 31

4.3.1 External Rule Objects 31
4.3.2 Internal Rule Objects 34

4.4 Handling Data Types 36
4.4.1 Supported Data Types 36
4.4.2 Where to Specify Data Types 45

4.5 Handling Data that Changes Over Time . . . 46
4.5.1 What Is Timeline Data?. 46
4.5.2 Comparing Timeline and Point-in-time
Perspectives 48
4.5.3 Constructing Timelines 53
4.5.4 Operating on Timelines. 58
4.5.5 Testing Timeline Outputs 64
4.5.6 Timeline Properties 70

4.6 Triggering Recalculation When Data Changes . . 71

Chapter 5. The Dependency Manager 73
5.1 Dependency Manager Concepts 73
5.2 Dependency Manager Functions 75

5.2.1 Storage of Dependency Records 76
5.2.2 Capture of Precedent Change Items . . . 78
5.2.3 Identification of Potentially Affected
Dependents 80
5.2.4 Recalculation of Identified Dependents . . 80

5.3 Dependency Manager Deferred Processing . . . 81
5.3.1 Setting the System Limit for Deferred
Processing 81
5.3.2 Error Handling in the Deferred Processing 81

5.4 Dependency Manager Batch Processing 81
5.4.1 Submit Precedent Change Set 82
5.4.2 Perform Batch Recalculations From
Precedent Change Set 83
5.4.3 Complete Precedent Change Set 85
5.4.4 Dependency Manager Batch Tooling . . . 86

5.5 Integration between CER and the Dependency
Manager 86

5.5.1 CER Utility to Identify Dependencies to
Store 86
5.5.2 CER uses the Dependency Manager to store
dependencies for CER-stored attribute values . . 91
5.5.3 The Dependency Manager requests CER to
recalculate any stored calculated attributes values 92

5.6 Compliancy 92

Chapter 6. About the CER Editor . . . 93
6.1 Introduction 93
6.2 CER Editor Global Menu. 93

6.2.1 CER Editor Global Menu 93
6.2.2 CER Editor Search Tools 94
6.2.3 Business View 94
6.2.4 Technical View 94

6.3 Diagram Canvas 95
6.3.1 Drag and Drop 95
6.3.2 Toggle to Show Detailed Diagrams 95
6.3.3 Pan and Zoom Controls 95

6.4 Tools and Template Palettes 96
6.4.1 Business Palettes 96
6.4.2 Data Types Palette 97

© Copyright IBM Corp. 2012, 2013 iii

6.4.3 Technical Palette 98
6.4.4 Household Units Template 99
6.4.5 Financial Units Template 99
6.4.6 Food Assistance Units Template 100
6.4.7 Decision Table Template 100

6.5 Rule Element Pop-up Menus 101
6.6 Rule Element Properties 101

6.6.1 Collapsible Property and Validation Panels 101
6.6.2 General properties for all rule elements 101
6.6.3 Properties for Rule class 102
6.6.4 Properties for Attribute 102

6.7 Rule Element Wizards 103

Chapter 7. Rule Element Reference for
CER Editor Palettes. 105
7.1 Introduction 105

7.1.1 Palettes 105
7.1.2 Collapsible Palettes. 105

7.2 Rule Element Reference for the Default and
Extended Business Palettes 105

7.2.1 Rule. 105
7.2.2 And Rule Group 107
7.2.3 Or Rule Group 107
7.2.4 Not 107
7.2.5 Choose 108
7.2.6 Compare 108
7.2.7 When 108
7.2.8 Arithmetic 109
7.2.9 MIN 109
7.2.10 MAX 109
7.2.11 SUM 110
7.2.12 Repeating Rule 110
7.2.13 Filter 110
7.2.14 Size 111
7.2.15 Otherwise 111
7.2.16 Legislation Change 111
7.2.17 Era 112

7.3 Rule Element Reference for Data Types Palette 112
7.3.1 Boolean 112
7.3.2 String 112
7.3.3 Number 112
7.3.4 Date. 113
7.3.5 Code Table 113
7.3.6 Rate 113
7.3.7 Frequency Pattern 114
7.3.8 Resource Message 114
7.3.9 Xml Message 115
7.3.10 Null 115

7.4 Rule Element Reference for Technical Logic
Palette 115

7.4.1 Create 115
7.4.2 Search 116
7.4.3 Fixed List 116
7.4.4 Property 117
7.4.5 Custom Expression 118
7.4.6 Existence Timeline 118
7.4.7 Timeline 118
7.4.8 Interval 119
7.4.9 CombineSuccessionSet. 119
7.4.10 Call 119
7.4.11 Period Length 120

7.4.12 ALL 121
7.4.13 ANY 121
7.4.14 This 121
7.4.15 Sort 121
7.4.16 Shared Rule Reference 122
7.4.17 CONCAT 122
7.4.18 Join Lists. 123

7.5 Rule Element Reference for Household Units
Templates 123

7.5.1 Household Composition 123
7.5.2 Household Category 123

7.6 Rule Element Reference for Financial Units
Templates 124

7.6.1 Financial Unit 124
7.6.2 Financial Unit Category 124
7.6.3 Financial Unit Member 124

7.7 Rule Element Reference for Food Assistance
Units Templates 124

7.7.1 Food Assistance Unit 124
7.7.2 Food Assistance Single Person Category 124
7.7.3 Food Assistance Multi Person Category 124
7.7.4 Meal Group Members 125
7.7.5 Relatives 125
7.7.6 Discard 125
7.7.7 Member for household unit 125
7.7.8 Optional Members 125
7.7.9 Exceptions 125

7.8 Rule Element Reference for Decision Table
Templates 125

7.8.1 Decision Table 125

Chapter 8. CER Best Practices 127
8.1 Introduction 127
8.2 The description Rule Attribute 127
8.3 Getting a Rule Set Working Quickly 133
8.4 Naming Rule Elements 134
8.5 When to Use the Reference Expression. . . . 134
8.6 Use RuleDoc 135
8.7 Normalize Common Rules 135
8.8 Remove Unused Rules 135
8.9 Order of Declarations 136

8.9.1 Order of Rule Classes within a Rule Set 136
8.9.2 Order of Calculated Rule Attributes within
a Rule Class 136
8.9.3 Order of Initialized Attributes within a
Rule Class 136
8.9.4 Order of Boolean Conditions 136

8.10 Creating Rule Objects 136
8.11 Pass Rule Objects in Preference to Passing IDs 137
8.12 Developing Static Methods 137
8.13 Avoid Common Pitfalls in Tests. 140

8.13.1 Avoid JUnit's assertEquals 141
8.13.2 Remember to Use .getValue() 141
8.13.3 Remember to Specify All Values Required
by the Calculations Being Tested 142
8.13.4 Do Not Specify the Same Value More
than Once 143
8.13.5 Specify the Correct Type of Value for an
Attribute 144
8.13.6 Create all Rule Objects for a Session
before Running getValue Calculations 145

iv IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Appendix A. CER XML Dictionary . . . 147
A.1 Introduction 147
A.2 Rule Set 147
A.3 Include Statement 148
A.4 Rule Class 149

A.4.1 Initialized Attributes 150
A.4.2 Calculated Attributes 150

A.5 Attribute 152
A.6 Expressions 152

A.6.1 Boolean Logic 152
A.6.2 Value Comparison 152
A.6.3 Constants. 152
A.6.4 Conditional Logic 152
A.6.5 List Aggregations 153
A.6.6 List Transformations 153
A.6.7 Localizable Messages 153
A.6.8 Numerical Calculations 153
A.6.9 References 153
A.6.10 Creation 154
A.6.11 Retrieval. 154
A.6.12 Java Callouts 154
A.6.13 Markers 154
A.6.14 Timelines 154
A.6.15 Product Delivery Eligibility and
Entitlement 154
A.6.16 householdcomposition 154
A.6.17 Full Alphabetical Listing of Expressions 154

A.7 Annotations 230
A.7.1 Full Alphabetical Listing of Annotations 231

Appendix B. Useful List Operations 235

Appendix C. Using CER with the
Datastore 239
C.1 The DataStoreRuleObjectCreator 239
C.2 Example. 239

Appendix D. Compliancy 245
D.1 CER's Public API 245

D.1.1 Identifying the API 245
D.1.2 Outside the API 245

D.2 CER Expressions 245
D.3 Rule Sets Included with the Application . . . 245
D.4 Examples in this Guide. 246
D.5 CER's Database Tables 246

D.5.1 CREOLERuleSet 246
D.5.2 CREOLEMigrationControl 246
D.5.3 Other CER Infrastructure database tables 246

D.6 The Dependency Manager. 247

Notices 249
Trademarks 251

Contents v

vi IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Figures

1. Outputting a String 10
2. Outputting a localizable Message 10
3. Localization of “Hello, world!” - English 10
4. Localization of “Hello, world!” - French 11
5. Interacting with the localized rule set 12
6. Running rules with the CER rule set

interpreter 14
7. Running rules with the CER-generated test

rule classes. 17
8. Generated Java interface for the HelloWorld

rule class 18
9. Example Coverage Report. 19

10. A Hello World rule set 21
11. RuleDoc for the HelloWorldRuleSet 21
12. RuleDoc for the HelloWorld rule class 21
13. RuleDoc for the greeting rule attribute 21
14. A retirement-year calculator 22
15. RuleDoc showing derivation and usage 22
16. SessionDoc for the

testSelfMadeMillionaireScenario test . . . 24
17. Rule Objects for the

FlexibleRetirementYearRuleSet rule set . . . 24
18. SessionDoc for the FlexibleRetirementYear

rule object 25
19. Examples of Timeline Data 47
20. Truth Table for Lone parent of a minor rule 49
21. Timelines for Joe, Mary and James's

circumstances 51

22. Timelines for Joe, Mary and James's status as a
lone parent of a minor 52

23. Example of use of Timeline and Interval to
create a timeline 57

24. A Total Income Timeline, Calculated using sum 59
25. A Requirement for a Date-Addition Timeline 60
26. A Requirement for a Date-Spreading Timeline 62
27. Example of strictly testing a resultant timeline 67
28. Example of more lax testing of a resultant

timeline 69
29. Pan and Zoom Controls 95
30. Pop-up menu: 124
31. Pop-up menu: 124
32. SessionDoc showing rule object description

values 131
33. SessionDoc for a rule object with no

description override 132
34. Use of description in an integrated

development environment 133
35. Safe list for java.lang.Object methods 202
36. Safe list for java.lang.Number methods 202
37. Safe list for java.util.List methods 203
38. Example properties - English 213
39. Example properties - French 213
40. Safe list for java.util.List methods 235
41. Sample entry from a compliant

CREOLERuleSet.dmx file 246

© Copyright IBM Corp. 2012, 2013 vii

viii IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Tables

1. Description of Related Documents 1
2. Calculation of interval values for Mary's

isLoneParentOfMinorTimeline value 71
3. Example Dependency Matrix. 74
4. Example Dependency Storage 74
5. Example Fine-Grained Dependency Matrix 78
6. Example Coarse-Grained Dependency Matrix 78
7. Precedents Identified Directly by CER. . . . 88
8. Dependencies Stored For Tax Liability Example 90
9. Example Precedent Change Items for Tax

Liability. 91
10. Menu Bar 93
11. Search Criteria 94
12. New Menu items 94
13. New Menu items 95
14. Rule Elements on Business Palettes 96
15. Rule Elements on Data Type Palette 97
16. Rule Elements on Technical Palette. 98
17. Rule Elements on Household Units Template

Palette 99
18. Rule Elements on Financial Units Template

Palette 99
19. Rule Elements on Food Assistance Units

Template Palette 100
20. Elements on Decision Table Palette 100
21. General Pop-up Menus items 101
22. General properties 101
23. Rule Class Properties 102
24. Attribute Properties 102
25. Rule Element Wizard Table 103
26. Types of scenarios to use the Rule elements 106
27. Reference properties items 106
28. Rule Element Pop-up Menus items 106
29. And Rule Group Element Pop-up Menus

items 107
30. Or Element Pop-up Menus items 107
31. Not Element Pop-up Menus items 108
32. Choose Element Pop-up Menus items 108
33. Compare Element Pop-up Menus items 108
34. Arithmetic properties items 109
35. Min Element Pop-up Menus items 109
36. Max Element Pop-up Menus items 109
37. Repeating Rule properties items 110
38. Repeating Rule Pop-up Menus items 110
39. Filter properties items 111
40. Filter Pop-up Menus items 111
41. Size properties items 111

42. Legislation Change Element Pop-up Menus
items 112

43. Boolean Pop-up Menus items 112
44. String properties items 112
45. Number properties items. 113
46. Date properties items 113
47. Code Table properties items. 113
48. Rate properties items 113
49. Frequency Pattern properties items 114
50. Filter Pop-up Menus items 114
51. Resource Message properties items 114
52. Resource Message Pop-up Menus items 115
53. XML Message properties items. 115
54. Xml Message Pop-up Menus items 115
55. Create properties items 115
56. Create Element Pop-up Menus items 116
57. Search properties items 116
58. Search Element Pop-up Menus items 116
59. FixedList properties items 117
60. Property properties items 117
61. Property Pop-up Menus items 117
62. Custom Expression Pop-up Menus items 118
63. Existence Timeline properties items 118
64. Existence Timeline Element Pop-up Menus

items 118
65. Existence Timeline properties items 118
66. Timeline Element Pop-up Menus items 119
67. Interval Element Pop-up Menus items 119
68. CombineSuccessionSet Element Pop-up

Menus items 119
69. Call properties items 120
70. Call Pop-up Menus items 120
71. Period Length properties items 120
72. ALL Element Pop-up Menus items 121
73. ANY Element Pop-up Menus items 121
74. ANY Element Pop-up Menus items 122
75. Shared Rule Reference properties items 122
76. Shared Rule Reference Element Pop-up

Menus items 122
77. Concat properties items 123
78. Join Lists properties items 123
79. Join Lists Pop-up Menus items. 123
80. Household Category Pop-up Menus items 124
81. Food Assistance Multi Person Category

Pop-up Menus items 124
82. Decision Table properties items 125
83. Decision Table Pop-up Menus items 126

© Copyright IBM Corp. 2012, 2013 ix

x IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Chapter 1. Introduction to Reference Manual

1.1 Purpose
This reference manual describes the Cúram Express Rules (CER) rule language, development
environment and runtime features.

1.2 Audience
This reference manual should be consulted by anyone involved in the use of CER to implement business
calculation rules, including:
v Business analysts, who are gathering requirements which involve business calculations; knowing CER's

capabilities and approaches will help you structure your requirements in a way which makes
implementation in CER more straightforward;

v Rule set developers, who are responsible for encoding business logic in a rule set; you will need to
understand the CER language in order to encode business logic; and

v Testers, who are responsible for ensuring that the implementation meets the requirements; you will
need to understand CER's testing support in order to decide your testing approach.

As can often be the case, any given person may well perform more than one (if not all) these roles.
Depending on your role and/or background, you should read the chapters in this manual in the order
that suits you best.

1.3 Related Reading
Table 1. Description of Related Documents

Document Document Type How Related

Working with Cúram Express Rules Developer Guide This provides step-by-step
instructions on how to create CER
rule sets in the CER editor using
samples ranging in rules complexity.

Inside Cúram Eligibility and
Entitlement Using Cúram Express
Rules

Developer Guide This describes how the Cúram
Eligibility and Entitlement Engine
interacts with CER to calculate
determinations for product delivery
cases.

How to Build a Product Developer Guide This describes all the tasks that need
to be completed as part of building a
product, including the assignment of
CER rules to a product.

Universal Access Customization
Guide

Developer Guide This describes how to use CER rules
in Cúram Universal Access module
to provide screening results to
citizens.

1.4 Structure of this Reference Manual
This manual is part overview and part reference material. You should not (necessarily) read it from start
to finish.

© Copyright IBM Corp. 2012, 2013 1

Chapter 2, “CER at a Glance,” on page 3
This chapter explains what CER is, its benefits, and how it can be used.

Chapter 3, “CER Development and Testing Tools,” on page 9
This chapter describes the tools available for developing and testing your CER rule sets.

Chapter 4, “Handling Data,” on page 29
This chapter explains how CER handles and stores data, and reacts to changes in data.

Chapter 5, “The Dependency Manager,” on page 73
This chapter describes how the application records that a calculated value depends on input
values, and how these dependency records are used to support automatic recalculations.

Chapter 6, “About the CER Editor,” on page 93
This chapter describes the different parts of the CER Editor.

Chapter 7, “Rule Element Reference for CER Editor Palettes,” on page 105
This chapter describes in detail how to construct the elements of a rule set in the CER Editor.

Chapter 8, “CER Best Practices,” on page 127
This chapter provides advice on how to write good CER rule sets.

Appendix A, “CER XML Dictionary,” on page 147
This appendix provides a reference to the XML format used to store CER rule sets.

Appendix B, “Useful List Operations,” on page 235
This appendix describes some useful operations available on lists.

Appendix C, “Using CER with the Datastore,” on page 239
This appendix describes how CER can draw data from the Datastore.

Appendix D, “Compliancy,” on page 245
This appendix explains how to develop with CER in a compliant manner.

2 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Chapter 2. CER at a Glance

2.1 What Is CER?
CER is:
v a language for expressing the rules for business calculations (in "rule sets"); and
v a development environment for authoring and testing these rule sets.
v a runtime environment for executing rules.

2.1.1 Rules Language
CER is a language for defining questions that can be asked, and the rules for determining the answers to
those questions.

Each question specifies:
v its name;
v the type of data which provides the answer to the question; and
v the rules for providing the answer (if the question is asked).

The answer to a question can be as simple as yes or no, e.g. the question "Is this person eligible to receive
benefit?"; however, CER lets you define answer types to be as complex as you need, e.g. the question
"Which groups of people in the household have an urgent need?" would be answered by providing a list
of household groups, with each household group containing a list of people.

The rules for determining the answer to a question again can be as simple or as complex as you need,
e.g. the rule for the answer to the question "What is the claimant's date of birth?" is likely to (trivially) be
"the date that the claimant declared their date of birth to be", whereas the rule for answering the question
"Is this person eligible to receive a benefit?" is likely to involve further questions such as "What level of
income does this person have?" and/or "How many children does this person have?".

CER has its own terminology for these concepts:
v Rule Class

A rule class is a type of "thing" which has data, such as a Person, an Income or a Claim. A new rule
class can be created in the CER Editor. See 6.2.4, “Technical View,” on page 94

v Rule Object

A rule object is an instance of a Rule Class, e.g. John Smith (a Person), John Smith's income from his
part-time job (Income), or John Smith's application for child support benefits (Claim).

v Rule Attribute

A rule attribute is a question that can be asked. It is defined on a Rule Class and may be asked of any
Rule Object of that class, e.g. the Person rule class may define the dateOfBirth rule attribute, and so the
John Smith rule object may be asked its dateOfBirth, (e.g. 3rd October 1970). A new Attribute can be
created for the selected rule class in the CER Editor. See 6.2.4, “Technical View,” on page 94

v Expression

An expression is a calculation step which can be used to answer a question, e.g. if the eligibility of a
claim depends on a person's total income being below a certain threshold, we can use a "sum"
expression to calculate the total income and then use a "compare" expression to compare that total with
the threshold amount. In order to create an expression, a "sum" rule element can be dragged to the rule
attribute in the CER Editor. See 6.2.3, “Business View,” on page 94

v Rule Set

© Copyright IBM Corp. 2012, 2013 3

A rule set is a collection1of rule classes, typically centered around a specific purposes, e.g. a rule set for
child benefit determination might include the rule classes Claim, Person and Income. A new rule set
can be created in the Rules and Evidence section of the Administration Interface.

v Rule Session

A rule session controls the running of rules, e.g. your application might create a rule session to
determine John Smith's eligibility for child benefit, by invoking the appropriate rule set and asking
eligibility questions regarding John's personal circumstances.

2.1.2 Authoring and Testing Environment
CER rule sets are created and maintained in the CER Editor. CER rule sets are stored as XML data on the
application database. The XML data for a CER rule set adheres to the CER-supplied rule schema.

CER also includes a comprehensive rule set validator which can detect errors in your rule set before
allowing your rules to execute. You can validate your rule set in the CER Editor. See 6.2, “CER Editor
Global Menu,” on page 93

CER supports you running rule sessions in:
v production environments, where CER integrates with your application to answer questions when

needed; and
v a stand-alone test environment where you create repeatable automated tests for your rule sets.

CER rule sets are fully dynamic. In production environments, CER supports the uploading of changes to
rule sets which take effect when published; no rebuilding or redeploying of your application is required.

The testing of CER rule sets can be at whatever level suits you. You may choose to provide detailed test
data for a complete "business scenario", and/or you can create isolated tests for parts of your rule set
without having to carefully set up large amounts of input data.

For example, the determination of a person's eligibility for child benefit might be a complex calculation
involving (amongst other things) the comparison of the person's total income to a certain threshold.
Furthermore, the calculation of the person's total income is itself a complex calculation, involving
decisions regarding whether certain types of income are "countable" for the purposes of child support
eligibility.

When testing the eligibility calculation, in traditional development you might have to carefully set up
income data to provide a calculated total income, which in turn you can use to test the eligibility
calculation. Depending on the complexity of the calculations, this set up of data might be very tedious to
do and be very brittle to change.

By comparison, in CER you can simply "stub out" a calculation without having to supply low-level
detailed data; CER makes it extremely straightforward to produce a test which effectively says "for the
purposes of this test, the total income is $10 - do not attempt to calculate the total income during this
test".

This CER facility makes it easy to test all the functionality in your rule set at a level that makes sense.

The authoring environment also includes tools to assist with development and testing of your rules:
v RuleDoc

An HTML extract of the structure of your rule sets.
v SessionDoc

1. Since Cúram V6, rule sets are no longer stand-alone. A class in one rule set can extend a rule class from another rule set; the data
type of a rule attribute in one rule set can be a rule class from another rule set; and expressions to read or create rule objects can
use rule classes from other rule sets.

4 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

An HTML representation of the data in your rule objects.
v Coverage Tool

Reports the extent of your rule set which was exercised by your tests.

2.1.3 Runtime Environment
CER executes rules on demand at runtime.

Since Cúram V6, CER also has features:
v to store rule objects on the database, so that the rule objects are available for future processing; and
v to integrate with the Dependency Manager to detect when input data has changed, and to

automatically update calculation results which depend on these input data items (akin to familiar
spreadsheet processing).

2.2 What Are Its Benefits?
CER offers these key benefits:
v Simplicity

CER rule sets are only as complex as your business requirements. Business users and technical users
alike can read CER rule sets and easily understand "what's going on". Rule sets are simple to write and
simple to test.

v Flexibility

Rule sets are easy to change. You can add new questions at any time and CER guarantees that existing
behavior is entirely unaffected. You can make changes to the way an existing questions is answered,
and CER will show you which calculations depend on that question, so that you are fully in control of
the effect of your change.

v Localization Support

CER can produce localizable output, so that answers to questions can be displayed to your end users
according to their language and locale preferences.

v Validity

CER works hard to detect errors in your rule set before you run it. The CER rule set validator reports
as many errors as it can so you can fix them in one go. CER finds technical problems in your rule set
so that you only have to concentrate on the functionality of your rule set.

v Testability

You can test your CER rule sets at the granularity that suits you. CER allows you to keep control over
your large rule sets by creating tests for discrete sections of your rules.

v Dynamic support

You can make changes to your CER rule set in a running system and your changes take effect
immediately upon publication.

v Spreadsheet-like behavior

Construction of CER rules is akin to layering formulae in the cells of a spreadsheet (which will be
familiar to many users). When input data (such as evidence, personal data or payment rates) change,
CER integrates with the Dependency Manager to automatically recalculate derived values which are
affected by the change.

2.3 How Can It Be Used?
The CER development environment tightly integrates with the wider application development
environment.

CER is used by a number of application areas, including (but not limited to):
v Cúram's Universal Access Module

Chapter 2. CER at a Glance 5

The Cúram Universal Access Module relies on CER to determine potential eligibility for social services
programs when citizens use the self service module to perform self-screening. Based on the data
captured, CER determines which programs the citizen is potentially eligible for, and provides a textual
explanation (in the citizen's language) of why that citizen is or is not potentially eligible.

v Advisor

The Advisor uses CER rules to compute advice to display to users. This advice is automatically
updated when circumstances change.

v Eligibility and Entitlement Engine

Cúram's Case Eligibility and Entitlement Engine tightly integrates with CER to provide determinations
of a case's eligibility and entitlement (and explanations of how these were derived) across the full
lifetime of the case. The Case Eligibility and Entitlement Engine relies on the integration between CER
and the Dependency Manager to identify when to recalculate a case's determination, either due to
case-specific changes such as evidence data, or from wider data changes such as changes to personal
data or product-wide rate data.

You can also use CER to perform calculations for your own custom business areas.

The CER runtime does not have any in-built business concepts; instead, each business area communicates
with CER via the use of:
v interface rule classes which encapsulate the business concepts; and/or
v extensions to the CER language which are business-concept aware.

For details on how application components utilize CER, see the business and technical guides for that
component.

2.4 Guiding Principles
At its heart, CER upholds certain key principles. Knowing a little about these principles may help you to
understand CER's approach:
v Questions are answered only when needed

The work done to answer a question is only done when that question is asked.
v All data is immutable

The answer to a question is a value which cannot be accidentally changed by something outside CER.
If the answer to a question is recalculated, then a fresh answer value will be created.

v Allow multiple questions

A rule set does not execute once through; rather a rule set allows as many questions to be asked as is
needed.

v Specify rules, not order of execution

You specify the rules for answering a question, and leave CER to efficiently answer those questions at
runtime.

v No volatility

Identical inputs processed by identical rules always produces the same output.
v No "working storage"

There no counters or running totals. An count or total is a question in its own right - you provide the
rules for answering it, and CER worries about the order of execution when answering it.

v Name what you need to

You only have to provide names for business concepts and questions. You do not have to think up
descriptive names for interim results (unless you want to).

v Development and testing go hand-in-hand

CER provides strong support for managing the testing of your rules.

6 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v No in-built business concepts

The CER runtime intentionally contains no business concepts. You define the business concepts you
need, leaving the CER runtime to be a general-purpose environment.

v Rule implementation maps neatly to rule requirements

The implementation of your rule requirements is as complex as those requirements - but no more so.
CER rule sets "make sense" when viewed by the business analysts who gathered the original
requirements.

v Lean on well-known Java support

CER does not reinvent the wheel - functionality provided by existing Java™ technology is easily reused
in CER rule sets.

v Management of calculation dependencies

CER integrates with the Dependency Manager to manages calculation dependencies so that you don't
have to. When an input data item changes, the Dependency Manager and CER know what to
recalculate. You do not have to write any special processing which guesses at which calculated outputs
might be affected.

Chapter 2. CER at a Glance 7

8 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Chapter 3. CER Development and Testing Tools

3.1 Introduction
This chapter describes the tools available for developing and testing your CER rule sets.

3.2 CER Rules Editor
CER Editor provides a user-friendly environment and interface for both technical and business users to
create, edit and validate a rule set and its rule classes. Please read the Chapter 6, “About the CER Editor,”
on page 93 for details on using the CER Editor.

3.3 Localization Support
Localization in CER covers these two distinct tasks:
v localization of calculated data returned by a CER rule attribute, so that the output can be displayed to

users in different locales; and
v localization of the descriptions for artefacts in your CER rule sets, so that the users viewing rule sets in

the CER Editor can do so in their own locale.

These items are covered in more detail in the following sections.

Important: The names of rule set elements such as rule classes and attributes cannot be localized, as they
are used within the CER language as identifiers, e.g. the name of an attribute in a reference expression.

Instead, the descriptions of rule elements can be localized, leaving the names of elements unchanged.

3.3.1 Localization of calculated data
CER supports the commonplace Java class String.

Strings may be useful in the initial phases of developing your rule set; however, if your rules contain
output which needs to be displayed to users in different locales, then you may need to take advantage of
CER's support for localization.

The String value “Hello World” is the below example all very well for end users who read English; but
what if they do not?

© Copyright IBM Corp. 2012, 2013 9

CER includes a curam.creole.value.Message interface which enables the conversion of a value to
locale-specific String at runtime.

For a list CER expressions which can create an instance of curam.creole.value.Message, see A.6.7,
“Localizable Messages,” on page 153.

Now we will rewrite the HelloWorld example to be localizable:

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="HelloWorldRuleSet"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="HelloWorld">

<Attribute name="greeting">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="Hello, world!"/>
</derivation>

</Attribute>

</Class>

</RuleSet>

Figure 1. Outputting a String

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="LocalizableHelloWorldRuleSet"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="HelloWorld">

<Attribute name="greeting">
<type>

<!-- Use Message, not String -->
<javaclass name="curam.creole.value.Message"/>

</type>
<derivation>

<!-- Look up the value from a localizable
property, instead of hard-coding a
single-language String -->

<ResourceMessage key="greeting"
resourceBundle="curam.creole.example.HelloWorld"/>

</derivation>
</Attribute>

</Class>

</RuleSet>

Figure 2. Outputting a localizable Message

file curam/creole/example/HelloWorld_en.properties

greeting=Hello, world!

Figure 3. Localization of “Hello, world!” - English

10 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

How will this message behave at runtime? Any code which interacts with your rule set must invoke the
toLocale method on any messages, to convert them to the required Locale.

file curam/creole/example/HelloWorld_fr.properties

greeting=Bonjour, monde!

Figure 4. Localization of “Hello, world!” - French

Chapter 3. CER Development and Testing Tools 11

If used within a localizable message, the following data types are formatted at runtime in a locale-aware
way:

package curam.creole.example;

import java.util.Locale;

import junit.framework.TestCase;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.Session_Factory;
import
curam.creole.execution.session.StronglyTypedRuleObjectFactory;

import
curam.creole.ruleclass.LocalizableHelloWorldRuleSet.impl.HelloWorld;

import
curam.creole.ruleclass.LocalizableHelloWorldRuleSet.impl.HelloWorld_Factory;

import curam.creole.storage.inmemory.InMemoryDataStorage;
import curam.creole.value.Message;

public class TestLocalizableHelloWorld extends TestCase {

/**
* Runs the class as a stand-alone Java application.
*/
public static void main(final String[] args) {

final TestLocalizableHelloWorld testLocalizableHelloWorld =
new TestLocalizableHelloWorld();

testLocalizableHelloWorld.testLocalizedRuleOutput();

}

/**
* A simple test case, displaying output localized into different
* locales.
*/
public void testLocalizedRuleOutput() {

final Session session =
Session_Factory.getFactory().newInstance(

new RecalculationsProhibited(),
new InMemoryDataStorage(

new StronglyTypedRuleObjectFactory()));

final HelloWorld helloWorld =
HelloWorld_Factory.getFactory().newInstance(session);

// returns a Message, not a String
final Message greeting = helloWorld.greeting().getValue();

// to decode the message, we need to use the user’s locale
final String greetingEnglish =

greeting.toLocale(Locale.ENGLISH);
final String greetingFrench = greeting.toLocale(Locale.FRENCH);

System.out.println(greetingEnglish);
System.out.println(greetingFrench);

assertEquals("Hello, world!", greetingEnglish);
assertEquals("Bonjour, monde!", greetingFrench);

}

}

Figure 5. Interacting with the localized rule set

12 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v Rule objects (using the value of the rule object's description attribute;
v Dates (using curam.util.type.Date);
v Code table items; and
v nested localizable messages.

All other objects are displayed using their toString method.

3.3.2 Localization of CER rule artefact descriptions
The CER Editor allows you to place a description on these rule set artefacts (via the "Label" annotation):
v Rule Set;
v Rule Class;
v Rule Attribute; and
v Expression.

When a CER rule set is published using the Cúram Administration Application, then the descriptions on
these rule set artefacts are stored in the application's resource store as property files (named RULESET-
(rule set name) (rule set version number) . You may localize these property files as for any other
resource in the resource store.

Support for localizing CER rules artefacts via the CER Editor will be included in a future release of the
CER Editor.

3.4 The Rule Set Validator
CER contains a validator which checks the structure of your rule sets. Ordinarily, you will validate your
rule sets using the Cúram Administration Application and/or the CER Editor.

For rule sets on the file system, you can run this command to validate the structure of these rule sets:

Run the following command:

build creole.validate.rulesets

The target will run the CER rule set validator on your rule sets to report any errors and/or warnings
about your CER rule sets.

Tip: The CER rule set validator will also report any warnings about any non-fatal problems in your rule
sets. These warnings will not prevent you running and testing your rules, but should be addressed to
ensure an optimal rule set.

3.5 The Rule Set Interpreter
CER contains an interpreter which can execute dynamically-defined rule sets.

Below is some sample code which uses the CER rule set interpreter to execute rules from a
HelloWorldRuleSet.

Chapter 3. CER Development and Testing Tools 13

package curam.creole.example;

import junit.framework.TestCase;
import curam.creole.execution.RuleObject;
import curam.creole.execution.session.InterpretedRuleObjectFactory;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.Session_Factory;
import curam.creole.parser.RuleSetXmlReader;
import curam.creole.ruleitem.RuleSet;
import curam.creole.storage.inmemory.InMemoryDataStorage;

public class TestHelloWorldInterpreted extends TestCase {

/**
* Runs the class as a stand-alone Java application.
*/
public static void main(final String[] args) {

final TestHelloWorldInterpreted testHelloWorld =
new TestHelloWorldInterpreted();

testHelloWorld.testUsingInterpreter();
}

/**
* Reads the HelloWorldRuleSet from its XML source file.
*/
private RuleSet getRuleSet() {

/* The relative path to the rule set source file */
final String ruleSetRelativePath = "./rules/HelloWorld.xml";

/* read in the rule set source */
final RuleSetXmlReader ruleSetXmlReader =

new RuleSetXmlReader(ruleSetRelativePath);

/* dump out any problems */
ruleSetXmlReader.validationProblemCollection().printProblems(

System.err);

/* fail if there are errors in the rule set */
assertTrue(!ruleSetXmlReader.validationProblemCollection()

.containsErrors());

/* return the rule set from the reader */
return ruleSetXmlReader.ruleSet();

}

/**
* A simple test case, using the fully-dynamic CER rule set
* interpreter.
*/
public void testUsingInterpreter() {

/* read in the rule set */
final RuleSet ruleSet = getRuleSet();

/* start a session which creates interpreted rule objects */
final Session session =

Session_Factory.getFactory().newInstance(
new RecalculationsProhibited(),
new InMemoryDataStorage(

new InterpretedRuleObjectFactory()));

/* create a rule object instance of the required rule class */
final RuleObject helloWorld =

session.createRuleObject(ruleSet.findClass("HelloWorld"));

/*
* Access the "greeting" rule attribute on the rule object -
* the result must be cast to the expected type (String)
*/
final String greeting =

14 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

You can run this sample class either as a stand-alone Java application (i.e. via its main method) or as a
JUnit test. These two ways of running this class are provided merely as a convenience - so when you
write your own code to run rule sets, pick whichever suits you better.

Now we will dive down into the detail of this code. The test method testUsingInterpreter performs
these key functions:
v it reads in the rule set;
v it starts a CER Session;
v it creates a new rule object instance in the Session; and
v it executes rules by retrieving an attribute's value from the rule object.

3.5.1 Read in the Rule Set

This line calls a utility method to read the rule set from an XML source file.

The rule set is explicitly validated to ensure that it contains no errors:

3.5.2 Start a CER Session

These lines create a new CER Session for the rule set.

A session manages the rule objects created for the classes in the rule set. In this example, we are using a
session which creates fully-dynamic rule objects (by using InterpretedRuleObjectFactory); as we will see
below, in an interpreted session, each reference to a rule class or attribute name is via an API call taking
that names as a String parameter.

3.5.3 Create a New Rule Object

This line creates a new rule object (an instance of the "HelloWorld" rule class) and stores the rule object in
the CER Session's memory.

/* read in the rule set */
final RuleItem_RuleSet ruleSet = getRuleSet();

/* dump out any problems */
ruleSetXmlReader.validationProblemCollection().printProblems(
System.err);

/* fail if there are errors in the rule set */
assertTrue(!ruleSetXmlReader.validationProblemCollection()
.containsErrors());

/* start a session which creates interpreted rule objects */
final Session session =
Session_Factory.getFactory().newInstance(
new RecalculationsProhibited(),
new InMemoryDataStorage(
new InterpretedRuleObjectFactory()));

/* create a rule object instance of the required rule class */
final RuleObject helloWorld =
session.createRuleObject("HelloWorld");

Chapter 3. CER Development and Testing Tools 15

3.5.4 Execute Rules

This line retrieves the value of the "greeting" attribute from the rule object created above.

When the attribute's value is requested, CER executes the rules for deriving the attribute's value (in this
case, returning the constant string "Hello, world!").

Note: When running an interpreted session, you must cast the output of getValue to the expected data
type.

In this example, we have just requested the value of one attribute; however, whilst the Session is still
active, code can request the value of any attribute on any rule object in the session. CER remembers
values already calculated and only takes the hit of performing a calculation the first time it is requested.

3.6 CER Test Code Generator
The CER rule set interpreter above allows reference to rule class and attribute names via strings.

Whilst this allows fully dynamic configuration of rule sets, for testing purposes it can be cumbersome to
have to use strings and cast attribute values. If you mis-type a rule class or attribute name, or use the
wrong type of cast, then your code may compile with no errors but you will get errors at runtime.

CER includes with a code generator which can generate Java wrapper classes for your rule classes. These
generated classes can simplify the writing of your test code and allow the compiler to detect problems
which otherwise would only occur at runtime.

Now we will rewrite our code for running the HelloWorldRuleSet:

/*
* Access the "greeting" rule attribute on the rule object -
* the result must be cast to the expected type (String)
*/
final String greeting =
(String) helloWorld.getAttributeValue("greeting")
.getValue();

16 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Note the following comparisons with our TestHelloWorldInterpreted code:
v the Session used with the code generator uses StronglyTypedRuleObjectFactory, so named as it deals

with generated Java classes rather than dynamic RuleObject instances;
v the loading of the rule set is not required (hence no utility method);

package curam.creole.example;

import junit.framework.TestCase;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.Session_Factory;
import
curam.creole.execution.session.StronglyTypedRuleObjectFactory;
import curam.creole.ruleclass.HelloWorldRuleSet.impl.HelloWorld;
import
curam.creole.ruleclass.HelloWorldRuleSet.impl.HelloWorld_Factory;
import curam.creole.storage.inmemory.InMemoryDataStorage;

public class TestHelloWorldCodeGen extends TestCase {

/**
* Runs the class as a stand-alone Java application.
*/
public static void main(final String[] args) {

final TestHelloWorldCodeGen testHelloWorld =
new TestHelloWorldCodeGen();

testHelloWorld.testUsingGeneratedTestClasses();

}

/**
* A simple test case, using the CER-generated test classes for
* strong typing and ease of coding tests.
*/
public void testUsingGeneratedTestClasses() {

/* start a strongly-typed session */
final Session session =

Session_Factory.getFactory().newInstance(
new RecalculationsProhibited(),
new InMemoryDataStorage(

new StronglyTypedRuleObjectFactory()));

/*
* create a rule object instance of the required rule class, by
* using its generated factory
*/
final HelloWorld helloWorld =

HelloWorld_Factory.getFactory().newInstance(session);

/*
* use the generated accessor to get at the "greeting" rule
* attribute - no cast necessary, and any error in the
* attribute name would lead to a compile error
*/
final String greeting = helloWorld.greeting().getValue();

System.out.println(greeting);
assertEquals("Hello, world!", greeting);

}

}

Figure 7. Running rules with the CER-generated test rule classes

Chapter 3. CER Development and Testing Tools 17

v the reference to the HelloWorld rule class is via an identically-named Java interface; any typo in the
name will be detected by the Java compiler;

v similarly, the reference to the greeting rule attribute is via an identically-named Java method on the
interface;

v no casting of the return type is required, as the generated greeting method returns the correct type
(String).

warning: The generated code is only intended for use in test environments where it is a straightforward
matter to recompile changes to code.

The generated code is not portable across machines, as it contains absolute paths to the rule sets on the
local machine.

In particular, you must not use the generated code in any production environment where rule sets may
change dynamically.

3.6.1 How to Generate Code
To run the CER code generator, run the following command:

build creole.generate.test.classes

The target will also run the CER rule set validator on your rule sets. If there are any errors, the CER rule
set validator reports the errors and processing halts. If there are no errors, the CER generator will output
generated Java classes and interfaces for your CER rule sets and rule classes.

Tip: The CER rule set validator will also report any warnings about any non-fatal problems in your rule
sets. These warnings will not prevent you running and testing your rules, but should be addressed to
ensure an optimal rule set.

The CER code generator will place its output in the EJBServer/build/svr/creole.gen/source directory.

Here is an example generated interface for the HelloWorld rule class:

Tip: You should regenerate your test classes if you make structural changes to your rule sets on the file
system, e.g.
v create a new rule set or remove an existing rule set;

/*
* Generated by Curam CREOLE Code Generator
* Generator Copyright 2008-2010 Curam Software Ltd.
*/

package curam.creole.ruleclass.HelloWorldRuleSet.impl;
/**
* Code-generated interface for tests.
* <p/>
* Clients must not implement this interface.
*/

public interface HelloWorld extends
curam.creole.execution.RuleObject {
/**
* Code-generated accessor for tests.
* @return container for the greeting attribute value
*/
public curam.creole.execution.AttributeValue<? extends
java.lang.String> greeting();

}

Figure 8. Generated Java interface for the HelloWorld rule class

18 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v add a new rule class to a rule set or remove an existing rule class to a rule set;
v add a new rule attribute to a rule class or remove an existing rule attribute from a rule class;
v change the "extends" value for an existing rule class; and/or
v change an attribute's data type.

You do not need to regenerate the test classes if your changes are limited to the implementation of a rule
attribute (i.e. its derivation expressions). The derivations are always processed dynamically from the rule
set at run time and are not present in the generated test classes.

3.7 Rule Set Coverage Tool
CER includes a tool to report on the parts of a rule set that are "covered" are runtime. Coverage statistics
can be reported for any processing which requests values from CER, including:
v the running online application; and
v executions of JUnit tests.

To capture coverage data, set the environment property curam.creole.coverage.logfile (in
Bootstrap.properties) to the location of a file. As rules execute, lines containing coverage information
will be appended to the file when CER expressions are evaluated.

Tip: To clear the coverage data, just delete the file specified in your curam.creole.coverage.logfile
setting.

Over time, the coverage data file can become big, so you should turn off the capturing of coverage data
when not required, by removing (or commenting out) your curam.creole.coverage.logfile setting.

To create a coverage report, run the following target:

build creole.report.coverage -Dfile.coverage.log= file location

A simple color-coded drillable report will be written to .../EJBServer/build/svr/creole.gen/coverage/
index.html, where
v Green = covered
v Yellow = partially covered
v Red = not covered

Rule attributes with a derivation of <specified> are intentionally excluded from the report. A sample
report is shown below:

Note that rule sets and classes which are "included" in other rule sets (using the <Include> mechanism)
essentially become part of the source of the outermost including rule set. This should be borne in mind
when analyzing coverage reports.

3.8 CER Publication Area
The Cúram Administration Application contains screens to list CER rule sets. From here, you can:
v view an existing rule set (in the CER editor), and view historical versions of any CER rule set;
v once opened, make changes to an existing rule set (in the CER editor);
v create a new rule set (and open it in the CER editor to add rules); and/or
v remove an existing rule set.

Figure 9. Example Coverage Report

Chapter 3. CER Development and Testing Tools 19

Since Cúram V6, changes to CER rule sets do not take effect immediately, but instead are stored in the
publication area until published.

You can accumulate many changes to CER rule sets in this area; indeed, you may have to accumulate
changes to many rule sets, if the change you are making affects more than one rule set.

You can choose to validate your pending changes at any time. When you are happy with your changes,
you can choose to publish the changes. The system will re-validate that the rule sets are valid, and if so
will allow publication to continue.

Publication of the CER rule set changes occurs in deferred processing, as existing CER rule objects will
need to be updated in line with any changes to CER rule classes, and/or recalculations queued for an
attributes whose derivations have changed.

3.9 Schema and Catalog Generation
The schema for CER rule sets is assembled dynamically to take into account:
v the fixed schema for CER rule sets, classes and attributes; and
v contributions to CER expressions and annotations by application components.

Ordinarily the dynamically-assembled schema resides in memory when CER performs validation
processing. However, on some occasions, it can be helpful to have this schema (and a catalog pointing to
it) on the file system.

To generate the CER schema file (EJBServer/build/svr/creole.gen/schema/RuleSet.xsd), run the
following command:

build creole.generate.schema

To generate a catalog (EJBServer/build/svr/creole.gen/catalog/CREOLECatalog.xml) pointing to the CER
schema file, run the following command:

build creole.generate.catalog

3.10 RuleDoc
CER includes a tool for automatically generating documentation from your CER rule sets and rule
classes. This documentation is known as RuleDoc.

RuleDoc can be particular useful for:
v discussing the behavior of your CER rule set with non-technical staff;
v visualizing the dependencies between your rule attributes (particularly as your rule sets grow in

complexity); and
v understanding the impacts of any changes you make to a rule attribute's derivation.

3.10.1 A Simple Example
Here is the XML for a simple rule set:

20 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Here is the generated RuleDoc for the above rule set, listing its single rule class:

Clicking on the HelloWorld rule class shows its RuleDoc:

And clicking on the greeting attribute scrolls to its derivation:

3.10.2 A More Useful Example
For more complex rule sets, RuleDoc can help you:
v navigate the dependencies between the rule classes in your rule set;
v understand each rule attribute's derivation calculation; and
v see which other rule attributes depend on a particular rule attribute.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="HelloWorldRuleSet"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="HelloWorld">

<Attribute name="greeting">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="Hello, world!"/>
</derivation>

</Attribute>

</Class>

</RuleSet>

Figure 10. A Hello World rule set

Figure 11. RuleDoc for the HelloWorldRuleSet

Figure 12. RuleDoc for the HelloWorld rule class

Figure 13. RuleDoc for the greeting rule attribute

Chapter 3. CER Development and Testing Tools 21

Here is the XML for a more complex rule set:

Here is the generated RuleDoc for the above rule set:

This example shows:
v the derivation of the yearOfRetirement rule attribute (with links to the yearOfBirth and

ageAtRetirement rule attributes on which it depends); and
v the yearOfBirth rule attribute, with a link to the yearOfRetirement rule attribute which directly

depends on it.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="RetirementYearRuleSet"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="RetirementYear">

<Attribute name="yearOfBirth">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<Number value="1970"/>
</derivation>

</Attribute>

<Attribute name="ageAtRetirement">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<Number value="65"/>
</derivation>

</Attribute>

<Attribute name="yearOfRetirement">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<arithmetic operation="+">
<reference attribute="yearOfBirth"/>
<reference attribute="ageAtRetirement"/>

</arithmetic>
</derivation>

</Attribute>

</Class>

</RuleSet>

Figure 14. A retirement-year calculator

Figure 15. RuleDoc showing derivation and usage

22 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

3.10.3 How to Generate RuleDoc
To run the CER RuleDoc generator, run the following command:

build creole.generate.ruledoc

The target will also run the CER rule set validator on your rule sets. If there are any errors, the CER rule
set validator reports the errors and processing halts. If there are no errors, the CER generator will output
RuleDoc for your rule sets and rule classes.

Tip: The CER rule set validator will also report any warnings about any non-fatal problems in your rule
sets. These warnings will not prevent you running and testing your rules, but should be addressed to
ensure an optimal rule set.

The CER RuleDoc generator will place its output in the EJBServer/build/svr/creole.gen/ruledoc
directory.

3.11 SessionDoc
CER allows you to output HTML documentation regarding a session ("SessionDoc").

This documentation provides a record of all the rule objects created during the session, and when used in
conjunction with your tests can be a powerful debugging aid.

It can be useful to use JUnit's tearDown hook point to force all the test methods in your test class to
output their SessionDoc:

Here is the main SessionDoc page for a testSelfMadeMillionaireScenario test :

@Override
protected void tearDown() throws Exception {
/*
* Write out SessionDoc, to a directory named after the test
* method.
*/
final File sessionDocOutputDirectory =
new File("./gen/sessiondoc/" + this.getName());
sessionDoc.write(sessionDocOutputDirectory);

super.tearDown();
}

Chapter 3. CER Development and Testing Tools 23

Some key details on this page are:
v The date and time that the SessionDoc was created;
v The strategies that the session was created with;
v A list of rule sets whose rule objects were captured in the SessionDoc; and
v Whether "used by" links are included.

Clicking on the link for the sole rule set FlexibleRetirementYearRuleSet shows its rule objects:

This page shows:
v The "external" (bootstrap) rule objects created by client code during this session (only one was created

in the test); and
v The "internal" rule objects created by rules during this session (none calculated for this test).

Figure 16. SessionDoc for the testSelfMadeMillionaireScenario test

Figure 17. Rule Objects for the FlexibleRetirementYearRuleSet rule set

24 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Clicking on the details link for the sole FlexibleRetirementYear rule object shows its SessionDoc:

At the top (not shown) are summary details for the rule object, and then every rule attribute on the rule
object is listed, with the following details:
v Name

The name of the rule attribute;
v Declared type

The type of the rule attribute as declared in the rule set. The actual runtime value may be from a
subtype of this declared type;

v State

The state of the value, i.e. whether it was:
– CALCULATED

Calculated by rules;
– SPECIFIED

Explicitly specified by client code, replacing any defined calculation, or initialized2as part of a
create expression;

– NOT_YET_CALCULATED

Not explicitly specified, not calculated during rules execution (because the value was never
requested by any other calculations or tests); or

– ERROR

2. Prior to Cúram V6, the state INITIALIZED was used. From Cúram V6, the state SPECIFIED is used instead.

Figure 18. SessionDoc for the FlexibleRetirementYear rule object

Chapter 3. CER Development and Testing Tools 25

An error occurred during the calculation of the value (see the application logs or console output for
details and calculation stack of the error).

v Value

A display representation of the value. If the value was never calculated (NOT_YET_CALCULATED), or
is in error (ERROR) then “?” will be displayed. If the value is a rule object, then the value will be
shown as a navigable hyperlink so that you can see the details of that rule object; and

v Derivation

The RuleDoc derivation of the attribute (without any links). For more information on RuleDoc, see
3.10, “RuleDoc,” on page 20.

v Depends on

Links to the attributes which were used to calculate this value.
v Used by

(Optional) Links to the attributes which used this value when calculating their values.

Tip: Implementation of a description rule attribute on each rule class may make your SessionDoc easier
to understand. See 8.2, “The description Rule Attribute,” on page 127 for more details.

If you are running SessionDoc against a large database, then it may be useful to suppress the output of
"used by" links, since the inclusion of such links might cause very many rule objects to be output by
SessionDoc. To suppress the output of "used by" links, use the
curam.creole.execution.session.SessionDoc.write(File, boolean), passing false as the second
parameter.

For rule objects that are stored on CER's database tables, you can create SessionDoc for these stored rule
objects by running the curam.creole.util.DumpOutRuleObjects class, with a single argument being the
name of a directory in which to create the SessionDoc. The DumpOutRuleObjects utility retrieves all rule
objects from CER's database tables, and thus the action for each external rule object will be "retrieved".
Any internal rule objects will be created (as they are not stored) and thus will show an action of
"created".

Tip: The DumpOutRuleObjects utility can be a useful way of "browsing" the rule objects stored on CER's
database tables, and can be a useful debugging aid once you have reached the point of integrating CER
rules into your online application.

You can browse the rule objects to see the values of calculated attributes on rule objects, together with a
technical view of how any calculation result was arrived at.

3.12 Unused rule attributes
CER includes support for reporting rule attributes which are not referenced from any other calculations
in your rule set and thus are candidates for removal.

To run the CER unused attribute report, run the following command:

build creole.report.unused.attributes

CER will validate your rule sets and report any unused rule attributes to the console.

warning: Note that it is perfectly possible for a rule attribute to be a "top-level" rule attribute which is
only referenced from client code; such attributes may be reported as "unused" by this report, but any
seemingly-unused rule attributes should not be removed from your rule set unless you are certain that no
client code or tests depend on them.

26 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

3.13 CER Rule Set Consolidator
In Cúram V5.2, CER allowed you to split your rule set into smaller files which may aid the concurrent
development of rule sets among several documents.

See A.3, “Include Statement,” on page 148 for details on how to split up your rule set.

Prior to loading your CER rule set onto the data, it will be automatically "consolidated" into a single rule
set file by the application's build scripts (specifically, the build creole.consolidate.rulesets target).

Note: The CER rule set consolidator only collapses Include statements which contain a RelativePath
location.

All other types of Include statement are intentionally left unchanged in the consolidated output.

3.13.1 Example
Here is a CER rule set which includes another:

And here is the same rule set after consolidation:

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Include"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- This rule class is defined directly in this rule set -->
<Class name="Person">

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

<!-- Include a rule set defined in another file.

When assembled into a single rule set, the
names of all the rule classes must be unique. -->

<Include>
<RelativePath value="./HelloWorld.xml"/>

</Include>

</RuleSet>

Chapter 3. CER Development and Testing Tools 27

<?xml version="1.0" encoding="UTF-8"?><RuleSet
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
name="Example_Include" xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- This rule class is defined directly in this rule set -->
<Class name="Person">

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

<!-- Include a rule set defined in another file.

When assembled into a single rule set, the
names of all the rule classes must be unique. -->

<!--Start inclusion of ./HelloWorld.xml-->
<Class name="HelloWorld">

<Attribute name="greeting">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="Hello, world!"/>
</derivation>

</Attribute>

</Class>
<!--End inclusion of ./HelloWorld.xml-->

</RuleSet>

28 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Chapter 4. Handling Data

4.1 Introduction
CER performs calculations on data in order to come up with results which are themselves data. Since
Cúram V6, CER supports the storage of rule object data on the database and in snapshots.

This chapter describes how CER handles data.

4.2 CER Sessions
The main data items used with CER are:
v Rule Objects

A rule object is an instance of a rule class from a CER rule set; for example, the rule object for the
person "John Smith"; and

v Attribute Values

An attribute value is the value of a CER rule attribute on a particular rule object; for example John
Smith's date of birth.

All interaction with CER rule objects and attribute values occurs within a CER Session. These interactions
include the creation, retrieval and/or removal of CER rule objects, and any calculation or recalculation of
attributes on rule objects.

Each CER Session is created by use of the curam.creole.execution.session.Session_Factory class.

When a CER Session is created, the following must be specified:
v Recalculation Strategy

The strategy for handling a request to recalculate a CER attribute value within a CER session3.
The strategy for handling a request to recalculate a CER attribute value; for example whether to
recalculate immediately, defer the recalculation to another transaction, or disallow the recalculation
altogether.

v Data Storage

The storage mechanism4to use for persistent rule objects; for example in-memory only (which will be
lost when the session goes out of scope), database storage, or snapshot storage.

In turn, implementations of data storage must specify a rule object factory to use. This factory governs
whether rule objects are created in a strongly-typed or interpreted-only way.

The application includes these implementations:
v Recalculation Strategy:

3. The ability for CER to perform recalculations directly is now superseded by the Dependency Manager (see Chapter 5, “The
Dependency Manager,” on page 73).

The CER recalculation strategy interface and implementations are provided for backwards compatibility only.

4. Since Cúram V6, CER offers a choice of data storage implementations. These data storage implementations affect whether rule
objects, created or changed in one transaction, can be retrieved and/or changed in another transactions.

Importantly, the choice of data storage does not affect the semantics of your rule expressions. This means that you can use a
light-weight (in-memory) data storage for your JUnit tests (so that large numbers of JUnit tests can execute quickly), and a
persistent (database) data storage for your production logic (so that rule objects are persisted across transactions), without any
differences in your underlying calculations.

© Copyright IBM Corp. 2012, 2013 29

– curam.creole.execution.session.RecalculationsProhibited

Throws an error if any recalculation within the CER session is attempted.
– curam.core.sl.infrastructure.propagator.impl.ImmediateRecalculationStrategy

Performs recalculations immediately (synchronously, within the same database transaction).
– curam.core.sl.infrastructure.propagator.impl.DeferredRecalculationStrategy

Defers recalculations (for stored attribute values) to another database transaction.
Defers recalculations (for stored attribute values) to another database transaction.

v Data Storage:
– curam.creole.storage.inmemory.InMemoryDataStorage

Keeps rule objects in memory only. Rule objects in this data storage are only available while the data
storage is in scope - typically for a single database transaction only.

– curam.creole.storage.database.DatabaseDataStorage

Retrieves external5rule objects from either:
– curam.creole.execution.session.RuleObjectsSnapshot.SnapshotDataStorage

Creates an XML document containing details of a set of rule objects involved in the dependencies of
one or more attribute calculations. Provides an "audit trail" of the data ultimately used in that
calculation. Typically the XML document can be stored on a database table so that the snapshot of
rule objects can be queried (but not altered) by a subsequent database transaction.
- a Rule Object Converter registered with the Database Data Storage. Each rule object converter

nominates the rule classes that it handles, and when invoked6the rule object converter will read
underlying business tables to obtain the appropriate data and populate rule objects in memory
and return them to Database Data Storage; or

- CER's own database tables for storing rule objects, if no rule object converter is registered to
handle the rule class requested.

External rule objects are available for retrieval and manipulation by subsequent database
transactions.

– curam.creole.storage.hybrid.HybridDataStorage

Combines behavioral aspects of InMemoryDataStorage and DatabaseDataStorage. Reserved for Cúram
internal use only.

v Rule Object Factory:
– curam.creole.execution.session.StronglyTypedRuleObjectFactory

Creates and retrieves rule objects as instances of Java classes generated by the CER Test Code
Generator (see 3.6, “CER Test Code Generator,” on page 16). Must not be used in production code.

– curam.creole.execution.session.InterpretedRuleObjectFactory

Creates and retrieves rule objects in a fully-interpreted (and thus dynamic) way. (see 3.5, “The Rule
Set Interpreter,” on page 13).

5. As an optimization, only external rule objects and their attribute values are retrieved from data in the Cúram database. Internal
rule objects and their attributes, by their nature, can be reliably recomputed later, whereas external rule objects typically contain
data from external sources and thus cannot be recomputed.

6. Note that each rule object converter is permitted to impose limits on its support for A.6.17.53, “readall,” on page 205 and
A.6.17.53, “readall,” on page 205 expressions.

For example, some rule object converters may not support the execution of a A.6.17.53, “readall,” on page 205 (without a nested
match), and/or place restrictions on which rule attributes can be named in the match 's retrievedattribute value.

Any violations of the rule object converter's limitations will result in an exception being thrown at runtime. You should ensure
that your rule set tests include logic which invokes the rule object converters (i.e. which runs against Database Data Storage) - in
contrast to the majority of your rules logic tests which will use In Memory Data Storage (and which thus do not invoke the rule
object converters).

See the documentation for each rule object converter implementation to understand any limits it imposes on its support for
A.6.17.53, “readall,” on page 205.

30 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

CAUTION:
In general you should not use more than one CER Session within one database transaction. The
in-memory copies of rule objects in a CER Session are independent of in-memory copies of rule
objects in all other CER Sessions.

Behavior is not guaranteed if more than one CER Session (in the same transaction) attempts to retrieve
or query the same rule object from the database.

v Unit tests

Use an InMemoryDataStorage (for speed of execution) with a StronglyTypedRuleObjectFactory (so that
generated Java classes can be used in tests), and RecalculationsProhibited (so that tests do not
accidentally change data part-way through).

v Production logic with dynamic rule sets

Use a DatabaseDataStorage (so that rule objects are available across transactions) with an
InterpretedRuleObjectFactory (so that rule sets are fully dynamic), and RecalculationsProhibited, and
use the features provided by the Dependency Manager (see Chapter 5, “The Dependency Manager,” on
page 73) to perform any requests to recalculate CER values in a new (and independent) CER session.

v Snapshots

Use a SnapshotDataStorage (so that rule objects are read from an unalterable XML document) with an
InterpretedRuleObjectFactory (so that rule sets are fully dynamic), and RecalculationsProhibited
(snapshots do not support changes).

4.3 External and Internal Rule Objects
CER allows the creation of Rule Objects in these different ways:
v External

Rule objects created by clients of CER, outside of the context of any calculation. External rule objects
tend to represent real-world or agency concepts such as a Person or Case.

v Internal

Rule objects created by CER rules (or within Java code called out to by CER rules). Internal rule objects
tend to be "calculators" or derived data for an interim step in a complex chain of calculations.

The distinction between external and internal rule objects is explained below, and affects:
v whether a rule object can be retrieved using the A.6.17.53, “readall,” on page 205 expression; and
v whether a rule object can be stored on the database for retrieval in subsequent transactions.

4.3.1 External Rule Objects
CER allows client code to ask questions of a rule object (and CER will execute rules to provide the
answers to those questions).

However, for client code to ask a question of a rule object, that rule object must be known to both client
code and CER; as such, the CER rule session must have at least one "bootstrap" rule object created or
retrieved by client code. This client code could be test code or code which integrates CER with an
application.

An external rule object is the starting point for the client code to ask questions; however, the answer to
such a question might well provide a rule object or list of rule objects which were either created from
rules or retrieved from other external rule objects.

Important: Once calculations have commenced, the RecalculationsProhibited strategy prevents the
creation of any more rule objects which would invalidate any previously-calculated A.6.17.53, “readall,”
on page 205 calculations.

Chapter 4. Handling Data 31

To avoid such errors, you should structure your client code or tests so that the creation of all your test
rule objects occurs before any calculations (i.e. before any execution of getValue).

4.3.1.1 Example
Here is an example rule set:

In the rule set above, the A.6.17.53, “readall,” on page 205 expression is used to retrieve all instance of
the Income rule class.

To create an external rule object, your client code or tests must specify the session when creating the rule
object:

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_externalRuleObjects"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<!-- These attributes must be specified at creation time -->
<Initialization>

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>

</Attribute>

<Attribute name="lastName">
<type>

<javaclass name="String"/>
</type>

</Attribute>
</Initialization>

<Attribute name="incomes">
<type>

<javaclass name="List">
<ruleclass name="Income"/>

</javaclass>
</type>
<derivation>

<!-- Read all the rule objects of
type "Income" -->

<readall ruleclass="Income"/>
</derivation>

</Attribute>

</Class>

<Class name="Income">
<Attribute name="amount">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

32 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

package curam.creole.example;

import junit.framework.TestCase;
import curam.creole.calculator.CREOLETestHelper;
import curam.creole.execution.RuleObject;
import curam.creole.execution.session.InterpretedRuleObjectFactory;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.Session_Factory;
import
curam.creole.execution.session.StronglyTypedRuleObjectFactory;
import curam.creole.parser.RuleSetXmlReader;
import
curam.creole.ruleclass.Example_externalRuleObjects.impl.Income;
import
curam.creole.ruleclass.Example_externalRuleObjects.impl.Income_Factory;
import
curam.creole.ruleclass.Example_externalRuleObjects.impl.Person;
import
curam.creole.ruleclass.Example_externalRuleObjects.impl.Person_Factory;
import curam.creole.ruleitem.RuleSet;
import curam.creole.storage.inmemory.InMemoryDataStorage;

/**
* Tests external rule objects created directly by client code.
*/
public class TestCreateExternalRuleObjects extends TestCase {

/**
* Example showing the creation of external rule objects using
* generated code.
*/
public void testUsingGeneratedTestClasses() {

final Session session =
Session_Factory.getFactory().newInstance(

new RecalculationsProhibited(),
new InMemoryDataStorage(

new StronglyTypedRuleObjectFactory()));

/**
* Note that the compiler enforces that the right type of
* initialization arguments are provided.
*/
final Person person =

Person_Factory.getFactory().newInstance(session, "John",
"Smith");

CREOLETestHelper.assertEquals("John", person.firstName()
.getValue());

/**
* These objects will be retrieved by the
*
* <readall ruleclass="Income"/>
*
* expression in the rule set.
*/
final Income income1 =

Income_Factory.getFactory().newInstance(session);
income1.amount().specifyValue(123);

final Income income2 =
Income_Factory.getFactory().newInstance(session);

income2.amount().specifyValue(345);

}

/**
* Example showing the creation of external rule objects using
* the CER rule set interpreter.
*/
public void testUsingInterpreter() {

Chapter 4. Handling Data 33

4.3.1.2 When to Use External Rule Objects
You should create external rule objects for:
v "bootstrap" or top-level rule objects which must always exist for your client code to ask meaningful

questions. These rule objects are typically singletons (i.e. the one-and-only instance of the particular
rule class during the session); and

v rule objects which are created based on some external data (such as a Person or Case).

4.3.2 Internal Rule Objects
CER allows rules to create new rule objects as the result or by-product of performing calculations.

To create a rule object, use the A.6.17.12, “create,” on page 172 expression, specifying the initialization
argument values required by the rule class and/or additional values to specify on the created rule object.

Important: Rule objects created by using the A.6.17.12, “create,” on page 172 expression cannot be
retrieved by using A.6.17.53, “readall,” on page 205 expressions, because CER cannot guarantee that all
internal rule objects have been or will be created (depending on whether a A.6.17.12, “create,” on page
172 expression is encountered in the execution path for a calculation).

4.3.2.1 Example
Here is an example CER rule set which uses the A.6.17.12, “create,” on page 172 expression to
conditionally create rule objects from rules:

34 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_internalRuleObjects"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Uses <create> to get a new rule object.

Other calculations (on this or other rule objects) can
access this newly-created rule object by referring to
this attribute, i.e.

<reference attribute="minorAgeRangeTest"/> .

The rule object created CANNOT be retrieved using a
<readall> expression.

-->
<Attribute name="minorAgeRangeTest">

<type>
<ruleclass name="AgeRangeTest"/>

</type>
<derivation>

<!-- Create an age-range test which checks whether this
person is aged between 0-17 inclusive (i.e. is
under 18 years).

-->
<create ruleclass="AgeRangeTest">

<this/>
<Number value="0"/>
<Number value="17"/>

</create>
</derivation>

</Attribute>

<!-- Uses the age-range check to determine whether this person
is a minor. -->

<Attribute name="isMinor">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<reference attribute="isPersonInAgeRange">
<reference attribute="minorAgeRangeTest"/>

</reference>
</derivation>

</Attribute>

<!-- Uses <create> to get a new rule object, within
another expression.

Because the new rule object is created "anonymously",
it is not available to any other rule objects (but
it will still show up as "created" in any SessionDoc.

-->
<Attribute name="isOfWorkingAge">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<!-- Create an age-range test which checks whether this
person is legally permitted to work (i.e. is aged
at least 16 and less than 65), and then check

Chapter 4. Handling Data 35

Note: As for all CER expressions, the A.6.17.12, “create,” on page 172 expressions will only be calculated
if requested, e.g. the minorAgeRangeTest rule object will only be created if its value or the value of isMinor
is requested by client code or another calculation.

In the above example, the isOfWorkingAge uses the technique of creating a rule object "anonymously" by
wrapping the creation of a rule object within an expression which references some attribute on the
newly-created rule object. Such rule objects are not available to other calculations but will still show up in
any generated SessionDoc.

An anonymous rule object can be useful when you need to access rule attributes in a created rule object,
but you do not need to make that created rule object itself available to any other calculations.

Pooling of Internal Rule Object

Since Cúram V6, CER keeps a "pool" of internal rule objects that have been created during a Session.

The Session's pool is queried whenever a A.6.17.12, “create,” on page 172 expression is evaluated. If a
rule object with the same initialization and/or specified parameters has already been created, then it will
be reused from the pool rather than a new rule object created.

This pooling approach improves efficiency in the situation where many A.6.17.12, “create,” on page 172
statements attempt to create "identical" rule objects. The use of a single rule object means that any
calculated attributes on the single rule object are calculated at most once, instead of identical calculations
occurring on many "identical" rule objects.

Re-use of pooled rule objects is guaranteed to be safe, because CER's core principles ensure that any
calculation depends only on its inputs; and thus identical inputs guarantee identical outputs.

4.3.2.2 When to Use Internal Rule Objects
You should use this mode for conditionally creating rule objects according to rules, or where the
initialization attribute values are calculated from other rules, or where the rule object is only an interim
step in a calculation.

For a very complex calculation, you should expect to have one external rule object holding an attribute
for the calculation result, several external rule objects for input data from outside of rules, and possibly a
very large number of internal rule objects for the intermediate calculation steps.

If you have rule objects which will always exist and/or require to be accessed by A.6.17.53, “readall,” on
page 205 expressions, then consider creating external rule objects directly in your code instead.

4.4 Handling Data Types
Every attribute and expression in a CER rule set returns a piece of data (when requested). CER supports
a flexible set of data types, which must be specified on every attribute and some expressions in your rule
set.

4.4.1 Supported Data Types
CER includes support for the following types of data:
v Rule classes;
v Java classes; and
v Application code tables.

4.4.1.1 Rule Classes
Any CER rule class defined in your rule set may be used as a data type in the same rule set.

36 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Inheritance

CER supports simple implementation inheritance for rule classes.

A rule class may optionally specify an extends declaration to sub-class another rule class in the same rule
set.

A sub-rule class inherits the calculated rule attributes of all its ancestor classes, and optionally may
override any of these attributes to provide different derivation calculation rules.

A sub-rule class also inherits the initialized rule attributes of all its ancestor classes, and any A.6.17.12,
“create,” on page 172 expression for the sub-rule class must specify the value of the initialized attributes
for all the ancestor rule classes of the sub-rule class ahead of any declared on the sub-rule class itself.

CER allows an attribute to be declared A.6.17.1, “abstract,” on page 155. Every rule class that defines or
inherits (but does not override) an abstract attribute must itself be declared abstract. An abstract class
cannot be used in a A.6.17.12, “create,” on page 172 expression.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_ruleclassDataType"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="favoritePet">
<type>

<!-- The type of this attribute is a rule class
defined elsewhere in this rule set. -->

<ruleclass name="Pet"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Pet">

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

Chapter 4. Handling Data 37

CER will allow a rule object instance of a rule class to be returned wherever one of its ancestor rule
classes is expected.

The CER rule set validator will report an error if an expression in your rule set attempts to return an
incompatible value:

38 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_ruleclassInheritance"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- The CER rule set validator will insist that this
rule class is marked abstract, because it contains
an abstract rule attribute. -->

<Class name="Resource" abstract="true">
<Initialization>

<!-- Whenever a Resource rule object is created,
its owner must be initialized.

Since Resource is abstract, it cannot itself be
used in a <create> expression, only concrete
subclasses can. -->

<Attribute name="owner">
<type>

<ruleclass name="Person"/>
</type>

</Attribute>
</Initialization>

<!-- The monetary value of the resource. -->
<Attribute name="value">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<!-- Every resource has an amount, but it’s
calculated in a sub-class-specific way. -->

<abstract/>
</derivation>

</Attribute>
</Class>

<!-- A building is a type of resource. -->
<Class name="Building" extends="Resource">

<!-- The physical address of the building,
e.g. 123 Main Street.

The address value must be specified
in addition to the inherited owner
rule attribute, which is an
initialized attribute on the super-rule
class. -->

<Initialization>
<Attribute name="address">

<type>
<javaclass name="String"/>

</type>
</Attribute>

</Initialization>

<!-- Building is a concrete class
(no pun intended!), and so the CER
rule set validator will insist that this
class inherits or declares a calculation
for all inherited abstract rule attributes. -->

<Attribute name="value">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<arithmetic operation="-">
<reference attribute="purchasePrice"> </reference>
<reference attribute="outstandingMortgageAmount"/>

</arithmetic>

Chapter 4. Handling Data 39

The Root Rule Class

If a rule class does not specify another rule class to extend, then the rule class automatically extends
CER's "root" rule class, which contains a single description rule attribute.

The description rule attribute provides a localizable description of the rule object instance. Rule classes
are free to override the derivation of the description rule calculation for their rule object instances.

Every rule class ultimately inherits from the root rule class (and thus contains a description rule
attribute), similar to the way that all Java classes ultimately inherit from java.lang.Object.

The default implementation of the description rule attribute, supplied by the root rule class, uses the
A.6.17.17, “defaultDescription,” on page 179 expression.

4.4.1.2 Java Classes
Any Java class on your application's classpath may be used as a data type in your CER rule set.

CAUTION:
When storing rule objects on the database, you may only use data types for which there is a type
handler registered with CER.

CER includes type handlers for most commonly-used data types.

Package Names

The name of a Java class must be fully qualified with its package name, except for classes in the
following packages:
v java.lang.*; and
v java.util.*.

40 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Tip: Primitive Java types such as boolean cannot be used in CER; use their class equivalents instead (e.g.
Boolean).

Immutable Objects

A core principle of CER is that each value, once calculated, cannot be changed.

To comply with this principle, any Java classes you use should be immutable.

warning: If you use a mutable Java class as a data type in your CER rule set, you must ensure than no
Java code attempts to modify the value of any objects of that Java class. CER cannot guarantee the
reliability of calculations if values are being changed "underneath it"!

Fortunately, there are a wide range of immutable classes which will typically cater for most of your data
type requirements. In general you may need to look at a Java class's JavaDoc to determine whether it is
immutable.

Listed here are some useful immutable classes which in all likelihood will prove sufficient for your needs:
v java.lang.String;
v java.lang.Boolean;
v Implementations of java.lang.Number; in any case, CER converts instances of Number to its own

numerical format (backed by java.math.BigDecimal) before performing any arithmetic or comparison;
v Implementations of java.util.List which do not support its optional operations (see the JavaDoc for

List);
v curam.util.type.Date;
v Implementations of curam.creole.value.Message; and
v curam.creole.value.CodeTableItem.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_javaclassDataType"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="isMarried">
<type>

<!-- java.lang.Boolean does not need its
package specified -->

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="dateOfBirth">
<type>

<!-- Fully qualified name to a Cúram class -->
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

Chapter 4. Handling Data 41

http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html

Inheritance

CER recognizes the inheritance hierarchy of Java classes and interfaces.

CER will allow a value of a Java class to be returned wherever one of its ancestor Java classes or
interfaces is expected:

Parameterized Classes

Java 5 introduced support for parameterized classes, and CER enables you to use parameterized Java
classes in your rule set.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_javaclassInheritance"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="isMarried">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isMarriedAsObject">
<type>

<!-- For the sake of example, returning this
value as an java.lang.Object (which is
unlikely to be useful in a "real" rule
set. -->

<javaclass name="Object"/>
</type>
<derivation>

<!-- This is ok, as a Boolean *IS* an Object. -->
<reference attribute="isMarried"/>

</derivation>
</Attribute>

<Attribute name="isMarriedAsString">
<type>

<javaclass name="String"/>
</type>
<derivation>

<!-- The CER rule set validator would report the error
below (as a Boolean *IS NOT* an String):

ERROR Person.isMarriedAsString
Example_javaclassInheritance.xml(28, 41)
Child ’reference’ returns ’java.lang.Boolean’,
but this item requires a ’java.lang.String’. -->

<!-- <reference attribute="isMarried"/> -->

<!-- (Declaring as specified so that this example
builds cleanly) -->

<specified/>

</derivation>
</Attribute>

</Class>

</RuleSet>

42 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

The parameters to a parameterized class are simply listed within the <javaclass> declaration:

Chapter 4. Handling Data 43

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_javaclassParameterized"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="favoriteWords">
<type>

<!-- A list of Strings -->
<javaclass name="List">

<javaclass name="String"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="luckyNumbers">
<type>

<!-- A list of Numbers -->
<javaclass name="List">

<javaclass name="Number"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="children">
<!-- A list of Person rule objects.

Because java.util.List can be parameterized with
any Object, we can use a rule class as a parameter.

-->
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The dogs owned by this person. -->
<Attribute name="dogs">

<type>
<javaclass name="List">

<ruleclass name="Dog"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The cats owned by this person. -->
<Attribute name="cats">

<type>
<javaclass name="List">

<ruleclass name="Cat"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- All the pets owned by this person. -->

44 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

CER allows you to use any type (including rule objects) for parameters which allow java.lang.Object.
CER will enforce "strong typing" even though the parameter (e.g. a rule class) are dynamically defined.
CER will also recognize the inheritance hierarchy of rule classes when deciding whether one
parameterized class is assignable to another.

4.4.1.3 Code Tables
Any application code table may be used as a data type in your CER rule set.

Tip: The code table does not necessarily need to exist at development time; if an administrative user uses
the online application to create a new code table, that code table can then be used as a data type in
dynamically-defined CER rule sets.

To create an instance of a code table entry (i.e. to refer to a particular item in the code table), use the
A.6.17.8, “Code,” on page 168 expression.

4.4.2 Where to Specify Data Types
Every A.5, “Attribute,” on page 152 (both calculated and initialized) must specify its type.

For most expressions, the type is either fixed (e.g. the A.6.17.2, “all,” on page 157 expression always
returns a Boolean) or can be inferred (e.g. a A.6.17.54, “reference,” on page 207 returns the type declared
by the referenced Attribute).

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_codetableentryDataType"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="gender">
<type>

<!-- The value of this attribute will
be an entry from the "Gender" Cúram
code table. -->

<codetableentry table="Gender"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isMale">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<!-- Use "Code" to create a codetableentry value
for comparison. -->
<equals>

<reference attribute="gender"/>
<Code table="Gender">

<!-- The code from the code table -->
<String value="MALE"/>

</Code>
</equals>

</derivation>
</Attribute>

</Class>

</RuleSet>

Chapter 4. Handling Data 45

However, for some expressions the type must be explicitly specified. These expressions are:
v A.6.17.5, “call,” on page 163; and
v A.6.17.7, “choose,” on page 166.

Additionally, the A.6.17.32, “fixedlist,” on page 186 expression declares the type of item in the List
returned within its listof statement.

4.5 Handling Data that Changes Over Time
Since Cúram V6, CER supports a powerful feature named Timelines. A CER Timeline is simply a value
that varies over time, and it is the simplicity of this concept that allows timelines to be used to great
effect in the application.

4.5.1 What Is Timeline Data?
A timeline is a sequence of values of a give type, where each value is effective from a particular date (up
until it is superseded by another value). For any given date, a timeline has a value applicable to that
date.

4.5.1.1 Examples of data that may be modeled as CER Timelines
To introduce the concept of a timeline, here are some everyday examples of data which can vary over
time:
v A person's total income will tend to vary over time as the person receives pay rises or moves between

employments. Given that a person's income at a point in time can be represented as a Number, then a
person's varying income over time can be represented as a timeline of Numbers, which for simplicity
we will write here as Timeline<Number>7;

v Regardless of total income, a person's employment record will tend to vary over time as the person
moves between jobs (or has periods of time when the person has no job). If at any one time a person
has at most one primary employment, then the person's history of primary employment can be
represented as a Timeline<Employment>, where Employment is some rule class or Java type which
holds employment details, and during periods of no primary employment the value of the timeline is
some special marker value such as null (to represent "no employment");

v A person might own an asset which is eventually disposed of, for example a person might buy and
subsequently sell a car. On any date, the person either does or does not own the car, which can be
modeled as a Boolean. Over time, the condition of whether the car is owned on a particular date can
be modeled as Timeline<Boolean>. The timeline's value will be false prior to the car's purchase date,
and true from the purchase date up to and including the date of sale (or “until further notice” if the
car is not known to be sold).

v Similarly, a person has a date of birth and, eventually a date of death. Persons who are still alive have
a blank date of death recorded. On any date, the person is either alive or dead, and so the derived
value for “is the person alive?” can be modeled as a Boolean. Over time, the condition of whether the
person is alive can be modeled as Timeline<Boolean>. The timeline's value will be false prior to the
person's date of birth, and true from the person's date of birth up to and including the date of death
(or “until further notice” if the person has no date of death).

v A parent may have many children, born on different dates. On any particular date, the parent has a list
of children who are alive on that date, which can be modeled as List<Person>. Over time, the list of
children will change as more children are born or children reach the age of maturity (or, less happily,
die in childhood), which can be modeled as Timeline<List<Person>>

The examples above are shown in graph form in the figure below.

7. The notation used in this guide intentionally borrows from that of Java Generics.

46 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

4.5.1.2 Examples of non-timeline data
Before going on to look at timelines in more detail, a cautionary note about data that tends not to be
suitable for timelines.

Figure 19. Examples of Timeline Data

Chapter 4. Handling Data 47

Certain types of data are not suited to timelines, as the data does not vary over time. Common examples
include:
v Unique identifiers

One of the features of a unique identifier is it intentionally does not vary over time, for example each
person might be assigned a unique social security number. The social security number should be
modeled as a Number, not a Timeline<Number>. By contrast, a person's name may vary over time, e.g.
due to marriage or change of name by deed poll, which is one of the reasons it is a poor choice as an
identifier (along with lack of uniqueness);

v Dates

Data of type date does not vary over time8. For example, a person's date of birth is one particular date,
and so should be modeled as a Date, not as a Timeline<Date>. Dates may be used to construct a
Timeline (e.g. a person's date of birth and date of death would be used to construct a
Timeline<Boolean> for whether the person is alive, but the dates themselves are not Timelines).

v Point-in-time data

Some data intentionally captures data which applies to a particular date only. For example, a data item
for surnameAtBirth should be modeled as a String, not a Timeline<String>. A data item for
incomeAtRetirement should be modeled as a Number, not a Timeline<Number>

CAUTION:
It is very important when modeling data to be clear about whether the data item does indeed vary
over time. Only use Timeline for data items where the value can vary over time.

4.5.2 Comparing Timeline and Point-in-time Perspectives
CER handles timelines in a natural way, so that when designing CER rules you can mentally switch back
and forth between a point-in-time perspective and a timeline perspective.

The following sections describe these perspectives by way of example. First let's take a point-in-time
perspective, which does not involve Timelines. Then we'll revisit the example from a timeline perspective.

4.5.2.1 A point-in-time perspective
Let's say we have the following business requirement for a derivation:

rule: On any given date, a person is considered to be a lone parent of a minor if, on that date, the person
is:
v not married; and
v has a dependent who is younger than 16 years of age.

8. In Cúram, certain pieces of data, such as Evidence, may have two kinds of history stored:

– A history of successions of data regarding changes of circumstances in the real world, i.e. where an event occurs in the real
world which means the system's representation of that data is now out-of-date, e.g. a change in a person's income due to a pay
rise; and

– A history of corrections to data held on the system, where the system is found to have an incorrect representation of real-world
circumstances, e.g..a person's start date of employment is found to have been recorded incorrectly.

As such, for data items of type Date, the data may be corrected in the system, but never succeeded. Thus there may be a correction
history for the data item, but this correction history (i.e. the dates on which the data item was created) is rarely of interest when
creating CER rules.

Typically, data types used in CER rules should model real-world circumstances, rather than corrections to the system
representation. Use Timeline where those real-world circumstances can change over time; and do not use Timeline where the
real-world data cannot vary over time.

48 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

From this simple requirement, it is possible to construct a simple truth table for whether a person is
considered to be a lone parent of a minor, on a given date:

Let's introduce a narrative for an example real-world change of circumstances. On 1st January 2001, Mary
and Joe marry. Joe has a son, James, from a previous marriage which ended in divorce on 30th November
1998. James was born on 1st June 1990. On 30th April 2004, Joe sadly dies (and so Mary's marriage ends
in widowhood).

We can use the truth table above to determine whether each of the persons is considered to be a lone
parent of a minor on various dates:
v On 1st October 1997 (to pick a date somewhat at random), Mary is not a lone parent of a minor

because on that date she is not married, but she does not have any dependents;
v On 2nd October 1997 Mary is still not a lone parent of a minor, as her circumstances haven't changed

since the day before;
v On 30th November 1998 Joe is not a lone parent of a minor, because on that date his son was under 16

but Joe was still married;
v On 1st December 1998 Joe becomes a lone parent of a minor, because on that date his son was still

under 16 but Joe was no longer married;
v On 1st January 2001 Mary is still not a lone parent of a minor; although she now has a dependent

under 16, she is now married, so for slightly different reasons that earlier she is still not a lone parent;
v On 1st January 2001 Joe is no longer a lone parent of a minor; although he still has a dependent under

16, he is now married again;
v On 1st May 2004 Mary becomes a lone parent of a minor, because her marriage ended due to Joe's

death, but James is still her dependent and is under 16;
v On 1st June 2006 Mary stops being a lone parent of a minor, because James turns 16;
v On 1st March 2009 (again somewhat at random) James is not a lone parent of a minor because

although he is unmarried, he has no dependents.

Figure 20. Truth Table for Lone parent of a minor rule

Chapter 4. Handling Data 49

Note that we have to evaluate the truth table for various dates in order to build up a picture of when
each person is or is not a lone parent of a minor. To some extent, we either have to try dates which we
suspect might be “interesting”, or try out dates somewhat at random. For example, we suspected that
Mary's date of marriage might be interesting, but it turns out that her marriage to Joe does not affect her
lone-parent-of-a-minor status. However, Joe's lone-parent-of-a-minor status does change when he marries
Mary. We didn't think to test whether Joe was a lone parent of a minor on dates before James was born.

4.5.2.2 A Timeline Perspective
Now let's revisit the example rule and circumstances from a Timeline perspective.

Firstly, let's slightly reword the requirement as follows:

rule (reworded): A person is considered to be a lone parent of a minor whenever the person is:
v not married; and
v has a dependent who is younger than 16 years of age.

(We have removed the phrases “On any given date” and “on that date”, and used “whenever” instead.
This rewording is subtle, but can be key to help making the mental switch from thinking about points in
time, to thinking about data which changes over time.)

Now let's draw timelines (of type Timeline<Boolean> for when each of the persons is:
v married; and
v has a dependent under 16 years of age.

50 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

From these timelines of Joe, Mary and James's circumstances, let's draw new timelines to derive how
their lone-parent-of-a-minor statuses change over time:

Figure 21. Timelines for Joe, Mary and James's circumstances

Chapter 4. Handling Data 51

Note that we can immediately read how the lone-parent-of-a-minor status of each person changes,
without having to guess at interesting dates:
v Joe is a lone parent of a minor from 1st December 1998 to 31th December 2000 inclusive;
v Mary is a lone parent of a minor from 1st May 2004 to 30th June 2006 inclusive; and

Figure 22. Timelines for Joe, Mary and James's status as a lone parent of a minor

52 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v James is never a lone parent of a minor.

4.5.3 Constructing Timelines
We have seen how to apply expressions to pre-existing timeline data in order to calculate data which
itself is a timeline.

This section will covers how timeline data is created in the first place.

There are two ways in which timelines may be created:
v in Java code, either by a client of CER or within Java code invoked during a callout from CER; and/or
v in CER rules, using CER Expressions which create timeline data from primitive (non-timeline) data.

4.5.3.1 Constructing Timelines in Java Code
In Java, each piece of Timeline data is an instance of the curam.creole.value.Timeline parameterized
class. For full details of this class, see its JavaDoc available at EJBServer/components/
CREOLEInfrastructure/doc in a development installation of the application.

Each Timeline holds a collection of Intervals, where an Interval is value applicable from a particular start
date. A collection of appropriate intervals must be passed to the Timeline's constructor.

For example, suppose you need to create a Timeline<Number> with these intervals (recall that a timeline
stretches infinitely far into the past and future):
v 0 up to and including 31st December 2000;
v 10,000 from 1st January 2001 up to and including 30th November 2003; and
v 12,000 from 1st December 2004 until further notice.

Here is some sample Java code to create such a timeline:

Chapter 4. Handling Data 53

As another example, here is some sample Java code, which is callable a CER call expression, to calculate
a timeline for a person's age, up to the person's 200th birthday (recall that age timelines must be
artificially limited so that the timeline contains a finite number of value changes):

package curam.creole.example;

import curam.creole.value.Interval;
import curam.creole.value.Timeline;
import curam.util.type.Date;

public class CreateTimeline {

/**
* Creates a Number Timeline with these interval values:
*
* 0 up to and including 31st December 2000;
* 10,000 from 1st January 2001 up to and including 30th
* November 2003; and
* 12,000 from 1st December 2004 until further notice.
*
*/
public static Timeline<Number> createNumberTimeline() {

return new Timeline<Number>(

// first interval, application from the "start of time"
new Interval<Number>(null, 0),

// second interval
new Interval<Number>(Date.fromISO8601("20010101"), 10000),

// last interval (until further notice)
new Interval<Number>(Date.fromISO8601("20041201"), 12000)

);

}
}

54 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

package curam.creole.example;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Collection;

import curam.creole.execution.session.Session;
import curam.creole.value.Interval;
import curam.creole.value.Timeline;
import curam.util.type.Date;

public class AgeTimeline {

/**
* Creates a timeline for the age of a person, artificially
* limited to 200 birthdays.
* <p>
* Can be invoked from CER rules via a <call> expression.
*/
public static Timeline<? extends Number> createAgeTimeline(

final Session session, final Date dateOfBirth) {

/**
* The artificial limit, so that the age timeline has a finite
* number of value changes.
*/
final int NUMBER_OF_BIRTHDAYS = 200;

final Collection<Interval<Integer>> intervals =
new ArrayList<Interval<Integer>>(NUMBER_OF_BIRTHDAYS + 2);

/*
* age before date of birth will still be recorded as 0 -
* create an initial interval application from the
* "start of time"
*/
final Interval<Integer> initialInterval =

new Interval<Integer>(null, 0);
intervals.add(initialInterval);

/*
* Identify each birthday up to the limit. Note that the person
* is deemed to be age 0 even before the date-of-birth (see
* above); so the interval here from the date of birth up to
* the first birthday will be merged into a single interval by
* the timeline; no matter (it’s clearer to keep the logic as
* is).
*/

for (int age = 0; age <= NUMBER_OF_BIRTHDAYS; age++) {

// compute the birthday date
final Calendar birthdayCalendar = dateOfBirth.getCalendar();

/*
* NB use .roll rather than .add to get the correct
* processing for leap years
*/
birthdayCalendar.roll(Calendar.YEAR, age);
final Date birthdayDate = new Date(birthdayCalendar);

/*
* the age applies from this birthday until the next birthday
*/
intervals.add(new Interval<Integer>(birthdayDate, age));

}

final Timeline<Integer> ageTimeline =
new Timeline<Integer>(intervals);

return ageTimeline;

}

Chapter 4. Handling Data 55

Note: In general, timeline data tends to be created outside of rules, by clients of CER.

In particular, the Cúram V6 Eligibility/Entitlement processing contains logic to help convert Cúram
Evidence into timeline data.

See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide for more details.

4.5.3.2 Constructing Timelines in CER Rules
Typically, timeline data is created outside of rules by clients of CER, and used to populate the value of a
CER attribute using the specify mechanism.

However, CER also contains some expressions for creating timelines directly in CER rules:
v Timeline, in conjunction with Interval; and
v existencetimeline.

Timeline and Interval

A Timeline can be created natively in CER rules by first explicitly creating a list of intervals, and then
using this list to create a timeline.

In practice, such fixed timelines tend to be useful only as a temporary measure while you flesh out your
rule set.

56 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Timeline"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="CreateTimelines">

<!-- This example uses <initialvalue> to set the value valid
from the start of time. -->

<Attribute name="aNumberTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</type>
<derivation>

<Timeline>
<intervaltype>

<javaclass name="Number"/>
</intervaltype>
<!-- Value from start of time -->
<initialvalue>

<Number value="0"/>
</initialvalue>
<!-- The remaining intervals -->
<intervals>

<fixedlist>
<listof>

<javaclass name="curam.creole.value.Interval">
<javaclass name="Number"/>

</javaclass>
</listof>
<members>

<Interval>
<intervaltype>

<javaclass name="Number"/>
</intervaltype>
<start>

<Date value="2001-01-01"/>
</start>
<value>

<Number value="10000"/>
</value>

</Interval>
<Interval>

<intervaltype>
<javaclass name="Number"/>

</intervaltype>
<start>

<Date value="2004-12-01"/>
</start>
<value>

<Number value="12000"/>
</value>

</Interval>

</members>
</fixedlist>

</intervals>
</Timeline>

</derivation>
</Attribute>

<!-- This example does not use <initialvalue>. -->
<Attribute name="aStringTimeline">

<type>
<javaclass name="curam.creole.value.Timeline">

<javaclass name="String"/>
</javaclass>

Chapter 4. Handling Data 57

existencetimeline

Some business objects have natural start and end dates, which together specify a period for which the
business object exists. Either or both of the start and end dates may be optional, in which case the
existence period for the business object is open-ended.

Examples may include:
v an employment, which starts and later ends;
v an asset, which is purchased and later sold; and
v a person who is born and later dies.

The start and end dates for a business object can be used to divide up time into these three periods (or
fewer, if either of the start date or end date is blank):
v Pre-existence period

the period of time before the business start date (if the start date exists);
v Existence period

the period of time from the business start date up to and including the business end date;
v Post-existence period

the period of time after the business end date (if the end date exists).

It can often be convenient to ascribe a different value to each of these periods for a business object, and
to create a timeline from these values. CER contains an existencetimeline expression to create a timeline
of pre-existence/existence/post-existence values based on optional start and end dates.

If the start date does not exist, then there will be no pre-existence interval in the timeline. For example, if
an asset does not have a purchase date recorded, then its effective value will apply from the start of time,
with no "zero value" period.

If the end date does not exist, then there will be no post-existence interval in the timeline. For example, if
an asset does not have a sold date, then the asset's value will hold until further notice (i.e. arbitrarily far
into the future)

See 7.4.6, “Existence Timeline,” on page 118 for details on how to use existence timeline in the CER
Editor.

4.5.4 Operating on Timelines
CER Timelines are useful for storing data which varies over time. CER supports a "Timeline Operation"
feature which allows CER expressions to operate on timeline data items to produce timeline results.

4.5.4.1 Preserving change dates
All expressions can operate on Timelines in a way in which the change dates for the input timeline
values map naturally through to the change dates for the resultant timeline value.

The examples above have introduced the concept of operating on timelines (is married timeline, has a
dependent under 16 years of age timeline) to produce an output timeline (is lone parent of a minor timeline).

More formally, for any CER expression that operates on one or more values, CER allows that expression
to operate on a timeline of those values too. In general, any operation that can be applied to primitive
types (e.g. Date, Number, String, Boolean, etc.) in order to come up with a result, can instead be applied
to Timelines of those types (e.g. Timeline<Date>, Timeline<Number>, Timeline<String>,
Timeline<Boolean>) to come up with a result which is a Timeline value.

58 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

CER contains special expressions named A.6.17.67, “timelineoperation,” on page 226 and A.6.17.37,
“intervalvalue,” on page 189 which shield the other CER expressions from "knowing" that they are
operating on Timelines.

For example, CER contains a A.6.17.64, “sum,” on page 220 expression to add a list of numbers. If a
person has several incomes, then we can sum those incomes at a point in time in order to derive the
person's total income at that point in time. However, if instead we have timelines of how those income
amounts change over time, then we can just as easily use the A.6.17.64, “sum,” on page 220 expression to
derive how the total income changes over time:

4.5.4.2 Date-shifting
Depending on your business requirements, you may need to create a timeline based from another
timeline, where the dates of value change in the resultant timeline are different from those in the input
timeline.

CER does not include any expressions for date-shifting, as the types of date-shifting required tend to be
business specific. The recommended approach is to create a static Java method to create your required
timeline and invoke the static method from rules by use of the A.6.17.5, “call,” on page 163 expression.

Figure 24. A Total Income Timeline, Calculated using sum

Chapter 4. Handling Data 59

Important: When implementing a date-shifting algorithm, take care to ensure that there is no attempt to
create a timeline with more than one value on any given date, as such an attempt will fail at runtime.

The tests for your algorithm should include any tests for edge cases, such as leap-years or months which
have different numbers of days.

Date addition example

You have a business requirement as follows: a person may not apply for a type of benefit within three
months of receiving that benefit.

To implement this business requirement, you already have a timeline isReceivingBenefitTimeline that
shows the periods of time for which a person is receiving benefit.

You now need another timeline isDisallowedFromApplyingForBenefitTimeline which shows the periods
when it is invalid for that person to reapply for the benefit. This timeline is a date-addition of 3 months
to the value-change dates in isReceivingBenefitTimeline:

Here is a sample implementation of a static method which can be called from CER rules:

Figure 25. A Requirement for a Date-Addition Timeline

60 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

package curam.creole.example;

import java.util.Calendar;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import curam.creole.execution.session.Session;
import curam.creole.value.Interval;
import curam.creole.value.Timeline;
import curam.util.type.Date;

public class DateAdditionTimeline {

/**
* Creates a Timeline based on the input timeline, with the date
* shifted by the number of months specified.
* <p>
* Note that the timeline’s parameter can be of any type.
*
* @param session
* the CER session
* @param inputTimeline
* the timeline whose dates must be shifted
* @param monthsToAdd
* the number of months to add to the timeline change
* dates
* @param <VALUE>
* the type of value held in the input/output timelines
* @return a new timeline with the values from the input
* timeline, shifted by the number of months specified
*/
public static <VALUE> Timeline<VALUE> addMonthsTimeline(

final Session session, final Timeline<VALUE> inputTimeline,
final Number monthsToAdd) {

/*
* CER will typically pass a Number, which must be converted to
* an integer
*/
final int monthsToAddInteger = monthsToAdd.intValue();

/*
* Find the intervals within the input timeline
*/
final List<? extends Interval<VALUE>> inputIntervals =

inputTimeline.intervals();

/*
* Amass the output intervals. Note that we map by start date,
* because when adding months, it is possible for several
* different input dates to be shifted to the same output date.
*
* For example 3 months after these dates: 2002-11-28,
* 2002-11-29, 2002-11-30, are all calculated as 2003-02-28
*
* In this situation, we use the value from the earliest input
* date only - input dates are processed in ascending order
*/
final Map<Date, Interval<VALUE>> outputIntervalsMap =

new HashMap<Date, Interval<VALUE>>(inputIntervals.size());

for (final Interval<VALUE> inputInterval : inputIntervals) {
// get the interval start date
final Date inputStartDate = inputInterval.startDate();

/*
* Add the number of months - but n months after the start of
* time is still the start of time
*/

final Date outputStartDate;

Chapter 4. Handling Data 61

Date spreading example

You have a business requirement as follows: a car must be taxed for any month where the car is “on the
road” for one or more days in that month9.

To implement this business requirement, you already have a timeline isOnRoadTimeline that shows the
periods of time for which a car is “on the road”.

You now need another timeline taxDueTimeline which shows the periods when the car must be taxed.
This timeline is a spread-out of the dates within isOnRoadTimeline:

Here is a sample implementation of a static method which can be called from CER rules:

9. I.e. if a car is put back on the road part-way through a month, the keeper of the car must ensure that tax is retrospectively paid
for the entire month.

Figure 26. A Requirement for a Date-Spreading Timeline

62 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

package curam.creole.example;

import java.util.Calendar;
import java.util.Collection;
import java.util.GregorianCalendar;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import curam.creole.execution.session.Session;
import curam.creole.value.Interval;
import curam.creole.value.Timeline;
import curam.util.type.Date;

public class DateSpreadingTimeline {

/**
* Creates a Timeline for the period for which a car must be
* taxed.
* <p>
* The car must be taxed for the entire month for any month where
* that car is on-the-road for one or more days during that
* month.
*/
public static Timeline<Boolean> taxDue(final Session session,

final Timeline<Boolean> isOnRoadTimeline) {

/*
* Find the intervals within the input timeline
*/
final List<? extends Interval<Boolean>> isOnRoadIntervals =

isOnRoadTimeline.intervals();

/*
* Amass the output intervals. Note that we map by start date;
* a car may go off the road during a month, which would imply
* that no tax is required at the start of the next month, only
* to return to the road part-way through the next month, in
* which case it does require taxing after all.
*
* For example, car is put back on the road 2001-01-15, so tax
* is required (retrospectively) from 2001-01-01.
*
* On 2001-01-24 the car is taken back off the road, so it’s
* possible that the car does not require taxing from
* 2001-02-01.
*
* However, on 2001-02-05 the car is put back on the road, and
* so it does require taxing from 2001-02-01 after all. The
* resultant timeline will merge these periods to show that the
* car requires taxing from 2001-01-01 onwards (thus covering
* from 2001-02-01 too).
*/
final Map<Date, Interval<Boolean>> taxDueIntervalsMap =

new HashMap<Date, Interval<Boolean>>(
isOnRoadIntervals.size());

for (final Interval<Boolean> isOnRoadInterval :
isOnRoadIntervals) {

// get the interval start date
final Date isOnRoadStartDate = isOnRoadInterval.startDate();

if (isOnRoadStartDate == null) {
// at the start of time, the car must be taxed if it is on
// the road
taxDueIntervalsMap.put(null, new Interval<Boolean>(null,

isOnRoadInterval.value()));
} else if (isOnRoadInterval.value()) {

/*
* start of a period of the car being on-the-road - the car
* must be taxed from the start of the month containing the
* start of this period
*/

Chapter 4. Handling Data 63

4.5.5 Testing Timeline Outputs
A rule attribute that returns a timeline of values should be tested in your JUnit tests in a similar fashion
to tests for primitive (non-timeline) values.

To simplify your tests, you do not need to test that A.6.17.67, “timelineoperation,” on page 226 correctly
accumulates change dates (unless you want to). To keep your tests simple, generally you can use input
timelines which have a constant value forever.

For example, let's say you have a rule attribute which calculates (in a timeline way) the total from a list
of numbers:

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_NumberSumTimeline"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Totalizer">

<!-- The timelines to total -->
<Attribute name="inputNumberTimelines">

<type>
<javaclass name="List">

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The resultant total -->
<Attribute name="totalTimeline">

<type>
<javaclass name="curam.creole.value.Timeline">

<javaclass name="Number"/>
</javaclass>

</type>
<derivation>

<timelineoperation>
<sum>

<dynamiclist>
<list>

<reference attribute="inputNumberTimelines"/>
</list>
<listitemexpression>

<intervalvalue>
<current/>

</intervalvalue>
</listitemexpression>

</dynamiclist>

</sum>
</timelineoperation>

</derivation>
</Attribute>

</Class>
</RuleSet>

64 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

...then you can write a simple test which uses input timelines which have a constant value for all time:

Tip: The Timeline class has a convenience constructor to create a timeline with a constant value forever.

In some situations, e.g. where you have created your own date-shifting algorithm, or you genuinely need
to test that the change dates for input timelines are accurately reflected in resultant timelines, then there
are different approaches you can take according to your needs:
v Strict checking

Check that the resultant timeline is exactly equal to an expected timeline value. (The equality semantics
of the Timeline class behave as you would expect - two timelines are equal if they contain exactly the
same collection of intervals, i.e. the values from the two timelines are identical for every possible date).

v Lax checking

package curam.creole.example;

import java.util.Arrays;

import junit.framework.TestCase;
import curam.creole.calculator.CREOLETestHelper;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.Session_Factory;
import
curam.creole.execution.session.StronglyTypedRuleObjectFactory;
import
curam.creole.ruleclass.Example_NumberSumTimeline.impl.Totalizer;
import
curam.creole.ruleclass.Example_NumberSumTimeline.impl.Totalizer_Factory;
import curam.creole.storage.inmemory.InMemoryDataStorage;
import curam.creole.value.Timeline;

public class TestForeverValuedTimelines extends TestCase {

public void testNumberSumTimeline() {

final Session session =
Session_Factory.getFactory().newInstance(

new RecalculationsProhibited(),
new InMemoryDataStorage(

new StronglyTypedRuleObjectFactory()));

final Totalizer totalizer =
Totalizer_Factory.getFactory().newInstance(session);

// use input values that do not vary over time

final Timeline<Number> inputTimeline1 =
new Timeline<Number>(1);

final Timeline<Number> inputTimeline2 =
new Timeline<Number>(2);

final Timeline<Number> inputTimeline3 =
new Timeline<Number>(3);

totalizer.inputNumberTimelines().specifyValue(
Arrays.asList(inputTimeline1, inputTimeline2,

inputTimeline3));

// check that the resultant timeline is 6 forever
CREOLETestHelper.assertEquals(new Timeline<Number>(6),

totalizer.totalTimeline().getValue());

}
}

Chapter 4. Handling Data 65

Check that the resultant timeline has the value you expect on particular dates.

66 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

package curam.creole.example;

import java.util.Arrays;

import junit.framework.TestCase;
import curam.creole.calculator.CREOLETestHelper;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.Session_Factory;
import
curam.creole.execution.session.StronglyTypedRuleObjectFactory;
import
curam.creole.ruleclass.Example_NumberSumTimeline.impl.Totalizer;
import
curam.creole.ruleclass.Example_NumberSumTimeline.impl.Totalizer_Factory;
import curam.creole.storage.inmemory.InMemoryDataStorage;
import curam.creole.value.Interval;
import curam.creole.value.Timeline;
import curam.util.type.Date;

public class TestStrictTimelineChecking extends TestCase {

public void testNumberSumTimeline() {

final Session session =
Session_Factory.getFactory().newInstance(

new RecalculationsProhibited(),
new InMemoryDataStorage(

new StronglyTypedRuleObjectFactory()));

final Totalizer totalizer =
Totalizer_Factory.getFactory().newInstance(session);

// use input values that vary over time

final Timeline<Number> inputTimeline1 =
new Timeline<Number>(Arrays.asList(

new Interval<Number>(null, 1),
new Interval<Number>(Date.fromISO8601("20010101"), 1.1)

));

final Timeline<Number> inputTimeline2 =
new Timeline<Number>(Arrays.asList(

new Interval<Number>(null, 2),
new Interval<Number>(Date.fromISO8601("20020101"), 2.2)

));

final Timeline<Number> inputTimeline3 =
new Timeline<Number>(Arrays.asList(

new Interval<Number>(null, 3),
new Interval<Number>(Date.fromISO8601("20030101"), 3.3)
));

totalizer.inputNumberTimelines().specifyValue(
Arrays.asList(inputTimeline1, inputTimeline2,

inputTimeline3));

// strictly check the exact value of the resultant timeline
CREOLETestHelper.assertEquals(

new Timeline<Number>(Arrays.asList(
new Interval<Number>(null, 6),
new Interval<Number>(Date.fromISO8601("20010101"), 6.1),
new Interval<Number>(Date.fromISO8601("20020101"), 6.3),
new Interval<Number>(Date.fromISO8601("20030101"), 6.6)

)),

totalizer.totalTimeline().getValue());

}
}

Figure 27. Example of strictly testing a resultant timeline

Chapter 4. Handling Data 67

68 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

package curam.creole.example;

import java.util.Arrays;

import junit.framework.TestCase;
import curam.creole.calculator.CREOLETestHelper;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.Session_Factory;
import
curam.creole.execution.session.StronglyTypedRuleObjectFactory;
import
curam.creole.ruleclass.Example_NumberSumTimeline.impl.Totalizer;
import
curam.creole.ruleclass.Example_NumberSumTimeline.impl.Totalizer_Factory;
import curam.creole.storage.inmemory.InMemoryDataStorage;
import curam.creole.value.Interval;
import curam.creole.value.Timeline;
import curam.util.type.Date;

public class TestLaxTimelineChecking extends TestCase {

public void testNumberSumTimeline() {

final Session session =
Session_Factory.getFactory().newInstance(

new RecalculationsProhibited(),
new InMemoryDataStorage(

new StronglyTypedRuleObjectFactory()));

final Totalizer totalizer =
Totalizer_Factory.getFactory().newInstance(session);

// use input values that vary over time

final Timeline<Number> inputTimeline1 =
new Timeline<Number>(Arrays.asList(

new Interval<Number>(null, 1),
new Interval<Number>(Date.fromISO8601("20010101"), 1.1)

));

final Timeline<Number> inputTimeline2 =
new Timeline<Number>(Arrays.asList(

new Interval<Number>(null, 2),
new Interval<Number>(Date.fromISO8601("20020101"), 2.2)

));

final Timeline<Number> inputTimeline3 =
new Timeline<Number>(Arrays.asList(

new Interval<Number>(null, 3),
new Interval<Number>(Date.fromISO8601("20030101"), 3.3)

));

totalizer.inputNumberTimelines().specifyValue(
Arrays.asList(inputTimeline1, inputTimeline2,

inputTimeline3));

/*
* Do not strictly check that the resultant timeline is exactly
* as expected - instead check the resultant timeline’s value
* on particular dates.
*
* It is possible that the timeline has incorrect values on
* other dates, but depending on the purpose of your test, you
* may wish to trade strictness for improved readability.
*/

final Timeline<? extends Number> resultantTimeline =
totalizer.totalTimeline().getValue();

CREOLETestHelper.assertEquals(6.1,
resultantTimeline.valueOn(Date.fromISO8601("20010101")));

CREOLETestHelper.assertEquals(6.6,
resultantTimeline.valueOn(Date.fromISO8601("20130101")));

Chapter 4. Handling Data 69

4.5.6 Timeline Properties
Each CER Timeline has some important properties that you will need to know before working with
Timelines in your CER rule sets, rule tests and any code which is a client of CER:
v each CER Timeline is immutable (like all data types used in CER);
v each reference to Timeline is parameterized with the type of value held in the Timeline, which can be

primitives such as String, Date, Number, Boolean etc. or an arbitrarily complex type such as a Rule
Class or another parameterized type such as List. As for other parameterized types in CER, the
parameter itself should be an immutable object;

v each CER Timeline extends infinitely far into the past and infinitely far into the future10. In other
words, each CER Timeline has a value on any date, no matter how far in the past or future that date
might be;

v when a CER Timeline is created, the timeline will be divided into a collection of intervals, with each
interval holding a constant value for a period of time within the timeline. Contiguous intervals always
have different11values, otherwise they would have been merged into a single interval.each CER
Timeline extends infinitely far into the past and infinitely far into the future;

There are a number of consequences of these properties:
v it is not possible to have a "gap" in the middle of a timeline - all intervals in a timeline are contiguous;
v it is not possible to have a timeline which starts on a particular date; in certain circumstances a sensible

default will need to be chosen, for example if you have a Timeline<Number> for the income arising
from an Employment, then that income should be 0 on all dates before the Employment start date;

v it is not possible to have a timeline which ends on a particular date - the last value in the timeline
applies "until further notice", i.e. arbitrarily far into the future; in certain circumstances a sensible
default will need to be chosen, for example if you have a Timeline<Number> for the income arising
from an Employment, then if there is a known end date for that Employment, then the income should
be 0 on all dates after the Employment has ended; otherwise if there is no known end date for that
Employment, then the latest income should apply until further notice;

v any attempt to create a timeline that does not have a value for any date will fail. In particular, each
timeline must have a value which applies from the start of time, signified by a start date of null;

v each timeline can contain a finite number of value changes. This presents a limitation for timelines
which represent values which change an arbitrary number of times. For example, you might have a
Timeline<Number> to represent a person's age, with the value 0 up until the person's first birthday, the
value 1 up until the person's second birthday and so on. For Persons who are still alive it is not
possible to predict how many more birthdays they will have, and so a practical limit (e.g. of 200, say)
must be imposed. In practice, this limitation should not present any difficulties.

4.5.6.1 Example of Timeline Intervals
In the example of Joe, Mary and James's circumstances, we saw that Mary was not a lone parent of a
minor before she married Joe, and that when she married Joe she was still not a lone parent of a minor,
but for different reasons.

Under the hood here, when Mary's isLoneParentOfMinorTimeline value is being calculated, the input
timelines which are used are Mary's isMarriedTimeline and her hasMinorDependentsTimeline.

CER identifies each date on which the input timelines change, for each of those dates calculates the
resultant value (on that date) for whether Mary is a lone parent of a minor on that date, as follows:

10. Note that each Timeline covers an infinite amount of time, but can only contain a finite number of dates on which its value
changes

11. Same/different values are detected by the semantic of Java's Object.equals(...). All types used as a parameterized type to
Timeline must have sensible implementations of Object.equals(...) and Object.hashCode().

70 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v Dates on which Mary's isMarriedTimeline changes:
– 1st January 2001; and
– 1st May 2004.

v Dates on which Mary's hasMinorDependentsTimeline changes:
– 1st January 2001; and
– 1st June 2006.

v Therefore dates on which one or more inputs changed are:
– 1st January 2001 (both of Mary's input timelines happen to change on this date); and
– 1st May 2004 (only Mary's isMarriedTimeline changes on this date); and
– 1st June 2006 (only Mary's hasMinorDependentsTimeline changes on this date).

So, for each of these dates, calculate the required value for isLoneParentOfMinorTimeline, using primitive
Boolean/truth table logic:

Table 2. Calculation of interval values for Mary's isLoneParentOfMinorTimeline value

Date on which one or
more input timelines
changes value

Value of
isMarriedTimeline on this
date

Value of
hasMinorDependentsTimeline
on this date

Required value of
isLoneParentOfMinorTimeline
on this date

start of time (this date is
always included)

FALSE FALSE FALSE

1st January 2001 TRUE TRUE FALSE

1st May 2004 FALSE TRUE TRUE

1st June 2006 FALSE FALSE FALSE

Finally, a timeline is constructed with the required values for isLoneParentOfMinorTimeline - at this point
the construction of the timeline recognises that the value for start-of-time (FALSE) and 1st January 2001
(FALSE) are identical, and these intervals are merged into a single interval which stretches from the start
of time up to (but not including) 1st May 2004 (when the value becomes TRUE).

Note: The resultant timeline has value changes on 1st May 2004 and 1st June 2006 only.

The timeline intentionally does not hold any record that 1st January 2001 was used during is construction,
as the timeline's value did not change on that date - that date holds no relevance at all for the resultant
timeline.

4.6 Triggering Recalculation When Data Changes
The ability for CER to perform recalculations directly is now superseded by the Dependency Manager
(see Chapter 5, “The Dependency Manager,” on page 73).

It is recommended that you use the Dependency Manager in preference to CER's recalculation strategies.

Chapter 4. Handling Data 71

72 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Chapter 5. The Dependency Manager

The application includes a Dependency Manager which is responsible for storing and managing
dependencies between input data items ("precedents") and output data items ("dependents").

CER and its clients (such as the Eligibility and Entitlement Engine, and Advisor) integrate tightly with
the Dependency Manager to support the recalculation of CER results whenever inputs which have been
used in CER calculations change.

This chapter provides an overview of the Dependency Manager as follows:
v the concepts underlying the Dependency Manager and the terminology used to describe them;
v the functions that the Dependency Manager performs;
v the batch processing included with the Dependency Manager;
v how CER integrates with the Dependency Manager; and
v compliancy for the Dependency Manager.

5.1 Dependency Manager Concepts
Whenever the value of one data item is derived from the values of one or more other data items, then we
say that the derived value depends on the values used to derive it. If one or more of the values depended
on subsequently change, then the derived data item must be recalculated to obtain its new value.

The Dependency Manager uses the following terms to encapsulate these concepts:
v Dependent

A derived data item whose value is calculated from other data items (precedents).
v Precedent

A data item whose value may be used to calculate derived data items (dependents).
v Dependency

A record of the fact that the value of a particular dependent depends on the value of a particular
precedent.

v Precedent Change Item

A record of the fact that the value of a particular precedent has changed in some way.
v Precedent Change Set

A set of precedent changes items, grouped together for processing; used to identify potentially affected
dependents which require recalculation.

v Dependent Recalculation

The recalculation of a dependent which is potentially affected by one or more of the changes to
precedents in a precedent change set.

These concepts are best explained by way of an example.

Let's say that a claimant's entitlement to benefit is calculated from data such as:
v the claimant's personal details;
v evidence gathered for the claimant's case; and
v benefit rates and income thresholds.

© Copyright IBM Corp. 2012, 2013 73

Joe, a claimant, has two cases (123 and 124) and Mary, another claimant, has one case (125). There are
cases and personal details for other claimants too, and also some allowance rates used for other
calculations.

In this example, the calculated entitlement for each case is a dependent and the personal details, evidence
and rates/thresholds are precedents.

We can draw a sparse matrix which shows the dependencies between the dependents and the precedents
(an "X" signifies the presence of a dependency):

Table 3. Example Dependency Matrix

Precedent
Case 123's
Entitlement

Case 124's
Entitlement

Case 125's
Entitlement

Case 126's
Entitlement

Joe's Personal Details X X

Mary's Personal
Details

X

Frank's Personal
Details

Case 123's Evidence X

Case 124's Evidence X

Case 125's Evidence X

Case 126's Evidence X

Benefit Rates X X X X

Income Thresholds X X X X

Allowance Rates

So, to look at some examples from the dependency matrix:
v The entitlement for case 123 depends on Joe's personal details but not on Mary's;
v Joe's personal details are used in the calculation of both his cases (123 and 124); and
v All the cases use the benefit rates and income thresholds but not the allowance rates.
v No case's entitlement depends on Frank's personal details.

Note that the matrix can be read:
v by column, to understand all the precedents upon which a particular dependent depends - these are

the set of dependencies that must be maintained every time a dependent is calculated; and/or
v by row, to understand all the dependents which depend upon a particular precedent - these are the set

of dependents that must be recalculated every time the value of the precedent changes.

As the number of precedents and dependents in the system grow, the dependency matrix becomes very
large. Because the matrix is only sparsely populated (i.e. each dependent depends on only a small
fraction of the available precedents), the data in the matrix is stored only for dependencies which are
present, as follows:

Table 4. Example Dependency Storage

Dependent Precedent

Case 123's Entitlement depends on Joe's Personal Details

Case 123's Entitlement depends on Case 123's Evidence

Case 123's Entitlement depends on Benefit Rates

Case 123's Entitlement depends on Income Thresholds

74 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 4. Example Dependency Storage (continued)

Dependent Precedent

Case 124's Entitlement depends on Joe's Personal Details

Case 124's Entitlement depends on Case 124's Evidence

Case 124's Entitlement depends on Benefit Rates

Case 124's Entitlement depends on Income Thresholds

Case 125's Entitlement depends on Mary's Personal Details

Case 125's Entitlement depends on Case 125's Evidence

Case 125's Entitlement depends on Benefit Rates

Case 125's Entitlement depends on Income Thresholds

Case 126's Entitlement depends on Case 126's Evidence

Case 126's Entitlement depends on Benefit Rates

Case 126's Entitlement depends on Income Thresholds

(Note that the table above is shown sorted by dependent, which makes it easy to see the set of
dependencies for each dependent, but it could also be shown sorted by precedent which would make it
easy to see the dependents potentially affected by a change in that precedent's value.)

Let's say that Joe's personal details change. Because dependencies are recorded against Joe's personal
details, the Dependency Manager is able to identify that cases 123 and 124 require recalculation. When
the cases are recalculated, their entitlement values change (due to the change in Joe's personal details);
but note that in typical situations, the dependencies themselves do not change - prior to the recalculation,
case 123 depended on Joe's person details, the evidence stored against the case, the benefit rates and
income thresholds, and the same is true after the recalculation.

It is possible for more than one precedent value to change simultaneously, for example if the agency
chooses to alter both its benefit rates and its income thresholds then all cases must be recalculated.
Naively, each case would be identified twice (once from the change to benefit rates and once again for
the change to income thresholds); however, the Dependency Manager supports the grouping of these two
precedent changes into one Precedent Change Set. When the Dependency Manager processes the
Precedent Change Set it automatically filters out any duplicate dependents identified so that the
minimum work necessary is performed to recalculate the dependents.

5.2 Dependency Manager Functions
The Dependency Manager performs these main functions:
v it stores dependency records identified by a client, e.g. by the Eligibility and Entitlement Engine when

calculating an initial assessment determination;
v it captures changes in precedent values which potentially affect the values of dependents;
v it identifies the dependents which are potentially affected by items in a precedent change set; and
v it controls the recalculation of these identified dependents.

These functions are described in more detail in the following sections.

Chapter 5. The Dependency Manager 75

5.2.1 Storage of Dependency Records
The Dependency Manager is responsible for the creation of new dependency records on the database, and
for the removal of existing dependency records which are no longer required12.

Every time that a client of the Dependency Manager calculates the value of a dependent, the client is
responsible for identifying the precedents used in that calculation, and for passing that dependent and its
set of precedents to the Dependency Manager. The Dependency Manager uses that dependent to retrieve
its existing set of stored dependencies (if any) from the database, and creates or removes dependency
records in line with the new set of precedents identified by the client.

Typically, the first time that the Dependency Manager is invoked for a dependent, the Dependency
Manager will create several new rows on the database to store the dependencies on the precedents
identified.

However, on subsequent invocations of the Dependency Manager for the same dependent, it is very
common for the Dependency Manager to find that the new set of required dependencies passed in
exactly matches those already stored on the database, and so under these circumstances there are no
database writes for the Dependency Manager to perform. Occasionally the Dependency Manager will
find that a small number of new dependency rows are required, and/or a small number of existing
dependency rows are now extraneous and must be removed; and under these circumstances the
Dependency Manager performs a small number of database writes to bring the stored rows up-to-date
with the required dependencies, leaving the bulk of the dependency records unchanged for the
dependent.

Clients of the Dependency Manager may identify that dependency records are no longer required for a
dependent, and can instruct the Dependency Manager to remove all dependency records for that
dependent.

5.2.1.1 Example
When an entitlement for a case is performed for the first time, the Dependency Manager stores new
dependency records to show that the case entitlement depends on the claimant's personal details, the
evidence recorded against the case, rates, etc.

If the case is subsequently recalculated (either automatically by the Dependency Manager in response to a
change in personal details, say, or manually requested by a user), then after recalculation the Dependency
Manager compares the dependencies identified during the calculation with those already on the database
and finds no differences.

If a new member of the household is added to the case, then when entitlement is recalculated a new
dependency will be identified - namely that the case's entitlement now also depends on the new
household member's personal details, in addition to the existing dependencies already stored against the
case. The Dependency Manager creates a new dependency record on the database to store the additional
dependency.

If the new household member is later removed, then when entitlement is recalculated there will be no
dependency on the now-removed household member's personal details. The Dependency Manager
identifies that the stored dependency on that household member's personal details is now extraneous and
removes it from the database, leaving the other dependency records (on the claimant's personal details,
the evidence recorded against the case, rates, etc.) still intact.

12. Each dependency record does not contain any modifiable information, and the Dependency Manager never modifies any existing
dependency records - it only ever creates new records or removes existing records.

76 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

When the case is eventually closed, it will no longer require support for recalculations13and so the
dependency records are no longer required. For good housekeeping, the Dependency Manager is invoked
to remove all dependency records for the case's entitlement. If the case is subsequently reopened then its
entitlement can be recalculated and the Dependency Manager recreates all the required dependency
records.

5.2.1.2 No Understanding of Dependents or Precedents
The Dependency Manager intentionally does not maintain any records of all known dependents or
precedents in the system, as to do so would:
v duplicate data held elsewhere in the system; and
v become a bottleneck during processing, potentially leading to concurrency issues when the system

becomes aware of new data used as precedents in calculations.

Rather, the Dependency Manager only records information about dependencies. Each dependency is
merely a link between a particular dependent and a particular precedent. If a particular dependent has no
precedents, or vice versa, then there will simply be no dependency records stored for it.

The Dependency Manager does not "understand" the dependent and precedent information stored in a
dependency record; instead, each type of dependent and each type of precedent has a "handler"
registered with the Dependency Manager, and the Dependency Manager calls upon these handlers to
perform business-specific processing appropriate to the type, e.g. to decode a precedent or dependent
into a human-readable description, or to recalculate a dependent when required.

5.2.1.3 Dependency Storage is Optional
It is important to note that use of the Dependency Manager to store dependency records is optional.

Clients of the Dependency Manager can choose whether or not dependency records are required - i.e.
whether or not the client requires the Dependency Manager's ability to automatically identify and
recalculate dependents.

For example, the Eligibility and Entitlement Engine uses the Dependency Manager to store dependency
records for Case Assessment Determinations (i.e. determinations which typically lead to financial
payments and/or bills). The Eligibility and Entitlement Engine requires that the Dependency Manager
notify it when a case must be reassessed, which is why the dependency records must be stored.

By contrast, the Eligibility and Entitlement Engine also contains a feature for a case worker to manually
check the eligibility and entitlement of a case, based off in-edit evidence. These manual
eligibility/entitlement calculations use the same calculation methods but do not require any dependency
storage, as the system is never required to recalculate such determinations - rather, manual
eligibility/entitlement calculations are always triggered by an explicit request from a case worker.

5.2.1.4 Granularity of Dependencies
Note that the precedent data items used in the earlier example are deliberately vague - the term "personal
details" would in all likelihood cover a great many individual data fields such as dates of birth/death,
demographics, etc. The Dependency Manager does not know or care about the meanings of the
dependencies that it stores between dependents and precedents - it is up to clients of the Dependency
Manager to attach meanings to these and to store dependencies at an appropriate granularity.

The choice of granularity involves finding an acceptable trade-off between the two extremes of:
v Very fine granularity

13. Assuming a reassessment strategy of "Do not reassess closed cases".

See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide.

Chapter 5. The Dependency Manager 77

Very accurate dependencies are stored between dependents and individual data fields, enabling an
extremely tight identification of dependents affected by precedent changes, but at the cost of very high
numbers of dependency records being stored; vs.

v Very coarse granularity

Very broad dependencies are stored between dependents and groupings of large numbers of individual
data fields into one "data item", leading to low numbers of dependency records being stored, but at
risk of spurious recalculations being requested (i.e. recalculations which turn out not to be needed
because the calculation is not affected by the particular data field which changed).

It is the responsibility of designers of clients of the Dependency Manager to consider these trade-offs and
make sensible choices about the level at which to store dependency information in the Dependency
Manager.

For example, let's say that the system records these personal details about a claimant (in a realistic system
there might be many more fields regarded as "personal details"):
v date of birth (used in entitlement calculations);
v number of children (used in entitlement calculations); and
v mother's birth surname (the answer to a security question, used only to confirm the claimant's identity

- not used in entitlement calculations).

A very fine-grained set of dependencies would show that a case's entitlement depends on the date of
birth and number of children, but not on the mother's birth surname (as it was not accessed during
calculations):

Table 5. Example Fine-Grained Dependency Matrix

Precedent Case 127's Entitlement

Frank's date of birth X

Frank's number of children X

Frank's mother's birth surname

This fine-grained dependency storage could end up requiring many rows to be stored; but note that only
changes to the date of birth and/or number of children will trigger a recalculation of the case's
entitlement - if a typo is corrected in the mother's birth surname only, then no case entitlement
recalculation will be triggered.

By contrast, a very coarse-grained set of dependencies would show a much simpler record that the case's
entitlement depends on the overall personal details:

Table 6. Example Coarse-Grained Dependency Matrix

Precedent Case 127's Entitlement

Frank's personal details X

This coarse-grained dependency storage stores fewer dependency records but if a typo is corrected in the
mother's birth surname then the overall personal details have changed and a recalculation of the case's
entitlement will be triggered, even though the recalculation will show that the calculation result has not
changed.

5.2.2 Capture of Precedent Change Items
Clients must notify the Dependency Manager whenever the value of a precedent has changed. The
Dependency Manager accumulates these changes into a Precedent Change Set for later processing.

78 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

The most prevalent example is the Eligibility and Entitlement Engine, which contains "rule object
propagators" - these propagators are responsible for listening to changes in entities and evidence, and for
notifying these changes to the Dependency Manager.

The Dependency Manager supports these modes for dealing with precedent changes:
v Queue for Deferred Processing (the default); and
v Queue for Batch Processing (for use by clients identifying precedent changes which are likely to lead to

a large number of dependents being recalculated).

These modes are described in greater detail in the following sections.

5.2.2.1 Queue for Deferred Processing
This is the default mode for handling precedent changes.

If any precedent change items are identified during the scope of a database transaction, then the
Dependency Manager:
v creates a single new precedent change set on the database;
v adds all the precedent change items identified during the transaction to this new precedent change set;

and
v enqueues a request for a deferred process to process this new precedent change set.

5.2.2.2 Queue for Batch Processing
This is a special mode, used only by clients which identify changes in precedent values which are likely
to lead to a large number of dependents being recalculated. The Dependency Manager maintains a
special system-wide "batch" precedent change set which accumulates precedent changes from across
(potentially) many different transactions.

If any precedent change items are identified during the scope of a database transaction, then the
Dependency Manager:
v retrieves the special system-wide batch precedent change set;
v adds all the precedent change items identified during the transaction to this batch precedent change

set; and
v writes an informational message to the application logs to prompt an administrator to schedule batch

processing to process this batch precedent change set.

5.2.2.3 Example
When Joe's personal details are updated on the system, the Entity Rule Object Propagator notifies the
Dependency Manager of the change and the Dependency Manager writes the precedent change to a new
precedent change set and enqueues a deferred process. The deferred processing identifies that Joe's two
cases are potentially affected and reassesses them.

Later an administrator publishes some changes to CER rule sets. The Dependency Manager records these
changes to CER rule sets by adding a precedent change item record to the system-wide batch precedent
change set. The administrator also publishes some changes to rates, and the Dependency Manager
records these changes to rates by adding another precedent change item record to the system-wide batch
precedent change set. The administrator arranges to run the Dependency Manager batch suite to identify
and reassess the affected cases.

5.2.2.4 Lifecycle of a Precedent Change Set
Each Precedent Change Set goes through a simple lifecycle as follows:
v Open

The state of a precedent change set when it is initially created. In this state new precedent change
items can be added to the precedent change set.

v Submitted

Chapter 5. The Dependency Manager 79

The precedent change set has been submitted into dependent-identification processing. No more
precedent change items can be added to the precedent change set.

v Complete

The recalculation of all dependents affected by the precedent changes has been completed. The
precedent change set is kept for historical purposes only.

The transitions between each state occur differently depending on the mode in which precedent changes
were captured:
v Queue for Deferred Processing:

– the transaction that captures the precedent changes opens a new precedent change set and submits it
by requesting a deferred process; and

– the deferred process accepts the submitted precedent change set, identifies and recalculates affected
dependents, and completes the precedent change set.

v Queue for Batch Processing:
– the transaction that captures the precedent changes writes them to the currently- open batch

precedent change set;
– the suite of Dependency Manager batch processes performs the following steps:

- retrieves the currently- open batch precedent change set and submits it into the next step in the
batch process, and creates a new open batch precedent change set to capture any further precedent
changes identified14;

- performs streamed batch processing to identify and recalculate the dependents affected by the
changes in the now- submitted batch precedent change set; and

- completes the batch precedent change set.

5.2.3 Identification of Potentially Affected Dependents
Once the Dependency Manager has captured one or more precedent change items and grouped them into
a precedent change set, then the Dependency Manager can identify which dependents are potentially
affected by one or more of the precedent change items, by examining the stored dependency records for
each precedent in the precedent change set. It is at this point that the Dependency Manager filters out
any dependents which are identified more than once.

This identification of the potentially affected dependents occurs either in deferred processing or in batch
processing, depending on the mode in effect when the precedent change items were captured (see 5.2.2,
“Capture of Precedent Change Items,” on page 78).

For example, if a single database transaction writes changes to several database rows, then the deferred
processing step will identify each affected case only once, even though each changed database row on its
own affects a particular case.

Similarly, if the batch precedent change set contains changes to both CER rule sets and rates, then the
batch processing step will again identify each affected case only once, even though the CER rule set
change on its own affects a particular case, as does the rate change on its own, too.

5.2.4 Recalculation of Identified Dependents
Once the Dependency Manager has identified all the dependents which are potentially affected by
precedent changes, then the Dependency Manager requests that each of those dependents be recalculated.
The Dependency Manager does not understand what each dependent represents, so the appropriate
recalculation is achieved by the Dependency Manager looking up a registered handler for each dependent
and delegating the responsibility for the recalculation to the handler.

14. In a running system this is the way that a new batch precedent change set is created - i.e. by its predecessor being submitted.

Note though that the initial open batch precedent change set is supplied by a DMX file included in the application.

80 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

For example, the registered dependent handler for case assessment determinations understands that the
appropriate recalculation for a case is to reassess the case.

This recalculation of a dependent occurs either in deferred processing or in batch processing15, depending
on the mode in effect when the precedent change items were captured (see 5.2.2, “Capture of Precedent
Change Items,” on page 78). Once this step has completed, the system is now up-to-date with respect to
the precedent changes which were captured.

5.3 Dependency Manager Deferred Processing
The previous section (5.2, “Dependency Manager Functions,” on page 75) described how the Dependency
Manager supports the capturing of precedent change items in a system-wide batch precedent change set,
and how the Dependency Manager contains deferred processing to identify potentially affected
dependents and recalculate them.

This section provides more details on the Dependency Manager's deferred processing.

The deferred processing will initially pre-calculate the total amount of potentially affected dependents
there are, and hence how many recalculations it must perform and make one of two decisions:
v If this calculation is below the system limit, then the precedent change set recalculations will be

performed by the deferred process there and then; or
v If this calculation exceeds a system limit, then the precedent change set calculations will be moved to

the Dependency Manager's batch processing (5.4, “Dependency Manager Batch Processing”). At this
point the precedent change set will be marked with a status of 'Deferred To Batch'.

5.3.1 Setting the System Limit for Deferred Processing
The system limit for deferred processing can be set via the application property
curam.dependency.deferred.processing.limit.

While the default for this is set to 50, it should be noted that the true figure for any system will depend
on a multitude of factors such as available memory. As a result it is recommended that the value set is
based on system testing to find a suitable value that can process most, if not all deferred processes
normally, but will move any problematic ones to batch processing.

5.3.2 Error Handling in the Deferred Processing
If an error occurs during running of the Dependency Manager Deferred Process, after the normal number
of retries, the system will move the work to batch processing instead. This protects against failures due to
transaction timeouts and ensures that every avenue for processing the calculations has been tried.

Additionally, the status of the precedent change set in this case will be changed to be 'Deferred To Batch'
to indicate that the deferred process was in error and a notification will be raised for the originator of the
deferred process.

5.4 Dependency Manager Batch Processing
A previous section (5.2, “Dependency Manager Functions,” on page 75) described how the Dependency
Manager supports the capturing of precedent change items in a system-wide batch precedent change set,
and how the Dependency Manager contains batch processing to identify potentially affected dependents
and recalculate them.

This section provides more details on the Dependency Manager's batch processing.

15. Because each dependent handler may be called from online, deferred and/or batch transactions, it is imperative that each
dependent handler make no assumptions on the transaction type in effect.

Chapter 5. The Dependency Manager 81

The Dependency Manager maintains control records on the database to point to the following batch
precedent change sets:
v the currently-open batch precedent change set (there will always be exactly one batch precedent change

set which is open for accepting new precedent change items); and
v the batch precedent change set which is currently being processed by the Dependency Manager batch

suite (if any - only populated during batch processing; most of the time there is no batch precedent
change set in this state).

These control records are fundamental to the behavior of the Dependency Manager batch suite.

Whenever there are precedent changes in "queue for batch processing" mode, then the application logs
will show a message notifying the administrator that a run of the Dependency Manager batch suite is
required16.

The Dependency Manager batch suite is made up of these separate batch processes:
v Submit Precedent Change Set

The start point for the batch suite. A lightweight single-stream process that submits the currently-open
batch precedent change set.

v Perform Batch Recalculations From Precedent Change Set

The heavyweight multiple-stream process that identifies the dependents which are potentially affected
by the changes in the submitted precedent change set, and recalculates them. The time taken to run
this process will vary according to how many dependent recalculations are required, and may be
considerable.

v Complete Precedent Change Set

The end point for the batch suite. A lightweight single-stream process that completes the
currently-submitted batch precedent change set.

These batch processes are described in more detail in the following sections.

5.4.1 Submit Precedent Change Set
This batch process is the starting point for the batch suite, containing a lightweight single-stream process
that submits the currently-open batch precedent change set, and creates a new open batch precedent
change set, which will be used to capture any subsequent precedent changes identified and queued for
batch processing.

To run this batch process, execute the following command (on one line):

build runbatch -Dbatch.program=

curam.dependency.intf.SubmitPrecedentChangeSet.process

-Dbatch.username=SYSTEM

If this batch process completes successfully, it will output a simple message confirming that the open
batch precedent change set has been submitted.

Tip: A common error is to attempt to run this batch process when another batch precedent change set is
still in the submitted state.

16. The user who made the changes which were queued for batch processing will also receive an on-screen informational message
advising that a run of the Dependency Manager batch suite is required.

82 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

This process will output a simple error message if there is another such batch precedent change set which
has not yet been completely processed by the batch suite.

As a convenience, this batch process also outputs a list of the dependent types which are registered with
the Dependency Manager - this list of dependent types is important when running the next step (5.4.2,
“Perform Batch Recalculations From Precedent Change Set”).

The dependent types included with the application are:
v Case Assessment Determination Result

The calculation of an assessment determination for a product delivery case.
See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide.

v Advice Context

The calculation of advice.
See the Cúram Advisor Configuration Guide.

v Stored Attribute Value

The calculation of an attribute stored on CER's database tables.
See 5.5.2, “CER uses the Dependency Manager to store dependencies for CER-stored attribute values,”
on page 91.

5.4.2 Perform Batch Recalculations From Precedent Change Set
This batch process is the heavyweight multiple-stream process that identifies the dependents which are
potentially affected by the changes in the submitted precedent change set, and recalculates them. The
time taken to run this process will vary according to how many dependent recalculations are required,
and may be considerable.

The Perform Batch Recalculations From Precedent Change Set step must be executed multiple times -
once for each dependent type registered with the Dependency Manager (see the output produced by the
previous step 5.4.1, “Submit Precedent Change Set,” on page 82). You are free to choose the most
appropriate order in which to process the dependent types; for example, it is likely to be more critical to
your business to reassess case determinations (see the Inside Cúram Eligibility and Entitlement Using
Cúram Express Rules guide) than it is to identify out-of-date advice (see the Advisor Configuration
Guide). You are also free to spread the processing for different dependent types over several days, but
note that further precedent change items queued for batch cannot be processed until the
currently-submitted precedent change set has completed the full Dependency Manager batch suite.

The Perform Batch Recalculations From Precedent Change Set step uses Cúram's Batch Streaming
Architecture (see the Cúram Batch Performance Mechanisms Guide) and as such the processing is divided
into these phases:
v Identify Chunks

A phase, which must be run as a single process, that identifies the dependents (of a given dependent
type) potentially affected by changes in the submitted batch precedent change set. The IDs of the
identified dependents are written to "chunks" for processing by the next phase.

v Process Chunks

A phase, amenable to concurrent execution by multiple processes, that takes a chunk of identified
dependents and recalculates each dependent.

To run this batch process for a particular dependent type, execute the following command (on one line):

build runbatch -Dbatch.program=

curam.dependency.intf.PerformBatchRecalculationsFromPrecedentChangeSet.process

Chapter 5. The Dependency Manager 83

-Dbatch.username=SYSTEM

-Dbatch.parameters="dependentType= code-for-dependent-type "

By default the single process will perform both phases; however, you can run additional "Stream"
processes concurrently on other machines to perform the second phase in parallel (see the Cúram Batch
Performance Mechanisms Guide for more information on parallel processing and the environment
variables which govern the parallel processing behavior of this Perform Batch Recalculations From
Precedent Change Set process). To run a "stream" process for a particular dependent type, execute the
following command (on one line):

build runbatch -Dbatch.program=

curam.dependency.intf.PerformBatchRecalculationsFromPrecedentChangeSetStream.process

-Dbatch.username=SYSTEM

-Dbatch.parameters="dependentType= code-for-dependent-type "

The batch process will fail to start with a fatal error if any of the following occur:
v the dependentType is not supplied, or is supplied but is not the code for any dependent type

registered with the Dependency Manager; or
v there is no batch precedent change set in the "submitted" state (i.e. the Submit Precedent Change Set

process has not yet been run since the last run of Complete Precedent Change Set).

Otherwise, the batch process will start, and attempt to identify and recalculate the affected dependents.
The result of attempting to recalculate a particular dependent will be either:
v Success

The dependent was found and recalculated correctly and processing continues normally.
v Not found

The dependent was not found and so could not be processed. This situation can occur if a client of the
Dependency Manager decides that a dependent should no longer exist, but neglects to request the
Dependency Manager to remove dependency records for that dependent. Under these circumstances,
the Dependency Manager automatically removes the extraneous dependency records and writes a
warning to application log/batch stream output.

v Error

An exception was thrown during the recalculation of the dependent (for example, if a CER calculation
encountered a "division by zero" problem). The thrown exception is written to the batch stream output
and recovery processing is handled by the Cúram's Batch Streaming Architecture's "skip" processing.

When this Perform Batch Recalculations From Precedent Change Set process has completed, a
comprehensive report is written with details of how many dependents were processed successfully, vs.
not found, vs. encountered errors. If any errors were encountered, you should examine the output logs
from your batch streams to obtain details of the errors.

Tip: If you set the standard Cúram log level to "verbose17" or higher, then prior to recalculating each
dependent the Dependency Manager will output:
v a human-readable description of the dependent; and
v the subset of precedent changes (from the precedent change set) that caused the dependent to be

identified.

17. This log level is recommended for development environments only.

Verbose logging can adversely affect performance and scalability in a production system.

84 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

This output may be helpful in understanding why a particular dependent was identified as requiring a
recalculation.

Note: If you accidentally run this batch process more than once for the same dependent type, then
recalculations of the dependents will occur, but the recalculation will find that the dependent is already
up-to-date.

As such, this kind of accidental additional run for a dependent type will not harm the system but may
use up valuable processing time.

Take careful note of the list of dependent types and keep track of which dependent types you have
processed and which remain to be processed.

5.4.3 Complete Precedent Change Set
The end point for the batch suite, containing a lightweight single-stream process that completes the
currently-submitted batch precedent change set.

CAUTION:
Do not run this batch process until you are sure that the previous step (5.4.2, “Perform Batch
Recalculations From Precedent Change Set,” on page 83) has completed for each dependent type registered
with the Dependency Manager.

To run this batch process, execute the following command (on one line):

build runbatch -Dbatch.program=

curam.dependency.intf.CompletePrecedentChangeSet.process

-Dbatch.username=SYSTEM

If this batch process completes successfully, it will output a simple message confirming that the submitted
batch precedent change set has been completed.

Tip: A common error is to attempt to run this batch process before the Submit Precedent Change Set has
been run.

This process will output a simple error message if there is no batch precedent change set in the
"submitted" state.

After the batch precedent change set has been completed, the processing checks to see if any new
precedent changes were queued for further batch processing since the batch suite began. This situation
can occur if
v the recalculation of any dependent during the batch run gave rise to changes in data which is also

used as precedent; and/or
v the online system has been running concurrently with the batch suite and a user has made changes

which resulted in precedent change items being queued for batch processing.

The processing will output a simple message reporting that either:
v there are no further precedent change items queued for batch processing (and thus the system is

up-to-date with respect to batch precedent change items); or
v further precedent change items have been queued for batch processing, and another run of the

Dependency Manager batch suite is required to process these further items. In this situation, you will
need to decide whether to execute the additional run immediately or wait until a later time (perhaps
when even more batch precedent change items have been queued for batch).

Chapter 5. The Dependency Manager 85

5.4.4 Dependency Manager Batch Tooling
For information on the tooling provided to assist with running the Dependency Manager batch suite,
please see the 'Dependency Manager Batch Tooling' section of the 'Cúram Operations Guide'.

5.5 Integration between CER and the Dependency Manager
CER integrates with the Dependency Manager in a number of important ways:
v CER can identify dependencies for the clients of the Dependency Manager to store;
v CER uses the Dependency Manager to store dependencies for any calculated attribute values stored on

CER's database tables; and
v the Dependency Manager requests CER to recalculate any calculated attributes values stored on CER's

database tables if any of their precedents change.

These integration points between CER and the Dependency Manager are explained in more detail in the
following sections.

5.5.1 CER Utility to Identify Dependencies to Store
A client of CER uses CER to perform complex calculations. Often the client of CER may also need to
store dependencies in the Dependency Manager so that the Dependency Manager can notify the client
whenever precedents change, and that client can then re-invoke CER to recalculate its output, taking the
changes to precedent data into account.

CER contains a utility to help its clients identify dependencies to store in the Dependency Manager. The
utility takes in an attribute value (that CER has calculated) and returns a set of precedents for that
attribute value. A client of CER can then pass its dependent and the identified precedents to the
Dependency Manager to store dependency records.

When CER calculates an attribute value, it keeps in memory a full tree of logical dependencies
containing:
v at its root, the calculated attribute value itself;
v at its branch nodes intermediate calculate values (typically on internal rule objects);
v at its leaf nodes, the external input data retrieved during the CER calculation.

The utility is able to parse this tree of logical dependencies in order to provide a much smaller set of
precedents, typically based off the leaf nodes of the tree; that is to say, typically the intermediate
calculation results are ignored and the dependencies stored reflect that calculated attribute value
ultimately depends on the external input data accessed during calculations.

Note: Any non-trivial calculation, such as those typically performed by CER, will have a number of
intermediate derived values "in between" the overall dependent and its input precedents.

These intermediate values are not passed to the Dependency Manager; rather, the Dependency Manager
stores dependency records which link high-level dependents (such as a case's entitlement) directly to its
low-level precedents (such as entity, evidence and rate data).

Intermediate values are not of interest when storing dependencies.

The precedents identified by the utility are a mixture of:
v precedents identified directly by CER; and
v precedents identified by the rule object converters registered with CER's Database Data Storage.

86 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

5.5.1.1 Precedents Identified Directly by CER
The utility directly identifies these types of dependencies for a calculated attribute value:

Table 7. Precedents Identified Directly by CER

Name When Identified Trigger for Recalculation

Stored Attribute Value Identifies any "input" attribute value stored
on CER's database tables which was
retrieved during the overall(I.e. the
calculation of the attribute itself, or on any of
the internal attribute values on which it
ultimately depends (the "intermediate"
calculations between the calculated attribute
value and its external data
inputs).)calculation of the attribute value.

The precedent ID refers to the internal ID for
the stored attribute's database row on CER's
database tables.

If the value of the stored attribute changes,
then a precedent change item for the stored
attribute value will be written to a precedent
change set.

Rule Set Definitions Identifies each rule set containing any of the
attributes used within the overall calculation
of the attribute value.

The precedent ID refers to the name of the
rule set containing one or more attribute
definitions encountered during the overall
calculation.

If changes to a CER rule set are published,
then a precedent change item for the
changed rule set will be written to a
precedent change set.

'readall' search Identifies any A.6.17.53, “readall,” on page
205 (with no nested match) expressions
encountered during the overall calculation,
which retrieved rule objects stored on CER's
database tables (as opposed to rule objects
retrieved using rule object converters - see
5.5.1.2, “Precedents Identified by Rule Object
Converters,” on page 91 instead).

The precedent ID refers to the name of the
rule class sought by the A.6.17.53, “readall,”
on page 205 expression.

A precedent change item for the rule class
will be written to a precedent change set if:

v a new rule object for that rule class is
stored on CER's database tables; and/or

v an existing rule object for that rule class is
removed from CER's database tables.

'readall/match' search Identifies any A.6.17.53, “readall,” on page
205 expressions encountered during the
overall calculation, which retrieved rule
objects stored on CER's database tables (as
opposed to rule objects retrieved using rule
object converters - see 5.5.1.2, “Precedents
Identified by Rule Object Converters,” on
page 91 instead).

The precedent ID refers to the name of the
rule class sought by the A.6.17.53, “readall,”
on page 205 expression, together with the
attribute name and value used as the search
criterion.

A precedent change item for the rule class
and its attribute name and match value will
be written to a precedent change set if:

v a new rule object for that rule class is
stored on CER's database tables;

v an existing rule object for that rule class is
removed from CER's database tables;
and/or

v the value of the attribute used in the
search criterion changes for an existing
rule object (in which case two precedent
change items will be written - one for the
old value of the attribute and another for
the new value of the attribute).

Chapter 5. The Dependency Manager 87

(I.e. the calculation of the attribute
itself, or on any of the internal
attribute values on which it
ultimately depends (the
"intermediate" calculations between
the calculated attribute value and its
external data inputs).)

These types of dependencies are best illustrated with an example.

Let's say a new system is written which uses CER to calculate a person's tax liability. This Tax Liability
system uses the Dependency Manager to store dependencies, so that the tax liability can be recalculated
(using CER) if the person's circumstances change.

The Tax Liability system stores system-wide "tax threshold" information in rule objects, with these rule
objects stored on CER's database tables. The CER rules for calculating a person's tax liability include a
A.6.17.53, “readall,” on page 205 expression to retrieve all the tax thresholds in the system.

The Tax Liability system also stores system-wide "asset" information in rule objects, with these rule
objects stored on CER's database tables. Each asset specifies its owner and its market value. The CER
rules for calculating a person's tax liability include a A.6.17.53, “readall,” on page 205 expression to
retrieve all assets owned by that person (i.e. those with an Asset.ownedByPersonID matching the
Person.personID). It is possible for an asset's market value to change, and/or for an asset to be
transferred from one person to another, by changing its Asset.ownedByPersonID from one person's ID to
another.

The CER rules for calculating a person's tax liability involve summing the Asset.marketValue of all the
assets owned by that person.

The Tax Liability system contains separate CER rule sets for retrieving the input data required for the tax
liability calculation vs. the actual business calculations which use that retrieved data to calculate a
person's tax liability.

A user uses the Tax Liability system to calculate the tax liability for Joe (personID 456) and for Mary
(personID 457), who each have one asset. The Tax Liability system uses the CER utility to identify
dependencies, and passes these to the Dependency Manager for storage, resulting in the following
dependencies being stored:

Table 8. Dependencies Stored For Tax Liability Example

Dependent Type Dependent ID Precedent Type Precedent ID

Tax Liability 456 (Joe's person
ID)

'readall' search Rule class: TaxThreshold(Stored because the calculation
of Joe's tax liability caused a retrieval of all
TaxThreshold rule objects.)

Tax Liability 456 'readall/match'
search

Rule class: Asset, with attribute value
ownedByPersonID=456(Stored because the calculation
of Joe's tax liability caused a retrieval of all Asset rule
objects owned by Joe.)

Tax Liability 456 Stored Attribute
Value

789 (the internal ID of Asset.marketValue for Joe's
asset)(Stored because the calculation of Joe's tax liability
accessed the stored value of marketValue on the single
asset retrieved for Joe.)

88 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 8. Dependencies Stored For Tax Liability Example (continued)

Dependent Type Dependent ID Precedent Type Precedent ID

Tax Liability 456 Rule Set
Definitions

TaxLiabilityDataRetrievalRuleSet(Stored because the
calculation of Joe's tax liability involved the definitions
of rule attributes in the
TaxLiabilityDataRetrievalRuleSet (used to retrieve the
TaxThreshold and Asset rule objects).)

Tax Liability 456 Rule Set
Definitions

TaxLiabilityBusinessCalculationsRuleSet(Stored because
the calculation of Joe's tax liability involved the
definitions of rule attributes in the
TaxLiabilityBusinessCalculationsRuleSet (used to
compute the overall tax liability based on input data).)

Tax Liability 457 (Mary's
person ID)

'readall' search Rule class: TaxThreshold(Stored because the calculation
of Mary's tax liability caused a retrieval of all
TaxThreshold rule objects.)

Tax Liability 457 'readall/match'
search

Rule class: Asset, with attribute value
ownedByPersonID=457(Stored because the calculation
of Mary's tax liability caused a retrieval of all Asset rule
objects owned by Mary.)

Tax Liability 457 Stored Attribute
Value

780 (the internal ID of Asset.marketValue for Mary's
asset)(Stored because the calculation of Mary's tax
liability accessed the stored value of marketValue on
the single asset retrieved for Mary.)

Tax Liability 457 Rule Set
Definitions

TaxLiabilityDataRetrievalRuleSet(Stored because the
calculation of Mary's tax liability involved the
definitions of rule attributes in the
TaxLiabilityDataRetrievalRuleSet (used to retrieve the
TaxThreshold and Asset rule objects).)

Tax Liability 457 Rule Set
Definitions

TaxLiabilityBusinessCalculationsRuleSet(Stored because
the calculation of Mary's tax liability involved the
definitions of rule attributes in the
TaxLiabilityBusinessCalculationsRuleSet (used to
compute the overall tax liability based on input data).)

Chapter 5. The Dependency Manager 89

(Stored because the
calculation of Joe's tax
liability caused a retrieval
of all TaxThreshold rule
objects.)(Stored because the
calculation of Joe's tax
liability caused a retrieval
of all Asset rule objects
owned by Joe.)(Stored
because the calculation of
Joe's tax liability accessed
the stored value of
marketValue on the single
asset retrieved for
Joe.)(Stored because the
calculation of Joe's tax
liability involved the
definitions of rule attributes
in the
TaxLiabilityDataRetrievalRuleSet
(used to retrieve the
TaxThreshold and Asset
rule objects).)(Stored
because the calculation of
Joe's tax liability involved
the definitions of rule
attributes in the
TaxLiabilityBusinessCalculationsRuleSet
(used to compute the
overall tax liability based
on input data).)(Stored
because the calculation of
Mary's tax liability caused a
retrieval of all
TaxThreshold rule
objects.)(Stored because the
calculation of Mary's tax
liability caused a retrieval
of all Asset rule objects
owned by Mary.)(Stored
because the calculation of
Mary's tax liability accessed
the stored value of
marketValue on the single
asset retrieved for
Mary.)(Stored because the
calculation of Mary's tax
liability involved the
definitions of rule attributes
in the
TaxLiabilityDataRetrievalRuleSet
(used to retrieve the
TaxThreshold and Asset
rule objects).)(Stored
because the calculation of
Mary's tax liability involved
the definitions of rule
attributes in the
TaxLiabilityBusinessCalculationsRuleSet
(used to compute the
overall tax liability based
on input data).)
90 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

We can now see how recalculations of tax liability will be triggered by various changes in data:

Table 9. Example Precedent Change Items for Tax Liability

Data Change Precedent Change Items Recorded Recalculations Triggered

The market value of Joe's asset
increases from $100 to $120

v Stored Attribute Value, 789 v Joe's tax liability is recalculated

Mary sells her asset and its rule
object is removed

v 'readall/match' search, Rule class:
Asset, with attribute value
ownedByPersonID=457

v Mary's tax liability is recalculated

Joe receives a new asset, stored as a
new rule object

v 'readall/match' search, Rule class:
Asset, with attribute value
ownedByPersonID=456

v Joe's tax liability is recalculated

Joe transfers his first asset to Mary,
thus the asset's ownedByPersonID
changes from 456 to 457

v 'readall/match' search, Rule class:
Asset, with attribute value
ownedByPersonID=456 (old value)

v 'readall/match' search, Rule class:
Asset, with attribute value
ownedByPersonID=457 (new
value)

v Joe's tax liability is recalculated

v Mary's tax liability is recalculated

An administrator introduces a new
tax threshold, stored as a new rule
object

v 'readall' search, Rule class:
TaxThreshold

v Joe's tax liability is recalculated

v Mary's tax liability is recalculated

An administrator removes an existing
tax threshold, thus removing its rule
object

v 'readall' search, Rule class:
TaxThreshold

v Joe's tax liability is recalculated

v Mary's tax liability is recalculated

An administrator publishes changes
to the
TaxLiabilityBusinessCalculationsRuleSet
rule set

v Rule Set Definitions,
TaxLiabilityBusinessCalculationsRuleSet

v Joe's tax liability is recalculated

v Mary's tax liability is recalculated

5.5.1.2 Precedents Identified by Rule Object Converters
The Rule Object Converters registered with CER's Database Data Storage can also contribute to the
dependencies identified by the CER utility.

See the documentation for each rule object converter for details on the dependencies identified.

5.5.2 CER uses the Dependency Manager to store dependencies for
CER-stored attribute values
For rule objects that are stored on CER's database tables, each attribute value on those rule objects may
play a role as:
v a dependent - i.e. an attribute value which is derived by calculating its values from input data; and/or
v a precedent - i.e. an attribute value which is used as input data during the calculation of a dependent.

CER registers a dependent handler and a precedent handler with the Dependency Manager to allow its
stored attribute values to be used as dependents and/or precedents in stored dependencies.

For example, if an attribute totalIncome is present on a Person rule object stored on CER's database
tables, and the calculation of totalIncome involved the retrieval of Income.amount attribute values also
stored on CER's database tables, then CER would request the Dependency Manager to store the fact that
the Person.totalIncome attribute value depends on the Income.amount attribute values.

Chapter 5. The Dependency Manager 91

5.5.3 The Dependency Manager requests CER to recalculate any stored
calculated attributes values
When precedent values change, then the Dependency Manager will identify any stored attribute values in
CER that depend on those changed precedent values, and request CER to recalculate its dependent
values, via the dependent handler that CER registers with the Dependency Manager.

For example, if an Income.amount attribute value stored on CER's database tables changed its value, then
CER would notify the Dependency Manager that the Income.amount precedent had changed, and the
Dependency Manager would subsequently identify that the Person.totalIncome dependent requires
recalculation, and invoke CER to recalculate it.

5.6 Compliancy
See D.6, “The Dependency Manager,” on page 247 for the compliancy statement for the Dependency
Manager.

92 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Chapter 6. About the CER Editor

6.1 Introduction
The CER Editor facilitates the creation and maintenance of CER rulesets. Some rulesets are distilled from
legislation and others are to assist users to perform certain activities. Therefore the CER editor has two
basic views: the Business View for those who familiar with the structure and text required by legislation
and the Technical View for those users familiar with the implementation aspects of rules development.

The CER Editor contains a global menu bar that consist of common user features such as Save, Search and
Undo and Redo. There are other Save options to allow the user to Export, Validate and Save All rule sets.

6.2 CER Editor Global Menu
The CER Editor provides common functionality as part of the global menu for easier access.

6.2.1 CER Editor Global Menu
Table 10. Menu Bar

Name Description

Undo To cancel the last edit choose the undo from the menu bar.

Redo To cancel the last undo choose the Redo from the menu bar this will roll back
the last action taken.

Include Rule Sets To see the included rule sets and allows rule sets to be added by providing a
classpath.

Export The CER editor supports exporting all diagrams in the rule outline view to PNG
images which can be saved as a single ZIP archive file to the user's local hard
disk.

Save A rule set can be saved at any time one its opened in the editor. Saving a rule
set that has a status of published results in an “In Edit” record being created for
that rule set. Any modifications you make are saved to the in edit record.
Saving a rule set that has a status of “In Edit” saves your modifications directly.
Rule sets can also have a status of “Newly Created”. Saving modifications to a
newly created rule set will result in the modifications being saved directly to
that newly created rule set.

Save All The CER editor supports opening a number of rule sets from within one
instance of the editor. A number of CER elements can point to classes or
attributes that are defined in the other rule sets. CER elements that point to
something in a different rule set will have a menu option Open Rule Set. This
allows a user to have any number of rule sets opened in the editor at any one
time. The Save All menu option will save all] rule sets that are opened in the
editor and have been modified.

Validate Allows the user to validate their changes to a rule set. The rule set validator of
the CER rule engine is called. CER rule sets are XML files which adhere to the
CER-supplied rule schema. CER also includes a comprehensive rule set
validator which can detect errors in your rule set before allowing your rule set
to execute. The CER rule set validator reports a list of errors in the Properties
and Validations panel so they can resolved by the user. If there are any errors,
the CER rule set validator reports the errors and processing halts.

Search Allows the user to do a quick text based search that will open a search results
popup which matching results. More information on the functionality provided
and how to refine a search can be found in the Search Tools section.

© Copyright IBM Corp. 2012, 2013 93

6.2.2 CER Editor Search Tools

6.2.2.1 CER Editor Search Criteria
A user can perform a general text based search for the following criteria (Rules and Rule References,
Descriptions, Folders, Technical Data and Codetables):

Table 11. Search Criteria

Name Description

Rules and Rule References Search for rule by giving the name of the rule.

Descriptions Search for rules or attributes within a rule by entering some of text used to
describe the rule or attribute.

Folders Search for a folder by giving the name of the folder.

Technical Data Search for any attributes that are specified or not specified attributes.

Codetables Search for any attributes that are specified as codetables.

6.2.3 Business View
The Business View provides the business user with a rules centric view where the relevant elements for
creating and maintaining the business rules are available. It consists of a tree or hierarchical view of the
rules, rules canvas, business element palettes and the properties and validation panel.

6.2.3.1 Rules Outline View
This displays all the top level rules and folders in which they are located. There is a context menu
available on each item within the outline view:

Table 12. New Menu items

Name Description

Folder (Button) Create a folder by providing a new folder name.

Rule (Button) Create a new Rule by providing a new rule name and the data type for this rule
which will be defaulted to a Boolean type. The rule will be created in the
selected folder. If no folder is selected the new rule will be created at the root
level.

New Folder Create a folder by providing a new folder name.

New Rule Create a new Rule by providing a new rule name and the data type for this rule
which will be defaulted to a Boolean type. The rule will be created in the
selected folder. If no folder is selected the new rule will be created at the root
level.

Delete Delete a folder or rule depending on what is highlighted in the outline view.

Set Rule Type Create derivation for an attribute. A list of data types is provided for a new
rule.

Move Rule This allows the rules developer to move a rule from one folder to another folder
by selecting the folder name.

Find References To This Rule Allows the user to find all the references to the selected rule.

6.2.4 Technical View
The Technical tab displays all classes and attributes for the rule being edited. You can remove all classes
and attributes by again clicking on the context menu associated with each class or attribute.The actions
available in the Business tab in the Outline View are the following:

94 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

6.2.4.1 Class Outline View
This displays all the top level rules and folders in which they are located. There is a context menu
available on each item within the outline view:

Table 13. New Menu items

Name Description

Class (Button) Create a class by providing a new class name.

Attribute (Button) Create a new attribute within a given class by providing a new attribute name.
The button will only be enabled once a class is selected from the outline view
otherwise the button remains inactive.

New Attribute Create a new attribute within a given class by providing a new attribute name.

Delete Delete a class or attribute depending on what is highlighted in the tree view.

Set Rule Type Allows the rules developer to create a derivation for an attribute.

Find References To This Rule Allows the user to find all the references to the selected rule.

6.3 Diagram Canvas
The diagram canvas provides the drag and drop, technical toggle and pan and zooming controls

6.3.1 Drag and Drop
A rule element can be dragged and dropped from any palette to the diagram. For example, drag and
drop a "rule" element to an attribute. A visual indicator will appear on the target if it can accept the rule
element being dragged.

Additionally rule elements can be dragged and dropped between rule element containers. For example,
drag and drop a "rule" element from a result section of the "when" rule element to a result section of
another "when" rule element.

6.3.2 Toggle to Show Detailed Diagrams
The CER Editor provides two different types of views for the rule elements. The business view is a
simple version that is aimed at the business rule writer. The technical view is more detailed and is
primarily for the technical rule designer. The CER editor provides a toggle to switch between the
technical and business views. The toggle icon is located above the pan and zoom controls on the rule
canvas.

6.3.3 Pan and Zoom Controls
The CER editor provides pan and zoom controls to allow the user better view and edit the ruleset. The
arrows on the circular control can be used to pan around any large rules. Clicking on the center button of
the pan control will recenter the image to the starting position. The plus button can be used to zoom in
and the minus button can be used to zoom out:

Figure 29. Pan and Zoom Controls

Chapter 6. About the CER Editor 95

6.4 Tools and Template Palettes
The CER Editor provides four types of rule element palettes and three rule templates palettes. These
palettes contain the following: Business (default), Business (extended), Data Types and Technical. The
templates are grouped into the following: Household Units, Financial Units, Food Assistance Units and
the Decision Table.

6.4.1 Business Palettes
The Business palettes, both the default and extended include a range of rule elements that can be used to
design the business logic in the diagram form.

Table 14. Rule Elements on Business Palettes

Image Name Description

Rule The Rule element provides a graphical representation of the
'reference' expression. See 7.2.1, “Rule,” on page 105.

And Rule Group The And Rule Group element provides a graphical representation
of the 'all' expression and returns a Boolean value. See 7.2.2, “And
Rule Group,” on page 107.

Or Rule Group The Or Rule Group element provides a graphical representation
of the 'any' expression and returns a Boolean value. See 7.2.3, “Or
Rule Group,” on page 107.

Not The Not element provides a graphical representation of the 'not'
expression and negate a Boolean value. See 7.2.4, “Not,” on page
107.

Choose The Choose element provides a graphical representation of the
'choose' expression and chooses a value based on a condition
being met. See 7.2.5, “Choose,” on page 108.

Compare The Compare element provides a graphical representation of the
'compare' expression and compares a left-hand-side value with a
right-hand-side value, according to the comparison provided. See
7.2.6, “Compare,” on page 108.

When The When element is part of the Choose element and contains a
condition to test, and a value to return if the condition passes. See
7.2.7, “When,” on page 108.

Arithmetic The Arithmetic element provides a graphical representation of the
'arithmetic' expression and performs an arithmetical calculation
on two numbers (a left-hand-side number and a right-hand-side
number) and optionally rounds the result to the specified number
of decimal places. See 7.2.8, “Arithmetic,” on page 109.

MIN The Min element provides a graphical representation of the 'min'
expression and determines the smallest value in a list (or null if
the list is empty). See 7.2.9, “MIN,” on page 109.

MAX The Max element provides a graphical representation of the 'max'
expression and determines the largest value in a list (or null if the
list is empty). See 7.2.10, “MAX,” on page 109.

Sum The SUM element provides a graphical representation of the 'sum'
expression and calculates the numerical sum of a list of Number
values. See 7.2.11, “SUM,” on page 110.

Repeating Rule The Repeating Rule element provides a graphical representation
of the 'dynamiclist' expression and creates a new list by
evaluating an expression on each item in an existing list. See
7.2.12, “Repeating Rule,” on page 110.

96 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 14. Rule Elements on Business Palettes (continued)

Image Name Description

Filter The Filter element provides a graphical representation of the
'filter' expression and creates a new list containing all the items in
an existing list which meet the filter condition. See 7.2.13, “Filter,”
on page 110.

Size The Size element provides a graphical representation of the
'property' expression and the name of the property is set to 'size'.
See 7.2.14, “Size,” on page 111.

Otherwise The Otherwise element is part of the Choose element and
contains a value to return. See 7.2.15, “Otherwise,” on page 111.

Legislation Change The Legislation Change element provides a graphic representation
of the 'legislationchange' and can contain more than one Era
element. See 7.2.16, “Legislation Change,” on page 111.

Era The Era element is a part of the Legislation Change elements and
contains a date entry (empty from), and a value to return to the
Legislation Change element. See 7.2.17, “Era,” on page 112.

6.4.2 Data Types Palette
The Data Types palette includes a range of rule elements that can be used to design the data types in the
diagram form.

Table 15. Rule Elements on Data Type Palette

Image Name Description

Boolean The Boolean element provides a graphical representation of both
'true' and 'false' expression. By default, the Boolean element is set
to true. See 7.3.1, “Boolean,” on page 112.

String The String element provides a graphical representation of the
'String' expression that is a literal Number constant value. See
7.3.2, “String,” on page 112.

Number The Number element provides a graphical representation of the
'Number' expression that is a literal Number constant value. See
7.3.3, “Number,” on page 112.

Date The Date element provides a graphical representation of the 'Date'
expression that is a literal Date constant value. See 7.3.4, “Date,”
on page 113.

Codetable The Codetable element provides a graphical representation of the
'Code' expression that is a literal constant value representing a
code from a Cúram code table. See 7.3.5, “Code Table,” on page
113.

Rate The Rate element provides a graphical representation of the 'rate'
expression that is a literal constant value representing a rate from
a rate table. See 7.3.6, “Rate,” on page 113.

Frequency Pattern The Frequency Pattern element provides a graphical
representation of the 'FrequencyPattern' expression that is a literal
FrequencyPattern constant value. See 7.3.7, “Frequency Pattern,”
on page 114.

Chapter 6. About the CER Editor 97

Table 15. Rule Elements on Data Type Palette (continued)

Image Name Description

Resource Message The Resource Message element provides a graphical
representation of the 'ResourceMessage' expression and creates a
localizable message from a property resource. See 7.3.8, “Resource
Message,” on page 114.

XML Message The XML Message element provides a graphical representation of
the 'XMLMessage' expression and creates a localizable message
from a property resource. See 7.3.9, “Xml Message,” on page 115.

Null The null element provides a graphical representation of 'null'. The
null element can be used in elements like Choose, When,
Compare etc... to compare any value to 'null'. See 7.3.10, “Null,”
on page 115.

6.4.3 Technical Palette
The Technical palette includes a range of rule elements that can be used to design the technical logic in
the diagram form.

Table 16. Rule Elements on Technical Palette

Image Name Description

Create The Create element provides a graphical representation of the
'create' expression and gets a new instance of a rule class in the
session's memory. See 7.4.1, “Create,” on page 115.

Search The Search element provides a graphical representation of the
'readall' expression and retrieves all rule object instances of a rule
class which were created by client code. See 7.4.2, “Search,” on
page 116.

Fixed List The Fixed List element provides a graphical representation of the
'fixedlist' expression and creates a new list from items known at
rule set design time. See 7.4.3, “Fixed List,” on page 116.

Property The Property element provides a graphical representation of the
'property' expression. The Property element obtains a property of
a Java object. See 7.4.4, “Property,” on page 117.

Custom Expression Custom Expression provides a graphical representation for any
user defined valid XML node. See 7.4.5, “Custom Expression,” on
page 118.

Existence Timeline The Existence Timeline element provides a graphical
representation of the 'existencetimeline' expression. See 7.4.6,
“Existence Timeline,” on page 118.

Timeline The Timeline element provides a graphical representation of the
'Timeline' expression. See 7.4.7, “Timeline,” on page 118.

Interval The Interval element provides a graphical representation of the
'Interval' expression.. See 7.4.8, “Interval,” on page 119.

Combine Succession Set The Combine Succession Set element provides a graphical
representation of the 'combineSuccessionSet' expression. See 7.4.9,
“CombineSuccessionSet,” on page 119.

Call The Call element provides a graphical representation of the 'call'
expression and calls out to a static Java method to perform a
complex calculation. See 7.4.10, “Call,” on page 119.

98 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 16. Rule Elements on Technical Palette (continued)

Image Name Description

Period Length The Period Length element provides a graphical representation of
the 'periodlength' expression and calculates the amount of time
units between two dates. See 7.4.11, “Period Length,” on page
120.

ALL The ALL element provides a graphical representation of the 'all'
expression and returns a Boolean value. See 7.4.12, “ALL,” on
page 121.

ANY The ANY element provides a graphical representation of the 'all'
expression and returns a Boolean value. See 7.4.13, “ANY,” on
page 121.

This The This element provides a graphical representation of the 'this'
expression that is a reference to the current Rule Object. See
7.4.14, “This,” on page 121.

Sort The Sort element provides a graphical representation of the 'sort'
expression. Sort takes a list as child element and performs sorting
on it.. See 7.4.15, “Sort,” on page 121.

Shared Rule Reference Shared Rule Reference is basically a normal Reference with a
Create element in it. See 7.4.16, “Shared Rule Reference,” on page
122.

CONCAT The Concat element provides a graphical representation of the
'concat' expression and creates a message by concatenating a list
of values. See 7.4.17, “CONCAT,” on page 122.

Join Lists The JoinLists element provides a graphical representation of the
'joinlists' expression and creates a new list by joining together
some existing lists. See 7.4.18, “Join Lists,” on page 123.

6.4.4 Household Units Template
The Household Units Template includes a range of rule elements that can be used to design the
Household Units in the diagram form.

Table 17. Rule Elements on Household Units Template Palette

Image Name Description

Household Composition See 7.5.1, “Household Composition,” on page 123.

Household Category See 7.5.2, “Household Category,” on page 123.

6.4.5 Financial Units Template
The Financial Units Template includes a range of rule elements that can be used to design the Financial
Units in the diagram form.

Table 18. Rule Elements on Financial Units Template Palette

Image Name Description

Financial Unit See 7.6.1, “Financial Unit,” on page 124.

Financial Unit Category See 7.6.2, “Financial Unit Category,” on page 124.

Chapter 6. About the CER Editor 99

Table 18. Rule Elements on Financial Units Template Palette (continued)

Image Name Description

Financial Unit Member See 7.6.3, “Financial Unit Member,” on page 124.

6.4.6 Food Assistance Units Template
The Food Assistance Units template includes a range of rule elements that can be used to design the
Food Assistance Units in the diagram form.

Table 19. Rule Elements on Food Assistance Units Template Palette

Image Name Description

Food Assistance Unit TODO: link to See food assistance unit

Food Assistance Single
Person Category

TODO: link to See food assistance single person category 7.7.2,
“Food Assistance Single Person Category,” on page 124.

Food Assistance Multi
Person Category

See 7.7.3, “Food Assistance Multi Person Category,” on page 124.

Meal Group Members See 7.7.4, “Meal Group Members,” on page 125.

Relatives See 7.7.5, “Relatives,” on page 125.

Discard See 7.7.6, “Discard,” on page 125.

Member for household unit See 7.7.7, “Member for household unit,” on page 125.

Optional Members See 7.7.8, “Optional Members,” on page 125.

Exceptions See 7.7.9, “Exceptions,” on page 125.

6.4.7 Decision Table Template
The Decision Table Template contains the decision table element which is used to create decision tables.

Table 20. Elements on Decision Table Palette

Image Name Description

Decision Table The Decision Table provides a graphical representation of a
'decision table'. See 7.8.1, “Decision Table,” on page 125 for more
information.

100 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

6.5 Rule Element Pop-up Menus
The Rule Element Pop-up Menu provides general items (functions) for all rule elements and specific
items (functions) for an individual rule element. See Chapter 7, “Rule Element Reference for CER Editor
Palettes,” on page 105 for the specific rule element pop-up menu items.

Table 21. General Pop-up Menus items

Name Description

Cut Cut the rule element and be ready to move to other location.

Copy Copy the existing rule element and be ready to create a new copy in other
location.

Delete Delete the rule element from the diagram.

Collapse Collapse the children of the rule element.

Expand Expand the children of the rule element.

Make Timeline Only available for the technical view. Create a timeline for the rule element.

Make Timeline Interval Only available for the technical view. Create a timeline interval for the rule
element.

Remove Timeline Only available for the technical view. Remove a timeline from the rule element.

Remove Timeline Interval Only available for the technical view. Remove a timeline interval from the rule
element.

6.6 Rule Element Properties
This section describes the general, rule class and attribute properties. See Chapter 7, “Rule Element
Reference for CER Editor Palettes,” on page 105 for the specific rule element properties.

6.6.1 Collapsible Property and Validation Panels
The property and validation panels can be expanded and collapsed by clicking on the toggle button on
the panel containers border. Expanding the property and validation panels reveals the currently selected
diagram property details. Collapsing the property and validation panel hides these details to provide
more space to view the diagram canvas.

Property panels have been grouped by Business and Technical tabs to show various property information
based on the perspective of the rules developer. For example, a business rules developer would not be
expected to enter the tags for a rule element as this level of detail would be completed by the technical
rule developer.

6.6.2 General properties for all rule elements
Table 22. General properties

Name Description

Display Name This is a localisable name. The field supports multi byte and accented
characters. This field is available in the Business Tab.

Description The description support free-text entries for either rules or attributes. Multi byte
and accented characters are supported. It requires the rules developer to enter a
meaningful business description of the rule or attribute. This field is available in
the Business Tab. The content of the description field is localizable and can
contain multi byte or accented characters.

Legislation Link A link to any legislation website. This field is available in the Business tab.

Chapter 6. About the CER Editor 101

Table 22. General properties (continued)

Name Description

Display Name ID An ID for the name of the rule element. This field is available in the Technnical
tab.

Tag The tag annotation supports free-text tag entries for any element that supports
annotations. It is used for searching the rule element. This field is available in
the Business tab.

6.6.3 Properties for Rule class
Table 23. Rule Class Properties

Name Description

Primary Attribute Select an attribute from a drop-down to be a primary attribute of this rule class.
This is visible in the Business Tab.

Abstract The class will be an abstract class if this property is selected. This is visible in
the Business Tab.

Extends Users can extend this rule class from other rule class that either belongs to the
current or external rule set by the Change Rule Set and Rule Class Wizard. This
is visible in the Business Tab.

Class The name of the rule Class. This is visible in the Technical Tab.

SuccessionSet The SuccessionSet annotation will be added if this property is selected. Users
need to select date attributes from both "Start Date Attribute" and "End Date
Attribute" drop-downs. This is visible in the Technical Tab.

ActiveInEditSuccessionSet The ActiveInEditSuccessionSet annotation will be added if this property is
selected. Users need to select date attributes from both "Start Date Attribute"
and "End Date Attribute" drop-downs. This is visible in the Technical Tab.

6.6.4 Properties for Attribute
Table 24. Attribute Properties

Name Description

Data Type The data type of an Attribute. If the user wishes to change the data type into a
Timeline, check the Timeline box. If the user wishes to change the data type to a
list, check the list box. This is visible in the Business Tab.

Display The Display annotation will be added if this property is selected. It requires
users to enter a value. This is visible in the Business Tab.

Display Subscreen The Display Subscreen annotation will be added if this property is selected. This
is visible in the Business Tab.

Class The name of the Rule Class the attribute belongs to. This is visible in the
Technical Tab.

Attribute The Name of the Attribute. This is visible in the Technical Tab.

Related Succession Set The Related Succession Set annotation will be added if this property is selected.
It requires users to select either one of them (none, parent, child) from the
drop-down. This is visible in the Technical Tab.

Related Evidence Type The Related Evidence Type annotation will be added if this property is selected.
It requires users to select either one of them (none, parent, child) from the
drop-down. This is visible in the Technical Tab.

Abstract The attribute will be set to an "abstract" rule element and the class will be an
abstract class if this property is selected. This is visible in the Technical Tab.

102 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

6.7 Rule Element Wizards
Change Rule Set and Rule Class Wizard:

this wizard is used by some rule elements (for example, Rule, Create rule element) to link to other rule
class of either current rule set or external rule set. The three available options in this wizard are:

Table 25. Rule Element Wizard Table

Name Description

Create an Empty Rule Reference This allows the rules writer to create a placeholder for a Rule element which
can edited at a later point whilst developing the rule.

Create New Rule This allows the rules writer to create a new rule by specifying the name of the
rule and the result type of the new rule from the drop-down combo box.

Use Existing Rule This allows the rules writer to choose from an already created rule by selecting
the Rule from the drop-down combo box. If the rule is not contained in the
existing rule the rules writer can select another ruleset by entering the name of
the ruleset and hitting the search button. This will open another dialog box
allowing the rules writer to choose the appropriate Rule Set.

Chapter 6. About the CER Editor 103

104 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Chapter 7. Rule Element Reference for CER Editor Palettes

7.1 Introduction
This section defines all the rule elements included with the CER Editor. The rule elements below are
categorized by different types of rule element palettes; see the previous sections for helpful
categorizations of these rule elements.

7.1.1 Palettes
The palettes can be un-docked by dragging the palette from the original position onto the diagram
canvas. To re-dock the palette simply drag the palette back to the right hand side of the screen.

7.1.2 Collapsible Palettes
The palette container can be expanded and collapsed by clicking on the toggle button on the palette
containers border. Expanding the palette container reveals the currently selected palette name and textual
descriptions of each of the rule elements. Collapsing the palette container hides the textual descriptions
and reduces the amount of space the container takes up on the diagram.

7.2 Rule Element Reference for the Default and Extended Business
Palettes

7.2.1 Rule
The Rule element provides a graphical representation of the 'rule' expression and negates a Boolean
value. No other palette elements can be added to the Reference element. The Rule element can be added
to other palette elements, for example, And Rule Group, Or Rule Group or Repeating Rule. There are
seven different types of scenarios to use the Rule elements. A reference to a rule can be added when a
user is in the Business View (See Section 2.3.1, of the Working With CER) and in the Technical View (See
Section 2.3.2, of the Working With CER). When a user is in the Business View the following options are
available:
v Empty Reference - users can create an empty reference;
v Create New Rule - users can create a new rule; and
v Use Existing Rule - users can select a rule from the current ruleset or perform a search of external

rulesets and select a rule from an external ruleset.

When a user is in the Technical View the following options are available:
v Use Existing Rule - users can select a rule from the current ruleset or perform a search of external

rulesets and select a rule from an external ruleset; and
v Create New Rule - users can create a new rule.

If a user is in the Business View and they wish to add a reference to a specific Rule Class or Attribute,
the user must switch to the Technical View.

© Copyright IBM Corp. 2012, 2013 105

Table 26. Types of scenarios to use the Rule elements

Name Description

Nested Reference A nested reference can be created on the reference which points to an attribute
that is of another rule class type, for example, it is not contained in the existing
class. The outer most reference attribute is an object of inner reference attribute
class. This structure can be created only if the inner reference attribute, which is
of another rule class type, is located in the class where the inner reference is
being created.

Nested Reference with Create A nested reference can be created on the reference which points to an attribute
that is of another rule class type, for example, it is not contained in the existing
class, but the attribute is not located in the current class. The outer most
reference attribute is an object of inner reference attribute class. This structure
can be created only if the inner reference attribute (which is of another rule class
type) is located in the class which is not the class where the inner reference is
being created.

CurrentUnitMemeber To refer to the member in the current unit that satisfies the exceptional test
condition.

FARelationship To refer to the class that is used as the relationship record for the meal group
member.

FAException To refer to a class that is used to check if other members in a unit satisfy the
exceptional condition.

HC Current To refer to a current list element (like Household member etc) in the household
composition HCCurrent is used.

Current To refer to a current list element in the lists like dynamiclist Current element is
used. If an attribute of the current list element class has to be referred then a
reference pointing to that attribute is wrapped around the current element.

Properties:

The following table lists specific properties items for this element:

Table 27. Reference properties items

Name Description

Class The name of the Rule Class. This is visible in the Business Tab.

Attribute The name of an attribute. This is visible in the Business Tab.

Single Item Only one item returned from the element. This is visible in the Technical Tab.

Behavior when no items found Return either one of these results (error, return null) when no items found. This
is active when the Single Item Box is checked.

Behavior when multiple items
found

Return either one of these results (error, return null, return first, return last)
when multiple items found. This is active when the Single Item Box is checked.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 28. Rule Element Pop-up Menus items

Name Description

Wrap in OR Wrap the Rule element in the Or Rule Group element.

Wrap in AND Wrap the Rule element in the And Rule Group element.

106 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 28. Rule Element Pop-up Menus items (continued)

Name Description

Edit Rule Edit the Rule element by choosing the rule you want to refer to. See the Edit
Rule Wizard as follows.

Open Diagram For This Rule Opens the diagram for the rule being referened in a new diagram tab.

Include Rule Logic Here If the Rule element is referring to another rule (in the same ruleset or in another
external ruleset), the logic for that rule can be included in the current rule being
viewed in the editor.

7.2.2 And Rule Group
The And Rule Group element provides a graphical representation of the 'all' expression and returns a
Boolean value. It operates on a list of Boolean values to determine whether all of the list values are true.
The list of Boolean values is typically provided by a fixedlist. Other palette elements, e.g., Reference,
Repeating Rule or Choose that provide a list of Boolean values can be added to the empty member of the
And element for calculation. The And Rule Group element can be added to other palette elements, for
example, And Rule Group, Or Rule Group or When.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 29. And Rule Group Element Pop-up Menus items

Name Description

Wrap in AND Wrap the And Rule Group element in another And Rule Group element.

Wrap in OR Wrap the And Rule Group element in the Or Rule Group element.

Change to Or Change the And Rule Group element to the Or Rule Group element.

7.2.3 Or Rule Group
The Or Rule Group element provides a graphical representation of the 'any' of Boolean values can be
added to the empty member of the Or Rule Group element for calculation. The Or Rule Group element
can be added to other palette elements, for example, And Rule Group, Or Rule Group or When.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 30. Or Element Pop-up Menus items

Name Description

Wrap in Or Rule Group Wrap the Or Rule Group element in another Or Rule Group element.

Wrap in And Rule Group Wrap the Or Rule Group element in the And Rule Group element.

Change to And Change the Or Rule Group element to the And Rule Group element.

7.2.4 Not
The Not element provides a graphical representation of the 'not' expression and negate a Boolean value.
Other palette elements, e.g., Reference, Or or And that return a Boolean value can be added to the Not
element. The Not element can be added to other palette elements, for example, And Rule Group, Or Rule
Group or Repeating Rule.

Pop-up menu:

Chapter 7. Rule Element Reference for CER Editor Palettes 107

The following table lists specific pop-up menu items for this element:

Table 31. Not Element Pop-up Menus items

Name Description

Wrap in And Wrap the Not element in another And Rule Group element.

Wrap in Or Wrap the Not element in the Or Rule Group element.

7.2.5 Choose
The Choose element provides a graphical representation of the 'choose' expression and chooses a value
based on a condition being met. The edit choose wizard provides nine data types that are String,
Number, Boolean, Date, Datetime, Codetable, Message, timeline, Codetable, Rule Class, Java Class and
Message. Only When and Otherwise elements can be added to the Choose element. The Choose element
can be added to other palette elements, for example, And Rule Group, Or Rule Group or the complex
view of the Compare.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 32. Choose Element Pop-up Menus items

Name Description

Wrap in OR Wrap the Choose element in Or Rule Group element.

Wrap in AND Wrap the Choose element in the And Rule Group element.

Edit Choose Provide a list of data types for Choose. See the Edit Choose Dialog box as
follows.

7.2.6 Compare
The Compare element provides a graphical representation of the 'compare' expression and compares a
left-hand-side value with a right-hand-side value, according to the comparison provided. When a
compare is added to a diagram it creates empty members for the left-hand-side and right-hand-side
arguments. The Compare element can be added to other palette elements, for example, When, And Rule
Group or Repeating Rule.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 33. Compare Element Pop-up Menus items

Name Description

Wrap in OR Wrap the Compare element in Or Rule Group element.

Wrap in AND Wrap the Compare element in the And Rule Group element.

7.2.7 When
The When element is part of the Choose element and contains a condition to test, and a value to return if
the condition passes. Other palette elements, for example, Code or Any can be added to the empty
condition of the When element. Other palette elements, for example, Number or Reference can be added
to the empty value of the When element.

108 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

7.2.8 Arithmetic
The Arithmetic element provides a graphical representation of the 'arithmetic' expression and performs an
arithmetical calculation on two numbers (a left-hand-side number and a right-hand-side number) and
optionally rounds the result to the specified number of decimal places. Other palette elements, e.g., Max,
Min or Reference can be added to the Arithmetic element. The Arithmetic element can be added to other
palette elements, e.g., When or Repeating Rule.

Properties:

The following table lists specific properties items for this element:

Table 34. Arithmetic properties items

Name Description

Decimal Places A place for a user to enter how many decimal places. This is visible in the
Business Tab.

Rounding Provide different type of rounding (ceiling, down, floor, half down, half even,
half up, up). This is visible in the Business Tab.

7.2.9 MIN
The Min element provides a graphical representation of the 'min' expression and determines the smallest
value in a list (or null if the list is empty). The Min element has a fixedlist that contains any type of
comparable object. Other palette elements, for example, Number or Rule Reference can be added to the
Empty Member (fixedlist) of the Min element. The Min element can be added to other palette elements,
for example, When or Repeating Rule.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 35. Min Element Pop-up Menus items

Name Description

Change To Max Change the Min element to the Max element.

7.2.10 MAX
The Max element provides a graphical representation of the 'max' expression and determines the largest
value in a list (or null if the list is empty). The Max element has a fixedlist that contains any type of
comparable object. Other palette elements, for example, Number or Rule Reference can be added to the
Empty Member (fixedlist) of the Max element. The Max element can be added to other palette elements,
for example, When or Repeating Rule.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 36. Max Element Pop-up Menus items

Name Description

Change To Min Change the Max element to the Min element.

Chapter 7. Rule Element Reference for CER Editor Palettes 109

7.2.11 SUM
The SUM element provides a graphical representation of the 'sum' expression and calculates the
numerical sum of a list of Number values. The SUM element has a fixedlist that contains any type of
numerical object. Other palette elements, for example, Number or Rule Reference can be added to the
Empty Member (fixedlist) of the SUM element. The SUM element can be added to other palette elements,
for example, When or Repeating Rule.

7.2.12 Repeating Rule
The Repeating Rule element provides a graphical representation of the 'dynamiclist' expression and
creates a new list by evaluating an expression on each item in an existing list. Other palette elements, for
example, Rule Reference can be added to the empty list of the Repeating Rule element. Other palette
elements, for example, Sum or Choose can be added to the empty member (listitemexpression) of the
Repeating Rule element. The Repeating Rule element can be added to other palette elements, for
example, And Rule Group, Or Rule Group or When.

Properties:

The following table lists specific properties items for this element:

Table 37. Repeating Rule properties items

Name Description

Single Item Only one item returned from the element. This is visible in the Technical Tab.

Behavior when no items found Return either one of these results (error, return null) when no items found. This
is active when the 'Single Item' is checked.

Behavior when no items found Return either one of these results (error, return null) when no items found. This
is active when the 'Single Item' is checked.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 38. Repeating Rule Pop-up Menus items

Name Description

Remove Duplicates Remove duplicate items in the Repeating Rule element.

Concatenate Results Concatenate the items in the Repeating Rule element.

Join Inner Lists Join the lists together to make one list.

Succeed On Any Wrap the Repeating Rule element in the Any.

Succeed On All Wrap the Repeating Rule element in the All.

Sum Items Sum up a list of numbers.

7.2.13 Filter
The Filter element provides a graphical representation of the 'filter' expression and creates a new list
containing all the items in an existing list which meet the filter condition. Other palette elements, e.g.,
Reference can be added to the empty list of the Filter element. Other palette elements, e.g., Sum or
Choose can be added to the empty member (listitemexpression) of the Filter element. The Filter element
can be added to other palette elements, e.g., And, Or or When.

Properties:

The following table lists specific properties items for this element:

110 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 39. Filter properties items

Name Description

Single Item Only one item returned from the element. This is visible in the Technical Tab.

Behavior when no items found Return either one of these results (error, return null) when no items found. This
is active when the 'Single Item' is checked.

Behavior when multiple items
found

Return either one of these results (error, return null, return first, return last)
when multiple items found. This is active when the 'Single Item' is checked.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 40. Filter Pop-up Menus items

Name Description

Remove Duplicates Remove duplicate items in the Filter element.

Concatenate Results Concatenate the items in the Filter element.

Join Inner Lists Join the lists together to make one list.

Wrap in OR Wrap the Filter element in Or Rule Group element.

Wrap in AND Wrap the Filter element in the And Rule Group element.

7.2.14 Size
The Size element provides a graphical representation of the 'property' expression and the name of this
element is set to 'size'. The Size element obtains a property of a Java object. Other palette elements, for
example, Rule Reference or Repeating Rule can be added to the Size element. The Size element can be
added to other palette elements, for example, When or Repeating Rule.

Properties:

The following table lists specific properties items for this element:

Table 41. Size properties items

Name Description

Value The name of the property element.

7.2.15 Otherwise
The Otherwise element is part of the Choose element and contains a value to return. Other palette
elements, for example, Number or Rule Reference can be added to the empty value of the Otherwise
element.

7.2.16 Legislation Change
The Legislation Change element provides a graphic representation of the 'legislationchange' and can
contain more than one Era element. The Legislation Change wizard provides ten data types (String,
Number, Boolean, Date, Datetime, List, Message, Codetable, Ruleclass and Javaclass). The selected data
type is used to define a returning value of the Era element.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Chapter 7. Rule Element Reference for CER Editor Palettes 111

Table 42. Legislation Change Element Pop-up Menus items

Name Description

Edit Legislation Change Edit the Legislation Change by choosing a type for the new rule. See the Edit
Legislation Change Dialog box as follows.

7.2.17 Era
The Era element is a part of the Legislation Change elements and contains a date entry (empty from), and
a value to return to the Legislation Change element. Other palette elements, for example, Date or Rule
Reference can be added to the empty date entry of the Era element. Other palette elements, for example,
Choose or Reference can be added to the empty value of the Era element.

7.3 Rule Element Reference for Data Types Palette

7.3.1 Boolean
The Boolean element provides a graphical representation of both 'true' and 'false' expression. By default,
the Boolean element is set to true. The Boolean element can be added to other palette elements, for
example, And Rule Group, Or Rule Group or Repeating Rule elements. No element can be added to the
Boolean element.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 43. Boolean Pop-up Menus items

Name Description

Change To False Change the boolean rule element to false if its value is true.

Change To True Change the boolean rule element to true if its value is false.

7.3.2 String
The String element provides a graphical representation of the 'String' expression that is a literal Number
constant value. The String element can be added to other palette elements, for example, When or
Repeating Rule. No element can be added to the String element.

Properties:

The following table lists specific properties items for this element:

Table 44. String properties items

Name Description

Value The value of the string. This is visible in the Business Tab.

7.3.3 Number
The Number element provides a graphical representation of the 'Number' expression that is a literal
Number constant value. The Number element can be added to other palette elements, for example, When
or Repeating Rule. No element can be added to the Number element.

Properties:

The following table lists specific properties items for this element:

112 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 45. Number properties items

Name Description

Value The value of the number. This is visible in the Business Tab.

7.3.4 Date
The Date element provides a graphical representation of the 'Date' expression that is a literal Date
constant value. The Date element can be added to other palette elements, for example, PeriodLength or
Era. No element can be added to the Date element.

Properties:

The following table lists specific properties items for this element:

Table 46. Date properties items

Name Description

Value The value of the date. The default is set to today's date. This is visible in the
Business Tab.

Zero Date By checking the 'Zero Date' checkbox, the user can use the Cúram 'Zero Date'.
This is visible in the Business Tab.

7.3.5 Code Table
The Code Table element provides a graphical representation of the 'Code' expression that is a literal
constant value representing a code from a Cúram code table. The CodeTable element can be added to
other palette elements, for example, When. No element can be added to the CodeTable element.

Properties:

The following table lists specific properties items for this element:

Table 47. Code Table properties items

Name Description

Codetable Name The name of the code table. Leave blank and search for all available codetables.
Input a value and search for a codetable starting with the input value. This is
visible in the Business Tab.

Codetable Value A dropdown box containing all the items contained in selected codetable. This is
visible in the Business Tab.

7.3.6 Rate
The Rate element provides a graphical representation of the 'rate' expression that is a literal constant
value representing a rate from a Cúram rate table. The Rate element can be added to other palette
elements, for example, When. No element can be added to the Rate element.

Properties:

The following table lists specific properties items for this element:

Table 48. Rate properties items

Name Description

Table Name The name of the rate table. This is visible in the Business Tab.

Chapter 7. Rule Element Reference for CER Editor Palettes 113

Table 48. Rate properties items (continued)

Name Description

Row The row's value of the rate table. This is visible in the Business Tab.

Column The column's value of the rate table. This is visible in the Business Tab.

7.3.7 Frequency Pattern
The Frequency Pattern element provides a graphical representation of the 'FrequencyPattern' expression
that is a literal FrequencyPattern constant value. The Frequency Pattern element can be added to other
palette elements, for example, When or Create. No element can be added to the Frequency Pattern
element.

Properties:

The following table lists specific properties items for this element:

Table 49. Frequency Pattern properties items

Name Description

Pattern The frequency pattern. This is visible in the Business Tab.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 50. Filter Pop-up Menus items

Name Description

Edit Frequency Pattern Edit the selected frequency pattern.

7.3.8 Resource Message
The Resource Message element provides a graphical representation of the 'ResourceMessage' expression
and creates a localizable message from a property resource. The Resource Message element can be added
to other palette elements, for example, When or Create. No element can be added to the Resource
Message element.

Properties:

The following table lists specific properties items for this element:

Table 51. Resource Message properties items

Name Description

Key Resource Bundle objects contain an array of key-value pairs. You specify the
key, which must be a String, when you want to retrieve the value from the
Resource Bundle. This is visible in the Business Tab.

Resource Bundle The name of the resource bundle. This is visible in the Business Tab.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

114 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 52. Resource Message Pop-up Menus items

Name Description

New Argument Add a new argument to the resource message rule element.

Remove Argument Remove an argument from the resource message rule element.

7.3.9 Xml Message
The Xml Message element provides a graphical representation of the 'XmlMessage' expression and creates
a message from the free-form XML content. The Xml Message element can be added to other palette
elements, e.g., When or Create. No element can be added to the Xml Message element.

Properties:

The following table lists specific properties items for this element:

Table 53. XML Message properties items

Name Description

Value The value of the Xml resource's content.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 54. Xml Message Pop-up Menus items

Name Description

Edit Message Provide a dialog box in which a user can enter the content of the message.

7.3.10 Null
The null element provides a graphical representation of the 'null'. The null element can be used in
element like Choose/When, Compare etc. to compare any value to null.

7.4 Rule Element Reference for Technical Logic Palette

7.4.1 Create
The Create element provides a graphical representation of the 'create' expression and gets a new instance
of a rule class in the session's memory. The Create element supports two types of parameters (standard
and the mandatory). Other palette elements, for example, Rule Reference, Repeating Rule or Choose can
be added to the parameters of the Create element. The Create element can be added to other palette
elements, for example, Repeating Rule or When.

Properties:

The following table lists specific properties items for this element:

Table 55. Create properties items

Name Description

Class The name of the rule class that is chosen as a type. This is visible in the
Technical Tab.

Pop-up menu:

Chapter 7. Rule Element Reference for CER Editor Palettes 115

The following table lists specific pop-up menu items for this element:

Table 56. Create Element Pop-up Menus items

Name Description

Edit Create Edit the Create element by choosing the rule class and rule set you want to refer
to.

New Parameter Create a new parameter by selecting the attribute you want to add a parameter
for.

New Mandatory Parameter Create a new mandatory parameter.

7.4.2 Search
The Search element provides a graphical representation of the 'readall' expression and retrieves all rule
object instances of a rule class which were created by client code. It can retrieve a single item from a list
if the 'singleitem' expression is selected. The Search element can be added to other palette elements, for
example, Filter or Create. No element can be added to the Search element.

Properties:

The following table lists specific properties items for this element:

Table 57. Search properties items

Name Description

Class The name of the rule class that is chosen as a type. This is visible in the
Technical Tab.

Rule Set The name of the rule set that includes the chosen rule class. This is visible in the
Technical Tab.

Single Item Only one item returned from the element. This is visible in the Technical Tab.

Behavior when no items found Return either one of these results (error, return null) when no items found. This
is activated when the 'Single Item' box is checked.

Behavior when multiple items
found

Return either one of these results (error, return null, return first, return last)
when multiple items found. This is activated when the 'Single Item' box is
checked.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 58. Search Element Pop-up Menus items

Name Description

Edit Search Edit the Search element by choosing the rule class and rule set you want to
refer to.

7.4.3 Fixed List
The Fixed List element provides a graphical representation of the 'fixedlist' expression and creates a new
list from items known at rule set design time. The Fixed List wizard provides nine data types that are
String, Number, Boolean, Date, Date time, Codetable Entry, Rule Class, Java Class and Message. The
sub-list function is provided. Other palette elements, for example, Rule Reference, Repeating Rule or
Choose can be added to the empty member of the Fixed List element. The Fixed List element can be
added to other palette elements, for example, And Rule Group, Or Rule Group or When. The fixed list
element will be wrapped by other rule element depending on which data type is selected. For example,

116 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

And Rule Group/Or Rule Group rule elements for the boolean type, Concat rule element for the string
type, Max/Min/Sum rule elements for the number type.

The following table lists specific properties items for this element:

Table 59. FixedList properties items

Name Description

Data Type The data type of the fixedlist. This should correspond to the data type of the
attribute. If the user wishes to change the data type into a Timeline, check the
Timeline box. If the user wishes to change the data type to a list, check the list
box. This is visible in the Business Tab.

7.4.4 Property
The Property element provides a graphical representation of the 'property' expression. The Property
element obtains a property of a Java object. Other palette elements, for example, Rule Reference or
Repeating Rule can be added to the Property element. The Property element can be added to other
palette elements, for example, When or Repeating Rule.

Properties:

The following table lists specific properties items for this element:

Table 60. Property properties items

Name Description

Value The name of the property element.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 61. Property Pop-up Menus items

Name Description

Wrap in OR Wrap the property element in the Or Rule Group element.

Wrap in AND Wrap the property element in the And Rule Group element.

New Argument Add a new argument to the property rule element.

Remove Argument Remove an argument from the Property rule element.

CAUTION:
Since Cúram V6, CER and the Dependency Manager support the automatic recalculation of
CER-calculated values if their dependencies change.

If you change the implementation of a property method, CER and the Dependency Manager will not
automatically know to recalculate attribute values that were calculated using the old version of your
property method.

Once a property method has been used in a production environment for stored attribute values, rather
than changing the implementation you should instead create a new property method (with the
required new implementation), and change your rule sets to use the new property method. When you
publish your rule set changes to point to the new property method, CER and the Dependency
Manager will automatically recalculate all instances of the affected attribute values.

Chapter 7. Rule Element Reference for CER Editor Palettes 117

7.4.5 Custom Expression
Custom Expression provides a graphical representation for any user defined valid XML node. Custom
Expression can be added to any element in CER and its mandatory for the user to make sure that the
Custom Expression nodes names do not match with any CER language node names.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 62. Custom Expression Pop-up Menus items

Name Description

Edit Custom Expression Displays the popup to edit the custom expression.

7.4.6 Existence Timeline
The Existence Timeline element provides a graphical representation of the 'existencetimeline' expression.
Other palette elements, for example, Date or Rule Reference can be added FromDate and ToDate of the
Existence Timeline element. Other palette elements, for example, Date or Rule Reference can be added
preExistenceValue, postExistenceValue and ExistenceValue of the Existence Timeline element. The
Existence Timeline element can be added to other palette elements, for example, Repeating Rule.

The following table lists specific properties items for this element:

Table 63. Existence Timeline properties items

Name Description

Data Type The data type of the Existence Timeline. If the user wishes to change the data
type into a Timeline, check the Timeline box. If the user wishes to change the
data type to a list, check the list box. This is visible in the Business Tab.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 64. Existence Timeline Element Pop-up Menus items

Name Description

Edit Existence Timeline Provide 10 data types (String, Number, Boolean, Date, Datetime, Codetable
Entry, Rule class, Java Class, List and Message) for an interval type of the
existence timeline rule element.

7.4.7 Timeline
The Timeline element provides a graphical representation of the 'Timeline' expression. An initial value can
be set for a Timeline element using the menu option on it. Other palette elements, for example, Interval,
FixedList, Repeating Rule etc. can be added to the Timeline element.

The following table lists specific properties items for this element:

Table 65. Existence Timeline properties items

Name Description

Data Type The data type of the Timeline. If the user wishes to change the data type into a
Timeline, check the Timeline box. If the user wishes to change the data type to a
list, check the list box. This is visible in the Business Tab.

118 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 66. Timeline Element Pop-up Menus items

Name Description

Add Intervals Adds intervals to the Timeline

Add Initial Value Adds the initial value to the Timeline

Remove Intervals Removes intervals from the Timeline

Remove Initial Value Removes the initial value from the Timeline

Edit Timeline Shows the Timeline wizard to edit the Timeline

7.4.8 Interval
The Interval element provides a graphical representation of the 'Interval' expression. Other palette
elements, for example, Date or Reference can be added FromDate and ToDate of the Existence Timeline
element. Interval can only be added to the Intervals element of a Timeline element. Interval type can be
set using the interval wizard. Interval element contains a start element and a value element as child
elements.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 67. Interval Element Pop-up Menus items

Name Description

Edit Interval Shows the wizard to edit the interval

7.4.9 CombineSuccessionSet
The CombineSuccessionSet element provides a graphical representation of the 'combineSuccessionSet'
expression. Other palette elements, for example, Filter or Fixed List can be added to the
CombineSuccessionSet element. The CombineSuccessionSet element can be added to other palette
elements, for example, When or Create.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 68. CombineSuccessionSet Element Pop-up Menus items

Name Description

Edit CombineSuccessionSet Edit the CombineSuccessionSet element by choosing the rule class and rule set
you want to refer to.

7.4.10 Call
The Call element provides a graphical representation of the 'call' expression and calls out to a static Java
method to perform a complex calculation. The new argument can be added to the Call element. Other
palette elements, for example, Date, Period Length or Rule Reference can be added to the argument of
the Call element. The Period Length element can be added to other palette elements, for example, Create.

Properties:

Chapter 7. Rule Element Reference for CER Editor Palettes 119

The following table lists specific properties items for this element:

Table 69. Call properties items

Name Description

Class The name of the class that has the calling method. This is visible in the
Technical Tab.

Method Name The name of the method that will be called. This is visible in the Technical Tab.

Date Type The return type of the call. This should be the same as the data type of the
attribute. If the user wishes to change the data type into a Timeline, check the
Timeline box. If the user wishes to change the data type to a list, check the list
box. This is visible in the Business Tab.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 70. Call Pop-up Menus items

Name Description

Wrap in AND Wrap the call rule element in the And Rule Group element.

Wrap in OR Wrap the call rule element in the Or Rule Group element.

New Argument Add a new argument to the call rule element.

Remove Argument Remove an argument from the call rule element.

CAUTION:
Since Cúram V6, CER and the Dependency Manager support the automatic recalculation of
CER-calculated values if their dependencies change.

If you change the implementation of a static method, CER and the Dependency Manager will not
automatically know to recalculate attribute values that were calculated using the old version of your
static method.

Once a static method has been used in a production environment for stored attribute values, rather
than changing the implementation you should instead create a new static method (with the required
new implementation), and change your rule sets to use the new static method. When you publish your
rule set changes to point to the new static method, CER and the Dependency Manager will
automatically recalculate all instances of the affected attribute values.

7.4.11 Period Length
The Period Length element provides a graphical representation of the 'periodlength' expression and
calculates the amount of time units between two dates. Other palette elements, for example, Date, Call or
Rule Reference can be added to the Period Length element. The Period Length element can be added to
other palette elements, for example, Create.

Properties:

The following table lists specific properties items for this element:

Table 71. Period Length properties items

Name Description

Unit Provide four types of units (days, weeks, months, years) for the period length
rule element. This is visible in the Technical Tab.

120 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 71. Period Length properties items (continued)

Name Description

EndDateInclusion Provide two types of date inclusions (inclusive or exclusive). This is visible in
the Technical Tab.

7.4.12 ALL
The ALL element provides a graphical representation of the 'all' expression and returns a Boolean value.
It operates on a list of Boolean values to determine whether all of the list values are true. The ALL
element does not have a fixedlist with it. Other palette elements, for example, Repeating Rule or Fixed
List can be added to the ALL element. The ALL element can be added to other palette elements, for
example, Repeating Rule.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 72. ALL Element Pop-up Menus items

Name Description

Wrap in OR Wrap the And Rule Group element in another Or Rule Group element.

Wrap in AND Wrap the And Rule Group element in another And Rule Group element.

Change to OR Change the And Rule Group element to the Or Rule Group element.

7.4.13 ANY
The ANY element provides a graphical representation of the 'any' expression and returns a Boolean value.
It operates on a list of Boolean values to determine whether any of the list values are true. The ANY
element does not have a fixedlist with it. Other palette elements, for example, Repeating Rule or Fixed
List can be added to the ANY element. The ANY element can be added to other palette elements, for
example, Repeating Rule.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 73. ANY Element Pop-up Menus items

Name Description

Wrap in OR Wrap the Or Rule Group element in another Or Rule Group element.

Wrap in AND Wrap the Or Rule Group element in the And Rule Group element.

Change to AND Change the Or Rule Group element to the And Rule Group element.

7.4.14 This
The This element provides a graphical representation of the 'this' expression that is a reference to the
current Rule Object. The This element can be added to other palette elements, for example, When or Any.
No element can be added to the This element.

7.4.15 Sort
The Sort element provides a graphical representation of the 'sort' expression. Sort takes a list as child
element and performs sorting on it.

Pop-up menu:

Chapter 7. Rule Element Reference for CER Editor Palettes 121

The following table lists specific pop-up menu items for this element:

Table 74. ANY Element Pop-up Menus items

Name Description

New Ascending Sort Items Allows to add an ascending sort item.

New Descending Sort Items Allows to add a descending sort item.

7.4.16 Shared Rule Reference
Shared Rule Reference is basically a normal Reference with a Create element in it. Shared Rule reference
shows a wizard that displays the names of the Rule classes that have Primary attribute set in the current
rule set. Shared Rule Reference can be edited by selecting the "Edit Shared Rule Reference" menu option
on the diagram. A shared rule is a class with a primary attribute in it. The Shared Rule Wizard allows the
user to create a Shared Rules that can be used for creating the Shared Rule References.

Properties:

The following table lists specific properties items for this element:

Table 75. Shared Rule Reference properties items

Name Description

Class The name of the rule class. This is visible in the Business Tab.

Attribute The name of an attribute. This is visible in the Business Tab.

Single Item Only one item returned from the element. This is visible in the Technical Tab.

Behavior when no items found Return either one of these results (error, return null) when no items found. This
is active when the Single Item Box is checked.

Behavior when multiple items
found

Return either one of these results (error, return null, return first, return last)
when multiple items found. This is active when the Single Item Box is checked.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 76. Shared Rule Reference Element Pop-up Menus items

Name Description

Wrap in OR Wrap the Shared Rule Reference element in Or Rule Group element.

Wrap in AND Wrap the Shared Rule Reference element in the And Rule Group element.

Edit Reference Edit the Reference element by choosing the rule you want to refer to.

Edit Shared Rule Reference Edit the Shared Rule Reference element by choosing the shared rule you want
to refer to. See the Shared Rule Edit Reference Dialog box as follows.

New Parameter Create a new parameter by selecting the attribute you want to add a parameter
for. See the New Parameter Dialog box as follows.

New Mandatory Parameter Create a new mandatory parameter.

7.4.17 CONCAT
The Concat element provides a graphical representation of the 'concat' expression and creates a
localizable message by concatenating a list of values. The Concat element has a fixedlist that contains
String objects. Other palette elements, for example, String or Rule Reference can be added to the Empty
Member (fixedlist) of the Concat element. The Concat element can be added to other palette elements, for
example, When or Repeating Rule.

122 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

The following table lists specific properties items for this element:

Table 77. Concat properties items

Name Description

Data Type The data type of the Concat element. This must correspond with the data type
of the attribute. If the user wishes to change the data type into a Timeline, check
the Timeline box. If the user wishes to change the data type to a list, check the
list box. This is visible in the Business Tab.

7.4.18 Join Lists
The JoinLists element provides a graphical representation of the 'joinlists' expression and creates a new
list by joining together some existing lists. Other palette elements, for example, Rule Reference or Choose
can be added to the empty member (fixedlist) of the JoinLists element. The JoinLists element can be
added to other palette elements, for example, And Rule Group, Or Rule Group or When.

Properties:

The following table lists specific properties items for this element:

Table 78. Join Lists properties items

Name Description

Single Item Only one item returned from the element.

Behavior when no items found Return either one of these results (error, return null) when no items found.

Behavior when multiple items
found

Return either one of these results (error, return null, return first, return last)
when multiple items found.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 79. Join Lists Pop-up Menus items

Name Description

Remove Duplicates Remove duplicate items in the Join Lists element.

Concatenate Results Concatenate the items in the Join Lists element.

Join Inner Lists Join the lists together to make one list.

7.5 Rule Element Reference for Household Units Templates

7.5.1 Household Composition
This Composition template is used within Curam Global Income Support (CGIS) rules and presents a
household Composition.

7.5.2 Household Category
This template represents a new household category for a household within CGIS rules.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Chapter 7. Rule Element Reference for CER Editor Palettes 123

Table 80. Household Category Pop-up Menus items

Name Description

Add Mandatory Member Add a new mandatory member to the household category rule element.

Remove Mandatory Member Remove a mandatory member from the household category rule element.

Add Optional Member Add a new optional member to the household category rule element.

Remove Optional Member Remove an optional member from the household category rule element.

7.6 Rule Element Reference for Financial Units Templates

7.6.1 Financial Unit
This template is used within Curam Global Income Support rules and presents a financial unit.

7.6.2 Financial Unit Category
This template represents a new finanical unit category for a financial unit within CGIS rules

7.6.3 Financial Unit Member
This template represents a new finanical unit member for a financial unit within CGIS rules

7.7 Rule Element Reference for Food Assistance Units Templates

7.7.1 Food Assistance Unit
This template represents a new food assistance unit within CGIS rules.

A food assistance diagram must first be configured before it can be fully edited. Certain wizards in the
editor require that the configuration be set before they will provide food assistance specific menu options,
for example, the reference wizard. A food assistance diagram configuration can be changed at any time.

7.7.2 Food Assistance Single Person Category
This template represents a new food assistance single person category within CGIS rules.

7.7.3 Food Assistance Multi Person Category
This template represents a new food assistance multiple person category within CGIS rules.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 81. Food Assistance Multi Person Category Pop-up Menus items

Name Description

Remove Meal group Remove a meal group from the Food Assistance Multi Person Category rule
element.

Remove Relatives Remove relatives from the Food Assistance Multi Person Category rule element.

Remove Discard Remove discard from the Food Assistance Multi Person Category rule element.

Figure 30. Pop-up menu:

Figure 31. Pop-up menu:

124 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Table 81. Food Assistance Multi Person Category Pop-up Menus items (continued)

Name Description

Remove Head of Household
Members

Remove a head of household members from the Food Assistance Multi Person
Category rule element.

Remove Optional Member Remove an optional member from the Food Assistance Multi Person Category
rule element.

7.7.4 Meal Group Members
This template represents new food assistance meal group members within CGIS rules.

7.7.5 Relatives
This template represents new food assistance relatives within CGIS rules.

7.7.6 Discard
This template represents new food assistance discard within CGIS rules.

7.7.7 Member for household unit
This template represents a new food assistance member of household unit within CGIS rules.

7.7.8 Optional Members
This template represents new food assistance optional members within CGIS rules.

7.7.9 Exceptions
This template represents new food assistance exceptions within CGIS rules.

7.8 Rule Element Reference for Decision Table Templates

7.8.1 Decision Table
The Decision Table element provides a graphical representation of the 'decision table' expression. When a
Decision Table has been dragged onto a rule or an attribute the Create Decision Table wizard is
displayed. The user must set the following options:
v Number of Rows - this is the number of rows that will be contained in the Decision table, the

maximum number of rows is 99;
v Result Type - this is the return type of the decision table, the result type must match with the result

type of the rule or attribute containing the decision table; and
v Rule Class - users can select the current rule class, or change rule classes.

When the user hits the Next button, they can use an existing rule; or choose to create a new rule.

Properties:

The following table lists specific properties items for this element:

Table 82. Decision Table properties items

Name Description

Class The name of the rule class that is chosen as a type. This is visible in the
Business Tab.

Chapter 7. Rule Element Reference for CER Editor Palettes 125

Table 82. Decision Table properties items (continued)

Name Description

Attribute The name of the attribute containing the Decision Table. This is visible in the
Business Tab

Single Item Only one item returned from the element. This is visible in the Technical Tab.

Behavior when no items found Return either one of these results (error, return null) when no items found. This
is activated when the 'Single Item' box is checked.

Behavior when multiple items
found

Return either one of these results (error, return null, return first, return last)
when multiple items found. This is activated when the 'Single Item' box is
checked.

Pop-up menu:

The following table lists specific pop-up menu items for this element:

Table 83. Decision Table Pop-up Menus items

Name Description

Edit Decision Table Change the Result Type or the associated attribute.

Add new row. Ad done new row to the decision table.

126 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Chapter 8. CER Best Practices

8.1 Introduction
This chapter describes the best practices to follow when writing CER rule sets. Following these best
practices will help make your rule sets easier to develop, test and maintain.

8.2 The description Rule Attribute
Each rule class ultimately inherits from a CER “root rule class”. This root class includes a description
rule attribute which has a default (but not particularly helpful) implementation.

The value of a rule object's description is output in RuleDoc, and also by the toString method on a
RuleObject (which many Java IDEs use when you “click” on a variable). As such, a meaningful
description can be indispensable when understanding the behavior of your rule set.

You should override the default description calculation by explicitly creating a description attribute on
each of your rule classes. You can use the CER Editor to create a description attribute like creating a
normal attribute on any rule class. The CER rule set validator will issue a warning if you have a rule
class which does not define (or inherit from another defined rule class) a description rule attribute.

The description attribute is a localizable message and (just like other rule attributes) its calculation can
be as simple or as complex as is needed.

Here is an example rule set, where some rule classes provide an implementation of description:

© Copyright IBM Corp. 2012, 2013 127

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_description"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="lastName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Override the default description -->
<Attribute name="description">

<type>
<javaclass name="curam.creole.value.Message"/>

</type>
<derivation>

<!-- Concatenate the person’s first and last names -->
<concat>

<fixedlist>
<listof>

<javaclass name="Object"/>
</listof>
<members>

<reference attribute="firstName"/>
<String value=" "/>
<reference attribute="lastName"/>

</members>
</fixedlist>

</concat>
</derivation>

</Attribute>

</Class>

<Class name="Income">
<!-- The person to which this

income record relates. -->
<Attribute name="person">

<type>
<ruleclass name="Person"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>
<Attribute name="startDate">

<type>
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>
<Attribute name="amount">

<type>
<javaclass name="Number"/>

</type>

128 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

And here is a test class which creates some rule objects (a Person, an Income and a Benefit):

Chapter 8. CER Best Practices 129

package curam.creole.example;

import java.io.File;

import junit.framework.TestCase;
import curam.creole.execution.session.RecalculationsProhibited;
import curam.creole.execution.session.Session;
import curam.creole.execution.session.SessionDoc;
import curam.creole.execution.session.Session_Factory;
import
curam.creole.execution.session.StronglyTypedRuleObjectFactory;

import curam.creole.ruleclass.Example_description.impl.Benefit;
import
curam.creole.ruleclass.Example_description.impl.Benefit_Factory;

import curam.creole.ruleclass.Example_description.impl.Income;
import
curam.creole.ruleclass.Example_description.impl.Income_Factory;

import curam.creole.ruleclass.Example_description.impl.Person;
import
curam.creole.ruleclass.Example_description.impl.Person_Factory;

import curam.creole.storage.inmemory.InMemoryDataStorage;
import curam.util.type.Date;

/**
* Tests the description rule attribute.
*/

public class TestDescription extends TestCase {

/**
* Tests the description rule attribute.
*/
public void testDescriptions() {

/**
* Create a new session.
*/
final Session session =

Session_Factory.getFactory().newInstance(
new RecalculationsProhibited(),
new InMemoryDataStorage(

new StronglyTypedRuleObjectFactory()));

/**
* Create a SessionDoc to report on rule objects.
*/
final SessionDoc sessionDoc = new SessionDoc(session);

/*
* Create a Person rule object.
*/
final Person person =

Person_Factory.getFactory().newInstance(session);
person.firstName().specifyValue("John");
person.lastName().specifyValue("Smith");

/*
* Create an Income rule object.
*/
final Income income =

Income_Factory.getFactory().newInstance(session);
income.person().specifyValue(person);
income.amount().specifyValue(123);
income.startDate().specifyValue(Date.fromISO8601("20070101"));

/*
* Create a Benefit rule object.
*/
final Benefit benefit =

Benefit_Factory.getFactory().newInstance(session);
benefit.person().specifyValue(person);
benefit.amount().specifyValue(234);

/*

130 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

When the test is run, it produces this output, showing the rule object descriptions:

At the end of the test, the session's rule objects are output as SessionDoc. The high-level SessionDoc
summary shows the rule objects created, and lists each rule object's description:

The description for the Benefit rule object is the default description; in the absence of a good
implementation of description, someone reading the SessionDoc might have to navigate to the
SessionDoc for the Benefit rule object in order to make sense of it:

John Smith
John Smith’s income, starting on 01/01/07 00:00
Undescribed instance of rule class ’Benefit’, id ’3’

Figure 32. SessionDoc showing rule object description values

Chapter 8. CER Best Practices 131

Lastly, this screen shot shows how an integrated development environment (such as Eclipse, shown) uses
an object's toString method when debugging, which (for rule objects) calculates the description:

Figure 33. SessionDoc for a rule object with no description override

132 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Tip: Remember that the aim of the description is to describe a rule object instance, not the rule class
itself.

In particular, the calculation of your description rule attribute should include data that means that it is
easy to distinguish between different rule object instances of your rule class.

8.3 Getting a Rule Set Working Quickly
It can be useful to get a CER rule set "up and running" quickly by deferring certain rule development
tasks.

Consider using one or more of the following short cuts:
v Create empty rule classes (i.e. no rule attributes) for each of your business concepts; rule attributes can

be added later. For example, you can use the CER Editor to create an empty rule class and add an
attribute to it later.

v Create hard-coded derivations for rule attributes; the business rules can be added later. For example,
declaring the calculation of an isEligible rule attribute to be <true> may enable you to write tests
and/or integrate CER with your own application - you can replace the hard-coded "always eligible"
derivation with the real business rules later. For example, you can use the CER Editor to drag the
"Boolean" rule element (its default value is set to true) to an isEligible rule attribute.

v Create messages as plain single-locale hard-coded Strings; you can convert the Strings to localizable
messages later. For example, you can use the CER Editor to drag the "Resource Message" or "XML
Message" rule element to a rule attribute.

v Use String values instead of application code table values; you can convert the Strings to codes later
(and update rules that test for them). For example, you can use the CER Editor to drag the "String"
rule element to a rule attribute.

Figure 34. Use of description in an integrated development environment

Chapter 8. CER Best Practices 133

Important: Simply taking these shortcuts does not remove the need to do the work more rigorously, it
merely defers some of this working until after the point at which your rule set is "runnable".

You should not hold off on creating tests for your rules; in particular, if you take these shortcuts, a good
body of rule set tests will help prevent you introducing certain types of error when you come to undo
the shortcuts. Create your tests as you write your rules.

You may also be tempted to hold off on creating description rule attributes for your rule classes;
however, in the early stages of rule set design, such a short cut can prove to be false economy, as the
description rule attributes can greatly assist you in debugging rules, for a relatively cheap cost.

8.4 Naming Rule Elements
CER rule attributes should be named to describe their business meaning. Name a rule attribute in line
with the result it provides, rather than describing how the rule attribute provides it.

A rule set name can take a combination of letters (unaccented, in the standard A-Z character range),
numbers and under scores. A rule set name should start with an upper case letter.

A class name can take a combination of letters (unaccented, in the standard A-Z character range),
numbers and under scores. A class name should start with an upper case letter.

An attribute name can take a combination of letters (unaccented, in the standard A-Z character range),
numbers and under scores. An attribute name should start with a lower case letter.

Tip: Use "camelCase" to name your rule elements.

camelCase is the practice of writing compound words or phrases in which the elements are joined
without spaces, with each elements initial letter capitalized within the compound and the first letter is
either upper or lower case.

Note: Each rule element has a single name which cannot be localized. For localizable descriptions, use
the "Label" annotation, as described in 3.3.2, “Localization of CER rule artefact descriptions,” on page 13.

8.5 When to Use the Reference Expression
Correct use of the reference expression is key to the structure of a good CER rule set. Use of reference
goes hand-in-hand with creating the right number of rule attributes. The CER Editor provides different
types of scenarios to create and use the rule reference element. See "rule" item in 7.2.1, “Rule,” on page
105.

Striking the right balance (between too few uses of reference and too many) is perhaps more art than
science; however, here are some general guidelines:
v If you find that some of your expressions are nested very deeply or are otherwise complex, then you

may have too few references. Consider breaking up complex expressions by creating rule attributes for
a meaningful block of expressions, and using a reference to the new rule attribute instead.

v If your requirements have a strong concept or calculation which does not map neatly to a rule
attribute, then you should consider creating such a rule attribute.

v If several expressions repeat the same kind of calculations, then your rule set might benefit from the
creation of a rule attribute to implement the common logic.

v If you find a rule attribute is difficult to name, then the rule attribute might be an unnecessary
encapsulation of logic, and you might have too many uses of reference in your rule set. Consider
removing the rule attribute and "inlining" its derivation in the places where it is used, especially in the
case where the rule attribute is only referenced from one other calculation.

134 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

8.6 Use RuleDoc
When your CER rule sets are small in size, you may open them directly in the CER Editor and easily
understand them in full.

However, as your rule set grows in complexity, you can gain insights into the structure and behavior of
your rule set by taking advantage of CER's RuleDoc tool.

See 3.10, “RuleDoc,” on page 20 for how to generate RuleDoc from your CER rule sets.

8.7 Normalize Common Rules
As you develop your rule set, you may notice rules which are similar across different parts of your rule
set functionality.

You should endeavor to identify common rules and centralize them.

Broadly you have two options available when centralizing common rules:
v Inheritance

Use CER's support for implementation inheritance to allow one rule class to extend another. The CER
Editor provides the inheritance mechanism to design the rule. See "extends" item in 6.6.3, “Properties
for Rule class,” on page 102.

v Containment

Use CER's support for creating new rule objects from rules to allow a rule class to create new instances
of another rule class when required. The CER Editor provides the containment mechanism to design
the rule. See change rule set and rule class section in 6.7, “Rule Element Wizards,” on page 103.

Sometimes it can be tricky to identify which mechanism to use when centralizing common rules. In
general you should use inheritance carefully, only when the sub-rule class represents a business concept
which genuinely "is an" instance of the business concept represented by the super-class. In particular,
CER does not support multiple inheritance.

An example of inheritance is where a person has resources, and each resource might be a building or a
vehicle. The Building and Vehicle rule classes each extend an abstract Resource rule class. See the listing
in 4.4.1.1, “Rule Classes,” on page 36.

You should use containment when the business concept represented by a rule class "has an" instance of
the business concept represented by the rule class being contained.

An example of containment is where a person has many different age range tests applied. The Person
rule class creates many instance of AgeRangeTest.

If you find you have similar rule classes across different rule sets, you should consider using CER's
facilities (since Cúram V6) for allowing one rule set to reference artefacts in other. Place the common rule
classes in one or more common rule sets, and place rule classes which are not common in other rule sets.

8.8 Remove Unused Rules
As you centralize common rules, you might find that some rule attributes are no longer referenced from
other calculations and can be removed from your rule set (as part of a "decluttering" exercise).

CER includes support for reporting rule attributes which are not referenced from any other calculations
in your rule set and thus are candidates for removal. You can also use the CER Editor to delete any rule
class and rule attribute. See 6.2.4, “Technical View,” on page 94.

Chapter 8. CER Best Practices 135

To run the CER unused attribute report, see 3.12, “Unused rule attributes,” on page 26.

warning: Note that it is perfectly possible for a rule attribute to be a "top-level" rule attribute which is
only referenced from client code; such attributes may be reported as "unused" by this report, but any
seemingly-unused rule attributes should not be removed from your rule set unless you are certain that no
client code or tests depend on them.

8.9 Order of Declarations
In general, the order of declaration in your rule sets has no effect on behavior.

8.9.1 Order of Rule Classes within a Rule Set
You are free to reorder the rule classes in your rule set into whatever order is most useful to you.
Reordering rule classes has no effect on the behavior of your rule sets.

8.9.2 Order of Calculated Rule Attributes within a Rule Class
Similarly, you are free to reorder the calculated rule attributes in your rule class into whatever order is
most useful to you. Reordering calculated rule attributes has no effect on the behavior of your rule sets.

8.9.3 Order of Initialized Attributes within a Rule Class
Whenever a rule object instance of the class is created, whether within rules by use of the create
expression or via Java code using the generated rule classes or the dynamic rule API, the values of all the
initialized attributes must be specified in the order that they are defined in the rule class.

warning: As such, you should avoid re-ordering the attributes in an Initialization block unless you are
prepared to also update all places (in rules or Java code) which create rule object instances of the rule
class.

8.9.4 Order of Boolean Conditions
The order of Boolean conditions within an all or any expression does not affect the logical value of the
result.

However, at runtime, processing of the boolean conditions halts as soon as a result is confirmed; as such,
you should consider ordering the Boolean conditions so that the all or any expression tends to obtain its
result as quickly as possible.

This means:
v for all expressions, placing boolean conditions which are likely to evaluate to false earlier in the list;

and
v for any expressions, placing boolean conditions which are likely to evaluate to true earlier in the list.

You can use the CER Editor to change the order of the Boolean rule elements within the Any rule
element. For example, arrange all Boolean rule elements with true value first.

8.10 Creating Rule Objects
You should consider carefully how your rule objects are created.

In particular, if you are using CER in your own application, you should decide early on which rule
objects are created by your application code, vs. which rule objects are created by your rules.

See 4.3, “External and Internal Rule Objects,” on page 31 for more details.

136 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

8.11 Pass Rule Objects in Preference to Passing IDs
When you use the A.6.17.12, “create,” on page 172 expression to create an internal rule object, you can
pass data to the new rule object by use of the initialization block and/or specify elements.

If the data you are passing includes a reference to external data that has an identifier (e.g. a case,
identified by a caseID), consider designing the rule class for the created rule object so that it is initialized
with a rule object that represents that data rather than being initialized by an ID value.

The use of such a rule object for initialization can increase the "type safety" of your data - it may help
prevent another rules designer from creating their own internal rule objects for the same rule class but
accidentally passing an ID that represents a different kind of external data.

It is likely that passing the wrong kind of ID will cause rules to fail at run time (e.g. because an attempt
to convert a rule object for that ID will not find the underlying data); whereas passing a rule object for
type safety will allow the CER rule set validator to detect the problem at design time.

8.12 Developing Static Methods
CER has support for a variety of expressions which are likely to provide the calculations you need.

If you have a business calculation which cannot be implemented using CER's expressions, then CER
supports the call expression to allow you to call out from your rule set to a static method on a custom
Java class. The CER Editor provides few rule elements, e.g., "call" to allow users to define a static method
on a custom Java class. See "call" rule element in 7.4.10, “Call,” on page 119.

Here is an example rule set which calls out to a Java method:

Chapter 8. CER Best Practices 137

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_StaticMethodDevelopment"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Income">

<Attribute name="paymentReceivedDate">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="amount">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Person">

<Attribute name="incomes">
<type>

<javaclass name="List">
<ruleclass name="Income"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="mostRecentIncome">
<type>

<ruleclass name="Income"/>
</type>
<derivation>

<!-- In early development, the method
identifyMostRecentIncome_StronglyTyped would be used.

In practice, you would not maintain two versions of
each method; you would simply weaken the argument
and return types, and keep a single method.

-->

<call class="curam.creole.example.BestPracticeDevelopment"
method="identifyMostRecentIncome_WeaklyTyped">
<type>

<ruleclass name="Income"/>
</type>
<arguments>

<this/>
</arguments>

</call>
</derivation>

</Attribute>
</Class>

</RuleSet>

138 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

When you develop your static method, you can start by using CER's generated Java classes as argument
types and/or return type for the method:

Once the Java method is working to your satisfaction, you must weaken the types to use dynamic rule
objects instead of the generated Java classes (which should not be used in a production environment):

package curam.creole.example;

import java.util.List;

import curam.creole.execution.session.Session;
import
curam.creole.ruleclass.Example_StaticMethodDevelopment.impl.Income;
import
curam.creole.ruleclass.Example_StaticMethodDevelopment.impl.Person;

public class BestPracticeDevelopment {

/**
* Identifies a person’s most recent income.
*
* Note that this calculation can be performed using CER
* expressions, but is shown here in Java just to illustrate the
* use of generated types when developing static Java methods for
* use with CER.
*
* This method is suitable only for use in development; for
* production, see the
* {@linkplain #identifyMostRecentIncome_WeaklyTyped} below.
*
* In practice, you would not maintain two versions of each
* method; you would simply weaken the argument and return types,
* and keep a single method.
*/
public static Income identifyMostRecentIncome_StronglyTyped(

final Session session, final Person person) {

Income mostRecentIncome = null;
final List<? extends Income> incomes =

person.incomes().getValue();
for (final Income current : incomes) {

if (mostRecentIncome == null
|| mostRecentIncome.paymentReceivedDate().getValue()

.before(current.paymentReceivedDate().getValue())) {
mostRecentIncome = current;

}
}

return mostRecentIncome;
}

}

Chapter 8. CER Best Practices 139

CAUTION:
If you change the implementation of a static method, CER will not automatically know to recalculate
attribute values that were calculated using the old version of your static method.

Once a static method has been used in a production environment for stored attribute values, rather
than changing the implementation you should instead create a new static method (with the required
new implementation), and change your rule sets to use the new static method. When you publish your
rule set changes to point to the new static method, CER will automatically recalculate all instances of
the affected attribute values.

Any static method (or property method) invoked from CER:

v must only depend on the data passed to it (i.e. its behavior must be deterministic, based on its input
parameters). It must not get data from other sources such as the database, environment variables or
variable globals, as to do so means that CER is unable to detect when such data has changed, and
thus recalculations would become unreliable; and

v must not perform any side-effects (such as writing data to the database), as CER makes no
guarantees about the order in which processing occurs nor how often the static/property methods
will be invoked.

8.13 Avoid Common Pitfalls in Tests
Writing JUnit tests for your CER rule sets is largely straight-forward, but there are a number of pitfalls
which you should be aware of.

/**
* Identifies a person’s most recent income.
*
* Note that this calculation can be performed using CER
* expressions, but is shown here in Java just to illustrate the
* use of generated types when developing static Java methods for
* use with CER.
*
* This method is suitable for use in production; for initial
* development, see
* {@linkplain #identifyMostRecentIncome_StronglyTyped} above.
*
* In practice, you would not maintain two versions of each
* method; you would simply weaken the argument and return types,
* and keep a single method.
*/
public static RuleObject identifyMostRecentIncome_WeaklyTyped(

final Session session, final RuleObject person) {

RuleObject mostRecentIncome = null;
final List<? extends RuleObject> incomes =

(List<? extends RuleObject>) person.getAttributeValue(
"incomes").getValue();

for (final RuleObject current : incomes) {
if (mostRecentIncome == null

|| ((Date) mostRecentIncome.getAttributeValue(
"paymentReceivedDate").getValue())
.before((Date) current.getAttributeValue(

"paymentReceivedDate").getValue())) {
mostRecentIncome = current;

}
}

return mostRecentIncome;

}

140 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

This section shows some test code examples which at first glance look fine, but each of them would fail
to produce the required behavior.

8.13.1 Avoid JUnit's assertEquals
JUnit tests inherit assertion methods for testing. Typically you will assert that an expected result is
matched by an actual result.

A common pitfall is to use JUnit's assertEquals, only to find that it does not work correctly for numerical
comparisons (and with a slightly confusing error message to boot).

CER converts all instances of Number to its own numerical format (backed by java.math.BigDecimal)
before processing, to ensure no loss of precision. This conversion can be problematic and unintuitive if
you use JUnit's assertEquals method.

CER includes a replacement in a helper class. Use CREOLETestHelper.assertEquals, which will correctly
compare numbers of any type.

For other data types, CREOLETestHelper.assertEquals behaves identically to JUnit's assertEquals, so in
general it is good practice to use CREOLETestHelper.assertEquals throughout your tests, to avoid possible
confusion (even in the places where technically it is unnecessary).

8.13.2 Remember to Use .getValue()
The CER test code generator creates a Java interface for each rule class, and an accessor method on the
interface for each rule attribute.

This generated accessor method returns a CER AttributeValue, not the attribute's value directly. To obtain
the value itself, you must call the .getValue() method on the AttributeValue.

If you forget to use .getValue() in a test, then your test will probably compile fine but fail to behave
correctly when it is run.

public void creoleTestHelperNotUsed() {

final FlexibleRetirementYear flexibleRetirementYear =
FlexibleRetirementYear_Factory.getFactory().newInstance(

session);

flexibleRetirementYear.retirementCause().specifyValue(
"Reached statutory retirement age.");

/**
* Will not work - getValue returns CER’s own numerical handler,
* but 65 is an integer.
*
* JUnit will report the somewhat confusing message:
* junit.framework.AssertionFailedError: expected:<65> but
* was:<65>
*
* Use CREOLETestHelper.assertEquals instead.
*/
assertEquals(65, flexibleRetirementYear.ageAtRetirement()

.getValue());

}

Chapter 8. CER Best Practices 141

Note that in this example, the value of the AttributeValue shows as the String "Value: 65", rather than
the number 65 (which is what .getValue() would have returned).

8.13.3 Remember to Specify All Values Required by the Calculations
Being Tested
In your tests, you need only specify the values which will be accessed during rules execution.

However, it can be easy to forget to specify a value; if so, when CER attempts a calculation, it may
encounter an attribute whose derivation is <specified> but for which no value has been specified in your
test code, and CER will report a stack of errors:

public void getValueNotUsed() {

final FlexibleRetirementYear flexibleRetirementYear =
FlexibleRetirementYear_Factory.getFactory().newInstance(

session);

flexibleRetirementYear.retirementCause().specifyValue(
"Reached statutory retirement age.");

/**
* Will not work - ageAtRetirement() is a calculator, not a
* value.
*
* JUnit will report the message:
* junit.framework.AssertionFailedError: expected:<65> but
* was: <Value: 65>
*
* Remember to use .getValue() on each attribute calculator!
*/
assertEquals(65, flexibleRetirementYear.ageAtRetirement());

}

142 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

8.13.4 Do Not Specify the Same Value More than Once
CER allows you to specify a value which would otherwise be calculated.

However, when using the RecalculationsProhibited strategy, CER will raise a runtime error if you try to
specify the value of an attribute (on a particular rule object) more than once; once the value has been
specified, it cannot be changed (as to do so might mean that previously-performed calculations would
now be “wrong”).

public void valueNotSpecified() {

final FlexibleRetirementYear flexibleRetirementYear =
FlexibleRetirementYear_Factory.getFactory().newInstance(

session);

/**
* Will not work - a value required for calculation was marked
* as <specified> but no value was specified for it.
*
* CER will report a stack of messages:
*
*
* Error calculating attribute ’ageAtRetirement’ on rule
* class ’FlexibleRetirementYear’ (instance id ’1’, description
* ’Undescribed instance of rule class
* ’FlexibleRetirementYear’, id ’1’).
*
* Error calculating attribute ’retirementCause’ on rule
* class ’FlexibleRetirementYear’ (instance id ’1’, description
* ’Undescribed instance of rule class
* ’FlexibleRetirementYear’, id ’1’).
*
* Value must be specified before it is used (it cannot be
* calculated).
*
*
*
*
* Remember to specify all values required by calculations!
*/
CREOLETestHelper.assertEquals(65, flexibleRetirementYear

.ageAtRetirement().getValue());

}

Chapter 8. CER Best Practices 143

8.13.5 Specify the Correct Type of Value for an Attribute
Each CER AttributeValue has a specifyValue method to allow the attribute's value to be specified
(rather than calculated). The method takes any value18, but if you specify the wrong type of value, CER
will raise a runtime error:

18. Technical readers might wonder why AttributeValue.specifyValue does not use Java 5 generics to restrict the value type it can
receive.

If rule class A extends rule class B, then A is free to override the derivation of any of B's attributes. A is also free to redeclare any
of B's attributes to be a more-restrictive type (i.e. A's declaration of the attribute specifies its type to be a subtype of that declared
by B).

The generated Java interface for A extends the generated Java interface for B. Because the accessors return calculators, rather
than the value type directly, all interfaces must use wildcard extension so that the compiler will allow A's declaration of the
attribute's accessor to extend that of B's. Because wildcard extension is used, specifyValue cannot restrict to a type, and thus
must be declared to receive any Object.

From another point-of-view, if a Java class C were to extend Java D, then C can define a more restrictive return type for one of
D's getters, but cannot restrict D's setters to a subtype - C must implement D's setter, and detect any undesirable values at
runtime (although to do so might arguably violate Liskov's substitution principle).

Another justification is that when purely-dynamic rule objects are used (i.e. in an interpreted session), compile-time restriction of
values cannot be used.

Thus, CER uses its knowledge of declared attribute types to detect incorrect values at runtime, not compile time.

public void valueSpecifiedTwice() {

final FlexibleRetirementYear flexibleRetirementYear =
FlexibleRetirementYear_Factory.getFactory().newInstance(

session);

flexibleRetirementYear.retirementCause().specifyValue(
"Reached statutory retirement age.");

/**
* Will not work - the same attribute value cannot be specified
* a second time.
*
* CER will report the message: A value cannot be specified,
* as the current state of this calculator is ’SPECIFIED’.
*
* Do not attempt to specify the same value twice!
*/
flexibleRetirementYear.retirementCause().specifyValue(

"Lottery winner");

}

144 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

8.13.6 Create all Rule Objects for a Session before Running getValue
Calculations
Your rule set tests can set up any number of rule objects in a CER session before going on to check any
number of calculated values on those rule objects.

However, once calculations have commenced, the RecalculationsProhibited strategy prevents the
creation of any rule objects which invalidate the value of a previously-calculated A.6.17.53, “readall,” on
page 205 calculations.

You should structure your tests so that the creation of all your test rule objects occurs before any
calculations (i.e. before any execution of getValue). In practice this is not unduly restrictive.

If your test attempts to create a new rule object in a session after a calculation has occurred, then (if
previously-calculated readall calculations are affected), the RecalculationsProhibited strategy will raise
a runtime error:

public void incorrectValueType() {

final FlexibleRetirementYear flexibleRetirementYear =
FlexibleRetirementYear_Factory.getFactory().newInstance(

session);

/**
* Will not work - retirementCause() expects a String, not a
* Number.
*
* CER will report the message: Attempt to set the value ’123’
* (of type ’java.lang.Integer’) on attribute ’retirementCause’
* of rule class ’FlexibleRetirementYear’ (which expects a
* ’java.lang.String’).
*/
flexibleRetirementYear.retirementCause().specifyValue(123);

}

Chapter 8. CER Best Practices 145

warning: If your rule set does not currently contain any readall expressions, you might get away with
not structuring your tests so that all rule object creation occurs before any calculations.

However, if you change your rule set in the future to contain readall expressions, you would need to
restructure your tests at that point.

To avoid rework, always structure your tests so that all rule object creation is performed before
calculations begin.

public void newObjectsAddedAfterCalculationsStarted() {

final FlexibleRetirementYear flexibleRetirementYear =
FlexibleRetirementYear_Factory.getFactory().newInstance(

session);

flexibleRetirementYear.retirementCause().specifyValue(
"Reached statutory retirement age.");

/**
* Calculate the age at retirement and test its value
*/
CREOLETestHelper.assertEquals(65, flexibleRetirementYear

.ageAtRetirement().getValue());

/**
* Create another rule object.
*/

/**
* May not work - new rule objects added to the session once
* calculations have started could invalidate earlier
* <code><readall></code> calculations.
*
* {@linkplain RecalculationsProhibited} may report the
* message: "Cannot create new rule objects for this session,
* because this session has already accepted a calculation
* request."
*
* To avoid this problem, create all your rule objects before
* attempting any calculations!
*/
final FlexibleRetirementYear flexibleRetirementYear2 =

FlexibleRetirementYear_Factory.getFactory().newInstance(
session);

}

146 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Appendix A. CER XML Dictionary

A.1 Introduction
This appendix describes the elements which make up the CER language for rule sets.

A.2 Rule Set
A Rule Set specifies its name and contains any number of rule Class es and/or Include statements.
Optionally the RuleSet may contain Annotations.

The XML structure of a rule set and its elements is constrained by the CER RuleSet.xsd schema. This
schema is dynamically constructed, so that extensions to CER can contribute expressions and annotations
to the schema.

Here is a sample outline of a rule set:

© Copyright IBM Corp. 2012, 2013 147

A.3 Include Statement
You may find it convenient to break a large rule set into smaller pieces for ease of parallel development
or re-use. Each rule set may contain Include statements to "pull in" other rule sets and classes. The root
element in an included item must be either:
v Class

A single rule class; or
v RuleSet

An entire rule set, which itself may contain its own Include statements which will be processed
recursively.

Different types of Include statements are supported:

- RuleSet
- Annotations (optional)

-...
-...

- Include
-...

- Include
-...

-... more Include statements
- Class

- Annotations (optional)
-...
-...

- Initialization (optional)
- Attribute

- Annotations (optional)
-...
-...

- type
-...

- Attribute
- type

-...
-... more initialized attributes

- Attribute
- Annotations (optional)

-...
-...

- type
-...

- derivation
- (expression)

- Annotations (optional)
-...
-...

- (sub-expression)
-...

- Attribute
- type

-...
- derivation

-...
-... more calculated attributes

-... more rule classes

148 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v RelativePath

Includes an XML file with a path relative to the containing file; this mechanism may be useful during
stand-alone development of the rule set by developers using a file-based development environment;

v Classpath

Includes an XML file which is present at the named location on the runtime classpath; this mechanism
may be useful to refer to common rule sets which rarely change and are built into the application.

Tip: Within a rule set, there is no meaning attached to the order that Include statements are specified.
You are free to reorder Include statements within a rule set without affecting the behavior of the rule set.

See 3.13, “CER Rule Set Consolidator,” on page 27 for how to collapse a rule set which contains
RelativePath inclusions into a single rule set file.

A.4 Rule Class
A rule class defines the behavior of its rule object instances.

A rule class specifies its name (which must be unique amongst the rule classes in the rule set) and
whether it is abstract, and contains:
v Initialization

Optionally, a block of attributes which must have their values specified whenever a rule object instance
of the class is created; and

v Attribute

Zero or more calculated Attribute statements, each describing a value that the rule class can calculate.

A rule class may be defined in its own XML file (i.e. where the root XML element is Class) and included
into a parent rule set using an A.3, “Include Statement,” on page 148 statement.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Include"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- This rule class is defined directly in this rule set -->
<Class name="Person">

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

<!-- Include a rule set defined in another file.

When assembled into a single rule set, the
names of all the rule classes must be unique. -->

<Include>
<RelativePath value="./HelloWorld.xml"/>

</Include>

</RuleSet>

Appendix A. CER XML Dictionary 149

A.4.1 Initialized Attributes
The Initialization block contains one or more Attribute statements, each specifying the attribute's
type, but not specifying any derivation.

Whenever a rule object instance of the class is created, whether within rules by use of the create
expression or via Java code using the generated rule classes or the dynamic rule API, the values of all the
initialized attributes must be specified in the order that they are defined in the rule class.

warning: As such, you should avoid re-ordering the attributes in an Initialization block unless you are
prepared to also update all places (in rules or Java code) which create rule object instances of the rule
class.

A.4.2 Calculated Attributes
Calculated attributes are listed directly within the rule class.

Tip: Within a rule class, there is no meaning attached to the order that calculated attributes are specified.
You are free to reorder calculated attributes within a rule class without affecting the behavior of the rule
class.

150 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_RuleClass"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Initialization>
<!-- Initialized attributes each contain a type

but no derivation.

You should NOT arbitrarily reorder
initialized attributes. -->

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>

</Attribute>
<Attribute name="age">

<type>
<javaclass name="Number"/>

</type>
</Attribute>

</Initialization>

<!-- Each calculated attribute specifies both
a type and a derivation.

You are free to arbitrarily reorder
calculated attributes. -->

<Attribute name="isAdult">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<compare comparison=">=">
<reference attribute="age"/>
<Number value="18"/>

</compare>
</derivation>

</Attribute>

<Attribute name="isSeniorCitizen">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<compare comparison=">=">
<reference attribute="age"/>
<Number value="65"/>

</compare>
</derivation>

</Attribute>

</Class>

</RuleSet>

Appendix A. CER XML Dictionary 151

A.5 Attribute
Each attribute specifies its name (which must be unique amongst the rule attributes defined on or
inherited by the rule class), and contains:

Each Attribute contains:
v type

Defines the type of value that this attribute provides (see 4.4.1, “Supported Data Types,” on page 36);
and

v derivation (calculated attributes only)

Defines how the attribute calculates its value. Each derivation contains a single CER expression (see
A.6.17, “Full Alphabetical Listing of Expressions,” on page 154).

Important: There are special marker expressions which can alter the semantics of the rule attribute -
see A.6.13, “Markers,” on page 154.

A.6 Expressions
CER supports a wide range of expressions. The expressions are listed alphabetically below, but are also
logically grouped here for reference (note that some expressions intentionally appear in more than one
logical group).

A.6.1 Boolean Logic
v A.6.17.68, “true,” on page 229
v A.6.17.26, “false,” on page 183
v A.6.17.2, “all,” on page 157
v A.6.17.3, “any,” on page 159
v A.6.17.46, “not,” on page 196

A.6.2 Value Comparison
v A.6.17.18, “equals,” on page 179
v A.6.17.10, “compare,” on page 169
v A.6.17.60, “sort,” on page 215

A.6.3 Constants
These expressions provide literal constant values.
v A.6.17.68, “true,” on page 229
v A.6.17.26, “false,” on page 183
v A.6.17.47, “null,” on page 196
v A.6.17.62, “String,” on page 217
v A.6.17.48, “Number,” on page 198
v A.6.17.15, “Date,” on page 176
v A.6.17.8, “Code,” on page 168
v A.6.17.33, “FrequencyPattern,” on page 188

A.6.4 Conditional Logic
v A.6.17.7, “choose,” on page 166

152 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.5 List Aggregations
These expressions aggregate a list of values into a derived value.
v A.6.17.2, “all,” on page 157
v A.6.17.3, “any,” on page 159
v A.6.17.64, “sum,” on page 220
v A.6.17.44, “min,” on page 194
v A.6.17.41, “max,” on page 192
v A.6.17.11, “concat,” on page 170
v A.6.17.58, “singleitem,” on page 213

For further operations directly provided from the Java java.util.List interface, see Appendix B, “Useful
List Operations,” on page 235.

A.6.6 List Transformations
These expressions transform a list to create a new list.
v A.6.17.16, “dynamiclist,” on page 176
v A.6.17.32, “fixedlist,” on page 186
v A.6.17.27, “filter,” on page 183
v A.6.17.38, “joinlists,” on page 190
v A.6.17.56, “removeduplicates,” on page 209
v A.6.17.60, “sort,” on page 215
v A.6.17.63, “sublists,” on page 218

A.6.7 Localizable Messages
These expressions allow the creation of messages which can be displayed in the end-user's
language/locale.
v A.6.17.11, “concat,” on page 170
v A.6.17.57, “ResourceMessage,” on page 211
v A.6.17.69, “XmlMessage,” on page 229

A.6.8 Numerical Calculations
These expressions support numerical calculations:
v A.6.17.48, “Number,” on page 198
v A.6.17.4, “arithmetic,” on page 161
v A.6.17.50, “periodlength,” on page 200
v A.6.17.64, “sum,” on page 220
v A.6.17.41, “max,” on page 192
v A.6.17.44, “min,” on page 194

A.6.9 References
These expressions allow a calculation to refer to another item.
v A.6.17.54, “reference,” on page 207
v A.6.17.13, “current,” on page 174
v A.6.17.65, “this,” on page 222

Appendix A. CER XML Dictionary 153

A.6.10 Creation
This expression allows the creation of a new rule object.
v A.6.17.12, “create,” on page 172

A.6.11 Retrieval
This expression allows the retrieval of rule objects.
v A.6.17.53, “readall,” on page 205

A.6.12 Java Callouts
These expressions allow the invocation of Java code to perform a calculation.
v A.6.17.51, “property,” on page 202
v A.6.17.5, “call,” on page 163

A.6.13 Markers
These expressions are special markers (they are not calculations as such).
v A.6.17.1, “abstract,” on page 155
v A.6.17.61, “specified,” on page 217

A.6.14 Timelines
These expressions process CER Timelines.

For more details on CER Timelines, see 4.5, “Handling Data that Changes Over Time,” on page 46 in this
guide.
v A.6.17.36, “Interval,” on page 188
v A.6.17.66, “Timeline,” on page 224
v A.6.17.19, “existencetimeline,” on page 181
v A.6.17.37, “intervalvalue,” on page 189
v A.6.17.67, “timelineoperation,” on page 226

A.6.15 Product Delivery Eligibility and Entitlement
These expressions provide business-specific calculations for eligibility and entitlement of product delivery
cases.

See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide for a description
of these expressions.
v A.6.17.9, “combineSuccessionSets,” on page 169
v A.6.17.39, “legislationChange,” on page 192
v A.6.17.52, “rate,” on page 205

A.6.16 householdcomposition
See the CGIS Household Composition Expressions guide.

A.6.17 Full Alphabetical Listing of Expressions
This section defines all the expressions included with CER included with the application.

The expressions below are listed alphabetically; see the previous sections for helpful categorizations of
these expressions.

154 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Note: Some expressions are for business-specific derivations in the application. Any such expressions are
still included here but the reader is referred to other Cúram guides which describe those expressions in
their business context.

For brevity, example rule sets are shown without annotations; in practice, rule sets saved using the CER
Editor will contain annotations for diagram and description information.

A.6.17.1 abstract
A marker expression to denote that the attribute's derivation must be specified on concrete sub-classes (or
one of their superclasses).

If one or more attributes in a rule class is marked abstract, then the CER rule set validator will insist
that the class itself is marked abstract="true", and prevent the rule class from being used in any A.6.17.12,
“create,” on page 172 expressions.

Appendix A. CER XML Dictionary 155

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_abstract"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- Base class for all types of benefit.
Every concrete subclass has its own
calculation of "name" and "isEligible". -->

<Class name="Benefit" abstract="true">
<Initialization>

<!-- The person for which benefit eligibility
is being determined. -->

<Attribute name="person">
<type>

<ruleclass name="Person"/>
</type>

</Attribute>
</Initialization>

<!-- The name of this type of benefit -->
<Attribute name="name">

<type>
<javaclass name="String"/>

</type>
<derivation>

<abstract/>
</derivation>

</Attribute>

<!-- Whether the person is eligible for this benefit. -->
<Attribute name="isEligible">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<abstract/>
</derivation>

</Attribute>

</Class>

<!-- A concrete subclass of Benefit.
Contains concrete derivations for the inherited
abstract attributes. -->

<Class name="MedicalBenefit" extends="Benefit">
<Attribute name="name">

<type>
<javaclass name="String"/>

</type>
<derivation>

<String value="Medical Benefit"/>
</derivation>

</Attribute>
<Attribute name="isEligible">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<all>
<fixedlist>

<listof>
<javaclass name="Boolean"/>

</listof>
<members>

<!-- NB the person attribute is inherited from Benefit
-->

<reference attribute="isPoor">
<reference attribute="person"/>

</reference>
<reference attribute="isSick">

<reference attribute="person"/>

156 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.2 all
Operates on a list of Boolean values to determine whether all of the list values are true.

Calculation stops at the first false value encountered in the list. If the list is empty, this expression returns
true.

The list of Boolean values is typically provided by a A.6.17.32, “fixedlist,” on page 186 or A.6.17.16,
“dynamiclist,” on page 176.

Tip: The ordering of items in the list makes no difference to the value of this expression; however, for
performance reasons, you may wish to structure a A.6.17.32, “fixedlist,” on page 186 so that “fail fast”
values are nearer the top of the list, and any values which may be more costly to calculate are nearer the
bottom of the list.

Note: Since Cúram V6, CER no longer reports errors in child expressions in situations where the error
does not affect the overall result.

For example, if a fixed list of three Boolean attributes has these values:
v true;
v <error during calculation>; and
v false

then the calculation of the value of all for these values will return false, because at least one of the
items is false (namely the third in the list), regardless of the second item returning an error.

By contrast, if another fixed list of three Boolean attributes has these values:
v true;
v <error during calculation>; and
v true

then the calculation of the value of all for these values will return the error reported by the second item
in the list, as this error prevents the determination of whether all items have the value true.

Appendix A. CER XML Dictionary 157

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_all"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="isLoneParent">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<!-- Example of <all> operating on a <fixedlist> -->
<!-- To be considered a "lone parent", a person must

be both unmarried and have at least one child -->
<all>

<fixedlist>
<listof>

<javaclass name="Boolean"/>
</listof>
<members>

<!-- We happen to know that most people on our
database

are married, so we test this condition first.

If it so happens that the isMarried value is not
specified for a Person, then if that Person has
no children then the <all> will return false;
otherwise it will return an error indicating that
the value of isMarried was not specified.
-->

<not>
<reference attribute="isMarried"/>

</not>
<not>

<property name="isEmpty">
<object>

<reference attribute="children"/>
</object>

</property>
</not>

</members>
</fixedlist>

</all>
</derivation>

</Attribute>

<Attribute name="hasNoYoungChildren">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<!-- Example of <all> operating on a <dynamiclist>.

If it so happens that one child’s age cannot be
calculated, and there is at least one child under 5,
then the <all> will return false; otherwise, it
will return the error showing why the child’s age could
not be calculated.

-->

<!-- Check whether the children are all over 5 years of age
-->

<all>
<dynamiclist>

<list>
<reference attribute="children"/>

</list>
<listitemexpression>

<compare comparison=">">
<reference attribute="age">

<current/>
</reference>

158 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.3 any
Operates on a list of Boolean values to determine whether any of the list values are true.

Calculation stops at the first true value encountered in the list. If the list is empty, this expression returns
false.

The list of Boolean values is typically provided by a A.6.17.32, “fixedlist,” on page 186 or A.6.17.16,
“dynamiclist,” on page 176.

Tip: The ordering of items in the list makes no difference to the value of this expression; however, for
performance reasons, you may wish to structure a A.6.17.32, “fixedlist,” on page 186 so that “succeed
fast” values are nearer the top of the list, and any values which may be more costly to calculate are
nearer the bottom of the list.

Note: Since Cúram V6, CER no longer reports errors in child expressions in situations where the error
does not affect the overall result.

For example, if a fixed list of three Boolean attributes has these values:
v false;
v <error during calculation>; and
v true

then the calculation of the value of any for these values will return true, because at least one of the items
is true (namely the third in the list), regardless of the second item returning an error.

By contrast, if another fixed list of three Boolean attributes has these values:
v false;
v <error during calculation>; and
v false

then the calculation of the value of any for these values will return the error reported by the second item
in the list, as this error prevents the determination of whether any items have the value true.

Appendix A. CER XML Dictionary 159

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_any"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="qualifiesForFreeTravelPass">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<!-- Example of <any> operating on a <fixedlist> -->
<!-- To qualify for a free travel pass, the person

must be aged, blind or disabled -->
<any>

<fixedlist>
<listof>

<javaclass name="Boolean"/>
</listof>
<members>

<!-- We happen to know that most people on our
database are senior citizens, so we test
this condition first.

If it so happens that the isBlind value is not
specified for a Person, then if that Person is
disabled then the <any> will return false;
otherwise it will return an error indicating that
the value of isBlind was not specified.
-->

<compare comparison=">=">
<reference attribute="age"/>
<Number value="65"/>

</compare>
<reference attribute="isBlind"/>
<reference attribute="isDisabled"/>

</members>
</fixedlist>

</any>
</derivation>

</Attribute>

<Attribute name="qualifiesForChildBenefit">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<!-- Example of <any> operating on a <dynamiclist>.

If it so happens that one child’s age cannot be
calculated, and there is at least one child under 16,
then the <any> will return true; otherwise, it
will return the error showing why the child’s age could
not be calculated.

-->
<!-- To qualify for child benefit, this person must

have one or more children aged under 16. -->
<any>

<dynamiclist>
<list>

<reference attribute="children"/>
</list>
<listitemexpression>

<compare comparison="<">
<reference attribute="age">

<current/>
</reference>
<Number value="16"/>

</compare>
</listitemexpression>

160 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.4 arithmetic
Performs an arithmetical calculation on two numbers (a left-hand-side number and a right-hand-side
number) and optionally rounds the result to the specified number of decimal places.

The operations supported are:
v Addition

left hand side + right hand side;
v Subtraction

left hand side - right hand side;
v Multiplication

left hand side * right hand side; and
v Division

left hand side / right hand side.

If rounding is required, then you must specify:
v the number of decimal places to round to; and
v the rounding mode, i.e. the direction in which to round when rounding is performed. See the JavaDoc

for RoundingMode for the list of supported rounding modes and a detailed explanation of their behavior.

warning: For division operations, in general you should supply a rounding mode and a number of
decimal places. If you do not, and at runtime an exact result cannot be calculated, then a runtime error
will occur.

The CER rule set validator will issue a warning if it detects any division operation in your rule set which
does not specify rounding specified.

Appendix A. CER XML Dictionary 161

http://java.sun.com/j2se/1.5.0/docs/api/java/math/RoundingMode.html
http://java.sun.com/j2se/1.5.0/docs/api/java/math/RoundingMode.html

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_arithmetic"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="ArithmeticExampleRuleClass">

<!-- 3 + 2 = 5 -->
<Attribute name="addANumberToAnother">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<arithmetic operation="+">
<Number value="3"/>
<Number value="2"/>

</arithmetic>
</derivation>

</Attribute>

<!-- 3 - 2 = 1 -->
<Attribute name="subtractANumberFromAnother">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<arithmetic operation="-">
<Number value="3"/>
<Number value="2"/>

</arithmetic>
</derivation>

</Attribute>

<!-- 3 * 2 = 6 -->
<Attribute name="multiplyANumberByAnother">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<arithmetic operation="*">
<Number value="3"/>
<Number value="2"/>

</arithmetic>
</derivation>

</Attribute>

<!-- 3 / 2 = 1.5 -->
<!-- Because the division is by 2,

we can get away without rounding.
A warning will still be issued by the
CER rule set validator, though. -->

<Attribute name="divideANumbersByAnother">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<arithmetic operation="/">
<Number value="3"/>
<Number value="2"/>

</arithmetic>
</derivation>

</Attribute>

<!-- (3 + 2) * 4 = 20 -->
<Attribute name="chainedArithmetic">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<arithmetic operation="*">
<arithmetic operation="+">

<Number value="3"/>
<Number value="2"/>

162 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.5 call
Calls out to a static Java method to perform a complex calculation.

The call expression declares:
v type

The data type of the value returned (see 4.4.1, “Supported Data Types,” on page 36); and
v arguments (optional)

A list of values to pass as arguments.

The Java method must be on a class which is on the classpath at rule set validation time. The first
argument to the method must be a Session object, and the remaining arguments must match those
specified in the rule set.

warning: You should ensure that any Java code invoked by a call expression does not attempt to mutate
any values on rule object attributes.

In general, CER rule sets use immutable data types, but it is possible to use your own mutable Java
classes as data types; if so, it is your responsibility to ensure that no invoked code causes the value of a
custom Java data type to be modified, as doing so could mean that previously-performed calculations
would now be "wrong".

Appendix A. CER XML Dictionary 163

package curam.creole.example;

import curam.creole.execution.RuleObject;
import curam.creole.execution.session.Session;

public class Statics {

/**
* Calculates a person’s favorite color.
*
* This calculation is too complex for rules and so has been
* coded in java.
*
* @param session
* The rule session
* @param person
* the person
* @return the calculated favorite color of the specified person
*/
public static String calculateFavoriteColor(

final Session session, final RuleObject person) {

// Note that the retrieval of the attribute value must be
// cast to the correct type
final String name =

(String) person.getAttributeValue("name").getValue();
final Number age =

(Number) person.getAttributeValue("age").getValue();

final String ageString = age.toString();
// Calculate the person’s favorite color according
// to the digits in their age and their name
if (ageString.contains("5") || ageString.contains("7")) {

return "Blue";
} else if (name.contains("z")) {

return "Purple";
} else {

return "Green";
}

}
}

164 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

CAUTION:
Since Cúram V6, CER and the Dependency Manager support the automatic recalculation of
CER-calculated values if their dependencies change.

If you change the implementation of a static method, CER and the Dependency Manager will not
automatically know to recalculate attribute values that were calculated using the old version of your
static method.

Once a static method has been used in a production environment for stored attribute values, rather
than changing the implementation you should instead create a new static method (with the required
new implementation), and change your rule sets to use the new static method. When you publish your
rule set changes to point to the new static method, CER and the Dependency Manager will
automatically recalculate all instances of the affected attribute values.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_call"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="favoriteColor">
<type>

<javaclass name="String"/>
</type>
<derivation>

<!-- Call a java static method
to perform the calculation -->

<call class="curam.creole.example.Statics"
method="calculateFavoriteColor">
<type>

<javaclass name="String"/>
</type>
<arguments>

<!-- Pass in this person
as an argument to the
static method -->

<this/>
</arguments>

</call>
</derivation>

</Attribute>

</Class>

</RuleSet>

Appendix A. CER XML Dictionary 165

A.6.17.6 category
See the CGIS Household Composition Expressions guide.

A.6.17.7 choose
Chooses a value based on a condition being met.

The choose expression contains:
v type

a data type specifier (see 4.4.1, “Supported Data Types,” on page 36) declaring the type of value which
will be chosen;

v test (optional)

an expression which specifies the value to test against the condition in each when expression in turn. If
no test expression is specified, the condition in each when expression is tested in turn to check if it
returns the value true;

v when (1 or more)

each contains a condition to test, and a value to return if the condition passes; and
v otherwise

an expression containing a value to return (so that no matter what, a value is always chosen).

The conditions are evaluated in top-down order of the when expressions, stopping at the first condition to
pass the test. Subsequent conditions are not evaluated.

The choose expression reflects that of if / else if /.../ else statements typical of most programming
languages. It can be effectively used to implement a decision table.

You might consider ordering your conditions so that those most likely to succeed are near the top of the
list (to prevent needless calculations).

warning: For simple conditions (e.g. those which test equality to a single value), typically you can
reorder your conditions without affecting the behavior of the rule set.

However, for more complex conditions (and thus in general), you must carefully consider whether
reordering your conditions will introduce any unwanted behavior changes.

166 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_choose"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="ageCategory">
<type>

<javaclass name="String"/>
</type>
<derivation>

<choose>
<!-- There’s no explicit <test> clause, so this

<choose> statement will test each condition to
see if it is TRUE. -->

<type>
<javaclass name="String"/>

</type>

<!-- Note that the order of these conditions is
important; if we were to swap the positions of the
"Newborn" and "Infant" tests, then all children
under 5 (including those under 1) would be
identified as Infants; no children would be
identified as Newborns. -->

<when>
<condition>

<compare comparison="<">
<reference attribute="age"/>
<Number value="1"/>

</compare>
</condition>
<value>

<String value="Newborn"/>
</value>

</when>
<when>

<condition>
<compare comparison="<">

<reference attribute="age"/>
<Number value="5"/>

</compare>
</condition>
<value>

<String value="Infant"/>
</value>

</when>
<when>

<condition>
<compare comparison="<">

<reference attribute="age"/>
<Number value="18"/>

</compare>
</condition>
<value>

<String value="Child"/>
</value>

</when>
<otherwise>

<value>
<String value="Adult"/>

</value>
</otherwise>

Appendix A. CER XML Dictionary 167

A.6.17.8 Code
A literal constant value representing a code from an application code table.

The Code expression specifies a code table name, and takes a single argument specifying the value of the
code required from the table.

Note: You must specify the code's String value; code table generated constants cannot be used, as CER is
a fully dynamic language and cannot be dependent on build-time constructs.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Code"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<!-- Boolean representation of gender -->
<Attribute name="isMale">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Code representation of gender -->
<Attribute name="gender">

<type>
<codetableentry table="Gender"/>

</type>
<derivation>

<Code table="Gender">
<choose>

<type>
<javaclass name="String"/>

</type>
<when>

<condition>
<reference attribute="isMale"/>

</condition>
<value>

<!-- use the "MALE" code from the codetable -->
<String value="MALE"/>

</value>
</when>
<otherwise>

<value>
<!-- use the "FEMALE" code from the codetable -->
<String value="FEMALE"/>

</value>
</otherwise>

</choose>
</Code>

</derivation>
</Attribute>

</Class>

</RuleSet>

168 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.9 combineSuccessionSets
See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide.

A.6.17.10 compare
Compares a left-hand-side value with a right-hand-side value, according to the comparison provided.

The comparisons supported are:
v <

left hand side "is less than" right hand side;
v <=

left hand side "is less than or equal to" right hand side;
v >

left hand side "is greater than" right hand side; and
v >=

left hand side "is greater than or equal to" right hand side.

The left hand side and right hand side values can be of any type of comparable object, including (but not
limited to):
v Number;
v String; and
v curam.util.type.Date.

Note: All instances of Number are converted to CER's own numerical format (backed by
java.math.BigDecimal) before comparison.

Appendix A. CER XML Dictionary 169

A.6.17.11 concat
Creates a localizable message (see 3.3, “Localization Support,” on page 9) by concatenating a list of
values.

The concat strings together its values with no additional spaces or text; if you require more complex
formatting or localizable text, consider using A.6.17.57, “ResourceMessage,” on page 211 instead.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_compare"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="CompareExampleRuleClass">

<!-- 3 >= 2 - TRUE-->
<Attribute name="compareTwoNumbers">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<compare comparison=">=">
<Number value="3"/>
<Number value="2"/>

</compare>
</derivation>

</Attribute>

<!-- New Year earlier than Christmas - TRUE -->
<Attribute name="compareTwoDates">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<compare comparison="<">
<Date value="2007-01-01"/>
<Date value="2007-12-25"/>

</compare>
</derivation>

</Attribute>

</Class>

</RuleSet>

170 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_concat"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="surname">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="dateOfBirth">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- An identifier for a person, including
first name, surname and date of birth, e.g.
John Smith (03 Oct 1970).

First name and surname are plain Strings,
but date of birth will be localized
according to the user’s locale.
-->
<Attribute name="personIdentifier">

<type>
<javaclass name="curam.creole.value.Message"/>

</type>
<derivation>

<concat>
<fixedlist>

<listof>
<!-- Note we use Object, as we have a

mixture of String and Date items
in the list. -->

<javaclass name="Object"/>
</listof>
<members>

<reference attribute="firstName"/>
<!-- space separator between names -->
<String value=" "/>
<reference attribute="surname"/>
<String value=" ("/>
<reference attribute="dateOfBirth"/>
<String value=")"/>

</members>
</fixedlist>

</concat>
</derivation>

</Attribute>

</Class>

</RuleSet>

Appendix A. CER XML Dictionary 171

A.6.17.12 create
Gets a new instance of a rule class in the session's memory. Any initialization values required by the rule
object must be specified as child elements of the create expression.

Since Cúram V6, create can be used to create an new instance of a rule class from a different rule set, by
setting the value of the optional ruleset XML attribute.

Note: Rule objects created using create cannot be retrieved during rules execution, as to do so would
violate CER's ordering principle.

Since Cúram V6, there is a choice of syntax when passing values to a created rule object:
v initialization block

CER continues to support a block of attributes defined within an Initialization element. This syntax
can be useful for attributes which must always be set and have no default implementation; and

v specify elements

Since Cúram V6, CER also supports arbitrary attributes having their value overridden by use of a
specify element which names the attribute to set and which contains the value to use. This syntax can
be useful for attributes which are only sometimes set and/or have a default implementation.

Since Cúram V6, created rule objects are “pooled” within the session. This pool enables identical requests
to create a rule object to be served by a single rule object, which can conserve memory usage and also
prevent identical calculations from taking place, leading to lower CPU load. Two requests to create a rule
object are considered identical if they request the same rule class and the values of all initialized and
specified attributes are equal.

In the example below, if a person's work phone number is identical to the person's home phone number,
then a single rule object will be used for each number, and thus the derived value for isOutOfThisArea
will only be calculated once. Otherwise if the work and home phone numbers are different then two
different rule objects will be created.

172 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_create"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Person">

<!-- Phone number details as gathered in evidence -->
<Attribute name="homePhoneAreaCode">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="homePhoneNumber">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="workPhoneAreaCode">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="workPhoneNumber">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Create PhoneNumber rule objects
and place them in a list -->

<Attribute name="phoneNumbers">
<type>

<javaclass name="List">
<ruleclass name="PhoneNumber"/>

</javaclass>
</type>
<derivation>

<fixedlist>
<listof>

<ruleclass name="PhoneNumber"/>
</listof>

<members>

<!-- Phone Number for the home details. -->
<create ruleclass="PhoneNumber">

<!-- The value for PhoneNumber.owner -->
<this/>
<!-- The value for PhoneNumber.number -->
<reference attribute="homePhoneNumber"/>
<specify attribute="areaCode">

<!-- The value for PhoneNumber.areaCode -->
<reference attribute="homePhoneAreaCode"/>

</specify>
</create>

Appendix A. CER XML Dictionary 173

A.6.17.13 current
Refers to an item in a list being processed.

The current expression may only appear within an expression which processes items in a list, such as:
v the listitemexpression in a A.6.17.27, “filter,” on page 183 or A.6.17.16, “dynamiclist,” on page 176

expression; or
v the sortorder in a A.6.17.60, “sort,” on page 215 expression.

For clarity, you can assign an alias to the current expression, which must match the alias on the list
expression referred to. Alias are required if there are more than current expressions in scope in the same
calculation.

174 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_listitem"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Household">

<Attribute name="members">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="adults">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<filter>
<list>

<reference attribute="members"/>
</list>
<listitemexpression>

<!-- The reference uses current to refer
to an item in the list of Person
rule objects. -->

<reference attribute="isAdult">
<current/>

</reference>
</listitemexpression>

</filter>
</derivation>

</Attribute>

</Class>

<Class name="Person">

<Attribute name="children">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isAdult">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<compare comparison=">=">
<reference attribute="age"/>
<Number value="18"/>

Appendix A. CER XML Dictionary 175

A.6.17.14 currentunitmember
See the CGIS Household Composition Expressions guide.

A.6.17.15 Date
A literal Date constant value, of type curam.util.type.Date.

The Date 's value is specified in the form yyyy-mm-dd.

Note: There is intentionally no function in CER to obtain the current date - such a function would be
volatile in that today it returns one value, tomorrow a different value.

Volatile functions are forbidden in CER, as if a function's result can change, it could mean that
previously-performed calculations would now be "wrong".

A.6.17.16 dynamiclist
Creates a new list by evaluating an expression on each item in an existing list.

The new list will have one entry corresponding to each entry in the existing list, with ordering preserved.

A dynamiclist expression specifies:
v list

The existing list; and
v listitemexpression

The expression to evaluate on each item in the existing list.

A dynamiclist can be used when the number of items in the desired list is not known as design time (i.e.
it can differ from execution to execution, depending on the value of other attributes). If the number of

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Date"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="DateExampleRuleClass">

<Attribute name="nullDate">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<!-- A null Date -->
<null/>

</derivation>
</Attribute>

<Attribute name="dateOfBirth">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<!-- The Date 3rd October, 1970 -->
<Date value="1970-10-03"/>

</derivation>
</Attribute>

</Class>

</RuleSet>

176 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

items is fixed (i.e. is known at design time), consider using A.6.17.32, “fixedlist,” on page 186 instead.

Appendix A. CER XML Dictionary 177

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_dynamiclist"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isDisabled">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="totalIncome">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="pets">
<type>

<javaclass name="List">
<ruleclass name="Pet"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Pet">
<Initialization>

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>

</Attribute>
</Initialization>

</Class>

<Class name="Household">

<Attribute name="members">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="containsDisabledPerson">
<type>

178 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.17 defaultDescription
Provides a default implementation of the description attribute that all rule classes inherit from the root
rule class. See 4.4.1, “Supported Data Types,” on page 36.

Each rule class should override the description attribute from the root rule class to provide a more
meaningful description. If no override is provided (or inherited), a warning will be issued when the rule
set is validated.

Important: The defaultDescription expression is for use only by the root rule class; you must not use it
in your own rule classes.

A.6.17.18 equals
Determines whether two objects (a left-hand-side object and a right-hand-side object) are equal.

Number values are converted to CER's own numerical format (backed by java.math.BigDecimal) before
comparison; differences in leading or trailing zeros are ignored.

null values are compared safely; if both left hand side and right hand side are null, then the equals
expression returns true; if only one of the left hand side and right hand side values are null, then the
equals expression returns false.

<Class name="RootRuleClass" abstract="true">
<Attribute name="description">

<type>
<javaclass name="curam.creole.value.Message"/>

</type>
<derivation>

<!-- For use ONLY in the RootRuleClass -->
<defaultDescription/>

</derivation>
</Attribute>

</Class>

Appendix A. CER XML Dictionary 179

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_equals"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="EqualsExampleRuleClass">

<!-- TRUE -->
<Attribute name="identicalStrings">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<equals>
<String value="A String"/>
<String value="A String"/>

</equals>
</derivation>

</Attribute>

<!-- FALSE -->
<Attribute name="differentStrings">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<equals>
<String value="A String"/>
<String value="A different String"/>

</equals>
</derivation>

</Attribute>

<!-- TRUE -->
<Attribute name="identicalNumbers">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<equals>
<!-- These numbers are the same,

disregarding trivial
differences in leading/trailing
zeroes -->

<Number value="123"/>
<Number value="000123.000"/>

</equals>
</derivation>

</Attribute>

<!-- FALSE -->
<Attribute name="differentTypes">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<equals>
<!-- These objects are of

different types, so are
not equal even if they
"look" the same.-->

<String value="123"/>
<Number value="123"/>

</equals>
</derivation>

</Attribute>

<!-- FALSE -->
<Attribute name="oneNull">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

180 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.19 existencetimeline
Creates a Timeline of a specified type from a pair of inclusive start and end dates, either of which is
optional.

See 4.5.3, “Constructing Timelines,” on page 53.

Appendix A. CER XML Dictionary 181

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_existencetimeline"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Person">

<Attribute name="dateOfBirth">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- will be null if the person is still alive -->
<Attribute name="dateOfDeath">

<type>
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Creates a timeline which is false before the Person is
born, true while the Person is alive, and false after the
Person dies. If the Person has no date-of-death recorded,
there will be no trailing "false" interval. -->

<Attribute name="isAliveTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>

</javaclass>
</type>
<derivation>

<existencetimeline>
<intervaltype>

<javaclass name="Boolean"/>
</intervaltype>
<intervalfromdate>

<reference attribute="dateOfBirth"/>
</intervalfromdate>
<intervaltodate>

<reference attribute="dateOfDeath"/>
</intervaltodate>
<preExistenceValue>

<false/>
</preExistenceValue>
<existenceValue>

<true/>
</existenceValue>
<postExistenceValue>

<false/>
</postExistenceValue>

</existencetimeline>

</derivation>
</Attribute>

<!-- Creates a timeline which is "Before Birth" before the Person
is born, "During Lifetime" while the Person is alive, and
"After Death" after the Person dies. If the Person has no
date-of-death recorded, there will be no trailing "After
Death" interval. -->

<Attribute name="lifeStatus">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="String"/>

</javaclass>

182 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.20 facategory
See the CGIS Household Composition Expressions guide.

A.6.17.21 faexception
See the CGIS Household Composition Expressions guide.

A.6.17.22 faexceptionothermembers
See the CGIS Household Composition Expressions guide.

A.6.17.23 fahouseholdcomposition
See the CGIS Household Composition Expressions guide.

A.6.17.24 faoptionalmembers
See the CGIS Household Composition Expressions guide.

A.6.17.25 farelationship
See the CGIS Household Composition Expressions guide.

A.6.17.26 false
The Boolean constant value “false”.

A.6.17.27 filter
Creates a new list containing all the items in an existing list which meet the filter condition.

The filter expression contains:
v list

an existing list to filter; and
v listitemexpression

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_false"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="FalseExampleRuleClass">

<Attribute name="isCuramExpertRulesFantastic">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<not>
<false/>

</not>
</derivation>

</Attribute>

<Attribute name="didCookbookWinPulitzerPrize">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<false/>
</derivation>

</Attribute>

</Class>

</RuleSet>

Appendix A. CER XML Dictionary 183

the test to apply to each item in the list.

Typically the listitemexpression contains one or more calculations applied to the A.6.17.13, “current,”
on page 174 item in the list.

The relative order of the list items in the filtered result will preserve the relative order of the list items in
the original list. If none of the items in the list meet the filter condition, then an empty list is returned.

184 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_filter"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The spouse of this person, or
null if unmarried -->

<Attribute name="spouse">
<type>

<ruleclass name="Person"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The children of this person -->
<Attribute name="children">

<type>
<javaclass name="List">

<ruleclass name="Person"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Household">

<!-- All the people in the household -->
<Attribute name="members">

<type>
<javaclass name="List">

<ruleclass name="Person"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- All the adults in the household -->
<Attribute name="adultMembers">

<type>
<javaclass name="List">

<ruleclass name="Person"/>
</javaclass>

</type>
<derivation>

<filter>
<list>

<reference attribute="members"/>
</list>
<listitemexpression>

<compare comparison=">=">

Appendix A. CER XML Dictionary 185

A.6.17.28 filtercategory
See the CGIS Household Composition Expressions guide.

A.6.17.29 financialunitcategory
See the CGIS Household Composition Expressions guide.

A.6.17.30 financialunitdetermination
See the CGIS Household Composition Expressions guide.

A.6.17.31 financialunitmember
See the CGIS Household Composition Expressions guide.

A.6.17.32 fixedlist
Creates a new list from items known at rule set design time.

The fixedlist expression specifies:
v listof

The type of item in the list returned (see 4.4.1, “Supported Data Types,” on page 36); and
v members

The items in the list.

The created list will contain its members in the order listed in the rule set.

Tip: The members element may contain 0, 1 or many child elements.

However, if the fixedlist is contained within a list processing operation but only specifies 0 or 1 list
members, the CER rule set validator will issue a warning, indicating that the list may be unnecessary.

If you need to create a list where the number of items in the list is not known at design time, consider
using A.6.17.16, “dynamiclist,” on page 176 instead.

186 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_fixedlist"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<!-- The pets owned by this Person -->
<Attribute name="pets">

<type>
<javaclass name="List">

<ruleclass name="Pet"/>
</javaclass>

</type>
<derivation>

<!-- A fixed list of Pets -->
<fixedlist>

<listof>
<ruleclass name="Pet"/>

</listof>
<members>

<!-- Every Person has exactly two pets,
Skippy and Lassie -->

<create ruleclass="Pet">
<String value="Skippy"/>
<String value="Kangaroo"/>

</create>
<create ruleclass="Pet">

<String value="Lassie"/>
<String value="Dog"/>

</create>
</members>

</fixedlist>
</derivation>

</Attribute>

<Attribute name="isEntitledToBenefits">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<all>
<!-- A fixed list of Boolean conditions -->
<fixedlist>

<listof>
<javaclass name="Boolean"/>

</listof>
<members>

<!-- Must be an adult -->
<compare comparison=">=">

<reference attribute="age"/>
<Number value="18"/>

</compare>
<!-- Must be resident in the state -->
<reference attribute="isResidentInTheState"/>
<!-- Must have income under the threshold for benefits

-->
<compare comparison="<">

<reference attribute="totalIncome"/>
<Number value="100"/>

</compare>
</members>

</fixedlist>

</all>

</derivation>
</Attribute>

<Attribute name="totalIncome">
<type>

Appendix A. CER XML Dictionary 187

A.6.17.33 FrequencyPattern
A literal FrequencyPattern constant value, of type curam.util.type.FrequencyPattern.

The FrequencyPattern 's value is specified as a 9-digit number. See the JavaDoc for
curam.util.type.FrequencyPattern for the meaning of the digit string.

A.6.17.34 HCCurrent
See the CGIS Household Composition Expressions guide.

A.6.17.35 householdcomposition
See the CGIS Household Composition Expressions guide.

A.6.17.36 Interval
Creates an Interval (see 4.5, “Handling Data that Changes Over Time,” on page 46) of a given type, with
a value valid from a specified date.

This expression is typically used as part of the construction of a A.6.17.66, “Timeline,” on page 224.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_FrequencyPattern"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="FrequencyPatternExampleRuleClass">

<Attribute name="nullFrequencyPattern">
<type>

<javaclass name="curam.util.type.FrequencyPattern"/>
</type>
<derivation>

<!-- A null FrequencyPattern -->
<null/>

</derivation>
</Attribute>

<Attribute name="weeklyOnMondays">
<type>

<javaclass name="curam.util.type.FrequencyPattern"/>
</type>
<derivation>

<!-- The Frequency Pattern string for
"Weekly on Mondays" -->

<FrequencyPattern value="100100100"/>
</derivation>

</Attribute>

</Class>

</RuleSet>

188 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.37 intervalvalue
Wraps an expression which returns a Timeline (see 4.5, “Handling Data that Changes Over Time,” on
page 46), and allows a containing expression to operate on the individual values within the Timeline.
This expression effectively shields an outer expression from "knowing" that it is operating on a Timeline.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Interval"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="CreateInterval">

<Attribute name="aNumberTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</type>
<derivation>

<Timeline>
<intervaltype>

<javaclass name="Number"/>
</intervaltype>
<initialvalue>

<Number value="0"/>
</initialvalue>
<!-- Another interval-->
<intervals>

<fixedlist>
<listof>

<javaclass name="curam.creole.value.Interval">
<javaclass name="Number"/>

</javaclass>
</listof>
<members>

<!-- Creates an interval of the specified type.
Typically used as input into a <Timeline>. -->

<Interval>
<intervaltype>

<javaclass name="Number"/>
</intervaltype>
<start>

<Date value="2001-01-01"/>
</start>
<value>

<Number value="10000"/>
</value>

</Interval>
</members>

</fixedlist>

</intervals>
</Timeline>

</derivation>
</Attribute>

</Class>
</RuleSet>

Appendix A. CER XML Dictionary 189

This expression can only be used when nested within a A.6.17.67, “timelineoperation,” on page 226
expression. For further description and usage examples of intervalvalue, see A.6.17.67,
“timelineoperation,” on page 226.

A.6.17.38 joinlists
Creates a new list by joining together some existing lists.

The joinlists expression takes a single argument which must be a list of lists.

The order of the items in the new list is identical to the order in their source list. The lists are joined in
the order they are provided.

If the lists being joined can contain duplicate items, consider wrapping the joinlists expression in a
A.6.17.56, “removeduplicates,” on page 209 expression.

190 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_joinlists"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="pets">
<type>

<javaclass name="List">
<ruleclass name="Pet"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Pet">
<Initialization>

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>

</Attribute>
</Initialization>

</Class>

<Class name="Household">

<Attribute name="members">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- get all the pets in the household,
by joining together each person’s
list of pets -->

<Attribute name="allPets">
<type>

<javaclass name="List">
<ruleclass name="Pet"/>

</javaclass>
</type>
<derivation>

<joinlists>
<!-- a list of list of pets, one

list for each household
member -->

<dynamiclist>
<list>

<reference attribute="members"/>
</list>
<listitemexpression>

<reference attribute="pets">
<current/>

</reference>
</listitemexpression>

</dynamiclist>

</joinlists>
</derivation>

</Attribute>

Appendix A. CER XML Dictionary 191

A.6.17.39 legislationChange
See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide.

A.6.17.40 mandatorymembers
See the CGIS Household Composition Expressions guide.

A.6.17.41 max
Determines the largest value in a list (or null if the list is empty).

The list can contain any type of comparable object, including (but not limited to):
v Number;
v String; and
v curam.util.type.Date.

Note: All instances of Number are converted to CER's own numerical format (backed by
java.math.BigDecimal) before comparison.

192 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_max"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="MaxExampleRuleClass">

<!-- Will pick out "Cherry" as the "largest" String value -->
<Attribute name="alphabeticallyLastFruit">

<type>
<javaclass name="String"/>

</type>
<derivation>

<max>
<reference attribute="fruits"/>

</max>
</derivation>

</Attribute>

<Attribute name="fruits">
<type>

<javaclass name="List">
<javaclass name="String"/>

</javaclass>
</type>
<derivation>

<fixedlist>
<listof>

<javaclass name="String"/>
</listof>
<members>

<String value="Apple"/>
<String value="Banana"/>
<String value="Cherry"/>

</members>
</fixedlist>

</derivation>
</Attribute>

<!-- Determines the number of spots on the spottiest dog -->
<Attribute name="largestNumberOfSpots">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<max>
<dynamiclist>

<list>
<reference attribute="dalmatians"/>

</list>
<listitemexpression>

<reference attribute="numberOfSpots">
<current/>

</reference>
</listitemexpression>

</dynamiclist>
</max>

</derivation>
</Attribute>

<Attribute name="dalmatians">
<type>

<javaclass name="List">
<ruleclass name="Dalmation"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

Appendix A. CER XML Dictionary 193

A.6.17.42 mealgroupmembers
See the CGIS Household Composition Expressions guide.

A.6.17.43 membersforhohunit
See the CGIS Household Composition Expressions guide.

A.6.17.44 min
Determines the smallest value in a list (or null if the list is empty).

The list can contain any type of comparable object, including (but not limited to):
v Number;
v String; and
v curam.util.type.Date.

Note: All instances of Number are converted to CER's own numerical format (backed by
java.math.BigDecimal) before comparison.

194 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_min"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="MinExampleRuleClass">

<!-- Will pick out New Year as the "earliest" Date value -->
<Attribute name="eariestDate">

<type>
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>

<min>
<reference attribute="publicHolidays"/>

</min>
</derivation>

</Attribute>

<Attribute name="publicHolidays">
<type>

<javaclass name="List">
<javaclass name="curam.util.type.Date"/>

</javaclass>
</type>
<derivation>

<fixedlist>
<listof>

<javaclass name="curam.util.type.Date"/>
</listof>
<members>

<Date value="2007-01-01"/>
<Date value="2007-12-25"/>

</members>
</fixedlist>

</derivation>
</Attribute>

<!-- Determines the number of strips on the least-stripey
zebra-->

<Attribute name="smallestNumberOfStripes">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<min>
<dynamiclist>

<list>
<reference attribute="zebras"/>

</list>
<listitemexpression>

<reference attribute="numberOfStripes">
<current/>

</reference>
</listitemexpression>

</dynamiclist>
</min>

</derivation>
</Attribute>

<Attribute name="zebras">
<type>

<javaclass name="List">
<ruleclass name="Zebra"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

Appendix A. CER XML Dictionary 195

A.6.17.45 multipersonhousehold
See the CGIS Household Composition Expressions guide.

A.6.17.46 not
Negates a Boolean value.

A.6.17.47 null
A null constant value.

Setting a value to null may be useful to indicate that no value applies.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_not"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="isLivingInUSA">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<!-- Note that this not-within-not is somewhat contrived.
-->

<not>
<reference attribute="isLivingOutsideUSA"/>

</not>
</derivation>

</Attribute>

<Attribute name="isLivingOutsideUSA">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<not>
<equals>

<reference attribute="country"/>
<String value="USA"/>

</equals>
</not>

</derivation>
</Attribute>

<!-- The country in which this person resides. -->
<Attribute name="country">

<type>
<javaclass name="String"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

196 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_null"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Pet">

<Initialization>
<Attribute name="name">

<type>
<javaclass name="String"/>

</type>
</Attribute>

</Initialization>

</Class>

<Class name="Person">

<!-- This Person’s favorite Pet, or
null if the Person owns no pet. -->

<Attribute name="favoritePet">
<type>

<ruleclass name="Pet"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The name of this Person’s
favorite Pet, or null if
the Person owns no pet.

We have to test for the favoritePet
being null before performing the
(simple) calculation.-->

<Attribute name="favoritePetsName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<choose>
<type>

<javaclass name="String"/>
</type>
<when>

<!-- if this Person has no
favorite pet, then calculate the
name of the favorite pet as null. -->

<condition>
<equals>

<reference attribute="favoritePet"/>
<null/>

</equals>
</condition>
<value>

<null/>
</value>

</when>
<otherwise>

<value>
<!-- get the name of the favorite pet -->
<reference attribute="name">

<reference attribute="favoritePet"/>
</reference>

</value>
</otherwise>

</choose>

</derivation>
</Attribute>

</Class>

Appendix A. CER XML Dictionary 197

A.6.17.48 Number
A literal Number constant value.

A Number in CER is an arbitrarily-long decimal value, specified using a period (“.”) as the decimal
separator and without any thousands separator.

CER business calculations can often involve percentage values, e.g. "Deduct 10% of the person's income".
To help with the codification of such rules, CER allows a Number to be specified as a percentage, by
simply suffixing the number with %. For example, the numbers 12.345% and 0.12345 will behave
identically in calculations (but the percentage version will display in percentage form).

198 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.49 optionalmembers
See the CGIS Household Composition Expressions guide.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Number"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="NumberExampleRuleClass">

<Attribute name="aPositiveInteger">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- A positive integer -->
<Number value="1"/>

</derivation>
</Attribute>

<Attribute name="aNegativeInteger">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- A negative integer -->
<Number value="-2"/>

</derivation>
</Attribute>

<Attribute name="aDecimalNumber">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- A decimal number.

Numbers are arbitrarily long/precise, use "." for
the decimal separator and have no thousands
separator.

-->
<Number value="-12345.6789"/>

</derivation>
</Attribute>

<Attribute name="aPercentage">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- A percentage
(12.345% is equivalent to the number 0.12345) -->

<Number value="12.345%"/>
</derivation>

</Attribute>

</Class>

</RuleSet>

Appendix A. CER XML Dictionary 199

A.6.17.50 periodlength
Calculates the amount of time units between two dates.

One of the following time units must be specified:
v days;
v weeks;
v months; and
v years.

The periodlength expression must also specify whether the end date of the period is inclusive or exclusive
or the end date (the period is always inclusive of the start date).

The calculation of the period length is always rounded down to the nearest integer.

200 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_periodlength"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="PeriodLengthExampleClass">

<!-- NB 1970 was not a leap year -->
<Attribute name="firstDayOfJanuary1970">

<type>
<javaclass name="curam.util.type.Date"/>

</type>
<derivation>

<Date value="1970-01-01"/>
</derivation>

</Attribute>

<Attribute name="lastDayOfDecember1970">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<Date value="1970-12-31"/>
</derivation>

</Attribute>

<Attribute name="firstDayOfJanuary1971">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<Date value="1971-01-01"/>
</derivation>

</Attribute>

<Attribute name="sameDay_LengthInDays">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- starts and ends on the same day = 1 day -->
<periodlength endDateInclusion="inclusive" unit="days">

<reference attribute="firstDayOfJanuary1970"/>
<reference attribute="firstDayOfJanuary1970"/>

</periodlength>
</derivation>

</Attribute>

<Attribute name="sameDay_LengthInWeeks">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- starts and ends on the same day = 0 weeks-->
<periodlength endDateInclusion="exclusive" unit="weeks">

<reference attribute="firstDayOfJanuary1970"/>
<reference attribute="firstDayOfJanuary1970"/>

</periodlength>
</derivation>

</Attribute>

<Attribute name="januaryToDecember_LengthInDays">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- 365 days -->
<periodlength endDateInclusion="inclusive" unit="days">

<reference attribute="firstDayOfJanuary1970"/>
<reference attribute="lastDayOfDecember1970"/>

</periodlength>
</derivation>

</Attribute>

Appendix A. CER XML Dictionary 201

A.6.17.51 property
Obtains a property of a Java object.

The property expression specifies the name of the Java method to call, and:
v object

The Java object on which to operate; and
v arguments

Optionally, a list of arguments to pass to the Java method.

The property expression allows CER to leverage the power of Java classes without having to replicate an
arbitrary subset of methods as CER expressions. For example, java.util.List contains a size method,
and so CER contains no explicit expression for calculating the counting the number of items in a list.

However, to comply with CER's principle of immutability, only Java methods which do not alter the
"value" of any object may be called. CER only allows a "property" method to be called if the method is
included on the "safe list" of methods for the object's class (or one of its ancestor classes or interfaces).

A method is deemed safe if it is explicitly marked as such in the safe list. If it is not present in the safe
list, then the CER rule set validator will issue an error.

Tip: The explicit setting of safety as false is unnecessary but can be included for documentation
completeness, as is the case with the safe lists included with CER.

The safe list for a class is a properties file in the same package as the class, named
<classname>_CREOLE.properties.

CER includes safe lists for the following Java classes and interfaces:
v java.lang.Object;
v java.lang.Number; and
v java.util.List.

Safe list for java.lang.Object

safe
toString.safe=true

force equality to be evaluated using <equals>
equals.safe=false

not exposed, even though they’re "safe"
hashCode.safe=false
getClass.safe=false

Figure 35. Safe list for java.lang.Object methods

Safe list for java.lang.Number

byteValue.safe=true
doubleValue.safe=true
floatValue.safe=true
intValue.safe=true
longValue.safe=true
shortValue.safe=true

Figure 36. Safe list for java.lang.Number methods

202 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

For a description of some of the useful properties on the List Java interface, see Appendix B, “Useful List
Operations,” on page 235.

Safe list for java.util.List

contains.safe=true
containsAll.safe=true

get.safe=true

indexOf.safe=true
isEmpty.safe=true
lastIndexOf.safe=true
size.safe=true
subList.safe=true

not exposed
hashCode.safe=false
listIterator.safe=false
iterator.safe=false
toArray.safe=false

mutators - unsafe
add.safe=false
addAll.safe=false
clear.safe=false
remove.safe=false
removeAll.safe=false
retainAll.safe=false

Figure 37. Safe list for java.util.List methods

Appendix A. CER XML Dictionary 203

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_property"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Person">
<Attribute name="children">

<type>
<javaclass name="List">

<ruleclass name="Person"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Whether this person has any children.

Tests the isEmpty property of List. -->
<Attribute name="hasChildren">

<type>
<javaclass name="Boolean"/>

</type>
<derivation>

<not>
<property name="isEmpty">

<object>
<reference attribute="children"/>

</object>
</property>

</not>

</derivation>
</Attribute>

<!-- All this person’s children, excluding the first child.

Uses the subList property of List, passing in:
- (inclusive) from item at position "1" (denoting the

second
member in the list; lists in Java are zero-based)

- (exclusive) to item at position "size of list" (denoting
the position after the last item in the list)

-->
<Attribute name="secondAndSubsequentChildren">

<type>
<javaclass name="List">

<ruleclass name="Person"/>
</javaclass>

</type>
<derivation>

<property name="subList">
<object>

<reference attribute="children"/>
</object>
<arguments>

<!-- The number must be converted to an integer
(as required by List.subList). -->

<property name="intValue">
<object>

<Number value="1"/>
</object>

</property>
<property name="size">

<object>
<reference attribute="children"/>

</object>
</property>

</arguments>
</property>

204 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

CAUTION:
Since Cúram V6, CER and the Dependency Manager supports the storage of calculated attribute
values on the database, together with automatic recalculation of attribute values if their dependencies
change.

If you change the implementation of a property method, CER and the Dependency Manager will not
automatically know to recalculate attribute values that were calculated using the old version of your
property method.

Once a property method has been used in a production environment for stored attribute values, rather
than changing the implementation you should instead create a new property method (with the
required new implementation), and change your rule sets to use the new property method. When you
publish your rule set changes to point to the new property method, CER will automatically recalculate
all instances of the affected attribute values.

A.6.17.52 rate
See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide.

A.6.17.53 readall
Retrieves all external rule object instances of a rule class (i.e. those which were created by client code).
Internal rule object instances (i.e. those created from rules) are not retrieved.

See 4.3, “External and Internal Rule Objects,” on page 31 for more details on the creation of rule objects.

Since Cúram V6, readall can be used to retrieve instances of a rule class from a different rule set, by
setting the value of the optional ruleset XML attribute.

Since Cúram V6, the readall expression supports an optional match element which causes the readall
expression to only retrieve rule objects whose value for a particular attribute matches that in the search
criterion.

Important: Prior to Cúram V6, one way of retrieving rule objects that matched a criterion was to wrap a
readall within a A.6.17.27, “filter,” on page 183 expression.

However, for CER Sessions that use a DatabaseDataStorage (see 4.2, “CER Sessions,” on page 29), in
general it will be more performant to use the readall / match syntax introduced in Cúram V6. The new
syntax will perform better:
v when the attribute containing the readall expression is first calculated; and
v when CER and the Dependency Manager identify that the attribute containing the readall expression

is out-of-date and needs to be recalculated (see Chapter 5, “The Dependency Manager,” on page 73).

In situations where rule objects must be matched on more than one criteria, you should use the readall /
match syntax to match on the most selective attribute, and then wrap the results in a A.6.17.27, “filter,”
on page 183 to filter down to the other criteria.

Tip: If you only expect there to be a singleton instance of the rule class (perhaps after filtering or
matching), consider wrapping the expression in a A.6.17.58, “singleitem,” on page 213 expression.

Appendix A. CER XML Dictionary 205

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_readall"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="socialSecurityNumber">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!--
Retrieve the one-and-only claim which will have been used to
seed the session
-->

<Attribute name="claim">
<type>

<ruleclass name="Claim"/>
</type>
<derivation>

<singleitem onEmpty="error" onMultiple="error">
<readall ruleclass="Claim"/>

</singleitem>
</derivation>

</Attribute>

<!--
Retrieve the benefit rule objects for this person (created from
client code, probably by querying external storage).

This implementation uses a <readall> with a nested <match> to
retrieve only the matching rule objects, and (depending on data
storage) will be more performant than the
"benefitsFilterReadall" implementation below.
-->

<Attribute name="benefitsReadallMatch">
<type>

<javaclass name="List">
<ruleclass name="Benefit"/>

</javaclass>
</type>
<derivation>

<readall ruleclass="Benefit">
<match retrievedattribute="socialSecurityNumber">

<reference attribute="socialSecurityNumber"/>
</match>

</readall>
</derivation>

</Attribute>

<!--
Retrieves the same rule objects as for "benefitsReadallMatch"
above, but (depending on data storage) may not be as performant.
-->
<Attribute name="benefitsFilterReadall">

<type>
<javaclass name="List">

<ruleclass name="Benefit"/>
</javaclass>

</type>
<derivation>

<filter>
<list>

<!-- retrieve all Benefit rule objects from external

206 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.54 reference
Retrieves the value of an attribute from a rule object.

The reference expression may optionally contain a child expression which determines the rule object
from which to obtain the attribute; if omitted, the rule object containing the reference will be used.

The reference expression is the key to building rules which are reusable and understandable. You can
use a reference to a named attribute in place of any expression. The CER rule set validator will issue an
error if the type of the referenced attribute does not match the type required by the expression.

Appendix A. CER XML Dictionary 207

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_reference"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="age">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- A simple reference to another
attribute on this rule class -->

<Attribute name="ageNextYear">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<arithmetic operation="+">
<!-- This <reference> has no child element,

so the rule object is taken to be "this rule
object"-->

<reference attribute="age"/>
<Number value="1"/>

</arithmetic>
</derivation>

</Attribute>

<Attribute name="favoritePet">
<type>

<ruleclass name="Pet"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

<Class name="Pet">

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="species">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

208 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.55 relatives
See the CGIS Household Composition Expressions guide.

A.6.17.56 removeduplicates
Creates a new list by removing any duplicate items from an existing list.

If any item in the original list occurs more than once, the first instance only is kept. Otherwise, the
ordering of items is preserved.

Appendix A. CER XML Dictionary 209

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_removeduplicates"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<!-- The list of relationships where
this person is the "fromPerson". -->

<Attribute name="relationships">
<type>

<javaclass name="List">
<ruleclass name="Relationship"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The people who are related to this person.

Any relative appears in this list only once,
even though one person can be
related to another in more than one way, e.g.
my grandparent can also be my legal guardian.-->

<Attribute name="uniqueRelatives">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<removeduplicates>
<reference attribute="allRelatives"/>

</removeduplicates>
</derivation>

</Attribute>

<Attribute name="allRelatives">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<!-- get the relatives of this person by forming a
list of the "toPerson" on the other end of each
relationship. -->

<dynamiclist>
<list>

<reference attribute="relationships"/>
</list>
<listitemexpression>

<reference attribute="toPerson">
<current/>

</reference>
</listitemexpression>

</dynamiclist>
</derivation>

</Attribute>

</Class>

<!-- A relationship from one person to another. -->
<Class name="Relationship">

<Attribute name="fromPerson">
<type>

<ruleclass name="Person"/>
</type>
<derivation>

<specified/>

210 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.57 ResourceMessage
Creates a localizable message (see 3.3, “Localization Support,” on page 9) from a property resource.

Optionally, the property may specify placeholders for formatted arguments. The support and syntax for
formatting is described in the JavaDoc for MessageFormat.

warning: As mentioned in the JavaDoc, if you need to output a single quote or apostrophe ('), you must
specify two single quotes in the property text ('').

If you require to output XML or HTML, and do not require complex token formatting, or the ability to
change message text without changing rules, consider using A.6.17.69, “XmlMessage,” on page 229 instead.

Appendix A. CER XML Dictionary 211

http://docs.oracle.com/javase/6/docs/api/java/text/MessageFormat.html

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_ResourceMessage"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="gender">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="isMarried">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="firstName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="surname">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="income">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Returns a greeting which can be
output in the user’s locale -->

<Attribute name="simpleGreetingMessage">
<type>

<javaclass name="curam.creole.value.Message"/>
</type>
<derivation>

<ResourceMessage key="simpleGreeting"
resourceBundle="curam.creole.example.Messages"/>

</derivation>
</Attribute>

<!-- Returns a greeting which contains
the person’s title and surname.
The greeting and title are localized,
the surname is not (it is identical
in all locales). -->

<Attribute name="parameterizedGreetingMessage">
<type>

<javaclass name="curam.creole.value.Message"/>
</type>

212 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.58 singleitem
Retrieves a single item from a list.

The singleitem expression can be useful when it is expected that a list contains only a single item, e.g.
when filtering a list by criteria which should only pick out a single item from the list.

The singleitem expression specifies:
v onEmpty

The behavior when the list is found to be empty:
– error

A runtime error occurs (use this option if the list is not expected to be empty); or
– returnNull

The value null is returned.
v onMultiple

The behavior when the list is found to contain more than one item:
– error

A runtime error occurs (use this option if the list is not expected to contain more than one item);
– returnNull

The value null is returned;
– returnFirst

The first item in the list is returned; or
– returnLast

The last item in the list is returned.

To retrieve an item from a specific position in a list, see get in Appendix B, “Useful List Operations,” on
page 235.

file curam/creole/example/Messages_en.properties

simpleGreeting=Hello
parameterizedGreeting=Hello, {0} {1}
title.male=Mr.
title.female.single=Miss
title.female.married=Mrs.
incomeStatement=Income: USD{0,number,#0.00}

Figure 38. Example properties - English

file curam/creole/example/Messages_fr.properties

simpleGreeting=Bonjour
parameterizedGreeting=Bonjour, {0} {1}
title.male=M.
title.female.single=Mlle.
title.female.married=Mme.
incomeStatement=Revenue: EUR{0,number,#0.00}

Figure 39. Example properties - French

Appendix A. CER XML Dictionary 213

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_singleitem"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="dateOfBirth">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="children">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- The first child born to this person -->
<Attribute name="firstBornChild">

<type>
<ruleclass name="Person"/>

</type>
<derivation>

<!-- get the first child, if any
- if no children, return null -->

<singleitem onEmpty="returnNull" onMultiple="returnFirst">
<!-- sort the children in date-of-birth order -->
<sort>

<list alias="child">
<reference attribute="children"/>

</list>
<sortorder>

<sortitem direction="ascending">
<reference attribute="dateOfBirth">

<current alias="child"/>
</reference>

</sortitem>
</sortorder>

</sort>

</singleitem>
</derivation>

</Attribute>

<!-- Retrieve the single household information record
from external storage - there should always
be exactly one - anything else is an error. -->

<Attribute name="householdInformation">
<type>

<ruleclass name="HouseholdInformation"/>
</type>
<derivation>

<singleitem onEmpty="error" onMultiple="error">
<readall ruleclass="HouseholdInformation"/>

</singleitem>
</derivation>

</Attribute>

</Class>

<Class name="HouseholdInformation">

214 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.59 singlepersonhousehold
See the CGIS Household Composition Expressions guide.

A.6.17.60 sort
Creates a new list by sorting the members of an existing list according to a specified sort order.

A sort expression specifies:
v list

the existing to sort (which will not be affected); and
v sortorder

The order in which to sort the list.

The sortorder specifies one or more sortitem s, each of which specifies the item to sort by and whether
to sort in ascending or descending order.

The sortitem s are listed most-significant first; each sortitem is only evaluated if two items being sorted
are identical with regard to more significant sortitem s.

Within each sortitem, you can use A.6.17.13, “current,” on page 174 to refer to the list item being sorted.
Typically each sortitem will refer to some attribute or calculation on the A.6.17.13, “current,” on page
174 list item.

If two (or more) items in the list are identical with regard to all the sortitem s, then they are returned in
the same relative order as the source list.

The behavior of the sort expression is similar to SQL's ORDER BY clause.

Appendix A. CER XML Dictionary 215

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_sort"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Household">

<Attribute name="members">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Arranges the members in order of age (oldest to youngest);
for members which are the same age, the members are
arranged in alphabetical order by first name. -->

<Attribute name="sortedMembers">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<sort>
<list>

<reference attribute="members"/>
</list>
<sortorder>

<sortitem direction="descending">
<!-- The age of the person in the list -->
<reference attribute="age">

<current/>
</reference>

</sortitem>
<!-- The first name of the person in the list -->
<sortitem direction="ascending">

<reference attribute="firstName">
<current/>

</reference>
</sortitem>

</sortorder>
</sort>

</derivation>
</Attribute>

</Class>

<Class name="Person">

<Initialization>
<Attribute name="firstName">

<type>
<javaclass name="String"/>

</type>
</Attribute>
<Attribute name="age">

<type>
<javaclass name="Integer"/>

</type>
</Attribute>

</Initialization>

</Class>

</RuleSet>216 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.61 specified
A marker expression to denote that the attribute's value is specified externally (e.g. by retrieval from a
database or population by test code), rather than calculated by rules processing.

Typically, specified attributes denote information that comes directly from outside the system, and other
attributes use this external information to derive new information.

A.6.17.62 String
A literal String constant value.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_specified"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<!-- This information cannot be calculated or derived -
it must be specified from an external source -->

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- This information cannot be calculated or derived -
it must be specified from an external source -->

<Attribute name="dateOfBirth">
<type>

<javaclass name="curam.util.type.Date"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- Other attributes are likely to derive/calculation more
information based on the "specified" attributes above -->

</Class>
</RuleSet>

Appendix A. CER XML Dictionary 217

A.6.17.63 sublists
Calculates all the sublists of the list supplied, and returns these sublists as a list of lists.

For a list containing n elements, there are 2 n sublists, including the empty list and the original list.

The order of the list items in each of the sublists will be identical to the ordering in the original list.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_String"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="StringExampleRuleClass">

<Attribute name="emptyString">
<type>

<javaclass name="String"/>
</type>
<derivation>

<!-- An empty String -->
<String value=""/>

</derivation>
</Attribute>

<Attribute name="helloWorld">
<type>

<javaclass name="String"/>
</type>
<derivation>

<!-- The String "Hello, World!" -->
<String value="Hello, World!"/>

</derivation>
</Attribute>

</Class>

</RuleSet>

218 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_sublists"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Household">

<Attribute name="members">
<type>

<javaclass name="List">
<ruleclass name="Person"/>

</javaclass>
</type>
<derivation>

<fixedlist>
<listof>

<ruleclass name="Person"/>
</listof>
<members>

<create ruleclass="Person">
<String value="Mother"/>

</create>
<create ruleclass="Person">

<String value="Father"/>
</create>
<create ruleclass="Person">

<String value="Child"/>
</create>

</members>
</fixedlist>

</derivation>
</Attribute>

<!-- All the different combinations of members of the household
-->

<Attribute name="memberCombinations">
<!-- Note that the type is list of lists of Persons -->
<type>

<javaclass name="List">
<javaclass name="List">

<ruleclass name="Person"/>
</javaclass>

</javaclass>
</type>
<derivation>

<sublists>
<reference attribute="members"/>

</sublists>
</derivation>

</Attribute>

</Class>

<Class name="Person">

<Initialization>
<Attribute name="name">

<type>
<javaclass name="String"/>

</type>
</Attribute>

</Initialization>

</Class>

</RuleSet>

Appendix A. CER XML Dictionary 219

In this example rule set, the value of memberCombinations is calculated as list of these 8 lists:
v an empty list (no household members);
v Mother;
v Father;
v Mother and Father;
v Child;
v Mother and Child;
v Father and Child; and
v Mother, Father and Child (the full original list).

A.6.17.64 sum
Calculates the numerical sum of a list of Number values.

If the list is empty, this expression returns 0.

The list of Number values is typically provided by a A.6.17.32, “fixedlist,” on page 186 or A.6.17.16,
“dynamiclist,” on page 176.

220 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_sum"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<Attribute name="netWorth">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- Example of <sum> operating on a <fixedlist> -->
<!-- A person’s net worth is the sum of their

cash, savings and assets -->
<sum>

<fixedlist>
<listof>

<javaclass name="Number"/>
</listof>
<members>

<reference attribute="totalCash"/>
<reference attribute="totalSavings"/>
<reference attribute="totalAssets"/>

</members>
</fixedlist>

</sum>
</derivation>

</Attribute>

<Attribute name="totalAssets">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<!-- Example of <sum> operating on a <dynamiclist> -->
<!-- The total value of a person’s assets is derived by

summing the value of each asset -->
<sum>

<dynamiclist>
<list>

<reference attribute="assets"/>
</list>
<listitemexpression>

<reference attribute="value">
<current/>

</reference>
</listitemexpression>

</dynamiclist>
</sum>

</derivation>
</Attribute>

<!-- The assets of that this person owns -->
<Attribute name="assets">

<type>
<javaclass name="List">

<ruleclass name="Asset"/>
</javaclass>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- NB this example doesn’t show how
total cash/savings is derived -->

<Attribute name="totalCash">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified/>

Appendix A. CER XML Dictionary 221

A.6.17.65 this
A reference to the current Rule Object, analogous to the keyword this in Java.

222 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_this"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="Person">

<!-- The pets owned by this Person -->
<Attribute name="pets">

<type>
<javaclass name="List">

<ruleclass name="Pet"/>
</javaclass>

</type>
<derivation>

<fixedlist>
<listof>

<ruleclass name="Pet"/>
</listof>
<members>

<!-- Every Person has exactly two pets,
Skippy and Lassie -->

<create ruleclass="Pet">
<!-- set the owner to be THIS Person -->
<this/>
<String value="Skippy"/>
<String value="Kangaroo"/>

</create>
<create ruleclass="Pet">

<!-- set the owner to be THIS Person -->
<this/>
<String value="Lassie"/>
<String value="Dog"/>

</create>
</members>

</fixedlist>
</derivation>

</Attribute>

</Class>

<Class name="Pet">

<Initialization>
<Attribute name="owner">

<type>
<ruleclass name="Person"/>

</type>
</Attribute>
<Attribute name="name">

<type>
<javaclass name="String"/>

</type>
</Attribute>
<Attribute name="species">

<type>
<javaclass name="String"/>

</type>
</Attribute>

</Initialization>

</Class>

</RuleSet>

Appendix A. CER XML Dictionary 223

A.6.17.66 Timeline
Creates a Timeline (see 4.5, “Handling Data that Changes Over Time,” on page 46) of a given type, with
values valid from specified dates.

A timeline must have a value from the start-of-time (the null date), and so to assist with this, the
Timeline expression contains an optional initialvalue element to specify the value from the
start-of-time. If not used, then the collection of A.6.17.36, “Interval,” on page 188 used must contain an
interval with a null start date, otherwise an error will occur if this expression is evaluated at runtime.

224 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Timeline"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="CreateTimelines">

<!-- This example uses <initialvalue> to set the value valid
from the start of time. -->

<Attribute name="aNumberTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</type>
<derivation>

<Timeline>
<intervaltype>

<javaclass name="Number"/>
</intervaltype>
<!-- Value from start of time -->
<initialvalue>

<Number value="0"/>
</initialvalue>
<!-- The remaining intervals -->
<intervals>

<fixedlist>
<listof>

<javaclass name="curam.creole.value.Interval">
<javaclass name="Number"/>

</javaclass>
</listof>
<members>

<Interval>
<intervaltype>

<javaclass name="Number"/>
</intervaltype>
<start>

<Date value="2001-01-01"/>
</start>
<value>

<Number value="10000"/>
</value>

</Interval>
<Interval>

<intervaltype>
<javaclass name="Number"/>

</intervaltype>
<start>

<Date value="2004-12-01"/>
</start>
<value>

<Number value="12000"/>
</value>

</Interval>

</members>
</fixedlist>

</intervals>
</Timeline>

</derivation>
</Attribute>

<!-- This example does not use <initialvalue>. -->
<Attribute name="aStringTimeline">

<type>
<javaclass name="curam.creole.value.Timeline">

<javaclass name="String"/>
</javaclass>

Appendix A. CER XML Dictionary 225

A.6.17.67 timelineoperation
Assembles a Timeline (see 4.5, “Handling Data that Changes Over Time,” on page 46) from repeated calls
to a child expression. Typically timelineoperation is used in conjunction with A.6.17.37,
“intervalvalue,” on page 189, and together these two expressions allow other expressions to operate on
values from timelines as if they were primitive values, and then have the resultant data reassembled into
a Timeline.

Tip: For each of the Timelines which are used as input into your algorithm, typically you should wrap
the expression that returns the Timeline in an A.6.17.37, “intervalvalue,” on page 189, and then wrap the
overall result in a timelineoperation.

A brief description of how timelineoperation behaves at evaluation time is as follows:
v timelineoperation creates a new evaluation context to track the series of calls to make to its child

expression (typically the child expression will be invoked several times, for different dates);
v timelineoperation invokes its single child expression with a context date of null, signifying the

start-of-time;
v during the evaluation of the child expression (and its dependents), then whenever an A.6.17.37,

“intervalvalue,” on page 189 is encountered, then perform the following actions:
– A.6.17.37, “intervalvalue,” on page 189 evaluates its single child expression to obtain a Timeline,

and from this Timeline get the value on the date corresponding to the current date in the
timelineoperation 's evaluation context;

– A.6.17.37, “intervalvalue,” on page 189 checks the other dates on which the Timeline changes
value, and for each of these dates add them to a queue of other dates that the timelineoperation
should operate on (in a subsequent invocation);

v when control returns to timelineoperation, a value will have been calculated for a particular date, and
additional dates identified on which the input timelines change value. For each date,
timelineoperation re-invokes the child expression (on this date) until no more dates are in the queue.

The behavior described above means that the inner expressions never have to know that they are part of
processing involving timelines. Furthermore, processing is efficient because expressions are only invoked
for dates on which the input timelines change value.

Note: If a timelineoperation operates on an expression which is not wrapped by an A.6.17.37,
“intervalvalue,” on page 189, then the resultant Timeline will have a constant value for all time.

226 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_timelineoperation"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Person">
<!--
true during a person’s lifetime; false before date of birth,
and false again after date of death (if any)
-->

<Attribute name="isAliveTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Boolean"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!--
The assets owned by the person, at some time or another. Each
asset’s value may vary over time.
-->

<Attribute name="ownedAssets">
<type>

<javaclass name="List">
<ruleclass name="Asset"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!--
The total value of the assets owned by the person (or by the
person’s estate, if the person has died).
-->

<Attribute name="totalAssetValueTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</type>
<derivation>

<!--
Total the value of all the owned assets. The value of each
asset may change over time.
-->

<!--
<timelineoperation> will create a timeline from the series
of <sum> calculations performed within it.

Each execution of <sum> will calculate the total for a
particular day; <timelineoperation> will assemble these
daily totals into a timeline of numbers.
-->

<timelineoperation>

<sum>
<!--
For each owned asset, get its countable-value timeline.
-->

<dynamiclist>
<list>

<reference attribute="ownedAssets"/>
</list>

Appendix A. CER XML Dictionary 227

Tip: If an inner expression returns a Timeline, and you forget to wrap that expression in an A.6.17.37,
“intervalvalue,” on page 189, you will see CER validation errors as in this example:

<!--
The value which counts towards the person’s assets - i.e. the
value of the asset during the period when it is owned,
otherwise 0 when it is not owned.
-->

<Attribute name="countableValueTimeline">
<type>

<javaclass name="curam.creole.value.Timeline">
<javaclass name="Number"/>

</javaclass>
</type>
<derivation>

<!--
reassemble the outputs from each <choose> invocation into a
timeline
-->

<timelineoperation>
<choose>

<type>
<javaclass name="Number"/>

</type>
<when>

<condition>
<!--
operate on each of the intervals of constant
ownership
-->

<!--
**** Forgot to wrap the Timeline returned
in <intervalvalue> ****
-->
<reference attribute="isOwnedTimeline"/>

</condition>
<value>

<!--
if on a particular date, the asset is owned, then
its countable value on that date is simply its
value
-->

<intervalvalue>
<reference attribute="valueTimeline"/>

</intervalvalue>
</value>

</when>
<otherwise>

<value>
<!--
if on a particular date, the asset is owned, then
its countable value on that date is zero
-->

<Number value="0"/>
</value>

</otherwise>
</choose>

</timelineoperation>
</derivation>

</Attribute>

228 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

A.6.17.68 true
The Boolean constant value “true”.

A.6.17.69 XmlMessage
Creates a localizable message (see 3.3, “Localization Support,” on page 9) from free-form XML content.

The message created will be the literal XML content within the XmlMessage element, with one exception:
The content of any replace element will be set to the expression it contains.

The replace element as a simple token replacement mechanism; if you require more complex token
formatting, or the ability to change message text without changing rules, consider using A.6.17.57,
“ResourceMessage,” on page 211 instead.

Note: Prior to Cúram V6, XmlMessage trimmed whitespace surrounding any embedded XML characters.
From Cúram V6 onwards, XmlMessage no longer trims any whitespace and preserves the source format of
the XML characters (removing any XML comments).

If you require the pre-Cúram V6 trimming behavior of XmlMessage, then you must set the application
environment variable curam.creole.XmlFormat.enableWhitespaceTrimming to the value true in your
development environment.

In a production environment, you should ensure that if the value of the
curam.creole.XmlFormat.enableWhitespaceTrimming environment variable is changed dynamically, you take
steps to ensure that any derived data in your system that depends on rule attributes which use the

ERROR ... Example_timelineoperation.xml(276, 19)
AbstractRuleItem:INVALID_CHILD_RETURN_TYPE: Child ’condition’ returns
’curam.creole.value.Timeline<? extends java.lang.Boolean>’,
but this item requires a ’java.lang.Boolean’.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_true"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="TrueExampleRuleClass">

<Attribute name="isCuramExpertRulesFantastic">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<true/>
</derivation>

</Attribute>

<Attribute name="didCookbookWinPulitzerPrize">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<not>
<true/>

</not>
</derivation>

</Attribute>

</Class>

</RuleSet>

Appendix A. CER XML Dictionary 229

XmlMessage expression must be forced to recalculate all stored attribute value instances.

A.7 Annotations
Since Cúram V6, CER supports "annotations". An annotation is extra metadata within a rule set which is
available to clients of CER but does not affect the behavior of CER calculations.

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_XmlMessage"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Class name="XmlMessageExampleRuleClass">

<Attribute name="emptyMessage">
<type>

<javaclass name="curam.creole.value.Message"/>
</type>
<derivation>

<!-- contains no XML at all -->
<XmlMessage/>

</derivation>
</Attribute>

<Attribute name="simpleHtmlMessage">
<type>

<javaclass name="curam.creole.value.Message"/>
</type>
<derivation>

<!-- Using XmlMessage can ensure that
XML elements are started and
ended correctly, e.g. and -->

<XmlMessage>The following text will appear in bold in a
browser: Some in bold text.

</XmlMessage>
</derivation>

</Attribute>

<Attribute name="tokenReplacementHtmlMessage">
<type>

<javaclass name="curam.creole.value.Message"/>
</type>
<derivation>

<XmlMessage><p/>This calculated number will appear in
italics and formatted according to locale preferences:<i>

<replace>
<arithmetic operation="+">

<Number value="1.23"/>
<Number value="3.45"/>

</arithmetic>
</replace>

</i>
<p/>And here’s a resource message: <replace>

<ResourceMessage key="simpleGreeting"
resourceBundle="curam.creole.example.Messages"/>

</replace>
</XmlMessage>

</derivation>
</Attribute>

</Class>

</RuleSet>

230 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Clients of CER may make use of annotations to govern their behavior when interacting with CER rule
sets.

Annotations may be placed on these items in a CER rule set (although each annotation may contain
validation to limit where it is placed):
v a rule set (see A.2, “Rule Set,” on page 147);
v a rule class (see A.4, “Rule Class,” on page 149);
v a rule attribute (see A.5, “Attribute,” on page 152); or
v an expression (see A.6, “Expressions,” on page 152).

Each rule item may contain zero, one or many annotations. Each type of annotation may appear at most
once on any one rule item - for example, a rule set may contain both a Label annotation and an
EditorMetadata annotation, but cannot contain more than one Label annotation.

A.7.1 Full Alphabetical Listing of Annotations
This section defines all the annotations included with the application.

Note: Some annotations are for business-specific derivations in the application. Any such annotations are
still included here but the reader is referred to other Cúram guides which describe those annotations in
their business context.

A.7.1.1 ActiveInEditSuccessionSetPopulation
See the Cúram Advisor Configuration Guide.

A.7.1.2 Display
See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide.

A.7.1.3 DisplaySubscreen
See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide.

A.7.1.4 EditorMetadata
Stores diagram information for a rule set. Maintained automatically by the CER Editor.

This annotation may be specified on a rule set (see A.2, “Rule Set,” on page 147) only.

A.7.1.5 Indexed
No longer used. Included for backward compatibility only.

Label

Provides a localized description of a rule set element:
v a rule set (see A.2, “Rule Set,” on page 147);
v a rule class (see A.4, “Rule Class,” on page 149);
v a rule attribute (see A.5, “Attribute,” on page 152); or
v an expression (see A.6, “Expressions,” on page 152).

The label contains an identifier (set by the CER Editor) and a description (entered by the user).

When a CER rule set is saved or published, the values of the label annotations in a rule are used to write
a property resource (in the locale of the user) to the application resource store. Conversely, when a rule
set is displayed in the CER Editor, the property resource for the user's locale is retrieved from the
resource store and used to populate the value of the label annotations in the rule set XML.

Appendix A. CER XML Dictionary 231

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_Label"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Annotations>
<!-- Rule-set level description -->
<Label name="Example rule set for labels"

label-id="annotation1"/>
</Annotations>
<Class name="Person">

<Annotations>
<!-- Rule-class level description -->
<Label name="A Person" label-id="annotation2"/>

</Annotations>
<Attribute name="age">

<Annotations>
<!-- Attribute-class level description -->
<Label name="The current age of the person, in years"

label-id="annotation3"/>
</Annotations>
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified>
<Annotations>

<!-- Expression-level description -->
<Label name="This value comes directly from evidence"

label-id="annotation4"/>
</Annotations>

</specified>
</derivation>

</Attribute>

<Attribute name="ageNextBirthday">
<Annotations>

<!-- Attribute-class level description -->
<Label name="The age of the person at the person’s next

birthday, in years"
label-id="annotation5"/>

</Annotations>
<type>

<javaclass name="Number"/>
</type>
<derivation>

<arithmetic operation="+">
<Annotations>

<!-- Expression-level description -->
<Label name="Compute the person’s age at next birthday"

label-id="annotation6"/>
</Annotations>
<reference attribute="age">

<Annotations>
<!-- Expression-level description -->
<Label name="Get the person’s current age"

label-id="annotation7"/>
</Annotations>

</reference>
<Number value="1">

<Annotations>
<!-- Expression-level description -->
<Label name="The number to add to get the age next

birthday" label-id="annotation8"/>
</Annotations>

</Number>
</arithmetic>

</derivation>
</Attribute>

</Class>

232 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Legislation

See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide.

SuccessionSetPopulation

See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide.

primary

Identifies the primary attribute on a rule class, as designated in the CER Editor.

This annotation may be specified on a rule class (see A.4, “Rule Class,” on page 149) only. The named
attribute must be the exact name of an attribute declared on the rule class (it cannot be used to name an
attribute which is inherited but not overridden).

relatedActiveInEditSuccessionSet

See the Cúram Advisor Configuration Guide.

relatedEvidence

See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide.

relatedSuccessionSet

See the Inside Cúram Eligibility and Entitlement Using Cúram Express Rules guide.

tags

Associates arbitrary string tags with:
v a rule set (see A.2, “Rule Set,” on page 147);
v a rule class (see A.4, “Rule Class,” on page 149);

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_primary"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Person">
<Annotations>

<!-- Declaration of the "primary" rule attribute for this rule
class, as shown in the CER Editor -->

<primary attribute="age"/>
</Annotations>
<Attribute name="age">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

</Class>

</RuleSet>

Appendix A. CER XML Dictionary 233

v a rule attribute (see A.5, “Attribute,” on page 152); or
v an expression (see A.6, “Expressions,” on page 152).

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_tags"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Annotations>
<!-- Rule-set level tags -->
<tags>

<tag value="A rule-set tag"/>
<tag value="Another tag"/>

</tags>
</Annotations>
<Class name="Person">

<Annotations>
<!-- Rule-class level tags-->
<tags>

<tag value="A rule-class tag"/>
<tag value="Another tag"/>

</tags>
</Annotations>
<Attribute name="age">

<Annotations>
<!-- Attribute-class level tags -->
<tags>

<tag value="A rule-attribute tag"/>
<tag value="Another tag"/>

</tags>
</Annotations>
<type>

<javaclass name="Number"/>
</type>
<derivation>

<specified>
<Annotations>

<!-- Expression-level tags -->
<tags>

<tag value="An expression tag"/>
<tag value="Another tag"/>

</tags>
</Annotations>

</specified>
</derivation>

</Attribute>

</Class>

</RuleSet>

234 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Appendix B. Useful List Operations

The property expression (see 7.4.4, “Property,” on page 117 and A.6.17.51, “property,” on page 202)
allows the invocation of "safe" Java methods.

Rule sets often contain many instances of java.util.List.

The safe list of methods for java.util.List is included with CER:

While the description of these methods is available via the JavaDoc for java.util.List, the most
typically useful properties are included here for your reference:
v isEmpty()

Returns true if this list contains no elements.
v size()

Returns the number of elements in this list.
v get(int index)

Returns the element at the specified position in this list. Note that because CER passes round numeric
values as instances of Number, you will need to use the intValue to convert a Number to an integer.

v contains(Object o)

Returns true if this list contains the specified element.

Safe list for java.util.List

contains.safe=true
containsAll.safe=true

get.safe=true

indexOf.safe=true
isEmpty.safe=true
lastIndexOf.safe=true
size.safe=true
subList.safe=true

not exposed
hashCode.safe=false
listIterator.safe=false
iterator.safe=false
toArray.safe=false

mutators - unsafe
add.safe=false
addAll.safe=false
clear.safe=false
remove.safe=false
removeAll.safe=false
retainAll.safe=false

Figure 40. Safe list for java.util.List methods

© Copyright IBM Corp. 2012, 2013 235

http://java.sun.com/j2se/1.5.0/docs/api/java/util/List.html

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="Example_UsefulListOperations"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=
"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<Class name="Person">

<!-- Exactly one Person (in each household) will
be designated as the head of household -->
<Attribute name="isHeadOfHousehold">
<type>
<javaclass name="Boolean"/>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

<!-- The children of this person. -->
<Attribute name="children">
<type>
<javaclass name="List">
<ruleclass name="Person"/>
</javaclass>
</type>
<derivation>
<specified/>
</derivation>
</Attribute>

<!-- Whether this person has any children.

Tests the isEmpty property of List. -->
<Attribute name="hasChildren">
<type>
<javaclass name="Boolean"/>
</type>
<derivation>
<not>
<property name="isEmpty">
<object>
<reference attribute="children"/>
</object>
</property>
</not>
</derivation>
</Attribute>

<Attribute name="numberOfChildren">
<type>
<javaclass name="Number"/>
</type>
<derivation>
<property name="size">
<object>
<reference attribute="children"/>
</object>
</property>
</derivation>
</Attribute>

<!-- This person’s second child, if any, otherwise null -->
<Attribute name="secondChild">
<type>
<ruleclass name="Person"/>
</type>
<derivation>
<!-- We have to check whether the person has two
or more children -->
<choose>
<type>
<ruleclass name="Person"/>

236 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Appendix B. Useful List Operations 237

238 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Appendix C. Using CER with the Datastore

The application includes integration code which can create CER rule objects from entries in the
application Datastore.

The DataStoreRuleObjectCreator is used by the Universal Access Module to convert evidence gathered
by an IEG script to CER rule objects. This appendix describes how the DataStoreRuleObjectCreator
works.

C.1 The DataStoreRuleObjectCreator
The DataStoreRuleObjectCreator takes a Datastore record (typically a record relating to a user or person),
and navigates to all the descendant records of this "root" record (typically containing all the person's
gathered evidence).

It then proceeds to create rule objects by performing a straightforward "natural mapping" between:
v the entity types and attributes in the Datastore schema; and
v the rule classes and rule attribute in the CER rule set.

The DataStoreRuleObjectCreator also takes special action for CER rule attributes with certain names:
v parentEntity

If a rule class contains a rule attribute named parentEntity, then the DataStoreRuleObjectCreator will
set its value to be the rule object created from the parent record in the Datastore (if any). CER will
issue a runtime error if the type of this rule attribute does not match the rule class of the parent
entity's rule object; and

v childEntities_<rule class name>

If a rule class contains any attributes named childEntities_ followed by the name of a rule class, then
the DataStoreRuleObjectCreator will set each such attribute's value to be a list of the rule objects
created from the child records of that type in the Datastore (if any). CER will issue a runtime error if
the type of this rule attribute is not a list of the named rule class.

C.2 Example
The behavior of DataStoreRuleObjectCreator is best explained by walking through an example. This
example is based around the Universal Access Module.

An IEG script might capture income data for a household. The household can contain any number of
persons, and each person can have any number of income details.

Here is a simplified view of the structure of the Datastore schema:

A citizen (John) undertakes self-screening, and records evidence for his household (just John and his wife
Mary) and income details (John is unemployed, Mary has two part-time jobs). John's evidence is stored as

- Application:
- Person (0..n):

- firstName (String)
- lastName (String)
- Income (0..n):

- type (Code from the IncomeType code table)
- amount (Number)

© Copyright IBM Corp. 2012, 2013 239

records in the Datastore:

The CER rule set configured to be used with this type of screening contains some rule classes as follows
(NB no program rule classes are shown):

- Application #1234:
- Person #1235:

- firstName: John
- lastName: Smith
- Income: <no records>

- Person #1236:
- firstName: Mary
- lastName: Smith
- Income #1237:

- type: Part-time
- amount: 25

- Income #1238:
- type: Part-time
- amount: 30

240 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

<?xml version="1.0" encoding="UTF-8"?>
<RuleSet name="DataStoreMappingExample"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">

<!-- NB no rule class for the CDS entity type "Application";
the attributes stored directly on an Application are
not required by rules, so no point creating a rule object
which won’t get used. -->

<!-- The name of this rule class matches that of a CDS entity
type -->

<Class name="Person">
<!-- The name of this rule attribute matches that of an

attribute on the CDS entity type, and so its value will
be automatically specified by the
DataStoreRuleObjectRetriever. -->

<Attribute name="firstName">
<!-- The type of the rule attribute must agree with the

type of the CDS attribute type, otherwise CER will
issue a runtime error. -->

<type>
<javaclass name="String"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- NB no rule attribute for the CDS attribute for lastName.
-->

<!-- Rule attributes matching the "childEntities_<rule class
name>"

pattern will receive special treatment from the
DataStoreRuleObjectRetriever.

The DataStoreRuleObjectRetriever will specify the value of
this attribute to be all the rule objects created from the
child Income records which belong to this Person’s record
in the CDS. -->

<Attribute name="childEntities_Income">
<!-- The type must be a list of Income rule objects -->
<type>

<javaclass name="List">
<ruleclass name="Income"/>

</javaclass>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

<!-- The name of this rule class does not match any CDS entity
type,

so the DataStoreRuleObjectRetriever will not create any rule
objects for this rule class. -->

<Class name="Benefit">
<Attribute name="amount">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>
</Class>

<Class name="Income">
<!-- A rule attribute named "parentEntity" will receive

special treatment from the

Appendix C. Using CER with the Datastore 241

When John completes his self-screening, the Universal Access Module loads the CER rule set above, and
creates a CER session.

The Universal Access Module calls the DataStoreRuleObjectCreator, and specifies the root Datastore
record (Application #1234).

The DataStoreRuleObjectCreator retrieves all the descendant records of Application #1234 and processes
them as follows:
v Application #1234

Skipped, as there is no rule class named "Application" in the rule set;
v Person #1235

creates a rule object instance of the Person rule class, with:
– firstName

Specified to be "John";
– lastName

Skipped, as there is no rule attribute named "lastName" on the Person rule class;
– childEntities_Income

Specified to be an empty list, as there are no Income records for Person record #1235;
v Person #1236

creates a rule object instance of the Person rule class, with:
– firstName

Specified to be "Mary";
– lastName

Skipped;
– childEntities_Income

Specified to be a list containing Mary's two Income rule objects (created below);
v Income #1237

creates a rule object instance of the Income rule class, with:
– parentEntity

Specified to be the Person rule object created (above) for Mary from Person record #1236;
– type

Specified to be the code "Part-time";
– amount

Specified to be the number "25";
– (employerName)

Not specified, as there is no attribute named "employerName" on the Datastore entity;
v Income #1238

creates a rule object instance of the Income rule class, with:
– parentEntity

Specified to be the Person rule object created (above) for Mary from Person record #1236;
– type

Specified to be the code "Part-time"; and
– amount

Specified to be the number "30".

242 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Lastly, the Universal Access Module asks the rule set its standard questions about programs, eligibility
and explanation; the rule classes for the programs (not shown in the example above) access the rule
objects (created by the DataStoreRuleObjectCreator) when answering those questions.

For more information on the application Datastore and its schemas, see the Creating Datastore Schemas
guide.

Appendix C. Using CER with the Datastore 243

244 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Appendix D. Compliancy

This appendix explains how to develop in a compliant manner. By following these considerations,
customers will also find it easier to upgrade to future versions of the application.

D.1 CER's Public API
The CER infrastructure has a public API which you may invoke in your rule set tests and application
code. The examples in this cookbook show how to use many features of the CER infrastructure public
API. The application will not change or remove anything in this public API without following the
standards for handling customer impact.

Unless explicitly permitted in the JavaDoc, you must not provide your own implementation of any CER
Java interface nor subclass any CER implementation Java class.

D.1.1 Identifying the API
The JavaDoc included with CER is the sole means of identifying which public classes, interfaces and
methods form the CER public API.

D.1.2 Outside the API
The CER infrastructure also contains some public classes, interfaces and methods, which do not form part
of the API.

Important: To be compliant, you must not create any dependency on any CER class or interface, nor call
any method, other than those described in the JavaDoc.

CER classes, interfaces and methods outside of the public API are subject to change or removal without
notice.

Unless explicitly permitted in the JavaDoc, you must not place any of your own classes or interfaces in
the curam.creole package or any of its sub-packages.

D.2 CER Expressions
Only the CER expressions listed in this cookbook are supported. See A.6.17, “Full Alphabetical Listing of
Expressions,” on page 154 for supported expressions.

Note that the rule set schema included with CER also contains some unsupported expressions. These
expressions are experimental in nature and are subject to change or removal without notice. Do not use
any unsupported CER expressions in your rule sets.

D.3 Rule Sets Included with the Application
Some components in the application may include CER rule sets which may have their own compliancy
requirements. These compliancy requirements for CER rule sets included by the application components
fall outside the scope of this document.

See the documentation accompanying those components to understand whether you are permitted to
customize the CER rule set, and if so, what customization restrictions apply.

The RootRuleSet included with CER must not be altered by customers.

© Copyright IBM Corp. 2012, 2013 245

D.4 Examples in this Guide
The example artifacts in this guide (rule sets, Java code and property files) are subject to change or
removal without notice.

You may freely copy these example artifacts for your own use; however, note that no upgrade support is
provided for these example artifacts.

D.5 CER's Database Tables
The CER infrastructure includes a number of database tables. In general, these tables are internal to CER
and the data on them may only be read or written via CER's public API.

For more details on the read/write restrictions for these database tables, see the following subsections.

Note: All CER Infrastructure database tables are prefixed with the word CREOLE; however, the reverse is
not true.

There are tables prefixed with CREOLE which are part of other application components, and which are
subject to their own compliancy statements. Only the compliancy statements for CER Infrastructure
database tables are described below.

D.5.1 CREOLERuleSet
This database table stores a row for each published CER rule set in the system.

Ordinarily read and write access to this database table is restricted to CER's public API only; however,
you are permitted to use the application's data manager to populate this database table provided that the
following criteria are met:
v The value of the name column must match the rule set name as defined within the XML for the

ruleSetDefinition column; and
v The value of the ruleSetVersion column must be null.

See the Working with Cúram Express Rules guide for steps to extract CREOLERuleSet data from your
application (and accompanying AppResource data, if required).

D.5.2 CREOLEMigrationControl
CREOLEMigrationControl is a single-row control table which is used to prevent concurrent publication of
CER rule sets.

The data on this table is internal to CER and may not be read or written by any other component.

The single row on this table is populated via a DMX file included with the application. Customers must
not alter this DMX file nor create any other DMX files which target the CREOLEMigrationControl table.

D.5.3 Other CER Infrastructure database tables
The remaining database tables which are included with the CER Infrastructure are:
v CREOLEAttributeAvailability;
v CREOLEAttributeInheritance;
v CREOLERuleAttribute;
v CREOLERuleAttributeValue;

Figure 41. Sample entry from a compliant CREOLERuleSet.dmx file

246 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

v CREOLERuleClass;
v CREOLERuleClassInheritance;
v CREOLERuleObject;
v CREOLERuleSetDependency;
v CREOLERuleSetEditAction;
v CREOLERuleSetSnapshot; and
v CREOLEValueOverflow.

These CER Infrastructure database tables fall under this general compliancy condition: the data on these
database tables must not be read or written other than through CER's public API. In particular, initial
population of these database tables via DMX files is not supported.

D.6 The Dependency Manager
The Dependency Manager is internal to Cúram and no access from custom code nor any customization is
supported.

All artefacts pertaining to the Dependency Manager are contained in the curam.dependency code package
and its sub-packages19. You must not place any of your own classes or interfaces in the curam.dependency
code package or any of its sub-packages.

The following database tables are owned by the Dependency Manager:
v Dependency;
v PrecedentChangeSet;
v PrecedentChangeItem; and
v PrecedentChangeSetBatchCtrl.

These database tables must not be customized in any way, and the data on these database tables must not
be read or written other than by the Dependency Manager itself.

Initial population of these database tables via DMX files is not supported, with the exception of DMX
files included with the application; moreover it is not supported to customize or omit the population of
these database tables via the DMX files included with the application.

19. Some artefacts in this code package are contributed by CER and others by the core application.

Appendix D. Compliancy 247

248 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service. IBM
may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2012, 2013 249

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you. Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently created programs and other
programs (including this one) and (ii) the mutual use of the information which has been exchanged,
should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any
other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

250 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at http://www.ibm.com/legal/us/en/copytrade.shtml.

Other names may be trademarks of their respective owners. Other company, product, and service names
may be trademarks or service marks of others.

Notices 251

http://www.ibm.com/legal/us/en/copytrade.shtml

252 IBM Cúram Social Program Management: Cúram Express Rules Reference Manual

����

Printed in USA

	Contents
	Figures
	Tables
	Chapter 1. Introduction to Reference Manual
	1.1 Purpose
	1.2 Audience
	1.3 Related Reading
	1.4 Structure of this Reference Manual

	Chapter 2. CER at a Glance
	2.1 What Is CER?
	2.1.1 Rules Language
	2.1.2 Authoring and Testing Environment
	2.1.3 Runtime Environment

	2.2 What Are Its Benefits?
	2.3 How Can It Be Used?
	2.4 Guiding Principles

	Chapter 3. CER Development and Testing Tools
	3.1 Introduction
	3.2 CER Rules Editor
	3.3 Localization Support
	3.3.1 Localization of calculated data
	3.3.2 Localization of CER rule artefact descriptions

	3.4 The Rule Set Validator
	3.5 The Rule Set Interpreter
	3.5.1 Read in the Rule Set
	3.5.2 Start a CER Session
	3.5.3 Create a New Rule Object
	3.5.4 Execute Rules

	3.6 CER Test Code Generator
	3.6.1 How to Generate Code

	3.7 Rule Set Coverage Tool
	3.8 CER Publication Area
	3.9 Schema and Catalog Generation
	3.10 RuleDoc
	3.10.1 A Simple Example
	3.10.2 A More Useful Example
	3.10.3 How to Generate RuleDoc

	3.11 SessionDoc
	3.12 Unused rule attributes
	3.13 CER Rule Set Consolidator
	3.13.1 Example

	Chapter 4. Handling Data
	4.1 Introduction
	4.2 CER Sessions
	4.3 External and Internal Rule Objects
	4.3.1 External Rule Objects
	4.3.1.1 Example
	4.3.1.2 When to Use External Rule Objects

	4.3.2 Internal Rule Objects
	4.3.2.1 Example
	4.3.2.2 When to Use Internal Rule Objects

	4.4 Handling Data Types
	4.4.1 Supported Data Types
	4.4.1.1 Rule Classes
	4.4.1.2 Java Classes
	4.4.1.3 Code Tables

	4.4.2 Where to Specify Data Types

	4.5 Handling Data that Changes Over Time
	4.5.1 What Is Timeline Data?
	4.5.1.1 Examples of data that may be modeled as CER Timelines
	4.5.1.2 Examples of non-timeline data

	4.5.2 Comparing Timeline and Point-in-time Perspectives
	4.5.2.1 A point-in-time perspective
	4.5.2.2 A Timeline Perspective

	4.5.3 Constructing Timelines
	4.5.3.1 Constructing Timelines in Java Code
	4.5.3.2 Constructing Timelines in CER Rules

	4.5.4 Operating on Timelines
	4.5.4.1 Preserving change dates
	4.5.4.2 Date-shifting

	4.5.5 Testing Timeline Outputs
	4.5.6 Timeline Properties
	4.5.6.1 Example of Timeline Intervals

	4.6 Triggering Recalculation When Data Changes

	Chapter 5. The Dependency Manager
	5.1 Dependency Manager Concepts
	5.2 Dependency Manager Functions
	5.2.1 Storage of Dependency Records
	5.2.1.1 Example
	5.2.1.2 No Understanding of Dependents or Precedents
	5.2.1.3 Dependency Storage is Optional
	5.2.1.4 Granularity of Dependencies

	5.2.2 Capture of Precedent Change Items
	5.2.2.1 Queue for Deferred Processing
	5.2.2.2 Queue for Batch Processing
	5.2.2.3 Example
	5.2.2.4 Lifecycle of a Precedent Change Set

	5.2.3 Identification of Potentially Affected Dependents
	5.2.4 Recalculation of Identified Dependents

	5.3 Dependency Manager Deferred Processing
	5.3.1 Setting the System Limit for Deferred Processing
	5.3.2 Error Handling in the Deferred Processing

	5.4 Dependency Manager Batch Processing
	5.4.1 Submit Precedent Change Set
	5.4.2 Perform Batch Recalculations From Precedent Change Set
	5.4.3 Complete Precedent Change Set
	5.4.4 Dependency Manager Batch Tooling

	5.5 Integration between CER and the Dependency Manager
	5.5.1 CER Utility to Identify Dependencies to Store
	5.5.1.1 Precedents Identified Directly by CER
	5.5.1.2 Precedents Identified by Rule Object Converters

	5.5.2 CER uses the Dependency Manager to store dependencies for CER-stored attribute values
	5.5.3 The Dependency Manager requests CER to recalculate any stored calculated attributes values

	5.6 Compliancy

	Chapter 6. About the CER Editor
	6.1 Introduction
	6.2 CER Editor Global Menu
	6.2.1 CER Editor Global Menu
	6.2.2 CER Editor Search Tools
	6.2.2.1 CER Editor Search Criteria

	6.2.3 Business View
	6.2.3.1 Rules Outline View

	6.2.4 Technical View
	6.2.4.1 Class Outline View

	6.3 Diagram Canvas
	6.3.1 Drag and Drop
	6.3.2 Toggle to Show Detailed Diagrams
	6.3.3 Pan and Zoom Controls

	6.4 Tools and Template Palettes
	6.4.1 Business Palettes
	6.4.2 Data Types Palette
	6.4.3 Technical Palette
	6.4.4 Household Units Template
	6.4.5 Financial Units Template
	6.4.6 Food Assistance Units Template
	6.4.7 Decision Table Template

	6.5 Rule Element Pop-up Menus
	6.6 Rule Element Properties
	6.6.1 Collapsible Property and Validation Panels
	6.6.2 General properties for all rule elements
	6.6.3 Properties for Rule class
	6.6.4 Properties for Attribute

	6.7 Rule Element Wizards

	Chapter 7. Rule Element Reference for CER Editor Palettes
	7.1 Introduction
	7.1.1 Palettes
	7.1.2 Collapsible Palettes

	7.2 Rule Element Reference for the Default and Extended Business Palettes
	7.2.1 Rule
	7.2.2 And Rule Group
	7.2.3 Or Rule Group
	7.2.4 Not
	7.2.5 Choose
	7.2.6 Compare
	7.2.7 When
	7.2.8 Arithmetic
	7.2.9 MIN
	7.2.10 MAX
	7.2.11 SUM
	7.2.12 Repeating Rule
	7.2.13 Filter
	7.2.14 Size
	7.2.15 Otherwise
	7.2.16 Legislation Change
	7.2.17 Era

	7.3 Rule Element Reference for Data Types Palette
	7.3.1 Boolean
	7.3.2 String
	7.3.3 Number
	7.3.4 Date
	7.3.5 Code Table
	7.3.6 Rate
	7.3.7 Frequency Pattern
	7.3.8 Resource Message
	7.3.9 Xml Message
	7.3.10 Null

	7.4 Rule Element Reference for Technical Logic Palette
	7.4.1 Create
	7.4.2 Search
	7.4.3 Fixed List
	7.4.4 Property
	7.4.5 Custom Expression
	7.4.6 Existence Timeline
	7.4.7 Timeline
	7.4.8 Interval
	7.4.9 CombineSuccessionSet
	7.4.10 Call
	7.4.11 Period Length
	7.4.12 ALL
	7.4.13 ANY
	7.4.14 This
	7.4.15 Sort
	7.4.16 Shared Rule Reference
	7.4.17 CONCAT
	7.4.18 Join Lists

	7.5 Rule Element Reference for Household Units Templates
	7.5.1 Household Composition
	7.5.2 Household Category

	7.6 Rule Element Reference for Financial Units Templates
	7.6.1 Financial Unit
	7.6.2 Financial Unit Category
	7.6.3 Financial Unit Member

	7.7 Rule Element Reference for Food Assistance Units Templates
	7.7.1 Food Assistance Unit
	7.7.2 Food Assistance Single Person Category
	7.7.3 Food Assistance Multi Person Category
	7.7.4 Meal Group Members
	7.7.5 Relatives
	7.7.6 Discard
	7.7.7 Member for household unit
	7.7.8 Optional Members
	7.7.9 Exceptions

	7.8 Rule Element Reference for Decision Table Templates
	7.8.1 Decision Table

	Chapter 8. CER Best Practices
	8.1 Introduction
	8.2 The description Rule Attribute
	8.3 Getting a Rule Set Working Quickly
	8.4 Naming Rule Elements
	8.5 When to Use the Reference Expression
	8.6 Use RuleDoc
	8.7 Normalize Common Rules
	8.8 Remove Unused Rules
	8.9 Order of Declarations
	8.9.1 Order of Rule Classes within a Rule Set
	8.9.2 Order of Calculated Rule Attributes within a Rule Class
	8.9.3 Order of Initialized Attributes within a Rule Class
	8.9.4 Order of Boolean Conditions

	8.10 Creating Rule Objects
	8.11 Pass Rule Objects in Preference to Passing IDs
	8.12 Developing Static Methods
	8.13 Avoid Common Pitfalls in Tests
	8.13.1 Avoid JUnit's assertEquals
	8.13.2 Remember to Use .getValue()
	8.13.3 Remember to Specify All Values Required by the Calculations Being Tested
	8.13.4 Do Not Specify the Same Value More than Once
	8.13.5 Specify the Correct Type of Value for an Attribute
	8.13.6 Create all Rule Objects for a Session before Running getValue Calculations

	Appendix A. CER XML Dictionary
	A.1 Introduction
	A.2 Rule Set
	A.3 Include Statement
	A.4 Rule Class
	A.4.1 Initialized Attributes
	A.4.2 Calculated Attributes

	A.5 Attribute
	A.6 Expressions
	A.6.1 Boolean Logic
	A.6.2 Value Comparison
	A.6.3 Constants
	A.6.4 Conditional Logic
	A.6.5 List Aggregations
	A.6.6 List Transformations
	A.6.7 Localizable Messages
	A.6.8 Numerical Calculations
	A.6.9 References
	A.6.10 Creation
	A.6.11 Retrieval
	A.6.12 Java Callouts
	A.6.13 Markers
	A.6.14 Timelines
	A.6.15 Product Delivery Eligibility and Entitlement
	A.6.16 householdcomposition
	A.6.17 Full Alphabetical Listing of Expressions
	A.6.17.1 abstract
	A.6.17.2 all
	A.6.17.3 any
	A.6.17.4 arithmetic
	A.6.17.5 call
	A.6.17.6 category
	A.6.17.7 choose
	A.6.17.8 Code
	A.6.17.9 combineSuccessionSets
	A.6.17.10 compare
	A.6.17.11 concat
	A.6.17.12 create
	A.6.17.13 current
	A.6.17.14 currentunitmember
	A.6.17.15 Date
	A.6.17.16 dynamiclist
	A.6.17.17 defaultDescription
	A.6.17.18 equals
	A.6.17.19 existencetimeline
	A.6.17.20 facategory
	A.6.17.21 faexception
	A.6.17.22 faexceptionothermembers
	A.6.17.23 fahouseholdcomposition
	A.6.17.24 faoptionalmembers
	A.6.17.25 farelationship
	A.6.17.26 false
	A.6.17.27 filter
	A.6.17.28 filtercategory
	A.6.17.29 financialunitcategory
	A.6.17.30 financialunitdetermination
	A.6.17.31 financialunitmember
	A.6.17.32 fixedlist
	A.6.17.33 FrequencyPattern
	A.6.17.34 HCCurrent
	A.6.17.35 householdcomposition
	A.6.17.36 Interval
	A.6.17.37 intervalvalue
	A.6.17.38 joinlists
	A.6.17.39 legislationChange
	A.6.17.40 mandatorymembers
	A.6.17.41 max
	A.6.17.42 mealgroupmembers
	A.6.17.43 membersforhohunit
	A.6.17.44 min
	A.6.17.45 multipersonhousehold
	A.6.17.46 not
	A.6.17.47 null
	A.6.17.48 Number
	A.6.17.49 optionalmembers
	A.6.17.50 periodlength
	A.6.17.51 property
	A.6.17.52 rate
	A.6.17.53 readall
	A.6.17.54 reference
	A.6.17.55 relatives
	A.6.17.56 removeduplicates
	A.6.17.57 ResourceMessage
	A.6.17.58 singleitem
	A.6.17.59 singlepersonhousehold
	A.6.17.60 sort
	A.6.17.61 specified
	A.6.17.62 String
	A.6.17.63 sublists
	A.6.17.64 sum
	A.6.17.65 this
	A.6.17.66 Timeline
	A.6.17.67 timelineoperation
	A.6.17.68 true
	A.6.17.69 XmlMessage

	A.7 Annotations
	A.7.1 Full Alphabetical Listing of Annotations
	A.7.1.1 ActiveInEditSuccessionSetPopulation
	A.7.1.2 Display
	A.7.1.3 DisplaySubscreen
	A.7.1.4 EditorMetadata
	A.7.1.5 Indexed

	Appendix B. Useful List Operations
	Appendix C. Using CER with the Datastore
	C.1 The DataStoreRuleObjectCreator
	C.2 Example

	Appendix D. Compliancy
	D.1 CER's Public API
	D.1.1 Identifying the API
	D.1.2 Outside the API

	D.2 CER Expressions
	D.3 Rule Sets Included with the Application
	D.4 Examples in this Guide
	D.5 CER's Database Tables
	D.5.1 CREOLERuleSet
	D.5.2 CREOLEMigrationControl
	D.5.3 Other CER Infrastructure database tables

	D.6 The Dependency Manager

	Notices
	Trademarks

