
IBM Cúram Social Program Management

Working with Intelligent Evidence
Gathering (IEG)

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2011 Cúram Software Limited

Table of Contents

Chapter 1 Introduction ... 1
1.1 Audience .. 1
1.2 Purpose ... 1
1.3 Additional Reading .. 1

Chapter 2 Getting Started ... 3
2.1 Introduction .. 3
2.2 About IEG .. 3

2.2.1 Datastore (DS) .. 4
2.2.2 Resource Store (RS) .. 4
2.2.3 Script Structure ... 4

2.3 Evaluating the Use of IEG ... 5
2.4 The Basics .. 6

2.4.1 Create a Schema .. 6
2.4.2 Create a Script ... 8
2.4.3 Adding a Summary Page to an IEG Script ... 10
2.4.4 Run a Script ... 12

Chapter 3 Capturing Client Information .. 14
3.1 Introduction .. 14
3.2 Families and Households ... 14
3.3 Household Relationships ... 17
3.4 Summarizing Client Information ... 19

Chapter 4 Capturing Related Data ... 20
4.1 Introduction .. 20
4.2 Capturing Composite Data ... 20
4.3 Displaying Composite Data on a Summary ... 21
4.4 Capturing Associated Data .. 22
4.5 Displaying Associated Data on a Summary ... 23
4.6 Deleting Associated Data ... 24

Chapter 5 Efficient Ways of Capturing Data ... 25
5.1 Introduction .. 25
5.2 List Questions .. 25

5.2.1 Single-select .. 26
5.3 Codetable Questions .. 27

iii

5.4 Conditional Elements ... 29
5.4.1 Conditional Sections ... 29
5.4.2 Conditional Pages ... 30
5.4.3 Conditional Clusters ... 30

5.5 Question Matrices .. 31
5.6 Fast Path Navigation .. 32

5.6.1 List Question driving a Loop .. 33
5.6.2 Eligibility Criteria ... 34
5.6.3 Fast Path Conditions ... 34
5.6.4 Condition in Fast Path Loop ... 36

5.7 Implicit Delete ... 36

Chapter 6 Other Script Development Considerations .. 38
6.1 Introduction .. 38
6.2 Displaying Data as Read-Only ... 38
6.3 Invoking External Functionality Using Expressions ... 40
6.4 Reusing Scripts .. 43
6.5 Source Control and Versioning .. 44

Chapter 7 Integrating IEG into a Cúram Application .. 46
7.1 Introduction .. 46
7.2 Creating a Script Execution ... 46
7.3 Specifying a Redirection URL ... 46
7.4 Running the IEG Player in a Tab ... 47
7.5 Running the IEG Player in a Modal Dialog ... 49

7.5.1 Opening the IEG Player in a Modal Dialog .. 49
7.5.2 Exiting a Script Execution in a Modal Dialog .. 50

7.6 Cleaning Up Application Data ... 52
7.7 Resuming Executed Scripts ... 53

Chapter 8 Managing Captured Data .. 54
8.1 Introduction .. 54
8.2 Retrieving Captured Data .. 54
8.3 Pre-Populating Scripts with Captured Data ... 55

Chapter 9 Using the Resource Store .. 57
9.1 Introduction .. 57
9.2 Listing all Resources .. 57
9.3 Uploading a New Resource ... 57
9.4 Removing an Existing Resource .. 58
9.5 Updating an Existing Resource .. 59
9.6 Downloading an Existing Resource ... 59
9.7 Adding Images ... 59
9.8 Changing Static Text .. 59
9.9 Changing the Default File Encoding .. 60

Chapter 10 Using IBM Rational AppScan to scan IEG ... 61
10.1 Introduction .. 61
10.2 Preparation ... 61
10.3 Relationship Pages ... 62

Working with Intelligent Evidence Gathering (IEG)

iv

10.4 Scan Configuration .. 62
10.5 Test Policy ... 62
10.6 Explore Options ... 63
10.7 Communications and Proxy ... 63
10.8 Test Options ... 63
10.9 Multi-Step Operations .. 63
10.10 Exclude Paths and Files ... 63
10.11 Complete .. 64
10.12 Running the Scan ... 64

Notices ... 65

Working with Intelligent Evidence Gathering (IEG)

v

Chapter 1

Introduction

1.1 Audience

This guide is targeted at script authors who are new to Intelligent Evidence
Gathering™ (IEG) and want to utilize its features to capture data intelli-
gently as part of an internal or external application. Technically, this can be
any data you like and can be used for whatever purpose, but typically the
data in question is client related data and is required as part of an application
for a program or to determine potential eligibility. All such information
comes under the general heading of evidence in Cúram. Given its instruc-
tional style, this guide refers to you, the script designer directly.

1.2 Purpose

The purpose of this guide is to provide script authors with essential informa-
tion on how to define and maintain IEG scripts and the associated Datastore
(DS) schemas for use in either internal or external applications.

IEG is a technology provided as part of the Cúram Application Suite which
allows customers create dynamic scripts for collecting data in many differ-
ent ways. There are however some considerations when creating an IEG
script and DS schema. This guide will outline some of those considerations
as well as information relating to the maintenance of scripts.

1.3 Additional Reading

There are some other documents that should be read before creating and re-
leasing an IEG script. Firstly, the Cúram Development Compliancy
Guide outlines the restrictions that apply when developing applications us-
ing IEG that need to be understood before starting any implementation. The
other document worth reading is the Authoring Scripts using
Intelligent Evidence Gathering (IEG) . This document can

1

be used as a reference guide and contains detailed information on all the fea-
tures available in IEG and instructions on how to use these features. The
guide Creating Datastore Schemas explains how DS schemas are
created and maintained for use with IEG.

Working with Intelligent Evidence Gathering (IEG)

2

Chapter 2

Getting Started

2.1 Introduction

This chapter will explain to you the basic principles if IEG and its depend-
ency on the Datastore (DS) and the Resource Store (RS). The chapter will
guide you through creating a simple IEG script to gather information about
a client.

2.2 About IEG

IEG is an efficient alternative to traditional information gathering processes.
With IEG, information is gathered interactively by displaying a script of
questions that a user can provide answers to. Questions are only displayed if
they are consistent with the user's previous answers so that the user is only
required to provide answers relevant to his or her needs and situation. This
creates a user-friendly environment that can be effectively implemented for
a range of processes including client information intake, benefit assessment
triage, online eligibility assessment, etc.

In contrast to traditional information gathering processes, IEG cuts down on
the organization's administrative work by creating the potential for several
routes through the same question script. This eliminates the necessity to de-
velop many scripts for gathering information from different types of users.

A further advantage of IEG is the flexibility of its implementation and the
range of its potential users. The IEG runtime environment can be set up for
access from any UIM page. This means that IEG can be accessed directly
from an organization application or remotely by an online user.

The two main components of IEG are the Engine and the Player. IEG scripts
are defined in XML and the Engine interprets the script definitions at
runtime and evaluates the answers supplied by the user to determine the
flow of execution. The Engine determines which pages should be displayed
to the user and how many times they should be displayed. The Player

3

presents the pages, questions and other controls to the user. IEG also builds
on other elements of the Cúram Application Suite such as the Datastore
(DS) and the Resource Store (RS).

2.2.1 Datastore (DS)

The data supplied by a user during script execution is not directly persisted
by IEG itself. This task is delegated to the Datastore (DS). The DS is a con-
figurable database. Just as the questions and question pages that are to be
displayed to the user are determined by an IEG script, the data that can be
stored in the DS is dynamically determined by an XML schema. The
schema describes the structure of the information you want to store and any
relationships between the data. Data is stored in the DS in XML format and
conforms to the W3C XML Schema Definition Language. More details on
the DS and how it works can be found in the Creating Datastore
Schemas guide.

An IEG script and a DS schema are very closely linked. An IEG script is
defined with references to the elements contained in a schema and for that
reason a schema must be supplied when editing a script. The same schema
is also required when executing a script. Schemas may by reused to edit and
execute multiple scripts so the same data structures can be used in different
circumstances.

2.2.2 Resource Store (RS)

An IEG script can contain references to images that will be displayed to the
user when a script is executed, for example icons representing sections and
question pages. The images are stored in the Resource Store (RS). An IEG
script also contains a number of different textual elements, for example page
headings, question labels and help text. IEG allows you to enter all the text
for your script for the default locale directly into the script definition.

When an IEG script is uploaded into the system via the IEG admin screens,
all the text contained within it is automatically extracted into an appropri-
ately named properties files for the script. These properties files are also
stored in the RS. The properties files are stored with no locale associated
with them (so that they act as the fall-back properties if no properties exist
for the locale in which you are running). The RS allows properties files for
multiple locales to be uploaded making the localization of scripts a straight-
forward task. At runtime, the properties files are retrieved for the appropri-
ate locale and presented to the user in the IEG Player.

2.2.3 Script Structure

In its simplest form, an IEG script consists of pages which include questions
to be posed to users of IEG. The structure of the IEG script is a logical
grouping of these pages so that answers to the questions can be captured ef-
fectively. Sequences of pages can be grouped into logical sections. The pur-

Working with Intelligent Evidence Gathering (IEG)

4

pose of these sections is to give users a higher level view of the kind of in-
formation captured by the IEG script.

In addition to including a variable number of pages, each section should
contain one summary page. This page is used to give feedback to the user on
the information entered on the pages in a section. Summary pages typically
contain clusters and lists displaying read-only versions of the answers to
questions asked. The summary page will always be the last page displayed
within a section and will also be displayed whenever a user clicks on the
link for that section in the sidebar of the IEG Player.

To summarize, IEG scripts consist of a hierarchy of elements structured
something like this:

• Script

• Section

• Page

• Cluster

• Question

• Summary Page

2.3 Evaluating the Use of IEG

There are some key questions to ask when evaluating the use of IEG in any
application:

• What information is being captured?

• What is the source of that information?

• How is this information to be used?

• How long will this information live in the application?

Many of the current uses of IEG stem from the need to support an applica-
tion for products and services offered by agencies either externally or intern-
ally. The information captured is generally client related information, such
as client personal details, their family or household details and details of
their needs.

Often agencies already have data about a client; therefore they can source
the information from another system using some key pieces of information
like a social security number. This allows them to verify the client informa-
tion being entered or retrieve to assist with the application.

Some applications are complex and require information from many sources.
Clients may have to enter information that is not close to hand. For example,

Working with Intelligent Evidence Gathering (IEG)

5

the required information may be held by their employer. They may need the
ability to store what they have entered and return to the application at a later
time once they have all the required data.

Clients may be exposed to simple screening applications that inform them of
their entitlements under current or new legislation. This information is often
unreliable and temporary data must be removed from the system after the
client logs out or within a set period of time.

These requirements drive the use of IEG and provide important information
on the use of the data over its lifetime.

So, let's start with the basics: we want to capture and store information
about a client.

2.4 The Basics

2.4.1 Create a Schema

The first step in capturing data about a client is to create a DS schema. This
section provides an example of how to create a basic schema that defines the
capture of some general client data.

The DS stores data collected from users during online screening and intake
of applications. The contents of the DS are dynamically definable by way of
a schema definition. The requirements for capturing and storing any data
about a client can be complex but with appropriate schema design, this data
can be efficiently managed over its lifetime.

For the purposes of this example, the requirement is to capture the follow-
ing:

Attributes Type
First name String

Middle name String

Last name/Family name String

Gender Male/Female

Date of Birth Date

Table 2.1 Client Data to Capture

There is a minimum set of definitions required in a schema. For a schema to
be used in IEG, the following is required:

• Inclusion of Base Domains

• Inclusion of IEG Domains

• A root entity

Working with Intelligent Evidence Gathering (IEG)

6

For more information on the minimum set of definitions required, see the
Creating Datastore Schemas guide.

The schema would look something like this before adding new content such
as the Person entity described above:

<xsd:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:d="http://www.curamsoftware.com/BaseDomains">
<xsd:import namespace="http://www.curamsoftware.com/BaseDomains"/>
<xsd:include schemaLocation="IEGDomains"/>
<xsd:element name="Application">

<xsd:complexType>
<xsd:sequence minOccurs="0">

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:schema>

Example 2.1 Starting Schema

The content of the schema indicates that it is an XMLSchema that imports
BaseDomains schema and includes the IEGDomains schema. The first ele-
ment called Application is the root entity for the schema. IEG requires
that the root entity is always called Application .

The IEGDomains schema contains the domains required to define the attrib-
utes of entities to be used with IEG. The types of the attributes must be de-
rived from the IEG Domains rather than the base domains. A Person entity
can be defined to represent a client as follows:

<xsd:element name="Person">
<xsd:complexType>

<xsd:attribute name="firstName" type="IEG_STRING"/>
<xsd:attribute name="middleName" type="IEG_STRING"/>
<xsd:attribute name="lastName" type="IEG_STRING"/>
<xsd:attribute name="gender" type="IEG_GENDER"/>
<xsd:attribute name="dateOfBirth" type="IEG_DATE"/>

</xsd:complexType>
</xsd:element>

Example 2.2 Person Entity

There are a couple of things to note about the above addition for an entity
like person:

• Like relational database tables, an ID field is required and a key is
defined for this table using this unique ID.

• The person entity is added as a child entity of the root entity.

The schema to capture basic information about a person can be defined as
follows:

<xsd:element name="Application">
<xsd:complexType>

<xsd:sequence minOccurs="0">
<xsd:element ref="Person" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>

Working with Intelligent Evidence Gathering (IEG)

7

</xsd:element>
<xsd:element name="Person">

<xsd:complexType>
<xsd:attribute name="personID" type="d:SVR_KEY"/>
<xsd:attribute name="firstName" type="IEG_STRING"/>
<xsd:attribute name="middleName" type="IEG_STRING"/>
<xsd:attribute name="lastName" type="IEG_STRING"/>
<xsd:attribute name="gender" type="IEG_GENDER"/>
<xsd:attribute name="dateOfBirth" type="IEG_DATE"/>

</xsd:complexType>
<xsd:key name="Person_Key">

<xsd:selector xpath="./Person"/>
<xsd:field xpath="@personID"/>

</xsd:key>
</xsd:element>

Example 2.3 Basic Schema

Once the schema has been defined you can then create a script to use the
schema.

2.4.2 Create a Script

IEG allows you to create dynamic scripts for collecting data. IEG scripts can
contain sections, question pages, questions and conditional logic which al-
lows you to decide what information to capture, what pages to display and
how many times they are displayed.

Please read the Authoring Scripts using Intelligent
Evidence Gathering (IEG) guide for details on how to define each
element of an IEG script.

For the requirements above, where there is a need to capture information
about a person, you must define the script and decide how the pages are ar-
ranged to capture the information.

A new script can be created in the admin application and the editor can be
used to add elements to this script. The content of a newly created script will
be similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<ieg-script xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="ieg-schema.xsd">
<identifier id="WorkingWithIEG" scriptversionnumber="V1"

type="Intake" />
</ieg-script>

Example 2.4 New Script

The ID , Type and Version supplied when creating the script are com-
bined to create a script identifier to uniquely identify the script definition.

Once a new script is created, elements such as sections, question pages and
summary pages can be added to the script. The examples in the next two
sections will show you how to add a section and a question page to a script
as well as how to add a summary page that displays information back to the
user. Summary pages allow the user to confirm that the data they entered is
correct before proceeding and they can also provide the user with the ability

Working with Intelligent Evidence Gathering (IEG)

8

to modify the data.

Adding a Section and a Question Page to an IEG Script

A section and a question page need to be added. A section can be used to
group related pages together to allow the user to flow through the screens in
a logical manner. Sections can also help to convey to the user their progress
through a script. Both the section and the question page can have a title and
the question page can optionally have a description.

The following code sample shows a section containing a question page, ad-
ded to a script:

<?xml version="1.0" encoding="UTF-8"?>
<ieg-script xmlns:xsi="http://www.w3.org/2001/XMLSchema-in stance"

xsi:noNamespaceSchemaLocation="ieg-schema.xsd">
<identifier id="WorkingWithIEG" scriptversionnumber="V1"

type="Intake" />
<section>

<title id="AboutYouSection.Title">
<![CDATA[About You]]>

</title>
<question-page id="AboutYouPage" entity="Person">
<title id="PrimaryPersonPage.Title">

<![CDATA[About You]]>
</title>
<description id="PrimaryPersonPage.Description">

<![CDATA[Please enter some information about yourself]]>
</description>

</question-page>
</section>

</ieg-script>

Example 2.5 New Section

The question page requires the appropriate questions to capture the data.
Any data to be stored in the DS has to be associated with an attribute of an
entity in the DS schema to be used with this script. If all the questions on a
page relate to the same entity, the page can be mapped to that entity type. In
the above example the page is mapped to the Person entity.

To add questions to a page, a cluster is required. Clusters help control the
layout of the questions on the page. A page can contain many clusters to al-
low you to logically group questions on the page. Clusters may also contain
a title and a description.

In our example below, there are two clusters, one just to display some in-
formational text to the user and another to contain the questions for personal
details. Questions and display text can be added to each cluster. Questions
must be given an ID which must correspond to one of the attributes of the
entity type the page is mapped to. If an answer must be supplied to a ques-
tion the mandatory indicator of the question can be set to true . The script
snippet below contains the questions to capture the required data outlined in
our example.

<question-page ...
<cluster>
<display-text id="RequiredFields.Text">

Working with Intelligent Evidence Gathering (IEG)

9

<![CDATA[
* indicates a required field]]>

</display-text>
</cluster>
<cluster>

<title id="DetailsCluster.Title">
<![CDATA[Personal Details]]>

</title>
<description id="DetailsCluster.Description">
<![CDATA[Enter your details here]]>

</description>
<question id="firstName" mandatory="true">
<label id="FirstName.Label">

<![CDATA[First Name:]]>
</label>

</question>
<question id="middleName">
<label id="MiddleName.Label">

<![CDATA[Middle Name:]]>
</label>

</question>
<question id="lastName">
<label id="lastName.Label">

<![CDATA[Last Name:]]>
</label>

</question>
<question id="gender" mandatory="true">
<label id="Gender.Label">

<![CDATA[Gender:]]>
</label>

</question>
<question id="dateOfBirth" mandatory="true">
<label id="DateOfBirth.Label">

<![CDATA[Date Of Birth:]]>
</label>

</question>
</cluster>

</question-page>

Example 2.6 Clusters, Questions and Display Text

Please note there are more properties of scripts, sections, question pages,
clusters, questions and display texts than are covered here. These properties
are covered in the Authoring Scripts using Intelligent
Evidence Gathering (IEG) guide some of which will be discussed
later in this guide.

2.4.3 Adding a Summary Page to an IEG Script

The final step of this basic example is to display a summary of the informa-
tion captured. Generally each section will have a summary page. A sum-
mary page is used to display the most important data back to the user in or-
der for them to verify data was captured or calculated correctly. A summary
page can display data captured on multiple question pages. A summary page
does not have to contain all the information captured in the section as this
could be very large making it less useful.

Obviously if the data displayed on a summary page is incorrect the user will
more than likely want to modify it. Users may navigate backwards in the
script execution by pressing the Back button in the IEG Player until they
reach the page where the data was entered, update the data, then proceed

Working with Intelligent Evidence Gathering (IEG)

10

forward through the script again. Alternatively you can add edit links to the
clusters on the summary page. When the user clicks on an edit link on a
summary page the question page specified in the edit link is displayed to the
user in the IEG Player. The user can then change the data and depending on
whether the changed data is referenced elsewhere in the script, the summary
page will be displayed again when the user presses the Next button in the
IEG Player.

The summary page in this case will be very simple and similar to the ques-
tion page previously added. And similar to a question page, if all the attrib-
utes referred to on the page relate to the same entity the summary page can
be mapped to that entity type, as follows:

<section>
...

<summary-page id="AboutYouSummary" entity="Person">
<title id="AboutYouSummary.Title">
<![CDATA[Information about you]]>

</title>
<description id="AboutYouSummary.Description">
<![CDATA

[Here's the information you've entered about yourself]]>
</description>
<cluster>
<title id="DetailsCluster.Title">

<![CDATA[Person Details]]>
</title>
<description id="DetailsCluster.Description">

<![CDATA[Enter the details for this person here]]>
</description>
<edit-link start-page="AboutYouPage" />
<question id="firstName">

<label id="FirstName.Label">
<![CDATA[First Name:]]>

</label>
</question>
<question id="middleName">

<label id="MiddleName.Label">
<![CDATA[Middle Name:]]>

</label>
</question>
<question id="lastName">

<label id="lastName.Label">
<![CDATA[Last Name:]]>

</label>
</question>
<question id="gender">

<label id="Gender.Label">
<![CDATA[Gender:]]>

</label>
</question>
<question id="dateOfBirth">

<label id="DateOfBirth.Label">
<![CDATA[Date Of Birth:]]>

</label>
</question>

</cluster>
</summary-page>

</section>

Example 2.7 Summary Page

This basic script and schema to capture information about a person and dis-
play a summary page is now complete and can be run.

Working with Intelligent Evidence Gathering (IEG)

11

2.4.4 Run a Script

In order to run an IEG script the script definition and the associated schema
definition must be uploaded into the system. There are a number of ways
this can be done which will be covered later in this guide. The most straight-
forward way to upload the definitions is via the administration screens in the
Intelligent Evidence Gathering section of the Administration Workspace.

To gain access to the IEG administration screens, you will need to log in as
an admin user. Once logged in, you will see a section in your shortcuts pan-
el called Intelligent Evidence Gathering and when you click on it you will
see a menu for 'IEG' which contains a link called 'Scripts'. If you click on
this, you will see a page that contains a list of the IEG scripts currently in
the system and various links to allow you to perform activities on these
scripts.

At the top of the 'Scripts' page is an 'Import' link which lets you upload, or
import, a new IEG script definition.

Similarly, if you click on the 'Datastore Schemas' link of the menu for 'IEG'
you will see a page that contains a list of the DS schemas currently in the
system. At the top of the 'Datastore Schemas' page, there is also an 'Import'
link which lets you upload, or import, a new schema definition.

For convenience, IEG provides a type of test harness that allows IEG scripts
to be tested without having to integrate them into the Cúram application.
The test harness does have some limitations but it allows most scripts to be
tested as soon as they are uploaded into the system. IEG scripts may be run
either in a tab or in a modal window via the admin screens.

A script can be run using either the 'Run' or 'Run in Modal' options for the
script from the 'Scripts' page. As there is no explicit association between an
IEG script and a DS schema, when you select the option to run a script you
will then be asked to select a schema from a dropdown with which to ex-
ecute the script. Clicking on the 'Run Script' button will cause the IEG Play-
er to launch and you will be presented with the first page of the script.

Validating a Script

When a script is executed via the admin screens in this way, the script is
validated before it is executed. You may also choose the 'Validate' option
for the script from the 'Scripts' page. All scripts should be validated before
they are executed. If the script fails validation, a list of validation errors will
be displayed. The validation errors must be addressed before the script can
be run from the 'Scripts' page.

Fill in some sample data on the first page of the script and select the Next
button. Now this same sample data should be displayed on the summary
page. The answers are not modifiable but an edit link is provided to jump
back to the page where that data was entered.

Please note, pressing the Next button in the IEG Player on the summary

Working with Intelligent Evidence Gathering (IEG)

12

page of the script that has been implemented in this example will cause an
error to be displayed. This is because not all the properties of the script have
been defined. The required properties will be covered later in this guide.

Working with Intelligent Evidence Gathering (IEG)

13

Chapter 3

Capturing Client Information

3.1 Introduction

The previous chapter outlined a basic example of how IEG can be used to
capture data for a client. Some application forms for benefits and services
can be complex and the information required about applicants can be very
detailed.

We'll begin to build on the initial example covered in the previous chapter
by considering a household, where we have captured some initial data about
a primary member and now want to add details for the other household
members.

3.2 Families and Households

We currently have a straightforward script, relating to one person. Often ap-
plications need more information about the client's circumstance, starting
with their living situation.

In general, information is requested about the primary person and this is fol-
lowed by a simple question that will allow the client to skip to another area
of the application. For example, after entering personal details, the client is
asked 'Do you live alone?'. If the answer is yes then the person can be
treated as single individual who is not living within a household of family or
other individuals. Most clients want to get through the application process
as quickly as possible, therefore questions such as these provide a good way
to move to more relevant parts of the application.

If the client is living with other people, then questions about each person
may need to be asked. Loops are used to capture information from each per-
son and depending on how the script author wants to present these ques-
tions, they have a choice of loop types: for, while and for-each loop.

IEG also features a Person Tab that allows the client to see who these ques-

14

tions relate to while entering the data. This will appear automatically for a
Person entity in the Datastore. Each Person will be represented by an icon
(based on the gender and age) and a name. The current Person will be high-
lighted.

Let's take a scenario for handling family/household data as an extension of
the requirements in the basic sample. Here the client is asked if how many
people are in the household including the client. Some new question pages
need to be added to capture this information.

The first question page will ask about the living situation. For this example
there is only one question to ask, as follows: How many people are in the
family (excluding yourself)?

<question-page id="HouseholdPage" progress="10">
<title id="LoopControlPage.Title">

<![CDATA[Household Details]]>
</title>
<description id="LoopControlPage.Description">

<![CDATA[Please tell us some information about your
household]]>

</description>
<icon image="sample_title_household" />
<cluster>

<title id="DetailsCluster.Title">
<![CDATA[Details]]>

</title>
<question id="numPeople" control-question="true"

control-question-type="IEG_INT32"
mandatory="true">
<label id="NumPeople.Label">

<![CDATA[How many other people are in your
household?]]>

</label>
</question>

</cluster>
</question-page>

Example 3.1 Obtaining household size

This question is a control question, i.e. a question used to control the size of
a loop and not for data collection purposes. Control questions are not stored
in the Datastore schema. It will used in the loop expression of the 'for' loop
in the next question page.

The family members question page is within a 'for' loop that will iterate over
the number of family members.

<loop loop-type="for" loop-expression="numPeople"
entity="Person" criteria="isPrimary==false">
<question-page id="PersonDetailsPage"

show-person-tabs="true"
progress="20">
<title id="PersonDetailsPage.Title">

<![CDATA[Household Member Details]]>
</title>
<description id="PersonDetailsPage.Description">

<![CDATA[Please enter the details for the
next person in your household]]>

</description>
<icon image="sample_title_household" />
<cluster>

<title id="DetailsCluster.Title">

Working with Intelligent Evidence Gathering (IEG)

15

<![CDATA[Person Details]]>
</title>
<description id="DetailsCluster.Description">

<![CDATA[Enter the details for this person
below]]>

</description>
<question id="firstName" mandatory="true">

<label id="FirstName.Label">
<![CDATA[First Name:]]>

</label>
</question>
<question id="lastName">

<label id="lastName.Label">
<![CDATA[Last Name:]]>

</label>
</question>
<question id="gender" mandatory="true">

<label id="Gender.Label">
<![CDATA[Gender:]]>

</label>
</question>

</cluster>
</question-page>

</loop>

Example 3.2 Using 'for' loop to collect household members

The above is an example of how the client enters the number of family
members. But the question could have been asked a different way, for ex-
ample: 'Do you live with your family?' In this case a condition element in
the script can be used to check the value of that question. This would dis-
play the family member page if they do live with their family. On this ques-
tion page, a control question is asked to determine if they would like to cap-
ture another family member's details.

This control question would be used in a 'while' loop around the family
member question page, as follows:

<question-page id="HouseholdPage" progress="10">
<title id="LoopControlPage.Title">

<![CDATA[Household Details]]>
</title>
<description id="LoopControlPage.Description">

<![CDATA[Please tell us some information about your
household]]>

</description>
<icon image="sample_title_household" />
<cluster>

<title id="DetailsCluster.Title">
<![CDATA[Details]]>

</title>
<question id="livesWithFamily" control-question="true"

control-question-type="IEG_BOOLEAN"
mandatory="true">
<label id="NumPeople.Label">

<![CDATA[Do you live with your family?]]>
</label>

</question>
</cluster>

</question-page>

Example 3.3 Using 'while' loop to collect household members

Using this approach, the control question is a boolean type, as it is used in a
condition expression that indicates whether or not the while loop should be

Working with Intelligent Evidence Gathering (IEG)

16

entered. The loop, once entered, is iterated over until details of all the
household members have been gathered, as follows:

<condition expression="livesWithFamily==true">
<loop loop-type="while" loop-expression="

anotherMember==true"
entity="Person">
<question-page id="PersonDetailsPage"
show-person-tabs="true"

progress="20">
<title id="PersonDetailsPage.Title">

<![CDATA[Household Member Details]]>
</title>
<description id="PersonDetailsPage.Description">

<![CDATA[Please enter the details for
the next person in your household]]>

</description>
<icon image="sample_title_household" />
<cluster>

<title id="DetailsCluster.Title">
<![CDATA[Person Details]]>

</title>
<description id="DetailsCluster.Description">

<![CDATA[Enter the details for this
person below]]>

</description>
<question id="firstName" mandatory="true">

<label id="FirstName.Label">
<![CDATA[First Name:]]>

</label>
</question>
<question id="lastName">

<label id="lastName.Label">
<![CDATA[Last Name:]]>

</label>
</question>
<question id="gender" mandatory="true">

<label id="Gender.Label">
<![CDATA[Gender:]]>

</label>
</question>
</cluster>
<cluster>

<question id="anotherMember"
control-question="true"

control-question-type="IEG_BOOLEAN">
<label id="AnotherMember.Label">

<![CDATA[Is there another
household member?]]>

</label>
</question>

</cluster>
</question-page>

</loop>
</condition>

Example 3.4 Using while loop to collect household members

3.3 Household Relationships

When gathering information about a group of people in a household, it
might be necessary to ascertain how those people are related to each other.
IEG provides a mechanism for capturing relationships through the use of re-
lationship pages and a specific Datastore schema structure.

Working with Intelligent Evidence Gathering (IEG)

17

A Relationship entity should be defined in the Datastore schema, taking the
following form:

<xsd:element name="Person">
<xsd:complexType>

<xsd:sequence minOccurs="0">
<xsd:element ref="Relationship" minOccurs="0"

maxOccurs="unbounded"/>
</xsd:sequence>
...

</xsd:element>
<xsd:element name="Relationship">

<xsd:complexType>
<xsd:attribute name="relationshipType"
type="IEG_STRING"/>
<xsd:attribute name="isNonParentPrimaryCaretaker"

type="IEG_BOOLEAN" default="false"/>
<xsd:attribute name="personID" type="D:SVR_KEY"/>

</xsd:complexType>
</xsd:element>

Example 3.5 Relationship Entity in Datastore Schema

A relationship page for the household can be defined as follows, provided
that the Relationship entity is a child of the Person entity:

<relationship-page id="RelationshipPage" show-person-tabs="true"
progress="40">
<title id="RelationshipPage.Title">

<![CDATA[Household Relationships]]>
</title>
<description id="RelationshipPage.Description">
<![CDATA[Please enter the relationships for %1s below]]>
<argument id="Person.firstName" />

</description>
<icon image="sample_title_household" />
<question id="caretakerInd">

<label id="CaretakerInd.Label">
<![CDATA[Is this a non-parent caretaker
relationship?]]>

</label>
</question>

</relationship-page>

Example 3.6 Relationship Page

It is only necessary to define the relationship page once. IEG will then dis-
play the page as many times as is necessary to gather Relationships one per-
son at a time. This equates to one less times than the number of people in
the household, as the last person's Relationships will have been collected in
their entirety through the process.

By default, the Relationship Type field is presented as a dropdown, popu-
lated from a codetable (configurable through the relation-
ship.type.domain.name property):

The relationship page will display a Person Tab at the top containing the list
of household members and the current Person will be highlighted. Then
each relationship between the current Person and the other members will be
displayed.

The caretaker indicator is the only question that can be added directly to the

Working with Intelligent Evidence Gathering (IEG)

18

relationship page. Questions regarding other attributes of a Relationship en-
tity must be added to clusters that have been added to the relationship page.

3.4 Summarizing Client Information

Lists are used on summary pages to display information gathered in loops.
The structure of the list should reflect the structure of the loop or hierarchy
of loops that collected the data. This means that the entity and criteria on the
list should match the entity and criteria on the loop. For example, to record
the members of the family described in Section 3.2, Families and House-
holds , a for loop was used:

<loop loop-type="for" loop-expression="numPeople"
entity="Person" criteria="isPrimary==false">

...
</loop>

Example 3.7 For loop to collect household member information

In the section summary page, the information gathered in this loop is dis-
played in a list. The list, like the loop, has 'Person' as its entity and
'isPrimary==false' as its criteria:

<list entity="Person" criteria="isPrimary==false">
...

</list>

Example 3.8 List of people

Relationship information gathered using a relationship page can be dis-
played on summary pages in relationship summary lists:

<relationship-summary-list>
<title id="RelationshipSummaryList.Title">

<![CDATA[Person Relationships Summary]]>
</title>
<description id="PersonRelationshipSummaryList.Description">

<![CDATA[Person Relationship Summary Details]]>
</description>
<column id="caretakerInd">

<title id="CaretakerInd.Title">
<![CDATA[NPCR]]>

</title>
</column>
<edit-link start-page="RelationshipPage" />

</relationship-summary-list>

Example 3.9 Relationship Summary List

Working with Intelligent Evidence Gathering (IEG)

19

Chapter 4

Capturing Related Data

4.1 Introduction

Now that we've captured information about the household members such as
their personal details and their relationships, we might want to capture re-
lated data. This can be achieved through composition (the use of nested DS
entities) or association (the use of related, non-nested DS entities).

4.2 Capturing Composite Data

We have seen previously that it is possible to capture relationships in IEG.
The combination of the Relationship entity and the RelationshipPage
provide a convenient mechanism to capture the relationships between the
people in a household. The relationship between people in a household is
only one form of relationship. IEG supports other types of relationships.
IEG and the DS allow entities to be nested creating a parent child relation-
ship. This can be seen in the example where there is a requirement to cap-
ture the incomes for the people in a household. The Income entity is defined
as any other entity is defined. It is nested in the Person entity by referencing
it in a sequence, as the following sample code snippet shows:

<xsd:element name="Person">
<xsd:complexType>

<xsd:sequence minOccurs="0">
<xsd:element ref="Income" minOccurs="0"

maxOccurs="unbounded" />
</xsd:sequence>
...
<xsd:attribute name="hasIncome" type="IEG_BOOLEAN"
default="false"/>

</xsd:complexType>
...

</xsd:element>
<xsd:element name="Income">

<xsd:complexType>
<xsd:attribute name="type" type="IEG_STRING" />
<xsd:attribute name="amount" type="IEG_MONEY" />

20

</xsd:complexType>
</xsd:element>

Example 4.1 Parent/Child Schema

Income information can then be gathered for people in a household by loop-
ing over every person that has income. The loop criteria will use a "hasIn-
come" boolean question that will be asked while gathering the details for
each person. A page within the loop can be mapped to the Income entity
thus creating the nested relationship, as shown below:

<loop loop-type="for-each" entity="Person"
criteria="hasIncome==true">

<loop loop-type="while" loop-expression="hasMoreIncome"
entity="Income">

<question-page id="IncomePage" entity="Income"
...

Example 4.2 Creating Nested Entities

4.3 Displaying Composite Data on a Summary

The information gathered for nested entities can be displayed on a summary
page using a nested list. Similarly to regular lists, nested lists must match
the entities and criteria used in the nested loops that captured the data.

<list entity="Person" show-icons="true" criteria="hasIncome==true">
<title id="IncomeList.Title">

<![CDATA[Income]]>
</title>
<description id="IncomeList.Description">

<![CDATA[Here's the income details you've entered for all the
people in your household]]>

</description>
<column id="firstName">

<title id="FirstName.Title">
<![CDATA[First Name]]>

</title>
</column>
<list entity="Income">

<column id="type">
<title id="IncomeType.Title">

<![CDATA[Income Type]]>
</title>

</column>
<column id="amount">
<title id="IncomeAmount.Title">

<![CDATA[Income Amount]]>
</title>

</column>
</list>

</list>

Example 4.3 Displaying Nested Entities on Summary Pages

The sample code snippet above of an income summary list will be displayed
in the IEG Player as a regular list with incomes grouped per Person. It will
also contain Edit and Delete links for each income and an Add link with a
dropdown listing all the people.

Working with Intelligent Evidence Gathering (IEG)

21

4.4 Capturing Associated Data

IEG allows association relationships to be created between entities. This is
useful because a restriction applies to nested entities and nested lists that
they can only be nested to two levels. The use of associated relationships
provides an effective alternative to nesting entities to three levels.

For example, suppose there is a requirement to record employment informa-
tion for the people in a household. Employment information may be
gathered independently of Income information as there may be multiple in-
comes for a given employment.

Once the Income and Employment information is gathered and the entities
have been created, the association between the entities can be made. The as-
sociation is made by creating a "relationship" entity. The relationship entity
is normally "owned" by one of the entities participating in the relationship
and is represented as a sequence as with other relationship types.

Defining a relationship entity requires being able to identify the related en-
tity therefore a key must be defined in the related entity. To apply this to the
Income/Employment example, the Employment entity type will have a key,
an EmploymentRelationship entity type will be defined and the Income en-
tity will own a sequence of EmploymentRelationships, as follows:

<xsd:element name="Employment">
<xsd:complexType>

<xsd:attribute name="employmentID" type="d:SVR_KEY" />
<xsd:attribute name="employer" type="IEG_STRING" />
<xsd:attribute name="employmentType" type="IEG_STRING" />

</xsd:complexType>
<xsd:key name="Employment_Key">

<xsd:selector xpath="./Employment" />
<xsd:field xpath="@employmentID" />

</xsd:key>
</xsd:element>
<xsd:element name="Income">

<xsd:complexType>
<xsd:sequence minOccurs="0">
<xsd:element ref="EmploymentRelationship" minOccurs="0"

maxOccurs="unbounded" />
</xsd:sequence>
<xsd:attribute name="type" type="IEG_STRING" />
<xsd:attribute name="amount" type="IEG_MONEY" />

</xsd:complexType>
</xsd:element>
<xsd:element name="EmploymentRelationship">

<xsd:complexType>
<xsd:attribute name="employmentID" type="d:SVR_KEY" />

</xsd:complexType>
</xsd:element>

Example 4.4 Associated Entity Schema

The association can then be captured in the script by defining a list-question
and specifying a link-entity attribute which refers to the key of the related
entity. Continuing our example, on a page mapped to the Income entity a
list-question can be defined specifying the key from the EmploymentRela-
tionship used to identify the Employment entity.

Working with Intelligent Evidence Gathering (IEG)

22

List questions are constructs that allow the user to choose from a list of en-
tities. For more details, see Section 5.2, List Questions .

<question-page id="IncomePage" entity="Income" ...
<cluster>

<layout>
<label-width>0</label-width>

</layout>
<list-question link-entity="EmploymentRelationship.employmentID"

entity="Employment" single-select="true">
<label id="SelectEmployer.Label">

<![CDATA[Select Employer]]>
</label>
<item-label>

<label-element attribute-id="employer" />
</item-label>

</list-question>
</cluster>

</question-page>

Example 4.5 Creating Association Relationships

4.5 Displaying Associated Data on a Summary

The association between entities can be displayed on a summary page by
adding a column to the list of entities of one type, in order to display details
of the related entity. A link-entity attribute needs to be specified on this
column to identify the related entity.

The following example shows how, while listing the Incomes for a Person
on a summary page, the associated Employer name can be displayed for
each Income:

<summary-page id="IncomeSummary"
...
<list entity="Person" criteria="hasIncome==true"

show-icons="true">
<title id="IncomeList.Title">Income</title>
<description id="IncomeList.Description">Here's the income

details you've entered for all the people in your
household</description>

<column id="firstName">
<title id="FirstName.Title">First Name</title>

</column>
<list entity="Income" show-icons="false">
<column id="type">

<title id="IncomeType.Title">Income Type</title>
</column>
<column id="amount">

<title id="IncomeAmount.Title">Income Amount</title>
</column>
<column id="employer"

link-entity="EmploymentRelationship.employmentID"
entity="Employment">

<title id="Employer.Title">Employer</title>
</column>

</list>
</list>

</summary-page>

Example 4.6 Entity Association Summary Page

Working with Intelligent Evidence Gathering (IEG)

23

4.6 Deleting Associated Data

When entities form parent-child relationships, if the parent entity is deleted,
all its child entities are also deleted. When an entity that participates in a re-
lationship is deleted, by default, the relationships for that entity are deleted
but the related entities are not.

For example, suppose the details of all the people in a household have been
collected and Person entities created and the relationships between the
people in the household have also been captured and Relationship entities
created. If the user chooses to remove a person, the relationships that person
participates in will also be removed but none of the other people in the
household will be removed.

This default behavior also applies to the income/employment example. If
the user chooses to remove an income, any EmploymentRelationships for
the income will be removed but none of the Employment entities will be re-
moved.

It is possible to change the default behavior when deleting associated entit-
ies so that any entities related to the entity being removed will also be re-
moved.

To change the default behavior, an annotation containing a documentation
element may be added to the definition of a relationship entity in the DS
schema. A documentation element containing the text
"@curam.ieg.cascading.delete=true" indicates that related en-
tities should be deleted when the relationship is deleted.

<xsd:element name="EmploymentRelationship">
<xsd:annotation>

<xsd:documentation>@curam.ieg.cascading.delete=true
</xsd:documentation>

</xsd:annotation>
<xsd:complexType>

<xsd:attribute name="employmentID" type="d:SVR_KEY" />
</xsd:complexType>

</xsd:element>

Example 4.7 Cascading Deletes Schema

In the Income/Employment example, if
curam.ieg.cascading.delete is set to true for the EmploymentRe-
lationship when an Income entity is removed any associated Employment
entity will also be removed. Removing the Employment entities in this way
does not cause other Income entities to the removed.

Working with Intelligent Evidence Gathering (IEG)

24

Chapter 5

Efficient Ways of Capturing Data

5.1 Introduction

This chapter will highlight some of the features of IEG that allow informa-
tion to be gathered more effectively and more intuitively.

5.2 List Questions

In an earlier example, we saw a requirement to gather income information
for the people in a household. In order to only gather income information
for the people who actually have income, a question was added to the
'Household Members Details' page to indicate if the person has income or
not.

IEG provides an alternative to asking the same boolean question for a num-
ber of entities. A list question can be used to gather all the answers at the
same time.

Continuing the previous example where information has been collected
about the people in the household, the attribute hasIncome has been ad-
ded to the Person entity to indicate if income information should be collec-
ted for the person, as follows:

<xs:element name="Person">
<xs:complexType>

...
<xs:attribute name="hasIncome" type="IEG_BOOLEAN"/>

Example 5.1 Has Income Person Schema

Like questions, list questions must be added to a cluster. Where list ques-
tions differ is that you must specify the type of the entities that will be dis-
played in the list. The ID of the list question corresponds to the name of the
boolean attribute that should be set if the user selects an item in the list. As
with questions, a list question should have a label to indicate the purpose of

25

the question. List questions should also have an item label element. The
item label specifies which attribute from the entities should be used to
identify the entities in the list. In the following example, the first name of
the household members is displayed to identify them.

<question-page id="AnyoneHaveIncome">
...

<cluster>
<list-question id="hasIncome" entity="Person">
<label id="HasIncome.Label">

<![CDATA[Which people have income?]]>
</label>
<item-label>

<label-element attribute-id="firstName"/>
</item-label>

</list-question>
</cluster>

</question-page>

Example 5.2 List question

So rather than adding a question in the loop where the household member
details are gathered, once the household member details have been captured
a list containing the household members can be displayed. The user can then
select the members that have income.

List questions are particularly useful when used in conjunction with a for-
each loop, referencing the question that was set in the list-question in the
criteria expression of the loop. List questions can also be used with entity
types other than Person.

5.2.1 Single-select

List questions can also be used when the selection should be mutually ex-
clusive. When the single-select attribute of a list question is set to
true , only one of the items in the list can be selected.

If for example, the requirement is to indicate which household member is
the primary care giver, an attribute can be added to the Person entity and a
single-select list question can be added to the script:

<xsd:element name="Person">
<xsd:complexType>

...
<xsd:attribute name="primaryCareGiver" type="IEG_BOOLEAN"/>

Example 5.3 Primary Care Giver Person Schema

<question-page id="PrimaryCareGiver" ...>
...

<cluster>
<list-question id="primaryCareGiver" entity="Person"

single-select="true" criteria="age > 14">
<label id="PrimaryCareGiver.Label">

<![CDATA[Which person is the primary care giver?]]>
</label>
<item-label>

<label-element attribute-id="firstName" />
</item-label>

Working with Intelligent Evidence Gathering (IEG)

26

</list-question>
</cluster>

Example 5.4 Single-select List Question

The above list question will cause list of the household members that are
over 14 years old to be displayed with a radio button next to each Person,
thus allowgin only one to be selected.

5.3 Codetable Questions

If an attribute is defined in a DS schema as a codetable, when the corres-
ponding question is displayed the default behavior is to display the question
as a drop-down. Only one answer can be selected in the drop-down list.

For example, if these is a requirement to capture a household member's
home state, a new a new domain definition can be added to represent the
AddressState codetable and an attribute to store the home state can be
added to the Person entity as follows:

...
<xsd:simpleType name="IEG_STATE_ADDRESS">

<xsd:annotation>
<xsd:appinfo>
<D:options>

<D:option name="code-table-name">AddressState</D:option>
</D:options>

</xsd:appinfo>
</xsd:annotation>
<xsd:restriction base="IEG_CODETABLE_CODE" />

</xsd:simpleType>
...

<xsd:element name="Person">
...

<xsd:attribute name="homeState" type="IEG_STATE_ADDRESS" />

Example 5.5 State Codetable and Attribute

A question to capture the hone state information can then be added to the
script as follows:

<question-page id="AboutYouPage" entity="Person">
...

<cluster>
<question id="homeState">
<label id="State.Label">

<![CDATA[Please select your home state:]]>
</label>

</question>
</cluster>

Example 5.6 State Codetable Question

When the script is executed the question is displayed to the user as a drop-
down.

IEG also supports defining codetable questions in such a way that the user

Working with Intelligent Evidence Gathering (IEG)

27

can make multiple selections.

When a codetable question is single-select the answer to the question can be
stored in a single attribute of an entity. Because there are multiple possible
answers in a multi-select codetable question, a sequence must be added to
store all the answers and a new entity type must be defined to represent the
answers in the sequence.

<xsd:element name="Person">

<xsd:complexType>
<xsd:sequence minOccurs="0">
<xsd:element ref="State" minOccurs="0"

maxOccurs="unbounded" />
</xsd:sequence>

...
</xsd:complexType>

</xsd:element>

<xsd:element name="State">
<xsd:complexType>

<xsd:attribute name="stateCode" type="IEG_STATE_ADDRESS" />
</xsd:complexType>

</xsd:element>

Example 5.7 State Entity

Making a codetable question multi-select is done by setting the multi-
select attribute of the question to true . When adding a multi-select
codetable question, the cluster that the question is being added to must be
mapped to the new entity type representing the answers to the question. In
our example the cluster must be mapped to the State entity. The page that
contains the multi-select question must be mapped to the entity that contains
the sequence. In this example the page should be mapped to the Person en-
tity. Finally, in order for a number of options in a multi-select codetable
question to be visible a layout should be added to the question. The layout
should specify the number of visible rows for the question. If the number of
options available for the question exceeds the number of rows specified in
the layout a scroll bar will be added to the question.

<question-page id="AboutYouPage" entity="Person">
...

<cluster entity="State">
<question id="stateCode" multi-select="true">
<label id="State.Label">

<![CDATA[Please select the states you lived in:]]>
</label>
<layout>

<num-rows>4</num-rows>
</layout>

</question>
</cluster>

Example 5.8 Multi-Select Codetable Question

When the script is executed the question is displayed to the user as a list of
codetable descriptions with one checkbox for each item.

Working with Intelligent Evidence Gathering (IEG)

28

5.4 Conditional Elements

IEG scripts can have multiple different conditional elements: sections, pages
or clusters. Conditional elements can be shown or hidden based on answers
from previous pages or on data pre-populated in the DS.

5.4.1 Conditional Sections

It is possible to remove sections from a script execution by evaluating an ex-
pression at the start of the execution: if the section is not visible, it will not
be listed in the sections panel and the expression will not be re-evaluated
during the script execution.

Using a pre-populated DS as described in Section 8.3, Pre-Populating
Scripts with Captured Data , we can set a flag on an entity depending on
circumstances external to the script. Let's say we have an entity called In-
takeInformation that has a boolean attribute "collectIncomeInformation".
We can specify an Income section in our script:

...
<section visible="IntakeInformation.collectIncomeInformation==true">

...
</section>
...

Example 5.9 Visible Attribute of a Section

This will hide the Income section if the "collectIncomeInformation" attrib-
ute is false, as if the section was not present in the script definition.

If a section needs to be enabled or disabled depending on answers from pre-
vious sections, it is possible to wrap all the pages of a section in a single
condition. Unlike the visible attribute, this condition will be evaluated
whenever the section is encountered, which means it is possible to go back
and change an answer that affects the navigability of a section. The section
will still appear in the sections panel but will be grayed out so the user can-
not click on it.

The preceding example can be modified so that the "collectIncomeInforma-
tion" question is asked at the start of the script. The Income section can then
be modified as follows:

...
<section>

<condition
expression="IntakeInformation.collectIncomeInformation">
...

</condition>
</section>
...

Example 5.10 Conditional Section

Working with Intelligent Evidence Gathering (IEG)

29

5.4.2 Conditional Pages

Pages can be displayed or not based on the value of a condition expression.
Loops can be also wrapped in these conditions.

The conditional section previously mentioned where one condition wraps all
the section's content is an example of conditional pages.

5.4.3 Conditional Clusters

Clusters can also be wrapped in a condition element. If the expression of the
condition element does not refer to any of the questions on the same page
the cluster is a static conditional cluster. That is because it can be determ-
ined before the pages is displayed whether to display the cluster or not.

For example, if information about household members has been gathered
you may wish to add another page to ask further personal details including
whether the person is pregnant. A new isPregnant attribute should be
added to the Person entity to store this information:

<xsd:element name="Person">
<xsd:complexType>

...
<xsd:attribute name="isPregnant" type="IEG_BOOLEAN"/>

Example 5.11 Additional Person Attribute

Of course, this question is only applicable if the gender is female. Therefore
the cluster can be wrapped in a condition and it will only be displayed if the
condition expression evaluates to true. The new extra Person Details page
can be defined as follows:

<question-page id="AboutTheClientContinued" entity="Person" ...>
<condition expression="Person.gender=="SX2"">

<cluster>
<question id="isPregnant" mandatory="true">

<label id="IsPregnant.Label">
Are you pregnant?

</label>
<help-text id="IsPregnant.HelpText">

Are you pregnant?
</help-text>

</question>
</cluster>

</condition>
</question-page>

Example 5.12 Static Conditional Cluster

Alternatively, if any of the questions referenced in the condition expression
are on the same page, the cluster is then a dynamically conditional cluster.
The means that the cluster will be displayed and hidden as the user changes
answers to questions on the page. This dynamic feature of IEG requires that
JavaScript is enabled in the browser. The expressions of dynamically condi-
tional cluster may not refer to custom functions, as the expressions are eval-
uated without making a server call.

Working with Intelligent Evidence Gathering (IEG)

30

Without changing the DS schema, if the example above is changed so that
the conditional cluster is defined on the same page as the gender question
the cluster will be a dynamically conditional cluster.

<question-page id="AboutTheClient" entity="Person" ...>
...

<cluster>
<title id="DetailsCluster.Title">
<![CDATA[Personal Details]]>

</title>
...

<question id="gender" mandatory="true">
<label id="Gender.Label">

<![CDATA[Gender:]]>
</label>

</question>
...

<condition expression="Person.gender=="SX2"">
<cluster>
<question id="isPregnant" mandatory="true">

<label id="IsPregnant.Label">
<![CDATA[Are you pregnant?]]>
</label>

</question>
</cluster>

</condition>
</question-page>

Example 5.13 Dynamically Conditional Cluster

The pregnancy question will dynamically appear or disappear when the
value selected for the gender changes. Dynamic behaviour on a page can be
triggered by text fields, date fields, checkboxes, radio buttons, select ele-
ments. Dynamic behaviour cannot be triggered by the answer to a multi-se-
lect question or a question matrix, due to the restrictions of the expression
syntax.

It should be noted that only one level of condition is allowed around a
cluster, i.e. conditional clusters cannot be nested in other conditions. The
condition expression for a dynamically condition cluster may refer to ques-
tions on the same page that are themselves defined in dynamically condi-
tional cluster. This creates a cascading dependency between clusters.

5.5 Question Matrices

The list questions presented in Section 5.2, List Questions ask the same
boolean question about a group of entities. It is possible to ask the same
codetable question for a group of entities using question matrices.

A question matrix will display a list of questions based on a codetable and
for each of these codetable values and each entity, a checkbox will be dis-
played to allow the user to select all the values that apply to a particular en-
tity.

For example, suppose there is a requirement to capture possible levels of
substance abuse for each household member, a new a new domain definition
can be added to represent the SubstanceAbuse codetable and an attrib-
ute to store the level of substance abuse can be added to the Person entity as

Working with Intelligent Evidence Gathering (IEG)

31

follows:

<xsd:simpleType name="IEG_SUBSTANCEABUSE">
<xsd:annotation>

<xsd:appinfo>
<D:options>

<D:option name="code-table-name">SubstanceAbuse</D:option>
</D:options>

</xsd:appinfo>
</xsd:annotation>
<xsd:restriction base="IEG_CODETABLE_CODE" />

</xsd:simpleType>

<xsd:element name="Person">
<xsd:complexType>

...
<xsd:attribute name="substanceAbuse"

type="IEG_SUBSTANCEABUSE" />

Example 5.14 Substance Abuse Attribute

The question matrix is then defined as a regular list question, only the fact
that it is based on a codetable instead of a boolean will cause it to be dis-
played differently.

...
<list-question entity="Person" id="substanceAbuse"

criteria="age > 14">
<label id="SubstanceAbuse.Label">

<![CDATA[Substance Abuse:]]>
</label>
<item-label>

<label-element attribute-id="firstName" />
</item-label>

</list-question>

Example 5.15 Question Matrix Code Example

The example above, of a question matrix that collects substance abuse in-
formation about multiple household members, will be displayed in the IEG
Player as a matrix with each row corresponding to a codetable description
and each column to a Person.

5.6 Fast Path Navigation

By default, when a user reiterates through a script all the pages are re-
displayed which can become arduous especially in large households. Fast
Path navigation enables end users to go through IEG scripts more quickly
by automatically skipping loop or conditional pages that have already been
answered.

This functionality is optional and switched off by default. It can be activated
on loops and conditions (to activate Fast Path navigation, see the Author-
ing Scripts using Intelligent Evidence Gathering
(IEG)) guide.

The first time a fast path element is encountered, it behaves as normal.
When the user navigates through the script subsequently only the new pages
within these fast path elements will be displayed. The pages that were previ-

Working with Intelligent Evidence Gathering (IEG)

32

ously displayed will now be skipped. This functionality doesn't prevent from
editing the data via the edit links on a summary page if necessary.

Fast Path can be used in the following scenarios:

• List Question driving a Loop

• Eligibility Criteria

• Fast Path Conditions

• Condition in Fast Path Loop

5.6.1 List Question driving a Loop

Using the same List Question as described in Section 5.2, List Questions ,
we want to gather income information for the people in a household. We
will use a nested fast path loop as described in the following example:

...
<loop loop-type="for-each" entity="Person"

criteria="hasIncome==true" fast-path="true">
<loop loop-type="while" loop-expression="hasMoreIncome"

entity="Income">
<question-page id="IncomePage" entity="Income"
show-person-tabs="true">
<title id="IncomePage.Title">

<![CDATA[Income Details]]>
</title>
<cluster>

<title id="IncomeDetails.Title">
<![CDATA[Income Details]]>

</title>
<question id="type">

<label id="Type.Label">
<![CDATA[Type:]]>

</label>
</question>
<question id="amount">

<label id="Amount.Label">
<![CDATA[Amount:]]>

</label>
</question>
<question id="hasMoreIncome"

control-question="true"
control-question-type="IEG_BOOLEAN">
<label id="ContinueQuestion.Label">

<![CDATA[Does %1s have any more income?]]>
<argument id="Person.firstName" />

</label>
</question>

</cluster>
</question-page>

</loop>
</loop>

Example 5.16 Fast Path List Question driving a Loop Code
Example

The first time the list question is encountered, the pages following the loop
will gather income for the people that have been selected. Then when re-
visiting the page containing the list question, the following can occur:

Working with Intelligent Evidence Gathering (IEG)

33

• If the checkboxes are not modified, clicking Next will jump over the in-
come loop and display the page after the loop.

• If some of the checkboxes are unselected, clicking Next will delete the
incomes corresponding to the people that were unselected, jump over the
income loop and display the page after the loop.

• If new checkboxes are checked, clicking Next will jump over the exist-
ing income pages, show new income pages for the newly selected
people and then display the page after the loop.

• If new checkboxes are checked and others are unselected, clicking Next
will delete the incomes corresponding to the people that were unselec-
ted,jump over the existing income pages, show new income pages for
the newly selected people and then display the page after the loop.

5.6.2 Eligibility Criteria

Building on the previous scenario, we can filter the people that will be dis-
played in the list question (the loop doesn't need to be modified). Only the
people over 18 will be eligible to enter income so a criteria is added to the
list question. When reiterating through the script people may no longer
match the criteria and therefore not appear in the list.

...
<list-question id="hasIncome" entity="Person" criteria="age > 18">

<label id="HasIncome.Label">
<![CDATA[Which people have income?]]>

</label>
<item-label>

<label-element attribute-id="firstName" />
</item-label>

</list-question>

Example 5.17 Fast Path List Question with Eligibility Criteria
driving a Loop Code Example

This will behave as mentioned in the previous scenario, but if the date of
birth of a person is modified, the following will happen:

• If the person becomes ineligible (under 18) and income had been
entered, the corresponding income will get automatically deleted as soon
as the new date of birth is submitted.

• If the person becomes eligible (over 18), it will be displayed in the list
question (but not selected) the next time the list question page is dis-
played.

5.6.3 Fast Path Conditions

We can ask pregnancy details for female household members using a condi-
tional page. If the condition is defined as fast path, the pregnancy details
will be hidden when re-iterating over household members as the pages in

Working with Intelligent Evidence Gathering (IEG)

34

the condition will only be displayed when reiterating through the script if
the condition previously evaluated to false and something has changed so
the condition now evaluates to true.

...
<question-page id="AboutYouPage" entity="Person">

<title id="PrimaryPersonPage.Title">
<![CDATA[About You]]>

</title>
<cluster>

<title id="DetailsCluster.Title">
<![CDATA[Personal Details]]>

</title>
<question id="firstName" mandatory="true">
<label id="FirstName.Label">

<![CDATA[First Name:]]>
</label>

</question>
<question id="middleName">
<label id="MiddleName.Label">

<![CDATA[Middle Name:]]>
</label>

</question>
<question id="lastName">
<label id="lastName.Label">

<![CDATA[Last Name:]]>
</label>

</question>
<question id="gender" mandatory="true">
<label id="Gender.Label">

<![CDATA[Gender:]]>
</label>

</question>
<question id="dateOfBirth" mandatory="true">
<label id="DateOfBirth.Label">

<![CDATA[Date Of Birth:]]>
</label>

</question>
</cluster>

</question-page>
<condition expression="Person.gender=="SX2""

fast-path="true">
<question-page id="PregnancyPage" entity="Person">

<title id="PregnancyPage.Title">
<![CDATA[About You: pregnancy]]>

</title>
<cluster>
<title id="DetailsCluster.Title">

<![CDATA[Personal Details Abouy Your Pregnancy]]>
</title>
<question id="isPregnant" >

<label id="IsPregnant.Label">
<![CDATA[Are you pregnant?]]>

</label>
</question>

</cluster>
</question-page>

</condition>

Example 5.18 Fast Path Conditions Code Example

When editing the personal details, the following can occur:

• If no change was made to the gender, clicking on Next will jump over
the condition, whether it was displayed the first time or not.

• If the gender has changed from Male to Female, clicking on Next will

Working with Intelligent Evidence Gathering (IEG)

35

display the conditional page to enter pregnancy details.

• If the gender has changed from Female to Male, clicking on Next will
delete the pregnancy details and display the page after the condition.

5.6.4 Condition in Fast Path Loop

When a condition is defined inside a Fast Path loop, this will behave the
same as when a criteria is used on the loop instead of nesting a condition,
with the following exception: if the condition becomes true, the page con-
tained within the condition cannot be displayed as the loop doesn't have a
new iteration to show and therefore will be skipped. If the condition be-
comes false , the page and associated data won't be deleted as the condition
is not re-evaluated. It is therefore recommended to use a criteria on the loop
instead of a condition.

...
<loop loop-type="for-each" entity="Person"

fast-path="true">
<condition expression="Person.hasIncome==true">

<loop loop-type="while" loop-expression="hasMoreIncome"
entity="Income">
<question-page id="IncomePage" entity="Income"

show-person-tabs="true">
<title id="IncomePage.Title">

<![CDATA[Income Details]]>
</title>
<cluster>

<title id="IncomeDetails.Title">
<![CDATA[Income Details]]>

</title>
<question id="type">

<label id="Type.Label">
<![CDATA[Type:]]>

</label>
</question>
<question id="amount">

<label id="Amount.Label">
<![CDATA[Amount:]]>

</label>
</question>
<question id="hasMoreIncome"

control-question="true"
control-question-type="IEG_BOOLEAN">
<label id="ContinueQuestion.Label">

<![CDATA[Does %1s have any more income?]]>
<argument id="Person.firstName" />

</label>
</question>

</cluster>
</question-page>

</loop>
</condition>

</loop>

Example 5.19 Condition in Fast Path loop Code Example

5.7 Implicit Delete

Wherever possible, the IEG engine tries to delete data as soon it finds out

Working with Intelligent Evidence Gathering (IEG)

36

that it is no longer relevant.

If an answer is explicitly modified by the user (through a regular question, a
list-question or a set-attribute, but not through a custom function call), the
engine detects if this answer is used in a condition expression, a list-
question criteria or a loop criteria. If that is the case, the expression or criter-
ia is re-evaluated and if it becomes false, the corresponding pages are re-
moved and the associated data gets deleted without the need to go through
the script to encounter the expressions or criterion.

Working with Intelligent Evidence Gathering (IEG)

37

Chapter 6

Other Script Development Considerations

6.1 Introduction

The various constructs that have been presented so far cater for a lot of dif-
ferent evidence gathering needs, but there can be situations that require ad-
ditional functionality such as the ability to display data in a read-only mode
or to invoke external functionality. This chapter details these items.

This chapter also covers some things that should be considered when main-
taining IEG scripts, placing scripts under source control and loading scripts
into the database.

6.2 Displaying Data as Read-Only

Sometimes the answers to some questions need to be displayed to the user in
such a way that they cannot be modified. This is already the case on sum-
mary pages where users can review the answers and use the back button or
edit links to modify them.

On a question page, a "read-only" boolean attribute can be set to true indic-
ating that all the questions displayed on the page will not be editable.

A more sophisticated mechanism exists: "read-only-expression" attributes
can be used on different script elements (sections, all types of pages,
clusters, questions and list questions). If the expression evaluates to true,
this will apply to all the questions contained in the element. At its simplest,
the expression will be "true" if the element needs to be unconditionally read-
only. On a summary page, the result is that add, edit and delete links are not
displayed.

In the case of read-only-expression defined for cluster, question and list
question script elements, if any of the questions referenced in the expression
are on the same page as the script element the script element is then dynam-
ically enabled or disabled as opposed to just being read-only. This means

38

that questions will be enabled and disabled as the user changes answers to
other questions on the page. Where the read-only-expression of a cluster ref-
erences a question on the same page all the questions contained in the
cluster will be enabled and disabled. This dynamic feature of IEG requires
that JavaScript is enabled in the browser. The expressions to dynamically
enable and disable questions may not refer to custom functions, as the ex-
pressions are evaluated without making a server call.

Dynamic read-only-expressions may also refer to questions on the same
page that are themselves dynamically enabled and disabled. This creates a
cascading dependency between questions. Care should be taken when defin-
ing expressions with cascading dependencies as IEG does not take into ac-
count whether the questions referred to in the read-only-expression is en-
abled or not, just the value of the question. This may be confusing for the
user as it may not be apparent what is controlling the enabling and disabling
of a question.

When a question is displayed if the corresponding Datastore attribute has a
value it will be displayed even if the question is initially disabled. The ques-
tion may then be enabled by the user and the user may change the answer. If
the question is disabled its value will set back to the value it had when ini-
tially displayed. When a page is submitted the Datastore attribute will not be
updated unless the question is enabled. Therefore if the page is redisplayed
the original value of the Datastore attribute will be displayed again.

It is not possible to mark a question as mandatory if it also has a dynamic
read-only-expression on the question itself or one of its parent elements.

Dynamically enabling and disabling script elements is not supported on Re-
lationship Pages.

The information gathered in loops can be displayed on summary pages us-
ing lists, but it is also possible to use this list construct on regular pages
without the need to specify a read-only-expression in one of the elements
wrapping the list. The only difference with summary lists is that links are
not allowed.

Another possibility is to make a whole script read-only. This is useful, for
example, if a case-worker needs to review a script without being able to
change any of the answers. The script is set to read-only through the IE-
GRuntimeAPI by setting a read-only flag on the script execution, as shown
below:

...
//Set read only flag.
IEGRuntime runtimeAPI = new IEGRuntime();
IEGScriptExecutionID runtimeExecID = new IEGScriptExecutionID();
runtimeExecID.executionID = execution.getExecutionID();
IEGReadOnlyFlag readOnlyFlag = new IEGReadOnlyFlag();
readOnlyFlag.readOnlyFlag = true;
runtimeAPI.setReadOnlyFlag(runtimeExecID, readOnlyFlag);
...

Example 6.1 Setting the read-only flag on a script execution

Working with Intelligent Evidence Gathering (IEG)

39

6.3 Invoking External Functionality Using Expres-
sions

Expressions can be found in multiple places in a script to define behavior
for loops, conditions and so on. See the Expression Syntax appendix in the
Authoring Scripts using Intelligent Evidence Gath-
ering(IEG) guide for reference.

These expressions can refer to answers and can combine them using various
operators, and they can even call functions (except when used on dynamic
conditional clusters as these expressions are evaluated in the browser).

The functions described above are referred to as Custom Functions and are
defined using Java® code. Depending on their usage, they can be of two
types:

• Custom functions which can take parameters (possibly making a call to
an external functionality) and will return a value. They will not alter the
content of the DS. They are used in most expressions.

• When the aim is to update the content of the DS, the custom function
can be used in a standalone element: callout . The returned value is
irrelevant (but it must be a boolean). The custom function should not up-
date values that have been answered prior to the callout. This is because
the IEG Engine is not aware of the updates made outside the context of
the script, and is therefore not be able take any actions required by the
updates.

Real-world examples that might necessitate the invocation of external func-
tionality are the validation of a US ZIP code that a user has supplied and the
population of a state field based on a supplied ZIP code. We will now
demonstrate those 2 different usage.

The DS schema will need to be expanded to add the following 2 attributes to
the Person entity, as follows:

<xsd:attribute name="state" type="IEG_STRING"/>
<xsd:attribute name="zipCode" type="IEG_STRING"/>

Example 6.2 Additional Person attributes in the DS schema

First let's try to validate a ZIP code against a state (this is a naive imple-
mentation): a ZIP code must be five digits long and the first 3 digits will in-
dicate the state.

The personal details page mentioned earlier and the corresponding summary
page can be modified with 2 extra mandatory questions: state and zipCode:

<question id="state" mandatory="true">
<label id="State.Label">

State:
</label>

Working with Intelligent Evidence Gathering (IEG)

40

<help-text id="State.HelpText">
The state you live in

</help-text>
</question>
<question id="zipCode" mandatory="true">

<label id="ZipCode.Label">
ZIP Code:

</label>
<help-text id="ZipCode.HelpText">

Your ZIP code
</help-text>

</question>

Example 6.3 State and zipCode questions in the script definition

Then the custom function that will perform the validation must be created as
a Java class in the package curam.rules.functions :

...
public class CustomFunctionValidateZipCode extends CustomFunctor {

public Adaptor getAdaptorValue(final RulesParameters rp)
throws AppException, InformationalException {

final List<Adaptor> parameters = getParameters();
final String zipCode =
((StringAdaptor) parameters.get(0)).getStringValue(rp);

final String state =
((StringAdaptor) parameters.get(1)).getStringValue(rp);

boolean valid = false;

if (zipCode.length() == 5) {
final String prefix = zipCode.substring(0, 3);
//lookup the state prefixes
if (prefix.equals("100")

&& state.equalsIgnoreCase("New York")) {
valid = true;

}
if (prefix.equals("900")

&& state.equalsIgnoreCase("California")) {
valid = true;

}
}

return AdaptorFactory.getBooleanAdaptor(Boolean.valueOf(valid));
}

}

Example 6.4 Custom Function to validate the ZIP code

The following metadata for the custom function must be inserted in
<yourcomponent>/rulesets/functions/CustomFunctionMe
taData.xml :

<CustomFunctor name="CustomFunctionValidateZipCode">
<parameters>

<parameter>
curam.util.rules.functor.Adaptor$StringAdaptor

</parameter>
<parameter>
curam.util.rules.functor.Adaptor$StringAdaptor

</parameter>
</parameters>
<returns>curam.util.rules.functor.Adaptor$BooleanAdaptor</returns>

</CustomFunctor>

Working with Intelligent Evidence Gathering (IEG)

41

Example 6.5 Custom Function Metadata

See the Cúram Rules Codification Guide for more details on the
definition of custom functions.

In our example, the custom function ValidateZipCode doesn't access an ex-
ternal database to look-up the corresponding state. Ideally, it should do that
look-up and then check the state returned against the state that was entered.
For simplification purposes, only two zip code prefixes are hard-coded
above.

The validation will then be inserted in the personal details page:

<validation
expression="ValidateZipCode(Person.zipCode, Person.state)">

<message id="InvalidZipCode">
The ZIP code is invalid.

</message>
</validation>

Example 6.6 ZIP code validation in the script definition

When the user clicks Next, the answers to the zipCode and state questions
are passed to the custom function, which will return true if the answers are
valid. The next page will then be displayed.

If the custom function returns false, the message specified in the validation
is displayed at the top of the Person details page, blocking the access to the
Next page until valid answers are submitted.

The custom function has no side effect as it doesn't alter anything. It only
performs an operation based on the parameters and returns a result.

It would also be possible to remove the mandatory flag on the two new
questions and to validate the answers only if they have both been supplied.
The validation expression would then need to be changed to the following
using the out-of-the-box custom function isNotNull that checks if the given
parameter is null:

"not(isNotNull(Person.zipCode) and isNotNull(Person.state))
or ValidateZipCode(Person.zipCode, Person.state)"

Example 6.7 Alternate validation expression

Alternatively, it is possible to populate the state question given the zipCode.
To do so, the Person details page will only ask for the zipCode (with the
mandatory flag), and the summary page will display both state and zipCode.

The following custom function should be defined:

...
public class CustomFunctionpopulateState extends CustomFunctor {

public Adaptor getAdaptorValue(final RulesParameters rp)
throws AppException, InformationalException {

final IEG2Context ieg2Context = (IEG2Context) rp;
final long rootEntityID = ieg2Context.getRootEntityID();

Working with Intelligent Evidence Gathering (IEG)

42

String schemaName;
//schemaName has to be hard-coded or retrieved outside of IEG
Datastore ds = null;
try {
ds =

DatastoreFactory.newInstance().openDatastore(
schemaName);

} catch (NoSuchSchemaException e) {
throw new AppException(IEG.ID_SCHEMA_NOT_FOUND);

}

Entity applicationEntity = ds.readEntity(rootEntityID);

Entity personEntity =
applicationEntity.getChildEntities(

ds.getEntityType("Person"))[0];
String zipCode = personEntity.getAttribute("zipCode");
String state = "Unknown";
final String prefix = zipCode.substring(0, 3);
//lookup the state prefixes
if (prefix.equals("100")) {
state = "New York";

}
if (prefix.equals("900")) {
state = "California";

}
personEntity.setAttribute("state", state);
personEntity.update();
return AdaptorFactory.getBooleanAdaptor(new Boolean(true));

}

}

Example 6.8 Custom Function to populate the state

And its metadata:

<CustomFunctor name="CustomFunctionpopulateState">
<returns>curam.util.rules.functor.Adaptor$BooleanAdaptor</returns>

</CustomFunctor>

Example 6.9 Custom Function metadata

Between the Person details page and the summary page, a callout element
must be inserted to call this custom function, as follows:

<callout id="populateAddress" expression="populateState()"/>

Example 6.10 Callout to populate the sate in the script definition

This time, the custom function will alter the DS by populating the state on
the Person entity. The context contains the root entity ID and executionID,
making it easier to update the DS. If the callout is in a loop, the context also
contains the current entity ID.

6.4 Reusing Scripts

It is possible to break down a script definition into multiple files thus
providing a re-use mechanism.

In order to achieve this, a script definition will have to reference subscripts.

Working with Intelligent Evidence Gathering (IEG)

43

Each of these subscripts will be a standalone script that can be run inde-
pendently.

Here is an example of a script that can be used as a subscript:

<?xml version="1.0" encoding="UTF-8"?>
<ieg-script ...>

<identifier id="Subscript" scriptversionnumber="V1" type="Test" />
<question-page ...>

...
</question-page>
...

</ieg-script>

Example 6.11 Subscript Containing Pages

The script in the above example code snippet can be included in another
script as a subscript, as follows:

<?xml version="1.0" encoding="UTF-8"?>
<ieg-script ...>

<identifier id="Script" scriptversionnumber="V1" type="Test" />
<section>

<ieg-sub-script>
<identifier id="Subscript"
scriptversionnumber="V1" type="Test" />

</ieg-sub-script>
</section>
<section>

...
</section>
...

</ieg-script>

Example 6.12 Inclusion of a Subscript in a Script

The possible point of insertion of a subscript in a script can be as follows:

• If the script contains sections and the subscript also contains sections,
the subscript will have to be inserted at the top level, under the parent
ieg-script element.

• If the script contains sections and the subscript doesn't contain sections,
the subscript will have to be inserted in a section of the parent script.

• If the script doesn't contain sections, the subscript cannot contain sec-
tions. It will be inserted at the top level, under the ieg-script element.

Another limitation to keep in mind is that a subscript can appear only once
in a script as the page IDs must be unique within the resulting script.

Note that a script might be used as a subscript elsewhere. When modifying
scripts, ensure that any referencing scripts are re-tested to ensure the
changes do not have an undesired impact.

6.5 Source Control and Versioning

IEG script definitions are stored in the database. When editing an IEG script

Working with Intelligent Evidence Gathering (IEG)

44

using the IEG Editor, the script is edited in place and updated directly in the
database. IEG script definitions are development artifacts and from a soft-
ware configuration management point of view it is important that these arti-
facts are placed under source control as you would with any other artifacts.

It is possible to download a script definition from the IEG script administra-
tion screens. When the option to download a script is chosen, the script is
first retrieved from the database, then the properties files associated with the
script definition are retrieved from the Resource Store and the textual prop-
erties are "injected" into the script definition before it is made available.
However downloading a script in this way does not provide all the resources
that may be associated with a script definition. For example, it does not
provide properties files in multiple locales and it does not provide images
and icons. Please see the Compliancy appendix of the Authoring
Scripts using Intelligent Evidence Gathering (IEG)
developer's guide for more information on the database representation of an
IEG script.

When populating the database with script definitions, it is important to be
aware of the differences in functionality between importing a script through
the IEG script administration screens and loading a script definitions via
DMX files.

Working with Intelligent Evidence Gathering (IEG)

45

Chapter 7

Integrating IEG into a Cúram Application

7.1 Introduction

This chapter outlines how IEG can be integrated into an application. IEG
can be integrated in two ways: either by opening the player in a tab or in a
modal dialog. The integration tasks that are dealt with here include creating
the script execution; setting finish and quit pages; running in a tab; running
in a modal; cleaning up application data; and resuming scripts.

7.2 Creating a Script Execution

It is recommended that, before opening the IEG Player from an application,
the script execution is created using the public API. The execution ID can
then be passed to the player.

The following example code snippet shows the creation of a script execution
using the public API:

...

// create the script execution
final IEGRuntime runtimeAPI = new IEGRuntime();
final IEGScriptExecutionIdentifier executionIdentifier =

runtimeAPI.createScriptExecution(iegScriptID, schemaName);

Example 7.1 Creation of a script execution

7.3 Specifying a Redirection URL

The finish-page and quit-page attributes in an IEG Script indicate
what URL to redirect to when leaving the IEG Player. In this way they
provide a connection between the IEG Player and an application. These at-
tributes are detailed in the IEG Script Element Reference chapter
of the Authoring Scripts using Intelligent Evidence

46

Gathering (IEG) developer's guide.

Modify the example script to include these attributes as shown below:

<ieg-script
finish-page="IEG2_listAllIEG2Scripts"
quit-page="IEG2_listAllIEG2Scripts"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="ieg-schema.xsd">

...
<ieg-script>

Example 7.2 Script with finish-page and quit-page defined

In the example above, completion or exit from the script will result in redir-
ection to the list of all IEG scripts provided in the administration screens.

7.4 Running the IEG Player in a Tab

Running the IEG Player in a tab is a requires less effort than running it in a
modal. It necessitates that the 'opening' link points to ieg/
Screening.do and passes in the executionID . Screening.do in-
vokes the IEG Player. The parameters are as follows:

Here is an example of a resolve UIM that opens the IEG Player in a tab:

<?xml version="1.0" encoding="UTF-8"?>
<PAGE PAGE_ID="System_IEGResolver">

<JSP_SCRIPTLET>
<![CDATA[

String scriptID = request.getParameter("scriptID");
String scriptType = request.getParameter("scriptType");
String scriptVersion = request.getParameter(

"scriptVersion");
String schemaName = request.getParameter("schemaName");
String name = request.getParameter("name");

String executionIDParam =
request.getParameter("executionIDParam");

String url = null;

curam.omega3.request.RequestHandler
rh = curam.omega3.request.

RequestHandlerFactory.getRequestHandler(request);

String context = request.getContextPath() + "/";

if (executionIDParam == null) {
// Need to check to see if there are any script validation
// errors before running the script.

String contextWithUserPreferences = context +
curam.omega3.user.UserPreferencesFactory
.getUserPreferences(

pageContext.getSession()).getLocale() + "/";

curam.interfaces.IEGScriptAdminPkg.
IEGScriptAdmin_checkForScriptErrors_TH

iegScriptAdminCheckForErrors
= new curam.interfaces.IEGScriptAdminPkg.

IEGScriptAdmin_checkForScriptErrors_TH();

iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$scriptID_idx, scriptID);

Working with Intelligent Evidence Gathering (IEG)

47

iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$scriptType_idx,

scriptType);
iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$scriptVersion_idx,

scriptVersion);
iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$schemaName_idx,

schemaName);
//Call the method.
iegScriptAdminCheckForErrors.callServer();

String errorsPresentInScript =
iegScriptAdminCheckForErrors.getFieldValue(

iegScriptAdminCheckForErrors
.result$errorsExist_idx);

boolean errorsPresent =
Boolean.valueOf(errorsPresentInScript).booleanValue();

if (errorsPresent) {

// If there are errors, redirect to the validation error
// page.
String redirectTo = contextWithUserPreferences
+ "System_listValidationErrorsForRunPage.do"
+ "?name=" + name
+ "&scriptID=" + scriptID
+ "&scriptType=" + scriptType
+ "&scriptVersion=" + scriptVersion
+ "&schemaName=" + schemaName;
url = redirectTo + "&" + rh.getSystemParameters();

} else {

// Call the run script method and redirect to the IEG
// player.
curam.interfaces.IEGScriptAdminPkg.
IEGScriptAdmin_runScript_TH iegScriptAdminRunScript
= new curam.interfaces.IEGScriptAdminPkg.
IEGScriptAdmin_runScript_TH();

iegScriptAdminRunScript.setFieldValue(
iegScriptAdminRunScript.key$dtls$scriptID_idx,

scriptID);
iegScriptAdminRunScript.setFieldValue(
iegScriptAdminRunScript.key$dtls$scriptType_idx,

scriptType);
iegScriptAdminRunScript.setFieldValue(
iegScriptAdminRunScript.key$dtls$scriptVersion_idx,

scriptVersion);
iegScriptAdminRunScript.setFieldValue(
iegScriptAdminRunScript.key$schemaName_idx,

schemaName);
//Call the method.
iegScriptAdminRunScript.callServer();

String executionID = iegScriptAdminRunScript.
getFieldValue(

iegScriptAdminRunScript.result$executionID_idx);
url = context + "ieg/Screening.do?" + "executionID="

+ executionID + "&" + rh.getSystemParameters();
}

} else {

url = context + "ieg/Screening.do?" + "executionID="
+ executionIDParam + "&"
+ rh.getSystemParameters();

}

// Redirect to the correct page.
response.sendRedirect(response.encodeRedirectURL(url));

Working with Intelligent Evidence Gathering (IEG)

48

]]>
</JSP_SCRIPTLET>

</PAGE>

Example 7.3 Resolve UIM to open IEG Player

7.5 Running the IEG Player in a Modal Dialog

The IEG Player can be opened in a modal dialog, and there are some specif-
ic considerations a script developer needs to account for pertaining to this.

7.5.1 Opening the IEG Player in a Modal Dialog

To open the IEG Player in a modal dialog, open Screening.do , in the
modal, passing the executionID and system parameters, using a resolve
UIM. System_IEGResolverModal.uim is provided out-of-the-box to
perform this processing:
<PAGE PAGE_ID="System_IEGResolverModal">

<JSP_SCRIPTLET>
<![CDATA[

String scriptID = request.getParameter("scriptID");
String scriptType = request.getParameter("scriptType");
String scriptVersion =

request.getParameter("scriptVersion");
String schemaName = request.getParameter("schemaName");
String name = request.getParameter("name");

// Need to check to see if there are any script
// validation errors before running the script.
curam.omega3.request.RequestHandler

rh = curam.omega3.request.
RequestHandlerFactory.getRequestHandler(request);

String context = request.getContextPath() + "/";
String contextWithUserPreferences = context +
curam.omega3.user.UserPreferencesFactory

.getUserPreferences(
pageContext.getSession()).getLocale() + "/";

String url = null;

curam.interfaces.IEGScriptAdminPkg.
IEGScriptAdmin_checkForScriptErrors_TH

iegScriptAdminCheckForErrors
= new curam.interfaces.IEGScriptAdminPkg.

IEGScriptAdmin_checkForScriptErrors_TH();

iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$scriptID_idx,

scriptID);
iegScriptAdminCheckForErrors.setFieldValue(

iegScriptAdminCheckForErrors.key$scriptType_idx,
scriptType);

iegScriptAdminCheckForErrors.setFieldValue(
iegScriptAdminCheckForErrors.key$scriptVersion_idx,

scriptVersion);
iegScriptAdminCheckForErrors.setFieldValue(

iegScriptAdminCheckForErrors.key$schemaName_idx,
schemaName);

//Call the method.
iegScriptAdminCheckForErrors.callServer();

Working with Intelligent Evidence Gathering (IEG)

49

String errorsPresentInScript =
iegScriptAdminCheckForErrors.getFieldValue(
iegScriptAdminCheckForErrors.result$errorsExist_idx);

boolean errorsPresent =
Boolean.valueOf(errorsPresentInScript).

booleanValue();

if (errorsPresent) {

// If there are errors, redirect to the validation
// error page.
String redirectTo = contextWithUserPreferences

+ "System_listValidationErrorsForModalPage.do"
+ "?name=" + name + "&scriptID=" + scriptID

+ "&scriptType=" + scriptType
+ "&scriptVersion=" + scriptVersion
+ "&schemaName=" + schemaName;

url = redirectTo + "&&" + rh.getSystemParameters();

} else {

// Call the run script method and redirect to
// the IEG player.
curam.interfaces.IEGScriptAdminPkg.

IEGScriptAdmin_runScript_TH iegScriptAdminRunScript
= new curam.interfaces.IEGScriptAdminPkg.

IEGScriptAdmin_runScript_TH();

iegScriptAdminRunScript.setFieldValue(
iegScriptAdminRunScript.key$dtls$scriptID_idx,

scriptID);
iegScriptAdminRunScript.setFieldValue(

iegScriptAdminRunScript.key$dtls$scriptType_idx,
scriptType);

iegScriptAdminRunScript.setFieldValue(
iegScriptAdminRunScript.key$dtls$scriptVersion_idx,

scriptVersion);
iegScriptAdminRunScript.setFieldValue(

iegScriptAdminRunScript.key$schemaName_idx,
schemaName);

//Call the method.
iegScriptAdminRunScript.callServer();

String executionID =
iegScriptAdminRunScript.getFieldValue(

iegScriptAdminRunScript.result$executionID_idx);
executionID = executionID.replaceAll(",", "");

url = context + "ieg/Screening.do?"
+ "executionID=" + executionID
+ "&" + rh.getSystemParameters();

}

// Redirect to the correct page.
response.sendRedirect(

response.encodeRedirectURL(url));
]]>

</JSP_SCRIPTLET>
</PAGE>

7.5.2 Exiting a Script Execution in a Modal Dialog

There are two broad approaches a script developer can take to complete or
exit an IEG script execution in a modal dialog:

• Directly closing the modal dialog, and refresh or redirect in the parent
tab.

• Progressing to further UIM screen/s in the modal dialog.

Working with Intelligent Evidence Gathering (IEG)

50

Directly Closing the Modal on Script Completion

To close a modal dialog directly upon completion of; or exit (Exit, Save &
Exit actions) from an IEG script execution, the script developer must spe-
cify a resolve UIM as the finish-page and/or quit-page. That resolve UIM
must in turn invoke a custom JSP that calls the appropriate JavaScript func-
tion to close the dialog.

For example, to redirect to the IEG2_listAllIEG2Scripts adminis-
tration screen, include the following JSP scriptlet in your UIM file:
<PAGE

PAGE_ID="IEG2_resolveFinishScript"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file://Curam/UIMSchema.xsd"

>
<JSP_SCRIPTLET>

<![CDATA[

curam.omega3.request.RequestHandler
rh = curam.omega3.request.RequestHandlerFactory

.getRequestHandler(request);

String context = request.getContextPath() + "/";
context += curam.omega3.user.UserPreferencesFactory

.getUserPreferences(
pageContext.getSession()).getLocale() + "/";

String url = "";
url = context + "IEG2_listAllIEG2ScriptsPage.do";

String forwardParams =
request.getParameter("forwardParams");

if (screenContext != null && screenContext
.hasContextBits(
curam.omega3.taglib.ScreenContext.MODAL)) {

url += "?" + rh.getSystemParameters();
String encodeRedirectURL = response.encodeURL(url);
response.sendRedirect(response.encodeRedirectURL(

request.getContextPath() +
"/ieg/CloseAndRedirect.jspx?redirect="
+ encodeRedirectURL));

} else {
url += "?" + rh.getSystemParameters();
response.sendRedirect(

response.encodeRedirectURL(url));
}

]]>
</JSP_SCRIPTLET>
</PAGE>

CloseAndRedirect.jspx is provided out-of-the-box for closing the
modal dialog and redirecting to a specified UIM (if provided) in the parent.

Progressing to Further UIM Screen/s in the Modal Dialog

To keep the modal dialog open to display further UIM screens after script
execution has completed, specify the required UIM page as the finish-page
and/or quit-page in the IEG script definition. Once that UIM has loaded, you
have moved out of IEG and standard UIM processing in a modal dialog ap-
plies.

Working with Intelligent Evidence Gathering (IEG)

51

7.6 Cleaning Up Application Data

Cleaning up application data involves removing data from the IEGEXECU-
TIONSTATE database table and the Datastore(DS) where appropriate. This
section details the manual and automatic data clean-up tasks that script au-
thors should be aware of, and makes some recommendations to ensure
cleaning up application data can proceed smoothly.

In order to support execution of an IEG script, information about individual
script executions must be maintained by the IEG engine. For example the
IEG engine must keep track of the current page for the script execution. The
IEG engine must also maintain a list of the pages that have been presented
to the user to support navigation. The answers to control questions are not
persisted in the DS and the IEG engine must also keep track of these. All the
information to support the execution of an IEG script is persisted in the
IEGEXECUTIONSTATE table. When a new IEGScriptExecution object is
created via the IEGScriptExecutionFactory API a corresponding entry is
created in the IEGEXECUTIONSTATE table. The IEGEXECUTION-
STATE table is an "internal" table only intended to be used by the IEG en-
gine and it should not be modified or extended. Script authors should not
become dependent on or make assumptions about the contents of this table
as they can be subject to change without notice.

IEG has no way of knowing when an entry in the IEGEXECUTIONSTATE
table is no longer required and therefore the entries will persist until they are
explicitly deleted. To avoid the IEGEXECUTIONSTATE table becoming
unnecessarily cluttered, if a script execution has completed or will not be re-
sumed or re-executed its entry in the table should be removed via the re-
moveScriptExecutionObject method of the IEGScriptExecutionFactory API.

IEG cannot make any inference as to what data can be used to logically and
uniquely identify a particular script execution as this can vary from script
definition to script definition. The only way for IEG to identify a script exe-
cution is via the generated ID that is assigned to the script execution when it
is initially created. It is highly recommended that script authors implement a
mechanism to identify script executions by associating unique data with the
script execution IDs. A new table can be created to maintain the relationship
between the data that identifies the execution and the execution ID to make
it easy for script executions to be resumed. When they are no longer re-
quired they can be removed. Removing a script execution does not cause
any of the gathered data that is persisted in the DS to be removed.

Similarly to IEGEXECUTIONSTATE, the IEG engine and the DS have no
way of knowing when the data that is gathered during a script execution and
persisted in the DS is no longer required. Again, the DS can become unne-
cessarily cluttered with entities that are no longer required. It is intended
that entities will not persist in the DS indefinitely but that the gathered data
be moved to application tables and then removed from the DS. When an en-
tity is deleted from the DS its child entities are also deleted. Therefore when
the data that is gathered during a script execution has been moved to applic-

Working with Intelligent Evidence Gathering (IEG)

52

ation tables and is no longer required it is sufficient to delete the root entity
for the execution.

The following example code snippet shows the deletion of the root entity:

final Long applicationID = execution.getRootEntityID();
final Entity rootEntity = datastore.readEntity(applicationID);
rootEntity.delete();

Example 7.4 Deleting the Root Entity

7.7 Resuming Executed Scripts

It is possible to stop a script execution and resume it later. To do so, the ap-
plication must take care of storing the execution ID in a custom table and
associate it with some user ID. See Section 7.6, Cleaning Up Application
Data for more details.

Provided the IEGEXECUTIONSTATE table hasn't been cleaned up and the
script definition hasn't been modified, a script execution will be resumed by
passing the executionID parameter to the IEG Player in the same way it is
done when starting a new script execution.

Working with Intelligent Evidence Gathering (IEG)

53

Chapter 8

Managing Captured Data

8.1 Introduction

As previously mentioned, the data captured during script execution is per-
sisted in the Datastore (DS). This chapter will explain how you can retrieve
the captured data from the DS. This chapter will also explain how data can
be inserted into the DS so that it is available to IEG while executing scripts.

8.2 Retrieving Captured Data

The Datastore (DS) has a public API which you may use in your application
code. This API is most often used to retrieve information from a populated
schema but it can also be used to pre-populate a schema. For example, once
a client has completed an application, they can submit their information. At
this point, the API can be used to extract the data from the schema and pop-
ulate tables in the relational database.

An example of pre-population is where some information about the client is
known in advance of starting their application. If some of that information is
required to navigate through the application, the DS can be pre-populated
with the information.

To read any data from a schema, the appropriate execution of the script
needs to be known. This means you are retrieving the correct application in-
formation for a client. Therefore, the executionID and schema name are vi-
tally important to gain access to the data.

The following example code snippet shows the obtaining of the root entity:

final IEGRuntime runtimeAPI = new IEGRuntime();
final IEGRootEntityID rootEntityID =

runtimeAPI.getScriptExecutionRootEntityID(executionID);

Datastore ds = DatastoreFactory.newInstance()
.openDatastore(kSchemaName);

54

final Entity rootEntity =
ds.readEntity(rootEntityID.entityID));

Example 8.1 Obtaining root entity

From here, the root entity can be used to retrieve other entities under this
root entity.

8.3 Pre-Populating Scripts with Captured Data

It is possible to pre-populate the values that will be displayed to the user so
that the answers only need to be confirmed or modified.

For example, we can pre-populate the name and date of birth of a user on a
Personal Details page assuming that the user has already logged in and an-
other database holds the personal details.

The DS can be pre-populated prior to the start of script execution as follows:

...
Datastore ds = null;

try {
// open the data store and create the root entity
ds = DatastoreFactory.newInstance().openDatastore(schemaName);

} catch (NoSuchSchemaException e) {
throw new AppException(IEG.ID_SCHEMA_NOT_FOUND);

}

final EntityType appType = ds.getEntityType("Application");
final Entity rootElement = ds.newEntity(appType);

ds.addRootEntity(rootElement);

final EntityType personType = ds.getEntityType("Person");
final Entity person = ds.newEntity(personType);

person.setAttribute("firstName", "TestFirstName");
person.setAttribute("lastName", "TestLastName");
person.setAttribute("dateOfBirth", "19700101");
//...

rootElement.addChildEntity(person);

Example 8.2 Code Snippet that Populates the DS

The root entity can then be used in creating a new script execution as fol-
lows:

...

// create the script execution
final IEGRootEntityID rootEntityID = new IEGRootEntityID();
rootEntityID = rootElement.getUniqueID();
final IEGRuntime runtimeAPI = new IEGRuntime();
final IEGScriptExecutionIdentifier executionIdentifier =

runtimeAPI.createScriptExecutionExistingRootEntity(
iegScriptID, schemaName, rootEntityID);

Example 8.3 Creation of a Script Execution

Working with Intelligent Evidence Gathering (IEG)

55

The IEG Player can then be run using this new script execution as follows:

<?xml version="1.0" encoding="UTF-8"?>
<PAGE PAGE_ID="IEGScriptLauncher">

<JSP_SCRIPTLET>
<![CDATA[

curam.omega3.request.RequestHandler rh =
curam.omega3.request.RequestHandlerFactory.getRequestHandler(

request);

String context = request.getContextPath() + "/";

String url =
context + "ieg/Screening.do?" + "executionID=" + executionID

+ "&" + rh.getSystemParameters();

// Redirect to the correct page.
response.sendRedirect(response.encodeRedirectURL(url));

]]>
</JSP_SCRIPTLET>

</PAGE>

Example 8.4 Launching the IEG Player

Note that it is only possible to pre-populate the DS, and not the control
questions or other script-related information as they are stored in the script
execution and not in the DS. This means that it is not possible to pre-
populate the data displayed in the first section of the script and start at the
second section. The first section will be displayed and the user will be able
to confirm the pre-populated data.

Working with Intelligent Evidence Gathering (IEG)

56

Chapter 9

Using the Resource Store

9.1 Introduction

The Resource Store is an area of the infrastructure database which is used to
store resources used in a live application. Resources can be of any type but
the most common used by IEG are images and properties file resources.

9.2 Listing all Resources

To gain access to the resource administration screens, you will need to log
in as an admin user. Once logged in, you will see a section in your naviga-
tion panel called IEG. When you click on the section, you will see a menu
which contains a link called 'Application Resources'. If you click on this, a
list of resource will be displayed with a search box based on the category.

Resources are organized into categories. Existing resources are displayed by
selecting a category in the filter criteria and selecting 'search'. The resource
categories used by IEG are as follows:

• CSS

Stylesheet templates that can be modified to customize the look-and-feel
of the IEG Player.

• Image

Images used in the IEG Player and IEG Scripts.

• Property

Properties files containing locale specific text for Scripts and Question
Pages.

9.3 Uploading a New Resource

57

At the top of the screen which lists all resources is a link which lets you add
a new resource. When you click on this link, you will be presented with a
screen where the resource details should be entered.

You must enter the following information:

• Name

This is a unique name for the resource which can be used within an IEG
script to reference it. Depending on the resource type, a naming conven-
tion may be enforced for use within an IEG script. The sections on Sec-
tion 9.7, Adding Images and Section 9.8, Changing Static Text have
more details.

• Content Type

When serving a resource to a web browser, a content type is required to
instruct the browser how to handle the resource. The most common con-
tent types used in an IEG script would be image/png for a PNG image
and text/plain for a properties file.

• Content

The file chooser allows the user to pick the resource to upload.

The following information is optional:

• Category

The category in which the new resource is to be added.

• Content Disposition

For resources used in IEG scripts, this can be left empty.

• Locale

If you wish to have a locale specific version of a resource, enter the loc-
ale code here. When the system searches for a resource, it uses a fall-
back mechanism similar to Java. For example, if the current locale is
en_US the system will attempt to locate the resource for the en_US
locale, then en and finally the “default” resource. The “default” re-
source is specified by leaving the locale field empty when uploading the
resource.

• Internal

This indicates if the resource is for internal use only and should never be
served to the web browser. In this first release of IEG, this setting can be
ignored.

• Description

A description of the resource.

9.4 Removing an Existing Resource

Working with Intelligent Evidence Gathering (IEG)

58

To delete an existing resource, select the 'view' link on the resource and
from the 'View Resource Page' select 'delete' to remove this resource from
the system. When you click on this link, a confirmation dialog will be dis-
played asking you to confirm that you want to remove this resource from the
system.

9.5 Updating an Existing Resource

To update an existing resource, select the 'edit' link on the 'Application Re-
sources' page or on the 'View Resource' page. You can then browse to the
updated resource on your file system in the 'New content' field.

9.6 Downloading an Existing Resource

Each entry in the resources list can be downloaded by clicking the 'down-
load' link on the 'Application Resources' page. This link will open the
browser file download dialog to allow the user to save the resource or open
it directly.

9.7 Adding Images

IEG scripts allow you to specify images to use for both your sections (in the
navigation panel to the left of a page, by default) and pages (in the page title
area for the page), and also comes with some images which are built in to
the system (like the various person images used in person tabs, etc.). All of
these images must be stored in the resource store so that new images can be
added and existing ones updated without having to rebuild and re-deploy
your application. When uploading an image resource, set the “Content
Type” appropriately for the image (e.g., image/png, image/gif etc.) and
leave the “Content Disposition” field empty.

9.8 Changing Static Text

The IEG engine allows you to enter all the text for your script for the default
locale directly into the script definition. However, this is not where the text
displayed on the screens is actually read from. Instead, all text referenced
from within a script is stored in locale-specific properties files within the re-
source store. For each script, there will be a minimum of one properties file
for the script itself and one properties file for each page within the script. In
order to ensure the uniqueness of these files, the following naming conven-
tion is used (the last part is obviously only applicable to the page-specific
properties files):
scriptID_scriptVersion_scriptType_pageID

When you use the IEG admin screens to upload a new script into the system,
all the static text contained within it (e.g., all the labels, titles, descriptions,

Working with Intelligent Evidence Gathering (IEG)

59

etc.) are automatically extracted into the appropriately named properties
files for your script and stored in the resource store with no locale associated
with them (so that they act as the fall-back properties if no properties exist
for the locale in which you are running). Any of this text can then be
changed by simply downloading the current properties file keeping in mind
the naming convention described above to locate the resource in the re-
sources list. Then make the necessary changes and update the resource as
described in Section 9.5, Updating an Existing Resource . No changes to the
script itself are required.

Equally, versions of these files for other locales can be easily added and will
be picked up in preference to the default locale properties the next time the
script is run in that locale. When uploading a properties file resource, set the
“Content Type” to text/plain and leave the “Content Disposition” field
empty.

9.9 Changing the Default File Encoding

When uploading a plain text resource, the file will be expected to be in
UTF-8 encoding. If you wish to use a different encoding when uploading
the file, the "Content Type" field can be used to specify this through the use
of the optional charset parameter. For example:
text/plain; charset=ISO-8859-1

Working with Intelligent Evidence Gathering (IEG)

60

Chapter 10

Using IBM Rational AppScan to scan IEG

10.1 Introduction

This chapter describes the steps required to perform security scans of IEG
style applications using the IBM® Rational AppScan® tool.

10.2 Preparation

In IEG the communication between the Player and the Engine is coordinated
by means of a sync token. The sync token is used to ensure that the page
submitted by the browser is consistent with the page the IEG engine is ex-
pecting to be submitted. This facilitates detecting when the user uses the
browser navigation buttons rather than the navigation buttons in the Player
itself. The sync token changes for every question page that is displayed in
the IEG Player. This makes it very difficult to scan IEG question scripts ex-
ecuting in the IEG player.

For this reason, prior to scanning it is recommended that the script configur-
ation property appscan.mode.enabled should be set to true. When this prop-
erty is set to true, the Engine does not check the value o the sync token that
is passed by the Player. Disabling sync token checking is acceptable when
performing a scan but sync token checking should always be enabled in a
production environment.

Also, in order to reduce the amount of superfluous information reported in a
scan the stack trace should be disabled. To disable the stack trace:

• Go to the folder webclient\JavaSource\curam\omega3\

• Rename Initial_ApplicationConfiguration.properties to ApplicationCon-
figuration.properties

• Open ApplicationConfiguration.properties

61

• Add the entry: errorpage.stacktrace.output=false

10.3 Relationship Pages

Relationship pages are a special feature of IEG which facilitate gathering in-
formation about the relationships between the people of a household. Unlike
the other pages of an IEG script Relationship pages have a more dynamic
nature and contain a variable number of fields. Currently the names of the
fields that are generated for Relationship pages vary from execution to exe-
cution. This means that currently it is not possible to run a scan on an IEG
question script that contains a relationship page.

10.4 Scan Configuration

Once AppScan is launched a new scan can be created by selecting the 'Cre-
ate New Scan...' option on the Welcome screen.

Then select 'Regular Scan' from the Predefined Templates on the next
screen.

Choose 'Web Application Scan' on the first page of the Configuration Wiz-
ard, click 'Next'.

On the 'URL and Servers' page of the wizard enter the starting URL of the
application. Once the URL is entered it can be verified by clicking the icon
beside the input field. This will cause the AppScan browser to be displayed
and it will attempt to open the URL. Confirm that the URL is correct and
accessible. (Click yes on security warning if necessary). Close the browser
and click 'Next' in the Configuration Wizard.

Enter the necessary Login Management details. Applications running under
Eclipse/Tomcat do not require the user to login, so the option 'None' can be
selected. Click 'Next'.

On the 'Test Policy' screen click on the 'Full Scan Configuration' link in the
'General Tasks' panel. This presents the 'Scan Configuration' dialog.

10.5 Test Policy

Ensure that 'Test Policy' is selected in the view selection pane on the left-
hand side of the configuration dialog. The most straight forward approach
while configuring a scan is to enable all the tests and then disable the low
value tests which increase the time required to run the scan.

Select 'Enabled/Disabled' from the 'sort tests by' dropdown. First check the
'Partially Enabled' then the 'Disabled' boxes. The only entry displayed
should be 'Enabled'. Select 'Severity' from the dropdown. Uncheck the 'Low'
and 'Informational' boxes. For the purposes of scanning IEG it is not re-
quired to perform invasive tests as these tests are more concerned with test-
ing the platform. Select 'Invasive' from the dropdown. Uncheck the 'Invas-

Working with Intelligent Evidence Gathering (IEG)

62

ive' box.

10.6 Explore Options

Select 'Explore Options' in the view selection pane. Set 'Redundant Path
Limit' to 1. Choose 'Breadth First' as the 'Explore Method'.

10.7 Communications and Proxy

Select 'Communications and Proxy' in the view selection pane. Set 'Number
of Threads' to 1.

10.8 Test Options

Select 'Test Options' in the view selection pane. Uncheck 'Use Adaptive
Testing based on application behavior'.

10.9 Multi-Step Operations

IEG requires correctly formatted data be used in certain parameters. As such
AppScan must be 'trained' to use the application being tested. Select 'Multi-
Step Operations' in the view selection pane. Click the record button. This
will cause the AppScan browser to be displayed and it will attempt to open
the URL specified on the 'URL and Servers' page of the Configuration Wiz-
ard. You should then navigate through the application as required, entering
relevant data. AppScan will record the values entered and use these values
for each test that it runs later. Once you have finished, simply close the
browser. The Scan configuration dialog will be updated with the sequence
that has just been recorded. Check the 'Enable playback of this sequence'
checkbox and uncheck the 'Allow play optimization' checkbox.

Take note of all the sequence steps that contain Screening.do . You will
have to turn these sequence steps into regular expressions and add them as
exception paths to the exclude path options of AppScan. AppScan can easily
be thrown out of sync when it comes to recorded operations, so you have to
ensure that AppScan will ignore the wrong path and keep to the recorded
script when running its tests. This is achieved by telling AppScan to ignore
all sequence steps containing screening.do , except those that you spe-
cify in regular expressions. Take note of each __u=x value found in the list
of sequence steps.

10.10 Exclude Paths and Files

Select 'Exclude Paths and Files' in the view selection pane. Click the button
to add an Exclude Path. Choose 'Exclude' as the 'Type' and select 'Regular
Expression' from the 'Match' dropdown. Enter

Working with Intelligent Evidence Gathering (IEG)

63

.*/Curam/ieg/Screening.do.* for the 'Path' and click 'OK'.

Add another Exclude Path. Choose 'Exception' as the 'Type' and select 'Reg-
ular Expression' from the 'Match' dropdown. Enter
.*/Curam/ieg/Screening.do?executionID=.\d* for the 'Path'
and click 'OK'.

An Exception should also be added for each __u=x value found in the list
of sequence steps. Again, select 'Regular Expression' from the 'Match' drop-
down and enter an expression in the following format for 'Path':
.*/Curam/ieg/Screening.do?executionID=.*&__u=[value
shown in summary screen]

Click 'OK'.

Click 'OK' to be returned to the configuration wizard.

Click 'Next' in the Configuration Wizard.

10.11 Complete

At this point the configuration of the scan is complete. Choose the 'I will
start my scan later' option so that the configured scan will be saved rather
than allowing AppScan randomly scan the whole application. Click 'Finish'.

10.12 Running the Scan

To start the scan, select the 'Scan' menu item in the AppScan main window
and select 'Test Multi-Step Operations Only'. Depending on the application
to be tested a scan may take a number of days to complete. Once the scan is
complete AppScan will display the results of the scan on a summary screen.
These results should then be investigated to determine which reported issues
are real vulnerabilities and which are false positives.

Working with Intelligent Evidence Gathering (IEG)

64

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

65

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Working with Intelligent Evidence Gathering (IEG)

66

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Cúram Social Pogram Management.

Working with Intelligent Evidence Gathering (IEG)

67

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml .

Java and all Java-based trademarks and logos are registered trade-
marks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Working with Intelligent Evidence Gathering (IEG)

68

http://www.ibm.com/legal/us/en/copytrade.shtml

	Working with Intelligent Evidence Gathering (IEG)
	Table of Contents
	Chapter 1 Introduction
	1.1 Audience
	1.2 Purpose
	1.3 Additional Reading

	Chapter 2 Getting Started
	2.1 Introduction
	2.2 About IEG
	2.2.1 Datastore (DS)
	2.2.2 Resource Store (RS)
	2.2.3 Script Structure

	2.3 Evaluating the Use of IEG
	2.4 The Basics
	2.4.1 Create a Schema
	2.4.2 Create a Script
	Adding a Section and a Question Page to an IEG Script

	2.4.3 Adding a Summary Page to an IEG Script
	2.4.4 Run a Script
	Validating a Script

	Chapter 3 Capturing Client Information
	3.1 Introduction
	3.2 Families and Households
	3.3 Household Relationships
	3.4 Summarizing Client Information

	Chapter 4 Capturing Related Data
	4.1 Introduction
	4.2 Capturing Composite Data
	4.3 Displaying Composite Data on a Summary
	4.4 Capturing Associated Data
	4.5 Displaying Associated Data on a Summary
	4.6 Deleting Associated Data

	Chapter 5 Efficient Ways of Capturing Data
	5.1 Introduction
	5.2 List Questions
	5.2.1 Single-select

	5.3 Codetable Questions
	5.4 Conditional Elements
	5.4.1 Conditional Sections
	5.4.2 Conditional Pages
	5.4.3 Conditional Clusters

	5.5 Question Matrices
	5.6 Fast Path Navigation
	5.6.1 List Question driving a Loop
	5.6.2 Eligibility Criteria
	5.6.3 Fast Path Conditions
	5.6.4 Condition in Fast Path Loop

	5.7 Implicit Delete

	Chapter 6 Other Script Development Considerations
	6.1 Introduction
	6.2 Displaying Data as Read-Only
	6.3 Invoking External Functionality Using Expressions
	6.4 Reusing Scripts
	6.5 Source Control and Versioning

	Chapter 7 Integrating IEG into a Cúram Application
	7.1 Introduction
	7.2 Creating a Script Execution
	7.3 Specifying a Redirection URL
	7.4 Running the IEG Player in a Tab
	7.5 Running the IEG Player in a Modal Dialog
	7.5.1 Opening the IEG Player in a Modal Dialog
	7.5.2 Exiting a Script Execution in a Modal Dialog
	Directly Closing the Modal on Script Completion
	Progressing to Further UIM Screen/s in the Modal Dialog

	7.6 Cleaning Up Application Data
	7.7 Resuming Executed Scripts

	Chapter 8 Managing Captured Data
	8.1 Introduction
	8.2 Retrieving Captured Data
	8.3 Pre-Populating Scripts with Captured Data

	Chapter 9 Using the Resource Store
	9.1 Introduction
	9.2 Listing all Resources
	9.3 Uploading a New Resource
	9.4 Removing an Existing Resource
	9.5 Updating an Existing Resource
	9.6 Downloading an Existing Resource
	9.7 Adding Images
	9.8 Changing Static Text
	9.9 Changing the Default File Encoding

	Chapter 10 Using IBM Rational AppScan to scan IEG
	10.1 Introduction
	10.2 Preparation
	10.3 Relationship Pages
	10.4 Scan Configuration
	10.5 Test Policy
	10.6 Explore Options
	10.7 Communications and Proxy
	10.8 Test Options
	10.9 Multi-Step Operations
	10.10 Exclude Paths and Files
	10.11 Complete
	10.12 Running the Scan

	Notices
	Trademarks

