
IBM Cúram Social Program Management

Using the Data Mapping Engine

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2008,2011 Cúram Software Limited

Table of Contents

Chapter 1 Introduction ... 1
1.1 Purpose ... 1
1.2 Audience .. 1
1.3 Prerequisites ... 2
1.4 Chapters in this Guide .. 3

Chapter 2 Understanding Data Mapping ... 4
2.1 Introduction .. 4
2.2 Understanding How Data Is Stored in the CDS ... 4
2.3 Creating Logical Maps ... 5
2.4 Considering Validation Issues in Data Mapping ... 5

Chapter 3 Writing Mapping Specifications and Configurations for Static Evidence and PDFs
... 6

3.1 Introduction .. 6
3.2 Writing Mapping Specifications .. 6

3.2.1 Simple Mapping Specification .. 6
3.2.2 Mapping Condition Expressions ... 7
3.2.3 Mapping Code Tables Values ... 8
3.2.4 Mapping to Multiple Target Entities ... 8
3.2.5 Matching One Parent Entity to Several Child Entities 9
3.2.6 Matching Patterns and Following Associations in the CDS 9
3.2.7 Mapping Members of a Household ... 10

3.3 Writing Mapping Configurations ... 11
3.3.1 For the Evidence Application Builder .. 11
3.3.2 For the PDF Application Builder .. 16

Chapter 4 Writing Mapping Specifications and Configurations for Dynamic Evidence 21
4.1 Introduction .. 21
4.2 Writing Mapping Specifications and Configurations for Dynamic Evidence 21

4.2.1 Simple Dynamic Evidence Metadata .. 21
4.2.2 Simple Mapping Specification .. 22
4.2.3 Simple Mapping Configuration .. 23
4.2.4 Mapping Parent-Child Dynamic Evidence ... 23

Chapter 5 Mapping to Third Parties ... 26
5.1 Introduction .. 26

iii

5.2 How to Map Third Parties .. 26
5.2.1 Participant Creator Definition ... 27
5.2.2 Create Participant .. 27
5.2.3 Sample Mapping Schema ... 27
5.2.4 Sample Mapping Configuration .. 28

Appendix A Schema for Mapping Specifications ... 31
A.1 Schema .. 31

Appendix B Schema for Mapping Configurations .. 34
B.1 Schema .. 34

Notices ... 37

Using the Data Mapping Engine

iv

Chapter 1

Introduction

1.1 Purpose

The purpose of this guide is to describe how to use the Cúram Data Map-
ping Engine (CDME) to map citizen data captured during intake and screen-
ing processing to either:

• Evidence and non-evidence entities within Cúram cases, or

• Filled-out Application forms in PDF format

Both options streamline the citizen's application for benefit programs. Map-
ping data to case evidence allows that data to be used to determine eligibil-
ity as part of Cúram case processing. Mapping data to PDF application
forms speeds up the process of completing these forms for manual submis-
sion.

This guide should be used in conjunction with the IBM Cúram Data Map-
ping Editor Guide. The Data Mapping Editor is the simplest tool for rapidly
creating mappings to evidence. The Data Mapping Editor saves these map-
pings in an XML mapping language. This guide describes the details of the
XML mapping language which is useful for understanding how existing
mappings are executed, for understanding more advanced mappings, for cre-
ating mapping to PDF forms and for maintaining older mappings that may
not be compatible with the data mapping editor.

1.2 Audience

Data mapping is a collaborative project between business analysts and de-
velopers. The role of business analysts is to logically map citizen data to
either fields on a PDF application form or to evidence entities. The role of
developers is to translate the business analysts' efforts by writing mapping
specifications and mapping configurations in XML.

1

1.3 Prerequisites

The following table lists the prerequisites for the Data Mapping Engine and
provides recommended reading to gain knowledge about these prerequisites:

Prerequisite Recommended Read-
ing

Target Audience

XML ht-
tp://www.w3.org/XML/

Developers

Cúram Cases Case entity descriptions
in the Core reference
model; Cúram In-
tegrated Case
Management Guide

Business Analysts

Inside Eligibil-
ity and Entitle-
ment Using Cúram
Express Rules

Developers

Cúram Participants Participant entity de-
scriptions in the Core
reference model;
Cúram Parti-
cipant Guide

Business Analysts

Common Datastore
(CDS)

Creating Data-
store Schemas

Developers

IBM Cúram Universal
Access™

Universal Access
Customization
Guide

Developers

Cúram Temporal Evid-
ence

Evidence entity descrip-
tions in the Core refer-
ence model; Cúram
Temporal Evid-
ence Guide

Business Analysts

Designing Cúram
Temporal Evid-
ence Solutions

Developers

PDF Forms ht-
tp://www.adobe.com/pr
oducts/ac-
robat/
?promoid=BPDDU

Developers

Table 1.1 Prerequisites for Cúram Data Mapping Engine

Using the Data Mapping Engine

2

http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.adobe.com/products/acrobat/?promoid=BPDDU
http://www.adobe.com/products/acrobat/?promoid=BPDDU
http://www.adobe.com/products/acrobat/?promoid=BPDDU
http://www.adobe.com/products/acrobat/?promoid=BPDDU
http://www.adobe.com/products/acrobat/?promoid=BPDDU

1.4 Chapters in this Guide

The following chapters are in this guide:

Chapter 2 - Understanding Data Mapping
This chapter describes how the Cúram Data Mapping Engine converts
citizen data (captured in the Universal Access Portal and stored in the
Cúram Datastore) to fields on PDF application forms or evidence entit-
ies within cases.

Chapter 3 - Writing Mapping Specifications and Configurations for
Static Evidence and PDFs

This chapter describes how to write mapping specifications and map-
ping configurations in XML for static evidence and pdfs. Mapping spe-
cifications map data from one form to another, e.g., from entities in the
CDS structure to entities in the database. Mapping configurations de-
scribe how to populate PDF applications or convert data to evidence en-
tities.

Chapter 4 - Writing Mapping Specifications and Configuration for Dy-
namic Evidence

This chapter describes how to write mapping specifications and map-
ping configurations in XML for dynamic evidence.

Chapter 5 - Mapping to Third Parties
This chapter describes how to tackle the mapping of Third Parties as
Case Participants onto cases.

Appendix A - Schema for Mapping Specifications
This appendix defines the grammar to follow when writing mapping
specifications in XML.

Appendix B - Schema for Mapping Configurations
This appendix defines the grammar to follow when writing mapping
configurations in XML.

Appendix C - Compliancy
This appendix describes how to develop in a compliant manner.

Using the Data Mapping Engine

3

Chapter 2

Understanding Data Mapping

2.1 Introduction

The Cúram Data Mapping Engine (CDME) works with the Cúram Univer-
sal Access Portal to help citizens screen themselves for benefits. During the
screening and intake process, a citizen will submit his or her information.
CDME is responsible for converting the citizen's information into either a
PDF application form (filled out with citizen's details) or a Cúram case with
new evidence entities.

The CDME works as follows. When the citizen submits his or her informa-
tion, that information gets stored in the Cúram Datastore (CDS). CDME
reads the data and uses rules from a mapping specification to transform the
data into something readable by an application builder. A PDF application
builder uses mapping configuration to determine how the citizen's data will
appear on a PDF application form. An evidence application builder uses a
mapping configuration to call on the evidence API in order to create the new
evidence entities for the new case.

2.2 Understanding How Data Is Stored in the CDS

When mapping citizen data to case evidence or PDF appication forms, the
first task is to examine the desired output for the citizen's data, i.e., as case
evidence or a completed application form. The next step is to examine how
a citizen's data is stored in the CDS as part of the intake and screening pro-
cess. Once you know the the information required in case evidence or PDF
application forms and the information stored in the CDS, you can then cre-
ate logical maps between the forms of data.

The purpose of the screening and intake process is to help citizens apply for
benefits. At the very minimum, an application form or case evidence will re-
quire the names of the members in a household and their relationships to the
person applying for benefits. IEG scripts capture this information about a

4

citizen and store it in the CDS according a pre-defined schema. Figure 2.1,
Example of Data Structure in Cúram Datastore displays an example of a
data structure in the CDS for a single benefit application and includes the
members of a household and their relationships.

Figure 2.1 Example of Data Structure in Cúram Datastore

2.3 Creating Logical Maps

A logical map breaks down information about a person stored in CDS into
the case evidence entities: household member, living arrangement, and dis-
ability.

Part of creating a logical map is to recognize business rules which may ef-
fect the way in which CDME maps data. For example, if the citizen indic-
ates that he or she is blind and disabled, the business rules dictate that two
disability evidence records should be created for the citizen (one for blind-
ness and one for disability).

2.4 Considering Validation Issues in Data Mapping

As part of the intake and screening process, it is necessary to strike a bal-
ance between validating evidence so that it can be inserted sensibly while
also insuring that the citizen is not asked unnecessary questions. One ap-
proach to considering validation issues in data mapping is to ensure that
during intake, the evidence is created with minimal validations, defaulted or
temporary values which can be updated later.

Using the Data Mapping Engine

5

Chapter 3

Writing Mapping Specifications and Configurations
for Static Evidence and PDFs

3.1 Introduction

Developers can use the logical data map as the requirements specification
for writing mapping specifications and mapping configurations. A mapping
specification describes how to map data stored in a particular structure to a
different one. Every mapping specification refers to a source, where the data
is coming from, and a target, where the data is going to.

While the mapping specification contains the rules required to transform the
data from one form to another, more information is required to turn the
transformed data into case evidence or completed PDF application forms.
This additional information is supplied in the mapping configuration. This
chapter provides examples on how to write mapping specifications and
mapping configurations.

3.2 Writing Mapping Specifications

Mapping specifications are used by the CDME to transform data in the CDS
into another form. All the data contained in a citizen’s intake and screening
application can be retrieved by reading the Application Entity, the data con-
tained in its children, its children’s children and so on. The Data Mapping
Engine traverses the data in the CDS and applies rules expressed in XML to
complete the transformation of data.

3.2.1 Simple Mapping Specification

This simple mapping specification maps a person entity in CDS to a house-
hold member evidence entity:

6

1 <?xml version="1.0" encoding="UTF-8"?>
2 <map xmlns="http://www.curamsoftware.com/schemas/GUMBO/Map"
3 name="TestMapping">
4 <map-entity source="Person">
5 <target-entity name="HouseholdMember"

id=”HouseholdMemberTarget”>
6 <map-attribute from="isNativeAmerican"

to="natAlaskOrAmerInd"/>
7 <map-attribute from="comments" to="comments"/>
8 </target-entity>
9 </map-entity>
10 </map>

Line 4 indicates the source of the mapping while line 5 indicates the target.
This rule can be paraphrased as ”For each Person entity encountered in the
CDS, create a corresponding HouseholdMember entity”. The
<target-entity> element contains two <map-attribute> elements on lines 6
and 7.

The <map-attribute> element on line 6 states that the isNativeAmerican at-
tribute on the Person entity is mapped to the natAlaskOrAmerInd attribute
on the HouseholdMember entity. Attributes are not mapped unless there is a
<map-attribute> element specific. This is why line 6 states that the com-
ments attribute in Person is mapped to the comments attribute in Household-
Member.

In some cases, it is necessary to specify that a mapping only occurs under
particular circumstances. For example, a HeadOfHousehold entity should
only be created in the target system when the Mapping encounters a Person
entity in the CDS that has an isPrimaryParticipant indicator set to true. The
sample above can be expanded to include this rule as follows:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <map xmlns="http://www.curamsoftware.com/schemas/GUMBO/Map"
3 name="TestMapping">
4 <map-entity source="Person">
5 <target-entity name="HouseholdMember"

id=”HouseholdMemberTarget”>
6 <map-attribute from="isNativeAmerican"

to="natAlaskOrAmerInd"/>
7 <map-attribute from="comments" to="comments"/>
8 </target-entity>
9 </map-entity>
10 <condition expression=”Person.isPrimaryParticipant==true”>
11 <target-entity name=”HeadOfHousehold/>
12 </condition>
13 </map>

3.2.2 Mapping Condition Expressions

In this example, the values Yes, No and Unanswered are represented as
code table values and are used to record whether the person is a US Citizen
or not. The value ITYN4001 corresponds to the client answering ”Yes” to
this question. Note the use of ", this is because the quote symbols ””
cannot be used directly in XML. The syntax for conditionally mapping at-
tributes is exactly the same.

1 <condition expression="Person.isBlind=="ITYN4001"">

Using the Data Mapping Engine

7

2 <target-entity
3 name="Disability"
4 id=”BlindDisabilityTarget”
5 >
6 <set-attribute
7 name="disabilityType"
8 value="DT1"
9 />
10 </target-entity>
11 </condition>

3.2.3 Mapping Code Tables Values

In some mappings, code table values recorded in the CDS can be translated
directly into codetable values used in the target model. In these cases, a sec-
tion at the beginning of the mapping script can be used to specify the
codetable mappings. For example:

1 <map-code-table source-codetable="CITIZENSTATUS"
target-codetable="AlienStatus">

2 <map-value source="US1" target="AS4"/>
3 <map-value source="US2" target="AS1"/>
4 </map-code-table>

In Sample 5, values from the CITIZENSTATUS codetable are being
mapped to values in the AlienStatus codetable.

3.2.4 Mapping to Multiple Target Entities

Sometimes it is necessary to create a group of Target Entities together. This
is usually done when creating a group of evidence entities, one of which is a
parent and the others are children of that parent evidence entity. See the
sample below for an example of how to create groups of related target entit-
ies.

1
<target-entities>

2 <target-entity
3 name="BusinessAsset" id=”BusinessAssetTarget”
4 type="parent"
5 >
6 <map-attribute
7 from="resourceAmount"
8 to="amount"
9 />
10 <map-attribute
11 from="amountOwed"
12 to="amountOwed"
13 />
14 </target-entity>
15 <target-entity
16 name="Ownership" id=”OwnershipTarget”
17 type="child"
18 >
19 <set-attribute
20 name="percentageOwned"
21 value="100.0"
22 />
23 </target-entity>
24 </target-entities>

Using the Data Mapping Engine

8

In this example, two entities are created. The BusinessAsset entity is parent
evidence, while the Ownership entity is a child. Modelling the mapping in
this way ensures that the correct Parent/Child evidence entity patterns are
respected when the evidence is created by the Evidence Application Builder.

3.2.5 Matching One Parent Entity to Several Child Entities

In Section 3.2.4, Mapping to Multiple Target Entities , a group of target en-
tities were created in which the child and parent entities were related to each
other. In some cases, it is necessary to create only one parent entity for the
whole case. All subsequent child entities are related to the same parent en-
tity. An example of how to do this is shown below.

1 <target-entities>
2 <target-entity name="HholdMealsGroup" type="parent"

attachment=”case” id=”MealGroup”>
3 <set-attribute name="groupName" value="sample"/>
4 </target-entity>
5
6 <target-entity name="MealGroupMember" type="child"

id=”MealGroupMember”>
7 </target-entity>
8 </target-entities>

In this example, a HholdMealsGroup and a MealGroupMember is created
the first time the rule is executed. Each subsequent time the rule is executed,
only a MealGroupMember is created and is associated with the same Hhold-
MealsGroup entity.

3.2.6 Matching Patterns and Following Associations in the CDS

In the following scenario the customers have requested that the mapping en-
gine be used to fill out a PDF form that looks something like this:

Name Employer Name Start Date Annual Pay Be-
fore Taxes

Pat The Gingerman
Bakery

1/2/2004 30000

Grace Jarmin Pharma-
ceutical

1/3/2002 50000

Table 3.1 Sample PDF Form

Each field on this PDF form has a unique identity. For example, the field
containing the name, Pat, is identified as Job0.Name. The field containing
30000 is identified as Job0.Salary.

Consider how the information from the intake might be stored in the CDS:

Using the Data Mapping Engine

9

Figure 3.1 Job Income in CDS

In order to fill out the Name field on the on the above PDF form, the map-
ping specification must contain a rule which states that for each Income be-
longing to a Person, output the Person’s firstName to the Name field. In the
mapping language, this can be expressed as follows:

1 <map-entity source=”Person”>
2 <map-entity source="Income">
3 <target-entity name="Job" id=”JobTarget”>
4 <map-attribute from="firstName" to="Name" entity="Person"/>
5 <map-attribute from="employerName" to="Employer"/>
6 …
7 </target-entity>
8 </map-entity>
9 </map-entity>

This mapping rule can be paraphrased as ”For each Income Entity contained
within a Person Entity, create a Target Entity of type Job. The Name attrib-
ute of the Job entity is mapped from the firstName attribute of the Person
Entity that contains the Income Entity being mapped.”

Note the use of the syntax entity=”Person” on line 4 to denote that the first-
Name attribute comes from the Person entity, not the Income entity. A more
complex example of this type of mapping specification involves following
associations or links from one entity to another.

3.2.7 Mapping Members of a Household

The table below depicts how relationships are typically expressed in an ap-

Using the Data Mapping Engine

10

plication form. The requirement is to map the CDS entities to a pre-filled
application form similar to the one shown below. The difficult part in this
case is to fill in field titled ”How is this Person Related to You?” This field
goes by the shorthand ”RelType” in this example.

Name How Is Person
Related to You?

Date of Birth Social Security
Number

Grace Spouse 1/2/1981 209-57-9943

Ella Child 1/3/2002 987-23-1190

Table 3.2 Members of the Household

In this example, the required mapping is written as follows:

1 <condition expression="Person.isPrimaryParticipant == true">
2 <map-entity source="Person">
3 <map-entity source="Relationship">
4 <follow-association source="personID">
5 <target-entity name="Householder" id=”Householder”>
6 <map-attribute from="firstName" to="Name"/>
7 <map-attribute from="relationshipType" to="RelType"

entity=”Relationship”/>
8 </target-entity>
9 </follow-association>
10 </map-entity>
11 </map-entity>
12 </condition>

This can be paraphrased as ”For each Relationship contained within the
primary participant, follow the association to the Person referred to by that
Relationship. Map the firstName attribute of this Person entity to the Name
field. Map the relationshipType attribute of the Relationship Entity to the
RelType field.” The key to understanding the example is on line 7, where
the RelType field is mapped from an attribute in the Relationship entity.

3.3 Writing Mapping Configurations

This section provides samples of mapping configurations for both the evid-
ence application builder and the PDF application builder.

3.3.1 For the Evidence Application Builder

When configured to use the Evidence Application Builder, the work of the
Mapping Engine is divided into two phases. In the first phase, the Mapping
Engine creates an Integrated Case including Case Members and creates
Concern Role Relationships between the Case Members. The Case Mem-
bers are populated by finding Entities in the Data Store called ”Person”. The
Data Mapping Engine is designed to treat all Common Data Store Entities
called Person as referring to a Person or Prospect Person on a Cúram Case.

Taking Figure 3.2, Using Data in CDS as an example, phase 1 of the map-
ping the Evidence Application Builder will create an integrated case with

Using the Data Mapping Engine

11

four case members where:

• Pat is called the primary participant.

• A pair of concern role relationship records are created to indicate that
Grace and Pat are married.

• The system creates all other concern role relationships as well (for par-
ental and sibling relationships).

• Address and phone number records are also created.

Phase 2 of the mapping process is concerned with creating evidence entities,
samples of which are included in the remainder of this section.

Figure 3.2 Using Data in CDS

Simple Mapping Configuration

The following example illustrates a configuration for the Evidence Applica-
tion Builder:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <application-builder-config

xmlns="http://www.curamsoftware.com/schemas/GUMBO/ApplicationBuilderConfig">
3 <evidence-config package="curam.evidence">
4 <entity name="HouseholdMember"/>
5 <entity name="HeadOfHousehold"/>
6 <evidence-config package="curam.evidence">
7 </application-builder-config>

In this example, the Evidence Application Builder has been configured to
create HouseholdMember and HeadOfHousehold evidence. On line 3 the
base Java package name is specified as curam.evidence. The Evidence Ap-

Using the Data Mapping Engine

12

plication Builder uses this information to infer the following about House-
holdMember:

1. The name of the Evidence Service Layer class is
curam.evidence.service.HouseholdMember.

2. The name of name of the operation on this class used to create the
evidence is createHouseholdMemberEvidence().

3. The name of the class passed in to this call as an argument is
curam.evidence.entity.struct.HouseholdMemberEvidenceDetails.

The Evidence Application Builder uses this information to construct the
HouseholdMember evidence for the current Person being processed.

All of the above is based on the assumption that the evidence is coded ac-
cording to certain patterns. This is guaranteed to be the case if the Evidence
Generator is used to generate the evidence. It is possible for the Evidence
Application Builder to work with hand coded Evidence as long as it follows
the patterns used by the evidence generator.

Handling of caseParticipantDetails Fields

In order to execute the createHouseholdMemberEvidence() operation on the
HouseholdMember, the CDME has to populate the caseParticipantDetails
field of the HouseholdMemberEvidenceDetails struct, an extract of which is
shown below:

public final class HouseholdMemberEvidenceDetails
implements java.io.Serializable, curam.util.type.DeepCloneable {

/** Attribute of the struct. */
public curam.core.sl.struct.CaseIDKey caseIDKey;

/** Attribute of the struct. */
public curam.core.sl.struct.CaseParticipantDetails

caseParticipantDetails;

/** Attribute of the struct. */
public curam.core.sl.struct.EvidenceDescriptorDetails descriptor;

/** Attribute of the struct. */
public curam.evidence.entity.struct.HouseholdMemberDtls dtls;

…
}

The members of the dtls struct are, by and large, filled out through the
<set-attribute> and <map-attribute> elements in the Mapping Specification.
For example, the following line in the mapping specification leads to the
field natHawOrPaIsInd being populated with a value in the dtls struct:

<map-attribute
from="nativeAlaskanOrAmericanIndian"
to="natHawOrPaIsInd"

/>

The caseParticipantDetails field is often present in an EvidenceDetails

Using the Data Mapping Engine

13

struct. In this example, a Case Participant is created for Grace and the case-
ParticipantDetails refer to this Case Participant. The Data Mapping Engine
does this automatically whenever it finds a field called caseParticipantDe-
tails on the EvidenceDetails struct. Sometimes, however, there are vari-
ations required in the handling of case participants, for example, when the
Evidence Details struct contains additional Case Participants that refer to
third parties. Consider the following:

public final class AnnuityEvidenceDetails
implements java.io.Serializable, curam.util.type.DeepCloneable {

/** Attribute of the struct. */
public curam.core.sl.struct.CaseIDKey caseIDKey;

/** Attribute of the struct. */
public curam.core.sl.struct.CaseParticipantDetails

instCaseParticipantDetails;

/** Attribute of the struct. */
public curam.core.sl.struct.EvidenceDescriptorDetails descriptor;

/** Attribute of the struct. */
public curam.evidence.entity.struct.AnnuityDtls dtls;

/** Attribute of the struct. */
public curam.evidence.entity.struct.AnnuityCaseParticipantDetails

annuityCaseParticipantDetails;
}

In this example, the Case Participant who owns the Annuity is referred to in
the AnnuityCaseParticipantDetails struct aggregated under the field name
annuityCaseParticipantDetails. The institution that holds the annuity is de-
scribed in the CaseParticipantDetails struct and is aggregated under the field
name instCaseParticipantDetails. This variation can be catered for using the
following Evidence Application Builder Configuration:

1 <entity
2 case-participant-class-name="curam.core.sl.struct.CaseParticipantDetails"
3 case-participant-relationship-name="annuityCaseParticipantDetails"

name="Annuity"
4 >
5 <ev-field
6 aggregation="instCaseParticipantDetails"
7 referenced-as="participantName"
8 target-name="participantName"
9 />
10 <ev-field
11 aggregation="instCaseParticipantDetails"
12 referenced-as="address"
13 target-name="address"
14 />
15 </entity>

Lines 2 and 3 tell the Evidence Application Builder that the caseParticipant-
Details for this evidence entity are referred to by the field name annu-
ityCaseParticipantDetails using the struct CaseParticipantDetails. The lines
5-9 tell the Evidence Application Builder that the field participantName of
the aggregated struct instCaseParticipantDetails can be referenced in the
Mapping Specification as ”participantName” (line 7). Similarly for the insti-
tutional address in lines 10-14. Using the following example, it is possible
map the name and address of the institution holding the Annuity:

Using the Data Mapping Engine

14

1 <target-entity name=”Annuity” id=”AnnuityTarget”>
2 <map-attribute
3 from="institutionName"
4 to="participantName"
5 />
6 <map-attribute
7 from="institutionAddress"
8 to="address"
9 />
10 </target-entity>

In some cases, it may be considered too onerous to ask the client to fill out
all this kind of third party information as part of an online intake. Instead the
Mapping Specification can be used to default these values and they can be
filled out properly at the interview stage. Here is an example of how to de-
fault the values for a third party participant like a financial institution:

1 <target-entity name="Annuity" id=”AnnuityTarget”>
2 <map-attribute
3 from="resourceAmount"
4 to="annuityValue"
5 />
6 <set-attribute
7 name="participantName"
8 value="Unknown"
9 />
10 <set-attribute
11 name="address"
12 value="curam.blankaddress"
13 />
14 </target-entity>

The value curam.blankaddress on line 12 causes a blank address to be inser-
ted for the participant.

Setting Target Entity Identifiers

On line 1 of Sample 13, as with a number of the previous samples the
<target-entity> element has included an id attribute ”AnnuityTarget”. Al-
though this attribute is optional, it is good practice to include an id in all
<target-entity> elements. This allows the Data Mapping Engine to distin-
guish between different distinct mappings from the same entity to the same
target entity type. Consider the following example: The Person entity in the
Common Data Store has two Boolean indicators: isBlind and hasDisability.
Both map to the same target entity type, Disability, as follows:

1 <map-entity source=”Person”>
1 <condition expression="Person.isBlind==true">
2 <target-entity
3 id="DisabilityBlind"
4 name="Disability"
5 >
6 <set-attribute
7 name="disabilityType"
8 value="DT1"
9 />
10 </target-entity>
11 </condition>
12 <!-- Create an empty disability record. -->
13 <condition expression="Person.hasDisability==true">

Using the Data Mapping Engine

15

14 <target-entity
15 id="DisabilityUnspecified"
16 name="Disability"
17 />
18 </condition>
19 </map-entity>

The first target on lines 1-11 ensures that if an applicant indicates that they
are blind then a disability record of type blindness is created. The second
target, lines13-18, checks the hasDisability indicator and if it is set to true
then a Disability record of unspecified type is created. By giving the two
mappings a distinct id, the Mapping Engine can tell the two mappings apart.
Without the id, the second mapping will not be processed.

3.3.2 For the PDF Application Builder

A PDF form contains a number of fields of various types. Each field has a
unique name. The Cúram Workspace Services uses this unique name to ref-
erence the field so that it can write data to that field. In order to make this
process work, the author of the PDF Form needs to name these fields and set
properties of these fields according to certain conventions. If these conven-
tions are followed, the PDF Application Builder will be able to map data to
those fields.

Caution

This section describes the custom PDF Application Builder, it al-
lows mapping to a tailored PDF Form. Customers can also avail of
the Generic PDF Builder, see the section 'How to Customize the
Generic PDF for Processed Applications' in the Chapter Customiz-
ing the Handling of Submitted Applications of the Cúram Universal
Access Customization Guide.

Sections and Fields

The most basic convention is that fields are grouped into ”Sections”. These
Sections do not necessarily correspond to sections on the form but in many
cases they will. For example:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <application-builder-config

xmlns="http://www.curamsoftware.com/schemas/GUMBO/ApplicationBuilderConfig">
3 <pdf-config>
4 <section name="Applicant">
5 <field name="Name" type="append" append-separator=" "/>
6 <field name="SSN"/>
7 <field name="DateofBirth"/>
8 <field name="Gender" type="button-radio"/>
9 <field name="USCitizen" type="button-radio"/>
10 <field name="blackOrAfricanAmerican"

type="button-checkbox"/>
11 <field name="nativeAlaskanOrAmericanIndian"

type="button-checkbox"/>
12 <field name="asian" type="button-checkbox"/>
13 <field name="nativeHawaiianOrPacificIslander"

type="button-checkbox"/>
14 <field name="whiteOrCaucasian"

Using the Data Mapping Engine

16

type="button-checkbox"/>
15 <field name="EthnicOrigin" type="button-radio"/>
16 </section>
17 </pdf-config>
18</application-builder-config>

Sample 14 shows an extract from a PDF Application Builder Configuration.
It refers to a section called applicant. Based on Sample 14 line 4, the PDF
Application Builder expects the target PDF form to contain a field called
”Applicant.Name”, a text field. Line 8 refers to a field on the PDF Form
called ”Applicant.Gender”. This field is a radio button, whereas lines 10-14
all refer to fields that are checkbox buttons.

Filling Text Fields

Line 6 of Sample 14 refers to a plain standard text field. The corresponding
mapping might look something like this:

<target-entity name="Applicant">
<map-attribute from="ssn" to="SSN"/>

</target-entity>

Line 5 is somewhat different. The type is marked as ”append”. This means
that the same text field can be written to multiple times and each time the
Mapping Engine writes to the text field, the result is appended to the current
value of the text field rather than overwriting it. Each time an append oc-
curs, the new data is separated from the old data by the append-separator, in
this case a single space character. Taking a mapping file like that shown in
Sample 16, and combining it with the Mapping Configuration shown in
Sample 14 will result in the field Applicant.Name being filled with the Ap-
plicants first name, middle initial and surname e.g. ”Pat A Kayek”.

<target-entity name="Applicant">
<map-attribute from="firstName" to="Name"/>
<map-attribute from="middleInitial" to="Name"/>
<map-attribute from="lastName" to="Name"/>

</target-entity>

Appending text fields are also useful for creating a comma separated list of
items. Consider a field that asks the client to provide a list of people in their
household who are pregnant. An extract from the mapping XML might typ-
ically look something like this:

<condition expression="Person.isPregnant == true">
<target-entity name="Pregnancy">

<map-attribute from="firstName" to="Pregnancy"/>
<set-attribute name="HasPregnancies" value="Yes"/>

</target-entity>
</condition>

The corresponding Mapping Configuration is shown in Figure 18. Each time
the Mapping Engine processes a Person in the household for which the is-
Pregnant indicator is set to true, the first name of that person is appended to
the Pregnancy.Pregnancies field.

Using the Data Mapping Engine

17

<section name="Pregnancy">
<field name="Pregnancies" type="button-checkbox"/>
<field name="Pregnancy" type="append" append-separator=", "/>

</section>

Repeated Sections and Code Table Descriptions

Some forms contain repeated sections, for example ”List the details of all
the people in your household” or ”List all your sources of Income from
Work”. The PDF Application Builder is designed to deal with this provided
the PDF Author names the fields according to the correct conventions. For
example, fields used to collect data about household members might be
named as follows:

Name How Is Person
Related to You?

Date of Birth Social Security
Number

OtherPer-
son0.Name

OtherPer-
son0.RelType

OtherPer-
son0.DateOfBirth

OtherPer-
son0.SSN

OtherPer-
son1.Name

OtherPer-
son1.RelType

ÒtherPerson1.Dat
eOfBirth

OtherPer-
son1.SSN

OtherPer-
son2.Name

OtherPer-
son2.RelType

OtherPer-
son2.DateOfBirth

OtherPer-
son2.SSN

Table 3.3 Fields in a PDF Form for Recording Household Members

The corresponding Mapping Configuration would be written as follows:

1 <section name="Person" type="multiple">
2 <field name="Name" type="append" append-separator=" "/>
3 <field name="RelType" codetable-class="RelationshipTypeCode"/>
4 <field name="DateofBirth"/>
5 </section>

Note, line 1 the attribute type=”multiple” is what causes the section to be re-
peated. Note the codetable-class attribute on line 3 in this sample. This is a
very useful attribute that causes codetable values to be translated into local-
ized descriptions. By using it in the above context the script author ensures
that the second column is populated with localized values like ”Parent” and
”Sibling” instead of meaningless codes like ”RT1” or ”RT3”.

Check Boxes

A check box is a single field that can either be checked or unchecked. The
PDF Application Builder assumes that setting a checkbox field to the value
”Yes” will cause it to be checked whereas setting it to ”No” causes it to be
unchecked. The PDF Form Author needs to ensure that this convention is
adhered to. Whenever the Mapping Engine maps a boolean value to a
checkbox field, it is automatically mapped as follows: True maps to ”Yes”
and false maps to ”No”.

Using the Data Mapping Engine

18

Radio Buttons

A collection of Radio Buttons are treated as a single field in a PDF form.
Only one item at a time can be selected by the Radio Buttons. The individu-
al items in the Radio button are selected by writing a particular value to the
radio button. The PDF Form author can determine which item is selected by
specifying an ”export value” for each item. A typical use for a Radio button
with Cúram is to use Export values to denote a number of code table items.

Consider the example of a Radio Button that is used to denote Male or Fe-
male. The codetable values for Male and Female are ”SX1” and ”SX2” re-
spectively. The PDF author creates a single radio button field called
”Applicant.Gender”. The ”Male” item is denoted by the export value ”SX1”
while the female item is denoted by the export value ”SX2”. The mapping
looks like this:

<target-entity name="Applicant">
<map-attribute from="gender" to="Gender"/>

</target-entity>

The corresponding Mapping Configuration looks like this:

<section name="Applicant">
<field name="Gender" type="button-radio"/>

</section>

Choice Combos

A Choice Combo is a drop-down list of items where the user can choose one
item. The name of the item provides enough information for the user of the
form to decide which item to choose. As an example, imagine that the per-
son designing the form wants to provide a drop down to represent Alien
Status of a Person. Curam has an AlienStatus codetable which has codes
corresponding to the following descriptions:

• Alien

• US Citizen

• Undocumented Alien

• Refugee

• Non Citizen National

The PDF form designer, creates a Choice Combo and sets the item text for
each item in the drop down to the values above. To ensure that the code ta-
ble description rather than the code table code gets sent to the form, the fol-
lowing configuration is required:

<section name="AlienPerson" type="multiple">
<field name="CitizenshipStatus" type="choice-combo" codetable-class="AlienStatus"/>

</section>

Using the Data Mapping Engine

19

How to configure the PDF Application Form

First load your PDF form into the Universal Access Portal. It's important to
use a PDF *Form* not just a PDF document. The PDF must contain a form
and the form must contain fields. If you want to use the PDF Application
Builder, then each field on the form must have a unique name e.g. Personal-
Details.surname vs. Child1Details.surname. You should use a program like
Adobe® Acrobat Writer Professional or GlobalSCAPE CutePDF Pro to edit
your form.

Note, if you're using Adobe Acrobat Writer Professional ensure that you
save the form as an AcroForm not an XFA. You can upload your PDF by
logging into Curam as Administrator, choosing the Universal Access Ad-
ministration section and selecting PDF Forms. From here you can upload
the form and give it a sensible name. Every Intake Application has an Intake
Application Type so the next thing you need to do is ensure that your Intake
Application Type is associated with the correct PDF Form. You can do this
by going to Intake Applications, select the relevant Intake Application Type
and selecting Edit. Click on the drop down for PDF Form and your newly
loaded PDF Form should appear on this list. Select it. Next you need to spe-
cify PDF Mappings for the individual programs you are interested in.

Write a PDF Mapping xml and a PDF Application Configuration xml using
the instructions in the previous section in this guide. Go to the Programs
menu item in the Universal Access Admin section. A list of programs is dis-
played. View the program you are interested in. Select the Mapping tab on
the top right. Create a new mapping. Make sure that you select "PDF Form
Creation" instead of Evidence Creation. Upload the mapping configuration
file and mapping specification file. Test your mapping by performing an in-
take for the relevant program. At the end of the Intake, select the link to dis-
play the PDF file.

Using the Data Mapping Engine

20

Chapter 4

Writing Mapping Specifications and Configurations
for Dynamic Evidence

4.1 Introduction

The purpose of this document is to map citizen data captured during the in-
take process into dynamic evidence entities.

Prerequsites:

It is assumed that the reader has knowledge of the basic concepts of dynam-
ic evidence. In particular, it’s assumed that the reader has good understand-
ing of evidence nature, dynamic evidence type definition, evidence version
definition and xml Meta data of dynamic evidence.

4.2 Writing Mapping Specifications and Configura-
tions for Dynamic Evidence

Dynamic evidence by it's nature is not modeled. There is single entity (or a
set of entities) that contain data for all dynamic evidence types. A Dynamic
Evidence Type will have one or more Evidence Type Versions over its life-
time. At any point in time, only one Evidence Type Version will be effect-
ive. All metadata elements (Attributes, Relationships, etc.) will be defined at
the Evidence type Version level. So, the developer is responsible for provid-
ing the right mapping specification and configurations for the currently ef-
fective evidence type version.

4.2.1 Simple Dynamic Evidence Metadata

This simple metadata represents the structure for Household Member dy-
namic evidence type. The different types of attributes such as Boolean,
Codetable, Date and String are defined.below:

21

<?xml version="1.0" encoding="UTF-8"?>
<EvidenceTypeVersion xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="file://DynamicEvidenceMetadata.xsd">
<Model>

<Attributes>
<Attribute>

<DataAttribute name="blkOrAfrAmerInd">
<DomainType dataType="Boolean" />

</DataAttribute>
</Attribute>
<Attribute>

<DataAttribute name="ssnStatus">
<DomainType dataType="Codetable">

<CodetableOptions codetableName=
"SSNApplicationStatus" />

</DomainType>
</DataAttribute>

</Attribute>
<Attribute>

<DataAttribute name="startDate">
<DomainType dataType="Date" />

</DataAttribute>
</Attribute>
<Attribute>

<DataAttribute name="endDate">
<DomainType dataType="Date" />

</DataAttribute>
</Attribute>
<Attribute>

<DataAttribute name="comments">
<DomainType dataType="String" />

</DataAttribute>
</Attribute>

</Attributes>
</Model>
<Validations>

<PatternValidations>
</PatternValidations>

</Validations>
<UserInterface />

</EvidenceTypeVersion>

4.2.2 Simple Mapping Specification

This simple mapping specification maps data from HouseHoldMember en-
tity in a DataStore to a HouseHoldMember dynamic evidence entity defined
in the previous section.

Please note that the attribute name mentioned in the ’to’ field must match
the ’name’ field of ’DataAttribute’ element of dynamic evidence metadata.
In other words, a developer should make sure that the attribute to which the
data will be mapped are present in the metadata of that dynamic evidence
type.

<?xml version="1.0" encoding="UTF-8"?>
<map xmlns="http://www.curamsoftware.com/schemas/GUMBO/Map"

name="EvidenceMapping">
<map-entity source="HouseHoldMember">

<target-entity name="HouseHoldMember">
<map-attribute from="blkOrAfrAmerInd"

to="blkOrAfrAmerInd" />
<map-attribute from="ssnStatus" to="ssnStatus" />
<map-attribute from="startDate" to="startDate" />
<map-attribute from="endDate" to="endDate" />
<map-attribute from="comments" to="comments" />

</target-entity>
</map-entity>

Using the Data Mapping Engine

22

</map>

4.2.3 Simple Mapping Configuration

The following simple mapping configuration is defined for HouseHold-
Member dynamic evidence type.:

<?xml version="1.0" encoding="UTF-8"?>
<application-builder-config >

<evidence-config package="curam.gumbo.evidence">
<entity name="HouseHoldMember" ev-type-code="DE_HMEMBER"/>

</evidence-config>
</application-builder-config>

A developer must specify dynamic evidence type code in the ’ev-type-code’
attribute. This is to enable the system to determine whether the evidence is
static or dynamic. If this attribute is left blank or contains an invalid entry
the system assumes that the type of evidence is static and will proceed to
map the data.

4.2.4 Mapping Parent-Child Dynamic Evidence

This section describes how a mapping would be done for evidences which
have a parent-child relationship.

Simple Parent-Child Dynamic Evidence metadata

The following metadata has attributes for the Adoption dynamic evidence
type. This Adoption metadata has two attributes which describes that this
entity has two related CaseParticipant fields. The field "caseParticipan-
tRoleID" is a primary CaseParticipantRole and "parCaseParticipantRoleID"
is an associated CaseParticipantRole.

<?xml version="1.0" encoding="UTF-8"?>
<EvidenceTypeVersion xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance" xsi:noNamespaceSchemaLocation="../../../../
DynamicEvidence/source/curam/dynamicevidence/definition/impl/

xmlresources/DynamicEvidenceMetadata.xsd">
<Model>

<Attributes>
<Attribute>

<DataAttribute name="adoptionFinalizedDate">
<DomainType dataType="Date" />

</DataAttribute>
</Attribute>
<Attribute>

<RelatedCPAttribute name="caseParticipantRoleID"
participantType="Person" volatile="true" />

</Attribute>
<Attribute>

<RelatedCPAttribute name="parCaseParticipantRoleID"
participantType="Person" />

</Attribute>
</Attributes>

</Model>
<UserInterface>

<Cluster>
<RelCPCluster fullCreateParticipant="true">

Using the Data Mapping Engine

23

<StandardField source="caseParticipantRoleID" />
</RelCPCluster>

</Cluster>
<Cluster>

<RelCPCluster fullCreateParticipant="true">
<StandardField source="parCaseParticipantRoleID" />

</RelCPCluster>
</Cluster>

</UserInterface>
</EvidenceTypeVersion>

The AdoptionPayment metadata has Relationship with its parent dynamic
evidence.
<?xml version="1.0" encoding="UTF-8"?>
<EvidenceTypeVersion xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="file://DynamicEvidenceMetadata.xsd"
javaHookClassNameForCalculatedAttributes="curam.dynamicevidencetest.
hook.impl.AdoptionPaymentCalcualtedAttributeHook"
useHookForCalculatedAttributes="true">

<Model>
<Attributes>

<Attribute>
<DataAttribute name="amount">

<DomainType dataType="Money" />
</DataAttribute>

</Attribute>
<Attribute>

<CalculatedAttribute name="parentName">
<DomainType dataType="String" />

</CalculatedAttribute>
</Attribute>

</Attributes>
<Relationships>

<Relationship>
<MandatoryParent name="adoptions"

evidenceTypeCode="DET004" />
</Relationship>

</Relationships>
</Model>

</EvidenceTypeVersion>

Simple Parent-Child mapping specification

The mapping specification has parent-child relationship and there are few
attributes defined for adoption entity and which all are used to create a new
participant. The values for these attributes are read from Cúam DataStore.
<?xml version="1.0" encoding="UTF-8"?>
<map xmlns="http://www.curamsoftware.com/schemas/GUMBO/Map"

name="ParentChildMapping">
<map-entity source="Adoption">

<target-entities>
<target-entity name="Adoption" type="parent" id="parent">

<map-attribute from="adoptionFinalizedDate"
to="adoptionFinalizedDate" />

<map-attribute from="adParentName"
to="adParentName" />

<map-attribute from="adParentStreet1"
to="adParentStreet1" />

<map-attribute from="adParentStreet2"
to="adParentStreet2" />

<map-attribute from="adParentCity"
to="adParentCity" />

<map-attribute from="adParentState"
to="adParentState" />

<map-attribute from="adParentZipCode"
to="adParentZipCode" />

</target-entity>

Using the Data Mapping Engine

24

<target-entity name="AdoptionPayment"
type="child" id="child">

<set-attribute name="amount" value="2200" />
</target-entity>

</target-entities>
</map-entity>

</map>

Simple Mapping Configuration for parent-child relationship

The <def-create-participant> and <create-participant> elements are intro-
duced here.The very important thing to note here is that a new attribute
’dyn-evidence-primary-cpr-field-name’ has been added into <entity> ele-
ment. The purpose of this attribute is that developer needs to specify the at-
tribute name of the primary CaseParticipantRole defined in metadata. In this
example, ’caseParticipantRoleID’ is the primary CaseParticipantRole which
was defined in the Adoption entity. Similarly, the related CaseParticipan-
tRole attribute name (’parCaseParticipantRoleID’ in this example) is
defined in ’name’ field of <create-participant> element. Note: In the case of
static evidence, this same ’name’ field of <create-participant> element is be-
ing used to mention the corresponding aggregation name.
<?xml version="1.0" encoding="UTF-8"?>
<application-builder-config xmlns="http://www.curamsoftware.com/

schemas/GUMBO/ApplicationBuilderConfig">
<evidence-config package="curam.evidence">
<def-create-participant id="AdoptedParentDetails" type="RL13">

<participant-name-field name="firstName"
from="adParentName" order="1" />

<participant-address type="AT3">
<address-field name="addressLine1"

from="adParentStreet1" />
<address-field name="addressLine2"

from="adParentStreet2" />
<address-field name="city" from="adParentCity" />
<address-field name="state" from="adParentState" />
<address-field name="zip" from="adParentZipCode" />

</participant-address>
</def-create-participant>
<entity name="Adoption" ev-type-code="DET004"
dyn-evidence-primary-cpr-field-name="caseParticipantRoleID">

<create-participant refid="AdoptedParentDetails"
name="parCaseParticipantRoleID" role="" />

</entity>
<entity name="AdoptionPayment" ev-type-code="DET005"/>

</evidence-config>
</application-builder-config>

Using the Data Mapping Engine

25

Chapter 5

Mapping to Third Parties

5.1 Introduction

Universal Access Intake functionality allows users to enter details about
their circumstances using IEG2 scripts. The IEG2 script inserts the client’s
details into a Datastore. Following submission, the Data Store contents are
mapped into Evidence Data for an Intake Case. Many types of Evidence ref-
erence third parties – these third parties must be inserted onto the Case as
new Case Participants with their own unique Case Participant Role. For ex-
ample, a Pregnancy record can have an associated ”Father”. If the Father is
absent then they can be recorded That Father as a Prospect Person Case Par-
ticipant. In another example, Student evidence must be associated with a
School. A School is entered as a ”Representative” Case Participant. These
new Case Participants must be created on-the-fly during the mapping and
should contain as much information as possible in order to smooth the pro-
cess of Intake for the assigned Case Workers who must process the Case.

The mapping of addresses is made necessary by the need to associate a new
or existing participant with a new piece of evidence. The participant is usu-
ally either a representative or a prospect person. One of the particular chal-
lenges in creating new participants is in the mapping of addresses. Address
fields stored in the data store, such as ”ADD1” must be correctly aggregated
into a correctly formatted Curam Address structure to ensure that the parti-
cipant can be properly created.

You will so in this chapter that the logic of creating new participant and
mapping an address to that participant is isolated from the Evidence Applic-
ation Builder.

5.2 How to Map Third Parties

The Application Builder Configuration schema includes elements and attrib-
utes which can be used to create a new participant and map an address to

26

that participant.

5.2.1 Participant Creator Definition

The element <def-create-participant> is part of the <evidence-config> ele-
ment. This element is used to define behavior for creating a participant. This
same behavior can be reused by multiple <entity> definitions through the id.
The one important thing to be noted here is that the data type of all attributes
mentioned here must be defined as ’String’.
<def-create-participant id="SchoolRepresentative" type="RL13">

<participant-name-field name="firstName" from="participantName"
order="1"/>

<participant-address type="AT3">
<address-field name="addressLine1" from="street1"/>
<address-field name="addressLine2" from="street2"/>
<address-field name="city" from="city"/>
<address-field name="state" from="state"/>
<address-field name="zip" from="zipCode"/>

</participant-address>
</def-create-participant>

5.2.2 Create Participant

The <create-participant> element has been added into <entity> element.
This element instructs the ApplicationBuilder to create a participant, as
defined in the participant creator definition.
<entity case-participant-class-name="curam.core.sl.struct.
CaseParticipantDetails"case-participant-relationship-name=

"curam.none" name="Student">
<create-participant refid="SchoolRepresentative"

name="schCaseParticipantDetails" role="SCH"/>
</entity>

5.2.3 Sample Mapping Schema

The following is the schema to follow when writing mapping specification.
Note that in the Education entity the attributes mapped directly to the
’Student’ evidence entity. Attributes such as schoolName, schoolStreet1,
schoolStreet2, etc will be used to create a new participant and address.
<?xml version="1.0" encoding="UTF-8"?>
<map xmlns="http://www.curamsoftware.com/schemas/GUMBO/Map"

from-schema="GumboDS" name="TestMapping"to-schema="CGISS"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="...\EJBServer\components\
WorkspaceServices\lib\Mapping.xsd"><map-entity source="Person">

<target-entity id="householdMember" name="HouseholdMember">
<map-attribute from="ssnStatus" to="ssnStatus"/>
<map-attribute from="blackOrAfricanAmerican"

to="blkOrAfrAmerInd"/>
<map-attribute from="nativeAlaskanOrAmericanIndian"

to="natHawOrPaIsInd"/>
<map-attribute from="asian" to="asianInd"/>
<map-attribute from="nativeHawaiianOrPacificIslander"

to="natHawOrPaIsInd"/>
<map-attribute from="whiteOrCaucasian"

to="whiteOrCaucInd"/>
<map-attribute from="isMigrantOrSeasonalFarmWorker"

to="migrantFWorkerInd"/>
</target-entity>

Using the Data Mapping Engine

27

<target-entity id="livingArrange" name="LivingArrange">
<map-attribute from="accommodationType"

to="livingArrangeType"/>
</target-entity>

</map-entity>
<map-entity source="Education">

<condition expression=
"Education.highestGrade!=""">

<target-entity id="highestGrade" name="Student">
<map-attribute from="highestGrade"

to="highGradeCompleted"/>
<map-attribute from="attendanceFrequency"

to="studentStatus"/>
<map-attribute from="schoolName"

to="participantName"/>
<map-attribute from="schoolStreet1" to="street1"/>
<map-attribute from="schoolStreet2" to="street2"/>
<map-attribute from="schoolCity" to="city"/>
<map-attribute from="schoolState" to="state"/>
<map-attribute from="schoolZipCode" to="zipCode"/>

</target-entity>
</condition>

</map-entity>
<map-entity source="HealthInsuranceExpense">

<target-entity id="healthInsuranceExpense"
name="MedicalInsurance">

<map-attribute from="policyNumber" to="policyNumber"/>
<map-attribute from="groupNumber" to="groupPolicyNumber"/>

<map-attribute from="policyHolderParticipantName"
to="policyHolderParticipantName"/>

<map-attribute from="policyHolderStreet1"
to="policyHolderStreet1"/>

<map-attribute from="policyHolderStreet2"
to="policyHolderStreet2"/>

<map-attribute from="policyHolderCity"
to="policyHolderCity"/>

<map-attribute from="policyHolderState"
to="policyHolderState"/>

<map-attribute from="policyHolderZipCode"
to="policyHolderZipCode"/>

<map-attribute from="groupParticipantName"
to="groupParticipantName"/>

<map-attribute from="groupStreet1" to="groupStreet1"/>
<map-attribute from="groupStreet2" to="groupStreet2"/>
<map-attribute from="groupCity" to="groupCity"/>
<map-attribute from="groupState" to="groupState"/>
<map-attribute from="groupZipCode" to="groupZipCode"/>
<map-attribute from="insuranceProvider"

to="insuranceProvider"/>
<map-attribute from="InsProviderStreet1"

to="InsProviderStreet1"/>
<map-attribute from="InsProviderStreet2"

to="InsProviderStreet2"/>
<map-attribute from="InsProviderCity"

to="InsProviderCity"/>
<map-attribute from="InsProviderState"

to="InsProviderState"/>
<map-attribute from="InsProviderZipCode"

to="InsProviderZipCode"/>
<map-entity source="HealthInsuranceExpenseRelationship">
<target-entity id="healthInsuranceExpenseRelationship"

name="Coverage">
<map-attribute from="personID"

to="caseParticipantRoleID"/>
</target-entity>

</map-entity>
</target-entity>

</map-entity>
</map>

5.2.4 Sample Mapping Configuration

Using the Data Mapping Engine

28

The following is the configuration XML to follow when writing the map-
ping specification.
<?xml version="1.0" encoding="UTF-8"?><application-builder-config xmlns=
"http://www.curamsoftware.com/schemas/GUMBO/ApplicationBuilderConfig">
<evidence-config package="curam.evidence">

<def-create-participant id="SchoolRepresentative" type="RL13">
<participant-name-field name="firstName" from=

"participantName" order="1"/>
<participant-address type="AT3">

<address-field name="addressLine1" from="street1"/>
<address-field name="addressLine2" from="street2"/>
<address-field name="city" from="city"/>
<address-field name="state" from="state"/>
<address-field name="zip" from="zipCode"/>

</participant-address>
</def-create-participant>
<def-create-participant id="MedicalInsurancePolicyHolder"

type="RL7">
<participant-name-field name="firstName"

from="policyHolderParticipantName" order="1"/>
<participant-address type="AT3">

<address-field name="addressLine1"
from="policyHolderStreet1"/>

<address-field name="addressLine2"
from="policyHolderStreet2"/>

<address-field name="city" from="policyHolderCity"/>
<address-field name="state" from="policyHolderState"/>
<address-field name="zip" from="policyHolderZipCode"/>

</participant-address>
</def-create-participant>
<def-create-participant id="MedicalInsuranceGroup"

type="RL13">
<participant-name-field name="firstName"

from="groupParticipantName" order="1"/>
<participant-address type="AT3">

<address-field name="addressLine1"
from="groupStreet1"/>

<address-field name="addressLine2"
from="groupStreet2"/>

<address-field name="city" from="groupCity"/>
<address-field name="state" from="groupState"/>
<address-field name="zip" from="groupZipCode"/>

</participant-address>
</def-create-participant>
<def-create-participant id="MedicalInsuranceProvider"

type="RL13">
<participant-name-field name="firstName"

from="insuranceProvider" order="1"/>
<participant-address type="AT3">

<address-field name="addressLine1"
from="InsProviderStreet1"/>

<address-field name="addressLine2"
from="InsProviderStreet2"/>

<address-field name="city" from="InsProviderCity"/>
<address-field name="state" from="InsProviderState"/>
<address-field name="zip" from="InsProviderZipCode"/>

</participant-address>
</def-create-participant>

<entity name="HouseholdMember"/>
<entity name="HeadOfHousehold"/>
<entity case-participant-class-name="curam.core.sl.struct.
CaseParticipantDetails"case-participant-relationship-name=

"curam.none" name="Student">
<create-participant refid="SchoolRepresentative"

name="schCaseParticipantDetails" role="SCH"/>
</entity>
<entity name="MedicalInsurance">

<create-participant refid="MedicalInsurancePolicyHolder"
name="plchdrCaseParticipantDetails" role="MIPH"/>

<create-participant refid="MedicalInsuranceGroup"

Using the Data Mapping Engine

29

name="groupCaseParticipantDetails" role="GPP"/>
<create-participant refid="MedicalInsuranceProvider"

name="insCaseParticipantDetails" role="MIP"/>
</entity>

</application-builder-config>

Using the Data Mapping Engine

30

Appendix A

Schema for Mapping Specifications

A.1 Schema

The following is the schema to follow when writing mapping specifications:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.curamsoftware.com/schemas/GUMBO/Map"

xmlns:mp="http://www.curamsoftware.com/schemas/GUMBO/Map"
elementFormDefault="qualified">

<xs:simpleType name="TargetEntityRoleType">
<xs:restriction base="xs:string">

<xs:enumeration value="parent"/>
<xs:enumeration value="child"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="AttachmentType">
<xs:restriction base="xs:string">

<xs:enumeration value="case"/>
</xs:restriction>

</xs:simpleType>

<xs:complexType name="MapAttributeType">
<xs:attribute name="from" type="xs:NCName" use="required"/>
<xs:attribute name="to" type="xs:NCName" use="required"/>
<xs:attribute name="mapping-function" type="xs:string"

use="optional"/>
<xs:attribute name="mapping-rule" type="xs:string"

use="optional"/>
<xs:attribute name="entity" type="xs:NCName" use="optional"/>

</xs:complexType>

<xs:complexType name="SetAttributeType">
<xs:attribute name="name" type="xs:NCName"/>
<xs:attribute name="value" type="xs:string"/>

</xs:complexType>

<xs:element name="set-attribute" type="mp:SetAttributeType"/>

<xs:complexType name="TargetEntityType">
<xs:sequence>

<xs:element name="map-attribute" type="mp:MapAttributeType"
minOccurs="0"

maxOccurs="unbounded"/>

31

<xs:element ref="mp:set-attribute" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element ref="mp:condition" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" type="xs:NCName"/>
<xs:attribute name="type" type="mp:TargetEntityRoleType"/>
<xs:attribute name="attachment" type="mp:AttachmentType"/>
<xs:attribute name="id" type="xs:ID" use="optional"/>

</xs:complexType>

<xs:element name="target-entity" type="mp:TargetEntityType"/>

<xs:complexType name="ConditionType">
<xs:choice>

<xs:element ref="mp:target-entity" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element ref="mp:target-entities" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element ref="mp:set-attribute" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element ref="mp:map-entity" minOccurs="0"
maxOccurs="unbounded"/>

</xs:choice>
<xs:attribute name="expression" type="xs:string"/>

</xs:complexType>

<xs:element name="condition" type="mp:ConditionType"/>

<xs:complexType name="MapEntityType">
<xs:sequence>

<xs:element ref="mp:target-entity" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element ref="mp:target-entities" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element ref="mp:condition" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element ref="mp:map-entity" minOccurs="0"
maxOccurs="unbounded"/>

<xs:element ref="mp:follow-association" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="source" type="xs:NCName"/>

</xs:complexType>

<xs:element name="map-entity" type="mp:MapEntityType"/>

<xs:element name="follow-association" type="mp:MapEntityType"/>

<xs:complexType name="MapEntitiesType">
<xs:sequence>

<xs:element ref="mp:target-entity" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:element name="target-entities" type="mp:MapEntitiesType"/>

<xs:complexType name="MapCodeTableValueType">
<xs:attribute name="source" type="xs:string"/>
<xs:attribute name="target" type="xs:string"/>

</xs:complexType>

<xs:complexType name="MapCodeTableType">
<xs:sequence>

<xs:element name="map-value"
type="mp:MapCodeTableValueType" minOccurs="1"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="context" type="xs:NCName" use="optional"/>
<xs:attribute name="source-codetable" type="xs:NCName"/>
<xs:attribute name="target-codetable" type="xs:NCName"/>
<xs:attribute name="source-package" type="xs:NCName"

Using the Data Mapping Engine

32

use="optional"/>
<xs:attribute name="target-package" type="xs:NCName"

use="optional"/>
</xs:complexType>

<xs:complexType name="MapType">
<xs:sequence>

<xs:element name="map-code-table" type="mp:MapCodeTableType"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="mp:map-entity" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" type="xs:NCName"/>
<xs:attribute name="from-schema" type="xs:NCName"/>
<xs:attribute name="to-schema" type="xs:NCName"/>

</xs:complexType>

<xs:element name="map" type="mp:MapType"/>

</xs:schema>

Using the Data Mapping Engine

33

Appendix B

Schema for Mapping Configurations

B.1 Schema

The following is the schema to follow when writing mapping configura-
tions:
<?xml version="1.0" encoding="UTF-8"?>
<!--

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

-->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.curamsoftware.com/schemas/GUMBO/ApplicationBuilderConfig"
xmlns:abc="http://www.curamsoftware.com/schemas/GUMBO/ApplicationBuilderConfig"
elementFormDefault="qualified">

<xs:complexType name="EvFieldType">
<xs:attribute name="referenced-as" type="xs:NCName" use="optional"/>
<xs:attribute name="target-name" type="xs:NCName" use="optional"/>
<xs:attribute name="aggregation" type="xs:NCName" use="optional"/>
<xs:attribute name="is-reference-attribute" type="xs:boolean" use="optional"/>
<xs:attribute name="map-as-concernrole-id" type="xs:boolean" use="optional"/>

</xs:complexType>

<xs:complexType name="ParticipantCreatorType">
<xs:attribute name="refid" type="xs:string" use="required"/>
<xs:attribute name="name" type="xs:NCName" use="required"/>
<xs:attribute name="role" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="ParticipantNameFieldType">
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="from" type="xs:NCName" use="required"/>
<xs:attribute name="order" type="xs:positiveInteger" use="optional"/>

</xs:complexType>

<xs:complexType name="AddressFieldType">
<xs:attribute name="name" type="xs:NCName" use="required"/>
<xs:attribute name="from" type="xs:NCName" use="required"/>

</xs:complexType>

<xs:complexType name="ParticipantAddressType">

34

<xs:sequence>
<xs:element ref="abc:address-field" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="type" type="xs:string" use="required"/>

</xs:complexType>

<xs:element name="participant-name-field" type="abc:ParticipantNameFieldType"/>
<xs:element name="participant-address" type="abc:ParticipantAddressType"/>
<xs:element name="ev-field" type="abc:EvFieldType"/>
<xs:element name="create-participant" type="abc:ParticipantCreatorType"/>
<xs:element name="address-field" type="abc:AddressFieldType"/>

<xs:complexType name="EntityType">
<xs:sequence>

<xs:element ref="abc:ev-field" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="abc:create-participant" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="name" type="xs:NCName"/>
<xs:attribute name="package" type="xs:string"/>
<xs:attribute name="case-participant-relationship-name" type="xs:NCName"/>
<xs:attribute name="case-participant-class-name" type="xs:NCName"/>
<xs:attribute name="ev-type-code" type="xs:NCName" use="optional"/>
<xs:attribute name="dyn-evidence-primary-cpr-field-name" type="xs:NCName" use="optional"/>
<xs:attribute name="target-entity-type" type="xs:NCName" use="optional"/>

</xs:complexType>

<xs:complexType name="ParticipantCreatorDefinitionType">
<xs:sequence>

<xs:element ref="abc:participant-name-field" minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="abc:participant-address" minOccurs="0" maxOccurs="1"/>

</xs:sequence>
<xs:attribute name="id" type="xs:string" use="required"/>
<xs:attribute name="type" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="EvidenceConfigType">
<xs:sequence>

<xs:element name="entity" type="abc:EntityType" maxOccurs="unbounded"/>
<xs:element name="def-create-participant" type="abc:ParticipantCreatorDefinitionType" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="package" type="xs:string" use="optional"/>

</xs:complexType>

<xs:simpleType name="MutliplicityType">
<xs:restriction base="xs:string">

<xs:enumeration value="multiple"/>
<xs:enumeration value="singleton"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="FieldType">
<xs:restriction base="xs:string">

<xs:enumeration value="append"/>
<xs:enumeration value="button-radio"/>
<xs:enumeration value="button-checkbox"/>
<xs:enumeration value="choice-combo"/>
<xs:enumeration value="choice-multi-list"/>

</xs:restriction>
</xs:simpleType>

<xs:complexType name="FieldConfig">
<xs:attribute name="name" type="xs:NCName"/>
<xs:attribute name="type" type="abc:FieldType" use="optional"/>
<xs:attribute name="append-separator" type="xs:string" use="optional"/>
<xs:attribute name="codetable-class" type="xs:string" use="optional"/>

</xs:complexType>

<xs:complexType name="SectionConfig">
<xs:sequence>

<xs:element name="field" type="abc:FieldConfig" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="name" type="xs:NCName" use="required"/>
<xs:attribute name="type" type="abc:MutliplicityType" use="optional"/>

Using the Data Mapping Engine

35

</xs:complexType>

<xs:complexType name="PdfConfigType">
<xs:sequence>

<xs:element name="section" type="abc:SectionConfig" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="pdf-form-name" type="xs:string"/>

</xs:complexType>

<xs:complexType name="DatastoreConfigType">
<xs:attribute name="targetSchema" type="xs:string"/>

</xs:complexType>

<xs:element name="evidence-config" type="abc:EvidenceConfigType"/>

<xs:element name="pdf-config" type="abc:PdfConfigType"/>

<xs:element name="datastore-config" type="abc:DatastoreConfigType"/>

<xs:complexType name="ApplicationBuilderConfigType">
<xs:choice>

<xs:element ref="abc:evidence-config"/>
<xs:element ref="abc:pdf-config"/>
<xs:element ref="abc:datastore-config"/>

</xs:choice>
</xs:complexType>
<xs:element name="application-builder-config" type="abc:ApplicationBuilderConfigType"/>

</xs:schema>

Using the Data Mapping Engine

36

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

37

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Using the Data Mapping Engine

38

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Cúram Social Pogram Management.

Using the Data Mapping Engine

39

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml .

Adobe and Portable Document Format (PDF), are either registered
trademarks or trademarks of Adobe Systems Incorporated in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are registered trade-
marks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Using the Data Mapping Engine

40

http://www.ibm.com/legal/us/en/copytrade.shtml

	Using the Data Mapping Engine
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Prerequisites
	1.4 Chapters in this Guide

	Chapter 2 Understanding Data Mapping
	2.1 Introduction
	2.2 Understanding How Data Is Stored in the CDS
	2.3 Creating Logical Maps
	2.4 Considering Validation Issues in Data Mapping

	Chapter 3 Writing Mapping Specifications and Configurations for Static Evidence and PDFs
	3.1 Introduction
	3.2 Writing Mapping Specifications
	3.2.1 Simple Mapping Specification
	3.2.2 Mapping Condition Expressions
	3.2.3 Mapping Code Tables Values
	3.2.4 Mapping to Multiple Target Entities
	3.2.5 Matching One Parent Entity to Several Child Entities
	3.2.6 Matching Patterns and Following Associations in the CDS
	3.2.7 Mapping Members of a Household

	3.3 Writing Mapping Configurations
	3.3.1 For the Evidence Application Builder
	Simple Mapping Configuration
	Handling of caseParticipantDetails Fields
	Setting Target Entity Identifiers

	3.3.2 For the PDF Application Builder
	Sections and Fields
	Filling Text Fields
	Repeated Sections and Code Table Descriptions
	Check Boxes
	Radio Buttons
	Choice Combos
	How to configure the PDF Application Form

	Chapter 4 Writing Mapping Specifications and Configurations for Dynamic Evidence
	4.1 Introduction
	4.2 Writing Mapping Specifications and Configurations for Dynamic Evidence
	4.2.1 Simple Dynamic Evidence Metadata
	4.2.2 Simple Mapping Specification
	4.2.3 Simple Mapping Configuration
	4.2.4 Mapping Parent-Child Dynamic Evidence
	Simple Parent-Child Dynamic Evidence metadata
	Simple Parent-Child mapping specification
	Simple Mapping Configuration for parent-child relationship

	Chapter 5 Mapping to Third Parties
	5.1 Introduction
	5.2 How to Map Third Parties
	5.2.1 Participant Creator Definition
	5.2.2 Create Participant
	5.2.3 Sample Mapping Schema
	5.2.4 Sample Mapping Configuration

	Appendix A Schema for Mapping Specifications
	A.1 Schema

	Appendix B Schema for Mapping Configurations
	B.1 Schema

	Notices
	Trademarks

