
IBM Cúram Social Program Management

Cúram Universal Access Customization
Guide

Version 6.0.4

Note

Before using this information and the product it supports, read the information in
Notices at the back of this guide.

This edition applies to version 6.0.4 of IBM Cúram Social Program Management
and all subsequent releases and modifications unless otherwise indicated in new
editions.

Licensed Materials - Property of IBM

Copyright IBM Corporation 2012. All rights reserved.

US Government Users Restricted Rights - Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.

© Copyright 2011 Cúram Software Limited

Table of Contents

Chapter 1 Introduction ... 1
1.1 Purpose ... 1
1.2 Audience .. 1
1.3 Scope .. 1
1.4 What You Need to Know ... 2
1.5 Chapters in this Guide .. 2

Chapter 2 The Black Box Engineering Philosophy ... 4
2.1 Introduction .. 4
2.2 It Saves Time and Money .. 4
2.3 It Makes For Easier Upgrades .. 4
2.4 It Is Still Configurable and Customizable .. 5

Chapter 3 Securing Universal Access .. 6
3.1 Introduction .. 6

3.1.1 Background ... 6
3.2 The Universal Access Security Model ... 7

3.2.1 The Public Citizen Account .. 7
3.2.2 Anonymous Accounts ... 7
3.2.3 Registered Accounts ... 7
3.2.4 Linked Accounts ... 8
3.2.5 Authorization Roles and Groups ... 8

3.3 Deployment Considerations ... 9
3.4 Managing Usernames and Passwords .. 10

3.4.1 Account Management ... 10
3.5 Data Caching .. 11

3.5.1 Browser Caching ... 12
3.6 External Security Authentication ... 12

3.6.1 Analysis ... 12
3.6.2 Example .. 12
3.6.3 Configuration Tasks .. 13
3.6.4 Configure the Application Server to use LDAP for Authentication 13
3.6.5 Deploy Cúram Universal Access in Identity Only mode for Registered Users
... 14
3.6.6 Configure Cúram Universal Access so that Create Account Screens are not
Displayed ... 15
3.6.7 Configure Cúram Universal Access so that users are directed to register with

iii

an External System .. 16
3.6.8 Development Tasks ... 16

Chapter 4 Customizing Universal Access Triage .. 19
4.1 Introduction .. 19
4.2 Available triage events ... 19

4.2.1 Standard persistence events .. 19
4.2.2 Triage Referral Event .. 19

Chapter 5 Customizing Universal Access Screening ... 21
5.1 Introduction .. 21
5.2 How to Track the Volume, Quality, and Results of Screenings 21

Chapter 6 Customizing Application Intake Processing ... 22
6.1 Introduction .. 22
6.2 How to Pre-populate the Intake Script ... 22
6.3 How to Add a Validation for Program Selection ... 22

Chapter 7 Customizing the Handling of Submitted Applications ... 24
7.1 Introduction .. 24
7.2 How to Customize the Generic PDF for Processed Applications 24
7.3 How to Use Events to Extend Intake Application Processing 25
7.4 How to Send Applications to Remote Systems for Processing 25
7.5 How to Customize the Process Intake Application Workflow 26

Chapter 8 Customizing Citizen Account ... 27
8.1 Introduction .. 27
8.2 Technical Overview ... 27
8.3 Security Considerations ... 28

8.3.1 Ensuring the currently logged in user is of the correct type 28
8.3.2 Ensuring the currently logged in user has access to the specific records they
have requested. ... 29

8.4 How to Add a New Page to Citizen Account .. 29
8.4.1 Create a custom, external client component ... 30
8.4.2 Create a UIM page in the new component .. 30
8.4.3 Add a navigation entry for the new page .. 30
8.4.4 Create a Facade ... 30

8.5 How to Customize Universal Access Style Sheets in Citizen Account 31
8.6 Customizing Locale ... 31
8.7 Citizen Account Homepage ... 32

8.7.1 Customizing display text .. 32
8.7.2 Outreach Campaigns ... 32
8.7.3 My Messages .. 37

8.8 Customizing existing pages ... 47
8.9 My Payments Page Customization .. 47
8.10 My Applications Page Customization ... 47
8.11 Contact Information Page Customization .. 48

Chapter 9 Customizing Life Events ... 49
9.1 Purpose ... 49
9.2 Audience .. 49

Cúram Universal Access Customization Guide

iv

9.3 Overview .. 49
9.4 Introduction to Life Events .. 49
9.5 How to Build a Life Event ... 51

9.5.1 Analysis ... 51
9.5.2 Building The Components of a Life Event ... 53

9.6 Life Events API Guide ... 74
9.6.1 Event APIs for Life Events ... 74

Chapter 10 Universal Access Web Services .. 75
10.1 Introduction .. 75
10.2 Web Services Security Considerations .. 76
10.3 Process Application Service .. 76

10.3.1 Receive Application .. 76
10.3.2 Receive Withdrawal Request .. 77

10.4 Update Application Service ... 79
10.4.1 Intake Program Application Update ... 79
10.4.2 Withdrawal Request Update ... 79

10.5 Life Event Service .. 80
10.6 Create Account Service .. 81
10.7 Link Service ... 82
10.8 Unlink Service ... 83
10.9 Citizen Message ... 84
10.10 Payment Service ... 85
10.11 Contact Service .. 87
10.12 Case Service ... 87

Chapter 11 Fully Customizable Universal Access Artifacts .. 89
11.1 Introduction .. 89
11.2 Customizable Universal Access Page Content .. 89

11.2.1 Text and Online Help .. 89
11.2.2 Images ... 90
11.2.3 Translation .. 90
11.2.4 Universal Access Page Player Look and Feel ... 91
11.2.5 General Universal Access Settings ... 92

11.3 Customizable Universal Access Public APIs .. 92
11.4 Extendable Code Tables .. 92

Chapter 12 Universal Access Artifacts with Limited Scope for Customization 93
12.1 Introduction .. 93
12.2 Model ... 93
12.3 Universal Access Page Player XML .. 93
12.4 JSP and JSPX pages ... 93
12.5 Javascript files .. 94
12.6 Renderer configuration .. 94
12.7 Client-side Java artifacts .. 94
12.8 Code Tables ... 94

Appendix A Sample SOAP Requests .. 95
A.1 Intake Program Application Update ... 95
A.2 Withdrawal Request Update ... 95

Cúram Universal Access Customization Guide

v

A.3 Create Account .. 96
A.4 Account Link ... 97
A.5 Account UnLink .. 97
A.6 Citizen Message .. 98
A.7 Payment (Simple) .. 98
A.8 Payment (Batched) .. 99
A.9 Contact .. 100
A.10 Cases ... 100

Notices ... 102

Cúram Universal Access Customization Guide

vi

Chapter 1

Introduction

1.1 Purpose

The purpose of this guide is to describe options and provide instructions for
customizing IBM Cúram Universal Access™ (UA) components. Customiz-
ation can be distinguished from configuration in that customization allows
developers to modify, extend, or replace source code to suit customer re-
quirements. The components that make up Universal Access that we are
concered with are CitizenWorkspace, CitizenWorkspaceAdmin and Work-
spaceServices. The major customizable functional areas discussed in this
document are Triage, Screening, Intake, Security, Citizen Account and Life
Events. Please read the Cúram Universal Access Guide to become
more familiar with these concepts.

Please note, the IBM Cúram Universal Access product is implemented by a
collection of components listed above. These components are collectively
known as the Citizen Workspace.

Also note that throughout this guide Universal Access is referred to as 'UA',
the corollary of this is that the acronym is avoided when making reference
to cascading style sheets.

1.2 Audience

This guide is intended for developers responsible for customizing Universal
Access components.

1.3 Scope

This guide covers the customization of the CitizenWorkspace, CitizenWork-
spaceAdmin and WorkspaceServices components. Customers licensed for
the Cúram Enterprise Framework™ but not Universal Access need only

1

concern themselves with workspace services related customization points.

Note

This guide does not cover the configuration options available for the
UA component. Configuration allows administrators to determine
the information that is displayed on application pages. The Cúram
Universal Access Configuration Guide describes this
configuration in some detail.

1.4 What You Need to Know

Before reading this guide you should be familiar with the contents of the
following developer guides. These developer guides explain the basics of
how to configure the behavior of the UA component and how to perform
customization within the product set in general, with an emphasis on events
and workflow.

• Using the Data Mapping Engine

• Cúram Universal Access Guide

• The Cúram Development Compliancy Guide

• Cúram Server Developer's Guide

• Persistence Cookbook

• Cúram Workflow Management System Guide

1.5 Chapters in this Guide

The Black Box Engineering Philosophy
This chapter provides a brief discussion of the UA commitment to the
black box engineering philosophy.

Customizing Triage
This chapter discusses the customization points that exist around the
Triage process

Customizing Universal Access Screening
This chapter discusses the customization points that exist around the
screening process.

Customizing Application Intake Processing
This chapter discusses the customization points that exist around the In-
take process prior to submission.

Customizing the Handling of Submitted Applications
This chapter discusses the customization points that exist around the in-
take process post-submission.

Cúram Universal Access Customization Guide

2

Customizing Citizen Account
This chapter discusses the customization points that exist around the
Citizen Account.

Customizing Life Events
This chapter discusses the customization points that exist around Life
Events.

Universal Access Web Services
This chapter describes the UA web services and how to develop peer
code to communicate with those web services.

Fully Customizable Universal Access Artifacts
This chapter describes the artifacts delivered that are fully customizable.

Universal Access Artifacts with Limited Scope for Customization
This chapter indicates the artifacts delivered that have restrictions on
their use.

Cúram Universal Access Customization Guide

3

Chapter 2

The Black Box Engineering Philosophy

2.1 Introduction

Universal Access is a black box product. This means that it has been de-
signed from the outset to be extremely flexible with the ability to change
many aspects of its functionality at runtime simply through configuration.
Many other aspects can be modified by using the UA APIs. If, after reading
this guide, you are still unable to do what you require, then you can request
a feature in a Service Pack or other future release. By choosing this route the
feature you are getting will be incorporated into the product with all the test-
ing and quality assurance that this implies.

2.2 It Saves Time and Money

A black box engineered product can help save time and money. IBM is
committed to responding to requests for enhancements in a satisfactory time
frame. This ensures that you won't have to put time and expense into devel-
oping enhancements including all the support and expense that such work
entails. IBM is also committed to developing the product where we see
sensible enhancements and new configurations where they don't currently
exist.

2.3 It Makes For Easier Upgrades

UA is a strategic platform for the deployment of social enterprise services to
an agency's clients.

• Universal Access is a platform – it provides a set of APIs and extension
points that can be used to build out a solution that suits the needs of indi-
vidual customers.

• Universal Access is strategic – from the outset it has been built with up-

4

grade concerns in mind. The goal is that upgrades are simple and each
one brings in a host of new backward compatible features.

The second point is a key tenet of the Universal Access design philosophy:
By using and extending Universal Access in the recommended ways, you
can take on new versions with minimal effort and in doing so take advant-
age of all the new features offered through upgrades. If customers stray out-
side of the recommended guidelines set out in this document, then there is
an increased risk of running into difficulties during an upgrade.

2.4 It Is Still Configurable and Customizable

Along with our commitment to the black box engineering philosophy, there
are a number of customization and configuration options already in place.
The UA Platform has been built to cover as many configuration points as
possible out of the box, this document will describes these options.

Cúram Universal Access Customization Guide

5

Chapter 3

Securing Universal Access

3.1 Introduction

The purpose of this chapter is to:

• Provide readers with an overview of the Universal Access Security
Model

• Provide developers with an understanding of to how customize Univer-
sal Access securely

3.1.1 Background

Universal Access is designed to give citizens access to their most sensitive
personal data via the the Internet. Security must be a primary concern when
developing citizen account customisations. All projects built on Universal
Access must have highly focused on delivering security. This requires the
project team to think of security from the very beginning rather just testing
it at the end. It is recommended that all projects take at least the following
steps to ensure the security of their delivery: The remainder of this chapter
discusses the Universal Access Security Model and provides the reader with
information on how to add customizations that work with rather than against
this Security Model.

• Ensure that the project team are familiar with the the principles of secure
application development, and common vulnerabilities such as the
OWASP Top Ten
[http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project]

• Develop a Threat Model
[http://www.owasp.org/index.php/Threat_Risk_Modeling] and apply it

• Employ security experts to test everything from requirements to the fin-
ished deployment

6

http://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Threat_Risk_Modeling

• Plan for how the application will be used in public spaces like libraries
and kiosks

3.2 The Universal Access Security Model

Universal Access has a number of different account types, in order to sup-
port both anonymous and registered users using the application. As users
progress through their use of UA, they transition through a number of these
different account types. This section introduces the different account types
and explains why they are needed. The user types can be summarized as:

• The Public Citizen Account

• Anonymous Accounts

• Registered Accounts

• Linked Accounts

3.2.1 The Public Citizen Account

When the user views the front page of Universal Access they are automatic-
ally logged in under the publiccitizen account. This account only has
access to the home page and pages that allow for entry or reset of pass-
words. .

3.2.2 Anonymous Accounts

When the user clicks on a link to perform Triage, Screening or Intake, they
are automatically logged out as publiccitizen and logged back in un-
der an anonymous account with a randomly generated user name. This user-
name can be used for the duration of a session during which the user might
perform Triage, Screening and/or Intake. There are good security reasons
for associating each individual session with a different generated account.
One of the core principles of UA is that users should not have access to the
data of other users. If all Intake and Screenings were performed using a
single user account, publiccitizen , for example, then there is potential
for one user to end up seeing data that has been entered by another user.

3.2.3 Registered Accounts

Accounts of this type are standard accounts created by citizens. Citizens can
create accounts when they first arrive at the application, or during processes
like screening or intake. These accounts differ from Anonymous accounts in
that they allow citizens to continue previously saved Screenings, re-start In-
take Applications that were previously unfinished and review or withdraw
previously submitted Intake Applications.

Cúram Universal Access Customization Guide

7

3.2.4 Linked Accounts

The final account type is Linked Accounts. Linked Accounts are accounts
that have been linked with an underlying Concern Role ID for a Person
entity in Cúram. These users have access to detailed information about their
benefits and cases in the Cúram system, via citizen account. Users with a
linked account can submit Life Events such as "I Lost my Job" or "I got
married". They also have access to information about benefit payments. Be-
cause of the sensitivity of this information, customers must ensure that they
have a robust process for creating linked user accounts.

Some typical scenarios for linking are presented below. These are examples
only, the actual processes for linking will be unique to each customer. A cli-
ent requests a Citizen Account. The client is asked to present themselves at
their local Social Welfare office with drivers license and other personal
identification. The case worker, uses custom developed Cúram functionality
to enter details for the new linked account after verifying the identity of the
client.

A client creates a user account for Universal Access and submits an Intake
Application. They are contacted by their case worker who asks them if they
want access to more services using the Universal Access system. The client
agrees and presents themselves at the local office with identification such as
a passport. The case worker is able to link the client to the account they used
to submit the Intake Application.

In both of these cases the case worker does not have access to the client's
password. Instead, the linking process triggers a batch job that generates a
letter, sent to the client's home address. The letter contains the password and
a separate letter then contains an electronic code card. All of this functional-
ity is developed by the customer however it is supported by UA APIs that
allow a UA username to be linked to a Concern Role ID.

Continuing the above scenario, the client receives a letter from the Social
Enterprise containing their initial password (in the case of the first scenario)
and instructing them that a code card will arrive shortly. The code card ar-
rives by post the next day and the client is able to log into their Citizen Ac-
count. The login screen contains a username and password as before,
however there are also additional authentication factors - The client must
enter their date of birth, social security number and a code from their elec-
tronic code card. This is called Multi-Factor Authentication. Multi-Factor
authentication is discussed later in this chapter .

3.2.5 Authorization Roles and Groups

The various account types described above are assigned different authoriza-
tion roles. These roles limit the methods that can be invoked. No additional
permissions should be granted to UA authorization roles except for Linked
accounts, which use the LINKEDCITIZENROLE. If adding additional cus-
tom methods to citizen account, addditional permissions will be required.

Cúram Universal Access Customization Guide

8

This is explained in the chapter regarding the customisation of citizen ac-
count.

If only a subset of the functionality offered by UA is being used, permission
to invoke the unused methods should be removed from the database. For ex-
ample, if citizen account is not being used, the LINKEDCITIZENROLE
and other related authorization artifacts should be removed, as they are not
needed. Projects not using citizen account should also consider the deploy-
ment implications. This is discussed in the chapter that discusses citizen ac-
count customisation.

Authorization roles should be configured only for the areas of functionality
that are actually being used. It is recommended that unused SIDs should be
removed from the database. For example, if citizen account is not being
used, the LINKEDCITIZENROLE and other related authorization artifacts
should be removed, as they are not needed. Projects not using citizen ac-
count should also consider the deployment implications. Please see the Cit-
izen Account - Security Considerations section for more information.

Proper use of the UA Authorization Roles and Groups will ensure that no
user can access functions for which they have no permission. It will not
however, prevent users from using these functions to access data belonging
to user users. This is the preserve of Data-based Security. UA provides a
framework for Data-based Security and all customizations should use this
framework. Please refer to the Citizen Account - Security Considerations
section for more information.

3.3 Deployment Considerations

Client components can be divided into those that form part of internal ap-
plications, and those that form part of public facing applications (such as
UA). Components that contain artifacts intended for use in internal applica-
tions should not be deployed into public facing applications such as UA.
Customisations should be split between internal and public facing client
components in order to achieve this. Internal components should never be
added to the UA deployment packaging, as this will mean that artifacts in-
tended for caseworkers or administrators will be deployed into the public fa-
cing application.

The UA client side artifacts are divided between the citizenworkspace
and citizenaccount client components. This is done for good reason:
the citizenaccount component includes UIM pages that expose sensit-
ive data to citizens (including life events functionality), whereas the cit-
izenworkspace component includes the artifacts needed to offer triage,
screening and online application functionality. Accordingly, if the citizen
account functionality is not being used, the citizenaccount client com-
ponent should not be deployed, i.e. it should be removed from the UA de-
ployment packaging. Please see the Cúram deployment guide related to your
specific application server for more information on deployment and deploy-
ment packaging. For more information regarding securing citizen account,

Cúram Universal Access Customization Guide

9

please see the Citizen Account - Security Considerations section.

3.4 Managing Usernames and Passwords

There is a range of ways to customise and configure the validations that are
invoked when creating user accounts in UA. These can be used to enforce
certain patterns on a username and password, for example, to prevent the
username and password being identical, or to enforce a minimum number of
characters for either.

3.4.1 Account Management

This section describes the way you can customise account creation and man-
agement.

Account management configurations

A number of configurations properties are used to define the behavior of the
validations in this area. Please see table below:

Property Description
curam.citizenworkspace.us
ername.min.length

Minimum number of characters in
the username.

curam.citizenworkspace.pa
ssword.min.length

Minimum number of characters in
the password.

curam.citizenworkspace.pa
ssword.min.special.chars

Minimum number of special charac-
ters and/or numbers in the password.

Table 3.1 Account configurations

The values of these configuration properties can be updated by logging in as
sysadmin and selecting: Application Data->Property Administration. Select
category "Citizen Portal - Configuration"

Account management events

Events are raised at key points during account processing. These can be
used to add custom validations to the account management process. For
more information on using events, please see the Curam Server De-
veloper Guide . All of the following events can be found in the class
curam.citizenworkspace.security.impl.CitizenWorkspa
ceAccountEvents

Event Interface Description
CitizenWorkspaceCreateAc-
countEvents

Events raised around account cre-
ation. Please see the related javadoc
in the WorkspaceServices compon-

Cúram Universal Access Customization Guide

10

Event Interface Description
ent for more information.

CitizenWorkspacePassword-
ChangedEvent

Event raised when a user is changing
their password. Please see the related
javadoc in the WorkspaceServices
component for more information.

CitizenWorksapceAccoun-
tAssociations

Events raised when a user is linked
or unlinked from an associated Per-
son Participant. Please see the related
javadoc in the WorkspaceServices
component for more information.

Table 3.2 Account events

CitizenWorkspaceAccountManager API

The
curam.citizenworkspace.security.impl.CitizenWorkspa
ceAccountManager API is used to manage the creation and linking of
UA accounts. It is envisaged that customers can use this API to build out
custom functionality that supports caseworkers linking accounts, and creat-
ing accounts on behalf of the citizen. The API offers methods that support
account management, including:

• Creating standard UA accounts

• Creating 'linked' UA accounts

• Removing links between Participants and accounts.

• Retrieving account information

Please see the API javadoc for full details.

3.5 Data Caching

Customers need to be aware of the dangers posed by caching data in both
browser and server caches. Care must be taken to minimize the risk of cit-
izens being able to access each others' data from these caches. This can oc-
cur when the citizen uses the browser back button or history to retrieve data
previously entered by other users, or when application PDF files are cached
locally on the computer that was used to make the application.

HTTP Servers like Apache provide the ability to set cache-control response
headers to not store a cache. We recommend this approach be taken with
UA deployments to prevent access to data using the browser back button or
history.

Cúram Universal Access Customization Guide

11

3.5.1 Browser Caching

Browsers can be configured never to cache content. If UA is to be offered in
a "kiosk" or other publicly available guise, then the browser should be con-
figured never to cache content.

Furthermore, it is advisable to customize UA in order to provide this guid-
ance to citizens accessing the site via their own browsers. They should be
advised to clear their cache and close all browser windows they have used
when they are finished using UA. Citizens should also be made aware that
PDF documents that they download from UA may need to be removed from
the browser's temporary Internet files.

3.6 External Security Authentication

As an ever greater number of government services move to the Internet,
there is a drive to ensure that citizens can be authenticated for any of these
services using a single set of credentials. This provides benefits for the gov-
ernment in streamlining the authentication process and also for the citizen
because they do not have to remember endless lists of usernames and pass-
words. This, in turn, increases security by making it less likely that citizens
will write down their usernames and passwords and by focusing security ef-
forts on implementing best practice in a single Enterprise Security System.
In its Out-of-the-Box form, Universal Access uses its own authentication
system which is backed up by a database of registered users. Universal Ac-
cess can also be configured to integrate with External Security Systems.

3.6.1 Analysis

This section discusses, by way of example, the analysis required in prepara-
tion for integration with an External Security System. Any analysis of re-
quirements for External Security Integration should ask at least the follow-
ing questions.

1. Is the Universal Access deployment to support anonymous Screening
and/or Intake?

2. Is Account Management to be supported in Universal Access or in the
External Security System? (for example, will account creation and
password reset screens live in the External Security System or Univer-
sal Access).

3. Is Single Sign On Required?

3.6.2 Example

In this example the team deploying Universal Access have the following re-
quirements. This example will be used for reference when describing the

Cúram Universal Access Customization Guide

12

configuration and development tasks.

1. Users can access Universal Access and perform anonymous Screening
or Intake.

2. Users who want to access their saved Screening or Intake information
must first create an account on a system called CentralID.

3. Users logging into Universal Access with the Universal Access login
screen can use their CentralID username/password to authenticate.

4. Users perform all of their account management using an external sys-
tem we're calling CentralID (for example, resetting password, creating
a new account, changing account details).

5. CentralID stores all user records in a secure LDAP server.

6. Because all account management is now performed in CentralID, the
account creation screens and password reset screens are to be removed
from Universal Access.

7. Users should be able to log into Universal Access as soon as they have
registered with CentralID, there should be no delay waiting for id to
propagate to Universal Access.

All of these requirements are supported by the Universal Access External
Security Integration. At the time of writing, addressing Single Sign On is
beyond the scope of the External Security Integration – please contact
Cúram Global Services for more information about how to support Single
Sign On requirements.

3.6.3 Configuration Tasks

Taking the example from the Analysis section the following configuration
tasks must be undertaken:

1. Configure the Application Server to use LDAP for authentication.

2. Deploy Cúram Universal Access in Identity Only mode for registered
users.

3. Configure Cúram Universal Access so that Create Account screens are
not displayed.

4. Configure Cúram Universal Access so that users are directed to register
with the External System.

The following sections will elaborate upon the above configuration tasks.

3.6.4 Configure the Application Server to use LDAP for Au-
thentication

Cúram Universal Access Customization Guide

13

Please refer to the relevant Application Server documentation for informa-
tion on how to configure your Application Server to use LDAP for authen-
tication.

3.6.5 Deploy Cúram Universal Access in Identity Only mode
for Registered Users

Add the following properties to AppServer.properties:
curam.security.check.identity.only=true
curam.security.user.registry.disabled.types=EXT_AUTO,EXT_GEN

To re-configure the application server run:
appbuild configure

The curam.security.check.identity.only property ensures
that application security is set to work in Identity Only mode. For more in-
formation about Identity Only authentication mode please refer to the
Cúram Deployment Guide for WebSphere or Cúram Deploy-
ment Guide for WLS as appropriate. In Identity Only mode authentication
only uses the internal user table to check for the existence of the user. The
validation of the password is left to a subsequent module, either a JAAS
module (Oracle® WebLogic) or the User Registry (IBM® WebSphere®).

Take the example of a user, ”johnsmith”, who has been registered with the
CentralID LDAP server. In order for John Smith to be able to use Cúram
Universal Access, there must also be a ”johnsmith” entry in the Extern-
alUser table. When John Smith logs in, his authentication request is passed
to the Cúram JAAS Login Module. This checks that the user ”johnsmith”
exists in the Cúram ExternalUser table but does not check the password.
The authentication then proceeds to the User Registry (WebSphere) or
LDAP JAAS Module (WebLogic) where the username and password are
checked against the contents of the CentralID LDAP server. For this to work
correctly it is necessary to configure the application server with the connec-
tion details for the secure LDAP server.

The Identity Only configuration allows the application to defer to an extern-
al security system such as an LDAP-based directory service for the authen-
tication of user credentials. This does not work for anonymous users of Uni-
versal Access however. When a user accesses the front page of Universal
Access for the first time, they are automatically logged in as the
”publiccitizen” user. If they subsequently choose to Screen themselves or
perform an Intake Universal Access creates a new ”generated” anonymous
user. Each generated user is unique and this ensures that the data belonging
to that user is kept confidential. Neither the publiccitizen nor the generated
users are inserted into the LDAP directory so they cannot be authenticated
using the Identity Only mechanism. This is the purpose of the following line
of configuration:
curam.security.user.registry.disabled.types=EXT_AUTO,EXT_GEN

This line ensures that users with the user type EXT_AUTO (the publiccit-
izen) and EXT_GEN (generated users) are authenticated against Cúram’s

Cúram Universal Access Customization Guide

14

External User table. Once the server has been configured with the above
configuration and started, perform the following configuration steps:

1. Log in as sysadmin.

2. Select Application Data -> Property Administration.

3. Select Category ”Citizen Account - Configuration”.

4. Set the property 'curam.citizenaccount.public.included.user to the value
EXT_AUTO'.

5. Set the property 'curam.citizenaccount.anonymous.included.user to the
value EXT_GEN'.

6. Publish the property changes.

One final configuration entry is required in order to ensure that Univer-
sal Access operates correctly with respect to authentication, this change
can be made as follows.

7. Log in as sysadmin.

8. Select Application Data -> Property Administration.

9. Select Category ”Infrastructure – Security parameters”.

10. Set curam.custom.externalaccess.implementation to
'curam.citizenworkspace.security.impl.CitizenWorkspacePublicAccess
Security'.

11. Publish the property changes.

Finally, logout and restart the server. This configuration task should be com-
plete at this point.

3.6.6 Configure Cúram Universal Access so that Create Ac-
count Screens are not Displayed

In the example above requirement 4 indicates that all Account Management
functions are to be handled by the external system, CentralID. These include
creation of a new account and performing a password reset. By default, Uni-
versal Access provides screens for these functions. These screens must be
configured out in order to meet requirement 4 above:

1. Log in as sysadmin.

2. Select Application Data -> Property Administration.

3. Select Category ”Citizen Portal - Configuration”.

4. Set the property 'curam.citizenworkspace.enable.account.creation' to
”NO”.

5. Publish the property changes.

Cúram Universal Access Customization Guide

15

The above steps remove references to Account Creation pages from Univer-
sal Access. The Login Screen still contains a link to a Universal Access
page for changing passwords. In this example the team implementing want
to retain this link but change it to launch a new browser window on the
CentralID password reset page. This can be achieved as follows:

1. Log in as sysadmin.

2. Select Application Data -> Property Administration.

3. Select Category ”Citizen Portal - Configuration”.

4. Set the property 'curam.citizenworkspace.forgot.password.url' to
something like "http://www.centralid.gov/resetpassword"

5. Publish the property changes.

In order to remove the reset password link altogether use the following
steps:

1. Log in as sysadmin.

2. Select Application Data -> Property Administration.

3. Select Category ”Citizen Portal - Configuration”.

4. Set the property 'curam.citizenworkspace.display.forgot.password.link'
to ”NO”.

5. Publish the property changes.

3.6.7 Configure Cúram Universal Access so that users are dir-
ected to register with an External System

Out of the Box Universal Access invites users to login with the message:
”Please enter your User Name and Password and click the Next button to
continue.” Replacing this message is a good way of directing the non re-
gistered user towards the CentralID screen for registration. For example the
message on the Logon screen could read something like:
”<p>If you are registered with CentralID enter your username

and password to log in. To register go to
 The CentralID
registration page.</p>”

The properties for controlling the Login Page message can be found in
<CURAM_DIR>/EJBServer/components/Data_Manager/Initi
al_Data/blob/prop/Logon.properties

To customize the message displayed, follow the procedure in Section 11.2
Customizable Universal Access Page Content in this Guide.

3.6.8 Development Tasks

Cúram Universal Access Customization Guide

16

The configuration tasks described so far allow customers to fulfill the re-
quirements listed in the example with the exception of requirement:
”7 - Users should be able to log into Universal Access

as soon as they have registered with CentralID, there
should be no delay waiting for id to propagate to other
systems”.

In order to function correctly, Cúram Universal Access requires each user to
have an entry in the ExternalUser table. The customer could build a batch
process to import users from the LDAP directory into the Cúram Extern-
alUser table but this would not satisfy requirement 7 since the user must be
able to register with CentralID and then immediately use Universal Access.
Another option would be to build a web service or similar mechanism that
would be invoked when a new user registers with CentralID. The imple-
mentation of the web service would create the appropriate entry in the Ex-
ternalUser table.

This document however, now describes a simpler option which is to over-
ride the default login behavior to create new accounts on-the-fly, after
checking that the relevant entry exists in the LDAP server.

Overriding the default login behavior in Universal Access can be done by
extending the curam.citizenworkspace.security.impl.SecurityStrategy class
and overriding the authenticate() method. The code below outlines how to
use the SecurityStrategy and other security APIs to meet the requirements
described above:
public class CustomSecurityStrategy extends SecurityStrategy {

@Inject
private CitizenWorkspaceAccountManager cwAccountManager;
...
@Override
public String authenticate(final String username,

final String password)
throws AppException, InformationalException {

final String retval = null;
if (username.equals(PUBLIC_CITIZEN)) {
return super.authenticate(username, password);

}
// Authenticate generated accounts as normal
if (cwAccountManager.isGeneratedAccount(username)) {
return super.authenticate(username, password);

}
// Check that the user exists in LDAP
// This prevents hackers from registering a lot of bogus
// accounts that exist in Curam but not in LDAP
if (!isUserInLDAP(username)) {
return SECURITYSTATUS.BADUSER;

}
// If there's no account for this user
if (!cwAccountManager.hasAccount(username)) {
createUserAccount(username);

}
return SECURITYSTATUS.LOGIN;

}
private void createUserAccount(final String username)

throws AppException, InformationalException {
final CreateAccountDetails newAcctDetails;
...
cwAccountManager.createStandardAccount(newAcctDetails);

}
}

The code above checks to see if the user logging in is the publiccitizen user

Cúram Universal Access Customization Guide

17

or a generated account. In both of these cases, authentication logic is deleg-
ated to the default SecurityStrategy. In the case of a registered user the Se-
curity Strategy checks the LDAP directory to ensure that the user exists
there. If the user exists in the LDAP directory and does not exist yet in
Cúram then a new user account is created. Note, the custom code does not
need to authenticate the user against LDAP since the authentication is
handled by the User Registry in Websphere or the LDAP JAAS Module in
WebSphere. It is important to note that the password parameter of the au-
thenticate() method is encrypted using a one-way hash. This ensures that it
can be safely transmitted from the Client Side of the Cúram application to
the Server Side of the application.

In order to install the CustomSecurityStrategy it must be bound in place of
the Default Security Strategy. This can be done by using a Guice Module to
bind the implementation:
public class CustomModule extends AbstractModule {

@Override
protected void configure() {

binder().bind(SecurityStrategy.class).to(
CustomSecurityStrategy.class);

}
}

The CustomModule must be configured at startup. This can be achieved by
adding a DMX file to the custom component as follows:
<CURAM_DIR>/EJBServer/custom/data/initial/MODULECLASSNAME.dmx

<?xml version="1.0" encoding="UTF-8"?>
<table name="MODULECLASSNAME">

<column name="moduleClassName" type="text" />
<row>
<attribute name="moduleClassName">

<value>gov.myorg.CustomModule</value>
</attribute>

</row>
</table>

Cúram Universal Access Customization Guide

18

Chapter 4

Customizing Universal Access Triage

4.1 Introduction

This chapter details customization points around the triage process. For in-
formation on configuring & administring triage please refer to the Cúram
Universal Access Guide .

4.2 Available triage events

There are a number of events which are fired during the triage process.
These events can be broken into two categories, persistance events and cus-
tom events. The persistance events are standard data access events fired by
the persistance infrastructure. The custom event is something that has been
added to allow custom processing when the user performs a particular ac-
tion. Both of these events are outlined below.

4.2.1 Standard persistence events

On execution of the triage ruleset, the results of the session are persisted to
the TriageResult entity. This will trigger the invocation of the pre and
post insert events. For details on how to make use of the Persist-
enceEvent API please refer to the Persistence Cookbook (Chapter
6).

4.2.2 Triage Referral Event

The
curam.triage.impl.TriageEvents.ReferralEvent.referr
alEmailSent event is fired immediately after a citizen refers themselves
for a service using Universal Access. For further details, refer to the API
JavaDoc for ReferralEvent. This can be found in
<CURAM_DIR>/EJBServer/components/WorkspaceServices/

19

doc

Cúram Universal Access Customization Guide

20

Chapter 5

Customizing Universal Access Screening

5.1 Introduction

This chapter details customization points around the screening process. For
information on setting up and configuring screening please refer to Chapter
5 of the Cúram Universal Access Configuration Guide .

5.2 How to Track the Volume, Quality, and Results
of Screenings

The curam.citizenworkspace.impl.CWScreeningEvents class is used for ac-
cess to the events fired around screening, this could typically be used for
tracking the volume or results of screening for reporting purposes. For fur-
ther details, refer to the API JavaDoc for CWScreeningEvents. This can be
found in
<CURAM_DIR>/EJBServer/components/CitizenWorkspace/d
oc

21

Chapter 6

Customizing Application Intake Processing

6.1 Introduction

There are a number of customization points available to customers that can
be built upon to customize the application intake process. This chapter cov-
ers the process of intake up to the point of submitting an intake application.
For more information on configuring an intake application please see the
Cúram Universal Access Guide .

6.2 How to Pre-populate the Intake Script

The StartIntakeEvents.startIntake is raised before an intake
script is executed. This can be used to edit the contents of the Datastore be-
fore the intake process begins. Typically this will be done where, for ex-
ample, a citizen has gone through screening and added some basic data as
part of that process. This customization point allows for the transfer of this
basic data to the intake. Note that the signature supplies a link to the data-
store for pre-population. For further details, refer to the API JavaDoc for
StartIntakeEvents . This can be found in
<CURAM_DIR>/EJBServer/components/WorkspaceServices/
doc

6.3 How to Add a Validation for Program Selection

An event is raised when processing the data entered by the user on the Se-
lect Intake Program screen. The event,
curam.citizenworkspace.impl.ProgramSelectionEvents.intakeProgramsSelec
ted, allows the validation of the programs selected by the user. This can be
used to further apply business rules to an intake application for a citizen,
where product combinations cannot be combined, for example. For further
details, refer to the API JavaDoc for ProgramSelectionEvents . This

22

can be found in
<CURAM_DIR>/EJBServer/components/CitizenWorkspace/d
oc

Cúram Universal Access Customization Guide

23

Chapter 7

Customizing the Handling of Submitted
Applications

7.1 Introduction

There are a number of customization points available during the process of
application intake. This chapter covers those that occur after an intake ap-
plication has been submitted. For more information on configuring an intake
application please see the Cúram Universal Access Guide .

7.2 How to Customize the Generic PDF for Processed
Applications

Universal Access provides functionality to map all intake applications to a
generic PDF that records the values of all the information entered by the
user. This PDF is rendered by the Cúram XML Server. Customers can over-
ride the default formatting of the generic PDF as follows:

copy:

• CURAM_DIR/EJBServer/components/Workspaceservices/Data_Manag
er/InitialData/XSLTEMPLATEINST.dmx

to:

• CURAM_DIR/EJBServer/components/custom/Data_Manager/InitialDat
a

Edit the project\config\datamanager_config.xml to replace the entry for:

• CURAM_DIR/EJBServer/components/Workspaceservices/Data_Manag
er/InitialData/XSLTEMPLATEINST.dmx

24

with an entry for:

• CURAM_DIR/EJBServer/components/custom/Data_Manager/InitialDat
a/ XSLTEMPLATEINST.dmx

copy:

• CURAM_DIR/EJBServer/components/Workspaceservices/Data_Manag
er/InitialData/blob/WSXSLTEMPLATEINST001

to the directory:

• CURAM_DIR/EJBServer/components/custom/Data_Manager/InitialDat
a/blob.

Edit this file to suit the needs of the project.

7.3 How to Use Events to Extend Intake Application
Processing

The interface IntakeApplication.IntakeApplicationEvents
contains events that get fired after the client has submitted an intake applica-
tion for processing. These events can be used to change the way that intake
applications get handled, for example to supplement or replace the standard
CDME mapping or to perform an action after an application has been sent to
a remote system using web services. For further details, please refer to the
API JavaDoc for IntakeApplica-
tion.IntakeApplicationEvents . This can be found in
<CURAM_DIR>/EJBServer/components/WorkspaceServices/
doc .

The interface IntakeProgramApplica-
tion.IntakeProgramApplicationEvents contains events that are
fired at key stages during the processing of an application for a particular
program. For further details, please refer to the API JavaDoc for Intake-
ProgramApplication.IntakeProgramApplicationEvents .
This can be found in
<CURAM_DIR>/EJBServer/components/WorkspaceServices/
doc .

7.4 How to Send Applications to Remote Systems for
Processing

The Citizen Workspace can be used to send applications to remote systems
for processing using web services. An event ReceiveApplica-
tionEvents.receiveApplication is raised before the application
is sent to the remote system. This can be used to edit the contents of the
Datastore used to gather application data before transmission. For further

Cúram Universal Access Customization Guide

25

details, refer to the API JavaDoc for ReceiveApplicationEvents .
This can be found in
<CURAM_DIR>/EJBServer/components/WorkspaceServices/
doc .

7.5 How to Customize the Process Intake Application
Workflow

Customers are free to customize the workflow in the usual recommended
manner as described in the Cúram Development Compliancy
Guide and Cúram Workflow Management System Guide . Note
that customers should not make any changes to the enactment structs used
by these workflows. This workflow creates an integrated case with a status
of 'application'. Core case and common evidence data are also mapped to
this integrated case. This process can be intercepted using the postMapData-
ToCuram event described above.

Cúram Universal Access Customization Guide

26

Chapter 8

Customizing Citizen Account

8.1 Introduction

The Citizen Account is a facility within Universal Access that allows a
linked UA user to login to a secure area where they can screen and apply for
programs. The citizen can also view information relevant to them, including
individually tailored messages, system-wide announcements, updates on
their payments, contact information for agency staff and Outreach cam-
paigns that may be relevant to them. Citizen Account also provides a frame-
work for customers to build their own citizen account pages or override the
existing pages.

Please refer to the Cúram Universal Access Guide for a full de-
scription of all the functionality offered out of the box, and more informa-
tion on linked UA users.

8.2 Technical Overview

Unlike the rest of the UA application, the citizen account framework is
defined in UIM. This means that customers can override existing pages, add
their own, and customize the navigation of the framework as they can cus-
tomize the caseworker application.

Citizen account is built on top of the user interface infrastructure. It uses
only a sub set of the user interface and navigation components offered by
the infrastructure, in order to achieve a simple, usable application that cit-
izens can understand and use without any specific training.

Linked UA users will perform UA actions of triage, screening and online
application via their account. Accordingly, citizen account includes UIM
pages that are a view onto the triage, screening and online application func-
tionality. These pages are not configurable or customizable: the functional-
ity that they offer is configurable via administration as specified in the docu-
mentation for these areas. The UIM pages related to triage, screening and

27

online application should not be modified or overridden.

8.3 Security Considerations

Exposing sensitive data to citizens over the web is inherently dangerous and
security must be a primary concern when developing citizen account cus-
tomizations. Please see the chapter Securing Universal Access for
more information. We strongly recommend that all public facing applica-
tions undergo rigorous security analysis and testing before being deployed.
We also recommend that you contact support to discuss unusual customiza-
tions that may have specific security issues.

Permission to invoke the server facade methods that serve data to citizen ac-
count pages is managed by the standard authorization model. Please see the
Cúram Server Developer's Guide for more information. In addi-
tion to the standard authorization checks, each facade method that is in-
voked by a citizen account page must perform the following security checks
in order to ensure the user associated with the transaction (the currently
logged in user) has permission to access the data they are requesting:

• Ensure that the currently logged in user is of the correct type. They must
be an External user with an applicationCode of "CITWSAPP", and have
a UA account of type 'Linked'.

• Ensure that the currently logged in user has permission to access the
specific records that they are reading, i.e. validate any page parameters
passed in to ensure that the records requested are related to the currently
logged in user in some way.

8.3.1 Ensuring the currently logged in user is of the correct
type

The
curam.citizenaccount.security.impl.CitizenAccountSe
curity API offers a method performDefaultSecurityChecks that will en-
sure that the user is of the correct type. This method will check the user
type, and if not acceptable, will write a message to the logs and fail the
transaction. This should be called in the first line of every custom facade
method, before any processing or further validation has taken place:
public CitizenPaymentInstDetailsList listCitizenPayments()

throws AppException, InformationalException {

// perform security checks
citizenAccountSecurity.performDefaultSecurityChecks();

// validate any page parameters (none in this case)

// invoke business logic
return citizenPayments.listPayments();

}

Cúram Universal Access Customization Guide

28

8.3.2 Ensuring the currently logged in user has access to the
specific records they have requested.

A malicious user logged in to a valid linked UA account could send requests
to the system requesting data related to other users. In order to prevent this
from happening, all page parameters must be validated to ensure that they
are somehow traceable back to the currently logged in user. How this is de-
termined is different for each type of record. For example, a Payment can be
traced back to the Participant via the Case it was issued on.

The
curam.citizenaccount.security.impl.CitizenAccountSe
curity API offers methods to perform these checks for the types of re-
cords that are served to citizens by the OOTB pages. Please review the
javadoc of this API for specific information. For custom pages that serve
different kinds of data, additional checks must be implemented to validate
the page parameters. These should be added to a custom security API and
invoked by the façade methods in question. The methods should check to
see if the record requested can be traced back to the currently logged in user,
and if not, it should log the user name, method name and other data, and fail
the transaction immediately (as opposed to adding the issue to the validation
helper and allowing the transaction to proceed):
if (paymentInstrument.getConcernRole().getID()

!= citizenWorkspaceAccountManager
.getLoggedInUserConcernRoleID().getID()) {

/**
* the payment instrument passed in is not related
* to the logged in user log the user name of the
* current user, the method invoked and any other
* pertinent data
*/

// throw a generic message
throw PUBLICUSERSECURITYExceptionCreator

.ERR_CITIZEN_WORKSPACE_UNAUTHORISED_METHOD_INVOKATION();
}

While as much information as possible regarding the infraction should be
logged, it is important to ensure that the exceptions thrown does not expose
any information that may be useful to malicious users. A generic exception
should be thrown, that does not contain any information relating to what
went wrong. The
curam.citizenaccount.security.impl.CitizenAccountSe
curity API throws a generic message stating "You are not privileged to
access this page."

8.4 How to Add a New Page to Citizen Account

This section explains the tasks that must be carried out in order to add a cus-
tom page to citizen account.

Cúram Universal Access Customization Guide

29

8.4.1 Create a custom, external client component

Artifacts that form part of public facing applications such as UA should be
stored in separate components in order to avoid deploying internal pages in-
tended for administrators or caseworkers into public facing applications.
Accordingly, the first step in adding a custom page to citizen account is to
set up a new custom client side component in which to put your page. Please
refer to the instructions in section 'External Client Applications' of the Serv-
er Developer Guide on how to do this. This component should include the
artifacts to be deployed to UA, and should not include any artifacts intended
for use by administrators or caseworkers. This component must be added to
the deployment packaging for the UA EAR file. The important point below
is that the deployment_packaging.xml, shipped in the
<CURAM_DIR>/EJBServer/project/config/ folder will contain
the minimum entries for the components that need to be built, namely Cit-
izenAccount, CitizenWorkspace, IntelligentEvidenceGathering and CE-
FWidgets.

8.4.2 Create a UIM page in the new component

Develop the custom UIM page in the new client component. The user inter-
face infrastructure offers a wide array of complex functionality. Bear in
mind that the target audience of this page are citizens that will not be famili-
ar with complex user interfaces, so it is advisable to keep citizen account
pages relatively simple, compared with the complex user interfaces de-
veloped for experienced user types such as caseworkers or administrators.

8.4.3 Add a navigation entry for the new page

This is done in the standard way. Please refer to the Cúram User In-
terface Developers Guide for information regarding how to ex-
tend navigation.

<nc:navigation id="CitizenAccount">
<nc:nodes>
<nc:navigation-page

id="home" page-id="CitizenAccount_certification"
title="leaf.title.certification" />

</nc:nodes>
</nc:navigation>

Example 8.1 sample custom navigation entry for custom citizen
account page

8.4.4 Create a Facade

Develop a facade that the page can call. This facade will retrieve data based
on either the currently logged in user, or page parameters that are passed in.
Generally, citizen account pages read data related to the logged in user's

Cúram Universal Access Customization Guide

30

linked accounts. Specifically, if the logged in user is linked to a Cúram par-
ticipant, i.e. a concernRoleID then data relating to that concern role, their
cases, and their evidence is played. If the user is linked to remote case pro-
cessing systems then data from those remote systems can be displayed in the
Citizen Account. The
curam.citizenworkspace.security.impl.CitizenWorkspa
ceAccountManager API offers a convenience method that can be used
to retrieve the linked identities of a currently logged in user including their
linked ConcernRole if they have one. It is recommended that customers use
this API to retrieve linked identities, as it has 'baked-in' security checks to
ensure that the user in question is in fact a linked UA user.

Relevant authorization entries must be added in DMX in order to give the
linked UA users permission to invoke the new facade method. Add an entry
for the new method to the LINKEDCITIZENWORKSPACEGROUP. For
example:
<row>

<attribute name="groupName">
<value>LINKEDCITIZENWORKSPACEGROUP</value>

</attribute>
<attribute name="sidName">

<value>MyCustomFacadeName.myCustomFacadeMethodName</value>
</attribute>

</row>

8.5 How to Customize Universal Access Style Sheets
in Citizen Account

Citizen account UA style sheets are customizable in the standard way for
UIM pages. Please refer to the Curam User Interface De-
velopers Guide for information. The citizen account style sheets are
located in webclient/components/CitizenAccount/css .

8.6 Customizing Locale

It is important to note that the method for adding new locales to citizen ac-
count is the same as for standard UIM pages as opposed to the dynamic
manner by which public UA pages can be internationalized. In order to add
different locales to citizen account, the client project must be rebuilt to gen-
erate the JSPs in the new locale. Please refer to the Cúram Web Client De-
veloper Guide for more information on managing UIM pages that are to be
offered in multiple locales. The CT_APPLICATION_CODE codetable is
used to map External User application codes to the specific UIM page they
should be routed to when they log in. The client infrastructure uses these
configurations to determine where the user should be routed following a
successful authentication. UA ships with an entry for its default locale of
”en”:
<code default="false" java_identifier="CITIZEN_WORKSPACE"
status="ENABLED" value="CITWSAPP">
<locale language="en" sort_order="0">

Cúram Universal Access Customization Guide

31

<description>CitizenAccount_home</description>
</locale>

</code>

When adding additional locales to UA, additional entries must be added to
this codetable for each locale that is being added. All should contain the
same description, which contains the value of the citizen account homepage.
This is also true of other codetables that are used by UA, such as
CT_SecretQuestionType. The names of the secret questions must be added
in each locale that UA is to be offered in. For more information on localisa-
tion see the chapter Fully Customizable Self Service Artifacts.

8.7 Citizen Account Homepage

The citizen account homepage offers a range of functionality to offer pertin-
ent information to the citizen. Please refer to the Cúram Universal
Access Guide . The various areas are configured in different ways,
which are outlined in the Cúram Universal Access Configura-
tion Guide.

When referring to customizing the Citizen Account homepage this guide is
referring the constituent parts of this page, the Outreach (Did You Know?)
and My Messages Panels.

8.7.1 Customizing display text

The welcome message, cluster titles and text of the last logged on message
are stored in a properties file in the resource store. The logged in user name
is appended to the property citizenaccount.welcome.caption
property to display the welcome message on the home page. To change the
welcome message this property needs to be changed in the properties file.
The file is located at EJBServ-
er\components\CitizenWorkspace\data\initial\blob\pr
op\CitizenMessageMyPayments.properties . The text can be
customized by uploading a new version to the resource store with a name at-
tribute of "CitizenAccountHome".

8.7.2 Outreach Campaigns

Outreach campaigns are designed to display targeted campaign messages to
the citizen. These can include images and links to both UA pages and to ex-
ternal websites. Whether or not a specific campaign should be displayed to a
particular citizen is determined by a CER rule set that is associated with the
campaign in Administration. Outreach is developed using Advisor and CER,
and the campaign output is recorded as Advice Items. Please see the Cúram
Universal Access Configuration Guide for more information.

How to configure a new Citizen Campaign

Cúram Universal Access Customization Guide

32

Please refer to the Universal Access Configuration Guide for
information regarding configuring new Outreach campaigns in Administra-
tion.

Outreach Campaign Rulesets

Outreach is built on top of Advisor infrastructure, and the CoreCitizenCam-
paignRuleset which all Outreach campaigns should extend in turn inherits
from the CoreAdvisorRuleset. The CoreCitizenCampaignRuleset is located
at /EJBServer/components/citizenworkspace/CREOLE_Rule_Sets.

The CoreCitizenCampaignRuleset defines two rule classes that are used to
drive Outreach campaigns:

CitizenCampaignAdmin rule class

This is a CER rules representation of a CitizenCampaign administration re-
cord. The name, expiry date time and image reference for a campaign are
propagated. A rule object of this class exists for each active Outreach cam-
paign in the system. These are managed internally by the Outreach infra-
structure.

AbstractCampaignAdviceItem rule class

This class extends AbstractAdviceItem (see Advisor documentation). This is
the class that concrete Outreach campaign rule classes must extend. Con-
crete Outreach campaign rules classes must specify the following attributes
that are inherited form this rule class:

• citizenCampaignName

Names are unique across campaigns as they are used as a unique identi-
fier. The citizenCampaignName specified in the rule set and the name of
the Outreach campaign when it is created in Administration must be
identical . Accordingly, when creating the new Outreach campaign in
Administration, the name of the new campaign must match the citizen-
CampaignName specified in its associated rule set.

• campaignShowAdvice

This attribute is where the campaign business logic lives. It should re-
turn true if the participant in question meets the criteria to display the
campaign.

The AbstractCampaignAdviceItem class sets the "showAdvice" attribute of
its parent based on whether a CitizenCampaignAdmin rule object exists for
the campaign in question (i.e. is the campaign active in Administration) and
based on the value of the "campaignShowAdvice" attribute.

By default, the expiry date time of a campaign is taken from the Outreach
campaign administration record. This allows administrators to configure the
expiry of campaigns. However, it is also possible to determine the expiry

Cúram Universal Access Customization Guide

33

date time based on business logic or other rules if they so wish, by overrid-
ing the "expiryDateTime" attribute of the AbstractCampaignAdviceItem
class in their child implementation of this class.

Concrete campaign rule classes must also declare a class that extends the
Advisor AbstractAdviceContext. Please see the Advisor documentation and
the following sample campaign rule set for more information.
<RuleSet name="SampleCampaignRuleSet">

<!-- This class is infrastructure used by Advisor,
please refer to the Advisor documentation for more
information. -->

<Class extends="AbstractAdviceContext"
extendsRuleSet="CoreAdvisorRuleSet"

name="SampleCampaignContext">

<!-- populated by advisor propagator -->
<Attribute name="concernRoleID">

<type>
<ruleclass name="NumberParameter"

ruleset="CoreAdvisorRuleSet"/>
</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<!-- populated by advisor propagator -->
<Attribute name="adviceContextID">

<type>
<javaclass name="Number"/>

</type>
<derivation>

<specified/>
</derivation>

</Attribute>

<Attribute name="advice">
<type>

<javaclass name="List">
<ruleclass name="AbstractCampaignAdviceItem"
ruleset="CoreCitizenCampaignRuleset"/>

</javaclass>
</type>
<derivation>

<fixedlist>
<listof>
<ruleclass name="AbstractCampaignAdviceItem"

ruleset="CoreCitizenCampaignRuleset"/>
</listof>
<members>
<!-- This list of members must include the custom rule

class that extends AbstractCampaignAdviceItem -->
<create ruleclass="SampleCampaign">

<this/>
</create>

</members>
</fixedlist>

</derivation>
</Attribute>

</Class>

<!-- Concrete Campaign / Advisor class that extends
AbstractCampaignAdviceItem -->

<Class extends="AbstractCampaignAdviceItem"
extendsRuleSet="CoreCitizenCampaignRuleset"

name="SampleCampaign">

Cúram Universal Access Customization Guide

34

<!-- initialise the Advisor context. Please see Advisor
documentation for more information -->

<Initialization>
<Attribute name="sampleCampaignContext">

<type>
<ruleclass name="SampleCampaignContext"/>

</type>
</Attribute>

</Initialization>

<!-- This is a reference to the campaign text stored in the
resource store. Please see the Advisor documentation
for more information. -->

<Attribute name="adviceText">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="propertyName"/>
</derivation>

</Attribute>

<!-- This is a reference to the advice context ID.
Please see the Advisor documentation for more
information. -->

<Attribute name="adviceContext">
<type>

<javaclass name="Number"/>
</type>
<derivation>

<reference attribute="adviceContextID">
<reference attribute="sampleCampaignContext"/>

</reference>
</derivation>

</Attribute>

<!-- This is used by the parent abstract class to read the
campaign rule object. This name must be identical to
the name given to the Outreach campaign in
Administration -->

<Attribute name="citizenCampaignName">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="SampleCampaign"/>
</derivation>

</Attribute>

<!-- Whether or not to display the campaign for the given
participant (provided the campaign is Active) -->

<Attribute name="campaignShowAdvice">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<!-- business logic for campaign goes here. -->
<true/>

</derivation>
</Attribute>

</Class>
</RuleSet>

Images and Links

Advisor and therefore Outreach support including images and links as part
of an Advice Item / campaign. The image itself is uploaded when creating a
new Outreach campaign. By default, if an image is specified when creating
the campaign in Administration, it is displayed as part of the campaign

Cúram Universal Access Customization Guide

35

without a link. However, it is possible to specify a link within the rule set,
and within that link to specify an image, referencing the image that has been
configured for the campaign.

Within the custom concrete campaign rule set, define a link:
<Class extends="AbstractLink"

extendsRuleSet="CoreAdvisorRuleSet"
name="ChildCareOptionLinkWithImage">

<Attribute name="name">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="childCareOptionLinkImage"/>
</derivation>

</Attribute>

<Attribute name="target">
<type>

<javaclass name="String"/>
</type>
<derivation>

<String value="http://www.yourtargeturl.com"/>
</derivation>

</Attribute>

<Attribute name="modal">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<false/>
</derivation>

</Attribute>

<Attribute name="external">
<type>

<javaclass name="Boolean"/>
</type>
<derivation>

<true/>
</derivation>

</Attribute>

<Attribute name="linkImage">
<type>

<ruleclass name="Image" ruleset="CoreAdvisorRuleSet"/>
</type>
<derivation>
<!-- note that this is specified. The parent rule class will

specify the image reference from the campaign -->
<specified/>

</derivation>
</Attribute>

</Class>

When declaring this link within the custom implementation of Abstract-
CampaignAdviceItem, you specify the reference to the image configured in
administration: Please refer to the Advisor documentation for further in-
formation on defining links and images.
<Attribute name="childCareOptionLinkWithImage">

<type>
<ruleclass name="ChildCareOptionLinkWithImage"/>

</type>
<derivation>

<create ruleclass="ChildCareOptionLinkWithImage">

Cúram Universal Access Customization Guide

36

<specify attribute="linkImage">
<reference attribute="campaignImage"/>

</specify>
</create>

</derivation>
</Attribute>

In order for the links related to image only campaigns to be persisted to the
Advisor database tables (and therefore displayed in Outreach Campaigns),
an entry in the properties file related to that campaign is required. For ex-
ample:
AdviceItem.imageOnlyText={link::imageCampaignLinkWithImage}

This entry does not designate a name for the link, but references name of the
rules object defined in the campaign rule set to represent this link.

Performance Considerations

Campaigns refer to CER rule objects in order to determine whether to dis-
play campaigns. Therefore, when the underlying data that these rule objects
depend on changes, CER reassessment will be triggered. This will cause
Advisor to re-calculate whether the campaign should be displayed or not.
This can affect performance and needs to be considered. There are two dif-
ferent kinds of data changes involved:

Changes to the Participants' data

These kinds of changes affect a specific participant. Take for example, a
campaign that references a citizen's address. Every time the user changes
their address, this change would be propagated to the rule object represent-
ing that participants address. Because the campaign rule object is dependent
on this, reassessment would be triggered. This means that every time the
participant changes his address, the campaign rules will be executed to de-
termine if it should still be displayed. Therefore, it is important to consider
how often a piece of data may change, and for how many citizens, and
whether referencing it in a campaign may cause a performance issue within
the system.

Changes to Outreach Campaigns in Administration

These kinds of changes affect all the rule executions related to the campaign
in question. This means that it will trigger reassessment for every citizen
that has been assessed for eligibility for this campaign. For example, if the
image associated with a campaign is changed, the system will re-execute the
rules for each citizen that has been considered for this campaign. This could
require a significant amount of processing that could have a performance
impact on the system. Accordingly, we recommend that changes in cam-
paign administration are performed when the system is not under a heavy
load, or has been taken offline for maintenance.

8.7.3 My Messages

Cúram Universal Access Customization Guide

37

Please refer to the Cúram Universal Access Guide for an over-
view of the functionality offered by the messages panel and the specific
messages offered out-of-the-box.

When a linked citizen logs in, messages are gathered from around the sys-
tem, and from remote systems, for display. This work is done by the
curam.citizenmessages.impl.CitizenMessageController
API. It reads persisted messages by participant from the ParticipantMessage
database table, and also raises the CitizenMessagesEv-
ent.userRequestsMessages event, inviting listeners to add messages to a list
it passes as part of the event parameter. The messages gathered from each
source are sorted, turned into XML and returned to the client for display.

Configuring Citizen Messages

There are global configurations that can be specified for citizen messages,
such as enabling certain types and configuring their display order. The dif-
ferent types of messages also include their own configuration points. Specif-
ic information regarding how to customize the various message types is
provided in later sections of this document. Please refer to the Cúram
Universal Access Configuration Guide for more information
on how to change the global configurations and on delivering Citizen Mes-
sages using web services.

The textual content of a given message type can also be configured. Each
message type has a related properties file that includes the localizable text
entries for the various messages displayed for that given type. These proper-
ties also include placeholders that are substituted for real values related to
the citizen at runtime.

The wording of this text can be customized, by inserting a different version
of the properties file into the resource store. Please see the table below
which defines which properties file should be changed for each type of mes-
sage:

Message type Property file name
Payments CitizenMessageMyPay-

ments.properties

Application Acknowledgment CitizenMessageApplicationAcknow-
ledgement.properties

Verifications CitizenMessageVerificationMes-
sages.properties

Meetings CitizenMessageMeetingMes-
sages.properties

Referral CitizenMessagesReferral.properties

Service Delivery CitizenMessagesServiceDeliv-
ery.properties

Table 8.1 Message Properties Files

Cúram Universal Access Customization Guide

38

It is also possible to remove placeholders (which are populated with live
data at runtime) from the properties. However, there is currently no means
to add further placeholders to existing messages. A custom type of message
must be implemented in this situation.

Adding a new type of Citizen Message

Messages are gathered by the controller in two ways: the controller reads
messages that have been persisted to the database via the
curam.citizenmessages.persistence.impl.ParticipantM
essage API, and also gathers them by raising the
curam.participantmessages.events.impl.CitizenMessag
esEvent

A decision needs to be made regarding whether to "push" the messages to
the database, or else have them generated dynamically on the fly by a listen-
er that listens for the event that is raised when the citizen logs in. The spe-
cific requirements of the message type need to be considered, along with the
benefits and drawbacks of each option.

Persisted Messages

In this scenario, when something takes place in the system that may be of
interest to the citizen, a message is persisted to the database. For example,
when a meeting invitation is created, an event is fired. Our OOTB meeting
messages functionality listens for this event, and if the meeting invitee is a
participant with a linked UA account, a message is written to the Parti-
cipantMessage table informing the citizen that they have been invited to the
meeting.

One benefit of this approach is that there is very little processing performed
when the citizen logs in to see this message: the message is simply read
from the database and displayed, as opposed to calculation taking place that
would determine if the message was required or not. However, the imple-
mentation needs to also handle any changes to the underlying data that may
invalidate or change the message, and take appropriate action. For example,
our meeting message functionality also listens for changes to meetings in or-
der to ensure the meeting time, location etc are up to date, and to issue a
new message to the citizen informing that the location or time has changed.

Dynamic Messages

These messages are generated when the citizen logs in, by event listeners
that listen for the
curam.participantmessages.events.impl.CitizenMessag
esEvent.userRequestsMessages event.

A benefit is that because the message is generated at runtime, code is not re-
quired to manage change over time: the message is generated based on the
data within the system each time the citizen logs in, so if some underlying

Cúram Universal Access Customization Guide

39

data changes, the next time the citizen logs in, they will get the correct mes-
sage.

A drawback to this approach is that significant processing may be required
at runtime in order to generate the message. Care must be taken to ensure
that this does not adversely affect the load time of the citizen account
homepage.

Performance considerations must be evaluated against the effort involved to
manage change to the data that the message is related to over time, and the
requirements of the specific message type. For example, the OOTB verifica-
tion message is dynamic, when a citizen logs in it checks to see if any out-
standing verifications exist for that citizen. This is a relatively simple data-
base read, whereas it would have been complicated to listen for various
events in the Verification Engine and ensure an up to date message was
stored in the database regarding the participants' outstanding verifications.
On the other had, the meeting messages need to inform the citizen of
changes to their meetings, so functionality had to be written to manage
changes to the meeting record and its related message over time.

Implementing a new message type

In order to implement a new message type, regardless of whether the mes-
sage will be persisted or generated dynamically, the following must be
done:

Common Tasks

• Add a new entry to the CT_ParticipantMessageType codetable
to represent the new message type. This will be used in administration to
configure the new message type.

• Add a DMX entry for the ParticipantMessageConfig database table.
This will store the type and sort order of the new message type and is
used for administration. For example:
<row>

<attribute name="PARTICIPANTMESSAGECONFIGID">
<value>2110</value>

</attribute>
<attribute name="PARTICIPANTMESSAGETYPE">

<value>PMT2001</value>
</attribute>
<attribute name="ENABLEDIND">

<value>1</value>
</attribute>
<attribute name="SORTORDER">

<value>5</value>
</attribute>
<attribute name="VERSIONNO">

<value>1</value>
</attribute>

</row>

• Add a properties file to the App Resource store that contains the text
properties and image reference for the message.

Cúram Universal Access Customization Guide

40

• Add an image for this message type to the resource store.

Implementing a dynamic message

In order to implement a dynamic style message, an event listener needs to
be implemented, to listen for the CitzenMessagesEv-
ent.userRequestsMessages event. This event argument contains a
reference to the Participant and a list, to which the listener will add
curam.participantmessages.impl.ParticipantMessage
java objects. For further details please consult the JavaDoc API for
CitzenMessagesEvent . This can be found in
<CURAM_DIR>/EJBServer/components/core/doc

Developers should also refer to the JavaDoc API for
curam.participantmessages.impl.ParticipantMessage
and
curam.participantmessages.impl.ParticipantMessages
for a full explanation.

The message text is stored in a properties file in the resource store. A dy-
namic listener will retrieve the relevant properties from the resource store,
and create the ParticipantMessage object accordingly *. The message text
for a given message can include placeholders. Values for placeholders are
added to ParticipantMessage objects as parameters. The CitizenMes-
sagesController will resolve these placeholders, replacing them with the real
values related to the participant in question that have been added as para-
meters to the message object.

Take for example this entry from the CitizenMessageMyPayment.properties
file:
Message.First.Payment=

Your next payment is due on {Payment.Due.Date}

The actual payment due date of the payment in question will be added to the
ParticipantMessage object as a parameter (see example code below). The
CitizenMessagesController then resolves the placeholders, populating the
text with real values, and then turns the message into XML that is rendered
on the citizen account homepage (there is also a public CitizenMessageCon-
troller method that will return all messages for a citizen as a list, please see
the javadoc)

From
curam.participantmessages.impl.ParticipantMessage
API :
/**
* Adds a parameter to the map. The paramReference
* should be present in the message title or body so
* it can be replaced by the paramValue before the message
* is displayed.
*
* @param paramReference
* a string place holder that is present in either the
* message title or body. Used to indicate where the value
* parameter should be positioned in a message.

Cúram Universal Access Customization Guide

41

* @param paramValue
* the value to be substituted in place of the place holder
*/
public void addParameter(final String paramReference,

final String paramValue) {

parameters.put(paramReference, paramValue);
}

The call to the method would look like this:
participantMessage.addParameter("Payment.Due.Date", "1/1/2011");

Messages can also include links. Similarly to placeholders, links are re-
solved at runtime. Links can use placeholder values as the text to be dis-
played for that link. A link is defined in a properties file as such:
Click {link:here:paymentDetails} to view the payment details.

In this example, "here" is the text to display, and "paymentDetails" refers to
the name of the link that is to be inserted at that point in the text. Please see
the Advisor Developer's Guide for more information. In order for
a dynamic listener to populate this link with a target, it would create a
curam.participantmessages.impl.ParticipantMessageLi
nk object, specifying a target and a name for the link. The code would look
like this:
ParicipantMessageLink participantMessageLink =

new ParticipantMessageLink(false,
"CitizenAccount_listPayments", "paymentDetails");

participantMessage.addLink(participantMessageLink);

Before composing the message, the dynamic listener must check to ensure
that the message type in question is currently enabled. The
curam.participantmessages.configuration.impl.Partic
ipantMessageConfiguration record for that message type should be
read, and the isEnabled method used to determine if this message type is
enabled. If not, no further processing should occur.

* It is recommended to separate the code that listens for the event and the
code that composes a specific message, in order to adhere to the philosophy
of "doing one thing and doing it well".

Implementing a persisted message.

In order to have a persisted message displayed to the citizen, it must be writ-
ten to the database via the
curam.citizenmessages.persistence.impl.ParticipantM
essage API. Message arguments are handled by persisting a
curam.advisor.impl.Parameter record and associating it with the
ParticipantMessage record, and links by the
curam.advisor.impl.Link API. Parameter names should map to
placeholders contained within the message text. Link names should relate to
the names of links specified in the message text. Please refer to the javadoc
of
curam.citizenmessages.persistence.impl.ParticipantM
essage , curam.advisor.impl.Parameter and

Cúram Universal Access Customization Guide

42

curam.advisor.impl.Link for more information.

An expiry date time must be specified for each ParticipantMessage. After
this date time, the message will no longer be displayed.

Messages can be removed from the database. If a message needs to be re-
placed with a with a modified version, or removed for another reason, this
can be done via the
curam.citizenmessages.persistence.impl.ParticipantM
essage API.

Each message has a related ID and type. This is used to track the record that
the message is related to. For example, meeting messages will store the
Activity ID and a type of "Meeting". Messages can be read by participant,
related ID and type via the ParticipantMessageDAO .

Before persisting the message, the dynamic listener must check to ensure
that the message type in question is currently enabled. The
curam.participantmessages.configuration.impl.Partic
ipantMessageConfiguration record for that message type should be
read, and the isEnabled method used to determine if this message type is
enabled. If not, no further processing should occur.

Customizing specific message types

The message types delivered OOTB are customizable in various ways that
shall be described in this section. Please refer to the Cúram Universal
Access Guide for a description of the various message types.

Payment Messages

This message type creates messages based on the payments issued, canceled
etc for a citizen. These messages are persisted to the database. They replace
each other, for example, if a payment is issued and then canceled, the pay-
ment issued message will be replaced with a payment canceled message.
The properties file EJBServ-
er\components\CitizenWorkspace\data\initial\blob\pr
op\CitizenMessageMyPayments.properties contains the prop-
erties for financial message text, message parameters, links and images.
This properties file is stored in the resource store. This resource is registered
under the resource name CitizenMessageMyPayments . To change
the message text of financial messages, or to remove placeholders or change
links, a new version of this file must be uploaded into the resource store.
The table below describes the messages created when various events related
to payments occur in the system, and the property in CitizenMes-
sageMyPayments.properties that relates to each message created.

Payment event Message Property
First payment issued on a case Message.First.Payment

Latest payment issued Message.Payment.Latest

Last payment issued Message.Last.Payment

Cúram Universal Access Customization Guide

43

Payment event Message Property
Payment canceled Message.Cancelled.Payment

Payment reissued Message.Reissue.Payment

Payment stopped (case suspended) Message.Stopped.Payment

Payment / Case unsuspended Message.Unsuspended.Payment

Table 8.2 Payment messages and related properties

Customization of the Payment Messages Expiry Date

The number of days the payment for which the message will be displayed to
the citizen can be configured using a system property. By default the prop-
erty value is set to 10 days, however, this can overridden from property ad-
ministration.

Name Description
curam.citizenaccount.payment.messa
ge.expiry.days

The number of days the payment
message will be displayed to the par-
ticipant.

Table 8.3 Payment message expiry property

Meeting Messages

This message type creates messages based on meetings that the citizen is in-
vited to, provided that they are created via the
curam.meetings.sl.impl.Meeting API. This API raises events
that the meeting messages functionality consumes. There are other ways of
creating Activity records without this API, but meetings created in these
ways will not have related messages created as the events will not be raised.
These messages are persisted to the database. They replace each other, for
example, if a meeting is scheduled and then the location is changed, the ini-
tial invitation message will be replaced with one informing the citizen of the
location change. The properties file EJBServ-
er\components\CitizenWorkspace\data\initial\blob\pr
op\CitizenMessageMeetingMessages.properties contains
the properties for the meeting messages text, message parameters, links and
images. This properties file is stored in the resource store. This resource is
registered under the resource name CitizenMessageMeetingMes-
sages . To change the message text of meeting messages, or to remove
placeholders or change links, a new version of this file must be uploaded in-
to the resource store. The table below describes the messages created when
various events related to meetings occur in the system, and the properties in
CitizenMessageMeetingMessages.properties that relates to
each message created. Different versions of the message text are displayed
depending on whether the meeting is an all day meeting, whether a location
has been specified, and whether the meeting organizer has contact details re-

Cúram Universal Access Customization Guide

44

gistered in the system. Accordingly, the property values in this table are ap-
proximations that relate to a range of properties within the properties file.
Please refer to the properties file for a full list of the message properties.

Meeting event Message Properties
Meeting invitation Non.Allday.Meeting.Invitation.*,

Allday.Meeting.Invitation.*

Meeting update Non.Allday.Meeting.Update.*,
Allday.Meeting.Update.*

Meeting canceled Allday.Meeting.Update.*,
Allday.Meeting.Cancellation.*

Table 8.4 Meeting messages

Customization of the Meeting Messages Display Date

The number of days before the meeting start date that the message should be
displayed to the citizen can be configured using a system property. By de-
fault the property value is set to 10 days, however, this can overridden from
property administration.

The meeting message expires (i.e. it is no longer displayed to the citizen) at
the end of the meeting, i.e. the date time at which the meeting is scheduled
to end.

Name Description
curam.citizenaccount.meeting.messa
ge.effective.days

The number of days before the meet-
ing start date that the message should
be displayed to the citizen.

Table 8.5 Meeting message display date property

Customization of Activity types for which to create Meeting Mes-
sages

Meetings are stored on the Activity entity. There are different types of
Activity, which are stored in the CT_ActivityType codetable. The list
of activity types for which to create messages can be customized using the
following property. The default code is 'AT2' which represents Meeting.

Name Description
curam.citizenaccount.meeting.activit
y.types.to.generate.messages

A configuration setting to dictate the
types of activities for which mes-
sages will be generated.

Table 8.6 Activity types for which to generate meeting messages

Application Acknowledgment Message

Cúram Universal Access Customization Guide

45

This message type creates a message when an application is submitted by a
citizen. This message is persisted to the database. The properties file EJB-
Serv-
er\components\CitizenWorkspace\data\initial\blob\pr
op\CitizenMessageApplicationAcknowledgment.properti
es contains the properties for the messages text, message parameters, links
and images. This properties file is stored in the resource store. This resource
is registered under the resource name CitizenMessageApplica-
tionAcknowledgment . To change the message text of the message, or
to remove placeholders or change links, a new version of this file must be
uploaded into the resource store.
Customization of Application Acknowledgment Message Expiry
Date

The number of days the Application Acknowledgment message will be dis-
played to the citizen can be configured using a system property. By default
the property value is set to 10 days, however, this can overridden from prop-
erty administration.

Name Description
curam.citizenaccount.intake.applicati
on.acknowledgement.message.expiry
.days

The number of days the application
acknowledgment message will be
displayed to the participant.

Table 8.7 Application acknowledgment message expiry property

Referral Message

This message type creates messages related to referrals. This is a dynamic
message. When the citizen logs in, a message will be created for each refer-
ral that exists for the citizen in the system, provided that referral has a refer-
ral date of today or in the future, and provided that a related Service Offer-
ing has been specified for this referral. The properties file EJBServ-
er\components\CitizenWorkspace\data\initial\blob\pr
op\CitizenMessageReferral.properties contains the proper-
ties for the referral message text, message parameters, links and images.
This properties file is stored in the resource store. This resource is registered
under the resource name CitizenMessageReferral . To change the
message text of the message, or to remove placeholders or change links, a
new version of this file must be uploaded into the resource store.

Service Delivery Message

This message type creates messages related to service deliveries. This is a
dynamic message. When the citizen logs in, a message will be created for
each service delivery that exists for the citizen in the system, provided that
service delivery has a status of 'In Progress' or 'Not Started'. The properties
file EJBServ-

Cúram Universal Access Customization Guide

46

er\components\CitizenWorkspace\data\initial\blob\pr
op\CitizenMessageServiceDelivery.properties contains
the properties for the service delivery message text, message parameters,
links and images. This properties file is stored in the resource store. This re-
source is registered under the resource name CitizenMessageServi-
ceDelivery . To change the message text of the message, or to remove
placeholders or change links, a new version of this file must be uploaded in-
to the resource store.

8.8 Customizing existing pages

The My Payments, My Applications and My Activities pages that are
shipped OOTB are customizable. The UIM pages can be replaced higher up
the component order and changes made as required, as with standard UIM
pages.

On the server side, the APIs that drive these pages are customizable and live
in the curam.citizenaccount.impl package. These can be custom-
ized along with the structs that they return in order to return additional in-
formation. This is preferential to customizing the
curam.citizenaccount.facade.impl.CitizenAccount
facade, which is internal and should not be called.

The required security checks live in the CitizenAccount facade as op-
posed to in the APIs located in curam.citizenaccount.impl . Cus-
tom facades must implement the required checks.

The structs that are used to serve these pages with data are also customiz-
able. The model files that contain these structs are located at EJBServ-
er\components\CitizenWorkspace\model\Packages\Citiz
enAccount . Unlike the other model artifacts in UA, these are customiz-
able in the standard way.

8.9 My Payments Page Customization

Data for this page is retrieved using the
curam.citizenaccount.impl.CitizenPayments API. The
listPayments method is used to list the payments on the page. The in
line instruction details page calls the readPaymentInstructionBy-
Instrument method to retrieve the payment instruction details.

8.10 My Applications Page Customization

Data for this page is retrieved using the
curam.citizenaccount.impl.CitizenPayments API. The
listPayments method is used to list the payments on the page. The in
line instruction details page calls the readPaymentInstructionBy-
Instrument method to retrieve the payment instruction details. Please
consider the required security checks when consuming this API in custom

Cúram Universal Access Customization Guide

47

facades.

8.11 Contact Information Page Customization

This page displays caseworker contact details for each Case related to the
citizen, along with the citizen's contact information. It is customizable in a
number of ways, described in the table below.

Name Description Default
curam.citizenaccount.co
ntactinforma-
tion.show.caseworker.d
etails

Whether to display
caseworker contact in-
formation on this page.

true

curam.citizenaccount.co
ntactinforma-
tion.show.casemember.c
ases

Whether to display
caseworker details
where the citizen is a
case member, as op-
posed to the primary
participant.

true

curam.citizenaccount.co
ntactinforma-
tion.show.businessphon
e

Whether to display the
caseworkers' business
phone number.

true

curam.citizenaccount.co
ntactinforma-
tion.show.mobilephone

Whether to display the
caseworkers' cell / mo-
bile phone number.

true

curam.citizenaccount.co
ntactinforma-
tion.show.faxnumber

Whether to display the
caseworkers' fax num-
ber.

true

ccuram.citizenaccount.c
ontactinforma-
tion.show.pagernumber

Whether to display the
caseworkers' pager
number.

true

curam.citizenaccount.co
ntactinforma-
tion.show.emailaddress

Whether to display the
caseworkers' email ad-
dress.

true

Table 8.8 Contact Information Customization properties

Cúram Universal Access Customization Guide

48

Chapter 9

Customizing Life Events

9.1 Purpose

The purpose of this chapter is to:

• Describe what a Life Event is and why they are useful

• Describe how to develop Life Events

9.2 Audience

This chapter is intended for business analysts, software architects and de-
velopers. Many types of Life Events can be built entirely by analysts, some
will require input from developers. The chapter will help analysts to under-
stand how to perform the analysis for a new Life Event and how to determ-
ine whether input is needed from developers.

9.3 Overview

This chapter aims to give the reader an overview of Life Events as well as a
complete guide to developing Life Events.

Section 1 provides a brief introduction to Life Events

Section 2 describes the high level architecture of Life Events and details
how to perform the analysis and development tasks in building a Life Event

Section 3 describes the Life Event Java API

9.4 Introduction to Life Events

Life Events are intended to capture a holistic view of what is happening in a
person's life. Life Events provide, not only raw information about a person's

49

circumstances, income and so on but also context.

Consider the following scenario: James Smith has lost his job after the com-
pany he is working with shuts down. James logs into his Citizen Account
and goes to the Life Event section. He chooses the "Lost my Job" Life
Event. The system launches an IEG2 script to collect information about the
Job Loss event. The script asks James a number of relevant questions about
the circumstances of his Job Loss. These questions are not necessarily relev-
ant to any particular Social Assistance Program that James might be on. A
Life Event Script is typically short and to the point. Some of the information
in the script might be pre-filled with information already known about
James Smith. For example, the name and address of his former employer are
displayed in the script. James confirms that indeed this is the employer that
laid him off.

After completing the Life Event script, a set of recommendations is dis-
played. These recommendations include:

• Services in the community that can provide him with help and support

• Government run Programs that may be relevant to James' situation, for
example Unemployment Benefit

A couple of days after submitting the Life Event, James logs into his Citizen
Account again. He sees a message on his home page. James is on a Benefit
Case, and as a result of the changes in the Life Event the agency administer-
ing this benefit needs to collect some more information about James' in-
come. After completing another question script, James returns to the Life
Event pages and reviews information about his previously submitted "Lost
my Job" Life Event. He can see the information he sent to the agency and
also remind himself of the services recommended as a result.

From James' point of view he has:

• Told one or possibly several different agencies about his misfortune, he
hasn't had to contact them separately

• He has been recommended services that are in his community and close
to where he lives. He may not have been even aware that such services
existed before

• He has been recommended to apply for appropriate government pro-
grams

From the point of view of interested Social Enterprises:

• They get context. They not only know that James has applied for a pro-
gram, they now know what has prompted him to apply

• James has been triaged by the Citizen Account system, saving valuable
resources

• James has been directed towards community / voluntary resources that
can help him

Cúram Universal Access Customization Guide

50

• If James has existing cases that are being managed using Cúram, then
information from the Life Event can be fed automatically into these
cases

9.5 How to Build a Life Event

9.5.1 Analysis

This section describes how to undertake the analysis needed to design a Life
Event. This section is concerned with Life Events for Universal Access
users. It is possible to build Life Events for case workers or indeed to use
Life Event infrastructure to drive other processes like certification, but these
topics are beyond the scope of this chapter. Java coding skills are not a pre-
requisite for developing all Life Events. Depending on requirements, many
and in some cases all of the artifacts required can be developed by an Ana-
lyst. This section will help Analysts to determine whether Java developers
will be needed to complete the implementation of a Life Event.

Broadly speaking, Life Events for Citizens come in two flavors:

• Standard Life Events

• Round Tripping Life Events

Standard Life Events allow the Citizen to enter new information and then
submit it to the agency. For example: Imagine, that Linda logs into Univer-
sal Access and submits a "Having a Baby" life event. This is all new inform-
ation, it doesn't really need relate to anything that has gone before. If it turns
out that she has made a mistake in the information she submitted, say the
name of the obstetrician, then she simply launches a new Life Event and re-
enters all the new information again before submitting.

Round Tripping Life Events are more complex. The distinction between
these Life Events and Standard Life Events is determined by whether the
data that is pre-populated into the Life Event is allowed to be changed by
the user. If the Citizen is expected to update pre-populated information,
rather than just adding new information then the Life Event should be con-
sidered a Round Tripping Life Event. It is considerably harder to design
scripts for this type of Life Event.

The primary artifacts that constitute a Life Event are:

• An IEG script and its associated data store schema

• An IEG script to review answers in a previously submitted Life Event
(optional)

• An Recommendations Ruleset, that produces the set of recommenda-
tions based on the information entered in the IEG script (optional)

The Life Events system can take information entered by the user and do

Cúram Universal Access Customization Guide

51

either of two things with that information:

1. If the user is linked to the local Cúram case processing system, then the
Life Events system can update related evidence in any cases they have.

2. If the user is linked to remote systems then the Life Events system can
send updates to related remote systems via web services.

The Life Events system can be configured to seek the user's permission be-
fore sending Life Event information to any remote systems.

A standard Life Event that is configured only to send information to remote
systems can be configured through the administration application. See Uni-
versal Access Configuration Guide for details.

If the Life Event is a Round Tripping Life Event or it is required to update
evidence in the local case processing system then some development work
will be needed to configure the Life Event. Round Tripping Life Events
must be pre-populated. Currently pre-population of Life Events is only sup-
ported for users linked to the local Cúram case processing system via a con-
cern role. To read information from cases and update those cases, the Life
Events system relies on a subsystem called the Citizen Data Hub. The re-
mainder of this section outlines the work needed to configure the Citizen
Data Hub.

The Life Event Broker uses the Data Hub to get the data it needs to populate
the Life Event, so the developer must configure the Data Hub to extract this
data. The Life Event Broker also sends the updated data back through the
Data Hub. The Data Hub must be configured to tell it what to do with this
updated data.

These are some of the artifacts used to configure the Citizen Data Hub for
reading information:

• Transform - Translates data from the Holding Case into Data Store
XML

• Filter Evidence Links - When reading Citizen Data, these filter out only
the evidence entities of interest when reading from the Holding Case

• View Processors - Java classes for extracting non evidence data into the
Data Store XML

These are some of the artifacts that are used to configure the Citizen Data
Hub for updating information:

• Transforms - Convert a Data Store XML Difference Description back
into Holding Case Evidence

• Update Processors - Perform other update tasks or update non evidence
data relating to the Citizen

Considerations for Life Events Analysis

Cúram Universal Access Customization Guide

52

Here are some of the considerations that affect the complexity of developing
a particular Life Event that must read from, or write to, a temporal evidence
or participant-related data store in Cúram. These considerations should in-
form any analysis of Life Events development and any resulting estimates.

1. Is the Life Event a Standard Life Event or a Round Tripping Life Event

2. What information needs to be pre-populated into the IEG2 script?

3. What Temporal Evidence data is read by the Life Event?

4. What Temporal Evidence data is updated by the Life Event?

5. What non-Evidence data is read/updated by the Life Event

6. How many Programs/Case Types will be affected by the Life Event

7. If a Life Event shares to multiple Cases, will those case types also
share evidence with each other using Evidence Broker?

8. Does a Life Event have associated Recommendations? If so, do they
relate to Community Services, Government Programs or both?

Of these items dealing with Non-Evidence Entities presents the greatest
challenge. Any Life Event that updates non-evidence entities will require
developers with Java skills.

9.5.2 Building The Components of a Life Event

Overview

This section describes how to build the component parts of a Life Event that
uses the Citizen Data Hub. This section of the guide does not require any
knowledge of Java.

• How to write Life Event IEG Scripts, including Review Scripts

• How to write Life Events Recommendations Rule Sets

• How to pre-populate a Life Event Script using the Citizen Data Hub

• How to process Life Event Updates using the Citizen Data Hub

• How to put all the components together

Writing Life Event IEG Scripts

Writing a Life Event IEG script is much like writing any other IEG script
for more information on writing IEG2 Scripts in general please refer to the
Developer Guide Authoring Scripts In IEG2 . However there are some spe-
cial considerations for Life Event scripts. In the main these depend on
whether the Life Event is a Round Tripping Life Event or a Standard Life
Event. Recall that in a Round Tripping Life Event, Citizen Data is read into

Cúram Universal Access Customization Guide

53

the Data Store used by the IEG script and then this data can be modified by
the Citizen as they go from page to page in the Life Event script. Take for
example a piece of Income data that is read into the Life Event script. The
Citizen modifies this Income information and then submits. The Life Event
Broker must ensure that when the Citizen changes the Income data, that this
change is detected and that the changes are correctly propagated back to the
Income entity from which the data was originally read. The Life Event
Broker needs a way to "track" data from its origin in the Income entity,
through the Life Event Script and back to the same Income entity. In order
to facilitate this the IEG script designer must place a "marker" into the data
store schema. Here is an example of the definition of an Income Data Store:

1 <xsd:element name="Income">
<xsd:complexType>

<xsd:attribute name="incomeType" type="INCOME_TYPE"
default=""/>

5 <xsd:attribute name="cgissIncomeType"
type="CGISS_INCOME_TYPE"/>

<xsd:attribute name="incomeFrequency"
type="INCOME_FREQUENCY" default=""/>

<xsd:attribute name="incomeAmount" type="IEG_MONEY"
10 default="0"/>

<xsd:attribute name="localID" type="IEG_STRING"/>
<xsd:complexType>

</xsd:element>

The attribute localID is used by the Cúram Life Event Broker to track the
unique identity of the entity from which the Income Data was drawn. When
this entity is changed by the user and submitted, the Life Event Broker can
use the value of localID to locate the correct entity to update as a result
of the changes in the Life Event. There are some other special markers that
can be placed in the schema to aid with providing automatic updates to
Cúram evidence entities. These will be discussed in subsequent sections.

When designing a script for a Round Tripping Life Event the designer
should bear in mind the effects that pre-population of data can have on the
flow of the script. One particular example of this is conditional clusters. Life
Event Scripts should avoid conditional clusters that are associated with pre-
populated data. These are common in Intake scripts but don't work well
when the data store has been pre-populated. Take for example a Life Event
around losing a job, a boolean flag on the Person entity, hasJob is used
to indicate that person has a job. The IEG script presents the user with a
question: "Does anyone in your household have a job?". This is used to
drive the display of a conditional cluster that identifies which household
members who have jobs. If the data in the data store is pre-populated
however, there's a good chance that one or more there will be one or more
Person entities with hasJob already be set to "true". In the current im-
plementation of IEG2 however it is not possible to get the "Does anyone in
your household have a job?" Control Question to default to true even when
hasJob is true for one or more household members. For this reason the
general rule should be to avoid control questions for conditional clusters like
this when the fields they control are pre-populated.

Writing Life Event Review Scripts

Cúram Universal Access Customization Guide

54

Users who have previously submitted a Life Event can return to review the
answers they gave. IEG Scripts are an ideal way to present this kind of in-
formation in a page-by-page, easily readable format. A script that is suitable
for data collection however is not necessarily suited for use in the review of
previously submitted data. For one thing, the fields should not be editable in
a review script. IEG provides a "summary page" feature that can be used for
rendering summaries of data that have been already entered. Summary
pages are recommended as a good way of writing Life Event Review
Scripts. For more information on writing IEG2 Scripts please refer to the
Developer Guide Authoring Scripts In IEG2 . If a review script is not sup-
plied, then the question script is launched in read-only mode when a user
elects to review their Life Event.

Writing Life Event Recommendations Rule Sets

After submitting a Life Event the user is presented with a Screen showing
Community Services in their area that are deemed suitable based on the Life
Event they have just submitted. The same screen can also list recommended
Government Programs for which to Self Screen or perform Intake. Life
Event Recommendations Rule Sets must extend the TriageInterface
rule set and extend AbstractTriageResult . As follows:
<RuleSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=
"../../../../CREOLEInfrastructure/xsd/curam/

creole/xsd/RuleSet.xsd"
name="LifeEventRecommendationsRuleSet">
<Class name="LifeEventRecommendation"

extends="AbstractTriageResult"
extendsRuleSet="TriageInterfaceRuleSet">
...

</Class>
...

</RuleSet>

For the most part, writing a Life Event Recommendations rule set resembles
writing a Triage Rule Set, readers are referred to the Chapter Customizing
Triage in this guide and . Where Rules for Life Event Recommendations
differ is that they can make decisions based on whether a given Data Store
entity was changed by the user executing the Life Event Script and, if it was
changed, what was the nature of the change. For example, the Rule Set
could make one recommendation based on the addition of a new Income en-
tity or a different one based on a change to an existing Income Entity. The
example below shows how to add rule attributes in support of Life Event
Recommendations to a Person class.
<Class name="Person" xsi:noNamespaceSchemaLocation=

"http://www.curamsoftware.com/CreoleRulesSchema.xsd">
<Attribute name="curamDataStoreUniqueID">

<type>
<javaclass name="Long"/>

</type>
<derivation>
<specified/>

</derivation>
</Attribute>

<Attribute name="curamHasChanged">
<type>

Cúram Universal Access Customization Guide

55

<javaclass name="Boolean"/>
</type>
<derivation>
<specified/>

</derivation>
</Attribute>

<Attribute name="curamChangeType">
<type>
<javaclass name="String"/>

</type>
<derivation>
<specified/>

</derivation>
</Attribute>

</Class>

Following the submission of a Life Event, the Life Event Broker initializes a
Rule Session and creates Rule Objects corresponding to the Data Store En-
tities for the Life Event. It then modifies these Rule Objects based on the
Difference Command that correspond to that Data Store entity. Taking the
example of the Person Rule Class described above: If the Person entity in
the data store was changed as a result of the execution of the Life Event IEG
script then the curamHasChanged attribute will return true . The
curamChangeType will return the type of change that was made:

• DCMDT10001 - The entity was added by the Life Event IEG Script

• DCMDT10002 - The entity was changed by the Life Event IEG Script

• DCMDT10003 - The entity was removed by the Life Event IEG Script

Pre-Populating a Life Event

This section describes the artifacts that need to be developed in order to pre-
populate a Life Event script. In this section we describe

• How the Data Hub Works for reading data

• How to author Read Transforms

• How to use Pre-Packaged View Processors

How the Data Hub Works for Reading

The Data Hub is a means of collecting data about Citizens from many dif-
ferent locations and returning it as an XML document in a datastore. The
Data Hub can be used to hide the complexities of where data comes from
and how it is represented in it original locations. For example, to drive a
"Lost my Job" Life Event it might be necessary to gather information about
a person's Income, Address and Employment. These three pieces of inform-
ation might be represented differently on the underlying system, indeed they
might live on three or more different systems. The caller doesn't need to
know this. The Citizen Data Hub allows its clients to get these pieces of in-
formation in one single operation. Operations of this type are named
uniquely, each is called a "Data Hub Context". To animate the "Lost my

Cúram Universal Access Customization Guide

56

Job" example we define a Data Hub Read Context called "CitizenLostJob"
that allows the collection of Income, Address and Employment information
in a single query.

One of the sources that the Data Hub can draw on is Temporal Evidence on
Cases. In particular, Evidence on the Citizen's Holding Case. The Holding
Case can use the Evidence Broker to gather data from many disparate Integ-
rated Cases or even from other Systems via Web Services. The Holding
Case is a little different from other Cases. There is only ever one per Citizen
on a given Cúram system. The Holding Case has an interface that allows all
of the Evidence it contains to be extracted in XML format. This XML
format is optimized for the description of Evidence in particular. Because it
is optimized for the description of Evidence, it isn't necessarily in a format
suitable for insertion into a data store. Fortunately it is relatively easy to
translate data in one XML format into another format that contains the same
information. This can be done using a language called XSLT For more in-
formation on XSLT please refer to, http://www.w3.org/TR/xslt. The next
section demonstrates how to write XSLT Transforms for use in the Data
Hub.

Authoring Read Transforms

To write Citizen Data Hub Transforms it is necessary to understand, the
structure of the Holding Evidence XML that is the source data and the Data
Store schema that is the target. The "CitizenLostJob" Life Event is signific-
antly complex so, for the purposes of an introductory example, this section
describes a simple fictitious Life Event for Citizens who have bought a new
car. This Life Event is associated with the Data Hub Context "Citizen-
BoughtCar". This would not be considered a "Life Event" in the real world
but it nevertheless provides an example of some of the principles of building
a Round Tripping Life Event. For the purposes of this example consider this
fragment of Holding Evidence XML that is used to describe a Vehicle:

<?xml version="1.0" encoding="UTF-8"?>
<client-data
xmlns="http://www.curamsoftware.com/schemas/ClientEvidence">

<client localID="101" isPrimaryParticipant="true">
<evidence>

<entity localID="-416020015578349568" type="ET10081">
<attribute name="vehicleMake">VM2</attribute>
<attribute name="versionNo">2</attribute>
<attribute name="startDate">20110301</attribute>
<attribute name="usageCode">VU1</attribute>
<attribute name="amountOwed">3,200.00</attribute>
<attribute name="numberOfDoors">0</attribute>
<attribute name="evidenceID">

-5315936410157449216
</attribute>
<attribute name="monthlyPayment">0.00</attribute>
<attribute name="vehicleModel">159</attribute>
<attribute name="year">2008</attribute>
<attribute name="equityValue">0.00</attribute>
<attribute name="endDate">10101</attribute>
<attribute name="fairMarketValue">17,000.00</attribute>
<attribute name="curamEffectiveDate">20110301
</attribute>

</entity>

Cúram Universal Access Customization Guide

57

</evidence>
</client>

</client-data>

Example 9.1 Holding Evidence XML Example

The client element represents data belonging to the participant with con-
cern role id 101. In Cúram demo data this is James Smith. The client con-
tains a single evidence entity of type ET10081 . In the Cúram Common
Evidence layer, ET10081 is the Evidence Type identifier for Vehicle Evid-
ence. The localID attribute plus the evidence type uniquely identifies the
underlying evidence object for the Vehicle. This data has to be mapped to
data store XML so that it can be used to populate an IEG Script. Consider
how the above data is to be represented in data store XML:

<?xml version="1.0" encoding="UTF-8"?>
<Application>

<Person localID="101" isPrimaryParticipant="true"
hasVehicle="true">

<Resource resourcePageCategory="RPC4001"
localID="-416020015578349568" vehicleMake="VM2"
versionNo="2" amountOwed="3,200.00" vehicleModel="159"
year="2008" fairMarketValue="17,000.00"
curamEffectiveDate="20110301">

<Descriptor/>
</Resource>

</Person>
</Application>

Example 9.2 Data Store XML Sample

This XML data must conform to the schema used to build the IEG script.
Notice that the XML above conforms to a schema that is a superset of the
CitizenPortal.xsd schema. It is recommended that the Citizen-
Portal.xsd schema be used as a starting point for the schemas used in
Customer Life Events. To these schemas need to be added the "marker" at-
tributes needed for Life Events. These marker attributes include the use of
localID as discussed previously. Datastore schemata for entities can also
include the following special markers that are specialized for representing
Evidence in the Holding Case: The following XSLT fragment shows how to
transform Vehicle Holding Evidence into a corresponding Data Store Entity:

• curamEffectiveDate - This maps to the effective date of a piece of
Cúram Evidence

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:x="http://www.curamsoftware.com/
schemas/DifferenceCommand"
xmlns:fn="http://www.w3.org/2006/xpath-functions"
version="2.0">

<xsl:output indent="yes"/>

<xsl:strip-space elements="*"/>

<xsl:template match="update">
<xsl:for-each select="./diff[@entityType='Application']">

Cúram Universal Access Customization Guide

58

<xsl:element name="client-data">
<xsl:apply-templates/>

</xsl:element>
</xsl:for-each>

</xsl:template>

<xsl:template match="diff[@entityType='Person']">
<xsl:element name="client">

<xsl:attribute name="localID">
<xsl:value-of select="./@identifier"/>

</xsl:attribute>
<xsl:element name="evidence">

<xsl:apply-templates/>
</xsl:element>

</xsl:element>
</xsl:template>

<xsl:template match="diff[@entityType='Resource']">
<xsl:element name="entity">

<xsl:attribute name="type">ET10081</xsl:attribute>
<xsl:attribute name="action">

<xsl:value-of select="./@diffType"/>
</xsl:attribute>
<xsl:attribute name="localID">

<xsl:value-of select="./@identifier"/>
</xsl:attribute>
<xsl:for-each select="./attribute">

<xsl:copy-of select="."/>
</xsl:for-each>

</xsl:element>
</xsl:template>

<xsl:template match="*">
<!-- do nothing -->

</xsl:template>
</xsl:stylesheet>

Example 9.3 XSLT Transform for Vehicle Resource Information

The Life Event author who adds this transform to their Life Event can turn
Vehicle Evidence recorded on any Integrated Case into a Data Store format
that can be displayed in an IEG script with all the information pre-populated
from the Evidence Record.

Defining Filters for Evidence

When the Holding Case is called upon to return an XML representation of
its evidence, by default it will return all evidence for the citizen concerned.
This could be a very large query that returns much more information than is
required. The purpose of a Filter Evidence Link is to define, for each Data
Hub Context, which Evidence Types are of interest. A Filter Evidence Link
can be defined by adding entries to a Filter Evidence Link dmx file. The ex-
ample below shows a Filter Evidence Link dmx file that defines the inform-
ation that should be returned for the "CitizenBoughtCar" Life Event:
<?xml version="1.0" encoding="UTF-8"?>
<table name="FILTEREVIDENCELINK">

<column name="FILTEREVLINKID" type="id" />
<column name="FILTERNAME" type="text" />

Cúram Universal Access Customization Guide

59

<column name="EVIDENCETYPECODE" type="text" />
<row>

<attribute name="FILTEREVLINKID">
<value>175</value>

</attribute>
<attribute name="FILTERNAME">

<value>CitizenBoughtCar</value>
</attribute>
<attribute name="EVIDENCETYPECODE">

<value>ET10081</value>
</attribute>

</row>
</table>

Using Pre-Packaged View Processors

Up to this point has focused on how Transforms can be used turn Evidence
data into Data store XML for use in a Life Event Script. However there are
other important pieces of information that are not represented as Evidence.
In general the Life Event author must develop custom Java code in order to
populate any information that is not represented as evidence. Using Java it is
possible to develop View Processors which can be used to extract non-
evidence data and translate this data into data store xml. By associating
these View Processors with the right Data Hub Context, they can add their
information into the data store in addition to the data put there by the trans-
forms. The Life Events Broker ships with some pre-packaged View Pro-
cessors that are capable of inserting certain frequently used non Evidence
Data.

• Household View Processor

• The Person Address View Processor

The Household View Processor will find all Persons related to the currently
Logged in user and pull them into the data store along with information on
how they are related to the logged in Citizen. This information is based on
the CEF ConcernRoleRelationship entity.

The Person Address View Processor populates the most important details of
the logged in Citizen, such as name and Social Security Number. It also
pulls in the Residential and Mailing addresses of the logged in Citizen. Both
the Household View processor and the Person Address View Processor can
be used together in the same Life Event Context but the Person Address
View Processor should be run after the Household View Processor. The ex-
cerpt below shows how to configure these two View Processors to execute
for the "CitizenBoughtCar" Life Event.
<?xml version="1.0" encoding="UTF-8"?>

<table name="VIEWPROCESSOR">
<column name="VIEWPROCESSORID" type="id"/>
<column name="LOGICALNAME" type="text" />
<column name="CONTEXT" type="text" />
<column name="VIEWPROCESSORFACTORY" type="text" />
<column name="RECORDSTATUS" type="text"/>
<column name="VERSIONNO" type="number"/>
<row>
<attribute name="VIEWPROCESSORID">

<value>4</value>
</attribute>

Cúram Universal Access Customization Guide

60

<attribute name="LOGICALNAME">
<value>CitizenLostJob0</value>

</attribute>
<attribute name="CONTEXT">

<value>CitizenBoughtCar</value>
</attribute>
<attribute name="VIEWPROCESSORFACTORY">

<value>
curam.citizen.datahub.internal.impl.
+HouseholdCustomViewProcessorFactory
</value>

</attribute>
<attribute name="RECORDSTATUS">

<value>RST1</value>
</attribute>
<attribute name="VERSIONNO">

<value>1</value>
</attribute>

</row>
<row>

<attribute name="VIEWPROCESSORID">
<value>5</value>

</attribute>
<attribute name="LOGICALNAME">

<value>CitizenLostJob1</value>
</attribute>
<attribute name="CONTEXT">

<value>CitizenBoughtCar</value>
</attribute>
<attribute name="VIEWPROCESSORFACTORY">

<value>
curam.citizen.datahub.internal.impl.
+CustomPersonAddressViewProcessorFactory
</value>

</attribute>
<attribute name="RECORDSTATUS">

<value>RST1</value>
</attribute>
<attribute name="VERSIONNO">

<value>1</value>
</attribute>

</row>
</table>

Note the use of the CONTEXT field. This links the ViewProcessor to the
"CitizenBoughtCar" Life Event Context. This ensures that this ViewPro-
cessor is called whenever the "CitizenBoughtCar" Data Hub Context is
called. Notice also the use of a logicalName which uniquely distin-
guishes each View Processor. View Processors for a given Data Hub Con-
text are executed in lexical order, so a View Processor name with a logic-
alName of "AAA" for the DataHubContext "CitizenBoughtCar" will be ex-
ecuted before one with a logicalName of "AAB".

Driving Updates from Life Events

This section describes the artifacts that need to be developed in order to pro-
cess the data submitted from a Life Event script. This section describes:

• How the Data Hub Works for updating data

• How to author Update Transforms

• How to create new Case Participants from Update Transforms

• How to configure Evidence Brokering for the Holding Case

Cúram Universal Access Customization Guide

61

How the Data Hub Works for Updating

Just as the Citizen Data Hub has a notion of Data Hub Context for reading
so also does it have Data Hub Contexts for updating. Life Events will typic-
ally use the same Data Hub Context name for the read and updates associ-
ated with the same Life Event, so the "CitizenBoughtCar" context describes,
not only, a set of artifacts for pre-populating a "CitizenBoughtCar" Life
Event script but also a set of artifacts for handling updates to the Citizen's
data when the "CitizenBoughtCar" Life Event script is complete.

An update operation for a given Citizen Data Hub Context can lead to many
different individual entities being updated in a single transaction. The arti-
facts, provided to a Data Hub following a script submission are:

• A Data Store root entity

• A Difference Command

• A Data Hub Context Name

The Data Store root entity is the root of the data store that has been updated
via the Life Events IEG script. The Difference Command is an entity that
describes how this data store is different to the one that was passed to the
IEG script before it was launched. In other words it describes how the user
has changed the data as a result of executing the Life Event Script. These
differences are broken down into three basic types:

• Creations - The user has created a data store entity as a result of running
the IEG script

• Updates - The user has updated an entity as a result of running the IEG
script

• Removals - The user has removed an entity as a result of running the
IEG script

Of these three, Creations and Updates are the most common. Allowing users
to remove items in Life Events scripts should generally be considered bad
practice. Standard Life Events tend to be characterized by a number of Cre-
ations whereas Round Tripping Life Events tend to be a mixture of Cre-
ations and Updates. The Difference Command is generated automatically by
the Life Event Broker after a Life Event is submitted.

To turn a Data Hub Update Operation into automatic updates to evidence
entities on the Holding Case we need to specify a Data Hub Update Trans-
form. In cases where there is a requirement to update non-evidence entities,
an Update Processor must be developed. These Update Processors involve
Java code development.

Writing Transforms for Updating

Update Transforms, like Read Transforms are specified using a simple

Cúram Universal Access Customization Guide

62

XSLT syntax. In order to write update Transforms, the author must under-
stand both the input XML, and the output Evidence XML format. The fol-
lowing examples are built around a "CitizenHavingABaby" Life Event. This
Life Event allows the user to report that they are due to have a baby. They
can enter a number of unborn children to indicate, for example, that they are
expecting twins. The user can also enter a due date and they can nominate a
father for the unborn child. The father can be an existing case participant or
someone else entirely. In the latter case they must enter name, address, So-
cial Security Number etc. This Life Event is not a "Round Tripping" Life
Event, it is concerned with the creation of new Evidence rather than the up-
date of existing Evidence. The input to an Update Transform is an XML-
based description of the Data Store Difference Command. A sample differ-
ence command XML for the "CitizenHavingABaby" is depicted below:
<update>

<diff diffType="NONE" entityType="Application">
<diff diffType="NONE" entityType="Person" identifier="102">
<diff diffType="CREATE" entityType="Pregnancy">

<attribute name="numChildren">1</attribute>
<attribute name="dueDate">20110528</attribute>
<attribute name="curamDataStoreUniqueID">385</attribute>

</diff>
</diff>
<diff diffType="UPDATE" entityType="Person" identifier="101">
<attribute name="isFatherToUnbornChild">true</attribute>
<attribute name="curamDataStoreUniqueID">399</attribute>

</diff>
</diff>

</update>

The difference command XML corresponds node-for-node with the data
store XML. Each diff node describes how the corresponding data store en-
tity has been modified by the execution of the IEG script. The curam-
DataStoreUniqueID attribute identifies which data store entity has
changed. The diffType attribute identifies the nature of the change, for
example CREATE , UPDATE , NONE or REMOVE . Attributes that are listed
are those that have changed or been added to each data store entity. In the
above example, the user has registered a pregnancy to Linda Smith (concern
role ID 102) with one unborn child, due on May 28 th 2011. The father is lis-
ted as being James Smith (concern role ID 101). For more information on
difference command XML please see the schema in Difference Command
XML Schema section. There are a couple of additional attributes and ele-
ments used when updating XML that are illustrated below:

<?xml version="1.0" encoding="UTF-8"?>
<client-data>

<client localID="102">
<evidence>

<entity type="ET10074" action="CREATE" localID="">
<attribute name="numChildren">1</attribute>
<attribute name="dueDate">20110528</attribute>
<entity-data entity-data-type="role">

<attribute type="LG"/>
<attribute roleParticipantID="102"/>
<attribute

entityRoleIDFieldName="caseParticipantRoleID"/>
</entity-data>
<entity-data entity-data-type="role">

<attribute type="FAT"/>
<attribute roleParticipantID="101"/>

Cúram Universal Access Customization Guide

63

<attribute participantType="RL7"/>
<attribute
entityRoleIDFieldName="fahCaseParticipantRoleID"/>

</entity-data>
<entity type="ET10125" action="CREATE">

<attribute name="comments"> Unborn child 1</attribute>
<entity-data entity-data-type="role">

<attribute type="UNB"/>
<attribute roleParticipantID="102"/>
<attribute
entityRoleIDFieldName="caseParticipantRoleID"/>

</entity-data>
</entity>

</entity>
</evidence>

</client>
</client-data>

Example 9.4 Evidence XML with Updates

Note the use of the action attribute which describes the action to be taken
to the underlying evidence, for example, to create the evidence or to update
existing evidence. The next section will discuss the meaning of the
<entity-data> element. An example of the XSLT used to transform the
above difference XML into the above Evidence XML is depicted below:
<?xml version="1.0" encoding="UTF-8"?>
<!-- This script plucks out and copies all resource-related -->
<!-- entities from output built by the XMLApplicationBuilder -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:x="http://www.curamsoftware.com/
schemas/DifferenceCommand"

xmlns:fn="http://www.w3.org/2006/xpath-functions"
version="2.0">
<xsl:output indent="yes"/>
<xsl:strip-space elements="*"/>
<xsl:template match="update">

<xsl:for-each select="./diff[@entityType='Application']">
<xsl:element name="client-data">

<xsl:apply-templates/>
</xsl:element>

</xsl:for-each>
</xsl:template>
<xsl:template match="diff[@entityType='Person']">

<xsl:element name="client">
<xsl:attribute name="localID">

<xsl:value-of select="./@identifier"/>
</xsl:attribute>
<xsl:element name="evidence">

<xsl:apply-templates/>
</xsl:element>

</xsl:element>
</xsl:template>
<xsl:template match="diff[@entityType='Pregnancy']">

<xsl:element name="entity">
<xsl:attribute name="type">ET10074</xsl:attribute>
<xsl:attribute name="action">

<xsl:value-of select="./@diffType"/>
</xsl:attribute>
<xsl:attribute name="localID">

<xsl:value-of select="./@identifier"/>
</xsl:attribute>
<xsl:for-each select="./attribute">

<xsl:copy-of select="."/>
</xsl:for-each>
<xsl:element name="entity-data">

<xsl:attribute name="entity-data-type">
role

Cúram Universal Access Customization Guide

64

</xsl:attribute>
<xsl:element name="attribute">

<xsl:attribute name="type">LG</xsl:attribute>
</xsl:element>
<xsl:element name="attribute">

<xsl:attribute name="roleParticipantID">
<xsl:value-of select="../@identifier"/>

</xsl:attribute>
</xsl:element>
<xsl:element name="attribute">

<xsl:attribute name="entityRoleIDFieldName">
caseParticipantRoleID

</xsl:attribute>
</xsl:element>

</xsl:element>
<xsl:element name="entity-data">

<xsl:attribute name="entity-data-type">
role

</xsl:attribute>
<xsl:element name="attribute">

<xsl:attribute name="type">FAT</xsl:attribute>
</xsl:element>
<xsl:for-each select=
"../../diff[@entityType='Person']/attribute[

@name='isFatherToUnbornChild'
and ./text()='true']">

<!-- Copy the participant id if a family -->
<!-- member is the father -->
<xsl:element name="attribute">
<xsl:attribute name="roleParticipantID">

<xsl:value-of select="
../@identifier"/>

</xsl:attribute>
</xsl:element>

</xsl:for-each>
<!-- Copy details of absent parent -->
<xsl:call-template name="absentFather"/>
<xsl:element name="attribute">

<xsl:attribute name="entityRoleIDFieldName">
fahCaseParticipantRoleID

</xsl:attribute>
</xsl:element>

</xsl:element>
<xsl:variable name="numBabies">

<xsl:value-of select="attribute[
@name='numChildren'
]/text()"/>

</xsl:variable>
<xsl:call-template name="unbornChildren">

<xsl:with-param name="count" select="$numBabies"/>
</xsl:call-template>

</xsl:element>
</xsl:template>

<xsl:template name="unbornChildren">
<xsl:param name="count" select="1"/>
<xsl:if test="$count > 0">

<xsl:element name="entity">
<xsl:attribute name="type">ET10125</xsl:attribute>
<xsl:attribute name="action">

<xsl:value-of select="./@diffType"/>
</xsl:attribute>
<xsl:element name="attribute">

<xsl:attribute name="name">
comments

</xsl:attribute>
Unborn child <xsl:value-of select="$count"/>

</xsl:element>
<xsl:element name="entity-data">

<xsl:attribute name="entity-data-type">
role

</xsl:attribute>
<xsl:element name="attribute">

Cúram Universal Access Customization Guide

65

<xsl:attribute name="type">
UNB

</xsl:attribute>
</xsl:element>
<xsl:element name="attribute">

<xsl:attribute name=
"roleParticipantID">
<xsl:value-of select="
../@identifier"/>

</xsl:attribute>
</xsl:element>
<xsl:element name="attribute">

<xsl:attribute name=
"entityRoleIDFieldName">
caseParticipantRoleID

</xsl:attribute>
</xsl:element>

</xsl:element>
</xsl:element>
<xsl:call-template name="unbornChildren">

<xsl:with-param name="count" select="$count - 1"/>
</xsl:call-template>

</xsl:if>
</xsl:template>

<xsl:template name="absentFather">
<xsl:element name="attribute">

<xsl:attribute name="participantType">
<xsl:text>RL7</xsl:text>

</xsl:attribute>
</xsl:element>

<xsl:if test="attribute[@name='fahFirstName']">
<xsl:element name="attribute">

<xsl:attribute name="firstName">
<xsl:value-of select="attribute[
@name='fahFirstName'

]/text()"/>
</xsl:attribute>

</xsl:element>
</xsl:if>

<!-- etc. map other personal details such as -->
<!-- SSN, date of birth -->

<xsl:if test="diff[@entityType='ResidentialAddress']">
<xsl:if test="diff[

@entityType='ResidentialAddress']/attribute[
@name='street1']">
<xsl:element name="attribute">

<xsl:attribute name="street1">
<xsl:value-of select=
"diff[
@entityType='ResidentialAddress']
/attribute[

@name='street1']/text()"/>
</xsl:attribute>

</xsl:element>
</xsl:if>
<!-- etc. map other parts of residential address -->

</xsl:if>
</xsl:template>

<xsl:template match="*">
<!-- do nothing -->

</xsl:template>
</xsl:stylesheet>

Writing Transforms that create new case participants

Readers who are familiar with Evidence will know that Evidence Entities

Cúram Universal Access Customization Guide

66

frequently refer to third parties. For example, Pregnancy evidence refers to
the father via a Case Participant Role. The associated father can be a Person
or a Prospect Person. Other evidence types such as Student may refer to a
School which is entered as a Representative Case Participant Role.

The Evidence XML schema provides a generic element called
<entity-data> which can be used to provide special handling instruc-
tions to the Citizen Data Hub. The type of handling depends on the
<entity-data-type> specified. Cúram provides a special processor
for the entity-data-type role . This role entity data processor can be used to
create new Case Participant Roles or reference existing Case Participant
Roles for existing Case Participants. Referring to the Evidence XML output
in listed in the previous section the attribute denoted by type is used to de-
note the Case Participant Role Type e.g. FAT for Father or UNB for Unborn
Child. The value provided here should be a codetable value from the Case-
ParticipantRoleType code table. The roleParticipantID de-
notes the ConcernRoleID of an existing participant on the system. If this is
supplied then the system will not attempt to create a new Case Participant,
rather it will reuse a case participant with this id. The entityRoleID-
FieldName is the field name in the corresponding Evidence Entity. In the
case of the Pregnancy evidence entity for example, the name of this field
is fahCaseParticipantRoleID . In the case where a new participant
needs to be created the following fields are supported by the Role Entity
Data Processor.

• participantType - this is a code table entry from the ConcernRole-
Type code table. For example, use RL7 to create a new Prospect Person

• firstName

• middleInitial

• lastName

• SSN

• dateOfBirth

• lastName

• lastName

• street1

• city

• state

• zipCode

Configuring the Evidence Broker for use with the Holding Case

The Holding Case is of little value by itself, it is simply, as the name im-
plies, a Holding Area for Evidence before it is sent somewhere else. Nor-

Cúram Universal Access Customization Guide

67

mally the goal once data has been updated on the Holding Case, is to broker
these updates to Integrated Cases so that Case Workers can vet the changes
and apply them to the relevant cases. Once the data is accepted onto the In-
tegrated Cases then James will start to see the positive impact of submitting
a Life Event as the updated data can start to have an impact on his benefits.
The bridge between the Holding Case and the Integrated Cases can only be
crossed if the appropriate Evidence Broker configuration is defined. This
section demonstrates how that can be achieved. For background on the
Evidence Broker the reader is referred to the Developer Guide: Cúram Evid-
ence Broker Developers Guide .
Configuring Sharing from The Holding Case

Below is an example evidence configuration for sharing of Pregnancy evid-
ence from the Holding Case to an Integrated Case.
<?xml version="1.0" encoding="UTF-8"?>

<table name="EVIDENCEBROKERCONFIG">
<column name="EVIDENCEBROKERCONFIGID" type="id"/>
<column name="SOURCETYPE" type="text" />
<column name="SOURCEID" type="id" />
<column name="TARGETTYPE" type="text" />
<column name="TARGETID" type="id"/>
<column name="SOURCEEVIDENCETYPE" type="text"/>
<column name="TARGETEVIDENCETYPE" type="text"/>
<column name="AUTOACCEPTIND" type="bool"/>
<column name="WEBSERVICESIND" type="bool"/>
<column name="SHAREDTYPE" type="text"/>
<column name="RECORDSTATUS" type="text"/>
<column name="VERSIONNO" type="number"/>
<row>
<attribute name="EVIDENCEBROKERCONFIGID">

<value>10003</value>
</attribute>
<attribute name="SOURCETYPE">

<value>CT10301</value>
</attribute>
<attribute name="SOURCEID">

<value>10330</value>
</attribute>
<attribute name="TARGETTYPE">

<value>CT5</value>
</attribute>
<attribute name="TARGETID">

<value>4</value>
</attribute>
<attribute name="SOURCEEVIDENCETYPE">

<value>ET10000</value>
</attribute>
<attribute name="TARGETEVIDENCETYPE">

<value>ET10074</value>
</attribute>
<attribute name="AUTOACCEPTIND">

<value>0</value>
</attribute>
<attribute name="WEBSERVICESIND">

<value>0</value>
</attribute>
<attribute name="SHAREDTYPE">

<value>SET2002</value>
</attribute>
<attribute name="RECORDSTATUS">

<value>RST1</value>
</attribute>
<attribute name="VERSIONNO">

<value>1</value>
</attribute>

Cúram Universal Access Customization Guide

68

</row>
</table>

When sharing from the Holding Case to another Integrated Case, the source
type should be CT10301 and the source id should be set to 10330. The
source evidence type should be set to ET10000 , which is the code for all
Evidence stored in Holding Cases. Evidence of this type is known as
Holding Evidence . The target evidence type in this case is ET10074
. In Cúram Common Evidence this identifies Pregnancy Evidence. The
evidence sharing type should be set to SET2002 which is the code for Non-
Identical Sharing. Note, that the AUTOACCEPTIND is set to 0. It is strongly
recommended that this always be set to 0 when sharing from a Holding Case
to an Integrated Case. This setting means that a Case Worker will always
get to vet any changes that have come in from the Citizen's Holding Case.
Assuming the Case Worker agrees with the changes, the "Incoming Evid-
ence" link of the Integrated Case Evidence page can be used to synchronize
the data from the Holding Case in the normal way.

To establish Evidence Broker Configuration for a custom component, a dmx
file must be created containing configuration that follows the example given
above. For example:
%SERVER_DIR%\components\Custom\data\initial\EBROKER
_CONFIG.dmx

In sharing Holding Evidence to a Standard Evidence Entity like a Pregnancy
the Evidence Broker "copies" the Holding Evidence containing the Preg-
nancy data into a new Pregnancy Evidence Record in the target Integrated
Case. Previously this guide has alluded to the fact that Holding Evidence is
not "standard" Evidence. In fact it is stored in an XML representation, so in
the process of copying the Holding Evidence to the Target Evidence type
the Evidence Broker must perform a conversion of the XML data into stand-
ard Evidence data. To assist with this conversion process it is necessary to
supply meta-data. An example of this meta-data is illustrated below:
<?xml version="1.0" encoding="UTF-8"?>
<data-hub-config>

<evidence-config package="curam.holdingcase.evidence">
<entity name="HoldingEvidence" ev-type-code="ET10000">
<attribute name="entityStruct">

curam.citizen.datahub.holdingcase.holdingevidence.struct.
+HoldingEvidenceDtls

</attribute>
</entity>
<entity name="Pregnancy" ev-type-code="ET10074">
<attribute name="entityStruct">

curam.evidence.entity.struct.PregnancyDtls
</attribute>
<related-entity>

<case-participant-role>
<attribute name="linkAttribute">

fahCaseParticipantRoleID
</attribute>

</case-participant-role>
<case-participant-role>

<attribute name="linkAttribute">
caseParticipantRoleID

</attribute>
</case-participant-role>

</related-entity>
</entity>

Cúram Universal Access Customization Guide

69

</evidence-config>
</data-hub-config>

The meta data describes each of the entities that can be copied from the
Holding Case to an Integrated Case and vice versa . The meta data describes
the dtls structs that are used to build the target evidence. It also describes
which of the attributes in Case Evidence refer to case participant roles. This
information ensures that when the Holding Evidence is copied, it doesn't
just blindly copy case participant role identifiers from holding evidence, in-
stead it looks for the equivalent case participant role id on the target case
and, if it doesn't exist, then creates one.

This meta data is stored in a an AppResource (For more information
about AppResources , refer to the Cúram Developer Guide Authoring
Scripts in IEG2). The resource store key is identified by the Cúram
Environment Property
curam.workspaceservices.datahub.metadata . Out of the box
the value for this variable defaults to the value
curam.workspaceservices.datahub.metadata . This points to
some default Holding Evidence Data Hub Meta Data. The following steps
can be used to replace the default Holding Evidence Data Hub Meta Data
with a custom version to support all Evidence Types that need to be
brokered from the Holding Case to all Integrated Cases.

• Copy the contents of
%SERVER_DIR%\components\WorkspaceServices\data\i
nitial\clob\DataHubMetaData.xml to
%SERVER_DIR%\components\Custom\data\initial\clob
\CustomDataHubMetaData.xml

• Edit the contents of CustomDataHubMetaData.xml to describe all
the Evidence Entities that need to be updated by the Data Hub.

• Create a file
%SERVER_DIR%\components\Custom\data\initial\APP_
RESOURCES.dmx . Add an entry to this file as follows.
<?xml version="1.0" encoding="UTF-8"?>

<table name="APPRESOURCE">
<column name="resourceid" type="id" />
<column name="localeIdentifier" type="text"/>
<column name="name" type="text"/>
<column name="contentType" type="text"/>
<column name="contentDisposition" type="text"/>
<column name="content" type="blob"/>
<column name="internal" type="bool"/>
<column name="lastWritten" type="timestamp"/>
<column name="versionNo" type="number"/>
<row>
<attribute name="resourceID">

<value>10700</value>
</attribute>
<attribute name="localeIdentifier">

<value/>
</attribute>
<attribute name="name">

<value>custom.datahub.metadata</value>
</attribute>
<attribute name="contentType">

<value>text/plain</value>

Cúram Universal Access Customization Guide

70

</attribute>
<attribute name="contentDisposition">

<value>inline</value>
</attribute>
<attribute name="content">

<value>
./Custom/data/initial/clob/CustomDataHubMetaData.xml

</value>
</attribute>
<attribute name="internal">

<value>0</value>
</attribute>
<attribute name="lastWritten">

<value>SYSTIME</value>
</attribute>
<attribute name="versionNo">

<value>1</value>
</attribute>

</row>
</table>

• Create or append to the file
%SERVER_DIR%\components\Custom\properties\Environment.xml
adding an entry along the following lines:
<environment>

<type name="dynamic_properties">
<section code="WSSVCS"

name="Workspace Services - Configuration">
<variable name="curam.workspaceservices.datahub.metadata"

value="custom.datahub.metadata" onlyin="all"
type="STRING">
<comment>
Identifies an AppResource used to configure DataHub
meta-data.

</comment>
</variable>

</section>
</type>

</environment>

Round Tripping and Configuring Sharing to The Holding Case

The previous section described how data is shared from the Holding Case to
Integrated Cases. Analysts may also want to consider whether evidence
should be transferred in the opposite direction, that is from the Integrated
Cases to the Holding Case. When sharing is configured from the Integrated
Case to the Holding Case, changes made by the Case Worker to selected
evidence can be propagated back to the Holding Case. This is essential for
Life Events that need to pre-populate data from Evidence Entities in existing
Integrated Cases. The example below shows how to configure Pregnancy
Evidence for Sharing to the holding case.
<?xml version="1.0" encoding="UTF-8"?>
<table name="EVIDENCEBROKERCONFIG">

<column name="EVIDENCEBROKERCONFIGID" type="id"/>
<column name="SOURCETYPE" type="text" />
<column name="SOURCEID" type="id" />
<column name="TARGETTYPE" type="text" />
<column name="TARGETID" type="id"/>
<column name="SOURCEEVIDENCETYPE" type="text"/>
<column name="TARGETEVIDENCETYPE" type="text"/>
<column name="AUTOACCEPTIND" type="bool"/>
<column name="WEBSERVICESIND" type="bool"/>
<column name="SHAREDTYPE" type="text"/>
<column name="RECORDSTATUS" type="text"/>
<column name="VERSIONNO" type="number"/>

Cúram Universal Access Customization Guide

71

<row>
<attribute name="EVIDENCEBROKERCONFIGID">
<value>2</value>

</attribute>
<attribute name="SOURCETYPE">
<value>CT5</value>

</attribute>
<attribute name="SOURCEID">
<value>4</value>

</attribute>
<attribute name="TARGETTYPE">
<value>CT10301</value>

</attribute>
<attribute name="TARGETID">
<value>10330</value>

</attribute>
<attribute name="SOURCEEVIDENCETYPE">
<value>ET10074</value>

</attribute>
<attribute name="TARGETEVIDENCETYPE">
<value>ET10000</value>

</attribute>
<attribute name="AUTOACCEPTIND">
<value>1</value>

</attribute>
<attribute name="WEBSERVICESIND">
<value>0</value>

</attribute>
<attribute name="SHAREDTYPE">
<value>SET2002</value>

</attribute>
<attribute name="RECORDSTATUS">
<value>RST1</value>

</attribute>
<attribute name="VERSIONNO">
<value>1</value>

</attribute>
</row>

</table>

Note that, unlike Sharing from Holding Case to Integrated Case, the
AUTOACCEPTIND is set to 1. This is because the target case is a Holding
Case and Holding Cases are designed to operate unattended. It is not expec-
ted that Case Workers should need to review items being shared onto the
Holding Case as they come from an authoritative source, i.e. the Integrated
Case.
Issues for Consideration

With suitable configuration, It is possible to share data from the Holding
Case to many different Integrated Cases. Imagine that two different Integ-
rated Cases A and B are configured to share information with a James'
Holding Case H. Both cases A and B have separately recorded an Income
Evidence record for James. In James' Holding Case this will show up as two
separate Income Records and as far as cases A and B are concerned they are
two entirely separate records, A's view of James' Income and B's view of
James' Income. To James however this might not make much sense - he has
only one Income and is using one Portal to communicate with the SEM or
SEMs concerned. Why should he see two records for the same Income? In
cases like this, where there is sharing to multiple Integrated Cases from a
single Holding Case, consideration should be given to creating another set
of sharing relationships should be established from A to B and B to A. This
is an issue that will require proper consideration early on in the project Life

Cúram Universal Access Customization Guide

72

Cycle.

Updating Non Evidence Entities

Previous Sections have illustrated how it is possible to configure Life
Events to automatically map updates through to Evidence Entities on mul-
tiple integrated cases. Sometimes Life Events will be required to update
non-Evidence entities such as a Residential Address, Employment or some
other customer specific non-Evidence entity. Typically these entities will be
shared across multiple cases. It is also typical that these entities would not
follow the same controlled Life Cycle as evidence entities. Evidence has
many advantages:

• It is temporal

• It is case specific, with sharing of updates between cases being con-
trolled through the Evidence Broker

• Case Workers can veto acceptance of updates that come from external
sources like Universal Access

• It has an in-edit/approval cycle

• It has support for verifications

Non evidence entities have none of these advantages and safeguards. A de-
cision by Analysts to update non Evidence entities based on Life Events
should be made with due care, especially if the changes can be applied sim-
ultaneously across multiple cases. It is possible to update non Evidence en-
tities but this will always involve custom code. It is strongly recommended
that the design of such functionality includes safeguards to ensure that at
least one Agency worker gets to manually approve the changes before they
are applied to the system.

Putting it all Together

Previous sections in this chapter have discussed how to create all the con-
stituent pieces of a Life Event, this section discusses how to join all these
pieces together to make a completed Life Event. New Life Events can be
configured using the Life Event Administration pages. Please refer to the
Cúram Universal Access Guide for more information on how to do this. Us-
ing the Administration Pages it is possible to create new Life Event Types
and Life Event Channels, add rich text descriptions and associate the Life
Events with IEG Scripts and Recommendation Rule Sets. Once all of the re-
quired Entities have been created in the Administration screens, the data can
be extracted into a set of DMX files that can be used as a basis for ongoing
development. The following set of commands can be used to extract the rel-
evant dmx files:
build extractdata -Dtablename=LifeEventType
build extractdata -Dtablename=LifeEventContext
build extractdata -Dtablename=LifeEventCategory
build extractdata -Dtablename=LifeEventCategoryLink

Cúram Universal Access Customization Guide

73

build extractdata -Dtablename=LocalizableText
build extractdata -Dtablename=TextTranslation

The LocalizableText and TextTranslation tables contain all of the Life
Event descriptions but they will also be filled with text translations that do
not relate to Life Events. Developers should audit these DMX files remov-
ing any entries that do not correspond to the relevant Life Event descriptions
before copying the dmx files to
%SERVER_DIR%\components\Custom\data\initial\ .

9.6 Life Events API Guide

This Section describes how to use the Java API for Life Events and the Cit-
izen Data Hub. This section assumes that the reader is familiar with the ma-
terial already introduced in this chapter.

9.6.1 Event APIs for Life Events

To understand this section the reader must be familiar with the contents that
precede this section in this Chapter. The Life Event Broker is instrumented
with Guice events. Developers can write listeners that can be bound to these
events. The available events are:

• PreCreateLifeEvent - Invoked prior to launching a Life Event

• PostCreateLifeEvent - Invoked after the Life Event has been ini-
tialized. That is after the Data Hub Transform and View Processors have
been executed.

• PreSubmitLifeEvent - Invoked after the Life Event has been sub-
mitted but before the Update Processors have been run.

• PostSubmitLifeEvent - Invoked after the Life Event has been
submitted.

Note that both the Pre and Post SubmitLifeEvent events are executed from
within a Deferred Process so the current user is expected to be SYSTEM .
Life Event Events should never attempt to change the contents of the Life
Event. The code extract below shows how a Listener class, MyPreCre-
ateListener can be bound to one of these Life Events:
Multibinder<LifeEventEvents.PreCreateLifeEvent>

preCreateBinder =
Multibinder.newSetBinder(binder(),
new TypeLiteral<LifeEventEvents.PreCreateLifeEvent>() { /**/

});

preCreateBinder.addBinding().to(MyPreCreateListener.class);

Cúram Universal Access Customization Guide

74

Chapter 10

Universal Access Web Services

10.1 Introduction

This section describes the IBM Cúram Universal Access web services and
how to develop peer code to communicate with those web services.

In some scenarios, customers will deploy IBM Cúram Universal Access to
handle interactions with clients over the Internet, but will use an existing
legacy system for case processing. To cater for these scenarios, IBM Cúram
Universal Access can be configured to communicate with various remote
systems using web services.

Universal Access supports the following outbound web services:

• Send an application for benefits.

• Withdraw an application for benefits.

• Send a Life Event.

Cúram Universal Access supports the following inbound web services:

• Create a citizen account on Universal Access.

• Link a user to a remote system (gives them the right to send information
to those systems and receive information from them in turn).

• Unlink a user from a remote system.

• Receive an update to the status of a submitted application.

• Receive an update to the status of a request to withdraw an application.

• Receive a citizen message (for display on a citizen account home page).

• Receive payment information.

• Receive case contact information.

75

10.2 Web Services Security Considerations

Universal Access is designed to communicate with an arbitrary number of
remote systems. These may be configured through the remote systems con-
figuration page in the Administrator and Universal Access Entry Edition
Administrator applications.

Remote systems can invoke web services on Universal Access and must
supply username/password credentials as part of the SOAP header, details
of how to do this are described using sample web service requests in Ap-
pendix A. It is strongly recommended that a different username and pass-
word be assigned to each remote system. The username associated with a re-
mote system is set in the Source User Name field of the remote system con-
figuration page. Having a different user name for each remote system allows
Universal Access to perform proper data-based security checks on the in-
coming service requests. This prevents one remote system sending requests
to update data that is properly the concern of a different remote system.

10.3 Process Application Service

10.3.1 Receive Application

This outbound web service is invoked by Universal Access on remote sys-
tems. It is used to communicate an application for benefits for one or more
social programs. WSDL describing this service can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\axis\Process
ApplicationService\ProcessApplicationService.wsdl.

A web service request of this type contains the following information:

• intakeApplicationType - An ID that uniquely identifies an Intake Ap-
plication Type.

• applicationReference – A unique reference for a particular application.
This is a human-readable id that is displayed to clients after they com-
plete an application. For example, ”512” or ”756”. The application refer-
ence is used as an argument to other web services and should be stored
by the receiver.

• applicationLocale – Denotes the preferred locale of the user who entered
the application. For example ”en_US”. This information should be
stored by the receiver. Remote systems can send a variety of information
back to the client’s account. Some of this information must be localized
by the sender to the preferred locale of the client.

• submittedDateTime – The date and time at which the application was
submitted. This is in XML Schema dateTime format. For example,
2012-05-29T15:34:49.000+01:00.

Cúram Universal Access Customization Guide

76

• programsAppliedFor – This contains a list of the programs that were ap-
plied for as part of this application. Each program is referred to by a
unique reference. This corresponds to the value of the Reference field
configured in the Programs section of Universal Access configuration.
For example:
<ns1:programsAppliedFor>

<ns1:programTypeReference>CashAssistance</ns1:programTypeReference>
<ns1:programTypeReference>SNAP</ns1:programTypeReference>

</ns1:programsAppliedFor>

• applicationData – Contains a base64 encoded representation of the in-
take data. This intake data is the XML representation of the XML data-
store associated with an application.

• applicationSchemaName – The name of the schema used to create the
data store for the application.

• senderIdentification – Identifies the sender of the request. The sender
identification contains two parts, 1) the identifier of the system from
which the request originates, 2) The Citizen Workspace Account ID of
the user that created the request. The second part is optional, applica-
tions submitted anonymously do not contain part two but applications
submitted by a logged in user do.

• supplementaryInformation – optional, reserved for future use.

The receiver of this information is expected to record the details of the ap-
plication keyed against sender identification and intake application refer-
ence.

On success, the implementation of this web service must return the Boolean
value ”true” to indicate that the request has been successfully processed. In
the case that there is a problem processing the request, a fault must be re-
turned containing a string to indicate the nature of the problem. The String
should be localized to the locale of the Universal Access Server since it will
appear in the server log files.

Note

The receiver can receive multiple applications with the same Intake
Application reference but the intake application reference is always
unique for a particular sender. For example Systems A and B send a
receiveApplication() request to system X. Both requests have the
applicationReference 256. Note, however, that the receiver should
never receive two applications from A with an application reference
of 256.

10.3.2 Receive Withdrawal Request

This outbound web service is invoked by Universal Access on remote sys-
tems. It is used by clients to withdraw an application that they have previ-
ously submitted using the Receive Application Service. WSDL describing
this service can be found in

Cúram Universal Access Customization Guide

77

<CURAM_DIR>\EJBServer\components\WorkspaceServices\axis\Process
ApplicationService\ProcessApplicationService.wsdl. A web service request
of this type contains the following information:

• applicationReference – A unique reference for the application to be
withdrawn. This refers to the id transmitted with the Receive Applica-
tion service request.

• programTypeReference – A reference that identifies the program being
withdrawn. Each program type is referred to by a unique reference. This
corresponds to the value of the Reference field configured in the Pro-
grams section of Universal Access configuration. For example
”CashAssistance”.

• requestSubmittedDateTime – A timestamp indicating when the request
was submitted in XML Schema dateTime format. For example,
2012-05-29T15:34:49.000+01:00

• withdrawalRequestReason – The value is taken from the code table
WithdrawalRequestReason. Values for this code table are

• WRES1001 – Attained employment

• WRES1002 – Change of circumstances

• WRES1003 – Filed in error

• withdrawalRequestID – An id that uniquely identifies this withdrawal
request from the sending instance of Universal Access.

• senderIdentification – Identifies the sender of the request. The sender
identification contains two parts, 1) the identifier of the system from
which the request originates, 2) The Citizen Workspace Account ID of
the user that created the request.

• supplementaryInformation – optional, reserved for future use.

The expected result following successful processing is a receiveWith-
drawalRequestResponse as follows:
<receiveWithdrawalRequestResponse>

<result>true</result>
</receiveWithdrawalRequestResponse>

The service implementation should return a fault if there is an error pro-
cessing the request. The fault string should be localized to the locale of the
Universal Access Server since it will appear in the server log files. Some
problems that may arise include:

• A withdrawal request with the given ID has already been sent by the
given instance of Universal Access.

• The application reference referred to is not recognised as an application
previously transmitted in a Receive Application service invocation from
the same Universal Access instance.

Cúram Universal Access Customization Guide

78

The withdrawal request application is processed by the receiving agency
after which a response should be sent in the form of a withdrawal request
update. A sample SOAP request for this web service is published in Ap-
pendix A.

10.4 Update Application Service

10.4.1 Intake Program Application Update

This is an inbound web service invoked by remote systems on Universal
Access. It is used to inform the Universal Access System of changes to the
status of an application for benefits that was previously received via the Re-
ceive Application web service. The status of an application can transition to
Approved, Denied or Withdrawn. Where an application is denied a reason
can be included in the web service message. The schema for the payload of
web service requests of this type can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices\
UpdateApplication.xsd. A sample SOAP request for this web service is pub-
lished in Appendix A.

A web service request of this type contains the following information:

• curamReferenceID – This must match the applicationReference element
for the corresponding Receive Application request.

• programApplicationStatus – This can take the following values:

• IPAS1002 – Withdrawn

• IPAS1003 – Approved

• IPAS1004 – Denied

• programApplicationDisposedDateTime – This is a formatted date time
string in the standard IBM Cúram ISO8601 format – ”YYYYMMDD
HH:MM:SS”.

• programApplicationDenialReason – Optional, if the status sent is
IPAS1004, this contains free text describing the reason for denial. The
denial reason should be taken from the code table IBM Cúram Intake-
ProgApplDenyReason.

The web service request needs to be sent with a Cúram security credential
(see appendix A for sample SOAP message for details). The username
placed within the credential must match the Source User Name entered into
the Remote System entry corresponding to the peer system sending the re-
quest.

10.4.2 Withdrawal Request Update

Cúram Universal Access Customization Guide

79

This is an inbound web service invoked by remote systems on Universal
Access. It is used to inform the Universal Access System of changes to the
status of a Withdrawal Request that was previously submitted using the Re-
ceive Withdrawal Request web service. The schema for the payload of web
service requests of this type can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices\
UpdateApplication.xsd. A sample SOAP request for this web service is pub-
lished in Appendix A.

A web service request of this type contains the following information:

• curamReferenceID – This must match the withdrawalRequestID in the
corresponding Receive Withdrawal Request message.

• withdrawalRequestStatus – This an enumeration taking the following
values:

• WREQ1002 – Approved

• WREQ1003 – Denied

• resolvedDateTime – A time stamp in the standard IBM Cúram ISO8601
format – ”YYYYMMDD HH:MM:SS”.

• withdrawalRequestDenialReason – Optional. In the case there the with-
drawal request was denied, a textual explanation for the denial. The
sender must localize this to the locale of the client who originally sub-
mitted the application.

Please refer to Appendix A which contains a sample SOAP request for the
Withdrawal Request Update operation.

On success this operation returns a document indicating that the request has
succeeded. On failure, a fault is raised. Reasons for failure include:

• The withdrawal request id does not match a known withdrawal request
id.

• The withdrawal request state transition is invalid.

10.5 Life Event Service

This outbound web service is invoked by Universal Access on remote sys-
tems. WSDL describing this service can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\axis\LifeEve
ntService\LifeEvent.wsdl.

A request for this web service contains the following fields:

• lifeEventReference – Describes the type of the Life Event, for example
”Change of Address”

• senderIdentification – Identifies the sender of the request. The sender

Cúram Universal Access Customization Guide

80

identification contains two parts, 1) the identifier of the system from
which the request originates, 2) The Citizen Workspace Account ID of
the user that created the request.

• lifeEventData - Contains a base64 encoded representation of the Life
Event data. This Life Event data is the XML representation of the XML
datastore associated with an Life Event.

• lifeEventSchemaName – The name of the schema used to create the data
store for the Life Event.

• submittedDateTime – The date and time when the Life Event was sub-
mitted. An XML Schema dateTime. For example,
2012-05-29T15:34:49.000+01:00

• supplementaryInformation – optional, reserved for future use.

The implementation should return a response of type lifeEventResponse
with the content ”true” when the Life Event is successfully processed. If
there is an error processing the Life Event then the system should return a
fault in accordance with the WSDL specification.

10.6 Create Account Service

This is an inbound web service invoked by remote systems on Universal
Access. It is used to create a Citizen Workspace Account for users who pre-
viously submitted an Intake Application anonymously. The service actually
performs two discrete functions:

• Create an account for a previously anonymous user.

• Link that account to the remote system that is invoking the Create Ac-
count Web Service.

If a Citizen Workspace user is ”linked” to a remote system, it means that
user is registered on the remote system and the remote system will recognise
requests from that Citizen Workspace user as relating to a particular case,
cases or an individual on the remote system. This has serious security im-
plications on the remote system – The remote system sending a request to
link a user or create an account for a user must be convinced of the identity
of the individual who owns the account. The schema for the payload of web
service requests of this type can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices\
ExternalAccountCreate.xsd. A sample SOAP request for this web service is
published in Appendix A.

A create account request contains the following information:

• firstName – The client’s first name.

• middleName – The client’s middle name. Optional.

• surname – The client’s last name.

Cúram Universal Access Customization Guide

81

• username – The username for the newly created account.

• password – The password for the newly created account.

• confirmPassword – Confirmation of the password. Must match pass-
word.

• secretQuestionType – The type of secret question selected to unlock the
user’s account. Values should correspond to entries from the
SecretQuestionType code table. For example, SQT1 – Mother’s maiden
name.

• answer – An answer to the secret question. Non empty.

• termsAndConditionsAccepted – Boolean indication that the client has
accepted the terms and conditions on which the account is created.

• intakeApplicationReference – Refers to the unique applicationReference
passed in as part of the receive application request. If this is specified, a
link will be created between the application and the newly created ac-
count.

• clientIDOnRemoteSystem – This is a unique identifier that can be used
to identify the user of this account on the remote system. There is no
prescribed form for this id, it could be a Social Security Number for ex-
ample. It must be capable of uniquely identifying the client on the re-
mote system.

• sourceSystem – Identifies the remote system that sent this request. This
must match the name of a remote system configured in the administra-
tion application. For further informaiton on configuring remote systems
see the Configuring Remote Systems chapter the Cúram Universal
Access Configuration Guide.

If successful this returns the id of the created citizen workspace account.
Problems that occur during the processing of the request are flagged by via a
fault response. Possible issues include:

• An account has already been associated with the intake application ref-
erence.

• The username already exists.

• The username and/or password do not meet minimum mandatory criteria
for password strength, username length etc.

10.7 Link Service

This is an inbound web service invoked by remote systems on Universal
Access. It is used to link a Citizen Workspace Account to a remote system.
See the section on Create Account Service for a general discussion of the
implications of linking a user. The schema for the payload of web service

Cúram Universal Access Customization Guide

82

requests of this type can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices\
ExternalAccountLink.xsd. A sample SOAP request for this web service is
published in Appendix A.

This web service request contains the following information:

• sourceSystem – The name of the remote system sending the request.
Must match the name of a remote system configured in the system.

• citizenWorkspaceAccountID – The unique citizen workspace account
id.

• clientIDOnRemoteSystem - This is a unique identifier that can be used
to identify the user of this account on the remote system. There is no
prescribed form for this id, it could be a Social Security Number for ex-
ample. It must be capable of uniquely identifying the client on the re-
mote system.

• createdByUsername – The username on the remote system responsible
for this request.

On success this operation returns a document indicating that the request has
succeeded. On failure, a fault is raised. Reasons for failure include:

• The citizen workspace account id is invalid, does not exist or is associ-
ated with a de-activated account.

• The citizen workspace account in question is already linked to this re-
mote system.

10.8 Unlink Service

This is an inbound web service invoked by remote systems on Universal
Access. It is used to unlink a Citizen Workspace Account from a remote
system. After executing this service it will not be possible for the user of the
unlinked account to submit Life Events to this remote system, for example.
The schema for the payload of web service requests of this type can be
found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices\
ExternalAccountUnlink.xsd. A sample SOAP request for this web service is
published in Appendix A.

This web service request contains the following information:

• sourceSystem – The name of the remote system sending the request.

• citizenWorkspaceAccountID – The unique ID of the Citizen Workspace
Account being unlinked.

On success this operation returns a document indicating that the request has
succeeded. On failure, a fault is raised. Reasons for failure include:

Cúram Universal Access Customization Guide

83

• The indicated account does not exist or is not active.

• The indicated account is not linked to the remote system sending the re-
quest.

10.9 Citizen Message

This is an inbound web service invoked by remote systems on Universal
Access. It is used to send Citizen Messages that are displayed on a user’s
Home Page when they log into the Citizen Account. The schema for the
payload of web service requests of this type can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices\
ExternalCitizenMessage.xsd. A sample SOAP request for this web service is
published in Appendix A.

This web service request contains the following information:

• sourceSystem – The name of the remote system sending the request.

• citizenWorkspaceAccountID – The unique citizen workspace account
id.

• cityIndustryType – Denotes the type of industry associated with the
message. The values for this element must match codes from the CityIn-
dustry code table.

• relatedID – Refers to the id of an underlying entity in the remote system
to which the message refers. For example, if the message concerns a
payment then the related ID identifies the ID of the payment within the
remote system.

• externalCitizenMessageType – The external citizen message type, taken
from the ExternalCitizenMessageType codetable.

• messageTitle – The title of the message. It is the responsibility of the re-
mote system to localize this to the locale of the end user.

• messageBody – The body of the message. It is the responsibility of the
remote system to localize this to the locale of the end user.

• effectiveDate – Optional. The date from which the message is effective.
It will only be displayed from this date onwards. The date must be in the
format – ”YYYY-MM-DD”. If an effective date is not provided then the
current date is taken as the effective date.

• expiryDate – The date that the message is set to expire. Following this
date, the message will not be displayed to the user. The date must be in
the format – ”YYYY-MM-DD”.

• priority – A boolean value to indicate whether this message is a high pri-
ority.

Some messages are designed such that a newer message can replace an

Cúram Universal Access Customization Guide

84

older one. For example, a message is sent concerning a meeting. The time of
the meeting changes and a new message is sent with the updated time for
the meeting. The client does not see both messages, rather the second mes-
sage replaces the first and only the second message is seen. One external
message will automatically replace another external message if the follow-
ing fields match those of an existing message: sourceSystem, externalCit-
izenMessageType and relatedID.

10.10 Payment Service

This is an inbound web service invoked by remote systems on Universal
Access. This service is used to transmit information about one or more pay-
ments. The schema for the payload of web service requests of this type can
be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices\
ExternalPayment.xsd. A sample SOAP request for this web service is pub-
lished in Appendix A.

This web service request can contain one or more Payments. This allows the
remote system to batch up payments and send them as a single request for
performance reasons. Each payment can relate to an entirely separate Uni-
versal Access account. A single payment may contain a payment break-
down. A payment breakdown may contain one or more payment line items.

A single Payment contains the following information:

• paymentID – Together with the source system, this uniquely identifies a
payment.

• sourceSystem – The name of the remote system sending the request.
Must match the name of a remote system configured in the system.

• citizenWorkspaceAccountID – The unique citizen workspace account
id.

• cityIndustryType – Denotes the type of industry associated with the pay-
ment. The values for this element must match codes from the CityIn-
dustry code table. Optional.

• paymentAmount – The headline value for the payment as a whole. This
payment may optionally be further broken into a number of line items.

• currency – The currency in which the payment was made, contains val-
ues from the Currency code table. Optional.

• paymentMethod – The method by which the payment was made, con-
tains values from the MethodOfDelivery code table.

• paymentStatus – The status of the payment, for example cancelled, pro-
cessed, suspended etc. Contains values from PmtReconciliationStatus
code table.

• effectiveDate – The effective date of the payment in the format

Cúram Universal Access Customization Guide

85

”YYYY-MM-DD”.

• coverPeriodFrom – The start date of the period covered by this payment.
In the format ”YYYY-MM-DD”.

• coverPeriodTo – The end date of the period covered by this payment. In
the format ”YYYY-MM-DD”.

• dueDate – The date that the payment was due to be paid. In the format
”YYYY-MM-DD”.

• payeeName – The name of the payee for this payment.

• payeeAddress – The address that the payment was sent to (in the case of
a cheque). Optional.

• paymentReferenceNo – Uniquely identifies a payment within a given re-
mote system.

• bankSortCode - The sort code of the bank account to which this pay-
ment is delivered.

• bankAccountNo – The bank account number to which payment is made.

• A payment may contain a Payment Breakdown (optional).

A Payment Breakdown contains one or more Payment Line Items. A Pay-
ment Line Item contains the following information:

• caseName – The human readable name of the case on the remote system
with which this payment is associated.

• The case name must be localised to the locale of the client. This case
name must match the case name displayed on the Contact Information
page.

• caseReference – This uniquely identifies the case on a given remote sys-
tem.

• componentType – This contains a code from the FinComponentType
code table.

• debitAmount – The amount debited if this payment was a debit.

• creditAmount – The amount credited if this payment was a credit.

• coverPeriodFrom - The start date of the period covered by this payment.
In the format ”YYYY-MM-DD”.

• coverPeriodTo – The end date of the period covered by this payment. In
the format ”YYYY-MM-DD”.

It is important to note that payments can supersede previously submitted
payments. For example, a payment is submitted from TestSystem with pay-
mentID 1234. Subsequently another payment arrives from TestSystem with
the same paymentID, 1234. This payment replaces the previous payment.

Cúram Universal Access Customization Guide

86

The previous payment is physically removed along with all its related pay-
ment line items. A typical example of where this might occur is when a pre-
viously issued payment is cancelled.

10.11 Contact Service

This is an inbound web service invoked by remote systems on Universal
Access. This service is used to update a register of case worker contact de-
tails relating to a remote system. The schema for the payload of web service
requests of this type can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices\
ExternalContact.xsd. A sample SOAP request for this web service is pub-
lished in Appendix A.

A contact web service request contains the following information:

• sourceSystem – The name of the remote system sending the request.
Must match the name of a remote system configured in the system.

• contactReference – A reference for the contact, unique within the source
remote system.

• fullName – The full name of the case worker.

• phoneNumber – The phone number of the case worker. Optional.

• mobilePhoneNumber – The mobile/cell phone number of the case work-
er. Optional.

• faxNumber – The fax number for the case worker. Optional.

• email – The email address of the case worker. Optional.

If a request is received with the same source system and contact reference as
a pre-existing entry then the information in the newer request supersedes the
pre-existing information.

10.12 Case Service

This is an inbound web service invoked by remote systems on Universal
Access. This service is used to update details of cases associated with a par-
ticular Citizen Account. The schema for the payload of web service requests
of this type can be found in
<CURAM_DIR>\EJBServer\components\WorkspaceServices\webservices\
ExternalCase.xsd. A sample SOAP request for this web service is published
in Appendix A.

A web service request of this type contains the following information:

• sourceSystem – The name of the remote system sending the request.
Must match the name of a remote system configured in the system.

Cúram Universal Access Customization Guide

87

• contactReference – A reference for the contact, unique within the source
remote system, this must match a contact reference previously transmit-
ted via a Contact Service request.

• caseReference – This is a case reference and must be unique within the
remote system that is the source of this request.

• caseName - The human readable name of the case on the remote system.
The case name must be localised to the locale of the client. Case names
used in the Payment web service should match case names provided in
this request.

• citizenWorkspaceAccountID – The unique citizen workspace account
id.

If a request is received with the same source system and case reference as a
pre-existing entry then the information in the newer request supersedes the
pre-existing information.

Cúram Universal Access Customization Guide

88

Chapter 11

Fully Customizable Universal Access Artifacts

11.1 Introduction

This chapter describes the artifacts that are fully customizable in Universal
Access and how to go about making any customization to these artifacts.

11.2 Customizable Universal Access Page Content

Universal Access public pages are driven by page player XML pages that
are made available in the app resource store. Each page has a corresponding
property file and images used in rendering these page that are also stored in
the app resource store. To navigate to the application resource store you
must log in to the administration application, go to Universal Access, select
Application Resource and filter your search here. Text, online help, and im-
ages for page content are all customizable and localizable.

11.2.1 Text and Online Help

Initial data for text and online help used in Universal Access pages are
found in:

• CURAM_DIR\EJBServer\components\CitizenWorkspace\Data_Manage
r\Initial_Data\blob\prop directory

Universal Access makes use of the Application Resource Store mechanism
to configure online help, images and page text for our pages. Taking the ex-
ample of help text – this can be associated with any page in the Universal
Access application. The help is displayed in a hidden panel at the top of the
page which the user can access using the 'Help' link.

Every Universal Access page has a corresponding application resource of
type 'property' shipped with it. To change the online help for one of the Uni-
versal Access pages, the developer needs to know the name of the page and

89

the corresponding properties file. For example, the 'ScreeningOptionalLo-
gin' page (the Getting Started page that is displayed after selecting 'Am I
Eligible' on the Citizen Portal Home page). The corresponding properties
file can be found at:

• CURAM_DIR\EJBServer\components\CitizenWorkspace\Data_Manage
r\Initial_Data\blob\prop\ScreeningOptionalLogin.properties

This is referenced from the DMX file:

• CURAM_DIR\EJBServer\components\CitizenWorkspace\Data_Manage
r\Initial_Data\APPRESOURCE_PROP.dmx

As a change is being made to initial DMX data, the procedure to follow is
the same as the recommended procedure for changing any DMX data as
outlined in the Cúram Server Developer's Guide .

Simply edit your version of the ScreeningOptionalLogin.properties file and
change the property text as required. All text controlled by page Player
XML properties files can be altered in the same manner.

11.2.2 Images

Initial data for images used on the Universal Access pages are found in:

• CURAM_DIR\EJBServer\components\CitizenWorkspace\Data_Manage
r\Initial_Data\blob\img

The process for replacing icons/images is the same as that used to replace
text. For example, take the ’ScreeningOptionalLogin’ page. The page XML
source file is located at:

• Data_Manager\Initial_Data\blob\xml\ScreeningOptionalLogin

Note that the icon associated with the page header is the
"title_getting_started" icon. This file is located at:

• Data_Manager\Initial_Data\blob\img

To replace this image with another, follow the same process indicated for
replacing page text/help text above.

11.2.3 Translation

It is possible to use separate properties files to provide translations of Page
Content to different languages. The following example shows how to add a
new translation for the ScreeningOptionalLogin page. Broadly speaking,
this example follows the guidelines for adding new entries to DMX files as
described in the Cúram Server Developer's Guide .

To create a French translation of the ScreeningOptionalLogin page, create a
new DMX file,

Cúram Universal Access Customization Guide

90

• CURAM_DIR\EJBServer\components\custom\Data_Manager\Initial_D
ata\APPRESOURCE_PROP.dmx.

Add a row to this file which references a new file
blob\prop\ScreeningOptionalLogin_fr.properties. The resource name needs
to be the same as the resource name for the English version of the proper-
ties, i.e. ScreeningOptionalLogin. However, the 'localeIdentifier' column
will contain <value>fr</value>.

Add a new entry to project\properties\datamanager_config.xml which refer-
ences:

• CURAM_DIR\EJBServer\components\custom\Data_Manager\Initial_D
ata\APPRESOURCE_PROP.dmx

Create the file
CURAM_DIR\EJBServer\components\custom\Data_Manager\Initial_Data
\blob\prop\ScreeningOptionalLogin_fr.properties and enter French transla-
tions for all relevant property values.

Please see the chapter on customizing citizen account for information re-
garding adding new languages to citizen account pages.

11.2.4 Universal Access Page Player Look and Feel

The look and feel of the Universal Access can be changed (to a certain ex-
tent) through changing/customizing its appearance properties and style
sheet. The general appearance properties are initialized from the file:

• CitizenWork-
space\Data_Manager\Initial_Data\blob\css\cp-config.properties

It is referred to by the Application Resource name cp-config-properties.

The main style sheet is initialized from:

• CitizenWork-
space\Data_Manager\Initial_Data\blob\css\cp-css-template.css

It is referred to by the Application Resource name cp-css-template.

The banner is similarly initialized from:

• CitizenWork-
space\Data_Manager\Initial_Data\blob\css\banner-css-template.css

It is referred to by the Application Resource name banner-css-template.

Note the use of properties in the .css files such as 'banner.icon'. When Uni-
versal Access loads the style sheet template, it substitutes these properties
from cp-config.properties into the template to create the actual style sheet,
so many aspects of the page player appearance can be changed simply by
changing this properties file without any need to modify the .css files. As
with the previous examples in this section the css-templates and associated

Cúram Universal Access Customization Guide

91

properties can be changed through taking a copy of the application resource
DMX data into the custom component.

Please see the chapter on customizing citizen account for information re-
garding customizing the look and feel of citizen account pages.

11.2.5 General Universal Access Settings

The file:

• CitizenWork-
space\Data_Manager\Initial_Data\blob\prop\CPPagePlayer*.propertie
s

and its translated equivalents like CPPagePlayer_es.properties, control gen-
eral purpose text and images associated with the Universal Access applica-
tion. For example, text for 'Next' and 'Back' buttons, text on page banners,
etc. This resource is registered under the resource name 'CPPagePlayer' and
can be changed in the same manner described by the sections above con-
cerning Content/Help text.

11.3 Customizable Universal Access Public APIs

The CitizenWorkspace and WorkspaceServices components contain APIs.
The javadoc for these APIs can be located in the doc sub-directory of each
of

• <CURAM_DIR>\EJBServer\components\CitizenWorkspace\doc and

• <CURAM_DIR>\EJBServer\components\WorkspaceServices\doc re-
spectively.

A limited number of these APIs are customizable via Event and Strategy
patterns as described in the Cúram Development Compliancy Guide.

11.4 Extendable Code Tables

Customers are advised to refer to the Cúram Development Compliancy
Guide for a list of restricted code tables.

Cúram Universal Access Customization Guide

92

Chapter 12

Universal Access Artifacts with Limited Scope for
Customization

12.1 Introduction

This chapter describes the restricted access artifacts present in Universal
Access. Customers that are looking to change artifacts discussed in this
chapter should consider alternatives or request an enhancement to Universal
Access.

12.2 Model

Customers are not supported in making changes to any part of the Universal
Access model. Changes in the model such as changing the data types of do-
mains are likely to cause failure of the Universal Access system and/or up-
grade issues. This applies to the model files in the following packages:

• WorkspaceServices

• CitizenWorkspace

• CitizenWorkspaceAdmin

12.3 Universal Access Page Player XML

Customers are not supported in making changes to the Page Player XML
files.

12.4 JSP and JSPX pages

Customers are not supported in making changes to any out of the box jsp or

93

jspx files.

12.5 Javascript files

Customers are not supported in making changes to any out of the box javas-
cript files in the following components:

• WorkspaceServices

• CitizenWorkspace

• CitizenWorkspaceAdmin

12.6 Renderer configuration

Customers are not supported in making changes to any of the renderer con-
figuration files.

This applies to the XML files in the following locations:

• webclient\components\WorkspaceServices\Configuration

• webclient\components\CitizenWorkspace\Configuration

• webclient\components\CitizenWorkspaceAdmin\Configuration

12.7 Client-side Java artifacts

Universal Access delivers all of its client-side Java artifacts via Citizen-
Workspace_source.jar. This jar file contains all of the classes required for
UA renderers and servlets. Customers are not supported to attempt to ex-
tend, modify or replace any of the delivered classes.

12.8 Code Tables

Customers are advised to refer to the Cúram Development Compliancy
Guide for a list of restricted code tables.

Cúram Universal Access Customization Guide

94

Appendix A

Sample SOAP Requests

A.1 Intake Program Application Update
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices
.curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">
<Username>userforpeersystem</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:updateIntakeProgramApplication>
<rem:xmlMessage>
<intakeProgramApplicationUpdate>

<applicationReference>256</applicationReference>
<applicationProgramReference>joannesprogram

</applicationProgramReference>
<programApplicationStatus>IPAS1004</programApplicationStatus>
<programApplicationDisposedDateTime>

20120528 17:19:47
</programApplicationDisposedDateTime>
<programApplicationDenialReason>IPADR1001

</programApplicationDenialReason>
</intakeProgramApplicationUpdate>

</rem:xmlMessage>
</rem:updateIntakeProgramApplication>

</soapenv:Body>
</soapenv:Envelope>

A.2 Withdrawal Request Update

<?xml version="1.0" encoding="UTF-8"?>
<table name="SEARCHSERVICEFIELD">

<column name="
searchServiceFieldId
" type="text" />

<column name="
searchServiceId
" type="text" />

<column name="
name

95

" type="text" />
<column name="

indexed
" type="bool" />

<column name="
type
" type="text" />

<column name="
stored
" type="bool" />

<column name="
entityName
" type="text" />

<column name="
analyzerName
" type="text" />

<column name="
untokenized
" type="bool" />

<row>
<attribute name="searchServiceFieldId">
<value>
field0
</value>

</attribute>
<attribute name="searchServiceId">
<value>
PersonSearch
</value>

</attribute><attribute name="name">
<value>
primaryAlternateID
</value>

</attribute><attribute name="indexed"> <soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:rem="http://remote.externalservices.workspaceservices.curam"
xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">
<Username>userforpeersystem</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:updateWithdrawalRequest>
<rem:xmlMessage>

<withdrawalRequestUpdate>
<curamReferenceID>-6897262829317914624</curamReferenceID>
<withdrawalRequestStatus>WREQ1002</withdrawalRequestStatus>
<resolvedDateTime>20120525 11:30:50</resolvedDateTime>

</withdrawalRequestUpdate>
</rem:xmlMessage>

</rem:updateWithdrawalRequest>
</soapenv:Body>

</soapenv:Envelope>

A.3 Create Account
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">
<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:createAccount>

Cúram Universal Access Customization Guide

96

<!--Optional:-->
<rem:xmlMessage>

<!--Optional:-->
<cre:AccountCreate xmlns:cre="http://www.curamsoftware.com/

WorkspaceServices/ExternalAccountCreate">
<firstName>John</firstName>
<middleName>M</middleName>
<surname>Doe</surname>
<username>johnmdoe</username>
<password>password1</password>
<confirmPassword>password1</confirmPassword>
<secretQuestionType>SQT1</secretQuestionType>
<answer>mypassword1</answer>
<termsAndConditionsAccepted>true</termsAndConditionsAccepted>
<intakeApplicationReference>256</intakeApplicationReference>
<clientIDOnRemoteSystem>112233445566</clientIDOnRemoteSystem>
<sourceSystem>TestSystem</sourceSystem>

</cre:AccountCreate>
</rem:xmlMessage>

</rem:createAccount>
</soapenv:Body>

</soapenv:Envelope>

A.4 Account Link
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">
<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:linkTargetSystemToAccount>
<rem:xmlMessage>
<lnk:AccountLink xmlns:lnk="http://www.curamsoftware.com/

WorkspaceServices/ExternalAccountLink">
<sourceSystem>TestSystem</sourceSystem>
<citizenWorkspaceAccountID>7081910414040104960

</citizenWorkspaceAccountID>
<clientIDOnRemoteSystem>112233445566</clientIDOnRemoteSystem>
<createdByUsername>testuser</createdByUsername>
</lnk:AccountLink>
</rem:xmlMessage>

</rem:linkTargetSystemToAccount>
</soapenv:Body>

</soapenv:Envelope>

A.5 Account UnLink
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">
<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:unlinkTargetSystemFromAccount>
<!--Optional:-->
<rem:xmlMessage>
<unl:AccountUnlink xmlns:unl="http://www.curamsoftware.com/

WorkspaceServices/ExternalAccountUnlink">
<sourceSystem>TestSystem</sourceSystem>

Cúram Universal Access Customization Guide

97

<citizenWorkspaceAccountID>7081910414040104960
</citizenWorkspaceAccountID>

</unl:AccountUnlink>
</rem:xmlMessage>

</rem:unlinkTargetSystemFromAccount>
</soapenv:Body>

</soapenv:Envelope>

A.6 Citizen Message
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">

<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:createMessage>
<rem:xmlMessage>

<cm:CitizenMessage xmlns:cm="http://www.curamsoftware.com/
WorkspaceServices/ExternalCitizenMessage">

<sourceSystem>TestSystem</sourceSystem>
<cityIndustryType>CMI9001</cityIndustryType>
<citizenWorkspaceAccountID>7081910414040104960

</citizenWorkspaceAccountID>
<relatedID>6060</relatedID>
<externalCitizenMessageType>PMT2004</externalCitizenMessageType>
<messageTitle>Hello, World!</messageTitle>
<messageBody>This is the body of the message.</messageBody>
<effectiveDate>2000-01-01</effectiveDate>
<expiryDate>2020-01-01</expiryDate>
<priority>false</priority>

</cm:CitizenMessage>
</rem:xmlMessage>

</rem:createMessage>
</soapenv:Body>

</soapenv:Envelope>

A.7 Payment (Simple)
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">
<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:create>
<rem:xmlMessage>

<tns:Payment xmlns:tns="http://www.curamsoftware.com/
WorkspaceServices/ExternalPayment">

<paymentID>1554</paymentID>
<sourceSystem>TestSystem</sourceSystem>
<cityIndustryType>CMI9001</cityIndustryType>
<citizenWorkspaceAccountID>7081910414040104960

</citizenWorkspaceAccountID>
<paymentAmount>50.00</paymentAmount>
<currency>EUR</currency>
<paymentMethod>CHQ</paymentMethod>
<paymentStatus>PRO</paymentStatus>
<effectiveDate>2012-01-01</effectiveDate>

Cúram Universal Access Customization Guide

98

<coverPeriodFrom>2012-01-01</coverPeriodFrom>
<coverPeriodTo>2012-01-01</coverPeriodTo>
<dueDate>2012-01-01</dueDate>
<payeeName>Dorothy</payeeName>
<payeeAddress>12 Gloster St., WA 6008</payeeAddress>
<paymentReferenceNo>F</paymentReferenceNo>
<bankSortCode>933384</bankSortCode>
<bankAccountNo>88776655</bankAccountNo>
<PaymentBreakdown>

<PaymentLineItem>
<caseName>I</caseName>
<caseReferenceNo>J</caseReferenceNo>
<componentType>C10</componentType>
<debitAmount>22.45</debitAmount>
<creditAmount>50.76</creditAmount>
<coverPeriodFrom>2012-01-01</coverPeriodFrom>
<coverPeriodTo>2012-01-01</coverPeriodTo>

</PaymentLineItem>
</PaymentBreakdown>

</tns:Payment>
</rem:xmlMessage>

</rem:create>
</soapenv:Body>
</soapenv:Envelope>

A.8 Payment (Batched)
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">
<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:create>
<rem:xmlMessage>

<tns:Payments xmlns:tns="http://www.curamsoftware.com/
WorkspaceServices/ExternalPayment">

<Payment>
<paymentID>2346</paymentID>
<sourceSystem>TestSystem</sourceSystem>
<cityIndustryType>CMI9001</cityIndustryType>
<citizenWorkspaceAccountID>8306889512684879872

</citizenWorkspaceAccountID>
<paymentAmount>48.00</paymentAmount>
<currency>EUR</currency>
<paymentMethod>CHQ</paymentMethod>
<paymentStatus>PRO</paymentStatus>
<effectiveDate>2012-01-01</effectiveDate>
<coverPeriodFrom>2012-01-01</coverPeriodFrom>
<coverPeriodTo>2012-01-01</coverPeriodTo>
<dueDate>2012-01-01</dueDate>
<payeeName>D</payeeName>
<payeeAddress>E</payeeAddress>
<paymentReferenceNo>F</paymentReferenceNo>
<bankSortCode>G</bankSortCode>
<bankAccountNo>H</bankAccountNo>
<PaymentBreakdown>

<PaymentLineItem>
<caseName>I</caseName>
<caseReferenceNo>J</caseReferenceNo>
<componentType>C24000</componentType>
<debitAmount>22.45</debitAmount>
<creditAmount>49.76</creditAmount>
<coverPeriodFrom>2012-01-01</coverPeriodFrom>
<coverPeriodTo>2012-01-01</coverPeriodTo>

</PaymentLineItem>

Cúram Universal Access Customization Guide

99

<PaymentLineItem>
<caseName>I</caseName>
<caseReferenceNo>J</caseReferenceNo>
<componentType>C24000</componentType>
<debitAmount>22.45</debitAmount>
<creditAmount>49.76</creditAmount>
<coverPeriodFrom>2012-01-01</coverPeriodFrom>
<coverPeriodTo>2012-01-01</coverPeriodTo>

</PaymentLineItem>
</PaymentBreakdown>

</Payment>
</tns:Payments>

</rem:xmlMessage>
</rem:create>

</soapenv:Body>
</soapenv:Envelope>

A.9 Contact
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">

<soapenv:Header>
<curam:Credentials xmlns:curam="http://www.curamsoftware.com">

<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:updateExternalContact>
<rem:xmlMessage>

<con:ContactInfo xmlns:con="http://www.curamsoftware.com/
WorkspaceServices/ExternalContact">

<sourceSystem>TestSystem</sourceSystem>
<contactReference>CON_100</contactReference>
<fullName>Harry Neilan</fullName>

<phoneNumber>1-800-CALL-ME</phoneNumber>
<mobilePhoneNumber>1-800-CALL-MOB</mobilePhoneNumber>
<faxNumber>1-800-CALL-FAX</faxNumber>
<email>harry@x.org</email>

</con:ContactInfo>
</rem:xmlMessage>

</rem:updateExternalContact>
</soapenv:Body>

</soapenv:Envelope>

A.10 Cases
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:rem="http://remote.externalservices.workspaceservices.
curam" xmlns:xsd="http://dom.w3c.org/xsd">
<soapenv:Header>

<curam:Credentials xmlns:curam="http://www.curamsoftware.com">
<Username>admin</Username>
<Password>password</Password>

</curam:Credentials>
</soapenv:Header>
<soapenv:Body>

<rem:updateExternalCase>
<rem:xmlMessage>

<cas:CaseInfo xmlns:cas="http://www.curamsoftware.com/
WorkspaceServices/ExternalCase">

<sourceSystem>TestSystem</sourceSystem>
<contactReference>CON_100</contactReference>
<caseReference>CAS_109</caseReference>
<caseName>My Benefit Case - 103</caseName>
<citizenWorkspaceAccountID>8306889512684879872

</citizenWorkspaceAccountID>

Cúram Universal Access Customization Guide

100

</cas:CaseInfo>
</rem:xmlMessage>

</rem:updateExternalCase>
</soapenv:Body>

</soapenv:Envelope>

Cúram Universal Access Customization Guide

101

Notices
This information was developed for products and services offered in
the U.S.A. IBM may not offer the products, services, or features dis-
cussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently
available in your area. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equival-
ent product, program, or service that does not infringe any IBM in-
tellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-
IBM product, program, or service. IBM may have patents or pending
patent applications covering subject matter described in this docu-
ment. The furnishing of this document does not grant you any li-
cense to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information,
contact the IBM Intellectual Property Department in your country or
send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law.

IBM Japan Ltd.

1623-14, Shimotsuruma, Yamato-shi

Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or
any other country where such provisions are inconsistent with local
law: INTERNATIONAL BUSINESS MACHINES CORPORA-
TION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typograph-

102

ical errors. Changes are periodically made to the information herein;
these changes will be incorporated in new editions of the publica-
tion. IBM may make improvements and/or changes in the product(s)
and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an
endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web
sites is at your own risk.

IBM may use or distribute any of the information you supply in any
way it believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for
the purpose of enabling: (i) the exchange of information between in-
dependently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been ex-
changed, should contact:

IBM Corporation

Dept F6, Bldg 1

294 Route 100

Somers NY 10589-3216

U.S.A.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed
material available for it are provided by IBM under terms of the
IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a con-
trolled environment. Therefore, the results obtained in other operat-
ing environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guar-
antee that these measurements will be the same on generally avail-
able systems. Furthermore, some measurements may have been es-
timated through extrapolation. Actual results may vary. Users of this
document should verify the applicable data for their specific envir-
onment.

Information concerning non-IBM products was obtained from the
suppliers of those products, their published announcements or other
publicly available sources.

IBM has not tested those products and cannot confirm the accuracy
of performance, compatibility or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products

Cúram Universal Access Customization Guide

103

should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject
to change or withdrawal without notice, and represent goals and ob-
jectives only

All IBM prices shown are IBM's suggested retail prices, are current
and are subject to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information
herein is subject to change before the products described become
available.

This information contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the
examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the
names and addresses used by an actual business enterprise is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source
language, which illustrate programming techniques on various oper-
ating platforms. You may copy, modify, and distribute these sample
programs in any form without payment to IBM, for the purposes of
developing, using, marketing or distributing application programs
conforming to the application programming interface for the operat-
ing platform for which the sample programs are written. These ex-
amples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. The sample programs are provided "AS
IS", without warranty of any kind. IBM shall not be liable for any
damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative
work, must include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived
from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights re-
served.

If you are viewing this information softcopy, the photographs and
color illustrations may not appear.

Programming Interface Information
This publication documents intended programming interfaces that al-
low the customer to write programs to obtain the services of IBM
Cúram Social Pogram Management.

Cúram Universal Access Customization Guide

104

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trade-
marks of International Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trade-
marks is available on the Web at "Copyright and trademark informa-
tion" at http://www.ibm.com/legal/us/en/copytrade.shtml .

Adobe, the Adobe logo and Portable Document Format (PDF), are
either registered trademarks or trademarks of Adobe Systems Incor-
porated in the United States, other countries, or both.

Apache is a trademark of Apache Software Foundation.

WebLogic Server, Java and all Java-based trademarks and logos are
registered trademarks of Oracle and/or its affiliates.

Other names may be trademarks of their respective owners. Other
company, product, and service names may be trademarks or service
marks of others.

Cúram Universal Access Customization Guide

105

http://www.ibm.com/legal/us/en/copytrade.shtml

	Cúram Universal Access Customization Guide
	Table of Contents
	Chapter 1 Introduction
	1.1 Purpose
	1.2 Audience
	1.3 Scope
	1.4 What You Need to Know
	1.5 Chapters in this Guide

	Chapter 2 The Black Box Engineering Philosophy
	2.1 Introduction
	2.2 It Saves Time and Money
	2.3 It Makes For Easier Upgrades
	2.4 It Is Still Configurable and Customizable

	Chapter 3 Securing Universal Access
	3.1 Introduction
	3.1.1 Background

	3.2 The Universal Access Security Model
	3.2.1 The Public Citizen Account
	3.2.2 Anonymous Accounts
	3.2.3 Registered Accounts
	3.2.4 Linked Accounts
	3.2.5 Authorization Roles and Groups

	3.3 Deployment Considerations
	3.4 Managing Usernames and Passwords
	3.4.1 Account Management
	Account management configurations
	Account management events
	CitizenWorkspaceAccountManager API

	3.5 Data Caching
	3.5.1 Browser Caching

	3.6 External Security Authentication
	3.6.1 Analysis
	3.6.2 Example
	3.6.3 Configuration Tasks
	3.6.4 Configure the Application Server to use LDAP for Authentication
	3.6.5 Deploy Cúram Universal Access in Identity Only mode for Registered Users
	3.6.6 Configure Cúram Universal Access so that Create Account Screens are not Displayed
	3.6.7 Configure Cúram Universal Access so that users are directed to register with an External System
	3.6.8 Development Tasks

	Chapter 4 Customizing Universal Access Triage
	4.1 Introduction
	4.2 Available triage events
	4.2.1 Standard persistence events
	4.2.2 Triage Referral Event

	Chapter 5 Customizing Universal Access Screening
	5.1 Introduction
	5.2 How to Track the Volume, Quality, and Results of Screenings

	Chapter 6 Customizing Application Intake Processing
	6.1 Introduction
	6.2 How to Pre-populate the Intake Script
	6.3 How to Add a Validation for Program Selection

	Chapter 7 Customizing the Handling of Submitted Applications
	7.1 Introduction
	7.2 How to Customize the Generic PDF for Processed Applications
	7.3 How to Use Events to Extend Intake Application Processing
	7.4 How to Send Applications to Remote Systems for Processing
	7.5 How to Customize the Process Intake Application Workflow

	Chapter 8 Customizing Citizen Account
	8.1 Introduction
	8.2 Technical Overview
	8.3 Security Considerations
	8.3.1 Ensuring the currently logged in user is of the correct type
	8.3.2 Ensuring the currently logged in user has access to the specific records they have requested.

	8.4 How to Add a New Page to Citizen Account
	8.4.1 Create a custom, external client component
	8.4.2 Create a UIM page in the new component
	8.4.3 Add a navigation entry for the new page
	8.4.4 Create a Facade

	8.5 How to Customize Universal Access Style Sheets in Citizen Account
	8.6 Customizing Locale
	8.7 Citizen Account Homepage
	8.7.1 Customizing display text
	8.7.2 Outreach Campaigns
	How to configure a new Citizen Campaign
	Outreach Campaign Rulesets
	CitizenCampaignAdmin rule class
	AbstractCampaignAdviceItem rule class

	Images and Links
	Performance Considerations
	Changes to the Participants' data
	Changes to Outreach Campaigns in Administration

	8.7.3 My Messages
	Configuring Citizen Messages
	Adding a new type of Citizen Message
	Persisted Messages
	Dynamic Messages

	Implementing a new message type
	Common Tasks
	Implementing a dynamic message
	Implementing a persisted message.

	Customizing specific message types
	Payment Messages
	Customization of the Payment Messages Expiry Date

	Meeting Messages
	Customization of the Meeting Messages Display Date
	Customization of Activity types for which to create Meeting Messages

	Application Acknowledgment Message
	Customization of Application Acknowledgment Message Expiry Date

	Referral Message
	Service Delivery Message

	8.8 Customizing existing pages
	8.9 My Payments Page Customization
	8.10 My Applications Page Customization
	8.11 Contact Information Page Customization

	Chapter 9 Customizing Life Events
	9.1 Purpose
	9.2 Audience
	9.3 Overview
	9.4 Introduction to Life Events
	9.5 How to Build a Life Event
	9.5.1 Analysis
	Considerations for Life Events Analysis

	9.5.2 Building The Components of a Life Event
	Overview
	Writing Life Event IEG Scripts
	Writing Life Event Review Scripts

	Writing Life Event Recommendations Rule Sets
	Pre-Populating a Life Event
	How the Data Hub Works for Reading
	Authoring Read Transforms
	Defining Filters for Evidence
	Using Pre-Packaged View Processors

	Driving Updates from Life Events
	How the Data Hub Works for Updating
	Writing Transforms for Updating
	Writing Transforms that create new case participants
	Configuring the Evidence Broker for use with the Holding Case
	Configuring Sharing from The Holding Case
	Round Tripping and Configuring Sharing to The Holding Case
	Issues for Consideration

	Updating Non Evidence Entities

	Putting it all Together

	9.6 Life Events API Guide
	9.6.1 Event APIs for Life Events

	Chapter 10 Universal Access Web Services
	10.1 Introduction
	10.2 Web Services Security Considerations
	10.3 Process Application Service
	10.3.1 Receive Application
	10.3.2 Receive Withdrawal Request

	10.4 Update Application Service
	10.4.1 Intake Program Application Update
	10.4.2 Withdrawal Request Update

	10.5 Life Event Service
	10.6 Create Account Service
	10.7 Link Service
	10.8 Unlink Service
	10.9 Citizen Message
	10.10 Payment Service
	10.11 Contact Service
	10.12 Case Service

	Chapter 11 Fully Customizable Universal Access Artifacts
	11.1 Introduction
	11.2 Customizable Universal Access Page Content
	11.2.1 Text and Online Help
	11.2.2 Images
	11.2.3 Translation
	11.2.4 Universal Access Page Player Look and Feel
	11.2.5 General Universal Access Settings

	11.3 Customizable Universal Access Public APIs
	11.4 Extendable Code Tables

	Chapter 12 Universal Access Artifacts with Limited Scope for Customization
	12.1 Introduction
	12.2 Model
	12.3 Universal Access Page Player XML
	12.4 JSP and JSPX pages
	12.5 Javascript files
	12.6 Renderer configuration
	12.7 Client-side Java artifacts
	12.8 Code Tables

	Appendix A Sample SOAP Requests
	A.1 Intake Program Application Update
	A.2 Withdrawal Request Update
	A.3 Create Account
	A.4 Account Link
	A.5 Account UnLink
	A.6 Citizen Message
	A.7 Payment (Simple)
	A.8 Payment (Batched)
	A.9 Contact
	A.10 Cases

	Notices
	Trademarks

